

Lecture Notes in Artificial Intelligence 4201
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Yasubumi Sakakibara Satoshi Kobayashi
Kengo Sato Tetsuro Nishino
Etsuji Tomita (Eds.)

Grammatical Inference:
Algorithms
and Applications

8th International Colloquium, ICGI 2006
Tokyo, Japan, September 20-22, 2006
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Yasubumi Sakakibara
Keio University, Yokohama, Japan
E-mail: yasu@bio.keio.ac.jp

Satoshi Kobayashi
University of Electro-Communications, Tokyo, Japan
E-mail: satoshi@cs.uec.ac.jp

Kengo Sato
National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
E-mail: sato-kengo@aist.go.jp

Tetsuro Nishino
University of Electro-Communications, Tokyo, Japan
E-mail: nishino@ice.uec.ac.jp

Etsuji Tomita
University of Electro-Communications, Tokyo, Japan
E-mail: tomita@ice.uec.ac.jp

Library of Congress Control Number: 2006932583

CR Subject Classification (1998): I.2, F.4, F.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-45264-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-45264-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11872436 06/3142 5 4 3 2 1 0

Preface

The 8th International Colloquium on Grammatical Inference (ICGI 2006) was
held at the University of Electro-Communications (UEC), Tokyo, Japan on Sep-
tember 20-22, 2006. ICGI 2006 was the eighth in a series of successful biennial
international conferences in the area of grammatical inference. Previous meetings
were held in Essex, UK; Alicante, Spain; Montpellier, France; Ames, Iowa, USA;
Lisbon, Portugal; Amsterdam, Netherlands; Athens, Greece. ICGI 2006 was the
first conference in this series to be held in Asia. This series of conferences seeks
to provide a forum for presentation and discussion of original research papers on
all aspects of grammatical inference.

Grammatical inference, the study of learning grammars from data, is an es-
tablished research field in artificial intelligence, dating back to the 1960s and has
been extensively addressed by researchers in automata theory, language acquisi-
tion, computational linguistics, machine learning, pattern recognition, computa-
tional learning theory and neural networks. ICGI 2006 successively emphasized
on the multi-disciplinary nature of the research field and the diverse domains
in which grammatical inference is being applied, such as natural language ac-
quisition, computational biology, structural pattern recognition, information re-
trieval, Web mining, text processing, data compression and adaptive intelligent
agents.

We received 44 high-quality papers from 14 countries around the world. The
papers were reviewed by three reviewers. Based on the positive comments of
the reviewers, 25 full papers were accepted. In addition, we decided to accept 8
short papers for poster presentation. Short papers appear as two-page extended
abstracts in a separate section of this volume. The topics of the accepted papers
vary from theoretical results of learning algorithms to innovative applications
of grammatical inference, and from learning several interesting classes of formal
grammars to applications to natural language processing.

In parallel to the submission and reviewing of research papers, a machine
translation competition, named Tenjinno, took place. In a separate paper in this
volume, the organizers of the competition report on the peculiarities of such an
endeavor and some interesting theoretical findings to which they have been led.
Last but not least, we were honored by the contributions of our two invited speak-
ers, Yuji Matsumoto, from Nara Institute of Science and Technology, Japan, and
Jean-Philippe Vert, from Ecole des Mines de Paris, France. Both invited speakers
provided interesting talks on the topics of natural language processing and bioin-
formatics, and we hope both talks invoked potential applications of grammatical
inference.

The editors would like to acknowledge the contribution of the conference’s
Program Committee and the Additional Reviewers in reviewing the submit-
ted papers and thank the Organizing Committee for their invaluable help in

VI Preface

organizing the conference. Particularly, we would like to thank Colin de la
Higuera, Menno van Zaannen, Bradford Starkie, and Dominique Estival for their
additional voluntary service to the grammatical inference community, through
this conference. We would also like to acknowledge the use of the Cyberchair
software, from Borbala online conference services, in the submission and review-
ing process. Finally, we are grateful for the generous support and sponsorship
of the conference by the University of Electro-Communications, the PASCAL,
Inoue foundation for Science, SIG Mathematical Modeling and Problem Solving
in Information Processing Society of Japan and New Horizons in Computing
(NHC) (Scientific Research on Priority Areas, supported by MEXT, Japan).

September 2006 Yasubumi Sakakibara
Satoshi Kobayashi

Kengo Sato
Tetsuro Nishino

Etsuji Tomita

Organization

Conference Chair

Etsuji Tomita University of Electro-Communications, Japan

Technical Program Committee Co-chairs

Yasubumi Sakakibara Keio University, Japan
Satoshi Kobayashi University of Electro-Communications, Japan

Technical Program Committee

Naoki Abe IBM Thomas J. Watson Research Center, USA
Pieter Adriaans Perot Systems Corporation/University of

Amsterdam, Netherlands
Dana Angluin Yale University, USA
Hiroki Arimura Hokkaido University, Japan
Mitra Basu City University of New York, USA
François Coste Symbiose, INRIA/IRISA, France
Pierre Dupont University of Louvain, Belgium
Henning Fernau University of Hertfordshire, UK
Colin de la Higuera EURISE, Univ. de St. Etienne, France
Vasant Honavar Iowa State University, USA
Chih-Jen Lin National Taiwan University, Taiwan
Laurent Miclet ENSSAT, Lannion, France
Gopalakrishnaswamy Nagaraja Indian Institute of Technology, India
Katsuhiko Nakamura Tokyo Denki University, Japan
Jacques Nicolas IRISA, France
Tim Oates University of Maryland Baltimore County, USA
Arlindo Oliveira Lisbon Technical University, Portugal
Jose Oncina Carratala Universidad de Alicante, Spain
Georgios Paliouras Inst. of Informatics and Telecommunications,

NCSR , Greece
Rajesh Parekh Yahoo!, USA
Kengo Sato CBRC, NAIST, Japan
Giora Slutzki Iowa State University, USA
Bradford Starkie Starkie Enterprise, Australia
Eiji Takimoto Tohoku University, Japan
Menno van Zaanen Universiteit van Amsterdam, Netherlands
Enrique Vidal Universidad Politecnica de Valencia, Spain
Osamu Watanabe Tokyo Institute of Technology, Japan
Thomas Zeugmann Hokkaido University, Japan

VIII Organization

Additional Reviewers

T. Armstrong
L. Becerra-Bonache
M. Bugalho
D. Eisenstat

J.-C. Janodet
H.-U. Krieger
J. A. Laxminarayana
A. Martins

J. Poland
J. M. Vilar

Organizing Committee Chair

Tetsuro Nishino University of Electro-Communications, Japan

Organizing Committee

Colin de la Higuera EURISE, Univ. de St. Etienne, France
Kazuhiro Hotta University of Electro-Communications, Japan
Satoshi Kobayashi University of Electro-Communications, Japan
Yoichi Motomura National Institute of Advanced Industrial

Science and Technology, Japan
Katsuhiko Nakamura Tokyo Denki University, Japan
Seiya Okubo University of Electro-Communications, Japan
Yasuhiro Tajima Tokyo University of Agriculture and

Technology, Japan
Haruhisa Takahashi University of Electro-Communications, Japan
Jun Tarui University of Electro-Communications, Japan
Mitsuo Wakatsuki University of Electro-Communications, Japan

Sponsoring Institutions

University of Electro-Communications

PASCAL Network

Inoue Foundation for Science

SIG Mathematical Modeling and Problem Solving in Information Processing So-
ciety of Japan

New Horizons in Computing (NHC) (Scientific Research on Priority Areas, sup-
ported by MEXT, Japan)

Table of Contents

Invited Papers

Parsing Without Grammar Rules . 1
Yuji Matsumoto

Classification of Biological Sequences with Kernel Methods 7
Jean-Philippe Vert

Regular Papers

Identification in the Limit of Systematic-Noisy Languages 19
Frédéric Tantini, Colin de la Higuera, Jean-Christophe Janodet

Ten Open Problems in Grammatical Inference . 32
Colin de la Higuera

Polynomial-Time Identification of an Extension of Very Simple
Grammars from Positive Data . 45

Ryo Yoshinaka

PAC-Learning Unambiguous NTS Languages . 59
Alexander Clark

Incremental Learning of Context Free Grammars by Bridging Rule
Generation and Search for Semi-optimum Rule Sets 72

Katsuhiko Nakamura

Variational Bayesian Grammar Induction for Natural Language 84
Kenichi Kurihara, Taisuke Sato

Stochastic Analysis of Lexical and Semantic Enhanced Structural
Language Model . 97

Shaojun Wang, Shaomin Wang, Li Cheng, Russell Greiner,
Dale Schuurmans

Using Pseudo-stochastic Rational Languages in Probabilistic
Grammatical Inference . 112

Amaury Habrard, François Denis, Yann Esposito

X Table of Contents

Learning Analysis by Reduction from Positive Data 125
Frantǐsek Mráz, Friedrich Otto, Martin Plátek

Inferring Grammars for Mildly Context Sensitive Languages in
Polynomial-Time . 137

Tim Oates, Tom Armstrong, Leonor Becerra Bonache,
Mike Atamas

Planar Languages and Learnability . 148
Alexander Clark, Christophe Costa Florêncio, Chris Watkins,
Mariette Serayet

A Unified Algorithm for Extending Classes of Languages Identifiable
in the Limit from Positive Data . 161

Mitsuo Wakatsuki, Etsuji Tomita, Go Yamada

Protein Motif Prediction by Grammatical Inference 175
Piedachu Peris, Damián López, Marcelino Campos,
José M. Sempere

Grammatical Inference in Practice: A Case Study in the Biomedical
Domain . 188

Sophia Katrenko, Pieter Adriaans

Inferring Grammar Rules of Programming Language Dialects 201
Alpana Dubey, Pankaj Jalote, Sanjeev Kumar Aggarwal

The Tenjinno Machine Translation Competition . 214
Bradford Starkie, Menno van Zaanen, Dominique Estival

Large Scale Inference of Deterministic Transductions: Tenjinno
Problem 1 . 227

Alexander Clark

A Discriminative Model of Stochastic Edit Distance in the Form of a
Conditional Transducer . 240

Marc Bernard, Jean-Christophe Janodet, Marc Sebban

Learning n-Ary Node Selecting Tree Transducers from Completely
Annotated Examples . 253

Aurelien Lemay, Joachim Niehren, Remi Gilleron

Learning Multiplicity Tree Automata . 268
Amaury Habrard, Jose Oncina

Table of Contents XI

Learning DFA from Correction and Equivalence Queries 281
Leonor Becerra-Bonache, Adrian Horia Dediu, Cristina Tı̂rnăucă

Using MDL for Grammar Induction . 293
Pieter Adriaans, Ceriel Jacobs

Characteristic Sets for Inferring the Unions of the Tree Pattern
Languages by the Most Fitting Hypotheses . 307

Yen Kaow Ng, Takeshi Shinohara

Learning Deterministic DEC Grammars Is Learning Rational
Numbers . 320

Pieter Adriaans

Iso-array Acceptors and Learning . 327
T. Kalyani, V.R. Dare, D.G. Thomas, T. Robinson

Poster Papers

A Merging States Algorithm for Inference of RFSAs 340
Gloria Alvarez, Pedro Garćıa, José Ruiz

Query-Based Learning of XPath Expressions . 342
Julien Carme, Michal Ceresna, Max Goebel

Learning Finite-State Machines from Inexperienced Teachers 344
Olga Grinchtein, Martin Leucker

Suprasymbolic Grammar Induction by Recurrent Self-Organizing
Maps . 346

Fuminori Mizushima, Takashi Toyoshima

Graph-Based Structural Data Mining in Cognitive Pattern
Interpretation . 349

Lidia Ogiela, Ryszard Tadeusiewicz, Marek R. Ogiela

Constructing Song Syntax by Automata Induction . 351
Kazutoshi Sasahara, Yasuki Kakishita, Tetsuro Nishino,
Miki Takahasi, Kazuo Okanoya

Learning Reversible Languages with Terminal Distinguishability 354
José M. Sempere

XII Table of Contents

Grammatical Inference for Syntax-Based Statistical Machine
Translation . 356

Menno van Zaanen, Jeroen Geertzen

Author Index . 359

Parsing Without Grammar Rules

Yuji Matsumoto

Graduate School of Information Science
Nara Institute of Science and Technology
Takayama, Ikoma, Nara 630-0192 Japan

matsu@is.naist.jp

Abstract. In this article, we present and contrast recent statistical
approaches to word dependency parsing and lexicalized formalisms for
grammar and semantics. We then consider the possibility of integrating
those two extreme ideas, which leads to fully lexicalized parsing without
any syntactic grammar rules.

Keywords: dependency parsing, lexicalized grammar, lexical semantics.

1 Introduction

Traditional syntactic analysis of natural languages mainly assumes a set of phrase
structure grammar rules possibly with some syntactic information in the lexi-
con such as case frames. Then, parsing is done with phrase structure parsing al-
gorithms such as Chart Parsing or CKY Parsing algorithms. In contrast, recent
grammar formalisms, such as HPSG (Head-driven Phrase Structure Grammar)[15]
and LTAG (Lexicalized Tree Adjoining Grammar)[14], originating from phrase
structure-style grammars, are extremely lexicalized (termed radical lexicalism),
and now have only a few grammar rules (or grammar schemes). In such systems,
most of syntactic information is stored in lexical entries. On the other hand, lexical
semantic theories such as LCS (Lexical Conceptual Structure)[6] and GL (Gen-
erative Lexicon)[13] propose to assume very rich semantic information in lexical
entries in a language, and give a systematic explanation of syntactic ambiguities
or syntactic alternation that are dealt with in traditional phrase structure-based
analysis by describing multiple frames corresponding to each of possilbe syntactic
constructions. Furthermore, constructions that are not assumed in the case frames
of a word may appear in real language use. Construction grammar approaches to
language[5][12] aim to explain such phenomena.

Recent trend of natural language parsing moved to corpus-based research,
where a large scale parsed corpus is used to estimate statistical properties of
language constructions. Early research in this direction[1][3] used to use phrase
structure trees in their analysis as they base their syntactic structure on Penn
Treebank[8]. More recently, word dependency parsing is getting larger attention
[9][11][16] because of its simplicity and easiness in adaptability to various lan-
guages (e.g., this year’s CoNLL shared task was multi-lingual dependency
parsing1).
1 http://nextens.uvt.nl/~conll/

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 1–6, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 Y. Matsumoto

In this paper, we introduce those recent trends in lexicalism in both parsing
domain and grammar formalisms, and discuss possible integration of these two
extreme ideas.

2 Word Dependency Parsing

There is a traditional syntactic analysis for Japanese sentences, named bunsetsu
dependency analysis. A bunsetsu means a base Japanese phrase consisting of
content words followed by functional words/functional inflection form. The syn-
tactic structure of a Japanese sentence can be represented by dependency rela-
tion between bunsetsu’s. Only the conditions of this dependency are quite simple
that dependency trees must be connected, single headed, acyclic and projective
(no-crossing). An interesting characteristics of Japanese dependency structure
is that any bunsetsu (except the right most one) modifies one of the bunsetsu’s
on its right side because Japanese is a head-final language. This makes it easy
to construct a bunsetsu dependency parsing in a very simple way, and we pro-
posed a Japanese deterministic dependency parser[7] based on Support Vector
Machines.

Fig. 1. An example of English projective dependency tree

We then extended this idea into a Shift-Reduce style depterministic parsing,
and applied it to English and Chinese parsing[2][16]. Fig. 1 shows an example
of English word dependency tree. The examples shown in this paper are un-
labeled trees, while some dependency trees assume their edges to be labeled
with something like SUBJ, OBJ, etc. In our approach, dependency relationship
(left-direction, right-direction, or none) between two adjacent nodes (words) is
deterministically decided as a classification task learned by Support Vector Ma-
chines, and the parsing is done from bottom to top. Because of robust learning
ability of SVMs, the current parser can achieve more than 90% accuracy in prac-
tical English sentence analysis (for sentences in Penn Treebank). Nivre et al[11]
took a similar approach to dependency tree analysis.

This year’s CoNLL (Conference on Natural Language Learning) shared task
was Multi-lingual Dependency Parsing, and the target was to built a corpus-
based language independent dependecy parser and to test it with thirteen lan-
guages provided by the conference organizer. In many of languages there are

Parsing Without Grammar Rules 3

non-projective sentences, in which some dependency relations cross each other
(Fig. 2 shows one of such examples). This kind of sentences cannot be formu-
lated by phrase structure grammars and are difficult to parse with the parsing
algorithms originally designed for phrase structure grammars.

NNP VBD DT NN NN WP VBD IN DT NN
John saw a man yesterday who walked along the river
NNP VBD DT NN NN WP VBD IN DT NN

John saw a man yesterday who walked along the river

Fig. 2. An example of English non-projective dependency tree

Recent McDonald et al’s work[10] showed that non-projected dependency anal-
ysis is easily formulated as a search problem for the maximum cost spanning tree.

Since resolution of syntactic ambiguity has been the most difficult problem
in parsing natural language sentences, the advantage of those corpus-based or
statistical approaches is its ability of disambiguation, that is, they produce the
most plausible parse tree considering all the dependency relation appeared in
the training corpus.

3 Lexicalized Grammars and Lexical Semantic Thoeries

3.1 Lexicalized Grammars and Dependency Parsing

As we explained in Introduction, recent lexicalized grammar formalisms put
most of the grammatical information to the lexicon. In HPSG, each predicate (a
verb, an adjective or an auxiliary verb) has argument structure that describes
information of its complements. There are only a few grammar schemes such as
head complement rule, head adjunct rule, head specifier rule, and so on, all of
which can be specified as a binary tree where either one of them plays a role of
syntactic head. In LTAG, every lexical entry is associated with a tree that shows
its syntactic property. There are only two grammar rules or attachment rules,
substitution and adjoining. The application of these rules can be depicted as a
derivation tree, where one tree structure is attached to another with either of two
attachment rules. In both of HPSG and LTAG, basic operations can be defined as
a binary construction of a tree, which seems to have close relationship with word
dependency structure. Although there may be some discrepancy between the
binary relations in different systems, dependency parsing will give a good control
information in syntactic parsing based on lexicalized grammar formalisms.

3.2 Lexical Semantics and Dependency Parsing

While lexical semantics theories such as Lexical Conceptual Structure[6] and
Generative Lexicon[13] do not specify syntactic structure of a language, they

4 Y. Matsumoto

define semantic relationship between a word and other constituents in a sentence
and indirectly assume syntactic construction of a sentence. In LCS, for example,
verbs are categorized according to their inner structure, which is described by a
small number of primitive predicates such as ACT, GO, BECOME, etc. Though
there are lots of derivative versions of LCS and they employ different sets of
primitives and different way of describing the semantic structure, action verbs,
state-change verbs, causative verbs and creation verbs are described in something
like the following forms:

– Action verbs: [x ACT on y]
– State-change verbs: [BECOME [y BE at z]]
– Causative verbs: [[x ACT (on y)] CAUSE [BECOME [y BE at z]]]
– Creation verbs: [[x ACT (on y′)] CAUSE [BECOME [y BE at z]]]

In those representation, upper case terms, ACT, BECOME, BE and CAUSE
stand for event types of action, state change, state and causality relation between
two events. Lower case alphabets such as x, y and z stand for arguments of the
verb, which are mapped to syntactic constituents such as a subject and an object
in a systematic manner named linking rules[4]. The more interesting is that
specific types of adjuncts (prepositional phrases or adverbs) select some specific
event in the structure. For example, those adjuncts that represent “manner”
or “tools” attach to ACTION event, those that represent “cause” attach to
BECOME event and those that represent “results” or “state” attach to STATE
event. By having such information in lexical entries, integration of dependency
parsing and construction of semantic structure should work in a complementary
manner, and make it possible to achieve more accurate dependency parsing as
well as systematic explanation of dependency relations.

In contrast with LCS, Generative Lexicon and Construction Grammar[5] pro-
pose generative or self-extending functions in their formalisms. Let us consider
the following examples:

1. He began the book.
2. He sneezed a handkerchief off the table.

In the former example, “begin” is assumed to take an event noun for its object
(such as “to read a book” or “reading a book”), and the sentence is analyzed
as ungrammatical if the case frame of the verb strictly selects its complements.
Generative Lexicon proposes three generative operations that dynamically mod-
ifies lexical structure so as to obtain appropriate interpretation of sentences. In
this example, “a book” is coerced to change its structure into an eventive noun
with the help of its inner structure called Qualia Structure, which contains Telic
and Agentive structures that describe how a book is used and how a book is
produced. The latter example itself looks ungrammatical since “sneeze” is an
intransitive verb and does not usually take an object. However, this kind of pro-
ductive use is often seen in real language. Construction Grammar treats such
productive use of language and introduces an idea that construction gives some
additional semantics to a sentence.

Parsing Without Grammar Rules 5

Those kind of seemingly ungrammatical constructions are hardly manageable
by strictly constaint-based grammar formalisms. In contrast, statistical depen-
dency parsing is quite robust in analyzing such sentences since statistically those
constructions form typical syntactic structures. So, also in this case, using sta-
tistical dependency parsing as the control mechanism and using lexical semantic
structure for explaining semantic relationship between two attached constituents
will achieve both syntactically and semantically robust sentence analysis.

4 Final Remarks

Although we proposed integration of statistical word dependency parsing and
lexicalized formalisms of grammar and semantics, this is at the planning stage.
We have achieved very good performance in word dependency parsing, but still
we have lots of phenomena to be solved properly. Our colleagues are now devel-
oping a LCS lexicon of Japanese verbs, and this will make it possible to conduct a
large scale integiration of statistical dependency parsing and a lexical semantics
theory.

References

1. Charniak, E., “A Maximum-Entropy-Inspired Parser,” 1st Meeting of the North
American Chapter of the Association for Computational Linguistics, pp.132-139,
2000.

2. Cheng, Y., Asahara, M., Matsumoto, Y., “Deterministic Dependency Structure
Analyzer for Chinese,” The First International Joint Conference on Natural Lan-
guage Processing, pp.135-140, 2004.

3. Collins, M., “Three Generative, Lexicalised Models for Statistical Parsing,” 35th
Annual Meeting of the Association for Computational Linguistics and 8th Confer-
ence of the European Chapter of the Association for Computational Linguistics,
pp.16-23, 1997.

4. Davis, A.R.(ed.): Linking by Types in the Heirarchical Lexicon, CSLI Publications,
2001.

5. Goldberg, A.E.: Constructions: A Construction Grammar Approach to Argument
Structure, The University Chicago Press, 1995.

6. Jackendoff, R.: Semantic Structures, Current Studies in Linguistics 18, The MIT
Press, 1990.

7. Kudo, T., Matsumoto, Y., “Japanese Dependency Analysis using Cascaded Chunk-
ing,” 6th Conference on Natural Language Learning, pp.63-69, 2002.

8. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A., “Building a Large Annotated
Corpus of English:The Penn Treebank,” Computational Linguistics, Vol.19, No.2,
pp.313-330, 1993.

9. McDonald, R.,Crammer, K., Pereira, F., “Online Large-Margin Training of De-
pendency Parsers,” 43rd Annual Meeting of the Association for Computational
Linguistics: Proceedings of the Conference, pp.91-98, 2005.

10. McDonald, R., Pereira, F., Hajic, J., “Non-Projective Dependency Parsing using
Spanning Tree Algorithms,” HLT-EMNLP, 2005.

6 Y. Matsumoto

11. Nivre, J., Scholz, M., “Deterministic Dependency Parsing of English Text,” 20th
International Conference on Computational Linguistics, pp.64-70, 2004.

12. Östman, J-O., Fried, M: Construction Grammars: Cognitive Grounding and The-
oretical Extensions, John Benjamins Publishing Company, 2005.

13. Pustejovsky, J.: The Generative Lexicon, The MIT Press, 1995.
14. Rambow, O.(eds.): Tree Adjoining Grammars: Formalisms, Linguistic Analysis and

Processing, CSLI Lecture Notes, No.107, CSLI Publications, 2000.
15. Sag, I.A., Wasow, T., Bender, E.M.(eds.): Syntactic Theory: A Formal Introduc-

tion, CSLI Lecture Notes, No.152, CSLI Publications, 2003.
16. Yamada, H., Matsumoto, Y., “Statistical Dependency Analysis with Support Vec-

tor Machines,” 8th International Workshop on Parsing Technologies, pp.195-206,
2003.

Classification of Biological Sequences with
Kernel Methods

Jean-Philippe Vert

Centre for Computational Biology, Ecole des Mines de Paris
35 rue Saint-Honoré, 77300 Fontainebleau, France

Jean-Philippe.Vert@ensmp.fr

Abstract. We survey the foundations of kernel methods and the re-
cent developments of kernels for variable-length strings, in the context
of biological sequence analysis.

1 Introduction

The various genome sequencing projects have produced and continue to produce
at a fast rate huge amounts of sequence data, including genomes, genes, and
proteins sequences. The urgent need for methods to automatically process, seg-
ment, annotate and classify these various biological sequences has triggered the
fast development of numerous algorithms for strings. In this context, support
vector machines and kernel methods are increasingly popular machine learning
algorithms for biological sequence processing [1]. These methods provide a co-
herent mathematical and computational framework to embed strings in Hilbert
spaces and apply powerful statistical analysis in the resulting Hilbert spaces. The
embedding is performed only implicitly, thanks to the use of a so-called kernel
function for variable-length strings, and once the embedding is done the algo-
rithms used for tasks such as supervised classification or regression are generic.
The last decade has witnessed the development of a number of ingenious so-
lutions to the problem of embedding biological sequences in a Hilbert space
through kernel functions, which we review in this paper. Although the focus is
on biological sequences, interesting developments have also occurred and con-
tinue to emerge for the processing of strings in different contexts (e.g., [2]) and
more generally for analysis of structured data (e.g., [3]).

2 Kernels and Kernel Methods

In this section we review basic material about positive definite kernels and kernel
methods. The interested reader is referred to [4,5] and references therein for
further details.

2.1 Positive Definite Kernels

Kernel methods [4] encompass a variety of algorithms for data analysis and
machine learning, including the popular support vector machine (SVM) [6], that

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 7–18, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

8 J.-P. Vert

share in common the use of positive definite (p.d.) kernel to represent data.
Formally, a p.d. kernel K over a space of data X (e.g., the set of finite-length
strings over an alphabet) is a function K : X × X → R that is symmetric (i.e.,
K(x, y) = K(y, x) for any x, y ∈ X) and positive definite in the sense that for
any n ∈ N, any (a1, . . . , an) ∈ Rn and any (x1, . . . , xn) ∈ Xn, the following
holds:

n∑
i,j=1

aiajK(xi, xj) ≥ 0.

The simplest p.d. kernel over finite dimensional vectors (X = Rn) is the Eu-
clidean inner product K(x, y) = x�y. More generally, Aronszajn proved in the
1950’s that, without any assumption of the set X , any p.d. kernel can be seen
as an inner product after some embedding of X into a Hilbert space:

Theorem 1 (Aronszajn, 1950). K is a p.d. kernel on the set X if and only
if there exists a Hilbert space H and a mapping

Φ : X �→ H ,

such that, for any x, x′ in X :

K(x, x′) = Φ(x)�Φ(x′) .

Together with this characterization of kernels as inner product came the con-
struction of a Hilbert space of functions associated with each p.d. kernel, called
the reproducing kernel Hilbert space (RKHS). The RKHS H associated with a
kernel K contains all functions of the form f(x) =

∑n
i=1 αiK(xi, x) and their

pointwise limits, where n ranges over N, the xi’s are elements of X and the αi’s
a real numbers. The norm of such a function in the RKHS is given by:

||f ||2RKHS =
n∑

i=1

n∑
j=1

αiαjK(xi, xj). (1)

As an example, in the case X = Rn, the RKHS of the linear kernel K(x, x′) =
x�x′ is the set of linear functions fw(x) = w�x, where w ∈ Rn, and norm of a
linear function satisfies ||fw||RKHS = ||w||.

To summarize, the construction of a p.d. kernel K over any data space X is
equivalent to:

– Implicitly embedding X into a Hilbert space, the distance between two points
x, x′ ∈ X in the embedding being given by:

dK(x, x′) =
√
K(x, x) +K(x′, x′)− 2K(x, x′) .

– Defining a Hilbert space of functions f : X → R where the norm of a function
f(x) =

∑n
i=1 αiK(xi, x) is given by (1).

Classification of Biological Sequences with Kernel Methods 9

2.2 Kernel Methods

For simplicity we restrict ourselves to kernel methods for regression and pattern
recognition, although other applications (e.g., dimensionality reduction or nov-
elty detection) have been studied too [4]. We assume that the goal is to find a
function f : X → R that assigns real number y ∈ R to any object x ∈ X , given
a training set of pairs (xi, yi), i = 1, . . . , n of object with known values. This
framework encompasses many applications, e.g., predicting whether a biological
sequence x belongs to a particular function family (y = 1) or not (y = −1), given
a training set of sequences known to belong or not to the family. The classical
approach to solve such a problem with kernel methods is to define a loss func-
tion L : R × R → R, a p.d. kernel K : X × X → R, and to solve the following
optimization problem in the RKHS H associated with K:

min
f∈H

1
n

n∑
i=1

L(yi, f(xi)) + λ||f ||2RKHS , (2)

where λ is a parameter of the algorithm. The objective function to be minimized
over H is a sum of two terms. The first term measures the fitness of the function
f to the data (as the average L-loss between yi and f(xi) over the training set),
while the second favors functions f with small RKHS norm. As we will see in
the next section, having a small RKHS norm is related to being smooth over
X , so the objective of the minimization problem is to find a smooth function
that fits the data, and λ controls the trade-off between these two requirements.
Various choices of loss function L give rise to well-known algorithms, such as
support vector machines (L(y, y′) = max(0, 1 − yy′)), kernel logistic regression
(L(y, y′) = log(1 + exp(−yy′))) or kernel ridge regression (L(y, y′) = (y − y′)2).
While the minimization of (2) is primarily motivated by statistical considerations
about the possibility to infer a function from a finite number of observations [6],
this optimization problem over a potentially infinite-dimensional function space
also has the very good practical property that it can usually be solved efficiently.
Indeed it always boils down to a finite-dimensional optimization problem of
dimension at most n, the number of training points, thanks to a theorem known
as the representer theorem, initially proved in the context of splines [7].

2.3 On the Choice of Kernels

A crucial property of kernel methods is their ability to process virtually any types
of data as long as a p.d. kernel can be defined over the set of data considered.
The construction of a kernel for a specific type of data (e.g., strings) and a
specific application (e.g., prediction of functional classes for protein sequences)
can be thought of as a modeling phase, where prior knowledge can help define
some form of optimal embedding of the data into a Hilbert space; the power of
modern statistical algorithms such as SVM comes then at no additional cost.
Following this strategy a number of p.d. kernels for various types of data have
flourished in the last decade, often trying to incorporate prior knowledge in the
kernel.

10 J.-P. Vert

Choosing a kernel for a particular application can be seen as defining (virtu-
ally) an embedding of the space of data X into a Hilbert space (by Theorem 1),
or as defining a Hilbert space of function over X (its RKHS). Both views are
related by the following simple inequality valid for any function f in the RKHS
of the kernel K and any data x and x′:

|f(x)− f(x′)| ≤ ||f ||RKHS × dK(x, x′) .

Intuitively, this shows that if f has a small norm in the RKHS, then it varies
slowly between points close to each other with respect to the geometry defined
by the embedding. By (2) we know that kernel methods therefore look in priority
for smooth function with respect to norm in the embedding. When no obvious
vector embedding of the data is available (e.g., for strings), this provides a useful
alternative guidelines for kernel design: define a kernel such that the function to
be inferred varies smoothly with respect to the distance defined by the kernel.

3 Kernels for Biological Sequences

Many problems in computational biology involve sequences of variable lengths.
For example, the automatic functional or structural annotation of genes found in
sequenced genomes requires the processing of amino-acid sequences with no fixed
length. Learning from variable-length sequences is a challenging problem for most
classical statistical procedures, because there is no natural way to transform a
variable-length string into a vector. For kernel methods, this issue boils down
to the problem of defining kernels for variable-length strings, a topic that has
deserved a lot of attention in the last few years and has given rise to a variety
of ingenious solutions summarized in this section.

3.1 Explicit Vector Embedding

The most common approach to make a kernel for strings, as for many other types
of data, is to design explicitly a set of numerical features that can be extracted
from strings, and then to form a kernel as a dot product between the resulting
feature vectors. As an example, [8] represent a sequence by the vector of counts
of occurrences of all possible k-mers in the sequence, for a given integer k, effec-
tively resulting in a vector of dimension ak, where a is the size of the alphabet.
As an example, the sequence AACGTCACGAA over the alphabet (A,C,G, T)
is represented by the 16-dimensional vector (2, 2, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 1, 0, 0)
for k = 2, where the dimensions are the counts of occurrences of each 2-mer
AA,AC, ..., TG, TT lexicographically ordered. The resulting spectrum kernel be-
tween this sequence and the sequence ACGAAA, defined as the linear product
between the two 16-dimensional representation vectors, is equal to 9. It should
be noted that although the number of possible k-mers easily reaches the order
of several thousands as soon as k is equal to 3 or 4, classification of sequences by
SVM in this high-dimensional space results in fairly good results. A major ad-
vantage of the spectrum kernel is its fast computation; indeed, the set of k-mers

Classification of Biological Sequences with Kernel Methods 11

appearing in a given sequence can be indexed in linear time in a trie structure,
and the inner product between two vectors is linear with respect to the non-zero
coordinates, i.e., at most linear in the total lengths of the sequences. Several
variants to the basic spectrum kernel have also been proposed, including for ex-
ample kernels based on counts of k-mers appearing with up to m mismatches in
the sequences [9].

Another natural approach to vector representation for variable-length strings
is to replace each letter by one or several numerical features, such as physico-
chemical properties of amino-acids, and then to extract features from the re-
sulting variable-length numerical time series using classical signal processing
techniques such as Fourier transforms [10] or autocorrelation analysis [11]. For
example, if h1, . . . , hn denote n numerical features associated to the successive
letters of a sequence of length n, then the autocorrelation function rj for a given
j > 0 is defined by

rj =
1

n− j
n−j∑
i=1

hihi+j .

One can them keep a fixed numbers of these coefficients, for example r1, . . . , rJ ,
and create a J-dimensional vector to represent each sequence.

Finally, another popular approach to design features and therefore kernels for
biological sequences is to “project” them onto a fixed dictionary of sequences or
motifs, using classical similarity measures, and to use the resulting vector of sim-
ilarities as feature vector. For example, [12] represent each sequence by a 10,000-
dimensional vector indicating the presence of 10,000 motifs of the BLOCKS
database; similarly, [13] use a vector that indicates the presence or absence of
about 500,000 motifs in the eMOTIF database, requiring the use of a trie struc-
ture to compute efficiently the kernel without explicitly storing the 500,000 fea-
tures; and [14] represent each sequence by a vector of sequence similarities with
a fixed set of sequences.

3.2 Using Stochastic Models

A completely different approach for kernel design is to derive them from prob-
abilistic models. Indeed, before the interest on string kernels grew, a number of
ingenious probabilistic models had been defined to represent biological sequences
or families of sequences, including for example Markov and hidden Markov mod-
els for protein sequences, or stochastic context-free grammars for RNA sequences
[15]. Several authors have therefore explored the possibility to use such models
to make kernels, starting with the seminal work of [16] that introduced the
Fisher kernel. The Fisher kernel is a general method to extract a fixed number
of features from any data x for which a parametric probabilistic model Pθ is
defined. Here, θ represents a continuous d-dimensional vector of parameters for
the probabilistic model, such as transition and emission probabilities for a hid-
den Markov model, and each Pθ is a probability distribution. Once a particular
parameter θ0 is chosen to fit a given set of objects, for example by maximum
likelihood, then a d-dimensional feature vector for each individual object x can

12 J.-P. Vert

be extracted by taking the gradient in the parameter space of the log-likelihood
of the point:

φ(x) = ∇θ logPθ(x).

The intuitive interpretation of this feature vector, usually referred to as the
Fisher score in statistics, is that it represents how changes in the d parameters
affect the likelihood of the point x. In other word, one feature is extracted for
each parameter of the model; the particularities of the data point are seen from
the eyes of the parameters of the probabilistic model. The Fisher kernel is then
obtained as the dot product of these d-dimensional vectors, eventually multiplied
by the inverse of the Fisher information matrix to render it independent of the
parametrization of the model.

A second line of thoughts to make a kernel out of a parametric probabilistic
model is to use the concept of mutual information kernels [17], that is, kernels
of the form:

K(x, x′) =
∫
Pθ(x)Pθ(x′)dµ(θ),

where dµ is a prior distribution on the parameter space. Here, the features
correspond to the likelihoods of the objects under all distributions of the prob-
abilistic model; objects are considered similar when they have large likelihoods
under similar distributions. An important difference with the kernels seen so
far is that here, no explicit extraction of finite-dimensional vectors can be per-
formed. Hence for practical applications one must chose probabilistic models
that allow the computation of the integral above. This was carried by [18] who
present a family of variable-length Markov models for strings and an algorithm
to perform the integral over parameters and models in the same time, resulting
in a string kernel with linear complexity in time and memory with respect to the
total length of the sequences. A further extension to this approach to the more
general and abstract setting of kernels for finite measures was proposed in [19],
paving the way to further developments of kernels for complex objects.

Alternatively, many probabilistic models for biological sequences, such as hid-
den Markov models, involve a hidden variable that is marginalized over to obtain
the probability of a sequence, i.e., can be written as

P (x) =
∑

h

P (x, h).

For such distributions, [20] introduced the notion of marginalized kernel, ob-
tained by marginalizing a kernel for the complete variable over the hidden vari-
able. More precisely, assuming that a kernel for objects of the form (x, h) is
defined, the marginalized kernel for observed objects x is given by

K(x, x′) =
∑
h,h′

K ((x, h), (x′, h′))P (h|x)P (h′|x′).

In order to motivate this definition with a simple example, let us consider a
hidden Markov model with two possible hidden states, to model sequences with

Classification of Biological Sequences with Kernel Methods 13

two possible regimes, such as introns/exons in eukaryotic genes. In that case
the hidden variable corresponding to a sequence x of length n is a binary se-
quence h of length n describing the states along the sequence. For two sequences
x and x′, if the correct hidden states h and h′ were known, such as the cor-
rect decomposition into introns and exons, then it would make sense to define
a kernel K ((x, h), (x′, h′)) taking into account the specific decomposition of the
sequences into two regimes; for example, the kernel for complete data could be a
spectrum kernel restricted to the exons, i.e., to positions with a particular state.
Because the actual hidden states are not known in practice, the marginalization
over the hidden state of this kernel using an adequate probabilistic model can
be interpreted as an attempt to apply the kernel for complete data by guess-
ing the hidden variables. As for the covariance kernel, marginalized kernels can
often not be expressed as inner products between feature vectors, and require
computational tricks to be computed. Several beautiful examples of such ker-
nels for various probabilistic models have been worked out, including hidden
Markov models for sequences [20,21], stochastic context-free grammars for RNA
sequences [22], or random walk models on graphs for molecular structures [23].

3.3 Using Sequence Convolution and Alignment

Following a different line of thought, [24] introduced the concept of convolution
kernels for objects that can be decomposed into subparts, such as sequences or
trees. For example, the concatenation of two strings x1 and x2 results in another
string x = x1x2. If two initial string kernels K1 and K2 are chosen, then a
new string kernel is obtained by convolution of the initial kernels following the
equation:

K(x, x′) =
∑

x=x1x2,x′=x′
1x′

2

K1(x1, x
′
1)K2(x2, x

′
2).

Here the sum is over all possible decompositions of x and x′ into two concate-
nated subsequences. The rational behind this approach is that it allows the
combination of different kernels adapted to different parts of the sequences, such
as introns/exons or gaps/aligned residues in alignment, without knowing the ex-
act segmentation of the sequences. Besides proving that the convolution of two
kernels is a valid kernel, [24] gives several examples of convolution kernels rel-
evant for biological sequences; for example, he shows that the joint probability
P (x, x′) of two sequences under a pair HMM model is a valid kernel, under mild
assumptions. This work is extended by [25,26] where a valid convolution kernel
based on the alignment of two sequences is proposed. This kernel, named local
alignment kernel, is a close relative of the widely used Smith-Waterman local
alignment score [27]. It can be implemented with a complexity of the order of
|x| × |x′|, where |x| is the length of sequence x, using for example the weighted
finite-state transducer shown in Figure 1. We note that similar attempts to con-
struct kernels using alignments were proposed in the field of language processing
with the concept of dynamic time-warping kernels [28], that however lack posi-
tive definitiveness.

14 J.-P. Vert

a:0/1

a:0/1

a:0/1

a:0/1

0:a/1

0:a/1

0:a/1 0:a/1

0:a/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:a/1

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)
a:0/D

a:0/E

0:b/E

0:b/D

0:b/D

B M E

XX X

YY Y

1

1 2

2

Fig. 1. A weighted finite-state transducer to compute the local alignment kernel.
(from [25])

4 Application

These kernels for variable-length sequences have been widely applied, often in
combination with SVM, to various classification tasks in computational biology.
Examples including the prediction of protein structural or functional classes
from their primary sequence [29,16,25,30,31], the prediction of the subcellular
localization of proteins [32,33,34], the classification of transfer RNA [22] and
non-coding RNA [35], the prediction of pseudo-exons and alternatively spliced
exons [36,37], the separation of mixed plant-pathogen EST collections [38], the
classification of mammalian viral genomes [39], or the prediction of ribosomal
proteins [40].

In order to illustrate the influence of the kernel choice let us consider a bench-
mark experiment designed by [16] for remote homology detection. This bench-
mark is a series of 54 binary classification problems, where each problem amounts
to recognize the super-family of a family of protein sequences. Two proteins are
in the same super-family if they descend from a common ancestor protein and
have kept a similar structure and function. The difficulty of the benchmark is
that the sequences used to train a model for a given super-family are only remote
homologs to the sequences tested, i.e., they share very little sequence similarity
at first sight (although they share by definition a similar 3D structure). The
performance on each binary classification problem is assessed in terms of the
ROC50 curve of true positives as a function of false positives, up to the first 50
false positives, when the classification threshold is varied, and more precisely in

Classification of Biological Sequences with Kernel Methods 15

terms of area under the ROC50 curve that varies between 0 (no true positive in
the first 50 positive predicted) and 1 (perfect classification). Figure 2 shows the
performance of a support vector machine with four different kernels: the Fisher
kernel [16], mismatch kernel [9], pairwise kernel [14] and local alignment kernel
[25,26]. We observe significant differences between the performances of the dif-
ferent kernels, highlighting the influence of the kernel in the final performance of
the algorithm. In this particular case, the most relevant biological prior knowl-
edge about the problem that can be used is that, by definition, proteins belong
to the same superfamily if they are evolutionary related. Not surprisingly, the
best performing kernel is the local alignment kernel that attempts to define an
embedding where distances between sequences approximate their evolutionary
distances.

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

N
o.

 o
f f

am
ili

es
 w

ith
 g

iv
en

 p
er

fo
rm

an
ce

ROC50

SVM-LA
SVM-pairwise

SVM-Mismatch
SVM-Fisher

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

N
o.

 o
f f

am
ili

es
 w

ith
 g

iv
en

 p
er

fo
rm

an
ce

ROC50

SVM-LA
SVM-pairwise

SVM-Mismatch
SVM-Fisher

Fig. 2. Performance of support vector machines with four different kernels on the
remote homology benchmark (from [25])

5 Conclusion

This short review of kernels developed for the purpose of biological sequence
classification, besides highlighting the dynamism of research in kernel meth-
ods resulting from practical needs in computational biology, naturally raises the
practical question of which kernel to use for a given application. Although no
clear answer has emerged yet, some lessons can be learned from early studies.
First, there is certainly no kernel universally better than others, and the choice
of kernel should depend on the targeted application. Intuitively, a kernel for a
classification task is likely to work well if it is based on features relevant to
the task; for example, a kernel based on sequence alignments, such as the local
alignment kernel, gives excellent results on remote homology detection problems,
while a kernel based on the global content of sequences in short subsequences,

16 J.-P. Vert

such as the spectrum kernel, works well for the prediction of subcellular localiza-
tion. Although some methods for systematic selection and combination of kernels
are starting to emerge [41], empirical evaluation of different kernels on a given
problem seems to be the most common way to chose a kernel. Another impor-
tant point to notice, besides the classification accuracy obtained with a kernel,
is its computational cost. Indeed, practical applications often involve datasets
of thousands or tenth of thousands of sequences, and the computational cost
of a method can become a critical factor in this context, in particular in an
online setting. The kernels presented above differ a lot in their computational
cost, ranging from fast linear-time kernels like the spectrum kernel, to slower
kernels like the quadratic-time local alignment kernel. The final choice of ker-
nel for a given application often results from a trade-off between classification
performance and computational burden.

References

1. Schölkopf, B., Tsuda, K., Vert, J.P.: Kernel Methods in Computational Biology.
MIT Press (2004)

2. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text clas-
sification using string kernels. J. Mach. Learn. Res. 2 (2002) 419–444

3. Gärtner, T., Lloyd, J., Flach, P.: Kernels and distances for structured data. Mach.
Learn. 57(3) (2004) 205–232

4. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA (2002)

5. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press (2004)

6. Vapnik, V.N.: Statistical Learning Theory. Wiley, New-York (1998)
7. Kimeldorf, G.S., Wahba, G.: Some results on Tchebycheffian spline functions. J.

Math. Anal. Appl. 33 (1971) 82–95
8. Leslie, C., Eskin, E., Noble, W.: The spectrum kernel: a string kernel for SVM

protein classification. In Altman, R.B., Dunker, A.K., Hunter, L., Lauerdale, K.,
Klein, T.E., eds.: Proceedings of the Pacific Symposium on Biocomputing 2002,
World Scientific (2002) 564–575

9. Leslie, C.S., Eskin, E., Cohen, A., Weston, J., Noble, W.S.: Mismatch string kernels
for discriminative protein classification. Bioinformatics 20(4) (2004) 467–476

10. Wang, M., Yang, J., Liu, G.P., Xu, Z.J., Chou, K.C.: Weighted-support vector
machines for predicting membrane protein types based on pseudo-amino acid com-
position. Protein Eng. Des. Sel. 17(6) (2004) 509–516

11. Zhang, S.W., Pan, Q., Zhang, H.C., Zhang, Y.L., Wang, H.Y.: Classification of
protein quaternary structure with support vector machine. Bioinformatics 19(18)
(2003) 2390–2396

12. Logan, B., Moreno, P., Suzek, B., Weng, Z., Kasif, S.: A Study of Remote Ho-
mology Detection. Technical Report CRL 2001/05, Compaq Cambridge Research
laboratory (2001)

13. Ben-Hur, A., Brutlag, D.: Remote homology detection: a motif based approach.
Bioinformatics 19(Suppl. 1) (2003) i26–i33

14. Liao, L., Noble, W.: Combining Pairwise Sequence Similarity and Support Vector
Machines for Detecting Remote Protein Evolutionary and Structural Relationships.
J. Comput. Biol. 10(6) (2003) 857–868

Classification of Biological Sequences with Kernel Methods 17

15. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press
(1998)

16. Jaakkola, T., Diekhans, M., Haussler, D.: A Discriminative Framework for Detect-
ing Remote Protein Homologies. J. Comput. Biol. 7(1,2) (2000) 95–114

17. Seeger, M.: Covariance Kernels from Bayesian Generative Models. In: Adv. Neural
Inform. Process. Syst. Volume 14. (2002) 905–912

18. Cuturi, M., Vert, J.P.: The context-tree kernel for strings. Neural Network. 18(4)
(2005) 1111–1123

19. Cuturi, M., Vert, J.P.: Semigroup kernels on finite sets. In Saul, L.K., Weiss,
Y., Bottou, L., eds.: Adv. Neural Inform. Process. Syst. Volume 17., MIT Press,
Cambridge, MA (2005) 329–336

20. Tsuda, K., Kin, T., Asai, K.: Marginalized Kernels for Biological Sequences. Bioin-
formatics 18 (2002) S268–S275

21. Vert, J.P., Thurman, R., Noble, W.S.: Kernels for gene regulatory regions. In:
Adv. Neural. Inform. Process Syst. (2006)

22. Kin, T., Tsuda, K., Asai, K.: Marginalized kernels for RNA sequence data analysis.
In Lathtop, R., Nakai, K., Miyano, S., Takagi, T., Kanehisa, M., eds.: Genome
Informatics 2002, Universal Academic Press (2002) 112–122

23. Kashima, H., Tsuda, K., Inokuchi, A.: Kernels for graphs. In Schölkopf, B., Tsuda,
K., Vert, J., eds.: Kernel Methods in Computational Biology. MIT Press (2004)
155–170

24. Haussler, D.: Convolution Kernels on Discrete Structures. Technical Report UCSC-
CRL-99-10, UC Santa Cruz (1999)

25. Vert, J.P., Saigo, H., Akutsu, T.: Local alignment kernels for biological sequences.
In Schölkopf, B., Tsuda, K., Vert, J., eds.: Kernel Methods in Computational Bi-
ology. MIT Press (2004) 131–154

26. Saigo, H., Vert, J.P., Ueda, N., Akutsu, T.: Protein homology detection using
string alignment kernels. Bioinformatics 20(11) (2004) 1682–1689

27. Smith, T., Waterman, M.: Identification of common molecular subsequences. J.
Mol. Biol. 147 (1981) 195–197

28. Shimodaira, H., Noma, K.I., Nakai, M., Sagayama, S.: Dynamic time-alignment
kernel in support vector machine. In: Adv. Neural. Inform. Process Syst. (2001)
921–928

29. Ding, C., Dubchak, I.: Multi-class protein fold recognition using support vector
machines and neural networks. Bioinformatics 17 (2001) 349–358

30. Karchin, R., Karplus, K., Haussler, D.: Classifying G-protein coupled receptors
with support vector machines. Bioinformatics 18 (2002) 147–159

31. Cai, C., Wang, W., Sun, L., Chen, Y.: Protein function classification via support
vector machine approach. Math. Biosci. 185(2) (2003) 111–122

32. Hua, S., Sun, Z.: Support vector machine approach for protein subcellular local-
ization prediction. Bioinformatics 17(8) (2001) 721–728

33. Park, K.J., Kanehisa, M.: Prediction of protein subcellular locations by support
vector machines using compositions of amino acids and amino acid pairs. Bioin-
formatics 19(13) (2003) 1656–1663

34. Matsuda, A., Vert, J.P., Saigo, H., Ueda, N., Toh, H., Akutsu, T.: A novel repre-
sentation of protein sequences for prediction of subcellular location using support
vector machines. Protein Sci. 14(11) (2005) 2804–2813

35. Karklin, Y., Meraz, R.F., Holbrook, S.R.: Classification of non-coding RNA using
graph representations of secondary structure. Pac. Symp. Biocomput. (2005) 4–15

18 J.-P. Vert

36. Zhang, X.H.F., Heller, K.A., Hefter, I., Leslie, C.S., Chasin, L.A.: Sequence Infor-
mation for the Splicing of Human Pre-mRNA Identified by Support Vector Machine
Classification. Genome Res. 13(12) (2003) 2637–2650

37. Dror, G., Sorek, R., Shamir, R.: Accurate identification of alternatively spliced
exons using support vector machine. Bioinformatics 21(7) (2005) 897–901

38. Friedel, C.C., Jahn, K.H.V., Sommer, S., Rudd, S., Mewes, H.W., Tetko, I.V.:
Support vector machines for separation of mixed plant-pathogen EST collections
based on codon usage. Bioinformatics 21 (2005) 1383–1388

39. Rose, J.R., Turkett, W. H., J., Oroian, I.C., Laegreid, W.W., Keele, J.: Correlation
of amino acid preference and mammalian viral genome type. Bioinformatics (2005)

40. Lin, K., Kuang, Y., Joseph, J.S., Kolatkar, P.R.: Conserved codon composition of
ribosomal protein coding genes in Escherichia coli, Mycobacterium tuberculosis and
Saccharomyces cerevisiae: lessons from supervised machine learning in functional
genomics. Nucl. Acids Res. 30(11) (2002) 2599–2607

41. Lanckriet, G., Cristianini, N., Bartlett, P., El Ghaoui, L., Jordan, M.: Learning the
Kernel Matrix with Semidefinite Programming. J. Mach. Learn. Res. 5 (2004) 27–72

Identification in the Limit of Systematic-Noisy
Languages�

Frédéric Tantini, Colin de la Higuera, and Jean-Christophe Janodet

Eurise, Université de Saint-Etienne, 23 rue du Docteur Paul Michelon,
42023 Saint-Etienne

{frederic.tantini, cdlh, janodet}@univ-st-etienne.fr

Abstract. To study the problem of learning from noisy data, the com-
mon approach is to use a statistical model of noise. The influence of the
noise is then considered according to pragmatic or statistical criteria, by
using a paradigm taking into account a distribution of the data. In this
article, we study the noise as a nonstatistical phenomenon, by defining
the concept of systematic noise. We establish various ways of learning
(in the limit) from noisy data. The first is based on a technique of re-
duction between problems and consists in learning from the data which
one knows noisy, then in denoising the learned function. The second con-
sists in denoising on the fly the training examples, thus to identify in the
limit good examples, and then to learn from noncorrupted data. We give
in both cases sufficient conditions so that learning is possible and we
show through various examples (coming in particular from the field of
the grammatical inference) that our techniques are complementary.

Keywords: Identification in the limit, languages, noise, pretopology.

1 Introduction

Grammatical inference [1,2] is a field that provides a lot of algorithms to learn
from sequential or structured data: words, trees, . . . Among the advantages of
these techniques, we can underline the comprehensibility of the learned models,
solid theories which allow in particular to avoid working with nonexplicit bias,
the power of the functions which define the concepts (automata and grammars),
the fact that the training data can be analysed in their globality and not by
taking into account only pieces of information, etc. But these qualities have a
counterpart: they are not (or hardly) noise resistant [3,4].

Noise appears in the data for several reasons. It can be due to the fact that
the bias is inadapted: if we try to learn a regular language from data that comes
from a context-free language, we can expect problems. It can also be due to
poor experimental conditions or to the fact that cleaning the data is either too
difficult or too expensive. This can occur in voice recognition, or when we wish
to learn from manually-built Html files.
� This work was supported in part by the IST Programme of the European Commu-

nity, under the PASCAL Network of Excellence, IST-2002-506778. This publication
only reflects the authors’ views.

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 19–31, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

20 F. Tantini, C. de la Higuera, and J.-C. Janodet

The management of noise is a crucial and recurring problem in machine learn-
ing in general. Concerning grammatical inference, we can quote the following
lines of research. Very theoretical works were undertaken, either within the
framework of inductive inference [5,6] and following the track of old results [7], or
in that of approximate learning [8,9]. Other works tried to use well-founded ideas
in existing algorithms to make them more robust to noise [10,11]. In addition,
nondeterministic automata are probably more resistant to the noise than the de-
terministic ones [12]. More pragmatic works were undertaken to use techniques
of grammatical inference on naturally noisy time series [13]. We can also note
studies on approximated learning of languages, which are based on the rough
sets theory and brings algorithms intrinsically more resistant to noisy data [14].
The paradigm of learning by analogy was also the subject of a study under the
angle of its resistance to noisy data [15]. Lastly, a traditional approach is that
of learning stochastic automata. This approach aims at avoiding the problem by
imposing a different bias: the data come from a distribution, itself represented
by a stochastic automaton [16]. The question is then not that of learning a lan-
guage but a distribution. Results in this direction are both theoretical [17,18]
and algorithmic [19].

Let us note that in most of the theoretical approaches, the treatment of noise
is statistical. In this work, we explore the case of a systematic noise based on
the edit distance; we study the properties of this kind of noise in the context of
the identification in the limit [20,21].

In this setting we propose various ways of learning (in the limit) from noisy
data. The first one is based on a technique of reduction between problems and
consists in learning from the data, knowing that it is noisy, then in denoising the
learned function. The second one consists in denoising on the fly the learning
examples, thus in identifying in the limit good examples, and in learning from
noncorrupted examples. In this second approach, we show that it is possible (and
sometimes recommended) to add additional noise to boost the training.

We give for these two outlines sufficient conditions for the learning and we
show through various examples (and in particular examples coming from the
field of grammatical inference) that the techniques are complementary. The def-
initions we tailor are general, and we use them within the framework of the
systematically noisy texts, but we believe they might be used in a broader way.

2 Preliminaries

An alphabet Σ is a non-empty finite set of symbols called letters. A word w is
a finite sequence w = a1a2 . . . an of letters. Let |w| denote the length of w. In
the following, letters will be indicated by a, b, c, . . ., words by u, v, . . . , z and the
empty word by λ. Let Σ∗ be the set of all finite words over alphabet Σ. We call
language any subset L ⊆ Σ∗.

The identification in the limit paradigm has been introduced by Gold [20]. We
give it here in the formalism of [22] which allows to study reductions between
identification problems (section 4). Let L be a class of languages andR(L) a class

Identification in the Limit of Systematic-Noisy Languages 21

of representations for L (e.g. the class of regular languages and that of determin-
istic automata). Let LL : R(L) → L be the function that for every representation
returns the corresponding language. This function is surjective: every language
can be represented. But it does not have to be injective. Indeed, two different
functions can represent the same language. We suppose that the following word
problem is decidable: “given w ∈ Σ∗ and G ∈ R(L), w ∈ LL(G)?”.

Definition 1 (Presentation). A presentation of L ∈ L is a function f : N →
X where X is a set. Let Pres(L) be the set of all presentations. Since a presen-
tation denotes a language of L, there exists a function yield : Pres(L) → L. I.e.,
if L = yield(f) then f is a presentation of L, or f ∈ Pres(L). Let fn denote
the set {f(j) : j < n}.

With this definition, the notion of presentations is very large: they are sequences
of information of any type that inform us on the language. Indeed, X can be Σ∗

in the case of positive examples only. If in addition, yield(f) = f(N), then such
presentations are called texts. In the case of an informant, which is a presentation
with both negative and positive examples, X = Σ∗ × {0, 1}.

If two languages share one presentation,then they cannot be distinguished, so
L will not be learnable from Pres(L). Therefore, we will suppose that if two
presentations f and g are such that f(N) = g(N), then yield(f) = yield(g).

A learning algorithm alg is a program taking as input the first n elements of
a presentation and returning a representation:

alg :
⋃

f∈Pres(L),i∈N

{fi} → R(L)

The next definition is adapted from [21]:

Definition 2. We say that L is learnable in the limit from Pres(L) in terms
of R(L) if there exists a learning algorithm alg such that for any L ∈ L and for
any presentation f ∈ Pres(L), there exists a rank n such that for all m ≥ n,
LL(alg(fm)) = L.

Usual classes of languages (defined by automata, grammars, . . .) are not appro-
priate in the case of noise. The essential problem is that in a quasi systematic
way, the modification of a symbol in a word swaps it from the language to its
complementary. To use an image coming from a field in which the noise was
better analysed, it is like if, by drawing on a screen the words of a language,
no shape was perceptible: all the languages would look like uniform grey. We
thus introduce distance and simple topological objects, the balls, which do not
present this problem.

The edit distance between two words was defined by Levenshtein in 1965 [23].
It consists in counting the minimal number of symbol operations needed to
rewrite the former into the latter, where the operations are the insertion, the
substitution and the deletion. More formally, let w and w′ be two words in Σ∗,
we rewrite w into w′ in one step if one of the following condition is true:

22 F. Tantini, C. de la Higuera, and J.-C. Janodet

– w = uav, w′ = uv and u, v ∈ Σ*, a ∈ Σ (deletion),
– w = uv, w′ = uav and u, v ∈ Σ*, a ∈ Σ (insertion),
– w = uav, w′ = ubv and u, v ∈ Σ*, a, b ∈ Σ (substitution).

We consider the reflexive and transitive closure of this relation and we note
w

k−→ w′ iff w can be rewritten into w′ by means of k operations. Then the
Levenshtein distance between w and w′, noted d edit(w,w′), is the smallest k
such that w k−→ w′. For instance, d edit(abaa, aab) = 2 since abaa→ aaa→ aab.

Notice that the edit distance between two words is computed by dynamic
programming [24]. Moreover several variants have been studied and the distance
has been adapted to the case of circular words and trees. The weight of the edit
operations can also differ from 1. We have chosen in this work to study only the
standard case.

Definition 3 (Balls). The ball of centre u ∈ Σ∗ and radius r ∈ N is defined
by Br(u) = {w ∈ Σ∗ : d(w, u) ≤ r}. A representation of the ball Br(u) will then
be the couple (u, r). Let BΣ denote the set of all the balls: BΣ = {Bk(u) : k ∈
N, u ∈ Σ∗}.
Note that if the alphabet Σ contains only one letter, the same ball can be repre-
sented in several ways (B2(a) = B3(λ)), but this characteristic is not a problem:
many classes of representations have this property (automata, grammars).

3 Identification in the Limit from Noisy Data

In this paper, we propose a model of noise that we call systematic: noise will
be added to a data in all the possible ways up to a certain distance. This idea
can be illustrated by considering spots of painting on a paper sheet: putting an
object on the sheet makes the points become blurs.

Definition 4 (Noise of a language). Let L be a language on Σ∗. The k-noise
of L is Nk(L) = {w : ∃x ∈ L, d(x,w) ≤ k}.
Let us first notice that once noise is added, if two languages of the class are
not distinguishable one from the other, then the class itself is not resistant to
systematic noise. In particular, this is the case of the class of rational languages,
and in a broader way for any class defined by rewriting systems. The possibility
to represent in these classes parity functions is susceptible to convince us of the
low resistance to the noise of these languages [4]. This justifies our interest in
classes of languages defined differently than through grammars.

It is reasonable to study systematic noise in the paradigm of the identification
in the limit, due to the absence of distribution on the data. To this purpose, we
introduce the following new notion of presentation:

Definition 5 (Noisy presentation). A noisy presentation is a presentation
f : N → X for which there exists an (unknown) function isnoise : X → {0, 1}
that is able to distinguish noisy elements and pure ones.

Identification in the Limit of Systematic-Noisy Languages 23

This definition allows to model a variety of situations, for instance:

Definition 6 (k-noisy presentation). Let L be a language. A k-noisy presen-
tation of L is a presentation of Nk(L). The function isnoise is then equal to 0
on the elements of L and to 1 on those of Nk(L) \ L.

We now tackle the problem of learning in presence of noisy data. Two solutions
seem relevant as shown by the following diagram:

Pres(L) −−−−→ L’⏐⏐� ⏐⏐�
Pres(L) −−−−→ L

In this diagram the problem is to learn a language L from a noisy presentation of
Pres(L). First, we can try to learn instead a language from another class which
would incorporate the noise (the class L’) and then try to deduce the original
language. On the other hand, we can try to denoise the data in order to obtain
a nonnoisy presentation in Pres(L) and then learn from this one. In this second
strategy, it is thus the function isnoise that we want to identify.

4 Reduction

A technique implemented in many fields of computer science and mathematics is
that of reductions. They make are used to obtain negative results (such problem
is at least as difficult as such other, known as being too hard) but also to use
algorithms that are valid in a case for another case. Here, we consider the latter
technique: following the arguments of [22], we show that the balls are identifiable
from noisy data. Beyond this result, we think that the reductions are an effective
way to learn from noisy data.

We recall that a situation of identification is defined by the class of lan-
guages, that of the representations and the type of allowed presentations. Let
L and L’ be the two classes of languages represented respectively by R(L) and
R(L’). We denote by LL (resp. LL’) the surjective mapping R(L) → L (resp.
LL’ : R(L’) → L’).

Given a surjective mapping φ : L → L’, we denote by ψ a surjective mapping
R(L) → R(L’) for which the diagram commutes (φ ◦ LL = LL’ ◦ ψ):

R(L)
ψ−−−−→ R(L’)

LL

⏐⏐� ⏐⏐�LL’

L φ−−−−→ L’

Given a surjective mapping φ : L → L’, we denote ξ a surjective mapping
Pres(L) → Pres(L’) for which the following diagram commutes (φ ◦ yieldL =
yieldL’ ◦ ξ):

24 F. Tantini, C. de la Higuera, and J.-C. Janodet

L φ−−−−→ L’

yieldL

�⏐⏐ �⏐⏐yieldL’

Pres(L)
ξ−−−−→ Pres(L’)

As a presentation may not be a computable function, describing the compu-
tation aspects of function ξ is as follows:

Definition 7. Let L be a class of languages represented in R(L) with presen-
tations in Pres(L) : N → X and let L’ be a class of languages represented in
R(L’) with presentations in Pres(L’) : N → Y . A reduction between presenta-
tions ξ : Pres(L) → Pres(L’) such that ξ(f) = g is computable if and only if
there exists a computable function ξ : X → 2Y such that

⋃
i∈N ξ(f(i)) = g(N).

ξ is the description of the function ξ in all its points. We suppose here that
∀i ∈ N, ξ(f(i)) is a finite set.

By combining the two previous diagrams we obtain:

R(L)
ψ−−−−→ R(L’)

LL

⏐⏐� ⏐⏐�LL’

L φ−−−−→ L’

yieldL

�⏐⏐ �⏐⏐yieldL’

Pres(L)
ξ,ξ−−−−→ Pres(L’)

Theorem 1. If (i) L’ is learnable in terms of R(L’) from Pres(L’), (ii) there
exists a computable function χ : R(L’) → R(L) and a computable function
ψ : R(L) → R(L’) such that ψ ◦ χ = Id and (iii) ξ is a computable reduction,
then L is learnable in terms of R(L) from Pres(L).

R(L)
χ←−−−− R(L’)

LL

⏐⏐� ⏐⏐�LL’

L φ−−−−→ L’

yieldL

�⏐⏐ �⏐⏐yieldL’

Pres(L)
ξ,ξ−−−−→ Pres(L’)

Proof. Let alg2 be a learning algorithm that identifies L’. Consider algorithm
alg1 below, that takes a presentation f by its n first items (fn) and then executes:

gm ←− ξ(fn)
GL’ ←− alg2(gm)
GL ←− χ(GL’)
return GL

Identification in the Limit of Systematic-Noisy Languages 25

GL and GL’ are grammars of R(L) and R(L’). As ξ is computable, gm can
effectively be built.

As a consequence of Theo. 1, we can prove known results like the identification
of even linear grammars [25], by reduction from deterministic finite automata.
In the context of noisy data, we get:

Theorem 2. BΣ is learnable in the limit from k-noisy text.

We first establish that the k-noise of a ball is a ball:

Lemma 1. Nk(Bk′(u)) = Bk+k′ (u)

Proof. (⊆) Let x ∈ Nk(Bk′(u)). Then ∃y ∈ Bk′ (u) : d(y, x) ≤ k, so d(u, y) ≤
k′ ∧ d(y, x) ≤ k, therefore d(u, x) ≤ k′ + k.
(⊇) Let x ∈ Bk+k′ (u) so d(u, x) ≤ k + k′. Let d(u, x) > k′. The fact that
k′ < d(u, x) ≤ k + k′ means that u can be changed in x by the mean of k + k′

operations of edition. Let y be the word obtained after the first k′ operations.
Then d(u, y) = k′ and d(y, x) ≤ k ; thus y ∈ Bk′(u) and x ∈ Nk(Bk′ (u)).

We also get the following result:

Lemma 2. BΣ is identifiable in the limit from text.

Proof. By saturation, when all the points have appeared, the ball can be com-
puted. If only some points are given, the problem is NP-hard [26], but, with all
the points, it is easy: let Bmax be the set of the longuest words. The centre u is
the only word such that aku and bku are in Bmax, where k is the greatest integer
such that ak and bk are left factors of Bmax. The ball is then Bk(u).

From Lemmas 1 and 2 we deduce:

Proof (of Theo. 2). Taking χ=if the radius of the ball is at least k, then deduct
k from the radius, if not identity, we obtain the following diagram:

BΣ
χ←−−−− BΣ

LL

⏐⏐� ⏐⏐�LL’

BΣ
Id−−−−→ BΣ

yieldL

�⏐⏐ �⏐⏐yieldL’

k-noisy text
Id,Id−−−−→ Text

So we deduce the result from Theo. 1.

5 Denoising in the Limit

Another way to learn from noisy data is to denoise the data on the fly, then
to learn the language from these pure data. In order to denoise the data, we

26 F. Tantini, C. de la Higuera, and J.-C. Janodet

will see that it can even be useful to add more noise as a preliminary. The data
processing sequence is then the following one:

Pres(L) add noise−−−−−−→ Pres(L) remove noise−−−−−−−−→ Pres(L)

where Pres(L) and Pres(L) are noisy presentations and Pres(L) is a presen-
tation of pure data. Once the presentation is denoised, we can then learn in the
limit a language L′ and use it to deduce the language L which interests us. Note
that if we strictly denoise a presentation, i.e. if we remove all the noise and only
the noise, we will then obtain directly L′ = L.

Definition 8 (Denoisable in the limit). Let Pres(L) be a class of k-noisy
presentations. If there exists an algorithm θ : X × ⋃

f∈PresL,i∈N{fi} → {0, 1}
such that : ∀x ∈ X, ∀f ∈ Pres(L), ∃nx such that ∀m ≥ nx θ(x, fm) = θ(x, fnx) =
isnoise(x) = if x ∈ Nk(L) \ L then 1 else 0, then we say that the presentations
of Pres(L) are denoisable in the limit.

Note that the identification of the noise is not monotonic: we can have identified
some data as pure and cannot guess for others. Moreover, denoising in the limit
is not identification in the limit: the function isnoise is learned point-to-point
but never in its globality.

In the following, we consider only learning from k-noisy text. In this case,
θk(x, fm) = 1 indicates the fact that at the rank m the algorithm estimates that
x is a noisy piece of data and therefore is not in L.

To denoise the data, we must thus know if the data belong to the target
language or not, i.e. we must be able to decide if a data is noise. For that, we
will need to know the relations of proximity of the data compared one to the
other, and in particular compared to those which belong indeed to the language.
This concept of “neighbourhood” naturally leads to topology.

However, for our problem, traditional topology with its numerous axioms is
too constraining. We thus will use pretopologic spaces which aim at defining
“topologies with less axioms”. For sake of clarity, we point out the definitions of
the pretopologies and their properties in appendix.

Let Ik andEk define the function allowing the deletion and the addition of noise:
Ik(L) = {w ∈ Σ∗ : Nk({w}) ⊆ L} and Ek(L) = {w ∈ Σ∗ : Nk({w}) ∩ L �= ∅}
Definition 9. A language L is said to be closed for the pretopologic space Ej =
(Σ∗, Ek ◦ Ik, Ik ◦Ek) if and only if Ij(Ej(L)) = L and a language class is closed
if all its elements are closed.

We can show that:

L closed ⇒ (∀x ∈ Σ∗Nk(x) ⊆ Ek(L) ⇒ x ∈ L) (1)

The function Ik enables us to implement a way to denoise data:

Theorem 3. Let k be the level of noise and Ek be a pretopologic space. If L is
closed (for Ek) then Pres(L) is k-denoisable in the limit.

Identification in the Limit of Systematic-Noisy Languages 27

Proof. We consider the following algorithm θk: let f be a k-noisy presentation
of a language L and x ∈ Nk(L); θk(x, fp) = 0 if x ∈ Ik(fp) and 1 if Bk(x) �⊆ fp.

Let f be a k-noisy presentation of a language L and x ∈ Nk(L). If isnoise(x) =
0 then x ∈ L thus Bk(x) ⊆ Nk(L) and as f(N) = Nk(L), there is a rank
nx such that Bk(x) ⊆ fnx and thus x ∈ Ik(Bk(x)) ⊆ Ik(fnx). Consequently
θk(X, fnx) = 0 = isnoise(x). Conversely, if isnoise(x) = 1, then x �∈ L and as L is
closed for Ek then Bk(x) �⊆ Nk(L) (cf equation 1) and thus ∀p ∈ N, Bk(x) �⊆ fp.
Consequently, ∀p ∈ N, θ(x, fp) = 1 = isnoise(x).

Example 1. Let BΣ be the set defined by BΣ =
{
Bk(u) : k ∈ N, u ∈ Σ∗

}
where

Bk(u) = Σ∗ \Bk(u). Presentations of BΣ are denoisable in the limit. Indeed, we
can show that balls are open and that the complementary of an open set is a
closed set, thus the class BΣ is closed.

To add noise, however, can seem strange; nevertheless, it makes it possible to
obtain the following result:

Theorem 4. Let k be the level of noise and Ej be a pretopologic space. If L is
closed and if j ≥ k then L is k-denoisable in the limit.

Proof. Consider the algorithm θk(x, fp) = 0 if x ∈ Ik(Ej−k(fp)) and 1 if not.
Then take again the proof of Theo. 3. More intuitively, let f be a k-noisy pre-
sentation of L. For all p we define gp = Ej−k(fp). As f is a presentation of
Nk(L), g is a presentation of Nj(L). Moreover L is closed for Ej thus according
to Theo. 3, g is j-denoisable in the limit and thus f is k-denoisable in the limit

However, the addition of noise will not allow the identification of new classes
which were not learnable without noise.

6 Experiments and Concluding Remarks

In order to show that indeed, adding noise can accelerate the learning process
by validating non noisy data earlier, we have made the following experiments:
For different balls centred in λ (radius r) of sizes 3, 7, 15 and 31 because of
using an alphabet of size 2, two levels of noise (k = 1 and k = 2), and 4 levels
of added noise (j), we have generated strings from Br+k(λ), and counted how
many of these strings remained after denoising through considering a level of
added noise j. The number |f | of generated strings in each case varies with the
size of the ball. The experiments were repeated in each case one thousand times
and the results are presented in Table 1. Clearly, in all cases, adding noise allows
to validate the data earlier.

Lastly, the majority of the languages are naturally not totally denoisable in
the limit. Nevertheless, it is possible to deduce the class L from a class of language
L’ by combining addition and deletion of noise.

28 F. Tantini, C. de la Higuera, and J.-C. Janodet

Table 1. Addition of noise can be useful

k=1 k=2
r |Br(λ)| | f | j=0 j=1 j=2 j=3 | f | j=0 j=1 j=2 j=3
1 3 6 0.183 1.774 1.876 1.876 12 0.004 1.338 1.761 1.765
2 7 14 0.278 4.711 5.462 5.473 28 0.026 3.818 5.126 5.330
3 15 30 0.420 11.017 12.929 13.157 60 0.030 9.112 12.453 13.000
4 31 62 0.422 21.755 29.213 29.592 124 0.041 22.831 27.690 29.244

Example 2. Let BΣ be the class of balls. We recall that this class is not closed.
Let L = Br(u). Then Ij+k(Ej(Nk(L))) = Ij+k(Ej+k(L)) which contains an
approximation of L, i.e., L plus possibly some words (for example bbbaaa ∈
I1(E1(B4(aabb))) but bbbaaa �∈ B4(aabb)). However in Ij+k(Ej+k(L)), there ex-
ists a couple (anv, bnv) which are respectively the smallest and the greatest
word of the longest words of L. These words enable us to deduce r = n and
u = v, thus to identify L = Br(u). Consequently, there is an algorithm allowing
to identify indirectly BΣ after an approximate denoising of the data.

To conclude, we introduced two techniques allowing to learn languages in pres-
ence of systematic noise. One of them is based on a theorem of reduction. The
other uses the idea of the on the fly denoising of the data (denoising whose
correction is obtained only in the limit). We also established the fact that this
process could advantageously be accompanied by an over-noising of the data in
order to accelerate the identification.

Several problems remain open: we did not tackle the questions of complexity.
It is obvious, for example, that the over-noising should not be explicit since it
is too expensive. Techniques simulating it must be introduced. The systematic
noise is also a strong assumption: a more realistic model could be based on the
fact that only a part (the majority?) of the noisy examples appears in the pre-
sentation. In the same way, we chose here to use a strict denoising: as long as
all the elements of the noise of x did not appear, x is regarded as noise. Other
strategies are possible and deserve to be analysed. Finally, balls are a first can-
didate of topologically robust languages. But other classes of languages, defined
by topological properties, can be richer and maintain the necessary robustness.

Acknowledgement

Several ideas related in particular to the systematic noise and the balls were
discussed in June 2004 with Rémi Eyraud and Jose Oncina during its stay in
Saint-Etienne as an invited professor.

References

1. Sakakibara, Y.: Recent advances of grammatical inference. Theoretical Computer
Science 185 (1997) 15–45

2. de la Higuera, C.: A bibliographical study of grammatical inference. Pattern
Recognition 38 (2005) 1332–1348

Identification in the Limit of Systematic-Noisy Languages 29

3. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the abbadingo one DFA
learning competition and a new evidence-driven state merging algorithm. LNCS
1433 (1998) 1–12

4. de la Higuera, C.: Data complexity in Grammatical Inference. Number ISBN:
1-84628-171-7 in Advanced Information and Knowledge Processing. In: Data com-
plexity in Pattern Recognition. Springer Verlag (2006)

5. Case, J., Jain, S., Sharma, A.: Synthesizing noise-tolerant language learners. The-
oretical Computer Science 261 (2001) 31–56

6. Stephan, F.: Noisy inference and oracles. Theoretical Computer Science 185 (1997)
129–157

7. Wharton, R.M.: Approximate language identification. Information and Control
26 (1974) 236–255

8. Kearns, M., Valiant, L.: Cryptographic limitations on learning boolean formulae
and finite automata. In: 21st ACM Symposium on Theory of Computing. (1989)
433–444

9. Kearns, M.: Efficient noise-tolerant learning from statistical queries. In: Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing.
(1993) 392–401

10. Sebban, M., Janodet, J.C.: On state merging in grammatical inference: a statistical
approach for dealing with noisy data. In: Proceedings of ICML. (2003)

11. Habrard, A., Bernard, M., Sebban, M.: Improvement of the state merging rule on
noisy data in probabilistic grammatical inference. In Lavrac, N., Gramberger, D.,
Blockeel, H., Todorovski, L., eds.: 10th European Conference on Machine Learning.
Number 2837 in LNAI, Springer-Verlag (2003) 169–1180

12. Coste, F., Fredouille, D.: Unambiguous automata inference by means of state-
merging methods. In: Proceedings of ECML (LNAI 2837). (2003) 60–71

13. Giles, C.L., Lawrence, S., Tsoi, A.: Noisy time series prediction using recurrent
neural networks and grammatical inference. Machine Learning Journal 44 (2001)
161–183

14. Yokomori, T., Kobayashi, S.: Inductive learning of regular sets from examples: a
rough set approach. In: Proc. of International Workshop on Rough Sets and Soft
Computing. (1994)

15. Miclet, L., Bayoudh, S., Delhay, A.: Définitions et premières expériences en ap-
prentissage par analogie dans les séquences. In Denis, F., ed.: CAP, PUG (2005)
31–48

16. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Prob-
abilistic finite state automata – part I and II. Pattern Analysis and Machine
Intelligence 27 (2005) 1013–1039

17. Abe, N., Warmuth, M.: On the computational complexity of approximating dis-
tributions by probabilistic automata. Machine Learning Journal 9 (1992) 205–260

18. Thollard, F., Clark, A.: Pac-learnability of probabilistic deterministic finite state
automata. Journal of Machine Learning Research (2004) 473–497

19. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Proceedings of ICGI (LNAI 862). (1994) 139–150

20. Gold, M.: Language identification in the limit. Information and Control 10 (1967)
447–474

21. Gold, E.M.: Complexity of automaton identification from given data. Information
and Control 37 (1978) 302–320

22. de la Higuera, C.: Complexity and reduction issues in grammatical inference.
Technical Report ISSN 0946-3852, Universität Tübingen (2005)

30 F. Tantini, C. de la Higuera, and J.-C. Janodet

23. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Cybernetics and Control Theory 10 (1965) 707–710 Original in Doklady
Akademii Nauk SSSR 163(4): 845–848 (1965).

24. Wagner, R., Fisher, M.: The string-to-string correction problem. Journal of the
ACM 21 (1974) 168–178

25. Takada, Y.: Grammatical inference for even linear languages based on control sets.
Information Processing Letters 28 (1988) 193–199

26. de la Higuera, C., Casacuberta, F.: Topology of strings: median string is NP-
complete. Theoretical Computer Science 230 (2000) 39–48

27. Belmandt, Z.: Manuel de prétopologie et ses applications. Herms (1993)
28. Pawlak, Z.: Theory of rough sets: A new methodology for knowledge discovery

(abstract). In: ICCI. (1990) 11
29. Kobayashi, S., Yokomori, T.: On approximately identifying concept classes in the

limit. In: ALT. (1995) 298–312

Appendix

We recall here some definitions of pretopology [27], then we define a pretopo-
logic space adapted to the study of Σ∗ and we study its properties within the
framework of denoising in the limit.

Definition 10 (c-duality). We note c the complementary: let U be a set, ∀A ∈
P(U), c(A) = U \ A = Ā. Two applications e and i from P(U) to P(U) are c-
duals if and only if i = c ◦ e ◦ c or e = c ◦ i ◦ c.

Definition 11 (Pretopologic space). (U, i, e) defines a pretopologic space, if
and only if: (i) i are e c-duals, (ii) i(U) = U , (iii) ∀L ∈ P(U), i(L) ⊂ L.

The concept of topology is thus a particular case of pretopology. It is a pretopo-
logic space such as ∀A,B ∈ P(U), e(A ∪ B) = e(A) ∪ e(B) and e(e(A)) =
e(A). With the tools of the pretopology, we can model processes of exten-
sion L = e0(L) ⊂ e(L) ⊂ e[e(L)] ⊂ . . . ⊂ en(L) ⊂ . . . ⊂ U and erosion
L = i0(L) ⊃ i(L) ⊃ i[i(L)] ⊃ . . . ⊃ in(L) ⊃ . . . ⊃ ∅, what is not the case
in topology because of the idempotence of the applications e and i.

Definition 12 (Closed and open sets). Let (U, i, e) be a pretopologic space.
K is a closed set of U if and only if e(K) = K and L is an open set of U if and
only if i(L) = L. A class of languages L is closed if and only if ∀L ∈ L, L is a
closed set and is open if and only if ∀L ∈ L, L is an open set.

Below, we define functions i and e thanks to which we will build the pretopologic
spaces adapted to our study. We recall that the distance used (and in particular
for the function of noise N) is the edit distance.

Definition 13 (Interior and exterior). We call the k-interior of L the func-
tion defined by Ik(L) = {w ∈ Σ∗ : Nk({w}) ⊆ L} and the k-exterior of L the
function defined by Ek(L) = {w ∈ Σ∗ : Nk({w}) ∩ L �= ∅}.

Identification in the Limit of Systematic-Noisy Languages 31

These concepts are similar to those of lower and upper approximation of a set in
the framework of Rough Sets [28,29]

A first naive idea would consist in choosing i = Ik and e = Ek as functions of
interior and exterior. However, defined as this, the extension and erosion are too
important to find interesting closed and open sets. We will then take i = Ek ◦ Ik
and e = Ik ◦ Ek. We now show that these two functions fulfil the properties.

Lemma 3. Ik◦Ek and Ek◦Ik are c-duals in Σ∗, i.e., ∀L ∈ P(Σ∗), Ik(Ek(L)) =
Ek(Ik(L)).

Proof. Ik and Ek are c-duals: Ik(L) = {w ∈ Σ∗ : Nk({w}) ⊆ L} = {w ∈ Σ∗ :

Nk({w}) ∩ L = ∅} = Ek(L). So Ek(Ik(L)) = Ik(Ik(L)) = Ik(Ek(L)).

Theorem 5. Ek = (Σ∗, Ek ◦ Ik, Ik ◦ Ek) defines a pretopologic space, and then
verifies: (i) Ik ◦ Ek and Ek ◦ Ik are c-duals, (ii) Ek(Ik(U)) = U and (iii) ∀L ∈
P(U), Ik(Ek(L)) ⊂ L

Proof. (i) By Lemma 3. (ii) straightforward. (iii) If x ∈ Ek(Ik(L)) thenNk({x})∩
Ik(L) �= ∅, so ∃y ∈ Ik(L) : d(x, y) ≤ k. Since (d(x, y) ≤ k ⇒ x ∈ Nk({y})) and
(y ∈ Ik(L) ⇒ Nk({y}) ⊆ L),we deduce x ∈ L and Ek(Ik(L)) ⊆ L.

The function Ek, respectively Ik, allows to add noise to L, respectively to remove
some noise. We can then use them within our framework of denoising in the limit.
Note that Ek �= I−1

k since E1(B1(aa)) = B2(aa) but I1(B2(aa)) = B1(aa)∪{λ, b}

Ten Open Problems in Grammatical Inference�

Colin de la Higuera

Laboratoire Hubert Curien, UMR CNRS 5516
Université Jean Monnet Saint-Etienne, France

cdlh@univ-st-etienne.fr
http://eurise.univ-st-etienne.fr/~cdlh

Abstract. We propose 10 different open problems in the field of gram-
matical inference. In all cases, problems are theoretically oriented but
correspond to practical questions. They cover the areas of polynomial
learning models, learning from ordered alphabets, learning determinis-
tic Pomdps, learning negotiation processes, learning from context-free
background knowledge.

1 Introduction

Results in grammatical inference can usually be of use in several different do-
mains. For instance progress in learning stochastic finite state machines and
grammars has occurred because of efforts for computational biology [1,2], or
speech recognition [3], or even document representation [4]. Another example
is that of learning transducers where research has taken place in very different
fields like wrapper induction [5,6] or automatic translation [7]. In order for these
fields to cross fertilise it can be useful to use theory as a common language. In
the theoretical world it is possible to pose problems, and then to try to solve
them.

This paper addresses only the first issue. After discussions with practition-
neers and synthesis of the questions that correspond to bottlenecks for the use of
grammatical inference, we visit here several problems. Each one has its motiva-
tions, is given with the main definitions, and the corresponding references. Even
if the goal was to make the problems as unambiguous as possible, some require
additional definitions (as part of the problem!) before attempting to solve them.

The paper is organised as follows: after giving in section 2 some basic nota-
tions, we study the question of polynomial learning (section 3). A number of key
definitions have been proposed over the years and hardly no work has been done
in order to compare these. We then consider the case where the alphabet is an
ordered set. To deal in section 4 with these we introduce ordered automata, and
suggest that their learnability could be an interesting question. A small prob-
lem of learning regular languages from a context-free background knowledge is

� This work was supported in part by the IST Programme of the European Commu-
nity, under the Pascal Network of Excellence, IST-2002-506778. This publication
only reflects the authors’ views.

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 32–44, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Ten Open Problems in Grammatical Inference 33

proposed in section 5. Solving the question of testing equivalence of regular dis-
tributions would enable to better learn stochastic finite state automata. The
problem is presented in section 6.

Another line of research is that of active learning. There are in this context
3 problems. The first question is related with the fact that over the past few
years the Oracle learning model defined by Angluin has ceased to be a theo-
retical model (section 7). Today it is of interest to consider Oracles that may
make errors, or contradict themselves. How do we learn languages with these
unreliable Oracles? The second (section 8) is concerned with learning Partially
Observable Markov Decision Processes (Pomdps). These intervene in reinforce-
ment learning and the question of their learnability has hardly been addressed
(and certainly not from an inductive inference point of view). A last question is
that of negotiation (section 9): two agents have to identify the common language
by using their own language to interrogate the other agent, and thus giving away
information about their language. How do we learn?

2 Notations and Definitions

Strings. A string w over Σ is a finite sequence w = a1a2 . . . an of letters. Let
|w| denote the length of w. Letters of Σ will be indicated by a, b, c, . . ., strings
over Σ by u, v, . . . , z, and the empty string by λ.

Let Σ� be the set of all finite strings over alphabet Σ.

Languages. A language is any set of strings, so therefore a subset of Σ�. Oper-
ations over languages include: set operations (union, intersection, complement);
product L1 · L2 = {uv : u ∈ L1, v ∈ L2}; powerset L0 = {λ} Ln+1 = Ln ·L; and
star L∗ = ∪i∈NL

i. We denote by L or A a class of languages.

Automata and Regular Languages. A deterministic finite automaton (Dfa)
is a quintuple A = 〈Q,Σ, δ, F, q0〉 where Σ is an alphabet, Q is a finite set of
states, q0 ∈ Q is the initial state, δ : Q × Σ → Q is a transition function, and
F ⊆ Q is a set of marked states, called the final states.

It is usual to recursively extend δ to Σ∗: δ(q, λ)=q and δ(q, a.w)=δ(δ(q, a), w)
for all q ∈ Q, a ∈ Σ,w ∈ Σ∗. Let L(A) denote the language recognized by
automaton A: L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F}.

Other mechanism to define, generate or recognise languages are non deter-
ministic finite state automata, context-free grammars, regular expression,. . . and
are described in textbooks, for instance [8].

Identification in the Limit. LetA be a class of languages. A presentation is an
element of Pres(A) which is a set of functions N → X with X a set. In some way
these presentations denote languages from A, i.e. there exists a function yield :
Pres(A) → A. If L = yield(f) then we will say that f is a presentation of L.

With this definition one should not think of presentations as text or informant,
but in a broader sense as a sequence of informations of any type that hopefully
inform us on the language we are to learn.

34 C. de la Higuera

Typical presentations could be Text, Informant, Prefixes,... Here are some
examples of possible presentations:

– Text={f : N → Σ∗ ∪ {#} : f(N) = L or {#} where L ⊂ Σ∗}.
– Informant={f : N → Σ∗ × {0, 1} : f(N) = L× {1} ∪ L× {0}}.

Definition 1. Let A be a class of languages and Pres(A) be a type of presenta-
tions for A, with associated function yield. The setting is said to be valid when
given 2 presentations f and g, if their range is equal (i.e. if f(N)= g(N)) then
yield(f) = yield(g).

If a setting is not valid, A is not going to be learnable from Pres(A). Practically,
to a language class A is associated a representation class R(A). The association
is done through a naming function LA which associates to a representation (also
called a grammar) G a language L = LA(G). Two grammars G1 and G2 are
equivalent when LA(G1) = LA(G2).

Given a presentation f we denote by fn the set {f(j) : j ≤ n}. Given a
presentation f we denote by f(n) � G (conversely f(n) � G) when f(n) is
consistent with LA(G).

A learning algorithm a is a program that takes the first n elements of a
presentation and returns a representation as output. a :

⋃
i∈N{fi} → R(A). The

following definition is directly adapted from [9]:

Definition 2. We say that A is learnable from Pres(A) in terms of R(A) if
there exists a learning algorithm a such that for all L ∈ A and for any pre-
sentation f of L (belonging to Pres(A)), there exists a rank n such that for all
m ≥ n, LA(a(fm)) = L.

In order to be able to study complexity we define sizes as follows:

– |G| is the size of a grammar (number of bits);
– |fn| = n+ 1 is the number of items in the first elements of a presentation;
– ‖fn‖ is the number of symbols in in the first n+1 elements of a presentation

(number of bits);
– |L| = min{|G| : L(G) = L}. The “size” of a language is the size of the

smallest grammar of the considered class that can generate it;

3 About Polynomial Identification in the Limit

The question of polynomial learning has been of interest for some time. A first
discussion has taken place in [10], with further ideas in [11] and [12]. Origi-
nal ideas concerning these questions (with a notion of stochastically polynomial
learning) can be found in [13].

Nevertheless there is no general agreement between the authors in the field
about which definitions should be used, neither (with the exception of [14]) have
definitions been compared.

Ten Open Problems in Grammatical Inference 35

Definitions. The following are some of the definitions of (some type of) poly-
nomial identification in the limit:

The first definition just states that to produce its next hypothesis the al-
gorithm only requires polynomial time. This definition alone is insufficient as
shown in [10].

Definition 3 (Polynomial update time). An algorithm a is said to have
polynomial update time if there is a polynomial p() such that, for every presen-
tation f and every integer n, constructing Hn = a(fn) requires p(‖fn‖) time.

Another definition that has allowed more results is given by [11]:

Definition 4 (Polynomial characteristic sets). An algorithm a admits poly-
nomial characteristic sets if there exists a polynomial p() such that ∀G ∈ R(A)
∃W ⊂ X : ‖W‖ ≤ p(|G|) ∧W ⊂ fn =⇒ LA(a(fn)) = LA(G).

A notion that has been used in various papers was introduced in [10]:

Definition 5 (Implicit prediction errors). Given a learning algorithm a and
a presentation f , we say that a makes an implicit prediction error at time n if
f(n) � a(fn−1).

Let f be a presentation for L, algorithm a is said to make a polynomial
number of implicit prediction errors if there is a polynomial p() such that, for
each language L and each presentation f for L, |{k ∈ N : f(k + 1) � a(fk)}| ≤
p(|L|).
A nice alternative to counting the number of errors is that of counting the
number of changes of hypothesis one makes. On its own, this is meaningless
(why change?), but if combined with identification in the limit the definition
makes sense:

Definition 6 (Polynomial mind changes). Given a learning algorithm a and
a presentation f , we say that a changes its mind at time n if a(fn) �= a(fn−1).

Let f be a presentation for L, algorithm a is said to make a polynomial
number of mind changes if there is a polynomial p() such that, for each language
L and each presentation f for L, |{k ∈ N : a(fk) �= a(fk+1)}| ≤ p(|L|).
Combining ideas, one gets:

Definition 7 (Yokomori [12]). An algorithm a identifies a class A in the limit
in Ipe polynomial time if:

– a identifies A in the limit;
– a has polynomial update time;
– a makes a polynomial number of implicit prediction errors.

Note that the first condition is not implied by the two other; in a similar way Pitt
[10] introduced a definition where instead of requiring a polynomial number of
implicit prediction errors, what is counted is the number of mind changes. Here
also, the first condition is not implied by the two other. Generally speaking there
are a number of problems related with deciding which definition applies best to

36 C. de la Higuera

which learning setting (text, informant,...). A comparison between these defini-
tions would also be of use: is one definition more general than another? Further,
can a polynomial algorithm for one setting be transformed into a polynomial
algorithm in another?

If all these questions are interesting, we extract just one that has been puzzling
researchers for some time:

Problem 1. Definition 4 of characteristic sets uses as size of the characteristic
sets a measure related to the number of bits needed to encode. Other authors (for
instance [6]) propose to use the number of strings. Is this fair? Are there classes
of grammars that are not learnable in this context?

Discussion. A clear picture of what polynomial learning means in the identi-
fication in the limit setting would help enormously the field. There are today
several “schools” each with their definitions. That makes theoretical results dif-
ficult to compare.

4 Ordered Alphabets

We propose to consider the case where the alphabet is ranked, i.e. there is a
partial order over the symbols in the alphabet. The situation arises in a number
of settings:

– either when the alphabet is naturally ordered as in the case of music [15];
– if the original data is numeric, the normal discretisation loses the proxim-

ity/topological characteristics that should help and that are contained in the
data [16];

– sometimes the alphabet can consist in subsets of strings in which case we
can also have a relation which may be a generalisation or subsumption [17].

Definitions. We introduce k-edge deterministic finite state automata.
A ranked alphabet 〈Σ,≤〉 is an alphabet Σ with a relation ≤Σ which is a

partial order (reflexive, antisymmetric and transitive) over Σ.

Example 1. Here are two possible relations:

– 〈Σ,≤〉 where Σ = {0, 1, 2, 3} and 0 ≤ 1 ≤ 2 ≤ 3. This is the case in music
or working with numerical data

– 〈Σ,≤〉 where Σ = {00, 01, 10, 11} and 00 ≤ 01 ≤ 11 and 00 ≤ 10 ≤ 11. This
means that the automaton may not need to be based on a total order.

Definition 8 (k-edge deterministic finite state automaton). A k-edge
deterministic finite state automaton (k-edge Dfa) A is a tuple 〈Σ,Q, q0, F, δ〉
where Σ is a finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states, δ : Q×Σ×Σ → Q is the transition function ver-
ifying: ∀q ∈ Q, |{x, y : δ(q, x, y) is defined}| ≤ k, and if δ(q, a1, b1) �= δ(q, a2, b2)
then {z : a1 ≤ z ≤ b1} ∩ {z : a2 ≤ z ≤ b2} = ∅.

Ten Open Problems in Grammatical Inference 37

A string x belongs to L if there is a sequence of states q0, q1, ...q|x| with
δ(qi, ai, bi) = qi+1 and ai ≤ xi ≤ bi. And of course q|x| has to be final.

The extension of δ is as usual: the transition function δ is classically extended
to sequences by: ∀q ∈ Q, ∀w ∈ Σ∗, ∀a ∈ Σ, δ(q, aw) = δ(δ(q, a), w). The
language recognised by A, L(A) is {w ∈ Σ∗ : δ(q0, w) ∈ F}.
Example 2. We represent in Figure 1 a 2-edge automaton. Notice that the same
language can also be represented by a 3-edge automaton, but not by a 1-edge
automaton. Here, 102 ∈ L,

Clearly any k-edge Dfa is also a Dfa but the converse is not true. Moreover
some regular languages cannot be represented by k-edge Dfa, for any k. Also,
the case where k is the size of the alphabet is of no new interest at all, as it
corresponds to normal Dfa.

A B

C D

0 − 3

4 − 5 01 − 5

0 − 4

5

0 − 2

3 − 5

Fig. 1. A 2-edge Dfa

Definition 9. A sample 〈X+, X−〉 is k-acceptable if there is a k-edge Dfa
consistent with the data.

Problem 2. Given a sample 〈X+, X−〉, can we decide in polynomial time if a
sample is k-acceptable?

Problem 3. Learn k-edge Dfa from an informant, as in definition 4.

Discussion. We have proposed a way to use ranked alphabets in automata.
Other ideas may be possible but we believe our formalism to be interesting
because it is simple, it can take into account the fact the partial order may not
be total; it can adapt very easily to continuous variables (even if in that case
the language theory flavour will be lost); by having the intervals overlap it is
possible to have various degrees of non-determinism.

There are some accessory problems more in the line of general formal language
theory: do we have a pumping lemma? what are the closure properties?

38 C. de la Higuera

5 Learning Regular Parts of Context-Free Languages

In [18] was introduced the notion of learning with background knowledge. It
is also well known that learning context-free grammars is much harder than
learning Dfa. The question would be to know if we could learn the intersection
of a regular language L1 and a context-free language L2, given examples and
counter-examples (of L1) only from L2.

Definitions. Let CF (Σ) be the class of all context-free languages over some
alphabet Σ and let REG(Σ) be the class of all regular languages over Σ.

Let C1 and C2 be two language classes. Let L = L1 ∩ L2, with L1 ∈ C1 and
L2 ∈ C2. A presentation of L with respect to L2 is a function f : N → Σ∗×{0, 1} :
f(N) = L× {1} ∪ L2 \ L1 × {0}.
Definition 10 (Polynomial learning with help). An algorithm a learns C1
from C2-knowledge if there exists a polynomial p() and given any language L =
L1 ∩ L2, with L1 ∈ C1 and L2 ∈ C2, if G is the smallest grammar such that
L(G) ∩ L2 = L, and L(G) ∈ C1 then ∃W ⊂ X : ‖W‖ ≤ p(|G|) ∧W ⊂ fn =⇒
L(a(fn)) ∩ L2 = L.

Problem 4. Find an algorithm that learns REG(Σ) from CF (Σ)-knowledge in
the sense of definition 10.

Discussion. The problem may seem easy but the problem is that the char-
acteristic sets may be inaccessible because outside language L1. It should be
noticed that attempting to learn directly language L is going to be impossible
(take L2 = L1).

6 Testing Equivalence of Regular Deterministic
Distributions

Learning stochastic languages is an important topic in grammatical inference.
A number of algorithms have been proposed, with partial results: distributions
defined by stochastic deterministic finite automata can be identified in the limit
whith probability one. The algorithms are polynomial but obviously do not work
from only polynomial amount of data. The question of learning such automata
from only a reasonable quantity of data thus still remains open. One step to-
wards an answer consist in being able (or not) to decide the equivalence between
distributions given finite samples.

Definitions. A stochastic language D is a probability distribution over Σ�.
The probability of a string x ∈ Σ� under the distribution D is denoted as

PrD(x) and must verify
∑

x∈Σ� PrD(x) = 1. If the distribution is modelled by
some syntactic machine A, the probability of x according to the probability dis-
tribution defined by A is denoted PrA(x). The distribution modelled by a ma-
chine A will be denoted DA and simplified to D if the context is non ambiguous.

Ten Open Problems in Grammatical Inference 39

Two distributions D and D′ are equal (denoted by D = D′) if ∀w ∈ Σ� :
PrD(w) = PrD′(w). Alternatively one can define distances between distributions;
a survey can be found in [19].

Problem 5. Find an algorithm (or prove that it does not exist) that, given 2
samples extracted from Sdfa A and B, will tell us with high probability if A and
B are equivalent (or close). Formally, if d is some distance between distributions:

given ε, δ > 0, find an algorithm that given 2 samples extracted from Sdfa A
and B, will tell us if d(DA,DB) < ε with probability at least 1− δ.

Discussion. To tighten the definition it would be necessary to use a sampling
query allowing to sample (in O(1)) DA and DB. The number of examples should,
like the algorithm, be polynomial in the sizes of the automata, 1

ε and 1
δ . If the

hardness of the equivalence problem is closely linked with that of identifying in the
limit [11], the related problem in the context of stochastic learning is the one above.
The above problem is what most Sdfa learning algorithms try to solve, through
comparing prefixes in the case of [20], or looking for some important string [21].

Solving this problem in a better way would allow to derive a test for the
compatibility between 2 states in typical state merging algorithms. On the other
hand, a negative answer to the above question would give us the clue towards
proving the non learnability of Sdfa. Alternatively, partial results over special
classes of Sdfa would also be helpful.

7 Queries

Learning with queries was introduced by Angluin [22] in order to study the non
learnability of languages. The first results were therefore essentially negative
[23], until a first algorithm (L∗) was proposed [24] which could learn determin-
istic finite automata from membership queries (does this string belong to the
target?) and equivalence queries (is this a representation of the language? If not,
please provide me with a counter-example). This combination of queries (called
a minimum adequate teacher) has been studied in [25] where the possibility of
trading off some equivalence queries for some membership queries is explained.
A survey paper is [26].

But these studies are based on the general idea that the Oracle is some perfect
abstractmachine. Indeed, Angluin [24] actually proposed techniques to implement
the Oracle. Acontrario, we believe that one should think of an Oracle as something
quite different from that. Here are some arguments in favour of this point:

– Learning neural networks [16] that simulate automata. In that case, an issue
is that of extracting an automaton from a neural network. A way to do this
is to use the black box/neural network as an Oracle.

– Testing hardware [27]: the physical system or chip to be tested is the Oracle.
– System Squirrel [6] is used for wrapper induction. The system will inter-

rogate the (human) user who will mark web pages.
– Today the World wide web can be seen as an Oracle. The knowledge is there,

you cannot expect it to be sampled for you, nor to be able to use it all.

40 C. de la Higuera

Definitions. In a standard query learning algorithm, the learner interacts with
an oracle (also called minimally adequate teacher), who knows the target lan-
guage (a regular language L over a known alphabet) and is assumed to answer
correctly. The teacher has to answer two types of queries: membership queries -
the teacher’s answer is yes or no, depending if the submitted string belongs or
not to the language and equivalence queries - the learner produces a Dfa A and
asks whether L(A) = L; the teacher answers yes if they accept the same lan-
guage or no otherwise. If the answer is no, a string s in the symmetric difference
of L(A) and L is returned. This returned string is called counterexample.

Definition 11. Let ε > 0. An ε-correct membership query is made by giving the
Oracle a string. Then the Oracle answers correctly with probability 1-ε, unless it
has already been submitted that query, in which case it replies consistently.

Problem 6. Are Dfa learnable from ε-correct membership queries and equiva-
lence queries?

Discussion. Equivalence queries should probably not be exact either. Being
able to learn with such queries would allow to consider active learning in settings
where it is unrealistic to believe that answers are going to be correct, e.g. from
the Web.

8 Partially Observable Markov Decision Processes

Partialy Observable Markov Decision Processes are an extension of Markov De-
cision Processes, these being related to Hidden Markov Models. We consider
here the case where the outputs at the states are some sort of reward func-
tion. They are important models in the setting of reinforcement learning, and
inferring Pomdps is still a relatively untouched problem. The relationship with
multiplicity automata has been shown in [28], and algorithm to learn these have
also been studied [29].

Definitions. A Pomdp is defined by a set of states Q, an input alphabet Σ, an
initial state q0 and 2 functions:

– A probabilistic transition function δ : Q × Σ × Q → R+ with ∀q ∈ Q,∑
q∈Q,a∈Σ δ(q, a, q

′) = 1.
– A probabilistic reward function r : Q→ R

A Pomdp is deterministic if function δ is deterministic, i.e. if ∀q ∈ Q, ∀a ∈
Σ, ∃q′ ∈ Q such that δ(q, a, q′) = 1.

Example 3. Figure 2 represents a deterministic Pomdp. Notice that the output
function may be much more complex. A possible outcome of taking the decisions
b · b · a could be 30, which would have occurred with probability 0.6 · 0.3 · 0.3 ·
0.1 + 0.6 · 0.3 · 0.7 · 0.9 + 0.6 · 0.7 · 0.3 · 0.9 + 0.4 · 0.3 · 0.3 · 0.9 = 0.3132

Problem 7. Study the learnability of deterministic Pomdps.

Problem 8. Study the learnability of ordinary Pomdps.

Ten Open Problems in Grammatical Inference 41

P (10) = 0.6; P (0) = 0.4 P (10) = 0.5; P (0) = 0.5

P (10) = 0.3; P (0) = 0.7 P (10) = 0.9; P (0) = 0.1

a

b a

b

a

b

a

b

Fig. 2. A deterministic Pomdp

Discussion. There are several issues in the study of the learnability of Pompds.
Identification in the limit with probability 1 is an issue. But using convergence
criteria from reinforcement learning (such as regret) is probably a better idea.
The problem should also be related with strategy learning, as in [30].

9 Negotiation

Consider the situation where two adversaries have to negotiate something. The
goal of each is to learn the model of the opponent while giving away as little
information as possible. The situation can be modelled as follow:

Let L1 be the language of adversary 1 and L2 be the language of adversary
2. We suppose here that the languages are regular and can be represented by
deterministic finite automata with respectively n1 and n2 states. The goal for
each is to learn the common language, i.e. language L1 ∩ L2.

It is well known that language L1 ∩ L2 is also a regular language which can
be represented by the product automaton. So there is an automaton of at most
n1 ∗ n2 states recognising L1 ∩ L2.

The rule is that each adversary can only query the opponent by asking ques-
tions from his own language. This means that when player 1 names string w,
then w ∈ L1. In turn, the adversary will answer if, or not, string w belongs to
the language.

Definitions. The goal of each adversary is to identify language L1 ∩ L2. This
means that the protocol goes as follows:

– Player 1 announces some string w from L1. Player 2 answers Yes if this
string belongs to L2, No otherwise.

– From this answer player 1 may update his hypothesisH1 of language L1∩L2.
– From the information w ∈ L1, player 2 may update his hypothesis H2 of

language L1 ∩ L2

– Player 2 announces some string w from L2.
– . . .

42 C. de la Higuera

We argue that for the problem to be well posed, one should be careful to avoid
passive strategies, and count appropriately.

1. If L1 is empty then the game is over straight away: player 1 has, as unique
hypothesis possible for L1 ∩ L2, the empty set which is correct.

2. The strategy “I shall wait and say nothing and let the opponent uncover
his cards” is not always a good strategy: it is well known that Dfa cannot
be identified from text [9]: and take the situation where L1 = Σ�, then the
problem reduces to learning L2, and using positive information only is not
sufficient. But this holds only if the goal is to identify the common language!

3. It is therefore essential to count errors made, but only if the goal is reached.
A draw should be counted as a loss for both players. In a sense the issue is
similar to that of definition 7.

We propose the following definitions of successful learning: to make things
simpler, we shall only consider here deterministic (non randomised) learners, in
which case a game is defined by a pair 〈L1, L2〉, and the outcome of each game is
unique for each pair of playersA and B. We call errors(X) the set of errors made
by player X : an error is made when the string proposed by player X receives a
negative answer from the other player.

Definition 12. Given a game 〈L1, L2〉 and 2 players A and B, A wins if A
identifies L1 ∩L2 in the limit and if either B identifies L1 ∩L2 in the limit and
|errors(A)| < |errors(B)| or if B does not identify L1 ∩ L2 in the limit.

Problem 9. Study the general problem. What is a good strategy? Can identifica-
tion be avoided? Are there any “no win” situations? Are there strategies that are
so close one to the other (corresponding to what Angluin called “lock automata”)
that through only membership queries, learning is going to take too long?

Problem 10. Using definition 12, find a winning algorithm, in the case where
n1 = n2.

Discussion. Being a good learning algorithm can be defined in alternative
ways. One can want to be uniformally better than an adversary, than all the
adversaries. . .

An intriguing question is: what happens if both opponents “agree” on a stale-
mate position, i.e. are satisfied with an identical language L which in fact is a
subset of the target?

And, in a similar line to [30] one may considerlearning the strategy of the
adversary; if we notice the adversary is daring/cautious, do we have anything
better to do?

Acknowledgements

Thanks to Jose Oncina for different discussions that led to several definitions
and problems from sections 4 and 6. Work with Henning Fernau on polyno-
mial learning is where the ideas in section 3 come from. Philippe Jaillon gave

Ten Open Problems in Grammatical Inference 43

me the initial ideas for the negotiation problem in section 9. Discussions with
Cristina Bibire and Leonor Becerra led to seeing the importance of the questions
from section 7. I have also worked with Franck Thollard on learning stochastic
deterministic finite state automata (section 6). It is also clear that had other
specialists in grammatical inference given their problems, an alltogether differ-
ent list would have been compiled. I therefore apologize to those who will not
find their favourite problem here, or who believe that the really important are
elsewhere.

References

1. Sakakibara, Y., Brown, M., Hughley, R., Mian, I., Sjolander, K., Underwood, R.,
Haussler, D.: Stochastic context-free grammars for tRNA modeling. Nuclear Acids
Res. 22 (1994) 5112–5120

2. Abe, N., Mamitsuka, H.: Predicting protein secondary structure using stochastic
tree grammars. Machine Learning Journal 29 (1997) 275–301

3. Kashyap, R.L.: Syntactic decision rules for recognition of spoken words and phrases
using stochastic automaton. IEEE Trans. on Pattern Analysis and machine Intel-
ligence 1 (1979) 154–163

4. Young-Lai, M., Tompa, F.W.: Stochastic grammatical inference of text database
structure. Machine Learning Journal 40 (2000) 111–137

5. Chidlovskii, B., Ragetli, J., de Rijke, M.: Wrapper generation via grammar induc-
tion. In: Machine Learning: ECML 2000, 11th European Conference on Machine
Learning. Volume 1810., Springer-Verlag (2000) 96–108

6. Carme, J., Gilleron, R., Lemay, A., Niehren, J.: Interactive learning of node se-
lecting tree transducer. In: IJCAI Workshop on Grammatical Inference. (2005)
Submitted to a Journal.

7. Amengual, J.C., Bened́ı, J.M., Casacuberta, F., Castaño, A., Castellanos, A.,
Jiménez, V.M., Llorens, D., Marzal, A., Pastor, M., Prat, F., Vidal, E., Vilar,
J.M.: The EuTrans-I speech translation system. Machine Translation 15 (2001)
75–103

8. Harrison, M.H.: Introduction to Formal Language Theory. Addison-Wesley Pub-
lishing Company, Inc., Reading, MA (1978)

9. Gold, E.M.: Language identification in the limit. Information and Control 10
(1967) 447–474

10. Pitt, L.: Inductive inference, DFA’s, and computational complexity. In: Analogical
and Inductive Inference. Number 397 in LNAI. Springer-Verlag, Berlin, Heidelberg
(1989) 18–44

11. de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Ma-
chine Learning Journal 27 (1997) 125–138

12. Yokomori, T.: Polynomial-time identification of very simple grammars from posi-
tive data. Theoretical Computer Science 1 (2003) 179–206

13. Zeugmann, T.: Can learning in the limit be done efficiently? In Gavaldà, R.,
Jantke, K., Takimoto, E., eds.: ALT. Number 2842 in LNCS, Berlin, Heidelberg,
Springer-Verlag (2003) 17–38

14. Parekh, R.J., Honavar, V.: On the relationship between models for learning in help-
ful environments. In de Oliveira, A., ed.: Grammatical Inference: Algorithms and
Applications, Proceedings of ICGI ’00. Volume 1891 of LNAI., Berlin, Heidelberg,
Springer-Verlag (2000) 207–220

44 C. de la Higuera

15. Cruz, P., Vidal, E.: Learning regular grammars to model musical style: Comparing
different coding schemes. [31] 211–222

16. Giles, C.L., Lawrence, S., Tsoi, A.: Noisy time series prediction using recurrent
neural networks and grammatical inference. Machine Learning Journal 44 (2001)
161–183

17. Dupont, P., Chase, L.: Using symbol clustering to improve probabilistic automaton
inference. [31] 232–243

18. Kermorvant, C., de la Higuera, C.: Learning languages with help. In Adriaans,
P., Fernau, H., van Zaannen, M., eds.: Grammatical Inference: Algorithms and
Applications, Proceedings of ICGI ’02. Volume 2484 of LNAI., Berlin, Heidelberg,
Springer-Verlag (2002) 161–173

19. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Prob-
abilistic finite state automata – part I and II. Pattern Analysis and Machine
Intelligence 27 (2005) 1013–1039

20. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of
a state merging method. In Carrasco, R.C., Oncina, J., eds.: Grammatical In-
ference and Applications, Proceedings of ICGI ’94. Number 862 in LNAI, Berlin,
Heidelberg, Springer-Verlag (1994) 139–150

21. Ron, D., Singer, Y., Tishby, N.: On the learnability and usage of acyclic proba-
bilistic finite automata. In: Proceedings of COLT 1995. (1995) 31–40

22. Angluin, D.: Queries and concept learning. Machine Learning Journal 2 (1987)
319–342

23. Angluin, D.: A note on the number of queries needed to identify regular languages.
Information and Control 51 (1981) 76–87

24. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Control 39 (1987) 337–350

25. Balcazar, J.L., Diaz, J., Gavaldà, R., Watanabe, O.: The query complexity of
learning DFA. New Generation Computing 12 (1994) 337–358

26. Angluin, D.: Queries revisited. In Abe, N., Khardon, R., Zeugmann, T., eds.:
Proceedings of ALT 2001. Number 2225 in LNCS, Berlin, Heidelberg, Springer-
Verlag (2001) 12–31

27. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated
regular extrapolation. In R. Kutsche, H.W., ed.: Proc. of the 5th Int. Conference
on Fundamental Approaches to Software Engineering (FASE ’02). Volume 2306 of
LNCS., Heidelberg, Germany, Springer-Verlag (2002) 80–95

28. Eyal Even-Dar, S.K., Mansour, Y.: Planning in pomdps using multiplicity au-
tomata. In: Proceedings of 21st Conference on Uncertainty in Artificial Intelligence
(UAI). (2005) 185–192

29. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: Learning
functions represented as multiplicity automata. J. ACM 47 (2000) 506–530

30. Carmel, D., Markovitch, S.: Exploration strategies for model-based learning in
multiagent systems. Autonomous Agents and Multi-agent Systems 2 (1999) 141–
172

31. Honavar, V., Slutski, G., eds.: Grammatical Inference, Proceedings of ICGI ’98.
In Honavar, V., Slutski, G., eds.: Grammatical Inference, Proceedings of ICGI ’98.
Number 1433 in LNAI, Berlin, Heidelberg, Springer-Verlag (1998)

Polynomial-Time Identification of an Extension
of Very Simple Grammars from Positive Data

Ryo Yoshinaka

University of Tokyo,
National Institute of Informatics

ry@iii.u-tokyo.ac.jp

Abstract. The class of very simple grammars is known to be polynomial-
time identifiable in the limit from positive data. This paper introduces an
extension of very simple grammars called right-unique simple grammars,
and presents an algorithm that identifies right-unique simple grammars
in the limit from positive data. The learning algorithm possesses the fol-
lowing three properties. It computes a conjecture in polynomial time in
the size of the input data if we regard the cardinality of the alphabet as a
constant. It always outputs a grammar which is consistent with the input
data. It never changes the conjecture unless the newly provided example
contradicts the previous conjecture. The algorithm has a sub-algorithm
that solves the inclusion problem for a superclass of right-unique simple
grammars, which is also presented in this paper.

1 Introduction

Since Gold [1] proposed a mathematical model of language acquisition, diverse
types of learning schemes and learnable classes of languages have been proposed
and investigated. It is desirable to find a rich class of languages that is efficiently
learnable from limited information. These three desiderata, i.e., richness of the
language class, efficiency of the learning algorithm, and limitation on input,
have no well established definitions. In this paper, we focus on “polynomial-time
identification of context-free grammars in the limit from positive data”.

While there are several definitions of “polynomial-time identification”, this
paper uses the term to mean that the learning algorithm should output its
conjectures in polynomial time in the sizes of the input data and the target
grammar, and should be consistent and conservative. A learning algorithm is
said to be consistent if it always outputs a grammar whose language includes
the input positive data. A learning algorithm is conservative if the algorithm
changes its conjecture only when the previous output contradicts the newly
given example of the language. Under these conditions, there are few “rich”
classes of context-free languages known to be polynomial-time identifiable in the
limit from positive data if we demand rich classes to contain infinitely many
nonregular languages.

In this circumstance, it is worthwhile mentioning the results obtained by
Yokomori [2] and Wakatsuki, Teraguchi, and Tomita [3]. They have presented

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 45–58, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

46 R. Yoshinaka

algorithms that identify very simple grammars (VSGs) and Szilard strict deter-
ministic restricted one-counter automata in the limit from positive data only, re-
spectively. Indeed, both classes of context-free languages contain infinitely many
nonregular languages and their algorithms run in polynomial-time in the above
sense.

In this paper, we introduce a new subclass of context-free grammars, called
right-unique simple grammars (RSGs). The class of RSGs is intermediate be-
tween the classes of simple grammars and of VSGs. Besides the class of the
languages generated by RSGs is incomparable to the class of the languages ac-
cepted by Szilard strict deterministic restricted one-counter automata. We show
that the class of RSGs is polynomial-time identifiable in the limit from positive
data. The strategy we use to identify RSGs is similar to those used by Yokomori
and Wakatsuki et al. except for the method to avoid over-generalization.

For two VSGs G1 and G2, there is a simple criterion to pick one of these
grammars whose language does not properly include the other’s. However, this
does not work for RSGs. To avoid conjecturing grammars that are too gen-
eral, we propose a key algorithm that decides the inclusion of length-uniform
simple grammars (LSGs), which form a superclass of RSGs. Although there
are algorithms that solve the inclusion problems for some superclasses of RSGs
(Linna [4], Greibach and Friedman [5]), they are not sufficiently efficient to make
our learning algorithm run in polynomial time.

In Section 3, after giving the formal definitions of an RSG and an LSG, we
present some of their basic mathematical properties. In Section 4, we describe
an algorithm that decides whether L(G) ⊆ L(G′) for a context-free grammar G
and an LSG G′. The main result of this paper, a learning algorithm for RSGs,
is presented in Section 5.

An application of our learning algorithm is presented by Shibata, Yoshinaka,
and Chikayama [6].

2 Preliminaries

Z and N denote the set of integers and the set of nonnegative integers, respec-
tively. ε is the empty sequence and ∅ is the empty set. |X | denotes the length
of a sequence X or the cardinality of a set X depending on the context. For a
set X , X∗ denotes the set of finite (possibly empty) sequences of elements of X
and X+ = X∗ − {ε}.

Definition 1. A context-free grammar (CFG) is G = 〈N,Σ, P, S〉, where N
is a finite set of nonterminal symbols, Σ a finite set of terminal symbols, P ⊆
N×(N∪Σ)∗ a finite set of productions, and S ∈ N the start symbol. ⇒G denotes
the one step derivation, ⇒n

G the n step derivation, and ⇒∗
G the reflexive and

transitive closure of ⇒G. The subscript G of ⇒G is omitted if it is understood
from the context. The language L(G) generated by G is the set L(G,S), where
L(G, ζ) = {w ∈ Σ∗ | ζ ∗⇒ w } for ζ ∈ (N ∪Σ)∗. A CFG G is reduced iff for every
A ∈ N , there are x, y, z ∈ Σ∗ such that S ∗⇒ xAz

∗⇒ xyz. The description size

Polynomial-Time Identification of an Extension of VSGs from Positive Data 47

of a CFG G is defined as ‖G‖ =
∑

A→ζ∈P |Aζ|. The thickness of a nonterminal
A ∈ N is defined as τ(G,A) = min{ |w| | w ∈ L(G,A) } and the maximum
thickness of a CFG G is defined as τG = max{ τ(G,A) | A ∈ N }. The size of a
finite language L is ‖L‖ =

∑
w∈L |w|.

We assume that given grammars are all reduced in this paper. We use early
lower Italic letters for terminal symbols, late lower Italic letters for sequences of
terminal symbols, early upper Italic letters for nonterminal symbols, and early
lower Greek letters for sequences of nonterminal symbols.

Definition 2. For an infinite sequence R of strings,R(n) denotes the n-th string
of R and Rn = {R(1), . . . , R(n) } (n ≥ 1). R is said to be a positive presentation
of a language L if L = {R(n) | n ≥ 1 }. Let G be a class of some finite represen-
tations of languages. We denote the language represented by G ∈ G by L(G). A
learning algorithm A on G is an algorithm which takes a positive presentation
R as an input, and outputs some infinite sequence G1, G2, . . . of representations
in G, i.e., A infinitely repeats the cycle where A receives the string R(n) and
outputs a representation Gn in G for n = 1, 2, We denote the n-th output
of A on a positive presentation R by A(R, n). A learning algorithm A converges
to G on a positive presentation R if there is an integer n0 ∈ N such that for all
n ≥ n0, A(R, n) = G. A identifies a language L in the limit from positive data
if for every positive presentation R of L, there is G ∈ G such that L(G) = L and
A converges to G on R. A class L of languages is identifiable in the limit from
positive data if there is a learning algorithm A that identifies every L ∈ L in the
limit from positive data.

Suppose that a learning algorithm A identifies a class L of languages in the
limit from positive data. A is said to be consistent if Rn ⊆ L(A(R, n)) for every
positive presentation R of a language in L. A is conservative if R(n + 1) ∈
L(A(R, n)) implies A(R, n) = A(R, n+ 1) for every positive presentation R of
a language in L.

3 Length-Uniform Simple Grammars and Right-Unique
Simple Grammars

Definition 3. A CFG G in Greibach normal form is called a simple grammar
iff A → aα, A → aβ ∈ P implies α = β. The language generated by a simple
grammar is a simple language.

A simple grammar G is called a very simple grammar (VSG), right-unique
simple grammar (RSG), length-uniform simple grammar (LSG) respectively iff
A→ aα, B → aβ ∈ P implies

[VSG] A = B and α = β,
[RSG] α = β,
[LSG] |α| = |β|.

The languages generated by a VSG, an RSG, and an LSG are a very simple
language (VSL), a right-unique simple language (RSL), and a length-uniform
simple language (LSL), respectively.

48 R. Yoshinaka

Example 1. Let us define an RSG G = 〈N,Σ, P, F 〉 by

N = {S, T, V }, Σ = {¬,∨, ∃, p, q, f, g, a, b, x, y},
P = {S →¬S |∨SS | ∃V S | pT | qTT, T → fT | gTT | a | b | x | y, V → x | y}.

G generates the set of formulae of first-order logic in Polish notation. L(G) is
not a VSL.

Theorem 1. Let Lfinite, Lregular, Lvs, Lrs, and Lls, be the classes of finite lan-
guages, regular languages, VSLs, RSLs, and LSLs respectively. Then,

Lfinite$ � Lrs, Lregular$ � Lls, Lvs � Lrs � Lls

where L$ = {L$ | L ∈ L}.
By the super-finiteness (Gold [1]) of the class of regular languages, the class of
LSLs is not identifiable in the limit from positive data. Angluin [7] has shown
that the class of k-reversible languages is polynomial-time identifiable in the
limit from positive data for any natural number k. A regular language L is
said to be k-reversible iff {x1yz1, x1yz2, x2yz1} ⊆ L and |y| = k imply x2yz2 ∈
L. Yokomori [2] has shown that if L is a regular and very simple language
then L is zero-reversible. In contrast, there is a regular language L generated
by an RSG which is not k-reversible for any k, e.g., a regular language L =
{ acnde, acndf, bcnde | n ≥ 0 } is generated by an RSG whose productions are
S → aCF, S → bCE, C → cC, C → d, E → e, F → e, F → f .

The following function �G plays a key role throughout this paper.

Definition 4. For an alphabet Σ, a function � from Σ∗ to Z is called a shape
iff

• �(xy) = �(x) + �(y) for all x, y ∈ Σ∗ (homomorphism),
• �(a) ≥ −1 for all a ∈ Σ.

The shape of an LSG G = 〈N,Σ, P, S〉 denoted by �G is the shape such that

�G(a) = |α| − 1 if A→ aα ∈ P .

A function �G from Σ∗ to N is defined as

�G(x) =

{
0 if x = ε,

max{ 1− �G(x′) | x′ is a proper prefix of x } if x ∈ Σ+.

Since the empty string ε is a proper prefix of any non-empty string, �G(x) ≥ 1
for every x ∈ Σ+.

Lemma 1. Let G = 〈N,Σ, P, S〉 be an LSG. For every derivation α⇒∗
G xβ

where α, β ∈ N∗ and x ∈ Σ∗, all of the following hold:

Polynomial-Time Identification of an Extension of VSGs from Positive Data 49

1. �G(x) = |β| − |α|,
2. |α| ≥ �G(x),
3. α′⇒∗

G xβ
′ where |α′| = �G(x), α = α′γ, β = β′γ.

In particular, we have �G(w) = −1 and �G(w) = 1 for w ∈ L(G).

Example 2. Let a VSG G have the productions S → aSS, S → bS, S → c.
We have �G(a) = 1, �G(b) = 0, �G(c) = −1. For w = accbaa ∈ Σ∗, we have
�G(w) = 1 and �G(w) = 1 − �G(acc) = 2. Thus, Sm ∗⇒ wSn implies m ≥ 2 and
n = m+ 1, as the following derivations illustrate:

S ⇒ aSS ⇒ acS ⇒ acc,

SS ⇒ aSSS ⇒ acSS ⇒ accS ⇒ accbS ⇒ accbaSS ⇒ accbaaSSS.

Definition 5 (compatible shape). We say that a shape � is compatible with
a language L iff �(w) = −1 and �(w) = 1 for all w ∈ L, where � is defined from
� as �G is defined from �G in Definition 4.

Lemma 2. Let L be a language and � a shape. There is an LSG (RSG, VSG)
G such that L ⊆ L(G) and �G = � iff � is compatible with L.

The above inclusion relation L ⊆ L(G) cannot be replaced with the equivalence
relation; e.g., the simple language L = {abc, acb}, which is not an LSL, has a
compatible shape.

Proposition 1. The problem that decides whether a finite language on an alpha-
bet has a compatible shape is NP-complete (an alphabet is a part of an instance).

The following lemma is trivial but will be conveniently referred to.

Lemma 3. Let L be a language over Σ such that every element of Σ appears
in L. If a shape � is compatible with L, then �(a) < min{ |y| | xay ∈ L } for all
a ∈ Σ. Hence L has a finite number of compatible shapes on Σ.

4 Inclusion Problem for LSGs

This section presents an algorithm which decides whether L(G) ⊆ L(G′) for a
CFG G and an LSG G′. We fix a CFG as G = 〈N,Σ, P, S〉 and an LSG as
G′ = 〈N ′, Σ, P ′, S′〉 throughout this section. If (and only if) L(G) � L(G′), at
least one of the following cases occurs:

C1. S⇒∗
G x and S′⇒∗

G′ xy for some x ∈ Σ∗ and y ∈ Σ+.
C2. S⇒∗

G xy and S′⇒∗
G′ x for some x ∈ Σ∗ and y ∈ Σ+.

C3. S⇒∗
G xaζ and S′⇒∗

G′ xA′γ (left most derivations) for some x ∈ Σ∗ and
a ∈ Σ, but G′ does not have a production A′ → aβ for any β.

50 R. Yoshinaka

If �G′ is compatible with L(G), (C1) and (C2) never occur. This is because,
for every x ∈ Σ∗ and y ∈ Σ+, we have �G′(xy) ≥ 1− �G′(x) by the definition of
�G′ , and thus, the equations �G′(xy) = 1 and �G′(x) = −1 contradict each other.
Our algorithm first checks whether �G′ is compatible with L(G). If we conclude
that �G′ is compatible with L(G), then it is enough to check whether (C3)
occurs or not. The compatibility of �G′ with L(G) is just a necessary condition
for L(G) ⊆ L(G′), nevertheless the compatibility checking algorithm produces
important values to decide whether (C3) occurs.

4.1 Checking the Compatibility of the Shape

Lemma 4. If �G′ is compatible with L(G), then for every A ∈ N , there are
integers nA and mA such that �G′(y) = nA and �G′(y) ≤ mA for all y ∈ L(G,A).

The above lemma ensures that the following definition is well defined.

Definition 6. If �G′ is compatible with L(G), then �G′ and �G′ are extended
(mapping from (Σ ∪N)∗ to Z) as follows:

�̃G′(ζ) = �G′(x) for ζ ∈ (Σ ∪N)∗ and x ∈ L(G, ζ),

�̃G′(ζ) = max{ �G′(x) | x ∈ L(G, ζ) } for ζ ∈ (Σ ∪N)∗.

If �G′ is compatible with L(G), we have �̃G′(S) = −1 and �̃G′(S) = 1.

Example 3. Let G have the productions S → ABBC, A → a, B → Bc | b,
C → b, and let �G′ be such that �G′(a) = 2, �G′(b) = −1, �G′(c) = 0. Then
�G′ is compatible with L(G), �̃G′(S) = −1, �̃G′(A) = 2, �̃G′(B) = �̃G′(C) = −1,
�̃G′(S) = �̃(A) = 1, �̃G′(B) = 2, �̃G′(C) = 1. If G′ consists of the productions
S′ → aS′S′S′, S′ → b, S′ → cS′, then for any X ∈ {S,A,B,C} and any
w ∈ L(G,X), we have S ′̃�(X)⇒∗

G′ wS ′̃�(X)+�̃(X).

Lemma 5. If �G′ is not compatible with L(G), the algorithm in Figure 1 outputs
“ Incompatible”. Conversely, if �G′ is compatible with L(G), then the algorithm
correctly computes �̄ and �̄ such that �̄(A) = �̃G′(A) and �̄(A) = �̃G′(A) for all
A ∈ N , and goes into Stage 2.

4.2 Comparison Forest

Suppose that Stage 1 of the algorithm in Figure 1 ensures that �G′ is compatible
with L(G). Hereafter, we abbreviate �̃G′ and �̃G′ to � and � respectively. To decide
whether L(G) ⊆ L(G′) or not, Stage 2 of the algorithm constructs a collection
of trees, called the comparison forest F1. For each nonterminal A ∈ N of G, let
TA be the prefix tree (trie) of the set { ζ | A ⇀ ζ ∈ P }. F gives a label to each
1 Our algorithm is based on the algorithm for the inclusion problem for VSGs pro-

posed by Wakatsuki and Tomita [8]. One can construct one large comparison tree by
combining trees of the comparison forest, like Wakatsuki and Tomita’s algorithm.

Polynomial-Time Identification of an Extension of VSGs from Positive Data 51

Input: a CFG G = 〈N, Σ, P, S〉 and an LSG G′ = 〈N ′, Σ, P ′, S′〉;
Output: whether L(G) ⊆ L(G′)?
Begin Algorithm

let �̄(a) := �G′(a) for all a ∈ Σ;
(�̄(X1 . . . Xm) =

∑m
i=1 �̄(Xi) for X1, . . . , Xm ∈ N ∪ Σ if all �̄(Xi) are defined)

— Stage 1. Check the Compatibility —
— Stage 1.1. Compute �̃(N) —
let every production in G be unmarked ;
while there remains an unmarked production do

take some unmarked production A → ζ ∈ P such that �̄(ζ) is defined;
if �̄(A) is not defined yet then define �̄(A) := �̄(ζ);

elseif �̄(A) �= �̄(ζ) then output “Incompatible” and halt;
fi
mark the production A → ζ;
if �̄(S) is defined and �̄(S) �= −1 then output “Incompatible” and halt; fi

od
— Stage 1.2. Compute �̃(N) —
let �̄(A) := 0 for all A ∈ N and �̄(a) := 1 for all a ∈ Σ;
until �̄ cannot be updated do

for each nonterminal A ∈ N do
let �̄(A) := max{ −�̄(X1 . . . Xk−1)+�̄(Xk) | A → X1 . . . Xm ∈ P , 1 ≤ k ≤ m };

od
if �̄(S) > 1 then output “Incompatible” and halt; fi

od

— Stage 2. Construct the Comparison Forest F —
let F(A ⇀ ζ) := ∅ for all A ⇀ ζ ∈ dom(F);
let F(S ⇀ ε) := {[S′

(1) � S′
(1)]};

until none of the following if-clauses is satisfied do
— Case 1 —
if there is A ⇀ ζa ∈ dom(F) with a ∈ Σ such that

[B′
(1) � A′

(i)] ∈ F(A ⇀ ζ) but B′ → aβ �∈ P ′ for any β
then output “L(G) �⊆ L(G′)” and halt;

fi
— Case 2 —
if there are A ⇀ ζB ∈ dom(F) with B ∈ N , B′ ∈ N ′, j ∈ {1, . . . , �̄(B)} s.t.

[B′
(j) � A′

(i)] ∈ F(A ⇀ ζ) and [B′
(j) � B′

(j)] �∈ F(B ⇀ ε) for some A′ and i,
then add [B′

(j) � B′
(j)] to F(B ⇀ ε);

fi
— Case 3 —
if there is A ⇀ ζX ∈ dom(F) with X ∈ N ∪ Σ such that

there is [B′
(j) � A′

(i)] ∈ Derive(F(A ⇀ ζ), X) − F(A ⇀ ζX)
then add [B′

(j) � A′
(i)] to F(A ⇀ ζX);

fi
od
output “L(G) ⊆ L(G′)” and halt;

End Algorithm

Fig. 1. Algorithm that decides whether L(G) ⊆ L(G′)

52 R. Yoshinaka

node in TA for A ∈ N . Formally speaking, the comparison forest is a function F
whose domain is

dom(F) = {A ⇀ ζ | A→ ζη ∈ P }.
Each element of dom(F) is called a node. The node A ⇀ ε is the root node of
TA, and a node A ⇀ ζ is called a final node of TA if A → ζ ∈ P . Note that
although all the leaf nodes are final nodes, a final node is not necessarily a leaf
node. The label F(A ⇀ ζ) of a node A ⇀ ζ is a set such that

F(A ⇀ ζ) ⊆ N ′ × {1, . . . , �(A) + �(ζ)} ×N ′ × {1, . . . , �(A)}.

Hereinafter, we represent an element 〈B′, j, A′, i〉 of N ′×N×N ′×N as [B′
(j) �

A′
(i)]. At the beginning, the algorithm initializes the value F(A ⇀ ζ) to ∅ for

every A ⇀ ζ ∈ dom(F) other than F(S ⇀ ε) = {[S′
(1) � S′

(1)]}. The algorithm
adds to the labels on nodes new elements that satisfy the following statements
S-I and S-II. In our setting, every element of the label F(A ⇀ ε) of the root
node of TA has the form [A′

(i) �A′
(i)].

S-I. If [A′
(i) � A′

(i)] ∈ F(A ⇀ ε), then there are x ∈ Σ∗ and α1 ∈ N ′∗ with
|α1| = i− 1 such that

S
∗⇒
G
xAθ,

S′ ∗⇒
G′
xα1A

′α2,

for some θ ∈ (N ∪Σ)∗ and α2 ∈ N∗.

S-II. If [B′
(j) � A′

(i)] ∈ F(A ⇀ ζ) for ζ ∈ (N ∪ Σ)+, then there are x ∈ Σ∗,
y ∈ L(G, ζ), α1 ∈ N ′∗ with |α1| = i− 1, β1 ∈ N ′∗ with |β1| = j − 1 such that

S
∗⇒
G
xAθ⇒xζηθ

∗⇒ xyηθ,

S′ ∗⇒
G′
xα1A

′α2
∗⇒ xyβ1B

′β2,

where the occurrence of B′ is a descendant of the occurrence of A′ (including the
case where B′ is A′ itself and A′ does not contribute to the derivation of y) in
the derivation tree of α1A

′α2⇒∗
G′ yβ1B

′β2. That is, either{
α1⇒∗

G′ y1, A
′⇒∗

G′ y2β1B
′β′

2, where β′
2α2 = β2, y = y1y2, or

α1⇒∗
G′ yβ1, A

′ = B′, α2 = β2.

If [B′
(j) �A′

(i)] ∈ F(A ⇀ ζ), then [A′
(i) �A′

(i)] ∈ F(A ⇀ ε) holds. When it
occurs that for some A ⇀ ζa ∈ dom(F) and a ∈ Σ, [B′

(1) � A′
(i)] ∈ F(A ⇀ ζ)

but B′ → aβ �∈ P ′ for any β, we conclude L(G) �⊆ L(G′) due to S-II. If it
does not happen until when the forest becomes unable to be updated, then we
conclude that L(G) ⊆ L(G′). In the completed comparison forest, the following
statement holds:

Polynomial-Time Identification of an Extension of VSGs from Positive Data 53

S-III. for every A ⇀ ζ ∈ dom(F), y ∈ L(G, ζ), [A′
1(1)�A′

1(1)], . . . , [A
′
�(A)(�(A))

�
A′

�(A)(�(A))
] ∈ F(A ⇀ ε), there are B′

1, . . . , B
′
�(A)+�(ζ) ∈ N ′ such that

A′
1 . . . A

′
�(A)

∗⇒
G′
yB′

1 . . . B
′
�(A)+�(ζ)

and⎧⎨⎩[B′
j(j)

�A′
�(y)(�(y))

] ∈ F(A ⇀ ζ) if 1 ≤ j ≤ �(y) + �(y),

[B′
j(j)

�A′
j−�(y)(j−�(y))

] ∈ F(A ⇀ ζ), A′
j−�(y) = B′

j if j > �(y) + �(y).

The right part A′
(i) of [B′

(j) � A′
(i)] plays an important role in updating the

forest correctly. The definitions and notations used in our algorithm are given
as follows:

Definition 7. Let Γ,∆ ⊆ N ′ × N×N ′ × N, A ∈ N , a ∈ Σ.

Γ≤k = { [B′
(j) �A′

(i)] ∈ Γ | j ≤ k },
Γ>k = { [B′

(j) �A′
(i)] ∈ Γ | j > k },

Γ+k = { [B′
(j+k) �A′

(i)] | [B′
(j) �A′

(i)] ∈ Γ },
Γ ∗∆ = { [C′

(k) �A′
(i)] | [C′

(k) �B′
(j)] ∈ Γ and [B′

(j) �A′
(i)] ∈ ∆ },

Final(A) =
⋃
{F(A ⇀ ζ) | A→ ζ ∈ P },

Derive(Γ, a) = { [C′
j(j)

�A′
(i)] | B′ → aC′

1 . . . C
′
1+�(a) ∈ P ′

and [B′
(1) �A′

(i)] ∈ Γ≤1 } ∪ (Γ>1)+�(a),

Derive(Γ,A) = (Final(A) ∗ Γ≤�(A)) ∪ (Γ>�(A))+�(A).

Example 4. Let a CFG G have the productions

S → aEb | cEd, E → e

and an LSG G′ have the productions

S′ → aA′ | cC′, A′ → eB′, B′ → b | d, C′ → eD′, D′ → b.

After the algorithm computes �(S) = −1, �(E) = 0, �(S) = 1, �(E) = 1 (�G′

is compatible with L(G)), it starts constructing the comparison forest. Figure 2
shows the comparison forest under construction. At the beginning, all the nodes
in the forest are labeled with ∅ except F(S ⇀ ε) = {[S′

(1) � S′
(1)]}. To the

derivation S⇒G aEb in G, G′ has the corresponding derivation S′⇒G′ aA′, so
we put [A′

(1) � S′
(1)] into F(S ⇀ a) (by Case 3 in the algorithm). Indeed the

added element satisfies the statement S-II. At the same time, [A′
(1)�A′

(1)] is put
into F(E ⇀ ε) (Case 2, S-I). By E⇒G e and A′⇒G′ eB′, we put [B′

(1) �A′
(1)]

into F(E ⇀ e) (Case 3, S-II). Recall that the node E ⇀ e is a final node of TE .
The fact that [B′

(1)�A′
(1)] is in a final node of TE (i.e., [B′

(1)�A′
(1)] ∈ Final(E))

54 R. Yoshinaka

TS :
{
[S′

(1) � S′
(1)]

}
{
[A′

(1) � S′
(1)]

}
{
[B′

(1) � S′
(1)]

}
∅

∅

∅

∅

TE : {
[A′

(1) � A′
(1)]

}
{
[B′

(1) � A′
(1)]

}
a

E

b

c

E

d

e

Fig. 2. The comparison forest under construction

expresses the fact that for some y ∈ L(G,E) (you can forget what y actually is),
A′⇒∗

G′ yB′ where B′ is a descendant of A′ in the derivation tree. Therefore, for
the derivation S⇒G aEb

∗⇒ ayb, we have S′⇒G′ aA′ ∗⇒ ayB′. In this derivation,
we know that B′ is a descendant of A′ by [B′

(1) �A′
(1)] ∈ Final(E), and that A′

is a descendant of S′ by [A′
(1) �S′

(1)] ∈ F(S ⇀ a). Therefore B′ is a descendant
of S′ and thus we put [B′

(1) � S′
(1)] into F(S ⇀ aE) (Case 3, S-II). The label

of the node S ⇀ aEb is always the empty set by �(S) + �(aEb) = 0. Since
B′ → b ∈ P ′, we have no evidence for L(G) � L(G′) at this point, where the
comparison forest has the form shown in Figure 2.

Similarly, we add [C′
(1) � S′

(1)] to F(S ⇀ c), [C′
(1) � C′

(1)] to F(E ⇀ ε),
[D′

(1) � C′
(1)] to F(E ⇀ e), [D′

(1) � S′
(1)] to F(S ⇀ cE). Here, the node

S ⇀ cE has the child S ⇀ cEd and [D′
(1) � S′

(1)] ∈ F(S ⇀ cE), but we have
no production of the formD′ → dβ in G′ for any β. Thus the algorithm concludes
“L(G) � L(G′)” by Case 1 in the algorithm. Indeed ced ∈ L(G)−L(G′). IfG′ had
the production D′ → d in R′, the algorithm would conclude “L(G) ⊆ L(G′)”,
because we cannot update the comparison forest any longer.

Lemma 6. The algorithm in Figure 1 always terminates. L(G) ⊆ L(G′) iff the
algorithm in Figure 1 outputs “L(G) ⊆ L(G′)”.

Proof. Since F(A ⇀ ζ) is increased monotonically and it has the upper bound
N ′×{1, . . . , �(A)+�(ζ)}×N ′×{1, . . . , �(A)}, the algorithm eventually terminates.
Suppose that L(G) ⊆ L(G′). We can check that whenever a new element is
added to the label of a node in the comparison forest, it satisfies the statements
S-I and S-II. This ensures that the algorithm never outputs “L(G) �⊆ L(G′)”.
Conversely, suppose that the algorithm outputs “L(G) ⊆ L(G′)”. We can check
S-III by induction on n+ |y| for A⇒G ζη⇒n yη.

4.3 Time Complexity

Let ρG = max{ |ζ| | A → ζ ∈ P }. While τG ≤ ρG
|N |−1 holds, the maximum

thickness τG of G cannot be bounded by a polynomial in the size of G.

Lemma 7. If the algorithm in Figure 1 goes into Stage 1.2, then −τ(G,X) ≤
�̄(X) < |N |ρGτG for every X ∈ N ∪Σ, where τ(G, a) is regarded as 1 for a ∈ Σ.
If the algorithm goes into Stage 2, then �̄(A) ≤ |N |2ρG

2τG for any A ∈ N .

Polynomial-Time Identification of an Extension of VSGs from Positive Data 55

Proof. It is trivial that −τ(G,X) ≤ �̄(X) holds for all X ∈ N ∪Σ, since −|w| ≤
�(w) for all w ∈ Σ∗. Let d(X) = min{n | S⇒n

G ζXη for some ζ, η ∈ (N ∪Σ)∗ }
for X ∈ N ∪ Σ. Both claims �̄(X) < d(X)ρGτG and �̄(X) ≤ d(X)|N |ρG

2τG + 1
can be shown by induction on d(X) respectively. By d(A) < |N | for all A ∈ N
and �̄(a) = 1 for all a ∈ Σ, we obtain the conclusion.

Clearly Stage 1.1 of the algorithm runs in polynomial time in ‖G‖. If �G′ is
compatible with L(G), then Stage 1.2 runs in polynomial time in ‖G‖ and τG by
Lemma 7, since �̄(A) increases monotonically in the algorithm. This is true also
when �G′ is not compatible with L(G). For the comparison forest, dom(F) ≤
‖G‖ and |F(A ⇀ ζ)| ≤ |N ′|(�(A) + �(ζ))|N ′|�(A) hold. Since F is extended
monotonically, Stage 2 runs in polynomial time in ‖G‖, |N ′|, and the maximums
of �(X), �(X) for X ∈ N ∪Σ.

Theorem 2. For an LSG G′ and a CFG G, the question whether L(G) ⊆ L(G′)
is decidable in p(τG‖G‖‖G′‖) steps for a polynomial p.

Notice that it is undecidable whether L(G′) ⊆ L(G) for a CFG G and a VSG
G′. This is because we can construct a VSG G′ with L(G′) = Σ∗$ and it is well
known that whether L(G) = Σ∗$ or not for a CFG G is undecidable.

5 Learning Algorithm for RSGs

Our learning algorithm for RSGs outputs RSGs in the following normal form.

Definition 8. For a shape �, let N� = {S0}∪{ [a, k] | a ∈ Σ, 0 ≤ k ≤ �(a) }. An
RSG G is normal iff the set of nonterminals is N�G and every production has
the form

A→ a[a, 0] . . . [a, �G(a)] (*)

for some A ∈ N�G .

Indeed, every RSG G can be converted into a normal RSG G′ = 〈N�G , Σ, P
′, S0〉

such that L(G′) = L(G) and �G′ = �G. For instance, an RSG G consisting of the
productions S → aSA, S → bA, A→ c is converted into G′ with the productions

S0 → a[a, 0][a, 1], [a, 0] → a[a, 0][a, 1], S0 → b[b, 0], [a, 0] → b[b, 0],
[a, 1] → c, [b, 0] → c.

The difference between two normal RSGs with the same shape � is in which
nonterminals in N� appear as A in productions of the form (*) for each a ∈ Σ.
Thus, there are at most 2|N�||Σ| RSGs in the normal form with a fixed shape �.
This and Lemma 3 entail that for any language L over Σ, finitely many RSLs
on Σ exist that include L (if every element of Σ appears in L). This property is
known as finite thickness. Angluin [9] has shown that a class of languages that
has finite thickness is identifiable in the limit from positive data.

Our strategy to identify RSLs is similar to the strategies by Yokomori [2] and
Wakatsuki et al. [3] except for the method to avoid generating a too general

56 R. Yoshinaka

Input: a positive presentation R;
Output: an infinite sequence of RSGs;
Begin Algorithm

let G0 = 〈{S0}, ∅, ∅, S0〉;
for n = 1, 2, . . . , do

take the next string R(n);
if R(n) �∈ L(G0) then

enumerate all the shapes �1, . . . , �m compatible with Rn;
if m = 0 then output “It’s NOT an RSG” and halt; fi
for i = 1 to m do

construct the minimum Gi with �Gi = �i and Rn ⊆ L(Gi);
od
redefine G0 := G1;
for i = 2 to m do

if Gi � G0 then redefine G0 := Gi; fi
od

fi
output G0;

od
End Algorithm

Fig. 3. Learning algorithm for RSGs

grammar. Let R be a positive presentation of the target RSL L∗ over Σ, Σn =
{ a ∈ Σ | there is k ≤ n such that R(k) contains a }, and Sn = { � | � is a shape
on Σn compatible with Rn }. Our learning algorithm in Figure 3 runs as follows.

First, we enumerate all the elements of Sn. By Lemma 3, we have |Sn| ≤
‖Rn‖|Σn| and this enumeration needs at most O(‖Rn‖|Σn|) steps.

Secondly, for each shape � ∈ Sn, we construct the minimum RSG G in the
normal form such that �G = � and Rn ⊆ L(G) as follows. Initially we let
G = 〈N�, Σn, P0, S0〉 have no productions (P0 = ∅). We repeat the following
procedure until we have S0

∗⇒ w for each w ∈ Rn:

– if S0
∗⇒ xAα for xay = w, add the production A→ a[a, 0] . . . [a, �(a)] to G.

Clearly this is done in O(‖Rn‖) steps, and ‖G‖ ≤ 3‖Rn‖ and τG ≤ ‖Rn‖ hold.
Let Gn be the set of RSGs obtained by the previous step (|Gn| = |Sn|). Third,

we pick a minimal RSG among RSGs in Gn. By Theorem 2, we can decide the
inclusion of two RSGs in p(‖Rn‖) steps for a polynomial p. Thus, the third step
needs at most O(p(‖Rn‖)|Gn|) ≤ O(p(‖Rn‖)‖Rn‖|Σn|) steps.

Example 5. For R1 = {abbc}, there are two compatible shapes �1 and �2:

�1 = { a �→ 0, b �→ 0, c �→ −1 }, �2 = { a �→ 2, b �→ −1, c �→ −1 },
The minimum consistent RSGs G1 and G2 constructed on �1 and �2, respectively,
have the following productions:

G1 : S0 → a[a, 0], [a, 0] → b[b, 0], [b, 0] → b[b, 0], [b, 0] → c,

G2 : S0 → a[a, 0][a, 1][a, 2], [a, 0] → b, [a, 1] → b, [a, 2] → c.

Polynomial-Time Identification of an Extension of VSGs from Positive Data 57

We have L(G2) = R1 � L(G1) = { abnc | n ≥ 1 }. The algorithm outputs G2.

Theorem 3. The algorithm in Figure 3 identifies the class of RSLs in the limit
from positive data. It computes each conjecture in polynomial time in the input
size if we regard |Σ| as a constant. Moreover, it is consistent and conservative.

Proposition 1 implies that there is no consistent learning algorithm for RSGs
(VSGs, Szilard strict deterministic restricted one-counter automata) that up-
dates its conjecture in polynomial time in both ‖Rn‖ and |Σ| unless P = NP.

6 Future Work

The function shape plays a very important role in deciding the inclusion of
a CFG and an LSG and in enumerating RSGs consistent with a given finite
language. One may expect that our technique is applicable to some other class
of grammars which have shapes. One possibility may be deterministic pushdown
automata (DPDAs) obtained by adding states to RSGs; we call them right-
unique DPDAs. An ε-free DPDA that accepts input by empty stack is called
right-unique iff

– 〈q1, A〉 a→ 〈q2, α〉 and 〈q′1, A′〉 a→ 〈q′2, α′〉 imply q2 = q′2 and α = α′,

where 〈q1, A〉 a→ 〈q2, α〉 is read as “when the automaton in the state q1 with the
stack symbol A on the top of the stack reads the input letter a, it goes into the
state q2 and replaces A by α”. Right-unique DPDAs include all RSGs, VSGs,
and Szilard strict deterministic restricted one-counter automata (if we identify
a simple grammar with a simple DPDA). Since the class of right-unique DPDAs
has finite thickness, it is identifiable in the limit from positive data. The author
conjectures that there is an efficient algorithm solving the inclusion problem for
right-unique DPDAs that enables polynomial-time identification of right-unique
DPDAs.

References

1. Gold, E.M.: Language identification in the limit. Information and Control 10(5)
(1967) 447–474

2. Yokomori, T.: Polynomial-time identification of very simple grammars from positive
data. Theoretical Computer Science 298 (2003) 179–206

3. Wakatsuki, M., Teraguchi, K., Tomita, E.: Polynomial time identification of strict
deterministic restricted one-counter automata in some class from positive data. In:
Proceedings of the 7th International Colloquium on Grammatical Inference. Volume
3264 of Lecture Notes in Computer Science. (2004) 260–272

4. Linna, M.: Two decidability results for deterministic pushdown automata. Journal
of Computer and System Science 18 (1979) 92–107

5. Greibach, S.A., Friedman, E.P.: Superdeterministic PDAs: A subcase with a decid-
able inclusion problem. Journal of the Association for Computing Machinery 27(4)
(1980) 675–700

58 R. Yoshinaka

6. Shibata, T., Yoshinaka, R., Chikayama, T.: Probabilistic generalization of simple
grammars and its application to reinforcement learning. In: Proceedings of the
17th International Conference on Algorithmic Learning Theory. Lecture Notes in
Artificial Intelligence, Barcelona (2006) to appear.

7. Angluin, D.: Inference of reversible languages. Journal of the Association for Com-
puting Machinery 29(3) (1982) 741–765

8. Wakatsuki, M., Tomita, E.: A fast algorithm for checking the inclusion for very
simple deterministic pushdown automata. IEICE transactions on information and
systems E76-D(10) (1993) 1224–1233

9. Angluin, D.: Inductive inference of formal languages from positive data. Information
and Control 45(2) (1980) 117–135

PAC-Learning Unambiguous NTS Languages

Alexander Clark

Department of Computer Science, Royal Holloway University of London,
Egham, Surrey, TW20 0EX

Abstract. Non-terminally separated (NTS) languages are a subclass of
deterministic context free languages where there is a stable relationship
between the substrings of the language and the non-terminals of the
grammar. We show that when the distribution of samples is generated by
a PCFG, based on the same grammar as the target language, the class of
unambiguous NTS languages is PAC-learnable from positive data alone,
with polynomial bounds on data and computation.

1 Introduction

A long term research goal in grammatical inference is to find a class of languages
which includes the natural languages, and is efficiently learnable from positive
data. One of the earliest approaches in grammatical inference, though envisioned
as a discovery procedure for linguists, rather than a model of first language
acquisition is the distributional learning approach of [Har54]. This approach can
form the basis for efficient algorithms for large scale context free grammatical
inference, [Cla06], but the precise theoretical justification is still unclear. Given
that it is possible to construct acyclic deterministic finite state automata that
are hard to learn from positive examples, it is important to identify precisely
what the language theoretic properties that allow learning to proceed are.

In this paper, we take a significant step towards this goal: we combine [CT04a]
and [CE05] to prove a PAC-learnability result in a partially distribution-free set-
ting of a class of context-free grammars from positive examples, without mem-
bership queries, structural information or any other side information except for
some parameters we use to stratify the class. [CT04a] argues that for many prob-
lems, including natural language, there is a natural distribution or set of distri-
butions, and that therefore the requirement in the standard PAC-framework for
distribution-free learnability is too strict. They therefore argue that an appro-
priate modification is to consider a suitable set of distributions modelled by a
related family of probabilistic automata (since they study finite automata).

[CE05], on the other hand, which shows the learnability of a class of “sub-
stitutable languages” is incomplete in a number of respects. Firstly, though it
demonstrates polynomial identification in the limit, this is not enough to guar-
antee efficient learnability in practice, and secondly the class of substitutable
languages is very small. For example, the language {anbn|n > 0} is not a sub-
stitutable language.

In this paper we consider context free grammars; given that distribution free
learning is too difficult, we assume the data is generated by a PCFG, so that

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 59–71, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

60 A. Clark

the distribution will be reasonable helpful, but without trivialising the results
through possible collusion. Under this circumstance, we can then use statistical
properties of the distribution to determine whether two substrings are congruent.
The whole class of CFGs is too ambitious a goal to strive for; in this paper we
use the class of non-terminally separated (NTS) languages [BS85, Sen85].

We attempt to stratify the learnability of this by adding a number of parame-
ters that affect the complexity of learning. We use separate parameters wherever
possible to get maximum discrimination over this class of languages; as a result
some of the bounds may appear complicated, but they could be radically sim-
plified by combining bounds.

The relevance of this approach to natural language needs some explanation.
Natural languages are close to being NTS. The origin of the name is from non-
terminally separated, and indeed if we take a natural language such as English,
then given two non-terminals such as noun phrase and verb phrase, the sets of
strings that can be generated by each of these are almost disjoint. Of course,
lexical ambiguity is a problem, since a word like share can be both a noun
and a verb, but working with a suitably disambiguated representation, to a
large extent, natural languages are NTS. The underlying distributions we use
are those of PCFGs. This seems well motivated since the current state of the
art in language modelling uses just this sort of model [Cha01, JC00]. Thus the
approach we take here, starting from a linguist’s idea, is well motivated both in
terms of learnability, (the constraints on the distribution) and in terms of the
class of languages we consider. There are a number of limitations to the work
presented here which we will discuss in the conclusion.

2 Notation and Definitions

An alphabet Σ is a finite nonempty set of symbols called letters. A string w over
Σ is a finite sequence w = a1a2 . . . an of letters. Let |w| denote the length of w.
In the following, letters will be indicated by a, b, c, . . ., strings by u, v, . . . , z, and
the empty string by λ. Let Σ∗ be the set of all strings, the free monoid generated
by Σ. By a language we mean any subset L ⊆ Σ∗. u is a substring of v, written
u � v if there are l, r ∈ Σ∗ such that lur = v. The set of all substrings of a
language L is denoted

Sub(L) = {u ∈ Σ+ : ∃w ∈ L such that u � w} (1)

(notice that the empty word does not belong to Sub(L)). We will define the
number of contiguous occurrences of a substring u in w by |w|u =

∑
l,r∈Σ∗:lur=w 1,

so for example |abab|ab = 2.

2.1 Grammars

A grammar is a quadruple G = 〈V,Σ, P, I〉 where Σ is a finite alphabet of
terminal symbols, V is a finite alphabet of non-terminals, P is a finite set of
production rules, and I ⊆ V is a set of start (initial, or sentence) symbols. If

PAC-Learning Unambiguous NTS Languages 61

P ⊆ V ×(Σ∪V)+ then the grammar is said to be context-free (CF), and we will
write the productions as N → w. We will write uNv ⇒ uwv when N → w ∈ P .
∗⇒ is the reflexive and transitive closure of ⇒. The language defined by G is
L(G) = {w ∈ Σ∗|∃S ∈ I s.t. S ∗⇒ w}.

Given a set L ⊆ Σ∗ we define the syntactic congruence of L to be the relation
u ≡L v iff ∀l, r ∈ Σ∗, lur ∈ L iff lvr ∈ L. This is an equivalence relation and
indeed a monoid congruence since u ≡L v implies lur ≡L lvr for all l, r ∈ Σ∗.

2.2 NTS Languages

In this paper we are interested in the class of NTS languages.

Definition 1. A grammar G = 〈Σ, V, P,A〉 is non-terminally separated (NTS)
iff whenever N ∈ V such that N ∗⇒ αβγ and M ∗⇒ β then N ∗⇒ αMγ.

A language L is NTS if it can be described by an NTS grammar. Space does not
permit a full exposition of the properties of this class but we note first that the
class of NTS languages properly includes all regular languages, and that there
are efficient polynomial algorithms for deciding the NTS property.

NTS languages are deterministic and thus not inherently ambiguous. We shall
restrict ourselves here to unambiguous grammars – i.e. those grammars such that
every string in the language has only one (rightmost) derivation. Surprisingly,
this restriction does reduce the class of languages significantly, i.e. there are
NTS languages which cannot be described by an unambiguous NTS grammar.
Consider the language L = {an|n > 0}. This is a NTS language, and it is easy to
see that the grammar must contain at least the productions S → a and S → SS
(since S ∗⇒ aa and S

∗⇒ a). Therefore, this is ambiguous since aaa will have
at least two rightmost derivations. S ⇒ SS ⇒ Sa ⇒ SSa ⇒ Saa ⇒ aaa and
S ⇒ SS ⇒ SSS ⇒ SSa⇒ Saa⇒ aaa.

We will also make some other assumptions about the form of the grammar,
that do not affect the class of languages defined. In particular we assume that
there are no redundant non-terminals in the grammar, i.e. that for all N ∈
V ∃u ∈ Σ∗N ∗⇒ u and ∃S ∈ I, l, r ∈ Σ∗ S ∗⇒ lNr. We will also assume that
there are no duplicate non-terminals – i.e. no non-terminals that generate the
same strings.

2.3 Distributions

A distribution D over Σ∗ is a function PD :Σ∗→ [0, 1] such that
∑

u∈Σ∗ PD(u)=
1. We will write supp(D) = {w ∈ Σ∗|PD(w) > 0}. For a language L ⊆ Σ∗ we
will write PD(L) =

∑
w∈L PD(w).

The L∞ norm of a function F over a countable set X is defined as

L∞(F) = max
x∈X

|F (x)|

Note that this defines a metric (L∞(F1 − F2) = 0 implies F1 = F2), and it
satisfies the triangle inequality.

62 A. Clark

We define ED[u] =
∑

l,r∈Σ∗ PD(lur), the expected number of times the sub-
string will occur (not the probability since it can be greater than 1). We define the
probability that we observe one or more us to beOD(u) = PD({w ∈ Σ∗ : u � w})

A context distribution C is a function from Σ∗ × Σ∗ → [0, 1] such that∑
l∈Σ∗

∑
r∈Σ∗ C(l, r) = 1.

The context distribution of a string u, where u ∈ Sub(L), is written as CD
u

and is defined as

CD
u (l, r) =

PD(lur)
ED(u)

(2)

We will normally suppress the distribution when it is unambiguous. Given a
multisetM of elements ofΣ∗×Σ∗, we will write M̂ for the empirical distribution.

We define a notion of probabilistic congruence analogous to that of syntactic
congruence.

Definition 2. Given two strings u, v ∈ Σ∗ and a distribution D over Σ∗, u and
v are probabilistically congruent with respect to a distribution D, written u ∼=D v
if and only if CD

u = CD
v

2.4 PCFGs

We will concern ourselves with distributions generated by probabilistic context
free grammars. A PCFG is a CFG G = 〈Σ, V, P, I〉 together with two functions,
an initial symbol probability function, ι : I → (0, 1] and a production probability
function π : P → (0, 1] that satisfy the following constraints,

∑
S∈I ι(S) = 1 and

for all N ∈ V
∑

N→α∈P π(N → α) = 1. For any rightmost derivation we can
attach a probability which is the product of the π(N → α) of all productions
used in the derivation, and the probability of a string is then the product of the
ι(S) for the start symbol used, and the probability of the derivation: PD(u) =
ι(S)P (S ∗⇒G u) if S ∗⇒G u. (We assume here that it is unambiguous and NTS).
If a PCFG is such that

∑
w∈Σ∗ P (w) = 1 then this is a consistent PCFG, and

it defines a distribution, whose support is L(G).

3 Learnability and Parameters

Given an unambiguous NTS grammarG defining a language L(G), and assuming
that D a distribution is defined by a PCFG based on the same grammar, we can
establish the following result.

Lemma 1. if N ∗⇒G u and N ∗⇒G v then u ∼=D v.

Proof Since G is NTS, u ≡L v. Consider any l, r ∈ Σ∗ such that lur ∈ L. Let
pu = P (N ∗⇒G u) and pv = P (N ∗⇒G v) For any l, r such that S ∗⇒G lNr,
let pl,r = ι(S)P (S ∗⇒G lNr). By PCFG assumptions, P (S ∗⇒ lur) = pl,rpu and
P (S ∗⇒ lvr) = pl,rpv; therefore u ∼=D v.

Given the well-known results on learning acyclic PDFAs [KMR+94], it is nec-
essary to add some criterion for distinguishability of states. We modify the def-
inition of [RST98] to handle PCFGs as follows:

PAC-Learning Unambiguous NTS Languages 63

Definition 3. A PCFG is µ1-distinguishable iff for every non-terminal N there
is a string u such that P (N ∗⇒ u) > µ1.

Note that since NTS grammars are non-terminally separated, this is sufficient
for them to be distinguishable in the sense of [RST98].

We also need to add some restrictions not on the distribution of strings gen-
erated by the nonterminals but also on the context distributions. Since we will
be using context distributions to identify the relation of syntactic congruence,
we will require the context distributions to be reasonably far apart in the L∞
norm. Clearly, given that there will be an infinite number of congruence classes,
we cannot require an absolute lower bound on the distance between context dis-
tributions. Even for regular languages, the number of congruence classes can be
exponentially large, though finite. So we will have two further requirements on
our distribution.

Definition 4. A PCFG is ν-separable for some ν > 0 if for every pair of
strings u, v in Sub(L(G)) such that u �≡ v, it is the case that L∞(Cu − Cv) ≥
νmin(L∞(Cu), L∞(Cv))

Note that according to this definition, if a language is substitutable [CE05], then
it is ν-separable with ν = 1.

Additionally we require a certain degree of concentration in the contexts. It
is easy to construct examples where the L∞ norms of the context distributions
are exponentially small, in which case we will need exponentially large amounts
of data to be able to reliable determine when two strings are congruent or not
using the separability property. Accordingly we add the following definition.

Definition 5. A PCFG is µ2-reachable, if for every non-terminal N ∈ V there
is a string u such that N ∗⇒G u and L∞(Cu) > µ2.

Clearly every PCFG is µ2-reachable for some µ2. This implies that there are
strings l, r such that P (lur) > µ2P (N ∗⇒G u). Formulating the bound in terms
of the norm of the context distribution is slightly stronger, since there might
be more than one occurrence of u in lur. Alternatively we could combine this
with distinguishability: if a PCFG is both µ1-distinguishable and µ2-reachable,
then we know that for every non terminal N there are strings l, u, r such that
ι(S)P (S ∗⇒G lNr

∗⇒G lur) > µ1µ2, and so we could simply have a single bound
corresponding to µ1µ2. While this is more compact, it is conceptually cleaner
to separate the two bounds and treat them independently – this gives a more
accurate representation of the functional dependence of the sample complexity
on these parameters.

Intuitively we require that we do not have any strings that are very frequent
but such that all of the strings that they occur in have exponentially small
probability.

4 Algorithm

We now define the algorithm PACCFG. Our primary concern here is not with
the algorithmic aspects of this, so we will present this using naive, but polynomial,

64 A. Clark

procedures. When implementing this, we would obviously use more efficient data
structures. We will start by defining it informally.

We are given a sequence of positive strings S = w1, . . . wN . First of all we
collect all the frequent substrings, those strings that occur in more than a cer-
tain threshold m0 of these strings. For each of these frequent strings, we collect
a multiset of contexts, as follows: for a string u, we consider each data point wi

such that u � wi, calculate |wi|u, and then collect all of the contexts from this
string. Thus if we have u = a and wi = axayaz, then we add these three contexts
(λ, xayaz), (ax, yaz), (axay, z). This procedure will give at leastm0 samples from
the context distribution, but these will not in general be independent; nonethe-
less we can be sure that we will have a good estimate with high probability, i.e.
that L∞(Ĉu, Cu) is small. We then form the set of all those frequent strings u
that have L∞(Ĉu) > µ2/2. We then construct a graph, where each node cor-
responds to one of these frequent substrings, and there is an arc between two
distinct nodes, if and only if the two context distributions are similar. The test
we use returns true if

L∞(Ĉ(u)− ˆC(v)) ≤ 2µ3 (3)

We design this similarity test so that we can be sure, knowing the separability
of the distribution, that it will pass only if these two substrings are probabilis-
tically congruent and thus syntactically congruent. Given this graph, we then
identify the components (i.e. the maximal connected subgraphs). All of the sub-
strings in a given component will be syntactically congruent. We will write below
[u] for the component that contains the string u. We then construct a grammar
from this, using the procedure in [CE05].

For every component we have a corresponding non-terminal. The set of initial
symbols, will be the set of components that contain one of the sentential strings
w1, . . . wn. The set of productions is defined as follows. For every letter a ∈ Σ
that is in U , we add a production [a] → a. For every string of length greater
than one, u ∈ U , we add every production of the form [u] = [v][w] where u =
vw, |v| > 0, |w| > 0; there will be |u| − 1 such productions for every string. Note
that if u ∈ U and v is a substring of u then v must occur at least as many times
as u and thus v ∈ U as well.

More formally we define the algorithm in Algorithm 1.

Proposition 1. PACCFG runs in time polynomial in the total length of strings
in the input data.

Proof (sketch) The number of substrings is polynomial, all of the computations
can be performed using standard algorithms that are polynomial in the number
of substrings.

4.1 Bounds

We now define the various bounds that are used in the algorithm and its analysis.
We start by defining the various parameters. One of the problems with CFGs is

PAC-Learning Unambiguous NTS Languages 65

Algorithm 1. PACCFG algorithm
Data: A sequence of strings W = w1, w2 . . . , wn, parameters m0, ν, µ2, alphabet

Σ
Result: A context free grammar Ĝ
Find all substrings that occur at least m0 times
U={u ∈ Σ+ : |{wi|u 	 wi}| ≥ m0} ;
foreach u ∈ U do

Cu = {} empty list ;
foreach wi ∈ W do

if u 	 wi then
foreach l, r such that lur = wi do

Append (l, r) to Cu ;
end

end
end

end
Uc = {u ∈ U |L∞(Ĉu) > µ2/2} ;
E = {(ui, uj) ∈ Uc : L∞(Ĉ(ui) − Ĉ(uj)) < 2µ3}. ;
Construct a graph SG = (U, E) ;
Compute V̂ = {V1, . . . } be the set of components of the graph SG;
Compute the set of productions
P̂ = {[a] → a|a ∈ Σ} ∪ {[w] → [u][v]|w ∈ U, w = uv} ;
Select the initial symbols : Î = {N ∈ V̂ |wi ∈ N̂}. ;
output Ĝ = 〈Σ, V̂ , P̂ , Î〉;

that the strings can be exponentially large, even if we observe a low expected
length in the sample, the true expectation could still be exponentially large
because there might be a very rare nonterminal that generates very long strings.
We need to have a loose bound on the expected number of substrings, so that
we can bound the number of possible context distributions we need to estimate:
this only appears in a logarithmic bound so it is not very significant. Thus we
require the following upper bound L where∑

w∈Σ∗

1
2
|w| (|w| + 1)PD(w) ≤ L (4)

We have precision and confidence parameters, ε and δ, alphabet size |Σ|, an
upper bound on the number of non-terminals of the grammar, n, and on the
number of productions p. We will assume an upper bound on the length of the
right hand sides of the productions of l. We also require that the distribution
is µ1-distinguishable, µ2-reachable and ν-separable. Given these constraints we
define the following quantities.

ε2 =
ε

p+ n
(5)

µ3 =
νµ2

16
(6)

66 A. Clark

M =
2

µl
1ε2

(7)

δ1 = δ/4 (8)

δ2 =
δ21
LM

(9)

(10)

The threshold for the counts of substrings is m0:

m0 = max
(

1
2µ2

3
log

8
µ3δ2

,
1
µ3

log
128
δ2µ3

, 4 log
p

δ1

)
(11)

The total number of strings we require, the sample complexity is N :

N = m0M (12)

Given these quantities, we will now state and prove a series of propositions
showing that with high probability, the samples we draw will have the right
properties. We assume that the data is being generated by a PCFG with the
properties discussed above. We draw N strings w1, . . . , wN .

Proposition 2. With probability greater than 1− δ1,
N∑

i=1

1
2
|wi|(|wi|+ 1) ≤ NLδ−1

1 (13)

Proof By the definition of L the expectation of the left hand side is less than
NL. Using the Markov inequality establishes the result.

Therefore we can see that the total number of strings with counts above m0
will be at most NLδ−1

1 m−1
0 = MLδ−1

1 . We will divide the productions into two
sets, a set of frequent productions, that we expect to observe a significant number
of, and a set of infrequent productions, that will constitute a source of errors.
For every production N → α in the set of productions P , we define the set of
strings that use that production

W (N → α) = {w ∈ Σ∗ : ∃S ∈ I,∃β, γ ∈ (V ∪Σ)∗ s.t. S ∗⇒G βNγ ⇒ βαγ
∗⇒ w}

A production is ε2-frequent if PD(W (N → α)) > ε2.

Proposition 3. For every ε2-frequent production N → α in P , with probability
at least 1− δ1, there will be a string u such that α ∗⇒ u, and that u occurs in at
least m0 strings.

Proof There must be a string u such that α ∗⇒ u and P (α ∗⇒ u) > µl
1, by

the distinguishability, and the fact that |α| ≤ l. Therefore OD(u) ≥ ε2µ
l
1. We

have that N > 2m0ε
−1
2 µ−l

1 therefore given N samples we would expect for any
given production, using Chernoff bounds, the probability of seeing less than m0

PAC-Learning Unambiguous NTS Languages 67

occurrences to be less than e−Nε2µl
1/8. Since there are at most p productions we

will require

e−Nε2/8 < e−m0/4 <
δ1
p

(14)

which is satisfied by m0 > 4 log p
δ1

.

For every initial symbol S ∈ I, we define I(S) = {w : S ∗⇒ w}. An initial
symbol is ε2-frequent iff PD(I(S)) > ε2.

Proposition 4. For every ε2-frequent initial symbol S, with probability at least
1− δ1 there will be a string u such that u occurs at least m0 times in the sample
and S ∗⇒ u.

Proof Since it is ε2-frequent we know that ι(S) > ε2. Since the PCFG is µ1-
distinguishable we know that there must be a string u such that P (S ∗⇒G u) >
µ1, therefore there must be a string with PD(u) > µ1ε2. Since N > 2m0µ

−1
1 ε−1

2 ,
using Chernoff bounds we expect for a given symbol S, the probability of not
seeing this string to be less than e−Nµ1ε2/8. Since there are at most n initial
symbols, we will require

e−Nε2µ1/8 <
δ1
n

(15)

which is satisfied by m0 > 4 log n
δ1

, which is a weaker bound.

Proposition 5. Assuming that the bound above holds, with probability at least
1− δ1, for every substring u with count greater than m0, L∞(Ĉu, Cu) < µ3.

Proof The following lemma can be proved, using techniques similar to those in
[CT04b]. The important difference is that even though the strings may be drawn
from the distribution independently, the draws from the context dstribution will
not be independent, since the same substring may occur more than once in
a single string, and thus there will be dependencies. Fortunately, the Bernouilli
indicator variables associated with each context are negatively associated [DR98]
and thus we can still apply Chernoff/Hoeffding bounds.

Lemma 2. For any context distribution D, for any ε′ > 0 and any δ′ > 0, given
N ′ samples drawn from D, which are negatively associated [DR98], where

N ′ > max
(

1
2ε′2

log
8
ε′δ′

,
1
ε′

log
128
δ′ε′

)
(16)

the empirical distribution Ŝ of the samples will satisfy L∞(Ŝ − D) < ε′, with
probability at least 1− δ′.
Using the assignments δ′ = δ2 and ε′ = µ3, establishes the result, given the
bound on the number of substrings given above.

If all of these properties hold, then we say that the sample is m0, µ3-good.
We now come to the most important step; this lemma establishes that the

comparison of the context distributions will give the right answer.

68 A. Clark

Proposition 6. If the sample is m0, µ3-good, then whenever we have two strings
u, v whose counts are at least m0, and such that L∞(Ĉu) > µ2/2 and L∞(Ĉv) >
µ2/2 then L∞(Ĉu, Ĉv) < 2µ3 if and only if u ≡L v.

Proof Since L∞(Ĉv) > µ2/2, and the sample is good, we know that L∞(Cv) >
µ2/4. (and similarly for v). Suppose u and v are not congruent, then since the
distribution is ν-separable, we know that L∞(Cu, Cv) ≥ νµ2/4 = 4µ3. Since the
sample is good, we know that L∞(Ĉu, Cu) < µ3 and L∞(Ĉv, Cv) < µ3. Therefore
by the triangle inequality L∞(Ĉu, Ĉv) > 2µ3. Conversely if they are congruent,
then Cu = Cv, and by the triangle inquality L∞(Ĉu, Ĉv) < 2µ3.

Proposition 7. If the number of samples exceeds N then the sample is good
with probability at least 1− δ.

Proof With probability at most δ1 the strings are too long, with probability
at most δ1 some frequent production does not occur at least m0 times. With
probability at most δ1 the sample is m0, µ3-good. Therefore the total probability
this not being the case is less than δ. QED

5 Proof

Having established these proposition we can now prove the correctness of the
algorithm. We now work under the assumption that the sample is good and show
that in this situation the algorithm produces a hypothesis with small error.

First of all, we show that the hypothesized language will be a subset of the
target language. Here the proof is very similar to [CE05]. For a string of terminal
and non terminal symbols α ∈ (V ∪ Σ)+, we can define w(α) to be the set of
strings of Σ∗ formed by replacing every element of N ∈ V with one of the strings
w in the component corresponding toN . So ifN1 = {u1, u2} andN2 = {v1, v2v3}
and α = aN1bN2, then w(α) = {au1bv1, au1bv2, au1bv3, au2bv1, au2bv2, au2bv2}.
If α ∈ Σ∗ then w(α) = {α}, and if α = N ∈ V̂ then w(N) is precisely the set of
substrings in that component of the substitution graph.

Lemma 3. For every α, u ∈ w(α) and v ∈ w(α) implies that u ≡L v.

Proof If u and v are in the same component, then they are congruent. Since
syntactic congruence is a monoid congruence the result holds, by induction on
the length of α.

Lemma 4. For all v ∈ Σ∗, for all α ∈ (V ∪ Σ)∗, α ∗⇒Ĝ β and u ∈ w(α), v ∈
w(β) implies u ≡L v

Proof By induction on the length of the derivation α ∗⇒Ĝ β. Suppose we have a
derivation of length 0, i.e. α = β, then the previous lemma establishes the result.
Otherwise suppose it is true for all derivations of length at most k. Suppose we
have a derivation α ⇒Ĝ α′ ∗⇒Ĝ β, and suppose u ∈ w(α) and v ∈ w(β).

PAC-Learning Unambiguous NTS Languages 69

There are two possibilities. Suppose the production used in the derivational
step α ⇒Ĝ α′ is of the form N → QR, where N,Q,R ∈ V̂ . Then α = βNγ,
and α′ = βQRγ for some β, γ. Since u ∈ w(α), we must have u = uβuNuγ ,
uβ ∈ w(β), uγ ∈ w(γ). Pick an element of uQ ∈ w(Q), and uR ∈ w(R). Clearly
u′ = uβuQuRuγ ∈ w(α′) , and therefore by the inductive hypothesis u′ ≡L v.
Since there is a production N → QR in the grammar Ĝ, it must be the case that
uN was in the same component as uQuR. Therefore uN ≡L uQuR, which implies
u ≡L u′, which establishes that u ≡L v. Alternatively suppose the production
used is of the form N → a. As before we have u′ = uβauγ . By the inductive
hypothesis u′ ≡L v, and by the construction of the grammar we have a ∈ w(N)
therefore u ≡L v. QED

Lemma 5. L(Ĝ) ⊆ L(G)

Since w(u) = {u}, it immediately follows from the previous lemma that if α ∗⇒Ĝ

u and α
∗⇒Ĝ v, then u ≡L v. Suppose we have some u ∈ L(Ĝ), then ∃S ∈ Î

such that S ∗⇒Ĝ u. Since S ∈ Î there must have been a string v ∈ L(G) which
occurred frequently and is thus in w(S). Therefore v ≡L u, which means that
u ∈ L(G). QED

Now we prove that the error will be small.

Lemma 6. PD(L(G)− L(Ĝ)) < ε

First of all we define the error set to be

Lerror =

⎛⎝ ⋃
N→α∈P :PD(W (N→α))<ε2

W (N → α)

⎞⎠ ∪
⋃

S∈I:PD(I(S))<ε2

I(S) (17)

We can define a partial mapping φ from the non-terminals in G to those in Ĝ,
(from V → V̂). If N ∈ V , then since it is µ1-distinguishable we will have at least
one frequent string uN , since it is µ2-reachable, the context distribution will have
sufficently large norm, therefore there will be at least one non-terminal [uN] in Ĝ.
Every string u ∈ U such that N ∗⇒ u, will be congruent to uN and thus, since the
sample is good, it will be in the same component. Therefore there is a unique non
terminal in V̂ corresponding to N , and thus φ is well defined. Define φ(a) = a
for every letter a ∈ Σ and then extend it to (VG ∪ Σ)+. For every ε2-frequent
production N → α, we will also have a frequent string u such that α ∗⇒G u.
Write α = α1 . . . αk where k = |α|,αi ∈ Σ ∪ V and let u = u1, . . . un where
αi

∗⇒ ui. By the construction of the set of productions we will have productions
[u] → [u1][u2 . . . un], [u2 . . . un] → [u2][u3 . . . un] up to [un−1un] → [un−1][un].
Since for all of these productions [ui] = φ(αi) we have that φ(N) ∗⇒Ĝ φ(α).
Similarly since the sample is good we will have that the non-terminal symbol
S will be in the initial set, if it is frequent. Thus if u ∈ L − Lerror, there will
be a derivation S ⇒G α1 ⇒G · · · ⇒G αk ⇒G u, for some S ∈ I; since u is not

70 A. Clark

in Lerror all of the productions will be frequent and therefore there will be a
derivation φ(S) ⇒Ĝ φ(α1) ⇒Ĝ . . . φ(αk) ⇒Ĝ u, and thus u ∈ L(Ĝ). Therefore
L(G) − L(Ĝ) ⊆ Lerror, and since PD(Lerror) < (p + n)ε2 = ε we have the
result. QED

Theorem 1. If the sample is µ3 good then PACCFG will generate a hypothesis
grammar which is a subset of the target language and with error less than ε.

6 Discussion

There are no directly comparable results for PAC-learning context free gram-
mars. [Adr99] uses simple distributions in the Kolmogorov sense and membership
queries to prove a learnability result for a class of rigid categorial grammars, but
the proof is incomplete.

The results here are still incomplete – we are still in some sense hiding a
language theoretic property in terms of a distributional property. The same
problem occurs with the learning of DFAs in [RST98] – essentially we have some
automata which will generally have exponentially small distinguishability. The
best way of viewing this is that we have a parameter that measures the difficulty
of learning some languages – the difficulty is affected both by the language
and the distribution. This approach is worse, because while every PDFA is µ-
distinguishable for some µ, it appears not to be necessarily the case that there
will always be a polynomial that will bound the separability, though we have
not yet managed to construct a counter-example.

Putting the bounds together and ignoring log factors we have, for a grammar
G = 〈Σ, V, P, I〉 the sample complexity of O

(
|V |+|P |
εµl

1µ2
2ν2

)
. The presence of the term

µl
1 is worrying. It is not always the case that one can convert an NTS grammar

to a CNF grammar while preserving the NTS property. Thus l could in principle
be large. However, a very slight strengthening of the NTS property, requiring
the reduction system to be weakly confluent on Sub(L) allows this reduction
to take place, and thus allows l to be at most 2. Thus the sample complexity
is not excessively high, and establish that polynomial learnability of interesting
context free languages is an achievable goal.

This is a step towards a long term research goal of grammatical inference
– finding a simple class of languages/distributions, defined in domain-general
terms, that is provably learnable, in some practical sense, and includes observed
natural languages. The class we present here is too limited in a number of re-
spects; most importantly, the requirement that the grammars are unambiguous
is too sharp, and we hope to remove this in future work. Additionally, just as
our definition of separability allows a certain amount of overlap between the
contexts of non congruent substrings, it might be possible to go beyond NTS
languages, by allowing a limited amount of overlap between the strings generated
by distinct non-terminals.

PAC-Learning Unambiguous NTS Languages 71

Acknowledgments

I would like to thank Remi Eyraud and Franck Thollard for collaborating on
previous work that has led into this paper. This work was partly supported by
the PASCAL network of excellence in machine learning.

References

[Adr99] Pieter Adriaans. Learning shallow context-free languages under simple
distributions. Technical Report ILLC Report PP-1999-13, Institute for
Logic, Language and Computation, Amsterdam, 1999.

[BS85] L Boasson and S Senizergues. NTS languages are deterministic and con-
gruential. J. Comput. Syst. Sci., 31(3):332–342, 1985.

[CE05] Alexander Clark and Remi Eyraud. Identification in the limit of substi-
tutable context free languages. In Sanjay Jain, Hans Ulrich Simon, and
Etsuji Tomita, editors, Proceedings of The 16th International Conference
on Algorithmic Learning Theory, pages 283–296. Springer-Verlag, 2005.

[Cha01] Eugene Charniak. Immediate head parsing for language models. In Pro-
ceedings of the 39th annual meeting of the ACL, pages 116–123, Toulouse,
France, 2001.

[Cla06] Alexander Clark. Learning deterministic context free grammars in the
Omphalos competition. Machine Learning, 2006. to appear.

[CT04a] Alexander Clark and Franck Thollard. PAC-learnability of probabilistic
deterministic finite state automata. Journal of Machine Learning Re-
search, 5:473–497, May 2004.

[CT04b] Alexander Clark and Franck Thollard. Partially distribution-free learning
of regular languages from positive samples. In Proceedings of COLING,
Geneva, Switzerland, 2004.

[DR98] Devdatt P. Dubhashi and Desh Ranjan. Balls and bins: A study in negative
dependence. Random Structures and Algorithms, 13(2):99–124, 1998.

[Har54] Zellig Harris. Distributional structure. Word, 10(2-3):146–62, 1954.
[JC00] F. Jelinek and C. Chelba. Structured language modeling for speech recog-

nition. Computer, Speech and Language, 14(4), 283-332 2000.
[KMR+94] M.J. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R.E. Schapire, and L. Sel-

lie. On the learnability of discrete distributions. In Proc. of the 25th
Annual ACM Symposium on Theory of Computing, pages 273–282, 1994.

[RST98] D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic
probabilistic finite automata. J. Comput. Syst. Sci., 56(2):133–152, 1998.

[Sen85] G Senizergues. The equivalence and inclusion problems for NTS languages.
J. Comput. Syst. Sci., 31(3):303–331, 1985.

Incremental Learning of Context Free
Grammars by Bridging Rule Generation and

Search for Semi-optimum Rule Sets

Katsuhiko Nakamura

College of Science and Engineering, Tokyo Denki University,
Hatoyama-machi, Saitama-ken, 350-0394 Japan

nakamura@k.dendai.ac.jp

Abstract. This paper describes novel methods of learning general
context free grammars from sample strings, which are implemented in
Synapse system. Main features of the system are incremental learning,
rule generation based on bottom-up parsing of positive samples, and
search for rule sets. From the results of parsing, a rule generation pro-
cess, called “bridging,” synthesizes the production rules that make up any
lacking parts of an incomplete derivation tree for each positive string. To
solve the fundamental problem of complexity for learning CFG, we em-
ploy methods of searching for non-minimum, semi-optimum sets of rules
as well as incremental learning based on related grammars. One of the
methods is search strategy called “serial search,” which finds additional
rules for each positive sample and not to find the minimum rule set for
all positive samples as in global search. The other methods are not to
minimize nonterminal symbols in rule generation and to restrict the form
of generated rules. The paper shows experimental results and compares
various synthesis methods.

Keywords: grammatical inference, CFL, bottom-up parsing, iterative
deepening, Synapse.

1 Introduction

In this paper, we discuss novel methods of learning general context free gram-
mars (CFGs) from sample strings, which are implemented in Synapse system. We
employ a covering-based, or top-down, approach [2]: the learning system grad-
ually covers all the positive samples, beginning with the empty set or a small
set of initial rules. It iteratively synthesizes the rules until the rule set derives
all positive sample strings but no negative sample string. The covering approach
is also employed by Sakakibara et. al. [14], whereas many other grammatical
inference systems for CFGs, including GRIDS [5] and Emile [16], are classified
into generalization based approach, in which the systems generate the rules by
analyzing the samples, and generalizing and abstracting the generated rules.

The main features of Synapse are incremental learning, rule generation based
on bottom-up parsing, and search for rule sets. The rule generation in Synapse

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 72–83, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Incremental Learning of Context Free Grammars 73

is based on bottom-up parsing for positive sample strings. The previous version
of Synapse uses inductive CYK algorithm [6,8] for generating the rules, which is
based on CYK (Cocke, Younger and Kasami) algorithm for the bottom-up pars-
ing. In the new version, a novel process, called bridging, generates the production
rules that bridge, or make up, any lacking parts of an incomplete derivation tree
of the result of parsing a positive string.

The system searches for a set of rules that satisfies the samples. To obtain
the minimum sets of rules, we use iterative deepening in the search. In the new
version of Synapse, we employ a novel search strategy called serial search in
addition to global search, in which the system searches for the minimum set of
rules satisfying given sets of positive and negative samples by iterative deepening
and backtracking. In serial search, the system searches for the minimum set of
rules for each positive sample, and generally does not backtrack to the choice
points for the previous positive samples.

We use incremental learning in two ways. First, for learning a grammar from
its sample strings, the positive samples are given to the rule generation process
in the order of their lengths. This process continues until the system finds a set of
rules that derives all the positive samples, but none of negative samples. Second,
the main use of incremental learning is to synthesize a grammar by adding rules
to previously learned grammars of either similar languages or a subset of the
target language.

The most serious problem in learning CFG is the degree of computational
complexity. Among previous theoretical works on grammatical inference, several
papers show that CFGs, and more restricted grammars, are not learnable in
polynomial time [1,11]. Many works [12,3] on learning CFG restrict the grammar
to subclasses of CFG and/or add some structural information to the samples for
polynomial-time learning.

As we reported in [8], learning general CFG by searching for the minimum
rule sets generally requires time exponential to the size of rule sets. In an at-
tempt to solving this fundamental problem, we employ methods to search for
non-minimum, semi-optimum sets of rules as well as incremental learning based
on related grammars. The serial search is one method of searching for the semi-
optimum rule sets. Other methods include using non-minimum nonterminal sym-
bols in the rule generation and restricting the form of generated rules. These
methods generally increase the efficiency of searching for rule sets at the cost
that the rule sets may not be minimum.

2 Context Free Grammars and Normal Forms

A context free grammar (CFG) is a system G = (N,T, P, S), where N,T and P
are finite sets of nonterminal symbols, terminal symbols and production rules (or
simply rules), respectively, and S ∈ N is the starting symbol. The rules are of
the form A→ u with A ∈ N, u ∈ (N ∪ T)+. We represent nonterminal symbols
by uppercase characters, terminal symbol by lower case characters a, b, c, · · ·, and
any symbols in N ∪ T by Greek characters.

74 K. Nakamura

The set P of rules derives a string v from a string u, if there is a sequence
u = w1, w2, · · · , wn = v of strings over (N ∪T)+, called left derivation, such that
the leftmost nonterminal symbol B in wi is replaced by u in wi+1 if and only if
B → u ∈ P , for each i, 1 ≤ i ≤ n− 1. The language L(G) of a CFG G is the set
of strings over Σ+ derived from the starting symbol S. A CFG G is ambiguous,
if there are two or more left derivations for a string w ∈ L(G).

It is known that rules of CFGs can be restricted to Chomsky normal form
(CNF) of the form either A → BC or A → a. The previous version of Synapse
[6,8] synthesizes revised CNF of the form A → βγ. By using this form, we can
generally simplify grammatical inference by omitting rules of the form A → a,
when the number of terminal symbols is not large. The improved version of
Synapse synthesizes CFGs in extended Chomsky normal form (extended CNF)
of the form, A→ β and A→ βγ, (β, γ ∈ N ∪T). Note that CNF is a special case
of the extended CNF. A feature of extended CNF is that we can make grammars
of this form simpler than those of Chomsky normal form.

3 Rule Generation Based on Bottom-Up Parsing

Fig. 1 shows the rule generation procedure, which receives a string a1 · · ·an and a
set of rules from the top-level search procedure by global variable P , and returns
a set of rules of extended CNF that derives the string from the starting symbol
S. The procedure is nondeterministic in the sense that its subprocedure contains
choice points, and that end terminals are labeled either “Success” or “Failure.”
In practical computation, whenever a process terminates at “Failure” terminal,
the control backtracks to the previous choice points.

3.1 Parsing by Inverse Derivation and Rule Generation

The rule generation procedure includes parsing algorithm for parsing an input
string a1 · · · an using the rules in the set P . If the parsing does not succeed, the
bridging process generates rules in extended CNF, which bridge any lacking parts
of the incomplete derivation tree. We call the parsing method inverse derivation,
since the production rules are inversely applied to the input strings in the parsing
process. Experimental results show that the parsing time is almost equivalent to
that of CYK algorithm for ambiguous, complex grammars, but faster for simpler
grammars.

In the procedure, the input string a1a2 · · ·an is represented by a set {a1(0, 1),
a2(1, 2), · · · , an(n−1, n)} of terms, and the resulting derivation tree by a set
D of terms of the form Q(i, j), each of which represents that the set of rules
derives ai · · ·aj from Q. For the ambiguity check, each time a new term Q(i, j)
is generated, this term is tested whether it has been generated before.

Subprocedure Bridge(A, i, k) generates additional rules that bridge lacking
parts in the incomplete derivation tree represented by the set of terms in D. It
consists of nondeterministically chosen seven operations. In operations 5 and 6,
nonterminal symbols R and Q are also nondeterministically chosen from either

Incremental Learning of Context Free Grammars 75

Procedure RuleGeneration(a1a2 · · · an : string, K : integer) (Comment: K is
a limit of the number of rules. Global variable P holds a set of rules.)

Step 1 (Initialize variables.)
D ← ∅. (D is a set of terms of the form β(i, j).)
k ← |P |. (k holds the initial number of rules in P .)

Step 2: iParsing by inverse derivationj
For each i, 1 ≤ i ≤ n, call Derive(ai, i − 1, i) in order.
If S(0, n) ∈ D then terminate (Success). Otherwise, go to Step 3.

Step 3: (Bridging rule generation)
If |P | ≥ K and |P | − k ≥ Rmax then terminate (Failure). (Rmax is a constant
limit for the number of rules generated for one sample.)
Call procedure Bridge(S, 0, n). (where, S is the starting symbol.)
Terminate (Success). (Return the set P of rules).

Procedure Derive(β : symbol, i, j :integer)
1. Add β(j, k) to D. If A → β ∈ P then add also A(j, k) to D.

In the case of synthesizing an unambiguous grammar, whenever ambiguity
is detected, terminate (Failure).

2. If A → αβ ∈ P and α(i, j) ∈ D then add A(i, k) to D, and call
Derive(A, i, j).

Procedure Bridge(A : nonterminal symbol, i, k : integer)
Nondetermistically chose one of the following operations.
1. If β(i, k) ∈ D, add rule A → β to P .
2. If β(i, j) ∈ D and γ(j, k) ∈ D, add rule A → βγ to P .
3. If A → Q ∈ P , call Bridge(Q, i, k).
4. If A → QR ∈ P and Q(i, j) ∈ D (or R(j, k) ∈ D), call Bridge(R, i, k)ior

Bridge(Q, i, j), respectively).
5. If Q(i, j) ∈ D (or R(j, k) ∈ D), add rule A → QR to P and call

Bridge(R, j, k) (or Bridge(Q, i, j), respectivelyj.
6. For each j, i + 2 ≤ j ≤ k − 2, if A → QR ∈ P , call Bridge(Q, i, j) and call

Bridge(R, j, k).
7. For each j, i+2 ≤ j ≤ k−2, add rule A → QR to P and call Bridge(Q, i, j)

and Bridge(R,j, k).

Fig. 1. Procedure for Rule Generation by Bridging

previously used symbols or new symbols. The method of this determination is
related to the restrictions on using nonterminal symbols discussed in Section 5.1.

3.2 Generating CNF Rules

The rule generation procedure produces mainly revised CNF rules, and does
not generate the rules of the form A → a other than S → a with the start-
ing symbol S. This is a problem for learning grammars for natural languages,
since grammars with a large number of terminal symbols need a large num-
ber of revised CNF rules. To extend the procedure to synthesize CNF rules,
we change rule generation operations (2) and (5) of Bridge in Figs. 1 and 2 as
follows.

76 K. Nakamura

(1) Generate A → Q.

ai · · · ak
�

���
��

��

�

Q(i, k)

A(i, k)

(2) Generate A → βγ.

ai · · · aj−1aj · · · ak
�

���
��

�

�
��

�

�

�
��

�
���

�

β(i, j) γ(j, k)

A(i, k)

(3) If A → Q ∈ P , gen-
erate rules below Q(i, k).

ai · · · ak

�

�
���

�
���

�

�

Q(i, k)

A(i, k)

(4) If A → βR ∈ P , gener-
ate the rules below R(j, k).

ai · · · aj−1aj · · · ak
�

���
��

�
��

�
����

�
��

�
��

�

�

β(i, j) R(j, k)

A(i, k)

(5) Generate A → βR and
the rules below R(j, k).

a1 · · · aj−1aj · · · an
�

���
��

�

�
��

�
��

�

�
��

�
���

�

β(i, j) R(j, k)

A(i, k)

(6) If A → QR ∈ P , gener-
ate the rules below Q(i, j)
and R(j, k).

a1 · · · aj−1aj · · · an

�
��

�
���

�
���

�
���

�

�
��

�
��

�

�

Q(i, j) R(j, k)

A(i, k)

Fig. 2. An Illustration of Rule Generation by Bridging Operations

1. Instead of the rule A → b c, generate three rules A → BC, B → b, and
C → c.

2. Instead of the rule A→ b C (or A→ B c), generate two rules A→ BC and
B → b (or A→ BC and C → c, respectively).

Nonterminal symbols B and C are chosen from either previously used symbols
or from new symbols as in the rule generation procedure.

4 Search for Rule Sets

Synapse has inputs of ordered sets SP and SN of positive and negative sample
strings, respectively, and a set P0 of initial rules for incremental learning of the
grammars. The system searches for any set P of rules with P0 ⊆ P such that all
the strings in SP are derived from P but no string in SN is derived from P . We
use the following two search strategies for rule sets.

4.1 Global Search

Fig. 3 shows the top-level procedure for global search. The system controls the
search by iterative deepening on the number of rules to be generated. First, the
number of initial rules is assigned to the limit K of the number of rules. When
the system fails to generate sufficient rules to parse the samples within this limit,
it increases the limit by one and iterates the search. By this control, it is assured
that the procedure finds a grammar with the minimum number of rules at the
expense that the system repeats the same search each time the limit is increased.

Incremental Learning of Context Free Grammars 77

Procedure GlobalSearch(SP , SN : ordered set of rules, P0 : set of rules)
(SP and SN are sets of positive and negative sample strings, respectively, and
P0 is a set of optional initial rules.)

Step 1 (Initialize variables.)
P ← P0 (P is a global variable holding the set of rules).
K ← |P0| (the limit of the number of rules for iterrative depening).

Step 2: For each w ∈ SP , iterate the following operations 1 and 2.
1. Call RuleGeneration(w, K).
2. For each v ∈ SN , test whether P derives v from S by parsing algorithm. If

there is a string v derived from P , then terminate (Failure).
If no set of rules is obtained, then add 1 to K and iterate Step 2.

Step 3: Output the result P , and terminate (Success).
For finding multiple solutions, backtrack to the previous choice point.

Fig. 3. Top-Level Procedure for Global Search

It is obvious that the combination of the rule generation procedure and the
global (or serial) search has correctness in the sense that every output rule set
derives all positive sample strings, and none of negative samples. It is shown in
[9] that the bridging rule generation also has the “completeness” for finding the
minimum sets of rules in revised CNF for any given samples and sets of initial
rules. This property does not hold for synthesizing grammars in extended CNF,
because the rule generation procedure is restricted to produce rules of the form
A→ β.

4.2 Serial Search

Fig. 3 shows the top-level procedure for serial search, in which the system gen-
erates additional rules for each positive sample by iterative deepening. After the
system finds a rule set satisfying a positive sample and no negative samples, the
process does not backtrack to redoing the search on the previous samples.

We can represent two search strategies by a search tree for a sequence
w1, w2, w3, · · · of positive samples such that:

1. The root node is labeled the initial rule set.
2. Each node at depth j is labeled a rule set R such that R is generated for

strings w1, w2, · · · , wj , and hence R derives all these positive samples but no
negative sample.

The global search scans the whole search tree to find the minimum set of rules by
iterative deepening with the size of the set. The serial search finds the route in
the search tree such that each branch of the route corresponds to the minimum
increment of the number of rules. The cost of the serial search is the sum of costs
of partial searches for finding the minimum rule set for each positive sample. In
most cases, the computation time is much less than that by global search.

There are cases where the serial search process can find no rule set for a
positive sample. This occurs when the process has generated a rule with the

78 K. Nakamura

Procedure SerialSearch(SP , SN : ordered set of rules, P0 : set of rules)
(SP and SN are sets of positive and negative sample strings, respectively, and
P0 is a set of optional initial rules.)

Step 1: (Initialize variables.)
P ← P0 (P is a global variable holding the set of rules).
K ← |P | (a limit of the number of rules generated for one sample).

Step 2: iSearch for a rule set.j
For each string w ∈ SP , iterate the following operations 1and 2. If no set of
rules is obtained, then add 1 to K and iterate the operations.
1. Call P ← RuleGeneration(w,K).
2. For each v ∈ SN , test whether v is derived by P by parsing algorithm. If

there is a string v derived from P , then terminate (Failure).
Step 3: Output the result P , and terminate (Success).

For finding multiple solutions, backtrack to the previous choice point.

Fig. 4. Top-Level Procedure for Serial Search

starting symbol S in its right hand side, and every generated rule set having this
rule derives a negative sample. Therefore, we inhibit to generate any rule of the
form either X → SY or X → Y S in serial search, so that all the rules generated
for a new positive sample can be independent from the rules for the previous
samples. Note that this restriction on the form of rule sets, non-recursion of the
starting symbol, does not affect generality for deriving CFLs.

5 Restriction on the Form of Rules or on Rule Sets

This section presents methods of finding the semi-optimum rule sets to reduce
synthesis time. Each method considerably reduces synthesis time and slightly
increases the number of rules from the minimum rule set search for most cases
as shown in experimental results in the next section.

5.1 Rules with Non-minimum Nonterminal Symbols

For finding the minimum rule sets, it is necessary to minimize the nonterminal
symbols that are included in the rules by operations 5, 6, and 7 in rule generation
procedure. For searching the minimum rule set, the system tests whether it can
use any existing nonterminal symbol before adding a new nonterminal symbol.
The generation of rules with non-minimum nonterminal symbols omits this test
and simply adds new symbols to the set of nonterminal symbols.

5.2 Restriction on the Form of Rules

There are cases where we improve the efficiency of the rule generation by re-
stricting the forms of rules. The user can restrict the forms of rules and rule sets
to be generated from the following list.

Incremental Learning of Context Free Grammars 79

Indirect Recursion Rules are not of the form X → Xγ or X → βX .
Invertible The rule set does not contain two rules of the forms X → βγ and

Y → βγ with X �= Y , respectively.
Reset Free The rule set does not contain two rules of the forms either A→ Xγ

and A→ Y γ or A→ βX and A→ βY with X �= Y .

A rule set is reversible, if it is invertible and reset free. It is not difficult to prove
that extended CNF with indirect recursion is a normal form. It is proved in [12]
that reversible extended CNF is a normal form.

6 Synapse System and Performance Results

This section describes the practical system and shows experimental results ob-
tained by Synapse Version 3, written in Prolog. We use a Xeon processor with
3.6 GHz clock and SWI-Prolog for Linux.

We check the correctness and ambiguity of the synthesized minimum rule sets
by hand. For the other synthesized grammars, we only tested their correctness
and ambiguity for a large number of samples. We use the number GR of all
generated rules as an index of the size of the search tree, which does not di-
rectly depend on the number of samples and the processor environment as the
computation time.

6.1 Using Synapse

We outline how to use Synapse for describing the real system as follows.

1. Input positive and negative samples and optional initial rules. For efficient
synthesis, the positive samples are ordered by their lengths. The initial rules
are either those of other grammars for incremental learning or simple sup-
plement rules.

2. Select the form of rules to be generated from: revised CNF, extended CNF,
and Chomsky normal form (CNF).

3. Set or select the following parameters.
(a) An ambiguous grammar or an unambiguous grammar to be synthesized.
(b) Select search strategy: global search or serial search.
(c) Restriction of the forms of rules from the list in Section 5.2.

4. Start synthesis. Each time the system finds a new grammar, it outputs the
rule set. The user can find another solution by redoing the search process.

Example: To learn a CFG for the set of strings over {a, b}+ not of the form ww,
we give Synapse the following samples.

Positive : a, b, ab, ba, aaa, aab, aba, baa, bab, abb, bba, bbb, aaab, aaba, aabb, abaa,
bbaa, abba, baba, bbba, aaaaa, · · · .

Negative : aa, bb, aaaa, abab, baba, bbbb, aaaaaa, aabaab, abaaba, abbabb, baabaa,
babbab, bbabba, bbbbbb, · · · .

80 K. Nakamura

Global Search Serial Search

Fig. 5. Relations between the Sizes of Rule Sets and the Number of Positive Samples
for Language (e) (#NS: the Number of Negative Samples)

By choosing CNF, an ambiguous grammar, all the restrictions on the form of
rules and global search, Synapse outputs a grammar in CNF rules in Tables
1 (e) with 12 rules in approximately12 hours, after generating 1.4 × 107 rules
(GR = 1.4 × 107) in the search. At present, we have not obtained any reliable
grammar for this language only from samples by serial search. If we give simple
initial rules C → a, D → b, E → a|b to Synapse, it synthesizes the same rule set
by global search in much shorter time. The system synthesizes a rule set with
9 rules in 7 second (GR = 169) by serial search. Fig. 5 shows that the relation

Table 1. Grammars Synthesized by Global Search

Language Set of Rules

(a) A S → CD | SS, C → a | CS, D → b

balanced parentheses U S → SE | CD, C → a | CS, D → b, E → CD

(b) palindromes
{w | w = wR} A

U
S → a | b | aa | bb |aP | bQ, P → Sa, Q → Sb

(c) regular expression A
U

S → a | b | ε | ∅ | (P
P → SQ, Q → ∗) | + R | · R | S)

(d) twice as many a’s as b’s: A S → aP | Pa | PR | SS,
P → ab | ba | aQ | bR, Q → Sb, R → Sa,

{w | #a(w) = 2#b(w)} U S → CP |DQ |PC |QT, C → a | RD, D → b,
P → CD | TC, Q → CC, R → CQ, T → DS

(e) not of the form ww:
{ww|w ∈ {a, b}+} A

S → CD | DC | FE | GE, C → a | FE,
D → b | GE, E → a | b, F → EC, G → ED

(f)
{aibjck | i = j or j = k} A

S → aP | aQ, P → bc | Pc | Uc,
Q → aQ | aR | bT, R → bc | bT,
T → Rc, U → V b, V → ab | aU

A: ambiguous grammar in CNF. U: unambiguous grammar in CNF.
wR: the reversal of w. #x(w): the number of x’s in w.

Incremental Learning of Context Free Grammars 81

Table 2. The Number of Rules (R), Computation Time in Second and the Numbers
of All Generated Rules (GR) for Various Synthesis Methods for Languages in Table 1

Global Search Serial Search
Minimum set Non-min. NT Restricted Restricted

R Time GR R Time GR R Time GR R Time GR

(a) A 4 0.07 32 4 0.05 13 5 0.16 47 7 0.05 16
U 6 2.86 847 6 1.09 160 6 0.60 111 8 1.7 50

(b) A 8 0.18 247 8 0.15 168 8 0.06 57 9 0.03 15
U 8 0.19 247 8 0.13 168 8 0.07 57 8 0.08 36

(c) A 10 210 2 × 104 10 3.5 417 10 3.24 368 14 0.24 19
U 10 210 2 × 104 10 3.7 417 10 3.25 368 14 0.24 19

(d) A 10 2 × 105 5 × 106 10 2200 7 × 104 10 619 2 × 104 15 0.38 15
U* 10 3 × 104 5 × 105 10 1020 1 × 104 10 955 1 × 104 11 19 244

(e) A* 8 1 × 104 9 × 105 8 2470 2 × 105 8 440 4 × 104 9 6.8 169
(f) A – – – – – – 14 7 × 104 1 × 107 27 27 3 × 105

Minimum set: Search for rule sets with the minimum numbers of nonterminal
symbols and without restrictions on the forms of rules.

Non-min. NT: No restriction on the number of nonterminal symbols.
Restricted: Restrictions on the forms of rules and no restriction on the number of

nonterminal symbols.
(d)U* Initial rules C → a, D → b are given (excluded from R).
(e)A* The following initial rules are given: C → a,D → b, E → a | b.

between sizes of rule sets and the numbers of positive samples that are covered
by the rule sets in learning this language. These plots suggest that approximately
16 positive samples and 32 or 8 negative samples are sufficient for obtaining this
grammar by global search and serial search, respectively.

6.2 Performance Results

Tables 1 shows grammars synthesized by Synapse, and Table 2 the number
of rules, computation time, and the number GR of generated rules for each
of the generated grammars. Grammars (b), (c) and (e) are in CNF and the
other grammars are in extended CNF. These grammars are solutions to exercise
problems in the textbook by Hopcroft & Ullman [4]. Each of the grammars is the
first result among multiple results. In global search, all the grammars are found
with Rmax = 2, where parameter Rmax is the limit of generated rules for one
positive sample. By assigning this parameter, computation time and the value
GR can be reduced by a factor of 1/3 to 1/4 as shown in [8].

We summarize the experimental results as follows:

– Both the synthesis time and the number GR by serial search are 10 to
104 times faster than those by global search. The rule sets obtained by

82 K. Nakamura

serial search is generally one to three times larger than those by global
search.

– By restricting the forms of rule sets, we can generally reduce computation
time by a factor of 1/10 in both global and serial search. There are a few
cases that the resulting rule sets have a few additional rules and both the
computation time and the numbers GR increase as in (a) A.

– Compared with inductive CYK algorithm[8], the numberGR by bridging rule
generation is not specifically different from those by inductive CYK algorithm.
Synthesis by bridging, however, is generally faster than that by inductive CYK
algorithm that needs to repeat parsing in rule generation.

7 Concluding Remarks

In this paper, we described some novel methods and extensions for inferring
CFG implemented in Synapse system, and showed some experimental results.
The most important improvement from the previous system [8] is that more
complex grammars are learned in shorter time. As a result, Synapse solved all
the excise problems in the textbook by Hopcroft and Ullman [4]: the previous
version could not synthesize an unambiguous CFG for languages (d) and an
ambiguous CFG for (e).

The methods in the new version, including serial search and restriction on
the form of rules, enable to find the semi-optimum rule sets. By this feature,
Synapse can synthesize several semi-optimum grammars much faster than the
previous version.

We are currently working on an extension of Synapse to synthesize definite
clause grammars (DCGs), which are extended CFG represented by logic pro-
grams [2]. In DCG, nonterminal symbols can be extended to include terms with
parameters of the form A(P) or A(P1, P2), where each of P, P1, P2 is a constant
or a variable. Since we represent derivation trees by terms β(i, j), which are of
the same form in DCG, we can easily extend the rule generation for CNF to that
for extended DCG rules with additional arguments.

Among future problems, the most important one is to analyze theoretical
limitations, effectiveness and power of serial search. Another important subject
is to apply our approaches to learning rules in functional logic programs and to
syntactic pattern recognition based on synthesize the DCG rules.

Acknowledgements

The author would like to thank Akemi Hoshina, Yuudai Sugita, Keita Imada
and Tomohiro Yamada for their help in writing and testing Synapse system.
This work is partially supported by Research Institute for Technology of Tokyo
Denki University, Q04J-08 and Q06J-06, and by the Ministry of Education,
Science, Sports and Culture, Grant-in-Aid for Scientific Research, 16500090,
2004.

Incremental Learning of Context Free Grammars 83

References

1. D. Angluin and M. Kharitonov, When and Won’t Membership Queries Help?, Jour.
Computers and System Sciences 50, pp. 336-355, 1995.

2. I. Bratko, PROLOG Programming for Artificial Intelligence, Third Edition, Addi-
son Wesley, 2000.

3. C. de la Higuera and J. Oncina, Inferring Deterministic Linear Langauges, Com-
putational Learning Theory; 15th Annual Conference on Computational Learning
Theory (COLT 2002), LNCS 2375, Springer-Verlag, pp. 185-200, 2002.

4. J. E. Hopcroft, and J. E. Ullman, Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, 1979.

5. P. Langley and S. Stromsten, Learning Context-Free Grammars with a Simplicity
Bias, Machine Learning: ECML 2000, LNAI 1810, Springer-Verlag, pp. 220-228,
2000.

6. K. Nakamura and Y. Ishiwata, Synthesizing context free grammars from sam-
ple strings based on inductive CYK algorithm, Fifth International Colloquium on
Grammatical Inference (ICGI 2000), LNAI 1891, Springer-Verlag, pp. 186-195,
2000.

7. K. Nakamura, Incremental Learning of Context Free Grammars by Extended In-
ductive CYK Algorithm, Workshop on Learning Context Free Grammars, 2003.

8. K. Nakamura and M. Matsumoto, Incremental Learning of Context Free Grammars
Based on Bottom-up Parsing and Search, Pattern Recognition, 38, pp. 1384-1392,
2005.

9. K. Nakamura and A. Hoshina, Learning of Context Free Grammars by Parsing-
Based Rule Generation and Rule Set Search (in Japanese), Trans. of JSAI, Vol.
21, pp. 371-379, 2006.

10. S. H. Nienhuys-Cheng and R. de Wolf, Foundations of Inductive Logic Program-
ming, Springer, 1997.

11. L. Pitt and M. Warmuth, The Minimum Consistent DFA Problem Cannot be
Approximated within any Polynomial, Jour. of ACM 40, pp. 95-142, 1993.

12. Y. Sakakibara, Learning context-free grammars from positive structured examples,
Information and Computation 97, pp. 23- 60, 1992.

13. Y. Sakakibara, Recent advances of grammatical inference, Theoretical Computer
Science 185, pp. 15-45, 1997.

14. Y. Sakakibara, and H. Muramatsu, Learning of context-free grammars partially
structured examples, Fifth International Colloquium on Grammatical Inference
(ICGI 2000), LNAI 1891, Springer-Verlag, pp. 229-240, 2000.

15. T. Tanaka, Definite clause set grammars: A formalism for problem solving, J. Logic
Programming, Vol. 10, No. 1, pp. 1-17, 1991.

16. M. Vervoort, Emile 4.4.6 User Guide, Universiteit van Amsterdam, 2002.

Variational Bayesian Grammar Induction
for Natural Language

Kenichi Kurihara and Taisuke Sato

Tokyo Institute of Technology, Tokyo, Japan
{kurihara, sato}@mi.cs.titech.ac.jp

Abstract. This paper presents a new grammar induction algorithm for
probabilistic context-free grammars (PCFGs). There is an approach to
PCFG induction that is based on parameter estimation. Following this
approach, we apply the variational Bayes to PCFGs. The variational
Bayes (VB) is an approximation of Bayesian learning. It has been em-
pirically shown that VB is less likely to cause overfitting. Moreover, the
free energy of VB has been successfully used in model selection. Our
algorithm can be seen as a generalization of PCFG induction algorithms
proposed before. In the experiments, we empirically show that induced
grammars achieve better parsing results than those of other PCFG in-
duction algorithms. Based on the better parsing results, we give examples
of recursive grammatical structures found by the proposed algorithm.

1 Introduction

Grammar induction is one of the most challenging tasks in natural language
processing as Chomsky’s “the poverty of the stimulus” says. Nonetheless, appli-
cations have already been proposed. For example, van Zaanen [18] applied gram-
mar induction to build treebanks. Bockhorst and Craven [3] improved models of
RNA sequences using grammar induction.

There is one practical approach to induce context-free grammars in natu-
ral language processing, which exploits parameter estimation of probabilistic
context-free grammars (PCFGs) [13, 15, 4, 7]. Although this approach is not
optimal, the empirical results showed good performance, e.g. over 90 % brack-
eting accuracy on the Wall Street Journal [15, 7]. They also utilize bracketed
sentences. Brackets explicitly indicate the boundaries of constituents. One may
criticize using brackets because making brackets have been expensive in terms of
time and cost. However, unsupervised induction algorithms have been proposed
to annotate brackets [8, 9].

This paper presents a variational Bayesian PCFG induction algorithm.
Parameter-estimation-based induction has mainly two procedures. One is to es-
timate parameters, and the other is to choose a better grammatical structure
based on a criterion. In previous work, parameter estimation is done with the
Inside-Outside algorithm [2], which is an EM algorithm for PCFGs, and gram-
mars are chosen by an approximate Bayesian posterior probability [16, 4]. Our
algorithm can be seen as a Bayesian extension of parameter-estimation-based

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 84–96, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Variational Bayesian Grammar Induction for Natural Language 85

grammar induction. Moreover, our criterion to choose a grammar generalizes
the approximate Bayesian posterior.

We experimentally show that our algorithm achieves better parsing results
than other PCFG induction algorithms. One may be afraid that rule-based gram-
mars do not parse some sentences due to the lack of rules. We propose an en-
gineering approach to achieve 100% parsing coverage based on semi-supervised
clustering that mixes labeled and unlabeled data [19]. As the better parsing re-
sults supports that induced grammars are well-organized, we give the examples
of grammatically meaningful structures in induced grammars.

2 Parameter-Estimation-Based Grammar Induction

Since Lari and Young [11] empirically showed the possibility of statistical induc-
tion of PCFGs using the Inside-Outside algorithm [2], parameter-estimation-
based grammar induction has received a great deal of attention. Largely speak-
ing, there are two main issues. One is efficiency, and the other is a criterion to
choose a grammatical structure.

In terms of efficiency, Pereira and Schabes [13] extended the Inside-Outside
algorithm to take advantage of constituent bracketing information in a training
corpus. Brackets help the algorithm improve parameter estimation and efficiency.
While Pereira and Schabes [13] fixed the number of non-terminals, an incremen-
tal grammar induction algorithm has been proposed for more efficiency [7].

Grammar induction can be seen as a search problem whose search space is
possible grammars. From this viewpoint, a criterion to choose a grammatical
structure plays a critical role. Stolcke and Omohundro [16], Chen [4] use Bayesian
posterior probabilities as a criterion where the posterior is approximated by
Viterbi parses. This approximation is a special case of the variational Bayes.

Our algorithm exploits the variational Bayes. Therefore, our algorithm is a
Bayesian extension of an efficient algorithm proposed by Hogenhout and Mat-
sumoto [7] and the generalization of Bayesian induction studied by Stolcke and
Omohundro [16], Chen [4].

3 Variational Bayesian Learning

The variational Bayes (VB) [1, 6] has succeeded in many applications [12, 17].
It is empirically shown that VB is less likely to cause overfitting than the EM
algorithm, and the free energy calculated by VB can be exploited as a criterion
of model selection1.

1 The minimum description length (MDL) and Bayesian information criterion (BIC)
are also often used as criteria for model selection. However, they are not proper to
non-identifiable probabilistic models, s.t. hidden Markov models, maximum entropy
models, PCFGs, etc., due to their singular Fisher information matrices. Although
VB is still an approximation of true Bayesian learning, its free energy is free from
this problem.

86 K. Kurihara and T. Sato

Let X = (x1, ..., xN), Y = (y1, ..., yN) and θ be observed data, hidden vari-
ables and the set of parameters, respectively. VB estimates the variational pos-
terior distribution q(θ, Y) which approximates the true posterior distribution
p(θ, Y |X) whereas the EM algorithm conducts the point estimation of parame-
ters. The objective function of q(θ, Y) is free energy F , which is defined as an
upper bound of a negative log likelihood,

− log p(X) = − log
∑
Y

∫
dθ q(θ, Y)

p(X, θ, Y)
q(θ, Y)

≤ −
∑
Y

∫
dθ q(θ, Y) log

p(X, θ, Y)
q(θ, Y)

≡ F(X). (1)

It is easy to see that the difference between the free energy and the negative
log marginal likelihood2 is KL-divergence between the posterior q(θ, Y) and the
true posterior p(θ, Y |X),

F(X) + log p(X) = KL(q(θ, Y)||p(θ, Y |X)). (2)

Since minimizing the free energy leads to minimizing the distance between
q(θ, Y) and p(θ, Y |X), the optimal q(θ, Y) as an approximation of p(θ, Y |X)
is given at the minimum free energy.

Assuming a factorization, q(θ, Y) = q(θ)q(Y), we find the following equations
by taking variation of the free energy with respect to q(θ, Y) and setting to zero.

q(θ) ∝ exp
[
E[log p(X,Y,θ)]q(Y)

]
, (3)

q(Y) ∝ exp
[
E[log p(X,Y,θ)]q(θ)

]
, (4)

where E[f(x)]q(x) =
∫
dxf(x)q(x). The optimal q(θ, Y) is iteratively estimated

by updating q(θ) and q(Y) alternately. Note that if we give an constraints on,
q(θ) = δ(θ,θ∗) where θ∗ = arg maxθ exp

[
E[log p(X,Y,θ)]q(Y)

]
, the above algo-

rithm will be the EM algorithm. Therefore, the EM algorithm is a special case
of VB.

Next, we explain the important property of the free energy, capability of model
selection. Let’s assume that we have many models which can describe probabilis-
tic events. What we want to do here is to choose the most likely model. In the
Bayesian approach, people choose one which maximizes a marginal likelihood,
p(X). In VB, we choose one which minimizes the free energy, which is an upper
bound of the negative log marginal likelihood, Eqn.1.

4 Proposed Algorithm

4.1 Variational Bayes for PCFGs

In our previous work, we proposed a VB algorithm for PCFGs, and empiri-
cally showed that VB is less likely to cause overfitting than the Inside-Outside
2 When a probabilistic model gives event x with probability p(x|θ), the marginal

likelihood is p(x) =
∫

dθp(x|θ)p(θ).

Variational Bayesian Grammar Induction for Natural Language 87

algorithm[10]. In this section, we briefly explain the VB for PCFGs, then derive
the free energy as a criterion to search for a grammatical structure.

Let G = (VN , VT , R, S,θ) be a PCFG where VN , VT , R and θ are the sets
of non-terminals, terminals, derivation rules and parameters, respectively, and
S denotes the start symbol. Assuming the prior of parameters to be a product
of Dirichlet distributions, the learning algorithm estimates the hyperparameters
of the posterior. Let u = {ur|r ∈ R} be the hyperparameters of the prior. The
hyperparameters of the posterior are the converged values of u(k) (k = 0, 1, ...)
defined as,

u(0) = u (5)

u(k+1)
r = ur +

N∑
n=1

∑
r∈Φ(xn)

∏
r∈R

π(k)(r)c(r;r)∑
r′∈Φ(xn)

∏
r∈R

π(k)(r)c(r;r′) c(r; r) (6)

π(k)(A→ α) = exp

⎡⎣ψ(u(k)
A→α)− ψ

⎛⎝ ∑
α;A→α∈R

u
(k)
A→α

⎞⎠⎤⎦ , (7)

where Φ(xn) is the set of all the derivations of sentence xn, c(r; r) is the number
of occurrences of derivation rule r in derivation r and ψ(·) is the digamma
function3. The computational complexity of updating k is equal to that of one
iteration of the Inside-Outside algorithm, which is O(N maxn(|xn|)3) where |xn|
is the length of sentence xn.

As we discussed in section 3, the free energy can be a criterion for model
selection. Here, we derive the free energy of PCFGs as a criterion to choose a
grammar,

F(X, G) = −
N∑

n=1

log

⎡⎣ ∑
r∈Φ(xn)

∏
r∈R

π(r)c(r;r)

⎤⎦ +
∑

A∈VN

log
Γ
(∑

α;A→α∈R u∗
A→α

)
Γ
(∑

α;A→α∈R uA→α

)
−
∑
r∈R

log
Γ (u∗

r)
Γ (ur)

+
∑

A∈VN

∑
α;A→α∈R

(u∗
A→α − uA→α) log π(A → α), (8)

where ur and u∗r are the hyperparameters of the prior and the posterior of rule
r, respectively. Although the first term of Eqn.8 is the most expensive, it can be
computed efficiently by dynamic programming just as the Inside-Outside algo-
rithm. Therefore, the computational complexity of Eqn.8 is O(N maxn(|xn|)3).

Note that the free energy is reduced to the approximate posterior which Stol-
cke and Omohundro [16] and Chen [4] used, provided that q(θ) = δ(θ,θ∗) where
θ∗ = arg maxθ p(θ|X) , and the Viterbi approximation is taken. Therefore, their
approximate posterior is a special case of the free energy, Eqn.8.

In the following section, we will show three procedures to search for a more
likely grammar in the sense of this free energy.
3 The digamma function is defined as ψ(x) = ∂

∂x
log Γ (x).

88 K. Kurihara and T. Sato

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S→ A B
A→ A B
A→ a
B→ B B
B→ a

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
merging→

⎧⎨⎩
S→ A A
A→ A A
A→ a

⎫⎬⎭
⎧⎪⎪⎨⎪⎪⎩

S→ A B
A→ A B
A→ a
B→ a

⎫⎪⎪⎬⎪⎪⎭ splitting→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S → A1 B
S → A2 B
A1→ A1 B
A1→ A2 B
A1→ a
A2→ A1 B
A2→ A2 B
A2→ a
B → a

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Fig. 1. The examples of merging and splitting. The left figure is merging, and the right
is splitting.

4.2 Grammar Induction Algorithm

Grammar induction can be seen as a search problem whose search space is pos-
sible grammars. Several heuristics to search for a grammar have been proposed
[4, 7, 3].

Our grammar induction algorithm has three procedures to search for a better
grammar, which are merging non-terminals, splitting a non-terminal and deletion
of a derivation rule. Merging was studied in [16], and split was proposed in [7].
Every time applying one of these procedures, we calculate the free energy, then
we accept the modified grammar if the free energy is decreased.

Merging non-terminals generalizes a grammar, and Splitting a non-terminal
specializes a grammar. Figure.1 is an example. The left hand side figure shows
merging non-terminal A and B to A, and the right hand side shows splitting
non-terminal A into A1 and A2.

The number of pairs of non-terminals to be merged is 1
2 (|VN | − 1)|VN |. Since

it is not tractable to try all the pairs, we restrict the number of candidates to be
merged. The measure to choose candidates is the cosine between the parameter
vectors of two non-terminals,

cos(A,B) =
θ̂

T

Aθ̂B

||θ̂A|| ||θ̂B||
, (9)

where θ̂A is a parameter vector consisting of all available rules whose left hand
side is A. Letting θ(A→ α) be the parameter of rule A→ α, θ̂A becomes4

θ̂A = (θ̂(A→ α), θ̂(A→ β), ...)T (10)

θ̂(A→ α) =
{∫

dθ q(θ)θ(A→ α) if A→ α ∈ R
0 otherwise. (11)

4 To evaluate the cosine of any two non-terminals, the dimensionality of θ̂A must be the
same for any non-terminal A. Therefore, θ̂A consists of any possible rules in Chomsky
normal form regardless of their existence in R. Therefore, the dimensionality of θ̂A

is |VT | + |VN |2 for all A.

Variational Bayesian Grammar Induction for Natural Language 89

The larger cos(A,B) suggests that the roles of non-terminals A and B are closer.
We also restrict the number of candidates to be split based on #VN (·),

#VN (A) =
∑

α;A→α∈R

u∗A→α − uA→α. (12)

Since #VN (A) is the expected number of occurrences of non-terminal A in ob-
served sentences, non-terminal A which has large #VN (A) may have overloaded
syntactic roles.

We make a grammar compact by deleting redundant derivation rules. The
candidates to be deleted are chosen based on #R(·),

#R(r) = u∗r − ur. (13)

The less #R(r) is, the fewer derivation rule r is used.
The input of our algorithm is an initial grammar and hyperparameters of the

prior, u. Although they are arbitrary, in the experiments, we use initial grammar
G = (VN , VT , R, S) where VN = {S}, VT = {terminals in a training corpus} and
R = {S → SS} ∪ {S → a|a ∈ VT }.

Finally, we summarize our grammar induction algorithm in Fig.2. Csplit and
Cmerge in step 4 and 6 are the maximum number of trials of merging and split-
ting, respectively. Although the total computational complexity depends on the
number of iteration, the complexity in one iteration is equal toO(N maxn(|xn|)3)
as we see in section 4.1.

1. Input: an initial grammar and the hyperparameters, u, of the prior.
2. Estimate hyperparameters u∗ of posteriors.
3. Sort non-terminals in descending order of #VN (·).
4. for i in 1...Csplit

(a) Split the ith candidate.
(b) Estimate hyperparameters u∗ of posteriors.
(c) Delete derivation rules while the free energy decreases.
(d) If the free energy is smaller than that in step 4a, accept the grammar, and go

to step 3.
5. Sort pairs of non-terminals in descending order of their cosines.
6. for i in 1...Cmerge

(a) Merge the ith candidate.
(b) Estimate hyperparameters u∗ of posteriors.
(c) Delete derivation rules while the free energy decreases.
(d) If the free energy is smaller than that in step 6a, accept the grammar, and go

to step 3.
7. Output: an induced grammar.

Fig. 2. Grammar Induction Algorithm

90 K. Kurihara and T. Sato

5 Experiments: Parsing Results

We conducted parsing experiments. First, we compared our algorithm with
other grammar induction algorithms. We also conducted an experiment of semi-
supervised induction, that achieved 100% parsing coverage.

In every experiment, the Wall Street Journal (WSJ) in Penn Treebank is used
for training and test. Training and test corpora consist of part-of-speech (POS)
tag sequences. We fix the hyperparameter of the prior, ur, to 1.0 for all derivation
rule r ∈ R. This hyperparameter is known as an uninformative prior.

Since our algorithm belongs to Bayesian learning, the most likely parse, r∗,
is given by summing out parameters,

r∗ = arg max
r∈Φ(x)

=
∫
dθ p(r, x|θ)q(θ|u∗). (14)

Note that it is impossible to apply Viterbi-style parsing to Eqn.14. We therefore
exploit reranking [5]. First, 10 Viterbi parses with θ̂ are collected, then the most
likely derivation is chosen by calculating Eqn.14 of each derivation.

5.1 Comparison with Other Grammar Induction

We compared our algorithm with Schabes et al. [15] and Hogenhout and Mat-
sumoto [7]. We followed their experimental setting. The training and test corpora
are subsets of WSJ. The training corpus had 1,000 sentences of 0-15 words. Test
were done on different sentence length, 0-10, 0-15, 10-19 and 20-30 words. Each
test corpus had 250 sentences5. We conducted these experiments five times.

Table 1 compares the results. “Hogenhout & Matsumoto (15)” and “Hogen-
hout & Matsumoto (18)” are induced grammars which have 15 and 18 nonter-
minals, respectively. The results are taken from [7]. “Schabes et al.”, “Right
Linear” and “Treebank grammar” mean Schabes’s grammar induction, a sys-
tematic right linear branching except for the last punctuation and a grammar
extracted from tree labels in WSJ, respectively. These results are from Schabes
et al. [15]. Bracketing accuracy in Table 1 is the ration of predicted brackets
which is consistent with correct brackets [13].

As Table 1 shows, the proposed algorithm achieved the best score in every
test corpus. The parsing coverage of our method was over 99% (see Table 2). In-
duced grammars had average 22.4 non-terminals and 509.8 derivation rules. The
algorithm converged in less than one hour on Pentium 4 3.8 GHz (SuSE 10.0).

One possible reason why our parsing results were better than others might
be because the number of terminals in our induced grammars was larger than
5 Schabes et al. used 1042 sentences of 0-15 words for training, and 84 sentences for

test. Hogenhout and Matsumoto used 1000 sentences for training and 100 sentences
for test. Hogenhout and Matsumoto used 31 POS tags after merging some rare POS
tags for larger parsing coverage while Penn Treebank has 46 POS tags. In experiment
“Hogenhout & Matsumoto (15)” and “Hogenhout & Matsumoto (18)” in Table 1,
the training corpus contained sentences of 0-15 and 0-20 words, respectively.

Variational Bayesian Grammar Induction for Natural Language 91

Table 1. Comparison of bracketing accuracies with other methods on various sentence
lengths

bracketing accuracy
#words 0-10 0-15 10-19 20-30
proposed algorithm 98.1 95.9 93.7 89.4
Hogenhout & Matsumoto (15) 92.0 91.7 83.8 72.0
Hogenhout & Matsumoto (18) 94.1 91.5 86.9 81.8
Schabes et al. 94.4 90.2 82.5 71.5
Right Linear 76 70 63 50
Treebank grammar 46 31 25 N/A

that of others. The larger number of non-terminals could capture language more
appropriately. Hogenhout and Matsumoto [7] fixed the number of non-terminals
to 15 or 18. Although our algorithm stops when the free energy converged, their
algorithm does not have any criteria to stop. Moreover, it is straightforward to
combine our algorithm with search algorithms, e.g. beam search, but it is unclear
for their algorithm due to lack of the criteria of model selection. Although we did
not compare our free energy with an approximate Bayesian posterior [16, 4], it
is well known that the free energy of VB is a tighter bound to the true posterior
than their approximate posterior.

5.2 Semi-supervised Induction as Robust Grammar Induction

In machine learning, semi-supervised learning has received considerable atten-
tion. Semi-supervised clustering [19] in grammar induction is to combine a brack-
eted training corpus and an unbracketed test corpus. Since the proposed algo-
rithm accepts unbracketed sentences also, such a combined corpus leads to 100%
parsing coverage on a test corpus even when a training corpus does not have some
terminals which occur in a test corpus. We conducted an experiment to show
how semi-supervised induction works. We used the same training and test cor-
pora as Section 5.1. Our semi-supervised induction has two steps. First, we run
the proposed algorithm only on a training corpus, then we add the following
derivation rules to make the induced grammar redundant,

{S → SS} ∪ {S → a|a ∈ {terminals in a test corpus}}
where S is a start symbol. After that, we run the algorithm on training and
test corpora. Table 2 shows the results. “failure” is the number of sentences
which were not parsed by the induced grammar. In semi-supervised part, digits
in parentheses show the results of the failed sentences in bracketed induction6.
The digits in parentheses are comparable with the average of all. This demon-
strates grammars learned by semi-supervised induction work well also on sen-
tences failed before. Although semi-supervised induction does not improve zero
6 The corpus of length 10-19 does not have parentheses because the coverage was

originally 100%.

92 K. Kurihara and T. Sato

Table 2. Grammar Induction and Semi-Supervised Induction

#words 0-10 0-15 10-19 20-30
proposed algorithm 0-CB 85.6 66.6 45.6 12.1

BA 98.1 95.9 93.7 89.4
coverage 99.8 99.4 100.0 99.6
failure 3/1250 8/1250 0/1250 5/1250

proposed algorithm 0-CB 86.0 65.9 44.0 11.4
+ semi-supervised (100) (87.5) N/A (0.0)

BA 98.2 95.8 93.6 89.6
(100) (98.1) N/A (79.5)

coverage 100.0 100.0 100.0 100.0
failure 0/1250 0/1250 0/1250 0/1250

crossing brackets (0-CB)7 and bracketing accuracy (BA), this would be because
failed sentences are few, i.e. 3, 8, 0 and 5 sentences in 0-10, 0-15, 10-19 and 20-30
words test corpora, respectively.

We have proposed an approach to combine training and test corpora. However,
this might be untractable when test corpora are very large. On-line learning is
another approach. It is straightforward to apply on-line learning based on the
variational Bayes [14]. This would turn the proposed algorithm into an efficient
incremental semi-supervised induction algorithm.

6 Discussion: Induced Grammars

So far, we have shown the parsing results of our grammar induction algorithm.
However, we believe strongly that grammar induction is not only for obtaining
a parser but also can be a tool for grammatical structure understanding.

Fig.3 is an illustrative example of a parse tree predicted by an induced gram-
mar. Fig.4 lists a subset of the induced grammar used in Fig.3. In this example,
non-terminal 15 derives “DT JJ∗ NN” where DT is determiner, JJ is adjective
and NN is noun. Therefore, non-terminal 15 can be interpreted as a noun phrase
(NP). We can also find that start symbol S derives the following grammatical
structure (see Appendix A),

S⇒(PRP|DT JJ∗ NN)︸ ︷︷ ︸
subject

(VBD|VBZ|VBP)︸ ︷︷ ︸
verb

DT JJ∗ NN︸ ︷︷ ︸
noun-phrase

IN DT JJ∗ NN︸ ︷︷ ︸
noun-phrase

.

where (·|·), ∗, ? are the usual notations of regular expressions, PRP is personal
pronoun, VBD is verb (past tense), VBZ is verb (third person singular present),
VBP is verb (non-third person singular present) and IN is preposition or subor-
dinating conjunction. Clearly, this structure captures typical English sentences.

7 0-CB is the ratio of sentences whose brackets are completely consistent with correct
brackets.

Variational Bayesian Grammar Induction for Natural Language 93

NP-SBJ NP

PP-CLR

VP

S

12 6 4 0 3 11

I (PRP) believe (VBP) in (IN) the (DT) system (NN) . (.)

15
9

5
7

S

Treebank

Induced Grammar

Fig. 3. A parse tree from Treebank and a parse tree predicted by an induced grammar

left hand side θ̂ derivation rule
non-terminal

15 0.28 15 → 0 3
.
.
.

0 0.62 0 → DT
0.11 0 → 0 10

.

.

.

10 0.47 10 → JJ
.
.
.

3 0.81 3 → NN
.
.
.

Fig. 4. The induced grammar in Fig.3. Using shown derivation rules, non-terminal 15
derives “DT JJ∗ NN”, where DT is determiner, JJ is adjective and NN is noun.

The above discussion is based on selected examples, and nonsense structures
can also be found due to redundant derivation rules. Actually, it is not trivial
how to find meaningful grammatical structures. But, the parsing results support
that induced grammars have meaningful structures.

7 Conclusion

We have proposed a variational Bayesian PCFG induction algorithm in the con-
text of parameter-estimation-based grammar induction. Experimental results
showed that the proposed algorithm induced more well-structured grammars in
terms of parsing results than other PCFG induction algorithms. We also showed
that induced PCFGs in fact had meaningful recursive structures.

94 K. Kurihara and T. Sato

As future work, we may need to exploit a dependency model to improve
parsing results. Since our algorithm is greedy, we might combine our algorithm
with a search algorithm such as beam search. Although we constrained ourselves
to PCFGs, we should explore other types of grammars as well. Moreover, how to
find meaningful structures from induced grammars remains to be investigated.

Acknowledgments

Special thanks to Dr. Kameya for helpful comments. This research was funded
by the 21st Century COE Program “Framework for Systematization and Appli-
cation of Large-scale Knowledge Resources.”

Bibliography

[1] Hagai Attias. A variational Bayesian framework for graphical models. In Advances
in Neural Information Processing Systems, volume 12, 2000.

[2] J. K. Baker. Trainable grammars for speech recognition. In D. H. Klatt and
J. J. Wolf, editors, Speech Communication Papers for the 97th Meeting of the
Acoustical Society of America, pages 547–550, 1979.

[3] Joseph Bockhorst and Mark Craven. Refining the structure of a stochastic context-
free grammar. In Proceedings of the 17th International Joint Conference on Ar-
tificial Intelligence, 2001.

[4] Stanley F. Chen. Bayesian grammar induction for language modeling. In Meeting
of the Association for Computational Linguistics, pages 228–235, 1995.

[5] Michael Collins. Discriminative reranking for natural language parsing. In Proc.
17th International Conf. on Machine Learning, pages 175–182, 2000.

[6] Zoubin Ghahramani and Matthew J. Beal. Variational inference for Bayesian mix-
tures of factor analysers. In Advances in Neural Information Processing Systems,
volume 12, 2000.

[7] Wide R. Hogenhout and Yuji Matsumoto. A fast method for statistical grammar
induction. Natural Language Engineering, 4(3):191–209, 1998.

[8] Dan Klein and Christopher D. Manning. A generative constituent-context model
for improved grammar induction. In Proceedings of the 40th Annual Meeting of
the ACL, 2002.

[9] Dan Klein and Christopher D. Manning. Corpus-based induction of syntactic
structure: Models of dependency and constituency. In Proceedings of the 42nd
Annual Meeting of the ACL, 2004.

[10] Kenichi Kurihara and Taisuke Sato. An application of the variational Bayesian
approach to probabilistic context-free grammars, 2004. IJCNLP-04 Workshop
beyond shallow analyses.

[11] Karim Lari and Steve Young. The estimation of stochastic context-free grammars
using the inside-outside algorithm. Computer Speech and Language, 4:35–56, 1990.

[12] David J.C. MacKay. em ensemble learning for hidden markov models. Technical
report, 1997.

[13] Fernando C. N. Pereira and Yves Schabes. Inside-outside reestimation from par-
tially bracketed corpora. In Meeting of the Association for Computational Lin-
guistics, pages 128–135, 1992.

Variational Bayesian Grammar Induction for Natural Language 95

[14] Masaaki Sato. Online model selection based on the variational bayes. In Neural
Computation, volume 13, pages 1649–1681, 2001.

[15] Yves Schabes, Michal Roth, and Randy Osborne. Parsing the wall street journal
with the inside-outside algorithm. In ACL, pages 341–347, 1993.

[16] Andreas Stolcke and Stephen Omohundro. Inducing probabilistic grammars by
Bayesian model merging. In International Conference on Grammatical Inference,
1994.

[17] Naonori Ueda and Zoubin Ghahramani. Bayesian model search for mixture models
based on optimizing variational bounds. Neural Networks, 15(10):1223–1241, 2002.

[18] Menno van Zaanen. Abl: Alighment-based learning. In COLING, volume 18,
pages 961–967, 2000.

[19] Kiri Wagsta, Claire Cardie, Seth Rogers, and Stefan Schroedl. Constrained k-
means clustering with background knowledge. In Proceedings of 18th International
Conference on Machine Learning, pages 577–584, 2001.

Appendix

A A Grammatical Structure in an Induced Grammar

Fig.5 lists a subset of the induced grammar used in Fig.3. These derivation rules
leads a grammatical structure,

S⇒(PRP|DT JJ∗ NN)︸ ︷︷ ︸
subject

(VBD|VBZ|VBP)︸ ︷︷ ︸
verb

DT JJ∗ NN︸ ︷︷ ︸
noun-phrase

IN DT JJ∗ NN︸ ︷︷ ︸
noun-phrase

.

θ̂ derivation rule
0.80 S → 7 11
0.64 7 → 12 5
0.23 12 → PRP
0.19 12 → 0 3
0.62 0 → DT
0.11 0 → 0 10
0.47 10 → JJ
0.81 3 → NN
0.79 5 → 6 9
0.30 6 → VBD
0.26 6 → VBZ
0.15 6 → VBP
0.26 9 → 8 1
0.24 8 → 0 3
0.48 1 → 4 15
0.55 4 → IN
0.28 15 → 0 3
0.85 11 → .

Fig. 5. A subset of the induced grammar in Fig.3

96 K. Kurihara and T. Sato

where PRP is personal noun, DT is determiner, JJ is adjective, NN is noun,
VBD is verb (past tense), VBZ is verb (third person singular present), VBP
is (non-third person singular present) and IN is preposition or subordinating
conjunction. “DT JJ∗ NN” can be interpreted as a noun phrase. Therefore,
(PRP|DT JJ∗ NN) is also a noun phrase. In this example, (PRP|DT JJ∗ NN)
makes the subject of the sentence.

Stochastic Analysis of Lexical and Semantic
Enhanced Structural Language Model

Shaojun Wang1,2, Shaomin Wang3, Li Cheng4,
Russell Greiner2, and Dale Schuurmans2

1 Wright State University, USA
2 University of Alberta, Canada

3 Oracle, USA
4 National ICT, Australia

Abstract. In this paper, we present a directed Markov random field
model that integrates trigram models, structural language models (SLM)
and probabilistic latent semantic analysis (PLSA) for the purpose of sta-
tistical language modeling. The SLM is essentially a generalization of
shift-reduce probabilistic push-down automata thus more complex and
powerful than probabilistic context free grammars (PCFGs). The added
context-sensitiveness due to trigrams and PLSAs and violation of tree
structure in the topology of the underlying random field model make the
inference and parameter estimation problems plausibly intractable, how-
ever the analysis of the behavior of the lexical and semantic enhanced
structural language model leads to a generalized inside-outside algorithm
and thus to rigorous exact EM type re-estimation of the composite lan-
guage model parameters.

Keywords: Language modeling, structural language model, trigram,
probabilistic latent semantic analysis.

1 Introduction

Natural language perhaps is one of the most intriguing and complex stochas-
tic processes (Chomsky 1956, Jelinek 1998). It was first studied by Shannon
(1948) as a Markov chain model when he introduced information theory to il-
lustrate many of its features. Since then various kinds of generative probabilistic
language models have been proposed to capture different aspects of natural lan-
guage regularity. The dominant motivation for language modeling has tradition-
ally come from the field of speech recognition (Jelinek 1998), however statistical
language models have recently become more widely used in many other appli-
cation areas, such as information retrieval, machine translation, optical charac-
ter recognition, spelling correction, document classification, and bioinformatics.
The most recent advance is the work by Wang et al. (2005), where they have
proposed a first generative probabilistic model of natural language, a directed
Markov random field model, that combines trigram models, PCFGs and PLSAs
(Hofmann 2001) and simultaneously exploits the relevant lexical, syntactic and

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 97–111, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

98 S. Wang et al.

semantic information of natural language with tractable parameter estimation
algorithm.

Jelinek and Chelba (Chelba and Jelinek 2000, Jelinek 2004) have developed a
structural language model that exploits syntactic structure incrementally while
traversing the sentence from left to right, and used it to extract meaningful infor-
mation from the word history, thus enabling the use of sentence level long range
dependencies. SLM is essentially a generalization of shift-reduce probabilistic
push-down automata and is non-context free (Jelinek 2004). A thorough com-
parative study between this model with PCFGs has been presented in (Abney
et al. 1999). The probabilistic dependency structure in SLM is more complex
than that in a PCFG. When SLM was originally introduced (Chelba and Je-
linek 2000), it operated with the help of a set of stacks containing partial parses
from which less probable sub-parse trees are discarded. The parameters were
trained by a procedure based on n-best final parses. It has been shown that the
use of SLM results in lower perplexities as well as lower error rates in speech
recognition. When SLM is combined with trigram model with linear interpola-
tion (Chelba and Jelinek 2000) or integrated with trigram model and semantic
language model, which carry complementary dependency structure, under max-
imum entropy estimation paradigm (Khudanpur and Wu 2000) with SLM as a
preprocessing tool to extract syntactic structure, almost additive results have
been observed in perplexity or word error reductions. Later, Jelinek (2004) stud-
ied various stochastic properties of the SLM, in particular he generalized the
CKY algorithm (Younger 1967) to obtain a chart which is able to directly com-
pute the sentence probability thus making the stack unnecessary, moreover he
derived a generalized inside-outside algorithm which leads to a rigorous EM type
re-estimation for the SLM parameters.

Inspired by the works by Jelinek (2004) and Wang et al. (2005), we study
the stochastic properties of a composite generative probabilistic language model
which integrates trigram model, PLSA models with SLM. Similar as for PCFG
(Jelinek et al. 1992) and SLM (Jelinek 2004), among the stochastic properties
with which we study are the following ones:

– The probability of the generated sentence based on a generalization of the
CKY algorithm.

– The probability of the next word given the sentence prefix.
– The probability of the most probable parse.
– Training algorithm for the statistical parameters of the composite language

model.

The added context-sensitiveness due to trigrams and PLSAs and violation of
tree structure in the topology of the underlying random field model make the
inference and parameter estimation plausibly intractable, in the following we
show that exact recursive algorithms do exist with the same order polynomial
time complexity as in the SLM for the study of stochastic properties of the lexical
and semantic enhanced SLM.

Stochastic Analysis of Lexical and Semantic Enhanced SLM 99

2 Jelinek and Chelba’s Simplified Structural Language
Model

In this section, we briefly describe the simplified structural language model
(SSLM) which was introduced by Jelinek and Chelba (Chelba 1999, Chelba and
Jelinek 2000, Jelinek and Chelba 1999, Jelinek 2004). SSLM is completely lexical,
that is, phrases are annotated by headwords but not by non-terminals. As the op-
eration of the SSLM proceeds, it generates a string of words,w0, w1,· · · , wn, wn+1,
where ∀i = 1, · · · , n, wi ∈ V , w0 =< s >, and wn+1 =< /s >, where V is the
set of vocabulary, < s >,< /s > are start and stop markers of the sentence, at
the meantime, it also generates a parse consisting of a binary tree whose nodes
are marked by headwords of phrases spanned by the subtree stemming from the
leafs. The headword of a phrase can be any word belonging to the span of the
phrase and the headword at the apex of the final tree is < s >. The SSLM op-
erates from left to right, builds up the phrase structure in a bottom-up manner
and it has two type of operations, constructor moves and predictor moves.

1. Constructor moves: The constructor looks at the pair of right most exposed
headwords, h−2, h−1 and takes an action a ∈ A ={adjoin right, adjoin left,
null} with probability θ(a|h−2h−1). The operations of these three actions are
defined as the following:

– adjoin right: create an apex marked by the identity of h−1 and connect it by
a leftward branch to its leftmost exposed headword h−2 and by a rightward
branch to the exposed headword h−1. Increase the indices of the current
exposed headwords h−3, h−4, · · · by 1. These headwords together with h−1
become become the new set of exposed headwords.

– adjoin left: create an apex marked by the identity of h−2 and connect it
by a leftward branch to its leftmost exposed headword h−2 and by a right-
ward branch to the exposed headword h−1. Increase the indices of the new
apex and those of the current exposed headwords h−3, h−4, · · · by 1. These
headwords become become the new set of exposed headwords.

– null: leave headword indexing and current parse structure unchanged and
pass control to the predictor.

If a ∈ {adjoin left}, adjoin right}, the constructor stays in control and chooses
the next action with probability θ(a|h−2h−1). If a = null, the constructor stops
and the control is passed to the predictor. A null move ensures that the right-
most exposed headword will eventually be connected to the right and an adjoin
move makes the right-most exposed headword being connected to the left.

2. Predictor moves: The predictor generates the next word wi with prob-
ability θ(wi|h−2h−1), wi ∈ V∪ < s >. The indexes of the current headwords
h−1, h−2, · · · are decreased by 1 and the newly generated word becomes the
right most exposed headword. Control is then passed to the constructor.

As in (Wang et al. 2005), let X denote a set of random variables (Xτ)τ∈Γ

taking values in a (discrete) probability spaces (Xτ)τ∈Γ where Γ is a finite set of

100 S. Wang et al.

states. We define a (discrete) directed Markov random field to be a probability
distribution P which admits a recursive factorization if there exist non-negative
functions, kτ (·, ·), τ ∈ Γ defined on Xτ×Xpa(τ), such that

∑
xτ
kτ (xτ , xpa(τ)) = 1

and P has density p(x) =
∏

τ∈Γ k
τ (xτ , xpa(τ))

If the recursive factorization respects to a graph G, then we have a Bayesian
network (Lauritzen 1996). But broadly speaking, the recursive factorization can
respect to a more complicated representation other than a graph which has a
fixed set of nodes and edges.

All of the weighted grammars and automata can be described as directed
Markov random fields, so is the (simplified) structural language model as devel-
oped by Jelinek and Chelba (Chelba and Jelinek 2000, Jelinek 2004).

3 Simplified Lexical and Semantic Enhanced Structural
Language Model

We now describe the composite simplified structural language model enhanced
by trigrams and PLSA models, which respectively encode the local lexical infor-
mation of word co-occurrence and global-spanning semantic content at document
level over the entire corpus.

When we combine trigram and PLSA models with SSLM to build a new gen-
erative language model, the constructor moves remain unchanged, the predictor
however generates the next word wi not only depending on the two left-most ex-
posed headwords h−2, h−1 but also the previous two words wi−2, wi−1 as well as
the current semantic content gi ∈ G with probability θ(wi|wi−2wi−1h−2h−1gi).
Figure 1 illustrates the structure of the simplified lexical and semantic enhanced
structural language model.

1 2 .

d

1 2

 j

jg g . . . g g g . . . g g g . . . g . . . g

<s>

SLM

h h−1−2

i+1ii−1

i−1 i i+1l−2 l−1 l

ll−1l−2

n

n

<s> w w . . . w w w . . . w w w . . . w w </s>

Fig. 1. Simplified lexical and semantic enhanced structural language model where the
hidden information is the parse tree t and semantic content g

3.1 Computing the Probability of a Sentence

The inside probability pθ(d, w
j
i+1, y[i, j]|wi, x) of sentence W in document d is

defined as the probability of the word subsequence wj
i+1 = wi+1, · · · , wj are

generated and y becomes the headword of the phrase wi, · · · , wj given that x

Stochastic Analysis of Lexical and Semantic Enhanced SLM 101

is the last exposed headword preceding time i and the word wi is generated.
Figure 2 illustrates two situations on how the phrase wi, · · · , wj is generated.

The first way as illustrated in Figure 2 to generate wi+1, · · · , wj and create
a phrase spanning < i, j > whose headword is y, given that the headword of
the preceding phrase is x and the word wi is generated is the following: (i) a
string wi+1, · · · , wl is generated, (ii) a phrase spanning < i, l > is formed whose
headword is y, (iii) the word wl+1 is generated from its preceding two words
wl−1, wl and preceding two headwords x, y by averaging all possible semantic
content g in document d, (iv) the string wl+1, · · · , wj is generated and the span
< l+ 1, j > forms a phrase whose headword is z, (v) finally, the two phrases are
merged into one phrase with headword y via constructor move, adjoin left.

1 2 i−1 i .

x

d

1 2 i−1 i

i−2 w w . . . w w w . . . w w w . . . w . . . wjl+1l−1 l

l−1 l jl+1

y z

y

n

n

w w . . . w w w . . . w w w . . . w . . . w

g g . . . g g g . . . g g g . . . g . . . g

d

1 2 i−1 i l−1 l l+1

1 2 i−1 i l−1 l l+1

g g . . . g g g . . . g g g . . . g . . . g

x

y

u y

n

n

j

j

adjoin left adjoin right

i−2 i−2

i−2

Fig. 2. Diagram illustrating inside probability recursions: adjoin left vs adjoin right

The second way as illustrated in Figure 2 to generate wi+1, · · · , wj and create
a phrase spanning < i, j > whose headword is y, given that the headword of
the preceding phrase is x and the word wi, is conceptually the same as the first
situation with modular chance, that is, in (ii) a phrase spanning < i, l > is
formed with headword is u, then in (iii) the word wl+1 is generated from its
preceding two words wl−1, wl and preceding two headwords x, u by averaging
all possible semantic content g in document d, thus (iv) the string wl+1, · · · , wj

is generated and the span < l + 1, j > forms a phrase whose headword is y,
(v) finally, the two phrases are merged into one phrase with headword y via
constructor move, adjoin right.

Thus the inside probability pθ(w
j
i+1, y[i, j]|wi, x), ∀j > i, i = 0, 1, · · · , n can be

recursively computed by the following formula,

pθ(d,wj
i+1, y[i, j]|wi, x) =

j−1∑
l=i

∑
z

(∑
gl+1∈G

θ(wl+1|x, y, wl−1, wl, gl+1)θ(null|x, y) (1)

θ(gl+1|d)
)
pθ(d,wl

i+1, y[i, j]|wi, x)pθ(d, wj
l+2, z[l + 1, j]|wl+1, y)θ(left|y, z)

+
j−1∑
l=i

∑
z

(∑
gl+1∈G

θ(wl+1|x, u, wl−1, wl, gl+1)θ(null|x, u)

θ(gl+1|d)
)
pθ(d,wl

i+1, u[i, j]|wi, x)pθ(d, wj
l+2, y[l + 1, j]|wl+1, u)θ(right|u, y)

102 S. Wang et al.

The boundary conditions for the above recursion are given as

pθ(d,wi
i+1, y[i, i]|wi, x) = pθ(d, h(wi) = y|w,h−1(T i−1) = x) = 1 ∀x ∈ W (i−1), y = wi

and the probability of a sentence W in document d is given by

pθ(d, W) = pθ(d, wn+1
2 , < /s > [1, n + 1]|w1, < s >)

(∑
g1∈G

θ(w1| < s > g1)θ(g1|d)

)
(2)

3.2 Computing the Probability of Next Word Given the Sentence
Prefix

In order to compute the left-to-right probability of a word given the sentence
prefix, define pθ(d, wi+1

0 , x) to be the probability that the sequence w0, w1, · · · ,
wi, wi+1 in document d is generated such that the last exposed headword of
the parse tree for the string w0, w1, · · · , wi is x and define the set of words
W (i) = {w0, w1, · · · , wi}. Then ∀x ∈ W (i), we have the following recursive
formula,

pθ(d, wl+1
0 , x) =

l∑
i=1

∑
y∈W (i−1)

pθ(d, wi
0, y)pθ(wl

i+1, x[i, l]|wi, y)

(∑
gl+1∈G

θ(wl+1|y, x, wl, wl−1, gl+1)θ(null|y, x)θ(gl+1|d)
)

(3)

with the initial conditions

pθ(d, w1
0 , x) =

⎧⎨⎩
∑

g1∈G
θ(w1| < s > g1)θ(g1|d)if x =< s >

0 otherwise

Thus we have

pθ(d, w0, w1, · · · , wi, wi+1) =
∑

x∈W (i+1)

pθ(d, wi+1
0 , x)

and

pθ(d, wi+1|w0, w1, · · · , wi) =
∑

x∈W (i+1) pθ(d,wi+1
0 , x)∑

x∈W (i+1) pθ(d, wi
0, x)

(4)

3.3 Finding the Most Probable Parse

Denote p̂θ(w
j
i+1, y[i, j]|wi, x) as the probability of the most probable sequence of

moves that generate the words wi+1, · · · , wj with y being the headword of the
phrase wi, wi+1, · · · , wj . Then finding the most probable parse can be recursively
obtained by changing the sum sign in the inside probability computation into a
max sign (Kschischang et al. 2001).

Stochastic Analysis of Lexical and Semantic Enhanced SLM 103

p̂θ(d, wj
i+1, y[i, j]|wi, x) (5)

= max
{

max
l∈{i,j−1},z

[(∑
gl+1∈G

θ(wl+1|x, y,wl−1, wl, gl+1)

θ(null|x, y)θ(gl+1|d)
)
p̂θ(d, wl

i+1, y[i, j]|wi, x)p̂θ(d,wj
l+2, z[l + 1, j]|wl+1, y)θ(left|y, z)

]
,

max
l∈{i,j−1},z

[(∑
gl+1∈G

θ(wl+1|x, u, wl−1, wl, gl+1)

θ(null|x, u)θ(gl+1|d)
)
p̂θ(d, wl

i+1, u[i, j]|wi, x)p̂θ(d,wj
l+2, y[l+1, j]|wl+1,u)θ(right|u, y)

]}
The boundary conditions for the above recursion are given as

p̂θ(d,wi
i+1, y[i, i]|wi, x) = pθ(d, h(wi) = y|w,h−1(T i−1) = x) = 1 ∀x ∈ W (i−1), y = wi

then the probability of most probable parse in sentence W in document d is
given by

pθ(d, W, T̂) = p̂θ(d, wn+1
2 , < /s > [1, n + 1]|w1, < s >)

(∑
g1∈G

θ(w1| < s > g1)θ(g1|d)

)
(6)

3.4 Training Algorithm for Simplified Lexical and Semantic
Enhanced Structural Language Model

Without writing down explicit formula of likelihood function, Jelinek (2004) has
derived an EM-type parameter estimation algorithm for SLM whose structure
is considerably more complex than that of a probabilistic context free gram-
mar, and it is a generalization of the inside-outside algorithm (Baker 1979). The
derivation is conceptually based on relevant frequency counting for discrete data
which is a common practice for estimating PCFGs (Lari and Young 1990). In
this section, we derive parameter estimation algorithm for the composite simpli-
fied lexical and semantic enhanced structural language model from the general
EM algorithm (Dempster et al. 1977). This leads to a further generalization of
inside-outside algorithm proposed by Jelinek (2004).

Similar as in the composite trigram/PCFG/ PLSA model (Wang et al. 2005),
the likelihood of the observed data W under this composite language model can
be written as below:

L(W, θ) =
∏
d∈D

⎛⎝∏
l

⎛⎝∑
Gl

(∑
T

pθ(d, Wl, Gl, T)

)⎞⎠⎞⎠ (7)

where

pθ(d,Wl, Gl, T) =
∏
d∈D

⎛⎝∏
l

⎛⎝∏
g∈G

θ(g|d)c(d,Wl,g)
∏

u,v,h−2,h−1∈V,g∈G

θ(w|uvh−2h−1g)c(uvwh−2h−1g;d,Wl,T)
∏

h2,h1∈V,a∈A
θ(a|h−2h−1)c(h−2h−1a;d,Wl,T)

⎞⎠⎞⎠

104 S. Wang et al.

where pθ(d,Wl, Gl, T) is the probability of generating sentence Wl in document
d with parse tree T and semantic content sequence Gl, c(d,Wl, g) is the count of
semantic content g in document d, c(uvwh−2h−1g; d,Wl, T) is the count of tri-
grams uvw with w’s two left most exposed headwords h−2h−1, parse tree T and
semantic content g in sentence Wl of document d, and c(h−2h−1a; d,Wl, T) is
the count of constructor move a conditioning on h−2h−1 in sentence Wl of docu-
ment d with parse tree T . The parameters θ(g|d), θ(w|uvh−2h−1g), θ(a|h−2h−1)
are normalized so that

∑
w∈V θ(w|uvh−2h−1g) = 1,

∑
a∈A θ(a|h−2h−1) = 1 and∑

g∈G θ(g|d) = 1.
Following Lafferty’s (2000) derivation of the inside-outside formulas for up-

dating the parameters of PCFGs and Wang et al.’s (2005) derivation of the
generalized inside-outside formulas for updating the parameters of the compos-
ite trigram/PCFG/PLSA models from a general EM (Dempster et al. 1977)
algorithm, we derive the generalized inside-outside algorithm for the simplified
lexical and semantic enhanced structural language model.

To apply the EM algorithm, we consider the auxiliary function

Q(θ′, θ) =
∑

d

∑
l

∑
Gl

∑
T

pθ(Gl, T |d, Wl) log
pθ′(d,Wl, Gl, T)
pθ(d, Wl, Gl, T)

Because of the normalization constraints, the re-estimated parameters of the
composite model are then the normalized conditional expected counts:

θ′(a|h−2h−1) =

∑
d∈D

∑
l

∑
Gl

∑
T

pθ(Gl, T |d, Wl)c(h−2h−1a; d, Wl, T)

normalization over a

θ′(w|uvh−2h−1g) =

∑
d∈D

∑
l

∑
Gl

∑
T

pθ(Gl, T |d, Wl)c(uvwh−2h−1g; d,Wl, T, g)

normalization over w
(8)

θ′(g|d) =

∑
l

∑
Gl

∑
T

pθ(Gl, T |d, Wl)c(d, Wl, g)

normalization over g

Thus we need to compute the conditional expected counts, the numerators
of (8).

In general, the sum requires summing over an exponential number of parse
trees due to combinatorial explosion of possible parse trees. However, just as with
standard PCFGs (Lafferty 2000) and composite trigram/PCFG/PLSA model
(Wang et al. 2005), it is easy to check that the following equations still hold

∑
Gl

∑
T

pθ(Gl, T |d, Wl)c(h−2h−1a; d, Wl, T)=
θ(a|h−2h−1)

pθ(d, Wl)
∂pθ(d, Wl)

∂θ(a|h−2h−1)
, (9)

∑
Gl

∑
T

pθ(Gl, T |d,Wl)c(uvwh−2h−1g;d, Wl,T,g)=
θ(w|uvh−2h−1g)

pθ(d, Wl)
∂pθ(d,Wl)

∂θ(w|uvh−2h−1g)
,

∑
Gl

∑
T

pθ(Gl, T |d, Wl)c(d, Wl, g) =
θ(g|d)

pθ(d, Wl)
∂pθ(d, Wl)

∂θ(g|d)

Stochastic Analysis of Lexical and Semantic Enhanced SLM 105

and it turns out that there is an efficient and exact way of computing the partial
derivative on the right-hand side, the generalized inside-outside algorithm.

Now the central problem then becomes to recursively represent the probability
of a sentence, W in a document, pθ(d,W), in terms of its parameters. Following
Jelinek’s derivation for structural language model (Jelinek 2004), we first derive
formulas for computing pθ(d,W, x, y[i, j]), the probability that W is produced
by some tree T that has a phrase spanning < i, j > whose headword is y and its
immediately preceding exposed headword is x. More formally,

pθ(d, W, x, y[i, j]) .= pθ(d, w0, w1, · · · , wn+1, h−1(w0, · · · , wi−1) = x, h(wi, · · · , wj) = y)

= pθ(d, w0, w1, · · · , wn+1, h−1(w0, · · · , wi−1) = x)

pθ(d, wi+1, · · · , wj , h(wi, · · · , wj) = y|wi, h−1(w0, · · · , wi−1) = x)

pθ(d, wj+1, · · · , wn+1|h−1(w0, · · · , wi−1) = x, h(wi, · · · , wj) = y)

The middle term is an inside probability and can be recursively calculated.
We need a way to compute the “outside probability” which is the product of the
outer terms of the above equation,

pθ(d, wi
0, w

n+1
j+1 , x[i − 1]; y[i, j]) .= pθ(d, w0, w1, · · · , wn+1, h−1(w0, · · · , wi−1) = x) (10)

pθ(d,wj+1, · · · , wn+1|h−1(w0, · · · , wi−1) = x, h(wi, · · · , wj) = y)

We thus have

pθ(d,W) =
∑
i,j

pθ(d, W,x, y[i, j])

=
∑
i,j

pθ(d, wi
0, w

n+1
j+1 , x[i − 1]; y[i, j])pθ(d, wj

i+1, y[i, j]|wi, x) (11)

1 2 .

d

1 2

xz

i−1i−li−l−1i−l−2 i−2 j+1 j+m

i−l−2 i−l−1 i−l i−2 i−1 i j+mj+1

w w . . . w w w . . w w w . . . w . . w . . .

x

y

i
w w . . . w w w . . w w w . . . w . . w . . .

y

y

xz

d

1 2

1 2 i−l−2 i−l−1 i−l

i−li−l−1i−l−2

g g . . . g g g . . g g g . . . g . . . g . . . i−2

i−2 i−1

i−1

i j+1 j+m

j+mj+1i
g g . . . g g g . . g g g . . . g . . . g . . .

adjoin rightadjoin left

Fig. 3. Diagram illustrating outside probability recursions: first term in (11) is recur-
sively computed with adjoin left and adjoin right being used respectively

Figures 3- 4 illustrate four cases that the outside probability pθ(d, wi
0, w

n+1
j+1 ,

x[i− 1]; y[i, j]) can be recursively obtained by the inside and outside probabili-
ties. In the first two cases, the first term in the definition of outside probability,
pθ(d, w0, w1, · · · , wn+1, h−1(w0, · · · , wi−1) = x) remains unchanged and it is the
second term that is recursively represented by inside and outside probabilities,

106 S. Wang et al.

.

d

1 2

 j+1 j+m

x u

jj−1i−1i−l1 2

j j+mj+1i−l j−1

y

w w . . . w . . w . . . w w w . . w . . .

i−1

y

w w . . . w . . w . . . w w w . . w . . .

g g . . . g . . g . . g g g . . g . . .

d

x y

u

u

j+m

j+m

j+1

j+1

j

j

j−1

j−1

i−1

i−1i−l

i−l2

2

1

1g g . . . g . . g . . g g g . . g . . .

adjoin rightadjoin left

Fig. 4. Diagram illustrating outside probability recursions: second term in (11) is re-
cursively computed with adjoin left and adjoin right being used respectively

and the difference between these two cases is on whether constructor move, ad-
join left, or adjoin right is used. Similarly in the last two cases, the second term in
the definition of outside probability, pθ(d, wj+1, · · · , wn+1|h−1(w0, · · · , wi−1) =
x, h(wi, · · · , wj) = y) remains unchanged and it is the first term that is recur-
sively represented by inside and outside probabilities, and again the difference
between these two cases is on whether constructor move, adjoin left, or adjoin
right is used. This leads to the four double sums on the right-hand side of the
following recursive formulas,

pθ(d, wi
0, w

n+1
j+1 , x[i − 1]; y[i, j]) (12)

=
i−1∑
k=1

∑
z∈W i−k−1

[
pθ(d,wi−1

0 , wn+1
j+1, z[i−k−1]; x[i−k, j])pθ(d, wi−1

i−k−1, x[i−k, i−1]|wi−1 ,z)

(∑
gi∈G

θ(wi|z, x,wi−2, wi−1, gi)θ(null|z, x)θ(gi|d)
)
θ(left|x, y)

]

+
i−1∑
k=1

∑
z∈W i−k−1

[
pθ(d, wi−1

0 , wn+1
j+1, z[i− k− 1]; y[i−k, j])pθ(d, wi−1

i−k−1, x[i−k, i−1]|wi−1,z)

(∑
gi∈G

θ(wi|z, x,wi−2, wi−1, gi)θ(null|z, x)θ(gi|d)
)
θ(right|x, y)

]

+
n−j+1∑

m=i

∑
z∈W

j+m
j+1

[
pθ(d, wi

0, w
n+1
j+m+1, x[i−1]; y[i, j+m])pθ(d, wj+m

j+2 , u[j+1, j+m]|wj+1,y)

(∑
gj+1∈G

θ(wj+1|x, y, wj−1, wj , gj+1)θ(null|x, y)θ(gj+1|d)
)
θ(left|y, u)

]

+
n−j+1∑

m=i

∑
z∈Wj+m

j+1

[
pθ(d,wi

0, w
n+1
j+m+1, x[i−1]; u[i, j+m])pθ(d, wj+m

j+2 , u[j+1, j+m]|wj+1,y)

(∑
gj+1∈G

θ(wj+1|x, y, wj−1, wj , gj+1)θ(null|x, y)θ(gj+1|d)
)
θ(right|y, u)

]
with the boundary condition

Stochastic Analysis of Lexical and Semantic Enhanced SLM 107

pθ(d,w1
0 , wn+2

n+1 , x[0]; y[1, n + 1]) =

⎧⎨⎩
∑

g1∈G
θ(w1| < s > g1)θ(g1|d)if x =< s >, y =< /s >

0 otherwise

By (12), the outside probability can be recursively represented by a full set of
model parameters. Thus by (11), calculating the derivative of the probability of
a sentence Wl can be done recursively via calculating the derivative of outside
probability. Then by (9), we have∑

Gl

∑
T

pθ(Gl, T |d, Wl)c(h−2h−1a; d, Wl, T) =
∑

i

∑
j

cl(d, x, y, i, j,a) ∀ a ∈ A,

∑
Gl

∑
T

pθ(Gl, T |d, Wl)c(uvwh−2h−1g;d, Wl, t, g) =
∑

i

∑
j

cl(d, x, y, i, j,null)

δ(u = wj−1, v = wj , w = wj+1),∑
Gl

∑
T

pθ(Gl, T |d, Wl)c(d, Wl, g) =
∑

i

∑
j

cl(d, g, i, j)

where the quantities cl(d, x, y, i, j,a) and cl(d, g, i, j) are calculated by the fol-
lowing recursions,

cl(d, x, y, i, j, a = left) =
1

pθ(d, Wl)
pθ(d, wj

i+1, y[i, j]|wi, x)

∑
z

i−1∑
k=1

[
pθ(d, wi−1

0 , wn+1
j+1 , z[i − k − 1]; x[i − k, j])pθ(d, wi−1

i−k−1, x[i − k, i − 1]|wi−1, z)(∑
gi∈G

θ(wi|z, x, wi−2, wi−1, gi)θ(null|z, x)θ(gi|d)
)
θ(left|x, y)

]
,

cl(d, x, y, i, j, a = right)) =
1

pθ(d, Wl)
pθ(d, wj

i+1, y[i, j]|wi, x)

∑
z

i−1∑
k=1

[
pθ(d, wi−1

0 , wn+1
j+1 , z[i − k − 1]; y[i − k, j])pθ(d, wi−1

i−k−1, x[i − k, i − 1]|wi−1, z)(∑
gi∈G

θ(wi|z, x, wi−2, wi−1, gi)θ(null|z, x)θ(gi|d)
)
θ(right|x, y)

]
,

cl(d, x, y, i, j, a = null) =
1

pθ(d, Wl)
pθ(d, wj

i+1, y[i, j]|wi, x)

∑
u

n−j+1∑
m=i

[
pθ(d, wi

0, w
n+1
j+m+1, x[i − 1]; y[i, j + m])pθ(wj+m

j+2 , u[j + 1, j + m]|wj+1, y)(∑
gj+1∈G

θ(wj+1|x, y, wj−1, wj , gj+1)θ(null|x, y)θ(gj+1|d)
)
θ(left|y, u)

]

+
∑

u

n−j+1∑
m=i

[
pθ(d, wi

0, w
n+1
j+m+1, x[i − 1]; u[i, j + m])pθ(d, wj+m

j+2 , u[j+ 1, j+ m]|wj+1, y)(∑
gj+1∈G

θ(wj+1|x, y,wj−1, wj , gj+1)θ(null|x, y)θ(gj+1|d)
)
θ(right|y, u)

]
,

cl(d, g, i, j) =
1

pθ(d, Wl)
pθ(d, wj

i+1, y[i, j]|wi, x)

108 S. Wang et al.

∑
u

n−j+1∑
m=i

[
pθ(d, wi

0, w
n+1
j+m+1, x[i − 1]; y[i, j + m])pθ(wj+m

j+2 , u[j + 1, j + m]|wj+1, y)(
θ(wj+1|x, y, wj−1, wj , g)θ(null|x, y)θ(g|d)

)
θ(left|y, u)

]
+
∑

u

n−j+1∑
m=i

[
pθ(d, wi

0, w
n+1
j+m+1, x[i − 1]; u[i, j + m])pθ(d, wj+m

j+2 , u[j+ 1, j+ m]|wj+1, y)(
θ(wj+1|x, y, wj−1, wj , g)θ(null|x, y)θ(g|d)

)
θ(right|y, u)

]
,

In order to be consistent to the recursive formula for SSLM derived in (Jelinek
2004), we consider wj+1 to derive the formula for cl(d, g, i, j). An alternative
formula exists if we consider wi instead.

cl(d, g, i, j) =
1

pθ(d, Wl)
pθ(d, wj

i+1, y[i, j]|wi, x)

∑
z

i−1∑
k=1

[
pθ(d, wi−1

0 , wn+1
j+1 , z[i − k − 1]; x[i − k, j])pθ(d, wi−1

i−k−1, x[i − k, i − 1]|wi−1, z)(
θ(wi|z, x,wi−2, wi−1, g)θ(null|z, x)θ(g|d)

)
θ(left|x, y)

]
+
∑

z

i−1∑
k=1

[
pθ(d, wi−1

0 , wn+1
j+1 , z[i − k − 1]; y[i − k, j])pθ(d, wi−1

i−k−1, x[i − k, i − 1]|wi−1, z)(
θ(wi|z, x,wi−2, wi−1, g)θ(null|z, x)θ(g|d)

)
θ(right|x, y)

]

Then by (9), we get the re-estimates

θ′(a|h−2 = x, h−1 = y) =

∑
d

∑
l

∑
i

∑
j

cl(d, x, y, i, j, a)∑
a′∈A

∑
d

∑
l

∑
i

∑
j

cl(d, x, y, i, j, a′)

θ′(w|uvh−2 = x, h−1 = y) =∑
d

∑
l

∑
i

∑
j

cl(d, x, y, i, j,null)δ(u = wj−1, v = wj , w = wj+1)∑
w′∈V

∑
d

∑
l

∑
i

∑
j

cl(d, x, y, i, j, null)δ(u = wj−1, v = wj , w = w′)

θ′(g|d) =

∑
l

∑
i

∑
j cl(d, g, i, j)∑

g′∈G
∑

l

∑
i

∑
j cl(d, g′, i, j)

4 Extension of Training to Complete Lexical and
Semantic Enhanced Structural Language Models

We now extend our results to the complete structural language model which has
more complex constructor than SSLM and an additional module, the tagger.

Stochastic Analysis of Lexical and Semantic Enhanced SLM 109

Each headword h is replaced by heads h = (h1, h2) where h1 is a headword and
h2 is a tag or a non-ternimal. The operation of complete lexical and semantic
enhanced structural language model,

– Depending on the last two exposed heads h−2,h−1, the two preceding words
wi−2, wi−1 as well as current semantic node gi, the predictor generates the
next word wi with probability θ(wi|wi−2wi−1h−2h−1gi).

– Depending on the last exposed head h−1 and current word wi, the tagger
tags wi by a part of speech f ∈ F with probability θ(f |wih−1), shifts heads
left one position i.e., h′

−i−1 = h−i, i = 1, · · · and generates a new last exposed
head, h′

−1 = (h1
−1, h

2
−2) = (wi, f).

– The constructor operates with a probability θ(a|h−2h−1) where a ∈ A =
{(right||γ), (left||γ), (up||γ),null} where γ ∈ Γ , the set of non-terminal
symbols.

The increased complexity of the complete lexical and semantic enhanced SLM
mainly arises from the enlargement of headword vacabulary. The recursive for-
mulas however can be updated with simple modular modifications.

5 Conclusions and Further Directions

We have shown how to integrate trigrams and PLSAs with the structural lan-
guage model to build a composite generative probabilistic language model. The
resulting composite language model has even more complex dependency struc-
ture but with more expressive power than the original SLM. We have studied
its various stochastic properties and extended various recursive formulas with
conceptually simple modular modifications, i.e., replacing θ(wi|h−2h−1) with∑

gi∈G θ(wi|wi−2wi−1h−2h−1gi)θ(gi|d), while remaining the same order compu-
tational complexity. Even though the added context-sensitiveness due to tri-
grams and PLSAs and violation of tree structure in the topology of the underly-
ing random field model make the inference and parameter estimation problems
plausiblely intractable, these recursive formulas are nevertheless exact to solve
these problems for the lexical and semantic enhanced SLM. The main reason ren-
dering this being true is that the computation of the probability of a sentence
can be factorized into two parts where each part can be recursively calculated
and no overlapping features exist when performing the computation recursively.

Statistical latural language processing is an empirical field, nevertheless some
famous published papers in NLP only described the algorithms without any ex-
perimental justification for the usefullness. For example, James Baker’s 4 pages
paper (Baker 1979) showed the nowadays well known inside-outside algorithm
with no empirical results. Similarly in Jelinek’s paper (Jelinek 2004), there is
no any experimental results too, mainly due to its O(n6) complexity where n
is the length of a sentence. Our paper is in the same flavour of theirs, empha-
sizing algorithmic aspect. Similar as analyzed in (Jelinek 2004) for SLM, the
complexity of the generalized inside-outside algorithm for the lexical and se-
mantic enhanced SLM is in the same order as in SLM and is propotional to n6.

110 S. Wang et al.

context free

Tractable
Turing machine

regular

n3)O(
O(n6)

context sensitive

Fig. 5. In the Chormsky’s hierarchy of grammars nested according to the increasing
restrictions placed on the production rules in the grammar, there is a subclass of
probabilistic context sensitive grammars which is tractable

Figure 5 illustrates the Chormsky’s hierarchy of grammars in terms of compu-
tational complexity (Hopcroft and Ullman 1979) where there exist a tractable
subclass of probabilistic context sensitive grammars with n6 time complexity as
well as a subclass of probabilistic context sensitive grammars with cubic time
complexity. The n6 order complexity makes all the algorithms developed in this
work and in (Jelinek 2004) impractical. However various schemes as suggested
in (Jelinek 2004) can be used to prune substantial fraction of entries from the
charts by thresholding in the computation of inside and outside probabilities and
limiting non-terminal productions. We plan to report experimental results by us-
ing these various techniques to approximately perform parameter estimations for
the lexical and semantic enhanced SLM in the future.

References

1. S. Abney, D. McAllester, and F. Pereira. (1999). Relating probabilistic grammars
and automata. Proceedings of ACL, 542-549.

2. J. Baker. (1979). Trainable grammars for speech recognition. Proceedings of the
97th Meeting of the Acoustical Society of America, 547-550.

3. C. Chelba. (1999). Exploiting syntactic structure for natural language modeling.
Ph.D. Dissertation, Johns Hopkins University.

4. C. Chelba and F. Jelinek. (2000). Structured language modeling. Computer Speech
and Language, 14(4):283-332.

5. N. Chomsky. (1956). Three models for the description of language. IRE Transac-
tions on Information Theory, 2(3):113-24.

6. A. Dempster, N. Laird and D. Rubin. (1977). Maximum likelihood estimation
from incomplete data via the EM algorithm. Journal of Royal Statistical Society,
39:1-38.

Stochastic Analysis of Lexical and Semantic Enhanced SLM 111

7. T. Hofmann. (2001). Unsupervised learning by probabilistic latent semantic anal-
ysis. Machine Learning, 42(1):177-196

8. J. Hopcroft and J. Ullman. (1979). Introduction to Automata Theory, Languages
and Computation. Addison-Wesley.

9. F. Jelinek, J. Lafferty and R. Mercer. (1992). Basic methods of probabilistic
context-free grammars. Speech Recognition and Understanding: Recent Advances,
Trends, and Applications, P. Laface and R. De Mori, (Editors), 347-360, Springer-
Verlag.

10. F. Jelinek. (1998). Statistical Methods for Speech Recognition. MIT Press.
11. F. Jelinek and C. Chelba. (1999). Putting language into language modeling.

Proceedings of the 6th EuroSpeech Communication and Technology, 1-6.
12. F. Jelinek. (2004). Stochastic analysis of structured language modeling. Mathemat-

ical Foundations of Speech and Language Processing, M. Johnson, S. Khudanpur,
M. Ostendorf and R. Rosenfeld (Editors), 37-72, Springer-Verlag.

13. S. Khudanpur and J. Wu. (2000). Maximum entropy techniques for exploiting syn-
tactic, semantic and collocational dependencies in language modeling. Computer
Speech and Language, 14(4):355-372.

14. F. Kschischang, B. Frey and H. Loeliger. (2001). Factor graphs and the sum-
product algorithm IEEE Transactions on Information Theory, 47(2):498-519.

15. J. Lafferty. (2000). A derivation of the inside-outside algorithm from the EM
algorithm. IBM Research Report 21636.

16. K. Lari and S. Young. (1990). The estimation of stochastic context-free grammars
using the inside-outside algorithm. Computer Speech and Language, 4:35-56.

17. S. Lauritzen. (1996). Graphical Models. Oxford Press.
18. C. Shannon. (1948). A mathematical theory of communication. Bell System

Technical Journal, 27(2):379-423.
19. S. Wang, S. Wang, R. Greiner, D. Schuurmans and L. Cheng. (2005). Exploit-

ing syntactic, semantic and lexical regularities in language modeling via directed
Markov random fields. The 22nd International Conference on Machine Learning,
953-960.

20. D. Younger. (1967). Recognition and parsing of context free languages in time N3.
Information and Control, 10:198-208.

Using Pseudo-stochastic Rational Languages in
Probabilistic Grammatical Inference

Amaury Habrard, François Denis, and Yann Esposito

Laboratoire d’Informatique Fondamentale de Marseille (L.I.F.) UMR CNRS 6166
{habrard, fdenis, esposito}@cmi.univ-mrs.fr

Abstract. In probabilistic grammatical inference, a usual goal is to infer a good
approximation of an unknown distribution P called a stochastic language. The
estimate of P stands in some class of probabilistic models such as probabilistic
automata (PA). In this paper, we focus on probabilistic models based on multi-
plicity automata (MA). The stochastic languages generated by MA are called ra-
tional stochastic languages; they strictly include stochastic languages generated
by PA and admit a very concise canonical representation. Despite the fact that
this class is not recursively enumerable, it is efficiently identifiable in the limit by
using the algorithm DEES, introduced by the authors in a previous paper. How-
ever, the identification is not proper and before the convergence of the algorithm,
DEES can produce MA that do not define stochastic languages. Nevertheless, it
is possible to use these MA to define stochastic languages. We show that they be-
long to a broader class of rational series, that we call pseudo-stochastic rational
languages. The aim of this paper is twofold. First we provide a theoretical study
of pseudo-stochastic rational languages, the languages output by DEES, show-
ing for example that this class is decidable within polynomial time. Second, we
have carried out experiments to compare DEES to classical inference algorithms
(ALERGIA and MDI). They show that DEES outperforms them in most cases.

Keywords: pseudo-stochastic rational languages, multiplicity automata, proba-
bilistic grammatical inference.

1 Introduction

In probabilistic grammatical inference, we often consider stochastic languages which
define distributions over Σ∗, the set of all the possible words over an alphabet Σ. In
general, we consider an unknown distribution P and the goal is to find a good approxi-
mation given a finite sample of words independently drawn from P .

The class of probabilistic automata (PA) is often used for modeling such distribu-
tions. This class has the same expressiveness as Hidden Markov Models and is identifi-
able in the limit [4]. However, there exists no efficient algorithm for identifying PA. This
can be explained by the fact that there exists no canonical representation of these au-
tomata which makes it difficult to correctly identify the structure of the target. One solu-
tion is to focus on subclasses of PA such as probabilistic deterministic automata [3, 10]
but with an important lack of expressiveness. Another solution consists in considering
the class of multiplicity automata (MA). These models admit a canonical representa-
tion which offers good opportunities from a machine learning point of view. MA define

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 112–124, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Using PSRL in Probabilistic Grammatical Inference 113

functions that compute rational series with values in R [5]. MA are a strict generaliza-
tion of PA and the stochastic languages generated by PA are special cases of rational
stochastic languages. Let us denote by Srat

K (Σ) the class of rational stochastic lan-
guages computed by MA with parameters in K where K ∈ {Q,Q+,R,R+}. With
K = Q+ or K = R+, Srat

K (Σ) is exactly the class of stochastic languages generated
by PA with parameters in K . But, when K = Q or K = R, we obtain strictly greater
classes. This provides several advantages: Elements of Srat

K (Σ) have a minimal normal
representation, thus elements of Srat

K+(Σ) may have significantly smaller representation
in Srat

K (Σ); parameters of these minimal representations are directly related to proba-
bilities of some natural events of the form uΣ∗, which can be efficiently estimated from
stochastic samples; lastly rational series over a fieldK form a vector space and efficient
linear algebra techniques can be used to deal with rational stochastic languages.

However, the class Srat
Q (Σ) presents a serious drawback: There exists no recur-

sively enumerable subset class of MA which exactly generates it [4]. As a conse-
quence, no proper identification algorithm can exist: indeed, applying a proper iden-
tification algorithm to an en umeration of samples of Σ∗ would provide an enumera-
tion of the class of rational stochastic languages over Q. In spite of this result, there
exists an efficient algorithm, DEES, which is able to identify Srat

K (Σ) in the limit.
But before reaching the target, DEES can produce MA that do not define stochastic
languages. However, it has been shown in [6] that with probability one, for any ra-
tional stochastic language p, if DEES is given as input a sufficiently large sample S
drawn according to p, DEES outputs a rational series such that

∑
u∈Σ∗ r(u) converges

absolutely to 1. Moreover,
∑

u∈Σ∗ |p(u) − r(u)| converges to 0 as the size of S in-
creases. We show that these MA belong to a broader class of rational series, that we
call pseudo-stochastic rational languages. A pseudo-stochastic rational language r has
the property that r(uΣ∗) = limn→∞r(uΣ≤n) is defined for any word u and that
r(Σ∗) = 1. A stochastic language pr can be associated with r in such a way that∑

u∈Σ∗ |pr(u) − r(u)| = 2
∑

r(u)<0 |r(u)| when the sum
∑

u∈Σ∗ r(u) is absolutely
convergent. As a first consequence, pr = r when r is a stochastic language. As a second
consequence, for any rational stochastic language p, if DEES is given as input increas-
ing samples drawn according to p, DEES outputs pseudo-stochastic rational languages
r such that

∑
u∈Σ∗ |p(u)− pr(u)| converges to 0 as the size of S increases.

The aim of this paper is twofold: To provide a theoretical study of the class of pseudo-
stochastic rational languages and a series of experiments to compare the performance
of DEES to two classical inference algorithms: ALERGIA [3] and MDI [10]. We show
that the class of pseudo-stochastic rational languages is decidable within polynomial
time. We provide an algorithm that can be used to compute pr(u) from any MA that
computes r. We also show how it is possible to simulate pr using such an automaton.
We show that there exist pseudo-stochastic rational languages r such that pr is not
rational. Finally, we show that it is undecidable whether two pseudo-stochastic rational
languages define the same stochastic language. We have carried out many experiments
which show that DEES outperforms ALERGIA and MDI in most cases. These results
were expected since ALERGIA and MDI have not the same theoretical expressiveness
and since DEES aims at producing a minimal representation of the target in the set of
MA, which can be significantly smaller than the minimal equivalent PDA (if it exists).

114 A. Habrard, F. Denis, and Y. Esposito

The paper is organized as follows. In section 2, we introduce some background about
multiplicity automata, rational series and stochastic languages and present the algorithm
DEES. Section 3 deals with our study of pseudo-rational stochastic languages. Our
experiments are detailed in Section 4.

2 Definitions and Notations

Rational Series, Multiplicity Automata and Stochastic Languages. Let Σ∗ be the
set of words on the finite alphabet Σ. A language is a subset of Σ∗. The empty word
is denoted by ε and the length of a word u is denoted by |u|. For any integer k, let
Σk = {u ∈ Σ∗ : |u| = k} and Σ≤k = {u ∈ Σ∗ : |u| ≤ k}. We denote by < the
length-lexicographic order on Σ∗ and by MinL the minimal element of a non empty
language L according to this order. A subset S of Σ∗ is prefix-closed if for any u, v ∈
Σ∗, uv ∈ S ⇒ u ∈ S. For any S ⊆ Σ∗, let pref(S) = {u ∈ Σ∗ : ∃v ∈ Σ∗, uv ∈ S}
and fact(S) = {v ∈ Σ∗ : ∃u,w ∈ Σ∗, uvw ∈ S}.

A formal power series is a mapping r of Σ∗ into R. The set of all formal power
series is denoted by R〈〈Σ〉〉. It is a vector space. For any series r and any word u, let
us denote by u̇r the series defined by u̇r(w) = r(uw) for every word w. Let us denote
by supp(r) the support of r, i.e. the set {w ∈ Σ∗ : r(w) �= 0}.

A stochastic language is a formal series p which takes its values in R+ and such that∑
w∈Σ∗ p(w) = 1.
The set of all stochastic languages over Σ is denoted by S(Σ). For any language

L ⊆ Σ∗ and any p ∈ S(Σ), let us denote
∑

w∈L p(w) by p(L). For any p ∈ S(Σ)
and u ∈ Σ such that p(uΣ∗) �= 0, the residual language of p wrt u is the stochastic
language defined by u−1p by u−1p(w) = p(uw)

p(uΣ∗) . We denote by res(p) the set {u ∈
Σ∗ : p(uΣ∗) �= 0} and by Res(p) the set {u−1p : u ∈ res(p)}.

Let S be a sample over Σ∗, i.e. a multiset composed of words over Σ∗. We denote
by pS the empirical distribution over Σ∗ associated with S. Let S be an infinite sam-
ple composed of words independently drawn according to a stochastic language p. We
denote by Sn the sequence composed of the n first words of S.

We introduce now the notion of multiplicity automata (MA).
Let K ∈ {R,Q,R+,Q+}. A K-multiplicity automaton (MA) is a 5-tuple 〈Σ,Q,

ϕ, ι, τ〉 whereQ is a finite set of states, ϕ : Q×Σ ×Q→ K is the transition function,
ι : Q→ K is the initialization function, τ : Q→ K is the termination function.

We extend the transition functionϕ toQ×Σ∗×Q by ϕ(q, wx, r)=
∑

s∈Q ϕ(q, w, s)
ϕ(s, x, r) and ϕ(q, ε, r) = 1 if q = r and 0 otherwise, for any q, r ∈ Q, x ∈ Σ
and w ∈ Σ∗. For any finite subset L ⊂ Σ∗ and any R ⊆ Q, define ϕ(q, L,R) =∑

w∈L,r∈Rϕ(q, w, r). We denote by QI = {q ∈ Q|ι(q) �= 0} the set of initial states
and by QT = {q ∈ Q|τ(q) �= 0} the set of terminal states. A state q ∈ Q is accessible
(resp. co-accessible) if there exists q0 ∈ QI (resp. qt ∈ QT) and u ∈ Σ∗ such that
ϕ(q0, u, q) �= 0 (resp. ϕ(q, u, qt) �= 0). An MA is trimmed if all its states are accessible
and co-accessible. From now, we only consider trimmed MA.

The support of an MAA = 〈Σ,Q,ϕ, ι, τ〉 is the Non-deterministic Finite Automaton
(NFA) 〈Σ,Q,QI , QT , δ〉 where δ(q, x) = {q′ ∈ Q|ϕ(q, x, q′) �= 0}.

Using PSRL in Probabilistic Grammatical Inference 115

The spectral radius of a square matrix M if the maximum magnitude of its eigen-
values. Let A = 〈Σ,Q = {q1, . . . , qn}, ι, ϕ, τ〉 be an MA. Let us denote by ρ(A) be
the spectral radius of the square matrix [ϕ(qi, Σ, qj)]1≤i,j≤n (ρ(A) does not depends
on the order of the states). If ρ(A) < 1 then each sequence rA,q(Σ≤n) converges to a
number sq and hence, r(Σ≤n) converges too [6]. Let us denote by r(Σ∗) the limit of
r(Σ≤n) when it exists. The numbers sq are the unique solutions of the following linear
system of equations (and therefore are computable within polynomial time):

sq = rA,q +
∑

q′∈Q ϕ(q,Σ, q′)sq′ for q ∈ Q.
It is decidable within polynomial time whether ρ(A) < 1 [2, 7].

A Probabilistic Automaton (PA) is a trimmed MA 〈Σ,Q,ϕ, ι, τ〉 s.t. ι, ϕ and τ take
their values in [0, 1], s.t.

∑
q∈Q ι(q) = 1 and for any state q, τ(q) + ϕ(q,Σ,Q) = 1.

A Probabilistic Deterministic Automaton (PDA) is a PA whose support is deterministic.
It can be shown that Probabilistic Automata generate stochastic languages. Let us de-
note by SPA

K (Σ) (resp. SPDA
K (Σ)) the class of all stochastic languages which can be

computed by a PA (resp. a PDA).
For any MAA, let rA be the series defined by rA(w) =

∑
q,r∈Q ι(q) ϕ(q, w, r)τ(r).

For any q ∈ Q, we define the series rA,q by rA,q(w) =
∑

r∈Q ϕ(q, w, r)τ(r). An MA
A is reduced if the set {rA,q|q ∈ Q} is linearly independent in the vector space R〈〈Σ〉〉.
An MAA is prefix-closed if its set of statesQ is a prefix-closed subset ofΣ∗,QI = {ε}
and ∀u ∈ Q, δ(ε, u) = {u} where δ is the transition function in the support of A.

Rational series have several characterization ([1, 9]). Here, we shall say that a for-
mal power series over Σ is K-rational iff there exists a K-multiplicity automaton A
such that r = rA, where K ∈ {R,R+,Q,Q+}. Let us denote by Krat〈〈Σ〉〉 the
set of K-rational series over Σ and by Srat

K (Σ) = Krat〈〈Σ〉〉 ∩ S(Σ), the set of
rational stochastic languages over K . It can be shown that a series r is R-rational
iff the set {u̇r|u ∈ Σ∗} spans a finite dimensional vector subspace of R〈〈Σ〉〉. As
a corollary, a stochastic language p is R-rational iff the set Res(p) spans a finite di-
mensional vector subspace [Res(p)] of R〈〈Σ〉〉. Rational stochastic languages have
been studied in [5] from a language theoretical point of view. It is worth noting that
SPDA

R (Σ) � SPA
R (Σ) = Srat

R+ (Σ) � Srat
R (Σ). From now on, a rational stochastic

language will always denote an R-rational stochastic language. Rational stochastic lan-
guages have a serious drawback. There exists no recursively enumerable subset of mul-
tiplicity automata capable to generate them [4, 5]. As a consequence, it is undecidable
whether a given MA computes a stochastic language.

Every rational language is the support of a rational series but the converse is false:
there exists rational series whose supports are not rational. For example, it can be shown
that the complementary set of {anbn|n ∈ N} in {a, b}∗ is the support of a rational
series. However, a variant of Pumping Lemma holds for languages which are support
of rational series. Let L be such a language. There exists an integer N such that for
any word w = uv ∈ L satisfying |v| ≥ N , there exists v1, v2, v3 such that v =
v1v2v3 and L∩uv1v∗2v3 is infinite [1]. Rational stochastic languages admit a canonical
representation by reduced prefix-closed MA. Let p be a rational stochastic language
and Qp be the smallest basis of [Res(p)] (for the order induced by < on the finite
subsets of Σ∗). Let A = 〈Σ,Qp, ϕ, ι, τ〉 be the MA defined by: (i) ι(ε) = 1, ι(u) = 0
otherwise; τ(u) = u−1p(ε), (ii) ϕ(u, x, ux) = u−1p(xΣ∗) if u, ux ∈ Qp and x ∈ Σ,

116 A. Habrard, F. Denis, and Y. Esposito

Input: a sample S Output: a prefix-closed reduced MA A = 〈Σ, Q, ϕ, ι, τ 〉
Q ← {ε}; ι(ε) ← 1 ; τ (ε) ← PS(ε); F ← Σ ∩ pref(S) /*the frontier set*/;
while F �= ∅ do

v ← MinF s.t. v = u.x where u ∈ Σ∗ and x ∈ Σ; F ← F \ {v};
if I(Q,v, S, |S|−1/3) has no solution then

Q ← Q ∪ {v}; ι(v) ← 0; τ (v) ← PS(v)/PS(vΣ∗);
ϕ(u, x, v) ← PS(vΣ∗)/PS(uΣ∗); F ← F ∪ {vx ∈ res(PS)|x ∈ Σ}};

else
let (αw)w∈Q be a solution of I(Q,v, S, |S|−1/3);
foreach w ∈ Q do ϕ(u, x, w) ← αwPS(vΣ∗)/PS(uΣ∗);

Algorithm 1. Algorithm DEES

(iii) ϕ(u, x, v) = αvu
−1p(xΣ∗) if x ∈ Σ, ux ∈ (QpΣ \Qp)∩ res(p) and (ux)−1p =∑

v∈Qp
αvv

−1p. It can be shown that A is a reduced prefix-closed MA computing p
and such that ρ(A) < 1. A is called the canonical representation of p. Note that the
parameters of A correspond to natural components of the residual of p and can be
estimated by using samples of p.

Inference of Rational Stochastic Languages. The algorithm DEES [6] is able to iden-
tify rational stochastic languages: with probability one, for every rational stochastic lan-
guage p and every infinite sample S of p, there exists an integer N such that for every
n ≥ N , DEES(Sn) outputs the canonical representation A of p. Before its presenta-
tion, we introduce informally the basic idea of the algorithm. First, the goal is to find
the structure of the automaton, i.e. the set of states Qp smallest basis of [Res(P)]. The
inference proceeds as follows: the algorithm begins by building a unique state which
corresponds to the residual ε−1pS . Each state of the automaton corresponds to some
residual u−1ps where u is the prefix of some examples in S. After having built a state
corresponding to u−1ps, for any letter x, the algorithm studies the possibility of adding
a new state corresponding to (ux)−1ps or of creating transitions labeled by x that lead
to the states already built in the automaton. A new state will be added to the automaton
if the residual language corresponding to (ux)−1ps cannot be approximated as a linear
combination of the residual languages corresponding the states already built.

The pseudo-code of the algorithm is presented in Algorithm 1. In order to find a lin-
ear combination, DEES uses the following set of inequalities where S is a non empty
finite sample ofΣ∗, Q a prefix-closed subset of pref(S), v ∈ pref(S) \Q, and ε > 0:

I(Q,v, S, ε)={|v−1PS(wΣ∗)−∑u∈Q Xuu−1PS(wΣ∗)|≤ ε|w∈fact(S)} ∪ {∑u∈QXu=1}.

DEES runs in polynomial time in the size of S and identifies in the limit the structure
of the canonical representation A of the target p. Once the correct structure of A is
found, the algorithm computes estimates αS of each parameter α of A such that |α −
αS | = O(|S|−1/3). The output automaton A computes a rational series rA such that∑

w∈Σ∗ rA(w) converges absolutely to 1. Moreover, it can be shown that rA converges
to the target p under the D1 distance (also called the L1 norm), stronger than distance

Using PSRL in Probabilistic Grammatical Inference 117

ε

1
6

(a) Initialisation with ε.

ε a

1
6

2
5

(b) Creation of a new state.

ε a

1
6

a, 5
6

2
5

a, − 3
10

a, 9
10

(c) Final automaton.

Fig. 1. Illustration of the different steps of algorithm DEES

D2 or D∞:
∑

w∈Σ∗ |rA(w) − p(w)| tends to 0 when the size of S tends to ∞. If
the parameters of A are rational numbers, a variant of DEES can identify exactly the
target [6].

We give now a simple example that illustrates DEES. Let us consider a sample S =
{ε, a, aa, aaa} such that |ε| = 10, |a| = |aa| = 20, |aaa| = 10. We have the following
values for the empirical distribution: PS(ε) = PS(aaa) = PS(aaaΣ∗) = 1

6 , PS(a) =
PS(aa) = 1

3 , PS(aΣ∗) = 5
6 , PS(aaΣ∗) = 1

2 and PS(aaaaΣ∗) = 0, ε = 1
(60)

1
3
≡

0.255. With the sample S, DEES will infer a multiplicity automaton in three steps:

1. We begin by constructing a state for ε (Figure 1(a)).
2. We examine PS(vΣ∗) with v = εa to decide if we need to add a new state for

the string a. We obtain the following system which has in fact no solution and we
create a new state as shown in Figure 1(b).{∣∣∣PS(vaΣ∗)

PS(vΣ∗) − PS(aΣ∗)
PS(Σ∗) ∗ Xε

∣∣∣ ≤ b ,
∣∣∣PS(vaaΣ∗)

PS(vΣ∗) − PS(aaΣ∗)
PS(Σ∗) ∗ Xε

∣∣∣ ≤ b,∣∣∣PS(vaaaΣ∗)
PS(vΣ∗) − PS(aaaΣ∗)

PS(Σ∗) ∗ Xε

∣∣∣ ≤ b, Xε = 1
}

3. We examine PS(vΣ∗) with v = aa to decide if we need to create a new state for
the string aa. We obtain the system below. It is easy to see that this system admits
at least one solution Xε = − 1

2 and Xa = 3
2 . Then, we add two transitions to the

automaton and we obtain the automaton of Figure 1(c) and the algorithm halts.{∣∣∣PS(vaΣ∗)
PS(vΣ∗) −PS(aΣ∗)

PS(Σ∗) Xε−PS(aaΣ∗)
PS(aΣ∗) Xa

∣∣∣ ≤ b,
∣∣∣PS(vaaΣ∗)

PS(vΣ∗) − PS(aaΣ∗)
PS(Σ∗) Xε−PS(aaΣ∗)

PS(aΣ∗) Xa

∣∣∣≤ b,∣∣∣PS(vaaaΣ∗)
PS(vΣ∗) −PS(aaaΣ∗)

PS(Σ∗) Xε−PS(aaaΣ∗)
PS(aΣ∗) Xa

∣∣∣ ≤ b, Xε + Xa = 1
}

Since no recursively enumerable subset of MA is capable to generate the set of ratio-
nal stochastic languages, no identification algorithm can be proper. This remark applies
to DEES. There is no guarantee at any step that the automaton A output by DEES
computes a stochastic language. However, the rational series r computed by the MA
output by DEES can be used to compute a stochastic language pr that also converges
to the target [6]. Moreover, they have several nice properties which make them close to
stochastic languages: We call them pseudo-stochastic rational languages and we study
their properties in the next Section.

118 A. Habrard, F. Denis, and Y. Esposito

3 Pseudo-stochastic Rational Languages

The canonical representationA of a rational stochastic language satisfies ρ(A) < 1 and∑
w∈Σ∗ rA(w) = 1. We use this characteristic to define the notion of pseudo-stochastic

rational language.

Definition 1. We say that a rational series r is a pseudo-stochastic language if there
exists an MA A which computes r and such that ρ(A) < 1 and if r(Σ∗) = 1.

The condition ρ(A) < 1 implies that r(Σ∗) is defined without ambiguity. A rational
stochastic language is a pseudo-stochastic rational language but the converse is false.

Example. Let A = 〈Σ, {q0}, ϕ, ι, τ〉 defined by Σ = {a, b}, ι(q0) = τ(q0) = 1,
ϕ(q0, a, q0) = 1 and ϕ(q0, b, q0) = −1. We have rA(u) = (−1)|u|b . Check that ρ(A) =
0 and rA(uΣ∗) = (−1)|u|b for every word u. Hence, rA is a pseudo stochastic language.

As indicated in the previous section, any canonical representation A of a rational
stochastic language satisfies ρ(A) < 1. In fact, the next Lemma shows that any reduced
representationA of a pseudo-stochastic language satisfies ρ(A) < 1.

Lemma 1. Let A be a reduced representation of a pseudo-stochastic language. Then,
ρ(A) < 1.

Proof. The proof is detailed in [8].

Proposition 1. It is decidable within polynomial time whether a given MA computes a
pseudo-stochastic language.

Proof. Given an MA B, compute a reduced representation A of B, check whether
ρ(A) < 1 and then, compute rA(Σ∗). �
It has been shown in [6] that a stochastic language pr can be associated with a pseudo-
stochastic rational language r: the idea is to prune in Σ∗ all subsets uΣ∗ such that
r(uΣ∗) ≤ 0 and to normalize in order to obtain a stochastic language. Let N be the
smallest prefix-closed subset of Σ∗ satisfying

ε ∈ N and ∀u ∈ N, x ∈ Σ, ux ∈ N iff r(uxΣ∗) > 0.

For every u ∈ Σ∗\N , define pr(u) = 0. For every u ∈ N , let λu = Max(r(u), 0)+∑
x∈Σ Max(r(uxΣ∗), 0). Then, define pr(u) = Max(r(u), 0)/λu. It can be shown

(see [6]) that r(u) ≤ 0 ⇒ pr(u) = 0 and r(u) ≥ 0 ⇒ r(u) ≥ pr(u).
The difference between r and pr is simple to express when the sum

∑
u∈Σ∗ r(u)

converges absolutely. Let Nr =
∑

r(u)≤0 |r(u)|. We have
∑

w∈Σ∗ |r(u) − pr(u)| =
Nr +

∑
r(u)>0(r(u) − pr(u)) = 2Nr +

∑
u∈Σ∗(r(u) − pr(u)) = 2Nr. Note that

when r is a stochastic language,
∑

u∈Σ∗ r(u) converges absolutely and Nr = 0. As a
consequence, in that case, pr = r. We give in Algorithm 2 an algorithm that computes
pr(u) and pr(uΣ∗) for any word u from any MA that computes r. This algorithm is
linear in the length of the input. It can be slightly modified to generate a word drawn
according to pr (see [8]).

The stochastic languages pr associated with pseudo-stochastic rational languages r
can be not rational.

Using PSRL in Probabilistic Grammatical Inference 119

Input: MA A = 〈Σ, Q = {q1, . . . , qn}, ϕ, ι, τ 〉 s.t. ρ(A) < 1 rA(Σ∗) = 1, a word u

Output: prA(u), prA(uΣ∗)
for i = 1, . . . , n /* this step is polynomial in n and is done once*/ do

si ← rA,qi(Σ
∗); ei ← ι(qi);

w ← ε; λ ← 1 /* λ is equal to prA(wΣ∗)*/ ;
repeat

µ ← ∑n
i=1 eiτ (qi); S ← {(w, Max(µ, 0))};

for x ∈ Σ do
µ ← ∑n

i,j=1 eiϕ(qi, x, qj)sj ; S ← S ∪ {(wx, Max(µ, 0))};

σ ← ∑
(v,µ)∈S µ; S ← {(x, µ/σ)|(x,µ) ∈ S} /*normalization*/ ;

if w = u then prA(u) ← λµ /*where (u, µ) ∈ S and λ = prA(uΣ∗)*/;
else

Let x ∈ Σ s.t. wx is a prefix of u and let µ s.t. (wx,µ) ∈ S;
w ← wx; λ ← λµ; for i = 1, . . . , n do ei ← ∑n

j=1 ejϕ(qj , x, qi) ;

end
until w = u;

Algorithm 2. Algorithm computing pr

Proposition 2. There exists pseudo-stochastic rational languages r such that pr is not
rational.

Proof. Suppose that the parameters of the automaton A described on Figure 2 satisfy
ρ(α+ 1) + τ1 = 1 and ρ(β + 1) + τ2 = 1 with α > β > 1. Then the series rq1 and rq2

are rational stochastic languages and therefore, rA = 3rq1/2− rq2/2 is a rational series
which satisfies

∑
u∈Σ∗ |rA(u)| ≤ 2 and

∑
u∈Σ∗ rA(u) = 1. Let us show that prA is not

rational. For any u ∈ Σ∗, rA(u) = ρ|u|
2 (3α|u|aτ1 − β|u|bτ2). For any integer n, there

exists an integer mn such that for any integer i, rA(anbi) > 0 iff i ≤ mn. Moreover,
it is clear that mn tends to infinity with m. Suppose now that prA is rational and let L
be its support. From the Pumping Lemma, there exists an integer N such that for any
word w = uv ∈ L satisfying |v| ≥ N , there exists v1, v2, v3 such that v = v1v2v3 and
L ∩ uv1v∗2v3 is infinite. Let n be such that mn ≥ N and let u = an and v = bmn .
Since w = uv ∈ L, L ∩ anb∗ should be infinite, which is is false. Therefore, L is not
the support of a rational language. �

3
2

q1 q2− 1
2

τ1

a, ρα ; b, ρ

τ2

a, ρ ; b, ρβ

Fig. 2. An example of pseudo-
stochastic rational languages which
are not rational

Different rational series may yield the same
pseudo-rational stochastic language. Is it decidable
whether two pseudo-stochastic rational series define
the same stochastic language? Unfortunately, the an-
swer is no. The proof relies on the following result:
it is undecidable whether a multiplicity automatonA
over Σ satisfies rA(u) ≤ 0 for every u ∈ Σ∗ [9].
It is easy to show that this result still holds for the
set of MA A which satisfy |rA(u)| ≤ λ|u|, for any
λ > 0.

120 A. Habrard, F. Denis, and Y. Esposito

1 0.575

0.632a,0.425 0.69
a,0.368

0.741
a,0.31

0.717
a,0.259 0.339a,0.283 1e-20a,0.661

0.128
a,1

0.726
a,0.872

0.377
a,0.726

0.454
a,0.623

0.518

a,0.546

a,0.482

B

q1
1 0.575

q2
0.632

q3
0.69

a, 0.425 a, 0.368

a, 0.0708

a,−0.345
a, 0.584

C

Aα

q1
λ0 1

q2
λ1 1

q3
λ2 1

a, cos α
2 a, − sin α

2

a, sin α
2

a, cos α
2 a, 1

2

Fig. 3. Aα define stochastic language which can be represented by a PA with at least 2n states
when α = π

n
. With λ0 = λ2 = 1 and λ1 = 0, the MA Aπ/6 defines a stochastic language P

whose prefixed reduced representation is the MA B (with approximate values on transitions). In
fact, P can be computed by a PDA and the smallest PA computing it is C.

Proposition 3. It is undecidable whether two rational series define the same stochastic
language.

Proof. The proof is detailed in [8].

4 Experiments

In this section, we present a set of experiments allowing us to study the performance
of the algorithm DEES for learning good stochastic language models. Hence, we will
study the behavior of DEES with samples of distributions generated from PDA, PA
and non rational stochastic language. We decide to compare DEES to the most well
known probabilistic grammatical inference approaches: The algorithms Alergia [3] and
MDI [10] that are able to identify PDAs. These algorithms can be tuned by a parameter,
in the experiments we choose the best parameter which gives the best result on all the
samples, but we didn’t change the parameter according to the size of the sample in order
to take into account the impact of the sample sizes.

In our experiments, we use two performance criteria. We measure the size of the
inferred models by the number of states. Moreover, to evaluate the quality of the au-
tomata, we use the D1 norm1 between two models A and A′ defined by :

D1(A,A′) =
∑

u∈Σ∗ |PA(u)− PA′(u)| .
D1 norm is the strongest distance after Kullback Leibler. In practice, we use an approx-
imation by considering a subset of Σ∗ generated by A (A will be the target for us).

We carried out a first series of experiment where the target automaton can be repre-
sented by a PDA. We consider a stochastic language defined by the automaton on Fig-
ure 3. This stochastic language can be represented by a multiplicity automaton of three
states and by an equivalent minimal PDA of twelve states [6] (Alergia and MDI can

1 Note that we can’t use the Kullback-Leibler measure because it is not robust with null proba-
bility strings which implies to smooth the learned models, and also because automata produced
by DEES do not always define stochastic language, i.e. some strings may have a negative value.

Using PSRL in Probabilistic Grammatical Inference 121

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
is

ta
nc

e
D

1

Size of the learning sample

DEES
Alergia

MDI

(a) Results with distance D1

 10

 9

 8

 7

 6

 5

 4

 3

 2

 1

 0
 0 2000 4000 6000 8000 10000

N
um

be
r

of
 s

ta
te

s

Size of the learning sample

DEES
Alergia
MDI

(b) Size of the model.

Fig. 4. Results obtained with the prefix reduced multiplicity automaton of three states of Figure 3
admitting a representation with a PDA of twelve states

A :
1
2 1 21

2
1
4

a α2

4 ; b, −α−2

4

1
4

a α−2

4 ; b, α2

4

B : ε a
1
4

b, 3
4

a, 3
8 ;b, − 3

8

1
4a, − 1

6 ; b, 1
6

a, 3
4

Fig. 5. Automaton A is a PA with non rational parameters in R+ (α = (
√

5 + 1)/2). A can be
represented by an MA B with rational parameters in Q [5]

then identify this automaton). To compare the performances of the three algorithms, we
used the following experimental set up. From the target automaton, we generate sam-
ples from size 100 to 10000. Then, for each sample we learn an automaton with the
three algorithms and compute the normD1 between them and the target. We repeat this
experimental setup 10 times and give the average results. Figure 4 reports the results
obtained. If we consider the size of the learned models, DEES finds quickly the target
automaton, while MDI only begins to tend to the target PDA after 10000 examples.
The automata produced by Alergia are far from this target. This behavior can be ex-
plained by the fact that these two algorithms need significantly longer examples to find
the correct target and thus larger samples, this is also amplified because there are more
parameters to estimate. In practise we noticed that the correct structure can be found af-
ter more than 100000 examples. If we look at the distanceD1, DEES outperforms MDI
and Alergia (which have the same behavior) and begins to converge after 500 examples.

We carried out other series of experiments for evaluating DEES when the target
belongs to the class of PA. First, we consider the simple automaton of Figure 5 which
defines a stochastic language that can be represented by a PA with parameters in R+. We
follow the same experimental setup as in the first experiment, the results are reported
on Figure 6. According to our 2 performance criteria, DEES outperforms again Alergia
and MDI. In fact, the target can not be modeled correctly by Alergia and MDI because
it can not be represented by a PDA. This explains why these algorithms can’t find a
good model. For them, the best answer is to produce a unigram model. Alergia even

122 A. Habrard, F. Denis, and Y. Esposito

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
is

ta
nc

e
D

1

Size of the learning sample

DEES
Alergia

MDI

(a) Results with distance D1

 0

 1

 2

 3

 4

 5

 6

 0 2000 4000 6000 8000 10000

N
um

be
r

of
 s

ta
te

s

Size of the learning sample

DEES
Alergia
MDI

(b) Size of the model.

Fig. 6. Results obtained with the target automaton of Figure 5 admitting a representation in the
class PA with non rational parameters

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25

D
is

ta
nc

e
D

1

Number of states of the target

DEES
Alergia

Learning Sample

(a) Results with distance D1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

N
um

be
r

of
 s

ta
te

s
of

 th
e

re
su

lt

Number of states of the target

DEES
Alergia
line y=x

(b) Size of the model.

Fig. 7. Results obtained from a set of PA generated randomly

diverge at a given step (this behavior is due to its fusion criterion that becomes more
restrictive with the increasing of the learning set) and MDI returns always the unigram.
DEES finds the correct structure quickly and begins to converge after 1000 examples.
This behavior confirms the fact DEES can produce better models with small samples
because it constructs small representations. On the other hand, Alergia and MDI seem
to need a huge number of examples to find a good approximation of the target, even
when the target is relatively small.

We made another experiment in the class of PA. We study the behavior of DEES
when the learning samples are generated from different targets randomly generated.
For this experiment, we take an alphabet of three letters and we generate randomly
some PA with a number of states from 2 to 25. The PA are generated in order to have a
prefix representation which guarantees that all the states are reachable. The rest of the
transitions and the values of the parameters are chosen randomly. Then, for each target,
we generate 5 samples of size 300 times the number of states of the target. We made
this choice because we think that for small targets the samples may be sufficient to find
a good approximation, while for bigger targets there is a clear lack of examples. This
last point allows us to see the behaviors of the algorithms with small amounts of data.
We learn an automaton from each sample and compare it to the corresponding target.
Note that we didn’t use MDI in this experiment because this algorithm is extremely

Using PSRL in Probabilistic Grammatical Inference 123

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
is

ta
nc

e
D

1

Size of the learning sample

DEES
Alergia

MDI

(a) Results with distance D1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
r

of
 s

ta
te

s

Size of the learning sample

DEES
Alergia

MDI

(b) Size of the model.

Fig. 8. Results obtained with samples generated from a non rational stochastic language

hard to tune, which implies an important cost in time for finding a good parameter. The
parameter of Alergia is fixed to a reasonable value kept for all the experiment. Results
for Alergia and DEES are reported on Figure 7. We also add the empirical distance of
the samples to the target automaton. If you consider the D1 norm, the performances
of Alergia depend highly on the empirical distribution. Alergia infers models close, or
better, than those produced by DEES only when the empirical distribution is already
very good, thus when it is not necessary to learn. Moreover, Alergia has a greater vari-
ance which implies a weak robustness. On the other hand, DEES is always able to learn
significantly small models almost always better, even with small samples.

Finally, we carried out a last experiment where the objective is to study the behavior
of the three algorithms with samples generated from a non rational stochastic language.
We consider, as a target, the stochastic language generated using the pr algorithm from
the automaton of Figure 2 (note that this automaton admits a prefix reduced represen-
tation of 2 states). We took ρ = 3/10, α = 3/2 and β = 5/4. We follow the same
experimental setup than the first experiment. Since we use rational representations, we
measure the distance D1 from the automaton of Figure 2 using a sample generated by
pr (i.e. we measure theD1 only for strings with a strictly positive value). The results are
presented on Figure 8. MDI and Alergia are clearly not able to build a good estimation
of the target distribution and we see that their best answer is to produce a unigram. On
the other hand, DEES is able to identify a structure close to the MA that was used for
defining the distribution and produces good automata after 2000 examples. This means
that DEES seems able to produce pseudo-stochastic rational languages which are closed
to a non rational stochastic distribution.

5 Conclusion

In this paper, we studied the class of pseudo-stochastic rational languages (PSRL) that
are stochastic languages defined by multiplicity automata which do not define stochas-
tic languages but share some properties with them. We showed that it is possible to
decide wether an MA defines a PSRL, but we can’t decide wether two MA define the
same PSRL. Moreover, it is possible to define a stochastic language from these MA
but this language is not rational in general. Despite of these drawbacks, we showed

124 A. Habrard, F. Denis, and Y. Esposito

experimentally that DEES produces MA computing pseudo-stochastic rational lan-
guages that provide good estimates of a target stochastic language. We recall here that
DEES is able to output automata with a minimal number of parameters which is clearly
an advantage from a machine learning standpoint, especially for dealing with small
datasets. Moreover, our experiments showed that DEES outperforms standard prob-
abilistic grammatical inference approaches. Thus, we think that the class of pseudo-
stochastic rational languages is promising for many applications in grammatical in-
ference. Beyond the fact to continue the study of this class, we also plan to consider
methods that could infer a class of MA strictly greater than the class of PSRL. We also
began to work on an adaptation of the approaches presented in this paper to trees.

References

1. J. Berstel and C. Reutenauer. Les séries rationnelles et leurs langages. Masson, 1984.
2. V.D. Blondel and J.N. Tsitsiklis. A survey of computational complexity results in systems

and control. Automatica, 36(9):1249–1274, September 2000.
3. R.C. Carrasco and J. Oncina. Learning stochastic regular grammars by means of a state

merging method. In Proceedings of ICGI’94, LNAI, pages 139–150. Springer, 1994.
4. F. Denis and Y. Esposito. Learning classes of probabilistic automata. In Proceedings

COLT’04, volume 3120 of LNCS, pages 124–139. Springer, 2004.
5. F. Denis and Y. Esposito. Rational stochastic language. Technical report, LIF - Université de

Provence, 2006. http://fr.arxiv.org/abs/cs.LG/0602093.
6. F. Denis, Y. Esposito, and A. Habrard. Learning rational stochastic languages. In Proceedings

of 19th Annual Conference on Learning Theory (COLT’06), 2006.
7. F.R. Gantmacher. Théorie des matrices, tomes 1 et 2. Dunod, 1966.
8. A. Habrard, F. Denis, and Y. Esposito. Using pseudo-stochastic rational languages in proba-

bilistic grammatical inference. http://fr.arxiv.org/, 2006. Extended version.
9. A. Salomaa and M. Soittola. Automata: Theoretic Aspects of Formal Power Series. Springer-

Verlag, 1978.
10. F. Thollard, P. Dupont, and C. de la Higuera. Probabilistic dfa inference using kullback–

leibler divergence and minimality. In Proceedings of ICML’00, pages 975–982, June 2000.

Learning Analysis by Reduction from Positive
Data�

Frantǐsek Mráz1, Friedrich Otto2, and Martin Plátek1

1 Charles University, Faculty of Mathematics and Physics
Department of Computer Science, Malostranské nám. 25

118 00 PRAHA 1, Czech Republic
mraz@ksvi.ms.mff.cuni.cz, Martin.Platek@mff.cuni.cz
2 Fachbereich Mathematik/Informatik, Universität Kassel

34109 Kassel, Germany
otto@theory.informatik.uni-kassel.de

Abstract. Analysis by reduction is a linguistically motivated method
for checking correctness of a sentence. It can be modelled by restart-
ing automata. In this paper we propose a method for learning restart-
ing automata which are strictly locally testable (SLT-R-automata). The
method is based on the concept of identification in the limit from posi-
tive examples only. Also we characterize the class of languages accepted
by SLT-R-automata with respect to the Chomsky hierarchy.

1 Introduction

Analysis by reduction [7,8,12] consists in stepwise simplifications (reductions)
of a given (lexically disambiguated) extended sentence until a correct simple
sentence is obtained, which is then accepted, or until an error is found and the
input is rejected. Each simplification replaces a short part of the sentence by an
even shorter one. Analysis by reduction can be modelled by restarting automata,
which have been studied for several years now [6,11]. However, only few tools
have been developed so far that support the design of restarting automata. In
this paper we propose a method for learning restarting automata (analysis by
reduction) from positive examples. Obviously, each restarting automaton learnt
can be used for language recognition. Thus, by learning a restarting automaton
we implicitly learn the language accepted by it, but in addition, a restarting
automaton (analysis by reduction) enables nice error localization in rejected
words/sentences (see, e.g. [7]).

Several attempts for learning restarting automata by genetic algorithms have
been made before [2,5]. The results are far from being applicable. Here we pro-
pose another method based on the concept of identification in the limit from

� F. Mráz and M. Plátek were partially supported by the Grant Agency of the Czech
Republic under Grant-No. 201/04/2102 and by the program ‘Information Society’
under project 1ET100300517. F. Mráz was also supported by the Grant Agency of
Charles University in Prague under Grant-No. 358/2006/A-INF/MFF.

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 125–136, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

126 F. Mráz, F. Otto, and M. Plátek

positive data. Our proposed method uses positive samples of simplifications (re-
ductions) and positive samples of so-called simple words (sentences) of the lan-
guage to be learnt. The new algorithm could substantially improve applicability
of restarting automata/analysis by reduction.

In this paper we describe the learning protocol for learning a subclass of
restarting automata called strictly locally testable restarting automata. Their
definition as well as the protocol for learning them is based on the notion of
strictly locally testable languages [9,14]. Further, we compare the class of lan-
guages learnable in this way to the classes of the Chomsky hierarchy.

2 Definitions and Notations

Throughout the paper we will use λ to denote the empty word. Further, |w| will
denote the length of the word w, and by ⊂ we denote the proper subset relation.

In order to define the analysis by reduction, we introduce syntactic reduction
systems.

Definition 1. A syntactic reduction system is a tuple R = (Σ,Γ,!R, LS),
where Σ is a finite nonempty input alphabet, Γ is a finite nonempty work-
ing alphabet containing Σ, !R ⊆ Γ ∗× Γ ∗ is a reduction relation, and LS ⊆ Γ ∗

is a set of simple sentential forms. Any string from Γ ∗ is called a sentential
form. The reflexive and transitive closure of !R is denoted by !∗

R.
With each syntactic reduction system R = (Σ,Γ,!R, LS) we associate the

following two languages:
– the input language of R: L(R) = { u ∈ Σ∗ | ∃ v ∈ LS : u !∗

R v },
– the characteristic language of R: LC(R) = { u ∈ Γ ∗ | ∃ v ∈ LS : u !∗

R v }.

Thus, a word u ∈ Σ∗ (a sentential form u ∈ Γ ∗) belongs to the input language
(the characteristic language) of R if and only if u can be reduced to a simple
sentential form v ∈ LS. Trivially, L(R) = LC(R) ∩Σ∗.

Definition 2. A syntactic reduction system R = (Σ,Γ,!R, LS) is called:

– length-reducing if, for each u, v ∈ Γ ∗, u !R v implies |u| > |v|;
– locally reducing if there exists a constant k > 0 such that, for each u, v ∈ Γ ∗,
u !R v implies that there exist words u1, u2, x, y ∈ Γ ∗ for which u = u1xu2
and v = u1yu2, and |x| ≤ k.

Syntactic reduction systems that are length-reducing and locally reducing are
a formalization of the analysis by reduction of the type we are interested in.
In the case of a natural language, the relation !R corresponds to a stepwise
simplification of (extended) sentences, and LS corresponds to (correct) simple
sentences. The analysis by reduction is nondeterministic in the sense that:

– one word (sentential form) can be reduced in several different ways to dif-
ferent sentential forms;

Learning Analysis by Reduction from Positive Data 127

– for a word u ∈ L(R) there can exist two or more simple sentential forms to
which u can be reduced;

– even if u ∈ LC(R), there can exist a sentential form v such that u !∗
R v, but

v �∈ LC(R).

The analysis by reduction has the so-called error preserving property:

if u !∗
R v, and u �∈ LC(R), then v �∈ LC(R).

The analysis by reduction has been modelled by several types of restarting
automata [11]. One of them is the RRWW-automaton [7]. Instead of its formal
definition we will use its alternative representation adapted from [10].

Definition 3. A restarting automaton is a system M = (Σ,Γ, I), where Σ is
an input alphabet, Γ is a working alphabet containing Σ, and I is a finite set of
meta-instructions of the following two types:

(1) A rewriting meta-instruction is of the form (El, x→ y,Er), where x, y ∈ Γ ∗

such that |x| > |y|, and El, Er ⊆ Γ ∗ are regular languages called left and
right constraints.

(2) An accepting meta-instruction is of the form (E,Accept), where E ⊆ Γ ∗ is
a regular language.

A restarting automaton M = (Σ,Γ, I) induces a length-reducing and locally
reducing syntactic reduction system R(M) := (Σ,Γ,! c

M , S(M)) as follows:

a) for each u, v ∈ Γ ∗, u ! c
M v if and only if there exist an instruction i =

(El, x→ y,Er) in I and words u1, u2 ∈ Γ ∗ such that u = u1xu2, v = u1yu2,
u1 ∈ El, and u2 ∈ Er; and

b) S(M) :=
⋃

(E,Accept)∈I E.

By ! c∗
M we denote the reflexive and transitive closure of ! c

M . Accordingly, the
restarting automaton M = (Σ,Γ, I) defines an input language L(M) and a
characteristic language LC(M):

– L(M) = {w ∈ Σ∗ | ∃z ∈ S(M) : w ! c∗
M z }, and

– LC(M) = {w ∈ Γ ∗ | ∃z ∈ S(M) : w ! c∗
M z }.

Thus, an input word (a sentential form) w is accepted by M if and only if w
can be reduced to some simple sentential form z ∈ S(M).

The problem of learning analysis by reduction/a restarting automaton consists
in learning the reduction relation ! c

M and the set of simple sentential forms
S(M). For simplicity, we will suppose a helpful teacher, which splits the problem
of learning a restarting automaton into learning individual meta-instructions.
Even knowing that abababa ! c

M ababa by some meta-instruction, we do not
know whether a subword ab was replaced by the empty word λ, or a subword
ba was replaced by λ, or some aba was rewritten to a, or some other rewriting
was applied. Therefore, we suppose an even more helpful teacher which marks
the rewritten part of such a word. In this way we reduce the problem of learning

128 F. Mráz, F. Otto, and M. Plátek

one meta-instruction to the learning of regular languages of constraints in meta-
instructions. For this we can use one of the oldest models for language learning
— the identification in the limit [4].

For a language L, a positive presentation of L is an infinite sequence {wi}∞i=1 of
words from L such that every w ∈ L occurs at least once in the sequence. Let M
be a class of automata, and let A be an algorithm which, on input {w1, . . . , wi}
(for any i ≥ 1), returns a conjecture automaton Mi ∈ M. The algorithm A is
said to learn (or identify) a language L in the limit from positive data using M
if, for any positive presentation of L, the infinite sequence of automata {Mi}∞i=1
in M produced by A satisfies the property that there exists an automaton M
in M such that L(M) = L, and for all sufficiently large i, Mi is identical to
M . A class of languages L is learnable in the limit from positive data (using M)
if there exists an algorithm A that, for each L ∈ L, learns L in the limit from
positive data using M.

Gold [4] showed that any class of languages containing all finite sets and at
least one infinite set is not learnable in the limit from positive data only. This
fact implies that even the class of regular languages is not learnable in the limit
from positive data. One of the well-known language classes which are learnable
in the limit from positive data are the strictly locally testable languages [9,14].

In the following we will use Reg, CFL, and CSL to denote the class of regular,
context-free, and context-sensitive languages, respectively. Let Pk(w) and Sk(w)
be the prefix and the suffix of a word w of length k, respectively. Further, let
Ik(w) be the set of all substrings of w of length k except the prefix and suffix of
w of length k, that is,

Ik(w) = { u | |u| = k and w = xuy, for some nonempty words x, y }.
These are defined only for |w| ≥ k. If |w| = k, then Pk(w) = Sk(w) = w, while
Ik(w) is empty, whenever k ≤ |w| ≤ k + 1. For example, P2(aababab) = aa,
S2(aababab) = ab, and I2(aababab) = {ab, ba}.
Definition 4. Let k be a positive integer. A language L ⊆ Σ∗ is strictly k-
testable if there exist finite sets A,B,C ⊆ Σk such that, for all w ∈ L satisfying
|w| ≥ k, we have

w ∈ L if and only if Pk(w) ∈ A, Sk(w) ∈ B, and Ik(w) ⊆ C.

In this case, (A,B,C) is called a triple for L.
We will say that L is strictly locally testable if it is strictly k-testable for

some k > 0.

Note that the definition of ‘strictly k-testable’ says nothing about the strings of
length k − 1 or less. Hence, L is strictly k-testable if and only if

L ∩ΣkΣ∗ = (AΣ∗ ∩Σ∗B)−Σ+(Σk − C)Σ+. (1)

For example, the language (a + b)∗ is strictly 1-testable, as (a + b)+ can be
expressed in the form (1) by (A,B,C) = ({a, b}, {a, b}, {a, b}), and the language

Learning Analysis by Reduction from Positive Data 129

a(baa)+ is strictly 3-testable, as it can be expressed in the form (1) by the triple
(A,B,C) = ({aba}, {baa}, {aba, baa, aab}).

We will denote the family of strictly k-testable languages by k-SLT and the
class of strictly locally testable languages by SLT. It is easy to see that SLT ⊂ Reg
(for example, the regular language (aa)∗ is not strictly locally testable). It is also
known that

k-SLT ⊂ (k + 1)-SLT.

Let us briefly recall a learning algorithm for strictly k-testable languages
from [13]. For a triple S = (A,B,C), where A,B,C ⊆ Σk, we use the nota-
tion L′(A,B,C) as a shorthand for the set L′(A,B,C) := A ∩ B ∩ (Σk − C).
First, we present a construction which, for a given triple S = (A,B,C), where
A,B,C ⊆ Σk, constructs a deterministic finite-state automaton (DFA) MS =
(Q,Σ, δ, q0, F) such that L(MS) = (AΣ∗ ∩Σ∗B)−Σ+(Σk − C)Σ+:

Q :=

{
QI ∪ { [x̂] | x ∈ L′(A,B,C) } if L′(A,B,C) �= ∅,
QI otherwise,

where

QI := { [λ], [a1], [a1a2], . . . , [a1 . . . ak−1] | a1 . . . ak ∈ A, a1, . . . , ak ∈ Σ }
∪ { [x] | x ∈ A ∪B ∪C }.

Further,

q0 := [λ],

F :=

{
{ [β] | β ∈ B } ∪ { [x̂] | x ∈ L′(A,B,C) } if L′(A,B,C) �= ∅,
{ [β] | β ∈ B } otherwise,

and δ is defined as follows:

(i) for each α = a1 . . . ak ∈ A (a1, . . . , ak ∈ Σ):

δ(q0, a1) := [a1],

δ([wi], ai+1] := [wiai+1], where wi = a1 . . . ai (1 ≤ i ≤ k − 2),

δ([wk−1], ak) :=

{
[α̂] if α ∈ B ∩ (Σk − C),

[α] otherwise,
where wk−1 = a1 . . . ak−1;

(ii) for each [ax], [xb] ∈ Q such that |x| = k − 1, ax ∈ A, xb ∈ B ∪ C :

δ([âx], b) := [xb] if ax ∈ B ∩ (Σk − C),

δ([ax], b) := [xb] otherwise;

(iii) for each [ax], [xb] ∈ Q such that |x| = k − 1, ax ∈ C, xb ∈ B ∪ C :

δ([ax], b) := [xb].

130 F. Mráz, F. Otto, and M. Plátek

We say that the constructed automaton MS is associated to the triple S =
(A,B,C). The constructed DFA is in general not the minimal finite-state au-
tomaton recognizing L = L(MS).

Now we present the learning algorithm LA (adapted from [13]).

Input: an integer k > 0 and a positive presentation of a target strictly k-testable
language U .

Output: a sequence of DFAs accepting strictly k-testable languages.
Procedure:

initialize E0 := ∅;
let SE0 = (∅, ∅, ∅) be the initial triple;
construct DFA ME0 accepting E0 (= ∅);
repeat (forever)

let MEi = (QEi , Σ, δEi , q0, FEi) be the current DFA;
read the next positive example wi+1;
if wi+1 ∈ L(MEi) then
Ei+1 := Ei;
MEi+1 := MEi ;

else
Ei+1 := Ei ∪ {wi+1};
construct the DFA MEi+1 associated with the triple
SEi+1 = (AEi+1 , BEi+1 , CEi+1),
where AEi+1 = AEi ∪ Pk(wi+1),

BEi+1 = BEi ∪ Sk(wi+1),
CEi+1 = CEi ∪ Ik(wi+1).

output Mi+1.

Yokomori and Kobayashi have shown that LA learns in the limit a DFA ME

such that U = L(ME).

Fact 5. [13] Let ME0,ME1 , . . . ,MEi, . . . be the sequence of DFAs produced by
the above algorithm LA. Then

1. for each i ≥ 0, L(MEi) ⊆ L(MEi+1) ⊆ U , and
2. there exists r > 0 such that, for each i ≥ 0,MEr = MEr+i, and L(MEr) = U .

We now define a restricted version of restarting automata, which use strictly
k-testable languages only.

Definition 6. Let k be a positive integer and Γ be an alphabet.

– We say that a rewriting meta-instruction (El, x→ y,Er), where El, Er ⊆ Γ ∗

and x, y ∈ Γ ∗, is strictly k-testable, i f the languages El, Er are strictly k-
testable and k ≥ |x| > |y|.

– We say that an accepting meta-instruction (E,Accept), where E ⊆ Γ ∗, is
strictly k-testable if E is strictly k-testable.

Learning Analysis by Reduction from Positive Data 131

– We say that a restarting automaton M is strictly k-testable if all its meta-
instructions are strictly k-testable.

– We say that a restarting automaton is strictly locally testable, if it is strictly
k-testable for some k ≥ 1.

Let k-SLT-R denote the class of all strictly k-testable restarting automata, and
let SLT-R denote the class of all strictly locally testable restarting automata. For
any class of restarting automata A, L(A) denotes the class of all input languages
recognized by automata from A.

Below we present an example of an SLT-R-automaton.

Example 1. Let M = ({a, b}, {a, b}, I) be the restarting automaton defined by
the following three meta-instructions:

1. (a+ b,Accept),
2. (a∗, aa→ b, b∗),
3. (b∗, bb→ a, a∗).

This automaton accepts the language

L(M) = { a2ibj | i, j ≥ 0, i+ j = 2n for some n ≥ 0 } ∪
{ b2iaj | i, j ≥ 0, i+ j = 2n for some n ≥ 0 }.

It is easy to check that all the constraints in the above instructions are strictly
2-testable languages. Hence, M is a strictly 2-testable restarting automaton.

Example 2. To illustrate our approach we now consider the process of learning an
unknown target language together with its analysis by reduction. Let us suppose
that we know that the target language contains the words abc, aabbc, aaabbbc,
aabbbbd, abbd, and that the following reductions (on words which need not belong
to the target language) are possible (the rewritten subwords are underlined):

aaaabbbbc ! aaabbbc,
aaabbbbbbc ! aabbbbbc,
aaaabbbbbbd ! aaabbbbd,
aaabbbbbbd ! aabbbbd.

In this extremely simple example we can see that two types of rewritings
ab → λ and abb → λ are used. We decide that we want to learn two meta-
instructions. The first meta-instruction should enable the first two reductions,
and the second meta-instruction should enable the remaining two reductions. In
general, the partition of the set of sample reductions into groups which should
be realized by different meta-instructions must be done by a helpful teacher.

The first meta-instruction will be of the form

(EL,1, ab→ λ,ER,1),

where the language EL,1 contains the words aaa, aa, and the second language
ER,1 contains the words bbbc, bbbbbc. This meta-instruction can be learnt as

132 F. Mráz, F. Otto, and M. Plátek

a strictly k-testable meta-instruction, for k ≥ 2, as the rewritten part is of
length 2. Using the words aaa, aa as the first two positive examples for the
strictly locally-testable language EL,1, the algorithm LA with k = 2 produces
the triple ({aa}, {aa}, {aa}). This triple represents the language aaa∗. Further,
using bbbc, bbbbbc as input for LA with k = 2, we get the triple ({bb}, {bc}, {bb}),
which represents the language bbb∗c. Hence we get the first meta-instruction

(a) (aaa∗, ab→ λ, bbb∗c).

In an analogous way, the second rewriting meta-instruction can be learnt from
the last two examples of reductions:

aaaabbbbbbd ! aaabbbbd and aaabbbbbbd ! aabbbbd.

The learnt strictly 3-testable meta-instruction (as there are 3 symbols deleted
in one reduction) is

(b) (aaaa∗, abb→ λ, bbbb∗d).

Now we know that the meta-instruction (a) can describe reductions of words
of length at least 7 and the meta-instruction (b) can describe reductions of
words of length at least 10. Let us now suppose that we know all “short words”
of the target language of length at most 7. Hence, we can use the set of words
S = {abc, aabbc, aaabbbc, aabbbbd, abbd} as an input for LA in order to learn the
language of simple sentential forms. For each k < 6, the algorithm LA with input
S learns also at least one word of length at most 7 which does not belong to S.
For k = 6, LA learns the strictly 6-testable language {aabbbbd, aaabbbc}.

Thus, we have learnt a 6-SLT-R-automaton M = ({a, b, c, d}, {a, b, c, d}, I)
with three meta-instructions:

(a) (aaa∗, ab→ λ, bbb∗c),
(b) (aaaa∗, abb→ λ, bbbb∗d),
(c) (aaabbbc+ aabbbbd,Accept).

M accepts the language L = { anbnc | n ≥ 3 }∪{ anb2nd | n ≥ 2 }. This is a fairly
good approximation for the language L0 = { anbnc | n ≥ 1 }∪{ anb2nd | n ≥ 1 },
which is known to be context-free but not deterministic context-free.

Actually we have learned analysis by reduction with two reduction rules and
a single accepting rule:

(a) If a word is a sequence of a’s followed by a sequence of b’s finished by the
letter c (of length at least 7), then it can be simplified by deleting the subword
ab.

(b) If a word is a sequence of a’s followed by a sequence of b’s finished by the
letter d (of length at least 10), then it can be simplified by deleting the
subword abb.

(c) The words aaabbbbc and aabbbbd belong to the language.

Learning Analysis by Reduction from Positive Data 133

All SLT-R-automata can be learnt in the way proposed above. In the next section
we will characterize the class of languages, which can be learnt in this way.

Note that according to [4] the class of strictly locally testable languages (SLT)
as a whole is not learnable in the limit from only positive data. However, the
inference algorithm can be used effectively to identify any language from this
class in the limit through a complete (both positive and negative) presentation
sequence of the language [3]. This can be accomplished by starting with k = 2
and using successive positive samples to infer progressively larger (less restricted)
2-SLT’s until a negative sample, which is incompatible with the current language,
appears. Then k is increased by one, and the process continues in the same way
with the successive samples. Eventually, the correct value of k will be reached and
then no other negative sample will ever be incompatible. The inferred language
will then grow progressively with the successive positive samples until the target
k-SLT is identified.

The above learning protocol can be used also for learning strictly locally
testable rewriting meta-instructions, but it requires a helpful teacher as fol-
lows. Suppose a learner is being taught a rewriting meta-instruction of the form
(El, aba → b, Er). Knowing that aba cannot be rewritten into b in the word
aabaaaa, it is possible that:

– either a �∈ El and aaa ∈ Er, or
– a ∈ El and aaa �∈ Er, or
– a �∈ El and aaa �∈ Er.

Hence, this information must be supplied by a teacher.

3 Characterization of the Class of SLT-R-Languages

SLT-R-automata are quite powerful. They can accept all growing context-sensi-
tive languages (GCSL) as input languages. Growing context-sensitive languages
are the languages generated by growing context-sensitive grammars. A Chomsky
grammarG = (VN , VT , S, P) with a set of nonterminals VN , a set of terminals VT ,
an initial nonterminal S ∈ VN and a set of rules P is growing context-sensitive
if the start symbol S does not appear on the right-hand side of any production
of G, and if |α| < |β| holds for all productions (α→ β) ∈ P satisfying α �= S.

Theorem 1. GCSL ⊂ L(SLT-R) ⊆ CSL.

Proof. Let G = (VN , VT , S, P) be a growing context-sensitive grammar. We con-
struct an SLT-R-automaton M = (Σ,Γ, I) recognizing L(M) = L(G). To this
end we take Σ := VT , Γ := (VN � {S}) ∪ VT , and

I := {({β | S → β ∈ P},Accept)}∪{ (Γ ∗, β → α, Γ ∗) | α �= S, and α→ β ∈ P }.

Trivially, M works as an analytical version of the grammar G without the rules
with the initial nonterminal S, but M directly accepts (without any reduction)

134 F. Mráz, F. Otto, and M. Plátek

all right-hand sides of productions with left-hand side S. Hence L(M) = L(G).
This implies that GCSL ⊆ L(SLT-R).

Moreover, the language Lcopy = {w#w | w ∈ {a, b}∗ }, which is not growing
context-sensitive (see [1]), can be accepted by the following SLT-R-automaton
Mcopy = (Σ,Γ, Icopy), where Σ = {a, b,#}, Γ = Σ ∪ {Axy | x, y ∈ {a, b}}, and
Icopy consists of the following meta-instructions:

(1) (xy(a+ b)∗#, xy → Axy, (a+ b)∗), for each x, y ∈ {a, b};
(2) (λ, xy → Axy, (a+ b+ #Axy)∗), for each x, y ∈ {a, b};
(3) (Axy(a+ b)∗#, Axy → λ, (a+ b)∗), for each x, y ∈ {a, b};
(4) (λ,Axy → λ, (a+ b + #)∗), for each x, y ∈ {a, b};
(5) (# + a#a+ b#b, Accept).

Each meta-instruction of Mcopy preserves the number of occurrences of the sym-
bol # in the current word. All words accepted byMcopy using the single accepting
meta-instruction (5) contain exactly one occurrence of #. Hence, each word ac-
cepted by Mcopy contains exactly one occurrence of #. For an input word w of
length at least 4 and of the form (a + b)∗#(a + b)∗, the only applicable meta-
instruction is a meta-instruction of form (1). In the resulting word, # is followed
by the working symbol Axy, where x, y ∈ {a, b} are the first two symbols of the
word. Such a word can be reduced only by a meta-instruction of form (2). Fur-
ther, Mcopy must use appropriate meta-instructions of forms (3) and (4). This
is possible only if the word is of the form w = xyu#xyv for some x, y ∈ {a, b},
u, v ∈ {a, b}∗. After executing 4 meta-instructions, Mcopy obtains the word u#v.
Now it is easy to see that Mcopy accepts exactly the language Lcopy. Moreover,
all meta-instructions in Icopy are strictly 2-testable. Thus, GCSL ⊂ L(SLT-R).

On the other hand, each restarting automaton can be simulated by a linear
bounded automaton, from which it follows that L(SLT-R) ⊆ CSL. �

For a restarting automaton M = (Σ,Γ, I), the symbols from Γ − Σ are
called auxiliary symbols. From a practical point of view, analysis by reduction
without auxiliary symbols enables the most transparent analysis with the best
error localization.

Theorem 2. Each regular language can be accepted by an SLT-R-automaton
without auxiliary symbols.

Proof. For each regular language L ⊆ Σ∗, there exists a finite-state automaton
A recognizing L. Let k denote the number of states of A. Reading a prefix of a
word from Σ∗ of length at least k − 1, the automaton A must pass some state
at least two times. Hence, for each word z of length k − 1, there exist words
u, v, w ∈ Σ∗ such that z = uvw, v �= λ, and the automaton A is in the same
state after reading both prefixes u and uv. Hence, for each word x ∈ Σ∗, we
have uvwx ∈ L if and only if uwx ∈ L. Hence, we can construct a (k − 1)-SLT-
automaton M = (Σ,Σ, I) accepting L in the following way. M will have one
accepting meta-instruction

(L ∩Σ<k−1,Accept),

Learning Analysis by Reduction from Positive Data 135

which is (k−1)-SLT. For each z ∈ Σk−1, the automaton M will have a rewriting
meta-instruction

({λ}, z → uw,Σ∗), where z = uvw and u, v, w are the words from above,

which is also (k − 1)-SLT. It is easy to see that

– if |x| < k − 1, then x ∈ L if and only if x ∈ L(M),
– if |x| ≥ k−1, then there exists a word x′ ∈ Σ∗, |x′| < |x|, such that x ! c

M x′,
and x ∈ L if and only if x′ ∈ L.

From this it follows that L(M) = L. �
Note that the SLT-R-automaton M constructed in the above proof only uses a
finite language in its single accepting meta-instruction, and that all its rewriting
instruction enable only the language {λ} in their left constraints.

The above theorem shows that Reg ⊆ L(SLT-R). This inclusion is proper even
if we consider SLT-R-automata without auxiliary symbols (or consider SLT-R-
automata recognizing characteristic languages). Such automata can accept even
some non-context-free languages (see the automaton M from Example 1). The-
orem 1 implies that each context-free language can be accepted by an SLT-R-
automaton. Unfortunately, restarting automata without auxiliary symbols can-
not accept all context-free languages. In [7] it is shown that the context-free
language

L = { anbn | n ≥ 0 } ∪ { anbm | m > 2n ≥ 0 }
cannot be accepted by any restarting automaton without auxiliary symbols.
Hence we obtain the following consequence.

Theorem 3. CFL ⊂ L(SLT-R), but there exist context-free languages which can-
not be accepted by any SLT-R-automaton without auxiliary symbols.

4 Conclusions

There are many possible approaches for learning analysis by reduction/restarting
automata. Our proposed method which reduces it to learning the corresponding
set of meta-instructions has several advantages:

1. The whole task of learning a restarting automaton can be split into smaller
tasks of learning one meta-instruction at a time. Learning several simpler
meta-instructions should be computationally simpler than learning the whole
language at once.

2. For learning different meta-instructions we can use different models and al-
gorithms for learning regular languages.

3. The learning can be done in an incremental way. First we can learn some
basic meta-instructions which define only a subset of the target language.
Then we can continue to learn new meta-instructions to improve our ap-
proximation of the target language.

136 F. Mráz, F. Otto, and M. Plátek

4. A rewriting meta-instruction of a restarting automaton M is called cor-
rectness preserving if, for each rewriting u !c

M v according to this meta-
instruction, it holds that u ∈ LC(M) iff v ∈ LC(M). If we succeed to
learn correctness preserving meta-instructions, then it is possible to learn
the target language in parallel. That is, two or more (correctness preserv-
ing) meta-instructions can be learned separately and finally put together in
one automaton.

The proposed approach can use any known algorithm for learning regular
languages. Accordingly, we plan to also consider other learning protocols like
learning from positive and negative examples, learning using membership and
equivalence queries, etc.

References

1. G. Buntrock and F. Otto. Growing context-sensitive languages and Church-Rosser
languages. Information and Computation, 141:1–36, 1998.

2. J. Čejka. Learning correctness preserving reduction analysis. BSc. project, Faculty
of Mathematics and Physics, Charles University, Prague, 2003. In Czech.

3. P. Garcia and E. Vidal. Inference of k-testable languages in the strict sense and ap-
plication to syntactic pattern recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12:920–925, 1990.

4. E. M. Gold. Language identification in the limit. Information and Control, 10:447–
474, 1967.

5. P. Hoffmann. Learning restarting automata by genetic algorithms. In M. Bieliková,
ed., SOFSEM 2002: Student research forum, Milovy, Czech Republic, 15–20, 2002.

6. P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata. In H. Reichel,
ed., FCT’95, Proc., LNCS 965, Springer, Berlin, 283–292, 1995.

7. P. Jančar, F. Mráz, M. Plátek, and J. Vogel. On monotonic automata with a restart
operation. Journal of Automata, Languages and Combinatorics, 4:287–311, 1999.

8. M. Lopatková, M. Plátek, and V. Kuboň. Modeling syntax of free word-order
languages: Dependency analysis by reduction. In V. Matoušek, P. Mautner and
T. Pavelka, eds, TSD 2005, Proc., LNCS 3658, Springer, Berlin, 140–147, 2005.

9. R. McNaughton. Algebraic decision procedures for local testability. Mathematical
Systems Theory, 8:60–76, 1974.

10. G. Niemann and F. Otto. On the power of RRWW-automata. In M. Ito, G. Pǎun,
and S. Yu, eds., Words, Semigroups, and Transductions. World Scientific, Singa-
pore, 341–355, 2001.

11. F. Otto. Restarting automata and their relation to the Chomsky hierarchy. In
Z. Ésik and Z. Fülöp, eds., DLT 2003, Proc., LNCS 2710, Springer, Berlin, 55–74,
2003.

12. M. Plátek, M. Lopatková, and K. Oliva. Restarting automata: motivations and ap-
plications. In: M. Holzer (ed.), Workshop ‘Petrinetze’ and 13. Theorietag ‘Formale
Sprachen und Automaten’, Proc., Institut für Informatik, Technische Universität
München, 90–96, 2003..

13. T. Yokomori, and S. Kobayashi. Learning local languages and their application
to DNA sequence analysis. IEEE Trans. on Pattern Anal. and Machine Intell.,
20:1067–1079, 1998.

14. Y. Zalcstein. Locally testable languages. Journal of Computer and System Sciences,
6:151–167, 1972.

Inferring Grammars for Mildly Context
Sensitive Languages in Polynomial-Time

Tim Oates1, Tom Armstrong1, Leonor Becerra Bonache2, and Mike Atamas1

1 University of Maryland Baltimore County
Baltimore, MD 21250 USA

{oates, arm1, m39}@umbc.edu
2 Rovira i Virgili University

Pl. Imperial Tarraco 1, 43005, Tarragona, Spain
leonor.becerra@estudiants.urv.es

Abstract. Natural languages contain regular, context-free, and context-
sensitive syntactic constructions, yet none of these classes of formal lan-
guages can be identified in the limit from positive examples. Mildly
context-sensitive languages are able to represent some context-sensitive
constructions, those most common in natural languages, such as mul-
tiple agreement, crossed agreement, and duplication. These languages
are attractive for natural language applications due to their expressive-
ness, and the fact that they are not fully context-sensitive should lead
to computational advantages as well. We realize one such computational
advantage by presenting the first polynomial-time algorithm for inferring
Simple External Context Grammars, a class of mildly context-sensitive
grammars, from positive examples.

1 Introduction

Despite the fact that every normal child masters his native language, the learn-
ing mechanisms that underly this distinctly human feat are poorly understood.
The ease with which children learn language belies the underlying complexity of
the task. They face a number of theoretical challenges, including apparently in-
sufficient data from which to learn lexical semantics (Quine’s “gavagai” problem
[1]) or syntax (Chomsky’s “argument from the poverty of the stimulus” [2]). For
example, it is known that many classes or formal languages, such as regular and
context-free, cannot be learned solely from positive examples, i.e., strings that
are in the (regular or context-free) language to be learned [3]. This is problematic
because children either do not receive negative examples (i.e., strings that are
not in the language to be learned) or pay little attention when such examples
are presented [4].

There are a few standard ways of avoiding these theoretical obstacles to learn-
ing syntax from positive examples. One is to assume the existence of information
in addition to positive examples that comprise the training data. For example,
most algorithms for learning context-free grammars from positive examples as-
sume that each example is paired with its unlabeled derivation tree, which is the
parse tree for the string from which the non-terminal labels on the interior nodes

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 137–147, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

138 T. Oates et al.

have been removed [5,6]. An alternative is to restrict the class of languages from
which the language to be learned can be drawn. A variety of subsets of the set
of all regular languages are known to be learnable from positive examples [7].

These approaches to learning the syntax of formal languages are problem-
atic when applying the resulting algorithms to learning the syntax of natural
languages. For example, the additional information assumed to exist may in
fact not be available to children. For example, children clearly do not receive
utterances paired with unlabeled derivation trees (though see [8] for a method
for inferring these trees from the sensory context). Also, natural languages ex-
hibit some syntactic constructions that are regular, some that are context-free,
and some that are context-sensitive. Therefore, restricted classes of regular or
context-free languages have insufficient expressiveness.

In this paper, we present a polynomial-time algorithm for learning Simple
External Contextual (SECp) languages from positive data. SECp languages are
mildly context sensitive. That is, they can express the context-sensitive syntac-
tic constructions that are most prevalent in natural languages, such as multiple
agreement, crossed agreement, and duplication [9]. In addition, neither the reg-
ular languages nor the context-free languages are a proper subset of the SECp

languages. That is, there exist regular and context-free languages for which no
corresponding SECp language exists.

Because expressiveness and computational tractability are typically inversely
related, the goal of most mildly context-sensitive languages is to provide suffi-
cient context sensitivity for natural language applications while keeping open the
possibility of polynomial-time algorithms for standard tasks such as parsing and
grammar induction. Currently, the most efficient algorithm known for learning
SECp languages from positive examples is exponential [10]. This paper presents
the first polynomial-time algorithm for learning SECp languages from positive
data, and proves its correctness, thereby realizing the computational advantages
of the restricted expressiveness of SECp languages.

The remainder of this paper is organized as follows. Section 2 describes Ex-
ternal Contextual grammars and Simple External Contextual grammars in more
detail. Section 3 describes our algorithm for learning SECp grammars from pos-
itive data. Section 4 establishes various theorems about the correctness of the
algorithm. Finally, Section 5 concludes and points to future work.

2 External Contextual Grammars

This section reviews Mildly Context-Sensitive grammars beginning with Exter-
nal Contextual (ECp) grammars and then a subset of them called Marcus Simple
Many-Dimensional External Contextual (SECp) grammars.

An ECp grammar is a three-tuple G = (Σ,A,N), Σ is the alphabet of G, A
is a finite set of p-words over Σ called the axioms of G, and N is a finite set of
productions. A production is a pair, (S,C) where S is a set of selectors, strings
over Σ∗, and C is a p-context. The parameter p ∈ N specifies the dimensionality
of the p-words and p-contexts.

Inferring Grammars for Mildly Context Sensitive Languages 139

A p-word x over Σ is a p-dimensional vector whose components are strings
over Σ, i.e., x = (x1, x2, ..., xp), where xi ∈ Σ∗. A p-context c over Σ is a p-
dimensional vector whose components are contexts over Σ, i.e., c = [c1, c2, ..., cp]
where ci = (ui, vi), ui, vi ∈ Σ∗, 1 ≤ i ≤ p. We denote vectors of words with
parentheses, and vectors of contexts with square brackets. Strings in the lan-
guage of the grammar are derived by applying contexts to the axioms and subse-
quent strings (wrapping elements of p-contexts around corresponding elements
of p-words) if an element of the selector set matches a substring of the derivation
(e.g. maximal matching) for the context. For the remainder of the paper, we con-
sider languages with maximal matching selector sets containing Σ∗. The number
of contexts applied in a derivation of a string is called the depth of the string.

Let x = (x1, x2, ..., xp) and y = (y1, y2, ..., yp) be two p-words over Σ. By
definition, x ⇒G y iff y = (u1x1v1, u2x2v2, ..., upxpvp) for some p-context c =
[(u1, v1), (u2, v2), ..., (up, vp)] ∈ C.

The ECp language family is superfinite (a language class is superfinite if it
contains every finite language and at least one infinite language) and therefore
is not learnable in the limit from positive data [3]. All finite languages can be
represented in ECp by a grammar consisting of a finite set of axioms and an
empty set of productions. We restrict the class of languages to Simple External
Contextual (SECp) grammars where the axiom set contains a single p-word over
Σ. SECp grammars are further specified by a parameter q, the degree of the
grammar or the number of productions, and can be abbreviated by SECq

p.
The SECp family spans multiple language classes in the Chomsky hierar-

chy (see figure 1). Both are strictly contained in the class of context-sensitive
languages and are incomparable with the classes of context-free and regular lan-
guages. Yet they can express the context-sensitive syntactic constructions that
are most prevalent in natural languages.

Consider the SEC1
2 grammar G, the three-tuple, ({a, b, c}, {(λ, λ)}, {({w|w ∈

Σ∗}, [(a, b), (c, λ)])}). The derivation of the string aabbcc is the application of
the context twice to the axiom: (λ, λ) ! (aλb, cλλ) ! (aaλbb, ccλλλ). Finally the
internal strings are concatenated resulting in aabbcc. Note that L(G) = {anbncn |
n ≥ 0}.

3 Induction Algorithm

The input to our algorithm is a set of strings, S, in an SECq
p language where the

dimensionality, p, and degree, q, are known. S must contain at least all strings
in the language up to a depth d (the value of d is discussed later). The shortest
string in S is the concatenation of the elements in the axiom. However, there are
multiple possibilities for what the actual axiom is (depending on the dimension-
ality of the language). From the shortest string, a set of possible axioms, A, is
generated. For example, if p=2 and the shortest string in S is aa, then the set
of possible axioms is {(λ, aa), (a, a), (aa, λ)}.

Each subsequent string in S is derived beginning with the axiom and some
number of context applications. For every aj ∈ A, every further element of S

140 T. Oates et al.

Fig. 1. The SECp family spans multiple language classes in the Chomsky hierarchy

is processed assuming that its derivation is of depth one (i.e. a set of candidate
contexts can be generated by inferring contexts that derive a string from the
axiom in one step) and the contexts stored in a set P . Next, all ways of choosing
q elements from P are paired with the axiom to form grammars. Each candidate
grammar, G’, is used to derive all the strings in L(G′) up to depth d. If Ld(G′) �⊆
S or G’ cannot parse all of the strings in S − Ld(G′), then G’ is removed from
the set of candidate grammars. Additional strings in the input set increase the
number of candidate grammars, but will not exclude grammars. Later, we prove
that if a grammar, G, generates only Ld(G) in derivations up to depth d, then
G generates L(G).

Consider the following example, an input set S = {a, aaa, bab, ababa, baaab,
aaaaa, bbabb} for a language generated by an SEC2

1 grammar. The input is ex-
haustive up to depth 2. The shortest string in S is a and, because p = 1, (a) is
the only possible axiom. Assuming that aaa was generated by a single applica-
tion of a context to (a), the possible contexts that can generate the input set
are {[(λ, aa)], [(a, a)], [(aa, λ)]}. This is done again for bab, resulting in {[(b, b)]},
and for the remainder of the strings in the input set. All of the possible pairs
of contexts are then put in a set G. The only gi ∈ G that can generate S and
only generate S is {[(a, a)], [(b, b)]}; the rest are discarded. In this example, there
was only one possible axiom. If this language had been SEC2

2, then the possible
axioms would have been {[(λ, a)], [(a, λ)]}. Unlike this example, input sets can
be generated by several grammars, some of which have distinct axioms.

The running time of the algorithm (see figure 2) depends upon the dimen-
sionality and degree of the grammar, the size of the axiom, and the max-
imum depth of the input set. Given the shortest string, the axiom, in the
input set, there are (|axiom| + 1)p−1 possible axioms (inserting p-1 separa-
tions into the shortest string). Given a string si, all of the possible contexts to

Inferring Grammars for Mildly Context Sensitive Languages 141

infer-grammar(d, p, q, inputSet)
1 shortest ← find-shortest(inputSet)
2 axioms ← generate-possible-axioms(p, shortest)
3 finalGrammars ← {}
4 result ← {}
5
6 for axiom ∈ axioms
7 do possibleContexts ← {}
8 for i ∈ inputSet
9 do possibleContexts.push[generate-possible-contexts(i, axiom)]

10
11 possibleGrammars ← generate-all-context-combinations(possibleContexts)
12 for j ∈ possibleGrammars
13 do if can-generate-all-strings(j, axiom)
14 then finalGrammars.push[{j, axiom}]
15
16 for k ∈ finalGrammars
17 do if generates-exact-list(d, k, inputSet)
18 then result.push[k]
19 return(result)

Fig. 2. Pseudocode of the inference algorithm

derive si with one application is at most (|s| + 1)2p. Given the set of all con-
texts from above, we can pick all sets of contexts of size q, or

((|s|+1)2p

q

)
. Given

a candidate grammar, all of the strings that it generates up to a depth of
d can be enumerated and compared to elements in the input set in at most
(
∑d

i=1 q
i) ∗ |inputSet| steps. Therefore, the cost of the nested loop is bounded

by (
∑d

i=1 q
i) ∗ |inputSet| ∗ ((|s|+1)2p

q

) ∗ (|axiom|+ 1)p−1.
What we will next prove is that the size of the input set is finite and small (in

some cases depth 3 suffices), and that with a small dimension, degree and axiom,
the problem of inferring the grammar with our algorithm becomes tractable.

4 Proof of the Existence of a Characteristic Sample

We prove that a finite sample of the language, a characteristic sample, is sufficient
to infer a grammar for the language. Let G and G’ be minimal SECp grammars
as follows:

G = (p, q, A, C1, C2, ..., Cq)
G’ = (p’, q’, A’, C1’, C2’, ..., Cq’)

A is the axiom and Ci is a context. Assume that p = p’ and q = q’. A grammar
is minimal if there is no other grammar with smaller values of p or q with the
same language.

For a vector of strings X, let CONCAT(X) equal the string obtained by con-
catenating all strings in X in the order in which they occur. We use the sym-
bol / to denote application of a production. For example, Ci/A is the p-vector

142 T. Oates et al.

obtained by applying context Ci to axiom A. Let Ld(G) be the set of strings
in L(G) that require d or fewer derivation steps. L0(G) = {CONCAT(A)}. We
want to prove the following theorem.

Theorem 1. L(G) = L(G’) and CONCAT(Ci/A) �= CONCAT(Cj/A) for i �=
j and 1 ≤ i, j ≤ q if and only if Ld(G) = Ld(G’) for an appropriately small d
and minimal grammars, G and G’.

We now prove a series of lemmas and theorems to this end.

Lemma 1. If L(G) = L(G’) then CONCAT(A) = CONCAT(A’).

Proof. Suppose L(G) = L(G’) but CONCAT(A) �= CONCAT(A’). The shortest
string in L(G) is CONCAT(A) because all other contexts, being non-empty, add
characters when applied to the axiom. If CONCAT(A) �= CONCAT(A’) then
the shortest string in L(G) is not equal to the shortest string in L(G’), which
means that L(G) �= L(G’). This is a contradition, so CONCAT(A) must equal
CONCAT(A’). �
Lemma 2. If L(G) = L(G’) and CONCAT(Ci/A) �= CONCAT(Cj/A) for i �=
j and 1 ≤ i, j ≤ q, then there is a bijective mapping (one-to-one and onto) f from
contexts in G to contexts in G’ such that CONCAT(Ci/A) = CONCAT(C’f(i)
/A’). That is, for each Ci in G there exists precisely one C’j in G’ such that
CONCAT(Ci/A) = CONCAT(C’j/A’), and for each C’i in G’ there exists pre-
cisely one Cj in G such that CONCAT(C’i/A’) = CONCAT(Cj/A).

Proof. Suppose that no bijective mapping, f, from contexts in G to contexts in G’
such that CONCAT(Ci/A) = CONCAT(C’f(i)/A’) exists. Without such a map-
ping, there is a string in L(G) and L(G’), S, that is the least criminal, the shortest
string violating this mapping. This string must have a derivation of depth one
in G, else the mapping would hold. The derivation of S in G is CONCAT(Ci/A)
and in G’ is CONCAT(C’l/.../C’s/A’). That is, the derivation of S in G requires
one context whereas the derivation of S in G’ requires at least two contexts.
All contexts used in the derivation of S in G’ are used to derive shorter strings
contained in both L(G) and L(G’) (e.g. CONCAT(C’l/A’)=CONCAT(Cj/A) for
some l and j). These depth one strings, shorter than S, form a bijective mapping,
h, because they are not the least criminal string. The characters contributed by
Ci are the same as C’l, ... ,C’s. Each of C’l, ... , C’s map to a context in G that
contribute the same characters, therefore Ch(l), ... , Ch(s) contribute the same
characters as Ci. The string S is derived in G using either Ci or Ch(l), ... , Ch(s)
thus making Ci superfluous and G non-minimal, a contradiction. �
Lemma 3. If L(G) = L(G’) and CONCAT(Ci/A) �= CONCAT(Cj/A) for i �=
j and 1 ≤ i, j ≤ q, then strings in L(G) and L(G’) have the same derivations
up to renaming of contexts.

Said differently, there is a bijective mapping (one-to-one and onto) f from
contexts in G to contexts in G’ such that if string S has derivation D in G
then the derivation of S in G’ can be obtained by applying the mapping to each
context in D. That is, if the derivation of S in L(G) is Ci/Cj/.../Ck/A then the
derivation of S in G’ isC’f(i)/C’f(j)/.../C’f(k)/A’

Inferring Grammars for Mildly Context Sensitive Languages 143

Proof. All derivations begin with the axiom A. Consider one-step derivations
of the form Ci/A, which means context Ci is applied to axiom A. Let S0
= CONCAT(A) and S1 = CONCAT(Ci/A). The only difference between S0
and S1 is that S1 contains, in addition to the characters in A, the characters
in CONCAT(Ci) in the same linear order, though they may not be contigu-
ous. No context other than Ci can add those characters in one step because
CONCAT(Ci/A) �= CONCAT(Cj/A) for i �= j and 1 ≤ i, j ≤ q.

By lemma 2, there must exist a context C’j in G’ such that CONCAT(Ci/A)
= CONCAT(C’j/A). For the sake of simplicity, we assume that context is C’i.
Because Ci is unique among the contexts in G, so must C’i be among the contexts
in G’ (by lemma 2). Therefore, the only way to derive S1 in G’ is C’i/A’, and all
strings in L1(G) have the same derivations in L(G’) up to renaming of contexts.

Suppose, inductively, that this holds for derivations up to depth d. Let Sd

be any string in L(G) that requires d derivations and let Sd+1 be any string
in L(G) derivable from Sd by applying one more context. By the induction as-
sumption, the derivation of Sd is the same (up to renaming of contexts) in G
and G’. Whatever context is added in G to Sd to obtain Sd+1, its analog in G’
must be applied to derive Sd+1 because no other context can add the required
characters. �
Theorem 2. If L(G) = L(G’) and CONCAT(Ci/A) �= CONCAT(Cj/A) for i
�= j and 1 ≤ i, j ≤ q, then Ld(G) = Ld(G’) for any depth d.

Proof. Suppose L(G) = L(G’) but Ld(G) �= Ld(G) for some depth d. Let d be
the smallest such depth for which this is the case. Then either there exists an
S in Ld(G) that requires d derivation steps that is not in Ld(G’), or vice versa.
Without loss of generality, we focus on the former case. Because L(G) = L(G’),
there must be some depth d’ > d such that S is in Ld′

(G’). However, by lemma
3, if there is a depth d derivation of S in G, there is a depth d derivation of S in
G’. This is a contradiction, so Ld(G) = Ld(G’) for all depths d. �
Theorem 3. There exists a finite d, such that for all grammars G and G′, if
Ld(G) = Ld(G′) then L(G) = L(G′).

Proof. Let the proposition P be equivalent to Ld(G) = Ld(G′) and let the
proposition Q be equivalent to L(G) = L(G′). Then the theorem can be stated
formally as

(∀G)(∀G′)(∃d)[P → Q] (1)

To prove that this is a tautology, it suffices to show that the negation of (1) is
a contradiction. The negation can be written

(∃G)(∃G′)(∀d)[P ∧ ¬Q] (2)

(∃G)(∃G′)(∀d)[(Ld(G) = Ld(G′)) ∧ (L(G) �= L(G′))] (3)

The last equation states that there exist grammars G and G′ such that at
any finite depth the strings produced by either grammar are equal but the lan-
guages are not. With any finite language, this is clearly a contradiction. In an

144 T. Oates et al.

infinite language, the set of all possible depths in that language is clearly denu-
merable. The only restriction on d is that it belong to N, making the set of all d
countably infinite. For both the set of all d and the set of all possible depths, a
bijection from N exists, so they must be of the same size. Thus, comparing the
languages at all finite d is equivalent to comparing the whole language, making
(3) a contradiction. Since the negation of (1) is a contradiction, (1) must be a
tautology. Therefore, there exists a finite d such that for all grammars G and
G′, if Ld(G) = Ld(G′) then L(G) = L(G′). �
Theorems 2 and 3 collectively prove Theorem 1. Theorem 1 and its proof estab-
lish that there exists a finite depth d such that the strings in Ld(G) for any SECq

p

grammar are a characteristic sample, i.e., they uniquely identify the language.
In the complexity analysis of our learning algorithm, d is a constant, but as with
any constant hidden inside O() notation, if the constant is large it can make the
algorithm practically infeasible. We now show that for SEC1

1 languages d = 2
suffices, and for SECq

1 languages d = 3 suffices. We conjecture that d = 3 is
sufficient for arbitrary p and q, and are working on the proof.

We begin with the following lemma:

Lemma 4. Let A,B ∈ Σ+. If AB = BA, then there exists p ∈ Σ+ and integers
x, y > 0 such that A = px and B = py.

Proof. Let n = |A| and m = |B|. Let Si denote the ith character in string
S, where the index of the first character is 1, and Si,j denote the sub-string
of S from characters i through j. Trivially, ABi = BAi because AB = BA.
That is, the ith character in the string AB must equal the ith character in the
string BA. Also, ABi = BA(i+m) mod (n+m) because regardless of whether A
or B contributes the ith character in AB, that same character contributed by
the same string occurs in position (i + m) mod (n + m) in BA. From this we
can conclude that ABi = BAi = BA(i+km) mod (n+m) for positive integers k.
Therefore, for g = GCD(n,m) every gth character in AB is the same, and thus
for p = A1,g, x = n/g, and y = m/g it is the case that A = px and B = py. �
The following two theorems say that the strings in L2(G) are a characteristic
sample for SEC1

1 grammars and that the strings in L3 are a characteristic sample
for SEC1

q grammars, respectively.

Theorem 4. Let G and G′ be minimal SEC1
1 grammars. It is the case that

L2(G) = L2(G′) iff L(G) = L(G′).

Proof. Let A and A′ be the axioms of G and G′, and let C and C′ be the
contexts of G and G′. Because the grammars are minimal, neither C nor C′

can be (λ, λ). Therefore, the strings in L2(G) in increasing order of length are
{A,C/A,C/C/A}, and likewise for L2(G′) = {A′, C′/A′, C′/C′/A′}. Clearly, if
L(G) = L(G′) then L2(G) = L2(G′). It remains to show that if L2(G) = L2(G′)
then L(G) = L(G′).

It follows from L2(G) = L2(G′) that A = A′ (otherwise the two shortest
strings in the languages would differ) and CONCAT (C/A) = CONCAT (C′/A′)

Inferring Grammars for Mildly Context Sensitive Languages 145

(otherwise there is no way for C/A = C′/A′). Henceforth, we will use A to refer
to the axiom of either grammar.

Because CONCAT (C/A) = CONCAT (C′/A′), it must be the case that for
some X,Y, Z ∈ Σ∗, with at least one in Σ+, we can write C = (XY,Z) and
C′ = (X,Y Z). If C = C′ then Y = λ and the languages are equal. Consider
the case where Y �= λ. We need to establish that if this change impacts the
generated language, this impact will be seen at or before depth 2. Note that
any of X,Z, and A can be λ, so there are eight possible values for the depth 2
languages shown in table 1.

Table 1. Eight possible cases of assigning the empty string for L2

Empty strings L2(G) L2(G′)
A, X, Z {λ, Y, Y Y } {λ, Y, Y Y }
A, X {λ, Y Z, Y Y ZZ} {λ, Y Z, Y ZY Z}
A, Z {λ, XY, XY XY } {λ, XY, XXY Y }
A {λ, XY Z, XY XY ZZ} {λ, XY Z, XXY ZY Z}
X, Z {A, Y A, Y Y A} {A, AY,AY Y }
X {A, Y AZ, Y Y AZZ} {λ, AY Z, AY ZY Z}
Z {A, XY A, XY XY A} {A, XAY, XXAY Y }

{A, XY AZ, XY XY AZZ} {A, XAY Z, XXAY ZY Z}

It is easy to show that for each of these cases, if L2(G) = L2(G′) then L(G) =
L(G′). We demonstrate the line of reasoning with the most difficult case, which
is the last in the table above and corresponds to the case in which none of
A,X , or Z are empty. Note that C/A = XYAZ and C′/A′ = XAY Z. Because
the depth 2 languages are the same, XYAZ = XAY Z. Stripping away the
common prefix and suffix of these strings yields Y A = AY and, by Lemma
4 above, there exists some p ∈ Σ+ such that Y = pn and A = pm. Also,
because C/C/A = XYXY AZZ = XXAY ZY Z = C′/C′/A′, it is the case that
Y XYAZ = XAY ZY , which can be rewritten as pnXpnpmZ = XpmpnZpn.
Clearly, it must be the case that X = pk and Z = pl for some integers k, l > 0.
Therefore, d applications of context C to A yields the string pm+d(n+k+l), as do d
applications of context C′ to A. Therefore, L(G) = L(G′). Analogous reasoning
yields the same result in the seven other cases in the table above. �
Theorem 5. Let G and G′ be minimal SEC1

q grammars such that for contexts
in G it is the case that CONCAT (Ci/A) �= CONCAT (Cj/A) for i �= j and
1 ≤ i, j ≤ q. It is the case that L3(G) = L3(G′) iff L(G) = L(G′).

Proof. (sketch) This proof is similar to the proof of Lemma 4. Because the
concatenation of the strings in the contexts ofG differ, and because the languages
of G and G′ are the same up to depth 3, there is a bijective mapping between
contexts in G and G′, at least for derivations of strings up to depth 3. Suppose
there is a context Ci = (XY,Z) in G, which is mapped to context C′

i = (X,Y Z)
in G′. We need to show that if the movement of Y from C to C′ will impact the
language, such impact will appear in L3.

146 T. Oates et al.

Let C′
j = (U, V) be some other context in G′. This context may be unmodified

from Cj in G, or the characters in UV may be split differently between the
two halves of the context. In the latter case, Theorem 4 tells us that the sub-
sets of L(G) and L(G′) that involve only applications of Cj and C′

j are the
same. Therefore, regardless of whether Cj = C′

j or only CONCAT (Cj/A) =
CONCAT (C′

j/A
′), we will write the contents of Cj and C′

j as (U, V) because
the exact distribution of characters in the contexts is immaterial to our purposes.

Because L3(G) = L3(G′), it is the case that Ci/Cj/A = C′
i/C

′
j/A

′, and there-
fore XY UAV Z = XUAV Y Z. Stripping away the common prefix and suffix,
we are left with Y UAV = UAV Y and by Lemma 4 for some p ∈ Σ+ it is
the case that Y = pm and UAV = pn. Because the length of p cannot be
determined, it might be that UV A = p, with each of U , V , and A contribut-
ing part of p. However, because Ci/Cj/Cj/A = C′

i/C
′
j/C

′
j/A

′, we know that
Y UUAV V = UUAV V Y , which means that Y, U,A, and V all contain an inte-
ger number of occurrences of p. �

5 Conclusion and Future Work

This paper presented the first polynomial-time algorithm for inferring SECq
p

grammars from positive data. This class of mildly context-sensitive languages
is important because it has just enough context sensitivity to express the most
common context-sensitive constructions found in natural languages while keep-
ing open the possibility of computational tractability. Theorem 1 established
that a finite sample suffices to infer SECq

p grammars using our algorithm, and
theorems 4 and 5 show that this sample is small when the axiom of the grammar
to be learned contains a single string (i.e., p = 1).

Future work will proceed by removing some working assumptions such as a
priori dimensionality and degree values. We want to extend our algorithm to
any number of axioms and arbitrary selectors, thus learning external contextual
grammars. As ECp languages are superfinite, additional information is required
to learn the grammars. We are interested in leveraging structural information
and prior approaches to learning context-free grammars for ECp grammar learn-
ing. Also, the ability of this formalism to describe non-context-free structures is
particularly alluring for real world data applications (e.g. inference of grammars
for natural language, user modeling).

References

1. Quine, W.V.O.: Word and object. MIT Press (1960)
2. Chomsky, N.: Reflections on Language. Pantheon (1975)
3. Gold, E.M.: Language identification in the limit. Information and Control 10

(1967) 447–474
4. Marcus, G.F.: Negative evidence in language acquisition. Cognition 46 (1993)

53–85
5. Makinen, E.: On the structural grammatical inference problem for some classes of

context-free grammars. Information Processing Letters 42 (1992) 1–5

Inferring Grammars for Mildly Context Sensitive Languages 147

6. Oates, T., Desai, D., Bhat, V.: Learning k-reversible context-free grammars from
positive structural examples. In: Proceedings of the Nineteenth International Con-
ference on Machine Learning. (2002)

7. Makinen, E.: Inferring regular languages by merging nonterminals. TR A-19987-6,
Department of Computer Science, University of Tampere (1997)

8. Oates, T., Armstrong, T., Harris, J., Nejman, M.: On the relationship between
lexical semantics and syntax for the inference of context-free grammars. In: Pro-
ceedings of AAAI. (2004) 431–436

9. Kudlek, M., Martn-Vide, C., Mateescu, A., Mitrana, V.: Contexts and the concept
of mild context-sensitivity. In: Linguistics and Philosophy 26. (2002) 703–725

10. Becerra-Bonache, L., Yokomori, T.: Learning mild context-sensitiveness: Toward
understanding children’s language learning. In: Proceedings of the 7th Interna-
tional Colloquium on Grammatical Inference. (2004) 53–64

Planar Languages and Learnability

Alexander Clark1, Christophe Costa Florêncio1,
Chris Watkins1, and Mariette Serayet2

1 Department of Computer Science, Royal Holloway,
University of London, Egham TW20 0EX, UK

alexc@cs.rhul.ac.uk, chris@cs.rhul.ac.uk, chrisw@cs.rhul.ac.uk
2 Faculté des Sciences et Techniques, Département Informatique, 23,
Rue du Docteur Paul Michelon, 42023 Saint-Etienne Cedex 2, France

mariette.serayet@bvra.univ-st-etienne.fr

Abstract. Strings can be mapped into Hilbert spaces using feature
maps such as the Parikh map. Languages can then be defined as the pre-
image of hyperplanes in the feature space, rather than using grammars
or automata. These are the planar languages. In this paper we show that
using techniques from kernel-based learning, we can represent and effi-
ciently learn, from positive data alone, various linguistically interesting
context-sensitive languages. In particular we show that the cross-serial
dependencies in Swiss German, that established the non-context-freeness
of natural language, are learnable using a standard kernel. We demon-
strate the polynomial-time identifiability in the limit of these classes, and
discuss some language theoretic properties of these classes, and their re-
lationship to the choice of kernel/feature map.

1 Introduction

Formal languages, whether used in linguistics or in computer science, have tra-
ditionally been represented either by grammars or by various simple machine
formalisms. In linguistics context-free grammars have been widely used as a
representative tool. With the discovery of demonstrably non-context-free phe-
nomena in syntax, most famously in Swiss German ([Huy84, Shi85]), attention
switched away from grammatical formalisms based on CFG, such as GPSG, to
more powerful formalisms that were capable of modelling these phenomena: these
are generally restricted to the mildly context-sensitive languages (see [JS96] for
an overview).

From a linguistic point of view these formalisms have a number of desirable
properties, but from a learnability point of view they are far too unrestricted.
Even very simple classes of these formalisms, such as acyclic deterministic finite
state automata, are already unlearnable when using modern characterisations
of learnability, because intractable cryptographic problems can be embedded in
the learning of these tasks.

Chomsky correctly identified accounting for the learnability of language as
one of the principal challenges for linguistics. The Principles and Parameters
approach is one solution to this problem: by specifying a class of languages

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 148–160, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Planar Languages and Learnability 149

parametrised by a small set of parameters the learnability problem can be sim-
plified. Unfortunately problems of lexical acquisition, cross-language ambiguity
and the intertwining of parameter settings meant that no satisfactory theory of
parameter-based learning has ever been presented. In this paper, rather than
taking an overexpressive class of representations and trying to make it learnable
by imposing additional restrictions on it, we take an alternative route. We re-
strict ourselves to a class of representations that are inherently learnable from
positive data alone. At this point the class has a limited range, yet it is capable
of representing some classic examples of mildly context-sensitive languages.

We define the class of planar languages. These are languages that corre-
spond to planes in a feature space. Using standard linear algebra techniques
we are then able to learn the minimal plane that contains the data points from
positive data alone. This does not restrict us to (semi)linear languages: the
function that maps datapoints to feature vectors can, and generally will, do so
in a non-linear fashion. This geometrical representation of languages allows us
to apply the mature theory of linear algebra to the problems of grammatical
inference.

We give a simple example before giving formal definitions. Consider the lan-
guage L defined as the set of all strings containing equal numbers of as and
bs. If we define a feature map from this set of strings to a plane, where the
first coordinate is the number of as in the string and the second coordinate the
number of bs, so that aab is mapped to the point (2, 1) and so on, we see that
all of the strings in the language will be mapped to points that lie on the line
x = y, such as (1, 1), (2, 2) and so on. Additionally we can see that every string
whose image lies on this line is also in the language. Thus L can be defined
using a one-dimensional hyperplane in this feature space, and is thus a planar
language.

Obviously the feature mapping limits the class of languages that can be de-
fined, and with this trivial mapping, the Parikh map, only very few languages
can be characterised. A major reason for this is that the feature mapping is
not injective, i.e. there are pairs of distinct strings, such as ab and ba, that are
mapped to the same point in the feature space, (1, 1). In this paper we will
use the implicit feature maps defined by string kernels ([Wat99]), in particular
the gap-weighted kernel, that have the property of being injective for suitable
choices of the kernel hyperparameters.

In the rest of this paper we discuss the properties of planar languages. After
defining notation, we present simple examples of planar languages, as well as
examples of languages that are not planar languages. We then discuss the closure
properties of the class of planar languages, their relation to other well-studied
classes, learnability properties, and conclude with some directions for future
research. Our focus in this paper is on the learnability and language-theoretic
issues, so we won’t discuss the algorithmic/computational issues involved. We
have implemented and tested thoroughly all of the results presented here, see
[CCFWS06] for discussion.

150 A. Clark et al.

2 Planar Languages

We will use the following definitions and notation. We have a finite non-empty
set Σ, which we call the vocabulary. We consider the free monoid Σ∗ with
identity/empty string ε. A language L is a subset of Σ∗. We will write a, b . . .
for elements of Σ∗. We write |u| for the length of a string u, and we will write |u|v
for the number of occurrences of v as a substring of u. We will also write u[i] for
the ith character of u, where 1 ≤ i ≤ |u|. Sequences of indices are written i, and
s(i) will denote the non-contiguous substring of s composed of the characters at
the positions in s specified by i.

We will consider feature maps φ from Σ∗ into a possibly infinite dimensional
Hilbert space H . For the purposes of this paper we can consider these to be real
vector spaces, with the standard inner product which we will write as 〈u, v〉.
When the dimension of the Hilbert space is very high it can be prohibitively
expensive or impossible to calculate φ(x) directly. Accordingly for every φ we
can define a kernel function from Σ∗ × Σ∗ → R, which is defined as κ(u, v) =
〈φ(u), φ(v)〉. Thus such feature spaces can still be used with many machine
learning algorithms, since these are often based on the distance between points
in a feature space. This approach is sometimes called the kernel trick and was
first used in [ABR64], in the context of linear separators.

For the algorithms we discuss here it will be possible to compute κ(u, v) in
time polynomial in |u| and |v|. Details of the dynamic programming techniques
that make this possible can be found in [STC04]. It is possible to perform all of
the calculations described here using only the kernel computations rather than
working directly with the images of the strings in the Hilbert space.

2.1 Planarity

Given a particular kernel κ and associated feature map φ : Σ∗ → H we can give
the following definition.

Definition 1. A language L ⊆ Σ∗ is κ-planar if there is a finite set of strings
{u1, . . . , un} such that L = {w ∈ Σ∗ | ∃α1 . . . αi ∈ R :

∑n
i αi = 1∧∑n

i αiφ(ui) =
φ(w)}.
Given a κ-planar language L we can define the rank of L to be the cardinality of
the smallest subset that defines the language. Note that this definition restricts
planar languages to those of finite rank, and secondly that we restrict ourselves
to affine combinations of strings ui. This has the effect of slightly increasing the
expressive power of the formalism, so that for example the languages do not
necessarily contain the preimage of the origin, where it exists.

Definition 2. For a language L ⊆ Σ∗, we define

H(L) = {h ∈ H | ∃n > 0, w1 . . . wn ∈ L, α1, . . . αn such that∑
i αi = 1,

∑
i αiφ(wi) = h}

Planar Languages and Learnability 151

whereH is the feature space. Thus H(L) is the smallest hyperplane that contains
the image of L.

For any finite set of strings U = {u1, . . . , un} and a test string v, and any
polynomially evaluable kernel κ with associated feature map φ, there is an algo-
rithm for deciding whether φ(w) ∈ H(u1, . . . , un), which runs in time polynomial
in n, |v| and

∑
i |ui|. This algorithm, based on standard techniques, described

in [STC04], involves computations only using the matrix of kernel values, and
proceeds by normalising this matrix, which has the effect of translating the data
in feature space so that the mean of the data lies in the origin, and performing
an eigendecomposition of this matrix; it is then easy to project the test point v
onto the perpendicular vectors to compute the distance in feature space of the
point from the plane formed by U . Neglecting the issue of the numerical stability
of these algorithms, which is beyond the scope of this paper, this distance will
be zero if and only if φ(v) lies in the plane H(L).

2.2 Kernels

We will now define the various kernels used in this paper. We will use the con-
vention [STC04] that i = (i1, . . . , i|u|) ranges over the set of all strictly ordered
tuples of indices. The following kernels are standard kernels in the literature.

Definition 3. The All-k-Subsequences kernel.
The feature space associated with the All-k-Subsequences kernel is indexed by
I = ∪k

i=0Σ
i, with the embedding given by φu(s) = |{i : u = s(i)}|, u ∈ I.

The Parikh kernel is simply the special case of All-k-Subsequences with k = 1.

Definition 4. The p-Spectrum kernel.
The feature space associated with the p-Spectrum kernel is indexed by I = Σp,
with the embedding given by φp

u(s) = |{(v1, v2) : s = v1uv2}|, u ∈ Σp. The
associated kernel is defined as κp(s, t) = 〈φp(s), φp(t)〉 = Σu∈Σpφp

u(s)φp
u(t).

We now define the schema kernel, which has not been discussed anywhere else
before. We do not use it directly but just as a means to prove the injectivity of
another kernel.

Definition 5. Let Σ′ = Σ ∪{?}. A schema is any sequence σ ∈ Σ′+. A gapped
schema is an element of Σ × {?}∗ ×Σ, or an element of Σ.

Given a string u and a schema σ the count of the schema in a string is the
number of times it matches exactly, where ? matches any symbol. More formally:
|{i|∀j = 1, . . . |σ|, σ[i] =? or σ[i] = u[i+ j]}|.
Definition 6. The gapSchemas kernel.
The gapped schema feature map (gapSchemas) maps strings to vectors, where
each feature is indexed by a gapped schema, and the value of the feature is the
count of the schema in the string. The gapped schema kernel is the kernel based
on the gapped schema feature map.

152 A. Clark et al.

Example 7. The feature vector obtained from φ(abba) assigns 2 to features a and
b, 1 to features ab, ba, bb, a?b, b?a, a??a, and 0 to all others.

Proposition 8. The gapSchemas kernel is injective.

Proof. By construction of the inverse function. Given an feature representation
h ∈ H , and a w ∈ Σ∗ such that φ(w) = h. Let l be the length of the longest
schema with a non-zero value in h, which will be unique. Clearly |w| = l.

1. The first character of the string is the first character of the longest schema.
2. The nth character (for n > 1) contributes as first character to one of the

schemas of length l − n + 1, but not to the schemas of length l − n + 2.
So, let Sn be the multiset enumerating just all first characters of schemas of
l − n+ 1. Then the nth character is the only element of the set Sn − Sn−1.

�

Definition 9. The gap-weighted subsequences feature map (gapWeighted): All
non-contiguous subsequences of length p where each occurrence is weighted ex-
ponentially by the number of gaps. This is adjusted by a hyperparameter λ.
φu(s) =

∑
i:u=s(i) λ

l(i) where |u| = p. l(i) is defined as 1 + i|i| − i1.
The gap-weighted subsequences feature kernel is the kernel based on the gap-

weighted subsequences feature map.

Definition 10. The gap-weighted subsequences plus feature map
(gapWeighted+): Combines gapWeighted and the Parikh kernel times λ.1

We also define the associated kernel.

Example 11. For p = 2:

φ(bab) =

⎛⎜⎜⎜⎜⎜⎜⎝
a : λ
b : 2λ
aa : 0
ab : λ2

ba : λ2

bb : λ3

⎞⎟⎟⎟⎟⎟⎟⎠
2.3 Injectivity of the gapWeighted+ Kernel

The proof of the following proposition makes use of the existence of transcen-
dental numbers. A transcendental number is any complex number that is not
algebraic, that is, not the solution of a non-zero polynomial equation with inte-
ger (or, equivalently, rational) coefficients; some standard examples are π and e.
The intuition behind the proof is that there is a correspondence between gapped
schemas and the complex polynomials obtained from the gapWeighted+
kernel.
1 We could use the standard Parikh kernel here, the λ factor is purely for technical

reasons.

Planar Languages and Learnability 153

Proposition 12. There exists an injective function f from gapSchemas fea-
ture representations to gapWeighted+ feature representations, for p = 2.

Proof. We write H1 for the space of gapSchemas representations and φ1 for
the associated feature map, and H2, φ2 for the space of gapWeighted+ feature
representations, and its map. We define f as follows: fa(h) = λha, fab(h) =
habλ

2 + ha?bλ
3 +

By construction we can see that φ2(w) = f(φ1(w)). Suppose we have two
elements h, h′ of H1, that lie in φ1(Σ∗), such that f(h) = f(h′). This means that
for every feature ab, we have fab(h) = fab(h′) and therefore habλ

2 + ha?bλ
3 +

. . . . = h′abλ
2 + h′a?bλ

3 + This means that λ is the root of the polynomial
(hab − h′ab)λ

2 + (ha?b − h′a?b)λ
3 + · · · = 0. Note that this is a polynomial since

we will only have finitely many non-zero feature values for images of strings.
Since λ is transcendental this means that all of the coefficients must be zero, i.e.
hab = h′ab, ha?b = h′a?b, Therefore h = h′ and the map is injective. �
An algorithm implementing f−1 exists: from the gapWeighted+ feature rep-
resentation the length of the string, l, and thus of the longest schema, can be
calculated. Consider the total sum of all the values from the gapWeighted+
feature representation. We can simply enumerate all possible values for this sum;
λ2 for l = 2, 2λ2+λ3 for l = 3, 3λ2+2λ3+λ4 for l = 4 etc, until we find one equal
or very close to the total sum (note this is an increasing sequence, so termination
is guaranteed).

Given the value of l and λ, the value vi of every coordinate i of the
gapWeighted+ feature representation can be matched against an exhaustive
list of all polynomials possible for a single coordinate: c1λ+c2λ2+c3λ3+· · ·+clλl,
where 0 ≤ c2 ≤ min(floor(vi/λ), l − 1), 0 ≤ c3 ≤ min(floor(vi/λ), l − 2), . . . , 0 ≤
cl ≤ min(floor(vi/λ), 1) (note that the length of this list is bounded by l). Each of
these polynomials corresponds to one unique combination of schemas, and from
the gapSchemas feature representation the string can easily be generated.

Proposition 13. The gapWeighted+ kernel is injective for any transcenden-
tal value for λ and p = 2.

Proof. Since there exists an injective function f from gapSchemas feature rep-
resentations to gapWeighted+ feature representations, and since the compo-
sition of two injective functions is also injective, the gapWeighted+ kernel is
injective. �
Note that the choice of value for λ is crucial, and that when λ→ 0, for example,
the gapWeighted+ kernel is not injective. In this case the kernel behaves like
the p-Spectrum kernel, which is not injective: for p = 2, aaacaaa and aacaaaa
have the same image.

Note that the inclusion of the Parikh kernel in gapWeighted+ is necessary
only for dealing with languages containing strings of length 1. If we restrict
the domain to a class of languages whose shortest strings are of length at least
l, l > 1, then gapWeighted (and thus gapWeighted+) is injective for this
domain for any p ≥ 2.

154 A. Clark et al.

3 Generative Capacity

Clearly the generative capacity of a given class of planar languages depends
crucially on the kernel used. Consider the kernel κL(u, v) = 1 if u, v ∈ L and 0
otherwise, for any language L: using this trivial kernel L is κL-planar. Similarly,
planes in the feature space defined by the discrete kernel κ(u, v) = 1 if u = v
and 0 otherwise, are the images of the finite languages, where the rank is the
cardinality of the language.

The class of gapWeighted planar languages contains quite expressive lan-
guages. It contains the copy language with disjoint alphabet: given an alphabet
Σ split into two disjoint sets Σ1, Σ2, with a bijection f between them, it is de-
fined as {uv|u ∈ Σ∗

1 , v ∈ Σ∗
2 , v[i] = f(u[i])}. For example, with Σ = {a, b} and

Σ′ = {c, d}, f(a) = c, f(b) = d, abacdc is grammatical. Informally, the plane
corresponding to this language (given this kernel) is simply defined by |s|ba = 0
(for all b ∈ Σ2, a ∈ Σ1), |s|a = |s|c, |s|ab = |s|cd for all a, b ∈ Σ1, c, d ∈ Σ2.
This language is a direct model of the Swiss German crossing dependencies con-
struction mentioned in the introduction, the u substring represents a list of noun
phrases, the v part a list of verb phrases.

The language anbmcndm is planar for All-k-Subsequences, k = 2. It can be
expressed in linear constraints: |u|a = |u|c, |u|b = |u|d, |u|ba = |u|ca . . . = 0. It’s
easy to see that the MIX language (all permutations of anbncn for all n) and
dependent branches language (anbmcmdlel, n = m+ l > 0) can be expressed in
similar fashion.

Some languages that can be easily expressed with linear constraints can be
expressed in more conventional formalisms only with very large grammars. For
example, [Asv06] shows that the size of context-free grammars in Chomksy nor-
mal form that generate finite languages containing all permutations of n different
symbols grow by a function exponential in n.

3.1 Planar Languages and the Chomsky Hierarchy

Planar languages cross-cut the Chomsky Hierarchy. Exactly what subset of each
degree of the hierarchy they include depends on the kernel used.

Example 14. The class of languages LAll2, all languages planar in the feature
space of the
All-k-Subsequences kernel with k = 2, contains:

1. Finite languages: both {a}, {a, ab} are in LAll2, but {abba} isn’t. The string
abbamaps to a point in feature space that baabmaps to as well, so {abba, baab}
is in LAll2.

2. Regular languages: {a∗} is in LAll2, but not Even, the language containing
all and only strings of even length.

3. Context-free languages: anbn is in LAll2, but not the bracket language.
4. Mildly context-sensitive languages: anbncn.
5. Non-mildly context-sensitive languages: anbncndnen, but not an2

.

Planar Languages and Learnability 155

3.2 Relationship with k-testable Languages

The class of k-testable languages has been shown to be learnable, and have been
applied in bioinformatics, see [YK98].

If κp is the p-Spectrum kernel, then the k-testable languages are κp-planar,
which is obvious from the definitions. However, the converse does not hold, the
language with equal numbers of as and bs is κ1 planar but not locally testable.

4 Closure Properties of Planar Languages

Planar languages do not enjoy most of the well-known closure properties. It is
easy to see that for example the class of Parikh-planar languages is not closed
under concatenation: both a∗ and b∗ are Parikh-planar, but {a∗b∗} isn’t. Sim-
ilarly they are not closed under union, or homomorphism. Two exceptions are
the obvious property of being closed under reversal, and under intersection:

Proposition 15. The intersection of two κ-planar languages is κ-planar.

Proof. Suppose that L1 and L2 are κ-planar for some kernel κ. Consider H(L1∩
L2), the least plane that contains the image of the intersection of L1 and L2
(Recall Definition 2).

Suppose w ∈ L1 and w ∈ L2. Clearly φ(w) ∈ H(L1∩L2). Conversely suppose
we have a w such that φ(w) ∈ H(L1 ∩L2). Now H(L1 ∩L2) ⊂ H(L1) so φ(w) ∈
H(L1). Since L1 is planar, w ∈ L1. Similarly w ∈ L2. So, φ(w) ∈ H(L1 ∩ L2) if
and only if w ∈ L1∩L2. Since L1 and L2 are planar, H(L1) has finite dimension,
and thus so does H(L1 ∩ L2). Therefore L1 ∩ L2 is planar. �
Note also that the resulting hyperplane will be of lower dimensionality than
the intersecting planes (and will have the same dimensionality only if these are
identical).

5 Learnability

As was previously mentioned, the main motivation for studying κ-planar lan-
guages is their inherent learnability. There exists a simple and efficient algorithm
to learn any of them from positive data: just use as the representation all linear
combinations of the sample data, i.e. find the smallest hyperplane that contains
all data points. We define a slightly modified algorithm SPAN(σ) that checks for
any new data-point whether it is generated by the current hypothesis (this can
easily be determined, since distance from the plane can be computed in polyno-
mial time), and only changes its conjecture when necessary. The new conjecture
will have the new data-point added to the base description. Algorithm 1 presents
this more formally:

At any given point we have a set of strings that form a basis in feature space
for the plane. These strings will be linearly independent: |U | will be equal to the
rank of H(U). For any language L such that H(L) has finite rank r, we can see

156 A. Clark et al.

Algorithm 1. SPAN learning algorithm
Inputs: kernel κ, training data S = {w1, . . . wl}
U = {}
for i = 1 to i = l do

if φ(wi) �∈ H(U) then
U = U ∪ {wi}

end if
end for

that SPAN, will converge to a representation of the preimage of H(L) after at
most r mind changes.

The notion of learnability we will apply here is known as identification in
the limit ([Gol67]). Within this framework, a class of languages is considered
learnable if there exists a (computable) function over sequences of input data
that converges on a correct hypothesis after a finite amount of data (assuming
all data is presented eventually).

5.1 Resource-Based Constraints on Learners

Identification in the limit of a class guarantees the existence of learning algo-
rithms for that class, but the learning problem is not necessarily tractable. Since
we are interested in applications we need to specify further constraints on the
learner. Ideally we would use some notion of polynomial identification in the
limit. There are several around ([dlH95, Yok91] among others), but they are all
of a somewhat ad-hoc nature. The latter is one of the more restrictive ones and
thus suits our present purpose best. [Yok91] defines a class as polynomial-time
identifiable in the limit from positive data if there exists a learning algorithm
for that class such that both the number of explicit errors of prediction and the
computation time it needs for any sequence of data are bounded by polynomials
over the complexity of the representation (rank, in this case).

5.2 Behavioural Constraints on Learners

Identification in the limit provides criteria for the success of a learning process,
but grants total freedom to learners prior to convergence. Generally speaking
it’s desirable to be able to impose additional constraints, to guarantee ‘ratio-
nal’ behaviour of the learner. Formally this simply means choosing a subset of
possible learners.

Many different constraints have been studied in the literature, we define the
ones relevant to this discussion:

Definition 16. Consistent learning
A learning function ϕ is consistent on G if for any L ∈ L(G) and for any
finite sequence 〈s0, . . . , si〉 of elements of L, either ϕ(〈s0, . . . , si〉) is undefined
or {s0, . . . , si} ⊆ L(ϕ(〈s0, . . . , si〉)).

Planar Languages and Learnability 157

Definition 17. (Strong) Monotonicity
The learning function ϕ is monotone increasing or strong monotonic if for all
finite sequences 〈s0, . . . , sn〉 and 〈s0, . . . , sn+m〉, whenever ϕ(〈s0, . . . , sn〉) and
ϕ(〈s0, . . . , sn+m〉) are defined, L(ϕ(〈s0, . . . , sn〉)) ⊆ L(ϕ(〈s0, . . . , sn+m〉)).
Definition 18. Incrementality
The learning function ϕ is incremental if there exists a computable function ψ
such that
ϕ(〈s0, . . . , sn+1〉) " ψ(ϕ(〈s0, . . . , sn〉), sn+1).

5.3 Learnability of Planar Languages

We are now in a position to demonstrate a strong learnability result for pla-
nar languages. Even under a combination of various constraints on the use of
resources and on behaviour this class is learnable:

Theorem 19. The class of κ-planar languages is identifiable in the limit, with
polynomial size characteristic set, a polynomial number of mind changes, and
polynomial computation, by a learner that is simultaneously consistent, mono-
tone increasing and incremental.

Proof. For any plane of rank r there is a set C of strings such that |C| = r and
for any enumeration e of C, |SPAN(e)| = r (trivial). It follows immediately that
for any enumeration e of C, SPAN(e) defines a plane for L, and thus that C is
a characteristic set for L.

Consider C′ = C ∪ S, where S is a finite subset of L. By definition of planar
language and SPAN, S is in the language defined by plane SPAN(e), so for any
enumeration e′ of C′, SPAN(e′) = SPAN(e), both define a plane for L.

Therefore the learning function based on SPAN will, after encountering all
elements from a characteristic set C, hypothesise L and will not diverge from
this hypothesis. This proves identifiability in the limit of the class of planar
languages.

The characteristic set has a size2 polynomial (in fact linear) in the rank of the
target plane, the learner need only change its mind as many times as the size of
the characteristic set, and SPAN can be implemented to run in polynomial time.

A learner for planar languages based on SPAN is consistent and monotone
increasing by definition. Incrementality is trivial: the plane is defined in terms of
the set of basis strings; this basis and the new data-point are enough to generate
a new hypothesis. �

5.4 Finite Elasticity

Learnability, and related properties like existence of a mind change bound, are
largely determined by topological properties of the class under consideration.
2 Here ‘size’ simply means cardinality of the set. It makes little sense to include the

length of the strings in this definition, since the class includes for example the finite
language with one element a10100

.

158 A. Clark et al.

One such property is the existence of an infinite ascending chain of languages.
This means that for L0, L1, . . . , Ln, . . . in that class, L0 ⊂ L1 ⊂ . . . ⊂ Ln ⊂
This implies the weaker property known as infinite elasticity:

Definition 20. (In)finite elasticity[Wri89, MSW91]
A class L of languages is said to have infinite elasticity if there exists an infinite
sequence 〈sn〉n∈N of sentences and an infinite sequence 〈Ln〉n∈N of languages in
L such that for all n ∈ N, sn �∈ Ln, and {s0, . . . , sn} ⊆ Ln+1.

A class L of languages is said to have finite elasticity if it does not have
infinite elasticity.

Finite elasticity is a sufficient condition for learnability under two conditions, as
shown in [Wri89]:

Theorem 21. (Wright) Let G be a class of grammars for a class of recursive
languages, where G ∈ G is at least semi-decidable. If L(G) has finite elasticity,
then G is identifiable in the limit.

Thus one route to proving learnability of a class is demonstrating it has finite
elasticity, which has the added benefit of allowing one to easily define a conser-
vative learning algorithm. In this context this is not necessary, however we do
get nice closure properties for free.

Proposition 22. If the feature space defined by κ has finite dimension, then the
class of κ-planar languages has finite elasticity.

Proof. Suppose the class has infinite elasticity, with strings s1, . . . and languages
L1 If we define Sn = H({s0, . . . , sn}), then Sn−1 ⊆ Ln, and Sn �⊆ Ln.
Obviously, S0 ⊂ S1 . . ., which constitutes an infinite ascending chain. Since Sn

must be of greater rank than Sn−1, and every Sn is included in a language in
the class, there can’t be any bound on the rank of the planes for languages in
the class. This is in contradiction with the hypothesis that the feature space has
finite dimension. �

This does not hold for all planar languages. Any class of planar languages that
contains all finite languages (c.f. the kernel based on all substrings) has an infinite
ascending chain. It does hold for gapWeighted- and gapWeighted+ planar
languages.

It is straightforward to establish the following corollary (see [Wri89]):

Corollary 23. Any finite union of classes of κ-planar languages where κ is
finite dimensional has finite elasticity.

Thus planar languages can be generalised to larger classes of learnable languages.
Unfortunately, the naive learning algorithms for these classes will run in expo-
nential time.

Planar Languages and Learnability 159

6 Conclusion

There is very little work to which the current approach can be compared. [Sal05]
presents some steps towards defining languages using constraints on subsequence
counts. [Kon04] discusses an approach to embedding languages in a feature space,
but using different techniques, and only modelling the locally testable languages.

Our approach has a number of limitations. First, while we can learn a number
of simple languages, it is not clear that this approach will scale to learning much
more complex languages. To get learnability for large scale problems, we will need
to combine these techniques with other, perhaps more traditional, grammatical
inference algorithms. Secondly, the size of the representations can be quite large,
particularly if we use kernels that involve longer substrings; in the worst case
this size can be |Σ|p where p is the length of the subsequences represented in
the kernel. Finally, though the algorithms are polynomial, their naive application
has a computational cost that is cubic in the number of examples. Thus it will be
difficult to solve problems with more than several thousand examples on current
workstations, without careful optimisations.

We have introduced the class of planar languages, an inherently learnable class
of languages with high expressive power, defined in term of string kernels. This is
the first application of this family of techniques to the problems of grammatical
inference. This class contains interesting context-sensitive languages, including
some classic examples from computational linguistics. We have carried out ex-
tensive experimental verification of the approach described here [CCFWS06] and
have confirmed the practical efficiency of these techniques. These classes are de-
fined in terms of planes in a feature space, which can be efficiently learned with
standard machine learning techniques from positive data alone. The choice of
kernel determines the expressive power and closure properties of the resulting
class. Two kernels have been shown to be injective (depending on the choice of
hyperparameters), a particular important property in the context of GI. We have
also shown that for some kernels, planar languages have the desirable property
of finite elasticity. This allows easy extension to richer classes of languages whilst
retaining good learnability properties.

Planar languages are a novel approach to GI, and it seems we have only
scratched the surface. An interesting topic for future research would be language
classes defined using linear inequalities, which would correspond to half-spaces
in the feature space. Such classes would allow the expression of natural language
phenomena such as Chinese number words. Another direction would be the defi-
nition of new string kernels for specific purposes. The kernels we have considered
are in most cases standard, well-studied kernels, so it is likely that new ones can
be designed that are better suited for grammatical inference.

Acknowledgements

This work has benefitted from the support of the EU funded PASCAL Net-
work of Excellence on Pattern Analysis, Statistical Modelling and Computational
Learning.

160 A. Clark et al.

References

[ABR64] M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer. Theoretical
foundations of the potential function method in pattern recognition. Au-
tomation and Remote Control, 25:821–837, 1964.

[Asv06] Peter R. J. Asveld. Generating all permutations by context-free gram-
mars in Chomsky normal form. Theoretical Computer Science (TCS),
354(1):118–130, 2006.

[CCFWS06] Alexander Clark, Christophe Costa Florêncio and Chris Watkins. Lan-
guages as hyperplanes: grammatical inference with string kernels. In
ECML, 17th European Conference on Machine Learning. Springer-
Verlag, 2006.

[dlH95] Colin de la Higuera. Characteristic sets for polynomial grammatical in-
ference. In Proceedings of the International Colloquium on Grammatical
Inference ICGI-96. Springer-Verlag, 1995.

[Gol67] E. Mark Gold. Language identification in the limit. Information and
Control, 10:447–474, 1967.

[Huy84] Riny Huybregts. The weak inadequacy of context-free phrase structure
grammars. In Ger J. de Haan, Mieke Trommelen, and Wim Zonneveld,
editors, Van Periferie naar Kern. Foris, Dordrecht, 1984.

[JS96] Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars. In Grze-
gorz Rosenberg and Arto Salomaa, editors, Handbook of Formal Lan-
guages, volume 3, pages 69–123. Springer-Verlag, New York, 1996.

[Kon04] Leonid Kontorovich. Learning linearly separable languages. Technical
Report CMU-CALD-04-105, School of Computer Science, CMU, 2004.

[MSW91] Tatsuya Motoki, Takeshi Shinohara, and Keith Wright. The correct
definition of finite elasticity: Corrigendum to identification of unions. In
The Fourth Workshop on Computational Learning Theory. San Mateo,
Calif.: Morgan Kaufmann, 1991.

[Sal05] Arto Salomaa. On languages defined by numerical parameters. Technical
Report 663, Turku Centre for Computer Science, 2005.

[Shi85] Stuart M. Shieber. Evidence against the context-freeness of natural lan-
guage. Linguistics and Philosophy, 8:333–343, 1985.

[STC04] John Shawe-Taylor and Nello Christianini. Kernel Methods for Pattern
Analysis. Cambridge University Press, 2004.

[Wat99] Chris Watkins. Dynamic alignment kernels. Technical Report CSD-
TR-98-11, Department of Computer Science, Royal Holloway College,
University of London, 1999.

[Wri89] Keith Wright. Identification of unions of languages drawn from an identi-
fiable class. In The 1989 Workshop on Computational Learning Theory,
pages 328–333. San Mateo, Calif.: Morgan Kaufmann, 1989.

[YK98] Takashi Yokomori and Satoshi Kobayashi. Learning local languages and
their application to DNA sequence analysis. IEEE Trans. Pattern Anal.
Mach. Intell., 20(10):1067–1079, 1998.

[Yok91] Takashi Yokomori. Polynomial-time learning of very simple grammars
from positive data. In Proceedings of the Fourth Annual Workshop on
Computational Learning Theory, pages 213–227, University of California,
Santa Cruz, 5–7 August 1991. ACM Press.

A Unified Algorithm for Extending Classes of
Languages Identifiable in the Limit from

Positive Data�

Mitsuo Wakatsuki, Etsuji Tomita, and Go Yamada

Department of Information and Communication Engineering,
Faculty of Electro-Communications,

The University of Electro-Communications
Chofugaoka 1–5–1, Chofu, Tokyo 182-8585, Japan

{wakatuki, tomita}@ice.uec.ac.jp

Abstract. We are concerned with a unified algorithm for extending
classes of languages identifiable in the limit from positive data. Let L be
a class of languages to be based on and let X be a class of finite subsets of
strings. The extended class of L, denoted by C(L,X), is defined by these
L and X . Here we give a sufficient condition for C(L,X) to be identifiable
in the limit from positive data and we present a unified identification
algorithm for it. Furthermore, we show that some proper subclasses of
C(L, X) are polynomial time identifiable in the limit from positive data
in the sense of Yokomori.

1 Introduction

In the study of inductive inference of formal languages, Gold [4] defined the
notion of identification in the limit and showed that the class of languages con-
taining all finite sets and one infinite set, which is called a superfinite class, is
not identifiable in the limit from positive data. This means that even the class
of regular languages is not identifiable in the limit from positive data. Angluin
[1] has given several conditions for a class of languages to be identifiable in the
limit from positive data, and she has presented some examples of identifiable
classes. She has also proposed subclasses of regular languages called k-reversible
languages for each k ≥ 0, and has shown that these classes are identifiable in the
limit from positive data, requiring a polynomial time for updating conjectures [2].

From the practical point of view, the inductive inference algorithm must have
a good time efficiency in addition to running with only positive data. One may
define the notion of polynomial time identification in the limit in various ways.
Pitt [8] has proposed a reasonable definition for polynomial time identifiabil-
ity in the limit. By making a slight modification of his definition, Yokomori
[10] has proposed another definition for polynomial time identifiability in the

� This work is supported in part by Grants-in-Aid for Scientific Research Nos.
13680435, 16300001 and 18500108 from the Ministry of Education, Culture, Sports,
Science and Technology of Japan.

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 161–174, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

162 M. Wakatsuki, E. Tomita, and G. Yamada

limit from positive data, and he has proved that a class of languages accepted
by strictly deterministic automata (SDAs) [9][10], which is a proper subclass
of regular languages, is polynomial time identifiable in the limit from positive
data.

An SDA is an extended deterministic finite automaton, which is intuitively a
state transition graph in which the set X of labels for edges is a finite subset of
strings over an alphabet Σ , that satisfies the following conditions: for any x in
X , there uniquely exists an edge (a pair of states) whose label is x, and for any
distinct labels x1, x2 inX , the first symbol of x1 differs from that of x2. This SDA
can be also represented by a pair (M,ϕ) of a corresponding deterministic finite
automaton M and a homomorphism ϕ : Σ ′∗ → Σ∗ such that X = ϕ(Σ ′) for
some alphabet Σ ′, where the language accepted by M is in the class of Szilard
languages of linear grammars [7]. That is, the class of languages accepted by
SDAs is the extended class of Szilard languages of linear grammars. In a similar
way to this, some kind of language classes can be extended.

In this paper, we are concerned with a unified algorithm for extending classes
of languages identifiable in the limit from positive data. Let L be a class of
languages over Σ ′ to be based on and X a class of finite subsets of strings over
Σ , where there exists a morphism ϕ : Σ ′∗ → X∗ for some X ∈ X . The extended
class of L, denoted by C(L,X), is defined by these L and X . Kobayashi and
Yokomori [6] proved that for each k ≥ 0, a class C(Revk,X0) of languages,
where Revk is a class of k-reversible languages and X0 is a class of codes [3], is
identifiable in the limit from positive data. However, they have not shown the
identification algorithm for C(Revk,X0), and it is still unknown whether the time
complexity of the algorithm is polynomial in the sense of Yokomori [10]. Here we
give a sufficient condition for C(L,X) to be identifiable in the limit from positive
data and present a unified identification algorithm for it. Furthermore, we show
that some proper subclasses of C(Revk,X0) are polynomial time identifiable in
the limit from positive data.

2 Definitions

2.1 Basic Definitions and Notation

We assume that the reader is familiar with the basics of automata and formal
language theory. For the definitions and notation not stated here, see, e.g., [5].

A semigroup consists of a set S with a binary associative operation defined on
S. A monoid M is a semigroup which possesses a two-sided identity, where the
identity element is denoted by εM or simply by ε. A morphism from a monoid M
into a monoid N is a function ϕ : M → N which satisfies, for all m1,m2 ∈ M ,
ϕ(m1m2) = ϕ(m1)ϕ(m2), and furthermore ϕ(εM) = εN .

An alphabet Σ is a finite set of symbols. For any finite set S of finite-length
strings over Σ , we denote by S∗ (respectively, S+) the set of all finite-length
strings obtained by concatenating zero (one, resp.) or more elements of S, where
the concatenation of strings u and v is simply denoted by uv. Note that the set
S∗ (respectively, S+) is the submonoid (subsemigroup, resp.) generated by S.

A Unified Algorithm for Extending Classes of Languages 163

In particular, Σ∗ denotes the set of all finite-length strings over Σ . The string
of length 0 (the empty string) is denoted by ε. We denote by |w| the length of a
string w and by |S| the cardinality of a set S. A language over Σ is any subset
L of Σ∗. For a string w ∈ Σ∗, alph(w) denotes the set of symbols appearing in
w. For a language L ⊆ Σ∗, let alph(L) = ∪w∈Lalph(w).

2.2 Polynomial Time Identification in the Limit from Positive Data

In this paper, we adopt Yokomori’s definition in [10] for the notion of polynomial
time identification in the limit from positive data.

For any class of languages to be identified, let R be a class of representations
for a class of languages. Instances of such representations are automata, gram-
mars, and so on. Given an r in R, L(r) denotes the language represented by r.
A positive presentation of L(r) is any infinite sequence of data such that every
w ∈ L(r) occurs at least once in the sequence and no other string not in L(r)
appears in the sequence. Each element of L(r) is called a positive example (or
simply, example) of L(r).

Let r be a representation in R. An algorithm A is said to identify r in the
limit from positive data iff A takes any positive presentation of L(r) as an input,
and outputs an infinite sequence of representations in R such that there exist
r′ in R and j > 0 so that for all i ≥ j, the i-th conjecture (representation) ri
is identical to r′ and L(r′) = L(r). A class R is identifiable in the limit from
positive data iff there exists an algorithm A that, for any r in R, identifies r in
the limit from positive data.

Let A be an algorithm for identifying R in the limit from positive data.
Suppose that after examining i examples, the algorithm A conjectures some
ri. We say that A makes an implicit error of prediction at step i if ri is not
consistent with the (i+ 1)-st example wi+1, i.e., if wi+1 �∈ L(ri).

Definition 1 (Yokomori [10], pp.157-158, Definition 2). A class R is
polynomial time identifiable in the limit from positive data iff there exists an al-
gorithm A for identifying R in the limit from positive data with the property that
there exist polynomials p and q such that for any n, for any r of size n, and for
any positive presentation of L(r), the time used by A between receiving the i-th
example wi and outputting the i-th conjecture ri is at most p(n,

∑i
j=1 |wj |), and

the number of implicit errors of prediction made by A is at most q(n, l), where
the size of r is the length of a description for r and l = Max{|wj | | 1 ≤ j ≤ i}.

3 Language Classes Extended by Using Codes

In this section, we introduce language classes extended by using codes.

Definition 2. Let w ∈ Σ∗ and X,Y ⊆ Σ∗. Any sequence (v1, v2, . . . , vn) ∈
(Σ∗)n (n ≥ 0) such that w = v1v2 · · · vn is called a factorization of w. Moreover,
any sequence (x1, x2, . . . , xn) ∈ Xn such that w = x1x2 · · ·xn is called an X-
factorization of w. If w has an X-factorization, i.e., w ∈ X∗, we say that X can

164 M. Wakatsuki, E. Tomita, and G. Yamada

factorize w. Moreover, if any string in Y has an X-factorization, i.e., Y ⊆ X∗,
we say that X can factorize Y .

Definition 3. A finite set X over Σ is said to be a finite factorizing set iff, for
any x in X, |x| ≥ 1 and |x| is finite.

Example 1. Let Σ1 = {y, o, u, f, e, l, v, r, h, a, p}, w1 = youfeelveryhappy(∈ Σ∗
1),

X1 = {you, feel, very, happy}(⊆ Σ∗
1) and Y1 = {youfeel(very)ihappy | i ≥

0}(⊆ Σ∗
1). A sequence (you, feel, very, happy) is an X1-factorization of w1.

Therefore, X1 can factorize w1. Also, X1 can factorize Y1. Moreover, X1 is a
finite factorizing set.

The next lemma follows from Definitions 2 and 3.

Lemma 1. Let X be a class of finite factorizing sets over Σ and S ⊆ Σ∗. For
any X ∈ X , it holds that X can factorize S ∪ {ε} iff X can factorize S − {ε}.
Proof. It can be proved by using the fact that X can factorize ε for any X . �
Definition 4. A finite factorizing set X over Σ is said to be ambiguous iff there
exists w ∈ X+ which has at least two distinct X-factorizations. Otherwise, it is
said to be unambiguous. Moreover, a class X of finite factorizing sets over Σ is
said to be ambiguous iff there exists X ∈ X which is ambiguous. Otherwise, it
is said to be unambiguous.

Example 2. Let Σ2 = {b, e, g, i, n} and X2 = {be, beg, gin, in}(⊆ Σ∗
2). The finite

factorizing set X2 is ambiguous since there exists w2 = begin(∈ X+
2) which has

two distinct X2-factorizations, that is, (be, gin) and (beg, in). On the other hand,
the finite factorizing set X1 in Example 1 is unambiguous.

If a finite factorizing set X over Σ is unambiguous, X is also called a code ([3],
p.38). Therefore, a class of unambiguous finite factorizing sets is a class of codes.
Note that a code never contains the empty string ε. It is clear that any subset of
a code is a code. In particular, the empty set ∅ is a code. For example, for any
k ≥ 1, Σk is a code over Σ .

For a string w ∈ Σ+, firstchar(w) (respectively, lastchar(w)) denotes the first
(last, resp.) symbol (∈ Σ) of w. For a set of strings X ⊆ Σ+, let firstchar(X) =
∪w∈Xfirstchar(w) and lastchar(X) = ∪w∈X lastchar(w). Then, we define the
following codes.

Definition 5. Let X be a code over Σ. X is called a strict prefix code (respec-
tively, a strict suffix code) iff, for any pair of distinct elements x1, x2 ∈ X, it
holds that firstchar(x1) �= firstchar(x2) (lastchar(x1) �= lastchar(x2), resp.).

Example 3. The set X1 in Example 1 is a strict prefix code, but it is not a strict
suffix code.

Let SP , SS be the class of strict prefix codes, and that of strict suffix codes,
respectively.

A Unified Algorithm for Extending Classes of Languages 165

Definition 6. Let X be a class of finite factorizing sets over Σ and X ∈ X a
finite factorizing set that can factorize S for some nonempty subset S of Σ∗. X
is said to be the coarsest finite factorizing set in X that can factorize S iff, for
any X ′ ∈ X that can factorize S such that X ′ �= X, it holds that X ′∗ −X∗ �= ∅.
In general, for a given class X of finite factorizing sets over Σ and a given
nonempty subset S of Σ∗, there exist many coarsest finite factorizing sets in X
that can factorize S.

Example 4. Let Σ3 = {a, b, c, d} and S1 = {a(bc)i d | i ≥ 1}(⊆ Σ∗
3). Let X0 be

the class of codes over Σ3. The sets X3 = {abc, bc, d}, X4 = {ab, cb, cd} and
X5 = {a, bc, bcd} are the coarsest codes in X0 that can factorize S1.

For the class SP of strict prefix codes, the set X3 is the coarsest code in SP
that can factorize S1. Similarly, for the class SS of strict suffix codes, the set X5
is the coarsest code in SS that can factorize S1.

For the class SP of strict prefix codes and the class SS of strict suffix codes, we
have the following lemma from Definitions 4, 6 and 5.

Lemma 2. For any nonempty subset S of Σ∗, there uniquely exists the coarsest
code in the class SP (respectively, SS) of strict prefix (suffix, resp.) codes over
Σ that can factorize S.

Proof. We shall show that, for any S, there uniquely exists the coarsest code in
SP that can factorize S. For any S (⊆ Σ∗), there exists at least one coarsest
code in SP since Σ is a code in SP that can factorize S.

Suppose for the sake of contradiction that there exist two distinct coarsest
codes X1, X2 in SP that can factorize S. Since X1 is the coarsest code that
can factorize S and X1 �= X2, it holds that S ⊆ X∗

1 and X∗
2 − X∗

1 �= ∅ from
Definition 6. Similarly, it holds that S ⊆ X∗

2 and X∗
1 − X∗

2 �= ∅. Therefore, it
holds that S ⊆ X∗

1 ∩ X∗
2 ⊂ X∗

1 and S ⊆ X∗
1 ∩ X∗

2 ⊂ X∗
2 . In order to prove

this lemma, it suffices to show that there exists a strict prefix code X3 ∈ SP
such that X∗

3 = X∗
1 ∩ X∗

2 . Note that, for any x ∈ X+
1 ∩ X+

2 , it holds that
firstchar(x) ∈ firstchar(X+

1 ∩X+
2) = firstchar(X1) ∩ firstchar(X2).

For any a ∈ firstchar(X1)∩firstchar(X2), there exists only one shortest string
za ∈ Σ∗ such that aza ∈ X+

1 ∩ X+
2 since X1, X2 ∈ SP . Let X3 = {aza ∈

X+
1 ∩X+

2 | a ∈ firstchar(X1) ∩ firstchar(X2)}. Then, X3 is a strict prefix code.
Furthermore, it holds that X∗

3 = {ε} ∪X+
3 ⊆ {ε} ∪ [X+

1 ∩X+
2]+ = {ε} ∪ [X+

1 ∩
X+

2] = X∗
1 ∩X∗

2 .
Conversely, for any x ∈ X+

1 ∩X+
2 , we can show that x = v1v2 · · · vn, where

n ≥ 1, such that vi ∈ X+
1 ∩X+

2 and, for any proper prefix v′i of vi, v′i �∈ X+
1 ∩X+

2
for 1 ≤ i ≤ n. For each vi, let ai = firstchar(vi) ∈ Σ . Then, it holds that
vi = aizai for 1 ≤ i ≤ n, where zai is a shortest string such that aizai ∈ X+

1 ∩X+
2

for each ai ∈ Σ . Since X1, X2 ∈ SP , it holds that vi ∈ X3 for 1 ≤ i ≤ n. Then,
it holds that X∗

1 ∩X∗
2 = {ε} ∪ [X+

1 ∩X+
2] ⊆ {ε} ∪X+

3 = X∗
3 .

Therefore, it holds that X∗
3 = X∗

1 ∩X∗
2 . Then, X3 ∈ SP can factorize S. Thus,

it holds that X∗
3 −X∗

1 = ∅ and X∗
3 −X∗

2 = ∅, which is a contradiction since X1
and X2 are the coarsest codes.

166 M. Wakatsuki, E. Tomita, and G. Yamada

In a similar way to this, we can prove that, for any S, there uniquely exists
the coarsest code in SS that can factorize S. �
For a subclass X of codes over Σ , if, for any S ⊆ Σ∗, there uniquely exists the
coarsest code in X that can factorize S, we have the following lemma.

Lemma 3. Let X be a class of codes over Σ and S a nonempty subset of Σ∗.
If, for any S, there uniquely exists the coarsest code XS in X that can factorize
S, then for any code X ∈ X that can factorize S, it holds that (S ⊆)X∗

S ⊆ X∗.

Proof. Suppose for the sake of contradiction that X∗
S − Y ∗ �= ∅ for some code

Y ∈ X that can factorize S. Since XS is the unique coarsest code in X that can
factorize S, Y is not the coarsest code in X that can factorize S. Therefore, there
exists some code Z ∈ X that can factorize S such that Z �= Y and Z∗ − Y ∗ = ∅
(i.e., Z∗ ⊂ Y ∗) from Definition 6. Let Z0 ∈ X be a code that can factorize S
such that Z∗

0 ⊂ Y ∗ and Z ′∗ − Z∗
0 �= ∅ for any code Z ′ ∈ X that can factorize S

such that Z ′∗ ⊂ Y ∗ and Z ′ �= Z0. Since Z∗
0 ⊂ Y ∗, it holds that X∗

S − Z∗
0 �= ∅

from the assumption that X∗
S − Y ∗ �= ∅. Therefore, for any code X ∈ X that

can factorize S such that X �= Z0, it holds that X∗ − Z∗
0 �= ∅. Thus, Z0 ∈ X is

the coarsest code that can factorize S, which is a contradiction. �
Berstel and Perrin [3] proved the following proposition and corollary from the
definition of a code. They are useful for our later discussion.

Proposition 1 (Berstel and Perrin [3], p.38, Proposition 1.1). If a subset
X of Σ∗ is a code, then any morphism ϕ : Σ ′∗ → Σ∗ which induces a bijection
of some alphabet Σ ′ onto X is injective. Conversely, if there exists an injective
morphism ϕ : Σ ′∗ → Σ∗ such that X = ϕ(Σ ′), then X is a code.

Corollary 1 (Berstel and Perrin [3], pp.39-40, Corollary 1.2). Let ϕ :
Σ∗

1 → Σ∗
2 be an injective morphism. If X is a code over Σ1, then ϕ(X) is a code

over Σ2. If Y is a code over Σ2, then ϕ−1(Y) is a code over Σ1.

Such an injective morphism ϕ in Proposition 1 is called a coding morphism for
X . In Corollary 1, if Y = ϕ(X), then it holds that ϕ−1(ϕ(X)) = X .

Let L be a class of some languages over Σ ′ and X a class of some finite
factorizing sets over Σ . Now we define a new class of languages over Σ , denoted
by C(L,X), using these L and X as follows.

Definition 7. A class of languages denoted by C(L,X) over Σ is defined as the
class obtained by the following procedure: (1) For every language L ∈ L over Σ ′,
let Σ ′

L = alph(L) (⊆ Σ ′). Note that Σ ′
L is a code over Σ ′. (2) For every finite

factorizing set X ∈ X over Σ such that |X | = |Σ ′
L|, define a bijection ϕ of Σ ′

L

onto X. (3) For each L ∈ L and ϕ : Σ ′∗ → Σ∗ such that X = ϕ(Σ ′
L), a language

ϕ(L) ∈ C(L,X) over Σ is defined as ϕ(L) = {ϕ(w) ∈ X∗ | w ∈ L}.
Example 5. Let L1 = {abcid | i ≥ 0} in some language class L1, where Σ ′

L1
=

{a, b, c, d}. For the code X1 = {you, feel, very, happy} ∈ SP in Example 1, de-
fine a bijection ϕ1 of Σ ′

L1
onto X1 as follows: ϕ1(a) = you, ϕ1(b) = feel, ϕ1(c) =

A Unified Algorithm for Extending Classes of Languages 167

very, and ϕ1(d) = happy. Then, a language ϕ1(L1) ∈ C(L1,SP) is {youfeel
(very)ihappy | i ≥ 0}.
Let L0 be a language over Σ and Y a code over Σ that can factorize L0. That is,
it holds that L0 ⊆ Y ∗ ⊆ Σ∗. Let ϕ : Σ ′∗ → Σ∗ be an injective morphism. Since
Y is a code over Σ , it holds that ϕ−1(Y) is a code over Σ ′ from Corollary 1.
Since Y can factorize L0, it holds that ϕ−1(L0) ⊆ ϕ−1(Y ∗) = [ϕ−1(Y)]∗ ⊆ Σ ′∗.
Therefore, the code ϕ−1(Y) can factorize the language ϕ−1(L0).

Definition 8. Let L be a class of some languages over Σ and Σ ′ ⊆ Σ. We say
that the class L is closed under the inverse coding morphism iff, for any L ∈ L
and any code X ⊆ Σ∗ that can factorize L, it holds that ϕ−1(L) ∈ L, where
ϕ : Σ ′∗ → Σ∗ is a coding morphism such that X = ϕ(Σ ′).

Hereafter, we are only concerned with a class C(L,X) of languages that satisfies
the following conditions 1 and 2.

Condition 1. The class L of languages satisfies the following conditions: (1)
L is closed under the inverse coding morphism, and (2) L is identifiable in the
limit from positive data.

Condition 2. The class X of finite factorizing sets over Σ satisfies the following
conditions: (1) X is unambiguous. (That is, X is a class of codes.) (2) For any
nonempty subset S of Σ∗, there uniquely exists the coarsest code XS in X that
can factorize S. (3) For any positive presentation of S such that S ⊆ X+ for
some X ∈ X , there exists an algorithm for identifying the coarsest code XS ∈
X that can factorize S in the limit. (This algorithm is called an identification
algorithm for the coarsest code in X in the limit from positive data.)

4 Identification Algorithm

Let AL be an identification algorithm in Condition 1 and AX an identification
algorithm in Condition 2.

The flow of the algorithm AL can be written as follows, where the (black
box) function CONSTRUCT(r′, w′) receives a positive example w′ of the target
language L′ and a representation r′ for a language in L as input, and outputs an
updated representation for a language in L obtained by modifying r′ from w′.

Identification Algorithm AL
Input: a positive presentation w′

1, w
′
2, . . . of a target language L′ in L

Output: a sequence of representations r′1, r
′
2, . . .,

where r′i (i ≥ 1) is a representation for a language L(r′i) in L
Procedure
begin
S′

0 := ∅; Σ ′
0 := ∅; initialize r′0 so that L(r′0) = ∅; i := 1;

repeat (forever)
read the next positive example w′

i;
S′

i := S′
i−1 ∪ {w′

i}; Σ ′
i := Σ ′

i−1 ∪ alph(w′
i);

168 M. Wakatsuki, E. Tomita, and G. Yamada

if w′
i ∈ L(r′i−1) then r′i := r′i−1

else r′i := CONSTRUCT(r′i−1, w
′
i) fi

output r′i; i := i+ 1
end

Moreover, the flow of the algorithm AX can be written as follows, where the
(black box) function UPDATE(X ′, w′) receives a positive example w′ ∈ X+ for
the target code X ∈ X and a code X ′ ∈ X as input, and outputs the coarsest
code in X that can factorize X ′ ∪ {w′}.
Identification Algorithm AX
Input: a positive presentation w1, w2, . . . of X+,

where X ∈ X is a target code such that X = ϕ(Σ ′) for some Σ ′

Output: a sequence of the coarsest codes X1, X2, . . .,
where Xi (i ≥ 1) can factorize {w1, w2, . . . , wi}

Procedure
begin
S0 := ∅; Σ0 := ∅; X0 := ∅; i := 1;
repeat (forever)

read the next positive example wi;
Si := Si−1 ∪ {wi}; Σi := Σi−1 ∪ alph(wi);
Xi := UPDATE(Xi−1, wi);
output Xi; i := i+ 1

end

Now we present a unified identification algorithm AC(L,X) for a class C(L,X)
of languages that satisfies Conditions 1 and 2. This algorithm is an extended
version of the above algorithms AL and AX . The algorithm AC(L,X) is given in
the following.

Identification Algorithm AC(L,X)
Input: a positive presentation w1, w2, . . . of a target language in C(L,X)
Output: a sequence of pairs (r1, X1), (r2, X2), . . . such that ϕi(L(ri)) ∈

C(L,X)(i ≥ 1), where ri is a representation for a language L(ri)
and Xi is a code such that Xi = ϕi(Σ ′

i) for a coding morphism
ϕi : Σ ′

i
∗ → Σ∗

Procedure
begin
S0 := ∅; Σ0 := ∅; S′

0 := ∅; Σ ′
0 := ∅; X0 := ∅;

initialize ϕ0 so that ϕ0(Σ ′
0) = X0; initialize r0 so that L(r0) = ∅;

i := 1; read the next positive example wi;
while wi = ε do
Si := {ε}; Σi := ∅; S′

i := {ε}; Σ ′
i := ∅; Xi := ∅; ϕi := ϕi−1;

if L(ri−1) = {ε} then ri := ri−1
else ri := CONSTRUCT(ri−1, ε) /∗ Call the function in AL. ∗/
fi
output (ri, Xi) as a conjecture for a language {ε};

A Unified Algorithm for Extending Classes of Languages 169

i := i+ 1; read the next positive example wi

od
repeat (forever)
Si := Si−1 ∪ {wi}; Σi := Σi−1 ∪ alph(wi);
if wi �= ε
then Xi := UPDATE(Xi−1, wi) /∗ Call the function in AX . ∗/
else Xi := Xi−1 fi
if Xi �= Xi−1 then

let a set Σ ′
i be given as |Σ ′

i | = |Xi|, where Xi ⊂ Σ∗
i ;

let ϕi be a bijection of Σ ′
i onto Xi;

W := ϕ−1
i (Si); S′

0 := ∅; reset r′0 so that L(r′0) = ∅; j := 1;
repeat
w′

j := ϕ−1
i (wj); W := W − {w′

j}; S′
j := S′

j−1 ∪ {w′
j};

if w′
j ∈ L(r′j−1) then r′j := r′j−1

else r′j := CONSTRUCT(r′j−1, w
′
j) /∗ Call the function in AL. ∗/

fi
j := j + 1

until W = ∅; /∗ When i = j − 1, it holds that S′
i = ϕ−1

i (Si). ∗/
ri := r′i

else
Σ ′

i := Σ ′
i−1; ϕi := ϕi−1; w′

i := ϕ−1
i (wi);

S′
i := S′

i−1 ∪ {w′
i}; /∗ It holds that S′

i = ϕ−1
i (Si). ∗/

if w′
i ∈ L(ri−1) then ri := ri−1

else ri := CONSTRUCT(ri−1, w
′
i) /∗ Call the function in AL. ∗/

fi fi
output (ri, Xi) as a conjecture for a language ϕi(L(ri));
i := i+ 1; read the next positive example wi

end

From Definition 7, for any language L ∈ C(L,X), we can show that L = ϕ(L′) for
some L′ ∈ L and some bijection ϕ of Σ ′

L′ onto X , where Σ ′
L′ = alph(L′) (⊆ Σ ′)

and X ∈ X . The algorithm AC(L,X) outputs a sequence of pairs (ri, Xi) (i =
1, 2, . . .) such that Li = ϕi(L(ri)) ∈ C(L,X), where Li ⊇ Si = {w1, w2, . . . , wi},
Σ ′

i = alph(ϕ−1
i (Si)) and Xi = ϕi(Σ ′

i). Note that the algorithm AC(L,X) needs
only a positive presentation w1, w2, . . . of a target language L ∈ C(L,X).

4.1 Correctness of the Identification Algorithm

In the case where the target language in C(L,X) is {ε}, the algorithm AC(L,X)
outputs the conjecture (r,X) such that L(r) = {ε} and X = ∅. Next we are
concerned with a target language L∗ ∈ C(L,X) such that L∗ �= ∅ and L∗ �= {ε}.
From Definition 7, a target language L∗ can be denoted by L∗ = ϕ∗(L′∗) for some
L′
∗ ∈ L and some coding morphism ϕ∗ : Σ ′∗ → Σ∗ such that X∗ = ϕ∗(ΣL′∗) for

some X∗ ∈ X over Σ , where ΣL′∗ = alph(L′
∗) (⊆ Σ ′).

The next lemma derives from the algorithm AX .

170 M. Wakatsuki, E. Tomita, and G. Yamada

Lemma 4. Suppose that ϕ∗(L′
∗) �= ∅ and ϕ∗(L′

∗) �= {ε}. For any positive presen-
tation of ϕ∗(L′

∗)−{ε}, the algorithm AX identifies the coarsest code Xϕ∗(L′∗) ∈ X
that can factorize ϕ∗(L′∗) in the limit.

Proof. Since ϕ∗(L′
∗) �= ∅ and ϕ∗(L′

∗) �= {ε}, ϕ∗(L′
∗) − {ε} is a nonempty set

such that ϕ∗(L′
∗)−{ε} ⊆ X+ for some X ∈ X . Then, since the class X of codes

satisfies Condition 2, there uniquely exists the coarsest code Xϕ∗(L′∗)−{ε} ∈ X
that can factorize ϕ∗(L′

∗)− {ε}. Also, for any positive presentation of ϕ∗(L′
∗)−

{ε}, AX identifies Xϕ∗(L′∗)−{ε} in the limit. Thus, from Lemma 1, Xϕ∗(L′∗)−{ε}
is identical to the coarsest code Xϕ∗(L′∗) that can factorize ϕ∗(L′

∗). �

Lemma 4 assures that there exists a large enough number N1 such that, for each
i ≥ N1, Xi in the algorithm AC(L,X) is identical to the coarsest code Xϕ∗(L′∗).
Since Σ ′

i and ϕi in AC(L,X) are not updated any more for i > N1, we may let
Σ ′ = Σ ′

i and ϕ′ = ϕi. Then, the followings hold.
(1) From the above assumption, X∗ ∈ X can factorize ϕ∗(L′∗). For any X ′ ∈

X that can factorize ϕ∗(L′
∗), it holds that ϕ∗(L′

∗) ⊆ (Xϕ∗(L′∗))∗ ⊆ X ′∗ for
the coarsest code Xϕ∗(L′∗) from Lemma 3. Therefore, it holds that ϕ∗(L′

∗) ⊆
(Xϕ∗(L′∗))∗ ⊆ (X∗)∗.

(2) ϕ′ is a bijection of Σ ′ onto Xϕ∗(L′∗).
Furthermore, we may assume that Σ ′ ⊆ Σ . Then, the next key lemma holds.

Lemma 5. The language ϕ′−1(ϕ∗(L′
∗)) is in L.

Proof. Since ϕ∗ is a bijection of ΣL′∗ onto X∗ and X∗ can factorize Xϕ∗(L′∗),
it holds that ϕ−1∗ (Xϕ∗(L′∗)) ⊆ ϕ−1∗ ((Xϕ∗(L′∗))∗) ⊆ ϕ−1∗ ((X∗)∗) = (ϕ−1∗ (X∗))∗ =
(ΣL′∗)∗. Let X ′ = ϕ−1

∗ (Xϕ∗(L′∗)). Since Xϕ∗(L′∗) is the coarsest code that can
factorize ϕ∗(L′

∗), it holds that X ′ is a code over ΣL′∗ from Corollary 1 and that
L′∗ = ϕ−1∗ (ϕ∗(L′∗)) ⊆ ϕ−1∗ ((Xϕ∗(L′∗))∗) = (ϕ−1∗ (Xϕ∗(L′∗)))∗ (= X ′∗), i.e., X ′ can
factorize L′

∗.
In the algorithm AC(L,X), it holds that ϕ′−1(ϕ∗(L′

∗)) ⊆ ϕ′−1((Xϕ∗(L′∗))∗) =
(ϕ′−1(Xϕ∗(L′∗)))∗= Σ ′∗ since ϕ∗(L′∗) ⊆ (Xϕ∗(L′∗))∗ and Xϕ∗(L′∗) = ϕ′(Σ ′).

Let ψ = ϕ−1
∗ ◦ ϕ′. Then, it holds that ψ(Σ ′) = ϕ−1

∗ ◦ ϕ′(Σ ′) = ϕ−1
∗ (ϕ′(Σ ′)) =

ϕ−1∗ (Xϕ∗(L′∗)) = X ′.
Since L′

∗ ∈ L, X ′ is a code that can factorize L′
∗ (i.e., L′

∗ ⊆ X ′∗), and ψ
is a bijection of Σ ′ onto X ′ (i.e., X ′ = ψ(Σ ′)), it holds that ψ−1(L′

∗) ∈ L
from Condition 1. Therefore, we have that ϕ′−1(ϕ∗(L′∗)) = ϕ′−1 ◦ ϕ∗(L′∗) =
(ϕ−1

∗ ◦ ϕ′)−1(L′
∗) = ψ−1(L′

∗) ∈ L. �

A sequence ϕ′−1(w1), ϕ′−1(w2), . . . is a positive presentation of ϕ′−1(ϕ∗(L′
∗)) cor-

responding to a positive presentation w1, w2, . . . of ϕ∗(L′∗). Since ϕ′−1(ϕ∗(L′∗)) ∈
L from Lemma 5, the algorithm AL identifies ϕ′−1(ϕ∗(L′

∗)) in the limit from
positive data. That is, there exists a large enough number N2 such that, for
each i ≥ N2, ri is identical to r̃ such that L(r̃) = ϕ′−1(ϕ∗(L′∗)). Then, for
each time where i ≥ N2, AC(L,X) outputs a pair of r̃ and Xϕ∗(L′∗) such that
Xϕ∗(L′∗) = ϕ′(Σ ′). Thus, we have that ϕ′(L(r̃)) = ϕ′(ϕ′−1(ϕ∗(L′∗))) = ϕ∗(L′∗),
where ϕ∗(L′

∗) is the target language. Then, we have the next theorem.

A Unified Algorithm for Extending Classes of Languages 171

Theorem 1. The class C(L,X) of languages that satisfies Conditions 1 and 2
is identifiable in the limit from positive data.

Note that Theorem 1 assures that there exists a large enough number N2 such
that, for each i ≥ N2, ϕi(L(ri)) = ϕ∗(L′∗), but it does not neccesarily hold that
L(ri) = L′

∗, Σ ′
i = ΣL′∗ (= alph(L′

∗)), Xi = X∗ and ϕ′ = ϕ∗.

4.2 Time Analysis of the Identification Algorithm

Suppose that a sequence w1, w2, . . . is a positive presentation of the target lan-
guage in C(L,X) that satisfies Conditions 1 and 2. Let Si = {w1, w2, . . . , wi}
and S′

i = {ϕ′−1(wj) | wj ∈ Si − {ε}, 1 ≤ j ≤ i} for each i ≥ 1.

[Time for Updating a Conjecture] The time used by AC(L,X) between
receiving the i-th example wi and outputting the i-th conjecture (ri, Xi) for a
language ϕi(L(ri)), where Xi = ϕi(Σ ′

i) and Σ ′
i = alph(S′

i), is mainly given by
the total time for computing the following three procedures: (1) the function
UPDATE(Xi−1, wi), (2) the procedure computing the set S′

i, and (3) the func-
tions CONSTRUCT(r′j−1, S

′
j) for all 1 ≤ j ≤ i. The above procedures “(1)”

and “(2)” depend on the properties of the class X , while the procedure “(3)”
depends on the properties of the class L. The time for computing the procedure
“(1)” corresponds to the time used by AX for updating a conjecture Xi. The
time for computing the procedure “(2)” is equal to the time for computing Xi-
factorizations of wj for all j (1 ≤ j ≤ i). And then, the time for computing the
procedure “(3)” corresponds to the total time used by AL between receiving the
first example ϕ−1

1 (w1) and outputting the i-th conjecture r′i.
[The Number of Implicit Errors] In the learning process of AC(L,X),
whenever Xi �= Xi−1, a set Σ ′

i and a bijection ϕi are computed over again by
using an updated code Xi. In this case, for each i, the number of updating con-
jectures r′j (1 ≤ j ≤ i) in AC(L,X) is bounded by the number of implicit errors of
prediction made by AL. Therefore, the number of implicit errors of prediction
made by AC(L,X) is bounded by the number of implicit errors of prediction made
by AL multiplied by that of prediction made by AX .

5 Examples of Applications

The identification algorithm AC(L,X) is a unified algorithm for a class C(L,X)
of languages that satisfies Conditions 1 and 2. We shall show some examples of
applying this algorithm to pairs of some class of languages and that of codes in
the followings.

Let M = (Q,Σ , δ, q0, F) be a deterministic finite automaton (DFA, for short),
where Q is the finite set of states, Σ is the finite set of input symbols, δ : Q×Σ →
Q is the transition function, q0 (∈ Q) is the initial state, and F (⊆ Q) is the
set of final states. A usual extension of a transition function δ to a function
δ : Q×Σ∗ → Q allows us to deal with transitions by strings. For a state q ∈ Q,
let L(q) = {w ∈ Σ∗ | δ(q, w) ∈ F}. A language accepted by a DFA M , denoted

172 M. Wakatsuki, E. Tomita, and G. Yamada

by L(M), is defined to be L(q0). A language is said to be regular iff it is accepted
by a DFA.

A DFAM is said to be minimal iff, for any q ∈ Q, there exist u ∈ Σ∗ such that
δ(q0, u) = q and v ∈ Σ∗ such that δ(q, v) ∈ F , and for any pair of distinct states
q1, q2 ∈ Q, it holds that L(q1) �= L(q2). Note that, for any regular language L,
there exists a minimal DFA M such that L(M) = L [5].

For any nonnegative integer k, a string u ∈ Σ∗ is said to be a k-leader of a
state q ∈ Q of a DFA M iff |u| = k and there exists a state p ∈ Q such that
δ(p, u) = q.

Now we define the following languages.

Definition 9. A DFA M is said to be a restricted strictly deterministic au-
tomaton (RSDA, for short) iff, for any a ∈ Σ, there exists at most one pair of
states (p, q) ∈ Q×Q such that δ(p, a) = q. The language accepted by an RSDA
M is said to be a restricted strictly regular language (RSRL, for short).

Definition 10. Let k be a positive integer. A DFA M is said to be a k-definite
DFA (k-DDFA, for short) iff, for any pair of distinct states q1 and q2 in Q, there
exists no string that is a k-leader of both q1 and q2. The language accepted by a
k-DDFA M is said to be a k-definite regular language (k-DRL, for short).

Let RSR, DRk, and Revk be the class of RSRLs, the class of k-DRLs for each
k ≥ 1, and the class of k-reversible languages [2] for each k ≥ 0, respectively.
From Definitions 9 and 10, we can show that for each k ≥ 1, the following
relationships hold:RSR ⊂ DRk ⊂ Revk. Therefore, these classes are identifiable
in the limit from positive data. Furthermore, we can prove the following lemma.

Lemma 6. All of the classes RSR, DRk for any k ≥ 1, and Revk for any
k ≥ 0 are closed under the inverse coding morphism.

Proof. We shall show that RSR is closed under the inverse coding morphism.
For any L ∈ RSR, there exists an RSDA M = (Q,Σ , δ, q0, F) such that

L(M) = L. For any code X ⊆ Σ∗ that can factorize L, it holds that L ⊆ X∗. Let
Σ ′ be an alphabet such thatX = ϕ(Σ ′) for some coding morphism ϕ : Σ ′∗ → Σ∗.
Then, it holds that ϕ−1(L) ⊆ ϕ−1(X∗) = (ϕ−1(X))∗ = Σ ′∗. Therefore, there
exists a minimal DFA M ′ = (Q′,Σ ′, δ′, q′0, F

′) such that L(M ′) = ϕ−1(L(M)).
Note that, for any w ∈ Σ ′∗, it holds that w ∈ L(M ′) iff ϕ(w) ∈ L(M).

Suppose for the sake of contradiction thatM ′ is not an RSDA. Then, for some
a ∈ Σ ′, M ′ has a pair of transition functions δ′(p1, a) = q1 and δ′(p2, a) = q2
such that p1 �= p2 or q1 �= q2. Since M ′ is minimal, it holds that L(p1) �= L(p2)
or L(q1) �= L(q2). Let u1, u2 ∈ Σ ′∗ be strings such that δ′(q′0, u1) = p1 and
δ′(q′0, u2) = p2. And let v1, v2 ∈ Σ ′∗ be strings such that δ′(q1, v1), δ′(q2, v2) ∈
F ′. Then, it holds that u1av1, u2av2 ∈ L(M ′). Therefore, in the RSDA M , it
holds that ϕ(u1av1), ϕ(u2av2) ∈ L(M). Then, there exist r1, r2 ∈ Q such that
δ(q0, ϕ(u1)) = r1 and δ(q0, ϕ(u2)) = r2. Furthermore, there exist s1, s2 ∈ Q such
that δ(r1, ϕ(a)) = s1 and δ(r2, ϕ(a)) = s2. Since ϕ(a) ∈ X ⊆ Σ+ and M is
an RSDA, it should hold that r1 = r2 and s1 = s2. Therefore, δ(q0, ϕ(u1)) =
δ(q0, ϕ(u2)) = r1 and δ(q0, ϕ(u1a)) = δ(q0, ϕ(u2a)) = s1.

A Unified Algorithm for Extending Classes of Languages 173

In the case where p1 �= p2, by symmetry, we may assume that for some
z ∈ Σ ′∗, z ∈ L(p1) and z �∈ L(p2). Then, it holds that u1z ∈ L(M ′) and
u2z �∈ L(M ′). Therefore, it holds that ϕ(u1z) ∈ L(M) and ϕ(u2z) �∈ L(M). Since
ϕ(u1z) ∈ L(M) and δ(q0, ϕ(u1)) = δ(q0, ϕ(u2)), it holds that ϕ(u2z) ∈ L(M).
This is a contradiction.

In the case where q1 �= q2, by symmetry, we may assume that for some z ∈ Σ ′∗,
z ∈ L(q1) and z �∈ L(q2). Then, it holds that u1az ∈ L(M ′) and u2az �∈ L(M ′).
Therefore, it holds that ϕ(u1az) ∈ L(M) and ϕ(u2az) �∈ L(M). Since ϕ(u1az) ∈
L(M) and δ(q0, ϕ(u1a)) = δ(q0, ϕ(u2a)), it holds that ϕ(u2az) ∈ L(M). This is
a contradiction.

Therefore, M ′ is an RSDA. Thus, RSR is closed under the inverse coding
morphism.

In a similar way to this, we can prove that all the classes DRk for any k ≥ 1
and Revk for any k ≥ 0 are closed under the inverse coding morphism. �

Thus, all of the classes RSR, DRk for any k ≥ 1, and Revk for any k ≥ 0 satisfy
Condition 1 from Lemma 6.

We can show that the class C(RSR,SP) of languages coincides with the class
of strictly regular languages [10], where SP is the class of strict prefix codes.
Also, since RSR coincides with the class of Szilard languages of linear grammars
[7], the function CONSTRUCT(r′i−1, w

′
i) in ARSR can be written as almost the

same procedure CONSTRUCT(∆i) in [10], p.166 except Σ ′
i is used instead of

Ti. When ARSR receives w′
1, w

′
2, . . . , w

′
i as input, the total time for updating

conjectures of ARSR is bounded by O(
∑i

j=1 |w′
j |). Furthermore, the number of

implicit errors of prediction made by ARSR is bounded by O(|Σ ′|). In a similar
way to this analysis, we can show that the total time for updating conjectures
of ADRk

for each k ≥ 1 is bounded by O(
∑i

j=1 |w′
j |) and the number of implicit

errors of prediction made by ADRk
is bounded by O(|Σ ′|k+1).

In the class SP of strict prefix codes over Σ , for any S ⊆ Σ∗, there uniquely
exists the coarsest code in SP that can factorize S from Lemma 2. And then, the
function UPDATE(Xi−1, wi) in ASP is the same as the procedure UPDATE(
Ti−1, wi) in [10], p.164. In a similar way to [10], we can prove that this function
outputs the coarsest code that can factorize {w1, w2, . . . , wi}. Therefore, the
class SP satisfies Condition 2. Similarly, we can show that the class SS of
strict suffix codes also satisfies Condition 2. When ASP (respectively, ASS)
receives w1, w2, . . . , wi as input, the time used by ASP (ASS , resp.) for updating
conjectures is bounded by O(|Σ |l2), where l = Max{|w1|, |w2|, . . . , |wi|}. The
number of implicit errors of prediction made by ASP (ASS , resp.) is bounded
by O(|Σ |l).

Summarizing the above results, we have the next theorem.

Theorem 2. The class C(RSR,SS) of languages, which is incomparable to the
class C(RSR,SP), is polynomial time identifiable in the limit from positive data.
For each k ≥ 1, the class C(DRk,SP) (C(DRk,SS), respectively) of languages
is polynomial time identifiable in the limit from positive data when we regard k
to be a constant.

174 M. Wakatsuki, E. Tomita, and G. Yamada

6 Conclusions

We have been concerned with a unified algorithm for extending classes of lan-
guages identifiable in the limit from positive data. When the extended class
C(L,X) of languages satisfies Conditions 1 and 2, C(L,X) is identifiable in the
limit from positive data. Then, we have presented a unified identification algo-
rithm AC(L,X) for the class C(L,X) of languages in question.

References

1. Angluin, D., Inductive inference of formal languages from positive data, Inform.
and Control 45 (1980), 117-135.

2. Angluin, D., Inference of reversible languages, J. ACM 29 (1982), 741-765.
3. Berstel, J. and D. Perrin, “Theory of Codes”, Academic Press, Inc., 1985.
4. Gold, E. M., Language identification in the limit, Inform. and Control 10 (1967),

447-474.
5. Harrison, M. A., “Introduction to Formal Language Theory”, Addison-Wesley,

Reading, Massachusetts, 1972.
6. Kobayashi, S. and T. Yokomori, Identifiability of subspaces and homomorphic im-

ages of zero-reversible languages, ALT’97, LNAI 1316 (1997), 48-61.
7. Mäkinen, E., The grammatical inference problem for the Szilard languages of linear

grammars, Inform. Process. Lett. 36 (1990), 203-206.
8. Pitt, L., Inductive inference, DFAs, and computational complexity, Proc. 2nd Work-

shop on Analogical and Inductive Inference, LNAI 397 (1989), 18-44.
9. Tanida, N. and T. Yokomori, Polynomial-time identification of strictly regular lan-

guages in the limit, IEICE Trans. on Inform. and Systems E75-D (1992), 125-132.
10. Yokomori, T., On polynomial-time learnability in the limit of strictly deterministic

automata, Machine Learning 19 (1995), 153-179.

Protein Motif Prediction by Grammatical
Inference�

Piedachu Peris, Damián López, Marcelino Campos, and José M. Sempere

Departamento de Sistemas Informáticos y Computación.
Universidad Politécnica de Valencia.

Camino de Vera s/n
46071 Valencia (SPAIN)

{pperis, dlopez, mcampos, jsempere}@dsic.upv.es

Abstract. The rapid growth of protein sequence databases is exceeding
the capacity of biochemically and structurally characterizing new pro-
teins. Therefore, it is very important the development of tools to locate,
within protein sequences, those subsequences with an associated func-
tion or specific feature. In our work, we propose a method to predict one
of those functional motifs (coiled coil), related with protein interaction.
Our approach uses even linear languages inference to obtain a transduc-
tor which will be used to label unknown sequences. The experiments
carried out show that our method outperforms the results of previous
approaches.

Keywords: Grammatical inference, bioinformatics, protein motif
location.

1 Introduction

Processing of biological data is a key task in many applied fields. Recently, an
explosion of papers apply Pattern Recognition techniques to bioinformatics tasks
[1,2]. Formal Language Theory and Grammatical Inference (GI) are also playing
an important role and it is expected that they could lead to good applied results
[3,4]. Some works use GI techniques in order to address, among other tasks:
secondary structure identification [5], protein motifs detection [6,7,8], optimal
consensus sequence discovery [9,10] or gene prediction [11].

The selection of proteins with certain characteristics from genomic sequences
is a central goal of computational biology. One aspect of this problem is to
detect certain subsequences, known as domains or motifs, with some interesting
functional features.

Coiled coil domains are of interest for molecular biologists studying a variety
of processes such as protein transportation and interaction. It has been shown
that coiled coil motif is implied in membrane fusion and the infection of cells by

� Work supported by the CICYT TIC2000-1153 and the Generalitat Valenciana
GV06/068.

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 175–187, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

176 P. Peris et al.

viruses or parasites [12][13]. Predictions based on analysis of primary sequences
suggest that approximately 2-3% of all protein residues form coiled coils [14].

The coiled coil motif consist of two α-helices wrapping around each other
forming a supercoil. The sequences of coiled coils are made of seven-residue
(amino acids) repeats which forms a pattern usually denoted (abcdefg)n where
the position of each residue is noted from a to g. Within this pattern, called
also heptad, generally an hydrophobic core occurs every four and then three
residues apart, that is, at positions a and d. The interaction between two α-
helices in a coiled coil involves these hydrophobic residues. The result is a highly
versatile protein interaction mechanism (see Figure 1). Due to its simplicity
and regularity, the coiled coil is one of the most extensively studied protein
motifs.

Fig. 1. A schematic coiled coil representation is shown. The relative position of amino
acids in a characteristic coiled coil heptad repeat is marked with bullets. Residues
at the a and d positions are predominantly hydrophobic. Due to the α-helical struc-
ture, residues at the a and d position are spatially close one each other. Both fea-
tures (hydrophobicity and spatial arrangement), provide a versatile protein interaction
mechanism.

Several programs for predicting coiled coil domains have been proposed. The
most relevant to large-scale annotations are coils [15] (probably the most widely
used), paircoil [16] and multicoil [14]. All these programs are based on the pro-
bability of appearance of every amino acid in each position of the characteristic
heptad, extracted from known coiled coil motifs. Multicoil is the most special-
ized one, and aims to detect double or triple coiled coil domains. All of them
are based on a Position Specific Scoring Matrix (PSSM) (also known as Position
Weighted Matrix) approach [17]. This general scheme considers the probabili-
ties of appearance of each possible residue in each position of the motif. These
probabilities are obtained from sequences with confirmed motifs or considering
multiple sequence alignments of functionally related sequences. This approach
has also been widely used in gene-finding tasks.

The work by Lupas et al. [15] takes into account that even very short proteins
have stable coiled coils containing four or five heptads, and analyzes the test
sequences using a sliding window of 28 amino acids. A score for each amino
acid in the sequence of the protein is obtained using the probabilities of the
PSSM. Then, the score distributions for general globular proteins and coiled coil
sequences are approximated with Gaussian curves used to obtain, for each amino
acid of the protein, a probability of belonging to a coiled coil motif.

Protein Motif Prediction by Grammatical Inference 177

Although this approach is widely known by the biological community, it is
known that the method leads to a significant number of false positives, some of
them due to the continuous appearance of some frequent amino acids in coiled
coil regions (for instance, (Lys − Lys − Lys)n scores highly though it is not
a coiled coil). To solve this problem, Berger et al. [16] follow the same PSSM
approach but taking into account the pairwise amino acid correlations in known
coiled coils. The correlations and the size of the window used were empirically
selected, and,

– the correlations between the pairs of amino acids placed in positions (i,i+1)
and (i,i+ 4) were considered.

– the size of the sliding window was set to 30.

The authors claim that the approach is useful to discard false positives de-
tected by the Lupas’ approach. They carry out a wide experimentation to show
the behaviour and present several examples of false positives detected.

Nevertheless, the problem of locating general coiled coil motifs still remains
open. Several authors have noted several important coiled-proteins that are not
detected when the previous methods are used (among others, fusion-membrane
proteins of the human and simian inmunodeficiency virus or Ebola virus [18]).
Thus, several other works propose solutions for more specific instances of the
problem [19][18].

In our work, we use a grammatical approach to locate coiled coil motifs within
protein sequences. Previous related works address the task of detecting protein
structures: α-helix structures in protein sequences [20] or even the coiled coil
motif [7,8].

We address the problem of predicting the coiled coil motifs of a given pro-
tein. Our approach considers the original sequence and an annotated reduced
version which distinguish between coiled coil and non-coiled coil subsequences.
This data is combined into an even linear structure and used to infer Even Linear
Languages (ELL). The inferred languages are then used to build a transductor
suitable to translate, that is, to distinguish coiled and non-coiled regions in prob-
lem sequences. The results of the experimentation carried out are compared with
other existing approaches. Our work is organized as follows: Section 2 summa-
rizes some definitions and the notation used; Section 3 explains our approach
to the problem; Section 4 shows the experimental results and the indexes used
to compare our results with previous ones; Finally, some conclusions and future
lines of research end the paper.

2 Notation and Definitions

Let Σ be an alphabet and Σ∗ the set of words over the alphabet. For any word
x ∈ Σ∗ let xi denote the i-th symbol of the sequence, let |x| denote the length of
the word and let xr denote the reverse of x. Let also λ denote the empty word.
A grammar is denoted by G = (N,Σ, P, S) where N and Σ are the auxiliar and
terminal alphabets, P is the set of productions and S ∈ N is the initial symbol
or axiom. The language generated by G is denoted by L(G).

178 P. Peris et al.

An Even Linear Grammar (ELG) is a context-free grammar [21] where the
productions are of the forms:

A→ xBy where A,B ∈ N , x, y ∈ Σ∗ and |x| = |y|
A→ x where A ∈ N , x ∈ Σ∗

The class of Even linear Languages (ELL) is a subclass of the context free
languages and includes properly the class of regular languages. Given an ELG,
it is possible to obtain an equivalent one where the productions are of the form.

A→ aBb where A,B ∈ N , a, b ∈ Σ
A→ a where A ∈ N , a ∈ Σ ∪ {λ}
The learning of ELL can be reduced to the inference of regular languages [22].

The general algorithm consists in transforming the training strings through a
function σ : Σ∗ → [Σ ×Σ]∗ ∪ [Σ]∗ defined as follows:

σ(λ) = λ
σ(a) = [a] where a ∈ Σ
σ(axb) = [ab]σ(x) where a, b ∈ Σ and x ∈ Σ∗

Once applied the function σ, it is possible to use any regular language in-
ference algorithm to learn a language over the alphabet [Σ × Σ]∗ ∪ [Σ]∗ and
then transform the productions of the obtained regular grammar to undo the
transformation σ as follows:

∀A→ [ab]B ∈ P add the production A→ aBb to the ELG
∀A→ [a] ∈ P add the production A→ a to the ELG
∀A→ λ ∈ P add all these productions to the ELG

Obviously, whenever the GI algorithm identifies a subclass of regular lan-
guages, then a subclass of ELL is obtained.

A finite state transducer is defined by a system τ = (Q,Σ,∆, q0, QF , E) where:
Q is a set of states, Σ and ∆ are respectively the input and output alphabets, q0
is the initial state, QF ⊆ Q is the set of final states and E ⊆ (Q×Σ∗×∆∗×Q)
is the set of transitions of the transducer. A successful path in a transducer is a
sequence of transitions (q0, x1, y1, q1), (q1, x2, y2, q2), . . . , (qn−1, xn, yn, qn) where
qn ∈ QF and for 1 ≤ i ≤ n: qi ∈ Q, xi ∈ Σ∗ and yi ∈ ∆∗. Note that a path can
be denoted as (q0, x1x2 . . . xn, y1y2 . . . yn, qn) whenever the sequence of states are
not of particular concern. A transduction is defined as a function t : Σ∗ → ∆∗

where t(x) = y if and only if there exist a successful path (q0, x, y, qn). We refer
the interested reader to [23].

3 Grammatical Inference Approach to Coiled Coil
Prediction

Several methods have been proposed to solve the coiled coil motif location task.
The most widely known are the PSSM-based methods by Lupas and Berger

Protein Motif Prediction by Grammatical Inference 179

[15,16], but also Hidden Markov Models have been used [24] as well as Neural
Networks approaches [25]. This motif occurs always on an underlying α-helix
protein structure. It is important to note, on the one hand, that the detection
of α-helix structure has been successfully addressed by GI methods [20], and
in the other hand, the biological regularity of the coiled coil pattern (that is,
the characteristic repeated heptad). This two facts support our GI approach to
tackle this task.

In our work we address the protein motif location problem as a transduc-
tion problem. In such a way that, given an amino acid sequence, we propose
a method to obtain a sequence with the same length which distinguishes be-
tween those amino acids within a motif and those that are not. The inference of
transducers has been widely studied by the GI community, in our work, we take
into account the special features of our problem to propose a method based on
inference of ELL. Our approach firstly transforms the available data to obtain a
training set with even linear structure. This set was used to infer an ELL. The
transducer is obtained using the structure of the ELG inferred. To do so, note
that, given a ELG G = (N,Σ, P, S) that does not contain productions of the
form A→ a, a ∈ Σ, it is possible to obtain a transducer τ = (N,Σ,Σ, S,QF , E)
where:

QF = {A ∈ N : (A→ λ) ∈ P}
E = {(A, a, b, B) : (A→ aBb) ∈ P}

Example 1 shows how this transformation work.

Example 1 Given the ELG G = (N,Σ, P, S) with the productions:

S → aS0 | bB1
A→ aA1 | bS0
B → aA1 | bB1 | λ

then, the transducer τ = (N,Σ,Σ, S, {B}, E) is obtained where:

E =
{

(S, a, 0, S), (S, b, 1, B), (A, a, 1, A),
(A, b, 0, S), (B, a, 1, A), (B, b, 1, B)

}
The resulting transducer is shown in Figure 2.

b/0

a/1b/1a/0

a/1b/1 ABS

Fig. 2. A three states transducer example. A label x/y denotes that the transition
symbol is x with output y. For instance, the transduction of baabaab is 1110001

�

180 P. Peris et al.

As we stated before, the learning problem for ELL can be reduced to the
problem of learning regular languages. In our work, in order to learn the ELL,
we use an algorithm to infer k-testable in the strict sense (k-TSS) languages
[26,27,5]. The class of k-TSS languages is contained into the regular languages
class and it is characterized by the set of segments of length k that appear in the
words of the language. The characteristic coiled coil heptad lead us to consider
this algorithm as a first suitable candidate.

Our approach considered a set of protein sequences P with known coiled coil
motifs and another set L of strings over ∆ = {c, n} with, a labeled sequence
lx for each sequence x in P . The labeled sequence was obtained in such a way
that distinguish between the amino acids corresponding to coiled and non-coiled
regions. That is, given the string x = x1x2 . . . xn ∈ P and its corresponding
labeled string lx = l1l2 . . . ln ∈ L, li = c whenever xi correspond to a coiled coil
motif, otherwise li = n.

These sets were combined to obtain another set M with the strings xlrx. Note
that the strings in this set have an even linear structure and even length. The
set M was used to obtain a transducer by ELL inference. The general method
is summarized in Algorithm 3.1.

Algorithm 3.1. Coiled coil Grammatical Inference approach.
Input:

– A set P of amino acid sequences with known coiled coil motifs.
– A set L of motif labeled sequences. Each string x in P has its corresponding

string lx in L.
Output:

– A transducer to locate coiled coil motifs.
Method:

– Combine the sets P and L to obtain the training set M with strings xlrx
– Apply to the strings in M the transformation function σ
– Apply a GI algorithm for (a subclass of) regular languages
– Undo the transformation σ to obtain the ELG from the regular language
– Return the transducer obtained from the ELG

EndMethod.

The returned transducer can be used to analyze problem sequences to ob-
tain the corresponding transduction. Note that the transducer may be non-
deterministic and the test sequences may not belong to the language accepted
by the transducer. Therefore, an error-correcting parser (for instance Viterbi’s
algorithm) is necessary to analyze the test sequences. We used a standard con-
figuration of Viterbi’s algorithm when a GI approach is applied to pattern recog-
nition tasks (i.e. [8]). We considered the number of times each transition of the
transducer is used to probabilize it. The error-correcting analysis considered only
low probability substitution errors for edit operations.

Protein Motif Prediction by Grammatical Inference 181

4 Experimental Results

In order to test our approach we considered two different datasets: The first one
contains sequences extracted from SwissProt Database (release 40, April 2003)
[28]. All the sequences selected contain a non-potential coiled coil annotation.
Potential annotations are those based mainly on homology results. Potential mo-
tifs were not included in the database because the function of potential domains
has not been yet assured. The resulting 350 sequences database has been previ-
ously used by [7,8]. The second coiled coil dataset was build by Delorenzi and
Speed [24]. This dataset considered sequences of Protein Data Bank [29]. This
database contains structural information of the tertiary structure of the proteins
and it is more suitable to obtain confident information. From the information
stored in the database, two sets were built: one with those coiled coil sequences
with experimental confirmation (397 sequences), and another with sequences
from which coiled coils motifs were eliminated (1525 sequences).

Protein sequences can be considered as strings in an 22 symbols alphabet (20
amino acids plus the glutamic and aspartic acids1). In order to reduce the alpha-
bet size without loss of information, two different codifications were considered.
The first one is due to Dayhoff and is based on some properties of the amino
acids. This codification has been previously used in some GI papers [20,7,8].
Second codification used considers only two symbols which distinguish between
hydrophobic and polar amino acids. This codification was used because this fea-
ture is key in the coiled coil motif. Figure shows the correspondence of each
amino acid for both codifications.

amino acid P/H Dayhoff
C p a

R, H, K, p d
D, E p c
N, Q p c
B, Z p g
Y p f
G p b

S, T p b
A, P h b
F, W h f

L, V, M, I h e

Fig. 3. Amino acid codifications

Several measures are suitable to evaluate the results. Some of them are re-
viewed in [30] under a scope of gene-finding problems. Nevertheless, they are
1 Some sequences also contain the symbol X. This happens whenever it is not clear

which amino acids occupy a certain position. In this work, we did not consider such
sequences (just one sequences in the first dataset and two sequences in the second).

182 P. Peris et al.

suitable to be applied to motif location tasks. Among all the measures proposed,
Sensitivity and Specificity are probably the most used. Sensitivity (Sn) measures
the probability of predict those symbols inside a motif. Specificity (Sp) measures
the probability of predicted segments to be actually motifs.

These measures are computed using the following partial results:

True Positives (TP): symbols of the sequence inside a motif that are correctly
annotated.

True Negatives (TN): symbols of the sequence outside a motif that are cor-
rectly annotated.

False Positives (FP): symbols of the sequence outside a motif that are anno-
tated as they were inside one.

False Negatives (FN): symbols of the sequence inside a motif that are not
correctly annotated.

Using these measures, both Sn and Sp can be computed as follows:

Sn =
TP

TP + FN
Sp =

TP

TP + FP

Note that neither Sn nor Sp alone constitute a good measure. The Correlation
Coefficient (CC) is defined in order to use a single value that summarizes both
results. It can be computed as follows:

CC =
(TP · TN)− (FN · FP)√

(TP + FN) · (TN + FP) · (TP + FP) · (TN + FN)

Although CC has some statistical properties [30] it has also an undesirable
drawback. It is not defined when any factor of the root is zero. Some measures
have been defined to overcome this inconvenient, we will use the Approximate
Correlation (AC) which is defined as follows:

AC =
{

1
4

[
TP

TP + FN
+

TP

TP + FP
+

TN

TN + FP
+

TN

TN + FN

]
− 0.5

}
· 2

In order to evaluate the results, it has to be noted that, for some samples,
it was not possible to calculate Sp and CC, and therefore, these samples were
not taken into account. The Approximate Correlation AC considers all samples,
including those for which it was not possible to calculate CC or Sp. This can ex-
plain why in some cases the difference between AC and CC is relevant. This fact
makes AC the most reliable measure in order to evaluate the global performance
of our approach.

In order to test our approach, both datasets were processed using the same
scheme. We considered several values of the GI algorithm k parameter, and
performed a leaving-one-out experiment (all the sequences but one were used to
infer the transducer and the remaining one to test the performance. This process
is iterated to consider the whole dataset).

Protein Motif Prediction by Grammatical Inference 183

Our results are also compared with the output of coils and paircoil methods.
Note that these methods are based on the physic-chemical properties of the coiled
coil motif, therefore, no training is needed. Public versions of these programs are
available at [31] and [32] respectively. Both approaches use a default probability
threshold of 0.5. This threshold has to be reached to consider an amino acid
as belonging to a coiled coil motif. Note that to lower this threshold implies an
increasing of the sensibility and a decreasing of the specificity levels. In the same
way, to higher the default parameter implies an increasing of the sensibility but
a decreasing of the sensibility levels. We are interested in the general behaviour,
therefore, we will consider the default threshold value.

The two symbols codification did not obtain significant results, thus, we will
show only the best configuration performance for this codification. The results
obtained by the subset of SwissProt database are shown in Table 1.

Table 1. Experimental results when the coiled subset of SwissProt was used. Note
the improvement of the results obtained by our method. Although bigger k parameter
values lead to higher sensitivity, best results are obtained by using k = 8.

Method Sn Sp CC AC
coils 0.4568 0.8022 0.4897 0.4155

paircoil 0.4996 0.8209 0.5676 0.4806

IGcoils
(Dayhoff coding)

k = 2 0.7865 0.7226 0.6355 0.5480
k = 3 0.8287 0.7610 0.6799 0.6365
k = 4 0.8095 0.8491 0.7547 0.7164
k = 5 0.7688 0.9563 0.8741 0.7728
k = 6 0.8527 0.9804 0.9291 0.8638
k = 7 0.9180 0.9701 0.9420 0.9085
k = 8 0.9506 0.9673 0.9529 0.9338
k = 9 0.9696 0.9614 0.9498 0.9428
k = 10 0.9710 0.9624 0.9479 0.9457

IGcoils (P/H coding) k = 8 0.6526 0.7887 0.6113 0.5174

The experimental results when the Delorenzi database was used are shown in
Table 2. Note that in this experiment, the lower values of the inference parameter,
the worse values of the sensitivity and specificity. Nevertheless, considering the
correlation coefficient (or the approximate correlation as well), our approach
improves the results.

One of the most important drawbacks of the Lupas’ method is the number
of false positives that it produces. Berger et al. considered this fact as their
main motivation to develop their approach. In order to compare the perfor-
mance of our method when non-coiled sequences are to be tested, we carried
out the following experiment: two transducers were inferred, each one consider-
ing all the sequences of the two different datasets (i.e. the coiled coil SwissProt
subset and the Delorenzi dataset). The sequences of the non-coiled dataset where

184 P. Peris et al.

Table 2. Experimental results when the coiled Delorenzi’s database was used. Best
results were obtained for k = 7 and k = 8. This result is consistent with the heptad-
based biological characterization of the motif.

Method Sn Sp CC AC
coils 0.6688 0.8552 0.6372 0.6222

paircoil 0.6511 0.8489 0.6693 0.5972

IGcoils
(Dayhoff coding)

k = 2 0.6269 0.7420 0.6501 0.5058
k = 3 0.6353 0.7616 0.6730 0.5342
k = 4 0.6275 0.7778 0.6793 0.5654
k = 5 0.5709 0.8249 0.6842 0.5729
k = 6 0.5262 0.8730 0.7395 0.5692
k = 7 0.5465 0.9212 0.8128 0.5952
k = 8 0.6058 0.9002 0.8036 0.6356

IGcoils (P/H coding) k = 8 0.4012 0.8001 0.6020 0.3883

Table 3. Experimental results when the non-coiled dataset was processed. Upper two
rows show the percentage of symbols predicted inside a coiled coil motif (error rate).
Lower rows show the number of sequences in the non-coiled dataset with any erroneous
prediction. All this results were obtained with the Dayhoff coding.

IGcoils
Coils Paircoil

k = 6 k = 7 k = 8

% error rate
SwissProt dataset 0.0118 0.0175 0.0254

0.0058 0.0023
Delorenzi dataset 0.0036 0.0030 0.0016

of erroneous
sequences

SwissProt dataset 104 123 140
57 12Delorenzi dataset 26 18 12

then independently tested considering this two transducers, and two measures
were work out: the error percentage and the number of sequences with a motif
predicted. Note that these sequences were processed to delete all the coiled coil
motifs, therefore, all the coiled coil predictions are erroneous. The results ob-
tained with the two symbols codification were not significant, therefore, we only
show the results (summarized in table 3) obtained when the Dayhoff coding was
used.

The results obtained by transducers inferred with the SwissProt dataset are
not comparable to previous methods. Nevertheless, those transducers inferred
using the Delorenzi dataset obtained better results than Lupas’ and Berger’s
methods. It could be argued that some homology between the Delorenzi’s coiled
coil and non-coiled datasets somewhat biases the results, but this can be refused
by noting that the datasets were built considering low homology between the
sequences and that there are many more sequences in the non-coiled dataset
than in the coiled one.

Protein Motif Prediction by Grammatical Inference 185

5 Conclusions and Future Work

This work addresses the task of protein motif prediction by applying GI tech-
niques. Previous methods are based on the physical-chemical characterization of
the motif. This allow to use a Position Weighted Matrices approach to predict
new motifs. The results obtained lead us to conjecture that it is not necessary
to biologically characterize a new motif in order to develop prediction tools. It is
also to note that these results are feasible to be extended to other bioinformatic
tasks.

In all cases, the results obtained with the Dayhoff coding were much better
than those obtained with the two symbols codification. Therefore, in what follows
we will refer only to Dayhoff codification.

The results obtained using the first corpus (coiled sequences from SwissProt)
show that our method outperforms previous approaches. Nevertheless this re-
sults are somewhat misleading because the transducers inferred lead to a high
number of false positives (both error rate and number of sequences with erro-
neous predictions) when non-coiled sequences are tested.

When the Delorenzi’s dataset was considered, our approach gave better results
to those obtained by previous methods. This is mainly due to an increase of
the specificity levels. This fact is specially motivating in order to apply new
prediction methods, because it is very important to reduce the number of false
positives. The experiments involving non-coiled sequences confirmed the good
performance of our approach, which obtains lower error rate with the same
number of erroneous sequences.

Future lines of work should consider, the consideration of other inference
algorithms. Specially interesting are the learning of synchronized and non-
synchronized ELL [33]. Bigger datasets (modeling coiled coil motif or other bio-
logically interesting motifs) should also be considered. The comparison between
GI and NN or HMM approaches to protein motif location is left also as future
work.

References

1. Editorial. The fundamental role of pattern recognition for gene-expresion/micro-
array data in bioinformatics. Pattern Recognition, 38:2226–2228, 2005.

2. A.W-C. Liew, H. Yan, and M. Yang. Pattern recognition techniques for the emerg-
ing field of bioinformatics: A review. Pattern Recognition, 38:2055–2073, 2005.

3. D.B. Searls. The language of genes. Nature, 420:211–217, 2002.
4. Y. Sakakibara. Grammatical inference in bioinformatics. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 27(7):1051–1062, 2005.
5. T. Yokomori and S. Kobayashi. Learning local languages and their application

to dna sequence analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(10):1067–1079, 1998.

6. S. Arikawa, S. Kuhara, S. Miyano, A. Shinohara, and T. Shinohara. A learning
algorithm for elementary formal systems and its experiments on identification of
transmembrane domains. In Proceedings of the 25th Hawaii Intl. Conf. on System
Sciences. IEEE, 1992. ISBN: 0-8186-2420-0.

186 P. Peris et al.

7. D. Lopez, A. Cano, M. Vazquez de Parga, B. Calles, J.M. Sempere, T. Perez,
J. Ruiz, and P. Garcia. Detection of functional motifs in biosequences: A grammat-
ical inference approach. In Proceedings of the 5th Annual Spanish Bioinformatics
Conference, pages 72–75. Univ. Politècnica de Catalunya, 2004. ISBN: 84-7653-
863-4.

8. D. López, A. Cano, M. Vázquez de Parga, B. Calles, J. M. Sempere, T. Pérez,
M. Campos, J. Ruiz, and P. Garćıa. Motif discovery by k-tss grammatical infer-
ence. In G. Paliouras C. de la Higuera, T. Oates and M. Van Zaanen, editors,
IJCAI-05 Workshop on Grammatical Inference Applications: Successes and Future
Challenges, 2005. Working Notes.

9. A. Brazma, I. Johansen, J. Vilo, and E. Ukkonen. Pattern discovery in biose-
quences. LNAI, 1433:257–270, 1998. 4th Intl. Colloquium, ICGI’98.

10. H. Arimura, A. Wataki, R. Fujino, and S. Arikawa. A fast algorithm for discovery
optimal string patterns in large databases. LNAI, 1501:247–261, 1998. 9th Intl.
Conference, ALT’98.

11. P. Peris, D. López, M. Campos, and J.M. Sempere. Gene-finding by grammatical
inference. (submitted manuscript).

12. J.J. Skehel and D.C. Wiley. Coiled coils in both intracellular vesicle and viral
membrane fusion. Cell, 95:871–874, 1998.

13. D.C. Chan and P.S. Kim. Hiv entry and its inhibition. Cell, 93:681–684, 1998.
14. E. Wolf, P.S. Kim, and B. Berger. Multicoil: a program for predicting two- and

three-stranded coiled coils. Protein Science, 6:1179–1189, 1997.
15. A. Lupas, M. Van Dyke, and J. Stock. Predicting coiled coild from protein se-

quences. Science, 252:1162–1164, 1991.
16. B. Berger, D.B. Wilson, E. Wolf, T. Tonchev, M. Milla, and P. S. Kim. Predicting

coiled coils by use of pairwise residue correlation. Proc. Natl. Acad. Sci., 92:8259–
8263, 1995.

17. C. Mathé, M.F. Sagot, T. Schiex, and P. Rouzé. Current methods of gene predic-
tion, their strengths and weakenesses. Nucleic Acid Research, 30(19):4103–4117,
2002.

18. M. Singh, B. Berger, and P.S. Kim. Learncoil-vmf: Computational evidence for
coiled-coil-like motifs in many viral membrane fusion proteins. J. Mol. Biol.,
290:1031–1041, 1999.

19. M. Singh, B. Berger, P.S. Kim, J.M. Berger, and A.G. Cochran. Computational
learning reveals coiled coil-like motifs in histidine kinase linker domains. Proc.
Natl. Acad. Sci., 95:2738–2743, 1998.

20. T. Yokomori, N. Ishida, and S. Kobayashi. Learning local languages and its applica-
tion to protein α-chain identification. In Proceedings of the Twenty-Seventh Annual
Hawaii International Conference on System Sciences, pages 113–122. IEEE, 1994.

21. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley Publishing Company, 1979.

22. J.M. Sempere and P. Garćıa. A characterization of even linear languages and its
application to the learning problem. LNAI, 862:38–44, 1994.

23. J. Berstel. Transductions and context-free languages. Teubner Studienbücher, 1979.
24. M. Delorenzi and T. Speed. An hmm model for coiled-coil domains and a compar-

ison with pssm-based predictions. Bioinformatics, 18(4):617–625, 2002.
25. M. Campos and D. López. Neural network approach to locate motifs in biose-

quences. 3773:214–221, 2005. 10th Iberoamerican Congress on Pattern Recogni-
tion, CIARP 2005.

Protein Motif Prediction by Grammatical Inference 187

26. T. Knuutila. Advances in Structural and Syntactic Pattern Recognition: Proc. of
the International Workshop, chapter Inference of k-Testable Tree Languages, pages
109–120. World Scientific, 1992.

27. P. Garćıa. Learning k-testable tree sets from positive data. Tech-
nical Report DSIC/II/46/1993, Departamento de Sistemas Informáticos y
Computación. Universidad Politécnica de Valencia, 1993. Available on:
http://www.dsic.upv.es/users/tlcc/tlcc.html.

28. Swiss-Prot groups at SIB and at EBI. Uniprot database (swissprot and trembl).
http://www.expasy.ch/sprot/.

29. Protein data bank. http://www.rcsb.org/pdb/Welcome.do.
30. M. Burset and R. Guigó. Evaluation of gene structure prediction programs. Ge-

nomics, 34:353–367, 1996.
31. Source Code NCOILS, 1999. http://www.russell.embl.de/cgi-bin/coils-svr.pl.
32. PAIRCOIL implementation by the authors, 1995.

http://theory.lcs.mit.edu/ bab/computing.
33. J.M. Sempere and P. Garćıa. Learning locally testable even linear languages form

positive data. LNAI, 2484:225–236, 2002.

Grammatical Inference in Practice:
A Case Study in the Biomedical Domain

Sophia Katrenko and Pieter Adriaans

Human-Computer Studies Lab, University of Amsterdam
katrenko@science.uva.nl, pietera@science.uva.nl

Abstract. In this paper we discuss an approach to named entity recog-
nition (NER) based on grammatical inference (GI). Previous GI ap-
proaches have aimed at constructing a grammar underlying a given text
source. It has been noted that the rules produced by GI can also be inter-
preted semantically [16] where a non-terminal describes interchangeable
elements which are the instances of the same concepts. Such an observa-
tion leads to the hypothesis that GI might be useful for finding concept
instances in a text. Furthermore, it should also be possible to discover
relations between concepts, or more precisely, the way such relations are
expressed linguistically.

Throughout the paper, we propose a general framework for using GI
for named entity recognition by discussing several possible approaches.
In addition, we demonstrate that these methods successfully work on
biomedical data using an existing GI tool.

1 Introduction

As any other domain, biomedicine can be characterized by a large amount of
information presented by different means. These include collections of articles
(such as Medline), databases of genes and other biomolecular data such as on-
tologies [2]. Considering the fact that such resources need to be updated often,
their curation is a tedious task usually involving a human expert.

To facilitate this task, a solution is required that allows for semi-automatic
knowledge acquisition. In this setting, an expert is presented only with the most
relevant information to be preprocessed. Although there have been many ap-
proaches that focus on fully automatic knowledge acquisition via supervised
machine learning, these methods require the availability of large collections of
data already annotated by humans. Annotated resources are not always avail-
able for the domain in question, moreover it is often difficult to apply techniques
used on a certain type of data to another domain. This poses the question, are
there any alternatives that are based on unsupervised learning?

This paper describes a case study that aims at finding out how useful GI can
be for semantic acquisition. At first sight grammatical inference appears to be
a suitable candidate in the biomedical domain, for several reasons. Firstly, it
has been shown that the output of GI is often semantically biased, specifically
entities exemplifying the same semantic class are likely to be generated by the

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 188–200, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Grammatical Inference in Practice 189

same non-terminal in the grammar. According to these assumptions, we expect
proteins, disorders and any other biomedical entities to be clustered together.
In addition GI can also be used in bootstrapping where new instances can be
learned given some background knowledge.

In the biomedical domain, there are several tasks which may benefit from
knowledge acquisition by grammatical inference. For instance, named entity
recognition (e.g., identification of genes and proteins in a text), relation discov-
ery (e.g., learning interactions among biomedical entities), and semi-automatic
enrichment of existing ontologies and dictionaries. Unsupervised methods are
known to provide relatively high precision but low recall. We aim to test how
well GI may help during the process of constructing ontologies and semantic
resources in a semi-automatic way, with a focus on precision.

The research questions of our study are as follows:

1. Does GI induce not only syntactic categories but semantic categories as well?
2. How granular will the acquired semantic information be? What factors affect

the granularity?

This paper is organized as follows. We start with the discussion of relevant
work and motivation for using grammatical inference to named entity recogni-
tion. We then describe our methodology and present some experiments.

2 Related Work

NER can also be considered as a concept instantiation or ontology population
step. When building an ontology, there are several layers to be distinguished
[5]. They are often referred to as meta-conceptual (defining top-level semantics),
conceptual (reflecting concepts in a given domain) and instance layers. Hence,
concept instantiation is a task of finding a set of all possible instances of a
given concept. Named entities are usually discovered based on the contextual
information in combination with some orthographic features.

The interdependency of syntax and semantics has been discussed by many
researchers, which resulted in studies on how syntactic structure triggers se-
mantic interpretation [6]. Syntactic information can be used for the relation
discovery as well as for the named entity recognition. In the relation learning
setting, many approaches rely on the predefined syntactic patterns, such as a
triple subj− verb− obj. Here, a subject and an object refer to the arguments X
and Y of a binary relation rel(X,Y) expressed by a verb. Although such meth-
ods provide useful information, the desired relation can be expressed by other
syntactic structures, which can be very much style dependent. For instance, the
same relation can be expressed byX−adjective−Y as in the phrase X-dependent
Y. Clearly, when an expert or a user wishes to build a set of syntactic patterns
to find all instances of a desired relation in a text, he needs to look up the en-
tire text corpus. There is also no guarantee that the new unseen documents will
necessarily contain the same patterns.

Having noticed that hand-written rules are accurate but fail to find all new
instances in the unseen data, many researchers proposed using either methods

190 S. Katrenko and P. Adriaans

which would combine different syntactic views (as in [12], [9]) or methods based
on the frequent patterns in the syntactically analyzed data.

It has also been shown that the semantic roles are dependent on the syntactic
functions. The correspondence of the dependency relations to the conceptual
relations has been observed by [6], who made use of the dependency structures to
perform semantic interpretation. They have explicitly defined the mappings from
syntactic level onto conceptual level, such as subject → agent, direct object →
patient, etc.

3 Motivation

In the machine learning practice, there are two major approaches to be distin-
guished. The first of them relies on the data sets annotated by humans (and
hence, often referred to as a gold standard). Consequently, a machine learning
method is trained on the annotated data and builds a model M .1 This model can
then be applied to the unseen data to measure how well M performs. The sec-
ond approach aims at finding structure or relevant information in data without
any information given a priori. Grammatical inference is usually placed among
the unsupervised methods since its main goal is to induce a finite structural
description corresponding to possibly infinite set of examples [1]. Although GI
is naturally thought to be used for the learning a grammar of natural language,
its applicability is much wider.

Over the past decades, there have been many approaches to grammar induc-
tion. Most of them have made use of an alignment of sentences, albeit done in
different ways. Emile has been proposed in the early 90s. Adios [16] represents
one of the most recent developments in the field. To our knowledge, not all of
the developments in the field have been compared against each other. Two of
the approaches, Emile and ABL, have been tested on the same corpora [19].

In most cases, grammar induction tools output terminals and non-terminals
following the formal definition of a language. We argue that GI tools can be
used for the named entity recognition (or more widely, concept instantiation)
as well as for relation discovery. First of all, terminals can be interpreted as
named entities. As grammar induction outputs clusters whose elements are in-
terchangeable in a certain context, it leads to the assumption that such clusters
may present domain-dependent information. Apart from analyzing terminals, it
is also possible to evaluate production rules. Such rules are not restricted to the
certain length (unless one defines it explicitly), moreover, they offer a certain
amount of generality. This happens because of the initial goal behind the gram-
matical inference - it accounts for the grammar of a given language by suggesting
the grammatical rules which, in turn, can be used for the generation of novel
sentences.

One of the advantages of using GI for NER is an interpretability of the pro-
duction rules. Contrary to many machine learning methods making use of the

1 This holds for a model-driven setting. Another option is a data-driven approach.

Grammatical Inference in Practice 191

fixed-size context, rules based on GI might provide some insights on what con-
texts are crucial for concept instantiation. These rules can be contrasted to the
widely used Hearst patterns [7] which are hand-written and always rely on the
expertise of a user. We aim at discovering such patterns in an unsupervised way.

Yet another advantage of GI lies in the possibility to find recursive rules.
Production rules quite often include more than one concept instance, which
makes it possible to use the rules in a recursive way. First, all rules involving a
single concept instance are applied. After no such rule can be applied, the rules
consisting of several concept instances are to be used. This step is especially
important for the NER tasks, where each entity can have a complex structure
spanning over several words.

The grammar inference has already been used for different tasks, including in-
formation extraction [4] and user navigation on the Web [8]. The main argument
for applying GI to such tasks is its ability to model sequences. In particular, for
the information extraction task, it has been shown that grammatical inference
may increase precision of the extraction.

4 Methodology

One of the biggest challenges in the unsupervised learning is evaluation [14]. It
has to be done either by expert, or by using existing resources (such as semantic
networks or ontologies). An alternative way would be to use already labeled data
to evaluate the output of the grammar induction tool. All three approaches to
the evaluation have been widely used. The first of these approaches is popular,
however due to its possible subjectivity this method is sometimes referred to as
the looks-good-to-me method. The second method relies heavily upon existing
resources and is more suited to measuring precision than recall.

Our approach is entirely unsupervised and can be thought of as clustering
the concept instances.2 In the real-world situation, the output of GI has to be
verified and labeled by an expert. To ease the evaluation process, we decided
to use the annotated corpora. As a result, our approach remains unsupervised
(because GI is carried out on the raw unannotated data) but it is possible to
evaluate the output automatically. Instead of asking an expert, we compare the
GI output against the annotation already present in the data.

4.1 Named Entity Recognition by Clustering

To detect named entities, we evaluate terminals grouped into one cluster based on
the interchangeability principle. In other words, these are the shortest production
rules consisting of terminals only, such as E → MEK1 and E → Stat5. Here,
the proteinsMEK1 and Stat5 form a cluster. As discussed above, the evaluation
of terminals can be performed in two ways. If one uses annotated corpora, each
element of a cluster can be assigned a semantic label. A cluster of terminals is

2 This method is in line with [13].

192 S. Katrenko and P. Adriaans

then assigned a label using voting. Alternatively, each cluster can be labeled by
an expert.

Strategy: Named Entity Recognition by Clustering

1. Perform GI on an unannotated data set
2. Consider every cluster of terminals and assign semantic class labels to each

of its elements
3. If there are any elements in the given semantic class C which have more

than one distinct semantic label assigned, perform voting
4. Measure the quality of the assignment

In addition we might look for patterns which classify the unseen examples
with respect to the defined named entity classes. If the instances of the semantic
class protein occur in the production rule P → E expression (where E refers
to the production rules above), it can be concluded that this production rule
is a good pattern to identify protein names. The evaluation in the latter case
is straightforward - the selected patterns are applied to a test data set and all
predictions are evaluated according to a given annotation.

4.2 Bootstrapping

Bootstrapping is a process of learning the instances of the given semantic classes
in the iterative fashion. Several approaches to bootstrapping have been proposed
([17], [18]). Bootsrapping generally works as follows: given a set of seed words
and an unannotated corpus, all patterns including seeds are extracted. The most
confident patterns are then used on the same corpus to extract new instances.
The extracted instances are added to the pool of instances. The process is re-
peated iteratively. We present our algorithm for bootstrapping in Algorithm 1.

Our intuition behind combining GI with bootstrapping is the following. In
each iteration of bootstrapping we find more instances of a certain semantic
class C. If one substitutes all these instances by their semantic label in a text,
he will likely reduce the entropy of a text and can possibly find more instances
of the same type. Obviously, this will not lead to more instances of C within
the same rule (pattern) Y , but it might help to find other patterns which due
to the current parameters (e.g., generality factor) have not been found in the
previous step. The reduction in entropy might be especially important for the
statistically-based GI methods.

In general, there are several open issues in bootstrapping approach. These are
a stopping criterion, selection of the instances to be added to the pool on each
iteration step and selection of seeds (W). In the literature these issues have been
tackled by proposing to start with the N most frequent words as seeds and to
add instances based on the confidence score of a pattern they are induced with
[17]. Although the selection of seeds seems to be natural, a confidence score of a
pattern can be calculated in many different ways. Moreover, at a certain moment
GI will converge to the syntactic clusters rather than semantic. We have decided

Grammatical Inference in Practice 193

Algorithm 1. Bootstrapping
Require: C - a semantic class, corpus, interaction

N most frequent words ws, s = 1, ..., N : ∀ws label(ws) = C, W =
⋃

ws

1: iter = 0
2: replace all occurrences of ws ∈ W in corpus, store it as corpusiter

3: gi(corpusiter) { carry out GI on corpusiter}
4: for each cluster of terminals Ej , j = 1, . . . , m do
5: if ∃ ei, i = 1, . . . , k, ei ∈ Ej ∧ label(ei) = C then
6: if interaction == true then
7: present Ej to an expert
8: else
9: add Ej to a pool: PoolC =

⋃
Ej

10: end if
11: end if
12: end for
13: create corpusiter+1 by replacing all occurrences of pl, l = 1, . . . k, pl ∈ PoolC

in corpusiter by C
14: iter = iter + 1
15: Go to Step 3
16: return PoolC of instances of a semantic class C

to disregard the selection of patterns either by introducing a human interaction
or by selecting all possible instances found on each step. In the experimental set-
up we used a human interaction, which in our case was reduced to the selection
of known instances from the annotated corpora.

5 Experiments

5.1 Pattern Acquisition in Adios

The grammatical inference tool we explore in this paper is Adios [16].3 It is
based on a statistical search for patterns in a given corpus using motif extraction
(MEX) algorithm. According to the evaluation of this tool on several tasks, such
as grammatical constituents, protein motif discovery ([11]) and others, Adios has
provided accurate results. This supports our motivation to select it for the NER
purposes.

Adios outputs equivalence classes Ei, i = 1, . . . , n, whose elements are inter-
changeable and patterns Pj , j = 1, . . . ,m. A pattern is usually a linear sequence
of elements (any combination of variable and terminals). In terms of grammar
definition, a pattern corresponds to a production rule, while an equivalence class
represents a subset of a set of terminals. For example, both P → germinal
centers and P → E expression are patterns. An equivalence class E in the
latter pattern is the following: E → {MEK1, Stat5}. Therefore, the pattern

3 Adios stands for the Automatic Distillation of Structures, available from
http://www.adios.tau.ac.il

194 S. Katrenko and P. Adriaans

can be expanded in two different ways, either as P → MEK1 expression or
as P → Stat5 expression. In Section 4.1 we referred to equivalence classes as
clusters of terminals.

This method allows recursion, i.e. that equivalence class can have both, other
equivalence classes and patterns as its elements. On the other hand, a pattern
can consist of either other patterns or equivalence classes. This type of recursion
must be taken into account if one wishes to expand the existing equivalence
classes or patterns.

Each pattern Pi is supplied by the occurrence number, significance score,
generality factor and its length. These are four parameters which can be used
for the pattern filtering by setting the thresholds for all of them. For more
information on Adios algorithm, an interested reader is referred to [16].

For the experiments discussed below, we have used the following settings: a
size of a context window - 4, a generalization factor η - 0.7.4

5.2 Data

For our experiments, we have chosen three different data sets to work on. All
of them come from the biomedical field and has been used for the discovery of
different biomedical entities in a text [10].

Each corpus has been considered based on the manner it has been collected
and on the types of biomolecular entities it contains. Among all corpora, Epilepsy
is the only one not labeled by a human expert. It has been gathered by querying
Medline abstracts with gene-name AND epilepsy, where gene-name stands for
a name of a gene causing epilepsy. Since this corpus has not been annotated, it
is only assumed that it is relevant for a study of epilepsy. Contrary to Epilepsy,
AImed and BioNLP have been annotated by the experts. In particular, AImed
consists of the annotated proteins only (225 Medline abstracts). In addition to
this corpus, we have chosen to use subset of Genia (BioNLP)[10] in order to
study how well different semantic classes are separable from each other. For the
BioNLP corpus we have 5 semantic classes, protein, DNA, RNA, cell type
and cell line. It is also the largest corpus in this study, consisting of 2,000
Medline abstracts.

5.3 Qualitative Evaluation

Experiments on AImed corpus have shown that proteins are often grouped to-
gether. Besides clusters of proteins, other semantically related terms, such as
cities (e.g., Lausanne, Tokyo, Manchester) are also grouped together. These re-
sults have been supported by analysis of Epilepsy corpus, namely, we have re-
ceived clusters of genes. Apart from these biomolecular entities, we observed
other equivalence classes which are relevant to the domain. For example, GI has
discovered different types of disorders such as episodic ataxia type I, episodic
ataxia type II, cortical dysplasia and others.
4 Unless specified otherwise.

Grammatical Inference in Practice 195

As we have used a subset of BioNLP in order to evaluate if GI can separate
different biomolecular instances, we have inspected equivalence classes and pat-
terns for this corpus. Although most equivalence classes mostly contain named
entities annotated by human experts, it also turned out that it is sometimes
difficult to distinguish between some semantic types of named entities. In other
words, the named entity detection is very high, whereas the classification vary
from one cluster to another. We inspected this corpus closer and discovered that
it happens either because the instances are ambiguous, or due to some inconsis-
tency in the annotation. This holds for such semantic classes, as cell line and
cell type on the one hand, and DNA and protein, on the other. For instance,
a phrase HIV-1-infected cells has received two different labels, cell line and
cell type.

Table 1. Instances of protein, DNA and RNA from BioNLP corpus

protein DNA RNA
Jak3 AP3-L ICAM-I mRNA
STAT1 WGATAR p45 mRNA
STAT3 GASd/EBSd CIITA mRNA
STAT5 L1 Rhom-2 mRNA
JAK1 L2 TCF-1 mRNA

Table 2. Instances of cell line and cell type from BioNLP corpus

cell type cell line
monocyte lineage UV-irradiated Jurkat cells
granulocyte-macrophage lineage stimulated Jurkat cells
hematopoietic lineage TNF-alpha-stimulated
adult lineage Nef+ Jurkat cells
B-cell lineage Stat6-expressing Jurkat cells

Some examples discovered on the BioNLP corpus are given in Table 1 and
Table 2. We have also observed that there are found biomolecular instances of
different length. Although initially we assumed that we are likely to find the
shortest protein names, we have also discovered two, three and four elements
long protein names. The longest protein name we found consists of 5 words and
is myeloid cell nuclear differentiation antigen. The distribution of protein names
for BioNLP corpus is shown on Fig. 1.

5.4 Quantitative Evaluation

NER by Clustering When carrying out the evaluation of GI output, we took
into account both types of output, equivalence classes and patterns. Since many
named entities in the biomedical domain consist of more than one word, we
decided to evaluate patterns as well. We only consider cases where a pattern

196 S. Katrenko and P. Adriaans

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6

nu
m

be
r

of
 o

cc
ur

re
nc

es

length of a protein name

all counts
unique counts

Fig. 1. Distribution of protein names (BioNLP)

represents an entire instance, as in P={hematopoietic lineage}. For BioNLP cor-
pus, the number of equivalence classes accompanied by the number of patterns
and the number of acquired instances (true positives - TP) is given in Table 3.

Table 3. Number of equivalence classes and patterns for BioNLP

sem. class #eq. class #patterns #TP
protein 55 18 476
DNA 13 1 176
RNA 1 - 8
cell type 11 1 93
cell line 5 3 127

We have calculated precision using the micro- and macro-average measures.
We define macro-averaged precision as a percentage of correctly identified in-
stances of a given semantic class X in a cluster j, j = 1, . . . n with average
over all clusters. In contrast to this, micro-averaged precision is measured as a
number of all correctly classified instances of a semantic class X , divided by the
number all instances assigned X .

In terms of true positives (TP) and false positives (FP), macro-average pre-
cision Pmc for n equivalence classes is defined as follows:

Pmc =
1
n

n∑
i=1

TPi

TPi + FPi

Micro-average Pmr is calculated as

Pmr =
∑n

i=1 TPi∑n
i=1 TPi + FPi

Grammatical Inference in Practice 197

Divergence between two measures is caused by the different size of clusters.
Precision for BioNLP data is shown on Fig. 2.5 As one may notice, semantic
class DNA has a high micro- and macro-averaged precision. Although pre-
cision for RNA is also high, we have found only one cluster RNA. Micro-
averaged precision for AImed corpus is equal to 66.67%, macro-averaging results
in 70.29%.

 0

 20

 40

 60

 80

 100

cell_linecell_typeRNADNAprotein

pr
ec

is
io

n,
 %

semantic classes

macro-average
micro-average

Fig. 2. Precision (BioNLP)

Since Adios also offers additional information on generality of the patterns, it
is of a certain interest to analyze clusters not only based on the precision but on
the generality and length of the patterns which extract the elements of a certain
cluster. For instance, we expect a short pattern with a low generality score to
produce a noisy cluster, whereas a longer pattern with higher generalization
score can extract more precise information. We evaluated clusters from BioNLP
corpus and proved our intuition. Equivalence classes being part of a pattern
with domain-dependent words (such as factor) are more precise in comparison
to the clusters induced by the patterns with the closed-class words (determiners,
conjunctions, and others).

NER by Bootstrapping. We conducted several experiments with bootstrap-
ping on AImed corpus. The experiments supported our intuition that adding
known proteins to the protein pool enabled more proteins to be found in sub-
sequent iterations. We found that the performance of bootsrapping varies sig-
nificantly depending upon the seeds selected. For instance, by selecting the five
most frequent protein names as seeds (N = 5, null iteration), we obtain more
than 60 new protein names already in the first iteration (Fig. 3). As expected,
we also observed a decrease in the entropy after each of the earlier iterations.
5 When calculating precision of equivalence classes, all patterns which have been as-

signed a corresponding semantic class label were left out.

198 S. Katrenko and P. Adriaans

 0

 20

 40

 60

 80

 100

 120

 140

654321

nu
m

be
r

of
 p

ro
te

in
 n

am
es

iterations

Fig. 3. Bootstrapping on AImed

The bootstrapping process is finished either when an equivalence class con-
taining a given semantic class converged syntactically (so there are no instances
to be added to a pool) or when there are no instances of a given semantic class
in the output of GI. The first option can be carried out (semi-)automatically,
whereas in the second case an expert is confronted with all equivalence classes in
a corpus. Figure 3 presents results using the first approach. However, the second
method is also useful, especially in the cases when instances of the same seman-
tic class occur in different contexts and are therefore not clustered together. We
have also tested the second method. After the 6th iteration (no new instances
added to a pool), we inspected the output of grammatical inference and have
lowered a generalization factor η to 0.6 and added about 180 proteins more to
a pool. Nevertheless, bootstrapping can be applied to find more named entities
without changing GI parameters. Initial clustering on AImed results in 116 pro-
teins, bootstrapping, however, increases this number. Although the main focus
of this study is precision, we note that by using bootstrapping approach the
expected recall on AImed data set gets higher in each iteration.

6 Conclusion

The experiments we have conducted on the different sets have provided an evi-
dence that GI can be used for the knowledge acquisition. Both research questions
we have formulated can be answered positively. Not only grammar induction al-
lows for accurate detection of named entities in a domain-dependent text (in our
case, in the biomedical domain), it is also able to distinguish between different
subclasses of a given semantic class. Based on our quantitative and qualitative
evaluation of clustering, we conclude that GI can assist an expert when creating
ontologies. We also proposed bootstrapping approach as a step towards boosting
coverage and recall.

In the future research, we plan to investigate the bootstrapping method
on other data sets and to compare our results against other bootstrapping

Grammatical Inference in Practice 199

methods[17], [18]. We have already mentioned that most grammar induction
tools have their own parameters, such as a generalization factor or a significance
score, which can be used as criteria for the rule set selection. For the future
research, we plan to test different settings and to explore which parameters are
of the most importance. We believe that such parameters can also be used to
define the threshold or a stopping criterion for bootstrapping.

As we show in this paper, grammatical inference can be used for the concept
instantiation and relation learning providing useful cues for performing such
tasks. This technique can also be used in conjunction with other techniques.
The famous claim in the machine learning field is that no method can perform
better than others on all unseen data sets. This leads to investigation of the
ensemble methods ([3], [15]), which would allow to combine different machine
learning methods. As the results have shown, the meta-learning constitutes an
attractive option. We plan to use the methods presented in this paper as one of
the weak classifiers and to combine them with other known ML methods.

Acknowledgments. The authors thank their colleagues from the Human-
Computer Studies Lab and Adaptive Information Disclosure project, in par-
ticular Edgar Meij (UvA), Willem van Hage (VUA), and Maarten van Someren
(HCSL). We are also grateful to the anonymous reviewers for their helpful com-
ments. Special thanks to Zach Solan who made his tool Adios freely available.
This work is part of the Virtual Lab e-Science project (www.vl-e.org).

References

1. Adriaans, P., and Zaanen, van M.: Computational Grammar Induction for Lin-
guists. Grammars 7, (2004) 57–68

2. Craven, M., and Kumlien, J.: Constructing Biological Knowledge Bases by Ex-
tracting Information from Text Sources. In Proceedings of the 7th International
Conference on Intelligent Systems for Molecular Biology (ISMB-99), 1999

3. Dietteriech, T. G.: Ensemble Methods in Machine Learning. Lecture Notes in Com-
puter Science, 1857, (2000) 1–15

4. Freitag, D.: Using Grammatical Inference to Improve Precision in Information Ex-
traction. Workshop on Grammatical Inference, Automata Induction, and Language
Acquisition (ICML’97), Nashville, (1997)

5. Hachey, B., and Grover, C. et al.: Use of Ontologies for Cross-lingual Information
Management in the Web. In Proceedings of the Ontologies and Information Ex-
traction International Workshop (EUROLAN 2003), Bucarest, Romania, July 28
- August 8, (2003)

6. Hahn, U. and Romacker, M.: An Integrated Model of Semantic and Conceptual
Interpretation from Dependency Structures. In Proceedings of the 18th Conference
on Computational Linguistics, Saarbrücken, Germany, (2000) 271–277

7. Hearst, Marti A.: Automatic Acquisition of Hyponyms from Large Text Corpora.
In Proceedings of the 14th International Conference on Computational Linguistics,
Nantes, France, (1992)

8. Karampatziakis, N., Paliouras, G., Pierrakos, D. and Stamatopoulos, P.: Naviga-
tion pattern discovery using grammatical inference. In ICGI’2004, (2004)

200 S. Katrenko and P. Adriaans

9. Katrenko, S. and Adriaans, P. W.: Learning Relations from Biomedical Corpora
Using Dependency Tree Levels. In Benelearn’2006, (2006)

10. Kim, J.-D. et al.: Introduction to the Bio-Entity Recognition Task at JNLPBA. In
JNLPBA’2004, (2004)

11. Kunik, V., Solan, Z., Edelman, S., Ruppin, E., and Horn, D.: Motif Extraction and
Protein Classification. In CSB, (2005)

12. Pradhan, S., Haciouglu, K., Ward, W., Martin, J. H., and Jurafsky, D.: Semantic
Role Chunking Combining Complementary Syntactic Views. In Proceedings of the
9th Conference on Natural Language Learning (CONNL 2005), Ann Arbor, MI,
(2005)

13. Reinberger, M.-L., Spyns, P., Pretorius, A.J., and Daelemans, W.: Automatic ini-
tiation of an ontology. In Proceedings of ODBase‘04, (2004) 600–617

14. Roberts, A., and Atwell, E.: The Use of Corpora for Automatic Evaluation of
Grammar Inference Systems. In Proceedings of of the Corpus Linguistics 2003
Conference, (2003)

15. Sigletos, G., Paliouras, G., Spyropoulos, C. D., Hatzopoulos, M.: Voting and
Stacked Generalization. In JMLR, (2005) 1751–1782

16. Solan, Z., Ruppin, E., and Horn, D., and Edelman, S.: Automatic acquisition and
efficient representation of syntactic structures. In NIPS, (2002)

17. Thelen, M. and Riloff, E.: A Bootstrapping Method for Learning Semantic Lexi-
cons using Extraction Pattern Contexts. In Proceedings of the 2002 Conference on
Empirical Methods in Natural Language Processing (EMNLP), (2002)

18. Valarakos, Alexandros G., Paliouras G., Karkaletsis V., and Vouros G. A.: En-
hancing Ontological Knowledge Through Ontology Population and Enrichment,
In Proceedings of the 14th International Conference Engineering Knowledge in the
Age of the Semantic Web, Whittlebury Hall, UK, (2004)

19. Zaanen, van M. and Adriaans, P.: Alignment-Based Learning versus EMILE: A
Comparison, In Proceedings of the Belgian-Dutch Conference on Artificial Intelli-
gence (BNAIC), Amsterdam, the Netherlands, (2001), 315-322

Inferring Grammar Rules of Programming
Language Dialects

Alpana Dubey, Pankaj Jalote, and Sanjeev Kumar Aggarwal

Dept of Computer Science and Engineering,
Indian Institute of Technology,

Kanpur - 208016. India
{alpanad, jalote, ska}@iitk.ac.in

Abstract. In this paper we address the problem of grammatical infer-
ence in the programming language domain. The grammar of a program-
ming language is an important asset because it is used in developing
many software engineering tools. Sometimes, grammars of languages are
not available and have to be inferred from the source code; especially in
the case of programming language dialects. We propose an approach for
inferring the grammar of a programming language when an incomplete
grammar along with a set of correct programs is given as input. The ap-
proach infers a set of grammar rules such that the addition of these rules
makes the initial grammar complete. A grammar is complete if it parses
all the input programs successfully. We also proposes a rule evaluation
order, i.e. an order in which the rules are evaluated for correctness. A
set of rules are correct if their addition makes the grammar complete.
Experiments show that the proposed rule evaluation order improves the
process of grammar inference.

Keywords: Programming language grammars, Dialects, Minimum De-
scription Length Principle.

1 Introduction

Grammar of a programming language is an important asset because it is used
in developing software analysis and modification tools. For automatically gen-
erating such tools one must have the underlying grammar of the programming
language. Grammar can be extracted from many resources like compiler source
codes, grammar specification files and reference manuals. Sometimes these re-
sources are not available, particularly when programs are written in some dialect
of a standard programming language. For example, C* is a data parallel dialect
of C which was developed by Thinking Machines Corp for Connection Machine
(CM2 and CM5) SIMD processors. Since Thinking Machines Corp no longer
exists, it is very hard to find out the compiler source code or the reference man-
ual for C*. The only thing which is available are programs written in C* and
the executable of C* compiler. In some cases resources are available but they
are not complete. For example, Lämmel et al [14] have discussed the problem
of incomplete reference manuals they faced while recovering COBOL grammar

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 201–213, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

202 A. Dubey, P. Jalote, and S.K. Aggarwal

from the reference manual of IBM COBOL. In above cases the only information
available is the source code (i.e. programs) and an incomplete grammar. Since
programming language grammars can be expressed with a context free grammars
(CFG)1, we focus on the problem of CFG inference in this paper.

Theoretical results on the problem of CFG inference are negative. For exam-
ple, Gold’s theory says [9] that no language in the Chomsky hierarchy can be
learned / inferred exactly in the finite time from positive samples (set of valid
sentences) alone. Although context free languages (CFL) can be learned from
positive and negative samples [10] but they cannot be learned in polynomial time
because the class of regular languages, which is a subset of CFL, is not learnable
in polynomial time [3]. Only deterministic finite automata (DFA) are learnable
in polynomial time if they have access to an oracle which can answer member-
ship query (whether the string proposed by the learner falls in the unknown
language?) and equivalence query (whether the learned grammar is equivalent
to the unknown grammar?). Therefore, the problem of CFG inference suffers
from the performance problem as discussed in [5].

In spite of above results, a large body of work on CFG inference exists in
the natural language processing (NLP) and theoretical domain [1], [6], [16], [17],
[19], [20]. The techniques proposed in theoretical domain address the problem
of inferring small subclasses of CFL and programming languages do not fall in
those classes because programming languages are usually LR; Koshiba et. al. [13]
have shown that a subclass of LR language, called LR even linear language, can-
not be learned from positive samples alone. Only a few techniques, available in
the literature, address the problem of grammar extraction/inference in the pro-
gramming language domain [4], [5], [7], [12], [14], [18]. Some of these techniques
are heuristic techniques which do not guarantee the correctness. A deterministic
technique proposed in [8] infers keyword based grammar rules, e.g. rule corre-
sponding to keywords while, for etc.; it infers only those rules whose right hand
side (RHS) starts with a keyword.

In this paper we address the problem of inferring a grammar of a dialect when
a set of valid programs written in the dialect and the grammar of the standard
language are given as input. The missing rules in the initial grammar contain
new keywords or new operators. This assumption is based on the study of PL
dialects. We found that the main extensions in PL dialect are keyword based
statements and new expressions. For example, C* contains additional state-
ments with keywords where, with etc. and supports vector operations with new
operators.

As the existing approach [8] can not infer the grammar rules in which a
new terminal occurs in the middle of the RHS2; it can not infer grammar rules
involving new operators as operators usually occur in the middle of the RHS of
the rule, e.g. expression + expression. We present a generalized approach for
inferring the missing grammar rules where a new terminal (operator or keyword)

1 Although there are few constructs which are context sensitive but those are expressed
by associating translation rules with CFG rules.

2 A new terminal is a generic term used to denote new keywords, new operators etc.

Inferring Grammar Rules of Programming Language Dialects 203

can occur in the middle of the RHS. Since, the exact learning of CFG is not
possible from a set of valid sentences, we address the following problem [9]:
Given an incomplete grammar G and a set of valid programs P, infer a grammar
G′ which is complete w.r.t. P. Grammar G′ is complete w.r.t. P if P ⊆ L(G′).

An approach for inferring a grammar is to iteratively build a set of possible
rules from P and then evaluate the correctness of those rules. A set of rules
GR is correct w.r.t. P and an initial grammar G = (N,T, P, S), if the modified
grammar G′ = (N,T, P ∪GR, S) is complete w.r.t. P. The main problems faced
by such technique, which for example has been employed in [8], is that it is
not efficient as the search space of possible rules is very large. This is because
grammars of programming languages are large (typically 200-400 productions).
An incorrect choice of a grammar rule may severely hamper the performance of
the approach as it has to backtrack and select another rule. Therefore, a bias
towards correct rule is very important for good performance.

We propose a rule evaluation order which is closely based on the principle of
minimum description length (MDL). The MDL principle is a well established
concept in the machine learning literature; it says that the best hypothesis for
a given set of data is the one which can represent the data most compactly. In
our problem scenario we check the completeness of those grammars first which
compactly represent P. We associate a weight with each rule to capture the
notion of compactness. The weight of rule closely follows the MDL principle. We
check the correctness of those rules first which have more weight. Results show
that using proposed rule evaluation order, a complete grammar can be inferred
with fewer number of trials. Langley et al [15], [11] have studied the effect of
MDL based approach on the grammar inference process, but their results are
based on the artificial subsets of English grammar (i.e. in the NLP domain).
Their approach starts with a set of a very specific grammar and uses the MDL
criterion to generalize it; hence they explore the best grammar in the space of
complete grammars whereas this paper focuses on inferring a complete grammar.

The rest of the paper is organized as follows. Section 2 briefly discusses the
technique proposed in [8]. Section 3 discusses our approach. Section 4 proposes a
rule evaluation order and investigates its effect on the grammar inference process.
Section 5 discusses the results and concludes the paper. Standard notations are
used for representing various terms related to the context free grammar [2].
Terms production and rule are used interchangeably throughout the paper.

2 Background

In this section we briefly present the technique proposed in [8]. We use it to
explain and demonstrate our approach. The technique in [8] starts with a set of
programs P and an incomplete grammar G = (N,T, P, S)3. The approach infers
keyword based rules; it is based on three main assumptions: (1) Statements cor-
responding to each new keyword can be expressed by exactly one grammar rule.

3 Terms related to the context free grammar are borrowed from [2].

204 A. Dubey, P. Jalote, and S.K. Aggarwal

For example, syntax of the statement corresponding to keyword while is express-
ible with one rule, i.e. statement → while (expression) statement. Therefore,
if Tnew is the set of new keywords then |Tnew| rules are needed to make the
initial grammar complete. (2) The set Tnew is known beforehand; i.e. the lexi-
cal analyzer does not recognize a new keyword as an existing terminal or as an
unknown terminal. (3) The right hand side (RHS) of missing rules start with a
new keyword. That is, missing rules are of the form A → Kα, where A ∈ N ,
α ∈ (N ∪ T)∗ and K ∈ Tnew.

The technique is an iterative one which involves backtracking. In each iteration
a set of possible rules corresponding to a new keyword is built and one among
them is added to G. Once a rule corresponding to each new keyword is added to
G (i.e. after |Tnew| iterations), the modified G is checked for the completeness
w.r.t. P. If the modified G is incomplete then the algorithm backtracks and
selects another rule. A set of possible rules corresponding to a keyword K is
computed in three steps: (1) LHSs gathering phase: gathers possible left hand
sides (LHSs) of the rule, (2) RHSs gathering phase: gathers possible right hand
sides (RHSs) of the rule and (3) Rule building phase: uses the set of possible
LHSs and possible RHSs to build a set of possible rules. We demonstrate steps
(1) and (2) with an example as follows:

Suppose, we are given an incomplete ANSI C grammar in which a grammar
rule corresponding to keyword while (i.e. Tnew = {while}) is missing and a
program shown in figure 1(a) is given as input; i.e. a single rule is sufficient for
completing the grammar. For gathering possible LHSs, an LR parser [2] is gener-
ated from the given incomplete grammar. The input program is parsed with the
parser. The parser will get stuck at the first occurrence of keyword while which
is shown as error point in figure 1(a). The set of possible LHSs of the rule, cor-
responding to keyword while, is computed from the LR-itemsets corresponding
to the top of the LR-parser stack. If itemset at the top of stack contains an item
of form [A → α • B β] then B is collected in the possible LHSs set. A reduce
operation is invoked for all the items of form [A→ α •]. This reduce operation
is called “forced reduction” because reduction is performed without looking at
the next token. If multiple reductions are possible on the top of the stack then a
separate copy of the stack is made for each possible reduction and reduction is
performed on that copy. The forced reduction is performed as long as the top of
the stack has at least one possible reduction or it becomes empty. For example,
in figure 1(b) top state has LR-item [statement→ expression SEMICOL •]4,
therefore forced reduction will be performed. After the forced reduction top state
contains LR-item [statement→ statement list • statement]. Hence, nontermi-
nal statement is added in the possible LHSs set.

For building the set of possible RHSs, the approach starts from the last occur-
rence of the keyword while (shown in figure 1(a)) and considers each succeeding
terminal as a possible end point of the substring derived from the missing rule. For

4 In real C grammar the number of possible LHSs, possible RHSs and LR-items in each
itemset is very large. Above example shows only few of them to make the illustration
simple.

Inferring Grammar Rules of Programming Language Dialects 205

each substring, a set of symbol strings which can derive it is built; all the symbol
strings are added in the set of possible RHSs. For example, substring while (x >
10) can be derived from symbol strings while (conditional expression), while
(expression) and while (id > NUM), hence these symbol strings are added in
the possible RHSs set. The set of possible RHSs and possible rules are shown in
figure 1(b). Each rule in the set of possible rules is evaluated for the correctness;
if the rule is correct then approach returns that rule else it checks another rule. A
set of possible correct rules is shown in figure 1(b); the approach returns the first
correct rule it encounters.

main()
{

int x, y, z, i;
x=1000;
y=90;
z=800;

x−−;
while(x>500)

for(i=0; i < 50; i++)
{

while(y > 200)
y=y/2;

}
}

error point

Last occ
of keyword

(a) Input Pro-
gram

(1) while (
(2) while (id
(3) while (id >
(4) while (id > NUM

Possible RHSs=

Possible rules built =
(1) statement → while (
(2) statement → while (id
(3) statement → while (id >
(4) statement → while (id > NUM
(5) statement → while (id > NUM)
(6) statement → while (expression)
(7) statement → while (conditional expression)
(8) statement → while (expression) statement
(9) statement → while (conditional expression) statement
(10) statement → while (expression) statement }
(11) statement → while (conditional expression) statement }
(12) statement → while (expression) statement } }
(13) statement → while (conditional expression) statement } }

Correct rules =

(5) while (id > NUM)
(6) while (expression)
(7) while (conditional expression)
(8) while (expression) statement
(9) while (conditional expression) statement
(10) while (expression) statement }
(11) while (conditional expression) statement }
(12) while (expression) statement } }
(13) while (conditional expression) statement } }

(2) statement → while (expression)

(3) statement → while (conditional expression)

(4) statement → while (expression) statement

(5) statement → while (conditional expression) statement

(1) statement → while (id > NUM)

Itemset after forced reduction=

Itemset corresponding to the top of stack=

Possible LHSs for keyword while ={statement}

{[statement → expression SEMICOL •]}

{[statement list → statement list • statement]}

(b) Set of possible RHSs, LHSs and rules

Fig. 1. Process of inferring correct grammar rules

3 Our Approach

In this section we discuss an approach which infers missing rules of form A →
αKβ; here α and β can be empty strings and K is a new terminal which can be
either a new keyword or a new operator. The overall approach is shown in fig-
ure 2 which, like the previous approach (section 2), is an iterative approach with
backtracking. In each iteration a set of possible rules corresponding to a new ter-
minal is built and one among them is added in the grammar. The set of possible
LHSs, RHSs and rules corresponding to a new terminalK are represented as LK ,
RK and PRK respectively. We discuss the LHSs and the RHSs building phases
in the detail. We explain the approach when an incomplete ANSI C grammar is
given as input in which a rule corresponding to operator > is missing. Exten-
sion of the approach for inferring multiple missing rules is discussed later. The
terms “new terminal” and “new keyword” are used interchangeably as our focus
is to infer not only the grammar rules corresponding to new keywords but also
the rules which involve new operators. An input program is represented as w1,n

206 A. Dubey, P. Jalote, and S.K. Aggarwal

where n is the number of terminals in the program. wi denotes ith terminal of
the program and wi,j denotes the portion of the program which starts at index
i and ends at index j.

Function INFER RULES(P, G, Tnew)

while Tnew is not empty do

Build a set of possible RHSs corresponding to K and collect in RK

Select a rule ri ∈ PRK and add in G

if G parses all the programs in P

Output all rules added in different iterations

else

Backtrack to previous iteration and try another rule

Build a set of possible LHSs corresponding to K and collect in LK

Select a new terminal K ∈ Tnew, remove K from Tnew

Build a set of possible rules PRK orresponding to K using LK and RK

1.

2.

3.

6.

9.

10.

4.

5.

7.

8.

� Tnew is a set of new terminals

Fig. 2. Overall rule inference process

3.1 LHSs Generation Phase

First, the input program is parsed with the LR parser generated by the incom-
plete ANSI C grammar. We call this parser the approximate parser. Unlike the
previous approach, possible LHSs in our approach are gathered from each con-
figuration the approximate parser passes5. I.e. at each step, the top itemset of
the parser stack is checked; if it contains an item of type [A→ α • B β], then B
is added in the set of possible LHSs. Once the parser reaches to the error state,
forced reduction is performed to collect the remaining possible LHSs. The idea
behind collecting possible LHSs from each configuration the parser passes is as
follows:

Suppose a program shown in figure 3(a) is given as input. The first occur-
rence of the new terminal, >, is shown in the figure 3(a); Suppose this is f th

token. Substrings covered by the first and the last occurrences of the missing
rule, corresponding to >, are shown by shaded regions in the figure 3(a). If the
substring covered by the first occurrence of the missing rule starts from the mth

token (m ≤ f), then a complete parser (i.e. a parser generated from a complete
ANSI C grammar) will start recognizing the substring covered by the missing
rule from mth token. Since the value of m is not known, each index i (1 ≤ i ≤ f)
is considered as a possible starting point of the substring covered by the missing

5 In the previous approach, possible LHSs are gathered from the parser once it reaches
the error state.

Inferring Grammar Rules of Programming Language Dialects 207

rule. Therefore, possible LHSs are gathered from each configuration the approx-
imate parser passes while parsing the input program. Figure 3(b) shows the
set of possible LHSs gathered from the program. We are not showing all pos-
sible LHSs and each top itemset of the parser stack to make the illustration
simple6.

Last occurence of >

main()
{

int x, y, z, i;
x=1000;
y=90;
z=800;

x−−;

for(i=0; i < 50; i++)
{

y=y/2;
}

}

while(x > 500)

while(y > 200)

Portion of progam used

left to >
in building the symbol strings

right to >

Portion of progam used
in building the symbol strings

First ocurence of >

(a) Input Program

ID > expression
expression > ID
expression > expression
(expression > expression
expression > expression)
(expression > expression)
WHILE(expression > expression
WHILE(expression > expression)
statement list WHILE(expression > expression

ID > ID

Set of correct rules

expression → ID > ID
expression → ID > expression
expression → expression > ID
expression → expression > expression

ID
expression
(expression
WHILE(expression
statement list WHILE(expression
{ statement list WHILE (expession
){statement list WHILE (expression
(){statement list WHILE (expression
ID(){statement list WHILE (expression

Some possible RHSs built from above

to the left of >

ID
expression

expression) ID
expression) ID =
expression) statement list
expression) satement list}
expression)statement list} }

expression)

Possible symbolstrings that

{expression}

Possible symbolstrings that occur
occur to the left of >

two sets
Set of possible LHSs

(b) Set of possible RHSs and rules

Fig. 3. Process of inferring correct grammar rules

3.2 RHSs Gathering Phase

Since the RHS of the missing rule is of the form α K β (α and β can be empty
strings and K is a new terminal), we divide the possible RHS in two parts:
(1) Part which occurs to the left of the new terminal, i.e. α. (2) Part which
occurs to the right of the new terminal, i.e. β. A set of possible αs, denoted
as RL

K , and a set of possible βs, denoted as RR
K , are used for building RK . For

building RL
K and RR

K the input program (suppose w) is first parsed with the
incomplete grammar using the CYK parser. Suppose, f and l are the indices of
the first and the last occurrences of K. For building RL

K , we consider each index
i (1 ≤ i < f) as a possible starting point of the substring derived by the missing
rule and symbol strings which can derive substring wi,f−1 are added in the RL

K .
Similarly, for building RR

K , each index j (l < j ≤ n) is considered as a possible
end point of the substring derived by the last occurrence of the missing rule and
symbol strings that can derive substring wl+1,j are added in the set RR

K . The
set of symbol strings that can derive a substring wp,q (for 0 < p ≤ q ≤ n) is
built by using the table generated from the CYK parser7. Set RK is built by
6 These sets are a very large for a real programming language grammar.
7 CYK parser builds a table, called CYK table, while parsing the program; where each

cell C(m, n) contains all the nonterminals that derive substring wm,n.

208 A. Dubey, P. Jalote, and S.K. Aggarwal

concatenating the symbol strings taken from RL
K and RR

K as follows:

RK = {α K β | ∀α ∈ RL
K & ∀β ∈ RR

K}
Note: Sets RL

K and RR
K both additionally contain empty string ε. This is for

considering those cases when the RHS of missing rule is either of form Kα or of
form αK.

Consider the program shown in the figure 3(a). For building RL
> we start from

the beginning of the program (i.e. main) and consider each terminal onwards as a
possible starting point of the substring derived by the missing rule corresponding
to >. Similarly for building RR

>, we start from the terminal ‘200’ and consider
each terminal onwards as a possible end point of the substring derived by the
missing rule. The portions of the program used in computing RL

> and RR
> are

shown in figure 3(a) by boxed regions. Sets RL
> and RR

> are shown in the fig-
ure 3(b). Figure 3(b) also shows the set R> built from these two sets. The set
of possible rules corresponding to >, PR>, is built using L> and R> as follows:

PR> = {A→ α : ∀A ∈ L> & ∀B ∈ R>}
Each rule ri, in PR> is checked to see whether the grammar obtained after

adding ri is able to parse all the programs; if yes then the technique returns the
grammar rule else rollbacks the changes in the grammar and checks another rule.
A set of correct rules are also shown in the figure 3(b). The technique returns
the first correct rule it encounters.

3.3 Extracting Multiple Missing Rules

In the case of multiple missing rules, the approach iteratively builds a set of
possible rules corresponding to each new terminal and adds them in the gram-
mar. A set of possible rules (PRK) corresponding to a new terminal K is built
as follows: Programs where K is the first new terminal are used for computing
the set LK . The set RK is computed in two parts as discussed previously: (1)
computation of the set RL

K is done from those programs where K is the first new
terminal and (2) computation of the set RR

K is done from those programs where
K is the last new terminal. The method for computing LK , RR

K , RL
K , RK and

PRK is the same as discussed in the previous section. The above method for
building possible rules requires that there is at-least one program where K is the
first new terminal and at-least one program where K is the last new terminal.
Hence, the approach in each iteration selects (figure 3, line 2) a new terminal
which fulfills the above condition. Once a rule corresponding to K is added in G,
K no longer remains a new terminal. Therefore, other new terminals will occupy
the position of the first and the last new terminals in those programs where K
is the first and the last new terminal.

4 A Criterion for Rule Evaluation Order

The approach given in [8] and the approach we discussed in the previous section
both result in a large number of possible rules. For example, while experimenting

Inferring Grammar Rules of Programming Language Dialects 209

with different PL grammars, viz, C, Java, Matlab, Cobol, we found that the
number of possible rules corresponding to different keywords was of the order
of 105 − 106. For example while experimenting with the C grammar, where a
rule corresponding to keyword case was missing, the number of possible rules was
1.2×105. Even after reducing the number of possible rules by the unit production
optimization8 [8] it was of order 400. Therefore, a selection of incorrect rule is
very costly for the performance of the algorithm. In this section, we investigate
a rule evaluation order for improving the process of grammar inference. We
associate a weight with each rule (in PR) to represent the above notion.

Definition 1. Weight of a rule A→ β w.r.t. P is:

weightP(A→ β) =
coverageP(β)

|β| (1)

Where coverageP(A → β) is coverage of the rule w.r.t. P. Coverage depends
upon the largest substring A→ β derives in each program of P.

Definition 2. Coverage of a rule A→ β w.r.t. P is:

coverageP(A→ β) =
∑
w∈P

(coveragew(A→ β)) (2)

where

coveragew(A→ β) =
1
|w| max{k − i+ 1|β �⇒ wi,k ∀i, k, 1 ≤ i ≤ k ≤ |w|} (3)

Proposed weight criterion is used for ordering the rules while evaluating their
correctness. Our hypothesis is that rules with higher weights are generally cor-
rect rules. Hence, we evaluate the correctness of each rule in the non-increasing
order of weights to improve the process of grammar inference. The above rule or-
dering criterion is closely based on the principle of Minimum Description Length
(MDL). The MDL principle says that the best hypothesis for a given set of data
is the one which describes the data most compactly. A hypothesis compactly
represents the data if the size of the hypothesis and the description of the data
in that hypothesis both are small. Here rules with higher weights are those which
have smaller number of symbols and derive larger substring in each program,
therefore the criterion closely (not exactly) follows the MDL principle. Since we
do not consider the representation of whole program using the grammar, the
weight does not exactly follows the MDL principle.

Example 1. Consider the input program shown in figure 1(a) and possible rule
statement→ while (expression) shown in figure 1(b). Substrings derived by this

8 Given two possible rules A → X1X2 and A → Y1Y2; if X1 → Y1 and X2 → Y2, then
unit production optimization adds the rule A → X1X2 only in the set of possible
rules because the incorrectness of A → X1X2 implies the incorrectness of A → Y1Y2.

210 A. Dubey, P. Jalote, and S.K. Aggarwal

rule are while (x > 500) and while (y > 200). The total number of tokens in pro-
gram is 62, hence coverage of statement→ while (expression) is 6/62 = 0.09.
Coverage and weights of few possible rules, taken from figure 1(b), are shown in
figure 4. Rules statement → while (expression) statement and statement →
while (conditional expression) statement have the highest weight, hence their
correctness is checked first. Since both rules are correct, the approach will return
any of these rules.

(2) statement → while (id
(3) statement → while (id >
(4) statement → while (id > NUM
(5) statement → while (id > NUM)
(6) statement → while (expression)
(7) statement → while (conditional expression)
(8) statement → while (expression) statement
(9) statement → while (conditional expression) statement
(10) statement → while (expression) statement }

(1) statement → while (coverage = 0.03, weight = 0.01

coverage = 0.05, weight = 0.01
coverage = 0.06, weight = 0.01
coverage = 0.08, weight = 0.01

coverage = 0.09, weight = 0.02
coverage = 0.09, weight = 0.02

coverage = 0.21, weight = 0.035

coverage = 0.19, weight = 0.038
coverage = 0.19, weight = 0.038

coverage = 0.09, weight = 0.01

Fig. 4. Weight and coverage of different rules of figure 1(b)

4.1 Experiments

To evaluate the hypothesis that rules with higher weights are usually correct
rules, a set of experiments were conducted on different programming language
grammars, viz, C, Java, Matlab and Cobol. We removed rules corresponding to
different keywords and operators from their grammars and built a set of possible
rules from input programs using the proposed technique9. Possible rules were
checked for their correctness in the non-increasing order of weights. We checked
for the number of times the highest weight rule was the correct rule. In order to
increase the number of test cases, experiments were done considering one input
program, two input programs and more than one input programs.

Table 1 summarizes all the results. Table 1 shows that out of 355 test runs,
67.89% times rules with the highest weight are correct and 28.17% times the rules
with the second highest weight are correct. Only in 3.94% cases rules which have
weights lesser than the second highest weight are correct.

Table 1 also compares the actual time taken by the unoptimized approach
(the approach proposed in [8])10 and the time taken by the approach which uses
the rule ordering optimization. It is evident from the table that the time taken
by rule ordering optimization is either comparable or less than that taken by the
unoptimized approach.

Table 3 shows the results of the experiments in which multiple missing rules
are inferred from a set of programs. In order to study the proposed rule evaluation
criterion, we counted the number of times the algorithm unsuccessfully checked
the completeness of a grammar and later backtracked to select another rule. We
can observe that with the proposed rule evaluation order, we reach a complete
9 A set of programs and grammars on which the experiments are done can be found

on http://www.cse.iitk.ac.in/users/alpanad/grammars.
10 Experiments are done on Pentium 4 2.4 GHz processor with 512 MB RAM.

Inferring Grammar Rules of Programming Language Dialects 211

Table 1. Experiment on MDL based rule evaluation order and its comparison with
the time taken by unoptimized approach (times are in seconds)

Language Constructs No of
test
cases

#times
highest
rank
rule is
correct

#times
second
highest
is rule is
correct

Others Time with-
out opti-
mization

Time with
optimiza-
tion

Avg
size of
progs

Java case, switch,
enum, while, for

82 69 9 4 616 525 66

C case, switch,
break, while, for

104 91 10 3 20781 1454 100

Matlab case, for, switch,
otherwise

108 27 77 4 267 249 38

Cobol read, perform,
move

20 14 4 2 266 250 64

Table 2. Examples of inferred rules

Language New terminal Rule with the highest weight
Matlab /. expression → index expression list /. array list
Matlab .ˆ expression → index expression list .ˆarray list
Matlab otherwise stmt → OTHERWISE expr stmt
Java case LocalV arDeclOrStmt → CASE CondiExpr COLON LocalV arDeclAndStmt
C case select stmt → CASE cond expr COLON stmt list

Cobol move clause → MOV E file name string loop condition part2

grammar in the first trial in most of the cases. Table 2 shows few examples of
the rules returned by the approach in some of the experiments.

4.2 Discussion

We observe from the experiments that the proposed weight criterion helps in
directing the search of correct rules. Only in 3.94% cases inference process has
checked those rules which have weights lesser than the second highest weight.
Therefore, using the proposed rule evaluation order we can infer correct grammar
rules quickly. Although, proposed weight metric ensures to get correct gram-
mar rules quickly, it does not talk about the goodness of the inferred gram-
mar rule. For example, rules statement → while (expression) statement and

Table 3. Experiments on multiple rules inference

Language Constructs No of
Pro-
grams

Avg
size of a
prog

No of tri-
als

Actual
time

Matlab
for, while 2 33 1 1.5 min
for, switch, case, otherwise, while 5 29 13 19.5 min
switch, case, otherwise 3 27 1 2.2 min

Java

try, catch 4 98 1 14.9 min
if, while 3 37 4 6.7 min
switch, case, enum 7 61 1 17.6 min
switch, case, try, catch, enum 7 61 1 24.23 min

C

switch, case 1 16 1 3sec
switch, case, break 1 16 1 7.3secs
switch, case, break, default, while, for 1 16 1 14.1secs

Cobol read, perform, move 3 56 1 1.3min

212 A. Dubey, P. Jalote, and S.K. Aggarwal

statement→ while (conditional expression) statement in figure 1(b) both have
same weight. Therefore, we face the problem of selecting a good rule from these
two rules.

5 Conclusions

This paper proposes an approach for inferring grammar rules from a set of pro-
grams. This paper also investigates a rule evaluation order to direct the search
process of correct rules in the set of possible rules. The approach and the MDL
based criterion are validated by removing rules corresponding to different key-
words and operators in four programming languages. Although the weight cri-
terion improves the process of grammar inference, in many instances there can
be more than one correct rule with the same weight. As a future work, we plan
to investigate the goodness criteria of correct rules for addressing the problem
of selecting a good grammar rule from a set of correct rules.

References

1. Pieter W Adriaans. Language Learning for Categorial Perspective. PhD thesis,
University of Amsterdam, Amsterdam, Netherlands, November 1992.

2. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers Principles, Tech-
niques, and Tools. Pearson Education (Singapore) Pte. Ltd., 2002.

3. Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Com-
put., 75(2):87–106, 1987.

4. Matej Crepinsek, Marjan Mernik, Faizan Javed, Barrett R. Bryant, and Alan
Sprague. Extracting grammar from programs: evolutionary approach. SIGPLAN
Not., 40(4):39–46, 2005.

5. Matej Crepinsek, Marjan Mernik, and Viljem Zumer. Extracting grammar from
programs: brute force approach. SIGPLAN Not., 40(4):29–38, 2005.

6. Colin de la Higuera. A bibliographical study of grammatical inference. Pattern
Recognition, 38:1332–1348, 2005.

7. Alpana Dubey, Sanjeev K. Aggarwal, and Pankaj Jalote. A technique for ex-
tracting keyword based rules from a set of programs. In CSMR ’05: Proceedings
of the Ninth European Conference on Software Maintenance and Reengineering
(CSMR’05), pages 217–225, Manchester, UK, 2005. IEEE Computer Society.

8. Alpana Dubey, Pankaj Jalote, and Sanjeev K. Aggarwal. A deterministic technique
for extracting keyword based grammar rules from programs. In Proceedings of
21st Annual ACM Symposium on Applied Computing, PL track, pages 1631–1632,
Dijon, France, April 2006. ACM SIGAPP.

9. E. Mark Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

10. E. Mark Gold. Complexity of automaton identification from given data. Informa-
tion and Control, 37(3):302–320, 1978.

11. Peter Grünwald. A minimum description length approach to grammar inference.
In Connectionist, Statistical, and Symbolic Approaches to Learning for Natural
Language Processing, pages 203–216, London, UK, 1996. Springer-Verlag.

Inferring Grammar Rules of Programming Language Dialects 213

12. Rahul Jain, Sanjeev Kumar Aggarwal, Pankaj Jalote, and Shiladitya Biswas. An
interactive method for extracting grammar from programs. Softw. Pract. Exper.,
34(5):433–447, 2004.

13. Takeshi Koshiba, Erkki Makinen, and Yuji Takada. Learning deterministic even
linear languages from positive examples. Theor. Comput. Sci., 185(1):63–79, 1997.

14. R. Lämmel and C. Verhoef. Semi-automatic Grammar Recovery. Software—
Practice & Experience, 31(15):1395–1438, December 2001.

15. Pat Langley and Sean Stromsten. Learning context-free grammars with a simplicity
bias. In ECML ’00: Proceedings of the 11th European Conference on Machine
Learning, pages 220–228, London, UK, 2000. Springer-Verlag.

16. Steve Lawrence, C. Lee Giles, and Sandiway Fong. Natural language grammatical
inference with recurrent neural networks. IEEE Transactions on Knowledge and
Data Engineering, 12(1):126–140, 2000.

17. Lillian Lee. Learning of context-free languages: A survey of the litera-
ture. Technical Report TR-12-96, Harvard University, 1996. URL: ftp://deas-
ftp.harvard.edu/techreports/tr-12-96.ps.gz.

18. Marjan Mernik, Goran Gerlic, Viljem Zumer, and Barrett Bryant. Can a parser
be generated from examples? In Proceedings of 18th ACM symposium on applied
computing, pages 1063–1067. ACM Press, 2003.

19. Rajesh Parekh and Vasant Honovar. Grammar Inference, Automata Induction,
and Language Acquision, chapter Invited chapter. Dale, Moisl and Somers (Ed).
New York: Marcel Dekker, 2000.

20. Menno van Zaanen. ABL: Alignment-based learning. In COLING 2000 - Pro-
ceedings of the 18th International Conference on Computational Linguistics, pages
961–967, Saarbrücken, Germany, Aug 2000.

The Tenjinno Machine Translation Competition

Bradford Starkie1, Menno van Zaanen2, and Dominique Estival3

1 Starkie Enterprises Pty. Ltd.,
52 Boisdale Street, Surrey Hills (Melbourne), Victoria 3127 Australia

bstarkie@starkieenterprises.com
http://www.bradstarkie.id.au

2 Macquarie University,
North Ryde (Sydney), NSW 2109 Australia

menno@ics.mq.edu.au
http://www.ics.mq.edu.au/ menno

3 Appen Pty. Ltd.,
Level 6, North Tower 1, Railway Street, Chatswood (Sydney), NSW 2067 Australia

destival@appen.com.au
http://www.ics.mq.edu.au/ destival

Abstract. This paper describes the Tenjinno Machine Translation
Competition held as part of the International Colloquium on Grammat-
ical Inference 2006. The competition aimed to promote the development
of new and better practical grammatical inference algorithms used in
machine translation. Tenjinno focuses on formal models used in machine
translation. We discuss design issues and decisions made when creat-
ing the competition. For the purpose of setting the competition tasks,
a measure of the complexity of learning a transducer was developed.
This measure has enabled us to compare the competition tasks to other
published results, and it can be seen that the problems solved in the
competition were of a greater complexity and were solved with lower
word error rates than other published results. In addition the complex-
ity measures and benchmark problems can be used to track the progress
of the state-of-the-art into the future.

1 Introduction

This paper describes the Tenjinno machine translation competition, held in con-
junction with the eighth International Colloquium on Grammatical Inference
(ICGI 2006). The competition aimed to measure and improve upon the cur-
rent state-of-the-art in grammatical inference. Tenjinno was the successor to the
earlier Abbadingo [1], Gowachin and Omphalos [2, 3] competitions.

At the ICGI 2004 it was decided that it would be desirable to have a com-
petition task that more closely resembles a real world application compared to
earlier competitions; hence the task of machine translation was chosen. How-
ever, although described as a machine translation competition, Tenjinno was in
fact a transducer inference competition. Machine translation has obvious appli-
cations in the translation of human languages, but the problem of translation
is more general and has applications beyond natural language. For instance,

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 214–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Tenjinno Machine Translation Competition 215

it is a cornerstone of genomics that the translation of DNA into living things
is a predominately deterministic process. For this reason, we invited submission
from practitioners from all areas of computer science including machine learning,
natural language processing, formal languages, machine translation and bioin-
formatics.

The competition differed from other machine translation competitions such
as the DARPA machine translation competitions [4] in the following important
ways:

– The languages were artificial and were derived from formal models.
– We expected that competitors would infer the model used to derive the data

exactly and the metric used to measure the winner reflected this expectation.

In Section 2, we present the task we chose for the competition and describe the
two formalisms that were used. In Section 3, we describe how the competition
was set up and explain the measure used to estimate the current state-of-the art,
and we also explain the name Tenjinno. In Section 4, we describe the results of
the competition.

2 Task Description

Essentially, we generated several automatic machine translation systems that
were based on finite state transducers and syntax directed translation schemata.
Using these formal models, we generated sentences in the source language and
corresponding translations in the target language. This generated data, contain-
ing both source and target sentences aligned on a sentence by sentence basis, was
provided to the competitors who used these sentences to train their translation
systems.

Test data, containing only source sentences, was also provided. The task for
the competitors was to generate the corresponding target sentences. The trans-
lated sentences could then be submitted to the competition Oracle, which de-
termined whether or not the problem had been solved.

There were four problems proposed on the web site and these were ranked
according to the difficulty of the translation process. At the close of the com-
petition, the competitor who had solved the highest-ranking problem would be
declared the winner of the competition overall. The two lowest ranking problems
were to translate sentences produced from Finite State Transducers (FSTs),
while the higher ranking problems were to translate sentences produced from
Syntax Directed Translation Schema (SDTS).

Finite State Transducers (FST) were chosen as one of the formalisms for
the Tenjinno competition mainly because there has been a history of research
into the inference of FSTs published at previous ICGIs. The SDTS formalism
was chosen because, unlike FSTs, SDTSs are expressive enough to define the
reordering of constituents when translating from one language to another.

Reordering of constituents is a common task when translating between natural
languages and its formalisation is an important issue for Machine Translation.

216 B. Starkie, M. van Zaanen, and D. Estival

For instance, it is often necessary to translate from Subject Verb Object (SVO)
languages into Subject Object Verb (SOV) languages, with arbitrarily large con-
stituents as either subjects or objects. However, the inference of SDTSs has not
been well researched yet and it was hoped that the Tenjinno competition would
spur interest into this field.

In the Tenjinno competition, some of the transducers were deterministic and
some were non-deterministic, and labelled as such. The problems labelled non-
deterministic were ranked higher (i.e. more difficult) than those labelled de-
terministic. This distinction was made because it has been shown in previous
competitions [2, 3] that the inference of non-deterministic grammars is a more
difficult task.

Where the transducers were non-deterministic, they can be shown to be un-
ambiguous. This was a deliberate design choice of the competition, due the fact
that the number of translations for a sentence can quickly become significantly
large when the transducer is ambiguous.

2.1 Finite State Transducers

A Finite State Transducer (FST) is a formalism that can translate strings to
strings directly using a finite state machine.

An FST (which can also be seen as a regular syntax-directed translation
scheme) [5] T is a tuple 〈N,Σ,∆,R, I〉 where N is a finite set of non-terminal
symbols or states, I is the initial state, Σ is a finite set of input terminal symbols
and ∆ is a finite set of output terminals.
R is the set of rules which can take one of the two following forms:

– A→ aB,wB for A,B ∈ N, a ∈ Σ,w ∈ ∆∗ or
– A→ a,w for a ∈ Σ,w ∈ ∆∗.

The right-hand side of rules are separated into two parts by a comma. Each of
the parts represents information about a language; the source language first, fol-
lowed by the target language. Table 1 gives an example of a finite state transducer.

Fig. 1. The Finite State Transducer of Table 1 shown diagrammatically

An input string “x” can be mapped to the output string “y” denoted (x, y) if
there is a translation from (S, S) ⇒ (x1A1, y1A1) ⇒ (x1x2A2, y1y2A2) ⇒ · · · ⇒
(x, y) where ⇒ denotes the application of a rule.

If there is a translation from (S, S) to (x, y), (x, y) is known as a translation
pair. For instance, given the FST shown in Table 1,(una camera doppia, a double

The Tenjinno Machine Translation Competition 217

Table 1. A non-deterministic Finite State Transducer

S →una A, a A
S →la A, the A
A→camera B, room B
A→camera, room
A→camera C, C
B→doppia, with two beds
C→doppia, double room
C→singola, single room

room) can be shown to be a translation pair as follows: (S, S) ⇒ (unaA, aA) ⇒
(una cameraC, aC) ⇒ (una camera doppia, a double room).

We say that a finite transducer is deterministic if, for each rule of the form
A → aB,wB where a ∈ Σ ∪ {ε}, w ∈ ∆∗ and B ∈ N ∪ {ε}, there does not
exist any other rule of the form A → aC, hC where C ∈ N ∪ {ε} and h ∈
∆∗. Although every language that is accepted by a non-deterministic finite-
state automaton is also accepted by a deterministic finite-state automaton, there
exist non-deterministic finite-state transducers for which there is no equivalent
deterministic finite-state transducer [6].

2.2 Syntax Directed Translation Schema

A Syntax-Directed Translation Schema (SDTS) is a transducer in which both
the input and output languages are described using a context-free grammar, and
there is a one to one mapping between parse trees in the input language and
parse trees in the output language, and similarly a one to one mapping between
parse trees in the output language and parse trees in the input language.

An SDTS [7] T is a tuple 〈N,Σ,∆,R, I〉 whereN is a finite set of non-terminal
symbols or states, I is the initial state, Σ is a finite set of input terminal symbols
and ∆ is a finite set of output terminals.
R is the set of rules which can take on the form A→ a, b where a ∈ (N ∪Σ)∗

and b ∈ (N ∪∆)∗ and the non-terminals in “a” are a permutation of the non-
terminals in “b”. If a non-terminal B appears more than once in “a” or “b”
then we use superscripts to indicate the association, for example, in the rule
A→ B(1)CB(2), B(2)B(1)C. This association is an intimate part of the rule.

Table 2 gives an example of a syntax directed translation schema.
From Table 2, it can be seen that (0 0 1 1 1, b b b a a) is a translation pair

as follows:

Table 2. A simple Syntax-Directed Translation Schema

S→0AS, SAa
A→0SA, ASa
S→1, b
A→1, b

218 B. Starkie, M. van Zaanen, and D. Estival

(S, S) ⇒ (0AS, SAa) ⇒ (0 0SAS, SASa a) ⇒ (0 0 1AS, SAb a a) ⇒
⇒ (0 0 1 1S, Sb b b a a) ⇒ (0 0 1 1 1, b b b a a).

Note that in this example, the input sequence is always leftmost expanded,
but the output sequence is not.

It can be seen that finite state transducers are a sub-class of simple syntax-
directed translation schemata [8]. It can also be seen that input and output
languages defined by a FST must be regular, but in the case of SDTSs the
input and output languages can be context-free and not regular. This enables
SDTSs to translate individual words in an input text according to long range
dependencies between words in the input text, whereas such dependencies cannot
be represented using a FST. For example, consider the SDTS shown in Table 3.
In this example, whether or not the word “b” is translated into an “f” or a “g”
depends upon whether or not either an “a” or a “c” was presented earlier in the
input text. Here, (S, S) ⇒∗ (a c d b, j f) and (S, S) ⇒∗ (c c d b, j g).

Table 3. An SDTS that is not a FST

S→aSb, Sf
S→a b, f
S→cSb, Sg
S→c b, g
S→aSd, Sh
S→a d, h
S→cSd, Sj
S→c d, j

3 Competition Philosophy

In this section, we describe the underlying philosophy we followed while designing
the Tenjinno competition and define the requirements of the competition. We
also discuss how we ranked the competition problems and explain the measure we
used to estimate the current state-of-the-art. Finally, we explain how Tenjinno,
the name of the competition, was derived.

3.1 Requirements

The target transducers and the training and testing examples were created with
the following objectives in mind:

1. The learning task should be sufficiently difficult. Specifically, the problems
should be just outside of the current state-of-the-art, but not so difficult that
it is unlikely that a winner would be found.

2. It should be provable either that the training sentences are sufficient to iden-
tify the target transducer or that it is at least possible to give an estimation
of the probability of the training sentences being sufficient.

The Tenjinno Machine Translation Competition 219

To determine whether or not requirement 1 was met, a measure of the com-
plexity of the learning task was derived, similar to that used for the Omphalos
Competition [2, 3]. The measure was derived by creating a model of the learning
task based upon a brute force search. In this model, the learner is presented with
an infinite stream of translation pair sets, where each set consists of a string in
the input language and all translations of that sentence. After each presentation
the learner constructs a set of hypothetical SDTS each of the form 〈N,Σ,∆,R, I〉
where Σ is the set of input terminal symbols observed in the translation pair sets
and ∆ is the set of output terminals observed in the translation pair sets, and no
rule in R is longer than the length of any sequence observed in the translation
pair sets. The brute force learner initially assumes that |N | = 1 and constructs
all possible SDTSs. The learner then discards all SDTSs that are inconsistent
with the observed translation pair sets. If no SDTS remains in the hypothesis set,
then the number of non-terminals is increased and the process is repeated until
at least one SDTS consistent with the observed translation pair sets is found.

This process can be shown to terminate because, for any given number of
non-terminals, there are a finite number of possible SDTSs and it is known that
there exists at least one SDTS that is consistent with the observed translation
pair sets (i.e. the SDTS used to generate the translation pair sets). When there
are more than one candidate SDTS, the learner selects one according to any
linear ordering where one SDTS is considered more favourable than another if
it contains fewer non-terminals and shorter rules.

It can be seen that for any SDTS, when the set of observation pairs used to
train the model includes at least one translation pair generated for each of the
rules, it causes the learning algorithm to construct a set of hypothesis SDTSs that
includes the target SDTS. If a selected hypothesis is inconsistent with the target
SDTS, then at some finite point in time a translation pair set will be presented
to the learner that causes the learner to discard the incorrect hypothesis.

Therefore, provided enough translation pairs are presented to this algorithm
(and an infinite amount of memory and computing time is available), this al-
gorithm will always identify the target SDTS. The size of the hypothesis space
that needs to be created by such a learning algorithm forms the basis of the
complexity measure. This model is also used to determine whether the training
data is sufficient to enable competitors to identify the target transducer. An
upper bound on the number of samples required is derived using PAC learning
theory [9], but it was decided to construct significantly smaller test sets than
is suggested using the PAC learning equations, based upon the knowledge that
the upper bounds indicated from the PAC learning equations assume that all
hypotheses in the hypothesis space are mutually exclusive, which is not the case
for the brute force algorithm.

3.2 The Ranking of the Competition Problems

The Tenjinno competition adopted a linear ordering for the competition problems
based upon the formalism used, the complexity of the problems, and whether or
not the formal model from which the data was derived is deterministic.

220 B. Starkie, M. van Zaanen, and D. Estival

It is well understood that the class of transducers that can be described using
FSTs is a proper subset of the class of transducers that can be described using
SDTSs [7]. Similarly, it is well known that the class of transducers that can
be described using deterministic FSTs is a subset of the class of transducers
that can be described using non-deterministic FSTs. The class of transducers
that can be described using deterministic SDTSs is also a subset of the class of
transducers that can be described using non-deterministic SDTSs [6].

Since solving the problem generated from a non-deterministic model is con-
sidered to be more difficult, if both problems for one class of transducers were
solved, the competitor who had solved the non-deterministic problem would be
declared the winner.

In addition, a complexity measure for each learning task was constructed to
enable a comparison between the competition problems and problems with well
known benchmark corpora. During the life of the competition, the organisers
reserved the right to add easier problems or more difficult problems problems,
as indicated by the complexity measure.

Table 4 describes the equations used to measure the complexity of the compe-
tition problems. Different measures are used for the different classes of problems.

Because the FST equation is the simpler of the two, we will describe how
it was derived but leave it to the reader to determine why the SDTS equation
describes the number of possible SDTS, given the input parameters.

The complexity measure for the FST tasks describes an upper bound on the
number of possible FSTs that could be constructed given a finite set of input
symbols, output symbols and non-terminals of size σ, δ and n respectively, where
there are at most L non-terminal and output symbols on the right hand side of
the longest rule.

Firstly it can be seen that if, given the input parameters, there are R possible
rules, then the number of possible FSTs is 2R. This is because, in any given
FST, each possible rule can either be present or not. Therefore the exponent of
the complexity measure describes the number of possible rules. Each rule has
one non-terminal on the left hand side which can take on n different values, and
one input symbol from the input language on the right hand side which can
take on one of σ different values, hence the exponent begins with n × σ. The
right hand side can have either 0 or 1 non-terminals. We consider both cases
by adding both possibilities using the summation

∑1
j=0 where j describes the

number of non-terminals. There are n choices of non-terminals hence there are
nj possible ways of selecting j non-terminals. Note that when there are 0 non-
terminals nj = 1. If the right hand side has j non-terminals there can be up
to k = L − j terminal symbols on the right hand side. There are δ choices of
output terminals, and these terminals can be repeated. Therefore there are δk

ways of selecting them. Note that L defines the maximum length of a right-hand
side; there can be less than L symbols. We can consider all possibilities using
the summation

∑L−j
k=0 δ

k. Hence the number of possible FSTs given the input
parameters is 2n×σ×∑ 1

j=0(nj×∑L−j
k=0 δk).

The Tenjinno Machine Translation Competition 221

Similarly, the complexity measure for the SDTS tasks describes an upper
bound on the number of possible SDTSs that could be constructed given a
finite set of input symbols, output symbols and non-terminals of size σ, δ and
n respectively, where there are at most L symbols on the right hand side of
the longest rule. Specifically the number of non-terminals symbols and output
symbols on any given rule is less than L, and the number of non-terminals
symbols and input symbols on any given rule is less than L.

Table 4. Formalisms with their complexity measures

Formalism Complexity Measure

SDTS 2
n×∑L

i=0(
∑ i

j=0(

⎛⎝n+j−1

j

⎞⎠×
⎛⎝σ+i−j−1

i−j

⎞⎠×i!×∑L
k=j(

⎛⎝δ+k−j−1

k−j

⎞⎠×k!)))

FST 2n×σ×∑1
j=0(nj ×∑L−j

k=0 δk)

where
n=the number of non-terminals
σ=the size of the input lexicon
δ =the size of the output lexicon
L=the length of the longest rule

Construction of Non-deterministic Transducers. The finite state trans-
ducer (FST) of problem 2 can be shown to be non-deterministic but unambigu-
ous. Firstly, the transducer is non-deterministic because it has non-deterministic
state transitions such as S → a b cX, cX and S → a b cZ, bZ. However the cor-
rect state transition can always be determined by looking at most three charac-
ters ahead; that is, the underlying context-free backbone is LL(3), which implies
that the underlying grammar is unambiguous.

The syntax directed translation schema (SDTS) of problem 4 was constructed
as follows. First a randomly generated LR(1) grammar was constructed. Because
this grammar was LR(1), it was known to be unambiguous. This grammar in-
cluded center recursion to ensure that it was not regular. A construct of the
form anbm where n,m > 1 and m �= n was then added to one of the non-
terminals. This was known to be unambiguous because it was the union of two
disjoint LR(1) grammars. The SDTS was constructed in such a way that the
mapping from input symbols to output symbols depends upon whether m > n
or n < m. Any parser that can parse these sentence needs to determine whether
m > n or n > m before deciding which rule to apply. This requires an arbitrary
amount of lookahead, and thus this transducer is non-deterministic and cannot
be represented by a deterministic SDTS.

3.3 Estimating the Current State-of-the-Art

To ensure that the competition problems where just beyond the state-of-the-art,
the proceedings of recent conferences were examined to identify the performance

222 B. Starkie, M. van Zaanen, and D. Estival

of different inference techniques on some corpora commonly used for the infer-
ence of machine translation systems. The complexities of the problems in the
Tenjinno competition were then set to be an order of magnitude larger than
these problems. In addition, the complexities of the problems were set to be
large enough that they could not be solved using a brute force search in the time
in which the competition was open (i.e. there are approximately 1.57 × 1013

microseconds in a six month period).
Table 5 contains a list of some corpora commonly used for the inference of

machine translation systems. This data is derived from Casacuberta [5], Amen-
gual et al. [10], Matusov et al. [11]. Some of the earlier experiments listed here
are described in Vidal and Casacuberta [12] as being indicative of the state-of-
the-art. Conveniently the documents from which this table has been compiled
describe experiments in which n-gram finite state transducers were inferred from
the given corpora. In addition, the corpora were described in sufficient detail in
those papers to allow for easy comparison between the complexity of the learning
tasks and the word error rates obtained.

Although there is yet to be a published technique that can achieve a 0% word
error rate on any of these corpora, it should be noted that these corpora are
natural language corpora, which are unlikely to be defined using finite state
transducers. Therefore, we would expect that the word error rates obtained
using the techniques described in the papers on data defined using finite state
transducers would be better than that listed in Table 5.

It seemed appropriate to begin with competition tasks that were of a slightly
greater complexity to those listed in this table. When calculating the complexity
of the underlying models we used the somewhat arbitrary assumption that it
is possible to learn the structure of the underlying models from the training
examples without n-gram smoothing, that is whether or not the probability of
each possible transition is either zero or non-zero. Therefore we have estimated
the number of non-terminals to be either one quarter of the number of words
in the training examples, or the number of possible states in the given n-gram
{(d+ 1)n−1} whichever is smallest.

We have also included a column which gives an estimate of the complexity of
an SDTS that might be used to describe the target language. The SDTS measure
is estimated using the given vocabularies and assuming that the target SDTS
could be described using a similar number of non-terminals to the number of
Penn Treebank tags. Specifically, we selected the number of non-terminals to be
36 and have arbitrarily selected the length of the longest rule to be 7.

Most of the corpora in Table 5 [5, 10, 11] have large vocabularies. Some other
commonly used corpora, such as the Canadian Hansard, are used because of
the close alignment between word orders in the source and target languages
(e.g. French and English). However, as was mentioned earlier, word reordering
is of crucial importance in translation between natural languages and it is one
of the difficult problems for machine translation. For this reason, although the
problems in the Tenjinno competition have a complexity similar to those listed

The Tenjinno Machine Translation Competition 223

in Table 5, the Tenjinno problems have smaller vocabularies and derive more of
their complexity from non-monotonic alignment.

Using the results of Table 5 the complexities of the Tenjinno competition
problems were selected to be just outside of the complexities listed in
Table 6.

Table 5. Properties of commonly used corpora for the inference of machine translation
systems

Corpus Translation pair Source lexicon Target lexicon Word error rate
EuTrans-0 Spanish→English 683 514 0.74%
EuTrans-I Spanish→English 686 513 9.7%
EuTrans-II Italian →English 2,459 1,712 28.3%
Verbmobil German→English 7,939 4,672 36.2%
Basic Travel Corpus Chinese→English 7,643 6,982 48%

Table 6. Estimated complexity of commonly used corpora for the inference of machine
translation systems

Corpus log2 of FSM complexity log2 of SDTS complexity
EuTrans-0 1.89 × 1019(7 class n-gram) 2.30 × 1037

EuTrans-I 2.14 × 1022(4-gram) 3.45 × 1039

EuTrans-II 3.16 × 1024(4-gram) 6.87 × 1046

Verbmobil 3.89 × 1028(4-gram) 6.91 × 1048

Basic Travel Corpus 3.99 × 1028(4-gram) 8.56 × 1050

3.4 The Name Tenjinno

Since the conference was held in Japan, the ICGI competition committee decided
to have a Japanese inspired name for the ICGI 2006 competition and that ideally
the name should be related to language and learning. Using these requirements,
we decided to use the Japanese name “Tenjin” as the basis for the name of the
competition. Tenjin is the Shinto kami of scholarship, the deified Sugawara no
Michizane.

Tenjin is a word that appeared frequently on the Internet at the time of the
competition (645,000 hits on Google, measured before the start of the competi-
tion) and therefore we have added the Japanese particle “no” to the end of the
word, so that it became the “Tenjin no” competition, or loosely Tenjin’s compe-
tition. Although “no” should be a separate word, by conjugating it with Tenjin
(i.e. Tenjinno), we created something more unique. For instance at the time of
the competition, “Tenjin no” returned 97,000 hits, “Tenjin-no” 1,060 hits, but
“Tenjinno” returned only 12 hits, and the website of the Tenjinno competition
was the highest ranked result.

224 B. Starkie, M. van Zaanen, and D. Estival

4 Participation and Results

The Tenjinno Competition started on 3rd January 2006. The website
(http://www.ics.mq.edu.au/∼tenjinno/) had been made available a few days
before, but the oracle came online on 3rd January. In total, while the competi-
tion was open, the website received 2,550 visits. The datasets were downloaded
by users from 63 different sites. Overall, users from 200 sites have accessed the
website.

Table 7 lists the competition problems, along with their complexities and the
status of each problem i.e. whether or not the problem was solved. The problems
are listed in order of increasing difficulty. The winner of the competition overall
was the competitor that solved the highest ranking problem according to this
table.

Table 7. Properties of the problems of Tenjinno

Problem Formalism log2 Complexity Status
1 Deterministic FST 7.27 × 1031 Solved
2 Non Deterministic Unambiguous FST 7.27 × 1031 Unsolved
3 Deterministic SDTS 7.24 × 1034 Unsolved
4 Non Deterministic Unambiguous SDTS 8.28 × 1034 Unsolved

Problem 1 was solved on 6th April 2006 by Alexander Clark (Royal Holloway
University of London), who was also the winner of the Omphalos competition [2].
At the closing of the competition on 1st July 2006 the remaining problems (2, 3,
and 4) were unsolved and thus Alexander Clark was declared the winner overall.

Table 8. Important dates for the Tenjinno competition

Date Event
31 December 2005 Competition details available on the website
1 January 2006 Competition begins
1 July 2006 Competition closes
2 July 2006 Competition winner announced
September 2006 Tenjinno session at ICGI-2006

5 Conclusions

In contrast to previous ICGI competitions the problems in the Tenjinno com-
petition mirrored a real world task. Set in the context of machine translation,
the task was to learn a translation between sentences in two paired artificial
languages. This task is interesting from a formal perspective, where one may
try different approaches, for example learning grammars for both languages and
finding a mapping between them or learning one grammar and tree operations

The Tenjinno Machine Translation Competition 225

on the resulting derivation. It is also interesting from an application perspective,
because machine translation has always been an important research topic in
natural language processing and machine translation applications have become
more successful recently and gained more visibility.

For the purpose of setting the competition tasks, extensions to the complexity
measure used in the Omphalos competition were used and are described in this
paper. These measures have enabled us to compare the competition problems
with other published results in the field of machine translation. Using this mea-
sure, we can see that the problems solved in the competition were of a greater
complexity and were solved with lower word error rates than other published
results. One reason for this is undoubtedly because, unlike real world tasks, it is
known that the training and test data are derived from formal models similar to
those learnt by the grammatical inference software. Despite this, we believe that
the competition has played a role in focusing research onto an important area
of grammatical inference. In addition the complexity measures and benchmark
problems can be used to track the progress of the state-of-the-art into the future.

Bibliography

[1] Kevin J. Lang, Barak A. Pearlmutter, and Rodney A. Price. Results of the Ab-
badingo One DFA learning competition and a new evidence-driven state merging
algorithm. In V. Honavar and G. Slutzki, editors, Proceedings of the Fourth In-
ternational Conference on Grammar Inference, volume 1433 of Lecture Notes in
AI, pages 1–12, Berlin Heidelberg, Germany, 1998. Springer-Verlag.

[2] Bradford Starkie, François Coste, and Menno van Zaanen. The Omphalos context-
free grammar learning competition. In Paliouras and Sakakibara [13], pages 16–27.

[3] Bradford Starkie, François Coste, and Menno van Zaanen. Progressing the state-
of-the-art in grammatical inference by competition. AI Communications, 18(2):
93–115, 2005.

[4] National Institute of Standards and Technology. The 2006 nist ma-
chine translation evaluation plan (mt06), 2006. URL http://www.nist.gov/
speech/tests/mt/doc/mt06 evalplan.v4.pdf

[5] F. Casacuberta. Inference of finite-state transducers by using regular grammars
and morphisms. In Arlindo L. Oliveira, editor, Grammatical Inference: Algorithms
and Applications (ICGI); Lisbon, Portugal, volume 1891 of Lecture Notes in AI,
pages 1–14, Berlin Heidelberg, Germany, September 11–13 2000. Springer-Verlag.

[6] E. Gurari. An Introduction to the Theory of Computation. Computer Science
Press, Rockville:MD, USA, 1989.

[7] A.V. Aho and J.D. Ullman. The theory of parsing, translation, and compiling.
Prentice Hall, Englewood Cliffs:NJ, USA, 1972.

[8] K.S. Fu. Syntactic pattern recognition and applications. Advances in computing
science and technology series. Prentice Hall, Englewood Cliffs:NJ, USA, 1982.

[9] L. G. Valiant. A theory of the learnable. Communications of the Association for
Computing Machinery, 27(11):1134–1142, 1984.

[10] J.C. Amengual, A. Castaño, A. Castellanos, V.M. Jiménez, D. Llorens, A. Marzal,
F. Prat, J.M. Vilar, J.M. Benedi, F. Casacuberta, M. Pastor, and E. Vidal. The
eutrans-i spoken language translation system. Machine Translation, 15(1):75–103,
2000.

226 B. Starkie, M. van Zaanen, and D. Estival

[11] E. Matusov, S. Kanthak, and H. Ney. Efficient statistical machine translation
with constrained reordering. In European Association for Machine Translation
(EAMT) 10th Annual Conference; Budapest, Hungary, pages 181–188, 2005.

[12] E. Vidal and F. Casacuberta. Learning finite-state models for machine translation.
In Paliouras and Sakakibara [13], pages 3–15.

[13] Georgios Paliouras and Yasubumi Sakakibara, editors. Grammatical Inference:
Algorithms and Applications: Seventh International Colloquium, (ICGI); Athens,
Greece, volume 3264 of Lecture Notes in AI, Berlin Heidelberg, Germany, Octo-
ber 11–13 2004. Springer-Verlag.

Large Scale Inference of Deterministic
Transductions: Tenjinno Problem 1

Alexander Clark

Department of Computer Science, Royal Holloway, University of London,
Egham, Surrey TW20 0EX

Abstract. We discuss the problem of large scale grammatical inference
in the context of the Tenjinno competition, with reference to the infer-
ence of deterministic finite state transducers, and discuss the design of
the algorithms and the design and implementation of the program that
solved the first problem. Though the OSTIA algorithm has good asymp-
totic guarantees for this class of problems, the amount of data required
is prohibitive. We therefore developed a new strategy for inferring large
scale transducers that is more adapted for large random instances of the
type in question, which involved combining traditional state merging al-
gorithms for inference of finite state automata with EM based alignment
algorithms and state splitting algorithms.

1 Introduction

The Tenjinno competition [14] is a grammatical inference competition where
the problem tasks, though from synthetic data, are designed to approximate the
problem of machine translation. The problem consists of inferring a transduction
from one symbol sequence (the input sequence) to another symbol sequence (the
output sequence). Once inferred the transduction must be applied to some new
input data to generate a predicted output sequence. These sequences are then
submitted to a web-based oracle. If all of the output sequences are exactly correct
then the oracle will say so; otherwise, the oracle merely states that the data is
incorrect. No other feedback is given. The problems were generated according to
some random process which was unspecified.

The first problem, which we study here, is a deterministic sequential trans-
ducer. The key factor here is simply the size of the problem; the input alphabet
size was 1001, and the output alphabet was 1000. The problem clearly had
many thousands of states, and the amount of training data was 100,000 pairs,
with 10,000 test strings. Thus the problem is very substantial; indeed of the
same size as real world problems in machine translation, though current SMT
systems train on many millions or even billions of sentences.

The outline of our approach is as follows. We started by discarding the output
data and considering the input data alone. This will be a regular language, and
given the parameters of the problem, the distinguishability of the underlying
deterministic finite state automaton would be high. We accordingly constructed
the prefix tree acceptor for the data, creating an automaton with over 1,000,000

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 227–239, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

228 A. Clark

states and then used a state merging algorithm, with appropriate optimisations,
to construct a more compact automaton with less than 20,000 states. We then
used a novel alignment algorithm based on the Expectation-Maximization algo-
rithm to attach an output string to each transition, which also identified some
errors (incorrectly merged states) which were then split, and the aligment cor-
rected, until we had a correctly aligned transducer with 20,000 states that gen-
erated the training data correctly. Using the information now from the outputs
on the transition, we could merge the automaton more freely. A final phase used
the test data itself, to merge states to increase the coverage to include all of the
test data.

In the rest of the paper, we start by defining our notation, Section 2, and then
describe approaches to the inference of finite state models both for languages and
for transductions, Section 3. We then discuss the Tenjinno problem, Section 4 and
then present the algorithm that we developed to solve the problem Section 5. We
discuss the alignment algorithm in Section 7 in some detail, and finish with some
remarks about the competition design and the issues about applying theoretical
algorithms to large scale problems.

2 Notation

We are interested in transductions between finite strings. We have a finite input
alphabet Σ, and a finite output alphabet Ξ. We write Σ∗ for the free monoid
generated by Σ and Ξ∗ similarly. We write λ for the empty string in both
monoids, since this will not be confusing. We write |u| for the length of a string,
and uv, or occasionally u + v for the concatenation of elements of Σ∗ . We will
use letters a, b for elements of Σ and also for elements of Σ∗ of length 1. We write
u � v if u is a contiguous subsequence (factor) of v , i.e.∃, l, r ∈ Σ∗ s.t. lur = v.
For a string u we will write ui for the ith letter in the string, i.e. u = u1u2 . . . u|u|
we will write u[i : j] for the substring ui+1 . . . uj , so u[i : i] = λ, u[0 : |u|] = u.

A transduction is a subset T of Σ∗×Ξ∗. Here we are interested in transduc-
tions that are deterministic and unambiguous. A transduction T is unambiguous
if (u, v) ∈ T, (u, v′) ∈ T implies v = v′.

The transductions in the Tenjinno competition are of various formal types,
problem 1 being a deterministic finite state transducer.

A deterministic finite state automaton A is a tuple 〈Q,Σ, q0, qf , τ〉 , where

– Q is a finite set of states,
– Σ is the alphabet, a finite set of symbols,
– q0 ∈ Q is the single initial state,
– qf �∈ Q is the final state,
– τ : Q×Σ → Q ∪ {qf} is a partial function that defines the transitions.

We extend the transition function τ to Σ∗ in the normal way. This automaton
then defines a language L(A) = {u ∈ Σ∗|τ(q0, u) = qf}. The definition we use
here means that the language is prefix free: i.e. if u ∈ L(A) and uv ∈ L(A) then
v = λ.

Large Scale Inference of Deterministic Transductions: Tenjinno Problem 1 229

A key idea here is that of the signature of a state. The signature of a state
q ∈ Q is defined as sig(q) = {σ ∈ Σ|∃q′ ∈ Q : τ(q, σ) = q′} - i.e. the set of letters
that label transitions out of the state q.

A deterministic finite state transducer T is a DFA together with an output
alphabet Ξ and a function γ : Q×Σ → Ξ∗ where the domain of γ is the same
as the domain of τ . We extend γ to Σ∗, and then this transducer defines a
partial function φT : Σ∗ �→ Ξ∗ where φ(u) = v if and only if τ(q0, u) = qf and
γ(q0, u) = v.

The inference problem is to infer a transducer T , given a set of pairs of strings
from Σ∗×Ξ∗ which we will write X = (u1, v1), . . . (un, vn), Then given some new
input data Y = x1, . . . xn′ we predict values of φT (x′i) which are then compared
to an oracle. No feedback is given except when there is an exact match.

3 Inference of Finite State Models

There are basically two methods of learning finite state automata. The first,
which learns DFAs uses a state merging algorithm starting from a prefix tree
acceptor [3,6]. This can be proven to be correct under various assumptions. The
second, which can learn some non-deterministic finite state automata, uses a
randomly initialised Hidden Markov Model, together with an iterative statistical
optimisation algorithm to find a local optimum – normally the Expectation
Maximisation (EM) algorithm [7,2] is used because of its simplicity, elegance,
and rapid convergence, but other methods of non-convex optimisation can be
used, or gradient ascent. These optimisation problems are in general hard to
solve exactly ([1]), and these algorithms will only find a local optimum rather
than the global one.

Analogously with these two methods, there are two standard algorithms for
learning finite state transducers. The first, OSTIA, [12] essentially uses a state
merging algorithm on the transducer, together with an algorithm for shifting the
outputs to an appropriate spot. While it is provably correct in the identification
in the limit framework, it is not necessarily going to produce satisfactory results
on smaller data sets. The second method, analogous to the use of HMMs, uses
stochastic finite state transducers, also sometimes known as Pair Hidden Markov
Models [8], with again a training algorithm based on the EM algorithm. This
has been demonstrated to be effective for learning some simple transductions [4].

4 Problem Analysis

Problem 1 appeared to have been generated randomly. Accordingly we would
expect the out-degrees of the states to be distributed binomially. As a first step
we examined the histogram of signatures of the prefix tree acceptor which is
shown in Table 1.

There are in principle three sources of information: the input language (the
domain of the transduction), the output language, and the relationship between

230 A. Clark

Table 1. Signature histograms. This shows the numbers of different signatures of
various sizes, of the various automata produced. For each automaton, we give the total
number of distinct signatures of a given size n, and the total number of states with
signatures of that size. We give the results for three automata: the initial prefix tree
acceptor, the automaton formed after merging, and the final correct one. Note for the
PTA, that there is only one empty signature, and we have exactly 95000 states with
this – one for each training string. There are 1001 different signatures of size 1: one for
each letter in the input alphabet.

| sig(q)| PTA Merged Final
n N n N n N

0 1 95000 1 6520 1 1
1 1001 860039 841 2090 5 5
2 15920 41278 894 942 23 23
3 7580 12756 2059 2362 1923 1923
4 4764 6259 3906 3907 3904 3904
5 1955 2250 2089 2089 2089 2090
6 77 84 81 81 81 81
7 2 2 4 4 4 4
8 0 0 0 0 0 0
total 31300 1017668 9875 17995 8030 8031

the two of them. The large input alphabet means that the occurrence of a transi-
tion gives a huge amount of information, and allows us to identify pairs of states
in the prefix tree that were generated by the same state in the transducer. Thus
given that there is a very easily detectable structure in the input language, and
that the inference of deterministic finite state languages is now a mature field,
it seems appropriate to start by trying to find a compact DFA that generates
the input language. The input and output languages are both regular but very
different in structure. For example, the input language has 4 symbols that can
appear as the first symbol in a word, whereas the output language has 922 (out
of a possible 1000!). The reason for this enormous difference is that the output
language is not “deterministic” – if we consider the generative process, there
will be numerous transitions that only generate the empty string – thus the
transitions between the states are not detectable from the symbols. Accordingly,
learning the output language requires very different techniques from learning the
input language, and after a few preliminary experiments, we decided to focus on
learning the input language. However, given the large size of the problems, and
the limited amount of data, we could not merge states only when we were very
sure that they were equivalent, and thus it was inevitable that some errors would
occur in the learning of the automaton. When learning an automaton from pos-
itive data only, it is very difficult to detect over-generalisation. When learning
a transducer, the situation is very much easier: the output strings give you a
great deal of information as to which transitions are being taken. Obviously in
this case, we have some problems because so many of the transitions output the
empty string: but enough of the states generate proper output strings, that we
can detect problems.

Large Scale Inference of Deterministic Transductions: Tenjinno Problem 1 231

Existing algorithms are not suitable for this approach: non-deterministic learn-
ing algorithms require a global optimisation that is quadratic in the number of
states, which is not feasible on this scale of problem, and the OSTIA algorithm
is sensitive to the order in which states are merged, and in this case we need to
merge where the data permits, rather than in a fixed order.

5 Algorithm

We now describe the algorithm we applied to this problem.

– We shuffled the data set randomly and split the data into a training set of
95,000 pairs, and a validation set of 5,000 pairs, which we used to detect
bugs and errors.

– We then removed the output data.
– On this input data we then constructed the prefix tree acceptor, and then ran

a very efficient, aggressive state merging algorithm based on the signatures
of the states, until we had an automaton, shown as Merged in Table 1.

– We then used an EM based alignment algorithm, with initialisation based on
co-occurrence statistics. This is described in Section 7 below. This algorithm
was also used to split states that had erroneously been merged earlier. This
produces a small automaton that correctly models the training data.

– Using the additional information given by the output labels, we continued
merging, but using a similarity measure that was sensitive to possible mis-
alignments of the outputs.

– The final phase used the input strings from the test data to drive the state
merging algorithm, until all of the test data was accepted by the transducer.

We will now describe the various phases of the algorithm in more detail.

6 Initial Merging

The initial merging algorithm followed standard techniques for DFA inference.
We computed the prefix tree acceptor, and then merged states that were similar
according to a variety of similarity measures, and then recursively determinised
the results. Given the large size of the automata, with over 106 states, the simi-
larity measures were selected based on the ease with which efficient indices could
be constructed.

After looking at the PTA signature histogram in Table 1 we decided to start
by merging states that shared 3 elements of their signature. To do this we created
an index that stored for every 3-tuple of input symbols the set of states whose
signatures are a superset of that tuple.

T (σ1, σ2, σ3) = {q ∈ Q : {σ1, σ2, σ3} ⊆ sig(q)} (1)

Then for every tuple above a threshold, we merge all of those states. We use
two heuristics to control rampant overgeneralisation. First we assumed an upper

232 A. Clark

bound on the cardinality of the signatures – if we have a state with more than 8
outgoing states then we assume this is an error, and secondly we have to maintain
the prefix-free property. If that is violated then we know we have an error. In
that case, we undo the merge, and continue. This reduces the automaton size
to about 500, 000 states. We then switch to looking at merging states whose
signatures share only two symbols using classes of the form:

P (σ1, σ2) = {q ∈ Q : {σ1, σ2} ⊆ sig(q)} (2)

together with a measure of similarity based on the recursive computation of
similarity.

Finally we resorted to merging states with signature of width 1. We looked for
states that had not been merged; i.e. states that generate only a single string.
For a state q such that |{w|τ(q, w) = qf}| = 1, and such that if τ(q′, a) = q then
| sig(q′)| > 1, we iterate along the unique path of states from q, and stop when
we can find another state q′′ such that τ(q′′, w) = qf , and such that |w| > k
for some fixed threshold k. If there is such a state, then we merge q and q′.
This helps only marginally with the coverage of the automaton, but it is very
important with the alignment algorithm, since it forces the output strings away
from the ends of the strings.

6.1 Similarity Computation

We compute a recursive similarity measure between the nodes, based on the
number of symbols that they overlap with.

s1(q, q′) = 1 if q = q′

= −∞ if only one of q, q′ is qf
= |sig(q) ∩ sig(q′)| otherwise

(3)

sn(q, q′) =
∑

a∈sig(q)∩sig(q′)

(1 + sn−1(τ(q, a), τ(q′, a))) (4)

When we merge states such that s1(q, q′) = 2 we also require that s2(q, q′)
is larger than some threshold: we manually tweaked these thresholds at each
iteration to get good performance. The definition in line 2 of Equation 3 has the
effect of enforcing the prefix-free property: if we merged an accepting state with
a non-accepting one, this would violate this property.

7 EM Based Alignment Algorithm

We now consider the alignment algorithm. We are given a DFA, and a set of
training pairs, and we wish to attach to each transition of the DFA an element
of Ξ∗ such that the resulting transducer will model the training transduction
correctly. Note first of all that this involves solving a set of word equations. Let
vq,a be the output attached to the transition from q labelled with the letter a.

Large Scale Inference of Deterministic Transductions: Tenjinno Problem 1 233

If we translate the input data into the sequence of transitions generated, e.g
u = u1u2 . . . ul, this will produce the output v. This is an equation vδ(q0,λ),u1 +
vδ(q0,u1),u2 +. . . vδ(q0,u1...ul−1),ul

= v. We will have one of these equations for each
training pair (so 100,000 equations) and one variable for each transition. We only
align when the number of transitions is much less (say 20,000) than the number of
equations. If the structure of the automaton is correct, we can simply solve these
equations, by mapping them into linear equation(s), for example, using a Parikh
map [13], or simply having variables representing the length of each string and
using standard techniques for solving very large sparse linear systems. However
in most cases, we will have made an error somewhere, and thus there will not
be an exact solution. On the other hand, large parts of the automaton may be
correct and thus will have solutions. We solve this by considering a relaxation
of the problem. We associate with each transition not a unique output, but a
probability distribution over a set of strings. We then adjust the parameters of
the distributions to maximise the probability of the observed outputs. If the
automaton is correct, then we hope to converge on a solution which will give
every output string a probability of one, given the input string – i.e. all of
the distributions will eventually converge to putting all of the probability mass
on a single string. If the automaton has been merged incorrectly, then there
will be transitions which cannot be assigned a single string consistently, and
at convergence the distribution for that transition will generate more than one
string (the support of the distribution will have cardinality greater than one).
We then use this as a diagnostic test for splitting states of the automata.

The output distribution is a multinomial distribution over a set of strings. For
every transition t = (q, σ, q′), we define a finite set of strings Ot ⊂ Ξ∗, where
Ot = {o1, . . . on}. We then define a multinomial distribution over this set using a
set of parameters α1, . . . αn where each αi is the probability that this transition
will generate the corresponding string oi, and

∑
i αi = 1.

Given a maximum lengthL for the output strings, for a string v ∈ Ξ∗ define the
set of all substrings of v of length at most L by SubL(v) = {w : |w| ≤ L∧w � v}.

For a transition t = (q, a) we can define the set of all training pairs such that
this transition is taken.

Cq,a = {(u, v) ∈ X |∃l, r ∈ Σ∗, u = lar ∧ τ(q0, l) = q} (5)

Oq,a =
⋂

(u,v)∈Cq,a

SubL(v) (6)

Intuitively this is the set of all substrings that occur in every output string
associated with this transition. Note that λ ∈ Oq,a, so the cardinality is always
at least 1. Thus we know that, if the structure of the automaton is correct, the
true output associated with that transition will be in the set Oq,a. Note the
relationship to the insights of [15].

Given this set, we initialise the probabilities with the following computation
where α(q, a, w) is the parameter for the transition (q, a) labelled with w ∈ Ξ∗,

234 A. Clark

where Z is a normalisation constant.

α(q, a, w) =
1
Z

(|{(u, v) ∈ X |w � v}|
|Cq,a| + ε

)
(7)

We add a small random fluctuation ε to break symmetry.

Computational note. Calculating this efficiently requires computing a suffix ar-
ray for the set of strings v1, . . . vn, and then for each transition (q, a) computing
a bit vector representation of the set of Cq,a; given these two data structures we
can then compute all of the α parameters rapidly.

We can illustrate this with a simple example: the string zs bq occurs 23 times
in the output strings of the training data. In each of these 23 cases the symbol
hgc occurs in the input strings. Thus a priori it is quite likely that the transition
generating hgc might be generating the string zs bq. Accordingly we would give
this one a high probability.

7.1 Iterative Optimisation

For each transition we have a multinomial distribution over a finite subset of
Ξ∗. We will write these as P (v|(q, a)) Given an input string u, the probability
of the transducer generating v is given by the sum over all possible alignments
between the input and output strings. We write l = |u| and m = |v|, and take
the alignment variable at the beginning and end to be fixed, i0 = 0 and il = m.

P (v|u) =
0∑

i0=0

m∑
i1=i0

m∑
i2=i1

· · ·
m∑

il=m

∏
j

P (v[ij−1 : ij]|(τ(q0, u[0 : j]), uj)) (8)

The calculation of this sum with exponentially many terms can be performed
efficiently using modifications of standard dynamic programming techniques,
which we outline below.

We now want to maximise the following expression for the log likelihood.

L =
n∑

i=1

logP (vi|ui) (9)

We do this using the EM algorithm. We compute the expected number of
times that each string is generated by the transition and then normalise. This
requires a two-dimensional DP trellis as is used for IOHMMs or PHMMs [10].
Since the recursions used are non-standard, because the state is fixed we give
them here. We compute the forward and backward probabilities for a pair of
strings u1 . . . um → v1 . . . vn as follows.

f(0, 0) = 1
f(0, j) = 0 if j > 0

f(i, j) =
∑j

k=0 f(i− 1, k)α(τ(q0, u[0 : i− 1]), ui, v[k : j]) if i > 0

Large Scale Inference of Deterministic Transductions: Tenjinno Problem 1 235

b(l,m) = 1
b(l, j) = 0 if j < m

b(i, j) =
∑l

k=j b(i+ 1, k)α(τ(q0, u[0 : i]), ui, v[j : k]) if i < l

Given these forward and backward probabilities we can compute the expecta-
tion of a particular output being produced, given a particular pair at a particular
point where τ(q0, u[0 : i]) = q, a = u[i : i+ 1] and where w = v[j : k]:

P ((q, a) → w|u→ v) =
f(i, j)α(q, a, w)b(i+ 1, k)

P (v|u) (10)

This is the E-step; the M step just sets the values of α and normalises. This
is computationally quite intensive, requiring over an hour of computation and 2
Gigabytes of memory. We run this algorithm to convergence. Ideally this would
converge to a log likelihood of 0, which would indicated that every transition
was deterministically assigned a particular output.

However, at convergence the log likelihood is −700 (for 95,000 strings). Thus
though the vast majority of transitions were unambiguously assigned an output
string, there were 11 transitions that did not converge to unambiguous distribu-
tions. This was because there were two strings (or sets of strings) that needed
to have different outputs. An advantage of this algorithm is that we can identify
the exact location of the errors, and thus it is possible to split those states, so
that we can have a unique output for every transition.

7.2 Splitting Erroneous States

The alignment algorithm above will not always produce a solution – for example
if we merge the whole automaton much too aggressively then all of the transitions
might only be able to output λ. In that case this approach would not work, and
one would have to relax the requirement that all of the output strings lie in the
intersection defined above.

We can now identify problematic states in the transducer. Given a transition
(q, a) that we cannot assign an output string to deterministically, we take two
pairs of training strings (u1, v1) and (u2, v2) such that the Viterbi output for
that transition (i.e. the one generated by the single most likely alignment) is
different. Thus we will have two pairs in the training set (m1ar1, s1w1t1) and
(m2ar2, s2w2t2) such that τ(q0,m1) = τ(q0,m2) = q and such that we want the
transition to generate w1 in the first case and w2 in the second case. To do this
we need to split states so that τ(q0,m1) �= τ(q0,m2).

We find the smallest i such that m1 = j1k1, m2 = j2k2, |k1| = |k2| = i, and
τ(q0, j1) �= τ(q0, j2) . We then split all of the i states τ(q0,m1[0 : |j1| + 1]) to
τ(q0,m1[0 : |j1|+ i]) = τ(q0,m1).

To split a state q, we take the set of all transitions that end in q, Iq =
{(q′, a)|τ(q′, a) = q}, and for each element of Iq we create a separate state q(q,a).
We then change every transition in Iq so that τ(q′, a) = q(q,a). The outgoing tran-
sitions of all of the new states are identical to that of q. The end result of these
manipulations is that the two transitions can now be assigned the correct outputs.

236 A. Clark

At this point we have a smallish automaton that correctly transduces the
training data, partially transduces the validation set, and has low coverage on
the test data. Our goal now is to merge, while maintaining the transduction on
the training set, until we cover the test set.

8 Merge/Split Algorithm

A transducer is onward if for every state, (|{(q′, a)|τ(q′, a) = q}| = 1) the out-
going transitions do not have a nonzero common output prefix. We define the
output prefix of a state q to be the longest common prefix of all outputs gener-
ated starting from that state, i.e. the longest common prefix of the set of strings
{v ∈ Ξ∗|∃u ∈ Σ∗, s.t. τ(q, u) = qf ∧ γ(q, u) = v}. It is simple to make a trans-
ducer onward, by identifying states which only have one incoming transition,
and moving all non trivial output prefixes onto them. In our case we only con-
sidered states with in-degree one. More formally given a state q with only one
incoming transition (q′, a) such that τ(q′, a) = q, and such that there is a non
empty string u ∈ Ξ+ for all letters b ∈ Σ, such that τ(q, b) is defined, ∃v ∈ Ξ∗

such that γ(q, b) = uv.
We then use a state merging algorithm that uses the additional information

from the output symbols.
When we merge incompatible arcs we push the residue onto arcs, just as is

done in the OSTIA algorithm. This fails if we hit an incoming arc, or if we
hit the edge. The latter is fatal, but with the other we can again split nodes.
This happened 5 times. When we merge two states q, q′ which both have a
transition a, such that γ(q, a) = uv and γ(q′, a) = uv′ where v and v′ start with
different letters, and if the two states τ(q, a), τ(q′, a) have no other incoming
arcs, we can then push the residues v and v′ onto the outgoing arcs of the states
τ(q, a), τ(q′, a), which will then give the two transitions the same output strings
γ(q, a) = γ(q′, a) = u, so that they can be merged. If however, there are other
transitions into the same state say τ(p, b) = τ(q, a), we can’t do this. In this
case we can split this node τ(p, b) into different ones, so that there is only one
incoming transition into each node, and they can be pushed succesfully.

9 Final Phase

At this point the transducer was still not accepting all of the test input strings.
Accordingly we used the test input data itself to drive the merging algorithm. For
each string xi in the test data that is not accepted by the transducer, we identified
the longest prefix of xi that was accepted. Take the longest li such that xi = liari,
where li, ri ∈ Σ∗, a ∈ Σ, such that τ(q0, li) = q. There is by construction no
transition (q, a). We thus define sig+(q) = sig(q) ∪ {a}, using our knowledge of
the test data to augment the information available. We then search for a state
in the automaton with a signature that includes this one. Since | sig+(q)| ≥ 2,
in each case we found a state that included this. In a couple of cases, there was
more than one such state, in which case we selected the one with largest count. At

Large Scale Inference of Deterministic Transductions: Tenjinno Problem 1 237

the end of this process, we had constructed an automaton that correctly modelled
the training data and accepted the test strings. The final signature histogram is
shown in Table 1, which shows the expected binomial distribution.

10 Implementation

The programs written for this project were all implemented in Java, based on an
existing code base. We experimented with a number of other techniques beyond
those described here. We started by writing an exploratory data analysis tool,
that allowed us to examine parts of the transducers being generated, starting
with the onwward sequential transducer constructed directly from the training
data. We extended this to a simple command line interpreter, that allowed vali-
dation, storing of intermediate results, and other related computations. Since the
data sets were large, the time for loading and storing the data sets and the large
automata/transducers generated in the early phases of the algorithm was very
substantial. Important productivity gains were achieved by keeping the data sets
resident in memory.

The efficient implementation of the algorithms described in this paper re-
quired the use of a number of specialised algorithms. We focussed on applying
algorithms with good theoretical efficiency rather than on constant factor optimi-
sations.The transitions between states were represented, given the large alphabet
size, using a sorted linked lists. Merging between states was performed using a
union-find algorithm. Since we would sometimes make mistakes in the merg-
ing, by trying to merge incompatible nodes, we made this non-destructive, using
a graph unification based algorithm originally developed for unification based
parsing [9], that uses generational dereferencing. This allowed “undo” opera-
tions, when merging operations had undesirable consequences, without the pro-
hibitive expense of copying entire transducers. Since all of the output strings are
substrings of the output strings of the training data, we represented these lazily,
without copying. This meant that taking substrings was a constant time/space
operation, which gives an important efficiency gain – as used in algorithms for
linear time construction of suffix trees [11]. These were implemented as im-
mutable value classes. We also used suffix arrays extensively – we constructed
these naively, rather than from suffix trees, but given the comparatively short
length of the strings, this was efficient enough.

11 Discussion

First, in many respects learning a transducer is easier than learning an automaton;
the output strings allow one to identify overgeneralisation during the state merg-
ing process. Thus we can say that large random instances of deterministic sequen-
tial transducers can be efficiently learned. Again the presence of a large alphabet
turns out to be a great help for solving large grammatical inference problems [5].

Competitions of this sort are undoubtedly a good way of pushing forward the
state of the art. The real question then is as to what direction the state of the

238 A. Clark

art should be pushed in. The two elements of this competition were first of all
the requirement for exact identification, which is perhaps misconceived, since
it rules out the sort of approximation techniques that will be useful in dealing
with real world problems. The large size of the problems is very useful – first of
all it rules out manual or semi-manual approaches. Indeed when developing the
algorithms here, the automata are so large that actually inspecting them is out of
the question or even misleading. One is forced to look at the automata through
statistical summaries of particular properties, such as the signature histograms
shown above. The large size of the problems means that the context free inference
problems are extremely computationally intensive. A lot of the algorithms that
might work, such as inversion transduction grammars [16,17] have prohibitively
high, albeit polynomial, complexity.

The exercise was ultimately succesful. A number of lessons can be drawn from
this exercise. First, large random instances can be solved accurately from small
amounts of data. The number of states in the final automaton was over 5,000, and
the number of string pairs in the training data was only 100,000. So the amount of
data is less than quadratic. An important issue is that inevitably errors will occur.
Mechanisms should be put in place for detecting and correcting errors.

Finally, very large scale state merging algorithms are practical using efficient
data structures and indices. In our case, the use of a customised index, which
was carefully tuned, allowed a state merging algorithm to run on a PTA with
over a million states, very rapidly on a standard workstation. However in real
world applications, random instances are less interesting. Naturally occurring
instances tend not to have such clean properties (but then we do not have to get
the problem exactly right). In particular, finite-state approximations to machine
translation tasks will tend to have multiple states that are very similar, and thus
will require a more refined approach.

There are a number of ways in which this work could be improved. Firstly, it
would clearly be preferrable to combine the alignment and state merging phases;
one way of doing this would be to annotate each transition with some vector of
posterior probabilities, and incorporate this into the similarity computation.

Acknowledgements

I would like to thank the organisers of the Tenjinno competition.

References

1. N. Abe and M. K. Warmuth. On the computational complexity of approximating
distributions by probabilistic automata. Machine Learning, 9:205–260, 1992.

2. L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite
state markov chains. Annals of Mathematical Statistics, 37:1559–1663, 1966.

3. R. C. Carrasco and J. Oncina. Learning stochastic regular grammars by means of
a state merging method. In R. C. Carrasco and J. Oncina, editors, Grammatical
Inference and Applications, ICGI-94, number 862 in LNAI, pages 139–152, Berlin,
Heidelberg, 1994. Springer Verlag.

Large Scale Inference of Deterministic Transductions: Tenjinno Problem 1 239

4. Alexander Clark. Memory-based learning of morphology with stochastic transduc-
ers. In Proceedings of the 40th Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 513–520, 2002.

5. Alexander Clark. Learning deterministic context free grammars in the Omphalos
competition. Machine Learning, 2006. to appear.

6. Alexander Clark and Franck Thollard. Partially distribution-free learning of regular
languages from positive samples. In Proceedings of COLING, Geneva, Switzerland,
2004.

7. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society Series B,
39:1–38, 1977.

8. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:
Probabilistic Models of proteins and nucleic acids. Cambridge University Press,
1998.

9. Martin C. Emele. Unification with lazy non-redundant copying. In Meeting of the
Association for Computational Linguistics, pages 323–330, 1991.

10. F.Casacuberta. Probabilistic estimation of stochastic regular syntax-directed trans-
lation schemes. In R.Moreno, editor, VI Spanish Symposium on Pattern Recognition
and Image Analysis, pages 201–297. AERFAI, 1995.

11. Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

12. J. Oncina, P. Garćıa, and E. Vidal. Learning subsequential transducers for pat-
tern recognition interpretation tasks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15:448–458, 1993.

13. R. J. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.
14. Brad Starkie, Menno van Zaanen, and Dominique Estival. Tenjinno machine trans-

lation competition. http://www.ics.mq.edu.au/∼tenjinno/, 2006.
15. J. M. Vilar. Improve the learning of subsequential transducers by using alignments

and dictionaries. In Proceedings of ICGI, pages 298–311, 2000.
16. Dekai Wu. Stochastic inversion transduction grammars, with application to seg-

mentation, bracketing, and alignment of parallel corpora. In IJCAI-95, pages 1328–
1335, Montreal, August 1995.

17. Hao Zhang and Daniel Gildea. Stochastic lexicalized inversion transduction gram-
mar for alignment. In Proceedings of the 43rd Annual Conference of the Association
for Computational Linguistics (ACL-05), 2005.

A Discriminative Model of Stochastic Edit
Distance in the Form of a Conditional

Transducer�

Marc Bernard, Jean-Christophe Janodet, and Marc Sebban

EURISE, Université Jean Monnet de Saint-Etienne,
23, rue Paul Michelon, 42023 Saint-Etienne, France

{marc.bernard, janodet, marc.sebban}@univ-st-etienne.fr

Abstract. Many real-world applications such as spell-checking or DNA
analysis use the Levenshtein edit-distance to compute similarities be-
tween strings. In practice, the costs of the primitive edit operations (in-
sertion, deletion and substitution of symbols) are generally hand-tuned.
In this paper, we propose an algorithm to learn these costs. The under-
lying model is a probabilitic transducer, computed by using grammatical
inference techniques, that allows us to learn both the structure and the
probabilities of the model. Beyond the fact that the learned transduc-
ers are neither deterministic nor stochastic in the standard terminology,
they are conditional, thus independant from the distributions of the input
strings. Finally, we show through experiments that our method allows
us to design cost functions that depend on the string context where the
edit operations are used. In other words, we get kinds of context-sensitive
edit distances.

Keywords: Edit Distance, Stochastic Transducers, Discriminative Mod-
els, Grammatical Inference.

1 Introduction

Real world applications such as spell checking, speech recognition, DNA analysis
or plagiarism detection often use the Levenshtein distance, the so-called Edit
Distance (ED) [12], to compute similarities of string pairs. The common feature
of ED-based methods is that they are static, in the sense of using a priori fixed
costs for the primitive edit operations (insertion, deletion, substitution), that
leaves little room for adaptation to the string context. Nevertheless, in many
real domains, the level of an edit cost should be able to depend not only on the
pair of symbols handled but also on the context where the operation occurs. For
instance, in computational biology, a given edit operation involving the same
two symbols can highly depend on its location in the DNA sequence.

� This work was supported in part by the IST Programme of the European Commu-
nity, under the Pascal Network of Excellence, IST-2002-506778. This publication
only reflects the authors’ views.

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 240–252, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Discriminative Model of Stochastic Edit Distance 241

One solution would consist in manually assigning costs to edit operations that
reflect the likelihood of the corresponding transformations. But the setting up
of this strategy is difficult and seems to be not realistic overall for applications
with a low level of expertise. Some recent work tried to overcome the previously
mentioned drawbacks by automatically learning the primitive edit costs, rather
than hand-tuning them for each domain. Several probabilistic models have been
proposed to learn a stochastic ED in the form of stochastic transducers [9,1,8],
conditional random fields (CRF) [7], or pair-Hidden Markov Models (pair-HMM)
[5]. These models provide a probability distribution over the edit operations
and thus over the string pairs. The stochastic ED between two sequences can
then be computed from the negative logarithm of the probability of the string
pair.

Although these methods have provided some significant improvements on pat-
tern recognition tasks in comparison with the classic non-learned ED, they share
at least one of the following two drawbacks (sometimes both). The first one is a
statistical bias of the inferred model. Actually, the majority of these approaches
aim at learning a generative model rather than a discriminative classifier [2]. In
other words, they learn a joint probability distribution p(x, y) over the string
pairs (x, y), so the resulting conditional density p(y|x), required in classification
tasks, is a biased classifier that depends on the input distribution p(x). A solu-
tion, as proposed in [7,8], consists in directly learning a conditional distribution,
called a discriminative classifier.

The second drawback is a limitation on the expressive power of the model.
Actually, the structure of the learned model (i.e. the number of states in the
transducer or in the CRF or in the pair-HMM) is always a priori fixed in the
proposed approaches. The goal is to learn the parameters (the edit costs) assum-
ing that the fixed structure is able to capture the most important configurations
which can arise from the alignment of two sequences. Since determining such a
structure depends on the domain, this often constitutes a tricky task that can
result in a bad adaptation of the model to the string context.

In this paper, we propose to take into account both these problems, by learn-
ing not only the structure but also the parameters of a so-called conditional edit
transducer. The motivations that justify the learning of such a transducer are
the following. First, we think that an efficient way to model a stochastic ED
actually consists in viewing it as a stochastic transduction between the input X
and output Y alphabets [8,9]. In other words, it means that the relation consti-
tuted by a set of (input,output) strings can be compiled in the form of a 2-tape
automaton, called a stochastic finite-state transducer. The interpretation of the
ED as a stochastic transduction naturally leads to two possible string distances
[9]: the first one describes the most likely transduction between the two strings,
while the second is defined by aggregating all transductions between them. In
this paper, we focus on the first stochastic distance, a so-called Viterbi Edit Dis-
tance [9]. We motivate this choice by the fact that we will use an adaptation of
the well-known Viterbi algorithm for learning the structure and the parameters
of the conditional edit transducer.

242 M. Bernard, J.-C. Janodet, and M. Sebban

Actually, stochastic transducers suffer from the lack of training algorithms [6]
which generally only learn the parameters of an imposed structure, using the
Expectation Maximization algorithm (EM) [4]. We claim in this paper that this
drawback can be efficiently overcome using grammatical inference algorithms,
that constitutes the second motivation of our work. Basically, a transduction
between two strings x ∈ X∗ and y ∈ Y ∗, in the specific domain of the ED,
can be rewritten using an adapted Viterbi algorithm in the form of an optimal
sequence of edit operations z = z1...zn, zi ∈ (X∪{λ})×(Y ∪{λ})\{(λ, λ)} (where
λ is the empty string). Thus, we can exploit grammatical inference algorithms for
learning over this new alphabet the structure of the model (and its parameters)
in the form of a probabilistic finite state automaton.

The rest of this paper is organized as follows. After some notations and def-
initions in Section 2 and 3, we propose an adaptive approach for learning a
conditional edit transducer. This learning requires to find an optimal alignment
of string pairs in the form of a set of edit operations (Section 4). From this new
set of sequences built on the alphabet of edit operations, we infer a probabilistic
automaton with Alergia [3]. To learn a discriminative model, the automaton is
corrected to satisfy constraints of conditional distribution (Section 5). The con-
ditional edit transducer is then deduced from the automaton by splitting each
transition according to the input and output alphabets. In Section 6, we carry
out several series of experiments showing the behavior of our learned ED in a
comparative study.

2 On Edit Distances

An alphabet X is a finite nonempty set of symbols called letters. A string x over
X is a finite sequence x = a1a2 . . . an of letters. Let |x| denote the length of x, λ
the empty string and X∗ the set of all strings. In the sequel, we will use two (non
necessarily) distinct alphabets X and Y whose respective strings will generally
be indicated by x = a1a2 . . . an and y = b1b2 . . . bm, for sake of simplicity.

Let us recall that the edit distance is the smallest number of substitutions,
insertions and deletions required to transform a string x into another y. More
formally, let Es = X × Y be the set of substitutions, Ei = {λ} × Y the set of
insertions, Ed = X × {λ} the set of deletions and Z = Es ∪ Ei ∪ Ed the set of
all edit operations: Z = (X ∪ {λ})× (Y ∪ {λ}) \ {(λ, λ)}. An element (a, b) ∈ Z
will be denoted (a : b). Let c : Z → R+ be a fixed primitive cost function that
assigns a non negative weight to each edit operation. The edit distance d(x, y)
between two strings x ∈ X∗ and y ∈ Y ∗ is recursively defined as follows:

d(x, y) = min

⎧⎪⎪⎨⎪⎪⎩
0 if x = λ and y = λ

c(a : b) + d(x′, y′) if x = ax′ and y = by′

c(a : λ) + d(x′, y) if x = ax′

c(λ : b) + d(x, y′) if y = by′.

The edit distance can also be defined through the notion of alignment. Given
two strings x ∈ X∗ and y ∈ Y ∗, an alignment between x and y is a sequence

A Discriminative Model of Stochastic Edit Distance 243

of edit operations, thus a string z = (u1 : v1) . . . (up : vp) ∈ Z∗, such that (1)
ui ∈ X ∪ {λ} and vi ∈ Y ∪ {λ} and (ui : vi) �= (λ : λ) for all i ∈ 1..p and (2)
x = u1u2 . . . up and y = v1v2 . . . vp. Let L(x, y) denote the set of all alignments
between x and y. Computing d(x, y) consists in exhibiting an alignment of min-
imum cost between x and y: d(x, y) = min{z∈L(x,y):z=z1...zp} c(z1) + · · ·+ c(zp).
For instance, assuming that X = Y = {a, b} and c(ai : bj) = 1 if ai �= bj
and 0 otherwise, we get d(aba, bab) = 2 with (a : λ)(b : b)(a : a)(λ : b) or
(λ : b)(a : a)(b : b)(a : λ) as minimal alignments.

Notice that both d(x, y) and the alignments of minimum cost between x and y
can be computed in O(|x| · |y|) time using dynamic programming techniques [12].
However, faced with practical situations, the problem is generally not to effi-
ciently compute the edit distance itself but rather to find a relevant primitive
cost function able to capture the most important configurations which can arise
from the alignments of two sequences. As we said in introduction, imposing a
unique cost for a substitution of two letters, whatever they are, and not tak-
ing into account the location where this edit operation occurs in the alignment
(that we call the string context), is not relevant for dealing with complex prob-
lems. We propose in the following to learn a suited probabilistic model, called a
conditional edit-transducer, to take into account this string context.

3 On Conditional Edit-Transducers

Roughly speaking, a standard transducer is a finite state machine that takes
strings from an input alphabet X and rewrites them into strings of an output
alphabet Y . In the context of edit distance, every alignment between x ∈ X∗

and y ∈ Y ∗ can be viewed as a rewrite derivation of x into y using the edit
operations. So a finite state machine that would achieve this transduction is a
special transducer, called an edit transducer, whose transitions are labelled from
the unique alphabet Z of edit operations.

Definition 1. A finite-state edit-transducer (fset) is a 5-tuple A=〈Q,Z,i, F,T 〉
such that Q is a finite set of states, Z = (X ∪ {λ}) × (Y ∪ {λ}) \ {(λ, λ)} the
alphabet of edit operations, i ∈ Q the initial state and F : Q → [0, 1] (resp.,
T : Q × Z × Q → [0, 1]) a function that assigns a weight to every state (resp.,
transition). We also assume the following Determinism Condition: ∀p ∈ Q,∀(a :
b) ∈ Z, Card ({q : T (p, (a : b), q) > 0}) ≤ 1.

A state is final iff F (p) > 0. Moreover, we will never consider the transitions
(p, (a : b), q) whose weights T (p, (a : b), q) are null since they are not useful from
a computational point of view. Indeed, computing the weight of an alignment
z = z1 . . . zn ∈ Z∗ w.r.t. a fset A = 〈Q,Z, i, F, T 〉, denoted P (z|A), consists in
finding a sequence of transitions (i, z1, p1)(p1, z2, p2) . . . (pn−1, zn, pn) that starts
from the initial state and is labeled with the letters of z. Due to the Determinism
Condition, at most one such a path exists in A and then, the weight is: P (z|A) =
T (i, z1, p1)× T (p1, z2, p2)× · · · × T (pn−1, zn, pn)× F (pn).

Since we aim here at learning a discriminative model, let us now define a
conditional fset:

244 M. Bernard, J.-C. Janodet, and M. Sebban

Definition 2. A conditional finite-state edit-transducer (cfset) is a fset C =
〈Q,Z, i, F, T 〉, whose transitions are written (b|a) rather than (a : b) ∈ Z, such
that, ∀p ∈ Q,∀a ∈ X,

F (p) +
∑

b∈Y,q∈Q

T (p, (b|λ), q) = 1, (1)

∑
b∈Y,q∈Q

T (p, (b|a), q) +
∑
q∈Q

T (p, (λ|a), q) +
∑

b∈Y,q∈Q

T (p, (b|λ), q) = 1. (2)

An example of cfset is given in Fig.1(a). Basically, a cfset C is not a dpfa [11]
over Z∗ since F (p)+

∑
(b|a)∈Z,q∈Q T (p, (b|a), q) �= 1 in general. However, by using

Constraints (1) and (2), we can show that for every fixed input string x ∈ X∗,
P (y|C, x) =

∑
z∈L(x,y) P (z|C) defines a distribution over Y ∗:

∑
y∈Y ∗ P (y|C, x) =

1, that is the reason why we speak of conditional fsets. A formal proof of this
property, in the case of a cfset with only one state, can be found in [8]. Below,
we just give a hint of the general case on an example.

Let us fix x = aa and consider the cfset C of Fig.1(a). C can be used to
produce strings of Y ∗ incrementally by following its transitions while consuming
the letters of x. For instance, starting from the initial state 1, there are 3 cases:
Either, one can produce a b (with a probability of 0.3) from nothing (insertion)
by following the transition (1, (b|λ), 2), and must then produce a string from
state 2, by remembering that no letter of x was consumed. Or, one can make a
substitution of an a by a b (with a probability of 0.5), by following the transition
(1, (b|a), 1), and must then produce a string from state 1, by remembering that
one a of x was consumed, so that only one a remains in the input. Or, one can
delete an a (with a probability of 0.2) in the input without producing anything
(deletion), by following the transition (1, (λ|a), 1), and must then produce a
string from state 1 and only one a in input. When all the letters of the input
string are consumed, no more substitution or deletion can be done, whatever
the state. So one can only make last insertions before stopping. For instance,
directed by x = aa and C, the string bbbb can be produced by the following path:
(1, (b|a), 1)(1, (b|λ), 2)(2, (b|a), 1)(1, (b|λ), 2).

More generally, we can build the automaton P that generates all the strings of
Y ∗ following the transitions of C while consuming the letters of x (see Fig.1(b)).
The states are pairs of the form 〈k, α〉 where k ∈ {1, 2} is a state of C and α is a
prefix of x = aa corresponding to the beginning of x that is already consumed,
i.e., α ∈ {λ, a, aa}. The initial state is 〈1, λ〉 since 1 is the initial state of C and
no letter of x is initially read. A state 〈k, α〉 is final iff (1) k is a final state in
C and (2) all the letters of x have been consumed: α = x = aa. The transitions
are of the form (〈k, α〉, (bj |ai), 〈l, β〉) and they appear iff (1) (k, (bj|ai), l) is a
transition in C and (2) β = α.ai, that is to say, β = α in the case of a insertion
(bj |ai) = (b|λ) and β = α.a in the case of a deletion (bj |ai) = (λ|a) or a
substitution (bj |ai) = (b|a). Finally, the transitions and the final states come
with the probabilities that are assigned by C.

It is now clear that if we want P to generate a distribution over Y ∗, then P
must be a pfa [11], i.e., for every state, the probability of the outgoing transitions

A Discriminative Model of Stochastic Edit Distance 245

1(0.7) 2(0.4)
(b|a)(0.2)

(b|λ)(0.3)

(b|a)(0.5) (b|λ)(0.6)

(λ|a)(0.2)(λ|a)(0.2)

〈1, λ〉(0) 〈1, a〉(0)
(λ|a)(0.2)

(b|a)(0.5)

(λ|a)(0.2)

(b|a)(0.5)

〈2, λ〉(0) 〈2, a〉(0)(λ|a)(0.2) (λ|a)(0.2)

(b|λ)(0.6) (b|λ)(0.6)

(b|a)(0.2) (b|a)(0.2)

(b|λ)(0.3) (b|λ)(0.3) (b|λ)(0.3)

〈2, aa〉(0.4)

〈1, aa〉(0.7)

(b|λ)(0.6)

(a)

(b)

Fig. 1. (a) The cfset C. (b) The probabilistic automaton P modeling the distribution
over Y ∗ conditionally to C and the input string x = aa.

plus the probability of this state to be final must be 1. This is exactly the
statements of Constraints (1) and (2). Indeed, Constraint (1) concerns the case
where all the letters in the input string x are consumed, thus tackles the final
states of P ; the generation of the output string can only be done by using
insertions, before stopping. Constraint (2) concerns the case where not all the
letters in the input string x are consumed yet, thus tackles the non final states
of P ; all the edit operations can be used to generate the output string, but this
generation is forbidden to stop (since some letters of x remains to be consumed).
Hence, Constraints (1) and (2) insure that for every fixed input string x, the
construction of P yields a pfa, that brings:

∑
y∈Y ∗ P (y|C, x) = 1.

At last but not least, by using the same terminology as that of [9], two
edit distances can be defined from every cfset C, the stochastic edit distance:
ds
C(y|x) = − logP (y|C, x) = − log

(∑
z∈L(x,y) P (z|C)

)
and the Viterbi edit dis-

tance: dv
C(y|x) = − log

(
maxz∈L(x,y) P (z|C)

)
. We will only consider the latter

in the rest of the paper. Indeed, on the one hand, we propose in Section 4 an
efficient algorithm that allows us to compute the Viterbi edit distance. On the
other hand, we will need this algorithm to develop, in Section 5, a method to
learn the structure and the parameters of a cfset that maximizes the likelihood
of a learning sample. So studying only the Viterbi edit distance allows us to kill
two birds with one stone.

4 Computing the Viterbi Edit Distance from a CFSET

Given two strings x ∈ X∗ and y ∈ Y ∗, a cfset provides several possible align-
ments between x and y. For instance, if we consider that of Fig.1(a), then
the strings x = aa and y = bbb may be aligned by z1 = (b|a)(b|a)(b|λ) or
z2 = (b|λ)(b|a)(b|λ)(λ|a). Nevertheless, as P (z1|C) = 0.5× 0.5× 0.3× 0.4 = 0.03
and P (z2|C) = 0.3× 0.2× 0.3× 0.2× 0.4 = 0.00144, we deduce that z1 may be
the optimal alignment between x and y, unless there exists another alignment
of higher probability, that is not the case of z2.

246 M. Bernard, J.-C. Janodet, and M. Sebban

Algorithm 1. Probability of an optimal alignment between x and y
Input: Two strings x = a1 . . . an ∈ X∗ and y = b1 . . . bm ∈ Y ∗ and a cfset

C = 〈Q,Z, 1, F, T 〉 whose states are Q = {1, . . . , |Q|} and 1 is initial.
Output: Maximum probability of every alignment between x and y w.r.t. C.
M [0][0][1] ← 1;
for s = 2 to |Q| do

M [0][0][s] ← 0;

for i = 1 to n do
for s = 1 to |Q| do

M [i][0][s] ← maxt∈Q M [i − 1][0][t] × T (t, (λ|ai), s);

for j = 1 to m do
for s = 1 to |Q| do

M [0][j][s] ← maxt∈Q M [0][j − 1][t] × T (t, (bj |λ), s);

for i = 1 to n do
for j = 1 to m do

for s = 1 to |Q| do
mdeletion ← maxt∈Q M [i − 1][j][t] × T (t, (λ|ai), s);
minsertion ← maxt∈Q M [i][j − 1][t] × T (t, (bj |λ), s);
msubstitution ← maxt∈Q M [i − 1][j − 1][t] × T (t, (bj |ai), s);
M [i][j][s] ← max(mdeletion, minsertion, msubstitution);

return maxs∈Q M [n][m][s] × F (s)

Algo.1 allows us to compute the probability of an optimal alignment between
two strings x = a1 . . . an and y = b1 . . . bm w.r.t. a cfset C = 〈Q,Z, 1, F, T 〉 by
dynamic programming. It uses a 3-dimension matrix M to store the probabil-
ities according to (1) input and output strings (that is similar to the standard
edit distance) and (2) the state in progress (that is new). More precisely, M ’s
dimensions are (0..|x|)× (0..|y|)× (1..|Q|) and M [i][j][s] contains the probability
of an optimal alignment, that reaches the state s, between the prefix a1 . . . ai of
x and the prefix b1 . . . bj of y.

In Fig.2, we show an example of execution when x = aa and y = bbb and the
cfset C is that of Fig.1(a). Our algorithm fills up M , cell after cell. Let us focus
on the computation of M [2][1][1] (whose result, 0.1, is underlined in Fig.2). This
cell must contain the maximum probability, according to C, to reach state 1 after
having consumed aa in input and produced b in output. Several possibilities can
lead to this situation. (1) One can reach state 1 by making a deletion of an a
in input, starting from a cell, in state 1 or 2, where a had been consumed in
input and b produced in output, thus from the cells M [1][1][1] or M [1][1][2]. By
Algo.1, we get:

mdeletion = max
t∈Q

M [1][1][t]× T (t, (λ|a), 1) = 0.1

(2) One can reach state 1 by making an insertion of a b in output, starting from
a cell where aa had been consumed in input and no b produced in output, thus

A Discriminative Model of Stochastic Edit Distance 247

0.03

0.060.5

bb bbbbλ

a

aa

λ

0.036

0

0.25

00

0.04

0.2

1

0.075

0.150.06

bb bbbbλ

a

aa

λ

0.09

0.108

0.03

0.180.3

0.0120

0

0

state 1 state 2

0.021

0.1

i

j

0.030

Fig. 2. Computation of dv
C(y|x) when x = aa, y = bbb w.r.t. the cfset C of Fig.1(a).

Each cell M [i][j][s] contains the probability of an optimal alignment, that reaches the
state s, between the prefix a1 . . . ai of x and the prefix b1 . . . bj of y. The arrows are
useful to re-construct all the possible alignments between x and y. Both cells out of
the arrays contain the probabilities of such alignments. As 0.030 > 0.021, we deduce
that dv

C(bbb|aa) = − log 0.03 � 1.52 thanks to the optimal alignment (b|a)(b|a)(b|λ).

from the cells M [2][0][1] or M [2][0][2]. By Algo.1, we get:

minsertion = max
t∈Q

M [2][0][t]× T (t, (b|λ), 1) = 0.

(3) One can reach state 1 by making the substitution of a b by an a, starting
from a cell where a had been consumed in input and λ produced in output, thus
from the cells M [1][0][1] and M [1][0][2]. By Algo.1, we get:

msubstitution = max
t∈Q

M [1][0][t]× T (t, (b|a), 1) = 0.1

Therefore, M [2][1][1] = 0.1. Moreover, this score is achieved after either a dele-
tion (λ|a) from M [1][1][1] or a substitution (b|a) from M [1][0][0], what we indi-
cate in Fig.2 with the dotted arrows that point to the cell M [2][1][1].

At the end of the loops, all the letters of x are consumed and all those of y
are produced. So Algo.1 returns:

max
s∈Q

M [2][3][s]× F (s) = max(M [2][3][1]× F (1),M [2][3][2]× F (2)) = 0.03.

So dv
C(bbb|aa) = − log 0.03 " 1.52. Moreover, since we have stored the best edit

operations in M , we deduce that only one alignment is optimal: (b|a)(b|a)(b|λ).

5 Learning an Optimal CFEST

The second task we have to tackle concerns the learning of the cfset. As we
said in introduction, stochastic transducers suffer from the lack of learning al-
gorithm. The main reason comes from the fact that stochastic transducers are
not deterministic with respect to the input strings. We are going to show in

248 M. Bernard, J.-C. Janodet, and M. Sebban

this section that the specific context of learning stochastic edit distance leaves
room for learning not only the parameters but also the structure of a cfset.
The strategy of our iterative algorithm is based on the following remarks.

By Def.2, an edit transducer overX∗×Y ∗ is a kind of probabilistic automaton
over Z∗. So our point is that learning a cfset ultimately returns to the problem
of learning a pfa over Z∗. Indeed, if we can replace each string pair (x, y) of
the learning sample by a sequence z of edit operations corresponding to the
most probable alignment between x and y, then we will be able to learn a dpfa
modeling the Viterbi edit distance with usual grammatical inference algorithms
(such as alergia [3] or mdi [10]). Fortunately, Algo.1 can provide us with such
optimal alignments. However, learning a probabilistic model in the form of a
dpfa from the alignments will provide us with a generative model, that is to
say, a joint distribution over X∗×Y ∗. In order to learn a discriminative model,
we have to re-normalize the current distribution at each iteration.

Algorithm 2. Learning the optimal cfset
Input: A sample LS = {(xk, yk) : xk ∈ X∗, yk ∈ Y ∗, k ∈ 1..n} of string pairs.
Output: A cfset C.
C ← a random cfset;
repeat

let zk be the most probable alignment of xk and yk w.r.t. C for all k ∈ 1..n;
A ← alergia({z1, . . . , zn});
C ← normalization(A, {γ(p, z, q) : p, q ∈ Q, z ∈ Z ∪ {(λ : λ)});

until
(∑n

k=1 dv
C(yk|xk)

)
does not decrease anymore;

return A;

The pseudo-code of our learning algorithm is presented in Algo.2. We initialize
our model to a random cfset. Then, we run the following iterative estimation
procedure. We use Algo.1 and the current cfset for assigning the most proba-
ble alignment zk to each string pair (xk, yk) ∈ LS. Then, we run alergia for
learning a dpfa over Z∗. Once the learning is achieved, we re-normalize the joint
distribution described by this generative model to fulfill Constraints (1) and (2)
of Def.2 and get a cfset. The algorithm loops until the Viterbi edit distances
computed on the learning sample does not decrease (significantly) anymore. This
stopping criterium is equivalent to maximize the likelihood (

∏n
k=1 P (yk|C, xk))

over LS, due to the definition of the distance.
To achieve the normalization, we must know the number of times each tran-

sition (p, z, q) of the dpfa A has been used by the learning sequences. These
values, that are denoted γ(p, z, q), are either directly returned by the inference
algorithm (that is the case of alergia), or must be computed by parsing again
the learning sample. By convention, γ(p, (λ : λ), p) denotes the number of times
the parsing of any learning string ends in the state p. Once the frequencies
γ(p, z, q) are known, we can re-normalize each probability T (p, z, q) of A that is
the aim of Algo.3.

A Discriminative Model of Stochastic Edit Distance 249

Algorithm 3. Normalization fulfilling Constraints (1) and (2)
Input: A dpfa A = 〈Q, Z, i, F, T 〉 with the set of frequencies γ(p, z, q).
Output: The corresponding cfset after normalization.
for each p ∈ Q do

Np ← ∑
q∈Q

∑
z∈Z∪{(λ:λ)} γ(p, z, q);

Np(λ) ← ∑
q∈Q

∑
bj∈Y γ(p, (λ : bj), q);

Np(ai) ← ∑
q∈Q

∑
bj∈Y ∪{λ} γ(p, (ai : bj), q), ∀ai ∈ X;

δp ← 1 − (Np(λ)/Np);
for all ai ∈ X, bj ∈ Y, q ∈ Q do

T (p, (bj |λ), q) ← γ(p, (λ : bj), q)/Np;
T (p, (λ|ai), q) ← γ(p, (ai : λ), q) × δp/Np(ai);
T (p, (bj |ai), q) ← γ(p, (ai : bj), q) × δp/Np(ai);

F (p) ← δp;

return A;

It is easy to check that this algorithm is sound: it suffices to verify that
Constraints (1) and (2) are satisfied by all the states after normalization. This
proof is presented in detail in [8] in the case of a cfset with only state. It
basically also applies to the case of several states since only local information
to the states has to be considered, and no information concerning the relations
between the states. Notice also that this normalization was proved to be optimal
in the framework of an EM procedure [8].

6 Experiments

6.1 Application in Pattern Recognition on the NIST Database

To assess the performance of our algorithm on a pattern recognition task, we
run it on the real world problem of handwritten digit classification. To achieve
this task, we used a subset of the well-known NIST Database of the National
Institute of Standards and Technology. The digits of this database are described
in the form of 128 × 128 bitmap images written by 100 different writers. In
our experimental setup, for simplifying our process, we reduced the size of the
bitmaps to 16 × 16 images.

Then, we used a growing number of these digits as learning sample LS, and
we kept 1,000 digits in a test sample TS. Since stochastic transducers handle
strings, we encoded each digit in an octal form, according to a feature extraction
strategy consisting in using Freeman codes for transforming the original vector
in an octal string. Fig.3 describes the strategy from a sample of the class “9”.

For learning our cfset, we need a learning set of string pairs. We follow the
strategy proposed in [9] consisting in building pairs of “similar” strings that
describe the possible distortions between instances of each class (0 . . . 9). It is
possible to automatically build such pairs of (input,output) strings, where an
input is a learning string of LS, and the output is a prototype of the input.

250 M. Bernard, J.-C. Janodet, and M. Sebban

17

6 2

5 3

0

4

start

primitives

"9" = 2 2 2 2 3 2 3 4 3 4 4 4 4 5 4 5 5 5 6 5 6 6 6 6 0 2 2 2 1 2 1 1 0 0 7 6 5 6 6 7 6 7 0 0 0 1 0 2 1

Fig. 3. Example of string coding character. Starting from the next found pixel (scan-
ning the digit left-to-right from the top), the coding algorithm builds a string with
absolute direction of the next pixel in the border.

To achieve this task, we used as prototype the corresponding 1-nearest-neighbor
in LS (using the classic edit distance with the same edit cost for an insertion,
deletion or a substitution) of each input.

Note that we could have used other ways to construct string pairs. A solution
would be to generate all pairs in the same class. Beyond large complexity costs,
this strategy would not be relevant in such a digit recognition task. Actually,
the classes of digits are intrinsically multimodal. For example, a zero can be
written either with an open loop or a closed one. In this case, the string that
represents an “open” zero cannot be considered as a distortion of a “closed”
zero, but rather as a different manner (a sort of sub-class) to design this digit.
Therefore, a nearest-neighbor based strategy seems to be much more relevant.

We aim at showing with this series of experiments that learning the primitive
edit costs of an edit distance in the form of a cfset is more relevant than
imposing these costs in advance. Thus, we will compare our approach with the
classic edit distance. The experimental setup is the following: (1) Each set i of
digits (i = 0, .., 9) is divided in 2 parts: a learning set LSi and a test set TSi. (2)
From each LSi, we build a set of string pairs PSi in the form of (x,NN(x)), ∀x ∈
LSi, where NN(x) = argminy∈LSi−{x} d(x, y) (d is the classic edit distance). (3)
We learn a cfset C from

⋃
i PSi with our approach. (4) We classify each test

digit x′ ∈ ⋃i TSi by (a) the class i of the learning string y ∈ ⋃i LSi minimizing
dv
C(y|x′) and (b) the class i of its nearest-neighbor NN(x′) ∈ ⋃i LSi.
Using the previous experimental setup, we can then compare the two ap-

proaches under exactly the same conditions. In order to assess each algorithm in
different configurations, the number of learning strings varied from 50 (5 for each
class of digits) to 500 (50 for each class), with a step of 50 strings per class. The
test accuracy was computed with a test set containing always 1,000 strings (i.e.
|⋃i TSi| = 1, 000). The chart of Fig.4(a) shows the results of our experiments

A Discriminative Model of Stochastic Edit Distance 251

on the NIST database. As already shown in [8], learning an ED in the form of
a conditional edit transducer is clearly relevant to achieve a pattern recognition
task. Whatever the size of the learning set, the error rate obtained using a classic
edit distance is always higher than that obtained by using a cfset. Note that
even if theoretically, we expect the two methods to converge to the same rate
when |LS| → ∞, it means that our method needs less learning examples to reach
the same error rate.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 50 100 150 200 250 300 350 400 450 500

E
rr

or
 r

at
e

#Learning Sample

Nearest-neighbor
Conditional Edit Transducer

 15350

 15400

 15450

 15500

 15550

 15600

 15650

 15700

 15750

 15800

 15850

 15900

100 200 300 400 500

Lo
g-

Li
ke

lih
oo

d

#Learning Sample

Memoryless CFSET
Structure-Learned CFSET

Fig. 4. 4(a)Results on the NIST database. 4(b) Comparison between memoryless cf-
sets and cfsets whose structure was learned.

6.2 Results on an Artificial Database

In this second series of experiments, we aim at showing the advantage of learning
the parameters and the structure of a conditional tranducer with respect to other
approaches that fix the structure. To this purpose, we focus on the algorithm by
Oncina and Sebban that learns conditional memoryless edit-tranducers, that is to
say, cfsets with only one state. We use a random fset with 5 states whose input
and output alphabets areX = Y = {a, b, c, d}. Thus, every state has 24 outgoing
transitions, labeled by the edit operations in Z = (X∪{λ})×(Y ∪{λ})\{(λ, λ)}.
Then we use this fset to generate 1,000 strings over Z∗, that allow us to deduce
1000 string pairs over X∗ × Y ∗. Half of them are used by both the algorithms
to learn: the learning sample varies from 100 to 500 strings, with a step of 100
strings. The 500 other strings constitute the test set (TS). In order to measure
the performance of both methods, we compute

∑
(x,y)∈TS d

v
C(y|x). The less this

measure is, the best the cfset is.
Fig.4(b) shows our results. From this histogram, we observe that a memoryless

cfset is systematically less powerfull than a cfset whose structure was learned.
Notice that the best results were obtained with 300 and 500 learning examples
by transducers that had exactly 5 states, so that were relatively close to the
target generating model. This result confirms that our method is able to capture
the sensitivity of the edit costs to the string context, that is obviously not the
case of a memoryless transducer with fixed costs.

252 M. Bernard, J.-C. Janodet, and M. Sebban

7 Conclusion

In this paper, we propose a new algorithm to learn the cost function of a stochas-
tic edit distance. Our method relies on conditional edit transducers whose pa-
rameters and structure are learned, thanks to grammatical inference techniques.
Those transducers inherit all the advantages of conditional models described by
Oncina and Sebban in [8]. Moreover, our experiments show that learning the
structure allows us to overcome the memoryless transducers, since many-states
transducers model complex edit cost functions that take into account the string-
context where they are used.

References

1. M. Bilenko and R. Mooney. Adaptive duplicate detection using learnable string
similarity measures. In Proc. of the 9th Int. Conf. on Knowledge Discovery and
Data Mining (KDD’03), pages 39–48, 2003.

2. G. Bouchard and B. Triggs. The tradeoff between generative and discrimina-
tive classifiers. In J. Antoch, editor, Proc. in Computational Statistics (COMP-
STAT’04), 16th Symp. of IASC, volume 16, Prague, 2004. Physica-Verlag.

3. R. C. Carrasco and J. Oncina. Learning stochastic regular grammars by means of
a state merging method. In Proc. of 1st Int. Colloquium in Grammatical Inference
(ICGI’94), pages 139–150. LNAI 862, 1994.

4. A. Dempster, M. Laird, and D. Rubin. Maximun likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society, B(39):1–38, 1977.

5. R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis.
Cambridge University Press, 1998.

6. J. Eisner. Parameter estimation for probabilistic finite-state transducers. In Pro-
ceedings of the 40th Annual Meeting of the Association for Computational Linguis-
tics, pages 1–8, Philadelphia, July 2002.

7. A. McCallum, K. Bellare, and P. Pereira. A conditional random field for
discriminatively-trained finite-state string edit distance. In Proc. 21th Annual
Conference on Uncertainty in Artificial Intelligence (UAI’05), pages 388–400, Ar-
lington, Virginia, 2005. AUAI Press.

8. J. Oncina and M. Sebban. Learning stochastic edit distance: application in hand-
written character recognition. Journal of Pattern Recognition, to appear, 2006.

9. E. S. Ristad and P. N. Yianilos. Learning string-edit distance. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 20(5):522–532, 1998.

10. F. Thollard, P. Dupont, and C. de la Higuera. Probabilistic DFA inference using
kullback-leibler divergence and minimality. In Proc. 17th Int. Conf. on Machine
Learning (ICML’00), pages 975–982. Morgan Kaufmann, San Francisco, CA, 2000.

11. E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco.
Probabilistic finite-state machines. IEEE Trans. in Pattern Analysis and Machine
Intelligence, 27(7):1013–1039, 2005.

12. R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21(1):168–173, 1974.

Learning n-Ary Node Selecting Tree Transducers
from Completely Annotated Examples

A. Lemay1, J. Niehren2, and R. Gilleron1

Mostrare project of INRIA Futurs, LIFL, Lille France
1 University of Lille 3

2 INRIA Futurs

Abstract. We present the first algorithm for learning n-ary node selec-
tion queries in trees from completely annotated examples by methods
of grammatical inference. We propose to represent n-ary queries by de-
terministic n-ary node selecting tree transducers (n-NSTTs). These are
tree automata that capture the class of monadic second-order definable n-
ary queries. We show that n-NSTT defined polynomially bounded n-ary
queries can be learned from polynomial time and data. An application
in Web information extraction yields encouraging results.

1 Introduction

The problem of selecting nodes in trees is the most basic and fundamental query-
ing problem in the context of XML [8,14,12]. In this paper, we propose a new
machine learning algorithm based on grammatical inference for learning n-ary
node selection queries. We will illustrate its interest in an application to wrapper
induction for Web information extraction [10,4,13,18].

We consider finite rooted directed sibling-ordered unranked trees t ∈ TΣ with
nodes labeled in a fixed signature Σ. An n-ary query in such trees [14,9,15] is a
function q that maps trees t ∈ TΣ to sets of n-tuples of nodes q(t) ⊆ nodes(t)n.
Boolean queries are 0-ary queries and can be identified with tree languages1.
Monadic queries where n = 1 select nodes in trees. Binary queries where n = 2
select pairs of nodes in trees, and so on. The most natural way to represent n-
ary queries is monadic second-order logic (MSO), i.e. by MSO-formulas with n free
variables. MSO-defined queries are regular, i.e. definable by tree automata over
Σ ×Booln, and vice versa. This follows from Thatcher and Wright’s theorem in
the case of ranked trees [19] and carries over to unranked trees.

We investigate learning algorithms for MSO-definable n-ary queries. The input
is a set of completely annotated examples for the target query q. These are pairs
(t, q(t)) for some tree t ∈ TΣ. Completely annotated examples contain positive
information on all tuples in q(t), and negative information on all others. In the
Boolean case, they coincide with the positive and negative examples for tree
languages, i.e. whether a tree belongs to the language or not.
1 This is well-known in database theory. A tree t belongs to the language defined by

a Boolean query q if and only if the empty 0-tuple () belongs to q(t).

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 253–267, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

254 A. Lemay, J. Niehren, and R. Gilleron

All learnability results depend on how n-ary queries are represented. The
following properties are wishful in general, and in particular for applications to
Web information extraction.

Learnability. For all n-ary queries q a representative can be learned from poly-
nomial time and data in form of completely annotated examples.

Expressiveness. All n-ary MSO-definable queries can be represented.
Efficiency. Given a representation of an n-ary query q and a tree t the set q(t)

can be enumerated efficiently.

For n = 0 all three conditions can be satisfied when representing tree lan-
guages by bottom-up deterministic tree automata. Completely annotated exam-
ples then coincide with positive and negative examples. Learning algorithms for
deterministic tree automata from positive and negative examples (RPNI) have
been studied in [5].

For n = 1, these properties have been shown recently [1,2] when representing
monadic queries by deterministic node selecting tree transducer (NSTTs). These
are functional tree automata over Σ × Bool, which define relabeling functions
from trees over Σ to trees over Bool. Selected nodes are relabeled to true, all
others to false. A learning algorithm from polynomial time and date can be
obtained by adapting RPNI to deterministic NSTTs while taking functionality
into account, for the treatment of negative information. MSO completeness for
deterministic NSTTs can still be inferred from Thatcher and Wright’s theorem,
despite of the restriction to functionality. Efficient query answering is possible
in linear time by a two phases algorithm.

For n > 1, the question is still open whether there exists a representation
formalism for n-ary queries that satisfies the above three properties. A number
of principle problems arise. The most disturbing fact is that functional tree
automata over Σ×Booln are not sufficiently expressive for n > 1. They can only
define finite unions of Cartesian closed n-ary queries as shown in [15]. These are
clearly insufficient in theory and practice.

Furthermore, the number of n-tuples in q(t) ⊆ nodes(t)n may become expo-
nential for unbounded n so that efficient enumeration becomes an issue for n > 1.
Completely annotated examples for q may thus become huge. This should not
happen in practice of information extraction. In theory, we will restrict ourselves
to queries where the number of answers is polynomially bounded in the size of
the tree. Our learning algorithms will have to use compact representations for
huge sets of negative examples, i.e., complements nodes(t)n − q(t).

In this article, we propose to represent n-ary queries in Σ-trees by determin-
istic tree automata over Σ × Booln that recognize canonical languages, where
every accepted tree corresponds to precisely one n-tuple. We call tree automata
with canonical languages n-ary node selection tree transducer (n-NSTTs).

All tree automata obtained from MSO formula have canonical languages as long
as all free variables are first-order. However, most NSTTs are not 1-NSTTs and
vice versa. Despite of this, both classes of automata have the same expressiveness
– they can both represent all monadic MSO definable queries, but differently.

Learning n-Ary Node Selecting Tree Transducers 255

T Himmel über Berlin
F

P Wenders
L

T Vertigo
F

P Hitchcock

Fig. 1. The binary tree two-films with some data content

We show how to learn deterministic n-NSTTs from completely annotated ex-
amples. Our algorithm satisfies the learning model from polynomial time and
data, under the assumption that the number of answers to queries is polyno-
mially bounded in the size of the tree. The main problem is to represent the
possibly exponential amount of negative information contained in a set of com-
pletely annotated examples in a compact manner. In the monadic case, this
could be solved by the functionality requirement on NSTTs which is no more
available for n-NSTTs. We also show that answers of n-ary queries represented
by deterministic n-NSTTs can be enumerated efficiently.

We have implemented our algorithm and started applying it to Web infor-
mation extraction. We assume highly structured Web pages generated by some
database. First experiments yield encouraging results for the n-ary case, that let
us hope for competitive systems by future work.

2 N-Ary Node Selecting Tree Transducer

We introduce n-NSTTs for binary trees. Unranked trees will be considered in
Section 6. The principal difference between 1-NSTTs as presented here and
NSTTs from [1] is essential to generalize smootly from monadic to n-ary queries.

Let N = 1, 2, , . . . be the natural numbers without 0 and Bool = {0, 1} the
Booleans. We denote the cardinality of a set A by |A|. Given a finite set Σ of node
labels, a finite directed sibling-ordered binary tree t ∈ TΣ is either a label a ∈ Σ
or a triple a(t1, t2) consisting of a label a ∈ Σ and two binary trees t1, t2 ∈ TΣ .
Fig. 1, for instance, contains the binary tree two-films = L(F(T, P), F(T, P))
where Σ = {L, F, T, P}. This tree represents a list (L) of two films (F) each
having a title (T) and a producer (P). Rather than putting data content into tree
labels, we assume an external mapping from nodes to data values. Note that
nodes may carry the same label while containing different data. For instance,
both films have different producers and titles. This works as long as we carefully
distinguish different nodes with the same label.

We identify node of trees with their relative address from the root. The node
2·1, for instance, is the first child of the second child of the root. In the example
in Fig. 1, this is the T node containing Vertigo. We write t(v) for the label of some
v ∈ nodes(t), for instance: two-films(2·1) = T. We denote by nodes(t) ⊆ N∗

the set of nodes of a tree t. We say that two trees have the same shape if they
have the same sets of nodes. We write size(t) for |nodes(t)|.

256 A. Lemay, J. Niehren, and R. Gilleron

Definition 1. An n-ary query in trees over Σ is a function q from trees t ∈ TΣ

to sets of n-tuples of nodes q(t) ⊆ nodes(t)n.

Let the binary query title-producer-pairs ask for all pairs of titles and
producers in trees that encode lists of films. From the tree two-films, this
query selects the following node pairs: title-producer-pairs(two-films) =
{(1·1, 1·2), (2·1, 2·2)}

The usual idea how to represent n-ary queries by tree automata stems from
early work on MSO [19]. It consists in identifying n-ary queries over Σ with tree
languages over Σ × Booln. These can then be recognized by a tree automaton.
There are several possibilities in doing so, which differ in how many n-tuples may
be encoded by Boolean annotations at the same tree. For n = 2 for instance, con-
sider L00(F00(T10, P01), F00(T10, P01)). This tree is annotated by pairs of Booleans
that represent 4 pairs of nodes: {(1·1, 1·2), (2·1, 2·2), (1·1, 2·2), (2·1, 1·2)}. The
third and fourth pair may be unwanted since they mix up the titles and produc-
ers. We cannot annotate, however, only the first two pairs to the same copy of tree
two-films, we need two independent copies: L00(F00(T10, P01), F00(T00, P00)) and
L00(F00(T00, P00), F00(T10, P01)). This contrasts strongly with the monadic case,
where one can always annotate all tuples in q(t) to a unique copy of t. Such com-
pact annotations lead to functional tree languages, as recognized by the NSTTs
in [1].

In the n-ary case, however, several copies of t need to be annotated, one
for each of its n-tuples. We call trees over Σ × Booln tuple trees if they are
annotated by a single n-tuple. Every tree over Σ ×Booln can be decomposed in
a unique manner into two trees of the same shape, a tree t ∈ TΣ and its Boolean
annotation β ∈ TBooln . We write t × β for the unique tree in Σ × Booln that
can be decomposed into t and β. Given a n-tuple α and 1 ≤ i ≤ n let Πi(α) be
the i-th component of α. If t× β is a tuple tree then β corresponds to a unique
n-tuple β ∈ nodes(t)n such that:

∀v ∈ nodes(t) ∀1 ≤ i ≤ n : Πi(β(v)) = 1 iff Πi(β) = v

We call tree languages over Σ × Booln canonical if all trees contained are
tuple trees. Clearly, every n-ary query q over Σ is represented by exactly one
canonical language.

We will use tree automata to represent canonical languages, so we recall their
definition. A tree automaton A over Σ is a triple that consists of three finite sets
states(A), final(A) ⊆ states(A), and rules(A), so that all rules are or the
form a → q or a(q1, q2) → q where a ∈ Σ and q, q1, q2 ∈ states(A). A run
of a tree automaton A on a tree t is a function r : nodes(A) → states(A) so
that all states that r assigns to nodes of t are justified by some rule of A. A run
r of A on t is successful if it maps the root of t to a final state of A, i.e. r(ε) ∈
final(A). We write succ runsA(t) for the set of successful runs by A on t. The
language L(A) is the set of all trees t ∈ TΣ that permit a successful run by A.
The size measure for automata in this paper counts states and rules: size(A) =
|rules(A)| + |states(A)|. We call a tree automaton trimmed if all of its states
are used in some successful run.

Learning n-Ary Node Selecting Tree Transducers 257

Definition 2. An n-ary node selecting tree transducer (n-NSTT) over Σ is a
tree automaton over Σ × Booln that recognizes a canonical language.

An n-NSTT A over Σ represents the n-ary query qA in trees t ∈ TΣ such that:

qA(t) = {β ∈ nodes(t)n | t× β ∈ L(A)}
In other words, a query q is represented by all n-NSTTs that recognize the
language of all tuple trees for q. All such n-NSTTs are equivalent in that they
recognize the same language. Thatcher and Wright’s theorem [19] states that
n-NSTTs capture the class of MSO-definable n-ary queries. Thus, 1-NSTT �=
NSTT even though both of them capture monadic MSO-definable queries.

3 Membership Testing to the Class of n-NSTTs

We present an efficient algorithm for testing whether a tree automaton is an
n-NSTT. The results on types obtained on the way will help avoiding such tests
during query induction in Section 5.

An n-type b is an n-tuple of non-negative integers, that is b ∈ (N ∪ {0})n.
All bit vectors in Booln are n-types. The type of a tree β ∈ TBooln is the n-type
obtained by summing up all labels of nodes in β.

t(β) =
∑

v∈nodes(β) β(v)

Note that t× β is a tuple tree if and only if t(β) = (1, . . . , 1) = 1n. Let A be a
tree automaton over Σ × Booln. To every q ∈ states(A), we assign a set t(q)
of n-types by the following inference rules:

(a, b) → q ∈ rules(A)
b ∈ t(q)

(a, b)(q1, q2) → q ∈ rules(A) b1 ∈ t(q1) b2 ∈ t(q2)
b + b1 + b2 ∈ t(q)

Lemma 1. If r is a run of A on t× β then t(β) ∈ t(r(ε)).

Lemma 2. For all q ∈ states(A) and b ∈ t(q) there exists a tree t × β over
Σ × Booln and a run r of A on this tree such that q = r(ε) and t(β) = b.

Lemma 3. If A is a trimmed n-NSTT then t(q) ⊆ Booln is a singleton.

Proof. To see that t(q) �= ∅, note that we assume A to be trimmed. Thus there
exists a tree t× β and a run r on that tree such that r(ε) = q. By Lemma 1 it
follows that t(β) ∈ t(q). To see that t(q) ∈ Booln, let b ∈ t(q). By Lemma 2
there exists a tree t× β over Σ × Booln and a run r of A on this tree such that
q = r(ε) and t(β) = b. Since A is trimmed there exists a tree in t̃ × β̃ ∈ L(A)
that contains t × β as a subtree. Hence: b = t(β) ≤ t(β̃) = 1n. It remains to
show that t(q) is a singleton, so let us assume that b′ ∈ t(q) too. By Lemma 2
there exists a second tree t′ × β′ over Σ × Booln and a run r′ of A on this tree
such that q = r′(ε) and t(β′) = b′. Let t̃′ × β̃′ be the tree obtained by replacing
one occurrence of t × β in t̃ × β̃ by t′ × β′. Note that t̃′ × β̃′ ∈ L(A), hence

258 A. Lemay, J. Niehren, and R. Gilleron

t(β′) = 1n. Let V be the set of nodes of t̃ × β̃ that have not been affected by
the substitution.

1n = t(β̃) = t(β) +
∑

v∈V β̃(v)
1n = t(β̃′) = t(β′) +

∑
v∈V β̃

′(v)

Since β̃(v) = β̃′(v) for all v ∈ V , t(β) = t(β′) so that b = b′.

Lemma 4. A trimmed automaton A over Σ × Booln is an n-NSTT iff t(q) =
{1n} for all q ∈ final(A).

Proof. let A be a trimmed n-NSTT and let q ∈ final(A). Since A is trimmed
there exists a tree t × β and a run r on that tree such that r(ε) = q. Thus
t×β ∈ L(A) so that t(β) = 1n. By Lemma 1, it follows that 1n ∈ t(q). This set
is a singleton by Lemma 3 so that t(q) = {1n}. For the converse, it follows from
Lemma 1, that all t× β ∈ L(A) satisfy t(β) = 1n so that they are tuple trees.

Proposition 1. Whether a tree automaton A over Σ × Booln is an n-NSTT
can be decided in polynomial time O(size(A)×n). If so, all types in {t(q) | q ∈
states(A)} can be computed in the same time.

Proof. Lemma 4 gives us a way to check whether a tree automaton is an n-
NSTT. In the first step, we trim the automaton without changing its language.
This requires linear time O(size(A) × n). We then compute all values t(q) by
saturation with respect to the defining rules. We exit saturation immediately, if it
tries to add a second element to some type set, or if it tries to add a non-Boolean
n-type. If this happens then we return false, which is justified by Lemma 3. Note
that all positions in rules will be touched at most once and all type sets at
most twice. Hence, saturation can be implemented in time O(size(A) × n). If
saturation succeeds then we apply the third step. All types have been computed
successfully now. We check for all q ∈ final(A) whether t(q) = {1n}. If so we
return true otherwise false, which is licenced by Lemma 4. This can be done in
time O(size(A) × n) too.

4 Efficient Answer Enumeration

We develop an efficient algorithm for enumerating the answers of an n-NSTT
defined query on a given input tree. The insights gained will again be used in
our learning algorithm.

Given an n-NSTT A and a tree t the problem is to compute all β such that
t×β ∈ L(A). The first step to do is to project A to a tree automaton over Σ that
we denote by π(A). This automaton satisfies states(π(A)) = states(A) and
final(π(A)) = final(A). Its rules are inferred by the following two schemata
where a ∈ Σ and b ∈ Booln:

(a, b)(q1, q2) → q ∈ rules(A)
a(q1, q2) → q ∈ rules(π(A))

(a, b) → q ∈ rules(A)
a→ q ∈ rules(π(A))

Learning n-Ary Node Selecting Tree Transducers 259

Given an trimmed n-NSTT A, let tA : states(A) → Booln be the function that
maps states of A to their unique n-type according to Lemma 3. The following
lemma permits to type rules of projections of n-NSTTs.

Lemma 5. For all trimmed n-NSTTs A, labels a∈Σ, and q, q1, q2∈states(A):

a→ q ∈ rules(π(A)) iff (a,tA(q)) → q ∈ rules(A)
a(q1, q2) → q ∈ rules(π(A)) iff (a, b)(q1, q2) → q ∈ rules(A)

where b = tA(q)− tA(q1)− tA(q2)

Proof. The implications from the right to the left are obvious from the defini-
tion of the rules of π(A). For the converse there are two cases. First, assume
a → q ∈ rules(π(A)). By definition of π(A) there exists b ∈ Booln such that
(a, b) → q ∈ rules(π(A)). Lemma 1 shows that b = tA(q). Second, assume
a(q1, q2) → q ∈ rules(π(A)). By definition of π(A) there exists b ∈ Booln such
that (a, b)(q1, q2) → q ∈ rules(A). Since A is trimmed, there exist a tree t1×β1
and t2×β2 over Σ×Bool that can be evaluated by A into states q1 and q2 respec-
tively. Thus, the tree (a, b)(t1 × β1, t2 × β2) can be evaluated to q by A. Lemma
1 shows that b+tA(q1) +tA(q2) = tA(q). Hence, b = tA(q)−tA(q1)−tA(q2).

For every tree run r of a trimmed tree automaton A over Σ × Booln on some
tree with node v we define a function mapping nodes to n-types.

tr
A(v) =

{
tA(r(v)) if v is a leaf
tA(r(v)) − tr

A(r(v·1))− tr
A(r(v·2)) else

Note that tr
A can be identified with the unique β ∈ TBooln such that β(v) = tr

A(v)
for all nodes v.

Lemma 6. For all trimmed n-NSTTs A, t∈TΣ, and r : nodes(t)→states(A):

r ∈ succ runsπ(A)(t) iff r ∈ succ runsA(t× tr
A)

Proof. Straightforward from Lemma 5 by induction on trees t.

Recall that a tree automaton is unambiguous, if no tree permits more than one
successful run. All deterministic tree automata are unambiguous.

Proposition 2. Let A be a trimmed unambiguous n-NSTT. For all trees t ∈
TΣ, the function mapping r ∈ succ runsπ(A)(t) to Boolean annotations tr

A in
TBooln is a bijection with range {β | t× β ∈ L(A)}.
Proof. First note that the function always maps to {β | t × β ∈ L(A)}. This
follows from Lemma 6. If r ∈ succ runsπ(A)(t) then r ∈ succ runsA(t × tr

A) so
that t × tr

A ∈ L(A). Second, we show that the function is onto. To see this,
we show by induction on t that if r is a run of A on t × β then β = tr

A. Let
β such that t × β ∈ L(A). Thus, there exists r ∈ succ runsA(t × β) so that
β = tr

A. By Lemma 6, it also holds that r ∈ succ runsπ(A)(t) so that tr
A is a

value taken by the function. Third, we have to show that the function is one-to-
one. Let r1, r2 ∈ succ runsπ(A)(t) such that tr1

A = tr2
A . By Lemma 6 it holds that

ri ∈ succ runsA(t × tri

A) for both i = 1, 2. Hence, r1, r2 are successful runs of A
on the same tree, so they are equal by unambiguity of A.

260 A. Lemay, J. Niehren, and R. Gilleron

Theorem 1. For every unambiguous n-NSTT A, we can compute an algorithm
in time O(size(A)×n) that enumerates qA(t) with delay O(size(A)×size(t)×
n) per n-tuple.

Hence, one can compute the answer set qA(t) for unambiguous n-NSTTs A on
trees t in time O((|qA(t)|+ 1)× size(A)× size(t)× n).

Proof. In order to enumerate the answer set qA(t) of an n-NSTTs A it is suffi-
cient to enumerate the set {β | t× β ∈ L(A)} since every β can be transformed
in linear time into a unique n-tuple β by definition of n-NSTTs. This set is in
bijection to the set of successful runs of π(A) on t by Proposition 2. Given an
unambiguous n-NSTT A, we trim A, compute its projection π(A) and types tA

in time O(size(A)× n). Given a tree t ∈ TΣ the algorithm proceeds as follows.
It enumerates r ∈ succ runsA(t) with delay O(size(A) × size(t) × n) per run
and return all n-tuples of nodes corresponding to some Boolean annotation tr

A.

5 Learning Model and Algorithm

The learning model for words languages from polynomial time and data with
positive and negative examples [7,6] can be adapted to tree languages.

Definition 3. Tree languages over a fixed set Σ represented tree automata in
some class C are called identifiable from polynomial time and data if there exist
two polynomials p1 and p2 and an algorithm learner such that:

– for all input samples S ⊆ TΣ × Bool, learner(S) returns a tree automaton
A ∈ C in time O(p1(|S|)), that is consistent with S in that for all t× b ∈ S:
t ∈ L(A) iff b = 1;

– for all tree automata A ∈ C there exists a so called characteristic sample
char(A) of cardinality less than p2(size(A)) such that, for all input samples
S ⊇ char(A), learner(S) returns a tree automaton A′ ∈ C equivalent to A.

In contrast to the case of words, the learning model for trees bounds the cardinal-
ity of the characteristic sample, not its size. This relaxation may be acceptable
as long as one is only interested in the existence of a polynomial time learner. If
C is the class of deterministic tree automata, the learner can be defined by the
RPNI algorithm in [17].

The model for learning tree languages is only partially adapted to queries. The
question is which examples to use for n-ary queries. Let q be an n-ary query. A
completely annotated example for q for q is a pair (t, q(t)) where t ∈ TΣ . We call
t called carrier of (t, q(t)). For a set S of completely annotated examples for q,
we denote by carrier(S) the set of supports. A completely annotated example
(t, q(t)) defines |q(t)| positive examples, i.e. a positive example (t×β, 1) for each
tuple tree t × β with β in q(t). It also defines implicit negative examples, i.e.
trees (t× β, 0) with β not in q(t) for all t in carrier(S).

The cardinality of a completely annotated example (t, q(t)) is q(t) + 1. The
size of a completely annotated example (t, q(t)) is size(t)+ |q(t)|×n. A sample

Learning n-Ary Node Selecting Tree Transducers 261

is a set of completely annotated examples for a target query q, its cardinality is
the sum of the cardinalities of all completely annotated examples in S, its size is
the sum of sizes of all completely annotated examples in S. A tree automaton A
over Σ × Booln is consistent with a sample S if every tree t× β with (t, q(t)) in
S and β ∈ q(t) is in L(A) and if there is no tree t× β in L(A) such that (t, q(t))
is in S and β is not in q(t).

The model for learning queries is defined w.r.t. a query representation formal-
ism. Two query representations are said to be equivalent if they represent the
same query. This leads us to the following definition:

Definition 4. n-ary queries represented by a query representation formalism
R are said to be identifiable from polynomial time and data from completely
annotated examples if there exist two polynomials p1 and p2 and an algorithm
learner such that:

– for all input samples S of completely annotated n-ary examples learner(S)
returns a representation A ∈ R in time O(p1(|S|)) that is consistent with S;

– for all query representations A ∈ R there exists a so called characteristic
sample char(A) for A of cardinality less than p2(|A|) such that, for all in-
put sample S ⊇ char(A), learner(S) returns a query representation A′ ∈ R
equivalent to A.

Let us recall that, for a tree t and an n-ary query q, the number of selected
n-tuples in q(t) is at most size(t)n. Therefore, if we consider a target query qn,t

that extract all n-tuples of a tree t and no tuple for every other tree, the char-
acteristic sample should contain the completely annotated example (t, qn,t(t))
whose cardinality is size(t) + size(t)n × n. This holds for arbitrary query rep-
resentation formalisms. In order to avoid this blow-up, we restrict ourselves to
queries that selects a polynomially bounded number of n-tuples per tree: an n-ary
query q over Σ-trees is said to be polynomially bounded if there is a polynomial
p such that for each trees t ∈ TΣ, |q(t)|< p(size(t)).

Theorem 2. Polynomially bounded n-ary queries represented by deterministic
n-NSTTs are identifiable from polynomial time and data from completely anno-
tated examples.

Before defining the learning algorithm we recall the basics of the RPNI algorithm
for trees. RPNI inputs a sample of positive and negative examples. It first com-
putes an initial deterministic tree automaton which recognizes exactly the set
of positive examples in the sample. It then merges states as long as possible
while verifying consistency (no negative example in the sample is recognized)
and preserving determinism. The order of state fusions matters.

Merging works as follows: Let A be the initial automaton. We consider a par-
tition π of states(A). The equivalence class of q in that partition is denoted by
π(q). The quotions of A with respect to π is denoted by A/π. It is the automaton
which satisfies states(A/π) = π and final(A) = {p ∈ π | π ∩ final(A) �= ∅}.
The rules of A are defined such that (a, b) → q ∈ rules(A) ⇒ (a, b) → π(q) ∈

262 A. Lemay, J. Niehren, and R. Gilleron

rules(A/π) and (f, b)(q1, q2) → q ∈ rules(A),⇒ (f, b)(π(q1), π(q2)) → π(q) ∈
rules(A/π). State merging is performed by a function merge(A, π, qi, qj) that
outputs a partition π′ such that π′(qi) = π′(qj) and other elements of π are pre-
served. Function det-merge(A, π, qi, qj) first merges qi and qj and then performs
further merges such that the resulting automaton becomes deterministic.

The learning algorithm learner for n-ary queries represented by deterministic
n-NSTTs is set to be RPNIn−NSTT. It is given in Figure 2. It uses the same schema
than the RPNI algorithm for tree languages, but with the following features:

– the positive examples are tuple trees t × β for every t ∈ carrier(S) such
that q(t) �= ∅ and β ∈ q(t);

– not all deterministic tree automata over Σ × Booln are deterministic n-
NSTTs, therefore after every merge we have to check whether the resulting
automaton is an n-NSTT, this is done using the t function (see Proposi-
tion 1). Note that, as one never merges states of different type, we denote,
for a partition π of states(A) considered by the algorithm and for a set of
states p ∈ π, t(p) as the type of its states;

– we do not have negative examples, but the hypothesis of completely anno-
tated examples as input allows to define implicit negative examples: t × β
such that (t, q(t)) ∈ S and β �∈ q(t). As there is a bijection between runs on
Σ-trees and answers of a query (see lemma 6), verifying whether an implicit
negative example is recognized or not is the same as verifying that the num-
ber of runs on the support of the input sample does not grow. This replaces
the usual consistency check of RPNI-like algorithms.

– Also, note that RPNI requires an order on states. In the initial automaton,
each state can be associated to the single tree that it recognizes; states are
then ordered following a fixed order on those trees.

The initial n-NSTT A is consistent with the input sample S because it rec-
ognizes exactly the set S+ of tuple trees constructed from S. Let us suppose
that, at every call to det-merge, the n-NSTT A/π is consistent with S. The
automaton A/π′ satisfies L(A) ⊆ L(A/π′). To check whether A/π is consistent
with S, it is sufficient to test whether there is no new tree t × β in L(A′) with
t ∈ carrier(S). From lemma 6, this is equivalent to check whether, for every
tree t in carrier(S), the number of successful runs of the projected automaton
π(A) is equal to |q(t)|. Counting the number of successful runs on an input tree
can be done in O(size(S)). Note that we do not consider the size of A′ because
it is lower than the size of A, and the size of A is linear in the size of S.

Also, we compute the t function described in section 3 on A. As A is an
n−NSTT, condition of lemma 4 is satisfied for A. It is easy to verify that those
conditions are also satisfied for A/π if and only if there do not exist two states
of different types in the same element of π. This is guaranteed by the fact we
never merge states of different types.

Thus RPNIn−NSTT computes in polynomial time, for every input sample S,
an n-NSTT consistent with S. To end the proof of Theorem 2, it remains to
prove the second item of Definition 4, i.e. we must define characteristic samples

Learning n-Ary Node Selecting Tree Transducers 263

RPNIn−NSTT

Input: a sample S of completely annotated examples
compute S+ = {t × β | t ∈ carrier(S), β ∈ q(t)}
let A be the minimal deterministic n-NSTT such that L(A) = S+

Compute t and order states of A from qi to qn

let m = Σt∈carrier(S)|q(t)|
let π be the trivial partition of states(A)
For i = 0 to |states(A)| do

let q be the state with the smallest index in π(qi)
If qi = q then % qi has not been merged

For j = 0 to i − 1 do
If t(qi) = t(qj) then

π′ ← det-merge(A,π, qi, qj)
let m′ be the number of runs of A/π′ on carrier(S)
% test consistency with negative information
If m = m′ then π ← π′ and Exit Inner Loop

Output : A/π

Fig. 2. The learning algorithm learner for n-ary queries represented by deterministic
n-NSTTs

for n-ary queries represented by deterministic n-NSTTs, and we must prove the
convergence property of RPNIn−NSTT w.r.t. characteristic samples.

Tree languages represented by deterministic automata are identifiable from
polynomial time and data [17]. Thus n-ary queries, considered as tree languages
over Σ × Booln, represented by deterministic n-NSTTs are identifiable from
polynomial time and data. But, recall that this result is true in the learning
model from positive and negative examples. Let learner′ = RPNI be the learning
algorithm for tree languages represented by deterministic tree automata and
char′ be the function computing the characteristic sample associated with a
deterministic tree automaton. Let A be a deterministic n-NSTT, char′(A) is
the characteristic sample for A which is the representation of a tree language of
Σ ×Booln-trees. We define the characteristic sample char(A) for A which is the
representation of an n-ary query by:

char(A) = {(t, q(t)) | (t× β, b) ∈ char′(A)}
We show that the cardinality of char(A) is polynomial. As tree languages repre-
sented by deterministic tree automata are learnable from polynomial time and
data, there is a polynomial p′2 such that the cardinality of char′(A) is less than
p′2(s). Consequently, the number of trees t such that there exists an example
(t × β, b) ∈ char′(A) is less than p′2(s). Therefore, carrier(S) has cardinality
less than p′2(s). As we consider polynomially bounded queries, the cardinality of
every completely annotated example is polynomial. Thus there is a polynomial
p2 such that the cardinality of char(A) is less than p2(S).

264 A. Lemay, J. Niehren, and R. Gilleron

Let learner be set to RPNIn−NSTT. We have shown that, for every sample
S, RPNIn−NSTT outputs in polynomial time an n-NSTT consistent with S. It
remains to show that if char(A) ⊆ S then RPNIn−NSTT with input S outputs an
n-NSTT, denoted by RPNIn−NSTT(S), equivalent to A.

Let A be the target n-NSTT, let S be a sample that contains char(A), we
define the sample S′ of positive and negative examples by:

S′={(t×β, 1) | t ∈carrier(S), β∈ q(t)}∪{(t×β, 0) | t∈ carrier(S), β �∈ q(t)}

By definition of char(A) and of S′, we have char′(A) ⊆ S′. Then, RPNI with input
S′ outputs a deterministic automaton RPNI(S′) = A′ such that L(A′) = L(A).

It remains to show that RPNIn−NSTT(S) = RPNI(S′). First, verifying that the
number of runs on carrier(S) does not grow is equivalent to the consistency test
done by RPNI w.r.t. S′ (as said above). Second, if char(A) ⊆ S, and consequently
char′(A) ⊆ S′, RPNI(S′) = A′ is an n-NSTT because L(A′) = L(A) is canonical.
Therefore, under the hypothesis that char(A) ⊆ S, at every step of RPNIn−NSTT,
the current deterministic automaton is an n-NSTT. This is because otherwise
a tree which is not a tuple tree would be accepted (the sequence of languages
is increasing according to inclusion because states are merged). Thus, under the
hypothesis that char(A) ⊆ S, merged states will always be of the same type.
Thus, RPNIn−NSTT(S) = RPNI(S′).

6 n-NSTTs for Unranked Trees

HTML or XML documents parse into unranked trees where every node may have a
list of children of unbounded length, not only two. The notion of n-ary queries
carries over literally.

As an example, consider the unranked tree film-list in Fig. 3. This tree
represents a list (L) of three films (F), two of which are directed by Hitch-
cock (H) and one by Wenders (W). The letter (T) represents the title of the
film. The binary query hitchcock asks for pairs of directors and title in films
by Hitchcock. From film-list, this query selects the following pairs of nodes:
hitchcock(film-list) = {(1·2, 1·1), (3·2, 3·1)}. The tree in Fig. 3 is annotated
by the first pair (1·2, 1·1).

For extending n-NSTTs to unranked trees, we only need a notion of tree
automata for unranked trees. It must come with a good notion of bottom-up
determinism, for which the Myhill-Nerode theorem holds. This needs some care
[11]. We solve this problem as in [1] by using stepwise tree automata [3]. These
have the further advantage that they can be identified with standard tree au-
tomata operating on binary encodings of unranked trees, so that all our learning
algorithms carry over.

An example of stepwise tree automaton inferred by our learning algorithm
is given Fig. 3. This automaton has been inferred from completely annotated
example for query hitchcock, and recognizes that query, at least for documents
of the correct type.

Learning n-Ary Node Selecting Tree Transducers 265

1

2 0 8

3 4 5 6 7

H
H10

W
T

T01
F

5 2

L 7

6 6

1,3,4

L8

F7

T01
5 H10

2

F6

T4 W3

F6

T4 H1

Fig. 3. A stepwise tree automaton inferred by our algorithm RPNI2-NSTT (left); the tree
film-list annotated by a successful run; state 8 is obtained by evaluating the word
L·7·6·6. Bit vectors 00 are ignored, so we write L instead of L00

Okra Bigbook
RPNINSTT RPNI1-NSTT RPNINSTT RPNI1-NSTT

Ex. F-meas. Init. infer. F-meas. Init. infer. F-meas. Init. infer. F-meas. Init. infer.
1 100 % 72 24 97.1 % 624 30 68.4 % 162 37 89.4 % 485 29
2 100 % 82 24 98.3 % 547 28 91.3 % 172 42 98.6 % 877 29
3 100 % 85 24 94.3 % 1045 31 100 % 179 48 100 % 1226 30

Fig. 4. Learning monadic queries by RPNI for either NSTTs [2] or 1-NSTTs as pro-
posed here: F-measure, sizes of initial and inferred automata

7 Application to Web Information Extraction

We have implemented our learning algorithm and started applying it to Web
information extraction tasks. We have added a single heuristic proposed in [6],
which consists in typing states, so that only trees compatible with HTML syntax
are recognized. Textual values and attributes are ignored.

In the case of monadic queries, we compare our algorithm RPNI1-NSTT with
RPNINSTT from [2]. We use the RISE benchmark: www.isi.edu/info-agents/
RISE. Results are averaged over 30 experiments. They are presented in Fig. 4.
Our algorithm achieves a little worse on the Okra benchmark, because this
benchmark contains pages with a single element to be extracted. On Bigbook,
however, RPNI1-NSTT performs better than RPNINSTT. It is interesting to observe
that our technique produce bigger initial automata (because of canonicity, we
have one input tree per tuple), but output automata are roughly of the same
size for the two systems. These experiments show that induction of NSTTs and
1-NSTTs yield similarly good performance while using different representation
schemas.

For n-ary queries, we run RPNIn−NSTT on the benchmarks Bigbook and Okra.
The results are promising. We also use the Datafoot benchmark available at
www.grappa.univ-lille3.fr/∼marty/corpus.html. It contains different doc-
uments with various structures: lists, tables, rotated tables, cross-tables among
others. We learn from only one completely annotated Web document. “Suc-
cess” means that we achieve 100% F-measure on other web pages. Experimental

266 A. Lemay, J. Niehren, and R. Gilleron

Okra Bigbook
Examples F-meas. Init. Infer. F-meas. Init. Infer.
1 90.4 % 469 31 89.9 % 505 33
2 97.6 % 781 31 95.2 % 891 33
3 99.4 % 1171 32 100 % 1342 34

Fig. 5. Results of RPNI2-NSTT on Okra and Bigbook benchmarks on a binary task:
extraction of (name, mail) on Okra and (name, address) on Bigbook

Dataset Succ. ? Description Dataset Succ. ? Description

L0 YES table with tuples in rows L5 YES fake list (sequence of EM)

L1 NO table with tuples in columns L6 NO fake list 2 (sequence of SPAN)

L2 YES 2 column table w/ separator L7 YES list of descriptions (DD/DT tag)

L3 YES nested lists L8 YES description and list of SPAN

L4 YES lists without separator L9 YES list of tables, one element factorized

Fig. 6. RPNI2-NSTT on Web pages with various structures from the Datafoot benchmark

results are given in Fig. 6. They are generally very positive. Limitation arise only
in the case of non regular queries (L1), or when the tree structure alone is not
sufficiently informative (L6). These limitations are to be expected of course.

Future Work

Completely annotated examples are not realistic in practice of information ex-
traction. As in the monadic case, we will have to introduce intelligent tree prun-
ing techniques in order to cut of irrelevant parts of documents. This is needed to
deal with partially annotated documents, in order to reduce the annotation effort
and to improve the quality of inferred queries. It is fundamental to interactive
learning of n-ary queries.

References

1. J. Carme, R. Gilleron, A. Lemay, and J. Niehren. Interactive learning of node
selecting tree transducer. Machine Learning, 2006.

2. J. Carme, A. Lemay, and J. Niehren. Learning node selecting tree transducer from
completely annotated examples. In ICGI, vol. 3264 of LNAI, p. 91–102. 2004.

3. J. Carme, J. Niehren, and M. Tommasi. Querying unranked trees with stepwise
tree automata. In RTA, vol. 3091 of LNCS, p. 105 – 118. 2004.

4. B. Chidlovskii. Wrapping web information providers by transducer induction. In
ECML, vol. 2167 of LNAI, p. 61 – 73, 2001.

5. A. Corb́ı, J. Oncina, and P. Garćıa. Learning regular languages from a complete
sample by error correcting techniques. IEE, p. 4/1–4/7, 1993.

6. C. de la Higuera. Characteristic sets for polynomial grammatical inference. Ma-
chine Learning, 27:125–137, 1997.

Learning n-Ary Node Selecting Tree Transducers 267

7. E.M. Gold. Complexity of automaton identification from given data. Inf. Cont,
37:302–320, 1978.

8. G. Gottlob and C. Koch. Monadic queries over tree-structured data. In 17th
Annual IEEE Symposium on Logic in Computer Science, p. 189–202, 2002.

9. H. Hosoya and B. Pierce. Regular expression pattern matching for XML. Journal
of Functional Programming, 6(13):961–1004, 2003.

10. N. Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial Intel-
ligence, 118(1-2):15–68, 2000.

11. W. Martens and J. Niehren. On the minimization of XML schemas and tree
automata for unranked trees. Journal of Computer and System Science, 2006.

12. Gerome Miklau and Dan Suciu. Containment and equivalence for a fragment of
xpath. Journal of the ACM, 51(1):2–45, 2004.

13. I. Muslea, S. Minton, and C. Knoblock. Active learning with strong and weak
views: a case study on wrapper induction. In IJCAI 2003, p. 415–420, 2003.

14. F. Neven and J. Van Den Bussche. Expressiveness of structured document query
languages based on attribute grammars. Journal of the ACM, 49(1):56–100, 2002.

15. J. Niehren, Laurent Planque, J.M. Talbot, and S. Tison. N-ary queries by tree
automata. In DBPL, vol. 3774 of LNCS, p. 217–231. 2005.

16. J. Oncina and P. Garcia. Inferring regular languages in polynomial update time.
In Pattern Recognition and Image Analysis, p. 49–61, 1992.

17. J. Oncina and P. Garćıa. Inference of recognizable tree sets. Tech. report, Univer-
sidad de Alicante, 1993. DSIC-II/47/93.

18. S. Raeymaekers, M. Bruynooghe, and J. Van den Bussche. Learning (k,l)-
contextual tree languages for information extraction. In ECML, vol. 3720 of LNAI,
p. 305–316, 2005.

19. J. W. Thatcher and J. B. Wright. Generalized finite automata with an application
to a decision problem of second-order logic. Math. System Theory, 2:57–82, 1968.

Learning Multiplicity Tree Automata�,��

Amaury Habrard1 and Jose Oncina2,���

1 LIF – Université de Provence
39, rue Frédéric Joliot Curie – 13453 Marseille cedex 13 – France

amaury.habrard@lif.univ-mrs.fr
2 Dep. de Lenguajes y Sistemas Informático

Universidad de Alicante E-03071 Alicante – Spain
oncina@dlsi.ua.es

Abstract. In this paper, we present a theoretical approach for the prob-
lem of learning multiplicity tree automata. These automata allows one
to define functions which compute a number for each tree. They can be
seen as a strict generalization of stochastic tree automata since they al-
low to define functions over any field K. A multiplicity automaton admits
a support which is a non deterministic automaton. From a grammati-
cal inference point of view, this paper presents a contribution which is
original due to the combination of two important aspects. This is the
first time, as far as we now, that a learning method focuses on non de-
terministic tree automata which computes functions over a field. The
algorithm proposed in this paper stands in Angluin’s exact model where
a learner is allowed to use membership and equivalence queries. We show
that this algorithm is polynomial in time in function of the size of the
representation.

Keywords: multiplicity tree automata, recognizable tree series, learning
from equivalence and membership queries.

1 Introduction

Trees are natural candidates for modeling a hierarchy in data, and for example
they are particularly relevant to model a web page. Recently, due to the potential
applications in the web, a lot of machine learning approaches devoted to trees
have been proposed. From a grammatical inference standpoint, the natural objects
for dealing with tree-structured data are tree automata and tree languages [1,2].
These objects are natural extensions of finite automata on strings, except that the
alphabet is constituted of functional symbols representing labels of tree nodes.
Several learning algorithms has been proposed in the literature for learning tree
automata. Among them we can cite those of Knuutila et al.[3], Garcia et al.[4]

� This work was supported in part by the IST Programme of the European Commu-
nity, under the PASCAL Network of Excellence, IST-2002-506778. This publication
only reflects the authors’ views.

�� This work is part of the ARA marmota french projet.
��� This work was done when the second author was visiting the LIF Marseille.

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 268–280, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Learning Multipicity Tree Automata 269

and Kosala et al.[5] for dealing with an unranked alphabet. Besombes et al. [6]
have studied the learning of regular tree languages using positive examples and
membershipqueries.Carmeet al. [7]haveproposedto learnspecifictreetransducers
for information extraction applications. In the probabilistic case, we can cite
Carrasco et al. [8] and Rico et al. [9]. An important remark has to be made here:
In general, these approaches have focused on learning deterministic models which
may imply the construction of models with a high complexity.

In this paper, we propose to study the learnability of multiplicity tree au-
tomata. Informally, a multiplicity tree automaton defines a function allowing
one to associate to any tree a value in a field K (for example IR or Q). We call
such an automaton a K-multiplicity tree automaton. For example, stochastic tree
automata are then particular cases of multiplicity automata where K = [0, 1].
However, multiplicity automata do not compute stochastic distribution in gen-
eral. For example, you can define multiplicity tree automata that represent a
function which computes the number of occurrences of a given symbol in a tree.
There exists a notion of support for a multiplicity automaton which corresponds
to a non deterministic finite tree automaton. This non determinism characterize
a greater expressiveness than deterministic models. Another crucial point has to
be made here. For defining a multiplicity automaton, we define functions which
compute the value of a subtree when a transition is applied to analyse the sub-
tree. In the case of a multiplicity automaton these functions are multilinear (e.g.
for symbol of arity p we define a p−linear function) and offer a good expres-
siveness for defining the global function computed by a multiplicity automaton.
In fact, the function computed by multiplicity automata are usually referred as
recognizable formal power series on trees [10,11].

Hence, this article combines two main improvements for learning tree au-
tomata. The method we present allows us to learn tree automata with a non
deterministic support that compute functions from a set of trees to a field K.
This is, as far as we know, the first time that a learning method is proposed for
multiplicity tree automata. We think that this research direction can be very
promising due to the potential applications notably in information extraction
from the web.

In the case of strings, some learning methods of multiplicity automata have
already been published: [12]. But, there exists no similar work for trees. The
adaptation to trees is not trivial since the use of multilinear mappings for tran-
sitions are a real improvement in comparison with the string case.

We propose a learning algorithm for multiplicity tree automata which stands
in Angluin’s exact learning model [13]. In this framework, the learning algorithm
is allowed to ask queries to an oracle. The algorithm can ask equivalence queries
to know if he found the correct hypothesis. In the opposite case, a counterex-
ample is returned by the oracle. Membership queries are also available to have
information about one example. The algorithm we present runs in polynomial
time in the size of the target and needs a number of queries also polynomial in
the size of the target. This algorithm exploits a result showing that the number
of states of a minimal multiplicity tree automaton is exactly the rank (which is

270 A. Habrard and J. Oncina

finite) of the Hankel matrix of the power tree series it represents. The under-
lying principle of our approach is to find a hierarchical basis which allows to
generate all the element of the target multiplicity automaton. This basis is then
used for building the tree automaton which is minimal since a basis is a minimal
representation by definition.

The paper is organised as follows. In Section 2, we introduce some background
about recognizable formal tree series and multiplicity automata. The Hankel
Matrix associated to a recognizable series is defined in Section 3. In this section,
we also characterize recognizable tree series in terms of the dimension of their
associated Hankel Matrix. The learning algorithm is presented in Section 4.

2 Background

To begin with, we introduce the alphabet for defining trees and the concept of
free magma which is an equivalent to the free monoid Σ∗ over strings.

Following [10], Let F be a finite set of function symbols, that is a ranked
alphabet F = F0 ∪ F1 ∪ · · · ∪ Fp. The elements in Fp are the function symbols
of arity p. We denote by M(F) the free magma generated by F . The elements
in M(F) are called trees. If t is a tree and t �∈ F0 then there exists an integer
p ≥ 0, a symbol function f ∈ Fp, and trees t1, . . . , tp such that t = f(t1, . . . , tp).

Definition 1. Let K be a commutative field. A formal power tree series (TS)
on M(F) with coefficients in K is a mapping

S : M(F) → K

The set of all TS on M(F) with coefficients in K is denoted by K{{F}}.

2.1 Recognizable Formal Power Tree Series (RTS)

Let V be a finite dimensional vector space over the field K, let dim(V) be the
dimension of V and let x ∈ V , we denote by [x]i the ith coordinate of the vector
x. In the following, the vector V will represent intermediate values used in a non
deterministic analysis of a tree by a multiplicity automaton. Each dimension
of V will correspond to the result associated to a state of the multiplicity tree
automaton.

We denote by L(V p;V) the set of p-linear mappings from V p to V . Let L =
∪p≥0L(V p;V). The vector space V is an L-magma with L(V p;V) as the function
set with arity p. Thus any mapping µ : F → L which maps Fp into L(V p;V)
converts V into an F -magma.

Intuitively, µ will correspond to a transition in the automaton that defines
the next states used during the analysis of a tree.

Definition 2. A linear representation of the free magma M(F) is a couple
(V, µ), where V is a finite dimensional vector space over K, and where µ : F → L
maps Fp into L(V p;V) for each p ≥ 0.

Learning Multipicity Tree Automata 271

Thus for each f ∈ Fp, µ(f) : V p → V is p-linear, and since M(F) is free, µ
extends uniquely to a morphism µ : M(F) → V by the formula

µ(f(t1, . . . , tp)) = µ(f)(µ(t1), . . . , µ(tp)). (1)

Definition 3. let S be a TS on M(F), then S is a recognizable TS (RTS) if
there exists a triple (V, µ, λ), where (V, µ) is a linear representation of M(F),
and λ : V → K is a linear form, such that S(t) = λ(µ(t)) for all t in M(F).

(V, µ, λ) is called a Multiplicity Tree Automaton (MTA) and we say that (V, µ, λ)
is a representation of S. Intuitively, if we try to make the link between these
automata and classical automata in language theory, the states of a multiplicity
automaton correspond to a basis of V . The transitions are defined by µ and the
final states by λ. According to this definition, multiplicity tree automata can be
seen as an extension of bottom-up tree automata.

In order to illustrate these objects, we provide an example introduced in [10].
We consider a recognizable tree series S (i.e. a multiplicity tree automaton)
computing the number of occurrences of a symbol f in a tree.

We define a MTA (V, λ, µ) where V = Q2 and (e1, e2) a canonical basis of V
(i.e. e1 = (1, 0) and e2 = (1, 0)). We define µ and λ such that:

∀g∈Fq , g �= f : µ(g)(ei1 , . . . , eiq)=

⎧⎨⎩e1 if ei1 = · · · = eiq = e1
e2 if there exists exactly one eij s.t. eij =e2
0 otherwise

f ∈ Fp : µ(f)(ei1 , . . . , eip) =

⎧⎨⎩
e1 + e2 if ei1 = · · · = eip = e1
e2 if there exists exactly one eij s.t. eij = e2
0 otherwise

∀a ∈ F0 : µ(a) =

⎧⎨⎩e1 if a �= f
e1 + e2 if a = f ∈ F0
0 otherwise

Finally λ(e1) = 0 and λ(e2) = 1.
It can be shown that µ(t) = e1 + S(t)e2, then λ(µ(t)) = S(t). Let’s see an

example of a computation of S(t). Consider t = f(a, g(f(a, a))) over the ranked
alphabet F0 = {a}, F1 = {g(·)} F2 = {′f(·, ·)′}.

µ(f(a, g(f(a, a)))) = µ(f)(µ(a), µ(g(f(a, a))))
= µ(f)(e1, µ(g)(µ(f(a, a))))
= µ(f)(e1, µ(g)(µ(f)(µ(a), µ(a))))
= µ(f)(e1, µ(g)(µ(f)(e1, e1)))
= µ(f)(e1, µ(g)(e1 + e2))
= µ(f)(e1, µ(g)(e1)) + µ(f)(e1, µ(g)(e2))
= µ(f)(e1, µ(g)(e1)) + µ(f)(e1, µ(g)(e2))
= µ(f)(e1, e1) + µ(f)(e1, e2) = e1 + e2 + e2 = e1 + 2e2

Hence λ(µ(t)) = 2.

272 A. Habrard and J. Oncina

2.2 Contexts

We introduce contexts which allow us to define an equivalent notion of concate-
nation for trees. Let $ be a zero arity function symbol not in F0, a context is an
element of the free-magma M(F ∪ {$}) such that the symbol $ appears exactly
one time. We denote by M($, F) such set.

Let c �= $ be a context, then, there exists two integers p and n (n ≤ p),
a symbol function f ∈ Fp, trees t1, . . . , tp−1 and a context c′ such that c =
f(t1, . . . , tn−1, c

′, tn, . . . , tp−1). Let t be a tree and let c be a context, t · c denotes
the tree obtained by substituting the symbol $ in the context c by the tree t.

The µ function can be extended to work over contexts (µ : M($, F) →
L(V ;V)) recursively on the following way:

µ($)(x) = x

µ(f(t1, . . . , tn−1, c, tn, . . . , tp))(x) = µ(f)(µ(t1), . . . , µ(tn−1), µ(c)(x), µ(tn), . . . , µ(tp))

It is easy to see that µ(t · c) = µ(c)(µ(t)). Let t be a tree we define Suf(t) = {c′ :
∃t′, t′ · c = t}.

2.3 Multilinear Functions

Let V = Kd, let f : V p → V be a p-linear function, such that f(x1, . . . xp) = y
then f can be expressed as:

[y]i =
∑

1≤ji≤d

i=1,...,p

fi,j1,...,jp [x1]j1 . . . [xp]jp (2)

where fi,j1,...,jp are the dp+1 parameters that define the function f . Note that in
order to fully specify an MTA (V, µ, λ) (V = Kr), we need:

– d parameters to specify λ
–
∑

i:|Fi|�=0 |Fi|di+1 parameters to specify the multilinear functions.

Let (V, µ, λ) a MTA, as λ : V → K is a linear function it can be represented
as a vector (λ = (λ1, . . . , λd)).

In the same way, when applied over contexts, µ gives a linear function over
vectors in V (µ : M($, F) → L(V ;V)), this linear function can be represented
as a d × d matrix. For example, Using this notation, the equation λ(µ(t · c)) =
λ(µ(c)(µ(t))) can be written clearly as µ(t · c)λ = µ(t)µ(c)λ.

3 Hankel Matrix and Recognizable Tree Series

3.1 The Hankel Matrix

Informally, the Hankel Matrix of a TS S is an infinite matrix that represents
all the possible values for S. The rows of the matrix are indexed by trees and

Learning Multipicity Tree Automata 273

the columns by contexts. A value in this matrix corresponds to the value in the
series S for the tree built by the concatenation of the tree on the row and the
context on the column. An example is drawn on Figure 1.

Definition 4. The Hankel matrix (HM) of a TS S ∈ K{{F}} (HM(S)) is
an infinite matrix H : M(F) ×M($, F) → K such that Ht,c = S(t · c) ∀t ∈
M(F), c ∈M($, F).

$ f($, a) f($, b) f(a, $) · · ·
a S(a) S(f(a, a)) S(f(a, b)) S(f(a, a)) · · ·
b S(b) S(f(b, a)) S(f(b, b)) S(f(a, b)) · · ·
f(a, a) S(f(a, a)) S(f(f(a, a), a)) S(f(f(a, a), b)) S(f(a, f(a, a))) · · ·
...

...
...

...
...

. . .

Fig. 1. An example of the Hankel Matrix of a tree series S

Let t be a tree, a row of the Hankel Matrix is defined by Ht, then Ht(c) = Ht,c.

Lemma 1. Let (V, µ, λ) an MTA of a TS S ∈ K{{F}}, let H the Hankel Matrix
of S, then rank(H) ≤ dim(V).

Proof. Let d = dim(V), define a ∞× d matrix R such that R(t, i) = [µ(t)]i and
define a d ×∞ matrix C such that C(i, c) = [µ(c)λ]i. Clearly, H = RC, but as
rank(C) ≤ d and rank(R) ≤ d, then rank(H) ≤ d. �

3.2 Recognizable Tree Series

We are going to show that a TS is recognizable if an only if its HM has a finite
rank. For this purpose, we will introduce the notion of hierarchical generator
and show that this generator allows us to generate all the entries of the HM.

Definition 5. Let H be an HM, we say that B = {e1, . . . , ed} is a hierarchical
generator (HG) in H if

1. each ei ∈ B is linearly independent (LI) of the rest (�αj ∈ K : Hei =∑
1≤j≤d, i�=j αiHej)

2. ∀ei = f(ei1 , . . . , eip) ∈ B then eij ∈ B, j = 1, . . . , p.
3. There is no tree t = f(ei1 , . . . , eip), t �∈ B, eij ∈ B, j = 1, . . . , d, such that t

is LI of B.

Given any HM H, note that the previous definition does not imply that any HG
for H should be a basis for the HM. A HG can be easily extracted from an HM
following Algorithm 1 HG. In order to eliminate any ambiguity, we should fix an
arbitrary order on trees, any order can be chosen.

Algorithm 2 describes the algorithm MTAB to extract an MTA from an HM.
Although in the present version it works on infinite HM (then it is not really an
algorithm) we are going to use it later with finite size portions of the HM.

274 A. Habrard and J. Oncina

Algorithm HG(H)

input: Hankel matrix H
output: a hierarchical generator B

1. initialize B = {}, i = 1
2. search for the smaller tree ei = f(ei1 , . . . , eip) such that eij ∈ B, j = 1, . . . , p and

Hei is not a linear combination of {He1 , . . . , Hei−1}.
3. if not found then halt.

if found then add it to B and increment i.
4. go to 2

Algo. 1. Algorithm HG to obtain a Hierarchical Generator from a Hankel Matrix

Algorithm MTAB(H)

input: a Hankel matrix H
output: a representation (V, µ, λ)

1. Obtain a hierarchical generator e1, . . . , ed from H .
2. Set dim(V) = d.
3. Set λi = H(ei), i = 1, . . . , d
4. ∀p,∀f ∈ Fp, ∀i1, . . . , ip, 1 ≤ ij ≤ d, let αi such that: Hf(ei1 ,...,eip) =

∑r
i=1 αiHei .

Then fix fi,i1,...,ip = αi.

Algo. 2. Algorithm MTAB that builds representation from a Hankel Matrix

Now we present a series of lemma necessary to show that the multiplicity
automaton extracted by algorithm MTAB represents the TS defined by its HM. Let
δij representing a function that returns always 0 except when i = j it returns 1.

Lemma 2. Let H be the Hankel matrix of a RTS S ∈ {{K}}. Let (V, µ, λ) =
MTAB(H), then

[µ(ei)]j = δij .

Proof. Note that as ei are elements of the generator and let ei = f(ei1 , . . . , eip),
using the algorithm, fk,i1,...,ip = δik.

We prove the result by induction in the height of the trees in the generator.
Let ei ∈ F0, then p = 0 and fk = δik, in such case, [µ(ei)]j = fj = δij as required.
Now let ei = f(ei1 , . . . , eip) and suppose, by induction, that [µ(eij)]k = δijk, j =
1, . . . , p. Then,

[µ(ei)]j = [µ(f(ei1 , . . . , eip))]j
= [µ(f)(µ(ei1), . . . , µ(eip))]j by Equation 1

=
∑
jl

fj,j1,...,jp [µ(ei1)]j1 . . . [µ(eip)]jp µ(f) is a multilinear function

=
∑
jl

fj,j1,...,jpδi1j1 . . . δipjp induction step

Learning Multipicity Tree Automata 275

= fj,i1,...,ip = δij by Algorithm MTAB �
Note that as a consequence of the Lemma 2, µ(ei)λ = H(ei), i = 1, . . . , r.

Lemma 3. Let H be the HM of a RTS S ∈ {{K}}. Let (V, µ, λ) = MTAB(H).
Let B = {e1, . . . , ed} = HG(H). then,

µ(f(ej1 , . . . , ejp)) =
r∑

j=1

fj,j1,...,jpµ(ej). (3)

Proof.[
µ(f(ej1 , . . . , ejp))

]
i
=
[
(µf)(µ(ej1), . . . µ(ejp))

]
i

by Equation 1

=
∑

1≤ki≤p

fi,k1,...,kp [µ(ej1)k1] . . . [µ(ejp)kp] by Equation 2

=
∑

1≤ki≤p

fi,k1,...,kpδj1,k1 . . . δjp,kp by Lemma 2

= fi,j1,...,jp

=

[
r∑

j=1

fj,j1,...,jpδij

]
i

=

[
r∑

j=1

fj,j1,...,jpµ(ej)

]
i

by Lemma 2 ��

Lemma 4. Let H be the HM of a RTS S ∈ {{K}}. Let (V, µ, λ) = MTAB(H).
Let B = {e1, . . . , ed} = HG(H). Then, for all context c

Hei(c) = µ(ei)µ(c)λ.

Proof. By induction, the base case (c = $) is evident since µ(ei)λ = Hei($). Let
us show that Hf(ej1 ,...,ejp)(c) = µ(f(ej1 , . . . , ejp) · c)λ.

Hf(ej1 ,...,ejp)(c) =
d∑

j=1

fj,j1,...,jpHej (c) by algorithm MTAB

=
d∑

j=1

fj,j1,...,jpµ(ej)µ(c)λ by induction step

= µ(f(ej1 , . . . , ejp))µ(c)λ by Lemma 3
= µ(f(ej1 , . . . , ejp) · c)λ �

Theorem 1. Let H be the HM of a RTS S ∈ {{K}}. Let (V, µ, λ) = MTAB(H).
Then, S(t) = µ(t)λ.

Proof. Let B = {e1, . . . , ed} = HG(H). Note that for f ∈ F0

Hf (c) =
d∑

i=1

fiHei(c) by Algorithm MTAB

=
d∑

i=1

fiµ(ei)µ(c)λ by Lemma 4

276 A. Habrard and J. Oncina

=
d∑

i=1

fi

d∑
j=1

[µ(ei)]j [µ(c)λ]j

=
d∑

i=1

fi

d∑
j=1

δij [µ(c)λ]j by Lemma 2

=
d∑

i=1

fi [µ(c)λ]i

=
d∑

i=1

µ(f)i [µ(c)λ]i by Equation 2

= µ(f)µ(c)λ = µ(f · c)λ
And we have what we wanted because for any tree t, it exists an f ∈ F0 and a
context c such that t = a · c . Then, S(t) = Hf (c) = µ(f · c)λ = µ(t)λ. �
Corollary 1. Let H be the Hankel Matrix of a RTS S ∈ {{K}}. Then, the
MTA (V, µ, λ) that represents S with a smaller dim(V) satisfies that rank(H) =
dim(V).

Proof. By Lemma 1 we have that rank(H) ≤ dim(V), and by Theorem 1 we
have shown that, using algorithm MTAB, we can build a representation (V, µ, λ)
consistent with H such that dim(V) ≤ rank(H). �
Corollary 2. Let H be the HM of a RTS S ∈ {{K}}, HG(H) is a basis, i.e.
HG(H) can generate all the Hankel Matrix H.

Corollary 3. Let H be the Hankel Matrix of a RTS S ∈ {{K}}. The MTA
(V, µ, λ) = MTAB(H) is the representation of S that minimizes dim(V).

4 Inference Algorithm

The learning model we use is the exact learning model of Angluin [13]. Let f be
a target function. At each step of the inference procedure, the learning algorithm
can propose an hypothesis function h by making an equivalence query (EQ) to an
oracle. This oracle answers YES if h is equivalent to f on all input assignments.
In this case the target is identified, the learning algorithm succeeds and halts.
Otherwise, the answer to the equivalence query is NO and the algorithm receives
a counterexample, that is an assignment z such that f(z) �= h(z). Moreover, the
learning algorithm is also allowed to query an oracle for the value of the function
f on a particular assignment z by making a membership query (MQ) on z. The
response to such a query is the value f(z). We say that the learner identifies
a class of functions F , if, for every function f ∈ F , the learner outputs an
hypothesis h that is equivalent to f and does so in polynomial time in the “size”
of a shortest representation of f and the length of the longest counterexample.

To begin with, we define an experimental table which corresponds to a sub-
matrix of the Hankel Matrix of a the target series S.

Learning Multipicity Tree Automata 277

Algorithm close(M)

input: an ET M = (T, C, Ĥ)
output: a closed ET M

1. Let B ← HG(M)
2. if ∃p,∃f ∈ Fp, ∃ei1 , . . . , eip ∈ B

f(ei1 , . . . , eip) �∈ T
then T ← T ∪ f(ei1 , . . . , eip)
else halt

3. go to 1

Algo. 3. Algorithm close allowing to
close a table

Algorithm consistent(M)

input: an experiment table
M = (T, C, Ĥ)

output: a consistent table M

1. M ← close(M)
2. if exists t ∈ T, c ∈ C : Ĥt,c �= µ(t · c)λ

then C ← C ∪ Suf(t · c)
else halt

3. make membership queries to fill Ĥ
4. go to 1

Algo. 4. Algorithm consistent allowing
to keep a table consistent

Definition 6. An experiment table (ET) is a 3-tuple (T,C, Ĥ) such that: T is
a set of trees, C is a set of contexts, Ĥ : T × C → K a submatrix of an HM.

In the following, we will maintain this table filled such that Ĥt,c = S(t · c).
Next definition will allows us to apply algorithm MTAB to any Experiment

Table.

Definition 7. Let M = (T,C, Ĥ) be an ET and let B = HG(Ĥ). M is closed if
∀p, ∀f ∈ Fp, ∀ei1 , . . . , eip ∈ B, f(ei1 , . . . , eip) ∈ T

Algorithm 3 close is able to close any ET. Note that any call to close will
include all the symbols in F0.

The following definition will ensure that any extracted MTA by MTAB is con-
sistent with the data in the Experiment Table.

Definition 8. Let M = (T,C, Ĥ) be a closed ET, let (V, µ, λ) = MTAB(M). An
ET is consistent if ∀t ∈ T, ∀c ∈ C, µ(t · c)λ = Ĥt,c.

Definition 9. A set of contexts C is suffix complete if ∀c ∈ C, ∀c1, c2 : c1 ·c2 = c
then c2 ∈ C.

Lemma 5. Let M = (T,C, Ĥ) be a closed ET such that C is suffix complete
and let (V, µ, λ) = MTAB(M). For any tree t = f · c : f ∈ F0, c ∈ C, then
µ(f · c)λ = Ĥf,c.

Proof. Sketch. A similar technique used in the proof of Theorem 1 allows to prove
the result. Note that since some proofs of lemmas needed to show Theorem 1
use induction over trees and contexts, C should be suffix complete in order to
guarantee its correctness. �
Lemma 6. Let M = (C, T, Ĥ) be a closed table with C suffix complete and let
(V, µ, λ) = MTAB(M). Consider t ∈ T and c ∈ C such that µ(t · c)λ �= Ĥt,c, we
can decompose t ·c = f ·c′ where f ∈ F0. Let M ′ = (T ′, C′, Ĥ ′) = closed((T,C∪
Suf(f · c′), Ĥ)); then µ′(f · c′)λ = Ĥ ′

f,c′ . Moreover, rank(Ĥ ′) > rank(Ĥ).

278 A. Habrard and J. Oncina

Algorithm LearnMTA(EQ, MS)

input: an equivalence oracle EQ
input: a membership oracle MS
output: a MTA A

1. Initialize: T = {}, C = {}, A = an empty MTA, M = (T, C, Ĥ) an empty ET.
2. Ask an equivalence query EQ(A).

If the answer is YES then halt with output A.
Otherwise the answer is NO and z is a counterexample.

3. Add Suf(z) to C.
4. M ← consistent(M)
5. A ← MTAB(M)
6. go to 2

Algo. 5. inference algorithm LearnMTA

Proof. Sketch. A direct application of Lemma 5 ensures that µ′(f · c′)λ = Ĥ ′
f,c′ .

On the other hand, all the trees of the HG(M) are linearly independent. By
adding new contexts in C, those trees remain linearly independent and then they
will be a part of HG.

Let A = MTAB(M) and A′ = MTAB(M ′). Clearly all the trees in HG(M) are also
in HG(M ′) but new trees should appear in HG(M ′), otherwise, by construction,
A = A′ and this is impossible because µ(f · c′)λ �= µ′(f · c′)λ.

Thus, rank(Ĥ ′) > rank(Ĥ). �

Theorem 2. Let MQ and EQ respectively membership and equivalence oracles
of a RTS S with an associated Hankel matrix H. Let r=rank(H) LearnMTA(MQ,
EQ) returns the minimal representation compatible with the target in polyno-
mial time making at most r equivalence queries and |A|m membership queries,
where m is the length of the longest counterexample returned by the Equivalence
Queries.

Proof. In the same way as Lemma 6, it can be shown that the counterexample
acts in a similar way as when a non consistency is found in the ET. In any case,
after the consistent call (after step 4 of LearnMTA) a new MTA compatible
with all the data in the ET is obtained. As shown in Lemma 6, the hierarchical
generator HG of this MTA has strictly more trees than the previous one. As the
number of trees in HG can not be bigger than the rank of the HM for the target
MTA, then the process should finish and gives the correct hypothesis.

Now, looking at the time complexity, since all the steps of the algorithm can
be done in polynomial time with respect to the size of the target MTA (linear
independence of a set of vector, Algorithms HG, MTAB, close and consistent),
it is evident that algorithm LearnMTA runs in polynomial time.

With respect to the queries, it is easy to see that the number of Equivalence
Queries can no be larger than r (at most one for each tree added to HG).

Moreover, note that the all the results of the membership queries are stored
in the equivalence table or were used to calculate the λ vector (of size r). It is

Learning Multipicity Tree Automata 279

easy to see that |T | =
∑

i:Fi �=0 |Fi|ri and that |C| ≤ r.m since for a tree t we
can define no more than |t| contexts. Reminding that |A| = ∑

i:Fi �=0 |Fi|ri+1 + r
then, the number of Membership Queries is lower that |T ||C|+ r ≤ |A|m. �

5 Conclusion

In this paper we proposed a learning algorithm for identifying multiplicity tree
automata that define functions associating a number to any tree. We showed that
the size of a minimal multiplicity tree automaton is function of the finite rank
of its Hankel matrix. Our algorithm is able to identify the minimal automata in
polynomial time in the exact learning model of Angluin. The originality of our
approach is to find a hierarchical basis that permits to generate all the elements
of the target series.

We think that multiplicity tree automata can offer a wide range of poten-
tial applications, especially for extraction information from the web. We showed
that this class of automata is identifiable and our perspective is to find efficient
approaches in other learning paradigms. We have begin to study a possible ex-
tension of the approach presented in [14,15], which allows to learn stochastic
languages on strings represented by multiplicity automata, to trees.

References

1. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
2. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,

Tommasi, M.: Tree Automata Techniques and Applications . Available from:
http://www.grappa.univ-lille3.fr/tata (1997)

3. Knuutila, T., Steinby, M.: Inference of tree languages from a finite sample: an
algebraic approach. Theoretical Computer Science 129(2) (1994) 337–367

4. Garcia, P., Oncina, J.: Inference of recognizable tree sets. Research Report DSIC
- II/47/93, Universidad Politécnica de Valencia (1993)

5. Kosala, R., Bruynooghe, M., den Bussche, J.V., Blockeel, H.: Information extrac-
tion from web documents based on local unranked tree automaton inference. In:
Proceedings of IJCAI 2003. (2003) 403–408

6. Besombes, J., Marion, J.: Learning tree languages from positive examples and
membership queries. In: Proceedings of ALT’04, Springer (2004) 440–453

7. Carme, J., Gilleron, R., Lemay, A., Niehren, J.: Interactive learning of node se-
lecting tree transducer. Machine Learning (2006) to appear.

8. Carrasco, R., Oncina, J., Calera-Rubio, J.: Stochastic inference of regular tree
languages. Machine Learning 44(1/2) (2001) 185–197

9. Rico-Juan, J., Calera, J., Carrasco, R.: Probabilistic k-testable tree-languages. In:
Proceedings of ICGI 2000. Volume 1891 of LNCS., Springer (2000) 221–228

10. Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theoretical
Computer Science 18 (1982) 115–148

11. Esik, Z., Kuich, W.: Formal tree series. Journal of Automata Languages and
Combinatorics 8(2) (2003) 219–285

12. Beimel, A., Bergadano, F., Bshouty, N., Kushilevitz, E., Varricchio, S.: Learning
functions represented as multiplicity automata. Journal of the ACM 47(3) (2000)
506–530

280 A. Habrard and J. Oncina

13. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2) (1987) 87–106

14. Denis, F., Esposito, Y., Habrard, A.: Learning rational stochastic languages. In:
Proceedings of COLT’06. (2006) to appear.

15. Denis, F., Esposito, Y.: Rational stochastic language. Technical report, LIF -
Université de Provence (2006)

Learning DFA from Correction
and Equivalence Queries�

Leonor Becerra-Bonache1, Adrian Horia Dediu1,2, and Cristina Tı̂rnăucă1

1 Research Group on Mathematical Linguistics
Rovira i Virgili University

Pl. Imperial Tárraco 1, 43005 Tarragona, Spain
2 Faculty of Engineering in Foreign Languages

University “Politehnica” of Bucharest
Splaiul Unirii 313, 060042 Bucharest, Romania

{leonor.becerra, adrianhoria.dediu, cristina.bibire}@estudiants.urv.es
http://www.grlmc.com

Abstract. In active learning, membership queries and equivalence que-
ries have established themselves as the standard combination to be used.
However, they are quite “unnatural” for real learning environments (mem-
bership queries are oversimplified and equivalence queries do not have a
correspondence in a real life setting). Based on several linguistic argu-
ments that support the presence of corrections in children’s language ac-
quisition, we propose another kind of query called correction query. We
provide an algorithm that learns DFA using correction and equivalence
queries in polynomial time. Despite the fact that the worst case complexity
of our algorithm is not better than Angluin’s algorithm, we show through
a large number of experiments that the average number of queries is con-
siderably reduced by using correction queries.

Keywords: Active learning, learning DFA, membership query, equiva-
lence query, correction query.

1 Introduction

A general theory regarding human learning mechanisms that underlie natural
language acquisition is still missing. Several questions arise from the beginning,
among others: how are children able to learn languages so fluently and effort-
lessly, without explicit instruction? To what kind of data are they exposed to?

There is no doubt that children learn a language in part by hearing sentences
of that language. However, there is an aspect of the child’s linguistic environment
which has been subject of a long debate and which is still an important research
topic for both linguists and formal language theoreticians. While it is accepted
that positive data are available to the child, the availability of another kind of
data has been widely argued.
� This work was possible thanks to the FPU Fellowships AP2001-1880, AP2004-6968

from the Spanish Ministry of Education and Science and to the grant 2002CAJAL-
BURV4, provided by the University Rovira i Virgili.

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 281–292, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

282 L. Becerra-Bonache, A.H. Dediu, and C. T̂ırnăucă

Taking into account that children do not receive only passive information and
they interact with their environment, we consider that active learning might be
useful to model several aspects of children’s language acquisition.

In active learning, the learner is allowed to ask queries to the teacher. Member-
ship queries (MQs) and equivalence queries (EQs) have established themselves
as the standard combination to be used. They were introduced by Angluin in
[1]. She proved that DFA can be inferred in polynomial time from this type of
queries (this algorithm is known as L∗). However, they are quite “unnatural” for
real learning environments. For instance, when the learner asks about a word in
the language, the teacher’s answer yes/no is oversimplified.

As there is a growing evidence that corrections are available to children [2,3], we
believe that they can play a complementary role in language learning, although
the main source of information received during the learning process is positive
data. Therefore, we propose another kind of query called correction query (CQ).

What should a good correction be like? It could be defined by some function
that given any string associates some string in the language. This function might
be deterministic or stochastic. In order to simplify the problem, we are going to
consider in this paper a deterministic correction, which consists of the smallest
string (in lex-length order) that attached to the end of the requested string will
give us a string in the language.

Considering the simplicity of DFA and their adequacy for various applications
of natural language processing (although regular languages have limited expres-
siveness), we consider that a starting point could be to apply corrections to
learn DFA. We design an algorithm called Learning from Corrections Algorithm
(LCA), which is able to infer a minimal complete DFA using CQs and EQs.

Although in the worst case our algorithm works as Angluin’s algorithm, we
show that in general LCA performs better. Therefore, we can see not only that
it is possible to learn DFA from corrections, but also that the number of queries
between the learner and the teacher until the discovering of the language is
reduced considerably. Moreover, there are some classes of languages for which
the number of EQs is reduced to only one (in this case, the conjectured DFA is
equivalent to the target one) and therefore, we can consider that EQs are not
necessary at all for these classes.

This paper is organized as follows. Formal preliminaries and several basic
remarks are presented in Section 2. In Section 3 we describe the observation table
as the main data structure of the algorithm, we give a proof for the correctness
of our algorithm and we present the algorithm along with the time analysis.
Section 4 contains a running example and Section 5 presents some comparative
results with Angluin’s algorithm, both theoretical and experimental. In Section
6 we present several concluding remarks.

2 Preliminaries

In this paper we follow standard definitions and notations in formal language
theory. Supplementary information for this domain can be found in [4,5].

Learning DFA from Correction and Equivalence Queries 283

Let Σ be a finite set of symbols called the alphabet and let Σ∗ be the set of
strings over Σ. A language L over Σ is a subset of Σ∗. The elements of L are
called words or strings. Let α, β, γ be strings in Σ∗ and |α| be the length of the
string α. λ is a special string called the empty string and has length 0. Given a
string α = βγ, β is the prefix of α and γ is the suffix of α.

A deterministic finite automata (DFA) is a 5-tuple A = (Q,Σ, δ, q0, F) where
Q is the (finite) set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states and δ is a partial function that maps Q×Σ to Q.
This function can be extended to words by writing δ(q, λ) = q and δ(q, s · a) =
δ(δ(q, s), a), ∀q ∈ Q, ∀s ∈ Σ∗, ∀a ∈ Σ. A string s is accepted by A if δ(q0, s) ∈ F .
The set of strings accepted by A is denoted by L(A) and is called a regular
language.

We say that a DFA A = (Q,Σ, δ, q0, F) is complete if for all q in Q and a in
Σ, δ(q, a) is defined (that is δ is a total function). For any DFA A, there exists a
minimum state DFA A′, such that L(A) = L(A′). Without loss of generality, we
assume that the target DFA which is to be learned is a minimal complete DFA.

A state q is called a live state if there exist strings α and β such that δ(q0, α) =
q and δ(q, β) ∈ F . The set of all the live states is called the liveSet(A). A state
that is not in the liveSet is called a dead state. The set of all dead states is called
the deadSet(A). Note that for a minimal DFA A, deadSet(A) has at most one
element.

For a string α ∈ Σ∗, we denote the left quotient of L by α by Lα = {β|αβ ∈ L}
= {β|δ(q0, αβ) ∈ F}, where A = (Q,Σ, qo, δ, F) is any automaton accepting the
language L.

In a standard query learning algorithm, the learner interacts with a teacher
that knows the target language (a regular language L over a known alphabet)
and is assumed to answer correctly. The goal of the algorithm is to come up with
a DFA accepting L. The teacher has to answer two types of queries: MQs - the
learner asks if a string α is in L, and the teacher answers ”yes” or ”no”; EQs
- the learner makes a conjecture of the DFA; the teacher answers ”yes” if the
learner automaton is isomorphic with the target automaton and ”no” otherwise;
if the answer is ”no” a string α in the symmetric difference of L(A) and L is
returned (the counter example). See [1,6] for detailed explanations of the model.

We are going to propose another type of query called CQ. It is an extension
of the MQ; the difference consists in the type of answer that we receive from
the teacher. Instead of a yes/no answer, a string called the correctingString is
returned to the learner.

The correctingString of α with respect to L is the minimum word (in lex-
length order, denoted by #) of the set Lα. In the case that Lα = ∅ we set
the correctingString of α w.r.t. L to ϕ, where ϕ is a symbol which does not
belong to the alphabet Σ. With these considerations, for the sake of simplicity
in notations, we use C instead of correctingString. Hence, C is a function from
Σ∗ to Σ∗ ∪ ϕ. Note that C(α) = λ if and only if α ∈ L.

Remark 1. If α, β, γ are strings in Σ∗ such that C(α) = β · γ then C(α · β) = γ.

Remark 2. For any α, β ∈ Σ∗, if Lα = ∅ then Lα·β = ∅.

284 L. Becerra-Bonache, A.H. Dediu, and C. T̂ırnăucă

Remark 3. For any α ∈ Σ∗, the following results hold:

1. If C(α) �= ϕ then C(α · C(α)) = λ.
2. If C(α) = ϕ then ∀β ∈ Σ∗, C(αβ) = ϕ.

3 Learning from Corrections Algorithm (LCA)

We describe the learning algorithm LCA and show that it efficiently learns an
initially unknown regular set from an adequate teacher. Let L be the unknown
regular set and let Σ be the alphabet of L.

3.1 Observation Tables

The information we have at each step of the algorithm is organized into an
observation table consisting of: a nonempty finite prefix-closed set S of strings, a
nonempty finite suffix-closed set E of strings, and the restriction of the mapping
C to the set ((S ∪ SΣ) · E). The observation table will be denoted (S,E,C).

An observation table can be visualized as a two-dimensional array with rows
labelled by elements of S ∪ SΣ and columns labelled by elements of E with the
entry for row s and column e equal to C(s ·e). If s is an element of (S∪SΣ) then
row(s) denotes the finite function from E to Σ∗ ∪ {ϕ} defined by row(s)(e) =
C(s · e). By rows(S) we understand the set {row(s) | s ∈ S}.

The algorithm LCA uses the observation table to build a DFA. Rows la-
belled by the elements of S are the candidates for states of the automaton being
constructed, and columns labelled by the elements of E correspond to distin-
guishing experiments for these states. Rows labelled by elements of SΣ are used
to construct the transition function.

Closed, consistent observation tables. An observation table is called closed if
for every s in (SΣ − S) there exists an s′ in S such that row(s) = row(s′). An
observation table is called consistent if for any s1, s2 in S such that row(s1) =
row(s2), we have row(s1 · a) = row(s2 · a), ∀a ∈ Σ.

If (S,E,C) is a closed, consistent observation table, we define a corresponding
automaton A(S,E,C) = (Q,Σ, δ, q0, F), where Q, q0, F and δ are defined as
follows:
Q = {row(s) | s ∈ S}
q0 = row(λ)
F = {row(s) | s ∈ S and C(s) = λ}
δ(row(s), a) = row(s · a)

One can see that this automaton is well defined and that deadSet(A) =
{row(s) | s ∈ S and C(s) = ϕ} (from Remark 3 we know that C(s) = ϕ ⇒
C(s · a) = ϕ, ∀a ∈ Σ).

Definition 1. Assume that (S,E,C) is a closed and consistent observation ta-
ble. We say that the automaton A = (Q,Σ, δ, q0, F) is consistent with the func-
tion C if for every s in S ∪ SΣ and e in E, the following statements hold:

Learning DFA from Correction and Equivalence Queries 285

1. C(s · e) = ϕ⇔ δ(q0, s · e) ∈ deadSet(A),
2. C(s · e) = t⇔ (δ(q0, s · e · t) ∈ F and ∀t′ ∈ Σ∗ (δ(q0, s · e · t′) ∈ F ⇒ t # t′)).

The important fact about the automaton A(S,E,C) is the following.

Theorem 1. If (S,E,C) is a closed and consistent observation table, then the
automaton A(S,E,C) is consistent with the finite function C. Any other automa-
ton consistent with C but inequivalent to A(S,E,C) must have more states.

The theorem follows from the following sequence of straightforward lemmas.

Lemma 1. Assume that (S,E,C) is a closed and consistent observation table.
For the automaton A(S,E,C) and for every s in S ∪ SΣ, δ(q0, s) = row(s).

Lemma 2. If (S,E,C) is a closed and consistent observation table and the au-
tomaton A(S,E,C) is (Q,Σ, δ, q0, F), then for each s in S ∪ SΣ and all e ∈ E,
there exists s′ in S such that δ(q0, s · e) = δ(q0, s′) and C(s · e) = C(s′).

Lemma 3. Assume that (S,E,C) is a closed and consistent observation table.
Then the automaton A = A(S,E,C) is consistent with the function C.

Lemma 4. Assume that (S,E,C) is a closed, consistent observation table. Sup-
pose the automaton A(S,E,C) has n states. If A′ = (Q′, Σ, δ′, q′0, F

′) is any
automaton consistent with C that has n or fewer states, then A′ is isomorphic
with A(S,E,C).

Now, the proof of Theorem 1 follows, since Lemma 3 shows that A(S,E,C)
is consistent with C, and Lemma 4 shows that any other automaton consistent
with C is either isomorphic to A(S,E,C) or contains at least one more state.
Thus, A(S,E,C) is the unique smallest automaton consistent with C.

3.2 The Learner LCA

The learner algorithm uses as its main data structure the observation table that
we described in the previous subsection. Initially S = E = λ. To determine C,
LCA asks CQs for λ and each a in Σ. This initial observation table may or may
not be closed and consistent.

The main loop of LCA tests the current observation table (S,E,C) in order
to see if it is closed and consistent. If (S,E,C) is not closed, then LCA adds
a new string to S and updates the table asking CQs for missing elements. If
(S,E,C) is not consistent, then LCA adds a new string to E and updates the
table using CQs for missing elements.

When the learner’s automaton is closed and consistent the learner asks an
EQ. The teacher’s answers can be ”yes” (in which case the algorithm terminates
with the output A(S,E,C)) or ”no”(in which case a counterexample is provided,
all its prefixes are added to S and the table is updated using CQs).

Correctness of LCA. If the teacher answers always correctly then if LCA ever
terminates its output is clearly the target one. Recall that the teacher’s last
answer to an EQ before halting is yes.

286 L. Becerra-Bonache, A.H. Dediu, and C. T̂ırnăucă

Algorithm 1. Learning from Corrections algorithm
1: Initialize S and E with λ
2: Ask correction queries for λ and each a ∈ Σ
3: Construct the initial observation table (S, E,C)
4: repeat
5: while (S, E, C) is not closed or not consistent do
6: if (S, E,C) is not closed then
7: find s in S and a in Σ such that row(s · a) /∈ rows(S)
8: add s · a to S
9: extend C to (S ∪ SΣ)E using CQs

10: end if
11: if (S, E,C) is not consistent then
12: find s1,s2 ∈ S, a ∈ Σ and e ∈ E such that row(s1) = row(s2) and C(s1 · a ·

e) �= C(s2 · a · e)
13: add a · e to E
14: extend C to (S ∪ SΣ)E using CQs
15: end if
16: end while
17: Construct the conjecture A(S,E, C)
18: if the teacher replies with a counter example s then
19: add s and all its prefixes to S;
20: extend C to (S ∪ SΣ)E using CQs;
21: end if
22: until the teacher replies yes to the conjecture
23: Halt and output A(S, E, C)

Termination of LCA. To see that LCA terminates, notice that the injectivity
of function φ defined on Lemma 4 implies that for any closed and consistent
observation table (S,E,C), if n denotes the number of different values of row(s)
for s in S then any automaton consistent with C must have at least n states.
The proof follows the lines of Angluin’s paper [1].

Time analysis of LCA. The time complexity of LCA is polynomial in n and
m (n is the number of states in the minimum automaton accepting L and m
is the maximum length of any counterexample string presented by the teacher).
For the details of the proof, the reader is referred to [1].

4 Running Example

In order to simplify the automata description we introduced the linear transition
table that is a normal transition table with all the lines written on the same row.

We explain how our algorithm runs by tracing the evolution of the observation
table for a language over the alphabet Σ = {0, 1}, L = (0 + 110)+. We can see
a minimal automaton associated with the mentioned language in Figure 1.

We observe that the linear transition table for this automaton is (q1, q2, q1,
q2, q3, q4, q3, q3, q1, q3) and the set of final states is F = {q1}.

Learning DFA from Correction and Equivalence Queries 287

Fig. 1. Minimal automaton associated with the language L = (0 + 110)+

Initially the learner starts with S = {λ}, E = {λ} and the observation table
described as Table 1.

Table 1.

T1 λ

λ 0
0 λ(λ,λ)

1 10

We can observe that the information for the string 0 and the experiment λ is
known from the corresponding query for λ, since C(λ) = 0 implies C(0) = λ.

The table is not closed because row(0) and row(1) do not belong to rows(S).
We add the strings 0 and 1 to S and we extend the table using CQs. The
observation table is still not closed since row(10) does not belong to rows(S).
The algorithm adds the string 10 to S. We can notice that the corrections for
the strings 100 and 101 are already known, since C(10) = ϕ implies C(100) =
C(101) = ϕ. The current observation table is represented in Table 2.

Table 2.

T2 λ State
λ 0 q0

0 λ(λ,λ) q1 ∈ F
1 10 q2

10 ϕ q3

00 λ q1 ∈ F
01 10 q2

11 0(1,λ) q0

100 ϕ(10,λ) q3

101 ϕ(10,λ) q3

In this moment, we can see that the observation table is closed and consis-
tent and it follows an EQ. The conjectured automaton has the linear transition

288 L. Becerra-Bonache, A.H. Dediu, and C. T̂ırnăucă

table (q1, q2, q1, q2, q3, q0, q3, q3) and the set of final states F = {q1} and the
representation given in Figure 2.

Fig. 2. The automaton associated with Table 2

This is not the target automaton and hence the teacher answers with a counter
example. Suppose that the counter example returned is the string 11110. The
algorithm adds this string and all its prefixes to S and updates the table. The
current observation table is not consistent, since row(λ) equals row(11) but
C(λ · 1 · λ) �= C(11 · 1 · λ). The algorithm adds the string 1 to E.

As we can see, the current observation table (Table 3) is closed and consis-
tent and the conjectured automaton is isomorphic with the target one, so the
teacher’s answer to the EQ is positive. We notice that during the whole algo-
rithm’s execution, the learner asked only two EQs (the last one was successful)
and eight CQs.

Table 3.

T3 λ 1 State
λ 0 10(1,λ) q0

0 λ(λ,λ) 10(01,λ) q1 ∈ F

1 10 0(1,λ) q2

10 ϕ ϕ(10,λ) q3

11 0(1,λ) ϕ(111,λ) q4

111 ϕ ϕ(111,λ) q3

1111 ϕ(111,λ) ϕ(111,λ) q3

11110 ϕ(111,λ) ϕ(111,λ) q3

00 λ 10 q1 ∈ F

01 10 0(01,λ) q2

100 ϕ(10,λ) ϕ(10,λ) q3

101 ϕ(10,λ) ϕ(10,λ) q3

110 λ(1,λ) 10 q1 ∈ F

1110 ϕ(111,λ) ϕ(111,λ) q3

11111 ϕ(111,λ) ϕ(111,λ) q3

111100 ϕ(111,λ) ϕ(111,λ) q3

111101 ϕ(111,λ) ϕ(111,λ) q3

Learning DFA from Correction and Equivalence Queries 289

5 Comparative Results

In this section we present some theoretical and practical results. We prove that
there exist classes of languages for which the number of queries needed to learn
is lower for our algorithm. Using running tests we also show that in practice our
algorithm uses less queries.

5.1 Theoretical Results

We believe that in most of the cases LCA performs not worst that L∗ and that
there are several subclasses of regular languages for which our algorithm needs
smaller number of queries. In the sequel we present one of such subclasses.

Without loss of generality, the teacher is supposed to return the shortest
counterexample. Let L be the target language and m the size of the minimal
complete DFA accepting L.

Definition 2. By MQL(m) (CQL(m)) we denote the number of different words
submitted by the learner L∗ (LCA) to the teacher in order to identify L.

Theorem 2. There exists an infinite class of languages which require a polyno-
mial number of MQs but a linear number of CQs in order to be identified.

Let us consider SΣ the class of singletons over Σ, that is the languages which
contain only one string. The theorem follows from the following two lemmas.

Lemma 5. For any fixed alphabet Σ of length k and any language L in SΣ the
number of MQs needed by L∗ in order to identify L is:

MQL(m) = 2(k − 1)m2 − (4k − 7)m+ 2k − 5 . (1)

Lemma 6. For any fixed alphabet Σ of length k and any language L in SΣ the
number of CQs needed by LCA in order to identify L is:

CQL(m) = (k − 1)(m− 1) + 2 . (2)

and the number of EQs is only one.

Corollary 1. For the one letter alphabet, the class SΣ needs a linear number of
MQs and a constant number of CQs. More precisely, given the language L, L∗

asks a total number of 3m− 3 MQs (where m is the size of its minimal DFA),
meanwhile LCA asks only 2 CQs.

5.2 Practical Results

Due to the coding of the states and to the embedded information within the
teacher’s answers, our practical results reflect the improvement brought by our
algorithm.

290 L. Becerra-Bonache, A.H. Dediu, and C. T̂ırnăucă

We tested L∗ and LCA on an randomly generated set of 209 DFA, all of
them on a two letter alphabet. To be able to visualize the comparison between
the efficiency of the two algorithms, we used the average value of the number
of queries for automata with the same number of states. For that purpose, we
needed a test set with equally distributed number of states (more precisely, we
randomly generated 11 automata having 2, 3,... up to 20 states).

In order to generate the DFA test set, we used the public package from
http://www.research.att.com/sw/tools/fsm/ having the documentation avail-
able in [7].

To generate random automata, we considered a maximum number of states
of 20 for our examples. Without loss of generality, the initial state is always
the state 0. Then we generate complete transition tables having the destination
states generated randomly between 0 and the maximum number of states. For
the number of final states, we generated a random number between 0 and the
maximum number of states -1. Then, we generated again randomly the final
states (without repeating twice the same state).

After minimizing, we checked the newly found DFA for non-equivalence with
the already generated automata. In case of equivalence, we generated new au-
tomata. Finally, we checked for completeness and then we loaded the automata
in our programs.

We generated two graphics for the results obtained with the two letters alpha-
bet. The first one, represented in Figure 3, contains the average values for the
number of EQs asked by L∗ and LCA respectively, the average being computed
for automata having the same number of states.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

States

L* EQs LCA EQs

Fig. 3. EQs average values for automata with the same number of states;

The second graphic, represented in Figure 4, contains the average values ob-
tained for the number of MQs and CQs, respectively, for automata with the
same number of states.

We also run tests on different size alphabets. The results obtained strengthen
our belief that the improvements of our algorithm are not limited to some small
class of languages.

Learning DFA from Correction and Equivalence Queries 291

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

States

MQs CQs

Fig. 4. MQs and CQs, average values for automata with the same number of states

6 Concluding Remarks

We propose a new paradigm for the computational learning theory, namely learn-
ing from corrections. Our algorithm based on Angluin’s L∗ learning algorithm
for regular languages uses an observation table with correcting strings instead
of 0s and 1s. In our running examples, generally, the number of EQs are less
or equal than in Angluin’s ones and the number of CQs is significantly smaller
than the number of MQs.

The empirical results show that in most of the cases the number of queries used
by LCA is smaller. We believe that this is related to the injectivity property: a
language is injective if any two non equivalent strings (using the standard Myhill-
Nerode equivalence) have different corrections. One can see that the rare cases
in which our algorithm performs worse, compared to L∗, is when this injectivity
property is far from being satisfied. On the other hand, when this property is
fulfilled, EQs are no longer needed.

Among the improvements previously discussed, we would like to mention here
the adequacy of CQs in a real learning process. They reflect in a more accurate
manner the process of children’s language acquisition. We are aware that this
kind of formalism is for an ideal teacher who knows everything and always gives
the correct answers and for practical applications our working hypothesis should
be adjusted.

Since there is no correspondence of an EQ in a real situation (a child will never
ask to the adult if her grammar is the correct one), as a future work we would
like to extend our results on singleton languages to a bigger class and hence to
enlarge the class of languages learnable from only CQs. Moreover, we will try
to find subsets of regular languages for which LCA performs always better than
L∗ and to identify a necessary and sufficient condition for a class of languages
to be faster learnable using our algorithm. We will also like to extend this result
to Context Free and Mildly Context Sensitive Languages, which are considered
more appropriate to model some aspects of natural language acquisition (prob-
ably another type of correction would be needed).

292 L. Becerra-Bonache, A.H. Dediu, and C. T̂ırnăucă

Acknowledgements

Special thanks to professors Victor Mitrana, Colin de la Higuera and Dana An-
gluin for valuable advices and a careful review. Also many thanks to anonymous
reviewers for their remarks and suggestions.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2) (1987) 87–106

2. Becerra-Bonache, L.: On the Learnability of Mildly Context-Sensitive Languages
using Positive Data and Correction Queries. Doctoral thesis, Rovira i Virgili Uni-
versity (2006)

3. Becerra-Bonache, L., Yokomori, T.: Learning mild context-sensitiveness: Toward
understanding children’s language learning. In: Proceedings of the 7th International
Colloquium on Grammatical Inference. (2004) 53–64

4. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley (2001)

5. Yu, S.: Finite automata. In Martin-Vide, C., Mitrana, V., Paun, G., eds.: For-
mal Languages and Applications. Studies in Fuzzyness and Soft Computing 148.
Springer, Berlin (2004) 55–85 ISBN 3-540-20907-7.

6. Angluin, D.: Queries and concept learning. Machine Learning 2(4) (1988) 319–342
7. Mohri, M., Pereira, F.C.N., Riley, M.: A rational design for a weighted finite-state

transducer library. In: WIA ’97: Revised Papers from the Second International Work-
shop on Implementing Automata, London, UK, Springer-Verlag (1998) 144–158

Using MDL for Grammar Induction

Pieter Adriaans and Ceriel Jacobs

Department of Computer Science,
University of Amsterdam,

Kruislaan 419, 1098VA Amsterdam, The Netherlands
Department of Computer Science,

Vrije Universiteit Amsterdam,
De Boelelaan 1081a,

1081HV Amsterdam, The Netherlands
pietera@science.uva.nl, ceriel@cs.vu.nl

http://www.uva.nl

Abstract. In this paper we study the application of the Minimum De-
scription Length principle (or two-part-code optimization) to grammar
induction in the light of recent developments in Kolmogorov complexity
theory. We focus on issues that are important for construction of effec-
tive compression algorithms. We define an independent measure for the
quality of a theory given a data set: the randomness deficiency. This is a
measure of how typical the data set is for the theory. It can not be com-
puted, but it can in many relevant cases be approximated. An optimal
theory has minimal randomness deficiency. Using results from [4] and [2]
we show that:

– Shorter code not necessarily leads to better theories. We prove that,
in DFA induction, already as a result of a single deterministic merge
of two nodes, divergence of randomness deficiency and MDL code
can occur.

– Contrary to what is suggested by the results of [6] there is no funda-
mental difference between positive and negative data from an MDL
perspective.

– MDL is extremely sensitive to the correct calculation of code length:
model code and data-to-model code.

These results show why the applications of MDL to grammar induction
so far have been disappointing. We show how the theoretical results can
be deployed to create an effective algorithm for DFA induction. However,
we believe that, since MDL is a global optimization criterion, MDL based
solutions will in many cases be less effective in problem domains where
local optimization criteria can be easily calculated. The algorithms were
tested on the Abbadingo problems ([10]). The code was in Java, using
the Satin ([17]) divide-and-conquer system that runs on top of the Ibis
([18]) Grid programming environment.

1 Introduction: MDL and Grammar Induction

In the domain of machine learning pure applications of MDL are rare, mainly
because of the difficulties one encounters trying to define an adequate model

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 293–306, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

294 P. Adriaans and C. Jacobs

code and data-to-model code. The field of grammar induction studies a whole
class of algorithms that aims at constructing a grammar by means of incremental
compression of the data set represented as a digraph. This digraph can be seen
as the maximal theory equivalent with the data set. Every word in the data set
is represented as a path in the digraph with the symbols either on the edges
or on the nodes. The learning process takes the form of a guided incremental
compression of the data set by means of merging or clustering of the nodes in
the graph. None of these algorithms makes an explicit estimate of the MDL
code. Instead they use heuristics to guide the model reduction. After a certain
time a proposal for a grammar can be constructed from the current state of
the compressed graph. Examples of such algorithms are SP ([15], [14]), EMILE
([8] [9]), ABL ([11]), ADIOS ([12]) and a number of DFA induction algorithms,
specifically evidence driven state merging (EDSM), ([10], [16]). In this paper we
present a sound theoretical basis to analyze the performance and idiosyncrasies
of these algorithms in an MDL context.

2 MDL as Two-Part Code Optimization

We give the traditional formulation of MDL:

Definition 1. The Minimum Description Length principle: The best the-
ory to explain a set of data is the one which minimizes the sum of

– the length, in bits, of the description of the theory and
– the length, in bits, of the data when encoded with the help of the theory

Let M ∈ M be a model in a class of models M, and let D be a data set. The
prior probability of a hypothesis or model M is P (M). Probability of the data
D is P (D). Posterior probability of the model given the data is:

P (M |D) =
P (M)P (D|M)

P (D)

The following derivation ([1]) illustrates the well known equivalence between
MDL and the selection of the Maximum A posteriori hypothesis in the con-
text of Shannon’s information theory. Selecting the Maximum A Posteriori
hypothesis(MAP):

MMAP ≡ argmaxM∈M P (M |D)

= argmaxM∈M (P (M)P (D|M))/P (D)

(since D is constant)

≡ argmaxM∈M (P (M)P (D|M))

≡ argmaxM∈M logP (M) + logP (D|M)

≡ argminM∈M − logP (M)− logP (D|M)

Using MDL for Grammar Induction 295

where according to Shannon − logP (M) is the length of the optimal model-code
in bits and − logP (D|M) is the length of the optimal data-to-mode-code in bits.
Ergo:

MMAP ≡MMDL

The formula argminM∈M− logP (M)− logP (D|M) indicates that a model that
generates an optimal data compression (i.e. the shortest code) is also the best
model. This is true even if M does not contain the original intended model as
was proved by [4].1 It also suggests that compression algorithms can be used
to approximate an optimal solution in terms of successive steps of incremental
compression of the data set D. This is not true as was shown by [2]. Yet this
illicit use of the principle of MDL is common practice.

In order to understand these results better we must answer two questions 1)
What do we mean by the length of optimal or shortest code and 2) what is
an independent measure of the quality of a model M given a data set D? The
respective answers to these questions are prefix-free Kolomogorov complexity and
randomness deficiency.

2.1 Kolmogorov Complexity

Let x, y, z ∈ N , where N denotes the natural numbers and we identify N and
{0, 1}∗ according to the correspondence

(0, ε), (1, 0), (2, 1), (3, 00), (4, 01), . . .

Here ε denotes the empty word. The length |x| of x is the number of bits in the
binary string x, not to be confused with the cardinality |S| of a finite set S. For
example, |010| = 3 and |ε| = 0, while |{0, 1}n| = 2n and |∅| = 0. The emphasis is
on binary sequences only for convenience; observations in any alphabet can be
encoded in a ‘theory neutral’ way. Below we will use the natural numbers and
the binary strings interchangeably. In the rest of the paper we will interpret the
set of models M in the following way:

Definition 2. Given the correspondence between natural numbers and binary
strings M consists of an enumeration of all possible self-delimiting programs
for a preselected arbitrary universal Turing machine U . Let x be an arbitrary bit
string. The shortest program that produces x on U is x∗ = argminM∈M(U(M) =
x) and the Kolmogorov complexity of x is K(x) = |x∗|. The conditional Kol-
mogorov complexity of a string x given a string y is K(x|y), this can be inter-
preted as the length of a program for x given input y. A string is defined to be
random if K(x) ≥ |x|.
This makes M one of the most general model classes with a number of very
desirable properties: it is universal since all possible programs are enumerated,
because the programs are self-delimiting we can concatenate programs at will,
1 This does not imply that MDL is always a good criterion for algorithmic approxi-

mation [5].

296 P. Adriaans and C. Jacobs

in order to create complex objects out of simple ones we can define an a-priori
complexity and probability for binary strings. There are also some less desirable
properties: K(x) cannot be computed (but it can be approximated) and K(x)
is asymptotic, i.e. since it is defined relative to an arbitrary Turing machine U
it makes less sense for objects of a size that is close to the size of the definition
of U . Details can be checked in [3]. We have:

argminM∈M − logP (M)− logP (D|M) =

argminM∈MK(M) +K(D|M) = MMDL (1)

Under this interpretation of M the length of the optimal code for an object is
equivalent to its Kolmogorov complexity.

2.2 Randomness Deficiency

It is important to note that objects that are non-random are very rare. To make
this more specific: in the limit the density of compressible strings x in the set
{0, 1}≤k for which we have K(x) < |x| is zero. The overwhelming majority of
strings is random. In different words: an element is typical for a data set if and
only if it is random in this data set. In yet different words: if it has maximal
entropy in the data set. This insight allows us to formulate a theory independent
measure for the quality of models: randomness deficiency.

We start by giving some estimates for upper-bounds of conditional complexity.
Let x ∈M be a string in a finite model M then

K(x|M) ≤ log |M |+O(1) (2)

i.e. if we know the set M then we only have to specify an index of size log |M |
to identify x in M . The factor O(1) is needed for additional ’syntactic sugar’ to
reconstruct x from M and the index. Its importance is thus limited. Let D ⊆M
be a subset of a finite model M . We specify d = |D| and m = |M |. Now we have:

K(D|M,d) ≤ log
(
m

d

)
+O(1) (3)

Here the term
(
m
d

)
specifies the size of the class of possible selections of d elements

out of a set of m elements. The term log
(
m
d

)
gives the length of an index for this

set. If we know M and d then this index allows us to reconstruct D.
A crucial insight is that the inequalities 2 and 3 become ’close’ to equalities

when respectively x and D are typical for M , i.e. when they are random in M .
This typicality can be interpreted as a measure for the goodness of fit of the
model M . A model M for a data set D is optimal if D is random in M , i.e. the
randomness deficiency of D in M is minimal. The following definitions formulate
this intuition. The randomness deficiency of D in M is defined by:

δ(D|M,d) = log
(
m

d

)
−K(D|M,d), (4)

Using MDL for Grammar Induction 297

for D ⊆ M , and ∞ otherwise. If the randomness deficiency is close to 0, then
there are no simple special properties that single D out from the majority of
data samples to be drawn from M .

The minimal randomness deficiency function is

βD(α) = min
M
{δ(D|M) : M ⊇ D, K(M) ≤ α}, (5)

If the randomness deficiency is minimal then the data set is typical for the
theory and with high probability future data sets will share the same character-
istics, i.e. minimal randomness deficiency is also a good measure for the future
performance of models. For a formal proof of this intuition, see [4].

Learning as Incremental Compression. We now turn our attention to in-
cremental compression. Equation 1 gives the length of the optimal two-part-code.
The length of the two-part-code of an intermediate model Mi is given by:

Λ(Mi, d) = log
(
mi

d

)
+K(Mi, d) ≥ K(D)−O(1) (6)

[2] have shown that the randomness deficiency not necessarily decreases with
the length of the MDL code, i.e. shorter code does not always give smaller
randomness deficiency, e.g. a better theory.

3 Using MDL for DFA Induction

In the rest of this paper we will study these theoretical results in the practical
context of DFA induction. We will follow the presentation in [13]. Below we show
that the model improvement between two consecutive compression states during
the execution of a DFA learning algorithm in general can not be computed.

We start with some relevant observations. We will restrict ourselves to lan-
guages in {0, 1}∗. The class of DFA is equivalent to the class of regular languages.
We call the set of positive examples D+ and the set of negative examples D−.
The complement of a regular language is a regular language. Consequently the
task of finding an optimal model given D+ is symmetric to the task of finding
an optimal model given D−. The task of finding the minimum DFA consistent
with a set of positive and negative examples is decidable. We can enumerate all
DFA’s according to their size and test them on the data set. Yet this minimum
DFA cannot be approximated within polynomial time ([7]).

The task of finding the smallest DFA consistent with a set of positive examples
is trivial. This is the universal DFA. Yet the universal DFA will in most cases
have a poor generalization error. MDL is a possible candidate for a solution here.
Suppose that we have a finite positive data set representing an infinite regular
language. The task is then to find a DFA with minimum expected generalization
error over the set of the set of infinite regular languages consistent with D+.
MDL identifies such a DFA. Yet, if our results above are relevant, MDL will not
help us to construct such a DFA in terms of a process of incremental compression
or expansion.

298 P. Adriaans and C. Jacobs

Intuitively the MDL code would not give any guidance for compression (or
expansion) of a theory if we could show that the randomness deficiency behaves
independently of the MDL code: i.e the randomness deficiency could either grow
or shrink with a reduction of the length of the MDL code. Below we will show
that this is possible for any algorithm that merges or splits states in a DFA.
The crucial insight is that when we merge two states (i.e. reduce the complexity
of the model) the resulting index set for the data (i.e. the data-to-model code)
in general becomes more complex, but also can be more simple. The effects are
non-computable. This implies that MDL in the case of DFA is not a good guide
when compressing or expanding theories. Before we prove this we give some
definitions.

Definition 3. A partition π of a set X is a set of nonempty subsets of X such
that every element x in X is in exactly one of these subsets. B(x, π) ⊆ X
indicates the subset of the partition π of which x is an element.

Definition 4. Let A = (Q,Σ, δ, q0, F) be a DFA, the quotient automaton A/π
= (Q′, Σ, δ′, B(q0, π), F ′) derived from A on the basis of a partition π of Q is
defined as follows:

– Q′ = Q/π = {B(q, π)|q ∈ Q},
– F ′ = {B ∈ Q′|B ∩ F �= ∅},
– δ′ : (Q′ × Σ) → 2Q′

: ∀B,B′ ∈ Q′, ∀a ∈ Σ,B′ ∈ δ′(B, a) iff ∃q, q′ ∈ Q, q ∈
B, q′ ∈ B′ and q′ ∈ δ(q, a).

We say that the states in Q that belong to the same block B are merged.

We give without proof:

Lemma 1. If an automaton A/πj is derived from an automaton A/πi by means
of a partition then L(A/πi) ⊆ L(A/πj).

The relevance of these definitions for grammar induction lies in the fact that
we can increase or decrease the generality of the automaton and the associated
language inclusion hierarchies by means of splitting and merging states.

Definition 5. Let A be a DFA. An index set for A is a set that associates a
unique natural number with each string that is accepted by A. The index set
relative to certain data set D ⊆ L(A) is ID = {i|i ∈ N, L(A)(i) ∈ D}. The
initial segment associated with an index set D and L(A) is the set I≤D = {i|i ∈
N, ∃j ∈ ID : j ≥ i}, i.e. the set of all natural numbers that are smaller than or
equal to an index in ID. The maximal entropy of ID in I≤D is log

(|I≤D |
|ID|

)
, where

|I≤D| is a measure for the total number of sentences in the language up to the
sentence in D with the highest index and |ID| is the size of D.

The notion of an initial segment is introduced to make the argument work for
infinite languages. We have K(D|A) ≤ K(ID) + O(1) ≤ log

(|I≤D |
|ID |

)
+ O(1).

Suppose that f is an accepting state of a DFA A, with index set I and that
D ⊆ L(A).

Using MDL for Grammar Induction 299

Definition 6. The maximal state entropy of f given D is I≤D,f = log
(|I≤D,f |

|ID,f |
)
,

where I≤D,f and ID,f identify those indexes that are associated with strings that
are accepted in f .

Note that there are data sets of low complexity for which the strict inequality
K(ID|I≤D) <

∑
f∈F log

(|I≤D,f |
|ID,f |

)
< log

(|I≤D |
|ID |

)
holds. Yet for these data sets the

individual state entropies might be still high, since any set of low complexity can
be split into two sets of high complexity. For such data sets in general the data-
to-model code will be optimized when states are merged. On the other hand if
K(ID|I≤D) is ’close’ to log

(|I≤D |
|ID |

)
splitting of states is a better strategy.

According to our definition aboveM0 is not worse thanM1 (as an explanation
for D), in symbols: M0 ≤M1, if

– δ(D|M0, d) ≤ δ(D|M1, d); and
– Λ(M0, d) ≤ Λ(M1, d).

We will call these conditions the MDL-step-conditions. We have to remember
that δ(D|M,d) = log

(
m
d

)−K(D|M,d) is the randomness deficiency and Λ(M) =
log

(
m
d

)
+K(M,d) ≥ K(D)−O(1) is the total length of two-part code, or MDL

code, of D with help of model M and d. The step from M1 to M0 would violate
the MDL-step-conditions if:

K(D|M0, d)−K(D|M1, d) < log
(
m0

d

)
−log

(
m1

d

)
≤ K(M1, d)−K(M0, d) (7)

The following theorem states that these violations occur:

Theorem 1. There are combinations of DFA’s and data sets D, A/π0 and A/π1
such that D ⊆ L(A/π0) = L(A/π1) and A/π1 = (A/π0)/πstep that violate the
MDL-step-conditions. The characteristics of these violations can not be com-
puted. The δ function can fluctuate arbitrarily in a band-width of ±K(πstep) +
O(1).

Proof: Take an arbitrary DFA B. Construct two new DFA’s A/π0 and A/π1
along the following lines: A/π0 contains two copies of B, B1 and B0, the start
state q0 of A/π0 has two outgoing transitions, one labelled 1 to the start state
of B1 and one labelled 0 to the start state of B0. The language recognized by
A/π0 is (0 + L(B)) ∪ (1 + L(B)). A/π1 contains only one copy of B, the start
state q0 of A/π1 has two outgoing transitions labelled 1 and 0 to the start state
of B. The language recognized by A/π1 is {0, 1}+L(B). It is easy to verify that
{0, 1}+ L(B) = (0 + L(B)) ∪ (1 + L(B)), thus L(A/π0) = L(A/π1). Also there
is a partition πstep such that A/π1 = (A/π0)/πstep: we simply merge B1 and B0
in A/π0 to get A/π1.

Take the terms of the inequality 7. Independent of any data set log
(
m0
d

) −
log

(
m1
d

)
= 0 since L(A/π0) = L(A/π1). Furthermore there will be cases for which

K(A/π0, d) > K(A/π1, d), since K(A/π0) has strictly more states even if we
correct for the redundancy of having two copies of B, and there is no definition of

300 P. Adriaans and C. Jacobs

Kolmogorov complexity that systematically defines higher complexity for DFA’s
with fewer states.

What we have to show is that, in these cases, there are data sets D for
which the term K(D|M0, d)−K(D|M1, d) can take any value (within a certain
bandwidth). Let I0 and I1 be index sets associated with respectively A/π0 and
A/π1. Note that I0 and I1 are not independent. Given I0, A/π0 and (A/π0)/πstep

we can reconstruct I1. Therefore K(I1|A/π0, I0) ≤ K(πstep) + O(1), i.e. the
maximal difference in complexity between I0 and I1 given A/π0 is K(πstep),
the complexity of the transformation between the two DFA’s. This distance
is symmetric within O(1). This limits the bandwidth of the expression K(D |
M0, d)−K(D|M1, d).

Now select an accepting state f1,{0,1} in A/π1 that is the result of merging two
corresponding accepting states f0,{0} and f0,{1} in A/π0. The related index sets
are I0,D,f0,{0} , I0,D,f0,{1} and I1,D,f1,{0,1} . The maximal state entropy for f0,{0}
is given by

log
(|I0,≤D,f0,{0} |
|I0,D,f0,{0} |

)
similarly for f0,{1} and f1,{0,1}. If these index sets are random then we have

K(I0,D,f0,{0}) +K(I0,D,f0,{1}) < K(I1,D,f1,{0,1})

since

log
(|I0,≤D,f0,{0} |
|I0,D,f0,{0} |

)
+ log

(|I0,≤D,f0,{1} |
|I0,D,f0,{1} |

)
< log

(|I1,≤D,f1,{0,1} |
|I1,D,f0,{0,1} |

)
=

log
(|I0,≤D,f0,{0} |+ |I0,≤D,f0,{1} |

|I0,D,f0,{0} |+ |I0,D,f0,{1} |
)

In this case we do not benefit from merging states. Note that we are com-
pletely free to select D in such a way that any binary partition of indexes from
I1,D,f1,{0,1} into corresponding indexes in I0,D,f0,{0} and I0,D,f0,{1} is realized. In
particular we can select a partition that is random in I0,D,f0,{0} and I0,D,f0,{1}
and highly non-random in I1,D,f1,{0,1} . In this case we have:

K(I0,D,f0,{0}) +K(I0,D,f0,{1}) > K(I1,D,f1,{0,1})

Here we do benefit from merging states. Note that a corresponding argument
holds for all triples f ′1,{0,1}, f

′
0,{0} and f ′0,{1}. By selecting appropriate data

sets we can create arbitrary fluctuations in the difference of the conditional
complexity of the index sets I0,D and I1,D of Mo and M1. Since K(D|M0, d) =
K(I0,D|M0, d) +O(1) and K(D|M1, d) = K(I1,D|M1, d) +O(1) we can give the
expression

K(D|M0, d)−K(D|M1, d)

any value in the bandwidth ±K(πstep). Note that we can define partitions of
any complexity so that the value of K(πstep) can be arbitrary large and that

Using MDL for Grammar Induction 301

the fluctuations cannot be computed because they are based on the conditional
Kolmogorov complexity of the index sets.

End of proof.

Corollary 1. Given a sample D of a regular language and an arbitrary DFAD

consistent with D, the optimal DFAopt for D can not be approximated by means
of expanding or compressing states in DFAD. This holds if D = D+, D = D−

and if D = D+ ∪D−.

Proof: Case: D = D+, is immediately implied by theorem 1. Case: D = D−,
is implied by the previous case and the fact that the complement of a regular
language is a regular language. The optimal automaton for the negative cases is
the same as the one for the positive cases, with the accepting and non-accepting
states exchanged, i.e. we try to construct an automaton with exactly the same
structure. Case: D = D+ ∪ D−, is implied by the previous two cases and the
fact that in the proof of theorem 1 the languages accepted by M0 and M1 are
the same. The positive randomness deficiency can fluctuate independent of the
influence of the negative examples. If the randomness deficiency in relation to
the positive examples fluctuates, then the randomness deficiency with respect
to the negative examples will also fluctuate, i.e. the total randomness deficiency
will fluctuate.

End of proof.

Discussion. It is worth noting that, given the results of [7] it was not to be
expected that there would exist an algorithm that finds the DFA with minimal
generalization error on the basis of D+ in polynomial time. Under the condition
that D+ is dense enough and given the results above, the optimal DFA in terms
of MDL will with high probability also be the minimal DFA consistent with D+

and an arbitrary D−. If we could find the optimal MDL DFA in polynomial time
then we could simply focus on D+, ignoring D−, in order to find the minimal
DFA consistent with D+ and D−. This would contradict the result of [7]. Note
also that the task of finding a minimal automaton consistent with D = D+∪D−

is in many cases much simpler than the task of finding the automaton with
optimal randomness deficiency, e.g. take the random case where there is only
one negative example.

Following [6] it is generally thought that a combination of positive and nega-
tive examples gives a better chance of learning a language than positive examples
alone. Corollary 1 shows that this is only the case in the limit when we can enu-
merate all solutions. Additional negative examples in general do not help us more
than additional positive examples when we want to construct better solutions
out of bad ones given a finite set D.

4 Implementing a Correct MDL Measure for DFA
Induction

Theorem 1 implies that MDL in general will not be a reliable guide for the
compression of a DFA. Yet there exist many DFA induction algorithms that use

302 P. Adriaans and C. Jacobs

compression. In a lot of empirical cases this approach seems to work. The results
presented above suggest that it is possible to use MDL directly as an empirical
guidance for the merging of states in DFA induction. They also imply that we
can use the same MDL measure both on positive and on complete data sets. The
MDL data-to-model code formula below shows that this is indeed the case.

Suppose A is a DFA suggested as an explanation for a data set D. A has
i accepting states and j non-accepting states. Since we use both positive and
negative examples A must be functionally complete (i.e. have an outgoing arrow
for each element of the lexicon from each state). Suppose l is the maximal length
of a string in the Dataset D. D+ is the set of positive examples, D− the set of
negative examples. d+ is the number of positive examples, d− the number of
negative examples. There are 2l+1 − 1 binary strings with length ≤ l. Call this
set N , n+ is the number of strings accepted by A, n− is the number of strings
not accepted by A. A partitions N in two sets: N+ and N−. N+ is partitioned
in i subsets by the i accepting states of A and N− is partitioned in j subsets by
the j non-accepting states of A. The correct data-to-model code is:

log(
∏

i

(
n+

i

d+
i

)
×
∏
j

(
n−j
d−j

)
) =

∑
i

(log
(
n+

i

d+
i

)
) +

∑
j

(log
(
n−j
d−j

)
) (8)

One can read this as follows. The formula specifies an index for the data set
D given the data set N . There are i pieces of code for the positive states, and
j pieces of code for the negative states. If there are states that do not generate
elements for D then their contribution to the length of the code is 0. When
applying this formula to DFA induction one must estimate the values using
the Stirling formula or an integral over logn!2. Remember that from an MDL
perspective we are only interested in the length of the index, not its specific
value. The beautiful thing is that this index can always be used: for positive
examples, for complete examples and even for only negative examples.

5 Some Experiments

We have developed a framework for experimenting with various search heuristics.
The framework is built around the blue-fringe algorithm, which works as follows:3

We start with the prefix tree acceptor, derived from the sample. The root is
colored red, its children are colored blue, all other nodes are white. Then, we
apply the following actions:

– As long as there are blue states that cannot be merged with any red node,
we promote the shallowest of these states to red, and color its children blue.

– We compute the score for merging all blue/red pairs (see below for an ex-
planation of ‘score’).

2 The formula log
(

n
k

)
can be approximated by: log

(
n
k

) ≈ ∫ n

n−k
logx dx − ∫ k

1 logx dx,
which is easy to compute. Already for k = 65 the error is less than 1% and rapidly
decreasing.

3 For details, see: ([10], [16]).

Using MDL for Grammar Induction 303

– We merge the best scoring blue/red pair and color all children of red nodes
that are not red themselves blue.

We repeat these steps until no merges are possible.
The score for merging a red/blue pair is the search heuristic. When using

evidence driven state merging (EDSM) ([10], [16]), the score consists of the
number of matching state labels of merged states, the higher the better.

We have used several variants of MDL for the search heuristic. As MDL is the
sum of two parts, we describe these parts in detail below.

5.1 MDL Scoring

For an approximation ofK(M), the model code, we used the following reasoning:
suppose a DFA A has n states, the alphabet Σ has |Σ| symbols, and A is
functionally complete. Then, there are n × |Σ| state transitions, each with n
possible destinations. This gives nn×|Σ| possibilities. Furthermore, each state is
either accepting or non-accepting. This gives 2n possibilities. Thus, assuming
that state 1 always is the start state, in total there are 2n × nn×|Σ| possible
functionally complete DFA’s with n states. However, there is a lot of redundancy
here, for each permutation of states 2...n there is an equivalent DFA. Thus, the
length of an index identifying a specific DFA is log(2n × nn×|Σ|/(n − 1)!) =
n+ n× |Σ| × log(n)− log((n− 1)!).

We have experimented with several variations of data-to-model (K(D|M,d))
codes:

1. Simple MDL with only positives. This version uses log
(
m+

d+

)
.

2. Simple MDL with positives and negatives. This version uses log
(
m+

d+

)
+

log
(m−

d−
)
.

3. Simple MDL with positives and complement. This version uses log
(
m+

d+

)
+

log
((2l+1−1−m+

d−
)
.

4. MDL as in equation 8, with only positives.
5. MDL as in equation 8.

Note that there is no difference between MDL as in equation 8 with negatives
or complement.

We have tried all of the above variants on the problem set of the Abbadingo
DFA inference competition ([10]). All variants are able to solve problems A, B,
C, D, and R. In addition, all variants except for variant 1 can solve problem 1.
Variant 4 can also solve problem 2. In comparison, EDSM can solve all these
problems, and also problems 3, 4, 6, and S. So, indeed, it seems that MDL is not
a very reliable guide for the compression of a DFA. At least, EDSM is better.

But EDSM, on its own, fails too on some problems. To solve some of these
problems, we have extended our framework allowing it to search a (small) part
of the decision tree. The search is to a certain depth, and at each depth only
the most promising candidates are maintained in a list. Initially, we place the
prefix tree acceptor in the list. Then, for every candidate in the list, for all

304 P. Adriaans and C. Jacobs

its red/blue merge candidates, apply the merge and then use the heuristic to
compress the DFA until no further merges are possible. Determine the score of
the resulting DFA (for EDSM, this is the number of states, for MDL, this is its
MDL). We store the DFA from the list, the first merge, and the resulting score
in a result list. When all candidates for the list are tried, the result list is sorted
according to the score, and only the most promising candidates are kept. For
these candidates, we apply its first merge, and store the result in the list for the
next depth.

As this process becomes quite compute-intensive, even for moderate values of
maximum search depth and list length, we have written this application in Java,
using the Satin ([17]) divide-and-conquer system that runs on top of the Ibis
([18]) Grid programming environment. Abbadingo problem 7 was solved using a
search depth of 5, a list length of 256, and EDSM as the search heuristic. We did
not find a solution when using MDL as the search heuristic. The MDL search
heuristic sometimes seems to indicate choices, much deeper in the decision tree,
that don’t lead to an optimal DFA. In fact, this is the reason why problem 3
is not solved with the MDL heuristic and why problem 2 is only solved by one
of the MDL variants: the first 15 or so decisions are decisions that the EDSM
heuristic also indicates (albeit in a different order), but then a decision is made
that makes a solution impossible. The MDL values of the solutions found with
EDSM are lower than the ones found by means of the MDL heuristic, so MDL
as a measure is good, but MDL as guidance is not. This suggests that we could
use EDSM as the search strategy and MDL as a judge of the result. Indeed,
Abbadingo problem 7 was solved with the same depth and list parameters as by
using the number of states as a judge of the result. The significance of this is
that using the number of states as a judge of the result is not an option when
there are only positive examples.

6 Conclusions and Further Work

We have studied MDL in terms of two-part code optimization and randomness
deficiency. In this framework we showed that 1) Shorter code not necessarily
leads to better theories, e.g. the randomness deficiency does not decrease mono-
tonically with the MDL code, 2) contrary to what is suggested by the results of
[6] there is no fundamental difference between positive and negative data from
an MDL perspective, 3) MDL is extremely sensitive to the correct calculation
of code length. We have proved that already as a result of a single merge the
divergence of randomness deficiency and MDL code can occur. Using these ideas
we have implemented a MDL variant of the EDSM algorithm ([10]). The results
show that although MDL works well as a global optimization criterion, it falls
short of the performance of algorithms that evaluate local features of the problem
space. MDL can be described as a global strategy for featureless learning.

Suggestions for further work are: the extension of these ideas to more complex
language classes, the implementation of a better estimate of the model code,
the development of strategies for hybrid MDL learning (MDL applied to local

Using MDL for Grammar Induction 305

representations of the problem space to bypass local optima) and a more efficient
implementation of the algorithm on the grid.

Acknowledgments. This project is supported by a BSIK grant from the Dutch
Ministry of Education, Culture and Science (OC&W) and is part of the ICT
innovation program of the Ministry of Economic Affairs (EZ).

References

1. Mitchell T. M., , Machine Learning, McGraw-Hill, New York, (1997)
2. Adriaans P., Vitányi P.M.B., The power and perils of MDL, Human Computer

Studies Lab, Universiteit van Amsterdam,(2005)
3. Li M., Vitányi P.M.B. An Introduction to Kolmogorov Complexity and Its Appli-

cations, 2nd ed., Springer-Verlag, New York, (1997)
4. Vereshchagin N.K., Vitányi P.M.B., Kolmogorov’s structure functions and model

selection, IEEE Trans. Information Theory, vol. 50, nr. 12, 3265–3290, (2004)
5. P.D. Grünwald P.D. and Langford J., Suboptimal behaviour of Bayes and MDL in

classification under misspecification, COLT 2004
6. Gold, E. Mark, Language Identification in the Limit, Information and Control, vol.

10, nr. 5, 447–474, (1967)
7. Pitt L., Warmuth M. K., The Minimum Consistent DFA Problem Cannot be Ap-

proximated within any Polynomial, Journal of the ACM, vol. 40, nr. 1, 95–142,
(1993)

8. Adriaans P., Vervoort M., The EMILE 4.1 grammar induction toolbox, in Gram-
matical Inference: Algorithms and Applications; 6th International Colloquium,
ICGI 2002, P. Adriaans and H. Fernau and M. van Zaanen eds., LNCS/LNAI
2484, 293–295, (2002)

9. Vervoort M., Games, walks and Grammars, Thesis University of Amsterdam, (2000)
10. Lang K. J., Pearlmutter B. A., Price R. A. , Results of the Abbadingo One DFA

learning competition and a new evidence-driven state merging algorithm, in Gram-
matical Inference: Algorithms and Applications; 6th International Colloquium,
ICGI 2002, P. Adriaans and H. Fernau and M. van Zaanen eds., LNCS/LNAI
2484, 1–12, (2002)

11. van Zaanen M., Adriaans P., Alignment-Based Learning versus EMILE: A Com-
parison, in Proceedings of the Belgian-Dutch Conference on Artificial Intelligence
(BNAIC); Amsterdam, the Netherlands, 315–322, (2001)

12. Solan Z., Horn D., Ruppin E., Edelman S., Unsupervised learning of natural lan-
guages, PNAS, vol. 102, nr. 33, 11629-11634, (2005)

13. Curnéjols A., Miclet L., Apprentissage artificiel, concepts et algorithmes, Eyrolles,
(2003)

14. Wolff J.G., Computing As Compression: An Overview of the SP Theory and Sys-
tem, New Generation Comput., vol. 13, nr. 2, 187–214, (1995)

15. Wolff, J. G., Information Compression by Multiple Alignment, Unification and
Search as a Unifying Principle in Computing and Cognition, Journal of Artificial
Intelligence Research, vol. 19, nr. 3, 193–230, (2003)

16. Proceedings of the Workshop and Tutorial on Learning Context-Free Grammars
held at the 14th European Conference on Machine Learning (ECML) and the
7th European Conference on Principles and Practice of Knowledge Discovery in
Databases (PKDD); Dubrovnik, Croatia, de la Higuera, Colin and Adriaans, Pieter
and van Zaanen, Menno and Oncina, Jose (eds.), (2003)

306 P. Adriaans and C. Jacobs

17. van Nieuwpoort R. V., Maassen J. Kielmann T., Bal H. E., Satin: Simple and
Efficient Java-based Grid Programming, Scalable Computing: Practice and Expe-
rience, vol. 6, nr. 3, 19–32, (2005)

18. van Nieuwpoort R. V., Maassen J., Wrzesinska G., Hofman R., Jacobs C., Kiel-
mann T. Bal H. E., Ibis: a Flexible and Efficient Java based Grid Programming
Environment, Concurrency and Computation: Practice and Experience, vol. 17,
nr. 7-8, 1079–1107, (2005)

Characteristic Sets for Inferring the
Unions of the Tree Pattern Languages

by the Most Fitting Hypotheses

Yen Kaow Ng1 and Takeshi Shinohara2

1 Kyushu Institute of Technology
Graduate School of Computer Science and Systems, Iizuka, 820, Japan

kalngyk@daisy.ai.kyutech.ac.jp
2 Kyushu Institute of Technology

Department of Artificial Intelligence, Iizuka, 820, Japan
shino@ai.kyutech.ac.jp

Abstract. A tree pattern p is a first-order term in formal logic, and
the language of p is the set of all the tree patterns obtainable by replac-
ing each variable in p with a tree pattern containing no variables. We
consider the inductive inference of the unions of these languages from
positive examples using strategies that guarantee some forms of mini-
mality during the learning process. By a result in our earlier work, the
existence of a characteristic set for each language in a class L (within
L) implies that L can be identified in the limit by a learner that simply
conjectures a hypothesis containing the examples, that is minimal in the
number of elements of up to an appropriate size. Furthermore, if there
is a size such that each candidate hypothesis has a characteristic set
(within the languages in L that intersects non-emptily with the exam-
ples) that consists only of elements of up to size , then the hypotheses
containing the least number of elements of up to size are at the same
time minimal with respect to inclusion. In this paper we show how to
determine such a size for the unions of the tree pattern languages, and
hence allowing us to learn the class using hypotheses that fulfill the two
mentioned notions of minimality.

1 Introduction

In this paper we consider the characteristic sets [2] for the unions of the languages
generated by the (ordered, ranked and finite) tree patterns [15]. A tree pattern
is a first-order term in formal logic. Intuitively a tree pattern can be understood
as a tree structure with leaves labeled with constant symbols or variables. The
variables may be replaced with other tree patterns. A tree pattern is said to be
ground if it contains no variable. The language of a tree pattern p are all the
ground tree patterns obtainable by substituting variables in p with ground tree
patterns. A characteristic set S of a language L within a class L is a finite set
of elements in L such that if any language in L includes S, then it must also
include L.

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 307–319, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

308 Y.K. Ng and T. Shinohara

Let Lk denote the class of unions of up to k tree pattern languages. We are
interested in the characteristic sets of Lk, for within the two classes Lk and Lk

T .
We now describe Lk

T . For any given set T of ground tree patterns let LT denote
the class of tree pattern languages that intersect non-emptily with T . Lk

T is then,
the class of unions of up to k languages from LT . We show in this paper how
to compute, given a language L ∈ Lk and a class L′ chosen from one of the
following:

1. Lk where k is less than the alphabet size, and
2. Lk

T where k is independent of the alphabet size

a length !T , such that there is a characteristic set for L, consisting only of trees
of up to the size !T , within L′. The choice of Lk

T is due to an earlier result, which
shall become clear later.

The present study is motivated by an interest to inductively infer, from pos-
itive examples [9], the unions of the tree pattern languages, using hypotheses
that are minimal in some sense. In using such hypotheses, we are attempting to
overcome the problem of over-generalization due to lack of negative examples.
The learning of the class of the tree pattern languages is interesting since the
tree patterns can also be thought of as abstractions of hierarchically structured
data such as XML documents [10], which are becoming increasingly popular for
use on the internet as well as for biological applications. Since the tree patterns
are first-order terms in logic programs, this study can also be considered a first
step towards the inductive inference of logic programs (e.g. Prolog programs)
from positive data.

It has been previously shown that the unions of the tree pattern languages
can be inferred efficiently when the number of languages allowed in a union is
less than the alphabet size [4,7,6]. In this work we do not address the issue of
efficiency in the learning process — our primary interest is to obtain hypotheses
that possess some forms of minimality. In a previous work [13], we found that
any class of languages L = {Li | i ∈ N+} where each language in the class
has a characteristic set within the class, can be identified in the limit by the
following learner infer, which basically outputs a hypothesis that contains the
fewest elements of sizes up to the length of the input sequence. In the following,
the learner is given as input the sequence σ.

infer(σ):
If |σ| = 0, let H = ∅. (Initial hypothesis)
If H is not among the languages containing all examples in σ with the

fewest elements of sizes up to |σ|, find the language from among these
minimal languages with the smallest index and set H to it.
Note that the smallest index is used here to simplify convergence.

Conjecture H .

The use of such minimal hypotheses is beneficial for the following reasons: (1)
this reduces learning into a problem of counting the elements of the candidate
hypotheses of up to some length (which is often computable), and (2) some

Characteristic Sets for Inferring the Unions of the Tree Pattern Languages 309

works have suggested that such hypotheses may be desirable in some applications
[8,12,14]. Note that infer is computable for the class of unions of tree pattern
languages.

The previous work also showed that, if there exists a size ! such that, for every
language L that is consistent with the input, there is a characteristic set of L
(within Lk

T) consisting only of elements of up to the size !, then all the hypotheses
containing the input that has the least number of elements of up to the size !
are also minimal with respect to inclusion (we restate this in Theorem 2). That
is, we can obtain hypotheses that possess both of these notions of minimality.
Note that hypotheses that are minimal with respect to inclusion possess a few
interesting qualities [1], and may also help in the analysis of convergence of the
learning process (via the characteristic sets).

This paper is structured as follows. In Section 2 we formally define the ter-
minology and concepts needed for subsequent discussions. We define the two
notions of minimality which we are interested in, and give earlier results on
these notions of minimality. The motivation for our choice of classes that the
characteristic sets are with respect to will become clear from this result. Sec-
tion 3 discusses the existence of these characteristic sets. In Section 4 we show a
sufficient size bound to the characteristic sets of the unions of the tree pattern
languages, when the number of languages allowed in a union is less than the
alphabet size. This restriction on the bound of the number of unions is the same
as that in [4]. Finally, in Section 5, we study the characteristic sets with this
restriction on the alphabet size removed.

2 Preliminaries

We follow mainly the definitions in [3]. The symbols N and N+ denote the set
of natural numbers and the set of positive integers respectively. ∅, ∈, ⊂, ⊆
respectively denote empty set, element of, proper subset, subset. max(.), min(.)
denote maximum and minimum of a set, where by convention max(∅) = 0 and
min(∅) = ∞. Cardinality of a set S is written card(S). A − B denotes the set
{x | x ∈ A and x �∈ B}. The symbol Σ denotes a finite alphabet, where each
element of Σ is called a function and associated with a non-negative integer
called an arity. A function with arity 0 is also called a constant. We assume that
Σ contains at least one constant. Let V = {x1, x2, . . .} be a countable set of
symbols disjoint from Σ. Each element in V is called a variable.

2.1 Tree Patterns

A tree pattern p over Σ is an expression defined recursively as follows: (1) a
constant f ∈ Σ, or a variable x ∈ V is a tree pattern; (2) For a function f with
arity n, where n ≥ 1, and tree patterns t1, . . . , tn, f(t1, . . . , tn) is a tree pattern.
The function f or variable x in (1) and (2) is the root symbol of p. We consider
tree patterns to be defined from left to right, that is, in f(t1, . . . , tn) of (2), ti
is defined before tj if i < j. A tree pattern t occurs in a tree pattern p just in

310 Y.K. Ng and T. Shinohara

case t is used in the recursive definition of p. We call each such occurrence of
t a node of p (or simply a node). We say that a node u is the i-th child (or
simply a child) of a node v of the term f(t1, . . . , tn), just in case u occurs as ti
(1 ≤ i ≤ n) in v.

A tree pattern is said to be ground if it contains no variable. Let TP denote
the set of all tree patterns and let TPΣ denote the set of all ground tree patterns.
The size of a tree pattern p, denoted by ‖p‖, is the number of nodes in p (Note:
this definition differs from that in [3]).

Given a tree pattern p and a node v in p, the position of v, written pos(v), is
a string of natural numbers recursively defined as follows:

pos(v) =

⎧⎨⎩
ε (empty string) if the node v is p itself.
pos(v′)i if v is the i-th child of the node v′ in p.
undefined otherwise.

We say that a function symbol c occurs at a position ε in p just in case pos(v) = ε
for some node v in p and c is the root symbol of v. Likewise a tree pattern t
occurs at a position ε in p just in case pos(v) = ε and v is an occurrence of t.
The height of a tree pattern t, |t|, is max({|pos(v)| | v is a node in t}), where
|pos(v)| is the length of the string pos(v). We say that a node v is at depth h
just in case |pos(v)| = h.

Finally, we let 〈n〉Σ denote the smallest size s such that there are n elements
of the same height in {t ∈ TPΣ | ‖t‖ ≤ s}, if such elements exist.

Example 1. Let Σ = {a, f} where a is a constant and f is of arity 2. Consider
〈7〉Σ. Let p = f(f(f(a, a), x1), f(x2, x3)) (see below).

f
f

f
a a

x1

f
x2 x3

By replacing either a or f(a, a) in each of the variables in p (hence the maxi-
mum size of these tree patterns is 15), we can verify that there are at least 7 tree
patterns (8 for this case) of equal height (that is, 3) in TPΣ. Hence 〈7〉Σ ≤ 15.

The following Proposition states that such n ground tree patterns of equal height
exist under very trivial conditions.

Proposition 1. If Σ consists of at least one function of arity ≥ 2, then for all
n, there exists n elements of the same height in TPΣ.

2.2 Languages of the Tree Patterns

A substitution is a finite set of the form {y1/t1, . . . , yn/tn}, where each yi is a
distinct variable in V , and each ti is a tree pattern different from yi. An instance
of a tree pattern p by a substitution θ = {y1/t1, . . . , yn/tn}, written pθ, is the
tree pattern obtained by simultaneously replacing each occurrence of the variable
yi with the term ti(1 ≤ i ≤ n). We write p # q iff p =qθ for some substitution θ.

Characteristic Sets for Inferring the Unions of the Tree Pattern Languages 311

We write p ≺ q just in case p # q but not q # p. Given two sets of tree patterns
P and Q, we write P � Q iff for each p ∈ P , p # q for some q ∈ Q. P � Q just
in case P � Q but not Q � P .

The language of a tree pattern p, written L(p), is the set L(p) = {w ∈ TPΣ |
w # p}. For a set P ⊆ TP , L(P) =

⋃
p∈P L(p) and L(P) = {L(p) | p ∈ P}. For

any class L of languages, Lk denotes the class {⋃L∈L′ L | L′ ⊆ L∧card (L′) ≤ k},
while L∗ denotes the class {⋃L∈L′ L | L′ ⊆ L ∧ card(L′) <∞}.
Definition 1 (Characteristic sets [2]). A characteristic set for a language L
within a class L is a finite set SL such that for each L′ ∈ L, SL ⊆ L′ ⇒ L ⊆ L′.

Definition 2 (Sn). For any p ∈ TP , we denote by Sn(p) the set of all the
elements of L(p) obtainable by replacing variables in p with ground tree patterns
of sizes up to n.

2.3 The MINL and FC Notions of Minimality

We now describe two problems of finding, given a finite non-empty set S ⊆ TPΣ ,
a language L ∈ L(TP)k containing S that fulfills some notions of minimality.
Earlier studies [1,17,5,13] have shown that solutions from either one these prob-
lems allow us to inductively infer any class of languages where each language in
the class has a characteristic set within the class.

Definition 3. Given a finite non-empty set S ⊂ TPΣ and k ∈ N+,
(1) The problem MINL(L(TP), S, k) is to find a set of at most k tree patterns
P ⊆ TP such that S ⊆ L(P) and there are no other set of up to k patterns
P ′ ⊆ TP where S ⊆ L(P ′) such that L(P ′) ⊂ L(P).
(2) The problem FC(L(TP), S, k, !) is to find, among every set P of up to k tree
patterns in {p ∈ TP | L(p) ∩ S �= ∅} where S ⊆ L(P), for one that minimizes
card(

⋃
p∈P {t ∈ L(p) | ‖t‖ ≤ !}).

(3) MINL(L(TP), S, k)={P ⊆ TP | P is a solution for MINL(L(TP), S, k)}.
(4) FC(L(TP), S, k, !) = {P ⊆ TP | P is a solution for FC(L(TP), S, k, !)}.
The following result shows that it is possible to find an element of FC that is at
the same time an element of MINL. This result gives us the main motivation
for the present study.

Theorem 2 (Theorem 3 in [13]). Given a finite non-empty S ⊆ TPΣ and
k ∈ N+. Let C = {L ∈ L(TP) | L∩S �= ∅}. If there exists ! ∈ N such that every
language L ∈ Ck has a characteristic set SL of elements of size not larger than
! within Ck, then FC(L(TP), S, k, !) ⊆ MINL(L(TP), S, k).

Hence it suffices that we determine !, a sufficient size for the elements of the
characteristic sets for languages in L(TP)k, in order to obtain hypotheses that
possess the minimality of both FC and MINL. Note that in Theorem 2, the
characteristic sets required is only for within the class {L(p) ∈ L(TP) | L(p) ∩
S �= ∅}k. This class is considered in Section 5. We first examine the existence of
these characteristic sets.

312 Y.K. Ng and T. Shinohara

3 Existence of Characteristic Sets for Unions of
Languages in L(TP)

The following result, that shows that a characteristic set exists for every L ∈
L(TP)k within L(TP)k, follows from Theorem 8 in [18] and a result discov-
ered independently by Sato (Theorem 2.24 in [16]), Kobayashi and Yokomori
(Proposition 7 in [11]).

Theorem 3 ([18] and [16,11]). For every k ∈ N+, every language L ∈
L(TP)k has a characteristic set within L(TP)k.

By Theorem 3 and Theorem 2 in [13], the class L(TP)k can be inferred by a
learner that bases its conjecture completely on a computation of FC.

Regrettably, Theorem 3 does not hold in the case of unbounded unions. To
see this, let p be a tree pattern with at least one variable, and let S be any finite
subset of L(p). Now S itself is a union of card(S) tree pattern languages (each
of a single ground tree pattern), and hence not a characteristic set for L(p).
One might ask if the same problem would persist if we remove the ground tree
pattern languages from the class, that is, consider instead the class L(TP−TPΣ).
However, a simple analysis shows that if Σ contains any function of arity ≥
2, then the case is no different from that which allows ground tree pattern
languages. For example, let f be a function of arity 2, let p = f(x1, x2) and let
TP ′ = {f(x1, t) | t ∈ TPΣ}. Then every language L ∈ L(TP ′)∗ has L ⊂ L(p),
and for every S ⊆ L(p), there is a language in L(TP ′)∗ which includes S. (In
fact, this shows that L(TP − TPΣ)∗ is not inferable from positive examples.)
Conversely, if every function in Σ is of arity ≤ 1, then trivial characteristic sets
exist for languages in L(TP − TPΣ)∗.

Lemma 1. If Σ consists only of functions of arities ≤ 1, then for any finite
P ⊆ TP − TPΣ, S1(P) is a characteristic set for L(P) within L(TP − TPΣ)∗.

Proposition 4. A characteristic set exists for every language in L(TP−TPΣ)∗

if and only if every function in Σ is of arity ≤ 1.

4 Characteristic Sets Within Unions of Less Than
card(Σ) Languages

We first consider intuitively the task of finding, for any two given tree patterns
p and q, an element in L(p) − L(q). In the following example, any tree pattern
obtained from p by replacing x1 with a function other than f cannot be refined
from q. While the same cannot be done for L(p)−L(q′), we note that it can be
done if x1 in q′ is first replaced with f(a, a), replicating the functions in p.

f
f

a a
x1

f
x1 f

x1 x2

f
x1 f

x1 a
p q q′

Characteristic Sets for Inferring the Unions of the Tree Pattern Languages 313

Out of this consideration, we make the following definition. For any p, q ∈
TP , q is said to dutifully extend p just in case if we take each of the variable
occurrences in p to be mutually independent, then p refines to q. More intuitively,
q dutifully extends p just in case if a function c occurs at position ε in p, c also
occurs at position ε in q. In the example below, q dutifully extends p but q′ and
q′′ do not. Note that q # p ⇒ q dutifully extends p.

f
f

a x1

x1

f
f

a x1

g
x1 x2

f
f

x1 x2

x3

f
x1 x2

p q q′ q′′

We now attempt to find a most general refinement of a tree pattern q that
dutifully extends a tree pattern p. Consider the following method, the output of
which we denote by mge{q ⊇ p}.
dutifully extend p
1. Set mge{q ⊇ p} to q.
2. If there is any function in mge{q ⊇ p} that conflicts with functions in p,

output “failure”.
3. While there exists a function node, v say, in p where no corresponding

function occurs at pos(v) in mge{q ⊇ p}.
3.1 Find a variable node u in mge{q ⊇ p} at some prefixes of pos(v).

If no such variable node exists in mge{q ⊇ p}, output “failure”.
3.2 Let t be the tree pattern at pos(u) in p. Replace each variable

occurrence in t with a distinct variable not in mge{q ⊇ p} and let t′

denote the resultant tree pattern.
3.3 Let x be the root symbol of u. Substitute each occurrence of x in

mge{q ⊇ p} with t′. If this results in any function in mge{q ⊇ p} to
conflict with functions in p, output “failure”.

4. Output mge{q ⊇ p}.
It is clear that (1) mge{q ⊇ p} # q, and (2) mge{q ⊇ p} dutifully extends p.

Intuitively, the method preserves the generality of mge{q ⊇ p}, by making only
the necessary refinements to q to dutifully extend p (in steps 3.2∼3.3). From this,
we can verify that L(p)∩L(q) ⊆ mge{q ⊇ p}. It can also be shown that (1) there
exists exactly one such mge{q ⊇ p}, unique to renaming of variables, and (2) if
the method outputs “failure”, then no refinement of q dutifully extends p. Since
mge{q ⊇ p} agrees with p in both structure and functions, any discrepencies
between mge{q ⊇ p} and p can involve only variables in p.

We now find a sufficient size to the elements of the characteristic sets for the
unions of the tree pattern languages, when the number of languages allowed in
a union is less than the alphabet size.

Lemma 5. Let p ∈ TP and Q ⊆ TP be where card(Q) < card(Σ). If {p} �� Q
then there exists a ground tree pattern t ∈ L(p)−L(Q) of size (1+α)‖p‖, where
α is the largest arity of the functions in Σ.

314 Y.K. Ng and T. Shinohara

Proof. Without loss of generality we assume that for each q ∈ Q, either q duti-
fully extends p, or there exists some q′ # q that dutifully extends p, since other-
wise L(p) ∩ L(q) = ∅. Let Q′ = {mge{q ⊇ p} | q ∈ Q}. Note that card(Q′) < k
and L(p) ∩ L(Q) = L(p) ∩ L(Q′). We now show that any such q′ ∈ Q′ must be
of one of two possible forms. Since q′ dutifully extends p, ‖q′‖ ≥ ‖p‖. Now since
for every q ∈ Q, p �# q, one of the following cases must apply for q′ ∈ Q′:

(C1) A variable x occurs in p at a position where a function c occurs in q′. In
this case we say that x and c witnesses that q′ fulfills (C1).

(C2) A variable x occurs in p at a position where a variable y occurs in q′,
however y also occurs in q′ at a position where a variable x′ �= x occurs in p. In
this case we say that x witnesses that q′ fulfills (C2). In the following example,
the left-most occurrence of x1 in p witnesses that q′ fulfills (C2).

f
f

x1 x1

f
x2 x2

f

x1 x1

f
f

x1 x2

f
x1 x2

p q ⇒ q′

This is how we construct a ground tree pattern that cannot be refined from
the tree patterns that fulfill (C1). Let variable x in p (with some c ∈ Σ) witness
that the tree patterns Qx ⊆ Q′ fulfill (C1), and let Σx ⊆ Σ be such that for each
q′ ∈ Qx, there exists c ∈ Σx that witnesses that q′ fulfills (C1) as witnessed by x
and c. Clearly, no q′ ∈ Qx refines to the tree pattern obtained by replacing every
occurrence of x in p with a symbol in Σ − Σx. For the tree patterns fulfilling
(C2) we do the following. Let X be a collection of the variables occurring in p
such that for each q′ that fulfills (C2), there is a variable in X that witnesses it.
If we replace each of the variables in X with a distinct function, and all other
variables that occur in p but is not in X with yet another distinct function, then
all the q′ fulfilling (C2) cannot refine to the resultant tree pattern. The following
algorithm find t does exactly these.

We first construct a basic set of ground tree patterns of at most height 1, for
use in find t. Let a be an arbitrary constant in Σ. For each function f ∈ Σ,
let fa = f if f is a constant, otherwise fa is tree pattern with root symbol f
and the constant a as children. We let Λa = {fa | f ∈ Σ}. It is clear that
card(Λa) = card(Σ).

find t
1. Let C = Σ.
2. For each q′ ∈ Q′, find a variable x in p that witnesses that q′ fulfills (C1).

Let X be the set of all such x found.
3. While Q′ is not empty,

3.1 For each x ∈ X , let Qx be the set of all q′ ∈ Q′ with a function
occurring at some position where x occurs at in p.

3.2 For each q′ ∈ Qx find one function c which occurs at a position where
x occurs at in p. Let C′ be the collection of all such c found.

3.3 Replace x with an element fa ∈ Λa where f ∈ C − C′ (this is possible
because card(C′) ≤ card(Q′) < card(C)), and remove f from C.

3.4 Remove Qx from Q′.

Characteristic Sets for Inferring the Unions of the Tree Pattern Languages 315

4. Let Q′′ be the set of all q′ that fulfills (C2) but not (C1).
5. For each q′ ∈ Q′′, find a variable x in p that witnesses that q′ fulfills (C2).

Let X be the set of all such x found.
5.1 If x ∈ X has not already been replaced, replace x with an element

fa ∈ Λa where f ∈ C, and remove f from C.
6. Replace all remaining variables in p with an element fa ∈ Λa where f ∈ C.

(Note that at most card(Q′) < card(Σ) elements have been removed from C
prior to this step.)

7. Let t be the resultant pattern. Output t.

Since there are at most ‖p‖ variable occurrences in p, the total number of
terms added to p in find t is at most α‖p‖. Since t �# q′ for any q′ ∈ Q′,
t �∈ L(q′) for each q′ ∈ Q′. Clearly, t ∈ L(p) by the substitutions done in find t,
but since t �∈ L(Q′), t �∈ L(Q).

Theorem 6. Let α be the largest arity of the functions in Σ and let k <
card(Σ). For every collection of less than k tree patterns P,Q ⊆ TP , the follow-
ing three statements are equivalent:
(i) Sα(P) ⊆ L(Q), (ii) P � Q, (iii) L(P) ⊆ L(Q).

Proof. (ii)⇒(iii) by definition. (iii)⇒(i) is immediate. (i)⇒(ii) by Lemma 5.

The equivalence of (i) and (iii) says that for any set of less than k tree patterns
P ⊆ TP , Sα(P) is a characteristic set of L(P) within L(TP)k.

Theorem 7. Let α be the largest arity of the functions in Σ. For every finite,
non-empty S ⊆ TPΣ and k < card(Σ), FC(L(TP), S, k,max({(1 + α)‖t‖ | t ∈
S})) ⊆ MINL(L(TP), S, k).

5 Characteristic Sets Within {L ∈ L(TP) | L ∩ S �= ∅}k

We now remove the alphabet size restriction placed on the number of unions
allowed, and find, for any tree pattern language L, a sufficient size for con-
structing a characteristic set of L of only elements of up to that size, within
{L ∈ L(TP) | L ∩ S �= ∅}k, with the condition that there there is at least a
function of arity ≥ 2 in Σ.

A node u in q exceeds a node v in p just in case pos(v) is a prefix of pos(u).
u properly exceeds v just in case u exceeds v but v does not exceed u. A tree
pattern p exceeds a tree pattern q just in case no leaf node in p is properly
exceeded by some node in q.

Example 2. Let Σ = {a, f, g} where a is a constant, f is of arity 2, and g is
of arity 3. Let p = f(f(a, a), x1) and q = g(x1, a, f(x2, x3)). Then, p exceeds q.

p q

f

f

a a

x1

g

x1 a f

x2 x3

316 Y.K. Ng and T. Shinohara

Note that the notion of “exceed” is much easier to fulfill than the notion of
“dutifully extend”. For any p and q where p exceeds q, p �# q implies certain
relationship between p and mge{q ⊇ p}, which we will demonstrate in Lemma 9.

Lemma 8. Let p, q ∈ TP be such that no node in q properly exceeds any node
of a variable in p, then L(p) ∩ L(q) �= ∅ ⇒ p exceeds q.

Proof. If any node in q properly exceeds any node of a constant, then clearly
L(q) ∩ L(p) = ∅. Hence L(q) ∩ L(p) �= ∅ ⇒ no node q exceeds node of constants
or variables in p ⇒ p exceeds q.

Lemma 9. Suppose Σ contains at least one function of arity ≥ 2. Let p ∈ TP
and finite set Q ⊆ TP be such that (1) no node in any q ∈ Q properly exceeds
any node of a variable in p, and (2) {p} �� Q, then there exists w ∈ Sd(p)−L(Q),
where d = 〈‖p‖+ card(Q)〉Σ.

Proof. By Lemma 8, without loss of generality we assume p exceeds each q ∈
Q. Let Q′ = {mge{q ⊇ p} | q ∈ Q}. It is clear that L(p) ∩ L(Q′) = ∅ ⇒
L(p) ∩ L(Q) = ∅.

We will now show that any q′ ∈ Q′ must be of one of a few forms, which will
allow us to construct a w ∈ L(p) − ⋃

q′∈Q′ L(q′). Since p exceeds q and p �# q,
one of the following cases must apply for q′ = mge{q ⊇ p}:

(C1) A variable x in p occurs at a position where a ground tree pattern t
is found in q′. The following example shows how such a q′ comes to be. Let
TQ ⊆ TPΣ be such that for each q′ ∈ Q′ where (C1) is true, there is a t ∈ TQ

which witnesses this.

f
f

a a
x

f

x x

f
f

a a
f

a a

p q ⇒ q′

(C2) A variable x in p occurs at a position where at the same position in q′ we
find a variable which has another occurrence at a position which is not occupied
by x in p, as demonstrated in the following example with the variable x2 in p.

f
f

x1 a
f

x2 a

f

x1 x1

f
f

x1 a
f

x1 a

p q ⇒ q′

(C3) A variable x in p occurs at a position where in q′ we find a variable
which has another occurrence at a node extending a variable leaf in p, as in the
following example with the variable x1 in p.

f
f

x1 a
x1 or x2

f

x1 x1

f
f

x1 a
f

x1 a

p q ⇒ q′

Characteristic Sets for Inferring the Unions of the Tree Pattern Languages 317

Suppose there are n distinct variables in p. Let T ⊆ TPΣ be a set of n tree
patterns not in TQ, each of the same height (this is possible by Proposition 1).
Hence such T consists of trees of up to size 〈n + card(Q)〉Σ . Since there are at
most ‖p‖ variables in p, each t ∈ T is of size at most 〈‖p‖+ card(Q)〉Σ .

Let w be a tree obtained by replacing each distinct variable in p with a
different tree in T . We claim that w �# q′. The case of (C1) is evident from that
the variable corresponding to some t ∈ TQ is replaced with a t′ �∈ TQ. The case
of (C2) is evident from that every variable in p has been replaced with a different
tree pattern. The case of (C3) is from that w is structurally impossible for q′

to refine to, as observed by the height of the tree patterns required in variable
substitutions. Hence no q′ refines to w. Since w �∈ L(q′) for all q′ ∈ Q′, we have
w �∈ L(Q′) ⇒ w �∈ L(Q).

The next Theorem uses Lemma 9 to show how to find, given any p ∈ TP and
Q ⊆ TP where L(p)− L(Q) �= ∅, a finite set S ⊆ L(p) where S �⊆ L(Q).

Theorem 10. Suppose Σ contains at least one function of arity ≥ 2, and let
α be the largest arity of the functions in Σ. Given finite, non-empty S ⊆ TPΣ,
p ∈ TP and finite set Q ⊆ {t ∈ TP | L(t) ∩ S �= ∅}. Let h = max({|s| | s ∈ S}).
Then either L(p) ⊆ L(Q), or there exists w ∈ S〈‖p‖(1+αh)+card(Q)〉Σ

(p)− L(Q).

Proof. Let Λ be the set of all constants, and tree patterns of height 1 with only
variables as children. For any pattern p, let Θ(p) denote the set of all the unique
tree patterns {pθ | θ is a substitution that maps each variable in p with a t ∈ Λ}.

One can show that:

– (A) L(p) = L(Θ(p)).

and verify that:

– (B) For any tree pattern t let minvardepth(t) = min({|pos(x)| | x is a vari-
able node in t}), then for all tree pattern p′ ∈ Θ(p), minvardepth(p′) =
minvardepth(p) + 1. That is, intuitively, the depth of each variable node
increments by 1.

Consider the following computation which, given a tree pattern p and a set
of tree patterns Q, decides if L(p) ⊆ L(Q).

stage 0:
Let G0 = {p}. Go to stage 1.

stage l:
If there exists some ground tree pattern in Gl−1 not refinable from some
q ∈ Q, output false.

Remove from Gl−1 the patterns that can be refined from some q ∈ Q.
If Gl−1 = ∅, output true.
Let Gl =

⋃
p′∈Gl−1

Θ(p′), and go to stage l+ 1.

It is clear that if the computation halts at any stage and outputs false, L(p) �⊆
L(Q). By Condition (A), if the computation halts at any stage and outputs true,
L(p) ⊆ L(Q). Note that:

318 Y.K. Ng and T. Shinohara

– (C) At each level l, each variable in every tree pattern p′ ∈ Gl is at depth at
least l (by Condition (B)).

Assume that the computation continues pass stage h. By Condition (C), at
stage h, every pattern in Gh has variables at depth ≥ h (that is, exactly h in the
case that minvardepth(p) = 0). On the other hand, for each q ∈ Q, L(q)∩S �= ∅
⇒ no node in q can be at a depth larger than h. Hence every variable node for any
p′ ∈ Gh must exceed its corresponding node in any q ∈ Q (if such corresponding
nodes exist), and fulfills condition (1) of Lemma 9.

Let p′ ∈ Gh such that {p′} �� Q (such p′ exists by our assumption that the
computation passes stage h). By Lemma 9, there exists w ∈ Sd(p′)−L(q) where
d = 〈‖p′‖+card(Q)〉Σ . Since there are at most ‖p‖ variables in p, ‖p′‖ is at most
‖p‖(1 + αh).

Corollary 1. Suppose Σ contains at least one function of arity ≥ 2, and let
α be the largest arity of the functions in Σ. Given finite non-empty S ⊆ TPΣ,
k ∈ N+ and p ∈ TP . Let h = max({|s| | s ∈ S}). Then S〈‖p‖(1+αh)+k〉Σ

(p) is a
characteristic set for L(p) within {L ∈ L(TP) | L ∩ S �= ∅}k.

This gives us our main result.

Theorem 11. Suppose Σ contains at least one function of arity ≥ 2. Given
finite non-empty S ⊆ TPΣ and k ∈ N+. Let h = max({|t| | t ∈ S}), s =
max({‖t‖ | t ∈ S}), and let α be the largest arity of the functions in Σ. Then
FC(L(TP), S, k, s(1 + d)) ⊆ MINL(L(TP), S, k) where d = 〈s(1 + αh) + k〉Σ.

6 Conclusions

We have seen how hypotheses fulfilling both the MINL and FC criteria of
minimality can be obtained for the bounded unions of the tree pattern languages.
It remains to be seen whether such hypotheses can be obtained efficiently. One of
the ways to achieve this is to generate a set of candidate (unions of) tree patterns
(note that such a candidate set is finite since for any finite set of examples, there
are only finitely many tree pattern languages that intersect non-emptily with
it), and then count the number of elements in these languages of up to the size
required in Theorem 7 (or 11, if the number of unions is less than the alphabet
size). Such countings, if computable efficiently, will help in the search for the
minimal hypotheses discussed.

Acknowledgements. The authors would like to thank the anonymous refer-
ees for corrections and valuable comments, and Prof. Kouichi Hirata for many
involved discussions. Yen Kaow Ng is supported by the Japanese Government
Scholarship of the Ministry of Education, Science, Sports, Culture and Technol-
ogy of Japan.

Characteristic Sets for Inferring the Unions of the Tree Pattern Languages 319

References

1. D. Angluin. Inductive inference of formal languages from positive data. Information
and Control, 45:117–135, 1980.

2. D. Angluin. Inference of reversible languages. J. of the ACM, 29:741–765, 1982.
3. H. Arimura, H. Ishizaka, and T. Shinohara. Learning unions of tree patterns using

queries. Theoretical Computer Science, 185(1):47–62, 1997.
4. H. Arimura, T. Shinohara, and S. Otsuki. A polynomial time algorithm for finding

finite unions of tree pattern languages. In Proc. of Nonmonotonic and Inductive
Logic, Second Int. Workshop, volume 659 of LNAI, pages 118–131. Springer-Verlag,
1991.

5. H. Arimura, T. Shinohara, and S. Otsuki. Polynomial time inference of unions
of two tree pattern languages. IEICE Transactions on Information and Systems,
E75-D(7):426–434, 1992.

6. H. Arimura, T. Shinohara, and S. Otsuki. Finding minimal generalizations for
unions of pattern languages and its application to inductive inference from positive
data. In Proc. of STACS 94, 11th Annual Symposium on Theoretical Aspects of
Computer Science, volume 775 of LNCS, pages 649–660. Springer-Verlag, 1994.

7. H. Arimura, T. Shinohara, S. Otsuki, and H. Ishizaka. A generalization of the least
general generalization. Machine Intelligence 13, 13:59–85, 1994.

8. C. Chan, M. Garofalakis, and R. Rastogi. RE-tree: an efficient index structure for
regular expressions. The VLDB Journal, 12(2):102–119, 2003.

9. E. M. Gold. Language identification in the limit. Information and Control, 10:447–
474, 1967.

10. W3C XML Core Working Group. Extensible Markup Language (XML) 1.0 (Third
Edition). W3C Recommendation, 2004.

11. S. Kobayashi and T. Yokomori. Identifiability of subspaces and homomorphic
images of zero-reversible languages. In Proc. of Algorithmic Learning Theory, 8th
Int. Conf., ALT’97, volume 1316 of LNAI, pages 48–61. Springer-Verlag, 1997.

12. Y. K. Ng, H. Ono, and T. Shinohara. Measuring over-generalization in the minimal
multiple generalizations of biosequences. In Proc. of Discovery Science, 8th Int.
Conf., DS 2005, volume 3735 of LNAI, pages 176–188. Springer-Verlag, 2005.

13. Y. K. Ng and T. Shinohara. Inferring unions of the pattern languages by the most
fitting covers. In Proc. of Algorithmic Learning Theory, 16th Int. Conf., ALT 2005,
volume 3734 of LNAI, pages 269–282. Springer-Verlag, 2005.

14. Y. K. Ng and T. Shinohara. Finding consensus patterns in very scarce biose-
quence samples from their minimal multiple generalizations. In Proc. of Advances
in Knowledge Discovery and Data Mining, 10th Pacific-Asia Conf., PAKDD 2006,
volume 3918 of LNAI, pages 540–545. Springer-Verlag, 2006.

15. G.D. Plotkin. A note on inductive generalization. In Machine Intelligence, vol-
ume 5, pages 153–163. Edinburgh University Press, 1970.

16. M. Sato. Inductive inference of formal languages. Bulletin of Informatics and
Cybernetics, 27(1):85–106, 1995.

17. T. Shinohara. Polynomial time inference of extended regular pattern languages. In
RIMS Symposia on Software Science and Engineering, Kyoto, Japan, volume 147
of LNCS, pages 115–127. Springer-Verlag, 1982.

18. K. Wright. Identification of unions of languages drawn from an identifiable class. In
Proc. of the Second Annual Workshop on Computational Learning Theory, pages
328–333. Morgan Kaufmann, 1989.

Learning Deterministic DEC Grammars Is
Learning Rational Numbers

Pieter Adriaans

Department of Computer Science,
University of Amsterdam,

Kruislaan 419, 1098VA Amsterdam
pietera@science.uva.nl

http://www.uva.nl

Abstract. Below I show that the class of strings that can be learned by
a deterministic DEC grammar is exactly the class of rational numbers
between 0 and 1. I call this the class of semi-periodic or rational strings.
Dynamically Expanding Context (Dec) grammars were introduced by
Kohonen in order to model speech signals ([8]). They can be learned in
quadratic time in the size of the grammar. They have been used success-
fully in the automatic generation and analysis of music ([7], [5], [6]).

1 DEC Grammars

Kohonen [8] originally developed the idea of Dynamically Expanding Context
(DEC) grammars. DEC grammars are interesting because they are very easy to
learn (polynomial complexity) and they have interesting potential applications.
They have been applied successfully to, among other things, musical composition
([7], [6]). Adriaans en van Dungen [5] have developed an implementation of k-
DEC grammars that can be used for real time online learning1. k-DEC grammars
are powerful enough to produce a subjectively acceptable representation of the
aspects of the style of a composer like Bach. Yet, it is not even clear whether
DEC grammars in their pure deterministic form are grammars in the proper
sense of the word, since each grammar only recognizes one infinite string. In
this context the DEC languages are much more restricted than the so-called
ω-languages that have been studied by various authors ([4], [3], [2], [1]). The
basic idea behind DEC-grammars is the notion that the occurrence of a symbol
in a string is determined by its predecessors. A DEC-grammar consists of rules
that determine which symbol can occur in which context. A context is a string
of symbols that precedes a symbol. A rule of a DEC-grammar has the following
form:

X ⇒ y

Here X is a context, y is a symbol. These rules can be used to generate a string
of symbols: in contextX write symbol y. We will study a limited set of languages
1 Musical compositions and improvisations made with the Instant Composer Tool

(ICT), based on DEC grammars, created by Adriaans and Van Dungen can be
downloaded http://www.pieter-adriaans.com/music.html

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 320–326, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Learning Deterministic DEC Grammars Is Learning Rational Numbers 321

generated by deterministic DEC-grammars. These grammars generate finite or
infinite strings. Use S for a start symbol. The infinite string:

Sabababababababab . . .

is described by the DEC-grammar:

S ⇒ a, a⇒ b, b⇒ a

The string:
Sabdbebab

is described by the DEC-grammar:

S ⇒ a, a⇒ b, ab⇒ d, d⇒ b, db⇒ e, e⇒ b, eb⇒ a

If we use this grammar to generate a string starting from the symbol S we get:

Sabdbebabdbebabdbebabdbebabdbebabdbebabdbeb . . .

The algorithm to learn a DEC-grammar (i.e. to find a DEC-Grammar which de-
scribes a particular string) is very simple. Say you want to find a DEC-Grammar
for the string Sabae. You start to read the first symbol of the string, and you
form the rule: S ⇒ a. Then you read the next symbol (which is b) and you form
the rule: a⇒ b You proceed along these lines, generating rules, until you obtain
the grammar:

S ⇒ a, a⇒ b, b⇒ a, a⇒ e

This grammar is not deterministic anymore, because there are two possible suc-
cessors of a, namely b and e. In order to repair this you update the rules in the
grammar that violate the deterministic structure by expanding their context as
necessary: (a⇒ b) is replaced by (Sa⇒ b) and (a⇒ e) is replaced by (ba⇒ e).
The final grammar becomes:

S ⇒ a, Sa⇒ b, b⇒ a ba⇒ e

This grammar only generates a finite string, because there is no rule of the form
. . . e ⇒ From these examples it is clear that DEC grammars do not always
distinguish between finite and infinite strings. In order to avoid problems with
finite strings I will in the rest of the paper only deal with infinite strings. Finite
strings can be modelled using a special blank symbol −. The string Sabae then
becomes Sabae−−− . . . and the corresponding grammar is:

S ⇒ a, Sa⇒ b, b⇒ a ba⇒ e e⇒ −, − ⇒ −

1.1 Numbers and Strings

Intuitively an infinite string with a finite DEC grammar must have a repeating
pattern. To formalize this intuition we turn our attention to number theory. We
use the standard number classes:

322 P. Adriaans

Definition 1. N (Z+) is the set of natural numbers 1, 2, 3 . . .
Z the set of whole numbers or integers . . .− 3,−2,−1, 0, 1, 2, 3
Q the set of rational numbers (expressible as p/q where p and q are integers),
R the set of real numbers. An algebraic number is expressible as the root of a
polynomial with integer coefficients. Non-algebraic numbers are transcendental.

We need corresponding notions for strings. Let A be a finite alphabet. We define:

– A∗: the set of all finite strings consisting of elements of A.
– Ak: the set of all strings of length k consisting of elements of A.
– A<k: the set of all strings of length less than k consisting of elements of A.
– A∞: the set of all infinite strings consisting of elements of A.
– [0, 1) ⊂ R The interval between 0 (included) and 1 (not included).

Important are the set of binary strings {0, 1}∗ and the set of decimal strings
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗.
Fact 1. There is a one to one correspondence between elements of A∞ and
[0, 1) ⊂ R. Each element of A∞ corresponds with a unique fraction in a number
system with base (radix) A.2

Take the set of decimal fractions x such that 0 ≤ x < 1 and the associated set
of strings {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∞. There are terminating decimals like 5/8 =
0.625 and non-terminating decimals like 1/3 = 0.333 . . . With each terminating
decimal I will associate an infinite string with a tail of zero’s: like 5/8 = 0.625000
The non-terminating decimals can be periodic, i.e. 2/7 = 285714 . . . where the
block of digits 285714 repeats itself indefinitely.

We will call a decimal fraction 0.n semi-periodic if it is either finite or periodic
with an initial arbitrary segment.

Theorem 2. 0.n is a semi-periodic decimal fraction if and only if 0.n is rational.

Proof: (If) We first take the simple periodic case. Suppose 0.n is a periodic
decimal with a repeating block d with length |d| = l. In this case 0.n = d/(10l−1)
which is a rational number. The semi-periodic case follows from the fact that Q
is closed for addition and subtraction.
(Only if) Suppose 0.n is rational. We have p/q = 0.n. Consider the standard
division algorithm. A division by q will have at most q − 1 rest values. Dividing
by q therefore is either terminating or has a repeating block of at most q − 1
digits, i.e. it is semi-periodic.

Definition 2. Suppose 0.n is a semi-periodic decimal fraction. The string n
in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∞, with possibly an infinite tail of zero’s, is called a
semi-periodic or rational string.

Definition 3. A deterministic connected DEC grammar is a triple < Σ,P, S >
where:
2 Strictly spoken the one to one correspondence is between representations of elements

of A∞ and [0, 1) ⊂ R. Note that 0.9999... = 1.0.

Learning Deterministic DEC Grammars Is Learning Rational Numbers 323

– Σ is a finite set of terminals.
– S ∈ N is a start symbol.
– P is a finite set consisting of the initial rule S ⇒ ξ and a finite set of

concatenation rules of the form η ⇒ ξ, where ξ ∈ Σ and η ∈ Σ∗.

If we have a string δ •η then the rule η ⇒ ξ allows us to create δ •η •ξ (δ ∈ Σ∗).
The rules η ⇒ ξ are deterministic, connected and minimal.

– Deterministic: no η is a prefix of any other η′ nor identical.
– Connected: for each finite s string that can be constructed from the start

symbol there is a rule η ⇒ η • ξ such that η is a postfix of s.
– Minimal: there are no superfluous rules.

Each DEC grammar generates a unique infinite string from the initial symbol.
Let • be a concatenation operator and let Si (i ∈ N) be the finite string S • s1 •
. . . • si.

An algorithm for learning deterministic DEC grammars
Start

Input: An infinite string s = S • s1 • s2 • s3 • . . .
P =: {S ⇒ S • s1}
c =: 1
Loop

s = Sc−1 • sc • sc+1 • . . . (Sc−1 possibly empty)
P ′ =: P ∪ {sc ⇒ sc+1}
P =: make-deterministic(P ′, Sc+1)
c =: c+ 1

EndLoop
End

make-deterministic(P, Sc)
If

There are two rules η ⇒ ξ and η′ ⇒ ξ’ such that
either η′ = η or η′ is a proper prefix of η.

then
Do
If

η′ is a proper prefix of η
then

P=: expand-context(P, Sc, η′ ⇒ ξ’)
If

η′ = η
then

P=: expand-context(P, Sc, η′ ⇒ ξ’)
P=: expand-context(P, Sc, η ⇒ ξ)

Od
else

324 P. Adriaans

Do nothing

expand-context(P, Sc, η ⇒ ξ)
Do

Sc = Si • si+1 • η • ξ • δ
(ξ and si+1 in Σ, Si and δ in Σ∗ and possibly empty)
P ′ =: (P − (η ⇒ ξ)) ∪ (si+1 • η ⇒ ξ)
make-deterministic(P’, Sc)

Od

Definition 4. An infinite string s can be learned by a deterministic DEC gram-
mar if there is a constant c such that after scanning sc the rule set P stabilizes,
i.e. P has a finite set of rules with finite heads.

Theorem 3. A string can be learned by a deterministic DEC grammar if and
only if it is semi-periodic.

Proof: (If) Suppose a string s is deterministic DEC learnable. Since the rules in
P in the limit are finite deterministic and connected there must be a point in s
where the rules start to loop, i.e. s must be semi-periodic.
(Only if) Suppose s is semi-periodic with an indefinitely repeating block d after
some sc for a constant c. Take k = 2c. Run k loops of the learning algorithm.
Suppose that in the k-th loop we construct a rule η ⇒ sk.
Case 1) |η| ≤ c. In this case η is a suffix of the periodic part of Sk. Therefore it
will not be updated in consecutive loops.
Case 2) |η| > c. Here η consists of three parts η = si •µ • ν. (µ, ν ∈ Σ∗, si ∈ Σ)
such that ν lies in the periodic part of Sk and µ in the non-periodic part. By its
construction P will also contain a second rule sj • µ • ν ⇒ sl (sk �= sl, si �= sj).
This is a contradiction since si • µ • ν is a suffix of Sk − 1 that is longer than
|Sk|/2. So after k loops only rules with heads in the periodic part of the string
will be created. The number of prefix free rules of this form that can exist is d.
Therefore P will stabilize after at most k loops.

Lemma 1. Suppose s is semi-periodic with an indefinitely repeating block d after
some sc for a constant c. An upperbound for the complexity of learning a DEC
grammar for s is O(c′k2) where c′ is constant and k = 2c.

The proof of this lemma is immediate clear from the proof of theorem 3 and the
observation that the algorithm has to scan a prefix of a length of maximally k
of the string s at each pass of the central loop.

Lemma 2. An infinite string is deterministic DEC learnable if and only if there
exists a rational number that describes that string.

This last lemma, that is a direct consequence of theorem 3, is a beautiful example
of learning by compression. Each deterministic DEC grammar can be described
by a rational number in a number system with the lexicon as its base.

To show that there are strings with short descriptions that are non periodic
one only has to consider irrational numbers. The decimal expansion of the square

Learning Deterministic DEC Grammars Is Learning Rational Numbers 325

root of 2 will be non-periodic. This holds in general for the class of so-called
algebraic numbers: numbers that can be expressed as the root of a polynomial
with integer coefficients. In this case x2 − 2 = 0. The decimal expansions of
transcendental numbers like e and π are also non-periodic but they have no
algebraic definition.

1.2 Conclusion and Further Work

I have shown that DEC grammars can be learned easily in quadratic time and I
have shown that the class of strings that can be learned in this way is equal to
the class of rational numbers between 0 and 1. I believe that DEC grammars are
interesting because they represent one of the simplest string analysis methods
that I know. Further work would involve a deeper analysis of the possibilities
to model musical styles. Another line of research would be aiming at a better
understanding of the relation between various ω-languages and variants of DEC
grammars. A specific deterministic DEC grammar only recognizes one infinite
string. The whole class of strings that is recognized by the whole class of deter-
ministic DEC grammars is exactly Q+. The concept of DEC grammars might
be weakened in various way in order to make the recognition of richer language
classes possible. All these definitions focus on the structure of the rule set P :

Definition 5. A non-deterministic DEC grammar is a DEC grammar in which
the rule set P is non-deterministic, i.e. P is a finite set consisting of the initial
rule S ⇒ ξ and a finite set of concatenation rules of the form η ⇒ ξ, where
ξ ∈ Σ and η ∈ Σ∗, and where we can have two rules η ⇒ ξ and η ⇒ ξ′ such
that ξ �= ξ′

A stochastic DEC grammar is a tuple < Σ,P,P ,S > such that < Σ,P, S > is
a non-deterministic DEC grammar and P is a probability distribution over P .
A k-DEC grammar is a non-deterministic DEC grammar for which the rules in
P of the form η ⇒ ξ satisfy |η| ≤ k, i.e. the expansion of the contexts is limited
to a ceiling k.

A detailed analysis of how these variants of DEC grammars behave in Büchi
automata would be useful.

Acknowledgments. This project is supported by a BSIK grant from the Dutch
Ministry of Education, Culture and Science (OC&W) and is part of the ICT
innovation program of the Ministry of Economic Affairs (EZ).

References

1. de La Higuera C. and Janodet J. C., Inference of W-languages from prefixes, The-
oretical Computer Science, vol. 313, 2, (2004), 295–312

2. Thomas, D. G., Humrosia Begam M., Subramanian K. G., Gnanasekaran S., Learn-
ing of Regular Bi-omega Languages, ICGI ’02: Proceedings of the 6th International
Colloquium on Grammatical Inference, (2002), 283–292

326 P. Adriaans

3. Thomas W., Automata on infinite objects, Handbook of theoretical computer science
(vol. B): formal models and semantics, (1990), 133–191, MIT Press, Cambridge, MA,
USA

4. Staiger L., ω-languages, Handbook of formal languages, vol. 3: beyond words, (1997),
339–387, Springer-Verlag New York, Inc., New York, NY, USA

5. Adriaans P., van Dungen M., A method for automatically controlling electronic
musical devices by mean of real-time construction and search of a multi-level data
structure, European Patent no. 1.062 656, United States Patent 6313390, (2001)

6. Kohonen T., Method for controlling an electronic musical device by utilizing search
arguments and rules to generate digital code sequences, United States Patent
5418323, (1995)

7. Kohonen T., Laine P., Tiits K., Torkkola K., A Nonheuristic Automatic Composing
Method, Music and Connectionism, MIT press, Peter M. Todd, D. Gareth Loy
(eds.), (1991), 229–242

8. T. Kohonen, Dynamically Expanding Context, with application to the correction
of symbol strings in the recognition of continuous speech, Proceedings of the 8th
International Conference on Pattern Recognition (8th ICPR), Paris France, (1986),
1148–1151

Iso-array Acceptors and Learning

T. Kalyani1, V.R. Dare2, D.G. Thomas2, and T. Robinson2

1 Dept. of Mathematics, St. Joseph’s College of Engineering, Chennai - 119, India
dgthomasmcc@yahoo.com

2 Dept. of Mathematics, Madras Christian College, Tambaram, Chennai - 59, India
kalphd02@yahoo.com

Abstract. The notions of iso-arrays, iso-pictures, local iso-picture lan-
guages and recognizable iso-picture languages have been introduced and
studied in [6]. In [6] we have provided an algorithm to learn local iso-
picture languages through identification in the limit using positive data.
In this paper, we construct a two-dimensional on-line tessellation au-
tomaton to recognize iso-picture languages and present an algorithm to
learn recognizable iso-picture languages from positive data and restricted
subset queries.

Keywords: Learning, iso-picture languages, recognizable iso-picture
languages, two-dimensional on-line tessellation automaton.

1 Introduction

The first attempt at formalizing the concept of finite state recognizability for
two-dimensional languages can be attributed to Blum and Hewitt who in [3]
introduced the notion of a four way automaton moving on a two-dimensional
tape as the natural extension of a one-dimensional two-way finite automaton.
Since this work, several papers have been devoted to the study of the families of
picture languages recognized by four-way automata and several other models of
machines that read two dimensional tapes have been defined [4].

On the other hand, machine learning has been of great interest and much
study has centered around the inductive inference of finite automata recognizing
linear strings [1,2,5,7,9]. In [8], learning of certain classes of two-dimensional
picture languages is considered.

Iso-arrays are made up of isosceles right angled triangles and an iso-picture
is a picture formed by catenating iso-arrays of same size. We introduced the no-
tion of iso-arrays, iso-pictures and iso-picture languages in [6]. A motivation for
this study is that one can generate some interesting iso-picture languages which
cannot be generated by earlier models available in the literature. In particu-
lar iso-picture languages include more picture languages like hexagonal picture
languages, rectangular picture languages, languages of rhombuses and triangles.
One application of the study of iso-picture languages is its use in the generation
of interesting kolam patterns. Another application of this study lies in the area
of tiling rectangular plane.

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 327–339, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

328 T. Kalyani et al.

In this paper we develop a recognizing device called two-dimensional on-line
tessellation automaton to recognize iso-picture languages and provide examples.
We have an interesting result that the class of all iso-picture languages recog-
nized by two-dimensional on-line tessellation automata is exactly the family of
iso-picture languages recognizable by iso-triangular tiling systems. We present a
polynomial time algorithm that learns the class of recognizable iso-picture lan-
guages from positive data with restricted subset queries. Our approach is similar
to the one that is proposed in [9].

2 Preliminaries

In this section we recall the notions of iso-pictures, iso-picture languages and
iso-triangular tiling systems proposed in [6].

Let Σ = {
����A
a

a

2
1 3a

, ����Bbb 13

b2

,
��
		Cc
3

2
1c

c

,

		
��D
d1
d3

d2 } be a finite set of labeled isosceles right
angled triangular tiles of dimensions 1√

2
, 1√

2
and 1 unit, obtained by intersecting

a unit square by its diagonals.

Definition 1. Consider a tile T ∈ {A,B,C,D}. The left neighbour of T is the
tile that occurs to the left side of T . This is denoted by N(l, T). The left up
neighbour of T is the tile that occurs to the left side of T and above it. This is
denoted by N(lu, T). Similarly N(ld, T), N(r, T), N(ru, T), N(rd, T), N(u, T)
and N(d, T) are respectively the left down, right, right up, right down, up and
down neighbours of T . It is possible that T does not have all the eight neighbours.
The eight directions are indicated in the following diagram. Suppose T = A.

d

r

rd

ru

u
lu

l

ld

Then N(r, A) = B, N(ru, A) = C, N(rd, A) = φ, N(l, A) = B,
N(lu, A) = D, N(ld, A) = φ, N(u,A) = φ, N(d,A) = B.
In a similar manner the neighbours of the tiles B,C and D can be defined.

Definition 2. An iso-array of size m(m ≥ 1) is an isosceles right-angled trian-
gular arrangement of elements of Σ, whose equal sides are denoted as S1 and
S3 and the unequal side as S2. It consists of m tiles along the side S2 and it
contains m2 gluable elements of Σ. Iso-arrays can be classified as U -iso-array,
D-iso-array, R-iso-array and L-iso-array, if tiles A,B,D and C are used in side
S2 respectively.

Iso-array Acceptors and Learning 329

S1

S2

BA A A
A A

A
B

B
S1S3

S2
A A

A

B B B
B B

B

S2

S3

S1 S3

S1

C
C

C

C
C

C S2S3 D
D

D
D

D

D

D

D
D

C
C

C

U3 D3 L3 R3

Fig. 1.

For example the U -iso-array of size 3 (U3), D-iso-array of size 3 (D3), L-iso-
array of size 3 (L3) and R-iso-array of size 3 (R3) are shown in Fig. 1.

Iso-arrays of same size can be catenated using the following catenation oper-
ations. Horizontal catenation ©− is defined between U and D iso-arrays of same
size. Right catenation ©/ is defined between any two gluable iso-arrays of same
size. This catenation includes the following:
(a) D ©/ U (b) U ©/ R (c) D ©/ L (d) R ©/ L.
In a similar way vertical ©| and left ©\ catenations can be defined.

Definition 3. Let Σ be a finite alphabet of iso-triangular tiles. An iso-picture
of size (n,m), n,m ≥ 1 over Σ is a picture formed by catenating n-iso-arrays of
size m. The number of tiles in any iso-picture of size (n,m) is nm2.

An element of an iso-picture p of size (n,m) is represented as p(i, j, k), where i is
the ith iso-array of the picture and j is the jth row of the ith iso-array and k is the
kth element of jth row of the ith iso-array, where i = 1, 2, . . . , n, j = 1, 2, . . . ,m
and k = 1, 2, . . . , 2j−1. The set of all iso-pictures over the alphabet Σ is denoted
by Σ∗∗

I . An iso-picture language L over Σ is a subset of Σ∗∗
I .

Definition 4. Let p be an iso-picture of size (n,m). We denote by Bn′,m′(p),
the set of all sub iso-pictures of p of size (n′,m′), where n′ ≤ n,m′ ≤ m. p̂ is an
iso-picture obtained by surrounding p with a special boundary symbols

���� ����

��

��
��, , ,#A #D#B #C

�∈ Σ.

Definition 5. An iso-picture language L ⊆ Σ∗∗
I is called local if there exists a

finite set θ of iso-arrays of size 2 over Σ ∪ { ���� ����

��

��
��, , ,#A #D#B #C

} such that
L = {p ∈ Σ∗∗

I /B1,2(p̂) ⊆ θ} and is denoted by L(θ).
The family of local iso-picture languages will be denoted by ILOC.
The iso-picture language of parallelograms over the tiles A, B is local and the
iso-picture language of rhombuses over the tiles A, B is non local.

Definition 6. Let p ∈ Σ∗∗
I be an iso-picture. Let Σ and Γ be two finite alphabets

and π : Γ → Σ be a mapping which we call, a projection. The projection by
mapping π of picture p is the picture p′ ∈ Σ∗∗

I such that p′(i, j, k) = π(p(i, j, k))
for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ 2j − 1, where (n,m) is the size of the
iso-picture. In this case p′ = π(p).

330 T. Kalyani et al.

Definition 7. Let L ⊂ Γ ∗∗
I be an iso-picture language. The projection by map-

ping π of L is the language L′ = {p′/p′ = π(p)∀p ∈ L} ⊆ Σ∗∗
I .

We will denote by π(L) the projection by mapping π of an iso picture language
L.

Definition 8. Let Σ be a finite alphabet. An iso-picture language L ⊆ Σ∗∗
I is

called recognizable if there exists a local iso-picture language L′ over an alphabet
Γ and a mapping π : Γ → Σ such that L = π(L′).

The family of all recognizable iso-picture languages will be denoted by IREC.

Definition 9. An iso-triangular tiling system IT is a 4-tuple (Σ,Γ, π, θ) where
Σ and Γ are two finite sets of symbols, π : Γ → Σ is a projection and θ is a set

of iso-arrays of size 2 over the alphabet Γ ∪ {��������,#A
#B

}.
Definition 10. An iso-picture language L ⊆ Σ∗∗

I is tiling recognizable if there
exists an iso-triangular tiling system IT = (Σ,Γ, π, θ) such that L = π(L′(θ)),
where L′(θ) is a local iso-picture language. We write L = L(IT), and we say
that L is the language recognized by IT . We denote by L(ITS) the family of all
iso-picture languages recognizable by iso-triangular tiling systems.

It is easy to see that IREC is exactly the family of iso-picture languages tiling
recognizable by iso-triangular tiling systems (L(ITS)). i.e., IREC = L(ITS).

Example 1.

θ={ A2

A2#B
#A

#A , ,, , , , ,B1 A2A2

A1 #A
#B #A B1

A1

A1B1 A2

A1

#AA2 #B
#A

A1A1 A2A2 A2B2

#B
#A A2

#A#B
#A

, ,, , , , ,B2 A1A1

A2

#A#A

A1
B1 A2 B1

A1

#AB1 A2

A1

#A#AA1 A1 B2#AA1

B2
A1

, ,, , , ,B1 #AA1

A1

A1 B2 B2
A2

A1A2 B2A1#A#A A1B1
A2A2A2

A2 A1 #A

#B B2

B1

B2

B2 B1 B2

#BB1, , , , , ,#B #BA2
B2

A1 #BA1
B1

#B B1A1
B1

B1 B1A2 A1 #B B1A2

B2 B1

B2

B1

B2 B1 #B

B2, , , , , ,B1 B2A2
B2

A2 #BA2
B2

#B B2#A
#B

B2 B2A2 A1 B2 B2 #B#A

B1 B2

B1

B2

B1 #B

, , , , ,#B B1#A
#B

A1 B1A1
B1

B1 #B#A
#B

B1 B1A1 #A #B

,

,

}#B

Let

Then L′ = L′(θ) is the local iso-picture language of rhombuses, where the diag-

onals are represented by the tiles ��A2 and ��
B2

and the tiles in the remaining

positions are represented by tiles ��A1 and ��
B1

, a member of which is shown
in Fig. 2.

Applying the projection π(A1) = π(A2) = A and π(B1) = π(B2) = B, we
get L = π(L′). Therefore L, the language of rhombuses over the iso-triangular
tiles A and B is a recognizable iso-picture language.

Iso-array Acceptors and Learning 331

#A

#A

#A

#A

#A

#A

#A

#A

#A

#A

#A
#B

#B

#B

#B

#B

#B

#B

#B

#B

#B

#B

#B

#B

#B

#B

#B

#B

#B#B

#B

#A

#A

#A

#A

#A

#A

#A

#A

#A

A2

A2

A2

A2
B2

B2

B2

B2

B2
A2 A2

B2
A2 A2
B2 B2

A1

A1 A1

A1

A1

A1 A1

A1

B1

B1

B1

B1

B1

B1B1

B1

Fig. 2.

3 Automata for Iso-picture Languages

We define a two-dimensional on-line tessellation automaton referred to as
IPOTA, to accept iso-picture languages. For simplicity we restrict the alphabet
to have two tiles. This study can be extended for the alphabet having four tiles.

Definition 11. A non-deterministic (deterministic) two-dimensional on-line
tessellation automaton (IPOTA) is A = (Σ,Q, I, F, δ) where Σ is an input

alphabet {
����A
a

a

2
1 3a

,
����Bbb 13

b2

}, Q is a finite set of states, I ⊆ Q is the set of initial
states, F ⊆ Q is the set of final states and δ : Q×Q×Σ→ 2Q (δ : Q×Q×Σ → Q)
is the transition function.

A run of A on an iso-picture p ∈ Σ∗∗
I consists of associating a state from the set

Q to each position (i, j, k) of p, such state is given by the transition function δ
and depends on the states already associated.

A computation by a two-dimensional on-line tessellation automaton (IPOTA)
on an iso-picture p of size (n,m), where pijk ∈ Σ, for i = 1, 2, . . . , n, j =

1, 2, . . . ,m, k = 1, 2, . . . , 2j − 1, and ��������,#A
#B

are symbols not in Σ is given
by the following algorithm.

Algorithm : Computation of a two-dimensional on-line tessellation automaton
(IPOTA) to accept an iso-picture p of size (n,m).

Procedure :

1. At time t = 0, an initial state q0 ∈ I is associated with all the positions of p̂

holding ��������,#A
#B

.

332 T. Kalyani et al.

2. Scan p to get the left most vertex of p. It can be incident with either ����A

tile or ����B tile or both tiles. Now consider the following: Suppose the left
most vertex of p is

(a) incident with only ����A tile. Then, name that tile as p111 and assign
i = 1. Name the remaining tiles in that iso-array of size m according to
their positions. Go to step 3.

(b) incident with only ����B tile. Then name that tile as p111 and assign
i = 1. Name the remaining tiles in that iso-array of size m according to
their positions.

(c) incident with both the tiles ����A and ����B . In this case scan p to get
either the top most vertex of p or top left most vertex of p and then
name the tile incident with that vertex as p111 and assign i = 1. Name
the remaining tiles in that iso-array of sizem according to their positions.

3. Scan p to get N(r, pim1)
Repeat

If N(r, pim1) = ����B then
(i) i = i+ 1

(ii) name ����B as pi11 and then name the remaining tiles in that
iso-array of size m according to their positions.
scan p to get N(u, pi11)

If N(u, pi11) = ����#A , Go to step 4

else if N(u, pi11) = ����A then
(i) i = i+ 1

(ii) name ����A as pi11 and then name the remaining tiles in that
iso-array of size m according to their positions.
scan p to get N(r, pim1)

Until (N(r, pim1) = ����
#B

)

4. If N(r, pim1) = ����
#B

then j = i

If N(u, pi11) = ����#A then j = i− 1
At time t = 1 states are associated simultaneously with positions holding
p111, p121, . . . , p1m1, p311, p321, . . . , p3m1, . . . , pj11, pj21, . . . , pjm1.
The transition function δ is defined as
δ(q0, q0, plk1) = slk1, l = 1, 3, . . . , j, k = 1, 2, . . . ,m.

We view δ(q0, q0, plk1) = slk1 as plk1
q0

q0

.
At time t = 2 states are associated simultaneously with positions holding
p112, p122, . . . , p1(m−1)2, p211, p312, p322, . . . , p3(m−1)2, p411, . . . , pj12, pj22,
. . . , pj(m−1)2.
The transition function δ is defined as
(i) δ(slk1, sl(k+1)1, plk2) = slk2, l = 1, 3, . . . , j, k = 1, 2, . . . ,m− 1.

Iso-array Acceptors and Learning 333

(i) δ(s(l−1)m1, s(l+1)11, pl11) = sl11, l = 2, 4, . . . , j.

We view δ(slk1, sl(k+1)1, plk2) = slk2 as slk1
plk2

sl(k+1)1

.
Similarly the transition functions can be defined at times t = 3, 4, 5, . . . , 2m
according to the positions of the iso-arrays.

5. If N(r, pim1) = ����
#B

then
begin

j = i− 1,
� scan p to get N(r, pjm1)

If N(r, pjm1) = ����#A , Go to ��
else if N(r, pjm1) = ����A then
(i) i = i+ 1

(ii) name ����A as pi11 and then name the remaining tiles in that
iso-array of size m according to their positions.
scan p to get N(d, pi11)

If N(d, pi11) = ����
#B

, Go to ��
else if N(d, pi11) = ����B then
(i) i = i+ 1

(ii) name ����B as pi11 and then name the remaining tiles in that
iso-array of size m according to their positions.
�� j = j − 2, if j = 0 Go to 7
Go to �

6. If N(u, pi11) = ����#A then
j = i. Go to � of 5

7. At times t = 2m+1, 2m+2, . . . , 4m, the transition functions can be defined
according to the positions of the iso-arrays.

8. This process continues (3 to 7) till a state is associated to position (n,m, 1).
Similar procedure can be given for the other two cases (b and c) of 2.

A two-dimensional on-line tessellation automaton IPOTA recognizes an iso-
picture p if there exists a run of A on p̂ such that the state associated to position
(n,m, 1) is a final state. The set of all iso-pictures recognised by A is denoted by
L(A). Let L(IPOTA) be the set of iso-picture languages recognized by IPOTAs.
Given an iso-picture p of size (n,m) the run of IPOTA on p̂ takes nm2 units of
time.

As an example of IPOTA a computation by a two-dimensional IPOTA on iso-

picture language of rhombuses p of size (2,m) where pijk ∈ Σ and ����#A ,����
#B

are symbols not in Σ is done as follows:

1. At time t = 0, an initial state q0 ∈ I is associated with all the positions of p̂

(shown in Fig. 3) holding ����#A and ����
#B

.

334 T. Kalyani et al.

p̂ =
p131

p132
p133

p134 p135

p121 p123

p111

p212 p214

p222
p221 p223

#A
#B

#B

#B

#B

#B
#A

#A

#A

#A

#A

#A

#A

#A

#A

#A

#A

#A

#A

#A

#A
#B

#B

#B

#B

#B

#B

#B

#B

#B

#B

#B

p231

p122

p211 p213 p215

Fig. 3.

2. Scan p to get the left most vertex of p. It is incident with both the tiles ����A

and ����B . In this case scan p to get the top most vertex of p name the tile
incident with that vertex as p111, i = 1, name the remaining tiles in that
iso-array of size m according to their positions.

3. Scan p to get the down neighbour of p1m1. IfN(d, p1m1) = ����B , then i = i+1,

name ����B as pi11, name the remaining tiles in that iso-array of size m
according to their positions.

4. At time t = 1, states are associated simultaneously with positions holding
p111, p121, . . . , p1m1. States s1j1, j = 1, . . . ,m from δ(q0, q0, p1j1) are associ-
ated with positions p1j1, j = 1, 2, . . . ,m.

5. At time t = 2, states are associated simultaneously with positions (1, 2, 2),
(1, 3, 2), . . . , (1,m, 2), (2, 1, 1) respectively holding p122, p132, . . . , p1m2, p211.
State associated with the position p1j2 is an element of δ(s1j1, s1(j−1)1, p1j2),
j = 2, . . . ,m. State associated with the position p211 is an element of
δ(q0, s1m1, p211). We then proceed to the next diagonal.

6. (a) The state associated with each position (1, j, k) where k �= 2j− 1 by the
transition function δ, depends on the states already associated with the
positions (1, j, k − 1), (1, j − 1, k − 1) and the symbol p1jk.

(b) The state associated with each position (1, j, 2j − 1) by the transition
function δ, depends on the state already associated with the position
(1, j, 2j − 2) and the position holding boundary symbol #.

Let s1jk, j = 1, 2, . . . ,m, k = 1, 2, . . . , 2j− 1 be the state associated with the
position (1, j, k) where the entry is p1jk.

7. (a) The state associated with each position (2, 1, k), k = 1, 2, . . . , 2m− 1, by
the transition function δ, depends on the states already associated with
the positions (2, 1, k − 1), (1,m, k) and the symbol p21k.

Iso-array Acceptors and Learning 335

(b) The state associated with each position (2, j, k), j = 2, . . . ,m, k =
2, . . . , 2j − 1 by the transition function δ depends on the states already
associated with the positions (2, j, k− 1), (2, j− 1, k+1) and the symbol
p2jk.

(c) The state associated with each position (2, j, 1), j = 2, . . . ,m by the
transition function δ depends on the state already associated with the
positions (2, j − 1, 2) and the position holding the boundary symbol #.

This process continues till a state is associated to position (2,m, 1). An
IPOTA recognizes an iso-picture p if there exists a run of A on p̂ such that
the state associated to position (2,m, 1) is a final state.

Example 2. A two-dimensional on-line tessellation automaton to recognize the
local iso-picture language L(θ) shown in Example 1 is given by:
A1 = (Σ,Q, {q0}, F, δ)
where Σ = { , , ,A1 A2

B1 B2 }
Q = {q0, q1, q2, q3, q4}, F = {q4} and
δ(q0, q0, A2) = q2; δ(q3, q0, A2) = q2 δ(q0, q0, A1) = q1; δ(q3, q0, A1) = q1
δ(q1, q2, B2) = q4; δ(q4, q0, A1) = q1 δ(q1, q1, B1) = q3; δ(q3, q4, A2) = q2
δ(q2, q1, B1) = q3; δ(q3, q3, A1) = q1 δ(q0, q2, B2) = q4; δ(q3, q3, A2) = q2
δ(q3, q4, A1) = q1; δ(q4, q3, A1) = q1 δ(q0, q1, B1) = q3.

Example 3. A two-dimensional on-line tessellation automaton to accept the rec-

ognizable iso-picture language of rhombuses over two letters ����A and ����B is
given by:
A2 = (Σ,Q, {q0}, F, δ)
where Σ = {����A , ����B }, Q = {q0, q1, q2, q3}, F = {q2} and
δ(q0, q0, A) = q1 δ(q1, q1, B) = q2 δ(q0, q1, B) = q2 δ(q2, q0, A) = q3
δ(q2, q2, A) = q3 δ(q3, q3, B) = q2 δ(q0, q3, B) = q2.

4 Results

In this section, we show that L(IPOTA) = L(ITS). To prove this, we have the
following lemmas.

Lemma 1. If an iso-picture language is recognized by an IPOTA, then it is
recognized by a finite iso-triangular tiling system. i.e., L(IPOTA) ⊆ L(ITS).

Proof. Let L ∈ Σ∗∗
I be a language recognized by a two-dimensional on-line

tessellation automaton A = (Σ,Q, I, F, δ). We have to show that there exists an
iso-triangular tiling system IT that recognizes L.

Let IT = (Σ,Γ, θ, π) be an iso-triangular tiling system such that

Γ = (Σ ∪ {#})×Q. θ =
18⋃

i=1
θi

336 T. Kalyani et al.

θ1 = {

(#A, q0)
(#B , q0)

(#A, q0) (#A, q0) / θ2 = {

(#A, q0)
(#B , q0)

(#A, q0) (A, r) /
q0 ∈ I} r ∈ δ(q0, q0, A) and

A �= #, q0 ∈ I}

θ3 = {

(#A, q0)
(#B , q0)

(A, r) (#A, q0) / θ4 = {

(#B, q0) (#B , q0)

(A, r)
(B, s)

/
r ∈ δ(q0, q0, A) and s ∈ δ(r, r, B) and
A �= #, q0 ∈ I} A,B �= #}

θ5 = { (A, r)

(B, s)
(A, r)

(A, t) / θ6 = {

(#B, q0)

(A, r)
(B, s)

(B, s)

/
t ∈ δ(s, q0, A) and s ∈ δ(r, r, B) and
A,B �= #, q0 ∈ I} A,B �= #}

θ7 = {
(B, s)

(B, s) (#B , q0)

(A, t)

/ θ8 = {
(B, s)

(B, s)

(A, t)

(B, s)

/
s ∈ δ(r, t, B) and s ∈ δ(r, t, B) and
A,B �= #} A,B �= #}

θ9 = {

(B, s)(#B, q0)

(#B, q0)
(#A, q0)

/ θ10 = { (#A, q0)

(B, s)
(A, r)

(A, r) /
s ∈ δ(q0, r, B) and r ∈ δ(s, s, A) and
B �= #, q0 ∈ I} A,B �= #}

θ11 = {
(B, s)
(A, r)

(#A, q0)(A, r) / θ12 = {

(B, s) (#B , q0)

(#B , q0)
(#A, q0)

/
A,B �= # and q0 ∈ I} B �= # and q0 ∈ I}

Iso-array Acceptors and Learning 337

θ13 = {
(B, s)
(A, r)

(#A, q0)(#A, q0) / θ14 = {

(#B , q0)(#B , q0)

(#A, q0)
(#B , q0)

/
A,B �= # and q0 ∈ I} q0 ∈ I}

θ15 = {
(B, s)

(#A, q0)

(A, r) (A, t) / θ16 = {

(A, r)
(#B, q0)

(#A, q0) (#A, q0) /
t ∈ δ(s, q0, A) and A �= # and
A,B �= #} q0 ∈ I}

θ17 = {

(#B , q0)(#B , q0)

(#A, q0)
(B, s)

/ θ18 = {
(#B, q0)

(B, r) (B, t)

(A, s)

/
B �= # and q0 ∈ I and
s ∈ δ(q0, q0, B)} A,B �= #}

π : Σ ∪ {#} ×Q→ Σ is such that π(a, q) = a, ∀ a ∈ Σ ∪ {#}, q ∈ Q.
We notice that the set θ is defined in a way that a picture p′ of the underlying
local iso-picture language of L(IT) describes exactly a run of IPOTA A on
p = π(p′). Then it is easy to verify that L(A) = L(IT).

Lemma 2. If an iso-picture language is recognizable by a finite iso-triangular
tiling system then it is recognizable by a two-dimensional on-line tessellation
automaton i.e., L(ITS) ⊆ L(IPOTA).

Proof. Let L ⊆ Σ∗∗
I be a language recognized by the iso-triangular tiling system

(Σ,Γ, θ, π) and L′ is the underlying local language represented by the set of tiles
θ. i.e., π(L′) = L. It suffices to show that there exists an IPOTA recognizing
L′ ⊆ Σ∗∗

I .

Lemma 3. If L is a local iso-picture language, then it is recognizable by an
IPOTA. i.e., ILOC ⊆ L(IPOTA).

The proof of this lemma is omitted.

5 Learning of Recognizable Iso-picture Languages

In [6] we have provided an algorithm to learn local iso-picture languages through
identification in the limit using positive data. In this section, we present an
algorithm to learn recognizable iso-picture languages.

338 T. Kalyani et al.

Let A = (Σ,Q, {q0}, F, δ) be an IPOTA such that L(A) = L ∈ IREC. Let
Γ = Σ × Q and h1, h2 be alphabetic mappings on Γ given by h1(a, q) = a,
h2(a, q) = q. An iso-picture p over Γ is called a computation description picture
if h2(p) is a run of A on h1(p) and is called an accepting computation description
picture if h2(p) is an accepting run. i.e., A recognizes h1(p).

The following lemma can be proved as in the case of strings.

Lemma 4.

1. The alphabet Γ contains O(mn) elements where n is the number of states of
the minimal IPOTA AL for L and m = |Σ|.

2. For p ∈ L, let d(p) be an iso-picture over Γ representing an accepting compu-
tation description for p. X(p) = h2(d(p)) is called a valid picture for p. Let
V al(p) = {X(p)/X(p) is a valid picture for p}. Then |V al(p)| = O(nV (p))
where V (p) is the product measure of p.

3. Let S be a local iso-picture language over Q such that L = h(S) and RS be a
characteristic sample for S. Then there is a finite subset SL of L such that
RS ⊆ V al(SL), where V al(SL) = {V al(p)/p ∈ S(L)}.

From Lemma 4 we obtain a learning algorithm for languages of IREC.

Algorithm IREC

Input: A positive presentation of L, n = |Q| for the minimal IPOTA for L.
Output: A sequence of conjectures of the form h(L(θ)).
Query: Restricted subset query.
Procedure:

Initialize E0 to φ
Construct the initial θ0 = φ
Repeat (for ever)

Let θi be the current conjecture
read the next positive example p
compute V al(p) = {α1, α2, . . . , αt}
for each j scan αj to compute θij = B1,2(α̂j)
ask if h(L(θij)) ⊂ L or not
V al(p) = V al(p)− {αj/ the answer is no}
Ei+1 = Ei ∪ V al(p)
θi+1 = θi ∪ {B1,2(α̂)/α ∈ V al(p)}
Output θi+1 as new conjecture.

Lemma 5. Let n be the number of states of the minimal IPOTA accepting
the recognizable iso-picture language L. After almost t(n) subset queries, the
algorithm IREC produces a conjecture θi such that Ei includes a characteristic
sample for a local iso-picture language U such that L = h(U) where t(n) is a
polynomial in n, which depends on U .

This is a consequence of Lemma 4 and the fact that the maximum size for
pictures in L is bounded by a polynomial in n. Summarizing, we obtain the
following theorem.

Iso-array Acceptors and Learning 339

Theorem 1. Given an unknown recognizable iso-picture language L, the algo-
rithm IREC efficiently learns in the limit from positive data and restricted subset
queries, a finite subset θ of (Σ ∪ {#})1×2 such that L = h(L(θ)).

Conclusion

In this paper, we developed a recognizing device called two-dimensional on-
line tessellation automaton to recognize iso-picture languages. We have that the
class of all iso-picture languages recognized by two-dimensional on-line tessel-
lation automata is exactly the family of iso-picture languages recognizable by
iso-triangular tiling systems (IT). We present an algorithm that learns the class
of recognizable iso-picture languages from positive data with restricted subset
queries.

References

1. D. Angluin, Inductive inference of formal languages from positive data, Information
and Control, 45, 117-135, 1980.

2. D. Angluin, Learning regular sets from queries and counter examples, Inform. Com-
put, 75, 87-106, 1987.

3. M. Blum and C. Hewitt, Automata on a 2-dimensional tape, IEEE Symposium on
switching and automata theory, 155-160 (1967).

4. D. Giammarresi and A. Restivo, Two-dimensional finite state recognizability, Fun-
damenta Informatica, 25(3,4), 399-422, (1996).

5. E.M. Gold, Language identification in the limit, Information and Control, 10, 447-
474, 1967.

6. T. Kalyani, V.R. Dare and D.G. Thomas, Local and Recognizable iso Picture lan-
guages, Lecture Notes in Computer Science, 3316, (2004), 738-743.

7. Y. Sakakibara, Recent advances of grammatical inference, Theoretical Computer
Science, 185, 15-45, (1997).

8. R. Siromoney, Lisa Mathew, K.G. Subramanian and V.R. Dare, Learning of Recog-
nizable Picture Languages, International Journal of Pattern Recognition and Arti-
ficial Intelligence, 8, 627-639 (1994).

9. T. Yokomori, Learning local languages from positive data, In Proceedings of Fujitsu
IIAS - SIS Workshop on Computational Learning Theory ’89, 1-16, Numazu, 1989.

A Merging States Algorithm for Inference of
RFSAs�

Gloria Alvarez1, Pedro Garćıa2, and José Ruiz2

1 Pontificia Universidad Javeriana - Seccional Cali. Colombia
2 Universidad Politécnica de Valencia. Spain - DSIC

{galvarez@dsic, pgarcia, jruiz}.upv.es

Abstract. The aim of this paper is to present MRIA, a new merging
states algorithm for inference of Residual Finite State Automata.

1 Introduction

We propose a non deterministic extension of RPNI algorithm, that will be called
MRIA (Merging states Residual finite state automata Inference Algorithm). It
extends RPNI finding inclusion relations among the residuals of the positive
sample and merging states when it is possible or just keeping the transitions
obtained from the inclusions.

MRIA outputs a NFA and converges to a Residual Finite State Automaton
(RFSA) that recognizes the target language and which has the same number
of states as the minimal DFA for that language. A postprocess can be done to
the output automaton in order to obtain a RFSA of size between the canonical
RFSA and the minimal DFA for the target language.

Definitions concerning Formal Languages can be found in [2]. Previous work
related to RFSAs can be found in [1].

2 The MRIA Algorithm

Algorithm MRIA is a merging states algorithm that on input of a complete
sample, outputs a non-deterministic finite state automaton which is consistent
with the input.

The algorithm begins building the prefix tree acceptor of the positive sample,
whose states are lexicographically ordered ('). It consists of two loops, the outer
one takes care of the first state (q) that is being compared whereas the inner
analyzes the states p such that p' q in turn.

First it checks if p is smaller than q (that is, if the automaton that results
of adding to the current one every transition of the form (q′, a, q) for every
existing transition of the form (q′, a, p) does not recognize a negative sample.
If q is an initial state, p is also added to I). If the answer is positive it keeps

� Work partially supported by Spanish CICYT under TIC2003-09319-C03-02 and
Spanish GVA under GV06/068.

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 340–341, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Merging States Algorithm for Inference of RFSAs 341

the transitions resulting from this fact and if q has not been previously merged
to a state previous to p, the comparison is checked in the other way. If both
comparisons result positive, the states are merged. Two facts make this merging
of states differ from the classical merging done by RPNI:

– The merges are not propagated to keep the automaton deterministic.
– A copy of state q is kept until the relations between q and all the previous

states have been determined.

At the end of every inner loop, if the state q has not been merged with any
previous one, a new hypothesis is emitted. This hypothesis is an automaton
whose states are those previous to q and the transitions related to them.

Note that a state is only deleted when it has been compared with the rest of
the previous ones. Otherwise, some transitions could not be obtained. That is
the use of the boolean variable in the algorithm.

The complexity of the proposed algorithm is O(n3), being n the sum of the
lengths of the input sample.

3 Example

Let D+ = {ε, 00, 10, 11, 010} and D− = {0, 1, 01, 001}. The sequence of hypoth-
esis emitted by MRIA and the output of DeLeTe2 and RPNI under the same
input are depicted in Fig. 1.

1

(D) (E)

(A)

(B) (C)

0,1

0,1

0

1

0,1

0,1 1

0,1

0,1

0
1

1
0

0

0,1

1
1

1

1

0

0

1

1

0,1

Fig. 1. A,B and C: Sequence of hypothesis emitted by MRIA algorithm. D and E
hypothesis emitted by DeLeTe2 and RPNI with the same input.

References

1. Denis, F. Lemay, A. and Terlutte, A. Learning regular languages using RFSAs.
Theoretical Computer Science 313(2), pp 267-294 (2004).

2. Hopcroft, J. and Ullman, J. Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley (1979).

Query-Based Learning of XPath Expressions�

Julien Carme, Michal Ceresna, and Max Goebel

Database and Artificial Intelligence Group,
Vienna University of Technology, Austria

{carme, ceresna, goebel}@dbai.tuwien.ac.at

Abstract. This work analyzes the application of active learning using
example-based queries to the problem of constructing an XPath expres-
sion from visual interaction with an human user.

Keywords: XML, tree structured data, query based learning, XPath.

1 Introduction

XML is a widely used format for storing and publishing structured data. For-
mally, XML and also HTML documents are ordered and unranked trees with
nodes labeled from an infinite alphabet Σ.

XPath [2] is a navigation language for XML documents, and it is an integral
part of many other XML-related technologies. The XPath language consists of
expressions whose formal grammar is defined in [2]. Let p(t) denote the set of
nodes of tree t navigated to via expression p, and let p? be the target XPath
expression that should be learned.

Our aim is to build an algorithm where XPath expressions are constructed
from interaction with a human user. That is, the user acts as an oracle for the
learning algorithm. Therefore, we require that the queries can be easily answered
in a visual manner.

Let us examine visualization of the most studied query types, the membership
and equivalence queries. When applied to XML trees, an equivalence query is
a question of the form ∀t ∈ TΣ : p(t) = p?(t). Answers are either ”yes” or
”no”, where for the latter we also return those nodes in the tree that witness the
inequality as counterexamples. As is illustrated in Figure 1a, equivalence queries
have a natural visualization. To answer them, the user simply marks missing
or unwanted nodes inside of the currently rendered document. In practice, the
universal quantification from the query is answered by testing the hypothesis on
other XML documents given by the user.

Unfortunately, membership queries do not have a natural visualization. This
is due to the fact that the trees t ∈ TΣ are chosen by the learning algorithm as
part of the query itself, and existing algorithms generally construct these trees as
a combination of sub-trees from previous examples. Such artificial trees are not

� This work was supported by the Austrian Science Fund under project No. L47-N04
and REWERSE, Network of Excellence, 6th European Framework Program.

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 342–343, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Query-Based Learning of XPath Expressions 343

a) b)

Fig. 1. Visualization of equivalence and membership queries

valid against the document schema or cannot be rendered, however. Moreover,
the resulting document trees are confusing for the human user, resulting in an
increase of the ratio of incorrect answers. Figure 1b illustrates an unnatural
visualization, where the learning algorithm tries to insert an image.

2 Non-learnability Using Equivalence Queries

A learning algorithm using only equivalence queries would be an elegant solution
for our application, circumventing difficulties with the visualization of other
types of queries. However, using Angluin’s definition of approximate fingerprints
[1], we show non-learnability for several XPath fragments using only equivalence
queries.

Theorem 1. The XPath fragment with wild-card node matching (∗), child and
descendant-or-self axes (/,//) has the approximate fingerprints.

3 Conclusion

Our results show that many well studied types of queries such as member-
ship, subset or superset queries are hard to use due to difficulties with their
visualization. We show that equivalence queries—despite of having a natural
visualization—are not strong enough to yield polynomial learnability results even
for simple fragments.

References

1. Dana Angluin. Negative results for equivalence queries. Machine Learning, 5(2):121–
150, 1990.

2. W3C Consortium. XML Path Language (XPath), 1999. Published on
http://www.w3.org/TR/xpath/.

Learning Finite-State Machines from Inexperienced
Teachers

(Extended Abstract)

Olga Grinchtein1,� and Martin Leucker2

1 Department of Computer Systems, Uppsala University, Sweden
2 Institut für Informatik, TU München, Germany

The general goal of query-based learning algorithms for finite-state machines is to iden-
tify a machine, usually of minimum size, that agrees with an a priori fixed (class of)
machines. For this, queries on how the underlying system behaves may be issued.

A popular setup is that of Angluin’sL∗ algorithm[Ang87], here adapted to the case of
finite-state machines, in which a minimal deterministic finite-state machine for a regular
language is learned based on so-called membership and equivalence queries. Using a
pictorial language, we have a learner whose job is to come up with the automaton to
learn, a teacher who may answer the output for a given input string as well an oracle
answering whether the automatonH currently proposed by the learner is correct or not.
This setting is depicted in Figure 1(a) (though assume that the don’t know is not there).

In Angluin’s setting, a teacher will always answer with the correct output symbol. In
many application scenarios, however, parts of the machine to learn are not completely
specified or not observable. Then, queries may be answered inconclusively, by don’t
know, also denoted by ?.

In the full version of this paper [GL06], we study a learning algorithm (and variants
thereof), called ABSAT, ABSATI, and ABSATI2, that are designed to work with such
an inexperienced teacher. The oracle, however, does not change its functionality in the
setting discussed here (see Figure 1(a), the don’t know is new).

Learner

Oracle

Teacher
What is output
for input string u?

Output/Don’t know

Yes/Counterexample

Is H equivalent to
system to learn?

(a) L∗ versus ABSAT

bica ABSAT ABSATI ABSATI2
time time time time

fo.70 n.a. 39.50 38.57 38.69
th.55 188.87 0.45 0.43 0.43

vmebus.master.m 59.93 1627.37 693.44 93.01
ifsm2 14.08 34.82 34.36 30.78

pe-send-ifc.fc 2.33 6.93 2.75 2.07
pe-send-ifc.fc.m 0.85 6.93 2.75 1.07

rubin1200 10.24 10.28 10.26 10.02
rubin2250 64.78 64.69 64.74 63.29

vbe4a 1.94 4.31 1.86 1.56
ex2 0.78 0.78 0.76 4.67

(b) Running times compared

Fig. 1. The setup for the learning algorithms and their performance

� Part of the work has been done during the author’s stay at TU München supported by the
C F Liljewalchs fellowship, Uppsala University.

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 344–345, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Learning Finite-State Machines from Inexperienced Teachers 345

In general, two types of learning algorithms for FSMs can be distinguished, so-called
online and offline algorithms. Online algorithms, such as Angluin’sL∗ algorithm, query
strings to the teacher. Offline algorithms get a fixed set of examples and no further
queries are allowed before computing a minimal FSM conforming to the examples.
Typical algorithms of this type are based on a characterization in terms of a constraint
satisfaction problem (CSP) over the natural numbers due to Biermann [BF72].

Faced with an inexperienced teacher, we cannot rely completely on Angluin’s algo-
rithm. We therefore define an algorithm that is a combination of an online algorithm and
an offline algorithm and is based on [OS98]. Similar to Angluin’s algorithm, we round
off the information on the automaton in question by asking queries. As queries can be
answered by ?, we may not be able to complete the information as in Angluin’s setting
to compute an FSM directly. For this, we use Biermann’s approach for obtaining an
FSM based on the enriched information. Our combination is conservative in the sense
that in case all queries are answered by either yes or no, we obtain the same efficiency
as for Angluin’s algorithm. Furthermore, the encoding in terms of CSP is optimized
based on the information collected in Angluin’s algorithm.

While in [OS01] an efficient implementation for solving the resulting CSP problem
is explained, we give an encoding as a SAT problem featuring a simple yet—as the ex-
amples show—very efficient inference algorithm by employing powerful SAT solvers.

Actually, our approach is quite similar to the one proposed in [OS98] and [OS01].
The main difference are that we use SAT solvers for solving the corresponding CSP
problem (which gives algorithm ABSAT) and that we additionally propose incremental
consistency checks (ABSATI) and an incremental construction of the CSP problem
(ABSATI2), which both improves the overall efficiency.

To validate our approach in practice, we have employed our techniques to the prob-
lem of reducing incompletely specified finite-state machines. We have implemented our
extensions within the C++ program called BICA, used in [OS98] and have reexamined
BICA as well as our three versions on the same set of examples studied in [OS98] (see
Figure 1(b)).

The overall conclusion is that although the behavior of a SAT solver is not completely
predictable, our algorithms ABSATI and ABSATI2 are, for many examples, competi-
tive alternatives to BICA, which especially work on examples that are too complex for
BICA.

References

[Ang87] Dana Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75:87–106, 1987.

[BF72] A. W. Biermann and J. A. Feldman. On the synthesis of finite-state machines from
samples of their behaviour. IEEE Transactions on Computers, 21:592–597, 1972.

[GL06] Olga Grinchtein and Martin Leucker. Learning finite-state machines from inexperi-
enced teachers. Technical Report TUM-I0613, TU München, 2006.

[OS98] A. L. Oliveira and J. P. M. Silva. Efficient search techniques for the inference of
minimum size finite automata. In String processing and information retrieval, 1998.

[OS01] Arlindo L. Oliveira and João P. Marques Silva. Efficient algorithms for the inference
of minimum size dfas. Machine Learning, 44(1/2):93–119, 2001.

Suprasymbolic Grammar Induction by
Recurrent Self-Organizing Maps�

Fuminori Mizushima1 and Takashi Toyoshima1,2

1 Dept. Brain Science and Engineering
2 Dept. Human Sciences

Kyushu Institute of Technology
2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196 Japan

mizushima-fuminori@edu.brain.kyutech.ac.jp, toyo@brain.kyutech.ac.jp

Abstract. A preliminary experimental result is reported on language
identification tasks by Recurrent Self-Organization Maps (RSOM) with a
context map layer, using English part-of-speech strings of variable length.
With subsymbolic processing, RSOM suprasymbolically sublimed syn-
tactic rules into a topological configuration.

1 Introduction

We experimented on language identification tasks by a Self-Organizing Map,
equipped with recurrent connections from a context map layer (RSOM). We
trained RSOM with strings of category symbols of English sentences. Then, we
tested with novel strings of various lengths with possible recursions. RSOM was
able to identify, with an average of more than 90% accuracy, grammatical strings
and ungrammatical strings of random sequences of category symbols.

2 Architecture and Algorithm of RSOM

RSOM we have designed is shown in Fig.1. The competition layer L and the
context layer M are both two-dimensional planes of 15 × 15 square units.

An input string xi =
[
xi,1,xi,2,xi,3,···,xi,j

]
is fed to the input layer, one sym-

bol by one symbol, where xi,j is a category symbol of k-dimensional vector,
3-dimentional, encoded in 3-bit vector, in this study. For training and testing,
grammatical strings are generated with an elementary set of context-free rewrit-
ing rules for English sentences, with category symbols, N (nouns), V (verbs), A
(adjectives/adverbs), P (preposition), C (complementizers), D (determiners), I
(inflections), and a period mark.

The weights W in
Lu,v

between an input symbol xi,j and all the units on L,
and the weights W con

Lu,v
between all the units on L and the context vectors

C = [CM1,1 ,CM1,2 , · · · ,CMu,v] of all the units on M , jointly determine the

� The research reported here is partially supported by a 21st COE Program (#J19),
granted to Kyushu Institute of Technology, by MEXT, Japan. The standard dis-
claimers apply.

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 346–348, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Suprasymbolic Grammar Induction by Recurrent Self-Organizing Maps 347

Input Layer

Context Layer

Input

BMU List

. . .

. . .

. . .

.
.

..
. . .

.

. .
 .

. . .

. . .

. . .

.
.

..
. ..

.

Competition Layer

1, 1L
8, 29L
124, 62L

u, vL

Fig. 1. A schematic RSOM architecture

Best Matching Unit (BMU) on L. The BMU L∗
u,v at the state s will be the

competition unit with the smallest sum of the Euclidean distances between the
input vector xi,j and the weight W in

Lu,v
, and between C and the weights W con

Lu,v
,

each of which is depreciated by the apportion rates γ and (1− γ), respectively,
(1). The apportion ratio of γ to (1 − γ) fixes the relative importance between
the input and the context knowledge attained up to s, in determining L∗

u,v.
Once L∗

u,v has been determined for an input xi,j at s, its weights and the
weights of its neighboring units are updated toward the input vector and C.
Then, C is attenuated by the rate β, and a dividend of the input vector at the
rate of (1 − β) is added to the context unit M∗

u,v, at the same coordinates as
L∗

u,v, in accord with (2). This process is repeated for each category symbol, one
by one. When an entire input string xi =

[
xi,1,xi,2,xi,3,···,xi,j

]
is fed, all the

weights are adjusted and the context layer M is flushed.

L∗
u,v = arg min

Lu,v

{γ‖xi,j −W in
Lu,v

(s)‖+ (1− γ)‖C(s− 1)−W con
Lu,v

(s)‖} . (1)

{
CM∗

u,v
(s) = β ×CM∗

u,v
(s− 1) + (1− β)× xi,j(s) .

CMu,v (s) = β ×CMu,v (s− 1) .
(2)

Then, the next string is fed, one symbol by one symbol. When RSOM is
trained with all the training strings, the next training cycle begins. The order
of strings are randomized each cycle. After 100 training cycles are finished, all
the weights are frozen, and all the training strings are fed one final time, de-
termining BMUs for each symbol, without updating any weights. Instead, the
system records the coordinates u, v of the BMUs for each symbol on the BMU
List.

In simulation, if all the BMUs of a test string are on the BMU List, we judged
the string as grammatical, while if any of the BMUs, even one, of a test string is
not on the BMU List, the string is judged ungrammatical. With these criteria,
we trained RSOM with 1,000 grammatical strings, and tested with 20,000 novel
grammatical strings and 20,000 strings of random sequence of symbols, both of
variable lengths. 10,000 of each were longer than the longest trainning string.

348 F. Mizushima and T. Toyoshima

The result was that 98.73% of grammatical strings were judged correctly,
and 86.43% of strings of random sequence of symbols were correctly judged
ungramatical. That is, 92.58% accuracy on average.

References

[Gol67] Gold, E. M.: Language Identification in the Limit. Information and Control
10 (1967) 447-474.

[Koh95] Kohonen, T.: Self-Organizing Maps. Springer-Verlag, Berlin Heidelberg New
York (1995)

Graph-Based Structural Data Mining in
Cognitive Pattern Interpretation�

Lidia Ogiela1, Ryszard Tadeusiewicz2, and Marek R. Ogiela2

1 AGH University of Science and Technology, Faculty of Management,
Al. Mickiewicza 30, PL-30-059 Kraków, Poland

logiela@agh.edu.pl
2 AGH University of Science and Technology, Institute of Automatics

{rtad, mogiela}@agh.edu.pl

Abstract. In this paper we will present opportunities for applying graph
based linguistic formalisms for computer automatic understanding of
meaning of wrist medical images. Thanks to the proposed method we
can understand the merit content of the image even if the form of the
image is very different from any known pattern. It seems that in the near
future such technique may become one of the effective tools for semantic
interpreting, and computer perception of visual medical data.

1 Introduction

In the paper we try to solve the automatic interpretation problem for selected
class of medical images by application of linguistic approach using special kind
picture description languages. A possibility to conduct such an analysis will be
presented on the examples of analysis of patterns received during the examina-
tions of wrist bones (fig. 1). Before coming to the interpretation of the changes it
is necessary to preserve the sequence of operations like segmentation, skeletoniza-
tion, and bone labelling [1,2]. The graphs obtained as a results are the starting
point in the classification of morphological features by using graph grammars.

2 Picture Grammar Analysis

An example of understanding the morphological lesions of the shape with the
use the graph grammars will be presented on analysis of the correctness between
individual wrist bones on palm images. An intelligent interpretation of the anal-
ysed cases can enable the identification of additional wrist bones. It may also
point to lack or lesions in the shape of bones as well as their synostoses with
other wrist parts. An expansive graph grammarGexp allowing describes the wrist
bones is defined as presented on figure 1. The possibilities of describing image
cases showing additional bones or showing synostoses can be recognised with the
� This work was supported by the AGH University of Science and Technology under

Grant No. 10.10.120.39.

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 349–350, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

350 L. Ogiela, R. Tadeusiewicz, and M.R. Ogiela

Fig. 1. Analysed image of the wrist bones with grammar describing of the correct build
of wrist

Fig. 2. Production sets describing: A) additional bones. B) Bone defects caused by
bone joints or by bone dislocation.

use of additional rules specified on figure 2. As a result of structural analysis it
is possible to describe pathogenesis of the deformations. Recognition was carried
out on the basis of a set containing a few dozens images, and the efficiency of
analysis exceeded the threshold of 90%.

References

1. Burgener, F. A., Kormano, M.: Bone and Joint Disorders. Thieme Stuttgart (1997)
2. Tadeusiewicz, R., Ogiela, M. R.: Medical Image Understanding Technology. Springer

Berling-Heildelberg (2004)

Constructing Song Syntax
by Automata Induction

Kazutoshi Sasahara1, Yasuki Kakishita2, Tetsuro Nishino2,
Miki Takahasi1, and Kazuo Okanoya1

1 Laboratory for Biolinguistics, RIKEN Brain Science Institute (BSI),
2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan

2 Department of Information and Communication Engineering, Graduate School of
Electro-Communications, The University of Electro-Communications,

1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan
sasahara@brain.riken.jp

We propose a new methodology for ethology in terms of automata induction. Re-
cent studies on Bengalese finch reported unique features of its songs. As opposed
to most other songbirds, the songs of the Bengalese finch are neither monotonous
nor random; they can be represented by a finite automaton, which we call song
syntax [3]. Juvenile finches learn songs from their fathers during a critical period.
The song learning has a similarity to the grammatical inference from positive
samples, which is known as Angluin’s algorithm [1]. This is an induction algo-
rithm for inferring certain subclasses of regular languages, which are known as
k-reversible languages, from positive samples, where k = 0, 1, 2, A regular
language is k-reversible under the following condition: whenever two prefixes
whose last k words match have a tail in common, then these prefixes have all
tails in common. For each k, Angluin’s algorithm provides a finite automaton
that accepts the smallest k-reversible language, including the given finite positive
sample within polynomial time.

In the previous studies, the songs were analyzed using the N -gram model,
which does not ensure the uniqueness of the resulting automata from the given
samples; therefore, appropriate N must be selected for each sample. In contrast,
Angluin’s algorithm provides a finite automaton accepting the unique (smallest)
reversible language from a given song data; we can compare song syntaxes in
different birds. The song syntaxes in two ways are dipicted in Fig.1.

To apply Angluin’s algorithm to real song data, we introduce the following
preprocessings:

– Construct song units: On the basis of acoustical properties, recorded
songs (WAV format) converted to texts, which are delimited into song units
at initial patterns (e.g. “ab” in Fig.1).

– Reduction: For the simplest description of song syntax, repeated song notes
are reduced, incrementing the unit length of reduction, with the maximum
limit of half the length of a song unit (e.g.abaaababb...→ababab...→ab...).

– Denoising: When constructing prefix-tree automata from song units, we
calculate the transition probabilities of song notes at the branching points
and eliminate transitions that are bellow a certain threshold (Ccut).

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 351–353, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

352 K. Sasahara et al.

– Constrain k-reversibility: Starting from k = 0, increase k, when the con-
structed song syntax still has backward transitions or self-loops [2].

start q0
end

q1ab q2
cde
ab

q3
fg

ab

Time (sec.)

F
re

q
u

en
cy

 (
k

H
z)

10 a b c d e f ga b c d e

Song note
Chunk

...

1 2

 abcde fg

(a) N-gram model

(b) Our method

k-reversible
automaton (k =1)

Fig. 1. The song syntaxes of
Bengalese finch in two different
ways. The letter string repre-
sents courtship song of a male
Bengalese finch. (a) is con-
structed using N-gram model,
and (b) is constructed us-
ing our method (1-reversible
automaton).

 b{0.21} a{0.79}

 c{1.0}

 d{1.0}

 e{1.0}

 a{1.0}

 c{1.0}

 f{1.0}

 d{1.0}
 g{0.4}

 h{0.4}
 e{0.2}

h{1.0}

 b{1.0}

 c{1.0}

 d{1.0}

 e{0.95} h{0.05}

 a{1.0}

 c{0.94}

 f{1.0}

 d{1.0}

 e{0.18} h{0.59} g{0.12}

 h{0.33}
 a{0.33}

 a{1.0}

 h{1.0}

 a{0.1}

 b{1.0}

 a{0.5}

 h{0.5} c{1.0}

(a) Prefix-tree

 automaton P

b a

c

d

e

a

c

f

d

g h

h

b

c

d

e

a

c

f

d

ha

c

 bcdeacfd abcdeacfdh

 gh h

 ac

 bcdeacfd
 abcdeacfdh

h gh

 ac

 bcdeacfd
 abcdeacfdh

 gh
h

 ac

(b) Prefix-tree

 automaton P'

 after denosing

(c) Chunk-based

 prefix-tree

 automaton P''

(d) Song syntax

 (k = 0)

(e) Song syntax

 (k = 1)

[Overgeneralization]

Fig. 2. Constructing song syntax. (a) Prefix-tree
automaton P constructed from song units S” (b)
Prefix-tree automaton P’ after denoising using Ccut

= 0.2 (c) Chunk-based prefix-tree automaton P” (d)
Song syntax with k = 0 (e) Song syntax with k = 1
(see the text for detail).

In light of these procedures, we propose the constructing method of song
syntax, where input is a song sample with bout S and output is a k-reversible
automaton A that accepts S:

1. Construct a song unit sample S′ from S.
2. Reduce repeated song notes in S′ and include the result in S′′.
3. Construct a prefix-tree automaton P from S′′ (see Fig.2(a)).
4. Remove the transitions below cut-off level Ccut in P and include the result

in P ′ (see Fig.2(b)).
5. Construct a chunk-based prefix-tree automaton P ′′ from P ′ (see Fig.2(c)).
6. Let k = 0.
7. Continue to merge states B1 and B2 where any of the following is true:

– B1 and B2 have a common k-leader and the both are final states.
– B1 and B2 have a common k-leader and transitions to B3 with a common

input (chunk).
– There is a transition with a common input (chunk) to B1 and B2 from
B3.

8. Set the result in A′. If A′ has repeated structures, then repeat step 7 with
k = k + 1; otherwise, A = A′ (see Fig.2(d) and (e)).

Using the proposed method, we analyzed the songs of 10 Bengalese finches.
As a result, we confirmed that our method could provide suitable song syntaxes

Constructing Song Syntax by Automata Induction 353

for comparison between fathers and offsprings, and that song syntaxes could
be represented as reversible automata with lower k-reversibility. Although the
available data was not enough this time, the preliminary results indicated that
our methodolgy is useful in ethology.

References

1. D. Angluin. Inference of Reversible Languages. Journal of the Association for
Computing Machinery, 29(3):741–765, 1982.

2. R. C. Berwick and S. F. Pilato. Learning Syntax by Automata Induction. Machine
Learning, 2(1):9–38, 1987.

3. K. Okanoya. Song Syntax in Bengalese Finches: Proximate and Ultimate Analyses.
Advances in the Study of Behavior, 34:297–346, 2004.

Learning Reversible Languages with Terminal
Distinguishability�

José M. Sempere

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia (Spain)

jsempere@dsic.upv.es
http://www.dsic.upv.es/users/tlcc/tlcc.html

Abstract. k-reversible languages are regular ones that offer interes-
ting properties under the point of view of identification of formal lan-
guages in the limit. Different methods have been proposed to identify
k-reversible languages in the limit from positive samples. Non-regular
language classes have been reduced to regular reversible languages in or-
der to solve their associated learning problems. In this work, we present
a hierarchy of reversible languages which can be characterized by some
properties related to the set of terminal segments of the automata (ter-
minal distinguishability). Terminal distinguishability is a property that
has been previously used to characterize other language families which
can be identified in the limit from positive data. In the present work we
combine reversibility and terminal distinguishability in order to define
a new hierarchy of regular languages which is highly related to the k-
reversible hierarchy. We will provide an efficient method to identify any
given language in the hierarchy from only positive examples.

Definitions

Σ denotes an alphabet, Σ∗ the infinite set of strings defined by Σ, Σl denotes
the set of strings with length l. The reverse of any string u will be denoted by
uinv, and the set of segments of u with length k will be denoted by seg(u, k).
Given a finite automaton A, we denote the reverse automaton of A by Ainv .
Given a finite automaton A = (Q,Σ, δ, I, F) and q ∈ Q, and given an integer
value k ≥ 0, we will say that u ∈ Σk, is a k-follower (k-leader) of q if δ(q, u) �= (
(resp. δinv(q, uinv) �= (). A finite automaton A is deterministic with lookahead k
if and only if for every three states q1, q2 and q3, if q1, q2 ∈ δ(q3, a), or q1, q2 ∈ I,
then there is no common k-follower of q1 and q2.

k-reversible Languages with r-terminal Distinguishability:
The REV(k, r) Class

Definition 1. Let A = (Q,Σ, δ, I, F) be a finite automaton, and let k, r be
integer values with 0 < r ≤ k. We will say that A is deterministic with lookahead
� Work supported by the Spanish CICYT under contract TIC2003-09319-C03-02 and

the Generalitat Valenciana GV06/068.

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 354–355, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Learning Reversible Languages with Terminal Distinguishability 355

k and r-terminal distinguishability iff for every three states q1, q2 and q3, if
q1, q2 ∈ δ(q3, a), or q1, q2 ∈ I, then at least one of the following conditions holds:

1. ∃v1 ∈ Σk being a k-follower of q1 such that for all v2 ∈ Σk being a k-follower
of q2 seg(v1, r) �= seg(v2, r).

2. ∃v2 ∈ Σk being a k-follower of q2 such that for all v1 ∈ Σk being a k-follower
of q1 seg(v2, r) �= seg(v1, r).

Definition 2. We will say that a finite automaton A is k-reversible with r-
terminal distinguishability iff A is deterministic and Ainv is deterministic with
lookahead k and r-terminal distinguishability.

A language L is k-reversible with r-terminal distinguishability, with 0 < r ≤ k,
if there exists a k-reversible finite automaton with r-terminal distinguishability
A such that L(A) = L. We will denote the family of k-reversible languages
with r-terminal distinguishability by REV(k, r). Observe that there exists nar-
row relation between the class REV(k) in Angluin’s work [An82] and the class
REV(k, r). The relationship between different language classes is showed through
the following results.

Lemma 1. For any k > 0, REV(k) � REV(k, k).

Lemma 2. For every integer values k and r such that 1 ≤ r < k, REV(k, r) ⊂
REV(k, r + 1).

Identifying REV(k, r) Languages in the Limit

In order to identify any REV(k, r) language in the limit we propose a modifica-
tion of Angluin’s algorithm [An82]. Observe that Angluin proposes the merging
of two states (blocks) due to the following two criteria:

1. The two states produce non determinism
2. The two states have at least one transition with the same symbol to the

same state and they have a common k-leader.

Here we propose an additional criterion which can be enunciated as follows:
Two states (blocks) are merged if they have at least one transition with the same
symbol to the same state and the conditions of definition 1 do not hold. The
modified algorithm obtains the smallest language L such that L is in REV(k, r)
and L contains the sample given as input. The proof follows from Angluin’s
work [An82]. The complexity of the modified algorithm is still polynomial, in
fact O(C(k, r) · n3), where C(k, r) is a constant that depends on the number of
k-leaders of every state and the number of r segments.

Reference

[An82] D. Angluin. Inference of Reversible Languages. Journal of the Association for
Computing Machinery. Vol 29 No 3, pp 741-765. July 1982.

Grammatical Inference for Syntax-Based
Statistical Machine Translation

Menno van Zaanen1 and Jeroen Geertzen2

1 Division of Information and Communication Sciences
Department of Computing

Macquarie University
2109 Sydney, NSW, Australia

menno@ics.mq.edu.au
2 Language and Information Science

Tilburg University
Tilburg, The Netherlands

j.geertzen@uvt.nl

Abstract. In this article we present a syntax-based translation system,
called TABL (Translation using Alignment-Based Learning). It trans-
lates natural language sentences by mapping grammar rules (which are
induced by the Alignment-Based Learning grammatical inference frame-
work) of the source language to those of the target language. By parsing
a sentence in the source language, the grammar rules in the derivation
are translated using the mapping and subsequently, a derivation in the
target language is generated. The initial results are encouraging, illus-
trating that this is a valid machine translation approach.

1 Introduction

Recently, there has been an increased interest in Statistical Machine Translation
(SMT) [1]. SMT systems can be built using plain text only, which cuts down the
development time of new MT systems immensely.

Some approaches that combine statistical learning with structured data by
aligning syntax trees in two languages have been proposed previously [2, 3]. Here,
we propose to use the Alignment-Based Learning framework [4] to generate these
tree structures automatically.

For this task, the tree structures generated by ABL do not need to be linguis-
tically correct. ABL only has to learn how words and phrases in one language
(the source language) translate to words or phrases in another language (the
target language).

2 Translation Using Alignment-Based Learning

Translation using Alignment-Based Learning (TABL) automatically learns a ma-
chine translation system from a sentence aligned bi-lingual corpus. ABL is ap-
plied to sentences in the source language and their translation in the target

Y. Sakakibara et al. (Eds.): ICGI 2006, LNAI 4201, pp. 356–357, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Grammatical Inference for Syntax-Based Statistical Machine Translation 357

language. This structural information is used to analyse new source sentences
and to generate translations.

TABL consists of two phases, the training phase and the translation phase.
During the training phase ABL is applied to plain text translations in both the
source and target language, creating a bracketed version of this data. Next, prob-
abilistic context-free grammar (PCFG) rules are extracted [4, p. 53]. Grammar
rules found in the derivations of both languages are stored, mapping each of
the rules from the source language to the relevant (induced) rules in the target
language. A concurrence score is also stored with each mapped rule.

During the translation phase, TABL parses a new source sentence using the
PCFG of the source language. Next, using the mapping, the grammar rules of
the derivation tree are mapped to those of the target language and a derivation
in the target language is created. The yield of this derivation is the translation.

3 Results

To investigate how well this approach to machine translation really works, we
applied TABL to different aligned corpora. Our test corpus showed over 80%
correct translations, but about 50% of the sentences were not translated at all.

The reason why some sentences are not translated is that the target derivation
is created by mapping from the source derivation. If the target derivation needs
a different number of grammar rules, it cannot currently be generated.

4 Conclusion

In this article, we introduced TABL, a structure-based machine translation sys-
tem, which demonstrates a novel application of the Alignment-Based Learning
grammatical inference framework. Plain text collections that are aligned on sen-
tence level are analysed, which results in grammars that show regularities in
both languages. These regularities are then related between the languages. The
resulting mapping illustrates how parts of sentences in the source language can
be translated into equivalent parts in the target language.

Bibliography

[1] P. F. Brown, S.A. Della Pietra, V.J. Della Pietra, and R.L. Mercer. The
mathematics of statistical machine translation: Parameter estimation. Com-
putational Linguistics, 19:263–312, 1993.

[2] I. Dan Melamed. Statistical machine translation by parsing. In 42th Annual
Meeting of the Association for Computational Linguistics; Barcelona, Spain,
2004.

[3] Katharina Probst. Automatically Induced Syntactic Transfer Rules for Ma-
chine Translation under a Very Limited Data Scenario. PhD thesis, Carnegie
Mellon University, Pittsburgh:PA, USA, 2005.

[4] Menno van Zaanen. Bootstrapping Structure into Language: Alignment-
Based Learning. PhD thesis, University of Leeds, Leeds, UK, January 2002.

Author Index

Adriaans, Pieter 188, 293, 320
Aggarwal, Sanjeev Kumar 201
Alvarez, Gloria 340
Armstrong, Tom 137
Atamas, Mike 137

Becerra-Bonache, Leonor 137, 281
Bernard, Marc 240

Campos, Marcelino 175
Carme, Julien 342
Ceresna, Michal 342
Cheng, Li 97
Clark, Alexander 59, 148, 227
Costa Florêncio, Christophe 148

Dare, V.R. 327
Dediu, Adrian Horia 281
de la Higuera, Colin 19, 32
Denis, François 112
Dubey, Alpana 201

Esposito, Yann 112
Estival, Dominique 214

Garćıa, Pedro 340
Geertzen, Jeroen 356
Gilleron, Remi 253
Goebel, Max 342
Greiner, Russell 97
Grinchtein, Olga 344

Habrard, Amaury 112, 268

Jacobs, Ceriel 293
Jalote, Pankaj 201
Janodet, Jean-Christophe 19, 240

Kakishita, Yasuki 351
Kalyani, T. 327
Katrenko, Sophia 188
Kurihara, Kenichi 84

Lemay, Aurelien 253
Leucker, Martin 344
López, Damián 175

Matsumoto, Yuji 1
Mizushima, Fuminori 346
Mráz, Frantǐsek 125

Nakamura, Katsuhiko 72
Ng, Yen Kaow 307
Niehren, Joachim 253
Nishino, Tetsuro 351

Oates, Tim 137
Ogiela, Lidia 349
Ogiela, Marek R. 349
Okanoya, Kazuo 351
Oncina, Jose 268
Otto, Friedrich 125

Peris, Piedachu 175
Plátek, Martin 125

Robinson, T. 327
Ruiz, José 340

Sasahara, Kazutoshi 351
Sato, Taisuke 84
Schuurmans, Dale 97
Sebban, Marc 240
Sempere, José M. 175, 354
Serayet, Mariette 148
Shinohara, Takeshi 307
Starkie, Bradford 214

Tadeusiewicz, Ryszard 349
Takahasi, Miki 351
Tantini, Frédéric 19
Thomas, D.G. 327
T̂ırnăucă, Cristina 281
Tomita, Etsuji 161
Toyoshima, Takashi 346

van Zaanen, Menno 214, 356
Vert, Jean-Philippe 7

Wakatsuki, Mitsuo 161
Wang, Shaojun 97
Wang, Shaomin 97
Watkins, Chris 148

Yamada, Go 161
Yoshinaka, Ryo 45

	Frontmatter
	Invited Papers
	Parsing Without Grammar Rules
	Classification of Biological Sequences with Kernel Methods

	Regular Papers
	Identification in the Limit of Systematic-Noisy Languages
	Ten Open Problems in Grammatical Inference
	Polynomial-Time Identification of an Extension of Very Simple Grammars from Positive Data
	PAC-Learning Unambiguous NTS Languages
	Incremental Learning of Context Free Grammars by Bridging Rule Generation and Search for Semi-optimum Rule Sets
	Variational Bayesian Grammar Induction for Natural Language
	Stochastic Analysis of Lexical and Semantic Enhanced Structural Language Model
	Using Pseudo-stochastic Rational Languages in Probabilistic Grammatical Inference
	Learning Analysis by Reduction from Positive Data
	Inferring Grammars for Mildly Context Sensitive Languages in Polynomial-Time
	Planar Languages and Learnability
	A Unified Algorithm for Extending Classes of Languages Identifiable in the Limit from Positive Data
	Protein Motif Prediction by Grammatical Inference
	Grammatical Inference in Practice: A Case Study in the Biomedical Domain
	Inferring Grammar Rules of Programming Language Dialects
	The Tenjinno Machine Translation Competition
	Large Scale Inference of Deterministic Transductions: Tenjinno Problem 1
	A Discriminative Model of Stochastic Edit Distance in the Form of a Conditional Transducer
	Learning n-Ary Node Selecting Tree Transducers from Completely Annotated Examples
	Learning Multiplicity Tree Automata
	Learning DFA from Correction and Equivalence Queries
	Using MDL for Grammar Induction
	Characteristic Sets for Inferring the Unions of the Tree Pattern Languages by the Most Fitting Hypotheses
	Learning Deterministic DEC Grammars Is Learning Rational Numbers
	Iso-array Acceptors and Learning

	Poster Papers
	A Merging States Algorithm for Inference of {\itshape RFSAs}
	Query-Based Learning of XPath Expressions
	Learning Finite-State Machines from Inexperienced Teachers
	Suprasymbolic Grammar Induction by Recurrent Self-Organizing Maps
	Graph-Based Structural Data Mining in Cognitive Pattern Interpretation
	Constructing Song Syntax by Automata Induction
	Learning Reversible Languages with Terminal Distinguishability
	Grammatical Inference for Syntax-Based Statistical Machine Translation

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

