
R. Harper, M. Rauterberg, M. Combetto (Eds.): ICEC 2006, LNCS 4161, pp. 386 – 389, 2006. 
© IFIP International Federation for Information Processing 2006 

Vision-Based Bare-Hand Gesture Interface for 
Interactive Augmented Reality Applications 

Jong-Hyun Yoon, Jong-Seung Park, and Mee Young Sung 

Department of Computer Science & Engineering, University of Incheon, 
177 Dohwa-dong, Nam-gu, Incheon, 402-749, Republic of Korea 

{jhyoon, jong, mysung}@incheon.ac.kr 

Abstract. This paper presents a barehanded interaction method for augmented 
reality games based on human hand gestures. Point features are tracked from 
input video frames and the motion of moving objects is computed. The moving 
patterns of the motion trajectories are used to determine whether the motion is 
an intended gesture. A smooth trajectory toward one of virtual objects or menus 
is classified as an intended gesture and the corresponding action is invoked. To 
prove the validity of the proposed method, we implemented two simple 
augmented reality applications: a gesture-based music player and a virtual 
basketball game. The experiments for three untrained users indicate that the 
accuracy of menu activation according to the intended gestures is 94% for 
normal speed gestures and 84% for fast and abrupt gestures. 

1   Introduction 

For the interactions at immersive 3D gaming environments, it is natural to use means 
of human-to-human interaction to the human-computer interaction (HCI). The hand 
gestures are a means of non-verbal interaction. In recent years, many vision-based 
gestural interfaces have been proposed and most of the previous work has been 
focused on the recognition of static hand postures. The fusion of the dynamic 
characteristics of gestures has only recently been taken much interest[1]. 
FingerMouse[2] allows users to perform pointing gestures to control the cursor. 
Finger Track[3] is a vision-based finger tracking system on top of the workspace. 
Hardenberg and Brard[4] also have developed a finger-finding and hand-posture 
recognition system. In the system, the finger, moving over a virtual touch screen, is 
used as a mouse. In a vision-based gesture interface, it is required to discriminate 
gestures given purposefully as instructions from unintended gestures. Lenman et 
al.[5] developed a gesture interface using marking menus. A kind of marking menu 
which is suitable for a pen device, called FlowMenu, was also proposed for use with a 
pen device on wall-mounted large displays[6]. 

In the gestural interface, hand poses and specific gestures are used as commands. 
Naturalness of the interface requires that any gesture should be interpretable. But the 
current vision-based gesture interfaces do not provide a satisfactory solution due to 
the complexity of the gesture analysis. It is hard to deal with uncontrolled light 
conditions, complex background of users, and movements of human hands based on 
articulation and deformation. These reasons increase difficulty both in the hand 



 Vision-Based Bare-Hand Gesture Interface 387 

tracking step and in the gesture recognition step. A compromise would be possible 
using some sensory devices, using simple shaped markers, using marked gloves, 
using simple backgrounds, or restricting the poses of hands to frontal directions. 
Those approaches might not be appropriate for gesture interface since they restrict 
natural human gestures or environments. Our research is concentrated on the 
naturalness of gesture interface not imposing strict restrictions on gestures. 

Computer vision algorithms for interactive graphics applications need to be robust 
and fast. They should be reliable, work for different people, and work against 
unpredictable backgrounds. Fortunately, the problem becomes much easier due to the 
facts that the application context restricts the possible visual interpretations and the 
user exploits the immediate visual feedback to adjust their gestures. This paper 
describes a gesture-based natural interface which is fast and stable without any strict 
restrictions on human motion or environments. 

2   Human-Computer Interactions Using Hand Gestures 

Our idea of the natural user interface is from the way of a general touch screen system 
where the system utilizes information both from the user contact point and a touch to 
the touch sensor to determine the location of a touch to the touch sensor. Touch 
screens are capable of measuring the touch position for a single touched point. The 
location of a touch applied by a user is generally determined by measuring signals 
generated by a touch input and comparing the signals. A touch to the contact point 
may be an actual physical touch or a proximity touch when a finger is positioned 
sufficiently close to generate a signal. 

For real-time barehanded human computer interaction, we developed a fast hand 
gesture classification method. We first filter skin color regions and determine the 
candidate image locations of hands. Then, we detect and track feature points in the 
skin color regions. The user intension of menu selection is inferred based on the 
trajectories of feature points near the menu items in a short time interval. 

For the proximity touch to a menu item, we locate skin color regions and analyze 
gestures occurred in the regions. The HSV(hue-saturation-value) model is used to 
specify skin color properties intuitively. The important property of hue is the 
invariancy to various lighting environment. For the values r, g, and b in the RGB 
color space, each range from 0 to 1, hue h ranges from 0 to 360° and saturation s 
ranges from 0 to 1. For general digital color images, r, g, and b have discrete values 
range from 0 to 255 and the HSV color space also should be quantized to fit into the 
byte range. The value component v is given by v=max(r,g,b) and the saturation s is by 
s=(v-min(r,g,b))*255/v if v ≠0. If v=0, then s is also zero. A fast computation of h is 
possible by the following rules: 

– If v=r then h=(g-b)*30/s. 
– If v=g then h=90+(b-r)*30/s. 
– If v=b then h=120+(r-g)*30/s. 

If the value of h is negative, it is converted to positive by adding 180 to h. Since 
0≤h≤255, 0≤s≤255, and 0≤v≤180, they fit into a byte array. 

Based on the statistics, we filter skin color regions. We only use h and s to 
eliminate the lighting effects. However, under the very dark illumination, the skin 



388 J.-H. Yoon, J.-S. Park, and M.Y. Sung 

color filtering is unstable. Thus, we exclude the case when intensity is too small. The 
skin color subspace is bounded by the constraint: (0≤h≤22 or 175≤h≤180) and 
58≤s≤173 and v≥76. This skin color boundary also works for different human races 
and different lighting conditions. 

Finding fingertip shape requires a fairly clean segmented region of interest. The 
requirement is hard to be satisfied in a general environment. Instead of finding 
fingertips, we determine the proximity of hand parts to menu positions and infer the 
intended user click action using the moving direction of hand parts. We detect enough 
number of feature points and track them. When a feature point is failed in matching, a 
new one is detected and added to the feature point set. 

The trajectories of all feature points are kept during a fixed interval of time. When 
one of the skin color regions overlaps one of menu item regions, the trajectories of 
feature points inside the skin color regions are inspected. If the trajectory shape agrees 
the user intended menu selection, the corresponding menu item is activated. 
Unintended gestures include inconsistently moving trajectories containing abrupt 
change of moving direction, small motion trajectories where the starting positions are 
near the menu item, and confusing trajectories crossing multiple menu items. 

3   Experimental Results 

We implemented two practical augmented reality applications: a music player and a 
virtual basketball game. In the music player, several menu icons are displayed on the 
top of the screen and a user can activate a menu by hand gestures. The music player 
has four menu items to play, stop, forward, and backward music. Each menu item is 
shown as an icon located on the top side of the camera view. In the virtual basketball 
game, a virtual ball is bouncing in a virtual cube space and the real video stream is 
shown in the background. A user can hit the virtual ball with his hand gestures. The 
virtual basketball game is shown in Fig. 1. The game player manipulates virtual ball 
in 3D space by means of hands in the video camera field of view to direct it into the 
basket. 

 

Fig. 1. The virtual basketball game using the bare-hand gesture-based interface 

The experiments were performed on a 2.6GHz Pentium 4-based system. The frame 
size is fixed to 320x240. Color space conversion to HSV space and skin color region 
filtering requires 15 milliseconds on average per frame. Feature tracking for 500 



 Vision-Based Bare-Hand Gesture Interface 389 

feature points requires 42 milliseconds on average per frame. The overall processing 
speed for the interface is about 15 frames per second. 

The menu activation accuracy was measured for three untrained users. Each user 
tried menu selection gestures a hundred times in front of the camera watching the 
monitor. One of them is requested to do them with fast hand motion. For normal 
speed gestures of two users, 93 trials and 95 trials were succeeded. For fast gestures 
of the last user, 84 trials were succeeded. 

4   Conclusion 

We described a barehanded interaction method using human hand gestures applicable 
to augmented reality applications to help in achieving the ease and naturalness desired 
for HCI. For the discrimination of intended gestures from accidental hand 
movements, we utilize a smooth trajectory toward one of virtual objects or menus. We 
have implemented and tested two simple augmented reality applications: a gesture-
based music player and a virtual basketball game. The accuracy of menu activation is 
about 94% for normal speed gestures. We have still lots of room for improvement in 
accuracy. Obvious directions for future work for the improvement include applying 
the unified framework of various user contexts such as velocity of motion, patterns of 
hand gestures, current human postures, and human body silhouette. Typical 
applications of our hand gesture interface include remote control of electronic 
appliances, interaction for a virtual environment, input devices for wearable 
computers, and user control and response in 3D games. 

Acknowledgments. This work was supported in part by grant No. RTI05-03-01 from 
the Regional Technology Innovation Program of the Ministry of Commerce, Industry 
and Energy(MOCIE) and in part by the Brain Korea 21 Project in 2006. 

References 

1. Pavlovic, V., Sharma, R., Huang, T.S.: Visual interpretation of hand gestures for human-
computer interaction: A review. IEEE Transactions on PAMI 19 (1997) 677–695 

2. Quek, F., Mysliwiec, T., Zhao, M.: FingerMouse: A freehand computer pointing interface. 
In: Proc. of Int’l Conf. on Automatic Face and Gesture Recognition. (1995) 372–377. 

3. O'Hagan, R., Zelinsky, A.: Finger track - a robust and real-time gesture interface. In: 
Australian Joint Conference on Artificial Intelligence. (1997) 475–484 

4. von Hardenberg, C., Brard, F.: Bare-hand human-computer interaction. In: Proceedings of 
Perceptual User Interfaces. (2001) 113–120 

5. Lenman, S., Bretzner, L., Thuresson, B.: Using marking menus to develop command sets 
for computer vision based hand gesture interfaces. In: NordiCHI '02: Proc. of the second 
Nordic conference on Human-computer interaction, ACM Press (2002) 239–242 

6. Guimbretièere, F., Winograd, T.: Flowmenu: combining command, text, and data entry. In: 
Proc. of the ACM symposium on User interface software and technology. (2000) 213–216 


	Introduction
	Human-Computer Interactions Using Hand Gestures
	Experimental Results
	Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




