
Real-Time Animation of Large Crowds

In-Gu Kang and JungHyun Han�

Game Research Center, College of Information and Communications,
Korea University, Seoul, Korea

kangin9@paran.com, jhan@korea.ac.kr

Abstract. This paper proposes a GPU-based approach to real-time
skinning animation of large crowds, where each character is animated
independently of the others. In the first pass of the proposed approach,
skinning is done by a pixel shader and the transformed vertex data are
written into the render target texture. With the transformed vertices,
the second pass renders the large crowds. The proposed approach is at-
tractive for real-time applications such as video games.

Keywords: character animation, skinning, large crowds rendering, GPU.

1 Introduction

In the real-time application areas such as video games, the most popular tech-
nique for character animation is skinning[1]. The skinning algorithm works effi-
ciently for a small number of characters. On the other hand, emerging techniques
for rendering large crowds[2, 3] show satisfactory performances, but do not han-
dle skinning meshes. The skinning algorithm can be implemented using a vertex
shader[4]. Due to the limited number of constant registers, however, the vertex
shader-based skinning is not good for rendering large crowds. There has been no
good solution to real-time skinning animation of large crowds, where each char-
acter is animated independently of the others. This paper proposes a GPU-based
approach to independent skinning animation of large crowds.

2 Pixel Shader-Based Skinning

This paper proposes a two-pass algorithm for rendering large crowds[5, 6]. In the
first pass, skinning is done using a pixel shader and the transformed vertex data
are written into the render target texture. With the transformed vertices, the
second pass renders the large crowds.

The skinning data for a vertex consist of position, normal, bone indices and
weights, and bone matrices. Fig. 1-(a) shows that position, normal, bone indices
and weights are recorded in 1D textures. A vertex is influenced by up to 4 bones.
The bone matrices are computed every frame, and each row of the 3×4 matrix
is recorded in a separate texture, as shown in Fig. 1-(b).
� Corresponding author.

R. Harper, M. Rauterberg, M. Combetto (Eds.): ICEC 2006, LNCS 4161, pp. 382–385, 2006.
c© IFIP International Federation for Information Processing 2006

Real-Time Animation of Large Crowds 383

(a) vertex textures (b) bone matrix textures

Fig. 1. Texture structures for vertex and matrix data

Fig. 2. Skinning and render target texture

Through a single drawcall, all vertices of all characters are transformed into
the world coordinates, and then written into the render target texture. Shown
in the middle of Fig. 2 is the render target texture for n characters each with
m vertices. For implementing the skinning algorithm in the pixel shader, the
vertex shader renders a quad covering the render target. Then, the pixel shader
fills each texel of the render target texture, which corresponds to a vertex of a
character.

The render target texture in Fig. 2 is filled row by row. All vertices in a row
have the identical vertex index. Therefore, the vertex data from the vertex tex-
tures are fetched just once, and the cached data are repeatedly hit for processing
n-1 characters.

When skinning is done, the render target texture is copied to a vertex buffer
object (VBO)[7], and then each character is rendered by the vertex shader using
a given index buffer. For all of the render target texture, VBO and pixel buffer
object (PBO)[8], 32-bit float format is used for each of RGBA/xyzw for the sake
of accuracy.

3 Implementation and Result

The proposed algorithm has been implemented in C++, OpenGL and Cg on
a PC with 3.2 GHz Intel Pentium4 CPU, 2GB memory, and NVIDIA Geforce
7800GTX 256MB. Table 1 compares the frame rates of the vertex shader skin-
ning and the proposed 2-pass skinning. For performance evaluation, view frustum
culling is disabled and ‘all’ characters are processed by GPU. Fig. 3 shows snap-

384 I.-G. Kang and J. Han

Table 1. FPS comparison of vertex shader (VS) skinning and proposed 2-pass skinning

soldier horse
characters VS 2-pass VS 2-pass

1 2340 1545 2688 1571
16 580 1057 575 1179
64 200 565 163 649
256 56 200 42 219
1024 14 55 10 58
2048 7 27 5 29
4096 3 13 2 14

Fig. 3. Rendering 1,024 soldiers without LOD and frustum culling

Fig. 4. Rendering 10,240 soldiers with LOD and frustum culling

Fig. 5. Rendering 5,120 horses with LOD and frustum culling

shots of rendering 1,024 soldiers. The average FPS is 55, as shown in Table 1. In
the current implementation, 3 LOD meshes are used: each with 1,084, 544 and
312 polygons, respectively. Fig. 4 shows snapshots of rendering 10,240 soldiers
with LOD applied. The average FPS is 60 with view frustum culling enabled.

Real-Time Animation of Large Crowds 385

Finally, Fig. 5 shows snapshots of rendering 5,120 horses with LOD applied. The
average FPS is 62 with view frustum culling enabled.

4 Conclusion

This paper presented a pixel shader-based approach to real-time skinning anima-
tion of large crowds. The experiment results show that the proposed approach
is attractive for real-time applications such as games, for example, for rendering
huge NPCs (non-player characters) such as thousands of soldiers or animals.
With appropriate adjustments, the proposed approach can be used for imple-
menting MMOGs (Massively Multi-player Online Games).

Acknowledgements

This research was supported by the Ministry of Information and Communica-
tion, Korea under the Information Technology Research Center support program
supervised by the Institute of Information Technology Assessment, IITA-2005-
(C1090-0501-0019).

References

1. Lewis, J.P., Cordner, M., Fong, N.: Pose Space Deformations: A Unified Approach to
Shape Interpoalation and Skeleton-driven Deformation. SIGGRAPH2000 165–172

2. Microsoft: Instancing Sample. DirectX SDK. February 2006
3. Zelsnack, J.: GLSL Pseudo-Instancing. NVIDIA Technical Report. November 2004
4. Gosselin, D. R., Sander, P. V., Mitchell, J. L.: Drawing a Crowd. ShaderX3.

CHARLES RIVER MEDIA. (2004) 505–517
5. James, D. L., Twigg, C. D.: Skinning Mesh Animations. SIGGRAPH2005 399–407
6. Dobbyn, S., Hamill, J., O’Conor, K., O’Sullivan, C.: Geopostors : A Real-Time Ge-

ometry / Impostor Crowd Rendering System. ACM Transactions on Graphics(2005)
933

7. NVIDIA: Using Vertex Buffer Objects. NVIDIA White Paper. October 2003
8. NVIDIA: Fast Texture Downloads and Readbacks using Pixel Buffer Objects in

OpenGL. NVIDIA User Guide. August 2005

	Introduction
	Pixel Shader-Based Skinning
	Implementation and Result
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

