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Abstract. Over recent years, the fall in cost, and increased availability
of motion capture equipment has led to an increase in non-specialist
companies being able to use motion capture data to guide animation
sequences for computer games and other applications.[1] A bottleneck in
the animation production process is in the clean-up of capture sessions
to remove and/or correct anomalous (unusable) frames and noise. In
this paper an investigation is carried out into whether the 2-layer SOM
network previously designed [5] and trained on one capture session, can
be used to create a neural classifier to be used to classify another separate
capture session.

1 Introduction

Motion capture is the process of recording the motion of actors and/or objects,
and this data is often used in computer games to animate characters and other
game objects. The process normally involves tracking sensors or markers that
have been placed in key positions on the actor’s body, and detecting their loca-
tions in three-dimensional space. As the cost of equipment decreases, the realm
of Motion Capture is no longer the preserve of specialist companies who take
care of all aspects of data capture and post-processing. The task of supplying
animation scenes from a motion capture system is now seen as a commodity,
and so the focus has started to veer towards processing the output from a cap-
ture session as quickly and cheaply as possible. By improving post-processing,
motion capture studios can get more useful (and commercial) application out of
the capture equipment.

Previous work [4] showed that a statistical method could correctly identify a
frame’s class 67% of the time, whilst [5] showed that a 2-layer SOM network could
produce an output net that grouped classifications together. From this base, the
remit of this paper is to investigate the extent to which a network similar to that
identified in [5] trained on one set of data could be used to classify data from a
different capture session. Other research, such as that in [2], [3] and [6] focuses
on the extraction of information from data that is already clean. Currently, it is
part of an animators job to clean the raw data from a capture session, and it is
this time that we wish to save for the animator.

Positional anomalies in the data come about when the sensors move too close
to or too far from the field generators; where the sensors are unable to detect the
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field strength accurately or if metallic objects interfere with the magnetic fields
and so produce anomalous results. The outcome being sensors reporting their
positions that are inverted in the vertical axis or placed at a seemingly random
position and breaking the skeleton of the captured article (which can be human,
animal or an inanimate object). The next section outlines the structure of the
network and the factors involved in designing the classifier.

2 Methodology

Data is read in and stored in a separate matrix for each sensor in the session
(called nodes from here on). Equation 1 shows one node’s data in one frame in
the session.

ni(t) =
[
ni1(t) ni2(t) ni3(t)

]
(1)

For each node, a one-dimensional SOM is created and initialised (equation
2 with M as the number of neurons in the net). Each SOM is trained for 100
epochs using only the data for its associated node. One epoch uses every frame
in the session, fed into the network in a random order.
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The Euclidean distance between the input vector and each neuron in a SOM
is calculated, and the neuron with the minimum distance being declared the
winner (see equation 3, i is the node number and k is the vector element).
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The weights for the winning neuron are then updated using equation s′l =
sl + αh(ni(t) − sl) with α being the adaptive learning rate (α = α0(1 − tc

T ), T =
100F , where F is the total number of frames and tc is the training cycle), and

h1 = e
−(j−ci)

2

2 is the gaussian neighbourhood function (j and ci are the indices
of the neuron being updated and winning neuron respectively) that modifies the
neurons closest to the winner more than those further away.

The outputs from each of these SOMs form the input vector for the second-
layer SOM (equation 4). The second-layer SOM is a two-dimensional array of
neurons with each neuron having a weight vector of that shown in equation 5.
The winner is decided by the minimum Euclidean distance, as in the first-layer
SOMs, with the training updates calculated using the same adaptive learning

rate and gaussian neighbourhood function h2 = e
−(R−cR)2−(C−cC )2

2 (with R and
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C being the row and column address of the neuron being updated and cR and
cC the row and column address of the winning neuron).
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2.1 Centring Data

The above method does leaves the positional data as it is and does not apply
any pre-processing onto it. By leaving the data unaltered, the network can take
account for the spatial element of the capture volume. However, when using a
test-case to train a neural-classifier, it may be appropriate to remove this spatial
element of the data, in order to concentrate the network to train on just the
structural element of the capture. To do this, the positional data should be
translated to the origin in each frame.

There are several methods of being able to centre the data, e.g. centre of mass,
etc. Here, the centre of mass version is used. With this method each node in a
frame is given an equal mass and then the geometric centroid of the masses is
found using equation 6, but as the masses are all equal this can be simplified to
equation 7.

n̄(t) =
∑M

i=1 mini(t)′
∑M

i=1 mi

(6)
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With n̄(t) giving the coordinates of the centroid. Each node in the captured
frame is then translated to the origin in the x- and z- axes towards the origin of
the volume space, equation 8.

gi(t) = ni(t)′ −

⎡
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0
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⎤

⎦ (8)

The centred data is then used to train the network in exactly the same way
as shown in equations 1 to 5, except with gi(t) replacing ni(t) in all relevant
equations.
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2.2 Classifier

From previous experiments [5] a network with 41 neurons in each first-layer
SOM and a 21-by-21 SOM for the second-layer gave the most consistent results.
Therefore for these investigations a network with this same structure was trained
and used for classification.

Fig. 1. A Graph Showing the Classifier Boundary for a 2-Layer SOM Network trained
with Centred Data

The original outputs of the networks were used to create output classifier
graphs (see figure 1 for an example) and filter. The class boundaries were defined
by a user and the criteria used to decide where to draw the boundary were:

1. The boundary has to go through each Overlapping Point.
2. The boundary should go nearer the ”clean” neurons than the ”anomalous”

neurons.
3. In areas of uncertainty, then take the nearest known neurons as reference.
4. The boundary represents the unknown areas

3 Results

The classifying networks were trained using a capture session of a single actor
walking around (called Train1 from hereon), that contains two sequences of
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anomalous frames sandwiching a series of clean frames, all preceded by a series
of frames where the figure is inverted. The networks were then used to classify
5 other files each with different characteristics. File F1 has an identical sensor
set up to Train1 with very similar motions and orientations but is less than half
the length. File T1 has two series of clean frames alternated with two series
of anomalous data, file T2 has a series of clean frames followed by a series of
anomalous frames with more clean than anomalous. File T3 is the same as T2
but with more anomalous than clean and File T4 contains only clean frames.
Files T1, T2, and T3 all have 2823 frames with similar but not identical sensor
setups to Train1 capturing a range of more energetic motions than in Train1.
T4 also has 2823 frames, but has similar motions to Train1.

A false positive is where a anomalous or inverted frame is classified as a clean
frame, with a false negative if a clean or inverted frame called as a anomalous
and a false inverted is when a frame is called as inverted when it should be either
clean or anomalous.

As can be seen from tables 1 and 2, for those files with similar motions to those
captured in Train1 (files F1 and T4), that the results give us no or very few false
readings. However, for file T4 the majority of frames are classified as unknown.
On inspection of which neurons are producing these spurious results with the
uncentred data 4 neurons have been mislabeled as unknown, when they should
have been labeled as clean. With centred data, one neuron has been mislabeled
as anomalous when it should have been labeled as unknown and one neuron has

Table 1. Table of results for classification using a 2-layer SOM trained with uncentred
data

File Correct False Unknown
Positive Negative Unknown Positive Negative Unknown

Train1 115 213 46 0 0 0 33
F1 115 37 0 0 0 0 18
T1 299 876 0 393 798 32 425
T2 811 23 0 62 221 0 1706
T3 474 0 0 0 773 0 1576
T4 118 0 0 0 0 0 2705

Table 2. Table of results for classification using a 2-layer SOM trained with centred
data

File Correct False Unknown
Positive Negative Unknown Positive Negative Unknown

Train1 131 225 49 0 0 0 2
F1 129 39 0 2 0 0 0
T1 381 584 0 1531 107 0 220
T2 2287 33 0 71 223 2 207
T3 1261 73 0 1379 13 3 94
T4 1074 0 0 0 4 0 1745
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been labeled as unknown when it should have been labeled as clean. The files
where the motions captured are significantly different from Train1 (T1–3) yield
poor results, which suggests that it is only possible to use a neural classifier like
this on files of similar motions to the trainer file.

4 Conclusions

Although it was initially hoped that a file that contained all possible classifica-
tions, such as Train1, would be able to create a classifier that could be used on
a majority of other files with similar sensor set-ups. This isn’t the case but it
does show that it is possible to build a classifier that can correctly identify the
majority of frames in a separate session with similar set-ups and motions. As
was shown, the initial classifier requires a degree of guesswork from the user and
so is not at its optimum level, but as further files are tested against the classifier
it can be refined further improving performance. There will always be points
in a classifier that will produce unknown classifications, due to the existence of
overlapping neurons. From the two sets of results it appears on first inspection
that centring the data has little effect, but it actually produced an initial classi-
fier that required less refinements than the uncentred data. Part of this will be
down to user-guestimates in building the classifier and part due to the centred
data-trained network creating a clearer separate in groups of neurons.

To further advance the theory more testing needs to be done with a variety
of captured motions, lengths of file and sizes of actors. Furthermore, a trainer
file should be created that contains a full range of motions and orientations in
itself, rather than in individual files.
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