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Abstract. Software systems that are intended to work autonomously
in complex, dynamic environments should undergo extensive testing.
Model-based testing advocates the use of purpose-driven abstractions for
designing appropriate tests. The type of the software, the objective of
testing, and the stage of the development process influence the suitability
of tests. Simulation techniques based on formal modeling concepts can
make these abstractions explicit and operational. A simulation model is
presented that facilitates testing of autonomous software within dynamic
environments in a flexible manner. The approach is illustrated based on
the application Autominder.

1 Introduction

Developing agents essentially means developing software that is able to suc-
cessfully accomplish specified tasks in an environment that changes over time.
This process is of an intrinsically experimental and exploratory nature. Little
work has been done on developing methods for testing agents so far [1]. Current
methodologies and tools that support agent design and implementation leave a
gap between specifications and implementations [2].

In the following we will give a short overview about testing of agents. A
discrete-event approach constitutes the basis for developing an experimental
frame for testing agents. Various models with different roles in testing will be
defined. Among those the interface between the software under test and the
simulation system plays a central role and will be discussed in more detail. The
setup of a concrete experimental frame will be illustrated on the application
Autominder. The paper concludes with a discussion of related work.

2 Testing Agents

Different strategies for designing tests are used. Typically, black box and white
box testing strategies are distinguished [3]. Whereas black box testing is con-
cerned with examining the observable behavior of an implementation and focuses
on functional requirements, white box testing makes use of knowledge about the
internal structure of a program and how results are achieved.
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Furthermore, a software can be tested on different levels and during differ-
ent phases of development, which necessitates the use of different test design
methods. Unit testing is usually associated with white box test design, because
units are often of limited (structural) complexity. Testing of whole agent systems
has to cope with increased complexity due to multitasking, nondeterminism and
timing issues. Consequently, system testing focuses on the discovery of bugs that
emerge from interactions of components or result from contextual conditions [4].

In the following we will focus on supporting testing of agents at the system’s
level.

2.1 Model-Based Testing of Agents

Whereas most of the testing approaches directly derive test cases from the spec-
ification of requirements, model-based testing uses additional models for test
case selection. To constrain the set of test cases, model-based testing introduces
a model of the test scenario to distinguish significant ones.

Types of abstraction that are used in model-based testing are: functional,
data, communicational, and temporal abstraction [5]. Functional abstraction
omits behavioral details that are of no interest according to the current test
purpose, i.e. behavior is tested only with respect to a constrained environment.
Data abstraction maps concrete data types to abstract ones. Communicational
abstraction maps sets of interactions to atomic ones. Temporal abstraction mod-
erates precise timing of events, e.g. to consider only the order in which events
occur.

The complexity of an agent’s environment makes functional abstraction man-
datory for testing. Covering a certain set of test cases is hindered by the agent’s
autonomy. Because of its unpredictable behavior it is difficult to drive an agent
into a certain test case [6]. Test cases should not be completely predefined but
evolve dynamically depending on both the environment and the reactions of the
agent itself [7]. In contrast to non-deterministic testing, environmental models
provide a controlled selection of test cases.

3 Modeling Test Architectures

We suggest a rather radical interpretation of “model-based testing” by explicitly
defining all abstractions in models. Therefore, we introduce a general model of
the test architecture.

A test architecture must be easily adaptable to provide the required granular-
ity and to complement the software under test as far as it has been developed.
Thus, the chosen formalism and the test architecture should support modular-
ity, re-use, and refinement. In particular, to be applicable for agent testing, the
architecture should support multiple facets of testing and variable structures.
Moreover, adequate testing of real-time constraints requires a formalism on a
dense time base.
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The approach presented here is based on James II, a component-based mod-
eling and simulation system, which supports different modeling formalisms and
facilitates different simulation engines [8]. Most of the realized modeling for-
malisms are based on Devs [9] and extend the formalism by introducing variable
structures [10] or peripheral ports into Devs.

Devs distinguishes between atomic and coupled models. An atomic model is
described by a state set S, a set of input and output ports X and Y respectively,
an internal and external transition function, δint resp. δext, an output function
λ, and a time advance function ta. δint dictates state transitions due to internal
events, the time of which is determined by the ta function. At an internal event,
the model produces an output in λ. δext is triggered by external inputs that
might arrive at any time.

Coupled Devs models support the hierarchical, modular construction of mod-
els. A coupled model is described by the set of its component models, which may
be atomic or coupled, and by the couplings that exist among them. Coupled
models enable the structuring of large models into smaller ones.

3.1 Equipping DEVS with Peripheral Ports

To support the integration of externally running software, Devs models have
been equipped with peripheral ports (XP , YP).

The classical ports (X, Y ) of Devs models collect and offer events that are
produced by models. In addition, the peripheral ports allow models to commu-
nicate with processes that are external to the simulation. Thereby, the simula-
tion system does not interact with external agents as one black box, but each
single model can function as an interface to external processes. The model func-
tions were extended to handle input and output from respectively to external
processes. The state transition functions and the λ : S × XP → Y -function of
the interface model describe how incoming data is transformed into data that
can be used within the simulation. The functions δint : S × XP → S × YP and
δext : Q×X ×XP → S ×YP are furthermore responsible for the transformation
of simulation data into data usable by the externally running software.

The simulation system uses the time model function tm : R
≥0 → R

≥0 to
translate the resource consumption of the externally running software into sim-
ulation time:

External processes are invoked by the simulation system and the information
put into the peripheral output ports is forwarded to them. After the external
computation has finished, the results of these invocations arrive at the peripheral
input ports of the according model at a simulation time which is determined by
the time model.

3.2 An Experimental Frame for Testing Agents

Models are designed, tested, and validated based on conditions and assumptions.
The so called experimental frame [11] makes those explicit. Figure 1 depicts the
components that make up an experimental frame for testing agents.
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Fig. 1. Model of a test architecture for agents

I/O models form the interface between simulation and Software under test
(SUT). It exchanges data between simulation and the externally running
software via its peripheral ports. The state transition functions and the λ-
function of the interface model describe how incoming data from the SUT is
mapped to data that can be used within the simulation and vice versa. Thereby
they describe the data abstraction in testing.

Moreover, I/O models also describe communicational and temporal abstrac-
tion. Using the time model tm : R

≥0 → R
≥0 different types of temporal ab-

straction can be realized considering the progression of wall clock time and
consumption of resources on the one hand and simulation time on the other
hand. However, for testing timing requirements the validity of the chosen time
model is crucial. Often the consumed wall clock time is used as a resource, as
it is easily accessible. Unfortunately, its usage endangers the repeatability of
simulation runs and implicitly introduces uncertainties due to hardware config-
uration and current work load. Better suited time models depend on the type of
implementation, the language used, or the underlying operating system [12].

In all cases, an ExternalProcessThread has to be implemented per I/O model
that realizes the actual communication between simulation and the SUT. If
the implementation does not possess an own clock, a synchronous interaction
of simulation and the external software will prove beneficial, as it gives the
simulation system full control over the experiment.

The Virtual Environment models the circumstances under which the behav-
ior of the SUT (i.e. the agent) is to be observed. Thus, it realizes the functional
abstraction in testing and constrains the view on the possible behavior of the sys-
tem. Within the virtual environment the peripheral ports can also be exploited
for integrating user interactions, e.g. humans can interact asynchronously with
the simulation supported by peripheral ports and a paced execution. Gradual
transitions between explicit models and “ad-hoc” testing by humans become
possible.

So far, we have merely formalized the experimental set-up for testing agents.
Now, we shall see how this general architecture was deployed for testing a con-
crete agent application and how the general framework can be filled with appli-
cation specific abstractions.
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4 Testing Autominder

Autominder is a distributed monitoring and reminder system developed at the
University of Michigan [13]. It is being designed to support older adults with
mild to moderate cognitive impairment in their activities of daily living. These
are activities a person must complete in order to ensure her physical well-being
(e.g. eating, toileting). The software is installed in the client’s house together
with a set of sensors and given a list of actions that must be performed during
the day. At runtime, Autominder evaluates sensor echoes from the environment,
reasons about ongoing user activity, and compares its findings to the given client
plan to detect forgotten actions and remind the user of their execution.

Coop
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RemREQ

SensNTF
Flat

Elderly

Action Planner

EIS

ExecNTF

ActNTF

CoorpREQ

CoorpRSP

RemNTF
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Fig. 2. Refined Virtual Environment for Testing Autominder

4.1 The Virtual Environment

Autominder complements a human in-place nurse and thus has a huge responsi-
bility for its client’s safety. Consequently, it must be tested in a variety of appli-
cation scenarios before its release. Since those scenarios are not always safe for a
human client and may be hard to observe during human-in-the-loop field tests, a
virtual testing environment for Autominder (AVTE) has been developed [14] in
cooperation with the Autominder research group. The AVTE was implemented
in James II. Its layout is shown in Figure 2. The testing environment focuses on
the model of an elderly who acts as the Autominder user. Besides, it includes a
model of the client’s living environment where Autominder is supposed to work.

The Elderly model is designed as a Human Behavior Representation that
represents an elderly person in terms of actions and mental state [15]. Therefore,
it provides two basic client functionalities: emulate suitable elderly behavior and
react to incoming reminders. The virtual elderly follows a certain routine and
performs actions of daily living accordingly. Depending on its initial memory
fitness and current stress level, the Elderly model may forget some of the plan
actions. If the model receives an external reminder, it interrupts this default
behavior and evaluates the reminder. However, there is no guarantee that the
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Fig. 3. An I/O model that functions as an ambassador for Autominder

Elderly model will cooperate with Autominder and execute the requested action.
Depending on its cooperativeness and current degree of annoyance, the virtual
elderly may choose to ignore reminders as well.

In the Elderly model, each of the basic functionalities is implemented by a sep-
arate component: the Cooperation model deals with reminder acceptance, and
the Action model is responsible for the execution of actions. It receives informa-
tion on currently executable actions from the Planner model that manages the
routine plan of the elderly. The ElderlyInformationStorage (EIS) model holds all
user-specific information necessary to compute the elderly’s present forgetfulness
and cooperativeness depending on the past workload.

The Flat model composes a sensory picture of the elderly’s surroundings. It
generates sensor data that reflect the current in-house activity based on the past
action history and knowledge about how sensors are activated by plan steps.
Examples for such sensors are contact sensors for doors and the medication
container cover, heat sensors for the stove, and flush sensors in the bathroom.

4.2 Coupling Autominder and Simulation

For testing Autominder, the software has to be plugged into the virtual envi-
ronment. Autominder is a complex and autonomous implementation. It offers
an interface for external function invocation and is able to proactively start
interactions itself.

To support both the testing of method invokation as well as the testing of
agent software with an own thread of control, ambassador models have been
introduced [16], which form a special kind of I/O models. With ambassador
models a representative of the externally running software becomes part of the
virtual environment, crucial phases of the software are directly reflected within
the simulation model.
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Fig. 4. Interaction between the ambassador I/O model and Autominder

Using ambassadors, the SUT typically needs to be instrumented, i.e. meth-
ods of the agent have to be changed to redirect messages into the simulation
system. In the case of Autominder, its central module, the Event-Handler, was
concerned. Every software module that wants to receive Autominder messages
needs to be registered at the EventHandler, and so does the Ambassador model.
Furthermore, some new message types were introduced. On the one hand, Au-
tominder has to accept new simulation-generated synchronization messages in
order to agree on a common time. On the other hand, marker messages must
now be issued by the EventHandler so that the Ambassador model could clearly
tell apart Autominder’s different processing phases.

Figure 3 shows an ambassador I/O model for testing Autominder. This model
reacts to incoming simulation messages by forwarding them to Autominder and
reacts to incoming messages from Autominder by passing them to the other
models of the virtual environment.

Communicational abstraction is used for collecting reminders and sensor noti-
fications during phase calc. All reminders that have occurred during a computa-
tion cycle of Autominder are passed to the virtual environment jointly. Similarly,
all sensor notifications issued by the virtual environment during the current Au-
tominder processing cycle are gathered and held back until the transition to the
phase notifyAM takes place.

Figure 4 shows a typical interaction between the ambassador I/O model and
Autominder. Calculation phases of Autominder are initiated by the simulation
system. Sensor information from the virtual environment is put into the periph-
eral output ports by the I/O model and forwarded to Autominder. Reminders
produced by Autominder are put into the peripheral input port of the I/O model
and saved until an AllModuleIdle message indicates that Autominder has finished
a computation cycle. The simulation time of peripheral input events is deter-
mined by the time model, i.e. tsim

i = tsim
1 + tm(Δtwc

1 ), tsim
o = tsim

i + tm(Δtwc
2 ).

This is the time at which the reminders are scheduled in the virtual environment.
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Autominder maintains an own clock, which is advanced either by Autominder
itself or externally. Using ambassador models, Autominder time is controlled
externally. Autominder advances its clock according to the time stamp of the
simulation-generated messages it receives.

4.3 The Oracle

The oracle module judges, whether Autominder adequately reacts (issues re-
minders) with respect to formerly received inputs from the virtual environment.
Adequacy is defined in terms of requirements that are specified at an earlier de-
sign phase. For testing Autominder’s reminder generation feature, four require-
ments were identified in order to ensure client awareness and avoid annoyance
respectively over-reliance:

1. All critical actions from the client plan shall be executed by the client. There-
fore, Autominder needs to make sure the client is aware of upcoming ac-
tivites: it has to issue reminders for actions the client does not perform on
its own.

2. However, not all actions mentioned in the client plan may be essential and
worth reminding for.
Autominder must only remind for crucial client plan actions that are marked
as “remindable”.

3. If the client does not execute a such mandatory, remindable action on its
own, it must be given the opportunity to catch up on time. Hence, reminders
need to occur within the allowable time bounds of the related action.

4. In order to personalize reminder plans, both client and caregiver can give
recommendations on when to remind best (e.g. earliest, latest, or typical
execution time). Autominder’s reminding policy should respect these pref-
erences1.

These requirements are translated into a set of rules the oracle uses in order
to evaluate the correctness of Autominder’s input/output trajectory.

4.4 Test Cases and Results

For each test case, input is specified by two plans: the routine plan that de-
fines the behavior of the simulated elderly and the client plan based on which
Autominder works. These plans can either agree or differ in their plan steps.

When using the same plans in Autominder and the elderly model, Automin-
der knows everything its user normally does during a day. Nevertheless, the
elderly person may forget some of its usual activities. In this case, Autominder
is expected to remind the client of the forgotten actions. In real-world applica-
tions, Autominder is likely to be given more sparse information on mandatory
client activities only. Future testing scenarios should define the routine plan as
a superset of the client plan steps, cf. Figure 5(a) and 5(b).
1 In our test runs, not much emphasis was put on the adherence to the reminding

preferences since “there is no good way to validate [. . . ] [the] optimality [of the
client plan]” [17].



Modeling and Simulation of Tests for Agents 57

Fig. 5. Example relations of client and routine plan

In our first tests, we used the same plan as routine and client plan. A simple,
strictly serial plan was employed. Figure 6 displays the six consecutive plan
actions that start resp. end each planned activity and highlights the times when
reminders were expected to occur for them. Flashes indicate the actual receipt
of a reminder.

Fig. 6. Summary of simulation runs

In our experiments, reminders always occurred timely. So far, both require-
ment (1) and (3) are fulfilled. Interestingly, no end reminder was received during
the simulation at all. GetUp and Wash both were ended by the model itself,
no reminders were necessary. In contrast, the elderly model “forgot” to finish
Eating. Here, the omitted end reminder caused problems – the elderly did not
comply with its client plan anymore, requirement (1) is violated.
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Moreover, this incident also represents an irregularity with requirement (2).
Autominder shall remind for crucial actions only, but no reminder is expected for
the start of eating. The evidence of a needless start and a missing end reminder
nurtured the suspicion that there might be problems with end reminders in
Autominder. However, in many safety critical situations ending an activity is an
as crucial issue as starting an activity (e.g. turning off stove after cooking). Thus,
more extensive testing of end reminders was conducted using an elderly model
with a tendency to forget ending activities. The testing revealed that indeed
Autominder did not consider end reminders yet. After having been identified,
this problem could be resolved easily.

5 Related Work

There exist mature tools for testing real-time constrains by synchronously in-
voking implemented functions, e.g. TAXYS [18] and Simulink [19]. These works
differ from ours in that the present approach also accounts for autonomous agent
software.

Testbeds [20], [21] and [22] explored the integration of models rather than
implementations of agents that are equipped with an own thread of control and
communicate asynchronously with the simulation system.

TTCN-3 is a language for specifying test cases as well as test setups [23].
Whereas TTCN-3 aims to provide a standard notation and execution architec-
ture for all black-box testing needs, we suggest a purpose-oriented modeling of
tests and test architectures on an “appropriate” level of abstraction – according
to the current development phase and the requirements of a software system.

The abstractions used in model-based testing were already discussed by Hahn
et al. [6]. In our approach these abstractions became operational by using general
purpose modeling and simulation methods.

James II has previously been used for coupling external software to simulation,
e.g. synchronous coupling of external software to the simulation system and the
use of time models were realized for planning agents [24], mobile agents, [16],
and a multi-agent system comprising collaborative agents [12].

6 Conclusion

A modeling and simulation-based approach for testing agent implementations
has been proposed. To this end, the idea of experimental frames has been adopted
for defining test architectures.

The developed test architecture comprises different sub-models with differ-
ent roles in the testing process. These sub-model reflect the different types of
abstraction usually involved in testing.

Whereas the Virtual Environment model signs responsible for the functional
abstraction, I/O models implement the data and communicational abstraction
at least with respect to the communication between SUT and environment. The
Time Model represents the temporal abstraction underlying the testing.
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By using a formal modeling and simulation approach to testing, the mental
models that form an intrinsic part of testing are explicitly represented. Further-
more, each of the models can be defined and refined on the level of abstraction
required by testing purposes.

The practical use of the methods developed was demonstrated with the Au-
tominder system. In this context particularly the importance of human behavior
models became obvious. The integration of human behavior models is gaining
importance in other areas, e.g. the evaluation of protocols for mobile ad-hoc
networks [25], too. So this might be a general trend when it comes to simulation-
based testing of software: to replace ad hoc interactions (of humans in-the-loop)
with the software under test, by coherent (although not necessarily validated)
and systematically responding user models.
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