
Agents’ Bidding Strategies
in a Combinatorial Auction

Tim Stockheim1, Michael Schwind2, and Oleg Gujo2

1 Business Information Systems and Operations Research, Technical University
Kaiserslautern, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern, Germany

stockheim@wiwi.uni-kl.de
2 Institute of Information Systems, Johann Wolfgang Goethe University,

Mertonstrasse 17, D-60054 Frankfurt, Germany
schwind, gujo@is-frankfurt.de

Abstract. This paper presents an agent-based simulation environment
for task scheduling in a grid. Resource allocation is performed by an iter-
ative combinatorial auction in which proxy-bidding agents try to acquire
their desired resource allocation profiles. To achieve an efficient bidding
process, the auctioneer provides the bidding agents with approximated
shadow prices from a linear programming formulation. The objective of
this paper is to identify optimal bidding strategies in multi-agent settings
with respect to varying preferences in terms of resource quantity and
waiting time until bid acceptance. On the basis of a utility function we
characterize two types of agents: a quantity maximizing agent with a low
preference for fast bid acceptance and an impatient bidding agent with
a high valuation of fast allocation of the requested resources. Bidding
strategies with varying initial bid pricing and different price increments
are evaluated. Quantity maximizing agents should submit initial bids
with low and slowly increasing prices, whereas impatient agents should
start slightly below market prices and avoid ‘overbidding’.

1 Introduction

We present an agent-based simulation environment for resource allocation in a
distributed computer system that employs a combinatorial task scheduler. Our
environment enables the simulation of a mechanism for the simultaneous alloca-
tion of resources in the distributed computer system. In contrast to traditional
grid allocation approaches, our allocation process considers production comple-
mentarities and substitutionalities for these resources thus raising the efficiency
level of the resulting resource [1]. The central scheduling instance of our system
is comparable to an auctioneer that performs an iterative combinatorial auction
(CA). Agents try to acquire the resources required in computational tasks for
the provisioning of information services and information production (ISIP) by
submitting package bids. We introduce a utility function that will allow us to
represent different preferences of agents, i.e. a trade-off between quantity maxi-
mization and fast acceptance of bids. In a first setting we identify the strategy

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 37–48, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

38 T. Stockheim, M. Schwind, and O. Gujo

that maximizes the utility of four homogeneous, quantity maximizing bidders.
Subsequently, we introduce an additional (competitive-bidding) agent that re-
quires the requested resources as soon as possible. The earlier this agent receives
the acceptance the higher is its gained utility. We compare the bidding strate-
gies under changing resource capacity situations with respect to their allocation
efficiency. Finally, we interpret the outcome in terms of gained utility for the
various bidding strategies.

2 Combinatorial Auctions for Resource Allocation in
Distributed Computer Systems

Various auction protocols have been proposed for resource allocation in distrib-
uted computer systems. This may derive from the fact that auctions have been
thoroughly investigated by economists and have proved to be efficient allocation
mechanisms [2]. The transfer of economic principles to resource attribution in
grid systems, such as price controlled resource allocation (PCRA), allows the
flexible implementation of control mechanisms in decentralized systems [3,4].

CAs are a suitable tool to allocate interdependent resources according to the
willingness-to-pay (W2P) of the participants. The production process for in-
formation services in distributed systems comprises an allocation problem with
strong complementarities. An example of such an information service is the pro-
visioning of a video conference service via the web or the off-line calculation
of distributed database jobs that have to be processed on different computers
and acquires CPU time. Without obtaining communication network capacity
between the computers, the acquired CPU time is useless. The application of
CAs for resource allocation in distributed computer systems is still in its infancy
despite its excellent applicability to grid computing. In a recent approach, Chun
et al. [5] present a CA based mechanism for resource allocation in a SensorNet
testbed where the devices have different capabilities in various combinations. The
periodically performed combinatorial sealed-bid auction is implemented within
the microeconomic resource allocation system (MIRAGE). The system uses a
very simple combinatorial allocation mechanism to achieve sufficient real time
performance. MIRAGE users have accounts based on a virtual currency enabling
a bartering process for the SensorNet resources. A continuation of this work is
the grid computing environment Bellagio [6]. The approach relies on Berkeley’s
CA based allocation scheme SHARE [7]. Each bidder has a budget of a vir-
tual currency available for task payment purposes. The required resources are
allocated to the particular tasks through a combinatorial second-price auction,
which can be regarded as a strategy proof mechanism [7]. In several experiments,
the system is tested with respect to scalability, efficiency, and fairness. A sim-
ple greedy algorithm guarantees the system’s scalability, however, the resulting
allocation does not reveal a satisfactory efficiency level. Most recent approaches
in “Grid Economics” use double sided CAs for the exchange of resources [8].
However, there is no CA grid system that makes use of proxy-bidding agents to
autonomously procure the resources required for ISIP provision.

Agents’ Bidding Strategies in a Combinatorial Auction 39

3 An Agent-Based Simulation Environment for
Combinatorial Resource Allocation

The presented CA environment is based on the JADE 3.3 agent workbench and
goes beyond the recent research approaches in several points:

– The system allows the usage of several winner determination algorithms such
as greedy, simulated annealing, genetic programming, and integer program-
ming methods according to the users’ requirements in terms of allocation
quality and computation time.1

– The simulator provides tools to investigate various bidding behaviors of the
proxy agents in the resources acquisition process.

– The framework can simulate changing resource capacities to test allocation
efficiency and system stability.

– The ontology-based bidding protocol opens the system to additional agents,
e.g. to test strategies based on machine learning or reasoning.

The results presented in this paper concentrate on the second aspect.

3.1 Scenario for a Price Controlled Resource Allocation

This section gives a brief overview on the resource allocation scenario for ISIP
provision used in our work. The scenario includes four resource types: Central
processing units (CPU) that are required for the processing of the data, volatile
memory capacity (MEM) which is necessary to store short-term processing data
and program codes for the central processing units, non-volatile storage capacity
(DSK) which is necessary to keep mass data on databases, and network band-
width (NET) that is required for data interchange between different computer
units.2

The task agents submit several bids as exclusively eligible bundles (OR-of-
XOR). For the formal representation of the bids, a two-dimensional bid-matrix
(BM) is used. One dimension describes the time t ∈ {1, . . . , T} at which the re-
source is required within the request period. The other dimension r ∈ {1, . . . , R}
denotes the resource types MEM, CPU, NET, and DSK. The request for a cer-
tain quantity of an individual resource r at time t is then denoted by a matrix
element qi,j(r, t). A price pi,j is assigned to each BM expressing the agent’s W2P
for the resource bundle. In both cases the corresponding bid bundle is identified
by the index i and the single BM by j.

The value qbmax denotes the maximum resource load that can be requested
by a bidder for a single BM element qi,j(r, t). These elements are occupied with
time slot occupation probability wktso. The value qbmax denotes the maximum
1 Schwind et al. provides a description of the algorithms [9].
2 Network connections themselves exhibit complementarities due to their peering char-

acter. For simplicity we assume that NET capacity can be managed as one single
system resource. To consider the individual connections explicitly in our model, they
should be treated as additional resources, one for each connection type.

40 T. Stockheim, M. Schwind, and O. Gujo

resource load that can be requested by a bidder for a single BM element qi,j(r, t).
These elements are occupied with time slot occupation probability wktso and have
a maximum allocable resource quantity qmax. We use a structured bid matrix,
i.e. up to tmax time slots are occupied in a row [9].

The agents used within the combinatorial grid simulator comply with three
different roles. Task agents bid for the required resource combination via the me-
diating agent. This auctioneer receives the resource bids and calculates an alloca-
tion profile for the available resources managed by the resource agents according
to the allocation mechanism. Resource agents manage available resources on their
particular IT systems and offer them to the task agents via the mediating agent.
If the auctioneer accepts a bid, he reserves the resources via the resource agents.

3.2 The Combinatorial Auction

Following the description of the scenario, Figure 1 illustrates the course of action
of the system. The AUML sequence diagram depicts the message flow based on
the FIPA definition of the English auction protocol.3

auctioneerresource agent

request-resource-info 1

provide-resource-info

X

X

not-understood (m>0)

task agent

inform-start-of-auction

initAuction ()

n 1

n
1

n

call-for-proposal 1

computeBidPrice ()

createBids ()

X

not-understood (m>0)

propose

computeAllocation ()

computeResourceCap ()

request-resource

bookResource ()

executeTask ()

inform-task-execution

X

not-understood / task-failure (m>0)

l

nl

n
m

l

m

l

l

m

n

l

l

l

X

reject-proposal

accept-proposal
l

X inform-end-of-auction

call-for-proposal 2

n
n

initBudget ()

refreshBudget ()

debitBidPrice ()

request-resource-info 2n

1

2

3

5

7

4

6

Fig. 1. FIPA AUML diagram for the iterative combinatorial scheduling auction

3 www.fipa.org/specifications/fipa00031D .

www.fipa.org/specifications/fipa00031D

Agents’ Bidding Strategies in a Combinatorial Auction 41

While in our closed economy each bidder has two roles (as provider and user
of resources), Figure 1 separately depicts both roles (resource agent and task
agent) to provide a higher generalization and better readability. Each step is
marked by a �-symbol and detailed in the corresponding paragraph:

1. The auctioneer requests the resource agents to evaluate the available resource
capacities and informs the bidders about the bidding terms. He also awards
an initial budget to the task agents. Subsequently, he announces the start of
the auction.

2. Following the auctioneer’s call for proposal, the task agents create their bids
according to the desired resource combination.

3. The auctioneer receives the bids and calculates the return-maximizing combi-
natorial allocation. He informs the task agents about bid acceptance/rejection
and requests the resource agents to reserve the awarded resources.

4. Resource agents inform the auctioneer about the status of the task execution.
5. The auctioneer propagates task status information to the task agents and

debits the bid price for the awarded bids from their accounts, followed by a
call for proposal for the next round.

6. Task agents can renew their bids in the next round in case of non-acceptance
or non-execution. The agents’ bid pricing follows rules defined in the subse-
quent paragraph.

7. The process is repeated until the auctioneer announces the end of the
auction.

In the following, the three crucial elements of the combinatorial grid schedul-
ing system are described in more detail: the budget management mechanism,
the combinatorial auctioneer, and the task agents’ bidding behavior.

3.3 The System’s Budget Management Mechanism

We assume that the ownership of the resources is distributed among a group of
companies and that each proxy-agent represents a company. In order to avoid
an expiration of the agents’ budgets during the iterative auctioning process, the
agents are integrated into a monetary circuit. The system simulates an economy
with a constant circulating budget, i.e. a closed-loop grid.

Each agent is initialized with a monetary budget BGini. At the beginning of
each round k, the task agents’ budgets are refreshed (see Figure 1 - �1) such
that each agent is able to acquire ‘computational capacity’ proportional to the
amount of resources provided to the system. Task and resource agents act as a
unit of consumer and producer both owning the resources of their peer system.
The resource agent does the reporting of resource usage and provisioning for
the task agent owning the peer computer resources (see Figure 1 - �1, and �4).
All task agents receive the same budget in each round of the simulation. The
accounting of the agents’ budgets in the grid system is done by the combinatorial
auctioneer (see Figure 1 - �1, and �5).

42 T. Stockheim, M. Schwind, and O. Gujo

3.4 The Combinatorial Auctioneer

The combinatorial auctioneer controls the iterative allocation process of the
grid system. For this purpose, the auctioneer awaits the bids that have been
submitted by the task agents for the current round. The bids that are submitted
in the form of j XOR-bundled BMs in bid i and represent the task agents’
requested capacity qi,j(r, t) of the resources r at a particular point of time t.
After having received all alternative BMs submitted by the task agents, the
auctioneer has to solve the combinatorial auction problem (CAP) which is NP-
hard [10,11]. The CAP is often denoted as the winner determination problem
(WDP), according to the traditional auctioneers task of identifying the winner.
The formal description of the CAP is formulated as:

max
∑I

i=1

∑Ji

j=1
pi,j xi,j

s. t. q(r, t) =
∑I

i=1

∑Ji

j=1
qi,j(r, t) xi,j ≤ qmax(r, t), ∀r∈{1,...,R},t∈{1,...,T}

∑Ji

j=1
xi,j ≤ 1, ∀i∈{1,...,I}.

(1)

The following variables are used: number of resources R ∈ N, number
of time slots: T ∈ N, number of bid bundles I ∈ N, number of bids in bun-
dles Ji ∈ N, W2P of bundle j in bid i as pi,j ∈ R

+, and the acceptance variable
xi,j ∈ {0; 1}.

The auctioneer’s primary goal is to maximize the received income under the
limitation of the available resources and a maximum of one accepted bid per
XOR bundle (equation 1). In order to accelerate the price-finding process, the
auctioneer provides feedback on resource availability to the bidders. As men-
tioned above, it is not always possible to calculate unambiguous prices (anony-
mous prices) for the individual resources in a CA. In many cases, explicit resource
prices can only be calculated for each individual bid. Kwasnica et al. [12] describe
a pricing scheme for all individual goods in a CA by approximating the prices in
a divisible case based on a linear programming (LP) approach first proposed by
Rassenti et al. [1]. Like in a similar approach by Bjørndal and Jørnsten [13], they
employ the dual solution of the relaxed WDP to calculate the shadow prices. In
our simulation model, the approach of Kwasnica et al. [12] is adopted:4

min z =
∑R

r=1

∑T

t=1
qmax(r, t) · spr,t

s.t.
∑R

r=1

∑T

t=1
qi,j(r, t) · spr,t + (1 − xi,j) · δi,j = pi,j

(2)

Reduced cost: δi,j ∈ R
+
0

Shadow price of one element: spr,t ∈ R
+
0

4 The result of the following formula is denoted as reduced SPs. Omitting the rejected
bids in the calculation of dual prices yields a higher result [13].

Agents’ Bidding Strategies in a Combinatorial Auction 43

The proposed SP calculation uses the primal solution for the LP problem
delivered from open source LP solver LPSOLVE 5.5 5 for the determination of
accepted bids. Now the market value of a resource unit can be calculated while
using the weighted shadow prices and summarizing the utilized capacity of each
resource r for all accepted bids as follows:

Market value: vr =
∑T

t=1 spr,t · q(r, t)
∑T

t=1 q(r, t)
∀r∈{1,...,R} (3)

Due to the fact that bid prices are non-linear in this framework, shadow
prices spr,t cannot be calculated in each round, i.e. there is no solution to the
LP problem [12]. In such cases the auctioneer relies on an approximation of the
market values v̂r as the averaged market values calculated in the last n rounds.6

3.5 The Task Agents’ Bidding Model

Except ΔP and P ini all agents show the same behavior. Based on the market
values of resources vr, the task agents of the combinatorial simulation model try
to acquire the resources needed for ISIP provision. Besides the market values of
resources, their bidding behavior is determined by their budgets and by a bidding
strategy. In each round, a task agent generates M new bids. In the first round,
a market value of the resources is not provided to the bidders. Therefore, bidder
agents formulate the W2P for their initial bids by dividing the budget by L·M ·J
to calculate a mean bid price that guarantees the task agents’ budget to last for
the next L rounds. In the following rounds, if a bid is initialized, the capacities
required are multiplied by the corresponding market value vr and summarized.
To control the price adaption process, an additional price acceleration factor
P inc

i is introduced.

W2P of bundle j in bid i: pi,j = P inc
i ·

∑R

r=1

∑T

t=1
vr · qi,j(r, t) (4)

If a bid is rejected, the task agent repeats bidding for this rejected bid in the
following rounds. Its W2P is adapted by P inc

i = P ini +(li · ΔP), resulting in the
value of P ini in round li = 0. Rejected bids are repeated with an updated W2P
up to a maximum of L rounds or until the bid is accepted. When an agent’s
budget is exhausted, it formulates no new bids until the budget is refreshed.

4 The Preferences of the Task Agents

We will now have a closer look at the bidders’ different preferences. Two proxy-
agent types are used in the context of this paper to represent these preferences:

5 http://www.geocities.com/lpsolve/
6 If the market value is approximated, the value v̂r is not saved in the history.

http://www.geocities.com/lpsolve/

44 T. Stockheim, M. Schwind, and O. Gujo

– A quantity maximizer that requires high resource capacities but has weak
preferences regarding the timing. However, the time of execution and the
complementarities of the resources within the bundle have to be satisfied.
The hypothesis is that a smooth bidding strategy, i.e. to slowly increase the
bid prices, maximizes the utility of this agent. The economic rationale for
this proxy-agent strategy can be the fact that it bids for resources required
for the fulfillment of an ISIP task that is not time-critical. An example of
this is the generation of reports based on large databases on a distributed
system that have to be done in a relaxed time window.

– An impatient bidder that benefits from the possibility to instantaneously use
the resources will apply an aggressive bidding strategy to maximize his utility.
This agent has to submit high initial prices, but overpaying will reduce the
quantity he can acquire. We analyze whether a fast inclining pricing strategy
combined with lower initial bids can help to further increase the utility of
this agent. The economic motivation of this utility function can be a proxy
agent that bids for the execution of time-critical tasks. A good example of
this is the performance of a video conference in the distributed computer
system which is scheduled for a narrow time window.

Clearly, the amount of acquired ISIP resources has a positive but diminishing
marginal impact on the agent’s utility. The strength of this impact will be defined
by α. Opposing the positive impact of the amount of acquired resources, the
number of periods an agent has to wait before its bids are accepted has a negative
impact. To calculate the decreasing impact of the waiting time, we use a time
index l̄a which is defined as the averaged number of periods an agent bids until
it has placed a successful bid and β to adjust the influence of the waiting time.
The utility of an agent is calculated by the following function:

Ua =

(∑
(i,j)∈Ba

xi,j ·
∑R

r=1
∑T

t=1 qi,j(r, t)
)α

(
l̄a

)β
(5)

Utility function of agent a: Ua ∈ R
+

Bids of agent a: Ba ∈ {(i, j) | i, j ∈ N}
Using the utility function the two different agent types are: (1) the quantity

maximizer with α = 0.5 and β = 0.01 and (2) the impatient bidder with α = 0.5
and β = 1.0.

5 Results

The primary objective of the experiments is to find out the test agent’s opti-
mal bidding strategy in competition with the remaining default bidding agents,
given the two types of utility function (quantity maximizer, impatient bidder)
as defined above.

Agents’ Bidding Strategies in a Combinatorial Auction 45

In all simulations an identical basic setting is used: Beginning with one bun-
dle containing three XOR-bids in the first round, four agents generated three
additional bid bundles for each further round k. The task agents increase the
W2P of rejected bids by Δp over a maximum of L = 5 rounds. The pattern of
newly generated BMs is defined by qbmax = 3, wktso = 0.333, and tmax = 4.
The auctioneer was able to allocate a maximum load of qmax = 8 per resource
while T was 8 units for the CM . For the evaluation of our model, we set the
number of bids per agent (M) to 3, which for four agents results in I = 12 bids
per round. Resource 1 is reduced to an amount of 4 units in the 25th round.

In a first setting, all agents use a default bidding behavior with a constant
value of ΔP = 0.2. This supports the price adaptation process in case of re-
source failures. Figure 2 shows the results of 50 simulations for varying values
of P ini = 0.3 . . . 1.0 to identify the optimal bid introduction level.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

pini

30

35

40

45

50

u
ti

li
ty

Fig. 2. Averaged utility values of the four homogeneous bidders with varying initial
price P ini and static price increment Δp = 0.2

Assuming quantity maximizing agents, it turns out that setting P ini = 0.6
maximizes the average utility of the agents (Ūa = 52.21, capacity = 2762.78,
time index = 1.96). The stochasticity of the bidding process in connection with
the combinatorial complexity of the CAP leads to an occasional acceptance of
low-priced bids. Therefore, a bidding strategy that tries to procure resources
below market prices turns out to be successful. In contrary, agents that initialize
bids at the market price (which is an averaged value) risk to overpay the required
resources. The cumulated capacity used by the agents was 11,051 units, which
translates in a utilization rate of 73.7 % (max. capacity: 15,000). While in round
1 to 25 the rate was 82.5 %, it dropped to 67.2 % percent in round 26 to 50
(after reducing the capacity of resource 1 from 8 to 4 units per time slot).

46 T. Stockheim, M. Schwind, and O. Gujo

The next setting introduces a competitive bidder that differs in his strategy
from the other agents. In compliance with the results from the first setting, we
set the default bidding strategy to Pini = 0.6 and ΔP = 0.2. Figure 3 shows the
resource units acquired by the test agent and the averaged bid acceptance time
of 50 simulation runs for each ΔP , Ppini combination (steps of 0.1).

Fig. 3. Mean acceptance time and quantity of resource units for competitive bidder
with varying price increment Δp and initial price P ini

In case of small ΔP and P ini, the highest amount of resource units can be
acquired by the task (test) agents. An (too) aggressive strategy with high ΔP
and P ini leads to a declining amount of acquired resources. While a reduction of
acceptance time is mainly achieved by high P ini, increasing ΔP has only impact
on average acceptance time if P ini is low.

In Figure 5, the utility (cp. equation 5) resulting from varying price increment
ΔP and initial pricing P ini is depicted. It pays off for the quantity maximizer
to wait if his bids fit into the current allocation at a relative low price (low
increment and initial price). In contrary, the impatient bidder gains low utility
from such a strategy (Fig. 5 right side). The impatient agent receives the highest
utilities by using an initial bid price close to the market value of the resources
(pini = 0.9). Interestingly, the price increment in the following round does not
have much impact on the acceptance time and therewith on the utility of the
impatient test bidder.7 However, for bids exactly at market value utility declines
sharply, signaling the peril of ‘overbidding’ or simply paying too much for the
required ISIP resources. This underlines the importance of accurate market value
information to achieve allocations that maximize the benefits of the bidders. The
shadow price-controlled combinatorial grid enables agents to implement efficient
7 If the impatient bidder follows its optimal strategy (pini = 0.9 - default value of

Δp = 0.2), the cumulated capacity used by the agents was 11,051 units, which
translates in a utilization rate of 65.0 % (max. capacity: 15,000). While in round 1
to 25 the rate was 74.34 %, it dropped to 54.31 % in round 26 to 50 (after reducing
the capacity of resource 1 from 8 to 4 units per time slot.

Agents’ Bidding Strategies in a Combinatorial Auction 47

0.1

0.5

0.9

1.3

0.4 0.6 0.8 1
15

20

25

30

35

40

45

50

55

ut
ili

ty

 p

pini

0.1

0.5

0.9

1.3

0.4 0.6 0.8 1
15

20

25

30

35

40

45

ut
ili

ty

 p

pini

Fig. 4. Utility of the test bidder for quantity maximizing preference β = 0.01 (left) and
impatient bidding behavior β = 1.0 (right) for determination of the optimal bidding
strategy under varying price increment Δp and initial pricing behavior P ini

bidding strategies according to the user’s utility functions. Clearly, a high impact
of the competitors’ behavior remains as challenge.

6 Conclusion

This paper presents an agent-based simulation environment that enables the
simultaneous allocation of resources in a grid-like computer system. In this eco-
nomically inspired approach where proxy-agents try to acquire optimal resource
bundles with respect to limited budgets, the allocation is done by a CA. The
auctioneer provides price information that is calculated as shadow prices in con-
nection with solving the NP-hard winner determination problem by an inte-
ger programing approach. Based on these settings, bidding strategies are eval-
uated with respect to utility functions that incorporate different levels of time
preferences of the bidders. We introduce two characteristic bidders: A quantity
maximizing agent with low preference for fast bid acceptance and an impatient
bidding agent with a high valuation of fast allocation of the requested resources.
While searching the strategy space by varying the bidding behaviors in terms
of initial bid price and price increment strategy for rejected bids, we identified
optimal bidding strategies in terms of achieved utility. For the quantity maxi-
mizing agent, patience at low initial bids pays off, whereas the impatient agent
should avoid ‘overbidding’.

Although we used a small number of agents, our simulations turned out to be
very time consuming. A way to reduce the volatility of our market prices is the
use of a larger population of agents. Therefore, a future objective is to improve
the allocation algorithm and analyze heuristic approaches in order to reliable

48 T. Stockheim, M. Schwind, and O. Gujo

handle larger settings. A second objective might be the introduction of agents
that learn their optimal strategy to find a stable equilibrium.

References

1. Rassenti, J.S., Smith, V.L., Bulfin, R.L.: A combinatorial auction mechanism for
airport time slot allocation. The Bell Journal of Economics 13(2) (1982) 402–417

2. Milgrom, P.: Putting Auction Theory to Work. Cambridge University Press (2004)
3. Buyya, R., Stockinger, H., Giddy, J., Abramson, D.: Economic models for man-

agement of resources in peer-to-peer and grid computing. In: Proceedings of the
SPIE International Conference on Commercial Applications for High-Performance
Computing, Denver, USA (2001)

4. Foster, I., Jennings, N.R., Kesselman, C.: Brain meets brawn: Why grid and agents
need each other. In: Proceedings of the 3rd Int. Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS04), New York, NY (2004) 8–15

5. Chun, B.N., Buonadonna, P., AuYoung, A., Ng, C., Parkes, D.C., Shneiderman, J.,
Snoeren, A.C., Vahdat, A.: Mirage: A microeconomic resource allocation system
for sensornet testbeds. In: Proceedings of the 2nd IEEE Workshop on Embedded
Networked Sensors (EmNetS-II); Sidney, Australia. (2004)

6. AuYoung, A., Chun, B.N., Snoeren, A.C., Vahdat, A.: Resource allocation in fed-
erated distributed computing infrastructures. In: Proceedings of the 1st Workshop
on Operating System and Architectural Support for the On-demand IT InfraStruc-
ture, San Francisco, USA. (2004)

7. Ng, C., Parkes, D.C., Seltzer, M.: Virtual worlds: Fast and strategyproof auctions
for dynamic resource allocation. In: Proceedings of the third ACM Conference on
Electronic Commerce (EC-2003), San Diego, CA, ACM (2003) 238–239

8. Schnizler, B., Neumann, D., Veit, D., Weinhardt, C.: A multiattribute combina-
torial exchange for trading grid resources. In: Proceedings of the 12th Research
Symposium on Emerging Electronic Markets (RSEEM), Amsterdam, Netherlands,
2005. (2005)

9. Schwind, M., Stockheim, T., Rothlauf, F.: Optimization heuristics for the combi-
natorial auction problem. In: Proceedings of the Congress on Evolutionary Com-
putation CEC 2003. (2003) 1588–1595

10. Parkes, D.C., Ungar, L.H.: Iterative combinatorial auctions: Theory and practice.
In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI-
00). (2000) 74–81

11. Fujishima, Y., Leyton-Brown, K., Shoham, Y.: Taming the computational com-
plexity of combinatorial auctions: Optimal and approximate approaches. In: Pro-
ceedings of the 16th International Joint Conference on Artificial Intelligence 1999
(IJCAI-99), Stockholm, Sweden. (1999) 548 – 553

12. Kwasnica, A.M., Ledyard, J., Porter, D., DeMartini, C.: A new and improved
design for multi-objective iterative auctions. Management Science 51(3) (2005)
419–434

13. Bjørndal, M., Jørnsten, K.: An analysis of a combinatorial auction. Technical Re-
port 2001-11, Department of Finance and Management Science, Norwegian School
of Economics and Business Administration, Bergen, Norway (2001)

	Introduction
	Combinatorial Auctions for Resource Allocation in Distributed Computer Systems
	An Agent-Based Simulation Environment for Combinatorial Resource Allocation
	Scenario for a Price Controlled Resource Allocation
	The Combinatorial Auction
	The System's Budget Management Mechanism
	The Combinatorial Auctioneer
	The Task Agents' Bidding Model

	The Preferences of the Task Agents
	Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

