
Engineering Agent Conversations
with the DIALOG Framework

Fernando Alonso, Rafael Fernández, Sonia Frutos, and Javier Soriano

School of Computer Science, Universidad Politécnica de Madrid,
28660 Boadilla del Monte, Madrid, Spain

{falonso, rfdez, sfrutos, jsoriano}@fi.upm.es

Abstract. This paper presents the rationale behind DIALOG: a formal
framework for interaction protocol (IP) modeling that considers all the
stages of a protocol engineering process, i.e. the design, specification,
validation, implementation and management of IPs. DIALOG is orga-
nized into three views. The modeling view allows visual IP design. The
specification view automatically outputs, from the design, the syntactic
specification of the IPs in a declarative-type language called ACSL. This
improves IP publication, localization and communication on the Web,
as well as IP machine learning by agents. Finally, the implementation
view provides a formal structural operational semantics (SOS) for the
ACSL language. The paper focuses on the developed SOS, and shows
how this semantics allows protocol property verification and eases au-
tomatic rule-based code generation from an ACSL specification for the
purpose of simulating IP code execution at design time, as well as im-
proving and assuring correct IP compliance at run time.

1 Introduction

Agent communication languages (ACLs) such as the ARPA KSI Knowledge
Query and Manipulation Language (KQML) [1] and the FIPA Agent Communi-
cation Language (ACL) [2] are based on the concept of agents interacting with
each other by exchanging typed messages that model the desired communica-
tive action (e.g. inform, request, response, etc.), also referred to as speech act or
performative, and a declarative representation of its content.

However, agents do not participate in isolated message exchanges, they enter
into conversations [3], i.e. coherent message sequences designed to perform spe-
cific tasks that require coordination, such as negotiations or agreements. Societies
of agents cooperate to collectively perform tasks by entering into conversations.
In order to allow agents to enter into these conversations without having prior
knowledge of the implementation details of other agents, the concept of interac-
tion protocols (also known as conversation policies) has emerged [4]. Interaction
protocols (IPs) are descriptions of standard patterns of interaction between two
or more agents that may be as simple as request/response pairs or may repre-
sent complex negotiations involving a number of participants. They constrain
the possible sequences of messages that can be sent amongst a set of agents to

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 24–36, 2006.
© Springer-Verlag Berlin Heidelberg 2006



Engineering Agent Conversations with the DIALOG Framework 25

form a conversation of a particular type. A number of IPs have been defined, in
particular as part of the FIPA standardisation process [5]. The importance of
IPs in the design of an agent society is evident not only from their fitness for
structuring behavior, but also as an organizational factor [6].

This approach to agent interaction necessarily depends on the provision of a
framework to support the modeling of interactions between agents that considers
all the stages of a protocol engineering process, i.e. the design, specification, val-
idation, implementation and management of IPs considered as resources. Some
relevant aspects to be taken into account when building such a framework are
(a) the ease of modeling the communicative agent behavior,mainly, the behavior
of agents that obey complex interaction patterns, (b) protocol maintainability
and ease of reuse at both the design and specification level, (c) reliability, from
the viewpoint of design validation and property verification and as regards as-
suring proper protocol compliance by participant agents, (d) availability and
accessibility of both the protocols (i.e. designs and specifications) and ongoing
conversations (i.e. protocol instances, protocol state and participant agents), be-
ing related to agent interoperability, and (e) scalability of both the designs and
specifications (ease of composition) and the ongoing conversations for adapta-
tion to large MAS. This paper presents the rationale behind DIALOG: a formal
framework developed by the authors which deals with all these aspects at the
IP architectural design, formal specification and implementation levels.

The remainder of the paper is organized as follows. Section 2 presents an
overview of the DIALOG framework. We then concisely review in section 3 the
fundamentals of the ACSL protocol specification language, which is at the core
of the DIALOG specification view. Section 4 focuses on the implementation view
and describes the formal structural operational semantics (SOS) that has been
developed for the ACSL language. Finally, we conclude the paper in section 5.

2 DIALOG Framework Overview

The problem of IP specification is not new to agent societies developers, and
a wide range of solutions have been proposed (cf. [7]). We find, however, that
there is a huge void between the existing proposals based on formal techniques,
whose design is extremely complex (e.g. Colored Petri Nets [6,8]), and the graphic
notation-based techniques (e.g. AUML [9]), which are devoid of precise semantics
and rule out automatic specification exchange in a machine readable language
and interpretation for the purpose of specification simulation, validation and
execution. DIALOG intends to fill this gap by means of three interrelated views:

– The modeling view eases the visual design of IPs by means of an AUML-
based graphic notation [9]. The proposed notation (AUML+) extends exist-
ing AUML and furnishes this notation with formal semantics. The latter is
essential for developing the specification view. See [10] for a detailed descrip-
tion of this view, which has been ommitted here for the sake of briefness.

– The specification view automatically outputs the syntactic specification of an
IP from its visual design in a declarative-type language called ACSL. This



26 F. Alonso et al.

Fig. 1. Tools and artifacts of the DIALOG framework

improves IP publication, discovery and communication on the Web, as well
as the machine learning of IP by agents. ACSL is an abstract syntax for
which an XML grammar has been developed by means of the XML Schema
formalism, in order to be able to validate the specifications syntactically, and
to make easier their use in Internet environments. A KIF-based grammar is
also available, and the mapping between both grammars is trivial by means of
an XSLT-based parser. We concisely review the fundamentals of the ACSL
language in section 3, see [11] for a more detailed description of this key
component of the DIALOG framework.

– The implementation view is based on the provision of a formal structural
operational semantics (SOS) for the ACSL language. The developed formal
semantics allows us to verify the properties of the designed IPs, such as their
termination in finite time, conversational state reachability or the absence of
deadlocks or starvations. On the other hand, the developed SOS automati-
cally outputs rule-based code from the ACSL specification for the purpose
of (1) simulating protocol execution at design time and (2) improving and
assuring correct IP compliance at run time. Section 4 focuses on this view.

Figure 1 gathers the different products of the IP engineering process and the
tools of the proposed framework (consider each product and tool in the figure as
a block. The details in each block are not necessary for understanding the figure).
These tools allow: (1) the visual composition of IPs in AUML+ notation, (2)
automatic ACSL specifications generation (using an XML grammar) for models
built in AUML+, (3) the output of a SOS interpreter associated with these
specifications, and (4) the generation, by means of code reflection techniques,



Engineering Agent Conversations with the DIALOG Framework 27

of conversational proxies that improve IP compliance at run time. Both the
AUML+ Editor and the ACSL/SOS Generator are open source tools. The source
code is being distributed under GPL license, and is available from [12].

3 ACSL Language Fundamentals

The ACSL language defines an abstract syntax that establishes a vocabulary
that provides a standard and formal description of the contractual aspects of
IPs modeled using AUML+ for use by design, implementation and execution
monitoring libraries and tools. ACSL separates internal agent IP implementation
from its external description. This is a key point for improving communication
interoperability between heterogeneous agent groups and/or agents that run in
heterogeneous agencies (platforms). It is based on ACL messages specifying the
message flow that represents an IP between two or more agents and requires no
special-purpose implementation mechanism.

The overall structure of a protocol specification in ACSL is composed of a
name, a header and a body, all defined in the context of a block element protocol.
The name element identifies the protocol for the purpose of referencing from
other specifications in which it is to be embedded or with which it is to be inter-
linked. The header element declares the correlation sets and the properties used
in the message exchanges for correlation and dynamic linking and to specify the
semantic elements, respectively. The body of the protocol contains the specifica-
tion of the basic exchange pattern. This item is formed by the composition of
many threadOfInteraction elements that fork and regroup to describe the com-
municative behavior of the agent. The threadOfInteraction element is used to
directly specify an exchange pattern or reference a protocol definition included
in another specification by means of a qualified name (i.e. the conversation is
specified in ACSL as IP composition).

A threadOfInteraction (Figure 2) combines zero or more atomic actions, ref-
erences to subprotocols, conditional and iterative constructs and other thread-
OfInteraction that are interpreted sequentially and in the same order in which
they are referenced. The sequence finishes when the last element ends.

The following describe such constructs with the level of detail necessary for
understanding the remainder of the paper. Use cases of such constructs in ACSL
specifications can be found in section 4, as they are needed. See [10] for a more
detailed description of the ACSL abstract syntax.

Atomic actions are basic elements upon which an exchange pattern speci-
fication is built. ACSL includes four classes of basic actions, as shown in the
actionGroup element decomposition illustrated in Figure 2: null action (empty),
message exchange (exchange), protocol exception raising (raise) and time-outs
(delayFor, delayUntil).

Message exchanges (exchange element) are the fundamental atomic actions in
agent interaction. ACSL includes only the exchange properties that are part of
the protocol specification, according to the ACL approach.



28 F. Alonso et al.

Fig. 2. Constructs of the language for specifying an exchange pattern

A threadOfInteraction eases the composition of an exchange pattern by means
of a set of control constructs (ControlGroup in figure 2) that express conditional,
concurrent and iterative interaction flows. These constructs are described below.

Switch: Expresses a conditional behavior equivalent to the XOR in AUML.
While: Repeats the exchange pattern determined by a threadOfInteraction an

undefined number of times, until the given condition is no longer true.
All: Expresses the concurrent execution of a set of interaction flows that is not

subject to any time order. All expresses the semantics of the AND connector
in AUML notation.

Pick: Expresses precondition waits. It waits for the reception of an event (or
set of events) and then executes an exchange pattern associated with this
event. The possible events are message reception and end of a delay action.

Repeat: Repeats the exchange pattern given by a thread of interaction an pre-
established number of times. The actual number of times it is repeated is
opaque, i.e. is not part of the ACSL specification.

Synchronize: Establishes the set of threads of interaction that should be syn-
chronized after an All, a multiple-choice Switch or an Or.

See [11] for a detailed description of the exception- and compensation-handling
related ACSL constructs shown in Figure 2.

4 Implementation View: ACSL Semantics

The definition of an XML grammar for ACSL by means of the XML Schema
formalism can only validate the IP specifications syntactically. To be able to
validate and evaluate these specifications semantically, the ACSL language also
needs to be furnished with formal semantics that can unambiguously describe
the dynamic meaning of its syntactic constructs.



Engineering Agent Conversations with the DIALOG Framework 29

The provision of formal semantics for ACSL means that the IP specification
can be analyzed to find out whether the IP has certain properties, such as ter-
mination in finite time, conversational state reachability or no deadlocks and
starvations. On the other hand, the provision of operational semantics makes
it possible to automatically derive IP implementation from protocol specifica-
tion, easing its simulation and the automatic generation of proxies that assure
that each participant effectively complies with the protocol rules and provides
assistance for protocol machine learning.

The features of ACSL have led to the use of the concept of Structural Op-
erational Semantics (SOS) [13,14] as an approach for specifying the dynamic
meaning of IPs. The dynamic meaning of a protocol is obtained from the dy-
namic meaning of the different syntactic constructs that appear in its specifica-
tion. It covers the execution of the specification, including expression evaluation,
message sending and reception and the execution of other non-communicative
actions.

The SOS denotes a formalism that can specify the meaning of a language by
means of syntactic transformations of the programs or specifications written in
this language. Some special points had to be taken into account to apply the SOS
formalism, designed for programming languages, to a specification language such
as ACSL. The definition of operational semantics suited for ACSL represents a
three-step process:

1. Definition of a terminal and term-rewriting labeled transition system based
on the operational semantics described in [15],

2. Definition of the interpreter I for this system, as proposed in [13], whose
behavior is specified by a set of production rules.

3. Process of outputting the interpreter for each ACSL construct.

The following subsections describe the process of defining the operational
semantics of an ACSL specification, stressing these points.

4.1 Defining the Transition System

This section presents the term-rewriting transition system developed for the
ACSL language, based on a proposal by [15]. To produce a term-rewriting labeled
transition system 〈Γ, Λ, →, Υ 〉 to fit ACSL, it is established that Γ ⊆ Σ × Θ.

By way of a configuration, γ = 〈σ, θ〉 ∈ Γ is composed of an identifier of the
thread of interaction σ ∈ Σ and the parameter set θ ⊆ Θ that describes the
runtime context for that thread, where Σ is the set of threads of interaction de-
clared in the ACSL specification of a conversation and Θ is the set of parameters
declared in those threads. In other words, a setting γ describes a conversational
state of the specified protocol, Σ is the alphabet of conversational states and Θ
is an adjustment parameter set for those states.

Similarly, the set of labels Λ is established as a set of pairs 〈φ, m〉 composed
of the cartesian product of the finite set of message exchanges m ∈ M occurring
in the ACSL specification with the set of predicates about the environment



30 F. Alonso et al.

φ ∈ Φ(ω). Based on this, the conditions of the language constructs are expressed
as pick, while or switch (and, therefore, the parameters are declared by means
of the paramSetDecl construct). Some of these predicates refer to exchanged
messages (appear associated with exchange elements in paramSetRef elements)
and are, therefore, denoted φ(m) and associated with the exchanged messages
for the purpose of specifying this relation.

The transition relation →⊆ Γ × Λ× Γ is now →⊆ (Σ ×Θ) × (Φ ×M) × (Σ ×Θ).
The → relation therefore represents a transition relation between conversational
states labeled by means of an action. The idea, as in other labeled transition sys-
tems, is that the action associated with a transition provides information about
what is happening in the setting during the transition (internal actions) and/or
about the interaction between the agents and their environment (external ac-
tions). In this case, the actions refer to interagent communication, and therefore
the information they supply is the actual messages exchanged and the settings
information (parameters of the conversational states) they use.

Accordingly, the language’s alphabet is made up of the set of all possible
messages exchanged in the course of a conversation M = {mi, i = 1..n}. Hence,
this language can be defined as a set of possible sequences of exchanged messages,
each of which is a word of the language:

L ≡ ε ∈ L | m ∈ M → m ∈ L | s1 , s2 ∈ L′ → s1 � s2 ∈ L′

Finally, the set of term settings Υ ⊆ Γ is determined by those settings with
interaction threads in which a message labeled as term is exchanged, as these
are the only messages for which the following holds:

∀γ ∈ Υ, ∀γ′ ∈ Γ · γ � γ′

The transition system presented above is based on a definition given by [13].
However, the set of actions α ⊆ Λ(ω) to be executed in each transition can be
added to this definition. The transition relation would then be either:

→⊆ (Σ × Θ) × (Φ × M) × (Σ × Θ) × α ⊆ Λ(ω)

or

→⊆ Γ × Λ × Γ × Λ →⊆ (Σ × Θ) × (Φ × M) × (Σ × Θ) × (Λ)

4.2 Defining the Interpreter

According to [14], the SOS formalism can be used to build the operational se-
mantics of an ACSL specification by formally describing an interpreter I of that
language whose behavior is specified by means of a set of production rules.

Following ideas taken from [16], I is modeled as a function whose argument
is an ACSL-specified protocolP and an environment ω, and which describes the
behavior of 〈P , ω〉 as an [in]finite series of productions like 〈P , ω〉 → 〈P1 , ω1 〉 →
〈P2 , ω2 〉 → . . . If P ends, then the result is 〈END , ωn〉.

Accordingly, the automaton specification, which acts as an interaction proto-
col interpreter and therefore determines the operational semantics of an ACSL
specification, defines a set of production rules that constitutes the definition of



Engineering Agent Conversations with the DIALOG Framework 31

the respective interpreter, whereas the sequences of messages sent and received
is the program that is to be interpreted. Supposing that the agents are modeled
on an internal BDI architecture, the set of beliefs (β), desires (δ) and intentions
(ι) makes up the environment ω and predicates about that environment (e.g.
WantToPropose(p), IntendToDo(t), etc.). Consequently, Φ(ω) ⊆ β ∪ δ ∪ ι and the
actions set (including the exchanged messages) are the lateral effects on ω in the
same way as a variable is assigned in a programming language.

As mentioned earlier, the operational semantics developed is based on a pro-
duction system that maps conversational states to new conversational states for
a given ACSL specification. The format of a production rule is shown in the
following.

This transition system can be viewed as a production system in which each
transition is determined by a rule being fired when an action takes place and
subject to the validity of the predicate φ. Let a transition be denoted

〈〈e ∈ Σ , θ ∈ Θ〉, φ ∈ Φ(ω)〉−−−−−−−−−→
msg/φ(msg)

〈〈e ′ ∈ Σ , θ′ ∈ Θ〉, [α]/α ∈ Λ(ω)〉

This action can represent message sending, reception or an internal agent ac-
tion. Therefore, three production rule types are accounted for: (a) production
rules fired by message sending, if φ is true, (b)production rules fired by message
reception, if φ is true, and (c) production rule fired by an internal agent action,
if φ is true.

They all qualify the transition relation with msg/φ(msg) message template
sending −−−−−−−→

msg/φ(msg) or reception msg/φ(msg)
−−−−−−−→, or with −→ε for internal actions. The

msg format is identical to the one used to represent a parameterized setting
〈m ∈ M , θ ∈ Θ〉, where M is the alphabet of performatives and θ is a parameter
adjustment tuple for the message.

Using the predicate φ(msg) about the messages received, it is possible, for
example, to find out if the message source already sent another message earlier
(the source’s membership of the group of agents participating in the protocol
would also have to be considered). This predicate represents the part of the
predicate that appears in the premise directly related to the message.

φ(msg) = true ↔ ¬∃m ∈ msgQ/m.from = msg .from

The parameterized description of a conversational state of the protocol 〈e ∈
Σ , θ ∈ Θ〉 is a state identifier e belonging to the states alphabet Σ and a tuple
θ of adjustment parameters for the state e. The adjustment parameters tuple
includes (1) variables of type Int, Char, List, Tuple for template adjustment or
(2) variables for representing beliefs, desires and intentions.

Different types of template adjustment are accounted for depending on the
parameter type to which they are applied. Accordingly, the adjustments consid-
ered for the type Int are Succ(N), N = 0 and Zero, and the transition function
Succ(Succ(N)) → Succ(N). On the other hand, the adjustments p :: rest and [],
and the transition function p :: rest → rest, rest = [] and p :: [] → [] are considered
for the type List.

Φ(ω) represents the set of predicates about the environment that can be
evaluated by the agents participating in the conversation. These predicates are



32 F. Alonso et al.

usually intrinsically related to agents’ beliefs, desires and intentions. However,
no assumptions are made about how the agents conduct the evaluation, as this
may be related not only to the protocol conversational states but also to the
agents’ internal state.

4.3 Process of Outputting the Interpreter for Each ACSL Construct

The following subsections detail the process of generating the interpreter for
key ACSL language constructs. Concurrent and synchronization related ACSL
constructs are left for a forthcoming paper.

Simplifications. The following simplification rule is used with the aim of sim-
plifying the generation of production rules in embedded constructs:

If there are two rules

〈〈A ∈ Σ , θ ∈ Θ〉, φ ∈ Φ(ω)〉−−−−−−−−−→
msg/φ(msg)

〈〈B ∈ Σ , θ′ ∈ Θ〉, α ∈ Λ(ω)〉
〈〈B ∈ Σ , θ′ ∈ Θ〉, φ′ ∈ Φ(ω)〉−→ε 〈〈C ∈ Σ , θ′′ ∈ Θ〉, α′ ∈ Λ(ω)〉

they can be simplified as

〈〈A ∈ Σ , θ ∈ Θ〉, φ ∈ Φ(ω)〉−−−−−−−−−→
msg/φ(msg)

〈〈C ∈ Σ , θ′′ ∈ Θ〉, α′ ∈ Λ(ω)〉

Provided that φ → φ′. The same applies to message sending rules.

Production Rules for Receiving n Messages. The delay in receiving n
messages from different agents is expressed by means of the pick instruction:
Pick := pick [Times] [ParamSetRef] {EventHandler} [OnTimes]
EvenHandler := eventHandler Event ActionBlock
OnTimes := onTimes (ThreadOfInteraction | ProtocolControlGroup | Action)
EventHandler := eventHandler Event ActionBlock
Event := event Id (DelayFor | DelayUntil | Exchange | Catch)
ActionBlock := action (ThreadOfInteraction | ProtocolControlGroup | Action)
Times := Expression
Id := id string

The following standard set of SOS production rules is obtained by each Even-
tHandler for this instruction:

〈〈A ∈ Σ , (. . .Succ(t) . . . )〉, true〉−−−−−−−−−−−→
msg1/φ(msg1)

〈〈A, (. . . (t) . . . )〉, [α ∈ Λ(ω)])〉
〈〈A ∈ Σ , (. . .Succ(t) . . . )〉, true〉−−−−−−−−−−−→

msg2/φ(msg2)
〈〈A, (. . . (t) . . . )〉, [α ∈ Λ(ω)])〉

. . . 〈〈A ∈ Σ , (. . .Zero . . . )〉, true〉−→ε 〈〈B ∈ Σ , {θ ∈ Θ}〉, [α ∈ Λ(ω)])〉

where the expressions (. . .Succ(t) . . . ) include all the parameters referenced in
the body of the pick (including events) and the expression (θ ∈ Θ) will be
composed of the set of values that instantiate the thread parameters referenced
in the <onTimes> expression.

All the pick handlers have been assumed to be concerned with message delay.
Otherwise, the handler delay condition would be stated in φ ∈ Φ(ω), which
would no longer be true, and the transition rule would switch to −→ε .

Accordingly, for the next use of pick, taken from the ACSL specification of
the FIPA IteratedContractNet protocol [5] (the proposer agent gather inform,
failure, and end messages from participants):



Engineering Agent Conversations with the DIALOG Framework 33

<pick times="length(apl)">
<paramSetRef><paramRef mode="match">apl</paramRef></paramSetRef>
<eventHandler> <event> <exchange message="Inform" direction="in" mode="middle">

<paramSetRef> <paramRef mode="adjust">p(t1)-->ipl</paramRef>
<paramRef mode="match">t1</paramRef>

</paramSetRef></exchange></event>
<action><empty/></action></eventHandler>

<eventHandler> <event> <exchange message="Failure" direction="in" mode="middle">
<paramSetRef> <paramRef mode="adjust">p(t1)-->fpl</paramRef>

<paramRef mode="match">t1</paramRef>
</paramSetRef></exchange></event>

<action><empty/></action></eventHandler>
<onTimes> <threadOfInteractionRef threadRef="End">

<paramSetInst> <paramInst> <ref>t1</ref> <value>t1</value></paramInst>
<paramInst> <ref>pl</ref> <value>fpl</value></paramInst>

</paramSetInst></threadOfInteractionRef> </onTimes> </pick>

we get the following SOS rules:

〈〈A ∈ Σ , (t1 ,Succ(n), fpl , ipl)〉, true〉−−−−−−−−→
F ail(p(t1))

〈〈A, (t1 ,n, p :: fpl , ipl)〉,NO)〉
〈〈A ∈ Σ , (t1 ,Succ(n), fpl , ipl)〉, true〉−−−−−−−−−−−→

Inform(p(t1))
〈〈A, (t1 ,n, fpl ,p :: ipl)〉,NO)〉

〈〈A ∈ Σ , (T1 ,Zero, fpl , ipl)〉, true〉−→ε 〈〈B ∈ Σ , t1 , fpl〉,NO)〉

Iteration Production Rules. Iterations are expressed in ACSL by means of
the while instruction:

While := while Condition ActionBlock
Condition := condition [ParamSetRef] Expression
ActionBlock := action (ThreadOfInteraction | ProtocolControlGroup | Action)

for which the following set of standard SOS production rules is obtained:

〈〈A ∈ Σ , θ ∈ Θ〉, φ ∈ Φ(ω)〉−→ε 〈〈A ∈ Σ , θ1 ∈ Θ〉, α ∈ Λ(ω)〉
〈〈A ∈ Σ , θ2 ∈ Θ〉, φ ∈ Φ(ω)〉−→ε 〈〈B ∈ Σ , θ3 ∈ Θ〉, α ∈ Λ(ω)〉

When the while instruction ends, Θ converges to a state in which θ2 is true.
The following example assumes that a message is to be sent to all the agents

identified in a list:

<threadOfInteraction>
<while> <condition condition="existProposalInProposals">

<paramSetRef> <paramRef mode="adjust">p(t1)::pl</paramRef>
<paramRef mode="match">t1</paramRef></paramSetRef> </condition>

<action> <exchange message="msg" direction="out" delivery="unreliable"
mode="middle" type="asynchronous">

<paramSetRef> <paramRef mode="match">p.from</paramRef>
<paramRef mode="match">p</paramRef></paramSetRef>

</exchange></action></while> </threadOfInteraction>

for which the following set of SOS rules is produced:

〈〈A ∈ Σ , . . . p :: l . . .〉, φ ∈ Φ(ω)〉−−−−−−−−−−→
msg(p.from)

〈〈A ∈ Σ , . . . l . . . 〉, α ∈ Λ(ω)〉
〈〈A ∈ Σ , . . . [] . . .〉, φ ∈ Φ(ω)〉−→ε 〈〈B ∈ Σ , θ ∈ Θ〉, α ∈ Λ(ω)〉

In this case, the while instruction is guaranteed to end, since Θ ≡ p :: l y
θ1 ≡ l, which necessarily has Θ converge to [], making θ2 true.



34 F. Alonso et al.

Optionality Production Rules. ACSL can be used to express optionality
in the course of a conversation by means of the switch construct. The overall
structure of this construct is shown below:

Switch := switch Multichoice {Branch} [Default]
Multichoice := multichoice boolean
Branch := branch Case ActionBlock
Default := default (ThreadOfInteraction | ProcolControlGroup | Action)
Case := case Condition [ParamSetRef]
Condition := condition [ParamSetRef] Expression
ActionBlock := action (ThreadOfInteraction | ProtocolControlGroup | Action)
ParamSetRef := paramSetRef {ParamRef}
ParamRef := paramRef Mode string
Mode := match | adjust

The following rule template is obtained for each branch:

〈〈A ∈ Σ , {θi ∈ Θ}〉, φ ∈ Φ(ω)〉−→ε 〈〈Bj ∈ Σ , {θ′
k ∈ Θ}〉, [α ∈ Λ(ω)]〉

where A ∈ Σ denotes the conversational state generated for the switch in-
struction, {θi ∈ Θ} is the list of referenced parameters (paramSetRef) in the
respective branch condition, φ ∈ Φ(ω) is the actual condition, Bj ∈ Σ denotes
another conversational state that will be used in the antecedent of the rules
generated for the interaction thread defining the action of this branch. If this
is a reference to an interaction thread, {θ′k ∈ Θ} will be the set of values that
instantiate the parameters of the respective thread (paramSetInst).

The same rule template is obtained for the default branch considering:

φ =
n⋃

i=1

φi and θ = ¬
n∨

i=1

θi

The next section gives an example of a set of optionality and iteration rules.

Structure Composition Rules. The rules resulting from applying the tem-
plates discussed in earlier sections (including the simplification template) to an
ACSL specification are shown below. This ACSL specification (excerpt) is made
up of a while structure plus a switch structure. The fragment, taken from the
ACSL specification of the FIPA IteratedContractNet protocol, models how the
proposer, after receiving the proposals from the contract net, notify to each
agent having sent a proposal if its proposal has been accepted (Accept message)
or rejected (Reject message):

<threadOfInteraction>
<while> <condition condition="existProposalInProposals">

<paramSetRef> <paramRef mode="adjust">p(t1)::pl</paramRef>
<paramRef mode="match">t1</paramRef> </paramSetRef></condition>

<action> <switch multiChoice="false">
<branch> <case condition="WantToAcceptProposal">

<paramSetRef> <paramRef mode="match">p</paramRef>
<paramRef mode="adjust">p-->apl</paramRef>

</paramSetRef></case>
<action> <exchange message="Accept" direction="out" mode="middle"

delivery="unreliable" type="asynchronous">
<paramSetRef> <paramRef mode="match">p.id</paramRef>

<paramRef mode="match">p</paramRef>
</paramSetRef></exchange></action></branch>



Engineering Agent Conversations with the DIALOG Framework 35

<branch> <case condition="WantToRejectProposal">
<paramSetRef> <paramRef mode="match">p</paramRef>
</paramSetRef></case>

<action> <exchange message="Reject" direction="out" mode="middle"
delivery="unreliable" type="asynchronous">

<paramSetRef> <paramRef mode="match">p.id</paramRef>
<paramRef mode="match">p</paramRef>

</paramSetRef></exchange></action></branch>
</switch> </action> </while> </threadOfInteraction>

Firstly, before any simplifications are made, we have:

〈〈A, t1, p(t1) :: pl, apl〉, true〉−→ε 〈〈B, t1, pl, p, apl〉, NO〉
〈〈B, t1, pl, p, apl〉, WantToAcceptProposal(p〉Accept(p)

−−−−−−−→〈〈A, t1, pl, p :: apl〉, NO〉
〈〈B, t1, pl, p, apl〉, WantToRejectProposal(p〉Reject(p)

−−−−−−−→〈〈A, t1, pl, apl〉, NO〉
〈〈A, t1, [], apl〉, true〉−→ε 〈〈C, l〉, NO〉

which, simplified (according to ), becomes:

〈〈A, t1, p(t1) :: pl, apl〉, WantToAcceptProposal(p)〉Accept(p)
−−−−−−−→〈〈A, t1, pl, p :: apl〉, NO〉

〈〈A, t1, p(t1) :: pl, apl〉, WantToRejectProposal(p〉Reject(p)
−−−−−−−→〈〈A, t1, pl, apl〉, NO〉

〈〈A, t1, [], apl〉, true〉−→ε 〈〈C, l〉, NO〉

Sequential Statement Composition Rules. The transition for the sequen-
tial statement composition s1; S is derived from the transition for the statement
s1.

〈〈A ∈ Σ , s1, θ1 ∈ Θ〉, φ1 ∈ Φ(ω)〉−→ε 〈〈A1 ∈ Σ , φ, θ′
1 ∈ Θ〉, α1 ∈ Λ(ω)〉 . . .

〈〈A ∈ Σ , s1, θ2 ∈ Θ〉, φ2 ∈ Φ(ω)〉−→ε 〈〈A2 ∈ Σ , φ, θ′
2 ∈ Θ〉, α2 ∈ Λ(ω)〉

〈〈A ∈ Σ , s1; S, θ1 ∈ Θ〉, φ1 ∈ Φ(ω)〉−→ε 〈〈A1 ∈ Σ , S, θ′
1 ∈ Θ〉, α1 ∈ Λ(ω)〉 . . .

〈〈A ∈ Σ , s1; S, θ2 ∈ Θ〉, φ2 ∈ Φ(ω)〉−→ε 〈〈A2 ∈ Σ , S, θ′
2 ∈ Θ〉, α2 ∈ Λ(ω)〉

The DIALOG project Web site [12] contains, both for reference and for better
understanding of the paper, examples of complete AUML+ diagrams, ACSL
specifications, and SOS interpreters for a number of relevant IPs.

5 Conclusions

In this paper, we have stressed that the problem with existing approaches to
agent interaction modeling is that there is a huge void between the proposals
based on formal techniques, whose design remains extremely complex, and the
graphic notation-based techniques, which are devoid of precise semantics and
rule out automatic specification exchange and interpretation for the purpose of
specification simulation, validation and execution.

Bearing this in mind, we have presented the rationale behind DIALOG: a
formal framework that considers all the stages of a protocol engineering process,
i.e. the design, specification, validation, implementation and management of IPs,
thanks to the three views into which it is organized. The paper has focused on the
developed SOS and has highlighted how this formal semantics allows protocol
property verification and eases automatic rule-based code generation from an



36 F. Alonso et al.

ACSL specification for the purpose of simulating IP code execution at design
time, as well as improving and assuring correct IP compliance at run time.
We have also stressed throughout the paper how the availability of a syntactic
specification of an IP in a declarative-type machine-readable language such as the
proposed ACSL helps to improve IP publication, discovery and communication
on the Web, as well as the machine learning of IP by agents.

References

1. Finin, T; Labrou, Y.; and Mayfield, J. KQML as an agent communication language.
In J. M. Bradshaw (Ed.) Software Agents. MIT Press (1997)

2. Foundation for Intelligent Physical Agents. FIPA ACL message representation in
string specification. http://www.fipa.org/specs/fipa00070/ (2000)

3. McBurney, P., Parsons, S., and Wooldridge, M. Desiderata for Agent Argumen-
tation Protocols. In Proceedings of the International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS02), Bologna, Italy (2002)

4. Greaves, M.; Holmback, H.; and Bradshaw, J. What is a conversation policy?. In
F. Dignum and M. Greaves (Eds.) Issues in Agent Communication, volume 1916
of Lecture Notes in Artificial Intelligence, pages 118–131. Springer (2000)

5. Foundation for Intelligent Physical Agents. FIPA Interaction protocol Library
Specification. http://www.fipa.org/specs/fipa00025, FIPA (2001)

6. Hanachi, C., Sibertin-blanc, C.: Protocol Moderators as Active Middle-Agents in
Multi-Agent Systems. Autonomous Agents and Multi-Agent Systems, 8, 131-164,
Kluwer Academic Publishers, The Netherlands (2004)

7. Dignum, F, Greaves, M (eds.): Issues in Agent Communication. LNAI 1916 State-
of-the-Art Survery , Springer, Heidelberg (2000)

8. Gutnik, G. and Kaminka, G.A. Representing Conversations for Scalable Overhear-
ing, Journal of Artificial Intelligence Research, Volume 25, pages 349–387 (2006)

9. Odell J. et al. Representing agent interaction protocols in UML. In Proceedings
of 1st International Workshop on Agent-Oriented Software Engineering, Limerick,
Ireland (2000)

10. Alonso, F; Frutos, S; López, G; and Soriano, J. A Formal Framework for Interaction
Protocol Engineering, LNAI, vol. 3690, pp. 21-30, Springer-Verlag: Berlin (2005)

11. Soriano, J; Alonso, F; and López, G. A Formal Specification Language for Agent
Con-versations, LNAI, vol. 2691, pp. 214-225, Springer-Verlag: Heidelberg, (2003)

12. DIALOG Project Web Site. Computer Networks & Web Technologies Lab. Avail-
able at http://hydra.ls.fi.upm.es/research/conwetlab

13. Plotkin, G.: A structural approach to operational semantics. Technical Report
DAIMI FN-19. Aarhus University, Computer Science Department, Denmark (1981)

14. Hennessy, M.: The Semantics of Programming Languages: An Introduction Using
Structured Operational Semantics. Wiley (1990)

15. R. van Eijk, F. de Boer, W. van der Hoek and J-Ch. Meyer: Operational Semantics
for Agent Communication Languages. In F. Dignum and M. Greaves (eds.) Issues
in Agent Communication, LNCS 1916, 80-95, Springer, Heidelberg (2000)

16. Koning J.; and Oudeyer, P. Introduction to POS: Protocol Operational Semantics.
International Journal of Cooperative Information Systems, 10(2):101–123 (2001)

17. Haddadi, A.: Communication and Cooperation in Agent Systems: A Pragmatic
Theory. volume 1056 of LNCS. Springer Verlag, Heidelberg, Germany (1996)


	Introduction
	DIALOG Framework Overview
	ACSL Language Fundamentals
	Implementation View: ACSL Semantics
	Defining the Transition System
	Defining the Interpreter
	Process of Outputting the Interpreter for Each ACSL Construct

	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




