
Analysis of Multi-Agent Interactions with
Process Mining Techniques

Lawrence Cabac, Nicolas Knaak, Daniel Moldt, and Heiko Rölke

University of Hamburg,
Department of Informatics,

Vogt-Kölln-Str. 30, D-22527 Hamburg
http://www.informatik.uni-hamburg.de/TGI/index_eng.html,

http://asi-www.informatik.uni-hamburg.de

Abstract. Process mining and multi-agent models are powerful tech-
niques for the analysis of processes and organizations. However, the in-
tegration of both fields has seldom been considered due to the lack of
common conceptual background. We propose to close this gap by using
Petri nets as an operational semantics and consider process mining a
useful addition to monitor and debug multi-agent systems in the devel-
opment phase. Mining results can be represented in the formalized form
of Petri nets that allows to validate or verify the actual behavior.

On our way to mining complex interactions within (simulated) organi-
zations, we present a plug-in extension of our Petri net-based agent plat-
form Mulan/Capa for recording interaction logs. Using process mining,
the logs can be mapped by some intermediate steps to agent protocols
e.g. represented as AgentUML interaction protocol diagrams. These dia-
grams are a descriptive representation form that combines organizational
and control flow information. Furthermore, they can be mapped to ex-
ecutable Petri net, thus allowing to feed mining results back into the
design phase.

Keywords: agent interactions, conversations, high-level Petri nets, in-
teraction mining, mining, multi-agent systems, Mulan, modeling, nets-
within-nets, process mining, reference nets, Renew, simulation.

1 Introduction

The concept of Multi-Agent Systems (MAS) has gained increasing importance
in computer science during the last decade. MAS research considers systems as
aggregations of goal-oriented, autonomous entities (agents) interacting in some
common environment (see e.g. [1]). Since no or only minor central control is
exposed on the agents, a coherent global system behavior emerges merely from
their cooperative or competitive interactions.

The design, implementation, and validation of MAS still remains a demanding
task. Petri nets are frequently applied for modelling agent behavior due to the

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 12–23, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analysis of Multi-Agent Interactions with Process Mining Techniques 13

typical combination of formal conciseness and visual clearness as well as the pos-
sibilities of displaying and formally analyzing concurrent systems [1]. Petri nets
also support the verification and validation of MAS, since formal methods can
be applied to assess liveness and safety properties of such models.

Unfortunately, the applicability of formal verification techniques is limited
to simple and often practically irrelevant classes of MAS [2]. Furthermore such
techniques can only be applied in a confirmative fashion; i.e. to verify (or falsify)
previously posed hypotheses about a system’s behavior. Agent-oriented software
engineering (AOSE), however, is primarily an experimental process [2] consisting
of prototypical design, simulation, observation and a-posteriori analysis in order
to explore the system’s behavior. Since the observation of even simple MAS might
produce large and complex amounts of data [3], data mining has occasionally
been proposed as a support technique for such analysis (see e.g. [4,5]).

To aid the understanding of dynamic processes – in particular interactions
– in MAS, it seems straightforward to apply techniques from process mining
originally developed in the domain of business process intelligence (see e.g. [6,7]).
These techniques seem especially appropriate in Petri net-based AOSE due to
their ability to reconstruct concurrent Petri net models from execution traces.
This leads to a number of potentially interesting applications during the AOSE
development cycle.1 (1) In the system analysis phase, process mining can be
employed to aggregate behavior or interaction traces of relevant agents from the
real system to Petri net models that flow into the design phase. (2) In the design
phase, process mining seems to be a promising approach to integrate adaptability
into Petri net-based agents by providing them with the ability to learn executable
models of behavior from the observation of other agents’ interactions. (3) In the
validation phase, process mining can be used to aggregate large amounts of trace
data observed from the running system. These models can be visualized, formally
analyzed or compared to design models to validate the system’s behavior. Also,
process mining might support the detection of unforeseen, implicit interaction
patterns emerging at runtime.

In this paper, we present an approach towards the application of process min-
ing techniques to the analysis, design and validation of multi-agent interactions.
In particular, we pursue the goal of reconstructing models of agent interaction
protocols from sample interactions. Our approach is integrated into the FIPA-
compliant, Petri net-based agent platform Mulan/Capa.

The paper is organized as follows: Section 2 briefly introduces Mulan and
Capa. In Section 3 we review existing work on agent interaction analysis and
introduce process mining as an advanced analysis technique. In Section 4 we
present our approach towards analyzing agent interactions by means of process
mining, where Petri nets build an important intermediate representation. In
Section 5 we discuss our prototypical implementation of a tool for interac-
tion monitoring, debugging and validation. Finally, Section 6 concludes the
paper with a discussion of our results reached so far and of possible future
research.

1 Similar applications of general data mining to MAS are discussed in [5].

14 L. Cabac et al.

2 The Multi-Agent System Architecture Mulan

The MAS architecture Mulan (MULti Agent Nets) [1] is based on the nets-
within-nets paradigm [8], which is used to describe the natural hierarchies in
an agent system. It includes four system views depicted in Figure 1: MAS in-
frastructure (1), platform (2), agent (3), and protocol (4). These are related by
the mechanism of token refinement. A MAS is modelled as a Petri net whose
places contain tokens representing platforms. Each platform is itself a net whose
central place hosts all agents that currently reside on this platform. An agent
consists of exactly one agent net that is its interface to the outside world and an
arbitrary number of protocol nets defining its behavior. The variety of protocols
ranges from simple linear step-by-step plans to complex dynamic workflows.

re pro
p3

p2 p1

a
pi

kb

p

in

agents

outremove

out in

p4

platforms

add remove

subcall

2

int.
com.

ext. communication 3

protocols

send msg

conversations

agent
knowledge

 base

receive msg protocol

start stop

platform 4

1

mas

communication
 structure

Fig. 1. Agent system as nets-within-nets

Mulan is implemented in reference nets and Java using the Petri net sim-
ulator Renew [9,10]. Reference nets provide a concurrency semantics and a
natural concept of distribution and locality. Java allows us to seamlessly include
external functionality such as graphical user interfaces. Compatibility of the
Mulan framework to the FIPA specifications [11] is ensured through its partial
re-implementation Capa (Concurrent Agent Platform Architecture) [12], which
provides a seamless integration with other FIPA-compliant MAS frameworks.
It also allows us to participate in heterogeneous environments such as OpenNet
[13]. Especially in these environments, the determination, analysis and coordi-
nation of interactions are challenging tasks. In the following sections we show
how these challenges can be approached using techniques from process mining.

3 Interaction Analysis and Process Mining

Interaction analysis is currently an important topic in MAS research for the
reasons mentioned above. In the following, we review related work on interaction
analysis, and introduce process mining as an advanced analysis technique.

3.1 Interaction Analysis in Multi-Agent Systems

Many frameworks for multi-agent application development include debugging
tools that allow to monitor the message traffic on the agent platform. An ex-
ample is the Sniffer agent integrated into the JADE framework [14]. This tool

Analysis of Multi-Agent Interactions with Process Mining Techniques 15

displays observed message sequences as UML sequence diagrams and provides
basic filtering capabilities. Monitoring agent interactions leads to large amounts
of data. Important behavior patterns are in danger to go unrecognized when the
analysis is performed by hand. Therefore data mining techniques are increasingly
applied in this context (see e.g. [5]).

The algorithms for this task are mostly based on computational logic and
stochastic automata: Nair et al. [4] e.g. propose an approach towards team ana-
lysis in the domain of (simulated) robot soccer (RoboCup). They consider three
complementary perspectives: The individual agent model is a situational decision
model of a single agent represented by means of association rules. The multiple
agent model represents agent interactions as a stochastic automaton. The global
team model shows relations between team properties (e.g. ball possession time)
and game results in a rule-based fashion.

Botia et al. [15] focus on mining social networks at multiple resolutions from
message logs using the ROCK cluster algorithm. In addition, their monitoring
tool ACLAnalyser can automatically observe the execution of predefined inter-
action protocols on the JADE platform. Mounier et al. [16] present an approach
towards agent conversation mining using stochastical grammar inference. Min-
ing results are represented as a stochastic automaton whose edges are labelled
with message performatives. The approach neglects concurrency and interaction
roles. Hiel [17] applies extended Hidden Markov Models for the same task; also
neglecting the aforementioned aspects. However, he suggests to improve the re-
construction of (concurrent) protocols by process mining techniques as a possible
direction for future research. Parallel to the publication at hand, Dongen et al.
report on the application of process and decision tree mining to communication
logs observed in an auctioning simulation based on ad-hoc agent concepts [18].
This work proposes the introduction of adaptability by means of process mining.

3.2 Process Mining

Process mining (workflow mining) is a subfield of data mining concerned with
“method[s] of distilling a structured process description from a set of real execu-
tions” [19]. The task is – given an event log recorded during process execution –
to reconstruct properties of the generating processes. While most research is done
in the area of business process management [6], other application domains such
as the analysis of web service interactions [20] have recently been considered.

A large number of process mining techniques are available, that can be clas-
sified by the perspective that the analysis focuses on. The most prominent per-
spectives are control flow and organizational perspective [7]. The objective in the
control flow perspective is to reconstruct the observed process’ control structure
– i.e. sequences, branches, loops and concurrency. The organizational perspec-
tive focuses on the “structure and the population” of the organization in which
the processes are observed. This covers “relations between roles [. . .] groups [. . .]
and other artifacts” [7]. Tool support for process mining is increasingly becoming
available. Aalst et al. developed the ProM process mining tool that is extensible
through a plugin mechanism by mining, import, export and analysis plugins [21].

16 L. Cabac et al.

An often-cited mining technique for the control flow perspective is the α-
Algorithm: From an event-based process log, this algorithm builds a concurrent
Petri net model on the basis of a direct successor relation. An extension of the
algorithm can be proven to reconstruct any net belonging to the class of ex-
tended sound workflow nets [22], but it cannot cope with noise, hidden tasks,
and duplicate tasks.2 Herbst [6] developed an algorithm for mining process mod-
els containing duplicate tasks from activity-based logs.3 Research on mining in
the organizational perspective has so far focused on the reconstruction of role
assignments [23,24] and social networks [25]. Further tasks in process mining are
log segmentation (i.e. the mapping of messages from the process log to process
instances and process classes) and condition mining (i.e. inference of branching
conditions in the process model). Both are covered in an approach by Schütt [26].

Interaction mining – i.e. the reconstruction of interaction models from message
logs – covers aspects of both control flow and organizational structure. Gombotz
et al. [20] apply interaction mining to analyze the operation of web services at
different levels (operation, interaction and workflow). One of the mining results is
a so-called web service interaction graph representing the relations of a particular
web service and its neighbors. Aalst [24] shows that the α-algorithm can be
used to mine sequence diagram-like Petri net-structures from message logs. The
approach is restricted to 1:1 interactions and does not explicitly abstract from
senders and receivers to interaction roles.

4 An Approach Towards Agent Interaction Mining

Though the similarities between the analysis of multi-agent interactions and the
research field of process mining have recently been recognized in the literature
(see above), the integration of process mining into practical methods and tools
for AOSE is still in its infancy. In the following, we present our approach towards
analysing agent interactions with process mining techniques.

4.1 Context

Our approach towards Agent Interaction Mining (AIM) is integrated into a
larger framework for Process Mining in (Agent Oriented) Software Engineering
(ProMiSE, see [27]). This framework covers several analysis perspectives related
to the four conceptual levels of Mulan: (1) the decision perspective focusing on
decision models encoded in an agent’s knowledge base, (2) the internal control
perspective regarding the processes running within a single agent, (3) the exter-
nal control perspective concerned with multi-agent interactions, (4) the structural
perspective focusing on (static) platform and MAS structures, and (5) the multi-
level perspective regarding relations between the perspectives mentioned before.
2 A hidden task is a nameless activity not registered in the log. Duplicate tasks occur

if the same activity is executed under different preconditions.
3 In an activity-based log we can identify start and end events of activities which eases

the detection of concurrency.

Analysis of Multi-Agent Interactions with Process Mining Techniques 17

On our way to applying mining techniques to the analysis of MAS on multiple
levels, we choose the external control perspective as a starting point. From the
observation of message traffic, we proceed bottom up, i.e. we try to reconstruct
basic interaction protocols in the first step. Through the recursive application
of mining techniques to the results of the previous level, we aim to proceed to
hierarchical protocols and higher level dynamical and structural patterns.

4.2 Techniques

The task of AIM at the protocol level is formulated as follows: Given a message
log recorded during the execution of a MAS, find the unknown set of interac-
tion protocols involved in the generation of this log. This task can be divided
into several sub-phases depicted in Figure 2. Generally, we consider the FIPA
ACL message attributes performative, sender, receiver, and some conver-
sation control tags. By masking message content, we keep the following stages
application-independent.

segmen-
tation

role
mining

control-
flow

mining

peer
generation

model
refine-
ment

presen-
tation

P1:
cfp(A1,A2) ref(A2,A1)

cfp(A1, A4), prop(A1, A4)
cfp(A3,A4) prop(A4,A3)

P2: req(A2,A3) ...

R1 R2
cfp

cfp(A1,A2)
 ref(A2,A1)
req(A3,A2)

inform(A2,A3)
...

P1:
cfp(R1, R2) ref(R2, R1)
cfp(R1,R2) prop(R2,R1)
cfp(R1,R2) prop(R2,R1)

P2: ...

Conditions
Probabilities

Time Constraints
Multicast

sd generated

Message Log

R2R1

recsend

cfp

cfp(R1,R2)

reject
(R2,R1)

propose
(R2,R1)

AIP Diagram

reject

prop

Fig. 2. A mining chain for agent interaction mining

The first phase – log segmentation – is necessary because a log normally
contains messages from several conversations, generated by multiple protocols.
These messages must be sorted by assigning them to a conversation; and by
assignging each conversation to a protocol type. Given the information available
in FIPA ACL messages (e.g. conversation-id) this segmentation is trivial.

However, these tags are not excessively used on the Capa platform and might
generally prove as too inflexible for detecting complex patterns of interaction.
Therefore, we reconstruct conversations by chained correlation [28] of messages
based on the in-reply-to tag: Messages without this tag are assumed to start
a new conversation. Other messages are appended to the conversation currently
ended by a message with a corresponding reply-with tag. In doing so, we obtain
1 : 1 conversation threads. However, these might be part of a larger multi-party

18 L. Cabac et al.

conversation that we reconstruct by merging all conversation threads sharing at
least one reply-with or in-reply-to tag.

Assigning conversations to protocol types is a clustering task. For each con-
versation, we build a feature vector representing a direct successor relation of
performatives.4 Each vector component represents one possible succession of two
performatives. It is assigned a value a counting the number of appearances of this
succession in the conversation. To regard for protocols with a typically branched
control structure, combinations of performatives appearing near the start of a
conversation are weighted stronger than those appearing at the end. Finally, we
apply the nearest neighbour algorithm [30] to cluster similar vectors based on
the Euclidian distance.

The result of the segmentation phase are traces of conversations ordered by
protocol types. In the second phase – role mining – we further abstract the
messages by replacing names of sender and receiver agents with conversation
roles. We currently apply a simple unification algorithm that binds agent names
to role names in the order of their appearance in the conversation. However, this
simple approach might fail in branched or concurrent protocols. Alternatively,
we consider using a role detection mechanism based on sets of sent and received
performatives similar to the approach described in [29].

In the third phase – control flow mining – we collect the abstracted conver-
sation traces of each protocol type and try to induce a model of the protocol’s
control flow. Interaction protocols such as those specified in AgentUML might
contain concurrent, hidden, and duplicate tasks. Therefore, the algorithm by
Herbst [6] seems to be a good choice at first sight. However, this algorithm
requires an activity-based log, while the message log is event-based.

Based on ideas from [6] and [26], our preliminary process mining technique
consists of two stages – automata inference and concurrency detection: First,
we reconstruct a deterministic finite automaton (DFA) from each set of samples
using the k-RI algorithm [31]. The edges of the DFA are labelled with message
performatives and sender/receiver roles. The k-RI algorithm can detect loops
and duplicate tasks, but not concurrency. We therefore apply a modified version
of the α-algorithm to the DFA next. Based on the successor relation of labelled
transitions, the algorithm detects hints for concurrency in the DFA’s structure.

Control flow mining results in an overall Petri net model of each protocol.
This model can be split straightforwardly into protocol templates for every con-
versation role. Each of these peers corresponds to one lifeline in an AgentUML
interaction protocol diagram (AIP, see [32]), that might be used to visualize the
mining results. Additionaly, we are planning to refine the reconstructed model
by infering temporal relations between messages with techniques described in [7].
We will also apply the C 4.5 decision tree learning algorithm [30] to reconstruct
branching conditions from message content attributes as proposed in [6]. The at-
tachment of branching conditions to the protocol templates leads to executable
Mulan protocols.

4 A similar metric is used in a preliminary approach by Vanderfeesten towards detect-
ing conversation roles [29].

Analysis of Multi-Agent Interactions with Process Mining Techniques 19

5 A Tool for Agent Interaction Mining

In this section, we present a prototypical tool and show an example for the
application of our interaction mining techniques.

5.1 Monitoring Tool

To integrate process mining facilities into the Capa platform, we developed a
monitoring tool named Mulan Sniffer as a Renew plugin [33]. The name indi-
cates that the tool’s functionality was derived from typical MAS debugging tools
such as the JADE Sniffer [14]. The Mulan Sniffer monitors all ACL messages
sent between agents on the platform during a simulation. The resulting message
log is displayed textually as a list or graphically as a UML sequence diagram.
Filters can be applied to select messages containing certain performatives, etc.

Fig. 3. Mulan Sniffer UI with observed interactions and Renew UI

Figure 3 shows the user interface of the Sniffer with an observed message log.
The messages in the diagram are color coded to ease the monitoring of the MAS.
They can be inspected in the bottom left view of the Sniffer window. The upper
left view shows a list of observed agents which can be sniffed or blocked. It also
shows the numbers of messages sent and received per agent. The tool allows to
observe changes in the diagram on the fly, i.e. when the message is sent.

The Mulan Sniffer differs from its ‘ancestors’ in two aspects that are im-
portant for our approach: (1) The recorded sequence diagrams are stored in the
same format used by the Mulan design tools. They can therefore be edited
and mapped to executable agent protocols. (2) More important, the Sniffer is a
pluggable Renew plugin [33] that can be extended by plugins for process mining
and filtering itself.

20 L. Cabac et al.

The interfaces for filtering and mining plugins are reminiscent of similar
tools such as ProM [21]. Special emphasis is put on the recursive character of
process mining algorithms: These algorithms operate on data and provide data
for higher-level analysis. We therefore introduce the concept of mining chains.
Complex process mining algorithms are constructed by combining basic building
blocks in data flow networks as proposed in [34]. This visual modeling technique
is frequently used in data mining tools and can be supported by the Petri net
editor of Renew.

5.2 AIM Plugin and Example

The example in Figure 4 shows a plugin that applies the algorithms described
in Section 5 to the message log provided by the Sniffer. The messages partly
result from multiple executions of a concurrent protocol simulating negotiations
between a customer, a mediator and a service provider to allocate an order.

Fig. 4. AIM Plugin of the Mulan Sniffer showing mined conversations

In Figure 4 the Sniffer UI can be seen (background) with a tree-view that
shows the results of the log segmentation. Each tree node represents one iden-
tified protocol type with the respective conversations as children. On selecting
a conversation, the associated messages are automatically highlighted in the se-
quence diagram view (see also Figure 3).

In the example, the messages belonging to the order allocation protocol where
successfully separated from the surrounding ’noise’, i.e. conversations executed
during the initialization of agents and platform. However, the performance of
the clustering procedure strongly depends on a threshold for cluster similarity
that needs careful calibration. The window in the foreground shows the correctly
reconstructed Petri net model of the order allocation protocol.

Analysis of Multi-Agent Interactions with Process Mining Techniques 21

6 Conclusion

The Mulan /Capa framework offers an integrated tool set supporting the de-
velopment of Petri net-based MAS. It includes features for the specification,
creation, documentation, monitoring and debugging of multi-agent applications.
However, in concurrent, distributed and heterogeneous environments the ana-
lysis of multi-agent interactions is extremely difficult. Thus there is a need for
elaborated techniques to handle large amounts of data. Process mining is one
technique that can be successfully applied. The more abstract view of interac-
tion mining allows to emphasize the desired perspectives (e.g. external control
perspective) that are important for agent-based development and analysis.

This paper shows how to embed interaction mining into agent-oriented soft-
ware engineering. We have developed an approach to reconstruct interaction
protocols from message logs; integrating and extending several process mining
techniques. It allows us to structure message logs by means of clustering and
to reconstruct non-trivial concurrent protocols. However, we have encountered
several cases the techniques cannot handle yet. Enhancing and validating them
in greater detail is an important topic at issue. We have furthermore presented
the Mulan Sniffer, a monitoring tool that is extensible by mining and filtering
plugins. It is also applicable to many other FIPA-compliant MAS, which allows
to monitor and mine in heterogeneous multi-agent environments and thereby
evaluate our mining techniques in numerous real-world situations.

In our future work, we will validate the presented process mining techniques
in empirical and analytical studies and provide necessary extensions. An impor-
tant drawback of the current approach is the inability to appropriately handle
multicast-protocols where the number of agents bound to each conversation role
is not constant (e.g. the well-known ContractNet protocol). Furthermore, we are
planning to tackle the challenging problem of reconstructing hierarchical pro-
tocols (see also [17]) and develop mining techniques for the other perspectives
described in Section 4.1. In this context, the potential of Mulan as a conceptual
framework for process mining will be investigated further in two directions: for
providing a classification of techniques and for providing background knowledge
to improve mining results.

Besides the analysis and validation of MAS, we are planning to apply process
and interaction mining in a broader context of AOSE: On the one hand, we will
improve the adaptability of Petri net-based agents through mining capabilities
within our Socionics project [35]. On the other hand, the developed techniques
might support online monitoring as well as the work of software developers in
terms of reflecting their behavior to provide a feedback about best practices.
Again this requires a sufficiently powerful toolset which we have sketched in [36].
In the context of inter-organizational processes the agent metaphor is highly ap-
plicable when considering the actors. Techniques that are applied to automated
systems can be applied to the users in such environments as well. Therefore the
legal, social, ethical and practical issues resulting from the application of process
mining within the environment of people’s computer support (with or without
their knowledge) require urgent investigation.

22 L. Cabac et al.

References

1. Rölke, H.: Modellierung von Agenten und Multiagentensystemen – Grundlagen
und Anwendungen. Volume 2 of Agent Technology – Theory and Applications.
Logos Verlag, Berlin (2004)

2. Edmonds, B., Bryson, J.: The insufficiency of formal design methods - the necessity
of an experimental approach - for the understanding and control of complex MAS.
In: AAMAS. (2004) 938–945

3. Sanchez, S.M., Lucas, T.W.: Exploring the world of agent-based simulations: Sim-
ple models, complex analyses. In Yücesan, E., Chen, C.H., Snowdon, J.L., Charnes,
J.M., eds.: Proceedings of the 2002 Winter Simulation Conference. (2002) 116–126

4. Nair, R., Tambe, M., Marsella, S., Raines, T.: Automated assistants for analyzing
team behaviors. In: Autonomous Agents and Multi-Agent Systems 8. (2004) 69 –
111

5. Remondino, M., Correndo, G.: Data mining applied to agent based simulation. In
Merkuryev, Y., Zobel, R., Kerckhoffs, E., eds.: Proceedings of the 19th European
Conference on Modelling and Simulation, Riga, SCS-Europe (2005) 374–380

6. Herbst, J.: Ein induktiver Ansatz zur Akquisition und Adaption von Workflow-
Modellen. PhD thesis, University of Ulm (2001)

7. van der Aalst, W., Weijters, A.: Process mining: a research agenda. Computers in
Industry 53(3) (2004) 231–244

8. Valk, R.: Petri nets as token objects - an introduction to elementary object nets.
In Desel, J., Silva, M., eds.: 19th International Conference on Application and
Theory of Petri nets, Lisbon, Portugal. Number 1420 in LNCS, Berlin, Springer-
Verlag (1998) 1–25

9. Kummer, O.: Referenznetze. Logos-Verlag, Berlin (2002)
10. Kummer, O., Wienberg, F., Duvigneau, M.: Renew – The Reference Net Workshop.

http://www.renew.de (2006) Release 2.1.
11. FIPA: Foundation for Intelligent Physical Agents. http://www.fipa.org (2005)
12. Duvigneau, M., Moldt, D., Rölke, H.: Concurrent architecture for a multi-agent

platform. In Giunchiglia, F., Odell, J., Weiß, G., eds.: Agent-Oriented Software En-
gineering III. Third International Workshop, Agent-oriented Software Engineering
(AOSE) 2002, Bologna, Italy, July 2002. Revised Papers and Invited Contribu-
tions. Volume 2585 of Lecture Notes in Computer Science., Berlin Heidelberg New
York, Springer-Verlag (2003)

13. openNet: Project. http://www.x-opennet.org/ (2005)
14. JADE: Java Agent DEvelopment Framework. http://jade.cselt.it (2005)
15. Botía, J., A.López-Acosta, A.F.Gómez-Skarmeta: ACLAnalyser: A tool for debug-

ging multi-agent systems. In de Mántaras, R.L., Saitta, L., eds.: Proceedings of the
16th Eureopean Conference on Artificial Intelligence, Valencia, IOS (2004) 967–968

16. Mounier, A., Boissier, O., Jacquenet, F.: Conversation mining in multi-agent sys-
tems. In: Proceedings of the CEEMAS 2003. (2003) 158 – 167

17. Hiel, M.: Learning interaction protocols by overhearing. Master’s thesis, Utrecht
University (2005)

18. van Dongen, B., van Luin, J., Verbeek, E.: Process mining in a multi-agent auc-
tioning system. In Moldt, D., ed.: Proceedings of the 4th International Workshop
on Modelling of Objects, Components, and Agents, Turku (2006) 145–160

19. Maruster, L., Weijters, A., van der Aalst, W., van den Bosch, A.: Process mining:
Discovering direct successors in process logs. In: ICDS: International Conference
on Data Discovery, LNCS (2002)

http://www.renew.de
http://www.fipa.org
http://www.x-opennet.org/
http://jade.cselt.it

Analysis of Multi-Agent Interactions with Process Mining Techniques 23

20. Gombotz, R., Baina, K., Dustdar, S.: Towards web services interaction mining
architecture for e-commerce applications analysis. In: International Conference on
E-Business and E-Learning, Amman, Jordan, Sumaya University (2005)

21. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The ProM framework: A new era in process mining tool
support. In: ICATPN. (2005) 444–454

22. Medeiros, A., Dongen, B., Aalst, W., Weijters, A.J.M.M.: Process mining: Extend-
ing the α-algorithm to mine short loops. BETA Working Paper Series, WP 113,
Eindhoven University of Technology (2004)

23. Ly, T., Rinderle, S., Dadam, P., Reichert, M.: Mining staff assignment rules from
event-based data. In: Workshop on Business Process Intelligence (BPI), in con-
junction with BPM 2005, Nancy, France (2005)

24. van der Aalst, W.: Discovering coordination patterns using process mining. In
Bocchi, L., Ciancarini, P., eds.: First International Workshop on Coordination and
Petri Nets (PNC 2004), STAR, Servizio Tipografico Area della Ricerca, CNR Pisa,
Italy (2004) 49–64

25. van der Aalst, W., Song, M.: Mining social networks: Uncovering interaction pat-
terns in business processes. In: Proceedings of the 2nd International Conference
on Business Process Management, Potsdam (2004)

26. Schütt, K.: Automated modelling of business interaction processes for flow predic-
tion. Master’s thesis, University of Hamburg, Department for Informatics (2003)

27. Cabac, L., Knaak, N., Moldt, D.: Applying process mining to interaction analysis of
Petri net-based multi-agent models. Technical Report 271, University of Hamburg,
Department of Informatics (2006)

28. van der Aalst, W., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, H.: Choreography
conformance checking: An approach based on BPEL and petri nets. Technical
Report BPM-05-25, BPMcenter.org (2005)

29. Vanderfeesten, M.: Identifying Roles in Multi-Agent Systems by Overhearing.
Master’s thesis, Utrecht University (2006) in preparation.

30. Dunham, M.H.: Data Mining: Introductory and Advanced Topics. Prentice Hall,
Upper Saddle River (NJ) (2003)

31. Angluin, D.: Inference of reversible languages. Journal of the ACM 29(2) (1982)
741–765

32. Cabac, L., Moldt, D., Rölke, H.: A proposal for structuring Petri net-based agent
interaction protocols. In van der Aalst, W., Best, E., eds.: Lecture Notes in Com-
puter Science: 24th International Conference on Application and Theory of Petri
Nets, ICATPN 2003, Netherlands, Eindhoven. Volume 2679., Berlin Heidelberg:
Springer (2003) 102–120

33. Cabac, L., Duvigneau, M., Moldt, D., Rölke, H.: Modeling dynamic architectures
using nets-within-nets. In: Applications and Theory of Petri Nets 2005. 26th Inter-
national Conference, ICATPN 2005, Miami, USA, June 2005. Proceedings. (2005)
148–167

34. Jessen, E., Valk, R.: Rechensysteme: Grundlagen der Modellbildung. Studienreihe
Informatik. Springer-Verlag, Berlin (1987)

35. Homepage: Socionics in Hamburg. http://www.informatik.uni-hamburg.de/
TGI/forschung/projekte/sozionik/ (2005)

36. Lehmann, K., Cabac, L., Moldt, D., Rölke, H.: Towards a distributed tool platform
based on mobile agents. In: Proceedings of the Third German Conference on Multi-
Agent System Technologies (MATES). Volume 3550 of Lecture Notes on Artificial
Intelligence., Springer-Verlag (2005) 179–190

http://www.informatik.uni-hamburg.de/
TGI/forschung/projekte/sozionik/

	Introduction
	The Multi-Agent System Architecture {\sc Mulan}
	Interaction Analysis and Process Mining
	Interaction Analysis in Multi-Agent Systems
	Process Mining

	An Approach Towards Agent Interaction Mining
	Context
	Techniques

	A Tool for Agent Interaction Mining
	Monitoring Tool
	AIM Plugin and Example

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

