Evaluating Mobile Agent Platform Security

Axel Biirkle, Alice Hertel, Wilmuth Miiller, and Martin Wieser

Fraunhofer Institute for Information and Data Processing,
Fraunhoferstrafie 1, 76131 Karlsruhe, Germany
{axel .buerkle, alice.hertel, wilmuth.mueller,
martin.wieser}@iitb.fraunhofer.de

Abstract. Agent mobility requires additional security standards. While
the theoretical aspects of mobile agent security have been widely stud-
ied, there are few studies about the security standards of current agent
platforms. In this paper, test cases are proposed to assess agent plat-
form security. These tests focus on malicious agents trying to attack
other agents or the agency. Currently, they have been carried out for
two agent platforms: JADE and SeMoA. These tests show which of the
known theoretical security problems are relevant in practice. Further-
more, they reveal how these problems were addressed by the respective
platform and what security flaws are present.

1 Introduction

Over the past years software agents in general and mobile agents in particular
have become more and more important in many areas of computer science such
as distributed systems, autonomous systems and robotics as well as artificial
intelligence.

Mobile agents are a special sort of software agents that possess the ability
to migrate to other hosts. In contrast to classical distributed systems, where
processes are bound to the host they were launched on, mobile agents can transfer
their code and context to another host where their execution continues.

Especially the technical advantages of mobile agents such as delegation of
tasks, asynchronous processing, adaptable service interfaces, and code shipping
versus data shipping provide an interesting approach to distributed systems [IJ.

Application domains where mobile agents have proven to be valuable are
telecommunication applications [2], IP-network configuration and management
[3], sensor networks [4], electronic commerce, information retrieval [5], [6], mobile
computing, and dynamic deployment of software, just to mention a few.

Despite these proven demonstrations of valuable contributions for building
systems and applications in different domains, the number of commercial appli-
cations built with mobile agents is still rather small. One of the principle reasons
for this is security concerns. Companies and individuals are skeptical of allowing
an uncontrollable piece of code to appear on their machines and execute, which
is basically the same as what a virus does [7]. Agent users are worried about
the confidentiality and integrity of sensitive data carried by the agent, e.g. an

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 159-[I'T1} 2006.
© Springer-Verlag Berlin Heidelberg 2006

160 A. Biirkle et al.

electronic purse in an e-commerce application, when the agent is running on a
remote and potentially malicious platform.

All application domains mentioned above demand guarantees of agent behav-
ior and safe interaction with the underlying operating system and other involved
legacy systems.

In the last decade a number of publications focused on security aspects of
mobile code in general and mobile agents in particular. Some of them analyze
theoretical security problems []], [9], [I0] while others propose mechanisms and
architectures to overcome these problems [I1], [12], [13], [14].

While the theoretical aspects have been widely studied, there is a lack of
studies about the practical realization of security concepts in available agent
platforms. This paper introduces test cases for the evaluation of security mech-
anisms of mobile agent platforms. They are based on the results of theoretical
studies on mobile agent security and designed with respect to practical relevance.

The agent plattforms covered in this paper are JADE (Java Agent DEvelop-
ment Framework) [15], an open source software distributed by Telecom Italia,
and SeMoA (Secure Mobile Agents) [16], a freely available agent platform devel-
oped and distributed by Fraunhofer IGD. SeMoA was specially designed with
focus on security aspects of mobile agents.

The paper is organized as follows: in Sect. 2, a taxonomy of possible attacks is
introduced. Sects. 3 and 4 present test cases and results for JADE and SeMoA.
Finally, Sect. 5 discusses the findings of our study.

2 Taxonomy of Possible Attacks

With mobile agents there are four different sorts of attacks according to whether
the agent or the agency is malicious and whether the agent or the agency is
attacked [1], [9].

2.1 Malicious Agents Attacking the Hosting Agency

— Denial of Service (DoS) attacks: The agent excessively consumes the re-
sources of the agency such as memory, CPU cycles or bandwidth so that the
agency is not able to provide its services to other agents.

— Unauthorized access to the agency’s data: The agent tries to access confi-
dential data, e.g. keystores or policy files (usually, these are locally stored on
the agency’s hard disk(s)), or tries to manipulate the agency’s management
mechanisms.

— Masquerading: The agent masquerades as another agent with more permis-
sions and gains access to sensitive data or services.

— Complex attacks through cooperation with other agents [17]

2.2 Malicious Agents Attacking Other Agents (Located on the
Same Agency)

— Changing the other agent’s state or task
— Reading or manipulating the other agents’ data

Evaluating Mobile Agent Platform Security 161

— Masking its identity to deceive other agents and gain sensitive information
from them or using services on behalf of other agents without paying

— Retarding another agent or detaining it from fulfilling its task [17]

— Denial of Service attacks on other agents by sending spam messages

2.3 DMalicious Agencies Attacking Other Agencies

— Eaves-dropping on the communication between two agencies and capturing
agents to extract useful information from the agents’ state or code

— Traffic analysis attempting to find patterns in the communication between
two agencies to derive assumed behaviors based on these patterns

— Sending an agent to attack the agency - this could be either a malicious
agent or an agent manipulated to act maliciously

2.4 Malicious Agencies Attacking Agents

— Accessing the agent’s data: Reading confidential data, e.g. private keys, or
manipulating the collected data

— Accessing the agent’s code and / or workflow: Reading the migration path or
the algorithms; permanently or temporarily changing the agent’s behavior
for the benefit of the malicious agency or to damage of other agencies [I].

— Delaying or even denying the agent’s execution.

— Cut-and-Paste attack: The agency cuts data items from the agent and pastes
it into a new agent. If this data is encrypted, the agent can migrate to the
agency where a decryption is possible and come back with the decrypted
data.

2.5 Security Solutions

There are multiple mechanisms for providing security against the above men-
tioned attacks. However, to list them all is out of the scope of this paper, so we
refer to [1], [14], [I8] and present only the most important security solutions:

— Encryption: The data the agent is carrying, or even the whole agent, is
encrypted to prevent unauthorized access to data.

— Digital signatures and certificates: Using PKI (Public Key Infrastructure) is
the most common way for communication partners to authenticate against
one another, i.e. agent against agency and vice versa.

— Central management of security mechanisms and access authorizations: Each
agency has its own security management where authentication and autho-
rization of incoming agents and the monitoring of their actions during their
stay is managed.

— Sandbox: Every agent is executed in a secure environment and any attempt
to access anything outside this environment is strictly controlled by a security
manager.

— Secure Socket Layer (SSL): This technique provides a secure way for mobile
agents to migrate from agency to agency.

162 A. Biirkle et al.

2.6 Test Purposes

From the above mentioned attacks we chose to consider only those initiated by
malicious agents, as we did not intend to modify any code of the platforms.
Consequently we disregarded the case of malicious agencies. Furthermore, we
did not analyze the security mechanisms of the underlying operating system,
the JVM (Java Virtual Machine) or the network. Neither did we examine the
security of encryption algorithms or signatures. Our purpose was to test existing
platforms for mobile agents on their ability to ensure security in practice.

So far, our tests were carried out for the platforms JADE and SeMoA. JADE
has been chosen since it is probably the most widely used agent platform today.
SeMoA was considered because of its focus on security. It was specially designed
with respect to security and seems to provide the most elaborate security con-
cept. It is interesting to see how these two platforms compare.

All test cases are based on the before described taxonomy of attacks. However,
they were adapted to the individual platform in order to meet the peculiarity
of each platform. E.g. JADE and SeMoA greatly differ in their architecture and
their security concepts. Instead of developing a homogeneous test methodology
for all platforms we considered it more appropriate to approach platform security
from a practical point of view. The following sections present the test cases and
test results for JADE and SeMoA.

3 JADE Security Test

JADE provides security features through an add-on [I9]. It comprises the fol-
lowing services:

— SecurityService: Authentication using the corresponding Java functional-
ity.

— PermissionService: Granting permissions to access Java libraries (using
the Java Authentication and Authorization Service JAAS) and to perform
agent-specific actions (e.g. start, kill or clone or send-to agents).

— SignatureService: Signing of messages to avoid falsification.

— EncryptionService: Encryption of messages to avoid unauthorized read-
ing.

To test the JADE security add-on (we tested “Version 3[1].3” with JADE
Version 3.3), especially in conjunction with mobile agents, we implemented a
specific test environment. This test environment uses the JADE test suite tool
[20] to manage the execution of the test cases. Test cases are small pieces of code
to test a specific behavior of the security add-on; a sequence of logically related
test cases is called a test suite. The JADE test suite tool provides a graphical
user interface for configuring and starting test suites and base classes for test
suite and test case agents.

Evaluating Mobile Agent Platform Security 163

3.1 Test Agents

The JADE security test environment comprises the following agents:

— a test suite agent for each test suite to parameterize and start the test cases,
and to clean up the platform after test case execution,

— a test case agent for every test case which executes the test procedure step
by step,

— a database access agent, which represents the normal application part and
provides a service to read metadata of an image from a database according
to the read conditions contained in the read request, and

— a user agent, which is able to represent a regular user agent who retrieves
image data using the service of the database access agent, as well as a ma-
licious user agent who tries to disturb the regular users and to attack the
platform. The user agent is generated and stimulated by the currently active
test case agent to behave as regular or as malicious user.

3.2 Test System

The test system consists of three JADE containers: The test container, where
the test suite and test case agents are located, the user container, where the user
agents are generated, and the main container, where the default JADE agents
(ams, df, rma) and the database access agent are located. The main and the test
container on one side, and the user container on the other side, have different
owners, so that different owner-specific permissions can be granted within the
policy file. Fig. [Il shows the testbed architecture.

3.3 Test Cases

Denial of Service (DoS) Tests. Denial of Service test cases check if malicious
mobile agents are able to disturb or even prevent the tasks of regular agents by
overloading the CPU or by extensive use of operating system resources. All
DoS test cases start with generating a regular user agent in the user container
and migrating it to the main container. Then a malicious user agent is started
in the user container and migrated to the main container as well. The regular
user agent then requests image data from the database access agent and the
execution time is measured. Then, if requested by the test case, the malicious
user agent is cloned to produce many malicious user agents. The malicious user
agent(s) start(s) its (their) work, while the regular user agent executes image
requests again. The execution time is measured again and compared with the
execution time in the undisturbed case to find out if the DoS attack succeeded.
The following test cases for DoS tests were implemented:

— TC1: Recursively cloning malicious agents.
— TC2: Malicious agents try to overload the agency by flooding the ams (agent
management system) agent with agent search requests.

164 A. Biirkle et al.

LAN

PC1 PC2
test container

test suite agent = =
main container
R A I B JADE
test cass agent IE /'J siser agent k_, managerment

agents

; o= -
user container malicious agent | \

o malicious agen | L.
| erogen]

______ |

| malicious agent -|—--"”
______ Imags DB

+— : migrafion
CACL
& —-— —.3 datgbhase access

Fig. 1. JADE security testbed

— TC3: Malicious agents activate non-blocking behaviors, resulting in endless
loops for many threads.

— TC4: Malicious agents send a message to many receivers, forcing message
decoding for all receiving agents at the same time.

Unauthorized Access Tests. Unauthorized access test cases check if mobile
agents can access vital functionality of the agent platform or of the runtime envi-
ronment so that they can sabotage the platform operation or access confidential
information. Unauthorized access test cases start with generating a regular user
agent in the user container, migrate it to the main container, then a malicious
user agent is started in the user container and migrated to the main container as
well. After that the malicious user agent tries to attack the platform. The test
case ends with removing all user agents from the main container. The following
unauthorized access test cases were implemented:

— TC5: Try to modify the policy file.

— TC6: Try to replace the Java security manager.

— TCT7: Try to kill another agent.

— TC8: Try to deregister another agent at the ams agent (i.e. deregister from
white pages).

— TC9: Try to deregister another agent at the df agent (i.e. deregister from
yellow pages).

— TC10: Try to create a new container.

— TC11: Try to kill the JADE platform.

Evaluating Mobile Agent Platform Security 165

Agent Attack Tests. Agent attack test cases check if malicious mobile agents
are able to attack regular agents operating in the same container. The test case
procedure is similar to the one used for DoS test cases. The following agent
attack test cases are currently implemented:

— TC12: A malicious agent sends a lot of dummy requests to a regular user
agent, trying to prevent it from doing its work.

— TC13: A malicious agent sends a lot of spam messages (inform messages
with no useful content) to a regular user agent, trying to prevent it from
doing its work.

— TC14: A malicious agent tries to suspend a regular agent.

— TC15: A malicious agent tries to send a signed message with a fake sender
ID.

3.4 Test Results

All test cases have been carried out in four different environments to take into
account and study hardware and operating system specific effects. The four test
setups were (cf. Fig. [I)):

— PC2 was a laptop computer (Pentium M 760, 2.0 GHz, 1 GB RAM) runnig
Windows XP Professional

— PC2 was a PC (Pentium D 830, 3.0 GHz, 2 GB RAM) running Windows
XP Professional 64 Bit

— PC2 was a PC (Pentium D 830, 3.0 GHz, 2 GB RAM) running SuSE Linux
10.0 (64 Bit)

— PC2 was a HP workstation (PA-8800, 900 MHz, 4 GB RAM) running HP-UX
11.0

The effectiveness of the DoS attacks (TC1 - TC4) and the attacks against
other agents (TC12 and TC13) was measured by comparing the execution time
of the regular agent in the undisturbed scenario to the execution time when under
attack. Fig. [2 shows the mean execution times in milliseconds for 100 iterations
of each test case in the respective environment. In case of the spamming attack,
the user agent was completely blocked on the laptop. On the workstation, the
mean execution time was beyond 30 seconds.

To build the JADE permission service, the JADE security add-on uses the
Java security system and adds some agent-specific permission checks. Assuming
that the Java security system and the JADE-specific add-ons cannot be cor-
rupted (for example by falsifying the identity of an agent), and if the policy file
is edited carefully, most of the described attacks can be prevented, except the
following:

— Recursively cloning and non-blocking behaviors cannot be prevented.
— Registering at and deregistering from yellow pages can only be allowed for
all agents or for none.

166 A. Biirkle et al.

3000 b

2500 H

OWindows Laptop (Regular)
2000 - EWindows Laptop (Attacked)
OWindows PC (Regular)
OWindows PC (Attacked)
HLinux PC (Regular)

OLinux PC (Attacked)

1000 + B HP Workstation (Regular)
OHP Workstation (Attacked)

1500 - H

500 - H
0 4 L
& & & & & @(9
o® W & & & S
B o) & g < &
9 9 < & .2
< < S S o5
S P N »© »
Aa ° S O <©
S)
< <

Fig. 2. JADE DoS test results (execution time im msecs)

— Spam and dummy requests cannot be avoided.

— During migration, the ownership of the agent is lost (non-persistent data)
and can be easily replaced by an arbitrary ownership, which is used to vali-
date the send-to permission. With the send-to permission obtained by fraud
it is possible to deregister any other agent at the df.

— It is possible for an agent to generate a new pair of keys using a fake agent
name in order to sign messages with a fake sender ID.

4 SeMoA Security Test

SeMoA provides several mechanisms in order to prevent attacks in terms of
a layered security architecture. The first layer is the transport layer, where a
protocol such as TLS or SSL can be used for agent transport. In the second layer
an incoming or outgoing agent has to pass a pipeline consisting of several security
filters. Each filter can accept or reject an agent. Furthermore this layer checks
an incoming agent’s signatures, decrypts it and finally assigns permissions to it
[21]. In this context, Java’s permission classes as well as SeMoA-specific classes
can be used. An important example for the latter is the EnvironmentPermission.
It can be granted for a specific path in an agency’s environment and can allow
an agent to lookup, publish or retract information or services. The assignment
of permissions is done according to a configurable role-based security policy. If
an agent tries to execute an action without the corresponding permission, access
is denied and an exception is thrown.

Evaluating Mobile Agent Platform Security 167

After passing the filter pipeline successfully, every agent gets its own class
loader. The class loader supports loading classes bundled with the agent and
those that are specified as URLs in the agent’s static resources. The classes to
be loaded are verified against a list of cryptographic hash values signed by the
agent’s owner. This verification represents layer three. As a fourth security layer,
a so-called sandbox is created for each agent: it gets its own threadgroup and is
though strictly separated from other agents [21].

Every agent’s static part is signed by its owner and the whole agent is signed
again by every server that forwards it. Moreover, each agent gets a globally
unique “implicit” name which is generated by means of its owner’s signature [21].

4.1 Test System

For our tests we used the SeMoA distribution “semoa complete 050812.zip”,
released on August 12, 2005. We created a simple agent (the user agent) that
migrates from its home agency (AgencyA) to another agency (AgencyB) and
requests a database lookup service there (a search for some images in an image
database with the images’ URLs as a result). After getting the results the agent
migrates back to AgencyA and displays the URLs within a GUI. A malicious
agent now migrates from a third agency (AgencyC) to AgencyB and attacks
either the agency or the reporting agent (Fig.). In order to detect the impact
of the attacks we launch the user agent in an endless loop and each time quantify
the duration it needs to fulfill its task.

PC1 PC2

AgencyA AgencyB
///'
;
DB lookup service

I
AgencyC !

malicious agent Image DB

<«——> : migration

¢ - - -> :database access

Fig. 3. SeMoA testbed

4.2 Test Cases

Denial of Service (DoS) Tests. In the majority of cases, an agent
needs special permissions to be able to attack an agency. We assume that the

168 A. Biirkle et al.

agency is not vulnerable unless these permissions are granted to the malicious
agent.

Possible targets for DoS attacks are the agency’s environment, the agency’s
computing resources and the Java Virtual Machine.

— TC1: Consuming the agency’s computing resources (the malicious agent
launches agents from AgencyC to AgencyB; each of these agents starts an
endless loop where it just increments a counter).

— TC2: Consuming the agency’s memory (nesting AWT-Threads).

— TC3: Spamming the agency with agents (as SeMoA does not provide a
cloning mechanism we simulate it in terms of the malicious agent endlessly
launching agents from AgencyC to AgencyB).

— TC4: Overloading the agency by too many database accesses (invoking the
database access service in an endless loop)

— TC5: Spamming the agency by publishing too many objects (requires an
EnvironmentPermission with a wildcard for publishing objects or services
on AgencyB).

— TC6: Incorrect code (synchronization on the Thread-class).

— TC7: Shutdown of the JVM (executing System.exit(0))

Unauthorized Access Tests. The malicious agent migrates to AgencyB and
tries to directly access files in the agency’s file system using Java’s FileInput-
Stream. This is possible with a corresponding FilePermission which can be
granted for read and/or write for individual files or directories.

To access the database on AgencyB the malicious agent can use JDBC or
invoke the database lookup service. Either way at least the permissions to access
the data and the database driver (again FilePermissions) are required.

Another target for unauthorized access are the agency’s management mech-
anisms. SeMoA has several management mechanisms which are located in the
agency’s environment under specific paths and are therefore only accessible if
the EnvironmentPermissions for these paths exist. An exception is the policy
file which can be manipulated like any file if and only if a corresponding FilePer-
massion exists. The most important management mechanisms are:

— The policy file which contains all roles and permissions.

— The wvicinity service which shows all available SeMoA servers in the LAN.

— The FarSight service which shows all available SeMoA servers within the
network.

— The ATLAS (Agent Tracking and Location Service) which serves to track
agents; an ATLAS client is integrated in each SeMoA server.

— The security filters

— The /agents/active path which contains the contexts of all agents that reside
on an agency.

For these management mechanisms we decided to implement the following
attacks:

Evaluating Mobile Agent Platform Security 169

TC8: Modifying the policy file.

— TC9: Replacing the policy filter.

TC10: Replacing the Java security manager.

— TC11: Deregistering an agent from the /agents/active path.

Agent Attack Tests. Attacking an agent in SeMoA is only possible if its
implicit name is known. This name can be found either through accessing the
agent’s context with the EnvironmentPermission for the /agents/active path or
if the agent itself publishes its name via a service (if an agents wants to receive
messages from other agents it must let these agents know its implicit name,
which serves as the agent’s address).

— TC12: Spamming the agent with messages / blocking the agent.
— TC13: Manipulating the agent’s resources (changing the result of the data-
base lookup).

4.3 Test Results

Fig. @l shows the effectiveness of the DoS attacks (TC1 - TC5) in four test setups
analogous to Sect. B4l Note, that for these test cases all necessary permissions
have been granted.

1000 -] H T
900 - — H —
800 - — H [|EWindows Laptop (Regular)
700 - H || |EWindows Laptop (Attacked)
600 - | | | |OWindows PC (Regular)
500 4 OWindows PC (Attacked)
HLinux PC (Regular)
400 1] I ELinux PC (Attacked)
300 B HP Workstation (Regular)
200 - H OHP Workstation (Attacked)
100
0. TI:Iszl_l
O) O)
IS S & & &
O\\Q O& & ° N
& @oe Ko o &
x & &) &
(ol o5 <0
N <0 <

Fig. 4. SeMoA DosS test results (execution time im msecs)

Most attacks can be prevented by correctly configuring the security policy. Crit-
ical permissions like EnvironmentPermission for the security and management

170 A. Biirkle et al.

mechanisms should only be granted to an agency’s administrator and permissions
for publishing objects in an agency’s environment should not be granted with wild-
cards. Nevertheless, some attacks cannot be avoided:

— Too many agents on one agency are not critical if they terminate soon, but
if they execute an endless loop, this heavily burdens the agency.

— The synchronization on the Thread-class is a widely known drawback of Java
and cannot be prevented.

— The nesting of AWT-Threads is a crucial attack which crashes not only the
agency but also the whole operating system. This attack cannot be prevented
by the security policy.

— Spamming an agent cannot be prevented if the agent regularly reads its
messages (otherwise the sender gets the message “recipient not available”).
While the spamming itself does not cause much harm, it can result in block-
ing the agent, because all messages are stored in the agent’s resources. So
the agent can become too big to migrate. This can be avoided by emptying
the mailbox before migrating.

5 Conclusion

The tests showed that the implemented security mechanisms of the evaluated
agent platforms can prevent several of the theoretically possible attacks pro-
vided that the access permissions are configured appropriately. Nevertheless,
DoS-attacks and spamming cannot be prevented completely. Granting permis-
sions in a very restrictive way avoids some of the DoS-attacks on the SeMoA
agent platform. It depends on the application scenario and system environment
at hand, as to whether those permissions are necessary for the agents to perform
their intended task.

The tests revealed some critical flaws in the security mechanisms of JADE
if used in combination with agent mobility. Especially the possibility to fake
the owner of an agent when migrating enables several severe attacks and under-
mines the available security measures. The SeMoA agent platform is well pro-
tected against most of the tested attacks, but is inferior with respect to agent
communication and cooperation mechanisms.

The next steps will be to examine further agent platforms and define test
cases for malicious agency scenarios.

References

1. Braun, P., Rossak, W.: Mobile Agents. Basic Concepts, Mobility Models & the
Tracy Toolkit. dpunkt.verlag (2005)

2. Karmouch, A., Magedanz, T., Delgado, J., eds.: Proc. of the 4th Int. Workshop
on Mobile Agents for Telecommunication Applications. Volume 2521 of LNCS.,
Springer (2002)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

Evaluating Mobile Agent Platform Security 171

. Yang, K., Galis, A., Guo, X., Liu, D.: Rule-Driven Mobile Intelligent Agents for

Real-Time Configuration of IP Networks. In: Knowledge-Based Intelligent Infor-
mation and Engineering Systems: 7th Int. Conf., KES 2003. Volume 2773 of LNCS.,
Oxford, UK, Springer (2003) 921 — 928

. Fok, C., Roman, G., Lu, C.: Mobile Agent Middleware for Sensor Networks: An Ap-

plication Case Study. In: Proc. of Fourth Int. Symposium on Information Process-
ing in Sensor Networks, IEEE CNF 2005 (2005) 382 — 387

. Brewington, B., Gray, R., Moizumi, K., Kotz, D., Cybenko, G., Rus, D.: Mobile

agents in distributed information retrieval. Intelligent Information Agents, Springer
(1999)

. Thati, P., Chang, P., Agha, G.: Crawlets: Agents for high performance web search

engine. In Picco, G.P., ed.: Mobile Agents, Proc. of the 5th Int. Conf. (MA 2001).
Volume 2240 of LNCS., Atlanta, USA, Springer (2001) 119-134

. Geirland, J.: The Feature: Mobile Intelligent Agents.

http://www.thefeature.com/article?articleid=26051| (2002)

. Gray, R., Kotz, D., Cybenko, G., Rus, D.: D’Agents : Security in a Multiple-

Language, Mobile-Agent System. In Vigna, G., ed.: Mobile Agents and Security.
LNCS, Springer (1998) 154-187

. Jansen, W., Karygiannis, T.: Mobile Agent Security. Special Publication 800-19,

NIST (1999)

Roth, V.: Programming Satan’s Agents. In Fischer, K., Hutter, D., eds.: Proc.
of the 1st Int. Workshop on Secure Mobile Multi-Agent Systems, SEMAS 2001,
Elsevier (2002)

Hohl, F.: Time Limited Blackbox Security: Protecting Mobile Agents From Ma-
licious Hosts. In: Mobile Agents and Security. Volume 1419 of LNCS., Springer
(1998) 92-113

Jansen, W.: A Privilege Management Scheme for Mobile Agent Systems. Elec-
tronic Notes in Theoretical Computer Science, SEMAS 2001, First International
Workshop on Security of Mobile Multiagent Systems 63 (2002)

Tschudin, C.: Mobile Agent Security. In Klusch, M., ed.: Intelligent information
agents: agent based information discovery and management in the Internet, Chapt.
18, Springer (1999)

Vigna, G.: Protecting Mobile Agents Through Tracing. In: Proc. of the 3rd ECOOP
Workshop on Mobile Object Systems, Jyvalskyla, Finland (1997)

Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE - A White Paper.
http://jade.tilab.com| (2003)

SeMoA. http://www.semoa.org| (2006)

Santana Torrellas, G.: A Network Security Architectural Approach for Systems
Integrity using Multi Agent Systems Engineering. Int. Symposium on Parallel
Architectures, Algorithms and Networks (ISPAN) (2004)

Borselius, N.: Mobile Agent Security. Electronics & Communication Engineering
Journal (2002)

JADE Board: JADE Security Guide. http://jade.tilab.com| (2005)

Cortese, E., Caire, G., Bochicchio, R.: JADE Test Suite User Guide.
http://jade.tilab.com| (2004)

Roth, V., Jalali, M., Pinsdorf, U.: Secure Mobile Agents (SeMoA).
http://www.inigraphics.net/press/brochures/sec_broch/sec/Security.pdf
(2006)

http://www.thefeature.com/article?articleid=26051
http://jade.tilab.com
http://www.semoa.org
http://jade.tilab.com
http://jade.tilab.com
http://www.inigraphics.net/press/brochures/sec_broch/sec/Security.pdf

	Introduction
	Taxonomy of Possible Attacks
	Malicious Agents Attacking the Hosting Agency
	Malicious Agents Attacking Other Agents (Located on the Same Agency)
	Malicious Agencies Attacking Other Agencies
	Malicious Agencies Attacking Agents
	Security Solutions
	Test Purposes

	JADE Security Test
	Test Agents
	Test System
	Test Cases
	Test Results

	SeMoA Security Test
	Test System
	Test Cases
	Test Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

