
Meta-models, Models, and Model Transformations:
Towards Interoperable Agents

Christian Hahn1, Cristián Madrigal-Mora1, Klaus Fischer1, Brian Elvesæter2,
Arne-Jørgen Berre2, and Ingo Zinnikus1

1 DFKI GmbH, Stuhlsatzenhausweg 3 (Building D 3-2), D-66123 Saarbrücken, Germany
{christian.hahn, cristian.madrigal, klaus.fischer,

ingo.zinnikus}@dfki.de
2 SINTEF ICT, P. O. Box 124 Blindern, N-0314 Oslo, Norway
{brian.elvesater, arne.j.berre}@sintef.no

Abstract. Services provide an universal basis for the integration of applications
and processes that are distributed among entities, both within an organization
and across organizational borders: This paper presents a model-driven approach
to design interoperable agents in service-oriented architectures (SOA). The
approach provides a foundation for how to incorporate autonomous agents into
a SOA using principles of model-driven development (MDD). It presents a
metamodel (AgentMM) for a BDI-agent architecture and relates AgentMM to
a platform-independent model for SOAs (PIM4SOA). In this paper we mainly
concentrate our discussions on the service and process aspects of SOA and how
transformations to agent technology would look like. We argue that this mapping
allows the design of generic agent systems in the context of SOAs that are
executable in an adaptive and flexible manner.

Keywords: Modeling Agents, Model-Driven Development, Service-Oriented
Architectures, Metamodels.

1 Introduction

Model-driven development (MDD) is emerging as the standard practice for develop-
ing modern enterprise applications and software systems. MDD frameworks define a
model-driven approach to software development in which visual modeling languages
are used to integrate the huge diversity of technologies used in the development of soft-
ware systems. As such the MDD paradigm, i.e., to develop (i) metamodels that describe
the concepts and their relationships and (ii) model transformations that map those con-
cepts and relationships from metamodel to metamodel, provides us with a better way
of addressing and solving interoperability issues compared to earlier non-modeling ap-
proaches [1].

The current state of the art in MDD is much influenced by the ongoing standardiza-
tion activities around the OMG Model Driven Architecture (MDA) [2]. MDA defines
three main abstraction levels to software development: From a top-down perspective, it
starts with a computation independent model (CIM), describing the application context
and requirements, that is refined to a platform independent model (PIM), which spec-
ifies software services and interfaces independent of software technology platforms.

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 123–134, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

124 C. Hahn et al.

The PIM is further refined to a set of platform specific models (PSMs) that describes
the realization of the software systems with respect to the chosen software technology
platforms.

The focus of this paper is on PIM to PSM transformation development, i.e., the ba-
sic idea is to define the transformation from a PIM to an agent PSM. For this purpose,
a PIM for Service Oriented Architectures (PIM4SOA) [3] and a metamodel for agent
technologies (AgentMM) are presented. If PIM4SOA models can actually be trans-
formed into and executed by agent models, agent systems can be built, so that they can
really interoperate with competing technologies in SOAs.

The paper is structured as follows: In Section 2, we present the PIM4SOA meta-
model, followed by the metamodel for a specific agent architecture (Section 3). In Sec-
tion 4, we compare the two metamodels and discuss feasible transformations. Section 5
illustrates related work. Finally, Section 6 presents some conclusions.

2 A Metamodel for Service-Oriented Architectures

Services are loosely coupled, dynamically locatable software pieces, which provide
a common platform-independent framework that simplifies heterogeneous application
integration. An approach based on agent technologies can be an interesting opportunity
when executing services, because:

– agents are self-aware and they acquire the awareness of other agents and their atti-
tudes,

– agents are proactive, whereas services are passive until invoked,
– in contrast to services, agents act in an autonomous manner that is required by many

Internet applications,
– agents are cooperative and, by forming organizations, they can provide higher-level

and more comprehensive services.

Current standards in the domain of services do not provide any of those functionali-
ties [4]. The metamodel for SOAs addresses the conceptual and technological interoper-
ability barrier and aims at defining platform independent modeling language constructs
that can be used to design, re-architect and integrate technologies supporting SOA. The
introduction of agents will enable us to design SOAs that are more adaptable and flex-
ible, and, thus, better able to cope with changes over time—which is important for
supporting interoperability.

In order to support an evolution of the metamodel for SOAs (PIM4SOA) we have de-
fined a small metamodel core and structured it into groups, each focusing on a specific
aspect of a SOA. The current version of the PIM4SOA defines modeling concepts that
can be used to model four different aspects of SOAs: Services, information, processes
and non-functional aspects. In this paper, we mainly concentrate on the service and
process aspects, where services are an abstraction and an encapsulation of the function-
ality provided by an autonomous entity, and processes describe sequencing of work in
terms of actions, control flows, information flows, interactions, protocols, etc. In gen-
eral, SOAs are formed by components provided by a system or a set of systems to
achieve a shared goal.

Meta-models, Models, and Model Transformations: Towards Interoperable Agents 125

Fig. 1. Service concepts of the PIM4SOA metamodel

The service aspect of the PIM4SOA presents services modeled as collaborations that
specify a pattern of interaction between the participating roles. A subset of the meta-
model for this aspect is presented in Figure 1. The Collaboration specifies the involved
roles and their responsibilities. Additionally, a CollaborationUse specifies the applica-
tion of a Collaboration in a specific context and includes the RoleBindings to entities in
that context. Collaborations are composable and the responsibilities of a role in a com-
posite Collaboration are defined through CollaborationUses by binding roles from the
composite to roles of its subcollaborations. The simplest form of Collaboration is the bi-
nary collaboration, which has no subcollaborations and only two roles; A requester that
provides the input, and a provider that produces the output parameters. Therefore, a Role
represents how a partner participates in the Collaboration by providing services and pa-
rameters and using services provided by other partners in its service collaboration.

Furthermore, collaborations can have a Process that specifies the constraints that
define how the involved roles interact. We refer to this as the collaboration protocol.
The collaboration protocol is specified from a global view point. Constraints on the
expected behavior of a role can be deduced.

The process elements of the PIM4SOA metamodel are shown in Figure 2. This
process aspect is closely linked to the service aspect. The primary link is described by
the Process that belongs to a ServiceProvider. The Process contains a set of steps (gen-
erally tasks), representing the actions to be carried out, and Interactions/Flows linking
the tasks together. In addition, the Process also contains a set of Flows between these
actions which may indicate the transfer of specific data.

3 A Metamodel for BDI Agents

There are several alternatives when it comes to transforming PIM4SOA models into
models that can actually be executed. Agent technologies can provide various

126 C. Hahn et al.

Fig. 2. Process concepts of the PIM4SOA metamodel

contributions to SOAs. For instance, agent technologies allow a flexible and adap-
tive execution. Also, well-known agent protocols, such as the contract net protocol
[5], could be adopted for the service supplier selection, when the number of suppli-
ers is not know at design time. This kind of service selection can be nicely described
with agent technologies, while a straightforward model for the PIM4SOA is not avail-
able. The integration of agent technologies with PIM4SOAs is therefore a worthwhile
enterprise.

For the design of agents with rational and flexible problem solving behavior, the
BDI agent architecture has proven to be appropriate during the last decade [6,7]. Three
mental attitudes (beliefs, desires, and intentions) allow an agent to act in and to reason
about its environment in an effective manner. A vast number of tools and methodologies
have been developed to foster the software-based development of BDI agents and multi-
agent systems (MAS) [8,9,10,11,12]. Rather than inventing our own agent metamodel,
we took a bottom-up approach, by extracting the metamodel (AgentMM) from one of
the most sophisticated tools to design BDI agents, namely JACKTM Intelligent Agents3

[13]. Figure 3 presents the most interesting part of this metamodel.
Table 1 summarizes the most important high-level BDI concepts. From these,

the most relevant one in AgentMM is the concept of Team, which can be either atomic,
in which case we can refer to it simply as an Agent, or a set of required roles—
subteams—that all together form the Team. It is important to note that it is not nec-
essary for all members of the Team to be involved in all the tasks it performs. Rather,
for each individual task, a subset of the available roles is selected to actually work on it.
The tasks a given Team is able to work on are defined by the roles that it is able to
fulfill.

3 JACKTM is the trademark of an agent oriented model developed by Agent Oriented Software
Group. A free evaluation package for JACK Intelligent Agents is available for download.

Meta-models, Models, and Model Transformations: Towards Interoperable Agents 127

Fig. 3. Partial metamodel for BDI agents

Table 1. High-Level BDI Concepts

High-Level BDI Concepts

Team Specifies the structure of one or more entities (Teams/Agents)
that is formed to achieve a set of desired objectives

Role Specifies a role as a type by listing the types of the events the role can deal with
Named Role An instance of a specific role type.

This concepts allows multiple roles with the same type in teams and team plans
Events The type of stimuli a team, role, or team plan reacts to or posts
Team Plan Specifies the behavior of a team in reaction to a specific event. In general, a team

plan is a set of steps specifying how a particular task is achieved by particular roles
Named Data Allows the team to store information/beliefs

Table 2. The JACKTM Plan Structure

Structure of Plans

Triggering Condition Specification of the event the plan reacts to
Relevance Condition Additional constraints on the triggering event
Context Condition Constraints on the state of affairs the plan is designed for to deal with.

Usually these constraints access the agents beliefs
Actions that should be taken when the plan becomes active.

Plan Body Can include pure Java code but allows the use of special concepts
to drive BDI reasoning

128 C. Hahn et al.

Role definitions are the second most important concept to define teams because a
role specifies which messages—in JACKTM those are rather events—the role fillers are
able to react to and which messages they are likely to send.

How a team actually reacts to an incoming request is specified by a set of team plans.
The structure of a plan can be seen in Table 2. Due to space restrictions, we concentrate
in this paper on the concepts of the Plan Body—the core part of a plan. Each team plan
has an explicitly defined objective (incoming message or internal event) for which this
team plan is responsible. When the so-called triggering event is raised and all additional
criteria are valid (i.e. Relevance and Context Condition), a specific team plan is executed
by creating an instance of this team plan. As a consequence, a concrete team (already
known or newly established) to actually execute the team plan is established.

The process aspect of AgentMM is presented in Figure 4 and it provides the con-
structs to model the body of the Plans and other, so called, reasoning methods (see
Figure 3). The whole package is based on two abstract classes—the ProcessBase and
NodeBase. NodeBase represents the basic node in the plan body graph, it provides a
reference to its default flow node, the next node in the execution order, and references
to the incoming flows, the previous nodes in the execution. ProcessBase is the graph
container that includes a list of all the nodes and a reference to the starting node. The
Process class extends ProcessBase and represents the main component of the reason-
ing method body. It is also a process node in itself, which permits modeling nested
processes.

Further specialization of the nodes is performed through the ForkNode abstract class,
which adds an alternative output flow to the NodeBase. As shown in Figure 4, the Node
classes are separated in two groups: The ones that inherit directly from NodeBase—only
one output flow, and the ones that inherit from ForkNode—with the alternative output
flow. The semantics of the alternative flow varies depending of the particular node being
modeled, for example, in a DecisionNode the alternative flow represents the else path of
the decision, while in a SubgraphNode it represents the fail path. For detailed semantics
of the plan constructs in JACKTM please refer to the JACKTM Documentation [13].

4 Comparison of the Metamodels for PIM4SOA and BDI Agents

In this section, we bring together the metamodel concepts from the two previous sec-
tions and relate them to one another in a mapping and a transformation derived from
it. Although the concepts from PIM4SOA and AgentMM differ quite significantly the
mapping of PIM4SOA models to AgentMM models seems to be feasible as the
AgentMM is more expressive.

The first element we inspect is the ServiceProvider (presented in Figure 1). At first
glance an agent seems to be the best match, but since a ServiceProvider references roles,
it is recommended to assign it to a team. The name of the ServiceProvider coincides
with the name of the team and its roles are the roles the team performs.

While a ServiceProvider is supposed to represent an atomic team, a Collaboration is
mapped onto a team that may consist of any number of agents. However, since collab-
orations do not specify any cardinalities for roles, we can assume that a collaboration
asks for exactly one filler for each of the required roles. Correspondingly, we suggest

Meta-models, Models, and Model Transformations: Towards Interoperable Agents 129

Table 3. Partial transformations between PIM4SOA and AgentMM concepts

PIM4SOA AgentMM Notes
Concepts Attributes Concepts Attributes

ServiceProvider → Team
name name name of the service provider is

used as team identifier
roles rolesPerformed each role is mapped

to a role performed by the team
behaviour usesPlans for each behavior/process

a new teamplan is instantiated
participates

bindings
boundRole rolesRequired roles a team makes use of

are specified in the role bindings
the service provider participates

Message → Event
name name name of message is

used as event identifier

Role → Role
name name name of the role (PIM4SOA) is

used as role (AgentMM) identifier
messages handleEvents

roleContainers
min = 1 required roles have a min/max
max = 1 requirement of one filler

Team
name name + ’Team’ name of the role plus the extension

”Team” is used as team identifier
self rolesPerformed role itself is mapped to the

team’s performed role
→ TeamPlan TeamPlan responsible for

handling service requests
bases on Role (PIM4S0A)

name ’Receive’ + name name of role acts as identifier
reasoningMethods

body body contains send method
establish these reasoning methods
pass are automatically
fail generated

handleEvent handles service requests
postEvents posts corresponding

asynchronous message
→ TeamPlan TeamPlan responsible for

invoking services
bases on Role (PIM4S0A)

name ’Invoke’ + name name of role acts as identifier
reasoningMethods

body body contains service call
establish these reasoning methods
pass are automatically
fail generated

handleEvent handles service requests

130 C. Hahn et al.

Fig. 4. Process Metamodel of AgentMM (Plan Body)

to map collaborations to team structures where the required roles have a cardinality re-
quirement of exactly one role filler. Although the metamodel for PIM4SOA allows to
specify constraints on the behavior of the participating collaborations and their roles,
up to now it is unclear how these constraints might look like.

In practical cases, it turns out that a Process is provided for ServiceProviders and
requester roles only. This allows to use the PIM4SOA model in a manner where the in-
formation on Collaborations and CollaborationUses is mapped to a set of teams, where
each of the teams consists of a service requester—represented by the team itself—
and a set of roles this specific service requester makes use of. Due to the fact that
non-composed collaborations in the PIM4SOA are binary, it is always clear who re-
quests and who provides the corresponding service. Interactions other than pure service
requests-provisions do not exist. This matches nicely with the fact that, in JACKTM ,
the interaction of a team as a whole with its attached roles is easy to describe. The be-
havior of the service requester is therefore mapped to a team plan where each request
of a service from a ServiceProvider is represented by the construct team achieve (see

Meta-models, Models, and Model Transformations: Towards Interoperable Agents 131

Table 4. Partial transformations between the process metamodels

PIM4SOA AgentMM Notes
Concepts Attributes Concepts Attributes

Process → TeamPlan Filter: corresponding Team
bases on Service Provider

name + ’TeamPlan’ name := name of service provider
reasoningMethods

self body the process itself is mapped
on the plan body

Task TeamAchieveNode transform all tasks with an ’in’
Interaction to a TeamAchieveNode

Decision DecisionNode one-to-one mapping
Merge ForkNode one-to-one mapping
in incomingFlows one-to-one mapping
out defaultFlow one-to-one mapping

establish these reasoning methods
pass are automatically
fail generated

Task handleEvent handle all messages inside a task with
an ’out’ but no ’in’ Interaction

postEvents post all messages inside a task
with an ’in’ Interaction

roles roles a team makes use of are
bound in the team plan

Table 4), that is sent to the respective role in the collaboration the service is involved in
(which defines which roles are actually attached to the team that represents the service
provider). Thus, the transformation of behavior for service requesters and providers is
stereotyped and can be done automatically.

The transformation between the PIM4SOA and AgentMM is finally done using the
Atlas Transformation Language (ATL) [14,15] that is a hybrid language designed to
express model transformations as described by the MDATM approach. The transforma-
tion model in ATL is expressed as a set of transformation rules. Tables 3 and 4 illustrate
some transformation rules by abstracting from the ATL syntax. The core transformation
is described as ServiceProvider → Team in Table 3. In this case, for each Service-
Provider a Team is instantiated that has the same name, performs the same roles and
makes use of the roles specified in the CollaborationUse, in which it participates, as
bound roles. Beside introducing a role in the AgentMM for each role specified in the
PIM4SOA, we define a team and two team plans for every role service providers make
use of (see Role → Team and Role → TeamPlan in Table 3). These plans spec-
ify how the requested service is invoked and how the corresponding team reacts on a
service request.

As discussed before, the process of an PIM4SOA can easily be transformed into team
plans (cf. Table 4). As a first approach, we translated the sequential process structure of
an PIM4SOA into a sequential team plan.

132 C. Hahn et al.

The final transformation step involves serializing the AgentMM model instance into
JACKTM Gcode. This serialization is implemented using MOFScript language [16],
which is currently a candidate in the OMG RFP process on MOF Model to Text Trans-
formation. In MOFScript, a set of serialization rules is created following the structure
of the source MOF-based metamodel—AgentMM in our case—and the language con-
structs allow a straight-forward definition of the desired output—Gcode for our pur-
poses.

5 Related Work

This section presents some related contributions in Agent Oriented Modeling, particu-
larly, and Agent Oriented Software Engineering (AOSE) in general.

With regard to modeling languages, the authors of AgentUML [11] argue that UML
is inappropriate for modeling MAS, so Agent Interaction Protocols and Agent Class
Diagrams are proposed as extensions to UML in order to model these basic features of
multiagent systems. Additionally, in [17], the use of Z is recommended to overcome the
absence of formal semantics of AgentUML.

An additional modeling language approach, the Agent Modeling Language (AML)
[10], is presented as a semi-formal visual modeling language for the specification of
agent systems. However, AML does not cover operational semantics since they are con-
sidered, by the authors, as a dependency of the specific execution platform.

With respect to methodologies, Tropos [9] is an agent-oriented methodology based
on the concepts of actor and goal and strongly focused on early requirements. It pro-
poses the use of AgentUML for detailed design and JACK Intelligent AgentTM as im-
plementation platform. In [18], a MDA approach to the transformations in the Tropos
methodology is presented.

Prometheus [8] is another known agent-oriented methodology that starts its model-
ing process by determining the systems percepts and actions. It follows with the de-
finition of functionalities. In Prometheus the interaction protocols are modeled using
AgentUML and the target implementation platform is BDI-style platforms.

The Malaca Agent Model [19] is an approach to Agent Oriented Design using MDA.
The Malaca UML Profile provides the stereotypes and constraints necessary to create
Malaca models on UML modeling tools. In their MDA approach, the transformation is
realized from a TROPOS Design Model—as PIM—to a Malaca Model—as PSM.

Related AOSE topics are presented in [12,20,21]. The concept of Goal-Oriented
Interactions [12,20] presents an interesting way of representing the behavior of agents
and provides some additional robustness to the interactions. Cabri et al. propose the
BRAIN Framework [21] to deal with agent interactions based on the concept of role. In
the framework, the description of roles and interactions is realized in an XML notation.

All the mentioned contributions, make valuable points for the specification and mod-
eling tasks in agent systems; however, interoperability among varied agent systems and
other technologies is not addressed in these works. Our MDA approach to interoperable
agents demonstrates that this objective can be achieved.

Meta-models, Models, and Model Transformations: Towards Interoperable Agents 133

6 Conclusions

The paper presented the transformation from PIM to an agent PSM, by explaining how
the concepts of a metamodel for SOAs can be transformed to agent related concepts.
Therefore an overview of the PIM4SOA, along with its service and process models, was
given. Moreover, AgentMM, a metamodel for a specific class of agents, was covered
along with its corresponding process model. This transformation that is derived from
the mapping of PIM4SOA to AgentMM allows models (i.e., concrete scenarios) that
are defined according to the PIM4SOA metamodel to be executed in a flexible, adaptive
and generic manner using agent technology.

On one hand, the difference in describing interactions is a challenge when transform-
ing models from PIM4SOA to AgentMM. On the other hand, it also provides chances to
actually improve the AgentMM with additional models that are possibly more compact
and easier to read.

Our approach shows that interoperability between MAS and other application tech-
nologies can be obtained. Further development of the AgentMM could lead to a PIM
for agent technologies (PIM4Agents). Since this PIM4Agents would incorporate all
relevant high level concepts of the target agent platforms, the interoperability of the
generated agent systems would be guaranteed. Moreover, the clear definition of what
high level concepts should make part of the PIM4Agents for each particular type of
agent technology could prove the greatest contribution of this MDA approach to MAS.

Acknowledgments

The work published in this paper is partly funded by the European Commission through
the ATHENA IP (Advanced Technologies for interoperability of Heterogeneous Enter-
prise Networks and their Applications Integrated Project) (IST-507849). The work does
not represent the view of the European Commission or the ATHENA consortium, and
the authors are solely responsible for the paper’s content.

References

1. D’Souza, D.: Model-Driven Architecture and Integration - Opportunities and Challenges,
Version 1.1, Kineticum. (2001)

2. Object Management Group (OMG): MDA Guide Version 1.0.1, Document omg/03-06-01,
June 2003, http://www.omg.org/docs/omg/03-06-01.pdf (2003)

3. Benguria, G., Larrucea, X., Elvesæter, B., Neple, T., Beardsmore, A., Friess, M.: A platform
independent model for service oriented architectures. In: Proceedings of I-ESA Conference.
(2006)

4. Singh, M., Huhns, M.: Service Oriented Computing: Semantics, Processes, Agents. John
Wiley & Sons, Chichster, West Sussex, UK (2005)

5. Davis, R., Smith, R.G.: Negotiation as a metaphor for distributed problem solving. Artificial
Intelligence 20 (1983) 63 – 109

6. Rao, A.S., Georgeff, M.P.: Modeling agents within a BDI-architecture. In Fikes, R., Sande-
wall, E., eds.: KR’91, Cambridge, Mass., Morgan Kaufmann (1991) 473–484

134 C. Hahn et al.

7. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In Lesser, V., ed.: Proceed-
ings of the First Intl. Conference on Multiagent Systems, San Francisco, AAAI Press/The
MIT Press (1995)

8. Padgham, L., Winikoff, M.: Prometheus: A Methodology for Developing Intelligent Agents.
In Giunchiglia, F., Odell, J., Weiß, G., eds.: AOSE. Volume 2585 of Lecture Notes in Com-
puter Science., Springer (2002) 174–185

9. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: TROPOS: An Agent-
Oriented Software Development Methodology. Journal of Autonomous Agents and Multia-
gent Systems 8(3) (2004)

10. Cervenka, R., Trencanský, I., Calisti, M., Greenwood, D.A.P.: AML: Agent Modeling Lan-
guage Toward Industry-Grade Agent-Based Modeling. In: AOSE. (2004) 31–46

11. Bauer, B., Müller, J.P., Odell, J.: Agent UML: A Formalism for Specifying Multiagent Soft-
ware Systems. In: AOSE 2000, Springer-Verlag New York, Inc. (2001) 91–103

12. Cheong, C., Winikoff, M.: Hermes: a methodology for goal oriented agent interactions. In
Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P., Wooldridge, M., eds.: AAMAS,
ACM (2005) 1121–1122

13. AOS: JACK Intelligent Agents, The Agent Oriented Software Group (AOS),
http://www.agent-software.com/shared/home/ (2006)

14. ATLAS Group, INRIA & LINA, University of Nantes: INRIA, ATL - The Atlas Transfor-
mation Language Home Page, http://www.sciences.univ-nantes.fr/lina/atl/ (2006)

15. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: MoDELS 2005, Montego Bay,
Jamaica. (2005)

16. SINTEF ICT: MOFScript, http://www.eclipse.org/gmt/mofscript (2006)
17. Huget, M.P.: Modeling Languages for Multiagent Systems. In: AOSE. (2005)
18. Perini, A., Susi, A.: Automating Model Transformations in Agent-Oriented modelling. In:

AOSE. (2005)
19. Amor, M., Fuentes, L., Vallecillo, A.: Bridging the Gap Between Agent-Oriented Design

and Implementation Using MDA. In: AOSE. (2004) 93–108
20. Cheong, C., Winikoff, M.: Hermes: Designing Goal-Oriented Agent Interactions. In: AOSE.

(2005)
21. Cabri, G., Ferrari, L., Leonardi, L.: Supporting the Development of Multi-Agent Interactions

via Roles. In: AOSE. (2005)

	Introduction
	A Metamodel for Service-Oriented Architectures
	A Metamodel for BDI Agents
	Comparison of the Metamodels for PIM4SOA and BDI Agents
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

