
A Model Driven Approach to Agent-Based
Service-Oriented Architectures

Ingo Zinnikus1, Gorka Benguria2, Brian Elvesæter3,
Klaus Fischer1, and Julien Vayssière4

1 DFKI GmbH, Stuhlsatzenhausweg 3 (Bau 43), D-66123 Saarbruecken, Germany.
2 European Software Institute (ESI) - Corporacion Tecnologica Tecnalia - Parque Tecnológico

de Zamudio, # 204 E-48170 Zamudio Bizkaia - Spain.
3 SINTEF ICT, P.O. Box 124 Blindern, N-0314 Oslo, Norway

4 SAP Research - Level 12 - 133 Mary Street - Brisbane QLD 4000 - Australia
Ingo.Zinnikus@dfki.de, Gorka.Benguria@esi.es,

Brian.Elvesater@sintef.no, Klaus.Fischer@dfki.de,
Julien.Vayssiere@sap.com

Abstract. Business process management has been identified as an interesting
application area for agent technologies. Current developments in Web technolo-
gies support the execution of business processes in a networked environment. In
this context, the flexible composition and usage of services in a service-oriented
environment is a key feature. Additionally, the model-driven architecture (MDA)
idea of transforming models on different abstraction levels, from highly abstract
design-oriented views to an executable program, is a current trend in business
process modeling. BDI agents provide a framework for both aspects by employ-
ing a planning from second principles approach, which uses a predefined library
of plans and instantiates and adapts these plans. From this perspective, plans
are design-time models for agent task execution and for Web Service compo-
sition. This paper presents a Rapid Prototyping framework for SOAs built around
a Model-Driven Development methodology which we use for transforming high-
level specifications of an SOA into executable artefacts, both for Web Services
(WSDL files) and for BDI agents. The framework was designed to handle a
mix of new and existing services and provides facilities for simulating, logging,
analysing and debugging. Our framework was validated on a real industrial elec-
tronic procurement scenario in the furniture manufacturing industry. Once input
from business experts had been collected, creating the high-level PIM4SOA (Plat-
form Independent Model for SOA) model, deriving the Web service description
and incorporating existing Web services took less than a day for a person already
familiar with the techniques and tools involved. We show that rapid prototyp-
ing of SOAs is possible without sacrificing the alignment of the prototype with
high-level architectural constraints.

1 Introduction

Service-oriented architectures (SOAs) have the potential to increase significantly the in-
teroperability of information and communications technology (ICT) applications. How-
ever, business applications ask for planned and customizable services, which basically

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 110–122, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Model Driven Approach to Agent-Based Service-Oriented Architectures 111

comes down to the requirement for a methodology to do service composition in a flex-
ible and efficient manner. The flexible combination and usage of services in such a
service-oriented environment is a key feature that we believe can be best supported by
agent technologies. Regarding service composition for an individual agent, we have two
extreme options. On the one hand, we can try to adopt a general purpose planner and
try to map service descriptions to individual actions which are then composed by the
planner. In a naive approach, this will most likely result in a linear sequence of actions,
i.e. service calls, that make up the newly composed service. It is quite unlikely that a
general purpose planner will come-up with more complex structures. Business Process
Modellers are often reluctant when confronted with the idea of choosing services or
even processes at run-time. Control of the actual services invoked and the concrete
processes performed is preferred over the possibility of an unperceived program deci-
sion. On the other hand, we can of course program the composition of services directly
in some object-oriented programming language. In this case we are not restricted re-
garding the structures which we want to use. However, almost every change to a system
which adopts such an approach is likely to end-up in painstaking programming sessions.

Composition languages such as e.g. BPEL4WS [1] address some of the problems
arising from this approach, but still have limitations regarding flexibility and adaptabil-
ity (especially during run-time). BPEL4WS does not prevent ways for choosing services
at run-time, but a service endpoint discovered at run-time must adhere to e.g. a declared
partner link and port type. Fault handlers allow the compensation of failures, but the
concrete action to be performed in case of a failure has to be modeled in advance.

A planning from second principles approach which uses a predefined library of plans
and instantiates and adapts these plans for the task at hand, when the system is at work,
seems to bring together the best of two extreme approaches just described. The plan
library can be maintained and incrementally updated and the agent will automatically
take advantage of the knowledge which the plan library provides. How complex the
plan structures in the plan library can be depends on the language which we use for
specifying these plans.

SOAs as an architectural style for distributed systems have steadily been gaining
momentum over the last few years and are now considered as mainstream in enterprise
computing. Compared to earlier middleware products, SOAs put a stronger emphasis
on loose coupling between the participating entities in a distributed system. The four
fundamental tenets of Service Orientation [2] capture the essence of SOAs: explicit
boundaries, autonomy of services, declarative interfaces, data formats and policy-based
service description.

Web Services are the technology that is most often used for implementing SOAs.
Web Services are a standards-based stack of specifications that enable interoperable
interactions between applications that use the Web as a technical foundation [3]. The
emphasis on loose coupling also means that the same degree of independence can be
found between the organisations that build the different parts of an SOA. The teams in-
volved only have to agree on service descriptions and policies at the level of abstraction
prescribed by the different Web Service standards.

Our approach relies on a model-based approach to SOA prototyping that allows us to
take existing services into account at a fairly high level of abstraction while keeping the

112 I. Zinnikus et al.

development of new components aligned with existing ones at each step of the process,
from early modelling all the way down to execution and monitoring.

Section 2 introduces the framework for rapid prototyping for SOA. Section 3 details
the model-driven development framework. Section 4 details the service enactment and
monitoring platform. Section 5 presents how an autonomous agents framework can be
used for performing the tasks of composition, mediation and brokering between Web
Services. Section 6 introduces a detailed example based on a real industry scenario.
Section 7 concludes and proposes avenues for future work.

2 A Framework for Rapid Prototyping of Service-Oriented
Architectures

The framework for Rapid Prototyping of SOAs presented here is composed of three
parts: a modelling part, a service part and an autonomous agent part. The modelling part
is concerned with applying Model-Driven Development (MDD) techniques and tools
to the design of SOAs. It defines models and transformations that are specific to the
concepts used for SOAs, such as Web Service descriptions and plans for autonomous
agents. The service part provides a highly flexible communication platform for Web
services. The autonomous agent part deals both with designing and enacting service
compositions as well as performing mediation, negotiation and brokering in SOAs.

Each of these three parts leverages the others in various ways. For example, the
service part invokes the autonomous agents framework for starting the execution of a
service composition described by a plan. The reverse also applies: autonomous agents
may invoke Web Services through the tools from the services part. In turn, a description
of a service composition at a platform-independent level can be transformed into a
plan for autonomous agents, especially BDI agents (see Section 5). High-level service
models can also be transformed into standards-based documents such as WSDL files.

Fig. 1. High-level view of the SOA framework

Figure 1 gives a high-level overview of our framework, illustrating the main com-
ponents as well as the flow of existing and generated artefacts such as WSDL files and
BDI agent plans. The components of the framework are:

A Model Driven Approach to Agent-Based Service-Oriented Architectures 113

– The MDD framework defines the metamodels used to specify SOAs. It also pro-
vides modelling guidelines, model transformation and generation support for exe-
cution artefacts such as WSDL files and BDI plans. Importantly, it also supports
importing existing WSDL files into the SOA models.

– The WSDL Analyzer is a tool for detecting similarities at a structural level between
WSDL descriptions of Web services and generating the corresponding mappings.
It supports flexible service invocation in a dynamic environment and the integration
of external services.

– The Johnson tool is responsible for invoking Web services and receiving calls is-
sued by Web service clients. The Lyndon tool takes WSDL files as input and con-
figures Johnson for playing either the role of service provider, service consumer or
service proxy for the service described by the WSDL file analyzed.

– The Jack [4] tool is used for specifying plans for autonomous agents which form
teams that can invoke or receive calls from Web services. The plans used may be
created as the result of an MDD process.

– The RDF store stores as RDF files both design-time information (WSDL files) and
runtime information (SOAP messages) for the purpose of monitoring.

3 Model-Driven Development Framework for SOA

Designing SOAs at the enterprise level involves several different stakeholders within
the enterprise. In order to support the various views pertinent to these stakeholders, we
have defined an MDD framework. The MDD framework partitions the architecture of a
system into several visual models at different abstraction levels subject to the concerns
of the stakeholders. This allows important decisions regarding integration and interop-
erability to be made at the most appropriate level and by the best suited and knowledge-
able people. The models are also subject for semi-automatic model transformations and
code generation to alleviate the software development and integration processes.

Figure 2 details the model-driven development framework. It follows the OMG
Model Driven Architecture (MDA) [5] approach and defines a Platform Independent
Model (PIM) for SOA (PIM4SOA) and Platform Specific Models (PSMs) for describ-
ing Web services (XSD and WSDL), Jack BDI agents and BPEL [1] processes. The
PIM4SOA is a visual PIM which specifies services in a technology independent man-
ner. It represents an integrated view of the SOA in which different components can be
deployed on different execution platforms. The PIM4SOA model helps us to align rel-
evant aspects of enterprise and technical IT models, such as process, organisation and
products models. This model allows us to raise the abstraction level at which we can
talk about and reason on the architecture we design. The PIM4SOA metamodel defines
modelling concepts that can be used to model four different aspects or views of a SOA:

1. Service: Services are an abstraction and an encapsulation of the functionality pro-
vided by an autonomous entity.

2. Information: Information is related to the messages or structures exchanged, pro-
cessed and stored by software systems and components.

3. Process: Processes describe sequencing of work in terms of actions, control flows,
information flows, interactions, protocols, etc.

114 I. Zinnikus et al.

Fig. 2. Model-driven development framework

4. Quality of service (QoS): Extra-functional qualities that can be applied to services,
information and processes.

The MDD framework provides model-to-model transformation services which allow
us to transform PIM4SOA models into underlying PSMs such as XSD, WSDL, JACK
BDI agents or BPEL. The PSMs depicted in Figure 2 are also visual models which IT
developers can further refine by adding platform-specific modelling constructs such as
deployment properties. PSMs typically represent a one-to-one mapping to an execution
artefact. Dependencies between the various components are modelled at the PIM-level
and two-way model transformations help us to ensure interoperability at the techni-
cal level and consistency at the PIM-level. Tool support for the MDD framework has
been developed as a set of plugins for Rational Software Modeller (RSM) (IBM Ra-
tional Software). RSM is a UML 2.0 compliant modelling tool from IBM based on
the Eclipse modelling environment. All models and metamodels were implemented us-
ing the EMF Core (Ecore) metamodel. Model transformations have been implemented
using the model transformation capabilities of the RSM/Eclipse platform.

4 A Lightweight Web Services Enactment Framework

The part of our SOA Rapid Prototyping framework that deals with the enactment of
Web services is composed of three tools which are arranged along a value chain: the
WSDL Analyzer, the Lyndon tool and the Johnson tool.

4.1 The WSDL Analyzer

The WSDL Analyzer is a tool for detecting similarities between Web service descrip-
tions. The tool can be used to find a list of similar services r to support the integration

A Model Driven Approach to Agent-Based Service-Oriented Architectures 115

of external services by producing a mapping between messages, thereby enabling bro-
kering and mediation of services. The algorithm of the WSDL Analyzer improves over
an algorithm for finding structural similarities proposed by Wang and Stroulia ([6], [7])
by taking into account additional features of the WSDL structure. More specifically,
we make use of the tree-edit distance measure [8] and the concept of a weak subsump-
tion relation introduced by Nagano et al. [9]. The idea of the tree-edit distance is that
a similarity between two XML structures can be measured by stepwise transforming
a tree representation of the first structure into the other. The steps necessary for that
transformation provide the measure for their similarity, and, at the same time, induce
the mapping between the schemas. Possible steps are basic edit operations such as node
inserts, deletes and relabels. The algorithm of Wang and Stroulia considers only node
matching without editing, or simple renaming operations such as changing a data type
from string to int. Nagano et al. give three different types of weak subsumption: re-
placing labels, pruning edges and removing intermediate nodes. These operations can
be correlated to specific tree-edit operations, namely relabeling and deleting nodes. A
possible scenario for using the WSDL Analyzer is that the user already knows a ser-
vice which provides the correct format. The WSDL of this service can be used as re-
quirement for a similarity search. The WSDL Analyzer allows browsing the original
WSDL and the candidate files. The algorithm detects common structures in port types,
operations, messages and data type definitions. WordNet is integrated to improve the
matching result. Mappings are assessed with a score which is used to establish a rank-
ing between candidate service descriptions. The result is a ranking of the candidates
according to their matching score. Based on the similarities, a mapping is generated
between two WSDL descriptions which can be used to transform SOAP messages ex-
changed between similar services at runtime. The translation can be done automatically,
if there is a one-to-one correspondence between elements. However, if there exist sev-
eral possible corresponding elements, translation requires intervention from a user in
order to unambiguously transform parameters. The latter case shows the limitation of
the structural approach. There are possible mismatches which can be detected with the
help of the WSDL Analyzer, but not automatically corrected.

4.2 The Johnson and Lyndon Tools

Johnson is a runtime tool that enables users to enact most of the roles typically found
in an SOA, thereby enacting complex SOA scenarios by sending real SOAP messages
between Web services without having to write a single line of code. Johnson features a
Web-based user interface designed to closely resemble Web-based email applications,
with the only difference that SOAP messages and Web Services endpoints are used in
place of email messages and email addresses. The user can see incoming SOAP mes-
sages in the Inbox and create outgoing SOAP messages in the Outbox that will be sent to
external Web services. A powerful user-interface generator relieves the user from hav-
ing to deal with XML documents by generating forms for displaying and editing any
XML-based data type. When playing the role of a Web service consumer, for example, a
user would create a message in the Outbox, send that message to a remote Web service,
and later see the response message appear in the Inbox. On the reverse, a user enacting
a Web service provider would read incoming requests in the Inbox and reply to them

116 I. Zinnikus et al.

by creating response messages in the Outbox. Central to the architecture of Johnson
are the concepts of endpoint, processing modules and processing chains. An endpoint
is an abstraction for the address of a service. To each endpoint is attached a processing
chain, which implements the processing of messages for that endpoint. Each process-
ing chain is composed of a number of processing modules which are called in sequence.
Each processing module is responsible for implementing one aspect of the processing
of the message. A processing module may be responsible, for example, for adding rout-
ing information to the message, or dealing with reliability of the message exchange, or
performing a transformation of the message content, or appending the message to an
audit trail of messages sent. Assembling existing processing modules into new process-
ing chains can be done through the user interface. Creating new processing modules,
though, requires writing code.

Fig. 3. Architecture of the Johnson tool

Figure 3 shows a sample instance of Johnson where all the aforementioned concepts
are illustrated. The different processing modules are represented as different shapes
such as circles, lozenges, squares and triangles. Messages received on the third inbound
endpoint from the top do not end up in the inbox but are directly sent out using one of the
outbound endpoints. This is possible because this logic is coded in the last processing
module of the inbound processing chain. Being able to specialise message processing
for each endpoint basis allows us to play the role of Web services that would imple-
ment different subsets of the Web Services stack of specifications, which proved very
useful for studying the possible interoperability issues raised by the use of unrelated
specifications together.

A processing module was also developed for keeping an audit trail of messages,
which forms the basis for troubleshooting and performance measurement. The head-
ers of SOAP messages are turned into RDF and stored in an RDF store. The Lyndon
tool can be seen as the design-time counterpart of the Johnson tool. It analyses WSDL
files and automatically configures Johnson for playing either the role of consumer or
provider of the service described. Lyndon parses a WSDL file and determines which
endpoints need to be created, and which processing chains need to be assigned to them.
Determining which processing modules to include in the processing chain takes into
account information extracted from the WSDL file as well as options set by the user.

A Model Driven Approach to Agent-Based Service-Oriented Architectures 117

The user may, for example, specify whether Johnson should be configured as a service
consumer or a service provider, or whether messages sent to or from the service should
be logged. Some configuration information can be extracted from the WSDL file, such
as the need for implementing the WS-Addressing specification, which is specified as
part of the description of the bindings of a Web service. Lyndon also generates an RDF
representation of WSDL files and stores it into the same RDF store used for logging
SOAP messages. Having both design-time and runtime artifacts in the same store is
critical to monitoring the SOA and detecting services that do not behave accordingly to
the service description they published.

5 An Agents-Based Execution Platform

The aim of the extended JACK agent framework for Web Services is to provide a goal-
oriented service composition and execution module within an SOA. Following the Be-
lief Desire Intention (BDI) model [10], agents are autonomous software components
that have explicit goals to achieve or events to handle (desires). Agents are programmed
with a set of plans to describe how to go about achieving desires. Each plan describes
how to achieve a goal under varying circumstances. Set to work, the agent pursues its
given goals (desires), adopting the appropriate plans (intentions) according to its current
set of data (beliefs) about the state of the world. The combination of desires and beliefs
initiating context-sensitive intended behaviour is part of what characterises a BDI agent.
BDI agents exhibit reasoning behaviour under both pro-active (goal directed) and reac-
tive (event driven) stimuli. Adaptive execution is introduced by flexible plan choice, in
which the current situation in the environment is taken into account.

A BDI agent has the ability to react flexibly to failure in plan execution. Agents coop-
erate by forming teams in order to achieve a common goal. The JACK agent platform is
not inherently ready for interaction within a Web service environment. Additional steps
are necessary for enabling interactions between the agent platform and Web services,
especially when the agents themselves offer services. In this case, some tools are needed
for generating the server and client-side code for using JACK inside a Web server. Fig-
ure 4 is an overview of the extended JACK architecture for Web service composition
and plan execution, with at its core the JACK agent framework with plan library and
knowledge base. Following the MDA approach, a modeller specifies at design time a
set of plans (PSM level) that constitute the workflow library of the agents. Web service
calls are integrated as steps into plans. Workflows are modelled graphically and most of
the common workflow patterns are supported.

In order to prepare the ground for a transformation from a PIM4SOA model to the
JACK PSM, following the MDA approach, the service providers are mapped to Jack
agents/teams. The parts of the PIM which define the processes involved are mapped to
agent/team plans and correlated events, whereas the parts which define the interfaces
are mapped to the modules which provide the client- and server-side code for the JACK
agent platform. Hence, the idea is to apply a methodology which separates the Web
service adapter from the core plans.

Accordingly, the steps of the methodology consist in

118 I. Zinnikus et al.

Fig. 4. Extended JACK framework for service composition and execution

– Constructing the agent/team plans for coordinating the internal activities and com-
posing Web service calls based on the generated PSM models.

– Generate adapter code (client and server-side) with the help of a suitable toolkit
(e.g. Apaches Axis framework [11]), based on a WSDL description of the service

– Adjust an agent’s belief set so that it complies with the data structure provided by
the Web services used and offered

– Specify events which correlate to Web service calls (in case the agents offer a Web
service)

– Adjust the plans which handle these events
– Insert plan steps which trigger Web service calls (in case the agent calls a Web

service) and call the adapter code from the plans directly

In order to compare an agent-based approach with other standards for Web service
composition, the following distinction is useful [12]:

– Fixed composition: a fixed composite service requires the component services to
be integrated in a fixed way. The composition structure and the component services
are statically bound.

– Semi-fixed composition: in this situation, a composition definition which indicates
the structure of the composition is generated. However, the actual service binding
needs to be decided at run time.

– Explorative composition: this type of service composition is specified on the fly and
requires dynamically structuring the composition service and binding component
services.

Fixed composition can be done with e.g. BPEL4WS, but also by applying BDI
agents. Semi-fixed composition might also be specified with BPEL4WS: partner links
are defined at design time, but the actual service endpoint for a partner might be fixed
at run-time, as long as the service complies with the structure defined at design time.
Late binding can also be done with the JACK4WS framework. The service endpoint
needs to be set (at the latest) when the actual call to the service is done. Explorative
composition is beyond of what BPEL4WS and a BDI agent approach offer (at least if
they are used in a ’normal’ way). To enable explorative composition, a general purpose

A Model Driven Approach to Agent-Based Service-Oriented Architectures 119

planner might be applied which generates, based on the service descriptions stored in a
registry, a plan which tries to achieve the objective specified by the consumer [13].

It might seem as if BPEL4WS and JACK4WS offer the same features. However,
there are several advantages of a BDI agent approach which become evident by looking
more closely at the definition of a semi-fixed composition. An important question is
how the availability of a service is detected. This might be checked only by actually
calling the service. If the service is not available or does not return the expected output,
an exception will be raised. BPEL4WS provides a fault handler which allows specifying
what to do in case of an exception. Similarly, a JACK agent plan will fail if a WS call
raises an exception, and execute some activities specified for the failure case. However,
the difference is that a plan is executed in a context which specifies conditions for plan
instances and also other applicable plans. The context is implicitly given by the beliefs
of an agent and can be made explicit. This means that in a given context, several plan
instances might be executed, e.g. for all known services of a specific type, the services
are called (one after another), until one of the services provides the desired result. An
exception in one plan instance then leads to the execution of another plan instance
for the next known service. Additionally, JACK provides the possibility of ’meta-level
reasoning’ which allows choosing the most feasible plan according to specified criteria.
Similarly, if for a specific goal several plan types are feasible, the JACK execution
engine executes one of these plans and, in case of a failure, immediately executes the
next feasible plan to achieve the desired goal. The BDI agent approach supports this
adaptive behaviour in a natural way, whereas a BPEL4WS process specification which
attempts to provide the same behaviour would require awkward coding such as nested
fault handlers etc. Another advantage is that extending the behaviour by adding a new,
alternative plan for a specific task is straightforward. The new plan is simply added to
the plan types and will be executed at the next opportunity. Similarly, customizing the
composition is facilitated since the different plans clearly structure the alternatives of
possible actions. Since the control structure is implicit, changes in a plan do not have
impact on the control structure, reducing the danger of errors in the code.

6 An SOA Rapid Prototyping Case Study from the Furniture
Industry

We have tested our approach against a real industry scenario, namely an electronic
procurement process that spans the furniture manufacturing industry and the interior
decoration retailers. The procurement process, traditionally, covers the activities that
one organization performs to derive the goods to be purchased from the providers to
build the products requested by the customer. We started by creating a PIM4SOA model
based on the input we gathered from business experts at AIDIMA, a Spanish technology
advisory body for the furniture industry. This PIM4SOA model details the interactions
between the different roles involved in the e-procurement end-to-end process, from the
initial customer order to the final acknowledgement of the delivery of the goods. To
describe these interactions the PIM4SOA model identifies the different roles, the col-
laborations between those roles, the information exchanged, the internal behaviour of
those collaborations and the expected quality that should be provided by the roles.

120 I. Zinnikus et al.

Fig. 5. Approach for the validation of the Rapid Prototyping framework

The following approach was followed for the validation of the Rapid Prototyping
framework (see Figure 5). First we used the MDD framework (1) to derive the WSDL
files and BDI models from the e-procurement PIM4SOA model. The next objective
was to enact the services identified for the e-procurement scenario using the WSDL
Analyser (2) and the Johnson and Lyndon (3) tool. Because some of the pieces of the
SOA already existed, we used the WSDL Analyser to locate services similar to those
required in the e-procurement scenario. For those that do not exist we have used the
Lyndon tool to configure the Johnson platform to simulate them. The next step was
to configure Johnson (4) to act as a service proxy; this allowed us to change the final
service endpoints without affecting the process execution. Finally the PSM model for
Jack (5) was implemented and tested with the enacted services.

– The MDD framework uses model-to-model transformations to derive the platform
specific models for XML schemas, WSDL descriptions, and JACK Model from the
PIM4SOA model as stated in the Section 3. These models are then completed by the
platform experts to make them ready for the generation of the execution artefacts
through the use of model-to-text transformations.

– The WSDL Analyzer compares the types of the parameters of the services required
with the available services and returns a ranked set of candidate service. The tech-
nical experts then select the services that will be used and the tool provides the
appropriate mappings to transform the messages at runtime.

– The Lyndon tool configures the Johnson tool for enacting some of the services and
for logging all appropriate information in the RDF store for later analysing and
debugging of the SOA.

– The Johnson tool is also configured to incorporate the endpoints of the mappings
services generated by the WSDL Analyzer.

– Finally the Jack tool is loaded with the PSM-level model (agents/teams, plans,
events, beliefs etc) for the e-procurement scenario.

Once we have implemented the prototype we can execute it together with the client
to check that it achieves the stated requirements. If we need to analyse the details of the
message exchange we can use the Johnson platform for doing so. Besides, the Johnson
platform also allows us to simulate other situations in a flexible and agile way. Situations
such as service delays, service shutdown or service errors can be simulated, logged and
analysed.

A Model Driven Approach to Agent-Based Service-Oriented Architectures 121

7 Conclusion and Future Work

This paper presented a rapid prototyping framework for SOAs built around a Model-
Driven Development methodology which is used for transforming high-level specifi-
cations of an SOA into executable artefacts, both in the realm of Web Services and in
that of BDI agents. The framework can handle a mix of new and existing services and
provides facilities for simulating, logging, analysing and debugging.

BDI agents, especially the JACK agents platform, provide the framework for a
model-driven transformation of SOA specifications into executable processes and ser-
vices. JACK agents execute the process descriptions and act as services within the SOA.

The framework was validated on a real industrial electronic procurement scenario
from the furniture manufacturing industry. Once input from business expert had been
collected, creating the high-level PIM4SOA model, deriving the Web service descrip-
tion and incorporating existing Web services took less than a day for a person already
familiar with all the tools involved. After having run a few variants of the SOA, it
became clear that the model-based approach we followed delivers significant value in
keeping all the pieces of the SOA aligned with high-level business objectives through-
out rounds of prototyping.

Acknowledgments

The work published in this paper is partly funded by the European Commission through
the ATHENA IP (Advanced Technologies for interoperability of Heterogeneous Enter-
prise Networks and their Applications Integrated Project) (IST-507849). The work does
not represent the view of the European Commission or the ATHENA consortium, and
the authors are solely responsible for the papers content.

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,
Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execution Language
for Web Services Version 1.1. Technical report (May 2003)

2. Box, D.: A guide to developing and running connected systems with indigo. MSDN Maga-
zine (January 2004)

3. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.: Web
Services Architecture. Technical report, W3C Working Group (February 2004)

4. The Agent Oriented Software Group: JACK Development Environment. http://www.agent-
software.com (2004)

5. Soley, R.: Model Driven Architecture. OMG (November 2000)
6. Wang, Y., Stroulia, E.: Flexible Interface Matching for Web-Service Discovery. In: 4th Int’l

Conf. on Web Information Systems Engineering (WISE 2003). (2003)
7. Wang, Y., Stroulia, E.: Semantic Structure Matching for Assessing Web-Service Similarity.

In: 1st Intl Conf. on Service Oriented Computing (ICSOC 2003). Volume 2910 of Lecture
Notes in Computer Science, Springer-Verlag (2003) pp. 197 – 207

8. Shasha, D., Zhang, K.: Approximate Tree Pattern Matching. In: Pattern Matching Algo-
rithms. Oxford University Press (1997) 341 –371

122 I. Zinnikus et al.

9. Nagano, S., Hasegawa, T., Ohsuga, A., Honiden, S.: Dynamic Invocation Model of Web
Services Using Subsumption Relations. In: IEEE International Conference on Web Services
(ICWS). (2004) 150 – 156

10. Rao, A.S., Georgeff, M.P.: Modeling Rational Agents within a BDI-Architecture. In Allen, J.,
Fikes, R., Sandewall, E., eds.: Proceedings of the 2nd International Conference on Principles
of Knowledge Representation and Reasoning (KR’91), Morgan Kaufmann publishers Inc.:
San Mateo, CA, USA (1991) 473–484

11. Axis: (http://ws.apache.org/axis/)
12. Yang, J., Heuvel, W., Papazoglou, M.: Tackling the Challenges of Service Composition in

e-Marketplaces. In: Proceedings of the 12th International Workshop on Research Issues on
Data Engineering: Engineering E-Commerce/E-Business Systems (RIDE-2EC 2002), San
Jose, CA, USA. (2002)

13. Sirin, E., Parsia, B., Wu, D., Hendler, J.A., Nau, D.S.: HTN planning for Web Service
composition using SHOP2. J. Web Sem. 1 (2004) 377–396

	Introduction
	A Framework for Rapid Prototyping of Service-Oriented Architectures
	Model-Driven Development Framework for SOA
	A Lightweight Web Services Enactment Framework
	The WSDL Analyzer
	The Johnson and Lyndon Tools

	An Agents-Based Execution Platform
	An SOA Rapid Prototyping Case Study from the Furniture Industry
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

