

Lecture Notes in Artificial Intelligence 4196
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Klaus Fischer Ingo J. Timm
Elisabeth André Ning Zhong (Eds.)

Multiagent
System Technologies

4th German Conference, MATES 2006
Erfurt, Germany, September 19-20, 2006
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Klaus Fischer
DFKI GmbH
Deduction and Multiagent Systems
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany
E-mail: Klaus.Fischer@dfki.de

Ingo J. Timm
Universität Bremen
Technologie-Zentrum Informatik
Am Fallturm 1, 28359 Bremen, Germany
E-mail: i.timm@tzi.de

Elisabeth André
Universität Augsburg
Institut für Informatik
Eichleitnerstr. 30, 86135 Augsburg, Germany
E-mail: andre@informatik.uni-augsburg.de

Ning Zhong
Knowledge Information Systems Lab.
Maebashi Institute of Technology
460-1 Kamisadori-Cho, Maebashi-City 371-0816, Japan
E-mail: zhong@maebashi-it.ac.jp

Library of Congress Control Number: 2006932513

CR Subject Classification (1998): I.2.11, I.2, C.2.4, D.2.12, D.1.3, J.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-45376-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-45376-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11872283 06/3142 5 4 3 2 1 0

Preface

After three successful MATES conferences in Erfurt in 2003 and 2004 and in
Koblenz in 2005, the 4th German conference on Multiagent System Technologies
(MATES 2006) took place again in Erfurt collocated with Net.ObjectDays 2006.
Building on other agent-related events in Germany in the past, and organized
by the GI German Special Interest Group on Distributed Artificial Intelligence,
the MATES conference series aims at promoting the theory and applications of
agents and multiagent systems.

As in the past years, MATES 2006 provided a distinguished, lively and inter-
disciplinary forum for researchers, users, and developers of agent technologies,
to present and discuss the latest advances of research and development in the
area of autonomous agents and multiagent systems. Accordingly, the topics of
MATES 2006 covered the whole range from theory to applications of agent and
multiagent technologies. The technical program included a total of 23 scientific
talks, and demonstrations of selected running agent systems.

The international Program Committee for MATES 2006 selected carefully
15 out of 52 submissions from all over the world to be accepted as full papers.
Additionally, eight papers were selected for short presentations which are, how-
ever, published in International Transactions on Systems Science and Applica-
tions. The program included four distinguished invited speakers: Frank Dignum,
Joaquim Filipe, Omer Rana and Hong Zhu.

Finally, as General Co-chairs and PC Co-chairs, and in the name of all mem-
bers of the Steering Committee, we would like to thank all authors of submit-
ted papers and all invited speakers for their contributions, all members of the
Program Committee as well as other reviewers for their careful, critical, and
thoughtful reviews, and all local conference organizers and others involved in
helping to make MATES 2006 a success.

We hope the attendees enjoyed MATES 2006 and the conference site in Er-
furt both scientifically and socially and will continue to support MATES as a
conference series with many more successful events to come in the future!

July 2006 Elisabeth Andre, Ning Zhong
General Co-chairs

Klaus Fischer, Ingo J. Timm
Program Co-chairs

Organization

General Co-chairs

Elisabeth Andre University of Augsburg, Germany
Ning Zhong Maebashi Institute of Technology, Japan

Program Co-chairs

Klaus Fischer DFKI Saarbrücken, Germany
Ingo J. Timm University of Bremen, Germany

Program Committee

Bernhard Bauer University of Augsburg, Germany
Michael Beetz Technische Universität München, Germany
Wolfgang Benn Chemnitz University of Technology, Germany
Federico Bergenti University of Parma, Italy
Hans-Dieter Burkhard Humboldt-Unversität zu Berlin, Germany
Monique Calisti Whitestein Technologies, Switzerland
Cristiano Castelfranchi NRC Rome, Italy
Thomas Christaller Fraunhofer AIS, Germany
Rosaria Conte NRC Rome, Italy
Stephen Cranefield University of Otago, New Zealand
Hans Czap Universität Trier, Germany
Mehdi Dastani University of Utrecht, The Netherlands
Yves Demazeau LEIBNIZ/IMAG, France
Jörg Denziger University of Calgary, Canada
Torsten Eymann University of Bayreuth, Germany
Ana Garcia Serrano TU Madrid, Spain
Fausto Giunchiglia University of Trento, Italy
Marie-Pierre Gleizes IRIT Toulouse, France
Rune Gustavsson Blekinge Institute of Technology, Sweden
Heikki Helin TeliaSonera Helsinki, Finland
Heinrich Hussmann Technische Universität Dresden, Germany
Toru Ishida University of Kyoto, Japan
Catholijn Jonker University of Nijmengen, The Netherlands
Hillol Kargupta UMBC Baltimore, USA
Stefan Kirn University of Hohenheim, Germany
Franziska Klügl-Frohmeyer Universität Würzburg, Germany
Matthias Klusch DFKI Saarbrücken, Germany
Ryszard Kowalczyk Swinburne University of Technology, Australia

VIII Organization

Daniel Kudenko University of York, UK
Karl Kurbel EU Viadrina Frankfurt, Germany
Winfried Lamersdorf University of Hamburg, Germany
Jürgen Lind Iteratec GmbH, Germany
Gabriele Lindemann Humboldt-Universtität zu Berlin,Germany
Jiming Liu Hong Kong Baptist University, China
Stefano Lodi University of Bologna, Italy
Beatriz Lopez University of Girona, Spain
Thomas Malsch TU Hamburg-Harburg, Germany
Jürgen Müller Berufsakademie Mannheim, Germany
Jörg P. Müller Clausthal University of Technology, Germany
Werner Nutt Heriot-Watt University of Edinburgh, UK
James Odell Agentis Software, USA
Andrea Omicini University of Bologna, Italy
Sascha Ossowski Universidad Rey Juan Carlos Madrid, Spain
Paolo Petta OEFAI Vienna, Austria
Stefan Poslad Queen Mary University London, UK
Frank Puppe Universität Würzburg, Germany
Alois Reitbauer ProFACTOR, Austria
Wolfgang Renz HAW Hamburg, Germany
Thorsten Scholz University of Bremen, Germany
Heiko Schuldt UMIT Innsbruck, Austria
Onn Shehory IBM Research, Italy
John Shepherdson British Telecom, UK
Von-Wun Soo National Tsing Hua University, Taiwan
Steffen Staab University of Koblenz-Landau, Germany
Robert Tolksdorf Freie Universität Berlin, Germany
Adelinde Uhrmacher Universität Rostock, Germany
Rainer Unland University of Duisburg-Essen, Germany
Wiebe Van der Hoek University of Liverpool, UK
Laszlo Zsolt Varga MTA SZTAKI, Hungary
Daniel Veit Universität Karlsruhe, Germany

External Reviewers

Kanishka Bhaduri
Lars Braubach
Xavier Clerc
Klaus Dorer
Souptik Dutta
Jean-Pierre George
Roberto Ghizzioli
Daniel Göhring
Rainer Hilscher

Koen Hindriks
Tobias John
Bin Li
Zekeng Liang
Kun Liu
Dimitri Melaye
Dagmar Monett
Gianluca Moro
Lutz Neugebauer

Alexander Pokahr
Paul Sabatier
Bjoern Schnizler
Klaus Stein
Paolo Turrini
Andrzej Walczak
Anke Weidlich
Boris Wu
Jian Ying Zhang

Table of Contents

Agent Communication and Interaction

Adding New Communication Services to the FIPA Message
Transport System . 1

Javier Palanca, Miguel Escrivá, Gustavo Aranda,
Ana Garćıa-Fornes, Vicente Julian, Vicent Botti

Analysis of Multi-Agent Interactions with Process Mining Techniques 12
Lawrence Cabac, Nicolas Knaak, Daniel Moldt, Heiko Rölke

Engineering Agent Conversations with the DIALOG Framework 24
Fernando Alonso, Rafael Fernández, Sonia Frutos, Javier Soriano

Agents’ Bidding Strategies in a Combinatorial Auction 37
Tim Stockheim, Michael Schwind, Oleg Gujo

Applications and Simulation

Modeling and Simulation of Tests for Agents . 49
Martina Gierke, Jan Himmelspach, Mathias Röhl,
Adelinde M. Uhrmacher

Agent-Based Simulation Versus Econometrics – from Macro- to
Microscopic Approaches in Route Choice Simulation 61

Gustavo Kuhn Andriotti, Franziska Klügl

Agent Based Simulation Architecture for Evaluating Operational
Policies in Transshipping Containers . 73

Lawrence Henesey, Paul Davidsson, Jan A. Persson

Agent Planning

Diagnosis of Multi-agent Plan Execution . 86
Femke de Jonge, Nico Roos, Cees Witteveen

Framework and Complexity Results for Coordinating Non-cooperative
Planning Agents . 98

J. Renze Steenhuisen, Cees Witteveen, Adriaan W. ter Mors,
Jeroen M. Valk

X Table of Contents

Agent-Oriented Software Engineering

A Model Driven Approach to Agent-Based Service-Oriented
Architectures . 110

Ingo Zinnikus, Gorka Benguria, Brian Elvesæter, Klaus Fischer,
Julien Vayssière

Meta-models, Models, and Model Transformations: Towards
Interoperable Agents . 123

Christian Hahn, Cristián Madrigal-Mora, Klaus Fischer,
Brian Elvesæter, Arne-Jørgen Berre, Ingo Zinnikus

Formation of Virtual Organizations Through Negotiation 135
Mark Hoogendoorn, Catholijn M. Jonker

Continuations and Behavior Components Engineering in Multi-Agent
Systems . 147

Denis Jouvin

Trust and Security

Evaluating Mobile Agent Platform Security . 159
Axel Bürkle, Alice Hertel, Wilmuth Müller, Martin Wieser

A New Model for Trust and Reputation Management with an
Ontology Based Approach for Similarity Between Tasks 172

Alberto Caballero, Juan A. Botia, Antonio F. Gomez-Skarmeta

Author Index . 185

Adding New Communication Services to the
FIPA Message Transport System

Javier Palanca, Miguel Escrivá, Gustavo Aranda,
Ana Garćıa-Fornes, Vicente Julian, and Vicent Botti

Dept. Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

{jpalanca, mescriva, garanda, agarcia, vinglada, vbotti}@dsic.upv.es

Abstract. Agent communication is one of the most important aspects
in the multi-agent system area. In recent years, several works have been
developed that are related to the agent communication problem.

This paper presents a new method for agent and agent platform com-
munication in accordance with FIPA proposals. It uses the Jabber proto-
col as a new message transport protocol (MTP). This protocol provides
additional services that are not included in the current standard FIPA
MTP. It provides facilities for “presence notification”, “multi-user confer-
ence” and “security services“. As a result of this work, a new plug-in for
the JADE platform that incorporates this transport protocol has been
developed.

1 Introduction

Some multi-agent platforms allow external communication by means of using
their own protocol and schema of communications. Good performance can be
achieved this way, but it is not possible to inter-operate with a different plat-
form that does not understand this particular way of communication. There are
platforms that are capable of communicating using standard protocols agreed
upon by consortiums like the FIPA [1]. The most widely used standard protocol
proposed by the FIPA is the Hypertext Transfer Protocol (HTTP) which is a
protocol that was originally conceived to transfer web pages from a server to a
web browser. Although this protocol is rather simple and allows some kind of
bidirectional communication between client and server, it is not designed to sus-
tain lengthy conversations over time as it is focused towards a ’query and result’
routine. These are detected drawbacks in current Message Transport Protocols
for agent platforms.

This paper proposes a new method of communicating agents and platforms us-
ing a more human-oriented way to develop conversations: Jabber [2,3], an Instant
Messaging (IM) protocol designed to sustain lengthy bidirectional communica-
tions among entities on the Internet. This new Message Transport Protocol has
been proposed to the FIPA consortium as a new preliminary specification. Be-
sides, this paper introduces new services into agent communication that are only

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 1–11, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 J. Palanca et al.

possible by integrating the Jabber technology in the FIPA Message Transport
System.

A software add-on to the JADE agent platform that uses the new communi-
cation structure presented in this work has been developed and accepted by the
JADE development team [4].

Next sections are structured as follows: Section 2 introduces a brief description
about Instant Messaging and, in particular, the Jabber protocol; Section 3 in-
troduces our proposal of using Instant Messaging to communicate agents. This
section describes how an Instant Messaging protocol can be used to improve
agent communication taking advantage of its features (like presence notification
or multi-user conference); Section 4 describes our contributions to the Jabber
protocol in order to support FIPA agent communication. This contribution have
been submitted to the FIPA Consortium; Finally, conclusions are presented in
Section 5.

2 Jabber Protocol

Jabber is an open protocol that is based on standard XML (eXtensible Markup
Language) for the exchange of messages and presence information between two
Internet points.This protocolwas proposedby the Jabber SoftwareFoundation [5].

The main use of Jabber technology is an extensible IM network that has sim-
ilar features to other IM services like AIM, ICQ, MSN Messenger and Yahoo.
Therefore, Jabber is an open, secure, and free alternative to consumer IM ser-
vices. Under the hood, Jabber is a set of streaming XML protocols and technolo-
gies that enable any two entities on the Internet to exchange messages, presence,
and other structured information in close to real-time.

Jabber is a communication protocol and can be applied to many scenarios.
Its base is an XML-based messaging technology that can be used to communi-
cate different entities. Its most common use is a decentralized instant messaging
network, but this is not its sole application, as seen in the present work.

The term Jabber makes reference to a number of elements that, together, con-
form an infrastructure for the interchange of messages in real-time. The technical
name of Jabber is XMPP, for eXtensible Messaging and Presence Protocol. It
is a standard technology formalized by the Internet Engineering Task Force
(IETF) based on the core protocols created by the open-source community [2].
The Jabber and XMPP terms can be used interchangeably.

XMPP technology has many advantages over existing proprietary closed ones.
Being an open and free standard, which is also based in other open standards
(XML, SSL, . . .), it is not subject to sudden changes in its definition that may,
for instance, render it to be incompatible with previous versions of the technol-
ogy (as is the case with the MSN Messenger technology). It comes from a well-
documented, open specification, which has eased the appearance and availability
of many different types of clients, servers and bridges that enable the possibility

Adding New Communication Services 3

of interacting with other communication networks, such as email, SMS messages
for mobile phones or other IM systems.

The Jabber network has a distributed architecture, which means that there is
no central server that handles all the message delivery. Jabber servers cooperate
together to bring messages from one user to another, like email servers do.

In the following list, we present the advantages of Jabber for the commu-
nication, specially over other similar proprietary networks: Open, public, free,
asynchronous, standard, tested, decentralized, secure, extensible and flexible.

Bearing this in mind, it is clear that Jabber can be deployed to provide solu-
tions far beyond the IM space as well as within it. Jabber applications beyond
IM include network management, content syndication, collaboration tools, file
sharing, gaming, remote systems monitoring and, now, agent communication.

3 Instant Messaging for Agents

In this section our contribution to a new agent communication framework is
presented. This work presents the adaptation of the Instant Messaging technol-
ogy to improve communication in multi-agent systems. We have studied instant
messaging features that were interesting for agent communication and adapted
them into a proposal for the FIPA standards.

3.1 Main Features

From a certain point of view, agents can be viewed as ’living’ intelligent entities,
and so, all the advantages that benefit human users can also benefit agents. ’If
IM is good for humans. . . Is it good for agents?’.

Instant Messaging (IM) was initially developed to communicate humans. This
technology has the ability of sending messages between two entities in a network.
These messages are delivered in real-time (that’s why it is called ’instant’ mes-
saging) and are usually of text nature, although they can be any other kind of
data (like binary or meta-information) if the protocol allows it.

Instant Messaging Networks also have more properties such as Presence Noti-
fication or Multi-User Conference. Presence Notification allows a user in the IM
network to be notified when another user (who is a member of his/her contact
list) changes his/her state.

Multi-User Conference is a technology that provides chat rooms where users
can virtually come together and easily talk to more than one user. This feature
is similar to the common Internet Relay Chats (IRC).

IM networks provide communication between human users in an unstructured
way, using natural language. By changing the natural language used by humans
for a common conversation with a standard structured language, like FIPA-
ACL, and by inserting the necessary meta-information in a message (as shown
in Section 4.1) it could be possible to re-use a common used Instant Messag-
ing platform for agent communication. This is a more natural way to perform
conversations between entities that involve interaction protocols.

4 J. Palanca et al.

Using an IM technology like Jabber for communicating agents seems like a
natural step, since its innermost structure is quite analogous to what is com-
monly referred to as a multi-agent system (MAS) or platform. In IM, where
there are users, in a MAS there are the agents; where there is a user directory,
there is an agent directory; where there is a browseable components directory,
there is a directory facilitator, and so on. From a certain point of view, one could
say that agents behave as users that send or receive messages and make use of
the resources and services of the platform.

When building a multi-agent platform, most of the design and implementation
effort is put in the message transport mechanism. If an IM technology like Jabber
is used, this problem is already solved. This model also simplifies the location
issues of other users. The same user can connect from different locations without
having to change addresses, the Instant Messaging server solves this.

Jabber is the ideal candidate to undergo this adaptation since it is standard,
extremely adaptable, free, and has all the advantages and features presented in
the previous section.

3.2 Presence Notification

Presence notification is one of the most useful features that Jabber provides. It is
based on the Contacts List system. Contacts List is a mechanism through which
a user can manage a list of known friends (called roster) to know at any time
what the current status of any of the contacts is. Presence Notification allows a
user to change its state in the network (e.g. ’Available’, ’Busy’, ’Don’t disturb’,
. . .) to notify its contacts of its availability.

When a user changes its current status, all the other entities who share a
bond with the user are automatically notified. An entity status usually means
its availability and readiness to engage in a communication, but it is not closed to
a short predefined list. Entities may define their own status and their meanings.

Two or more Jabber entities can be bonded (or subscribed) to each other.
Entities who share a bond can make use of presence notification as described
above. In order to form a bond, two entities must agree in a simple negotiation
process that can be automated (–see Figure 1).

This simple and powerful system is useful to know when a contact is online
and you can send messages to him/her. Otherwise, the contact is offline and a
message sent to him/her will be stored in the server (so it will not be read in
real-time).

Presence notification can be used for agent communication and Multi-Agent
System platform communication. A heartbeat pulse (i.e., the ability for an entity
to know when a bonded entity is online or not) can be built over this mechanism.
This eliminates the need for a ’Ping’ service in the agents or in the platform, as
all of them can be bonded to each other or to a hypothetical central AMS-like
agent that can control the life-cycle of the rest of agents.

Bonds can also be used by agents to form social circles, that is, groups of
agents that are aware of each other’s presence and status. This eliminates the
need for making several queries to a central white pages service or yellow pages

Adding New Communication Services 5

Fig. 1. Presence Notification

service to find out the availability of agents and services and, in the end, improves
the general platform throughput.

3.3 Multi-User Conference

Another interesting Jabber feature is Multi-User Conference (MUC, in short).
Jabber offers public conversation channels where users can join and make con-
versations with more than one user at the same time. These channels can be
created by any entity (with an authorization in the server) and can be protected
using a password, so only the entities that know the password can enter. A chan-
nel creator (or administrator) can also add or remove permissions to the entities
that share a channel, such as the right to speak in it (–see Figure 2).

All these MUC features can be used to create forums dynamically for agents to
connect to when performing some multi-agent activity. For instance, in a virtual
auction scenario performed by agents, an agent playing the auctioneer role can
create a password-protected channel and give the password only to previously
certified agents. Then, in the channel, the auctioneer can give the right to speak
only to agents who are going to play the bidder role, leaving the rest of agents
in spectator mode only. Once the auction starts, every time a bidder wants to
place a bid it just needs to ’speak’ in the channel, and all the other bidders and
the auctioneer will know the bid at the same time.

MUC channels can also be used for more useful purposes. A simple method
to send broadcasting announcements would be by sending a message to an ap-
propriate chatroom. Every agent connected to that chatroom would receive the
broadcast transparently. These chatrooms can be used to broadcast public plat-
form information or to manage selected distribution lists. As an example imag-
ine an scenario where a group of agents want to be notified when a particular

6 J. Palanca et al.

Fig. 2. Multi-User Conference

service is available. Thanks to Multi-User Conference mechanism, every agent
that wants to be notified simply joins the chatroom associated with the service
and when the service provider wants to announce the service availability sends
a message to the chatroom. Note that the subscription list is automatically
managed by the chatroom. Of course, this example does not replace the search
service of the Directory Facilitator, it provides a new method similar to mailing
distribution lists.

Using this powerful Jabber mechanism more MUC uses are quickly developed
for agent communication improvement like federations, coalitions, hierarchies,
etc. Also complex interaction protocols, like auctions, can be easily built with
these facilities.

3.4 Distributed Network

As mentioned above, Jabber is decentralized by nature. Therefore, a Jabber user
does not only choose a username, but also the server where the account will be
created. What could at first seem to be a usability disadvantage, is one of the
main advantages of Jabber as opposed to other IM systems.

For an agent, this means it can retain the same contact address even if it
moves through different hosts, networks or even platforms. For a multi-agent
platform, this feature provides several advantages. Let’s see some aspects of this
feature and their potential impact on an agent platform:

– Workload balance: Since there are servers distributed everywhere, divided
by geography, by theme or by provider (university, city council, Internet
provider. . .), the network workload generated by the users tends to distribute
itself among all of them. In addition, some components of a Jabber server
(users directory, network bridges, etc . . .) can be executed in a different host
than the one running the server itself, making the distribution better.

Adding New Communication Services 7

– Network reliability: When a Jabber server goes offline, the only affected users
are those connected to that particular server. The rest of the Jabber net-
work remains untouched. Therefore, only a relatively small number of users
are affected by the mishap, instead of collapsing the entire communications
network.

– Private services: The independence of the servers allows the set up of an IM
network inside an intranet without needing any external resources from the
Internet, as it is able to work on isolated networks.

3.5 Security

Using Jabber to communicate agents provides some built-in security mechanisms
that help maintain the system’s integrity.

– Logging to a Jabber server requires a username and a password. This
mechanism prevents an unauthorized connection to the Jabber server if it
has not been approved by the administrator. The administrator can set up
the Jabber server to accept any registering attempt, or can set it up to
deny any registering attempt, or only some privileged connections (i.e: some
domain). This can be extended for agents in a way that only certain agents
will be able to connect to a server (i.e join a platform).

– A connection to the Jabber server can be encoded with a symmetric cryp-
tographic algorithm using SSL (Secure Socket Layer). SSL provides data
cyphering, server authentication, message integrity and, optionally, client
authentication for TCP-IP connections. This mechanism ensures that every
message that flows through the Jabber network is strongly encoded and
cannot be read by any malicious entity. This is necessary to ensure confi-
dentiality.

– To ensure the authentication of a message, the Jabber server provides an-
other mechanism to avoid identity theft. Jabber prevents identity spoofing
by overriding a ’from’ field that does not match the sender’s. In FIPA-ACL a
conceptually similar message field exists: the ’sender ’ field. This mechanism
can be extended to watch and alter this ’sender ’ field accordingly.

3.6 Performance and Scalability

Performance and scalability are important bottlenecks on current agent plat-
forms [6,7,8,9,10]. Let’s suppose a scenario where a Jabber server is integrated
in a multi-agent platform as its message transporter to route XML messages.
The server connected to the platform can be any Jabber server implementation,
so that the most accurate version of the server can be selected depending on the
platform constraints.

There is a reference implementation (called jabberd) that perfectly fulfills
a standard use of a multi-agent platform (it supports around 10, 000 concur-
rent connections). If more agent load is needed in the platform, other special-
ized servers can be used, like WPJabber (around 50, 000 concurrent connections)

8 J. Palanca et al.

or eJabberd, a distributed (clustering) and fault-tolerant Jabber server that
supports around 1, 000, 000 concurrent connections (using the necessary horse-
power).

3.7 Shared and Persistent Database

XML DataBase (XDB) is a Jabber server component that provides an interface
to any kind of data source used to store and recover server-side data. A Jabber
client can store any arbitrary XML on the server side.

Using this method, an agent can store private data on the server and retrieve it
whenever necessary. Thanks to this mechanism agents can store the information
needed to be persistent in their platform. An agent can recover this information
even if it has been offline for a time. Part of the information stored in this
XML Database can also be public. It is a simple method to advertise data to
all the agents in the platform and make it accessible. The data stored might be
anything, as long as it is valid XML. One typical usage for this namespace is
the server-side storage of agent-specific preferences. Another usage is bookmark
storage, scheduling and task information or any other interesting information.

4 Integrating Jabber in FIPA

The new Message Transport Protocol presented in this work is based on the data
transfer representing the entire agent message, including the message envelope
embedded in a XMPP message. Jabber uses three main building blocks in its
communication: (the <message/> block, the <presence/> block and the <iq/>
block), each of which has a different purpose. Jabber can perform all of its goals
using only these blocks.

Next sections present the interface definition that has also been submitted to
the FIPA consortium as a new preliminary specification.

4.1 Interface Definition

This new MTP has a proposed name called: fipa.mts.mtp.xmpp.std.
A FIPA Jabber message is represented by a <message/> Jabber element.

Inside this element, there is the envelope of the FIPA message and the FIPA-
ACL body of the message.

The message structure is detailed as follows:

– Building Block
• The building block type is the <message> XMPP element.
• The mandatory attribute type of the message element must have the

value normal [2].
• The to attribute of the message element is the physical XMPP address

of the agent. (i.e. the Jabber ID of the agent or the Jabber ID of the
platform)

Adding New Communication Services 9

0 <message id=’2113’ to=’acc@foo.com’ type=’normal’>
1 <body>
2 (inform
3 :sender (agent-identifier
4 :name sender@bar.com
5 :addresses (sequence xmpp://acc@bar.com))
6 :receiver
7 (agent-identifier
8 :name receiver@foo.com
9 :addresses (sequence xmpp://acc@foo.com)))

10 :language fipa-sl0
11 :ontology planning-ontology-1
12 :content "((done task1))"
13)
14 </body>
15 <x xmlns=’jabber:x:fipa’ content-type=’fipa.mts.env.rep.xml.std’>
16 <envelope>
17 <params index="1">
18 <to>
19 <agent-identifier>
20 <name>receiver@foo.com</name>
21 <addresses> <url> xmpp://acc@foo.com </url> </addresses>
22 </agent-identifier>
23 </to>
24 <from>
25 <agent-identifier>
26 <name>sender@bar.com</name>
27 <addresses> <url> xmpp://acc@bar.com </url> </addresses>
28 </agent-identifier>
29 </from>
30 <acl-representation> fipa.acl.rep.string.std </acl-representation>
31 <payload-encoding> US-ASCII </payload-encoding>
32 <date> 20000508T042651481 </date>
33 </params>
34 </envelope>
35 </x>
36 </message>

Fig. 3. XMPP Example Message

– Envelope Representation
• The envelope is placed in a <x> tag, which is used for ad-hoc extensions

that add value, context, and information to any type of packet.
• The XMPP namespace created for this purpose is called jabber:x:fipa.
• The content type of the envelope is defined as an attribute of the <x> tag

called content-type, where the value of the attribute is the component
name given in each envelope specification.

• The content of the <x> tag is the envelope body encoded in the defined
representation.

– Message Body
• The <body> tag of the message block contains the agent message pay-

load. This payload is encoded with the representation described in the
envelope.

Figure 3 shows an example of how a FIPA Jabber message is composed. This
message is sent from the agent sender@bar.com to the agent receiver@foo.com,

10 J. Palanca et al.

which is resident on an Agent Platform that has an Agent Communication Chan-
nel with an external Jabber interface.

5 Conclusions

One of the main drawbacks detected on multi-agent platforms is the use of an
inappropriate message transport protocol to communicate agents. To solve this
problem, we have presented in this paper a new communication model using
the Jabber Instant Messaging Protocol. We have also studied interesting Instant
Messaging features and modified them in order to add new communication capa-
bilities to multi-agent systems. This new communication model is FIPA compli-
ant and supports all the required features, plus adding new ones that are made
possible by using the Jabber technologies.

This protocol, which is based on Instant Messaging systems, uses a distributed
network to route messages from one agent to another.

Nowadays, there are Instant Messaging Networks that are used by millions
of people to communicate. These IM Networks can also be used by agents to
communicate with each other.

Using the same IM Networks that humans do provides several advantages, such
as a more comfortable and easy interaction between humans and agents. These
networks have been extensively tested and can support a very high workload.

Other important matters are the new mechanisms presented in this paper
(Presence Notification and Multi-User Conference) that can improve the agent
communicative acts. These characteristics, which are not directly mentioned in
the FIPA standard, perform new communication capabilities between agents
which make them more versatile.

This work has been developed and tested with one of the most common and
extended Multi-Agent Platforms: JADE. A plug-in [4] implementing this new
Message Transport Protocol has been integrated in JADE and has been accepted
by the JADE Team.

Thanks to this new MTP, a XMPP-capable platform (like the MAS plat-
form developed by our research group: SPADE [11]) and a JADE platform can
communicate with each other using the Jabber protocol. Actually, two or more
JADE platforms can use this new XMPP plug-in to communicate their agents
and take advantage of this new proposed Transport Protocol.

Acknowledgements

This work is partially supported by the TIC2003-07369-C02-01 and TIN2005-
03395 projects of the Spanish government.

References

1. FIPA. Abstract architecture specification. Technical Report SC00001L, 2002.
2. Jabber Software Foundation. Extensible Messaging and Presence Protocol (XMPP):

Core. Technical report, http://www.ietf.org/rfc/rfc3920.txt, October 2004.

Adding New Communication Services 11

3. Jabber Software Foundation. Extensible Messaging and Presence Protocol
(XMPP): Instant Messaging and Presence. Technical report,http://www.ietf.org/
rfc/rfc3921.txt , October 2004.

4. JADE XMPP-Plugin. http://jade.tilab.com/community-3rdpartysw.htm.
5. Jabber Software Foundation. http://www.jabber.org, 2005.
6. L. Mulet, J.M. Such, J. M. Alberola, V. Botti, A. Espinosa, A. Garcia, and

A. Terrasa. Performance Evaluation of Open Source Multiagent Platforms. In
Autonomous Agents and Multi-Agent Systems Conference (AAMAS06), 2006.

7. E Cortese, F Quarta, and G Vitaglione. Scalability and performance of JADE
message transport system. In In Proc. of AAMAS Workshop on AgentCities,
Bologna, 16 June 2002.

8. David Camacho, Ricardo Aler, Csar Castro, and Jos M. Molina. Performance
evaluation of Zeus, JADE, and skeletonagent frameworks. In In Proc. of the 2002
IEEE Systems, Man, and Cybernetics Conference, 2002.

9. K. Burbeck, D. Garpe, and S. Nadjm-Tehrani. Scale-up and Performance Studies
of Three Agent Platforms. In International Performance Computing and Commu-
nications Conference (IPCCC 2004), 2004.

10. L. C. Lee, D. T. Ndumu, and P. De Wilde. The stability, scalability and perfor-
mance of multi-agent systems. BT Technology Journal, 1998.

11. M. Escrivá, Palanca J., G. Aranda, A. Garćıa-Fornes, V. Julian, and V. Botti. A
Jabber-based Multi-Agent System Platform. In Autonomous Agents and Multi-
Agent Systems Conference (AAMAS06), 2006.

Analysis of Multi-Agent Interactions with
Process Mining Techniques

Lawrence Cabac, Nicolas Knaak, Daniel Moldt, and Heiko Rölke

University of Hamburg,
Department of Informatics,

Vogt-Kölln-Str. 30, D-22527 Hamburg
http://www.informatik.uni-hamburg.de/TGI/index_eng.html,

http://asi-www.informatik.uni-hamburg.de

Abstract. Process mining and multi-agent models are powerful tech-
niques for the analysis of processes and organizations. However, the in-
tegration of both fields has seldom been considered due to the lack of
common conceptual background. We propose to close this gap by using
Petri nets as an operational semantics and consider process mining a
useful addition to monitor and debug multi-agent systems in the devel-
opment phase. Mining results can be represented in the formalized form
of Petri nets that allows to validate or verify the actual behavior.

On our way to mining complex interactions within (simulated) organi-
zations, we present a plug-in extension of our Petri net-based agent plat-
form Mulan/Capa for recording interaction logs. Using process mining,
the logs can be mapped by some intermediate steps to agent protocols
e.g. represented as AgentUML interaction protocol diagrams. These dia-
grams are a descriptive representation form that combines organizational
and control flow information. Furthermore, they can be mapped to ex-
ecutable Petri net, thus allowing to feed mining results back into the
design phase.

Keywords: agent interactions, conversations, high-level Petri nets, in-
teraction mining, mining, multi-agent systems, Mulan, modeling, nets-
within-nets, process mining, reference nets, Renew, simulation.

1 Introduction

The concept of Multi-Agent Systems (MAS) has gained increasing importance
in computer science during the last decade. MAS research considers systems as
aggregations of goal-oriented, autonomous entities (agents) interacting in some
common environment (see e.g. [1]). Since no or only minor central control is
exposed on the agents, a coherent global system behavior emerges merely from
their cooperative or competitive interactions.

The design, implementation, and validation of MAS still remains a demanding
task. Petri nets are frequently applied for modelling agent behavior due to the

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 12–23, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analysis of Multi-Agent Interactions with Process Mining Techniques 13

typical combination of formal conciseness and visual clearness as well as the pos-
sibilities of displaying and formally analyzing concurrent systems [1]. Petri nets
also support the verification and validation of MAS, since formal methods can
be applied to assess liveness and safety properties of such models.

Unfortunately, the applicability of formal verification techniques is limited
to simple and often practically irrelevant classes of MAS [2]. Furthermore such
techniques can only be applied in a confirmative fashion; i.e. to verify (or falsify)
previously posed hypotheses about a system’s behavior. Agent-oriented software
engineering (AOSE), however, is primarily an experimental process [2] consisting
of prototypical design, simulation, observation and a-posteriori analysis in order
to explore the system’s behavior. Since the observation of even simple MAS might
produce large and complex amounts of data [3], data mining has occasionally
been proposed as a support technique for such analysis (see e.g. [4,5]).

To aid the understanding of dynamic processes – in particular interactions
– in MAS, it seems straightforward to apply techniques from process mining
originally developed in the domain of business process intelligence (see e.g. [6,7]).
These techniques seem especially appropriate in Petri net-based AOSE due to
their ability to reconstruct concurrent Petri net models from execution traces.
This leads to a number of potentially interesting applications during the AOSE
development cycle.1 (1) In the system analysis phase, process mining can be
employed to aggregate behavior or interaction traces of relevant agents from the
real system to Petri net models that flow into the design phase. (2) In the design
phase, process mining seems to be a promising approach to integrate adaptability
into Petri net-based agents by providing them with the ability to learn executable
models of behavior from the observation of other agents’ interactions. (3) In the
validation phase, process mining can be used to aggregate large amounts of trace
data observed from the running system. These models can be visualized, formally
analyzed or compared to design models to validate the system’s behavior. Also,
process mining might support the detection of unforeseen, implicit interaction
patterns emerging at runtime.

In this paper, we present an approach towards the application of process min-
ing techniques to the analysis, design and validation of multi-agent interactions.
In particular, we pursue the goal of reconstructing models of agent interaction
protocols from sample interactions. Our approach is integrated into the FIPA-
compliant, Petri net-based agent platform Mulan/Capa.

The paper is organized as follows: Section 2 briefly introduces Mulan and
Capa. In Section 3 we review existing work on agent interaction analysis and
introduce process mining as an advanced analysis technique. In Section 4 we
present our approach towards analyzing agent interactions by means of process
mining, where Petri nets build an important intermediate representation. In
Section 5 we discuss our prototypical implementation of a tool for interac-
tion monitoring, debugging and validation. Finally, Section 6 concludes the
paper with a discussion of our results reached so far and of possible future
research.

1 Similar applications of general data mining to MAS are discussed in [5].

14 L. Cabac et al.

2 The Multi-Agent System Architecture Mulan

The MAS architecture Mulan (MULti Agent Nets) [1] is based on the nets-
within-nets paradigm [8], which is used to describe the natural hierarchies in
an agent system. It includes four system views depicted in Figure 1: MAS in-
frastructure (1), platform (2), agent (3), and protocol (4). These are related by
the mechanism of token refinement. A MAS is modelled as a Petri net whose
places contain tokens representing platforms. Each platform is itself a net whose
central place hosts all agents that currently reside on this platform. An agent
consists of exactly one agent net that is its interface to the outside world and an
arbitrary number of protocol nets defining its behavior. The variety of protocols
ranges from simple linear step-by-step plans to complex dynamic workflows.

re pro
p3

p2 p1

a
pi

kb

p

in

agents

outremove

out in

p4

platforms

add remove

subcall

2

int.
com.

ext. communication 3

protocols

send msg

conversations

agent
knowledge

 base

receive msg protocol

start stop

platform 4

1

mas

communication
 structure

Fig. 1. Agent system as nets-within-nets

Mulan is implemented in reference nets and Java using the Petri net sim-
ulator Renew [9,10]. Reference nets provide a concurrency semantics and a
natural concept of distribution and locality. Java allows us to seamlessly include
external functionality such as graphical user interfaces. Compatibility of the
Mulan framework to the FIPA specifications [11] is ensured through its partial
re-implementation Capa (Concurrent Agent Platform Architecture) [12], which
provides a seamless integration with other FIPA-compliant MAS frameworks.
It also allows us to participate in heterogeneous environments such as OpenNet
[13]. Especially in these environments, the determination, analysis and coordi-
nation of interactions are challenging tasks. In the following sections we show
how these challenges can be approached using techniques from process mining.

3 Interaction Analysis and Process Mining

Interaction analysis is currently an important topic in MAS research for the
reasons mentioned above. In the following, we review related work on interaction
analysis, and introduce process mining as an advanced analysis technique.

3.1 Interaction Analysis in Multi-Agent Systems

Many frameworks for multi-agent application development include debugging
tools that allow to monitor the message traffic on the agent platform. An ex-
ample is the Sniffer agent integrated into the JADE framework [14]. This tool

Analysis of Multi-Agent Interactions with Process Mining Techniques 15

displays observed message sequences as UML sequence diagrams and provides
basic filtering capabilities. Monitoring agent interactions leads to large amounts
of data. Important behavior patterns are in danger to go unrecognized when the
analysis is performed by hand. Therefore data mining techniques are increasingly
applied in this context (see e.g. [5]).

The algorithms for this task are mostly based on computational logic and
stochastic automata: Nair et al. [4] e.g. propose an approach towards team ana-
lysis in the domain of (simulated) robot soccer (RoboCup). They consider three
complementary perspectives: The individual agent model is a situational decision
model of a single agent represented by means of association rules. The multiple
agent model represents agent interactions as a stochastic automaton. The global
team model shows relations between team properties (e.g. ball possession time)
and game results in a rule-based fashion.

Botia et al. [15] focus on mining social networks at multiple resolutions from
message logs using the ROCK cluster algorithm. In addition, their monitoring
tool ACLAnalyser can automatically observe the execution of predefined inter-
action protocols on the JADE platform. Mounier et al. [16] present an approach
towards agent conversation mining using stochastical grammar inference. Min-
ing results are represented as a stochastic automaton whose edges are labelled
with message performatives. The approach neglects concurrency and interaction
roles. Hiel [17] applies extended Hidden Markov Models for the same task; also
neglecting the aforementioned aspects. However, he suggests to improve the re-
construction of (concurrent) protocols by process mining techniques as a possible
direction for future research. Parallel to the publication at hand, Dongen et al.
report on the application of process and decision tree mining to communication
logs observed in an auctioning simulation based on ad-hoc agent concepts [18].
This work proposes the introduction of adaptability by means of process mining.

3.2 Process Mining

Process mining (workflow mining) is a subfield of data mining concerned with
“method[s] of distilling a structured process description from a set of real execu-
tions” [19]. The task is – given an event log recorded during process execution –
to reconstruct properties of the generating processes. While most research is done
in the area of business process management [6], other application domains such
as the analysis of web service interactions [20] have recently been considered.

A large number of process mining techniques are available, that can be clas-
sified by the perspective that the analysis focuses on. The most prominent per-
spectives are control flow and organizational perspective [7]. The objective in the
control flow perspective is to reconstruct the observed process’ control structure
– i.e. sequences, branches, loops and concurrency. The organizational perspec-
tive focuses on the “structure and the population” of the organization in which
the processes are observed. This covers “relations between roles [. . .] groups [. . .]
and other artifacts” [7]. Tool support for process mining is increasingly becoming
available. Aalst et al. developed the ProM process mining tool that is extensible
through a plugin mechanism by mining, import, export and analysis plugins [21].

16 L. Cabac et al.

An often-cited mining technique for the control flow perspective is the α-
Algorithm: From an event-based process log, this algorithm builds a concurrent
Petri net model on the basis of a direct successor relation. An extension of the
algorithm can be proven to reconstruct any net belonging to the class of ex-
tended sound workflow nets [22], but it cannot cope with noise, hidden tasks,
and duplicate tasks.2 Herbst [6] developed an algorithm for mining process mod-
els containing duplicate tasks from activity-based logs.3 Research on mining in
the organizational perspective has so far focused on the reconstruction of role
assignments [23,24] and social networks [25]. Further tasks in process mining are
log segmentation (i.e. the mapping of messages from the process log to process
instances and process classes) and condition mining (i.e. inference of branching
conditions in the process model). Both are covered in an approach by Schütt [26].

Interaction mining – i.e. the reconstruction of interaction models from message
logs – covers aspects of both control flow and organizational structure. Gombotz
et al. [20] apply interaction mining to analyze the operation of web services at
different levels (operation, interaction and workflow). One of the mining results is
a so-called web service interaction graph representing the relations of a particular
web service and its neighbors. Aalst [24] shows that the α-algorithm can be
used to mine sequence diagram-like Petri net-structures from message logs. The
approach is restricted to 1:1 interactions and does not explicitly abstract from
senders and receivers to interaction roles.

4 An Approach Towards Agent Interaction Mining

Though the similarities between the analysis of multi-agent interactions and the
research field of process mining have recently been recognized in the literature
(see above), the integration of process mining into practical methods and tools
for AOSE is still in its infancy. In the following, we present our approach towards
analysing agent interactions with process mining techniques.

4.1 Context

Our approach towards Agent Interaction Mining (AIM) is integrated into a
larger framework for Process Mining in (Agent Oriented) Software Engineering
(ProMiSE, see [27]). This framework covers several analysis perspectives related
to the four conceptual levels of Mulan: (1) the decision perspective focusing on
decision models encoded in an agent’s knowledge base, (2) the internal control
perspective regarding the processes running within a single agent, (3) the exter-
nal control perspective concerned with multi-agent interactions, (4) the structural
perspective focusing on (static) platform and MAS structures, and (5) the multi-
level perspective regarding relations between the perspectives mentioned before.
2 A hidden task is a nameless activity not registered in the log. Duplicate tasks occur

if the same activity is executed under different preconditions.
3 In an activity-based log we can identify start and end events of activities which eases

the detection of concurrency.

Analysis of Multi-Agent Interactions with Process Mining Techniques 17

On our way to applying mining techniques to the analysis of MAS on multiple
levels, we choose the external control perspective as a starting point. From the
observation of message traffic, we proceed bottom up, i.e. we try to reconstruct
basic interaction protocols in the first step. Through the recursive application
of mining techniques to the results of the previous level, we aim to proceed to
hierarchical protocols and higher level dynamical and structural patterns.

4.2 Techniques

The task of AIM at the protocol level is formulated as follows: Given a message
log recorded during the execution of a MAS, find the unknown set of interac-
tion protocols involved in the generation of this log. This task can be divided
into several sub-phases depicted in Figure 2. Generally, we consider the FIPA
ACL message attributes performative, sender, receiver, and some conver-
sation control tags. By masking message content, we keep the following stages
application-independent.

segmen-
tation

role
mining

control-
flow

mining

peer
generation

model
refine-
ment

presen-
tation

P1:
cfp(A1,A2) ref(A2,A1)

cfp(A1, A4), prop(A1, A4)
cfp(A3,A4) prop(A4,A3)

P2: req(A2,A3) ...

R1 R2
cfp

cfp(A1,A2)
 ref(A2,A1)
req(A3,A2)

inform(A2,A3)
...

P1:
cfp(R1, R2) ref(R2, R1)
cfp(R1,R2) prop(R2,R1)
cfp(R1,R2) prop(R2,R1)

P2: ...

Conditions
Probabilities

Time Constraints
Multicast

sd generated

Message Log

R2R1

recsend

cfp

cfp(R1,R2)

reject
(R2,R1)

propose
(R2,R1)

AIP Diagram

reject

prop

Fig. 2. A mining chain for agent interaction mining

The first phase – log segmentation – is necessary because a log normally
contains messages from several conversations, generated by multiple protocols.
These messages must be sorted by assigning them to a conversation; and by
assignging each conversation to a protocol type. Given the information available
in FIPA ACL messages (e.g. conversation-id) this segmentation is trivial.

However, these tags are not excessively used on the Capa platform and might
generally prove as too inflexible for detecting complex patterns of interaction.
Therefore, we reconstruct conversations by chained correlation [28] of messages
based on the in-reply-to tag: Messages without this tag are assumed to start
a new conversation. Other messages are appended to the conversation currently
ended by a message with a corresponding reply-with tag. In doing so, we obtain
1 : 1 conversation threads. However, these might be part of a larger multi-party

18 L. Cabac et al.

conversation that we reconstruct by merging all conversation threads sharing at
least one reply-with or in-reply-to tag.

Assigning conversations to protocol types is a clustering task. For each con-
versation, we build a feature vector representing a direct successor relation of
performatives.4 Each vector component represents one possible succession of two
performatives. It is assigned a value a counting the number of appearances of this
succession in the conversation. To regard for protocols with a typically branched
control structure, combinations of performatives appearing near the start of a
conversation are weighted stronger than those appearing at the end. Finally, we
apply the nearest neighbour algorithm [30] to cluster similar vectors based on
the Euclidian distance.

The result of the segmentation phase are traces of conversations ordered by
protocol types. In the second phase – role mining – we further abstract the
messages by replacing names of sender and receiver agents with conversation
roles. We currently apply a simple unification algorithm that binds agent names
to role names in the order of their appearance in the conversation. However, this
simple approach might fail in branched or concurrent protocols. Alternatively,
we consider using a role detection mechanism based on sets of sent and received
performatives similar to the approach described in [29].

In the third phase – control flow mining – we collect the abstracted conver-
sation traces of each protocol type and try to induce a model of the protocol’s
control flow. Interaction protocols such as those specified in AgentUML might
contain concurrent, hidden, and duplicate tasks. Therefore, the algorithm by
Herbst [6] seems to be a good choice at first sight. However, this algorithm
requires an activity-based log, while the message log is event-based.

Based on ideas from [6] and [26], our preliminary process mining technique
consists of two stages – automata inference and concurrency detection: First,
we reconstruct a deterministic finite automaton (DFA) from each set of samples
using the k-RI algorithm [31]. The edges of the DFA are labelled with message
performatives and sender/receiver roles. The k-RI algorithm can detect loops
and duplicate tasks, but not concurrency. We therefore apply a modified version
of the α-algorithm to the DFA next. Based on the successor relation of labelled
transitions, the algorithm detects hints for concurrency in the DFA’s structure.

Control flow mining results in an overall Petri net model of each protocol.
This model can be split straightforwardly into protocol templates for every con-
versation role. Each of these peers corresponds to one lifeline in an AgentUML
interaction protocol diagram (AIP, see [32]), that might be used to visualize the
mining results. Additionaly, we are planning to refine the reconstructed model
by infering temporal relations between messages with techniques described in [7].
We will also apply the C 4.5 decision tree learning algorithm [30] to reconstruct
branching conditions from message content attributes as proposed in [6]. The at-
tachment of branching conditions to the protocol templates leads to executable
Mulan protocols.

4 A similar metric is used in a preliminary approach by Vanderfeesten towards detect-
ing conversation roles [29].

Analysis of Multi-Agent Interactions with Process Mining Techniques 19

5 A Tool for Agent Interaction Mining

In this section, we present a prototypical tool and show an example for the
application of our interaction mining techniques.

5.1 Monitoring Tool

To integrate process mining facilities into the Capa platform, we developed a
monitoring tool named Mulan Sniffer as a Renew plugin [33]. The name indi-
cates that the tool’s functionality was derived from typical MAS debugging tools
such as the JADE Sniffer [14]. The Mulan Sniffer monitors all ACL messages
sent between agents on the platform during a simulation. The resulting message
log is displayed textually as a list or graphically as a UML sequence diagram.
Filters can be applied to select messages containing certain performatives, etc.

Fig. 3. Mulan Sniffer UI with observed interactions and Renew UI

Figure 3 shows the user interface of the Sniffer with an observed message log.
The messages in the diagram are color coded to ease the monitoring of the MAS.
They can be inspected in the bottom left view of the Sniffer window. The upper
left view shows a list of observed agents which can be sniffed or blocked. It also
shows the numbers of messages sent and received per agent. The tool allows to
observe changes in the diagram on the fly, i.e. when the message is sent.

The Mulan Sniffer differs from its ‘ancestors’ in two aspects that are im-
portant for our approach: (1) The recorded sequence diagrams are stored in the
same format used by the Mulan design tools. They can therefore be edited
and mapped to executable agent protocols. (2) More important, the Sniffer is a
pluggable Renew plugin [33] that can be extended by plugins for process mining
and filtering itself.

20 L. Cabac et al.

The interfaces for filtering and mining plugins are reminiscent of similar
tools such as ProM [21]. Special emphasis is put on the recursive character of
process mining algorithms: These algorithms operate on data and provide data
for higher-level analysis. We therefore introduce the concept of mining chains.
Complex process mining algorithms are constructed by combining basic building
blocks in data flow networks as proposed in [34]. This visual modeling technique
is frequently used in data mining tools and can be supported by the Petri net
editor of Renew.

5.2 AIM Plugin and Example

The example in Figure 4 shows a plugin that applies the algorithms described
in Section 5 to the message log provided by the Sniffer. The messages partly
result from multiple executions of a concurrent protocol simulating negotiations
between a customer, a mediator and a service provider to allocate an order.

Fig. 4. AIM Plugin of the Mulan Sniffer showing mined conversations

In Figure 4 the Sniffer UI can be seen (background) with a tree-view that
shows the results of the log segmentation. Each tree node represents one iden-
tified protocol type with the respective conversations as children. On selecting
a conversation, the associated messages are automatically highlighted in the se-
quence diagram view (see also Figure 3).

In the example, the messages belonging to the order allocation protocol where
successfully separated from the surrounding ’noise’, i.e. conversations executed
during the initialization of agents and platform. However, the performance of
the clustering procedure strongly depends on a threshold for cluster similarity
that needs careful calibration. The window in the foreground shows the correctly
reconstructed Petri net model of the order allocation protocol.

Analysis of Multi-Agent Interactions with Process Mining Techniques 21

6 Conclusion

The Mulan /Capa framework offers an integrated tool set supporting the de-
velopment of Petri net-based MAS. It includes features for the specification,
creation, documentation, monitoring and debugging of multi-agent applications.
However, in concurrent, distributed and heterogeneous environments the ana-
lysis of multi-agent interactions is extremely difficult. Thus there is a need for
elaborated techniques to handle large amounts of data. Process mining is one
technique that can be successfully applied. The more abstract view of interac-
tion mining allows to emphasize the desired perspectives (e.g. external control
perspective) that are important for agent-based development and analysis.

This paper shows how to embed interaction mining into agent-oriented soft-
ware engineering. We have developed an approach to reconstruct interaction
protocols from message logs; integrating and extending several process mining
techniques. It allows us to structure message logs by means of clustering and
to reconstruct non-trivial concurrent protocols. However, we have encountered
several cases the techniques cannot handle yet. Enhancing and validating them
in greater detail is an important topic at issue. We have furthermore presented
the Mulan Sniffer, a monitoring tool that is extensible by mining and filtering
plugins. It is also applicable to many other FIPA-compliant MAS, which allows
to monitor and mine in heterogeneous multi-agent environments and thereby
evaluate our mining techniques in numerous real-world situations.

In our future work, we will validate the presented process mining techniques
in empirical and analytical studies and provide necessary extensions. An impor-
tant drawback of the current approach is the inability to appropriately handle
multicast-protocols where the number of agents bound to each conversation role
is not constant (e.g. the well-known ContractNet protocol). Furthermore, we are
planning to tackle the challenging problem of reconstructing hierarchical pro-
tocols (see also [17]) and develop mining techniques for the other perspectives
described in Section 4.1. In this context, the potential of Mulan as a conceptual
framework for process mining will be investigated further in two directions: for
providing a classification of techniques and for providing background knowledge
to improve mining results.

Besides the analysis and validation of MAS, we are planning to apply process
and interaction mining in a broader context of AOSE: On the one hand, we will
improve the adaptability of Petri net-based agents through mining capabilities
within our Socionics project [35]. On the other hand, the developed techniques
might support online monitoring as well as the work of software developers in
terms of reflecting their behavior to provide a feedback about best practices.
Again this requires a sufficiently powerful toolset which we have sketched in [36].
In the context of inter-organizational processes the agent metaphor is highly ap-
plicable when considering the actors. Techniques that are applied to automated
systems can be applied to the users in such environments as well. Therefore the
legal, social, ethical and practical issues resulting from the application of process
mining within the environment of people’s computer support (with or without
their knowledge) require urgent investigation.

22 L. Cabac et al.

References

1. Rölke, H.: Modellierung von Agenten und Multiagentensystemen – Grundlagen
und Anwendungen. Volume 2 of Agent Technology – Theory and Applications.
Logos Verlag, Berlin (2004)

2. Edmonds, B., Bryson, J.: The insufficiency of formal design methods - the necessity
of an experimental approach - for the understanding and control of complex MAS.
In: AAMAS. (2004) 938–945

3. Sanchez, S.M., Lucas, T.W.: Exploring the world of agent-based simulations: Sim-
ple models, complex analyses. In Yücesan, E., Chen, C.H., Snowdon, J.L., Charnes,
J.M., eds.: Proceedings of the 2002 Winter Simulation Conference. (2002) 116–126

4. Nair, R., Tambe, M., Marsella, S., Raines, T.: Automated assistants for analyzing
team behaviors. In: Autonomous Agents and Multi-Agent Systems 8. (2004) 69 –
111

5. Remondino, M., Correndo, G.: Data mining applied to agent based simulation. In
Merkuryev, Y., Zobel, R., Kerckhoffs, E., eds.: Proceedings of the 19th European
Conference on Modelling and Simulation, Riga, SCS-Europe (2005) 374–380

6. Herbst, J.: Ein induktiver Ansatz zur Akquisition und Adaption von Workflow-
Modellen. PhD thesis, University of Ulm (2001)

7. van der Aalst, W., Weijters, A.: Process mining: a research agenda. Computers in
Industry 53(3) (2004) 231–244

8. Valk, R.: Petri nets as token objects - an introduction to elementary object nets.
In Desel, J., Silva, M., eds.: 19th International Conference on Application and
Theory of Petri nets, Lisbon, Portugal. Number 1420 in LNCS, Berlin, Springer-
Verlag (1998) 1–25

9. Kummer, O.: Referenznetze. Logos-Verlag, Berlin (2002)
10. Kummer, O., Wienberg, F., Duvigneau, M.: Renew – The Reference Net Workshop.

http://www.renew.de (2006) Release 2.1.
11. FIPA: Foundation for Intelligent Physical Agents. http://www.fipa.org (2005)
12. Duvigneau, M., Moldt, D., Rölke, H.: Concurrent architecture for a multi-agent

platform. In Giunchiglia, F., Odell, J., Weiß, G., eds.: Agent-Oriented Software En-
gineering III. Third International Workshop, Agent-oriented Software Engineering
(AOSE) 2002, Bologna, Italy, July 2002. Revised Papers and Invited Contribu-
tions. Volume 2585 of Lecture Notes in Computer Science., Berlin Heidelberg New
York, Springer-Verlag (2003)

13. openNet: Project. http://www.x-opennet.org/ (2005)
14. JADE: Java Agent DEvelopment Framework. http://jade.cselt.it (2005)
15. Botía, J., A.López-Acosta, A.F.Gómez-Skarmeta: ACLAnalyser: A tool for debug-

ging multi-agent systems. In de Mántaras, R.L., Saitta, L., eds.: Proceedings of the
16th Eureopean Conference on Artificial Intelligence, Valencia, IOS (2004) 967–968

16. Mounier, A., Boissier, O., Jacquenet, F.: Conversation mining in multi-agent sys-
tems. In: Proceedings of the CEEMAS 2003. (2003) 158 – 167

17. Hiel, M.: Learning interaction protocols by overhearing. Master’s thesis, Utrecht
University (2005)

18. van Dongen, B., van Luin, J., Verbeek, E.: Process mining in a multi-agent auc-
tioning system. In Moldt, D., ed.: Proceedings of the 4th International Workshop
on Modelling of Objects, Components, and Agents, Turku (2006) 145–160

19. Maruster, L., Weijters, A., van der Aalst, W., van den Bosch, A.: Process mining:
Discovering direct successors in process logs. In: ICDS: International Conference
on Data Discovery, LNCS (2002)

Analysis of Multi-Agent Interactions with Process Mining Techniques 23

20. Gombotz, R., Baina, K., Dustdar, S.: Towards web services interaction mining
architecture for e-commerce applications analysis. In: International Conference on
E-Business and E-Learning, Amman, Jordan, Sumaya University (2005)

21. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The ProM framework: A new era in process mining tool
support. In: ICATPN. (2005) 444–454

22. Medeiros, A., Dongen, B., Aalst, W., Weijters, A.J.M.M.: Process mining: Extend-
ing the α-algorithm to mine short loops. BETA Working Paper Series, WP 113,
Eindhoven University of Technology (2004)

23. Ly, T., Rinderle, S., Dadam, P., Reichert, M.: Mining staff assignment rules from
event-based data. In: Workshop on Business Process Intelligence (BPI), in con-
junction with BPM 2005, Nancy, France (2005)

24. van der Aalst, W.: Discovering coordination patterns using process mining. In
Bocchi, L., Ciancarini, P., eds.: First International Workshop on Coordination and
Petri Nets (PNC 2004), STAR, Servizio Tipografico Area della Ricerca, CNR Pisa,
Italy (2004) 49–64

25. van der Aalst, W., Song, M.: Mining social networks: Uncovering interaction pat-
terns in business processes. In: Proceedings of the 2nd International Conference
on Business Process Management, Potsdam (2004)

26. Schütt, K.: Automated modelling of business interaction processes for flow predic-
tion. Master’s thesis, University of Hamburg, Department for Informatics (2003)

27. Cabac, L., Knaak, N., Moldt, D.: Applying process mining to interaction analysis of
Petri net-based multi-agent models. Technical Report 271, University of Hamburg,
Department of Informatics (2006)

28. van der Aalst, W., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, H.: Choreography
conformance checking: An approach based on BPEL and petri nets. Technical
Report BPM-05-25, BPMcenter.org (2005)

29. Vanderfeesten, M.: Identifying Roles in Multi-Agent Systems by Overhearing.
Master’s thesis, Utrecht University (2006) in preparation.

30. Dunham, M.H.: Data Mining: Introductory and Advanced Topics. Prentice Hall,
Upper Saddle River (NJ) (2003)

31. Angluin, D.: Inference of reversible languages. Journal of the ACM 29(2) (1982)
741–765

32. Cabac, L., Moldt, D., Rölke, H.: A proposal for structuring Petri net-based agent
interaction protocols. In van der Aalst, W., Best, E., eds.: Lecture Notes in Com-
puter Science: 24th International Conference on Application and Theory of Petri
Nets, ICATPN 2003, Netherlands, Eindhoven. Volume 2679., Berlin Heidelberg:
Springer (2003) 102–120

33. Cabac, L., Duvigneau, M., Moldt, D., Rölke, H.: Modeling dynamic architectures
using nets-within-nets. In: Applications and Theory of Petri Nets 2005. 26th Inter-
national Conference, ICATPN 2005, Miami, USA, June 2005. Proceedings. (2005)
148–167

34. Jessen, E., Valk, R.: Rechensysteme: Grundlagen der Modellbildung. Studienreihe
Informatik. Springer-Verlag, Berlin (1987)

35. Homepage: Socionics in Hamburg. http://www.informatik.uni-hamburg.de/
TGI/forschung/projekte/sozionik/ (2005)

36. Lehmann, K., Cabac, L., Moldt, D., Rölke, H.: Towards a distributed tool platform
based on mobile agents. In: Proceedings of the Third German Conference on Multi-
Agent System Technologies (MATES). Volume 3550 of Lecture Notes on Artificial
Intelligence., Springer-Verlag (2005) 179–190

Engineering Agent Conversations
with the DIALOG Framework

Fernando Alonso, Rafael Fernández, Sonia Frutos, and Javier Soriano

School of Computer Science, Universidad Politécnica de Madrid,
28660 Boadilla del Monte, Madrid, Spain

{falonso, rfdez, sfrutos, jsoriano}@fi.upm.es

Abstract. This paper presents the rationale behind DIALOG: a formal
framework for interaction protocol (IP) modeling that considers all the
stages of a protocol engineering process, i.e. the design, specification,
validation, implementation and management of IPs. DIALOG is orga-
nized into three views. The modeling view allows visual IP design. The
specification view automatically outputs, from the design, the syntactic
specification of the IPs in a declarative-type language called ACSL. This
improves IP publication, localization and communication on the Web,
as well as IP machine learning by agents. Finally, the implementation
view provides a formal structural operational semantics (SOS) for the
ACSL language. The paper focuses on the developed SOS, and shows
how this semantics allows protocol property verification and eases au-
tomatic rule-based code generation from an ACSL specification for the
purpose of simulating IP code execution at design time, as well as im-
proving and assuring correct IP compliance at run time.

1 Introduction

Agent communication languages (ACLs) such as the ARPA KSI Knowledge
Query and Manipulation Language (KQML) [1] and the FIPA Agent Communi-
cation Language (ACL) [2] are based on the concept of agents interacting with
each other by exchanging typed messages that model the desired communica-
tive action (e.g. inform, request, response, etc.), also referred to as speech act or
performative, and a declarative representation of its content.

However, agents do not participate in isolated message exchanges, they enter
into conversations [3], i.e. coherent message sequences designed to perform spe-
cific tasks that require coordination, such as negotiations or agreements. Societies
of agents cooperate to collectively perform tasks by entering into conversations.
In order to allow agents to enter into these conversations without having prior
knowledge of the implementation details of other agents, the concept of interac-
tion protocols (also known as conversation policies) has emerged [4]. Interaction
protocols (IPs) are descriptions of standard patterns of interaction between two
or more agents that may be as simple as request/response pairs or may repre-
sent complex negotiations involving a number of participants. They constrain
the possible sequences of messages that can be sent amongst a set of agents to

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 24–36, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Engineering Agent Conversations with the DIALOG Framework 25

form a conversation of a particular type. A number of IPs have been defined, in
particular as part of the FIPA standardisation process [5]. The importance of
IPs in the design of an agent society is evident not only from their fitness for
structuring behavior, but also as an organizational factor [6].

This approach to agent interaction necessarily depends on the provision of a
framework to support the modeling of interactions between agents that considers
all the stages of a protocol engineering process, i.e. the design, specification, val-
idation, implementation and management of IPs considered as resources. Some
relevant aspects to be taken into account when building such a framework are
(a) the ease of modeling the communicative agent behavior,mainly, the behavior
of agents that obey complex interaction patterns, (b) protocol maintainability
and ease of reuse at both the design and specification level, (c) reliability, from
the viewpoint of design validation and property verification and as regards as-
suring proper protocol compliance by participant agents, (d) availability and
accessibility of both the protocols (i.e. designs and specifications) and ongoing
conversations (i.e. protocol instances, protocol state and participant agents), be-
ing related to agent interoperability, and (e) scalability of both the designs and
specifications (ease of composition) and the ongoing conversations for adapta-
tion to large MAS. This paper presents the rationale behind DIALOG: a formal
framework developed by the authors which deals with all these aspects at the
IP architectural design, formal specification and implementation levels.

The remainder of the paper is organized as follows. Section 2 presents an
overview of the DIALOG framework. We then concisely review in section 3 the
fundamentals of the ACSL protocol specification language, which is at the core
of the DIALOG specification view. Section 4 focuses on the implementation view
and describes the formal structural operational semantics (SOS) that has been
developed for the ACSL language. Finally, we conclude the paper in section 5.

2 DIALOG Framework Overview

The problem of IP specification is not new to agent societies developers, and
a wide range of solutions have been proposed (cf. [7]). We find, however, that
there is a huge void between the existing proposals based on formal techniques,
whose design is extremely complex (e.g. Colored Petri Nets [6,8]), and the graphic
notation-based techniques (e.g. AUML [9]), which are devoid of precise semantics
and rule out automatic specification exchange in a machine readable language
and interpretation for the purpose of specification simulation, validation and
execution. DIALOG intends to fill this gap by means of three interrelated views:

– The modeling view eases the visual design of IPs by means of an AUML-
based graphic notation [9]. The proposed notation (AUML+) extends exist-
ing AUML and furnishes this notation with formal semantics. The latter is
essential for developing the specification view. See [10] for a detailed descrip-
tion of this view, which has been ommitted here for the sake of briefness.

– The specification view automatically outputs the syntactic specification of an
IP from its visual design in a declarative-type language called ACSL. This

26 F. Alonso et al.

Fig. 1. Tools and artifacts of the DIALOG framework

improves IP publication, discovery and communication on the Web, as well
as the machine learning of IP by agents. ACSL is an abstract syntax for
which an XML grammar has been developed by means of the XML Schema
formalism, in order to be able to validate the specifications syntactically, and
to make easier their use in Internet environments. A KIF-based grammar is
also available, and the mapping between both grammars is trivial by means of
an XSLT-based parser. We concisely review the fundamentals of the ACSL
language in section 3, see [11] for a more detailed description of this key
component of the DIALOG framework.

– The implementation view is based on the provision of a formal structural
operational semantics (SOS) for the ACSL language. The developed formal
semantics allows us to verify the properties of the designed IPs, such as their
termination in finite time, conversational state reachability or the absence of
deadlocks or starvations. On the other hand, the developed SOS automati-
cally outputs rule-based code from the ACSL specification for the purpose
of (1) simulating protocol execution at design time and (2) improving and
assuring correct IP compliance at run time. Section 4 focuses on this view.

Figure 1 gathers the different products of the IP engineering process and the
tools of the proposed framework (consider each product and tool in the figure as
a block. The details in each block are not necessary for understanding the figure).
These tools allow: (1) the visual composition of IPs in AUML+ notation, (2)
automatic ACSL specifications generation (using an XML grammar) for models
built in AUML+, (3) the output of a SOS interpreter associated with these
specifications, and (4) the generation, by means of code reflection techniques,

Engineering Agent Conversations with the DIALOG Framework 27

of conversational proxies that improve IP compliance at run time. Both the
AUML+ Editor and the ACSL/SOS Generator are open source tools. The source
code is being distributed under GPL license, and is available from [12].

3 ACSL Language Fundamentals

The ACSL language defines an abstract syntax that establishes a vocabulary
that provides a standard and formal description of the contractual aspects of
IPs modeled using AUML+ for use by design, implementation and execution
monitoring libraries and tools. ACSL separates internal agent IP implementation
from its external description. This is a key point for improving communication
interoperability between heterogeneous agent groups and/or agents that run in
heterogeneous agencies (platforms). It is based on ACL messages specifying the
message flow that represents an IP between two or more agents and requires no
special-purpose implementation mechanism.

The overall structure of a protocol specification in ACSL is composed of a
name, a header and a body, all defined in the context of a block element protocol.
The name element identifies the protocol for the purpose of referencing from
other specifications in which it is to be embedded or with which it is to be inter-
linked. The header element declares the correlation sets and the properties used
in the message exchanges for correlation and dynamic linking and to specify the
semantic elements, respectively. The body of the protocol contains the specifica-
tion of the basic exchange pattern. This item is formed by the composition of
many threadOfInteraction elements that fork and regroup to describe the com-
municative behavior of the agent. The threadOfInteraction element is used to
directly specify an exchange pattern or reference a protocol definition included
in another specification by means of a qualified name (i.e. the conversation is
specified in ACSL as IP composition).

A threadOfInteraction (Figure 2) combines zero or more atomic actions, ref-
erences to subprotocols, conditional and iterative constructs and other thread-
OfInteraction that are interpreted sequentially and in the same order in which
they are referenced. The sequence finishes when the last element ends.

The following describe such constructs with the level of detail necessary for
understanding the remainder of the paper. Use cases of such constructs in ACSL
specifications can be found in section 4, as they are needed. See [10] for a more
detailed description of the ACSL abstract syntax.

Atomic actions are basic elements upon which an exchange pattern speci-
fication is built. ACSL includes four classes of basic actions, as shown in the
actionGroup element decomposition illustrated in Figure 2: null action (empty),
message exchange (exchange), protocol exception raising (raise) and time-outs
(delayFor, delayUntil).

Message exchanges (exchange element) are the fundamental atomic actions in
agent interaction. ACSL includes only the exchange properties that are part of
the protocol specification, according to the ACL approach.

28 F. Alonso et al.

Fig. 2. Constructs of the language for specifying an exchange pattern

A threadOfInteraction eases the composition of an exchange pattern by means
of a set of control constructs (ControlGroup in figure 2) that express conditional,
concurrent and iterative interaction flows. These constructs are described below.

Switch: Expresses a conditional behavior equivalent to the XOR in AUML.
While: Repeats the exchange pattern determined by a threadOfInteraction an

undefined number of times, until the given condition is no longer true.
All: Expresses the concurrent execution of a set of interaction flows that is not

subject to any time order. All expresses the semantics of the AND connector
in AUML notation.

Pick: Expresses precondition waits. It waits for the reception of an event (or
set of events) and then executes an exchange pattern associated with this
event. The possible events are message reception and end of a delay action.

Repeat: Repeats the exchange pattern given by a thread of interaction an pre-
established number of times. The actual number of times it is repeated is
opaque, i.e. is not part of the ACSL specification.

Synchronize: Establishes the set of threads of interaction that should be syn-
chronized after an All, a multiple-choice Switch or an Or.

See [11] for a detailed description of the exception- and compensation-handling
related ACSL constructs shown in Figure 2.

4 Implementation View: ACSL Semantics

The definition of an XML grammar for ACSL by means of the XML Schema
formalism can only validate the IP specifications syntactically. To be able to
validate and evaluate these specifications semantically, the ACSL language also
needs to be furnished with formal semantics that can unambiguously describe
the dynamic meaning of its syntactic constructs.

Engineering Agent Conversations with the DIALOG Framework 29

The provision of formal semantics for ACSL means that the IP specification
can be analyzed to find out whether the IP has certain properties, such as ter-
mination in finite time, conversational state reachability or no deadlocks and
starvations. On the other hand, the provision of operational semantics makes
it possible to automatically derive IP implementation from protocol specifica-
tion, easing its simulation and the automatic generation of proxies that assure
that each participant effectively complies with the protocol rules and provides
assistance for protocol machine learning.

The features of ACSL have led to the use of the concept of Structural Op-
erational Semantics (SOS) [13,14] as an approach for specifying the dynamic
meaning of IPs. The dynamic meaning of a protocol is obtained from the dy-
namic meaning of the different syntactic constructs that appear in its specifica-
tion. It covers the execution of the specification, including expression evaluation,
message sending and reception and the execution of other non-communicative
actions.

The SOS denotes a formalism that can specify the meaning of a language by
means of syntactic transformations of the programs or specifications written in
this language. Some special points had to be taken into account to apply the SOS
formalism, designed for programming languages, to a specification language such
as ACSL. The definition of operational semantics suited for ACSL represents a
three-step process:

1. Definition of a terminal and term-rewriting labeled transition system based
on the operational semantics described in [15],

2. Definition of the interpreter I for this system, as proposed in [13], whose
behavior is specified by a set of production rules.

3. Process of outputting the interpreter for each ACSL construct.

The following subsections describe the process of defining the operational
semantics of an ACSL specification, stressing these points.

4.1 Defining the Transition System

This section presents the term-rewriting transition system developed for the
ACSL language, based on a proposal by [15]. To produce a term-rewriting labeled
transition system 〈Γ, Λ, →, Υ 〉 to fit ACSL, it is established that Γ ⊆ Σ × Θ.

By way of a configuration, γ = 〈σ, θ〉 ∈ Γ is composed of an identifier of the
thread of interaction σ ∈ Σ and the parameter set θ ⊆ Θ that describes the
runtime context for that thread, where Σ is the set of threads of interaction de-
clared in the ACSL specification of a conversation and Θ is the set of parameters
declared in those threads. In other words, a setting γ describes a conversational
state of the specified protocol, Σ is the alphabet of conversational states and Θ
is an adjustment parameter set for those states.

Similarly, the set of labels Λ is established as a set of pairs 〈φ, m〉 composed
of the cartesian product of the finite set of message exchanges m ∈ M occurring
in the ACSL specification with the set of predicates about the environment

30 F. Alonso et al.

φ ∈ Φ(ω). Based on this, the conditions of the language constructs are expressed
as pick, while or switch (and, therefore, the parameters are declared by means
of the paramSetDecl construct). Some of these predicates refer to exchanged
messages (appear associated with exchange elements in paramSetRef elements)
and are, therefore, denoted φ(m) and associated with the exchanged messages
for the purpose of specifying this relation.

The transition relation →⊆ Γ × Λ× Γ is now →⊆ (Σ ×Θ) × (Φ ×M) × (Σ ×Θ).
The → relation therefore represents a transition relation between conversational
states labeled by means of an action. The idea, as in other labeled transition sys-
tems, is that the action associated with a transition provides information about
what is happening in the setting during the transition (internal actions) and/or
about the interaction between the agents and their environment (external ac-
tions). In this case, the actions refer to interagent communication, and therefore
the information they supply is the actual messages exchanged and the settings
information (parameters of the conversational states) they use.

Accordingly, the language’s alphabet is made up of the set of all possible
messages exchanged in the course of a conversation M = {mi, i = 1..n}. Hence,
this language can be defined as a set of possible sequences of exchanged messages,
each of which is a word of the language:

L ≡ ε ∈ L | m ∈ M → m ∈ L | s1 , s2 ∈ L′ → s1 � s2 ∈ L′

Finally, the set of term settings Υ ⊆ Γ is determined by those settings with
interaction threads in which a message labeled as term is exchanged, as these
are the only messages for which the following holds:

∀γ ∈ Υ, ∀γ′ ∈ Γ · γ � γ′

The transition system presented above is based on a definition given by [13].
However, the set of actions α ⊆ Λ(ω) to be executed in each transition can be
added to this definition. The transition relation would then be either:

→⊆ (Σ × Θ) × (Φ × M) × (Σ × Θ) × α ⊆ Λ(ω)

or

→⊆ Γ × Λ × Γ × Λ →⊆ (Σ × Θ) × (Φ × M) × (Σ × Θ) × (Λ)

4.2 Defining the Interpreter

According to [14], the SOS formalism can be used to build the operational se-
mantics of an ACSL specification by formally describing an interpreter I of that
language whose behavior is specified by means of a set of production rules.

Following ideas taken from [16], I is modeled as a function whose argument
is an ACSL-specified protocolP and an environment ω, and which describes the
behavior of 〈P , ω〉 as an [in]finite series of productions like 〈P , ω〉 → 〈P1 , ω1 〉 →
〈P2 , ω2 〉 → . . . If P ends, then the result is 〈END , ωn〉.

Accordingly, the automaton specification, which acts as an interaction proto-
col interpreter and therefore determines the operational semantics of an ACSL
specification, defines a set of production rules that constitutes the definition of

Engineering Agent Conversations with the DIALOG Framework 31

the respective interpreter, whereas the sequences of messages sent and received
is the program that is to be interpreted. Supposing that the agents are modeled
on an internal BDI architecture, the set of beliefs (β), desires (δ) and intentions
(ι) makes up the environment ω and predicates about that environment (e.g.
WantToPropose(p), IntendToDo(t), etc.). Consequently, Φ(ω) ⊆ β ∪ δ ∪ ι and the
actions set (including the exchanged messages) are the lateral effects on ω in the
same way as a variable is assigned in a programming language.

As mentioned earlier, the operational semantics developed is based on a pro-
duction system that maps conversational states to new conversational states for
a given ACSL specification. The format of a production rule is shown in the
following.

This transition system can be viewed as a production system in which each
transition is determined by a rule being fired when an action takes place and
subject to the validity of the predicate φ. Let a transition be denoted

〈〈e ∈ Σ , θ ∈ Θ〉, φ ∈ Φ(ω)〉−−−−−−−−−→
msg/φ(msg)

〈〈e ′ ∈ Σ , θ′ ∈ Θ〉, [α]/α ∈ Λ(ω)〉

This action can represent message sending, reception or an internal agent ac-
tion. Therefore, three production rule types are accounted for: (a) production
rules fired by message sending, if φ is true, (b)production rules fired by message
reception, if φ is true, and (c) production rule fired by an internal agent action,
if φ is true.

They all qualify the transition relation with msg/φ(msg) message template
sending −−−−−−−→

msg/φ(msg) or reception msg/φ(msg)
−−−−−−−→, or with −→ε for internal actions. The

msg format is identical to the one used to represent a parameterized setting
〈m ∈ M , θ ∈ Θ〉, where M is the alphabet of performatives and θ is a parameter
adjustment tuple for the message.

Using the predicate φ(msg) about the messages received, it is possible, for
example, to find out if the message source already sent another message earlier
(the source’s membership of the group of agents participating in the protocol
would also have to be considered). This predicate represents the part of the
predicate that appears in the premise directly related to the message.

φ(msg) = true ↔ ¬∃m ∈ msgQ/m.from = msg .from

The parameterized description of a conversational state of the protocol 〈e ∈
Σ , θ ∈ Θ〉 is a state identifier e belonging to the states alphabet Σ and a tuple
θ of adjustment parameters for the state e. The adjustment parameters tuple
includes (1) variables of type Int, Char, List, Tuple for template adjustment or
(2) variables for representing beliefs, desires and intentions.

Different types of template adjustment are accounted for depending on the
parameter type to which they are applied. Accordingly, the adjustments consid-
ered for the type Int are Succ(N), N = 0 and Zero, and the transition function
Succ(Succ(N)) → Succ(N). On the other hand, the adjustments p :: rest and [],
and the transition function p :: rest → rest, rest = [] and p :: [] → [] are considered
for the type List.

Φ(ω) represents the set of predicates about the environment that can be
evaluated by the agents participating in the conversation. These predicates are

32 F. Alonso et al.

usually intrinsically related to agents’ beliefs, desires and intentions. However,
no assumptions are made about how the agents conduct the evaluation, as this
may be related not only to the protocol conversational states but also to the
agents’ internal state.

4.3 Process of Outputting the Interpreter for Each ACSL Construct

The following subsections detail the process of generating the interpreter for
key ACSL language constructs. Concurrent and synchronization related ACSL
constructs are left for a forthcoming paper.

Simplifications. The following simplification rule is used with the aim of sim-
plifying the generation of production rules in embedded constructs:

If there are two rules

〈〈A ∈ Σ , θ ∈ Θ〉, φ ∈ Φ(ω)〉−−−−−−−−−→
msg/φ(msg)

〈〈B ∈ Σ , θ′ ∈ Θ〉, α ∈ Λ(ω)〉
〈〈B ∈ Σ , θ′ ∈ Θ〉, φ′ ∈ Φ(ω)〉−→ε 〈〈C ∈ Σ , θ′′ ∈ Θ〉, α′ ∈ Λ(ω)〉

they can be simplified as

〈〈A ∈ Σ , θ ∈ Θ〉, φ ∈ Φ(ω)〉−−−−−−−−−→
msg/φ(msg)

〈〈C ∈ Σ , θ′′ ∈ Θ〉, α′ ∈ Λ(ω)〉
Provided that φ → φ′. The same applies to message sending rules.

Production Rules for Receiving n Messages. The delay in receiving n
messages from different agents is expressed by means of the pick instruction:
Pick := pick [Times] [ParamSetRef] {EventHandler} [OnTimes]
EvenHandler := eventHandler Event ActionBlock
OnTimes := onTimes (ThreadOfInteraction | ProtocolControlGroup | Action)
EventHandler := eventHandler Event ActionBlock
Event := event Id (DelayFor | DelayUntil | Exchange | Catch)
ActionBlock := action (ThreadOfInteraction | ProtocolControlGroup | Action)
Times := Expression
Id := id string

The following standard set of SOS production rules is obtained by each Even-
tHandler for this instruction:

〈〈A ∈ Σ , (. . .Succ(t) . . .)〉, true〉−−−−−−−−−−−→
msg1/φ(msg1)

〈〈A, (. . . (t) . . .)〉, [α ∈ Λ(ω)])〉
〈〈A ∈ Σ , (. . .Succ(t) . . .)〉, true〉−−−−−−−−−−−→

msg2/φ(msg2)
〈〈A, (. . . (t) . . .)〉, [α ∈ Λ(ω)])〉

. . . 〈〈A ∈ Σ , (. . .Zero . . .)〉, true〉−→ε 〈〈B ∈ Σ , {θ ∈ Θ}〉, [α ∈ Λ(ω)])〉
where the expressions (. . .Succ(t) . . .) include all the parameters referenced in
the body of the pick (including events) and the expression (θ ∈ Θ) will be
composed of the set of values that instantiate the thread parameters referenced
in the <onTimes> expression.

All the pick handlers have been assumed to be concerned with message delay.
Otherwise, the handler delay condition would be stated in φ ∈ Φ(ω), which
would no longer be true, and the transition rule would switch to −→ε .

Accordingly, for the next use of pick, taken from the ACSL specification of
the FIPA IteratedContractNet protocol [5] (the proposer agent gather inform,
failure, and end messages from participants):

Engineering Agent Conversations with the DIALOG Framework 33

<pick times="length(apl)">
<paramSetRef><paramRef mode="match">apl</paramRef></paramSetRef>
<eventHandler> <event> <exchange message="Inform" direction="in" mode="middle">

<paramSetRef> <paramRef mode="adjust">p(t1)-->ipl</paramRef>
<paramRef mode="match">t1</paramRef>

</paramSetRef></exchange></event>
<action><empty/></action></eventHandler>

<eventHandler> <event> <exchange message="Failure" direction="in" mode="middle">
<paramSetRef> <paramRef mode="adjust">p(t1)-->fpl</paramRef>

<paramRef mode="match">t1</paramRef>
</paramSetRef></exchange></event>

<action><empty/></action></eventHandler>
<onTimes> <threadOfInteractionRef threadRef="End">

<paramSetInst> <paramInst> <ref>t1</ref> <value>t1</value></paramInst>
<paramInst> <ref>pl</ref> <value>fpl</value></paramInst>

</paramSetInst></threadOfInteractionRef> </onTimes> </pick>

we get the following SOS rules:

〈〈A ∈ Σ , (t1 ,Succ(n), fpl , ipl)〉, true〉−−−−−−−−→
F ail(p(t1))

〈〈A, (t1 ,n, p :: fpl , ipl)〉,NO)〉
〈〈A ∈ Σ , (t1 ,Succ(n), fpl , ipl)〉, true〉−−−−−−−−−−−→

Inform(p(t1))
〈〈A, (t1 ,n, fpl ,p :: ipl)〉,NO)〉

〈〈A ∈ Σ , (T1 ,Zero, fpl , ipl)〉, true〉−→ε 〈〈B ∈ Σ , t1 , fpl〉,NO)〉

Iteration Production Rules. Iterations are expressed in ACSL by means of
the while instruction:

While := while Condition ActionBlock
Condition := condition [ParamSetRef] Expression
ActionBlock := action (ThreadOfInteraction | ProtocolControlGroup | Action)

for which the following set of standard SOS production rules is obtained:

〈〈A ∈ Σ , θ ∈ Θ〉, φ ∈ Φ(ω)〉−→ε 〈〈A ∈ Σ , θ1 ∈ Θ〉, α ∈ Λ(ω)〉
〈〈A ∈ Σ , θ2 ∈ Θ〉, φ ∈ Φ(ω)〉−→ε 〈〈B ∈ Σ , θ3 ∈ Θ〉, α ∈ Λ(ω)〉

When the while instruction ends, Θ converges to a state in which θ2 is true.
The following example assumes that a message is to be sent to all the agents

identified in a list:

<threadOfInteraction>
<while> <condition condition="existProposalInProposals">

<paramSetRef> <paramRef mode="adjust">p(t1)::pl</paramRef>
<paramRef mode="match">t1</paramRef></paramSetRef> </condition>

<action> <exchange message="msg" direction="out" delivery="unreliable"
mode="middle" type="asynchronous">

<paramSetRef> <paramRef mode="match">p.from</paramRef>
<paramRef mode="match">p</paramRef></paramSetRef>

</exchange></action></while> </threadOfInteraction>

for which the following set of SOS rules is produced:

〈〈A ∈ Σ , . . . p :: l . . .〉, φ ∈ Φ(ω)〉−−−−−−−−−−→
msg(p.from)

〈〈A ∈ Σ , . . . l . . . 〉, α ∈ Λ(ω)〉
〈〈A ∈ Σ , . . . [] . . .〉, φ ∈ Φ(ω)〉−→ε 〈〈B ∈ Σ , θ ∈ Θ〉, α ∈ Λ(ω)〉

In this case, the while instruction is guaranteed to end, since Θ ≡ p :: l y
θ1 ≡ l, which necessarily has Θ converge to [], making θ2 true.

34 F. Alonso et al.

Optionality Production Rules. ACSL can be used to express optionality
in the course of a conversation by means of the switch construct. The overall
structure of this construct is shown below:

Switch := switch Multichoice {Branch} [Default]
Multichoice := multichoice boolean
Branch := branch Case ActionBlock
Default := default (ThreadOfInteraction | ProcolControlGroup | Action)
Case := case Condition [ParamSetRef]
Condition := condition [ParamSetRef] Expression
ActionBlock := action (ThreadOfInteraction | ProtocolControlGroup | Action)
ParamSetRef := paramSetRef {ParamRef}
ParamRef := paramRef Mode string
Mode := match | adjust

The following rule template is obtained for each branch:

〈〈A ∈ Σ , {θi ∈ Θ}〉, φ ∈ Φ(ω)〉−→ε 〈〈Bj ∈ Σ , {θ′
k ∈ Θ}〉, [α ∈ Λ(ω)]〉

where A ∈ Σ denotes the conversational state generated for the switch in-
struction, {θi ∈ Θ} is the list of referenced parameters (paramSetRef) in the
respective branch condition, φ ∈ Φ(ω) is the actual condition, Bj ∈ Σ denotes
another conversational state that will be used in the antecedent of the rules
generated for the interaction thread defining the action of this branch. If this
is a reference to an interaction thread, {θ′k ∈ Θ} will be the set of values that
instantiate the parameters of the respective thread (paramSetInst).

The same rule template is obtained for the default branch considering:

φ =
n⋃

i=1

φi and θ = ¬
n∨

i=1

θi

The next section gives an example of a set of optionality and iteration rules.

Structure Composition Rules. The rules resulting from applying the tem-
plates discussed in earlier sections (including the simplification template) to an
ACSL specification are shown below. This ACSL specification (excerpt) is made
up of a while structure plus a switch structure. The fragment, taken from the
ACSL specification of the FIPA IteratedContractNet protocol, models how the
proposer, after receiving the proposals from the contract net, notify to each
agent having sent a proposal if its proposal has been accepted (Accept message)
or rejected (Reject message):

<threadOfInteraction>
<while> <condition condition="existProposalInProposals">

<paramSetRef> <paramRef mode="adjust">p(t1)::pl</paramRef>
<paramRef mode="match">t1</paramRef> </paramSetRef></condition>

<action> <switch multiChoice="false">
<branch> <case condition="WantToAcceptProposal">

<paramSetRef> <paramRef mode="match">p</paramRef>
<paramRef mode="adjust">p-->apl</paramRef>

</paramSetRef></case>
<action> <exchange message="Accept" direction="out" mode="middle"

delivery="unreliable" type="asynchronous">
<paramSetRef> <paramRef mode="match">p.id</paramRef>

<paramRef mode="match">p</paramRef>
</paramSetRef></exchange></action></branch>

Engineering Agent Conversations with the DIALOG Framework 35

<branch> <case condition="WantToRejectProposal">
<paramSetRef> <paramRef mode="match">p</paramRef>
</paramSetRef></case>

<action> <exchange message="Reject" direction="out" mode="middle"
delivery="unreliable" type="asynchronous">

<paramSetRef> <paramRef mode="match">p.id</paramRef>
<paramRef mode="match">p</paramRef>

</paramSetRef></exchange></action></branch>
</switch> </action> </while> </threadOfInteraction>

Firstly, before any simplifications are made, we have:

〈〈A, t1, p(t1) :: pl, apl〉, true〉−→ε 〈〈B, t1, pl, p, apl〉, NO〉
〈〈B, t1, pl, p, apl〉, WantToAcceptProposal(p〉Accept(p)−−−−−−−→〈〈A, t1, pl, p :: apl〉, NO〉
〈〈B, t1, pl, p, apl〉, WantToRejectProposal(p〉Reject(p)−−−−−−−→〈〈A, t1, pl, apl〉, NO〉
〈〈A, t1, [], apl〉, true〉−→ε 〈〈C, l〉, NO〉

which, simplified (according to), becomes:

〈〈A, t1, p(t1) :: pl, apl〉, WantToAcceptProposal(p)〉Accept(p)−−−−−−−→〈〈A, t1, pl, p :: apl〉, NO〉
〈〈A, t1, p(t1) :: pl, apl〉, WantToRejectProposal(p〉Reject(p)−−−−−−−→〈〈A, t1, pl, apl〉, NO〉
〈〈A, t1, [], apl〉, true〉−→ε 〈〈C, l〉, NO〉

Sequential Statement Composition Rules. The transition for the sequen-
tial statement composition s1; S is derived from the transition for the statement
s1.

〈〈A ∈ Σ , s1, θ1 ∈ Θ〉, φ1 ∈ Φ(ω)〉−→ε 〈〈A1 ∈ Σ , φ, θ′
1 ∈ Θ〉, α1 ∈ Λ(ω)〉 . . .

〈〈A ∈ Σ , s1, θ2 ∈ Θ〉, φ2 ∈ Φ(ω)〉−→ε 〈〈A2 ∈ Σ , φ, θ′
2 ∈ Θ〉, α2 ∈ Λ(ω)〉

〈〈A ∈ Σ , s1; S, θ1 ∈ Θ〉, φ1 ∈ Φ(ω)〉−→ε 〈〈A1 ∈ Σ , S, θ′
1 ∈ Θ〉, α1 ∈ Λ(ω)〉 . . .

〈〈A ∈ Σ , s1; S, θ2 ∈ Θ〉, φ2 ∈ Φ(ω)〉−→ε 〈〈A2 ∈ Σ , S, θ′
2 ∈ Θ〉, α2 ∈ Λ(ω)〉

The DIALOG project Web site [12] contains, both for reference and for better
understanding of the paper, examples of complete AUML+ diagrams, ACSL
specifications, and SOS interpreters for a number of relevant IPs.

5 Conclusions

In this paper, we have stressed that the problem with existing approaches to
agent interaction modeling is that there is a huge void between the proposals
based on formal techniques, whose design remains extremely complex, and the
graphic notation-based techniques, which are devoid of precise semantics and
rule out automatic specification exchange and interpretation for the purpose of
specification simulation, validation and execution.

Bearing this in mind, we have presented the rationale behind DIALOG: a
formal framework that considers all the stages of a protocol engineering process,
i.e. the design, specification, validation, implementation and management of IPs,
thanks to the three views into which it is organized. The paper has focused on the
developed SOS and has highlighted how this formal semantics allows protocol
property verification and eases automatic rule-based code generation from an

36 F. Alonso et al.

ACSL specification for the purpose of simulating IP code execution at design
time, as well as improving and assuring correct IP compliance at run time.
We have also stressed throughout the paper how the availability of a syntactic
specification of an IP in a declarative-type machine-readable language such as the
proposed ACSL helps to improve IP publication, discovery and communication
on the Web, as well as the machine learning of IP by agents.

References

1. Finin, T; Labrou, Y.; and Mayfield, J. KQML as an agent communication language.
In J. M. Bradshaw (Ed.) Software Agents. MIT Press (1997)

2. Foundation for Intelligent Physical Agents. FIPA ACL message representation in
string specification. http://www.fipa.org/specs/fipa00070/ (2000)

3. McBurney, P., Parsons, S., and Wooldridge, M. Desiderata for Agent Argumen-
tation Protocols. In Proceedings of the International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS02), Bologna, Italy (2002)

4. Greaves, M.; Holmback, H.; and Bradshaw, J. What is a conversation policy?. In
F. Dignum and M. Greaves (Eds.) Issues in Agent Communication, volume 1916
of Lecture Notes in Artificial Intelligence, pages 118–131. Springer (2000)

5. Foundation for Intelligent Physical Agents. FIPA Interaction protocol Library
Specification. http://www.fipa.org/specs/fipa00025, FIPA (2001)

6. Hanachi, C., Sibertin-blanc, C.: Protocol Moderators as Active Middle-Agents in
Multi-Agent Systems. Autonomous Agents and Multi-Agent Systems, 8, 131-164,
Kluwer Academic Publishers, The Netherlands (2004)

7. Dignum, F, Greaves, M (eds.): Issues in Agent Communication. LNAI 1916 State-
of-the-Art Survery , Springer, Heidelberg (2000)

8. Gutnik, G. and Kaminka, G.A. Representing Conversations for Scalable Overhear-
ing, Journal of Artificial Intelligence Research, Volume 25, pages 349–387 (2006)

9. Odell J. et al. Representing agent interaction protocols in UML. In Proceedings
of 1st International Workshop on Agent-Oriented Software Engineering, Limerick,
Ireland (2000)

10. Alonso, F; Frutos, S; López, G; and Soriano, J. A Formal Framework for Interaction
Protocol Engineering, LNAI, vol. 3690, pp. 21-30, Springer-Verlag: Berlin (2005)

11. Soriano, J; Alonso, F; and López, G. A Formal Specification Language for Agent
Con-versations, LNAI, vol. 2691, pp. 214-225, Springer-Verlag: Heidelberg, (2003)

12. DIALOG Project Web Site. Computer Networks & Web Technologies Lab. Avail-
able at http://hydra.ls.fi.upm.es/research/conwetlab

13. Plotkin, G.: A structural approach to operational semantics. Technical Report
DAIMI FN-19. Aarhus University, Computer Science Department, Denmark (1981)

14. Hennessy, M.: The Semantics of Programming Languages: An Introduction Using
Structured Operational Semantics. Wiley (1990)

15. R. van Eijk, F. de Boer, W. van der Hoek and J-Ch. Meyer: Operational Semantics
for Agent Communication Languages. In F. Dignum and M. Greaves (eds.) Issues
in Agent Communication, LNCS 1916, 80-95, Springer, Heidelberg (2000)

16. Koning J.; and Oudeyer, P. Introduction to POS: Protocol Operational Semantics.
International Journal of Cooperative Information Systems, 10(2):101–123 (2001)

17. Haddadi, A.: Communication and Cooperation in Agent Systems: A Pragmatic
Theory. volume 1056 of LNCS. Springer Verlag, Heidelberg, Germany (1996)

Agents’ Bidding Strategies
in a Combinatorial Auction

Tim Stockheim1, Michael Schwind2, and Oleg Gujo2

1 Business Information Systems and Operations Research, Technical University
Kaiserslautern, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern, Germany

stockheim@wiwi.uni-kl.de
2 Institute of Information Systems, Johann Wolfgang Goethe University,

Mertonstrasse 17, D-60054 Frankfurt, Germany
schwind, gujo@is-frankfurt.de

Abstract. This paper presents an agent-based simulation environment
for task scheduling in a grid. Resource allocation is performed by an iter-
ative combinatorial auction in which proxy-bidding agents try to acquire
their desired resource allocation profiles. To achieve an efficient bidding
process, the auctioneer provides the bidding agents with approximated
shadow prices from a linear programming formulation. The objective of
this paper is to identify optimal bidding strategies in multi-agent settings
with respect to varying preferences in terms of resource quantity and
waiting time until bid acceptance. On the basis of a utility function we
characterize two types of agents: a quantity maximizing agent with a low
preference for fast bid acceptance and an impatient bidding agent with
a high valuation of fast allocation of the requested resources. Bidding
strategies with varying initial bid pricing and different price increments
are evaluated. Quantity maximizing agents should submit initial bids
with low and slowly increasing prices, whereas impatient agents should
start slightly below market prices and avoid ‘overbidding’.

1 Introduction

We present an agent-based simulation environment for resource allocation in a
distributed computer system that employs a combinatorial task scheduler. Our
environment enables the simulation of a mechanism for the simultaneous alloca-
tion of resources in the distributed computer system. In contrast to traditional
grid allocation approaches, our allocation process considers production comple-
mentarities and substitutionalities for these resources thus raising the efficiency
level of the resulting resource [1]. The central scheduling instance of our system
is comparable to an auctioneer that performs an iterative combinatorial auction
(CA). Agents try to acquire the resources required in computational tasks for
the provisioning of information services and information production (ISIP) by
submitting package bids. We introduce a utility function that will allow us to
represent different preferences of agents, i.e. a trade-off between quantity maxi-
mization and fast acceptance of bids. In a first setting we identify the strategy

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 37–48, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

38 T. Stockheim, M. Schwind, and O. Gujo

that maximizes the utility of four homogeneous, quantity maximizing bidders.
Subsequently, we introduce an additional (competitive-bidding) agent that re-
quires the requested resources as soon as possible. The earlier this agent receives
the acceptance the higher is its gained utility. We compare the bidding strate-
gies under changing resource capacity situations with respect to their allocation
efficiency. Finally, we interpret the outcome in terms of gained utility for the
various bidding strategies.

2 Combinatorial Auctions for Resource Allocation in
Distributed Computer Systems

Various auction protocols have been proposed for resource allocation in distrib-
uted computer systems. This may derive from the fact that auctions have been
thoroughly investigated by economists and have proved to be efficient allocation
mechanisms [2]. The transfer of economic principles to resource attribution in
grid systems, such as price controlled resource allocation (PCRA), allows the
flexible implementation of control mechanisms in decentralized systems [3,4].

CAs are a suitable tool to allocate interdependent resources according to the
willingness-to-pay (W2P) of the participants. The production process for in-
formation services in distributed systems comprises an allocation problem with
strong complementarities. An example of such an information service is the pro-
visioning of a video conference service via the web or the off-line calculation
of distributed database jobs that have to be processed on different computers
and acquires CPU time. Without obtaining communication network capacity
between the computers, the acquired CPU time is useless. The application of
CAs for resource allocation in distributed computer systems is still in its infancy
despite its excellent applicability to grid computing. In a recent approach, Chun
et al. [5] present a CA based mechanism for resource allocation in a SensorNet
testbed where the devices have different capabilities in various combinations. The
periodically performed combinatorial sealed-bid auction is implemented within
the microeconomic resource allocation system (MIRAGE). The system uses a
very simple combinatorial allocation mechanism to achieve sufficient real time
performance. MIRAGE users have accounts based on a virtual currency enabling
a bartering process for the SensorNet resources. A continuation of this work is
the grid computing environment Bellagio [6]. The approach relies on Berkeley’s
CA based allocation scheme SHARE [7]. Each bidder has a budget of a vir-
tual currency available for task payment purposes. The required resources are
allocated to the particular tasks through a combinatorial second-price auction,
which can be regarded as a strategy proof mechanism [7]. In several experiments,
the system is tested with respect to scalability, efficiency, and fairness. A sim-
ple greedy algorithm guarantees the system’s scalability, however, the resulting
allocation does not reveal a satisfactory efficiency level. Most recent approaches
in “Grid Economics” use double sided CAs for the exchange of resources [8].
However, there is no CA grid system that makes use of proxy-bidding agents to
autonomously procure the resources required for ISIP provision.

Agents’ Bidding Strategies in a Combinatorial Auction 39

3 An Agent-Based Simulation Environment for
Combinatorial Resource Allocation

The presented CA environment is based on the JADE 3.3 agent workbench and
goes beyond the recent research approaches in several points:

– The system allows the usage of several winner determination algorithms such
as greedy, simulated annealing, genetic programming, and integer program-
ming methods according to the users’ requirements in terms of allocation
quality and computation time.1

– The simulator provides tools to investigate various bidding behaviors of the
proxy agents in the resources acquisition process.

– The framework can simulate changing resource capacities to test allocation
efficiency and system stability.

– The ontology-based bidding protocol opens the system to additional agents,
e.g. to test strategies based on machine learning or reasoning.

The results presented in this paper concentrate on the second aspect.

3.1 Scenario for a Price Controlled Resource Allocation

This section gives a brief overview on the resource allocation scenario for ISIP
provision used in our work. The scenario includes four resource types: Central
processing units (CPU) that are required for the processing of the data, volatile
memory capacity (MEM) which is necessary to store short-term processing data
and program codes for the central processing units, non-volatile storage capacity
(DSK) which is necessary to keep mass data on databases, and network band-
width (NET) that is required for data interchange between different computer
units.2

The task agents submit several bids as exclusively eligible bundles (OR-of-
XOR). For the formal representation of the bids, a two-dimensional bid-matrix
(BM) is used. One dimension describes the time t ∈ {1, . . . , T} at which the re-
source is required within the request period. The other dimension r ∈ {1, . . . , R}
denotes the resource types MEM, CPU, NET, and DSK. The request for a cer-
tain quantity of an individual resource r at time t is then denoted by a matrix
element qi,j(r, t). A price pi,j is assigned to each BM expressing the agent’s W2P
for the resource bundle. In both cases the corresponding bid bundle is identified
by the index i and the single BM by j.

The value qbmax denotes the maximum resource load that can be requested
by a bidder for a single BM element qi,j(r, t). These elements are occupied with
time slot occupation probability wktso. The value qbmax denotes the maximum
1 Schwind et al. provides a description of the algorithms [9].
2 Network connections themselves exhibit complementarities due to their peering char-

acter. For simplicity we assume that NET capacity can be managed as one single
system resource. To consider the individual connections explicitly in our model, they
should be treated as additional resources, one for each connection type.

40 T. Stockheim, M. Schwind, and O. Gujo

resource load that can be requested by a bidder for a single BM element qi,j(r, t).
These elements are occupied with time slot occupation probability wktso and have
a maximum allocable resource quantity qmax. We use a structured bid matrix,
i.e. up to tmax time slots are occupied in a row [9].

The agents used within the combinatorial grid simulator comply with three
different roles. Task agents bid for the required resource combination via the me-
diating agent. This auctioneer receives the resource bids and calculates an alloca-
tion profile for the available resources managed by the resource agents according
to the allocation mechanism. Resource agents manage available resources on their
particular IT systems and offer them to the task agents via the mediating agent.
If the auctioneer accepts a bid, he reserves the resources via the resource agents.

3.2 The Combinatorial Auction

Following the description of the scenario, Figure 1 illustrates the course of action
of the system. The AUML sequence diagram depicts the message flow based on
the FIPA definition of the English auction protocol.3

auctioneerresource agent

request-resource-info 1

provide-resource-info

X

X

not-understood (m>0)

task agent

inform-start-of-auction

initAuction ()

n 1

n
1

n

call-for-proposal 1

computeBidPrice ()

createBids ()

X

not-understood (m>0)

propose

computeAllocation ()

computeResourceCap ()

request-resource

bookResource ()

executeTask ()

inform-task-execution

X

not-understood / task-failure (m>0)

l

nl

n
m

l

m

l

l

m

n

l

l

l

X

reject-proposal

accept-proposal
l

X inform-end-of-auction

call-for-proposal 2

n
n

initBudget ()

refreshBudget ()

debitBidPrice ()

request-resource-info 2n

1

2

3

5

7

4

6

Fig. 1. FIPA AUML diagram for the iterative combinatorial scheduling auction

3 www.fipa.org/specifications/fipa00031D .

Agents’ Bidding Strategies in a Combinatorial Auction 41

While in our closed economy each bidder has two roles (as provider and user
of resources), Figure 1 separately depicts both roles (resource agent and task
agent) to provide a higher generalization and better readability. Each step is
marked by a �-symbol and detailed in the corresponding paragraph:

1. The auctioneer requests the resource agents to evaluate the available resource
capacities and informs the bidders about the bidding terms. He also awards
an initial budget to the task agents. Subsequently, he announces the start of
the auction.

2. Following the auctioneer’s call for proposal, the task agents create their bids
according to the desired resource combination.

3. The auctioneer receives the bids and calculates the return-maximizing combi-
natorial allocation. He informs the task agents about bid acceptance/rejection
and requests the resource agents to reserve the awarded resources.

4. Resource agents inform the auctioneer about the status of the task execution.
5. The auctioneer propagates task status information to the task agents and

debits the bid price for the awarded bids from their accounts, followed by a
call for proposal for the next round.

6. Task agents can renew their bids in the next round in case of non-acceptance
or non-execution. The agents’ bid pricing follows rules defined in the subse-
quent paragraph.

7. The process is repeated until the auctioneer announces the end of the
auction.

In the following, the three crucial elements of the combinatorial grid schedul-
ing system are described in more detail: the budget management mechanism,
the combinatorial auctioneer, and the task agents’ bidding behavior.

3.3 The System’s Budget Management Mechanism

We assume that the ownership of the resources is distributed among a group of
companies and that each proxy-agent represents a company. In order to avoid
an expiration of the agents’ budgets during the iterative auctioning process, the
agents are integrated into a monetary circuit. The system simulates an economy
with a constant circulating budget, i.e. a closed-loop grid.

Each agent is initialized with a monetary budget BGini. At the beginning of
each round k, the task agents’ budgets are refreshed (see Figure 1 - �1) such
that each agent is able to acquire ‘computational capacity’ proportional to the
amount of resources provided to the system. Task and resource agents act as a
unit of consumer and producer both owning the resources of their peer system.
The resource agent does the reporting of resource usage and provisioning for
the task agent owning the peer computer resources (see Figure 1 - �1, and �4).
All task agents receive the same budget in each round of the simulation. The
accounting of the agents’ budgets in the grid system is done by the combinatorial
auctioneer (see Figure 1 - �1, and �5).

42 T. Stockheim, M. Schwind, and O. Gujo

3.4 The Combinatorial Auctioneer

The combinatorial auctioneer controls the iterative allocation process of the
grid system. For this purpose, the auctioneer awaits the bids that have been
submitted by the task agents for the current round. The bids that are submitted
in the form of j XOR-bundled BMs in bid i and represent the task agents’
requested capacity qi,j(r, t) of the resources r at a particular point of time t.
After having received all alternative BMs submitted by the task agents, the
auctioneer has to solve the combinatorial auction problem (CAP) which is NP-
hard [10,11]. The CAP is often denoted as the winner determination problem
(WDP), according to the traditional auctioneers task of identifying the winner.
The formal description of the CAP is formulated as:

max
∑I

i=1

∑Ji

j=1
pi,j xi,j

s. t. q(r, t) =
∑I

i=1

∑Ji

j=1
qi,j(r, t) xi,j ≤ qmax(r, t), ∀r∈{1,...,R},t∈{1,...,T}∑Ji

j=1
xi,j ≤ 1, ∀i∈{1,...,I}.

(1)

The following variables are used: number of resources R ∈ N, number
of time slots: T ∈ N, number of bid bundles I ∈ N, number of bids in bun-
dles Ji ∈ N, W2P of bundle j in bid i as pi,j ∈ R

+, and the acceptance variable
xi,j ∈ {0; 1}.

The auctioneer’s primary goal is to maximize the received income under the
limitation of the available resources and a maximum of one accepted bid per
XOR bundle (equation 1). In order to accelerate the price-finding process, the
auctioneer provides feedback on resource availability to the bidders. As men-
tioned above, it is not always possible to calculate unambiguous prices (anony-
mous prices) for the individual resources in a CA. In many cases, explicit resource
prices can only be calculated for each individual bid. Kwasnica et al. [12] describe
a pricing scheme for all individual goods in a CA by approximating the prices in
a divisible case based on a linear programming (LP) approach first proposed by
Rassenti et al. [1]. Like in a similar approach by Bjørndal and Jørnsten [13], they
employ the dual solution of the relaxed WDP to calculate the shadow prices. In
our simulation model, the approach of Kwasnica et al. [12] is adopted:4

min z =
∑R

r=1

∑T

t=1
qmax(r, t) · spr,t

s.t.
∑R

r=1

∑T

t=1
qi,j(r, t) · spr,t + (1 − xi,j) · δi,j = pi,j

(2)

Reduced cost: δi,j ∈ R
+
0

Shadow price of one element: spr,t ∈ R
+
0

4 The result of the following formula is denoted as reduced SPs. Omitting the rejected
bids in the calculation of dual prices yields a higher result [13].

Agents’ Bidding Strategies in a Combinatorial Auction 43

The proposed SP calculation uses the primal solution for the LP problem
delivered from open source LP solver LPSOLVE 5.5 5 for the determination of
accepted bids. Now the market value of a resource unit can be calculated while
using the weighted shadow prices and summarizing the utilized capacity of each
resource r for all accepted bids as follows:

Market value: vr =
∑T

t=1 spr,t · q(r, t)∑T
t=1 q(r, t)

∀r∈{1,...,R} (3)

Due to the fact that bid prices are non-linear in this framework, shadow
prices spr,t cannot be calculated in each round, i.e. there is no solution to the
LP problem [12]. In such cases the auctioneer relies on an approximation of the
market values v̂r as the averaged market values calculated in the last n rounds.6

3.5 The Task Agents’ Bidding Model

Except ΔP and P ini all agents show the same behavior. Based on the market
values of resources vr, the task agents of the combinatorial simulation model try
to acquire the resources needed for ISIP provision. Besides the market values of
resources, their bidding behavior is determined by their budgets and by a bidding
strategy. In each round, a task agent generates M new bids. In the first round,
a market value of the resources is not provided to the bidders. Therefore, bidder
agents formulate the W2P for their initial bids by dividing the budget by L·M ·J
to calculate a mean bid price that guarantees the task agents’ budget to last for
the next L rounds. In the following rounds, if a bid is initialized, the capacities
required are multiplied by the corresponding market value vr and summarized.
To control the price adaption process, an additional price acceleration factor
P inc

i is introduced.

W2P of bundle j in bid i: pi,j = P inc
i ·

∑R

r=1

∑T

t=1
vr · qi,j(r, t) (4)

If a bid is rejected, the task agent repeats bidding for this rejected bid in the
following rounds. Its W2P is adapted by P inc

i = P ini +(li · ΔP), resulting in the
value of P ini in round li = 0. Rejected bids are repeated with an updated W2P
up to a maximum of L rounds or until the bid is accepted. When an agent’s
budget is exhausted, it formulates no new bids until the budget is refreshed.

4 The Preferences of the Task Agents

We will now have a closer look at the bidders’ different preferences. Two proxy-
agent types are used in the context of this paper to represent these preferences:

5 http://www.geocities.com/lpsolve/
6 If the market value is approximated, the value v̂r is not saved in the history.

44 T. Stockheim, M. Schwind, and O. Gujo

– A quantity maximizer that requires high resource capacities but has weak
preferences regarding the timing. However, the time of execution and the
complementarities of the resources within the bundle have to be satisfied.
The hypothesis is that a smooth bidding strategy, i.e. to slowly increase the
bid prices, maximizes the utility of this agent. The economic rationale for
this proxy-agent strategy can be the fact that it bids for resources required
for the fulfillment of an ISIP task that is not time-critical. An example of
this is the generation of reports based on large databases on a distributed
system that have to be done in a relaxed time window.

– An impatient bidder that benefits from the possibility to instantaneously use
the resources will apply an aggressive bidding strategy to maximize his utility.
This agent has to submit high initial prices, but overpaying will reduce the
quantity he can acquire. We analyze whether a fast inclining pricing strategy
combined with lower initial bids can help to further increase the utility of
this agent. The economic motivation of this utility function can be a proxy
agent that bids for the execution of time-critical tasks. A good example of
this is the performance of a video conference in the distributed computer
system which is scheduled for a narrow time window.

Clearly, the amount of acquired ISIP resources has a positive but diminishing
marginal impact on the agent’s utility. The strength of this impact will be defined
by α. Opposing the positive impact of the amount of acquired resources, the
number of periods an agent has to wait before its bids are accepted has a negative
impact. To calculate the decreasing impact of the waiting time, we use a time
index l̄a which is defined as the averaged number of periods an agent bids until
it has placed a successful bid and β to adjust the influence of the waiting time.
The utility of an agent is calculated by the following function:

Ua =

(∑
(i,j)∈Ba

xi,j ·
∑R

r=1
∑T

t=1 qi,j(r, t)
)α

(
l̄a

)β
(5)

Utility function of agent a: Ua ∈ R
+

Bids of agent a: Ba ∈ {(i, j) | i, j ∈ N}
Using the utility function the two different agent types are: (1) the quantity

maximizer with α = 0.5 and β = 0.01 and (2) the impatient bidder with α = 0.5
and β = 1.0.

5 Results

The primary objective of the experiments is to find out the test agent’s opti-
mal bidding strategy in competition with the remaining default bidding agents,
given the two types of utility function (quantity maximizer, impatient bidder)
as defined above.

Agents’ Bidding Strategies in a Combinatorial Auction 45

In all simulations an identical basic setting is used: Beginning with one bun-
dle containing three XOR-bids in the first round, four agents generated three
additional bid bundles for each further round k. The task agents increase the
W2P of rejected bids by Δp over a maximum of L = 5 rounds. The pattern of
newly generated BMs is defined by qbmax = 3, wktso = 0.333, and tmax = 4.
The auctioneer was able to allocate a maximum load of qmax = 8 per resource
while T was 8 units for the CM . For the evaluation of our model, we set the
number of bids per agent (M) to 3, which for four agents results in I = 12 bids
per round. Resource 1 is reduced to an amount of 4 units in the 25th round.

In a first setting, all agents use a default bidding behavior with a constant
value of ΔP = 0.2. This supports the price adaptation process in case of re-
source failures. Figure 2 shows the results of 50 simulations for varying values
of P ini = 0.3 . . . 1.0 to identify the optimal bid introduction level.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

pini

30

35

40

45

50

u
ti

lit
y

Fig. 2. Averaged utility values of the four homogeneous bidders with varying initial
price P ini and static price increment Δp = 0.2

Assuming quantity maximizing agents, it turns out that setting P ini = 0.6
maximizes the average utility of the agents (Ūa = 52.21, capacity = 2762.78,
time index = 1.96). The stochasticity of the bidding process in connection with
the combinatorial complexity of the CAP leads to an occasional acceptance of
low-priced bids. Therefore, a bidding strategy that tries to procure resources
below market prices turns out to be successful. In contrary, agents that initialize
bids at the market price (which is an averaged value) risk to overpay the required
resources. The cumulated capacity used by the agents was 11,051 units, which
translates in a utilization rate of 73.7 % (max. capacity: 15,000). While in round
1 to 25 the rate was 82.5 %, it dropped to 67.2 % percent in round 26 to 50
(after reducing the capacity of resource 1 from 8 to 4 units per time slot).

46 T. Stockheim, M. Schwind, and O. Gujo

The next setting introduces a competitive bidder that differs in his strategy
from the other agents. In compliance with the results from the first setting, we
set the default bidding strategy to Pini = 0.6 and ΔP = 0.2. Figure 3 shows the
resource units acquired by the test agent and the averaged bid acceptance time
of 50 simulation runs for each ΔP , Ppini combination (steps of 0.1).

Fig. 3. Mean acceptance time and quantity of resource units for competitive bidder
with varying price increment Δp and initial price P ini

In case of small ΔP and P ini, the highest amount of resource units can be
acquired by the task (test) agents. An (too) aggressive strategy with high ΔP
and P ini leads to a declining amount of acquired resources. While a reduction of
acceptance time is mainly achieved by high P ini, increasing ΔP has only impact
on average acceptance time if P ini is low.

In Figure 5, the utility (cp. equation 5) resulting from varying price increment
ΔP and initial pricing P ini is depicted. It pays off for the quantity maximizer
to wait if his bids fit into the current allocation at a relative low price (low
increment and initial price). In contrary, the impatient bidder gains low utility
from such a strategy (Fig. 5 right side). The impatient agent receives the highest
utilities by using an initial bid price close to the market value of the resources
(pini = 0.9). Interestingly, the price increment in the following round does not
have much impact on the acceptance time and therewith on the utility of the
impatient test bidder.7 However, for bids exactly at market value utility declines
sharply, signaling the peril of ‘overbidding’ or simply paying too much for the
required ISIP resources. This underlines the importance of accurate market value
information to achieve allocations that maximize the benefits of the bidders. The
shadow price-controlled combinatorial grid enables agents to implement efficient
7 If the impatient bidder follows its optimal strategy (pini = 0.9 - default value of

Δp = 0.2), the cumulated capacity used by the agents was 11,051 units, which
translates in a utilization rate of 65.0 % (max. capacity: 15,000). While in round 1
to 25 the rate was 74.34 %, it dropped to 54.31 % in round 26 to 50 (after reducing
the capacity of resource 1 from 8 to 4 units per time slot.

Agents’ Bidding Strategies in a Combinatorial Auction 47

0.1

0.5

0.9

1.3

0.4 0.6 0.8 1
15

20

25

30

35

40

45

50

55

ut
ili

ty

 p

pini

0.1

0.5

0.9

1.3

0.4 0.6 0.8 1
15

20

25

30

35

40

45

ut
ili

ty

 p

pini

Fig. 4. Utility of the test bidder for quantity maximizing preference β = 0.01 (left) and
impatient bidding behavior β = 1.0 (right) for determination of the optimal bidding
strategy under varying price increment Δp and initial pricing behavior P ini

bidding strategies according to the user’s utility functions. Clearly, a high impact
of the competitors’ behavior remains as challenge.

6 Conclusion

This paper presents an agent-based simulation environment that enables the
simultaneous allocation of resources in a grid-like computer system. In this eco-
nomically inspired approach where proxy-agents try to acquire optimal resource
bundles with respect to limited budgets, the allocation is done by a CA. The
auctioneer provides price information that is calculated as shadow prices in con-
nection with solving the NP-hard winner determination problem by an inte-
ger programing approach. Based on these settings, bidding strategies are eval-
uated with respect to utility functions that incorporate different levels of time
preferences of the bidders. We introduce two characteristic bidders: A quantity
maximizing agent with low preference for fast bid acceptance and an impatient
bidding agent with a high valuation of fast allocation of the requested resources.
While searching the strategy space by varying the bidding behaviors in terms
of initial bid price and price increment strategy for rejected bids, we identified
optimal bidding strategies in terms of achieved utility. For the quantity maxi-
mizing agent, patience at low initial bids pays off, whereas the impatient agent
should avoid ‘overbidding’.

Although we used a small number of agents, our simulations turned out to be
very time consuming. A way to reduce the volatility of our market prices is the
use of a larger population of agents. Therefore, a future objective is to improve
the allocation algorithm and analyze heuristic approaches in order to reliable

48 T. Stockheim, M. Schwind, and O. Gujo

handle larger settings. A second objective might be the introduction of agents
that learn their optimal strategy to find a stable equilibrium.

References

1. Rassenti, J.S., Smith, V.L., Bulfin, R.L.: A combinatorial auction mechanism for
airport time slot allocation. The Bell Journal of Economics 13(2) (1982) 402–417

2. Milgrom, P.: Putting Auction Theory to Work. Cambridge University Press (2004)
3. Buyya, R., Stockinger, H., Giddy, J., Abramson, D.: Economic models for man-

agement of resources in peer-to-peer and grid computing. In: Proceedings of the
SPIE International Conference on Commercial Applications for High-Performance
Computing, Denver, USA (2001)

4. Foster, I., Jennings, N.R., Kesselman, C.: Brain meets brawn: Why grid and agents
need each other. In: Proceedings of the 3rd Int. Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS04), New York, NY (2004) 8–15

5. Chun, B.N., Buonadonna, P., AuYoung, A., Ng, C., Parkes, D.C., Shneiderman, J.,
Snoeren, A.C., Vahdat, A.: Mirage: A microeconomic resource allocation system
for sensornet testbeds. In: Proceedings of the 2nd IEEE Workshop on Embedded
Networked Sensors (EmNetS-II); Sidney, Australia. (2004)

6. AuYoung, A., Chun, B.N., Snoeren, A.C., Vahdat, A.: Resource allocation in fed-
erated distributed computing infrastructures. In: Proceedings of the 1st Workshop
on Operating System and Architectural Support for the On-demand IT InfraStruc-
ture, San Francisco, USA. (2004)

7. Ng, C., Parkes, D.C., Seltzer, M.: Virtual worlds: Fast and strategyproof auctions
for dynamic resource allocation. In: Proceedings of the third ACM Conference on
Electronic Commerce (EC-2003), San Diego, CA, ACM (2003) 238–239

8. Schnizler, B., Neumann, D., Veit, D., Weinhardt, C.: A multiattribute combina-
torial exchange for trading grid resources. In: Proceedings of the 12th Research
Symposium on Emerging Electronic Markets (RSEEM), Amsterdam, Netherlands,
2005. (2005)

9. Schwind, M., Stockheim, T., Rothlauf, F.: Optimization heuristics for the combi-
natorial auction problem. In: Proceedings of the Congress on Evolutionary Com-
putation CEC 2003. (2003) 1588–1595

10. Parkes, D.C., Ungar, L.H.: Iterative combinatorial auctions: Theory and practice.
In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI-
00). (2000) 74–81

11. Fujishima, Y., Leyton-Brown, K., Shoham, Y.: Taming the computational com-
plexity of combinatorial auctions: Optimal and approximate approaches. In: Pro-
ceedings of the 16th International Joint Conference on Artificial Intelligence 1999
(IJCAI-99), Stockholm, Sweden. (1999) 548 – 553

12. Kwasnica, A.M., Ledyard, J., Porter, D., DeMartini, C.: A new and improved
design for multi-objective iterative auctions. Management Science 51(3) (2005)
419–434

13. Bjørndal, M., Jørnsten, K.: An analysis of a combinatorial auction. Technical Re-
port 2001-11, Department of Finance and Management Science, Norwegian School
of Economics and Business Administration, Bergen, Norway (2001)

Modeling and Simulation of Tests for Agents

Martina Gierke, Jan Himmelspach, Mathias Röhl, and Adelinde M. Uhrmacher

University of Rostock
Institute of Computer Science

Albert-Einstein-Str. 21, D-18059 Rostock, Germany
{mroehl, gie, jh194, lin}@informatik.uni-rostock.de

Abstract. Software systems that are intended to work autonomously
in complex, dynamic environments should undergo extensive testing.
Model-based testing advocates the use of purpose-driven abstractions for
designing appropriate tests. The type of the software, the objective of
testing, and the stage of the development process influence the suitability
of tests. Simulation techniques based on formal modeling concepts can
make these abstractions explicit and operational. A simulation model is
presented that facilitates testing of autonomous software within dynamic
environments in a flexible manner. The approach is illustrated based on
the application Autominder.

1 Introduction

Developing agents essentially means developing software that is able to suc-
cessfully accomplish specified tasks in an environment that changes over time.
This process is of an intrinsically experimental and exploratory nature. Little
work has been done on developing methods for testing agents so far [1]. Current
methodologies and tools that support agent design and implementation leave a
gap between specifications and implementations [2].

In the following we will give a short overview about testing of agents. A
discrete-event approach constitutes the basis for developing an experimental
frame for testing agents. Various models with different roles in testing will be
defined. Among those the interface between the software under test and the
simulation system plays a central role and will be discussed in more detail. The
setup of a concrete experimental frame will be illustrated on the application
Autominder. The paper concludes with a discussion of related work.

2 Testing Agents

Different strategies for designing tests are used. Typically, black box and white
box testing strategies are distinguished [3]. Whereas black box testing is con-
cerned with examining the observable behavior of an implementation and focuses
on functional requirements, white box testing makes use of knowledge about the
internal structure of a program and how results are achieved.

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 49–60, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

50 M. Gierke et al.

Furthermore, a software can be tested on different levels and during differ-
ent phases of development, which necessitates the use of different test design
methods. Unit testing is usually associated with white box test design, because
units are often of limited (structural) complexity. Testing of whole agent systems
has to cope with increased complexity due to multitasking, nondeterminism and
timing issues. Consequently, system testing focuses on the discovery of bugs that
emerge from interactions of components or result from contextual conditions [4].

In the following we will focus on supporting testing of agents at the system’s
level.

2.1 Model-Based Testing of Agents

Whereas most of the testing approaches directly derive test cases from the spec-
ification of requirements, model-based testing uses additional models for test
case selection. To constrain the set of test cases, model-based testing introduces
a model of the test scenario to distinguish significant ones.

Types of abstraction that are used in model-based testing are: functional,
data, communicational, and temporal abstraction [5]. Functional abstraction
omits behavioral details that are of no interest according to the current test
purpose, i.e. behavior is tested only with respect to a constrained environment.
Data abstraction maps concrete data types to abstract ones. Communicational
abstraction maps sets of interactions to atomic ones. Temporal abstraction mod-
erates precise timing of events, e.g. to consider only the order in which events
occur.

The complexity of an agent’s environment makes functional abstraction man-
datory for testing. Covering a certain set of test cases is hindered by the agent’s
autonomy. Because of its unpredictable behavior it is difficult to drive an agent
into a certain test case [6]. Test cases should not be completely predefined but
evolve dynamically depending on both the environment and the reactions of the
agent itself [7]. In contrast to non-deterministic testing, environmental models
provide a controlled selection of test cases.

3 Modeling Test Architectures

We suggest a rather radical interpretation of “model-based testing” by explicitly
defining all abstractions in models. Therefore, we introduce a general model of
the test architecture.

A test architecture must be easily adaptable to provide the required granular-
ity and to complement the software under test as far as it has been developed.
Thus, the chosen formalism and the test architecture should support modular-
ity, re-use, and refinement. In particular, to be applicable for agent testing, the
architecture should support multiple facets of testing and variable structures.
Moreover, adequate testing of real-time constraints requires a formalism on a
dense time base.

Modeling and Simulation of Tests for Agents 51

The approach presented here is based on James II, a component-based mod-
eling and simulation system, which supports different modeling formalisms and
facilitates different simulation engines [8]. Most of the realized modeling for-
malisms are based on Devs [9] and extend the formalism by introducing variable
structures [10] or peripheral ports into Devs.

Devs distinguishes between atomic and coupled models. An atomic model is
described by a state set S, a set of input and output ports X and Y respectively,
an internal and external transition function, δint resp. δext, an output function
λ, and a time advance function ta. δint dictates state transitions due to internal
events, the time of which is determined by the ta function. At an internal event,
the model produces an output in λ. δext is triggered by external inputs that
might arrive at any time.

Coupled Devs models support the hierarchical, modular construction of mod-
els. A coupled model is described by the set of its component models, which may
be atomic or coupled, and by the couplings that exist among them. Coupled
models enable the structuring of large models into smaller ones.

3.1 Equipping DEVS with Peripheral Ports

To support the integration of externally running software, Devs models have
been equipped with peripheral ports (XP , YP).

The classical ports (X, Y) of Devs models collect and offer events that are
produced by models. In addition, the peripheral ports allow models to commu-
nicate with processes that are external to the simulation. Thereby, the simula-
tion system does not interact with external agents as one black box, but each
single model can function as an interface to external processes. The model func-
tions were extended to handle input and output from respectively to external
processes. The state transition functions and the λ : S × XP → Y -function of
the interface model describe how incoming data is transformed into data that
can be used within the simulation. The functions δint : S × XP → S × YP and
δext : Q×X ×XP → S ×YP are furthermore responsible for the transformation
of simulation data into data usable by the externally running software.

The simulation system uses the time model function tm : R
≥0 → R

≥0 to
translate the resource consumption of the externally running software into sim-
ulation time:

External processes are invoked by the simulation system and the information
put into the peripheral output ports is forwarded to them. After the external
computation has finished, the results of these invocations arrive at the peripheral
input ports of the according model at a simulation time which is determined by
the time model.

3.2 An Experimental Frame for Testing Agents

Models are designed, tested, and validated based on conditions and assumptions.
The so called experimental frame [11] makes those explicit. Figure 1 depicts the
components that make up an experimental frame for testing agents.

52 M. Gierke et al.

Virtual
Environment

Oracle

input for
SUT

output of
SUT

verdict

System
 under Test

I/O model

Log

Experimental Frame

Sink

Fig. 1. Model of a test architecture for agents

I/O models form the interface between simulation and Software under test
(SUT). It exchanges data between simulation and the externally running
software via its peripheral ports. The state transition functions and the λ-
function of the interface model describe how incoming data from the SUT is
mapped to data that can be used within the simulation and vice versa. Thereby
they describe the data abstraction in testing.

Moreover, I/O models also describe communicational and temporal abstrac-
tion. Using the time model tm : R

≥0 → R
≥0 different types of temporal ab-

straction can be realized considering the progression of wall clock time and
consumption of resources on the one hand and simulation time on the other
hand. However, for testing timing requirements the validity of the chosen time
model is crucial. Often the consumed wall clock time is used as a resource, as
it is easily accessible. Unfortunately, its usage endangers the repeatability of
simulation runs and implicitly introduces uncertainties due to hardware config-
uration and current work load. Better suited time models depend on the type of
implementation, the language used, or the underlying operating system [12].

In all cases, an ExternalProcessThread has to be implemented per I/O model
that realizes the actual communication between simulation and the SUT. If
the implementation does not possess an own clock, a synchronous interaction
of simulation and the external software will prove beneficial, as it gives the
simulation system full control over the experiment.

The Virtual Environment models the circumstances under which the behav-
ior of the SUT (i.e. the agent) is to be observed. Thus, it realizes the functional
abstraction in testing and constrains the view on the possible behavior of the sys-
tem. Within the virtual environment the peripheral ports can also be exploited
for integrating user interactions, e.g. humans can interact asynchronously with
the simulation supported by peripheral ports and a paced execution. Gradual
transitions between explicit models and “ad-hoc” testing by humans become
possible.

So far, we have merely formalized the experimental set-up for testing agents.
Now, we shall see how this general architecture was deployed for testing a con-
crete agent application and how the general framework can be filled with appli-
cation specific abstractions.

Modeling and Simulation of Tests for Agents 53

4 Testing Autominder

Autominder is a distributed monitoring and reminder system developed at the
University of Michigan [13]. It is being designed to support older adults with
mild to moderate cognitive impairment in their activities of daily living. These
are activities a person must complete in order to ensure her physical well-being
(e.g. eating, toileting). The software is installed in the client’s house together
with a set of sensors and given a list of actions that must be performed during
the day. At runtime, Autominder evaluates sensor echoes from the environment,
reasons about ongoing user activity, and compares its findings to the given client
plan to detect forgotten actions and remind the user of their execution.

Coop

Virtual Environment

RemREQ

SensNTF
Flat

Elderly

Action Planner

EIS

ExecNTF

ActNTF

CoorpREQ

CoorpRSP

RemNTF

FrgtREQ FrgtRSP

Fig. 2. Refined Virtual Environment for Testing Autominder

4.1 The Virtual Environment

Autominder complements a human in-place nurse and thus has a huge responsi-
bility for its client’s safety. Consequently, it must be tested in a variety of appli-
cation scenarios before its release. Since those scenarios are not always safe for a
human client and may be hard to observe during human-in-the-loop field tests, a
virtual testing environment for Autominder (AVTE) has been developed [14] in
cooperation with the Autominder research group. The AVTE was implemented
in James II. Its layout is shown in Figure 2. The testing environment focuses on
the model of an elderly who acts as the Autominder user. Besides, it includes a
model of the client’s living environment where Autominder is supposed to work.

The Elderly model is designed as a Human Behavior Representation that
represents an elderly person in terms of actions and mental state [15]. Therefore,
it provides two basic client functionalities: emulate suitable elderly behavior and
react to incoming reminders. The virtual elderly follows a certain routine and
performs actions of daily living accordingly. Depending on its initial memory
fitness and current stress level, the Elderly model may forget some of the plan
actions. If the model receives an external reminder, it interrupts this default
behavior and evaluates the reminder. However, there is no guarantee that the

54 M. Gierke et al.

I/O Model

start
do / startAutominder()

AllModulesIdle in xp

SimSensor in x
/ sensors+=transform(SimSensor)

Reminder in xp
/ reminders+=transform(Reminder)

forwardRem
exit / output(reminders)

Sensor in x

idle

[|sensors|==0][|sensors|>0]

notifyAM
entry: outputExt(sensor)

calc

Fig. 3. An I/O model that functions as an ambassador for Autominder

Elderly model will cooperate with Autominder and execute the requested action.
Depending on its cooperativeness and current degree of annoyance, the virtual
elderly may choose to ignore reminders as well.

In the Elderly model, each of the basic functionalities is implemented by a sep-
arate component: the Cooperation model deals with reminder acceptance, and
the Action model is responsible for the execution of actions. It receives informa-
tion on currently executable actions from the Planner model that manages the
routine plan of the elderly. The ElderlyInformationStorage (EIS) model holds all
user-specific information necessary to compute the elderly’s present forgetfulness
and cooperativeness depending on the past workload.

The Flat model composes a sensory picture of the elderly’s surroundings. It
generates sensor data that reflect the current in-house activity based on the past
action history and knowledge about how sensors are activated by plan steps.
Examples for such sensors are contact sensors for doors and the medication
container cover, heat sensors for the stove, and flush sensors in the bathroom.

4.2 Coupling Autominder and Simulation

For testing Autominder, the software has to be plugged into the virtual envi-
ronment. Autominder is a complex and autonomous implementation. It offers
an interface for external function invocation and is able to proactively start
interactions itself.

To support both the testing of method invokation as well as the testing of
agent software with an own thread of control, ambassador models have been
introduced [16], which form a special kind of I/O models. With ambassador
models a representative of the externally running software becomes part of the
virtual environment, crucial phases of the software are directly reflected within
the simulation model.

Modeling and Simulation of Tests for Agents 55

AllModulesIdle

Reminder

sensors

I/O Model Simulator

deltaInt("notifyAM")

AutominderExternalProcessThread

"calc"
outputExt(sensors)

output(reminders)

t
wc

deltaInt("calc")

lambda("forwardRem")

deltaExt("calc", sensor)

sensors += transform(Sensor)

reminders += transform(Reminder)

"calc"

"calc"

1

t
sim
1

t
sim
i

t
sim
o

putIntoXp(Reminder)

t
wc
2

Fig. 4. Interaction between the ambassador I/O model and Autominder

Using ambassadors, the SUT typically needs to be instrumented, i.e. meth-
ods of the agent have to be changed to redirect messages into the simulation
system. In the case of Autominder, its central module, the Event-Handler, was
concerned. Every software module that wants to receive Autominder messages
needs to be registered at the EventHandler, and so does the Ambassador model.
Furthermore, some new message types were introduced. On the one hand, Au-
tominder has to accept new simulation-generated synchronization messages in
order to agree on a common time. On the other hand, marker messages must
now be issued by the EventHandler so that the Ambassador model could clearly
tell apart Autominder’s different processing phases.

Figure 3 shows an ambassador I/O model for testing Autominder. This model
reacts to incoming simulation messages by forwarding them to Autominder and
reacts to incoming messages from Autominder by passing them to the other
models of the virtual environment.

Communicational abstraction is used for collecting reminders and sensor noti-
fications during phase calc. All reminders that have occurred during a computa-
tion cycle of Autominder are passed to the virtual environment jointly. Similarly,
all sensor notifications issued by the virtual environment during the current Au-
tominder processing cycle are gathered and held back until the transition to the
phase notifyAM takes place.

Figure 4 shows a typical interaction between the ambassador I/O model and
Autominder. Calculation phases of Autominder are initiated by the simulation
system. Sensor information from the virtual environment is put into the periph-
eral output ports by the I/O model and forwarded to Autominder. Reminders
produced by Autominder are put into the peripheral input port of the I/O model
and saved until an AllModuleIdle message indicates that Autominder has finished
a computation cycle. The simulation time of peripheral input events is deter-
mined by the time model, i.e. tsim

i = tsim
1 + tm(Δtwc

1), tsim
o = tsim

i + tm(Δtwc
2).

This is the time at which the reminders are scheduled in the virtual environment.

56 M. Gierke et al.

Autominder maintains an own clock, which is advanced either by Autominder
itself or externally. Using ambassador models, Autominder time is controlled
externally. Autominder advances its clock according to the time stamp of the
simulation-generated messages it receives.

4.3 The Oracle

The oracle module judges, whether Autominder adequately reacts (issues re-
minders) with respect to formerly received inputs from the virtual environment.
Adequacy is defined in terms of requirements that are specified at an earlier de-
sign phase. For testing Autominder’s reminder generation feature, four require-
ments were identified in order to ensure client awareness and avoid annoyance
respectively over-reliance:

1. All critical actions from the client plan shall be executed by the client. There-
fore, Autominder needs to make sure the client is aware of upcoming ac-
tivites: it has to issue reminders for actions the client does not perform on
its own.

2. However, not all actions mentioned in the client plan may be essential and
worth reminding for.
Autominder must only remind for crucial client plan actions that are marked
as “remindable”.

3. If the client does not execute a such mandatory, remindable action on its
own, it must be given the opportunity to catch up on time. Hence, reminders
need to occur within the allowable time bounds of the related action.

4. In order to personalize reminder plans, both client and caregiver can give
recommendations on when to remind best (e.g. earliest, latest, or typical
execution time). Autominder’s reminding policy should respect these pref-
erences1.

These requirements are translated into a set of rules the oracle uses in order
to evaluate the correctness of Autominder’s input/output trajectory.

4.4 Test Cases and Results

For each test case, input is specified by two plans: the routine plan that de-
fines the behavior of the simulated elderly and the client plan based on which
Autominder works. These plans can either agree or differ in their plan steps.

When using the same plans in Autominder and the elderly model, Automin-
der knows everything its user normally does during a day. Nevertheless, the
elderly person may forget some of its usual activities. In this case, Autominder
is expected to remind the client of the forgotten actions. In real-world applica-
tions, Autominder is likely to be given more sparse information on mandatory
client activities only. Future testing scenarios should define the routine plan as
a superset of the client plan steps, cf. Figure 5(a) and 5(b).
1 In our test runs, not much emphasis was put on the adherence to the reminding

preferences since “there is no good way to validate [. . .] [the] optimality [of the
client plan]” [17].

Modeling and Simulation of Tests for Agents 57

Fig. 5. Example relations of client and routine plan

In our first tests, we used the same plan as routine and client plan. A simple,
strictly serial plan was employed. Figure 6 displays the six consecutive plan
actions that start resp. end each planned activity and highlights the times when
reminders were expected to occur for them. Flashes indicate the actual receipt
of a reminder.

Fig. 6. Summary of simulation runs

In our experiments, reminders always occurred timely. So far, both require-
ment (1) and (3) are fulfilled. Interestingly, no end reminder was received during
the simulation at all. GetUp and Wash both were ended by the model itself,
no reminders were necessary. In contrast, the elderly model “forgot” to finish
Eating. Here, the omitted end reminder caused problems – the elderly did not
comply with its client plan anymore, requirement (1) is violated.

58 M. Gierke et al.

Moreover, this incident also represents an irregularity with requirement (2).
Autominder shall remind for crucial actions only, but no reminder is expected for
the start of eating. The evidence of a needless start and a missing end reminder
nurtured the suspicion that there might be problems with end reminders in
Autominder. However, in many safety critical situations ending an activity is an
as crucial issue as starting an activity (e.g. turning off stove after cooking). Thus,
more extensive testing of end reminders was conducted using an elderly model
with a tendency to forget ending activities. The testing revealed that indeed
Autominder did not consider end reminders yet. After having been identified,
this problem could be resolved easily.

5 Related Work

There exist mature tools for testing real-time constrains by synchronously in-
voking implemented functions, e.g. TAXYS [18] and Simulink [19]. These works
differ from ours in that the present approach also accounts for autonomous agent
software.

Testbeds [20], [21] and [22] explored the integration of models rather than
implementations of agents that are equipped with an own thread of control and
communicate asynchronously with the simulation system.

TTCN-3 is a language for specifying test cases as well as test setups [23].
Whereas TTCN-3 aims to provide a standard notation and execution architec-
ture for all black-box testing needs, we suggest a purpose-oriented modeling of
tests and test architectures on an “appropriate” level of abstraction – according
to the current development phase and the requirements of a software system.

The abstractions used in model-based testing were already discussed by Hahn
et al. [6]. In our approach these abstractions became operational by using general
purpose modeling and simulation methods.

James II has previously been used for coupling external software to simulation,
e.g. synchronous coupling of external software to the simulation system and the
use of time models were realized for planning agents [24], mobile agents, [16],
and a multi-agent system comprising collaborative agents [12].

6 Conclusion

A modeling and simulation-based approach for testing agent implementations
has been proposed. To this end, the idea of experimental frames has been adopted
for defining test architectures.

The developed test architecture comprises different sub-models with differ-
ent roles in the testing process. These sub-model reflect the different types of
abstraction usually involved in testing.

Whereas the Virtual Environment model signs responsible for the functional
abstraction, I/O models implement the data and communicational abstraction
at least with respect to the communication between SUT and environment. The
Time Model represents the temporal abstraction underlying the testing.

Modeling and Simulation of Tests for Agents 59

By using a formal modeling and simulation approach to testing, the mental
models that form an intrinsic part of testing are explicitly represented. Further-
more, each of the models can be defined and refined on the level of abstraction
required by testing purposes.

The practical use of the methods developed was demonstrated with the Au-
tominder system. In this context particularly the importance of human behavior
models became obvious. The integration of human behavior models is gaining
importance in other areas, e.g. the evaluation of protocols for mobile ad-hoc
networks [25], too. So this might be a general trend when it comes to simulation-
based testing of software: to replace ad hoc interactions (of humans in-the-loop)
with the software under test, by coherent (although not necessarily validated)
and systematically responding user models.

Acknowledgments

This research is supported by the DFG (German Research Foundation).

References

1. Dam, K.H., Winikoff, M.: Comparing agent-oriented methodologies. In: Proceed-
ings of the Fifth International Bi-Conference Workshop on Agent-Oriented Infor-
mation Systems, Melbourne (2003)

2. Hilaire, V., Koukam, A., Gruer, P., Müller, J.P.: Formal specification and proto-
typing of multi-agent systems. In: ESAW 2000. Volume 1972 of Lecture Notes in
Artificial Intelligence. Springer Verlag (2000) 114–127

3. Beizer, B.: Software Testing Techniques. 2nd edn. Van Nostrand Reinhold, New
York (1990)

4. Bashir, I., Goel, A.L.: Testing Object-Oriented Software: Life Cycle Solutions.
Springer (2000)

5. Prenninger, W., Pretschner, A.: Abstractions for model-based testing. In: Proc.
Test and Analysis of Component-based Systems (TACoS’04), Barcelona (2004)

6. Hahn, G., Philipps, J., Pretschner, A., Stauner, T.: Prototype-based tests for
hybrid reactive systems. In: Proc. 14th IEEE Intl. Workshop on Rapid System
Prototyping (RSP’03), IEEE Computer Society (2003) 78–85

7. Kopetz, H.: Software engineering for real-time: a roadmap. In: ICSE - Future of
SE Track, ACM Press (2000) 201–211

8. Himmelspach, J., Uhrmacher, A.M.: A component-based simulation layer for
JAMES. In: Proc. of the 18th Workshop on Parallel and Distributed Simulation
(PADS), May 16-19, 2004, Kufstein, Austria. (2004) 115–122

9. Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation. 2nd
edn. Academic Press, London (2000)

10. Uhrmacher, A.M.: Dynamic Structures in Modeling and Simulation - a Reflective
Approach. ACM Transactions on Modeling and Simulation 11(2) (2001) 206–232

11. Zeigler, B.P.: Multifacetted Modelling and Discrete Event Simulation. Academic
Press, London (1984)

60 M. Gierke et al.

12. Röhl, M., Uhrmacher, A.M.: Controlled experimentation with agents – models and
implementations. In Gleizes, M.P., Omicini, A., Zambonelli, F., eds.: Post-Proc.
of the 5th Workshop on Engineering Societies in the Agents World. Volume 3451
of Lecture Notes in Artificial Intelligence., Springer Verlag (2005) 292–304

13. Pollack, M.E., Brown, L., Colbry, D., McCarthy, C.E., Orosz, C., Peintner, B.,
Ramakrishnan, S., Tsamardinos, I.: Autominder: An Intelligent Cognitive Orthotic
System for People with Memory Impairment. Robotics and Autonomous Systems
44 (2003) 273–282

14. Gierke, M.: Coupling Autominder and James. Master’s thesis, University of Ros-
tock (2004)

15. Gierke, M., Uhrmacher, A.M.: Modeling Elderly Behavior for Simulation-based
Testing of Agent Software. Conceptual Modeling and Simulation CSM 2005 (2005)

16. Uhrmacher, A.M., Röhl, M., Kullick, B.: The role of reflection in simulating and
testing agents: An exploration based on the simulation system james. Applied
Artificial Intelligence 16(9-10) (2002) 795–811

17. Rudary, M., Singh, S., Pollack, M.E.: Adaptive Cognitive Orthotics: Combining
Reinforcement Learning and Constraint-Based Temporal Reasoning. 21st Interna-
tional Conference on Machine Learning (2004)

18. Sifakis, J., Tripakis, S., Yovine, S.: Building models of real-time systems from
application software. Proceedings of the IEEE 91(1) (2003) 100–111

19. MathWorks: Simulink. http://www.mathworks.com/products/simulink/ (2005)
20. Pollack, M.E.: Planning in dynamic environments: The DIPART system. In

Tate, A., ed.: Advanced Planning Technology: Technological Achievements of the
ARPA/Rome Laboratory Planning Initiative, AAAI Press, Menlo Park, CA (1996)
218–225

21. Anderson, S.D.: Simulation of multiple time-pressured agents. In: Proc. of the
Wintersimulation Conference, WSC’97, Atlanta (1997)

22. Kitano, H., Tadokoro, S.: RoboCup Rescue: A grand challenge for multiagent and
intelligent systems. AI Magazine 22(1) (2001) 39–52

23. Wiles, A.: ETSI testing activities and the use of TTCN-3. Lecture Notes in
Computer Science 2078 (2001) 123–128

24. Schattenberg, B., Uhrmacher, A.M.: Planning agents in James. Proceedings of the
IEEE 89(2) (2001) 158–173

25. DIANE-Projekt: Dienste in Ad-Hoc-Netzen. http://www.ipd.uni-karlsruhe.
de/DIANE (2005)

Agent-Based Simulation Versus Econometrics –
from Macro- to Microscopic Approaches in

Route Choice Simulation

Gustavo Kuhn Andriotti and Franziska Klügl

Department of Artificial Intelligence, University of Wuerzburg,
Wuerzburg, 97074, Am Hubland, Germany,

{andriotti, kluegl}@informatik.uni-wuerzburg.de

Abstract. Econometrics is nowadays an established approach to the
discrete choice problem relying on statistical methods. It is used in sev-
eral fields, e.g. route choice modelling, telecommunication analysis, etc.
Despite its advantages, there are also some drawbacks. Thus, alternatives
for modelling human choice are sought, which can reproduce overall sys-
tem behavior and be valid at microscopic level.

In this paper, we propose an agent-based approach inspired in econo-
metric techniques producing similar results on the macro level from mi-
croscopic behavior. This work aims to be a step forward on searching an
alternative for econometrics.

1 Motivation

Discrete choice problems have to be solved by humans in several domains and
contexts. Examples are route selection for driving to work or choosing a particu-
lar shop to go. Thus, it is highly interesting to find an appropriate modelling ap-
proach for analysing that decision making process. Econometrics discrete choice
models form the currently most used approach for representing such process not
only in the traffic domain. However, it is a macroscopic approach based on utility
functions and rational decision making.

However using an agent-based approach relying on local information for re-
producing particular macroscopic data, is by no way trivial. Due to the local
population problem, it may be not possible to reproduce the results of macro
models without extensive parameter calibration [1]. The aim of this paper is to
present and discuss an agent-based approach that actually is able to produce
similar results. This may form the basis for more elaborated agent-based route
choice simulations.

The remainder of the paper is structured as follows. We will first introduce
the basic concepts for econometric approach to discrete choice problem mod-
elling. After discussing advantages and drawbacks, we introduce and comment
an econometric inspired agent-based model. Following that we show a case study,
where combined route and model choice decision is taken.Then the results are
presented, that came from our agent-based model. By the end are shown a short
comparison to related work, conclusion and a short outlook to future work.

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 61–72, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

62 G.K. Andriotti and F. Klügl

2 Discrete Choice Modelling

Discrete Choice means that participants must chose an option or alternative
from a set where the taken option has the best utility for them. In that case, the
chosen option of participant n is given by the expression 1, where in is the option
taken by the n, O is the set of options and u(i′, n) is the utility of alternative i′

for participant n.
in = argmaxi′∈O(u(i′, n)) (1)

Usually econometric models aim at describing and modelling the situation
from a macroscopic point of view. That is made based on data sampling, i. e., a
potentially large number of participants that have to select between options. It
also assumes that every participant takes the alternative with maximum utility
for him. However, the participants’ function u(i, n) is neither completely known
nor formally expressible by a modeller. The partial observable knowledge about
utility is generalised for all participants and expressed in Vi. It is formalised in
equation 3 and further explaind on section 2.1.

To express everything that is unobservable or unknown, an error component
ε is introduced. That component actually represents a drawn from a particu-
lar statistical distribution, like Normal Distribution. Thus, the general utility
expression is given by equation 2. There Ui is the utility of alternative i gener-
alised for all participants. All errors made when generalising from the individual
u(i, n) are integrated into ε. The closer Ui is to every u(i, n), the better is the
econometric model from a macroscopic point of view.

Ui = Vi + ε (2)

Vi =
∑

a∈Attributes

f(βa, ai) (3)

Econometric approaches to the discrete choice problem differ in the way V
and ε are characterised and in how the options are organised. Examples are Logit
[2], Probit [3] and derived models form Generalised Extreme Value ([4] and [5]).
Examples from the latter are Nested-Logit [6] and Mixed-Logit [7]. In case of
Logit, the error distribution, or values for ε, is the logistic function and in case
of Nested-Logit it is the extreme value distribution.

2.1 Estimating Econometric Models

Usually, the observable utility Vi is computed based on an utility function. That
expression combines all attributes of an option and corresponding scale/sensibility
factor β. Mostly that expression means summation, like in equation 3.

The utility of a particular option is a function that has as parameters all
weights βa and its corresponding attributes value a for that option i. A simple
example for that function would be f(βa, ai) = βa · ai. Note that βa depends
only on the attribute and not on the alternative. The set of all βs is the called
weight set and here referred as B and the attributes’ set as A.

Agent-Based Simulation Versus Econometrics 63

For actually building an econometric model, the following problems have to
be solved in advance:

– Find the relevant set of attributes A;
– Model the function f(βa, ai) and
– Chose an appropriate econometric approach, like Nested-Logit.

As result of a that process a probability expression, that depends on B and
A, for all alternatives is given. That set of functions express the altenatives’
distribution. Actually, the expression P (i) – probability of alternative i – is
almost solved but B must be estimated.

The first problem, when using more sofisticated econometrics approaches like
Mixed-Logit [7], can emerge. That problem is to solve P (i). For more simple
approaches, like Logit and Nested-Logit, that function is already derived but
for others it must be derived. The deduction relies not only on the approach
itself (Logit, Probit or Mixed-Logit) but also on alternatives organisation and
on utility function’s nature. And because of that an analytical solution may not
be possible.

It was stated that P (i) is a function of B and that the later must be esti-
mated. That means that the B∗ must be found. A B∗ express the better possible
fine-tune of P (i), or the better P (i) can be approximated to participants real
decisions. B∗ is usually searched using a maximum likelihood estimator. In a
very abstract explanation, that estimator works evaluating a particular hypoth-
esised weight set Bh. Then a quality measure is calculated with a likelihood or
log − likelihood function. They compare P (i), using Bh, with the real share.
After that, according to its quality – using log − likelihood for instance – a new
Bh+1 is proposed.

Here a very simple example of that process using a Logit[2] model is taken
(chosen because of its simplicity). It is also assumed that Vni = Bh·ani, where Vni

is the rational utility of alternative i observed for participant n. That posted, a
probability expression Pni (from [5]) for every participant n and every alternative
i can be derived as shown on equation 4.

Pni =
eBh·ani∑
j eBh·anj

(4)

With equation 4 one can calculate the likelihood between the model and real
data, using a likelihood or log − likelihood function, comparing P (i) with Pni.
Then an estimation (using a Maximum Likelihood Extimator) must be made on
Bh until it achieves B∗, where the likelihood can no longer be improved.

2.2 Advantages and Disadvantages

Econometric modelling approaches have several advantages that make them
highly attractive for describing discrete choice behaviour. Once the optimal
weight set B∗ is computed a function is given as result. More than that:

64 G.K. Andriotti and F. Klügl

– The weight set B∗ forms a compact representation of the relevance of distinct
attributes in relation to others. Thus, the model can be easily analysed in
this direction.

– If attribute values are changed or the option set is manipulated, the effects
on the participants distribution P (i) can be immediately computed and thus
predicted. It has been shown in different applications, that this prediction
is possible [8]. Of course the preciseness of a prediction depends on how
changes affect alternatives.

Once B∗ is computed, the model is complete and can be used in an elegant
way. However, this elegance has costs the generalisation of agents’ utility func-
tion. As the macro approach assumes homogeneous utility functions, the weights
are the same for all participants. Therefore, it cannot take into account individ-
ual evaluation of attributes and options, and thus no individual behaviour.

Every participant is assumed to evaluate and select on its own, independently
from the others decisions. Thus, direct relations between decisions are very hard
to tackle.

The basic structure of the utility function is mostly very simple, namely a
linear combination of weights and attribute values – although the computation
of these values can be sophisticated. Theoretically the utility function itself may
also contain complicated computations. We assume that the practical use is
restricted because the function has to be evaluated very often during the already
costly search for B∗.

Moreover, the participants are not seen as capable of adaptation or evolution.
That means that, the final model is just able to describe the current state, i.e.,
the weights of the participants in the given situation. Therefore, the validity of
the model depends on the situation’s stability. For using the model in a different
situation one has to rely on modeller’s experience, to adapt the existing model.

3 From Econometrics to Agents

Here, the called agent-based econometric model is a multi-agent system, where
agents use a decision making algorithm based on rational utility. The first differ-
ence is individualisation, i.e., the model is now microscopic. That means that, all
participants are simulated, through its agent representation. Because the agents
in the proposed model can adapt themselves, they achieve an “optimum” by an
iterative process. Note that in this context, “optimum” means equivalence to
original econometric macroscopic model results.

3.1 Agent-Based Econometric Model

In our first approach – devoted to reproducing macroscopic econometrics – we
restricted agents’ individualism. All values that concern resources’ attributes are
pre-calculated and all agents share the same values. For example, in traffic, the
relevant attribute could be route segment cost, that is a function of segment’s

Agent-Based Simulation Versus Econometrics 65

occupancy and capacity. In that case, all agents share the same segment cost
function – a generalisation from econometrics.

Moreover, all information about the world is available to all agents. And
also agents are neither allowed to communicate with each nor share information
directly, i.e., they can just observe the others actions’ effects.

The adaptation capability is restricted to weighting resources’ attributes and
taking an alternative based on that weights. To take a decision and to improve its
own profit an agent can fine tune its decision making algorithm but not change it.

Those restrictions are necessary to stay as close as possible to the standard
econometric approach for facilitating reproduction. Therefore, agents’ weighting
or decision making fine tune procedures mimic “optimum’s” search, or searching
for B∗. That “optimum” is achieved when system’s equilibrium is achieved.
It happens through the local “greedy” agent’s maximisation decision making
method.

3.2 Potential and Drawbacks

Some disadvantages from econometrics also appears on agent-based approach.
Modelling problem is always present and for agents that means developing an
agent’s reasoning algorithm. Since the model must be computable it implies into
simplifications or restrictions. But agents could lead to a better approximation,
i.e., nearer to the real world behaviour.

Another problem is human behaviour modelling and here two characteristics
are important: adaptation and evolution capabilities. Those characteristics are
relevant to avoid agents remodelling in face of new situations. And due to the
fact that the closer to human behaviour the more complex is a model to com-
pute, computational complexity became an issue. By being a multi-agent systems
(MAS), all participants are represented and have their own reasoning algorithm.
Thus, the computational resources needed will be probably higher than those
needed for econometrics. It also could implies in a longer stabilisation process.

The individualisation leads also to a lack of clarity on participants decision
making process. With an econometric model the attributes relevance is evident,
when not obvious. That can be made by glancing the final utility expression and
that is not true for MAS. To evaluate attributes significance a statistical analysis
over the agents is needed, if that analysis is possible.

On the other hand there are advantages in using agents. As all participants
are present, so the utility function u(i, n) is better approached. That leads to
a lesser ε’s importance, so a better treatment to the unobservable/unknown
utility’s part. The unknown behaviour can be partially modelled by a heuristic,
like reinforment-learning, which is not possible in econometrics. More than that,
agents’ heterogeneity can be easily modelled, like different social classes or sex
(if that plays a role on the decision making observed behaviour).

But the most significant difference is adaptation and evolution. When cor-
rectly modelled, it prolongs model’s validity, in case of changes in alternatives’
set. Using standard econometrics, a modeller has either to determine by hand

66 G.K. Andriotti and F. Klügl

how the distribution changes or re-estimate the complete model, when a new
alternative is added or an existing one is removed. Using adaptation, this can be
done without external interference or calibration. A user must just wait until the
system is stabilised for the new situation. Usually a user’s or modeller’s direct
manipulation on the model is an error prone procedure.

Other advantage from MAS is the absence of a special estimation method or
a derived distribution function (P (i)). The optimum is achieved by an iterative
agents’ stabilisation process.

4 Application Example: Combined Route and Mode
Choice

To assert that those concepts from section 3.1 are valid, a simple traffic network
was adopted. It was originally analysed using econometrics, extracted from Vr-
tic’s PhD thesis [9]. From there, the analysed data was taken for that comparing.
The decision to use that example relies on its process’ good documentation, sim-
plified structure and availability of results. The problem itself is to identify the
network use, or agents’ distribution among the avaiable links.

A graphical representation of the network is on figure 1(a) In that network
edges represent road segments and nodes crossings. There are special nodes iden-
tified on the figure with Source and Target that represent the origin and des-
tination on that network. Edges with continuous lines represent the segments
where private vehicles can circulate and segmented lines where the public trans-
portation takes place.

L1

L2

L3

L4
L5

OV1 OV2

OV12

Source

Target

(a) Network.

Normal Public

r1 r2 r3 ov1 ov2

(b) Nested Al-
ternatives.

Fig. 1. Network Example

The agents’ goal is to drive from Source to Target and 3000 agents were
used for that. Equation 5 presents time/cost funtion – used to compute agents’
penality (as higher the time as worst perform the agent). On equation 5 t(s) is
the time/cost for segment s, t0(s) a minimum cost, a represents a dependency
between occupation and travel time, q(s) is the current occupancy, L(s) capacity
and b a scale parameter. For the normal road segments, identified with the letter
L, the parameters are a = 3 and b = 8 and for the public transportation,
identified by OV, they are a = 1 and b = 8. Those parameters and function are
extracted from [9] and its validity is not discussed in this text.

Agent-Based Simulation Versus Econometrics 67

t(s) = t0(s) ·
(

1 + a ·
(

q(s)
L(s)

)b
)

(5)

The possible routes for that scenario are the following: R = {r1, r2, r3, ov1,
ov2}, r1 = L1 → L3, r2 = L2 → L5, r3 = L1 → L4 → L5, ov1 = OV 12 → OV 1
and ov2 = OV 12 → OV 2.

All routes, identified with r, correspond to routes for normal traffic and with
ov for public transportation. That possibilities for route choice determine the
transportation mode too. It can be more clear seen on figure 1(b).

4.1 Econometric Macroscopic Model

The results accomplished in [9] are summarised in table 1. Those results were
achieved by different econometric approaches. Here it will be not covered details
given in [9], but shortly explained procedure for results’ generation.

To estimate an econometric model, already taken decisions are needed. But
in that artificial scenario a modified method was adopted. There are two main
steps, according to [9]: internal equilibrium and external equilibrium. The second
is the standard econometric estimation with an end criterion. And the other is
a stochastic equilibrium through the occupation’s gradient.

In this case, the standard econometric estimation uses a utility equation that
is derived from the simplified equation in 6, where Ui is the utility for route i
and t(i) the time/cost of route i.

Ui = β · t(i) + ε (6)

First, an initial segment distribution guess is taken.With that initial estima-
tion an external equilibrium step is made and a new set Bh is disposed. After
that, a whole internal equilibrium process takes place. That process finds a local
optimum through a stochastic gradient approximation method, it generates a
new distribution.

By the end of internal equilibrium, an external equilibrium process is applied.
From that process a new set Bh+1 is achieved and if the gradient between Bh+1
and Bh, ∇(Bt, Bt+1), is less than a certain threshold then Bh is the final esti-
mation and therefore B∗. If that is not the case, another internal equilibrium
routine is execute, but now with the values from Bt+1.

4.2 Microscopic Agent-Based Econometric Model

Our agent-based econometric model must achieve the same, or almost the same,
results as those from econometrics. By following the instructions given on section
3.1 the time/cost function is homogenous and will not undergo adaptation. That
leaves freedom just to apply heuristics on route re-evaluation willingness and on
route choice algorithms.

To cope with that, the route re-evaluation willingness was modelled as a prob-
ability to change the current route. And the route choice algorithm was modelled
as a weighted roulette, where the weights are assigned according to a heuristic.

68 G.K. Andriotti and F. Klügl

Those two pares are responsible for making agents “greedy” and also providing
some stability. The aim si to make agents act egoistic but also to be satisfied
with a reasonable profit. Both algorithms are explained on following sub-sections
and after that their parameters are discussed.

Route Change Probability. To determine agent’s route change probability,
the agent base its decision on the past experience with a tolerance. The algorithm
is shown in equation 7. There, P (a) is the probability to change route for agent
a; Pmin and Pmax minimum and maximum probability; tn mean time – based
on agents own history – at step n; k a fixed tolerance scale parameter; tmin and
tmax global minimum and maximum time/cost and t(a) current time/cost for
agent a.

P (a) =
{

Pmin, if tn ≤ (tn−1 + k · σtn)
pb + pa · t(a), if tn > (tn−1 + k · σtn) (7)

pa =
Pmax − Pmin

tmax − tmin

pb = Pmin − pa · tmin

With the equation 7 an agent just increases its change probability P (a) if its
current mean time/cost is greater than last mean, with a threshold. The closer
its current decision is to the global minimum more it tries to stay with that
decision for the next step, in a linear way.

Weighted Route Choice. If an agent decides to change its route it will chose
between all available routes according to a weighted roulette. Routes’ weights are
evaluated according to the equation 8, where Wa is a set of weights for agent a;
wa,r the weight of route r for agent a; wmin and wmax minimum and maximum
weights allowed; wref weight for own time/cost and t(r) time for route r.

Wa = {wa,r ∈ Wa ∧ r ∈ R| (8)

wa,r =
∣∣∣∣wmax, if t(a) = tmin

w(a, r), if t(a) > tmin

}
w(a, r) = wmin + ewb(a)+wa(a)·t(r)

wa(a) =
ln

(
wref−wmin

wmax−wmin

)
t(a) − tmin

wb(a) = ln(wmax − wmin) − wa(a) · tmin

wmin < wref < wmax

With that equation the fastest route will have the maximum weight and the
others have an exponential decreasing weight according to its time/cost, but the
current decision has a fixed weight wref . Through that algorithm agents try to
maximise its own profit, by taking a faster route.

Agent-Based Simulation Versus Econometrics 69

Parameters’ Influence. The influence of parameters can be summarised into
the following. As higher the history size as less the route will change, but a
higher size gives a less efficient route distribution and, therefore, a higher total
cost (

∑
a∈Agents t(a)), that express how bad are the decisions. Pmin and Pmax

also interferes on stability, but with less effect on total cost. As higher Pmin and
Pmax higher the route change, as expected. The parameter k has the inverse
effect on route change, as higher as more stable. It acts like a “satisfaction”
parameter and can be expressed as the interference of system instability on
agent’s “willingness” to change its current route, a higher k leads to a lesser
sensibility to system’s instability.

There are also weights – wmin, wref and wmax – that controls how strong it
will prefer better routes. It can not be a binary function in terms of assigning
wmax to all better routes, because it greatly increase the route change instability.

5 Results

Analysis criteria will be explain here. First, the same results from econometrics
must be achieved using the agent-base econometric model. That means that the
model’s quality is not its “distance” from global optimal distribution, but the
“optimum” distribution from table 1. The measures used here to analyse the
model were route occupation. So the modell was calibrated to reproduce the
results from econometrics, assumed to represent current state and thus reality.

Table 1. Route results comparison

Econometrics MAS MAS × Econometrics
Route qr σqr min max qr qr − qre

r1 776.25 107.37 570 990 796 19.75
r2 850.00 142.55 600 1080 876 26
r3 418.75 107.43 120 570 462 43.25
ov1 661,25 75.83 600 930 667 5.75
ov2 307.50 174.54 0 600 199 -108.5

5.1 General Simulation Results and Comparison

The first evaluation value is route total cost on figure 2. Through that, it is pos-
sible to detect equilibrium achievement and its type. There are different curves
plotted on figure 2. Those curves refer to routes’ occupation and total cost.
There, is possible to see the agents behaviour and equilibrium process. Note
that after 400 simulations steps the system is already stable.

Econometric’s values were extracted from [9] (table 15, on page 100) where
Probit, Nested-Logit, Cross-Nested, C-Logit, PS-Logit and Nested-C-Logit were
used, and they are expressed on columns identified with Econometrics from table
1. Results that are in columns identified with MAS represent the agent approach

70 G.K. Andriotti and F. Klügl

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000
 30000

 31000

 32000

 33000

 34000

 35000

 36000

 37000

N
u
m
b
e
r

o
f

A
g
e
n
t
s

t
i
m
e
/
c
o
s
t

step/time

Routes’ occupation

total t
r1
r2
r3
ov1
ov2

Fig. 2. Route occupation

Table 2. Agent-based econometric model’s parameters

Param. hs. Pmin Pmax k wmin wref wmax

Value 20 0.05 0.9 0.02 1 1.5 2
eq. 7 7 7 7 8 8 8

and were collected with the parameters shown on table 2, where hs. is history
size and eq. is equation’s reference.

The objective was neither to perform better nor worse than econometrics
approach and rather to reproduce it. The results are on table 1, where MAS re-
sults differ less than one standard deviation from econometrics – refer to column
qr −qre from table 1. And all values are on the limits established by econometrics
– columns min and max on table 1.

On figure 2 it is clear that no absolut equilibrium is achieve, that would be
characterised by flat lines, but rather a dynamic one. That can be seen as advan-
tage or disadvantage. If one expect an absolut equilibrium and clear differences
between the options, this model is not an option. But it can also be seen as sign
of model’s adaptadability where agents are always trying to find a new better
route (according to criteria already discussed).

The MAS was modelled using SeSAm [10]. The parameters’ setup shown in
table 2 were found to be the most suitable for this example. But some fine-tuning
on those leads to other results.

6 Related Work

That is not the first approach trying to tackle discrete choice problems using
agents. In traffic engineering and simulation, there are several works using dif-
ferent agent technologies, like BDI in [11] and [12]; reinforced learning in [13]
and [14]. In all of them, agents try to maximise their rewards with a monetary
interpretation. Compared to this work, where agents minimise their costs (with
a time interpretation), the approach is very similar.

Agent-Based Simulation Versus Econometrics 71

Other approaches using Artificial Intelligence are also available but they are
macroscopic and do not use agents, like Neural Networks in [15]. Also an indi-
vidual layered fuzzy logic was used for an artificial scenario in [16]. A Lagrangian
heuristic on a commuter scenario was used by [17] to schedule traffic demand.
Our present work aims at finding a relation between agents and econometric
simulation and is focused on a methodological level.

7 Conclusion and Future Work

We presented an econometric agent-based model and discussed how it performs.
A simple example was analysed. The results from econometrics were compared
with the econometric agent-based model simulation. Those results fit into the
acceptable range, determined by the different econometric models. One can argue
that the example is too simple, but the objective in this paper was to show that
it is possible to get equivalent results using agent technology.

It is important to develop an agent-based alternative to econometrics. Agents
are the natural paradigm for modelling and simulating humans, besides the fact
that it is easier to model agent behavior than the whole system. Moreover,
agent can adapt their parameters and behavior, a characteristic not present on
econometrics.

Currently, we are extending the model for applying it to a complex real-
world scenario, namely for developing a combined route and mode choice to
Bern, Switzerland. We therefore apply also agent-based learning for generation
of alternatives, etc. A first prototype already exists which dynamics are currently
evaluated.

Acknowledgements

Gustavo Kuhn Andriotti is financially supported by CNPq. We thank Guido
Rindsfser (Emch & Berger AG Bern) for valuable discussions on econometrics
and traffic simulation.

References

1. Fehler, M., Klügl, F., Puppe, F.: Approaches for resolving the dilemma between
model structure refinement and parameter calibration in agent-based simulations.
In: Proceedings of the second international joint conference on Autonomous Agents
and Multi-Agent Systems, AAMAS, Hakodate, Japan (2006) to appear.

2. Luce, R.D.: Individual Choice Behavior: A Theoretical Analysis. Dover Publica-
tions, New York (1959)

3. Marschak, J.: Binary choice constraints on random utility indications. In Arrow,
K., ed.: Stanford Symposium on Mathematical Methods in the Social Sciences,
Stanford, CA, Stanford University Press (1960) 312–329

4. Luce, D., Suppes, P.: Preferences, utility and subjective probability. In Luce, R.,
Bush, R., Galanter, E., eds.: Handbook of Mathematical Psychology. John Wiley
and Sons, New York (1965) 249–410

72 G.K. Andriotti and F. Klügl

5. McFadden, D.: Conditional logit analysis of qualitative choice behavior. Frontiers
of Econometrics (1974)

6. Ben-Akiva, M.: The structure of travel demand models. PhD thesis, MIT (1973)
7. McFadden, D., Train, K.: Mixed mnl models of discrete response. Journal of

Applied Econometrics 15 (2000) 447–470
8. Train, K.E.: Discrete Choice Methods with Simulation. Cambridge University

Press (2003)
9. Vrtic, M.: Simultanes Routen- und Verkehrsmittelwahlmodell. PhD thesis, Tech-

nischen Universität Dresdner (2003)
10. Klügl, F., Puppe, F.: The multi-agent simulation environment sesam. In: Work-

shops Simulation in Knowledge-based Systems, Reihe Informatik, Universität
Paderborn (1998) 194

11. Rossetti, R.J.F., Liu, R.: A dynamic network simulation model based on multi-
agent systems. In: ATT 2004, 3rd Workshop on Agents in Traffic and Transporta-
tion, New York, AAMAS 2004 (2004) 88–93

12. Dia, H.: An agent-based approach to modelling driver route choice behaviour under
the influence of real-time information. Transportation Research Part C: Emerging
Technologies 10(5–6) (2002) 331–349

13. Bazzan, A.L.C., Klügl, F.: Route decision behaviour in a commuting scenario:
Simple heuristics adaptation and effect of traffic forecast. In: Proceedings of the
Euroworkshop on Behavioural Responses to ITS, Eindhoven (2003)

14. Bazzan, A.L., Klügl, F.: Case studies on the braess paradox: Simulating route
recommendation and learning in abstract and microscopic models. Transportation
Research Part C: Emerging Technologies 13(4) (2005) 299–319

15. Dia, H.: An object-oriented neural network approach to short-term traffic forecast-
ing. European Journal of Operational Research 131(2) (2001) 253–261

16. Ridwan, M.: Fuzzy preference based traffic assignment problem. Transportation
Research Part C: Emerging Technologies 12(3–4) (2004) 209–233

17. Castelli, L., Pesenti, R., Ukovich, W.: Scheduling multimodal transportation sys-
tems. European Journal of Operational Research 155(3) (2004) 603–615

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 73 – 85, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Agent Based Simulation Architecture for Evaluating
Operational Policies in Transshipping Containers

Lawrence Henesey, Paul Davidsson, and Jan A. Persson

Department of Systems and Software Engineering, Blekinge Institute of Technology.
Box 214, Karlshamn, Sweden

{lhe, pdv, jps}@bth.se

Abstract. An agent based simulator for evaluating operational policies in the
transshipment of containers in a container terminal is described. The simulation
tool, called SimPort, is a decentralized approach to simulating managers and
entities in a container terminal. We use real data from a container terminal, for
evaluating eight transshipment policies. The simulation results indicate that
good choices of yard stacking and berthing position polices can lead to faster
ship turn-around times, for instance, the Overall Time Shortening policy offers
a lower cost and when combined with a Shortest Job First sequencing of arriv-
ing ships on average yielded a faster ship turn around time. The results also
indicated, with respect to the studied performance measures that Stacking by
Destination is a good choice of policy.

1 Introduction

The growth in the use of containers for transporting goods has been profound from 39
million containers handled in 1980 to over 356 million in 2004 and the annual growth
rate is projected at 10 percent till 2020 [1]. Parallel with the increasing demands for
transporting cargo in containers is the increasing importance in improving container
terminal (CT) operations. As the primary function of CTs is to provide for efficient,
low-cost, inter- and intramodal transfer, inspection, storage, form change, and control
of cargo, the CT must be able to effectively act as an integral part of transport chain
from origin to destination [2]. According to Frankel [2], port costs can be in excess of
50 percent of the total costs of which 55 percent of these port related costs are the
result of poor ship turn-around times and low cargo handling speeds. The increasing
demands on CTs is placing pressure on the management of CTs in finding ways to
increase capacity and offer more efficient ship handling operations. From Frankel [2]
we can infer that CTs can influence the physical constraints on the size and type of
ships that can be served, number of containers that can be handled, berth utilization
determined by service time and ship operating costs. Research by De Monie [3], has
identified several key parameters of CT capacity that can be improved through com-
puterized planning, control and maintenance systems such as: berthing arriving ships,
scheduling the ship-to-shore handling, coordinating the terminal transfer, and manag-
ing the stacking/un-stacking of containers in the yard.

74 L. Henesey, P. Davidsson, and J.A. Persson

There has been much research in CT effectiveness, capacity and technology. A lit-
erature survey overview on transshipment operations has been provided by Vis and
Koster [4] and Meersmans and Dekker [5] followed by a rather comprehensive survey
on container terminal logistics by Steenken et al. [6]. A classification of container
terminal operations is provided by Henesey [7], which concludes that simulation
models have been used extensively in understanding the behavior, experimenting and
testing conditions and scenarios due to the cost and complexity of the CT domain. A
number of simulators and simulation models have been developed in studying CTs
and they differ widely in objectives, complexity and details, but all suggest or propose
a centralized system for scheduling or controlling [8]. The distributed systems ap-
proach has been investigated by a number of papers in solving scheduling or control
problems in CTs by using agent technology, such as [9-16]. However, these papers
have mostly focused on techniques for automating or controlling the operations in a
CT. This paper presents a multi-agent based simulator called SimPort (Simulated
container Port) that is developed, as part of an IDSS (Intelligent Decision Support
System) assisting human CT managers in the decision making process for transship-
ment operations in a CT.

The remainder of the paper is organized as follows; in section 2 a general descrip-
tion of the transshipment processes in a CT. In section 3, a research question is formu-
lated and the methodology is described. The SimPort model is explained in section 4.
In section 5, a description of a simulation test and the initial results are presented. In
section 6, a conclusion with pointers for future work is presented.

2 Description of Container Terminal Transshipment Operations

Many shipping companies are trying to serve a geographic region, such as Europe, by
establishing two or three main hubs from which smaller container ships will “feed”
containers to and from other ports or CTs in the region. This ‘hub and spoke’ method
of servicing ship line customers is similar to that used by the airline industry in trans-
porting people in smaller aircraft from a region via large international airports con-
necting with often larger airplanes to distant destinations or offering many destina-
tions. The amount of transshipping is increasing and according to a study by OCS,
[17] total transshipment throughput for Europe and the Mediterranean has increased
by 58 per cent over 2000-2004 to 22.5 million TEU (Twenty-foot Equivalent Unit).
Many CTs are fast becoming known as transshipment terminals in which they will
be linked with ‘feeder’ ships and the containers from various ports and CTs are con-
solidated for loading on larger ships for transporting to another region. Specialized
transshipment CTs that have been developed as a consequence to the large flow of
containers being transshipped are for example; Malta, Gioia Tauro, Salalah, Al-
geciras, Singapore, Hong Kong, and Shanghai [18].

In managing the CT, the transshipment operations in moving containers can be di-
vided into four sub-processes: ship arrival, loading /unloading, horizontal transport
and yard stacking / unstacking [4]. The four sub-processes in transshipment opera-
tions are described as follows:

 Agent Based Simulation Architecture for Evaluating Operational Policies 75

Ship Arrival - The arrival of a ship requires CT management to locate a berth po-
sition so that it can moor along the quay and a service time to schedule operations.
This decision on choice of a berth policy has an impact on other decisions in the ship
operations. The berth ‘policy’ is often formulated from choosing a sequence policy
and a positioning policy. Basic questions are when and where to place an arriving
ship.

Loading and Unloading - The loading and unloading sub-processes requires
operational decisions by the CT management in allocating Quay Cranes (QC) and
transport equipment such as Straddle Carriers (SC) or trucks and labor. Usually, the
allocation of these resources is conducted in parallel with the ship arrival process. The
container stowage planning in a ship is a rather complex problem to solve and has
recently been studied by Wilson and Roach [19], to take as much as 1x1027 years to
optimally load a 3,000 TEU. Obviously, we need quicker solutions for loading and
unloading a container ship.

Horizontal Transport - An objective that many CT managers share is trying to
keep the assigned QCs from being idle or avoiding interruption during operations so
as to quickly service a ship. The availability, allocation and efficient use of terminal
transport are very important to ensure that the QCs are productive. In [20] mentions
that many CT managers view the interface between the QCs and the yard to be a
problem. Some problems in the horizontal transport process are: load sequence, rout-
ing, pickup sequencing and coordination with QCs.

Yard Stack / Stack on Quay - Containers are usually sorted using a stacking pol-
icy which may consider, for example; type (export or import), and size (i.e. 40’ foot
or 20’ foot), destination, or by ship line that owns the container, etc. Ideally, in trans-
shipment operations the ship that is unloading the containers to be loaded by another
ship will be serviced at the same time with the other ship in order to avoid problems
of stacking containers. This scenario offers a faster service. However, in reality the
containers must often ‘dwell’ or be placed in a yard stack for a period of time while
waiting to be loaded onto another arriving ship. Some problems or decisions affecting
this process are: stacking density; yard stack configuration; container allocation to a
stack according to rules of “polices”; and dwell times.

3 Research Questions and Methodology

In this paper, we pose the following research question; “how could simulation be
used to study the impact of the different policies for sequencing of arriving ships, berth-
ing policies, and container stacking on the performance of transshipment operations
at a CT?”

The research question stemmed from discussions with CT managers and the results
from the reviewed literature [7]. There often appeared to be a gap in understanding
the complexity of the decisions by the CT managers in the management of a CT, such
as berth assignment, from both theoretical perspectives and from industry practice.
Often mentioned, is that existing tools are too cumbersome, do not accurately model
the CT, are too expensive and not fast. In addition, some CT experts confided that
berth allocation was conducted mostly by middle managers, who did not possess
enough information in making the berth assignment decision.

76 L. Henesey, P. Davidsson, and J.A. Persson

We considered a simulation technique called Multi Agent Based Simulation
(MABS) that is suggested by [21] to be applicable to domains that are distributed,
complex, and heterogeneous. Before considering using simulation, such as MABS,
we first considered other methods for experimenting such as: analytical models in
econometrics; mathematics, and optimization However, CTs possess many character-
istics listed by [22] that are be deemed suitable for considering simulation such as:
random variables, large number of parameters, non-linear functions and behavior of a
dynamic system.

Simulation in general can be used to study the dynamics of complex systems and
how the various components of the system interact with each other [22]. The reason
for simulation is that it is a good way for people to form cognition; action or process
of acquiring knowledge.

The choice on using MABS specifically is based in the versatility in simulating
complex systems and perceived easiness from which modeling a CT can handle dif-
ferent levels of representation, such as real human managers in a management system.
Paranak et al. [23] recently compared macro simulation and micro simulation ap-
proaches and pointed out their relative strengths and weaknesses. They concluded,
“…agent-based modeling is most appropriate for domains characterized by a high
degree of localization and distribution and dominated by discrete decision. Equation-
based modeling is most naturally applied to systems that can be modeled centrally,
and in which the dynamics are dominated by physical laws rather than information
processing.” As a CT has a high degree of localization and distribution and is domi-
nated by discrete decision, we found agent-based modeling a promising approach
worthy to investigate.

4 SimPort Architecture

Using a knowledge engineering methodology known as MAS-commonKADS, we
model the CT managers into a management system by identifying the following: their
tasks, how they are organized, methods for communication and coordination mecha-
nisms [24]. The management system simulator is based on the following managers
that are modeled as agents: port captain, ship agent, stevedore, and terminal man-
ager. Additional agents, which are modeled in the CT simulator, are the QCs and the
SCs. The management model of the CT manager agents is illustrated in Figure 1,
which show how the agents are organized hierarchically, communicating and coordi-
nating, represented by arrows, and interacting with the CT simulator by sending ac-
tions and receiving observations.

The agents make decisions based on information in the messages they receive from
each other. The intelligence level of the agents, such as stevedore, ship and crane
agents can be considered reactive in that a specific action in the CT is executed upon
a certain message. The major advantage in using reactive agents, according to
Wooldridge [21], “is that overall behaviour emerges from the interactions of the
component behaviours when the agent is placed in its environment”. The interaction
between the agents is summarized in Fig. 2, which adopts a pseudo AUML (Agent
Unified Modeling Language) sequence diagram. The agent's goals are only implicitly

 Agent Based Simulation Architecture for Evaluating Operational Policies 77

CT Simulator

QC

SC

Ship

Yard

Container

Quay

QC

SC

Ship

Yard

Container

Quay

Management System Simulator
Terminal Manager

Ship Captain

Stevedore Stevedore Stevedore

Ship Captain Ship Captain

cr
crCrane cr

crCranec
cCrane

SCSCSC

Port
Captain

actions observations

Fig. 1. Simplified view of the SIMPORT Architecture

represented by the rules describing the reactive behavior, illustrated in Fig. 2, for the
following agents in SimPort:

Port Captain Agent; is constantly during a 24 hour period searching for arriving
ships during the next 24 hour period. Based on the ship’s estimated arrival time, num-
ber of containers and size of ship, the port captain creates a ship slot which decides
the order the arriving ships will be served according to a sequence policy, e.g., First In
First Out (FIFO), Highest Earning First (HEF) and Shortest Job First (SJB).

Ship agent is created to represent each arriving ship to the CT. The ship agent will
possess the following information:
− Ship Properties:

1. Desired service time (ti
serv) is based on the schedule, from the ship line perspec-

tive, listing estimated arrival time (ti
arriv) and estimated departure time (ti

dep).
2. Length of ship in meters (li).
3. Type of ship (vi) which is regular, panamax or post panamax,
4. The Ship line that owns the ship.
5. The number of bays in the ship (ji).
6. The hourly operating cost.

78 L. Henesey, P. Davidsson, and J.A. Persson

Create Ship
<slot>

Ship Request
<Ship Properties>
<Desired Serv.
Time>
<Manifest>

Bay Plan (of Ship)
<# Containers Out>
<# Containers In>
<Berth Positions of
Bays in ship>
<# Containers in Bay>
<Container Properties>

Call SC
agents

Crane
Request(s)

SC agent
assigned

SC agent
States

Operations
Completed

Crane Request
<Desired Serv.
Time>
<Avg. #of Cranes
Needed>
<Ship Properties>
<Manifest>

Berth Assignment
<Berth Position>

 Free Berth & Cranes

Berth & Crane
Assignment
<cranes assigned>

<<agent>>
Stevedore(s)

-Crane Properties

<<agent>>
Terminal
Manager

-Quay Properties
-Pre-Berth Spot
Allocation
-Crane Properties
-Crane Cost
-Berth Schedule
(dynamic)
-Crane Availability
-Berth Policy

<<agent>>
Crane(s)

-Crane Properties

-Quay Properties

-Assigned SCs

<<agent>>
SC(s)

-SC properties
-Stack Positions

<<agent>>
Ship(S)

-Ship Properties
Manifest
-# Containers Out
-# Containers In
-Container Types
-Container Dest.
-Shifting Factor
-Est. Arrival time
-Est. Depart time

<<agent>>
Port

Captain
-Sequence
Policy

Service Time
Calculation

<# Containers out>
<# Containers in>

<ETA>

Berth
Allocation

Crane Needs
Calculation

Crane
Allocation

Bay
Allocation

Ship Un/loading
Completed

Sequencing

Ship ‘Departs’

Fig. 2. AUML Sequence Diagram of Agents in SimPort

− For each bay, the ‘manifest’ provides the following data; number of containers, and
for each container type (whether a 40’, 20’, Refrigerated or Hazardous), destination
(from which we can infer it to be either an Export or Import container) and ship

 Agent Based Simulation Architecture for Evaluating Operational Policies 79

line (containers on board the ship may belong to other ship lines and this will affect
in stack assignment).
When the ship is to be served, the ship agent sends its ‘ship request’ or desired ser-

vice time, ti
serv , which can be considered a duration of service, to the stevedore agent,

which is computed in the following way (where ti
wait is the waiting time):

ti
serv = ti

dep - ti
arriv - ti

wait (1)

Stevedore agent will try to satisfy each ship agent’s request, i.e., to be served in
less time than the ti

serv. It will request quay cranes from the terminal agent that can
handle the ship type, vi and a position of the cranes in order to serve the bays in a ship
while trying to meet the estimated desired service time. The crane request is based on
a calculation of the average number of cranes needed to work the ship. For example,
if the number of containers to be loaded/unloaded, Ci is 400 and the desired service
time corresponds to 4 hours and the average capacity of the cranes, Qs, is 25 moves
per hour, then the number of cranes requested, Q is 4. (The reason for using the aver-
age capacity is to mirror the actual computations performed by actual stevedores.)
The general formula used is:

Q = Ci / (Q
s *ti

serv) (2)

The second task of the Stevedore agent is to allocate the cranes provided by the
Terminal manager agent to the different bays of the ship. It receives information from
the ship agent regarding the number of containers in the bays, number of bays in the
ship and the characteristics of the containers (size, type, destination and ship line).
The bay allocation is done by assigning cranes to work an average number of contain-
ers (both load and unload) for all bays in a ship.

Terminal Manager agent performs two tasks, allocation of berth points to a ship
and allocating cranes to service a ship. It receives information from the stevedore
agent on ship length (li) and will assign a sequence of berth points (bi) along the quay
that the ship will occupy, which will include the spacing between two ships. From the
‘request’ sent by a stevedore agent, one for each ship, the terminal manager will allo-
cate available cranes that can handle a ship type. Crane allocation is determined by
crane type(s) that can work a ship type, vi and their distance to the berth spot. The
number of cranes is limited and this may cause ships to either have slower service
times or even wait. Cranes are assigned by the average number of crane moves per
hour Qs, and dividing to the number of containers, Ci to be worked for ship vi.

The berth positions used by the terminal manger for the arriving ships will be deter-
mined by a berth positioning policy. From interviews with CT managers and collected
data, two types of berth positioning policies have been identified that are actually used;
Berth Closest To the Stack (BCTS) policy and Overall Time Shortening (OTS) policy.

The BCTS policy’s objective is to place a ship closest to a ‘target’ stack which is
the stack that will be the most visited by the SCs during the operations. That is, the
one that has the largest sum of (i) containers to be stored and (ii) containers to be
fetched. The BCTS will wait if a berth is occupied by another ship until that berth,
which is closest to the stack, is available. The OTS policy, on the other hand, tries to
place the ships to berth positions in order to minimize the total ship turn-around-time

80 L. Henesey, P. Davidsson, and J.A. Persson

for all arriving ships in a scheduled period of time. In determining the berth position
for an arriving ship the OTS policy is considering the Waiting Time during the simu-
lation from a potential set of berth points. The number of possible berth points de-
pends on the berth spacing as well as a ship’s length plus a buffer distance. The ship
Waiting Time includes time left in serving another ship that is occupying a part of the
quay. The estimation of the Service Time is based on the number of SCs employed,
the routes covered by SCs and their average speed. The estimated sums of all the
routes traveled by each SC are totaled to provide the distance being covered by the
SCs for each ship. From the sum of the estimated Service Time and Waiting Time, i.e.
the turn-around time of the OTS policy will place a ship wherever the shortest esti-
mated ship turn-around-time is achieved.

Quay Crane (QC) agents are coordinated by a stevedore agent during operations.
It receives a list from the stevedore agent which states all containers that should be
unloaded/loaded from/to each bay. Based on this list, the Crane agent will react by
calling its assigned SC agents and based on their replies, select the SC agent most
appropriate to pick up a particular container based on a) availability (idle/busy) and b)
the distance between the SC and the container. The general objective for the crane
agents is to load/unload containers as fast as possible and use the SCs to move the
containers to and from the stacks in the most efficient way possible.

Straddle Carrier (SC) agents are reacting to requests from their assigned Crane
agent; an assumption based upon observations of real CTs where a number of trans-
porters typically are ‘bounded’ to a specific crane. The SC agents have a map of the
CT and their goal is just to satisfy the request of its crane agent. SC agents will send
their state to the Crane agent. For example, if the stack that the SC has been assigned
to place a container in is full, the SC will go to the closest available stack. The SC
move along one-way paths for safety reasons. The SC agents calculate the distance
from the top left corner of a stack to the position of the crane working a ship’s bay
located at the berth point along the quay. Distance of the stacks may have an influ-
ence on the handling rate of the QCs working a ship.

A SC agent determines its next destination through communication with the crane
agent. The SC moves to a position in the yard that is generated by communication
with the crane agent and subsequently establishes its next position by communicating
back to crane agents that it has reached its assigned destination and is waiting for
another task. The SC agent’s function is to provide specific yard destinations rather
than the container processing sequence. The model contains rules which determine an
appropriate yard location based on current status of the stacks and stacking policy,
and attributes of the SC agent.

5 Initial Experiment

A real CT was having problems in serving arriving ships leading to ship waiting times
on average three days. The SimPort model was used to evaluate revised stacking
configurations for the yard and the transshipment operational policies.

 Agent Based Simulation Architecture for Evaluating Operational Policies 81

5.1 Experiment Setup

The managers at the CT provided data and layouts of their terminal for analysis. The
following entities of the CT terminal were modeled in SimPort:

• Terminal: Length and width (meters), e.g., 900 m x 1000 m; Operating hours, e.g.,

07:00 – 20:00 from Monday to Friday; The terminal handling charge (THC), a cost
paid by the ship lines for handling each container unit (100 dollars per container);
A “penalty” cost, an extra cost for handling containers out of operating hours (150
dollars per container); A yard; and A quay.

• Yard Stacks: Length of the Yard is 1000 meters and width 890 meters. Six large
stacks that can store 180 containers each are created in the SimPort model using
data from the real CT. The yard stacks temporarily store containers based upon ex-
port or import status. All stacks are assigned to a number of “ports of destinations”,
which are based on six different import and export destinations.

• Quay length: The of the length of the quay that is able to serve docked container
ships is tested at 890 meters and the width of the terminal yard is 1000 meters to
reflect the actual CT. Four berths are configured with a fixed length of 200 meters
along the quay. Additionally, the distance between ships worked at the quay is 20
meters and 5 cranes are assigned to the quay.

• Quay Cranes: Five QCs are assigned to work ships along a quay at the CT with a
handling rate of 25 container moves per hour.

• Straddle Carriers: Twenty SCs are employed during operations; four SCs are as-
signed to each crane. The SCs have a capacity of lifting one container over three
and are set with a maximum speed of 30 km/h.

• Sequence of arriving ships: The data was provided by CT managers at the real CT
for developing the scenarios, the arrival time intervals of 3 container ships (each
200m long) and the total number of containers for the 3 ships is 1100 for export
and 1000 for import, which are identified as either reefer (5%), hazard (5%), and
standard (90%). In addition, each container is loaded (exported) or unloaded (im-
ported) to/from a specific bay located on a ship. The arrival times for all 3 ships
were randomly generated between 07:00 and 12:00.

• Berth Policies: The berth positioning polices tested are the BCTS and OTS. Polices
tested for sequencing arriving ships are FIFO, HEF, and SJB. Two container stack-
ing polices are tested, stack by Ship and stack by Line.

The output from the SimPort will be a berth assignment plan for scheduling, which

includes the sequencing of arriving ships and the berth position that they will occupy
along the quay. Terminal equipment will be assigned, e.g., QCs and SCs, to work
ships. Terminal handling costs charged by the CT in handling a TEU are provided.
Finally, to compare performance levels of the various operational policies used, the
following measures of performance are defined:

• Total Distance – Total distances traveled for all the SCs used to serve the QCs
for all three ships.

• Average Ship Turn-Around Time – Average time for turning-around a ship in a
schedule (departure time – arrival time).

82 L. Henesey, P. Davidsson, and J.A. Persson

• Average Waiting Time – Average Waiting Time for a ship in a schedule.
• Total Costs – Total costs for serving all ships computed from the number of

hours that each ship is berthed multiplied with its hourly operating cost plus the
THC (Terminal Handling Cost) that is assessed for each container handled for
each ship.

5.2 Initial Experiment Results

The simulation results to evaluate policy combinations for a particular CT are pre-
sented in Table 1, which presents the averages from 10 simulation runs

Table 1. Simulation results from initial experiment

Stacking by Ship Line
BCTS OTS

Simulation
Policy:

FIFO HEF SJB FIFO HEF SJB
Total distance
(meters): 213460 219887 208806 239820 240115 238331
Average Ship
Turn Around
Time: 10:38 10:55 10:21 7:22 7:25 7:17
Average
Waiting Time: 03:30 03:48 03:16 00:21 00:25 00:17
Total Costs ($): 187500 200500 187500 150700 151010 149600

Stacking by Destination
BCTS OTS

Simulation
Policy:

FIFO HEF SJB FIFO HEF SJB
Total distance
(meters): 205250 211430 200775 227333 229720 225875
Average Ship
Turn Around
Time: 10:20 10:37 10:04 7:13 7:10 7:07

Average
Waiting Time: 3:23 3:41 3:10 0:13 0:10 0:07
Total Costs (€): 184500 194000 184500 148200 149300 147600

Total Distance the shortest distances traveled by the SCs on average were found

to be when applying the BCTS with the SJB policy; 208806 for stacking by Ship and
200775 for stacking by Destination. Within the OTS position policy, there are slight
differences in distances traveled, which indicated that the HEF will yield the longest
distances followed by FIFO and SJB. In comparing stacking policies, the stack by
distance yielded the shortest distances compared to stack by line. The shortest dis-
tance recorded for OTS was when simulating with the SJB sequence policy, which
yielded a distance of 225875.

Average Ship Turn-Around Time average ship turn around per ship was found
to be faster when using the OTS policy with an average of 7:21 hours for stacking by
line and 7:10 for stacking by destination. The BCTS policy yielded an average ship
turn around of 10:38 hours for stacking by line and 10:20 for stacking by line. The

 Agent Based Simulation Architecture for Evaluating Operational Policies 83

ship turn around time was faster when simulating with the SJB sequencing policy for
both position policies.

Average Waiting Time average waiting times are longer, when comparing posi-
tion policies, in the BCTS are 3:31 hours (for all three sequence policies) with stack-
ing by line and 3:25 for stacking by destination. The OTS had shorter waiting times
averaging: 21 minutes for stack by line and: 10 minutes for stack by destination.
Within the position polices the fastest waiting times are recorded when simulating
with the SJB policy. In comparing the average waiting times between stacking poli-
cies, the stack by Line on average had a longer waiting time.

Total Costs The lowest cost for ships was recorded when simulating the OTS
policy. The costs are lower in OTS since the turn-around time is lower then the
BCTS, which influences the hourly operating costs of the ships. In comparing within
the OTS, the sequence policies suggest that there is slight influence. The SJB policy
in combination with the OTS suggests the lowest cost for the ships. The BCTS policy
results indicated that the sequence policies, FIFO and SJB, were the same and the
HEF is the most expensive. Stack by Destination on average was lower then stack by
Line by €2,100 when using the BCTS policy and € 4,167 for the OTS policy.

6 Conclusion and Future Work

The results from the experiments answered the main research question that was pre-
sented; what is the impact of the different policies for sequencing, berthing, and stack-
ing on the performance of CTs? The objective of using a MABS such as SimPort was
to analyze which CT management policies could be best considered in relation to:
ship arrival patterns, number of containers to be handled during a time period,
changes in container stack layout in the yard and berth. In analyzing the question, the
SimPort has proven able to reflect many of these types of changes into the model for
simulation.

The agent-based manager system which assigns berth schedules from the various
management policies has indicated that some policies have faster ship turn-around
times and lower distances traveled by SCs over other polices for certain scenarios. In
addition, other performances were revealed in choice of policy such as lower costs for
ships depending on the scenario; distribution of arriving ships, number of containers
to be handled, characteristics of the containers and yard stacking policies.

The initial experiments could be extended to simulate a larger number of ships, a
longer period of time and perhaps use more stacking positions. Future plans are to
further develop SimPort in order to evaluate IPSI® AGVs (Automated Guided Vehi-
cles) [25] coordination in a CT. Additional logic for the manager agents could be used
for enhancing the decisions made. An optimizer for calculating the best berth position
would offer further benefits to the simulation model. Often mentioned by CT manag-
ers is to incorporate economic or cost indicators into the simulation, such as cost per
hours for groups employed to work a ship, cost for fuel consumed by SCs, number of
containers handled during a specific period and profit or loss made.

84 L. Henesey, P. Davidsson, and J.A. Persson

References

1. Davidson, N.: A global capacity assessment and needs analysis, Proceedings of the 39th
Terminal Operating Conference, Antwerp, Belgium, 2005.

2. Frankel, E. G.: Port Planning and Development. John Wiley & Sons, New York, US,
1987.

3. De Monie, G.: Inter-port cooperation and competition: developing trans-shipment opera-
tions in the Mediterranean Environmental Scanning in Ports, Proceedings of the Fourth
MedTrade 2006. St. Julians, Malta, 2006.

4. Vis, I. F. A. and de Koster, R.: Transshipment of containers at a container terminal: An
overview. European Journal of Operational Research, Vol. 147, pp. 1-16, 2003.

5. Meersmans, P. J. M and Dekker, R.: Operations Research supports container handling.
Technical Report, The Netherlands Econometric Institute Report EI 2001-22, Econometric
Institute, Erasmus University, Rotterdam, November 2, 2001.

6. D. Steenken, D., Vos, S., and Stahlback, R.: Container terminal operations and operations
research - a classification and literature review. OR Spectrum, Vol. 26, pp. 3-49, 2004.

7. Henesey, L. Enhancing Container Terminals: A Multi-Agent Systems Approach, Licentiate
Thesis. Department of Systems and Software Engineering, Blekinge Institute of Technol-
ogy, Sweden, pp1-132, 2004.

8. Liu, C.-I., Hossein, J. and Ioannou, P. A.: Design, Simulation, and Evaluation of Auto-
mated Container Terminals. IEEE Transaction on Intelligent transportation systems, Vol.
3, pp. 12-26, 2002.

9. Buchheit, M., Kuhn, N., Müller, J.P., and Pischel, M.: MARS: Modeling a multiagent sce-
nario for shipping companies. Proceedings of the European Simulation Symposium (ESS-
92), Dresden, Germany, 1992.

10. Degano, C., and Pellegrino, A..: Multi-Agent Coordination and Collaboration for Control
and Optimization Strategies in an Intermodal Container Terminal. Proceedings of the
IEEE International Engineering Management Conference (IEMC-2002), Cambridge, UK,
2002.

11. Gambardella, L.M., Rizzoli, A.E., and Zaffalon, M.: Simulation and planning of an inter-
modal container terminal. Simulation, Vol. 71, pp. 107–116, 1998.

12. Rebollo, M., Vicente, J., Carrascosa, C., and Botti, V.: A Multi-Agent System for the
Automation of a Port Container Terminal. Proceedings of Autonomous Agents 2000 work-
shop on Agents in Industry, Barcelona, Spain, 2000.

13. Rebollo, M., Vicente, J., Carrascosa, C., and Botti, V.: A MAS Approach for Port Con-
tainer Terminal Management. Proceedings of the 3rd Iberoamerican workshop on DAI-
MAS, Atiaia, Sao Paulo, Brazil, 2001.

14. Lee, T.-W., Park, N.-K., and Lee, D.-W.: Design of Simulation System for Port Resources
Availability in Logistics Supply Chain," Proceedings of the International Association of
Maritime Economists Annual Conference, (IAME 2002), Panama City, Panama, 2002.

15. Carrascosa, C., Rebollo, M., Vicente, J., and Botti, V.: A MAS Approach for Port Con-
tainer Terminal Management: The Transtainer Agent," Proceedings of the International
Conference on Information Systems, Analysis and Synthesis, Orlando, US, 2001.

16. Thurston, T., and Hu, H.; Distributed Agent Architecture for Port Automation, Proceed-
ings of the 26th International Computer Software and Applications Conference (COMP-
SAC 2002), Oxford, UK, 2002.

17. Ocean Shipping Consultants: European and Mediterranean Containerport Markets to
2015. Ocean Shipping Consultants, Ltd., Surrey, UK 2006.

 Agent Based Simulation Architecture for Evaluating Operational Policies 85

18. Baird, A.: Optimising the container transhipment hub location in northern Europe. Journal
of Transport Geography, vol. article in press, 2006.

19. Wilson, I.D. and Roach, P. A.: Container stowage planning: a methodology for generating
computerised solutions. Journal of the Operational Research Society, Vol. 2000, pp. 1248-
1255, 2000.

20. Henesey, L.: Agent Based Simulation for Evaluating the Operational Policies in the Tran-
shipping of Containers. Submitted for publication to Transportation Review, 2005.

21. Wooldridge, M.: An Introduction to Multi Agent Systems. John Wiley and Sons Ltd., West
Sussex, England, 2002.

22. Wernstedt, F.: Simulation, An Overview. Manuscript, Blekinge Institute of Technology,
Karlskrona, Sweden, 2001.

23. Parunak, H. V. D., Savit, R., and Riolo, R. L.: Agent-Based Modeling vs. Equation-Based
Modeling: A Case Study and Users' Guide. Multi-Agent Systems and Agent-Based Simula-
tion, Vol. LNAI 1534, Eds: Sichman, J. S., Conte, R., and Gilbert, N., Springer-Verlag, pp.
10-26, 1998.

24. Henesey, L., Notteboom, T., and Davidsson, P: Agent-based simulation of stakeholders re-
lations: An approach to sustainable port and terminal management. Proceedings of the In-
ternational Association of Maritime Economists Annual Conference, (IAME 2003), Busan,
Korea, 2003.

25. TTS AB Port Equipment AB. Gothenburg, Sweden, Internet site: http://www.tts-hs.no/,
visited last (03.07.2006).

Diagnosis of Multi-agent Plan Execution�

Femke de Jonge1, Nico Roos1, and Cees Witteveen2

1 Dept of Computer Science, Universiteit Maastricht
P.O.Box 616, NL-6200 MD Maastricht

{f.dejonge, roos}@cs.unimaas.nl
2 Faculty EEMCS, Delft University of Technology

P.O.Box 5031, NL-2600 GA Delft
witt@ewi.tudelft.nl

Abstract. Diagnosis of plan failures is an important subject in both single- and
multi-agent planning. Plan diagnosis can be used to deal with plan failures in
three ways: (i) it provides information necessary for the adjustment of the current
plan or for the development of a new plan, (ii) it can be used to point out which
equipment and/or agents should be repaired or adjusted so they will not further
harm the plan execution, and (iii) it can identify the agents responsible for plan-
execution failures.

We introduce two general types of plan diagnosis: primary plan diagnosis
identifying the incorrect or failed execution of actions, and secondary plan di-
agnosis that identifies the underlying causes of the faulty actions. Furthermore,
three special cases of secondary plan diagnosis are distinguished, namely agent
diagnosis, equipment diagnosis and environment diagnosis.

1 Introduction

In multi-agent planning research there is a tendency to deal with plans that become
larger, more detailed and more complex. As complexity grows, the vulnerability of
plans for failures will grow correspondingly. Taking appropriate measures to a plan
failure requires knowledge on the causes of these failures. So it is important to be able to
detect the occurrence of failures and to determine their causes. Therefore, we consider
diagnosis as an integral part of the capabilities of agents in single- and multi-agent
systems.

To illustrate the relevance of plan diagnosis, consider a very simple example in which
a pilot agent of an airplane participates in a larger multi-agent system for the Air Traffic
Control of an airport. Suppose that the pilot agent is performing a landing procedure
and that its plan prescribes the deployment of the landing gear. Unfortunately, the pilot
was forced to make a belly landing. Clearly, the plan execution has failed and we wish
to apply diagnosis to find out why. A first, superficial, diagnosis will point out that the
agent’s action of deploying the landing gear has failed and that the fault mode of this
action is “landing gear not locked”. We will denote this type of diagnosis as primary

� This research is supported by the Technology Foundation STW, applied science division of
NWO and the technology programme of the Ministry of Economic Affairs (the Netherlands).
Project DIT5780: Distributed Model Based Diagnosis and Repair.

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 86–97, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Diagnosis of Multi-agent Plan Execution 87

plan diagnosis. This type of diagnosis focuses on a set of fault behaviors of actions that
explain the differences between the expected and the observed plan execution.

Often, however, it is more interesting to determine the causes behind such faulty ac-
tion executions. In our example, a faulty sensor may incorrectly indicate that the landing
gear is already extended and locked, which led the pilot agent to the belief that the ac-
tion was successfully executed. We will denote the diagnosis of these underlying causes
as secondary plan diagnosis. Secondary diagnosis can be viewed as a diagnosis of the
primary diagnosis. It informs us about malfunctioning equipment, unexpected environ-
ment changes (such as the weather) and faulty agents. As a special type of secondary
diagnosis, we are also able to determine the agents responsible for the failed execution
of some actions. In our example, the pilot agent might be responsible, but so might be
the airplane maintenance agent.

In our opinion, diagnosis in general, and secondary diagnosis in particular, enables
the agents involved to make specific adjustments to the system or the plan as to manage
current plan-execution failures and to avoid new plan-execution failures. These adjust-
ments can be categorized with regard to their benefits to the general system. Primary
diagnosis can contribute to plan repair by identifying the failed action and how they
failed. Secondary diagnosis can also can contribute to plan repair by pointing out the
broken equipment and the misbehaving agents. Plan repair can either plan to fix the
broken equipment or to use other equipment. Moreover, information about agents helps
to recover and adjust the agents thereby contributing to a better plan execution. Finally,
secondary diagnosis can indicate the agents responsible (accountable) for the failures
in the plan-execution. This information is very interesting when evaluating the system,
and can also be used to divide costs of repairs and/or changes in the plan amongst the
agents.

In this paper we adapt and extend a classical Model-Based Diagnosis (MBD) ap-
proach to the diagnosis of plan execution. To enable secondary diagnosis, the system
to be diagnosed consists not only of the plan and its execution, but also of the equip-
ment needed for the execution, the environment in which the plan is executed and the
executing agents themselves. We introduce an object-oriented description of plans in
which objects represent actions, agents, equipment and the environment. The state of
these objects may change dynamically by other causes than the execution of planned
actions. Primary and secondary diagnosis is used to identify these causes.1

To realize the benefits of plan-based diagnosis outlined above, we present in section 3
an adaptation of the object-oriented description of plan execution introduced in [18,16].
Section 4 shows how this object-oriented plan description enables the formalization of
primary and secondary plan diagnosis. But first of all, we will place our approach into
perspective by discussing some approaches to plan diagnosis in the following section.

2 Related Research

To realize plan diagnosis, we adapt and extend the object oriented representation of
plans presented in [18,16]. This representation has been chosen because it is more suited

1 How to implement diagnosis is outside the scope of this paper. For an example of an approach
for distributed diagnosis in a multi-agent system, we refer to [15].

88 F. de Jonge, N. Roos, and C. Witteveen

to plan diagnosis than the traditional plan representations such as [10,2,9,17] and it
also enables us to extend the classical Model-Based Diagnosis (MBD) approach to the
planning domain. Since one of the goals of plan diagnosis is to facilitate plan repair, it
might be beneficial to make use of information used to generate a plan and therefore use
one of the traditional plan representations. However, we wish to study plan diagnosis
independent of any planning approach that is used to generate a plan or that will be used
to repair a plan.

Similar to our use of MBD as a starting point of plan diagnosis, Birnbaum et al.
[1] apply MBD to planning agents relating health states of agents to outcomes of their
planning activities, but not taking into account faults that can be attributed to actions
occurring in a plan as a separate source of errors.

de Jonge et al. [7,8] present an approach that directly applies MBD to plan execution.
Here, the authors focus on agents each having an individual plan, and on the conflicts
that may arise between these plans (e.g., if they require the same resource). Diagnosis is
applied to determine those factors that are accountable for future conflicts. The authors,
however, do not take into account dependencies between health modes of actions and
do not consider agents that collaborate to execute a common plan.

Kalech and Kaminka [12,13] apply social diagnosis in order to find the cause of
an anomalous plan execution. They consider hierarchical plans consisting of so-called
behaviors. Such plans do not prescribe a (partial) execution order on a set of actions. In-
stead, based on its observations and beliefs, each agent chooses the appropriate behavior
to be executed. Each behavior in turn may consist of primitive actions to be executed,
or of a set of other behaviors to choose from. Social diagnosis then addresses the issue
of determining what went wrong in the joint execution of such a plan by identifying the
disagreeing agents and the causes for their selection of incompatible behaviors (e.g.,
belief disagreement, communication errors).

Lesser et al. [3,11] also apply diagnosis to (multi-agent) plans. Their research con-
centrates on the use of a causal model that can help an agent to refine its initial diagnosis
of a failing component (called a task) of a plan. As a consequence of using such a causal
model, the agent would be able to generate a new, situation-specific plan that is better
suited to pursue its goal. Diagnosis is based on observations of a component without
taking into account the consequences of failures of such a component w.r.t. the remain-
ing plan.

Witteveen et al. [18,16] show how classical MBD can be applied to plan execution.
To illustrate the different aspects of diagnosis discussed in the introduction, below we
present an adapted and extended version of their formalization of plan diagnosis. This
formalization enables the handling of the approaches of de Jonge et al. [7,8], Kalech
and Kaminka [12,13], and Lesser et al. [3,11]. The work of Birnbaum et al. [1] is not
covered by the proposed formalization since it focuses on the planning activity instead
of on plan execution.

3 Plans as Systems

Objects. In [18] it was shown that by using an object-oriented description of the world
instead of a conventional state-based description, it becomes possible to apply classical

Diagnosis of Multi-agent Plan Execution 89

MBD to plan execution. Here, we will take this approach one step further by also intro-
ducing objects for agents executing the plan and for the actions themselves. Hence, we
assume a finite set of objects O that will be used to describe the plan, the agents, the
equipment and the environment.

The objects O are partitioned into classes or types. We distinguish four general
classes, namely: actions A, agents Ag, equipment E and environment objects N .

States and partial states. Each object in o ∈ O is assumed to have a domain Do of
values. The state of the objects O = {o1, ..., on} at some time point is described by a
tuple σ ∈ Do1 × ... × Don of values. In particular, four projections of the state σ: σA,
σAg , σE and σN are used to denote the state of the action objects A, the agent objects
Ag, the equipment objects E and the environment objects N .

The state σN of environment objects N describes the state of the agents’ environ-
ment at some point in time. For instance, these state descriptions can represent the
location of an airplane or the availability of a gate.

The states σA, σAg and σE of action, agent and equipment objects respectively de-
scribe the working order of these objects. Their domains consist of the health modes of
the action, agent and equipment objects. We assume that each of these domains con-
tains at least (i) the value nor to denote that the action, agent and equipment objects
behave normally, and (ii) the general fault mode ab to denote that the action, agent and
equipment objects behave in an unknown and possibly abnormal way. Moreover, the
domains may contain several more specific fault modes. For instance, the domain of a
‘flight’ action may contain a fault mode indicating that the flight is 20 minutes delayed.2

It will not always be possible to give a complete state description. Therefore, we
introduce a partial state as an element π ∈ Doi1

× Doi2
× . . . × Doik

, where 1 ≤
k ≤ n and 1 ≤ i1 < . . . < ik ≤ |O|. We use O(π) to denote the set of objects
{oi1 , oi2 , . . . , oik

} ⊆ O specified in such a state π. The value of an object o ∈ O(π)
in π will be denoted by π(o). The value of an object o ∈ O not occurring in a partial
state π is said to be unknown (or unpredictable) in π, denoted by ⊥. Including ⊥ in
every value domain Di allows us to consider every partial state π as an element of
D1 × D2 × . . . × D|O|.

Partial states can be ordered with respect to their information content: given values
d and d′, we say that d ≤ d′ holds iff d = ⊥ or d = d′. The containment relation �
between partial states is the point-wise extension of ≤: π is said to be contained in π′,
denoted by π � π′, iff ∀o ∈ O [π(o) ≤ π′(o)]. Given a subset of objects S ⊆ O, two
partial states π, π′ are said to be S-equivalent, denoted by π =S π′, if for every o ∈ S,
π(o) = π′(o). We define the partial state π restricted to a given set S, denoted by π �S,
as the state π′ � π such that O(π′) = S ∩ O(π).

An important notion for diagnosis is the notion of compatibility between partial
states. Intuitively, two states π and π′ are said to be compatible if there is no essen-
tial disagreement about the values assigned to variables in the two states. That is, for
every o ∈ O either π(o) = π′(o) or at least one of the values π(o) and π′(o) is
undefined. So we define π and π′ to be compatible, denoted by π ≈ π′, iff ∀o ∈

2 Note that in a more elaborate approach the value of for instance an equipment object may also
indicate the location of the equipment. In this paper we only represent the health mode of the
equipment.

90 F. de Jonge, N. Roos, and C. Witteveen

O [π(o) ≤ π′(o) or π′(o) ≤ π(o)]. As an easy consequence we have, using the notion
of S-equivalent states, π ≈ π′ iff π =O(π)∩O(π′) π′. Finally, if π and π′ are com-
patible states, they can be merged into the �-least state π � π′ containing them both:
∀o ∈ O [π � π′(o) = max≤{π(o), π′(o)}].
Normality assumptions. The health mode of action, agent and equipment objects
need not be known explicitly but are usually assumed to be normal: nor. Although
it seems reasonable to also assume environment objects such as the weather, to be
normal, we cannot make this assumption for every environment object. It makes no
sense to assign the state normal to, for instance, a good to be transported. There-
fore, we exclude environment objects from our normality assumption. By adding these
normality assumptions to a partial state π we create a partial state π̄ where ∀o ∈ O
[π̄(o) = nor if π(o) = ⊥ and o �∈ N ; π̄(o) = π(o) otherwise].
Goals . An (elementary) goal g of an agent specifies a set of states an agent wants
to bring about using a plan. Here, we specify each such a goal g as a constraint, that
is, a relation over some product Di1 × . . . × Dik

of domains. We say that a goal g is
satisfied by a partial state π, denoted by π |= g, if the relation g contains some tuple
(partial state) (di1 , di2 , . . . dik

) such that (di1 , di2 , . . . dik
) � π. We assume each agent

a to have a set Ga of such elementary goals g ∈ Ga. We use π |= Ga to denote that all
goals in Ga hold in π, i.e. for all g ∈ Ga, π |= g.

Action execution. Through the execution of a specific action a ∈ A, the state of envi-
ronment objects N and possibly also of equipment objects E may change. We describe
such changes induced by a specific action (also called plan step) a ∈ A by a (partial)
function fα where α is the type of the action (also called plan operator) of which a is
an instance.

fα : Da × Dag × De1 × ... × Dei × Dn1 × ... × Dnj →
De′

1
× ... × De′

k
× Dn′

1
× ... × Dn′

l

where a ∈ α ⊂ A is a specific action of type α, ag ∈ Ag is the execution agent,
e1, ..., ei ∈ E are the equipment objects required, n1, ..., ni ∈ N are the environment
objects required, and {e′1, ..., e′k, n′

1, ..., n
′
l} ⊆ {e1, ..., ei, n1, ..., nj} are equipment and

environment objects that are changed by the action a. Note that since the values of
equipment objects only indicate health modes of these objects we allow equipment
objects to occur in the range of fα in order be able to describe repair and maintenance
actions.

To distinguish the different types of parameters in a more clear way, semicolons will
be placed between them when specifying the function, e.g.:

f transport(driving : A; hal : Ag; truck : E ; goods : N).

The objects whose value domains occur in dom(fα) will be denoted by domO(oa) =
{oa, oag, oe1 , ..., oei , on1 , ..., onj } and, likewise ranO(oa)={oe′

1
, ..., oe′

l
, on′

1
, ..., on′

j
}.

The result of an action may not always be known if, for instance, the action fails or
if equipment is malfunctioning. Therefore we allow that the function associated with
an action maps the value of an object to ⊥ to denote that the effect of the action on an
object is unknown.

Diagnosis of Multi-agent Plan Execution 91

Fig. 1. An action and its state transformation

Figure 1 gives an illustration of the above outlined state transformation as result of
the application of a drive action. Note that in this example only the state of the goods is
changed as the result of the transport action.

Plans. A plan is a tuple P = 〈A, <〉 where A ⊆ A is a subset of the actions (plan
steps) that need to be executed and < is a partial order defined on A × A where a < a′

indicates that the action a must finish before the action a′ may start. Note that each
action a ∈ A occurs exactly once in the plan P . We will denote the transitive reduction
of < by �, i.e., � is the smallest sub-relation of < such that the transitive closure �+

of � equals <.
We assume that if in a plan P two actions a and a′ are independent, in principle

they may be executed concurrently. This means that the precedence relation < at least
should capture all resource dependencies that would prohibit concurrent execution of
actions. Therefore, we assume < to satisfy the following concurrency requirement:

If ranO(a) ∩ domO(a′) �= ∅ then a < a′ or a′ < a.3

Figure 2 gives an illustration of a plan with one abnormally executed action. Since
an action object is applied only once in a plan, for clarity reasons, we will replace the
function describing the behavior of the action by the name of the action. The arrows
relate actions to the objects it uses as inputs and the objects it modifies as its outputs.
In this plan, the dependency relation is specified as a1 � a3, a1 � a4, a2 � a4,
a2 � a5, a4 � a7, a5 � a8and a4 � a6. Note that the last dependency has to be
included because a6 changes the value of o2 needed by a4. The action a4 shows that
not every object occurring in the domain of an action need to be affected by the action.

Plan execution. For simplicity, we will assume that every action in a plan P takes one
time unit to execute. We are allowed to observe the execution of a plan P at discrete
times t = 0, 1, 2, . . . , k where k is the depth of the plan, i.e., the longest <-chain of
actions occurring in P . Let depthP (a) be the depth of action a in plan P = 〈A, <〉.

3 Note that since ranO(a) ⊆ domO(a), this requirement excludes overlapping ranges of con-
current actions, but domains of concurrent actions are allowed to overlap as long as the values
of the object in the overlapping domains are not affected by the actions.

92 F. de Jonge, N. Roos, and C. Witteveen

a1 a2

a3 a4

a6

t=3

0

2

3

a8

a5

a7

1

t=2

t=1

t=0

o2 o3 o4 o5o1

Fig. 2. Plan execution with one abnormal action

Here, depthP (a) = 0 if {a′ | a′ � a} = ∅ and depthP (a) = 1 + max{depthP (a′) |
a′ � a}, otherwise. If the context is clear, we often will omit the subscript P . We
assume that the plan starts to be executed at time t = 0 and that concurrency is fully
exploited, i.e., if depthP (a) = k, then execution of a has been completed at time
t = k + 1. Thus, all actions a with depthP (a) = 0 are completed at time t = 1 and
every action a with depthP (a) = k will be started at time k and will be completed at
time k+1. Note that thanks to the above specified concurrency requirement, concurrent
execution of actions having the same depth leads to a well-defined result.

A timed state is a tuple (π, t) where π is a state and t ≥ 0 a time point. We would
like to consider the predicted effect (time state) (π′, t′) as the result of executing plan P
on a given timed state (π, t). To define this relation in a precise way, we will need the
following concepts. First of all, let Pt denote the set of actions a with depthP (a) = t,

let P>t =
⋃

t′>t Pt′ , P<t =
⋃

t′<t Pt′ and P[t,t′] =
⋃t′

k=t Pk. Secondly, we say that an
action a is enabled in a state π if domO(a) ⊆ O(π).

Now we can predict the timed state (π′, t+1) using the timed state (π, t) and the set
Pt of to be executed actions. We say that (π′, t+1) is (directly) generated by execution
of P from (π, t), abbreviated by (π, t) →P (π′, t+1), iff the following conditions hold:

1. π′(o) = fα(π � domO(a))(o) for each a ∈ Pt such that a ∈ α and for each
o ∈ ranO(a).

2. π′(o) = π(o) for each o �∈
⋃

a∈Pt
ranO(a), that is, the value of any object not

occurring in the range of an action in Pt should remain unchanged.
3. π′(o) = ⊥ otherwise.

For arbitrary values of t ≤ t′ we say that (π′, t′) is (directly or indirectly) gener-
ated by execution of P from (π, t), denoted by (π, t) →∗

P (π′, t′), iff the following
conditions hold:

1. if t = t′ then π′ = π;
2. if t′ = t + 1 then (π, t) →P (π′, t′);

Diagnosis of Multi-agent Plan Execution 93

a1d0 d2d2d1

(o,d2,1) (o,d3,2)
a2 d4

t=0 t=1 t=1+ t=2+t=2 t=3

o d3

)(12 dtrd)(23 dtrd

Fig. 3. A Discrete Event System of the object o

3. if t′ > t + 1 then there must exists some state (π′′, t′ − 1) such that (π, t) →∗
P

(π′′, t′ − 1) and (π′′, t′ − 1) →P (π′, t′).

Disruptions of plan execution. In [18,16], Witteveen et al. describe how plan execu-
tion can be diagnosed by viewing an action of a plan as a component of a system having
a normal or an abnormal behavior, and by viewing the input and output objects of an
action as in- and outputs of a component. This view made it possible to apply classical
MBD to plan execution. In their view, a diagnosis is a subset Q ⊆ A of abnormally
executed actions.

Here, we will use a modified version of the plan diagnosis proposed by Witteveen
et al. First of all, we define the more general notion of a qualification κ consisting of
triples (oj , d, t) each specifying an object oj , the value d ∈ Doj of the object oj and
the time point t at which the object oj takes this value d. Such a triple might be used
to specify a state change at time t of an object oj to a value σ(oj) = d. If the object
oj denotes an action, an agent or equipment, value d will usually indicate some fault
mode.

Using qualifications, we say that (π′, t + 1) is (directly) generated by execution of
P from (π, t) given the qualification κ, abbreviated by (π, t) →κ;P (π′, t + 1), iff the
following conditions hold:

1. For each oj ∈ O: π′′(oj) = d if (oj , d, t) ∈ κ, and π′′(oj) = π(oj) otherwise.
2. (π′′, t) →P (π′, t + 1).

For arbitrary values of t ≤ t′ we say that (π′, t′) is (directly or indirectly) generated by
execution of P from (π, t) given the qualification κ, denoted by (π, t) →∗

κ;P (π′, t′).
An object such as an airplane may have several (fault) modes. Between these modes

transitions are possible. For example, continuing to fly with an overheated engine will
cause more severe damage, namely a completely ruined engine. Of course, not every
transition between the (fault) modes is valid. For example, an airplane with a broken
engine cannot become an airplane with only a flat tyre without repairing the engine
first. Hence, we need to describe the valid state changes of objects. A transition function
trj : Dj → 2Dj will be used to describe the transitions that may occur.

Remark 1. Note that we can view each object oj as representing a Discrete Event Sys-
tem [4]. The triples (oj , d, t) in a qualification κ describe the unknown events that
change the state of the object oj and trj : Dj → 2Dj is the transition function of the
DES. Figure 3 gives an illustration. The goal of diagnosis is to identify these unknown
events (oj , d, t) that have caused the state changes. Also note that actions enforce state
changes independent of the transition function trj .

The transition function make is possible to judge whether a qualification κ describes
valid transitions. It places restrictions on the autonomous state changes (not caused by

94 F. de Jonge, N. Roos, and C. Witteveen

actions) that may occur. Hence, we must verify whether a qualification κ induces a
sound derivation given a plan P and the transition functions trj . We say that a qualifi-
cation κ induces a sound derivation (π, t) →∗

κ;P (π′, t′) iff:

– for no pair of events (oj , d, t), (oj , d
′, t′) ∈ κ, we have that t = t′, and

– for each event (oj , d, t′) ∈ κ, if (π, t) →∗
κ;P (π′, t′), then d ∈ tr∗j (π′(oj)).

4 Plan Diagnosis

By making (partial) observations at different time points of the ongoing plan execution
we may establish that there are discrepancies between the expected and the observed
plan execution. These discrepancies indicate that the results of executing one or more
actions differs from the way they were planned. Identifying these actions and, if possi-
ble, what went wrong in the actions’ execution will be called primary plan diagnosis.
Actions may fail because external factors such as changes in the environmental con-
ditions (the weather), failing equipment or incorrect beliefs of agents. These external
factors are underlying causes which are important for predicting how the remainder
of a plan will be executed. The secondary plan diagnosis aims at establishing these
underlying causes.

4.1 Primary Plan Diagnosis

In [18,16], Witteveen et al. describe how plan execution can be diagnosed by viewing
action instances of a plan as components of a system and by viewing the input and
output objects of an action as in- and outputs of a components. Here, we will use a
modified version of the plan diagnosis proposed by Witteveen et al. using a qualifica-
tion κ of events (a, d, depth(a)) with a ∈ A. This qualification κ is called an action
qualification.

Figure 2 gives an illustration of an execution of a plan. Suppose action a3 is ab-
normal and generates a result that is unpredictable (⊥). Given the qualification κ =
{(a3, ab, 1)} and the partially observed state π0 at time point t = 0, we predict the
partial states πi as indicated in Figure 2, where (π0, t0) →∗

κ;P (πi, ti) for i = 1, 2, 3.
Note that since the value of o1 and of o5 cannot be predicted at time t = 2, the result of
action a6 and of action a8 cannot be predicted and π3 contains only the value of o3.

Suppose now that we have a (partial) observation obs(t) = (π, t) of the state of the
world at time t and an observation obs(t′) = (π′, t′) at time t′ > t ≥ 0 during the
execution of the plan P . We would like to use these observations to infer the health
states of the actions occurring in P . Assuming a normal execution of P , we can (par-
tially) predict the state of the world at a time point t′ given the observation obs(t): if
all actions behave normally, denoted by π̄, we predict a partial state π′

∅
at time t′ such

that (π̄, t)→∗
P (π′

∅
, t′). Since we do not require observations to be made systematically,

O(π′) and O(π′
∅

) might only partially overlap. Therefore, if this assumption holds, the
values of the objects that occur in both the predicted state and the observed state at time
t′ should match, i.e; we should have π′ ≈ π′

∅
. If this is not the case, the execution of

some actions must have gone wrong and we have to determine an action qualification

Diagnosis of Multi-agent Plan Execution 95

κ such that the predicted state derived using κ agrees with π′. This is nothing else then
a straight-forward extension of the diagnosis concept in MBD to plan diagnosis (cf.
[14,6]).

Definition 1. Let P = 〈A, <〉 be a plan with observations obs(t) = (π, t) and obs(t′)
= (π′, t′), where t < t′ ≤ depth(P) and let the action qualification κ be a set of triples
(a, d, depth(a)) with a ∈ A and d ∈ Da. Moreover, let κ induces a sound derivation
(π̄, t)→∗

κ;P (π′
κ, t′) given the plan P and the transition functions trj : Dj → 2Dj for

each action aj ∈ A.
Then κ is said to be a primary plan diagnosis (action diagnosis) of 〈P, obs(t), obs(t′)〉

iff π′ ≈ π′
κ.

So in a primary plan diagnosis κ, the observed partial state (π′) at time t′ and the
predicted state (π′

κ) at time t′ assuming the action qualification κ agree upon the values
of all objects O(π′) ∩ O(π′

κ) occurring in both states.
Consider again Figure 2 and suppose that we did not know that action a3 was abnor-

mal and that we observed obs(0) = ((d1, d2, d3, d4), 0) and obs(3) = ((d′1, d
′
3, d

′
5), 3).

Using the normal plan derivation relation starting with obs(0) we will predict a state
π′

κ at time t = 3 where π′
κ = (d′′1 , d′′2 , d′′3). If everything is ok (κ = ∅), the values

of the objects predicted as well as observed at time t = 3 should correspond, i.e. we
should have d′j = d′′j for j = 1, 3. If, for example, only d′1 would differ from d′′1 , then
we could qualify a6 as abnormal, since then the predicted state at time t = 3 using
κ = {(a6, ab, 2)} would be π′

κ = (d′′3) and this partial state agrees with the observed
state on the value of o3.

Note that for all objects in O(π′)∩O(π′
κ), the qualification κ provides an explanation

for the observation π′ made at time point t′. Hence, for these objects the qualification
provides an abductive diagnosis [5]. For all observed objects in O(π′) − O(π′

κ), no
value can be predicted given the qualification κ. Hence, by declaring them to be un-
predictable, possible conflicts with respect to these objects if a normal execution of all
actions is assumed, are resolved. This corresponds with the idea of a consistency-based
diagnosis [14].

4.2 Secondary Plan Diagnosis

Actions may fail because of unforeseen (environmental) conditions such as being struck
by lightning, malfunctioning equipment or incorrect beliefs of agents. Diagnosing these
secondary causes is more difficult since weather, equipment and agents may play a role
in the execution of several actions. Moreover, objects such as equipment and weather
may go through several unforeseen state changes.

A secondary qualification κ consists of triples (oj , d, t) where oj ∈ O − A is an
object that changes to the value d ∈ Dj at time point t. Usually we choose for the time
point t the depth depth(a) of the first action instance where change manifests itself. So,
for some action a, t = depth(a) and oj ∈ domO(a).

Definition 2. Let P = 〈A, <〉 be a plan with observations obs(t) = (π, t) and obs(t′)
= (π′, t′), where t < t′ ≤ depth(P) and let the action qualification κ be a set of
triples (o, d, t) with o ∈ O−A and d ∈ Do. Moreover, let κ induces a sound derivation

96 F. de Jonge, N. Roos, and C. Witteveen

(π̄, t)→∗
κ;P (π′

κ, t′) given the plan P and the transition functions trj : Dj → 2Dj for
each object oj ∈ O.

Then the qualification κ is said to be a secondary plan diagnosis of 〈P, obs(t),
obs(t′)〉 iff π′ ≈ π′

κ.

The secondary diagnosis can be divided into agent, equipment and environment diag-
nosis depending on whether the object o in a triple (o, d, t) ∈ κ belongs to Ag, E
or N respectively. Note that agent diagnosis is related to social diagnosis described
by Kalech and Kaminka [12,13] if the agents’ health modes are used to describe the
agents’ incorrect beliefs.

Predicting the future. Secondary diagnosis offers an important advantage over pri-
mary diagnosis. First, secondary diagnosis enables us to the determine which future
actions may also be affected by the malfunctioning agents and equipment, and by un-
foreseen state changes in the environment.

Definition 3. Let t be the current time point and let κ be a secondary diagnosis of the
plan executed sofar. Then the set of future actions that will directly be affected given the
current diagnosis κ is:

{a ∈ A | (oj , d, t′) ∈ κ, oj ∈ domO(a), d �= nor, depth(a) ≥ t ≥ t′}

Second, besides identifying the actions that will be affected, we can also determine the
goals that can still be reached.

Definition 4. Let t be the current time point, let π current partial state and let κ be
an secondary diagnosis of the plan executed sofar. Moreover, let (π, t) →κ;P (π′,
depth(P)). Then the set of goals that can still be realized is given by: {g ∈ G | π′ |= g}

Responsible agents. Besides knowing the underlying cause of plan execution failures,
it is also important to know the agents responsible for the failures. To illustrate this,
reconsidering the example in the introduction where the agent responsible for the belly
landing can be the pilot agent, the maintenance agent, or the airline agent that reduced
the maintenance budget.

Here we will present a very simple model of responsibility. We introduce a respon-
sibility function res : (O − N) → Ag specifying the agent that is responsible for each
of the action, agent and equipment objects.

Definition 5. Let κ be any diagnosis of a plan execution and let
res : (O − N) → Ag be a responsibility function.

Then for each event (o, d, t) ∈ κ, the responsible agent is determined by: res(o).

5 Conclusion

This paper describes a generalization of the model for plan diagnosis as presented in
[18,16]. New in the current approach is (i) the introduction of primary and secondary
diagnosis, and (ii) the introduction of objects representing actions, agents and equip-
ment. The primary diagnosis identifies failed actions and possibly in which way they
failed while the secondary diagnosis addresses the causes for action failures. The latter

Diagnosis of Multi-agent Plan Execution 97

is an improvement over the plan diagnosis presented in [18,16], where only dependen-
cies between action failures could be described using causal rules. An additional feature
of the proposed approach is that all objects can be modeled as discrete events systems.
This enables the description of the unknown dynamic behavior of objects such as equip-
ment over time. The secondary diagnosis then identifies the unknown state changes of
objects and possibly the agents that can be held responsible for the state changes.

References

1. L. Birnbaum, G. Collins, M. Freed, and B. Krulwich. Model-based diagnosis of planning
failures. In AAAI 90, pages 318–323, 1990.

2. A. L. Blum and M. L. Furst. Fast planning through planning graph analysis. Artificial
Intelligence, 90:281–300, 1997.

3. N. Carver and V.R. Lesser. Domain monotonicity and the performance of local solutions
strategies for cdps-based distributed sensor interpretation and distributed diagnosis. Au-
tonomous Agents and Multi-Agent Systems, 6(1):35–76, 2003.

4. C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer Acad-
emic Publishers, 1999.

5. L. Console and P. Torasso. Hypothetical reasoning in causal models. International Journal
of Intelligence Systems, 5:83–124, 1990.

6. L. Console and P. Torasso. A spectrum of logical definitions of model-based diagnosis.
Computational Intelligence, 7:133–141, 1991.

7. F. de Jonge and N. Roos. Plan-execution health repair in a multi-agent system. In PlanSIG
2004, 2004.

8. F. de Jonge, N. Roos, and H.J. van den Herik. Keeping plan execution healthy. In Multi-Agent
Systems and Applications IV: CEEMAS 2005, LNCS 3690, pages 377–387, 2005.

9. D. McDermott et al. The pddl planning domain definition language. In The AIPS-98 Planning
Competition Committee, 1998.

10. R. E. Fikes and N. Nilsson. Strips: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence, 5:189–208, 1971.

11. Bryan Horling, Brett Benyo, and Victor Lesser. Using Self-Diagnosis to Adapt Organiza-
tional Structures. In Proceedings of the 5th International Conference on Autonomous Agents,
pages 529–536. ACM Press, 2001.

12. M. Kalech and G. A. Kaminka. On the design ov social diagnosis algorithms for multi-agent
teams. In IJCAI-03, pages 370–375, 2003.

13. M. Kalech and G. A. Kaminka. Diagnosing a team of agents: Scaling-up. In AAMAS 2004,
2004.

14. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–95, 1987.
15. N. Roos, A. ten Teije, and C. Witteveen. A protocol for multi-agent diagnosis with spatially

distributed knowledge. In AAMAS 2003, pages 655–661, 2003.
16. N. Roos and C. Witteveen. Diagnosis of plans and agents. In Multi-Agent Systems and

Applications IV: CEEMAS 2005, LNCS 3690, pages 357–366, 2005.
17. H. Tonino, A. Bos, M. de Weerdt, and C. Witteveen. Plan coordination by revision in collec-

tive agent based systems. Artificial Intelligence, 142:121–145, 2002.
18. C. Witteveen, N. Roos, R. van der Krogt, and M. de Weerdt. Diagnosis of single and multi-

agent plans. In AAMAS 2005, pages 805–812, 2005.

Framework and Complexity Results for
Coordinating Non-cooperative Planning Agents

J. Renze Steenhuisen1, Cees Witteveen1, Adriaan W. ter Mors1,2,
and Jeroen M. Valk2

1 Faculty of Electrical Engineering, Mathematics and Computer Science, Delft
University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands,

tel.: +31 15 278 7486, fax +31 15 278 6632,
{J.R.Steenhuisen, C.Witteveen, A.W.terMors}@tudelft.nl

2 Almende, Westerstraat 50, 3016 DJ Rotterdam, The Netherlands,
tel.: +31 10 404 9444, fax +31 10 404 7773,

{Adriaan, Jeroen}@almende.nl

Abstract. In multi-agent planning problems agents are requested to
jointly solve a complex task consisting of a set of interrelated tasks. Since
none of the agents is capable to solve the whole task on its own, usually
each of them is assigned to a subset of tasks. If agents are dependent upon
each other via interrelated tasks they are assigned to, moderately coupled
teams of agents are called for. Such teams solve the task by coordinating
during or after planning and revising their plans if necessary. In this
paper we show that such complex tasks also can be solved by loosely
coupled teams of agents that are able to plan independently, although
the computational complexity of the coordination problems involved is
high. We also investigate some of the factors influencing this complexity.

Keywords: Multi-agent system, complex tasks, task assignment, plan-
ning, coordination, computational complexity.

1 Introduction

A multi-agent planning problem requires a set of autonomous planning agents
to come up with a joint plan for achieving a set of tasks. Usually, none of the
participating agents is capable of solving all tasks by itself. Therefore, each agent
is assigned a subset of tasks to carry out and each agent has to construct a plan to
carry out the tasks assigned to it. Obviously, it is required that these individual
plans are compatible with each other in the sense that together they should
constitute a feasible plan for the complete set of tasks. Therefore, we need some
form of coordination between the agents.

Like in [1,2], we classify multi-agent planning problems according to the type
of coordination needed. This classification is based on a schematic partitioning of
multi-agent planning problems into three phases: A task-allocation phase where
it is decided who does what, a planning phase where it is decided how to do it,
and a task-execution phase where it is done.

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 98–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Framework and Complexity Results 99

Problems where coordination is only needed in the task-allocation phase are
problems that can be solved by loosely-coordinated agents that are able to plan
and act autonomously, but need to coordinate with respect to the task allocation
(e.g., negotiating about the subtasks to be assigned). Typical tasks that can be
solved in this way are reconnaissance tasks and simple pick-up and delivery tasks.
If coordination is also needed in the planning phase, such problems are said to
be solvable by moderately-coordinated agents. Such agents need to coordinate
in the pre-execution phase, but are not dependent upon each other if the plan
is executed. Typical problems in this category are monitoring and multi-modal
transportation tasks. Finally, problems where coordination between agents is
needed in all three phases are problems that can be solved by tightly-coordinated
agents. These agents need coordination not only in the preparation but also in
the execution phase. Examples are platooning vehicles and moving in formation.

Most approaches to coordination in multi-agent planning, like [3, 4, 5], stress
the intertwining of planning and coordination processes allowing the agents to
revise their plans by exchanging information during the planning process. Other
approaches, like [6, 7, 8], consider coordination as an after-planning process to
either remove conflicts between independently developed plans or to improve
such plans by exploiting positive interactions between them.

In both these approaches it is assumed that due to coordination requests –
either during or after planning– individual agents are prepared to adapt and
revise their current (partial) plans in order to obtain a feasible joint plan.

In this paper, we concentrate on solving multi-agent planning problems where
agents are self-interested and non-cooperative. Typical problems we are inter-
ested in are solving complex tasks that require the joint effort of a set of agents,
but where interaction between the agents during planning and execution is ab-
sent. Examples of such problems are multi-modal transportation problems that
have to be solved by the joint effort of competitive transportation organizations
and patient planning in hospitals where self-interested and independent parties
are involved in scheduling health-care resources. In all these applications, we
have to assume that (i) the agents do not want to be interfered during planning
and (ii) agents do not want to revise their plans afterwards. We will call the
problem of ensuring that a feasible joint plan will be created, while taking into
account (i) and (ii), the plan-coordination problem. Clearly, both approaches
mentioned above are not suitable to solve this plan-coordination problem.

At first sight seems that the plan-coordination problem can only be used to
solve task planning problems that require loosely-coordinated agents, since in
that case the planning can be achieved by the agents independently. In such
cases, it is often sufficient to deal with coordination in the task-assignment (and
task decomposition) process, such that the plan-coordination problem is solved
in a trivial way.

In this paper, however, we will show that the plan-coordination problem can
also be used to solve tasks that require moderately-coordinated agents. We will
develop a general framework for representing and solving the task assignment
and plan-coordination problem. The main idea we apply here is that a set of

100 J.R. Steenhuisen et al.

tasks requiring moderately-coupled agents to solve them can be reduced to a set
of tasks requiring loosely-coupled agents. This reduction ensures that the set of
independently developed plans constructed for the latter set is also a solution
for the former set of tasks. We will use this framework to describe this reduction
and to establish some relations between properties of tasks, properties of agents,
and the complexity of the resulting plan-coordination problems.

Significance and Perspectives The approach we propose can be viewed upon
from different perspectives. First, it is an attempt to partially integrate the
research areas of task assignment, coalition formation, and multi-agent planning.
In particular, we will show that in solving moderately-coupled tasks, one has to
recognize the interaction effects between individual planning methods of agents
and the task-assignment methods employed, since the outcome of one agent is
not only determined by the set of tasks it receives but also by the plans developed
by other agents. We will show that such interaction effects have consequences
for the computational complexity of the plan-coordination problem.

Second, our approach can be viewed as an attempt to connect other research
on coordinating agents like social laws [9,10] and cooperation protocols [11] with
multi-agent task-based planning research. Social laws are general rules that gov-
ern agent behavior. If a set of agents abide by these rules, then their behavior
will be coordinated without the need for any problem-specific information ex-
change between the agents. In many situations, however, coordination cannot be
achieved (or not efficiently) through general, problem-independent rules alone.
In such cases, cooperation protocols can be applied that require simple forms
of problem-specific information exchange before the agents can start planning.
These protocols guarantee that if the agents adhere to the protocol, then the
individual plans can easily be assembled into a feasible joint plan for the overall
task. Our approach to solve plan-coordination problems for moderately-coupled
agents comes down to reducing these problems to plan-coordination problems
for loosely-coupled agents that agree upon cooperation protocols.

Finally, our approach can be viewed upon from a broader computational per-
spective. Note that tasks requiring loosely-coupled coordination allow the agents
to plan independently. Hence, they allow the multi-agent planning problem to
be partitioned into independent planning subproblems. For moderately-coupled
plan-coordination problems, such a partitioning is not possible. As we will show,
solving moderately-coupled plan-coordination problems for self-interested agents
comes down to transforming moderately-coupled plan-coordination problems
into loosely-coupled plan-coordination problems in such a way that the origi-
nal problem is changed in a minimal way. In other words, our approach is an
example of applying a minimal change and a task decomposition approach to
solve a plan-coordination problem.

2 Framework

The formal framework we present is intended to capture the basic aspects of
task-based planning and coordination of non-cooperative agents. It enables us

Framework and Complexity Results 101

to distinguish the main components of the plan-coordination problem –and their
interactions– that we are interested in:

1. a complex task that requires the joint effort of several agents to complete it,
2. a task-assignment process by means of which each agent obtains a subset of

tasks to complete,
3. a planning process enabling each agent to complete its subset of tasks, and
4. a plan-coordination mechanism by means of which the completion (if possi-

ble) of the original complex task can be ensured.

Complex Task. We consider a set of agents A = {A1, . . . ,An} that have to
complete a complex task T . Such a complex task is defined as a set of tasks
T = {t1, . . . , tk} together with two binary relations between them. One of these
relations is the decomposition relation ρ, relating an abstract task t to a set of
more primitive subtasks.1 Therefore, we define an OR-decomposition relation ρ∨
to model this type of relation between an abstract task t and its (more primi-
tive) subtasks ti. On the other hand, running a factory requires multiple tasks to
be done, such as the purchasing of goods and hiring of personnel, and optimiz-
ing production lines. To model this relation, we define an AND-decomposition
relation ρ∧ between an abstract task t and a set of subtasks ti.2

The second relation is a precedence relation ≺ among tasks, where t ≺ t′

means that t has to be completed before t′ can start. The set of precedence
constraints induces a partial order on the tasks in T .

In addition, an agent can only complete a task when it is capable of carrying
it out at all. Therefore, capabilities need to be associated with both tasks and
agents. These capabilities are incorporated by defining capability vectors for both
the agents c(Ai) and the tasks c(tj). We postpone their detailed description to
a separate paragraph about Task Assignment below.

We now formally define a complex task as T = (T, ρ, ≺, c(T)) thereby ex-
tending the concept of a task tree [12, 13]. In this tuple, T represents the set of
abstract and primitive tasks, ρ is the decomposition relation, ≺ a precedence
order, and c(T) is the abbreviation for the set of task capability vectors.

In Figure 1, an example is shown of a complex task and its decomposition
into subtasks with precedence relations

In a complex task T = (T, ρ, ≺, c(T)), we require that the decomposition ρ(t)
of a task t is unique and that it is either completely in ρ∨, or completely in
ρ∧ (i.e., ρ∨ ∩ ρ∧ = ∅). Note that this does not limit the expressiveness of our
framework with respect to tasks that can be decomposed by a combination of
OR and AND decomposition (e.g., in Figure 1, we have ρ(t1) = {t11, t12} ⊆ ρ∨
with ρ(t11) = {t111, t112} ⊆ ρ∧).

1 For instance, when goods need to be transported from a harbor to a factory we have
an abstract task transport. Such an abstract task could be completed by carrying
out one of the more primitive subtasks transport by train, transport by truck, and
transport by ship.

2 In [12], a similar decomposition of complex tasks is used.

102 J.R. Steenhuisen et al.

t 112t 111

t 11 t 12

t 1
t 2

t 21
t 22 t 23

t

Fig. 1. An example complex task decomposed (dashed arcs) into subtasks with prece-
dence relations (normal arcs) between them

Moreover, the decomposition and precedence relation are related in two ways.
First, the relations are orthogonal, which means that precedence relations only
exist between tasks that have no decomposition relation between them (i.e., ρ+∩
(≺ ∪ ≺c)+ = ∅).3 Second, precedence relations are inherited via decomposition
(i.e., if t1 ≺ t2, then for all t′1 ∈ ρ(t1) and for all t′2 ∈ ρ(t2) we have that t′1 ≺+ t2,
t1 ≺+ t′2, and t′1 ≺+ t′2).

Having defined the hierarchical decomposition of a set of tasks, we now define
a task network (T, ρ) with ρ = ρ∨ ∪ ρ∧, to be able to express when a task and
a set of tasks has been completed. We say that a task t ∈ T in a task network
(T, ρ) is completed if exactly one of the following conditions holds:

1. t has been completed directly,
2. a task t′ ∈ ρ(t) ⊆ ρ∨ has been completed, or
3. all tasks t′ ∈ ρ(t) ⊆ ρ∧ have been completed.

This notion naturally extends to the completion of a task network. A task
network (T, ρ) is said to be completed if all initial tasks in (T, ρ) have been
completed, that is if all tasks in the set {t | ρc(t) = ∅} have been completed.
Note that this framework differs from others in the sense that it does not restrict
completion to completing the set of leaf tasks {t | ρ(t) = ∅}.

Task Assignment Now that we have defined when a task network (T, ρ) associ-
ated with a complex task T is completed, we can deal with the problem of which
agent is going to complete which task.

First, an individual agent Ai must have the required capabilities to be able to
carry out a certain task t ∈ T . We assume that in the entire multi-agent system,
m distinct capabilities c1, . . . , cm can be distinguished. The capabilities of agent
Ai are represented by the vector c(Ai) = (c1(Ai), . . . , cm(Ai)) ∈ (N ∪ {∞})m,
where cj(Ai) specifies how much agent Ai can offer of capability cj (we will

3 The following notations are used on a binary relation σ: transitive closure σ+, tran-
sitive reduction σ−, and the converse σc.

Framework and Complexity Results 103

assume integral quantities). Similarly, c(tj) = (c1(tj), . . . , cm(tj)) ∈ N
m is the

vector that specifies how much of each capability is required for carrying out
task tj ∈ T . An agent Ai is said to be able to carry out a subset of tasks Ti ⊆ T
iff c(Ai) ≥

∑
t∈Ti

c(t) (where x ≥ y iff for all i = 1, . . . , m, xi ≥ yi).4 In the
following, the set of agent capability vectors and the set of task capability vectors
are abbreviated by c(A) and c(T), respectively.

A task instance where the agents are not already assigned to tasks is called
a free task instance and is specified as a tuple (T, ρ, ≺, A, c(A), c(T)). Such an
instance specifies the tasks, their decomposition relation, their order dependen-
cies, the task requirements, and the agent capabilities. To complete the task
network (T, ρ) associated with the free task instance, individual tasks t ∈ T
have to be assigned to agents. Therefore, we need to define which sets of tasks
can be assigned to agents in order to complete (T, ρ). Such a set T ′ ⊆ T is called
a candidate-assignment set and has to satisfy the following constraints:

1. T ′ is a ρ+-independent subset of T : if t, t′ ∈ T ′ then neither tρ+t′ nor t′ρ+t,
2. for all t ∈ T , if t′ ∈ ρ(t) and ρ(t) ⊆ ρ∨ then ρ(t) ∩ T ′ = {t′}, and
3. (T, ρ) is completed by completing all tasks in T ′.

In Figure 1, the set T ′ = {t111, t112, t2} is a candidate-assignment set. Note
that a candidate-assignment set does not have strict supersets nor strict subsets
that are candidate-assignment sets. Moreover, if ρ = ∅, there is only one unique
candidate-assignment set (i.e., T ′ = T).

A partitioning {Ti}n
i=1 of a candidate-assignment set T ′ with every t ∈ T ′

assigned to an agent Ai capable of carrying it out is called an assignment set if

1. the set
⋃n

i=1 Ti is a candidate-assignment set, and
2. every agent Ai is capable of completing all tasks in its assigned partition Ti.

Applying an assignment set to a free task instance (T, ρ, ≺, A, c(A), c(T))
results in a fixed task instance ({Ti}n

i=1, ≺, A, c(A), c(T)). The agents Ai are
characterized by the blocks of the partitioning {Ti}n

i=1 which are assumed, with-
out loss of generality, to be non-empty. Additionally, the decomposition relation
and the capabilities are no longer needed, because each agent is able to complete
the tasks assigned to it which are ρ-independent. Therefore, fixed task instances
will be abbreviate by the tuple ({Ti}n

i=1, ≺) in the remainder of this text.

Planning As the result of task assignment, the set of precedence constraints ≺
in a fixed task instance ({Ti}n

i=1, ≺) is split into two disjoint subsets:5

1. the set of intra-agent constraints ≺intra=
⋃n

i=1 ≺i=
⋃n

i=1(≺+ ∩(Ti × Ti))−,
contains all precedence constraints between tasks assigned to agent Ai, and

4 If cj(Ai) is finite, the capability is said to be a consumable resource (e.g., fuel, time,
or money). If cj(Ai) = ∞, it is a non-consumable capability (e.g., knowledge or a
skill).

5 We would like to present these relations as concisely as possible. Therefore, we will
use a transitive reduction of a transitively closed relation whenever it is possible.

104 J.R. Steenhuisen et al.

2. the set of inter-agent constraints ≺inter= (≺+ ∩
⋃

i�=j(Ti × Tj))−, contains
all precedence constraints between tasks assigned to different agents.

Note that each agent Ai has to complete its part (Ti, ≺i) of the complex task,
which is generated by the set of tasks Ti assigned to it. In order to complete
(Ti, ≺i), each agent has to construct a plan (or schedule) for it. Such a plan can
be represented as a partial ordering of the tasks Ti that satisfies the precedence
constraints ≺i. Irrespective of the (possibly domain-specific) planning tools em-
ployed by Ai, we will therefore assume that the resulting plan always can be
represented by a partial order Pi = (Ti, πi) with ≺i⊆ πi.

From an individual agent’s point of view, it wants to be completely au-
tonomous in developing its plan Pi and unwilling to revise it afterwards. There-
fore, we define a joint plan for a set of agents Ai on a fixed task instance
({Ti}n

i=1, ≺) as a plan P = ({Ti}n
i=1, π) where

1. π respects ≺, that is ≺ ⊆ π, and
2. each individual plan Pi = (Ti, πi) of agent Ai is respected, that is, πi ⊆

(π ∩ (Ti × Ti)).

Clearly, if such a joint plan exists, it implies that the current plans of all the
agents are coordinated. There is no need for any revision of the individual plans
in executing the joint plan.

Plan Coordination The existence of such a joint plan is by no means guaran-
teed: Due to the set of inter-agent precedence constraints, combinations of the
individual plans together with this set can lead to breaking of the partial order
as is shown in the following simple example.

Example 1. In Figure 2, a simple situation is depicted with four agents A1, A2,
A3, A4 being assigned two tasks each of two complex tasks. It is clear that
multiple combinations of individual plans of agents lead to inter-agent cycles.
For example, if A1 chooses a plan where t8 ≺ t1 and A3 chooses a plan where
t3 ≺ t6, there exists such a cycle. Hence, the possibility of such plans prevents
the existence of a joint plan respecting every individual plan.

t 1

t 8

t 2

t 7

t 3

t 6

t 4

t 5

Fig. 2. Problems can occur when planning autonomously

Framework and Complexity Results 105

The plan-coordination problem now can be stated as follows: How can we
guarantee that every possible set of individual plans Pi can be easily combined
into a feasible joint plan, without the need to revise the individual plans? In
fact, this means that we want to have a solution to a moderately-coupled plan-
coordination problem –there are constraints between the tasks assigned to dif-
ferent agents– without needing the agents to coordinate during planning.

A given fixed task instance ({Ti}n
i=1, ≺) is said to be coordinated, if it holds

that for every set of individual plans {Pi = (Ti, πi)}n
i=1 constructed by the agents

there exists a joint plan respecting the individual plans Pi. In [14], it was shown
that every fixed task instance can be transformed into a coordinated one by
adding a minimum number of intra-agent constraints Δ =

⋃n
i=1 Δi such that

the resulting instance ({Ti}n
i=1, ≺ ∪ Δ), is a coordinated instance.

In Figure 2, the reader might check that Δ = {t7 ≺ t2, t6 ≺ t3, t5 ≺ t4}
is such a set of additional constraints that turns the fixed task instance into a
coordinated one. The problem, of course, is to determine how difficult it is to
find such a set of additional constraints.

3 The Computational Complexity of Coordination

In this section, we will analyze the computational complexity of plan coordina-
tion. We study three variants of the plan-coordination problem and some factors
that influence their complexity. Some results have been published in [14]; the
results about the complexity of coordination when the number of agents is kept
fixed are new.

3.1 Variant I: Pure Coordination

We start with analyzing the complexity of coordination in multi-agent plan-
ning isolated from the task-assignment process and define the following decision
problem for fixed task instances:

Pure Coordination Recognition (PCR)
INSTANCE: Given a fixed task instance ({Ti}n

i=1, ≺).
QUESTION: Is this instance coordinated?

We have shown that PCR is coNP -complete [15], by a non-trivial reduction
from the complement of the Path With Forbidden Pairs (PWFP) problem.

While PCR only asks whether a fixed task instance is coordinated, it does
ask for the existence of a bounded coordination set as in the following problem:

Pure Coordination (PC)
INSTANCE: Given a fixed task instance ({Ti}n

i=1, ≺) and integer K ≥ 0.
QUESTION: Does there exist a coordination set Δ with |Δ| ≤ K such
that the fixed task instance ({Ti}n

i=1, ≺ ∪ Δ) is coordinated?

Intuitively, guessing a coordination set Δ, we can verify in polynomial time
using a PCR-oracle whether the instance ({Ti}n

i=1, ≺ ∪ Δ) is coordinated. Since
PCR is coNP -complete, it follows that PC ∈ Σp

2. It turns out that PC is
Σp

2-complete, using a reduction from a quantified version of PWFP [15].

106 J.R. Steenhuisen et al.

Factors Influencing the Complexity of Pure Coordination It seems rea-
sonable to assume that one source of complexity of the plan-coordination prob-
lem can be attributed to the number of tasks each agent receives and –indirectly–
to the complexity of the single-agent planning problems for these tasks. However,
it turns out that the PC problems remain intractable even if the single-agent
planning problems are trivial (see Table 1). Notice that the Σp

2-completeness of
PC is still open for instances where each agent has at most 4, 5, or 6 tasks.

Table 1. Complexity of PCR and PC with limited number of tasks per agent.

|Ti| = 2 |Ti| ≤ 3 |Ti| ≤ 4 |Ti| ≤ 7

PCR P P coNP -complete coNP -complete

PC NP -complete NP -complete Σp
2 Σp

2-complete

Due to limited space, we will merely give hints on how these results are ob-
tained. All proofs of these and other complexity results can be found in [16]. First,
for PC with |Ti| = 2 a reduction can be made from Feedback Vertex Set.
For PCR with |Ti| ≤ 3, a reduction can be made to topological sorting. The com-
pleteness of PCR with |Ti| ≤ 4, and PC with |Ti| ≤ 7, is derived from the prop-
erties of the reductions used in the completeness proofs of the general variants.

Another source of complexity might be the number of agents involved. Indeed,
if we limit the number of agents, it can be shown that the PCR problem is in P
for any fixed number of agents. This can be proven by reducing the problem to
simple inter-agent cycle-testing. Detecting such a cycle can be achieved in poly-
nomial time [16]. As an easy consequence, the associated PC-problems are in
NP . They turn out to be NP -complete for all fixed values |A| = n ≥ 3, which
can be proven by reduction from 3-Partite Vertex Cover [16]. Although we
suspect PC for n = 2 to be tractable, the complexity of this problem is still open.

Table 2. Complexity of PCR and PC with fixed number of agents.

|A| = 2 3 ≤ |A|
PCR P P

PC NP NP -complete

3.2 Variant II: Coordinated Assignment

If a task-assignment problem is part of the coordination problem, we define

Coordinated Assignment Recognition (CAR)
INSTANCE: Given a free task instance (T, ρ, ≺, A, c(A), c(T)).
QUESTION: Does there exist an assignment set {Ti}n

i=1 such that the
resulting fixed task instance ({Ti}n

i=1, ≺) is coordinated?

Framework and Complexity Results 107

The CAR problem turns out to be Σp
2-complete [14]. Note that here task-

assignment problems seem to constitute an independent factor of complexity as
the total complexity goes up one step in the polynomial hierarchy compared to
PCR. Note that checking a candidate-assignment set for a free task-instance is
polynomially verifiable, both for the case where agents have consumable capabil-
ities as well as the case where agents have non-consumable capabilities. However,
the problem of deciding whether there exists a suitable task assignment for a
free task instance is NP -hard for consumable capabilities6 but polynomially
solvable for non-consumable capabilities. Therefore, one might expect that the
consumability of capabilities would influence the complexity of CAR. This turns
out not to be the case: The CAR problem turns out to be Σp

2-complete for both
assignment conditions.

Since adding the task-assignment problem resulted in moving one step up in
the polynomial hierarchy for the coordination recognition problem, one would
expect the same for the coordination problems themselves. However, this is not
the case for the following problem, where the task-assignment problem is added
to the pure coordination problem.

Coordinated Assignment (CA)
INSTANCE: Given a free task instance (T, ρ, ≺, A, c(A), c(T)) and a K.
QUESTION: Does there exist an assignment set {Ti}n

i=1 and a coordi-
nation set Δ ⊆

⋃n
i=1(Ti ×Ti) with |Δ| ≤ K such that the resulting fixed

task instance ({Ti}n
i=1, ≺ ∪ Δ) is coordinated?

Note that it suffices to guess both an assignment and a coordination set Δ
to verify in polynomial time using a PCR-oracle that the given instance is a
yes-instance. Therefore, the problem cannot be harder than the PC problem.
In fact, it turns out that the CA is Σp

2-complete. Hence, maybe contrary to
expectation, adding a task-assignment problem does not increase the complexity
of the coordination problem in an essential way.

3.3 Variant III: Complete Coordination

Obviously, the next step is to extend the notion of being coordinated from having
some coordinated assignment to having all task assignments being coordinated.
The associated coordination recognition problem can be stated as follows:

Complete Coordination Recognition (CCR)
INSTANCE: Given a free task instance (T, ρ, ≺, A, c(A), c(T)).
QUESTION: Is it true that for all assignment sets {Ti}n

i=1 the resulting
fixed task instance ({Ti}n

i=1, ≺) is coordinated?

It turns out that CCR is Πp
2-complete [14].

Again we are interested in checking whether a bounded coordination set exists
for this problem. This problem can be seen as guaranteeing that every possible
assignment of tasks to agents results in a coordinated fixed task instance by
6 This can be shown by reduction from Partition.

108 J.R. Steenhuisen et al.

adding a limited number of additional constraints. We now define the most
general variant of the coordination problem as

Complete Coordination (CC)
INSTANCE: Given a free task instance (T, ρ, ≺, A, c(A), c(T)) and a K.
QUESTION: Is it true that for all assignment sets {Ti}n

i=1 there exists a
coordination set Δ ⊆

⋃n
i=1(Ti ×Ti) with |Δ| ≤ K such that the resulting

fixed task instance ({Ti}n
i=1, ≺ ∪ Δ) is coordinated?

By guessing an assignment and using a Σp
2-oracle for the resulting PC prob-

lem, we can verify a counter-example in polynomial time. Hardness for this class
can be proven by reducing a quantified version of PWFP to it, which is Πp

3-
complete. It turns out that the CC-problem is Πp

3-complete.

Table 3. Complexity of three variants of the coordination problem

Coordination Recognition Coordination

Pure Coordination coNP -complete Σp
2-complete

Coordinated Assignment Σp
2-complete Σp

2-complete

Complete Coordination Πp
2-complete Πp

3-complete

To sum up, in Table 3, the complexity results of the discussed three variants
of the coordination problem are given. It is clear that the general problems are
intractable. Therefore, we have to rely on approximation algorithms for find-
ing practical solutions to these problems. We refer the reader to [14] for some
practical applications using such approximation algorithms for coordination.

4 Concluding Remarks

We discussed a general framework capturing the basic aspects of task-based plan-
ning and coordination for non-cooperative agents. One of the advantages of this
framework is that it allows us to study several factors, such as task-assignment
procedures and capabilities of agents that might affect the complexity of the
plan-coordination problem. The general plan-coordination problems turned out
to be intractable. Studying the change in complexity when bounding the number
of tasks per agent or the number of agents, we showed that these subclasses are
much easier to solve, especially when the number of agents is kept constant.

These results are not only of theoretical interest, but also have some practical
implications. First, because we assumed self-interested non-cooperative agents,
the proposed solution to the plan-coordination problem allows the agents to plan
independently. This enables the (re)use of single-agent planners in a multi-agent
planning setting. After the addition of the constraints, the moderately-coupled
planning problem has been reduced to a loosely coupled one. It turns out that
in this way we can solve the multi-agent planning problem more efficiently by
decomposing it into smaller subproblems that can be solved independently.

Framework and Complexity Results 109

Secondly, these results show that we can only hope for approximation al-
gorithms to solve these problems. In fact, in [14], such approximations have
successfully been applied to solve multi-modal logistic planning problems.

Finally, we note that one of the shortcomings of the current framework is
that it lacks the notion of time. Currently, we are extending our framework
to represent time intervals and time constraints on tasks to apply our plan-
coordination methods on. This will enable us to generalize similar decoupling
methods, like the temporal decoupling method [17], and to use them as part of
the coordination of temporal planners.

References

1. Dias, M.B., Zlot, R.M., Kalra, N., Stentz, A.: Market-based multirobot coordi-
nation: A survey and analysis. Technical Report CMU-RI-TR-05-13, Robotics
Institute, Carnegie Mellon University (2005).

2. Kalra, N., Stentz, A., Ferguson, D.: Hoplites: A market framework for complex
tight coordination in multi-agent teams. Technical Report CMU-RI-TR-04-41,
Robotics Institute, Carnegie Mellon University (2004).

3. Decker, K.S., Lesser, V.R.: Designing a family of coordination algorithms. In:
Proc. of DAI. (1994) 65–84.

4. Durfee, E.H., Lesser, V.R.: Partial global planning: A coordination framework
for distributed hypothesis formation. IEEE Transactions on Systems, Man, and
Cybernetics 21(5) (1991) 1167–1183.

5. Ephrati, E., Rosenschein, J.S.: Multi-agent planning as the process of merging
distributed sub-plans. In: Proc. of DAI. (1993) 115–129.

6. Cox, J.S., Durfee, E.H.: Discovering and exploiting synergy between hierarchical
planning agents. In: Proc. of AAMAS. (2003) 281–288.

7. Foulser, D.E., Li, M., Yang, Q.: Theory and algorithms for plan merging. Artificial
Intelligence Journal 57(2-3) (1992) 143–182.

8. von Martial, F.: Coordinating Plans of Autonomous Agents. Springer (1992).
9. Moses, Y., Tennenholtz, M.: Artificial social systems. Computers and AI 14(6)

(1995) 533–562.
10. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: Off-line

design. Artificial Intelligence 73(1–2) (1995) 231–252.
11. Jennings, N.R.: Commitments and conventions: The foundation of coordination in

multi-agent systems. The Knowledge Engineering Review 8(3) (1993) 223–250.
12. Zlot, R.M., Stentz, A.: Market-based multirobot coordination for complex tasks.

International Journal of Robotics Research, Special Issue on the 4th International
Conference on Field and Service Robotics 25(1) (2006) 73–101.

13. Zlot, R.M., Stentz, A.: Market-based multirobot coordination using task abstrac-
tion. In: Proc. of FSR. (2003).

14. Buzing, P., ter Mors, A.W., Valk, J.M., Witteveen, C.: Coordinating self-interested
planning agents. Autonomous Agents and Multi-Agent Systems 12(2) (2006).

15. Valk, J.M.: Coordination among Autonomous Planners. PhD thesis, Delft Univer-
sity of Technology (2005).

16. Steenhuisen, J.R., Witteveen, C.: Complexity studies in coordinating non-
cooperative planning agents. Technical report, Delft University of Technology
(2006) Forthcoming.

17. Hunsberger, L.: Group Decision Making and Temporal Reasoning. PhD thesis,
Harvard University (2002).

A Model Driven Approach to Agent-Based
Service-Oriented Architectures

Ingo Zinnikus1, Gorka Benguria2, Brian Elvesæter3,
Klaus Fischer1, and Julien Vayssière4

1 DFKI GmbH, Stuhlsatzenhausweg 3 (Bau 43), D-66123 Saarbruecken, Germany.
2 European Software Institute (ESI) - Corporacion Tecnologica Tecnalia - Parque Tecnológico

de Zamudio, # 204 E-48170 Zamudio Bizkaia - Spain.
3 SINTEF ICT, P.O. Box 124 Blindern, N-0314 Oslo, Norway

4 SAP Research - Level 12 - 133 Mary Street - Brisbane QLD 4000 - Australia
Ingo.Zinnikus@dfki.de, Gorka.Benguria@esi.es,

Brian.Elvesater@sintef.no, Klaus.Fischer@dfki.de,
Julien.Vayssiere@sap.com

Abstract. Business process management has been identified as an interesting
application area for agent technologies. Current developments in Web technolo-
gies support the execution of business processes in a networked environment. In
this context, the flexible composition and usage of services in a service-oriented
environment is a key feature. Additionally, the model-driven architecture (MDA)
idea of transforming models on different abstraction levels, from highly abstract
design-oriented views to an executable program, is a current trend in business
process modeling. BDI agents provide a framework for both aspects by employ-
ing a planning from second principles approach, which uses a predefined library
of plans and instantiates and adapts these plans. From this perspective, plans
are design-time models for agent task execution and for Web Service compo-
sition. This paper presents a Rapid Prototyping framework for SOAs built around
a Model-Driven Development methodology which we use for transforming high-
level specifications of an SOA into executable artefacts, both for Web Services
(WSDL files) and for BDI agents. The framework was designed to handle a
mix of new and existing services and provides facilities for simulating, logging,
analysing and debugging. Our framework was validated on a real industrial elec-
tronic procurement scenario in the furniture manufacturing industry. Once input
from business experts had been collected, creating the high-level PIM4SOA (Plat-
form Independent Model for SOA) model, deriving the Web service description
and incorporating existing Web services took less than a day for a person already
familiar with the techniques and tools involved. We show that rapid prototyp-
ing of SOAs is possible without sacrificing the alignment of the prototype with
high-level architectural constraints.

1 Introduction

Service-oriented architectures (SOAs) have the potential to increase significantly the in-
teroperability of information and communications technology (ICT) applications. How-
ever, business applications ask for planned and customizable services, which basically

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 110–122, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Model Driven Approach to Agent-Based Service-Oriented Architectures 111

comes down to the requirement for a methodology to do service composition in a flex-
ible and efficient manner. The flexible combination and usage of services in such a
service-oriented environment is a key feature that we believe can be best supported by
agent technologies. Regarding service composition for an individual agent, we have two
extreme options. On the one hand, we can try to adopt a general purpose planner and
try to map service descriptions to individual actions which are then composed by the
planner. In a naive approach, this will most likely result in a linear sequence of actions,
i.e. service calls, that make up the newly composed service. It is quite unlikely that a
general purpose planner will come-up with more complex structures. Business Process
Modellers are often reluctant when confronted with the idea of choosing services or
even processes at run-time. Control of the actual services invoked and the concrete
processes performed is preferred over the possibility of an unperceived program deci-
sion. On the other hand, we can of course program the composition of services directly
in some object-oriented programming language. In this case we are not restricted re-
garding the structures which we want to use. However, almost every change to a system
which adopts such an approach is likely to end-up in painstaking programming sessions.

Composition languages such as e.g. BPEL4WS [1] address some of the problems
arising from this approach, but still have limitations regarding flexibility and adaptabil-
ity (especially during run-time). BPEL4WS does not prevent ways for choosing services
at run-time, but a service endpoint discovered at run-time must adhere to e.g. a declared
partner link and port type. Fault handlers allow the compensation of failures, but the
concrete action to be performed in case of a failure has to be modeled in advance.

A planning from second principles approach which uses a predefined library of plans
and instantiates and adapts these plans for the task at hand, when the system is at work,
seems to bring together the best of two extreme approaches just described. The plan
library can be maintained and incrementally updated and the agent will automatically
take advantage of the knowledge which the plan library provides. How complex the
plan structures in the plan library can be depends on the language which we use for
specifying these plans.

SOAs as an architectural style for distributed systems have steadily been gaining
momentum over the last few years and are now considered as mainstream in enterprise
computing. Compared to earlier middleware products, SOAs put a stronger emphasis
on loose coupling between the participating entities in a distributed system. The four
fundamental tenets of Service Orientation [2] capture the essence of SOAs: explicit
boundaries, autonomy of services, declarative interfaces, data formats and policy-based
service description.

Web Services are the technology that is most often used for implementing SOAs.
Web Services are a standards-based stack of specifications that enable interoperable
interactions between applications that use the Web as a technical foundation [3]. The
emphasis on loose coupling also means that the same degree of independence can be
found between the organisations that build the different parts of an SOA. The teams in-
volved only have to agree on service descriptions and policies at the level of abstraction
prescribed by the different Web Service standards.

Our approach relies on a model-based approach to SOA prototyping that allows us to
take existing services into account at a fairly high level of abstraction while keeping the

112 I. Zinnikus et al.

development of new components aligned with existing ones at each step of the process,
from early modelling all the way down to execution and monitoring.

Section 2 introduces the framework for rapid prototyping for SOA. Section 3 details
the model-driven development framework. Section 4 details the service enactment and
monitoring platform. Section 5 presents how an autonomous agents framework can be
used for performing the tasks of composition, mediation and brokering between Web
Services. Section 6 introduces a detailed example based on a real industry scenario.
Section 7 concludes and proposes avenues for future work.

2 A Framework for Rapid Prototyping of Service-Oriented
Architectures

The framework for Rapid Prototyping of SOAs presented here is composed of three
parts: a modelling part, a service part and an autonomous agent part. The modelling part
is concerned with applying Model-Driven Development (MDD) techniques and tools
to the design of SOAs. It defines models and transformations that are specific to the
concepts used for SOAs, such as Web Service descriptions and plans for autonomous
agents. The service part provides a highly flexible communication platform for Web
services. The autonomous agent part deals both with designing and enacting service
compositions as well as performing mediation, negotiation and brokering in SOAs.

Each of these three parts leverages the others in various ways. For example, the
service part invokes the autonomous agents framework for starting the execution of a
service composition described by a plan. The reverse also applies: autonomous agents
may invoke Web Services through the tools from the services part. In turn, a description
of a service composition at a platform-independent level can be transformed into a
plan for autonomous agents, especially BDI agents (see Section 5). High-level service
models can also be transformed into standards-based documents such as WSDL files.

Fig. 1. High-level view of the SOA framework

Figure 1 gives a high-level overview of our framework, illustrating the main com-
ponents as well as the flow of existing and generated artefacts such as WSDL files and
BDI agent plans. The components of the framework are:

A Model Driven Approach to Agent-Based Service-Oriented Architectures 113

– The MDD framework defines the metamodels used to specify SOAs. It also pro-
vides modelling guidelines, model transformation and generation support for exe-
cution artefacts such as WSDL files and BDI plans. Importantly, it also supports
importing existing WSDL files into the SOA models.

– The WSDL Analyzer is a tool for detecting similarities at a structural level between
WSDL descriptions of Web services and generating the corresponding mappings.
It supports flexible service invocation in a dynamic environment and the integration
of external services.

– The Johnson tool is responsible for invoking Web services and receiving calls is-
sued by Web service clients. The Lyndon tool takes WSDL files as input and con-
figures Johnson for playing either the role of service provider, service consumer or
service proxy for the service described by the WSDL file analyzed.

– The Jack [4] tool is used for specifying plans for autonomous agents which form
teams that can invoke or receive calls from Web services. The plans used may be
created as the result of an MDD process.

– The RDF store stores as RDF files both design-time information (WSDL files) and
runtime information (SOAP messages) for the purpose of monitoring.

3 Model-Driven Development Framework for SOA

Designing SOAs at the enterprise level involves several different stakeholders within
the enterprise. In order to support the various views pertinent to these stakeholders, we
have defined an MDD framework. The MDD framework partitions the architecture of a
system into several visual models at different abstraction levels subject to the concerns
of the stakeholders. This allows important decisions regarding integration and interop-
erability to be made at the most appropriate level and by the best suited and knowledge-
able people. The models are also subject for semi-automatic model transformations and
code generation to alleviate the software development and integration processes.

Figure 2 details the model-driven development framework. It follows the OMG
Model Driven Architecture (MDA) [5] approach and defines a Platform Independent
Model (PIM) for SOA (PIM4SOA) and Platform Specific Models (PSMs) for describ-
ing Web services (XSD and WSDL), Jack BDI agents and BPEL [1] processes. The
PIM4SOA is a visual PIM which specifies services in a technology independent man-
ner. It represents an integrated view of the SOA in which different components can be
deployed on different execution platforms. The PIM4SOA model helps us to align rel-
evant aspects of enterprise and technical IT models, such as process, organisation and
products models. This model allows us to raise the abstraction level at which we can
talk about and reason on the architecture we design. The PIM4SOA metamodel defines
modelling concepts that can be used to model four different aspects or views of a SOA:

1. Service: Services are an abstraction and an encapsulation of the functionality pro-
vided by an autonomous entity.

2. Information: Information is related to the messages or structures exchanged, pro-
cessed and stored by software systems and components.

3. Process: Processes describe sequencing of work in terms of actions, control flows,
information flows, interactions, protocols, etc.

114 I. Zinnikus et al.

Fig. 2. Model-driven development framework

4. Quality of service (QoS): Extra-functional qualities that can be applied to services,
information and processes.

The MDD framework provides model-to-model transformation services which allow
us to transform PIM4SOA models into underlying PSMs such as XSD, WSDL, JACK
BDI agents or BPEL. The PSMs depicted in Figure 2 are also visual models which IT
developers can further refine by adding platform-specific modelling constructs such as
deployment properties. PSMs typically represent a one-to-one mapping to an execution
artefact. Dependencies between the various components are modelled at the PIM-level
and two-way model transformations help us to ensure interoperability at the techni-
cal level and consistency at the PIM-level. Tool support for the MDD framework has
been developed as a set of plugins for Rational Software Modeller (RSM) (IBM Ra-
tional Software). RSM is a UML 2.0 compliant modelling tool from IBM based on
the Eclipse modelling environment. All models and metamodels were implemented us-
ing the EMF Core (Ecore) metamodel. Model transformations have been implemented
using the model transformation capabilities of the RSM/Eclipse platform.

4 A Lightweight Web Services Enactment Framework

The part of our SOA Rapid Prototyping framework that deals with the enactment of
Web services is composed of three tools which are arranged along a value chain: the
WSDL Analyzer, the Lyndon tool and the Johnson tool.

4.1 The WSDL Analyzer

The WSDL Analyzer is a tool for detecting similarities between Web service descrip-
tions. The tool can be used to find a list of similar services r to support the integration

A Model Driven Approach to Agent-Based Service-Oriented Architectures 115

of external services by producing a mapping between messages, thereby enabling bro-
kering and mediation of services. The algorithm of the WSDL Analyzer improves over
an algorithm for finding structural similarities proposed by Wang and Stroulia ([6], [7])
by taking into account additional features of the WSDL structure. More specifically,
we make use of the tree-edit distance measure [8] and the concept of a weak subsump-
tion relation introduced by Nagano et al. [9]. The idea of the tree-edit distance is that
a similarity between two XML structures can be measured by stepwise transforming
a tree representation of the first structure into the other. The steps necessary for that
transformation provide the measure for their similarity, and, at the same time, induce
the mapping between the schemas. Possible steps are basic edit operations such as node
inserts, deletes and relabels. The algorithm of Wang and Stroulia considers only node
matching without editing, or simple renaming operations such as changing a data type
from string to int. Nagano et al. give three different types of weak subsumption: re-
placing labels, pruning edges and removing intermediate nodes. These operations can
be correlated to specific tree-edit operations, namely relabeling and deleting nodes. A
possible scenario for using the WSDL Analyzer is that the user already knows a ser-
vice which provides the correct format. The WSDL of this service can be used as re-
quirement for a similarity search. The WSDL Analyzer allows browsing the original
WSDL and the candidate files. The algorithm detects common structures in port types,
operations, messages and data type definitions. WordNet is integrated to improve the
matching result. Mappings are assessed with a score which is used to establish a rank-
ing between candidate service descriptions. The result is a ranking of the candidates
according to their matching score. Based on the similarities, a mapping is generated
between two WSDL descriptions which can be used to transform SOAP messages ex-
changed between similar services at runtime. The translation can be done automatically,
if there is a one-to-one correspondence between elements. However, if there exist sev-
eral possible corresponding elements, translation requires intervention from a user in
order to unambiguously transform parameters. The latter case shows the limitation of
the structural approach. There are possible mismatches which can be detected with the
help of the WSDL Analyzer, but not automatically corrected.

4.2 The Johnson and Lyndon Tools

Johnson is a runtime tool that enables users to enact most of the roles typically found
in an SOA, thereby enacting complex SOA scenarios by sending real SOAP messages
between Web services without having to write a single line of code. Johnson features a
Web-based user interface designed to closely resemble Web-based email applications,
with the only difference that SOAP messages and Web Services endpoints are used in
place of email messages and email addresses. The user can see incoming SOAP mes-
sages in the Inbox and create outgoing SOAP messages in the Outbox that will be sent to
external Web services. A powerful user-interface generator relieves the user from hav-
ing to deal with XML documents by generating forms for displaying and editing any
XML-based data type. When playing the role of a Web service consumer, for example, a
user would create a message in the Outbox, send that message to a remote Web service,
and later see the response message appear in the Inbox. On the reverse, a user enacting
a Web service provider would read incoming requests in the Inbox and reply to them

116 I. Zinnikus et al.

by creating response messages in the Outbox. Central to the architecture of Johnson
are the concepts of endpoint, processing modules and processing chains. An endpoint
is an abstraction for the address of a service. To each endpoint is attached a processing
chain, which implements the processing of messages for that endpoint. Each process-
ing chain is composed of a number of processing modules which are called in sequence.
Each processing module is responsible for implementing one aspect of the processing
of the message. A processing module may be responsible, for example, for adding rout-
ing information to the message, or dealing with reliability of the message exchange, or
performing a transformation of the message content, or appending the message to an
audit trail of messages sent. Assembling existing processing modules into new process-
ing chains can be done through the user interface. Creating new processing modules,
though, requires writing code.

Fig. 3. Architecture of the Johnson tool

Figure 3 shows a sample instance of Johnson where all the aforementioned concepts
are illustrated. The different processing modules are represented as different shapes
such as circles, lozenges, squares and triangles. Messages received on the third inbound
endpoint from the top do not end up in the inbox but are directly sent out using one of the
outbound endpoints. This is possible because this logic is coded in the last processing
module of the inbound processing chain. Being able to specialise message processing
for each endpoint basis allows us to play the role of Web services that would imple-
ment different subsets of the Web Services stack of specifications, which proved very
useful for studying the possible interoperability issues raised by the use of unrelated
specifications together.

A processing module was also developed for keeping an audit trail of messages,
which forms the basis for troubleshooting and performance measurement. The head-
ers of SOAP messages are turned into RDF and stored in an RDF store. The Lyndon
tool can be seen as the design-time counterpart of the Johnson tool. It analyses WSDL
files and automatically configures Johnson for playing either the role of consumer or
provider of the service described. Lyndon parses a WSDL file and determines which
endpoints need to be created, and which processing chains need to be assigned to them.
Determining which processing modules to include in the processing chain takes into
account information extracted from the WSDL file as well as options set by the user.

A Model Driven Approach to Agent-Based Service-Oriented Architectures 117

The user may, for example, specify whether Johnson should be configured as a service
consumer or a service provider, or whether messages sent to or from the service should
be logged. Some configuration information can be extracted from the WSDL file, such
as the need for implementing the WS-Addressing specification, which is specified as
part of the description of the bindings of a Web service. Lyndon also generates an RDF
representation of WSDL files and stores it into the same RDF store used for logging
SOAP messages. Having both design-time and runtime artifacts in the same store is
critical to monitoring the SOA and detecting services that do not behave accordingly to
the service description they published.

5 An Agents-Based Execution Platform

The aim of the extended JACK agent framework for Web Services is to provide a goal-
oriented service composition and execution module within an SOA. Following the Be-
lief Desire Intention (BDI) model [10], agents are autonomous software components
that have explicit goals to achieve or events to handle (desires). Agents are programmed
with a set of plans to describe how to go about achieving desires. Each plan describes
how to achieve a goal under varying circumstances. Set to work, the agent pursues its
given goals (desires), adopting the appropriate plans (intentions) according to its current
set of data (beliefs) about the state of the world. The combination of desires and beliefs
initiating context-sensitive intended behaviour is part of what characterises a BDI agent.
BDI agents exhibit reasoning behaviour under both pro-active (goal directed) and reac-
tive (event driven) stimuli. Adaptive execution is introduced by flexible plan choice, in
which the current situation in the environment is taken into account.

A BDI agent has the ability to react flexibly to failure in plan execution. Agents coop-
erate by forming teams in order to achieve a common goal. The JACK agent platform is
not inherently ready for interaction within a Web service environment. Additional steps
are necessary for enabling interactions between the agent platform and Web services,
especially when the agents themselves offer services. In this case, some tools are needed
for generating the server and client-side code for using JACK inside a Web server. Fig-
ure 4 is an overview of the extended JACK architecture for Web service composition
and plan execution, with at its core the JACK agent framework with plan library and
knowledge base. Following the MDA approach, a modeller specifies at design time a
set of plans (PSM level) that constitute the workflow library of the agents. Web service
calls are integrated as steps into plans. Workflows are modelled graphically and most of
the common workflow patterns are supported.

In order to prepare the ground for a transformation from a PIM4SOA model to the
JACK PSM, following the MDA approach, the service providers are mapped to Jack
agents/teams. The parts of the PIM which define the processes involved are mapped to
agent/team plans and correlated events, whereas the parts which define the interfaces
are mapped to the modules which provide the client- and server-side code for the JACK
agent platform. Hence, the idea is to apply a methodology which separates the Web
service adapter from the core plans.

Accordingly, the steps of the methodology consist in

118 I. Zinnikus et al.

Fig. 4. Extended JACK framework for service composition and execution

– Constructing the agent/team plans for coordinating the internal activities and com-
posing Web service calls based on the generated PSM models.

– Generate adapter code (client and server-side) with the help of a suitable toolkit
(e.g. Apaches Axis framework [11]), based on a WSDL description of the service

– Adjust an agent’s belief set so that it complies with the data structure provided by
the Web services used and offered

– Specify events which correlate to Web service calls (in case the agents offer a Web
service)

– Adjust the plans which handle these events
– Insert plan steps which trigger Web service calls (in case the agent calls a Web

service) and call the adapter code from the plans directly

In order to compare an agent-based approach with other standards for Web service
composition, the following distinction is useful [12]:

– Fixed composition: a fixed composite service requires the component services to
be integrated in a fixed way. The composition structure and the component services
are statically bound.

– Semi-fixed composition: in this situation, a composition definition which indicates
the structure of the composition is generated. However, the actual service binding
needs to be decided at run time.

– Explorative composition: this type of service composition is specified on the fly and
requires dynamically structuring the composition service and binding component
services.

Fixed composition can be done with e.g. BPEL4WS, but also by applying BDI
agents. Semi-fixed composition might also be specified with BPEL4WS: partner links
are defined at design time, but the actual service endpoint for a partner might be fixed
at run-time, as long as the service complies with the structure defined at design time.
Late binding can also be done with the JACK4WS framework. The service endpoint
needs to be set (at the latest) when the actual call to the service is done. Explorative
composition is beyond of what BPEL4WS and a BDI agent approach offer (at least if
they are used in a ’normal’ way). To enable explorative composition, a general purpose

A Model Driven Approach to Agent-Based Service-Oriented Architectures 119

planner might be applied which generates, based on the service descriptions stored in a
registry, a plan which tries to achieve the objective specified by the consumer [13].

It might seem as if BPEL4WS and JACK4WS offer the same features. However,
there are several advantages of a BDI agent approach which become evident by looking
more closely at the definition of a semi-fixed composition. An important question is
how the availability of a service is detected. This might be checked only by actually
calling the service. If the service is not available or does not return the expected output,
an exception will be raised. BPEL4WS provides a fault handler which allows specifying
what to do in case of an exception. Similarly, a JACK agent plan will fail if a WS call
raises an exception, and execute some activities specified for the failure case. However,
the difference is that a plan is executed in a context which specifies conditions for plan
instances and also other applicable plans. The context is implicitly given by the beliefs
of an agent and can be made explicit. This means that in a given context, several plan
instances might be executed, e.g. for all known services of a specific type, the services
are called (one after another), until one of the services provides the desired result. An
exception in one plan instance then leads to the execution of another plan instance
for the next known service. Additionally, JACK provides the possibility of ’meta-level
reasoning’ which allows choosing the most feasible plan according to specified criteria.
Similarly, if for a specific goal several plan types are feasible, the JACK execution
engine executes one of these plans and, in case of a failure, immediately executes the
next feasible plan to achieve the desired goal. The BDI agent approach supports this
adaptive behaviour in a natural way, whereas a BPEL4WS process specification which
attempts to provide the same behaviour would require awkward coding such as nested
fault handlers etc. Another advantage is that extending the behaviour by adding a new,
alternative plan for a specific task is straightforward. The new plan is simply added to
the plan types and will be executed at the next opportunity. Similarly, customizing the
composition is facilitated since the different plans clearly structure the alternatives of
possible actions. Since the control structure is implicit, changes in a plan do not have
impact on the control structure, reducing the danger of errors in the code.

6 An SOA Rapid Prototyping Case Study from the Furniture
Industry

We have tested our approach against a real industry scenario, namely an electronic
procurement process that spans the furniture manufacturing industry and the interior
decoration retailers. The procurement process, traditionally, covers the activities that
one organization performs to derive the goods to be purchased from the providers to
build the products requested by the customer. We started by creating a PIM4SOA model
based on the input we gathered from business experts at AIDIMA, a Spanish technology
advisory body for the furniture industry. This PIM4SOA model details the interactions
between the different roles involved in the e-procurement end-to-end process, from the
initial customer order to the final acknowledgement of the delivery of the goods. To
describe these interactions the PIM4SOA model identifies the different roles, the col-
laborations between those roles, the information exchanged, the internal behaviour of
those collaborations and the expected quality that should be provided by the roles.

120 I. Zinnikus et al.

Fig. 5. Approach for the validation of the Rapid Prototyping framework

The following approach was followed for the validation of the Rapid Prototyping
framework (see Figure 5). First we used the MDD framework (1) to derive the WSDL
files and BDI models from the e-procurement PIM4SOA model. The next objective
was to enact the services identified for the e-procurement scenario using the WSDL
Analyser (2) and the Johnson and Lyndon (3) tool. Because some of the pieces of the
SOA already existed, we used the WSDL Analyser to locate services similar to those
required in the e-procurement scenario. For those that do not exist we have used the
Lyndon tool to configure the Johnson platform to simulate them. The next step was
to configure Johnson (4) to act as a service proxy; this allowed us to change the final
service endpoints without affecting the process execution. Finally the PSM model for
Jack (5) was implemented and tested with the enacted services.

– The MDD framework uses model-to-model transformations to derive the platform
specific models for XML schemas, WSDL descriptions, and JACK Model from the
PIM4SOA model as stated in the Section 3. These models are then completed by the
platform experts to make them ready for the generation of the execution artefacts
through the use of model-to-text transformations.

– The WSDL Analyzer compares the types of the parameters of the services required
with the available services and returns a ranked set of candidate service. The tech-
nical experts then select the services that will be used and the tool provides the
appropriate mappings to transform the messages at runtime.

– The Lyndon tool configures the Johnson tool for enacting some of the services and
for logging all appropriate information in the RDF store for later analysing and
debugging of the SOA.

– The Johnson tool is also configured to incorporate the endpoints of the mappings
services generated by the WSDL Analyzer.

– Finally the Jack tool is loaded with the PSM-level model (agents/teams, plans,
events, beliefs etc) for the e-procurement scenario.

Once we have implemented the prototype we can execute it together with the client
to check that it achieves the stated requirements. If we need to analyse the details of the
message exchange we can use the Johnson platform for doing so. Besides, the Johnson
platform also allows us to simulate other situations in a flexible and agile way. Situations
such as service delays, service shutdown or service errors can be simulated, logged and
analysed.

A Model Driven Approach to Agent-Based Service-Oriented Architectures 121

7 Conclusion and Future Work

This paper presented a rapid prototyping framework for SOAs built around a Model-
Driven Development methodology which is used for transforming high-level specifi-
cations of an SOA into executable artefacts, both in the realm of Web Services and in
that of BDI agents. The framework can handle a mix of new and existing services and
provides facilities for simulating, logging, analysing and debugging.

BDI agents, especially the JACK agents platform, provide the framework for a
model-driven transformation of SOA specifications into executable processes and ser-
vices. JACK agents execute the process descriptions and act as services within the SOA.

The framework was validated on a real industrial electronic procurement scenario
from the furniture manufacturing industry. Once input from business expert had been
collected, creating the high-level PIM4SOA model, deriving the Web service descrip-
tion and incorporating existing Web services took less than a day for a person already
familiar with all the tools involved. After having run a few variants of the SOA, it
became clear that the model-based approach we followed delivers significant value in
keeping all the pieces of the SOA aligned with high-level business objectives through-
out rounds of prototyping.

Acknowledgments

The work published in this paper is partly funded by the European Commission through
the ATHENA IP (Advanced Technologies for interoperability of Heterogeneous Enter-
prise Networks and their Applications Integrated Project) (IST-507849). The work does
not represent the view of the European Commission or the ATHENA consortium, and
the authors are solely responsible for the papers content.

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,
Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execution Language
for Web Services Version 1.1. Technical report (May 2003)

2. Box, D.: A guide to developing and running connected systems with indigo. MSDN Maga-
zine (January 2004)

3. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.: Web
Services Architecture. Technical report, W3C Working Group (February 2004)

4. The Agent Oriented Software Group: JACK Development Environment. http://www.agent-
software.com (2004)

5. Soley, R.: Model Driven Architecture. OMG (November 2000)
6. Wang, Y., Stroulia, E.: Flexible Interface Matching for Web-Service Discovery. In: 4th Int’l

Conf. on Web Information Systems Engineering (WISE 2003). (2003)
7. Wang, Y., Stroulia, E.: Semantic Structure Matching for Assessing Web-Service Similarity.

In: 1st Intl Conf. on Service Oriented Computing (ICSOC 2003). Volume 2910 of Lecture
Notes in Computer Science, Springer-Verlag (2003) pp. 197 – 207

8. Shasha, D., Zhang, K.: Approximate Tree Pattern Matching. In: Pattern Matching Algo-
rithms. Oxford University Press (1997) 341 –371

122 I. Zinnikus et al.

9. Nagano, S., Hasegawa, T., Ohsuga, A., Honiden, S.: Dynamic Invocation Model of Web
Services Using Subsumption Relations. In: IEEE International Conference on Web Services
(ICWS). (2004) 150 – 156

10. Rao, A.S., Georgeff, M.P.: Modeling Rational Agents within a BDI-Architecture. In Allen, J.,
Fikes, R., Sandewall, E., eds.: Proceedings of the 2nd International Conference on Principles
of Knowledge Representation and Reasoning (KR’91), Morgan Kaufmann publishers Inc.:
San Mateo, CA, USA (1991) 473–484

11. Axis: (http://ws.apache.org/axis/)
12. Yang, J., Heuvel, W., Papazoglou, M.: Tackling the Challenges of Service Composition in

e-Marketplaces. In: Proceedings of the 12th International Workshop on Research Issues on
Data Engineering: Engineering E-Commerce/E-Business Systems (RIDE-2EC 2002), San
Jose, CA, USA. (2002)

13. Sirin, E., Parsia, B., Wu, D., Hendler, J.A., Nau, D.S.: HTN planning for Web Service
composition using SHOP2. J. Web Sem. 1 (2004) 377–396

Meta-models, Models, and Model Transformations:
Towards Interoperable Agents

Christian Hahn1, Cristián Madrigal-Mora1, Klaus Fischer1, Brian Elvesæter2,
Arne-Jørgen Berre2, and Ingo Zinnikus1

1 DFKI GmbH, Stuhlsatzenhausweg 3 (Building D 3-2), D-66123 Saarbrücken, Germany
{christian.hahn, cristian.madrigal, klaus.fischer,

ingo.zinnikus}@dfki.de
2 SINTEF ICT, P. O. Box 124 Blindern, N-0314 Oslo, Norway
{brian.elvesater, arne.j.berre}@sintef.no

Abstract. Services provide an universal basis for the integration of applications
and processes that are distributed among entities, both within an organization
and across organizational borders: This paper presents a model-driven approach
to design interoperable agents in service-oriented architectures (SOA). The
approach provides a foundation for how to incorporate autonomous agents into
a SOA using principles of model-driven development (MDD). It presents a
metamodel (AgentMM) for a BDI-agent architecture and relates AgentMM to
a platform-independent model for SOAs (PIM4SOA). In this paper we mainly
concentrate our discussions on the service and process aspects of SOA and how
transformations to agent technology would look like. We argue that this mapping
allows the design of generic agent systems in the context of SOAs that are
executable in an adaptive and flexible manner.

Keywords: Modeling Agents, Model-Driven Development, Service-Oriented
Architectures, Metamodels.

1 Introduction

Model-driven development (MDD) is emerging as the standard practice for develop-
ing modern enterprise applications and software systems. MDD frameworks define a
model-driven approach to software development in which visual modeling languages
are used to integrate the huge diversity of technologies used in the development of soft-
ware systems. As such the MDD paradigm, i.e., to develop (i) metamodels that describe
the concepts and their relationships and (ii) model transformations that map those con-
cepts and relationships from metamodel to metamodel, provides us with a better way
of addressing and solving interoperability issues compared to earlier non-modeling ap-
proaches [1].

The current state of the art in MDD is much influenced by the ongoing standardiza-
tion activities around the OMG Model Driven Architecture (MDA) [2]. MDA defines
three main abstraction levels to software development: From a top-down perspective, it
starts with a computation independent model (CIM), describing the application context
and requirements, that is refined to a platform independent model (PIM), which spec-
ifies software services and interfaces independent of software technology platforms.

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 123–134, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

124 C. Hahn et al.

The PIM is further refined to a set of platform specific models (PSMs) that describes
the realization of the software systems with respect to the chosen software technology
platforms.

The focus of this paper is on PIM to PSM transformation development, i.e., the ba-
sic idea is to define the transformation from a PIM to an agent PSM. For this purpose,
a PIM for Service Oriented Architectures (PIM4SOA) [3] and a metamodel for agent
technologies (AgentMM) are presented. If PIM4SOA models can actually be trans-
formed into and executed by agent models, agent systems can be built, so that they can
really interoperate with competing technologies in SOAs.

The paper is structured as follows: In Section 2, we present the PIM4SOA meta-
model, followed by the metamodel for a specific agent architecture (Section 3). In Sec-
tion 4, we compare the two metamodels and discuss feasible transformations. Section 5
illustrates related work. Finally, Section 6 presents some conclusions.

2 A Metamodel for Service-Oriented Architectures

Services are loosely coupled, dynamically locatable software pieces, which provide
a common platform-independent framework that simplifies heterogeneous application
integration. An approach based on agent technologies can be an interesting opportunity
when executing services, because:

– agents are self-aware and they acquire the awareness of other agents and their atti-
tudes,

– agents are proactive, whereas services are passive until invoked,
– in contrast to services, agents act in an autonomous manner that is required by many

Internet applications,
– agents are cooperative and, by forming organizations, they can provide higher-level

and more comprehensive services.

Current standards in the domain of services do not provide any of those functionali-
ties [4]. The metamodel for SOAs addresses the conceptual and technological interoper-
ability barrier and aims at defining platform independent modeling language constructs
that can be used to design, re-architect and integrate technologies supporting SOA. The
introduction of agents will enable us to design SOAs that are more adaptable and flex-
ible, and, thus, better able to cope with changes over time—which is important for
supporting interoperability.

In order to support an evolution of the metamodel for SOAs (PIM4SOA) we have de-
fined a small metamodel core and structured it into groups, each focusing on a specific
aspect of a SOA. The current version of the PIM4SOA defines modeling concepts that
can be used to model four different aspects of SOAs: Services, information, processes
and non-functional aspects. In this paper, we mainly concentrate on the service and
process aspects, where services are an abstraction and an encapsulation of the function-
ality provided by an autonomous entity, and processes describe sequencing of work in
terms of actions, control flows, information flows, interactions, protocols, etc. In gen-
eral, SOAs are formed by components provided by a system or a set of systems to
achieve a shared goal.

Meta-models, Models, and Model Transformations: Towards Interoperable Agents 125

Fig. 1. Service concepts of the PIM4SOA metamodel

The service aspect of the PIM4SOA presents services modeled as collaborations that
specify a pattern of interaction between the participating roles. A subset of the meta-
model for this aspect is presented in Figure 1. The Collaboration specifies the involved
roles and their responsibilities. Additionally, a CollaborationUse specifies the applica-
tion of a Collaboration in a specific context and includes the RoleBindings to entities in
that context. Collaborations are composable and the responsibilities of a role in a com-
posite Collaboration are defined through CollaborationUses by binding roles from the
composite to roles of its subcollaborations. The simplest form of Collaboration is the bi-
nary collaboration, which has no subcollaborations and only two roles; A requester that
provides the input, and a provider that produces the output parameters. Therefore, a Role
represents how a partner participates in the Collaboration by providing services and pa-
rameters and using services provided by other partners in its service collaboration.

Furthermore, collaborations can have a Process that specifies the constraints that
define how the involved roles interact. We refer to this as the collaboration protocol.
The collaboration protocol is specified from a global view point. Constraints on the
expected behavior of a role can be deduced.

The process elements of the PIM4SOA metamodel are shown in Figure 2. This
process aspect is closely linked to the service aspect. The primary link is described by
the Process that belongs to a ServiceProvider. The Process contains a set of steps (gen-
erally tasks), representing the actions to be carried out, and Interactions/Flows linking
the tasks together. In addition, the Process also contains a set of Flows between these
actions which may indicate the transfer of specific data.

3 A Metamodel for BDI Agents

There are several alternatives when it comes to transforming PIM4SOA models into
models that can actually be executed. Agent technologies can provide various

126 C. Hahn et al.

Fig. 2. Process concepts of the PIM4SOA metamodel

contributions to SOAs. For instance, agent technologies allow a flexible and adap-
tive execution. Also, well-known agent protocols, such as the contract net protocol
[5], could be adopted for the service supplier selection, when the number of suppli-
ers is not know at design time. This kind of service selection can be nicely described
with agent technologies, while a straightforward model for the PIM4SOA is not avail-
able. The integration of agent technologies with PIM4SOAs is therefore a worthwhile
enterprise.

For the design of agents with rational and flexible problem solving behavior, the
BDI agent architecture has proven to be appropriate during the last decade [6,7]. Three
mental attitudes (beliefs, desires, and intentions) allow an agent to act in and to reason
about its environment in an effective manner. A vast number of tools and methodologies
have been developed to foster the software-based development of BDI agents and multi-
agent systems (MAS) [8,9,10,11,12]. Rather than inventing our own agent metamodel,
we took a bottom-up approach, by extracting the metamodel (AgentMM) from one of
the most sophisticated tools to design BDI agents, namely JACKTM Intelligent Agents3

[13]. Figure 3 presents the most interesting part of this metamodel.
Table 1 summarizes the most important high-level BDI concepts. From these,

the most relevant one in AgentMM is the concept of Team, which can be either atomic,
in which case we can refer to it simply as an Agent, or a set of required roles—
subteams—that all together form the Team. It is important to note that it is not nec-
essary for all members of the Team to be involved in all the tasks it performs. Rather,
for each individual task, a subset of the available roles is selected to actually work on it.
The tasks a given Team is able to work on are defined by the roles that it is able to
fulfill.

3 JACKTM is the trademark of an agent oriented model developed by Agent Oriented Software
Group. A free evaluation package for JACK Intelligent Agents is available for download.

Meta-models, Models, and Model Transformations: Towards Interoperable Agents 127

Fig. 3. Partial metamodel for BDI agents

Table 1. High-Level BDI Concepts

High-Level BDI Concepts

Team Specifies the structure of one or more entities (Teams/Agents)
that is formed to achieve a set of desired objectives

Role Specifies a role as a type by listing the types of the events the role can deal with
Named Role An instance of a specific role type.

This concepts allows multiple roles with the same type in teams and team plans
Events The type of stimuli a team, role, or team plan reacts to or posts
Team Plan Specifies the behavior of a team in reaction to a specific event. In general, a team

plan is a set of steps specifying how a particular task is achieved by particular roles
Named Data Allows the team to store information/beliefs

Table 2. The JACKTM Plan Structure

Structure of Plans

Triggering Condition Specification of the event the plan reacts to
Relevance Condition Additional constraints on the triggering event
Context Condition Constraints on the state of affairs the plan is designed for to deal with.

Usually these constraints access the agents beliefs
Actions that should be taken when the plan becomes active.

Plan Body Can include pure Java code but allows the use of special concepts
to drive BDI reasoning

128 C. Hahn et al.

Role definitions are the second most important concept to define teams because a
role specifies which messages—in JACKTM those are rather events—the role fillers are
able to react to and which messages they are likely to send.

How a team actually reacts to an incoming request is specified by a set of team plans.
The structure of a plan can be seen in Table 2. Due to space restrictions, we concentrate
in this paper on the concepts of the Plan Body—the core part of a plan. Each team plan
has an explicitly defined objective (incoming message or internal event) for which this
team plan is responsible. When the so-called triggering event is raised and all additional
criteria are valid (i.e. Relevance and Context Condition), a specific team plan is executed
by creating an instance of this team plan. As a consequence, a concrete team (already
known or newly established) to actually execute the team plan is established.

The process aspect of AgentMM is presented in Figure 4 and it provides the con-
structs to model the body of the Plans and other, so called, reasoning methods (see
Figure 3). The whole package is based on two abstract classes—the ProcessBase and
NodeBase. NodeBase represents the basic node in the plan body graph, it provides a
reference to its default flow node, the next node in the execution order, and references
to the incoming flows, the previous nodes in the execution. ProcessBase is the graph
container that includes a list of all the nodes and a reference to the starting node. The
Process class extends ProcessBase and represents the main component of the reason-
ing method body. It is also a process node in itself, which permits modeling nested
processes.

Further specialization of the nodes is performed through the ForkNode abstract class,
which adds an alternative output flow to the NodeBase. As shown in Figure 4, the Node
classes are separated in two groups: The ones that inherit directly from NodeBase—only
one output flow, and the ones that inherit from ForkNode—with the alternative output
flow. The semantics of the alternative flow varies depending of the particular node being
modeled, for example, in a DecisionNode the alternative flow represents the else path of
the decision, while in a SubgraphNode it represents the fail path. For detailed semantics
of the plan constructs in JACKTM please refer to the JACKTM Documentation [13].

4 Comparison of the Metamodels for PIM4SOA and BDI Agents

In this section, we bring together the metamodel concepts from the two previous sec-
tions and relate them to one another in a mapping and a transformation derived from
it. Although the concepts from PIM4SOA and AgentMM differ quite significantly the
mapping of PIM4SOA models to AgentMM models seems to be feasible as the
AgentMM is more expressive.

The first element we inspect is the ServiceProvider (presented in Figure 1). At first
glance an agent seems to be the best match, but since a ServiceProvider references roles,
it is recommended to assign it to a team. The name of the ServiceProvider coincides
with the name of the team and its roles are the roles the team performs.

While a ServiceProvider is supposed to represent an atomic team, a Collaboration is
mapped onto a team that may consist of any number of agents. However, since collab-
orations do not specify any cardinalities for roles, we can assume that a collaboration
asks for exactly one filler for each of the required roles. Correspondingly, we suggest

Meta-models, Models, and Model Transformations: Towards Interoperable Agents 129

Table 3. Partial transformations between PIM4SOA and AgentMM concepts

PIM4SOA AgentMM Notes
Concepts Attributes Concepts Attributes

ServiceProvider → Team
name name name of the service provider is

used as team identifier
roles rolesPerformed each role is mapped

to a role performed by the team
behaviour usesPlans for each behavior/process

a new teamplan is instantiated
participates

bindings
boundRole rolesRequired roles a team makes use of

are specified in the role bindings
the service provider participates

Message → Event
name name name of message is

used as event identifier

Role → Role
name name name of the role (PIM4SOA) is

used as role (AgentMM) identifier
messages handleEvents

roleContainers
min = 1 required roles have a min/max
max = 1 requirement of one filler

Team
name name + ’Team’ name of the role plus the extension

”Team” is used as team identifier
self rolesPerformed role itself is mapped to the

team’s performed role
→ TeamPlan TeamPlan responsible for

handling service requests
bases on Role (PIM4S0A)

name ’Receive’ + name name of role acts as identifier
reasoningMethods

body body contains send method
establish these reasoning methods
pass are automatically
fail generated

handleEvent handles service requests
postEvents posts corresponding

asynchronous message
→ TeamPlan TeamPlan responsible for

invoking services
bases on Role (PIM4S0A)

name ’Invoke’ + name name of role acts as identifier
reasoningMethods

body body contains service call
establish these reasoning methods
pass are automatically
fail generated

handleEvent handles service requests

130 C. Hahn et al.

Fig. 4. Process Metamodel of AgentMM (Plan Body)

to map collaborations to team structures where the required roles have a cardinality re-
quirement of exactly one role filler. Although the metamodel for PIM4SOA allows to
specify constraints on the behavior of the participating collaborations and their roles,
up to now it is unclear how these constraints might look like.

In practical cases, it turns out that a Process is provided for ServiceProviders and
requester roles only. This allows to use the PIM4SOA model in a manner where the in-
formation on Collaborations and CollaborationUses is mapped to a set of teams, where
each of the teams consists of a service requester—represented by the team itself—
and a set of roles this specific service requester makes use of. Due to the fact that
non-composed collaborations in the PIM4SOA are binary, it is always clear who re-
quests and who provides the corresponding service. Interactions other than pure service
requests-provisions do not exist. This matches nicely with the fact that, in JACKTM ,
the interaction of a team as a whole with its attached roles is easy to describe. The be-
havior of the service requester is therefore mapped to a team plan where each request
of a service from a ServiceProvider is represented by the construct team achieve (see

Meta-models, Models, and Model Transformations: Towards Interoperable Agents 131

Table 4. Partial transformations between the process metamodels

PIM4SOA AgentMM Notes
Concepts Attributes Concepts Attributes

Process → TeamPlan Filter: corresponding Team
bases on Service Provider

name + ’TeamPlan’ name := name of service provider
reasoningMethods

self body the process itself is mapped
on the plan body

Task TeamAchieveNode transform all tasks with an ’in’
Interaction to a TeamAchieveNode

Decision DecisionNode one-to-one mapping
Merge ForkNode one-to-one mapping
in incomingFlows one-to-one mapping
out defaultFlow one-to-one mapping

establish these reasoning methods
pass are automatically
fail generated

Task handleEvent handle all messages inside a task with
an ’out’ but no ’in’ Interaction

postEvents post all messages inside a task
with an ’in’ Interaction

roles roles a team makes use of are
bound in the team plan

Table 4), that is sent to the respective role in the collaboration the service is involved in
(which defines which roles are actually attached to the team that represents the service
provider). Thus, the transformation of behavior for service requesters and providers is
stereotyped and can be done automatically.

The transformation between the PIM4SOA and AgentMM is finally done using the
Atlas Transformation Language (ATL) [14,15] that is a hybrid language designed to
express model transformations as described by the MDATM approach. The transforma-
tion model in ATL is expressed as a set of transformation rules. Tables 3 and 4 illustrate
some transformation rules by abstracting from the ATL syntax. The core transformation
is described as ServiceProvider → Team in Table 3. In this case, for each Service-
Provider a Team is instantiated that has the same name, performs the same roles and
makes use of the roles specified in the CollaborationUse, in which it participates, as
bound roles. Beside introducing a role in the AgentMM for each role specified in the
PIM4SOA, we define a team and two team plans for every role service providers make
use of (see Role → Team and Role → TeamPlan in Table 3). These plans spec-
ify how the requested service is invoked and how the corresponding team reacts on a
service request.

As discussed before, the process of an PIM4SOA can easily be transformed into team
plans (cf. Table 4). As a first approach, we translated the sequential process structure of
an PIM4SOA into a sequential team plan.

132 C. Hahn et al.

The final transformation step involves serializing the AgentMM model instance into
JACKTM Gcode. This serialization is implemented using MOFScript language [16],
which is currently a candidate in the OMG RFP process on MOF Model to Text Trans-
formation. In MOFScript, a set of serialization rules is created following the structure
of the source MOF-based metamodel—AgentMM in our case—and the language con-
structs allow a straight-forward definition of the desired output—Gcode for our pur-
poses.

5 Related Work

This section presents some related contributions in Agent Oriented Modeling, particu-
larly, and Agent Oriented Software Engineering (AOSE) in general.

With regard to modeling languages, the authors of AgentUML [11] argue that UML
is inappropriate for modeling MAS, so Agent Interaction Protocols and Agent Class
Diagrams are proposed as extensions to UML in order to model these basic features of
multiagent systems. Additionally, in [17], the use of Z is recommended to overcome the
absence of formal semantics of AgentUML.

An additional modeling language approach, the Agent Modeling Language (AML)
[10], is presented as a semi-formal visual modeling language for the specification of
agent systems. However, AML does not cover operational semantics since they are con-
sidered, by the authors, as a dependency of the specific execution platform.

With respect to methodologies, Tropos [9] is an agent-oriented methodology based
on the concepts of actor and goal and strongly focused on early requirements. It pro-
poses the use of AgentUML for detailed design and JACK Intelligent AgentTM as im-
plementation platform. In [18], a MDA approach to the transformations in the Tropos
methodology is presented.

Prometheus [8] is another known agent-oriented methodology that starts its model-
ing process by determining the systems percepts and actions. It follows with the de-
finition of functionalities. In Prometheus the interaction protocols are modeled using
AgentUML and the target implementation platform is BDI-style platforms.

The Malaca Agent Model [19] is an approach to Agent Oriented Design using MDA.
The Malaca UML Profile provides the stereotypes and constraints necessary to create
Malaca models on UML modeling tools. In their MDA approach, the transformation is
realized from a TROPOS Design Model—as PIM—to a Malaca Model—as PSM.

Related AOSE topics are presented in [12,20,21]. The concept of Goal-Oriented
Interactions [12,20] presents an interesting way of representing the behavior of agents
and provides some additional robustness to the interactions. Cabri et al. propose the
BRAIN Framework [21] to deal with agent interactions based on the concept of role. In
the framework, the description of roles and interactions is realized in an XML notation.

All the mentioned contributions, make valuable points for the specification and mod-
eling tasks in agent systems; however, interoperability among varied agent systems and
other technologies is not addressed in these works. Our MDA approach to interoperable
agents demonstrates that this objective can be achieved.

Meta-models, Models, and Model Transformations: Towards Interoperable Agents 133

6 Conclusions

The paper presented the transformation from PIM to an agent PSM, by explaining how
the concepts of a metamodel for SOAs can be transformed to agent related concepts.
Therefore an overview of the PIM4SOA, along with its service and process models, was
given. Moreover, AgentMM, a metamodel for a specific class of agents, was covered
along with its corresponding process model. This transformation that is derived from
the mapping of PIM4SOA to AgentMM allows models (i.e., concrete scenarios) that
are defined according to the PIM4SOA metamodel to be executed in a flexible, adaptive
and generic manner using agent technology.

On one hand, the difference in describing interactions is a challenge when transform-
ing models from PIM4SOA to AgentMM. On the other hand, it also provides chances to
actually improve the AgentMM with additional models that are possibly more compact
and easier to read.

Our approach shows that interoperability between MAS and other application tech-
nologies can be obtained. Further development of the AgentMM could lead to a PIM
for agent technologies (PIM4Agents). Since this PIM4Agents would incorporate all
relevant high level concepts of the target agent platforms, the interoperability of the
generated agent systems would be guaranteed. Moreover, the clear definition of what
high level concepts should make part of the PIM4Agents for each particular type of
agent technology could prove the greatest contribution of this MDA approach to MAS.

Acknowledgments

The work published in this paper is partly funded by the European Commission through
the ATHENA IP (Advanced Technologies for interoperability of Heterogeneous Enter-
prise Networks and their Applications Integrated Project) (IST-507849). The work does
not represent the view of the European Commission or the ATHENA consortium, and
the authors are solely responsible for the paper’s content.

References

1. D’Souza, D.: Model-Driven Architecture and Integration - Opportunities and Challenges,
Version 1.1, Kineticum. (2001)

2. Object Management Group (OMG): MDA Guide Version 1.0.1, Document omg/03-06-01,
June 2003, http://www.omg.org/docs/omg/03-06-01.pdf (2003)

3. Benguria, G., Larrucea, X., Elvesæter, B., Neple, T., Beardsmore, A., Friess, M.: A platform
independent model for service oriented architectures. In: Proceedings of I-ESA Conference.
(2006)

4. Singh, M., Huhns, M.: Service Oriented Computing: Semantics, Processes, Agents. John
Wiley & Sons, Chichster, West Sussex, UK (2005)

5. Davis, R., Smith, R.G.: Negotiation as a metaphor for distributed problem solving. Artificial
Intelligence 20 (1983) 63 – 109

6. Rao, A.S., Georgeff, M.P.: Modeling agents within a BDI-architecture. In Fikes, R., Sande-
wall, E., eds.: KR’91, Cambridge, Mass., Morgan Kaufmann (1991) 473–484

134 C. Hahn et al.

7. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In Lesser, V., ed.: Proceed-
ings of the First Intl. Conference on Multiagent Systems, San Francisco, AAAI Press/The
MIT Press (1995)

8. Padgham, L., Winikoff, M.: Prometheus: A Methodology for Developing Intelligent Agents.
In Giunchiglia, F., Odell, J., Weiß, G., eds.: AOSE. Volume 2585 of Lecture Notes in Com-
puter Science., Springer (2002) 174–185

9. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: TROPOS: An Agent-
Oriented Software Development Methodology. Journal of Autonomous Agents and Multia-
gent Systems 8(3) (2004)

10. Cervenka, R., Trencanský, I., Calisti, M., Greenwood, D.A.P.: AML: Agent Modeling Lan-
guage Toward Industry-Grade Agent-Based Modeling. In: AOSE. (2004) 31–46

11. Bauer, B., Müller, J.P., Odell, J.: Agent UML: A Formalism for Specifying Multiagent Soft-
ware Systems. In: AOSE 2000, Springer-Verlag New York, Inc. (2001) 91–103

12. Cheong, C., Winikoff, M.: Hermes: a methodology for goal oriented agent interactions. In
Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P., Wooldridge, M., eds.: AAMAS,
ACM (2005) 1121–1122

13. AOS: JACK Intelligent Agents, The Agent Oriented Software Group (AOS),
http://www.agent-software.com/shared/home/ (2006)

14. ATLAS Group, INRIA & LINA, University of Nantes: INRIA, ATL - The Atlas Transfor-
mation Language Home Page, http://www.sciences.univ-nantes.fr/lina/atl/ (2006)

15. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: MoDELS 2005, Montego Bay,
Jamaica. (2005)

16. SINTEF ICT: MOFScript, http://www.eclipse.org/gmt/mofscript (2006)
17. Huget, M.P.: Modeling Languages for Multiagent Systems. In: AOSE. (2005)
18. Perini, A., Susi, A.: Automating Model Transformations in Agent-Oriented modelling. In:

AOSE. (2005)
19. Amor, M., Fuentes, L., Vallecillo, A.: Bridging the Gap Between Agent-Oriented Design

and Implementation Using MDA. In: AOSE. (2004) 93–108
20. Cheong, C., Winikoff, M.: Hermes: Designing Goal-Oriented Agent Interactions. In: AOSE.

(2005)
21. Cabri, G., Ferrari, L., Leonardi, L.: Supporting the Development of Multi-Agent Interactions

via Roles. In: AOSE. (2005)

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 135 – 146, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Formation of Virtual Organizations Through Negotiation

Mark Hoogendoorn1 and Catholijn M. Jonker2

1 Vrije Universiteit Amsterdam,
Department of Artificial Intelligence

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
mhoogen@cs.vu.nl

2 Radboud University Nijmegen,
Nijmegen Institute of Cognition and Information

Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
C.Jonker@nici.ru.nl

Abstract. In this paper negotiation is presented as a solution to the formation of
virtual organization in domains with many parties having (partially) unknown
constraints and profiles and in which the environment is dynamic by nature.
The solution presented is based on the MAGNET negotiation system, for which
an extension is presented, that allows for last minute changes and failure
management. An efficient algorithm is presented for supplier agents,
incorporating preferences, and other constraints related to existing individual
plans). Combining the algorithms for supplier agents, with a simple customer
agent specification, and the ability to iterate the bidding, MAGNET is extended
to deal with domains as described above. A case study in logistics using real
data from a logistics company shows the validity of the approach.

1 Introduction

Virtual organizations have been defined as organizations where “complementary
resources existing in a number of cooperating companies are left in place, but are
integrated to support a particular product effort for as long as it is viable to do so” [7].
Nowadays, companies tend to outsource many non-core operations to upstream and
downstream partner firms whose capabilities complement their own [9]. The
relationship between such firms precisely complies to the definition of a virtual
organization, making it an interesting type of organization to investigate given the
current trends in organization theory.

Existence of a virtual organization can be long term or short term, where in the
latter case the organization might only be formed to perform a few tasks. Especially
for the cases where only a small number of tasks is involved in formation of a virtual
organization, the overhead of the formation itself might be relatively large, possibly
even causing more time than the task itself. One crucial aspect that for instance needs
to be addressed in the formation process is what agents to allocate to what tasks. In
order to cope with this problem, techniques from AI are being used to reduce the
effort accompanying formation of a virtual organization.

136 M. Hoogendoorn and C.M. Jonker

This paper presents the application of one AI technique, namely automated
negotiation between agents, to formation of virtual organizations. More in particular,
the paper presents a system which enables automated allocation of agents to particular
tasks that need to be performed within the virtual organization. The system tries to
find a suitable allocation of tasks from two perspectives: (1) that of the agent looking
for an agent to perform the task, and (2) that of the agent who can perform the task.
Since both can have different, possibly partially conflicting interests, negotiation is
most suitable to get to a solution for both parties. Besides the initial formation, the
system also has facilities to cope with failure of agents to perform their allotted tasks
and to redistribute tasks.

Section 2 presents MAGNET as the negotiation platform the supplier and consumer
agents can use to find a solution to their needs. The techniques and extensions needed
to be able to use the MAGNET for the dynamic formation of virtual organizations are
presented in Section 3. Special attention is paid to obtain robustness with respect to
failures in task performance and changes in the environment warranting the change of
existing virtual organizations and the formation of new virtual organizations capable to
cope with the situation at hand. The system was tested using real data from a logistic
company. The test results are presented in Section 4. Section 5 discusses alternative
approaches in literature and presents the conclusions.

2 The MAGNET System

This Section describes the negotiation system used as a basis for the development of
the system supporting the formation of virtual organizations. The negotiation system
used is the MAGNET (for Multi-AGent NEgotiation Testbed) system [4]. In [1]
the MAGNET system is described as follows: the MAGNET architecture provides a
framework for secure and reliable commerce among self-interested agents. What
makes MAGNET particularly suitable is its ability to support negotiation of contracts
for tasks that have temporal and precedence constraints [4]. MAGNET shifts much
of the burden of market exploration, auction handling, and preliminary decision
analysis from human decision-makers to a network of heterogeneous agents.
Two types of agent are distinguished within such a network: The supplier agent
and the customer agent. The main interactions between the two agent types are as
follows:

• A customer agent issues a Request for Quotes (RFQ) which specifies tasks,
their precedence relations, and a time line for the bidding process. For each
task, a time window is specified giving the earliest time the task can start and
the latest time the task can end.

• Supplier agents submit bids. A bid includes a set of tasks, a price, a portion of
the price to be paid as a non-refundable deposit, and estimated duration and
time window data that reflect supplier resource availability and constrain the
customer's scheduling process.

 Formation of Virtual Organizations Through Negotiation 137

• The customer agent decides which bids to accept. Each task needs to be
mapped to exactly one bid (i.e. no free disposal [11]), and the constraints of all
awarded bids must be satisfied in the final work schedule. In MAGNET the
customer can chose from a collection of winner-determination algorithms (A*,
IDA*, simulated annealing, and integer programming).

The customer agent awards bids and specifies the work schedule.

3 Formation of a Virtual Organization

An overview of the activities accompanying the formation of a virtual organization
supported by the system introduced in this paper is presented in this Section. Note that
for evaluation and communication concerning the negotiation the MAGNET system
can be used whereas more specific implementations for the customer and supplier
agent are needed for specific domains such as the formation of virtual organizations.

3.1 High-Level System Overview

A high-level activity diagram of the system is shown in Figure 1. At the starting point
the tasks to be fulfilled by the virtual organization come in, which are bundled in an
RFQ and sent via the MAGNET system. The RFQ is sent to all supplier agents that
might want to participate in the virtual organization. These supplier agents bid on the
tasks they are able to perform and prefer and send a bid including these tasks back via
the MAGNET system. After receiving all the bids, the MAGNET system evaluates
these and selects the best set of bids possible. In case this set does not fully cover the
tasks, an RFQ is sent again. For the bids that are in the set of optimal bids, an award is
sent. The supplier agent that receives such a reward takes place in the virtual
organization and starts executing the tasks, possibly reporting trouble requiring
sending another RFQ for the task. Finally, after all tasks have been performed, the
virtual organization is terminated.

3.2 Customer Agent

The customer part of the system mainly includes the formation of Request for Quotes
(RFQs), the sending of awards for bids, and reassignment of tasks which are not
properly performed. Tasks in the system include the following elements: intake time,
early start time, late start time, deadline, and a task description, including details on
the task and constraints. After an RFQ is sent, the customer eventually gets a set of
bids to be awarded from the MAGNET system. In case there is no bid for a particular
task, a new RFQ is sent concerning the particular task. After a task is assigned by
means of awarding a bid, the supplier agent is placed in the virtual organization and
starts to perform the task, which can result in an error report. In case such a report is
received, a new RFQ with the task is sent to ensure that the task is eventually
performed.

138 M. Hoogendoorn and C.M. Jonker

Send RFQ using MAGNET

Form bid for supplier 1 Form bid for supplier n

Send bid for supplier 1 Send bid for supplier n

Evaluate bids using MAGNET

Select optimum from bid set
and send award

[non covered tasks]

allocate agents selected to
 virtual organization

[covered tasks]

[trouble with tasks]

[no trouble with tasks]

[virtual organization tasks]

Fig. 1. UML Activity Diagram for the System

3.3 Supplier Agent

The supplier agents in the system are assumed to have one particular resource
available during a certain time interval. Furthermore, a supplier is attributed with a
certain preference for particular tasks, for example using the resource for a short time
or using it in the beginning of the availability interval. In order to be able to derive

 Formation of Virtual Organizations Through Negotiation 139

which tasks a supplier is to bid on, this Section presents an algorithm which derives
which tasks are included in the bid, determines the cost, and finally, determines the
time windows to be inserted. The notation used for the algorithm is shown in Table 1.

Table 1. Language used in the pseudo code

Function Explanation
first_task: RFQ → TASK The function application provides the task

with the earliest early start time in the RFQ.
next_task: RFQ x TASK → TASK Results in the task with the first earliest start

time in the RFQ later than the earliest start
time of the specified task.

number_of_tasks: RFQ → INTEGER The number of tasks in the RFQ.
earliest_start: TASK → TIME Denoting the earliest start time for executing

the task.
latest_start: TASK → TIME The latest possible start time for executing

the task.
expected_duration: TASK → DURATION The expected duration of executing the task.
latest_finish: TASK → TIME Denoting the latest possible finish time of

the execution of the task.
preference: TASK → REAL The preference value for the task, a value

between 0 and 1.
last_task_before: SCHEDULE x TIME →
TASK

The last task in the schedule with a latest
finish before the specified time.

next_task: SCHEDULE x TASK → TASK Specifying the next task in the schedule.
switch_time: TASK x TASK → DURATION The time needed to switch from one task to

another.
determine_risk: REAL → REAL The risk factor taken, based on the

preference for the task.

 The algorithm is specified in pseudo code below, a current schedule s from the
supplier’s perspective with tasks already scheduled is assumed to be present in
advance.

t = first_task(RFQ)
do{
 before = last_task_before(s, earliest_start(t))
 after = next_task(s, before)
 chi = determine_risk(preference(t))
 duration = chi * (expected_duration(t) + switch_time(before, t) + switch_time(t, after))
 if (earliest_start(t) + duration ≤ latest_start(after))
 if (preference(t) > phi ||
 number_of_tasks(RFQ) == 1)){

 // Add the task to the bid and schedule, set the cost using a particular cost function
 }else{
 // Do not include the task
 }

}while(t = next_task(RFQ,t) && t != NULL)

140 M. Hoogendoorn and C.M. Jonker

 As can be seen, the first task to be performed is taken out of the RFQ. Given the
current schedule, the task just ending before the early start time of the current RFQ
task is obtained as well as the task after that. Furthermore, based on the preference (a
value between 0 and 1) for the current RFQ task, the amount of risk to be taken is
determined (e.g. I like this task so much, I will be able to perform it faster than
average) represented by χ. Now calculate the expected duration for performing the
task, which includes switching from the previous task, performing the task itself, and
switching to the next task in the schedule. The assumed duration to be used in the
calculation is obtained by multiplying this with the χ factor. In case the duration
added to the earliest start time for task t is before the latest start time of the next task,
then the task can in principle fit within the schedule. There is however still the
preference of the supplier, which is specified by means of φ. φ is the threshold for the
preference value above which a task is preferred. In case a task is preferred and fits
within the current schedule, add the task to the bid. Do the same in case the RFQ
contains one single task. This reflects the understanding by the supplier that this is a
task that really needs to be performed and for which it is hard to get somebody. The
global result is that unpopular tasks also will be performed. Once a task is added to
the bid, the cost for performing the task are added by means of a cost function. Two
cost functions are used in this paper, where the first is simply the assumed duration
for the task. The second cost function used is the assumed duration divided by the
preference value, which means a higher price for less preferred tasks. One element not
addressed in the algorithm is determination of time windows to be included in the bid,
which is specified in pseudo code below.

if (chi ≤ 1){
 earliest_start = latest_finish(before) + chi * switch_time(before, t)
 if (earliest_start < earliest_start(t)){
 earliest_start = earliest_start(t)
 }
 latest_start = latest_finish(before) + switch_time(before, t)
 if (latest_start < earliest_start(t)){
 latest_start = earliest_start(t)
 }
}else{
 earliest_start = latest_finish(before) + switch_time(before, t)
 if (earliest_start < earliest_start(t)){
 earliest_start = earliest_start(t)
 }
 latest_start = latest_finish(before) + chi * switch_time(before, t)
 if (latest_start < earliest_start(t)){
 latest_start = earliest_start(t)
 }
}
duration = expected_duration(t) * chi

 In case the χ value is less than or equal to 1 (i.e. the task is assumed to go faster
than expected), then set the earliest start time to either the earliest start time specified
for the task or, in case this is not feasible, to the latest finish time of the task before in
the schedule plus the assumed switching time. The latest start is set to the latest finish

 Formation of Virtual Organizations Through Negotiation 141

time of the task before plus the expected switch time or, in case before the specified
earliest start time, the earliest start time specified in the RFQ. If the value of χ is
greater than 1, the earliest and latest start times are calculated just opposite from less
than or equal to 1. Finally, the duration is set to the assumed duration.

After having sent a bid, a bid award is possibly received, resulting in the task
actually being executed. The schedule is therefore replaced by a schedule including
the tasks that have been awarded.
 In the execution phase, incidents can occur that require replanning by the customer
agent (or in similar domains, leading to the supplier agent becoming a customer agent
that is seeking another supplier agent to solve his task). Three types of incidents are
distinguished: (1) A simple task delay, that requires no replanning; (2) A task failure,
the task needs to be performed by another supplier; (3) A day failure, all tasks for the
day need to be re-planned.

4 Case Study

This section presents the results of a case study performed in order to validate the
virtual organization formation approach presented in this paper. First, the domain in
which the case study has been performed is described, thereafter the results regarding
system performance are presented.

4.1 Case Study Description

In order to obtain experimental results, a choice has been made to use real company
data instead of randomly generated data. Using company data has as the advantage
that it can be determined how well such a system would work in a real environment
instead of an artificially created one. The data has been obtained from a company
within the field of logistics. This area is particularly interesting for application of the
system due to the movement of several companies to so called Fourth Party Logistics
(4PL), see e.g., [2]. A 4PL logistics company is an intermediate link within the chain
of transporting goods, it closes contracts with large parties to arrange the logistics
across the entire supply chain of the organization. 4PL companies have a limit
amount, or possible even no trucks of their own (see e.g. [6]). They therefore have
contracts with a number of trucking companies which they can call in case they need
a truck for a particular order. The price for such a trip is negotiated over the phone. In
the case study, the 4PL does not negotiate with the trucking companies through a
scheduling officer, but directly with the truck drivers of that company. In this way the
truck drivers get a higher responsibility for creating a revenue for the company they
work for and they get the opportunity to guard their own preferences. Hence, the 4PL
company is the customer in the system described in the previous section, and the
trucks are the supplier agents, where a formation of a virtual organization for the
transportation of certain goods is the goal of the negotiations.

The data used for the experiments concerns transportation of containers, of which
only one can be carried at the same time by a truck. As a result, trucks can only
perform tasks in sequential order and not in parallel. Furthermore, there are different

142 M. Hoogendoorn and C.M. Jonker

types of containers: 20 feet and 40 feet containers, both of them can only be carried
by a truck suitable for that particular type. Each of the tasks contain an intake time
(around which the order to transport the container comes in, and thus the time at
which an RFQ can already be sent), an early start time (when the container becomes
available), a deadline (when the container needs to be delivered), and a start and end
location. Precedence constraints are present as well in case a container has to be
transported along several locations. The data obtained from the company mainly
concerns container transports from one of the container terminals at the port of
Rotterdam (there are several such terminals in the port) to a particular customer, after
which the container needs to be returned to a certain location. Typically, about 20
orders are received each day, most of which require a pickup early in the morning.
For the usage of the system presented in Sections 2 and 3, each truck is seen as a
separate supplier where the resource is in this case the ability to transport a particular
type of container. On average, about 10 trucks are available as suppliers per day.
Trucks have a start location at which they are located at the beginning of the day
(typically close to the port of Rotterdam), and have a start and end time (e.g. the
trucks starts at 9 am and stops at 5 pm). Preferences of trucks are found in the
different pickup and destination locations, the length of the trip required to perform
the task, and the start and end times of the tasks. As a result of interviews with
personnel from the data providing company, these preferences have been determined
for each truck, based on the driver assigned to it. The real cost for performing a task is
set to the travel time in minutes to perform the task (i.e. driving to the pickup location,
performing the task, and returning from the destination location). Note that this can
differ from the price actually put in the bid for the task.

4.2 Case Study Results

In order to evaluate the effectiveness of the system, simulation runs have been
performed using the real life data from the trucking domain as described before. For
this purpose, the logs of the order system of one representative week has been used.
Using this data, the system is evaluated from two perspectives. First, the time needed
to evaluate the bids is measured, to see whether this evaluation process itself is not a
bottleneck within the virtual organization formation process. The algorithm for the
supplier agents can be run in parallel, which is not the case for the customer agent.
Another perspective from which the system is evaluated is to see how different cost
functions and preference thresholds influence the overall satisfaction of the supplier
agents within the system.

Algorithm Performance. First, the performance of the evaluation algorithm during
the simulation runs is presented. Note that these results are specific results for the
characteristics of the data. For more generic results on algorithm performance and a
comparison between different algorithms, see [3]. The experiments have been run on
a Sun UltraSPARC IIIi 1062 MHz CPU with 2 GB memory. Figure 2 shows the
results of the IDA* algorithm used for the case study for RFQs with varying amount
of tasks.

 Formation of Virtual Organizations Through Negotiation 143

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
10

0

10
1

Number of tasks

S
ea

rc
h

tim
e

(m
se

c)

Fig. 2. IDA* search time for different number of tasks

Furthermore, Table 2 shows more detailed characteristics for the evaluation process.

Table 2. Evaluation characteristics

Number of tasks Average number of
bids

Average number of
tasks in bid

Search time IDA*
(msec)

2 3.59 1.00 1.35
3 6.05 1.07 1.98
4 6.00 1.00 2.00
5 7.25 1.08 2.50
6 8.00 1.25 3.54
7 7.63 1.01 10.69

 As can be seen in the table, the average amount of tasks per bid is always close to
one, which is due to the fact that an RFQ in the trucking domain typically specifies
several tasks which need to be performed in parallel and, as already stated in the
introduction of the case study, the trucks cannot execute tasks in parallel. Since only
full bids can be awarded, they therefore often only bid for one task. As the graph
shows, also for the RFQ’s with the largest amount of tasks observed in the data (i.e.
seven tasks in one RFQ) the evaluation algorithm generates a solution in just over 10
milliseconds. For a more extensive discussion on the scalability of the IDA*
algorithm within the MAGNET system, see [3].

Supplier Satisfaction. Besides the evaluation time, the satisfaction of suppliers is
another element which has been investigated. The satisfaction of the suppliers is
measured in the average preference for the tasks they get awarded. Two parameters
can be varied regarding this satisfaction, namely the threshold value φ and the

144 M. Hoogendoorn and C.M. Jonker

function for cost to be included in the bid (i.e. assumed duration or assumed duration
divided by the preference). Figure 2 shows the satisfaction of the different agents for
both cost functions for varying φ values. Note that despite the threshold for bidding
on tasks, tasks can still be bid upon in case only one task is included in the RFQ. As a
result, the satisfaction can be below the threshold value set.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

φ

S
up

pl
ie

r
sa

tis
fa

ct
io

n

Regular Cost Function
Increased Cost Function

Fig. 3. Driver satisfaction for varying φ values

 As can be seen in Figure 3, the increase of the price in case a task is not preferred is
shown to be effective in the simulation runs of the case study. Having such a
preference requires a less strict setting of the preference threshold φ for bidding on a
task still obtaining a reasonable satisfaction rate. When looking at the regular price
option, satisfaction is much lower once the value for φ decreases. An additional
performance measure is of course the efficiency of the solution found, which in the
trucking domain can be measured by means of the amount of effective driving (the
amount of driving for a task divided by the total amount of driving). In the simulation
runs, no correlation was found between the setting for the preference and the
effectiveness of driving. On average, 62% of all driving was effective.

5 Discussion

This paper presents an approach for the formation of virtual organizations in highly
dynamic environments which require a low overhead for the formation process of the
organization. The approach allows for the formation of such an organization without
the different parties needing to have knowledge about each others constraints and
profiles. The approach is based upon an existing negotiation system called the

 Formation of Virtual Organizations Through Negotiation 145

MAGNET system which is extended with specific implementations for the supplier
and customer agents for the formation of virtual organizations. The implementation of
the supplier agent incorporates preferences for tasks as well as schedules specifying
the tasks to be performed. In a case study in the trucking domain, the paper shows that
the evaluation algorithms incorporated in the MAGNET system scale well, requiring
a minimal time for the evaluation process. Furthermore, reflecting the preference of a
task in the price bid for that task in the algorithm increases the overall satisfaction of
the supplier agents.

In the field of virtual organizations, negotiation systems have been introduced and
used as well. In [8] a virtual office system is mentioned called SmartProcurement which
is said to initiate the formation of a virtual organization by means of an electronic or
human request for quotation (RFQ). Thereafter, a purchasing agent acquires a list of
agents which are known vendors of the requested item and sends the RFQ to the
vendors. Subsequently, the bids are evaluated and a bid is selected, informing the
vendor agent upon acceptance. The approach is however more meant as a framework to
support such negotiation, similar to the MAGNET system, not as a specific
implementation of the agents themselves.

Besides the MAGNET system, more negotiation systems have been developed.
The advantage of the MAGNET system is the market infrastructure in between the
supplier and the customer agent whereas most other negotiation systems focus on
direct agent to agent negotiation [12, 5] (from [1]). Based on the MAGNET system
more extensive supplier agents have been developed [1], however these agents have
not been tested with real life data. Furthermore, [1] does not focus on the formation of
virtual organizations.

Team or coalition formation is another related field. Different protocols for the
formation of coalitions are compared in [13]. Variations of such protocols go from
local to social utility based negotiation systems. The authors show that increased
social context can improve system performance. The agents are however required to
share meta-level information before they allocate resources. In the trucking domain,
however, agents do not want to share such meta-level information, as they might be
competitors. Therefore the approach presented in [13] is not feasible in domains in
which the agents represent competitors.
 Different role-allocation and reallocation algorithms are compared in [10] The
comparison is based on for the framework developed for the Role-based Markov
Team Decision Problem. In the future the same framework could be applied to
compare the approach presented in this paper with other role-allocation algorithms
with respect to the corporate data for the trucking domain.

Acknowledgements

The authors would like to thank Maria Gini from the Department of Computer
Science and Engineering at the University of Minnesota for the fruitful discussions.
Furthermore, the authors wish to thank the anonymous reviewers for their useful
comments that helped to further improve the paper.

146 M. Hoogendoorn and C.M. Jonker

References

1. Botman, S., Hoogendoorn, M., Bud, V., Jaiswal, A., Hawkins, S., Kryzhnyaya, Y., Pearce,
J., Schoolcraft, A., Sigvartsen, E., Collins, J., and Gini, M., Design of supplier agents for
an auction-based market. In: Giorgini, P., Giorgini, P. Lesperance, Y., Wagner, G., Yu, E.
(eds.), Proceedings of the Fourth International Bi-Conference Workshop on Agent-
Oriented Information Systems (AOIS 2002 @ AAMAS-02), July 2002.

2. Briggs, P., The hand-off: the future of outsourced logistics may be found in the latest
buzzword [Fourth Party Logistics], Canadian Transportation Logistics 102(5), pp. 18,
1999.

3. Collins, J., Solving Combinatorial Auctions with Temporal Constraints in Economic
Agents. PhD thesis, University of Minnesota, June 2002.

4. Collins, J., Gini, M., and Mobasher, B., Multi-agent negotiation using combinatorial
auctions with precedence constraints. Technical Report 02-009, University of Minnesota,
Department of Computer Science and Engineering, Minneapolis, Minnesota, February
2002.

5. Fatima, S.S. and Wooldridge, M.. Adaptive task resources allocation in multi-agent
systems. In Proc. of the Fifth Int'l Conf. on Autonomous Agents, pp. 537-544, 2001.

6. Foster, T., 4PLs: The next generation of supply chain outsourcing? Logistics Management
and Distribution Report 38(4), pp. 35, 1999.

7. Goldman, S., Nagel, R., Preiss, K., Agile Competitors and Virtual Organizations, Van
Nostrand Reinhold, New York, 1995.

8. O’Leary, D.E., Kuokka, D., and Plant, R., Artificial Intelligence and Virtual
Organizations, Communications of the ACM 40(1), pp. 52-59, 1997.

9. Miles, E.R., Snow, C.C., Mathews, J.A., Miles, G., and Coleman, H.J., Organizing in the
knowledge age: Anticipating the cellular form, Academy of Management Executive 11(4),
pp. 7-20, 1997.

10. Nair, R., Tambe, M., Marsella, S., Role Allocation and Reallocation in Multiagent Teams :
Towards a Practical Analysis, In: Proceedings of the Second Conference on Autonomous
Agent and Multi-Agent Systems (AAMAS 2003), pp. 552-559, ACM Press, 2003.

11. Nisan, N., Bidding and allocation in combinatorial auctions. In 1999� NWU
Microeconomics Workshop, 1999.

12. Sandholm, T.W., Negotiation Among Self-Interested Computationally Limited Agents
PhD thesis, Department of Computer Science, University of Massachusetts at Amherst,
1996.

13. Sims, M., Goldman, C.V., and Lesser, V., Self-Organization through Bottom-up Coalition
Formation, In: Proceedings of the Second Conference on Autonomous Agent and Multi-
Agent Systems (AAMAS 2003), pp. ACM Press, 2003.

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 147 – 158, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Continuations and Behavior Components Engineering in
Multi-Agent Systems

Denis Jouvin

LIRIS, université Claude Bernard Lyon 1
denis.jouvin@liris.cnrs.fr

Abstract. Continuations are a well established programming concept, allowing
to explicitly capture and resume the current program state. They are present in
several functional programming languages (such as Scheme), in concurrent
models (such as process calculi or Hewitt actor model), and more recently in
dynamic programming languages (such as Ruby, Smalltalk, Python, and even
Javascript or Java). They have been applied to automaton programming, coop-
erative threads, compilation techniques, and have lastly raised interest in web
application programming. This paper shows how this concept happens to be es-
pecially useful and elegant to program agent behaviors (or behavioral compo-
nents), while increasing code readability and ease of writing. The proposed ap-
proach especially facilitates modular interaction protocol implementation, one
of the main difficulties in conversational agents engineering.

Keywords: Continuations; conversational multi-agent systems; agent oriented
software engineering; behavioral component; continuation-based automatons.

1 Introduction

Multi-agent systems (MAS for short) are a programming paradigm especially well
suited to model complex systems. In MAS, agents usually interact by means of an
elaborate, normalized interaction model. The choice of this interaction model will
condition numerous prized MAS properties, such as agent autonomy, interoperability,
robustness, and self-organization, as mentioned by Luck et al. in [7].

However, these elaborate interaction models are also a significant source of diffi-
culties in conversational MAS implementations, as shown in former research [6]. To
address these difficulties, various multi-agent platforms propose componential ap-
proaches, where agents are provided with reusable behavioral components managing
partially or completely their behavior with respect to a given conversation type.

In this paper we show how a well established programming concept, continuations,
can significantly facilitate the writing of such behavioral components, while bringing
better flexibility and performance in their implementation.

Section 2 introduces continuations, their applications and variants. Section 3 identi-
fies implementation issues in conversational MAS, and the classical solutions pro-
posed by multi-agent platforms. We present our continuation based approach in sec-
tion 4, followed in section 5 by the results of an example prototype. We conclude on
our approach benefits, limitations, and integration into existing MAS platforms.

148 D. Jouvin

2 Introduction to Continuations

Continuation are a well established programming concept, described for example by
Strachey et al. [13] in the early seventies, which were originally introduced in func-
tional programming languages such as Scheme or ML, in the actor model of Hewitt
[4], and in various process calculi.

The principle consists in capturing the currently executing program state into a va-
riable or artifact that can be manipulated programmatically, called the continuation, in
order to be able to resume later on the program from this state by activating this con-
tinuation. More precisely, we designate by execution context the program state, in
reference to the execution context of a thread or process, and by continuation the
object or artifact allowing to activate (i.e. switch to) this execution context.

Some informal definitions of continuations are found in the literature, such as “the
rest of the program”, or “goto with parameters”, however none of them are really
satisfactory: the first implies a linear execution of the program, that should be unwind
beforehand, and the second does not express that local variables and call stack are
captured in a continuation.

Although there exist variants and restrictions of continuations, such as coroutines
and generators (see section 2.3); continuations remain the most general form, as
shown by Haynes et al. in [5] and Allison in [1].

Continuations are somehow related to threads, since they capture all, or part of, the
stack, including local variables, in addition to the “program counter”; however their
activation is done programmatically rather than by an operating system scheduler.

2.1 Languages Supporting Continuations Natively

For illustrative purpose, we will borrow examples from various languages that sup-
port continuations natively, such as Scheme or Ruby, as well as a restricted form of
continuations to start with: Python’s generators.

def simple_generator(max):
 i = 1
 yield "let's count.."
 while i < max:
 yield "Odd %d" % i
 i = i+1
 yield "Even %d" % i
 i = i+1
 yield "the end"

for s in simple_generator(4):
 print s

let's count..
Odd 1
Even 2
Odd 3
Even 4
The end

Fig. 1. Simple Python generator example: on the left the generator definition; on the right the
code to display the successive values returned by the generator, and the console output in italic

 As figure 1 suggests, a generator behaves the same way as an iterator, written how-
ever as a function that returns successive values, using the yield keyword, while
memorizing its current execution state between each call (see Mertz [8]).

 Continuations and Behavior Components Engineering in Multi-Agent Systems 149

The advantage of generators is that the programmer does not have to explicitly
manage the iterator state using object attributes. Generators make it possible to use
the native flow control structures of the language (if, loops, etc.) to manage transitions
between the states of the underlying automaton, as shown by Mertz in [9].

callcc {|cont|
 for i in 0..4
 print "\n#{i}: "
 for j in i*5...(i+1)*5
 cont.call() if j == 17
 printf "%3d", j
 end
 end
}
print "\n"

0: 0 1 2 3 4
1: 5 6 7 8 9
2: 10 11 12 13 14
3: 15 16

Fig. 2. Continuation example in Ruby, with the console output on the right (in italic)

 The callcc (call with current continuation) primitive, in figure 2, calls the anony-
mous closure defined by the next bloc between brackets, and passes the continuation
as the parameter cont. The continuation activation, cont.call(), results in the pre-
mature exit of the two for loops, by taking the control flow just after the bloc.

Note that this program could be translated in Scheme very easily, by using the
Scheme primitive call-with-current-continuation. Smalltalk, Haskel, and Perl 6
are examples of other programming languages that support continuation natively in
their most complete implementations.

2.2 Continuations as Extensions of Dynamic Object-Based Languages

More recently, continuations have been added as libraries or extensions to common
object based (imperative) languages like Javascript or Java. Since this type of exten-
sion is related to flow control and low level stack manipulation, it requires either a
modification of the interpreter, class instrumentation and manipulation techniques, or
source code transformations, as shown by Pettyjohn et al. in [11].

In such languages, a continuation is relative to a callable object or “objectized”
function (see figure 3), on the contrary to Ruby or functional languages where it is
“global” to the program. Examples of continuation frameworks or extensions are:

• Flowscript1, a modified version of the Rhino Javascript interpreter implementing
continuations, part of the apache Cocoon framework since version 2;

• The RIFE web application framework2, which allows limited continuations;
• And the Javaflow framework3, which implements continuations in Java, using a

dynamic class instrumentation technique, and which we will use hereafter.

1 http://cocoon.apache.org/2.1/
2 http://rifers.org/
3 http://jakarta.apache.org/commons/sandbox/javaflow/

150 D. Jouvin

public abstract class Generator<T>
 implements Runnable, Iterator<T>, Iterable<T> {

 private transient T result;
 private Continuation current = Continuation.startWith(this);

 public T next() {
 if(!hasNext())
 throw new NoSuchElementException();
 T retval = result;
 current = Continuation.continueWith(current);
 return retval;
 }

 protected void yield(T param) {
 result = param;
 Continuation.suspend();
 }

 public boolean hasNext() { return current != null; }
 public Iterator<T> iterator() { return this; }
 public void remove() { throw new UnsupportedOperationException(); }
}

Fig. 3. Basic implementation of Python style generators in Java, using Javaflow continuations

 Figure 3 gives a simple implementation of Python style generators in Java, using
Javaflow. On the contrary to Ruby or Scheme, the continuation captures here the
execution state inside the Runnable object passed to the continuation capture routine,
and not the execution state with respect to the calling function.

In this example, it is necessary to temporarily store the return values of the genera-
tor in the result attribute, since Javaflow does not handle continuation parameters
and return values.

public class SimpleGenerator
 extends Generator<String> {

 private final int max;

 public SimpleGenerator(int max) {
 this.max = max;
 }

 public static void main(String... a) {
 for(String s:new SimpleGenerator(5))
 System.out.println(s);
 }

 public void run() {
 yield("let's count..");
 for(int i=1; i<max; i++)
 {
 yield("Odd " + i++);
 yield("Even "+ i);
 }
 yield("the end");
 }
}

Fig. 4. Simple generator example in Java, instrumented by Javaflow

Figure 4 reuses the example of figure 1, translated in Java, and using the generator
class introduced in figure 3. The console output is identical. To work properly, these
java classes need to be instrumented by Javaflow at compile or class loading time.

 Continuations and Behavior Components Engineering in Multi-Agent Systems 151

2.3 Variants and Applications

The possibilities offered by continuations and closures are numerous: for example,
one can rewrite existing or custom flow control structures, like simulating a goto in
Scheme, etc. However the most useful applications of continuations are:

• The implementation and composition of automatons (for example in syntactic
parsers and validators), that we will further develop in section 4.1;

• Coroutines and cooperative threads. Coroutines are functions that retain their exe-
cution state when calling another coroutine. On the contrary to generators, a co-
routine never returns after capturing its state, but explicitly calls another coroutine
that will in turn be activated. Coroutines thus allow defining cooperative threads,
with explicit context switching. The main advantage is performance: cooperative
threads are lightweight and fast compared to real preemptive threads. This tech-
nique is not suited when preemption is necessary, but is well suited for non pre-
emptive concurrent models and event programming;

• Continuation based Web application programming, as described by Tate et al. in
[14], which has recently drawn a lot of attention. Historically introduced by the
Web application framework Seaside, this technique has been followed in other
frameworks like RIFE or Cocoon. The reason is simple: the interaction between a
Web server and a web browser usually takes the form of a stateful conversation, for
which it is necessary to store the state on the server. The routines controlling the
page flow can use continuations to store this state implicitly, relieving the pro-
grammer from this tedious and error prone task. Page flow is then described as a
simple instruction flow in a script. This principle being simple and elegant, it has
quickly been adopted by many Web application developers.

Remark. Such a behavior may be obtained using threads; however this is usually not
feasible in practice, since it would require one thread for each possible conversational
state during a session, which would result in too many threads, especially if the server
implements the web browser back button behavior.

3 Conversational Agent Engineering

We define here a conversational agent as an agent whose behavior requires memoriz-
ing the local context of the ongoing interactions, which we refer to as conversation.
This context may take various forms. In this work we focus on agents communicating
by asynchronous messages, organized into inter-related message sequences, the con-
versations, between several participants, in the context of a collective task.

3.1 Problem Definition

Experience shows that, though bringing many useful properties to the system that they
compose, conversational agents are difficult to implement. In particular, we can iden-
tify the following difficulties related to conversation management:

152 D. Jouvin

• Multi-party conversation parallelism. In a multi-party conversation, it is necessary
to combine several behaviors simultaneously, corresponding to the bilateral sub-
conversations with each participant separately, and possibly synchronize them;

• Internal parallelism. A bilateral conversation with a single participant can itself
comprise some form of parallelism: it may fork into several parallel or interlaced
branches of the conversation;

• Protocol error management. A great part of the complexity implied by conversa-
tion management comes from the asynchronous error management: protocol errors,
timeouts, etc. This aspect being transverse, it is difficult to modularize and reuse;

Remark. The programming languages used in MAS platform are not concurrent lan-
guages, and, thus, are not designed to handle elaborate parallel processing. Concurrent
languages, such as Erlang for example, could address some of these issues; however
they suffer from other limitations, and are unfortunately not popular enough to have
been chosen in existing MAS platforms.

It is interesting to observe that most MAS platforms propose componential ap-
proaches in order to promote the reusing of behavioral components, which confirms
the importance of the difficulties identified above in MAS design and implementa-
tion. The problem then becomes: how to define behavioral components in a modular
way, that is to say, decoupled and encapsulated in reusable components; and how to
combine and synchronize several behavioral components consistently in agents.

Considering for example FIPA interaction protocols, a FIPA compliant platform
will typically propose abstract behavioral components implementing partially these
protocols, and bound to the agent specific code using a platform specific composition
technique (callbacks, inheritance, or event model).

Behavior component libraries help the programmer to deal with delicate aspects of
conversation management, such as: timeouts handling, protocol error handling, man-
aging a group of participants in parallel, etc. These libraries are largely used in MAS
platforms. Two strategies are possible to implement such behavioral components:

• Either a thread is assigned to each parallelizable branch of each behavioral compo-
nent. A waiting state is then implemented as a blocking method on this thread, and
the conversational state is defined by all the threads execution contexts. This op-
tion is not always feasible since, as we discussed it in the case of web applications,
it may involve too many threads. Not only is the number of available threads lim-
ited by memory and operating system, but too many threads may result in a per-
formance loss due to an excessive scheduling with respect to the actual processing;

• Or the conversational state of the behavioral component is stored explicitly. This
implies that the corresponding code must be fragmented according to the transi-
tions and structure of the underlying automaton, so that it may be executed step by
step, by interrupting and resuming its execution at each state. Typically, distinct
methods or objects will represent the various transitions, themselves associated to
objects representing the states. This technique is the most widely used, because it
gives more control on the activation of the behavior components, and on the num-
ber of threads allocated. The FIPA-OS platform, described by Poslad et al. in [12],
uses a global thread pool to activate the behavioral components of agents (called
task in FIPA-OS), whereas Jade, a MAS platform described by Bellifemine et al.
[2], assigns by default one thread per agent.

 Continuations and Behavior Components Engineering in Multi-Agent Systems 153

3.2 Automaton Behavioral Components

In Jade, behavioral components are named behaviors, and are all inherited from the
abstract Behavior class. Figure 5 shows a simple 3 states behavior example, illustrat-
ing the explicit state management, and resulting code fragmentation, in the switch
statement. Although not obvious at first, this behavior passes three times on the three
states before termination.

class my3StepBehaviour extends SimpleBehaviour {
 private final int FIRST = 1, SECOND = 2, THIRD = 3;
 private int state = FIRST, numberOfExecutions = 3;

 public void action() {
 switch (state) {
 case FIRST: {op1(); state = SECOND; break;}
 case SECOND:{op2(); state = THIRD; break;}
 case THIRD: {op3(); state = FIRST;
 numberOfExecutions--; break;}
 }
 }

 public boolean done(){
 return (!(numberOfExecutions>0));
 }

 private void op1(){ System.out.println("Step 1"); }
 private void op2(){ System.out.println("Step 2"); }
 private void op3(){ System.out.println("Step 3"); }
}

Fig. 5. Simple Jade behavior example: 3 states automaton, with the corresponding finite state
automaton diagram on the right

 In this example the SimpleBehavior class does not contribute much to the behav-
ior; however, other available behaviors, like ContractNetInitiator, or AchieveRE-
Initiator, define abstract implementations of common interaction protocols, bound
to the agent specific code by inheritance or callback. Some composite behaviors allow
various types of composition of children behavior, for example SequenceBehavior or
ParallelBehavior. Inter-thread synchronization is usually not necessary in Jade
since transitions are executed sequentially.

Comparable techniques can be found in other MAS platforms. Let us mention for
example the multi-plan automatons of the Bond platform, by Bölöni et al. [3]; the
finite state automatons of the Zeus platform, by Nwana et al. [10]; the FIPA-OS tasks,
by Poslad et al. [12]; or the automatons designed with SEdit in the MadKIT platform4.

The multi-plan automatons of Bond, in particular, handle the parallelism using a
simplified parallel sub-automatons composition model; whereas FIPA-OS tasks are
by default executed in parallel: they may launch other sub-tasks, but this requires
careful multithread synchronization.

4 http://www.madkit.org/

first

second

third

start

op3 final

[2 times]

op1

op2

op3

154 D. Jouvin

4 Continuation-Based Approach

As we stated above, the need to manage parallelism and asynchrony without requiring
dedicated threads implicates that behavioral components be manipulated like automa-
tons, without blocking on threads. Besides, since existing MAS platforms comply
with this strategy, our approach should also comply with it to facilitate integration.

On the other hand, being able to write stateful behaviors as simple routines, lever-
aging native control flow structures of the hosting language, without scattering the
code, would also make MAS programmers’ life easier.

With respect to these issues, continuations offer a particularly elegant solution that
combines the best of both worlds. Indeed, using continuations in MAS behavioral
components for conversation management allows to:

• Capture the conversation or conversation branch state implicitly in the continua-
tion, including call stack and local variables, so that the component may be used as
an automaton, without having to explicitly manipulate its state;

• Get rid of inter-thread synchronization problems, since this model is not preemp-
tive and transitions are executed sequentially.

4.1 Continuation-Based Automaton Behavioral Component

A continuation represents a program states, usually as an immutable object in object
based language, but is not itself an automaton: it requires an encapsulating automaton
object, similar to the generator implementation presented in section 2.1. Figure 6
shows a minimal automaton abstract base class, containing:

• a current attribute, storing a single current continuation for this automaton;
• the activate() method, the automaton step by step activation point, that updates

the current continuation with a new one, corresponding to the new captured state;
• a continuation capturing method, yield(), meant to be used in implementations of

the abstract run() method, or other methods called by run(), that interrupts the
normal control flow and jumps to the activate() method;

public abstract class Automaton implements Runnable {
 private Continuation current = Continuation.startSuspendedWith(this);

 protected void yield() { Continuation.suspend(); }

 public void activate() {
 if(current != null)
 current = Continuation.continueWith(current);
 }
}

Fig. 6. Simple continuation-based behavioral automaton abstract class, in Java, using Javaflow.
Each time activate() is executed, the automaton advances one step. Each step terminates
either by invoking yield(), or by the normal end of the run() method. In both cases this
gives back control to activate(), which updates the continuation and returns normally.

 Continuations and Behavior Components Engineering in Multi-Agent Systems 155

 In order to be usable in an actual agent implementation, however, these primitives
are not sufficient: a way to consume events, like messages or timeouts, in the run()
method is necessary. In the case of a conversational agent platform, an agent is in
principle provided with a message queue. A behavioral component specific message
queue may also be considered, associated to a message dispatch mechanism at
the agent level. Such dispatching will typically be based on message response or
conversation identification parameters, such as FIPA conversation-id message
parameter.

4.2 Example and Comparison

In comparison with the Jade component of figure 5, the version shown on figure 7 is
much easier to read: it does not contain any object attribute to store and manage state
information, nor does it require code fragmentation. The loop is materialized by a
normal java for statement, increasing readability and reducing error proneness.

public class My3Step extends Automaton {
 public void run() {
 for(int i=0; i<3; i++) {
 System.out.println("Step 1"); yield();
 System.out.println("Step 2"); yield();
 System.out.println("Step 3"); yield();
 }
 }
}

Fig. 7. Continuation-based version of the 3 states automaton behavior of section 3.2, figure 5

4.3 Pseudo Parallelism and Synchronization Primitives

In order to address the parallelism requirements mentioned in section 3.1, it is neces-
sary to introduce synchronization and pseudo-parallelism mechanisms in our automa-
ton abstract classes. We use the term “pseudo-parallelism” since transitions will in
fine always be executed sequentially. However, sub-automaton states corresponding
to parallel branch of the conversation need to be stored and updated separately.

The case of multi-bilateral conversations (i.e. conversations involving an initiator
and a group of participants), in particular, is quite common in protocols such as nego-
tiations or auctions. This case requires interacting in parallel with n participants, pos-
sibly synchronizing at key steps of the protocol, even if the various participants all
play the same role and are thus governed by the same rules in the protocol.

We introduce two primitives to handle this kind of parallelism:

• parallelize(), a primitive allowing to switch to parallel mode, duplicating the
current automaton in n sub-automatons, one per participant;

• and join(), the reverse primitive, usable only in parallel mode, that waits for all
sub-automatons to reach this point (note that this does not entail blocking on a
thread), before switching back to synchronous mode;

156 D. Jouvin

5 Testing Framework

In the context of this work, we have realized a testing prototype and framework based
on Javaflow. Two abstract classes, BilateralRole and MultiBilateralRole (see
table 1) implement the primitives mentioned in section 4.1 and 4.3. 5

Table 1. Primitives provided by BilateralRole and MultiBilateralRole

Method signature Description and side effect
void activate() Automaton activation point
void yield() Continuation capture, interrupts control flow
Message receive()
Message receive(Message.Type...
types)

Read the next event or message (possibly
typed). Calls yield() if no event is available

void parallelize() Switch to parallel mode, duplicate automaton
void join() Switch back to synchronous mode

5.1 Auction and Handshake Protocol Example

In order to represent both forms of parallelism related to conversation management,
we have defined four behavioral components, corresponding respectively to: the
initiator and participant roles of a simple multi-bilateral handshake protocol, consist-
ing in a linear sequence of inform message exchanges; and the initiator and participant
roles of an English auction protocol, comparable to FIPA-English-Auction.

public void run() {
 send("auction start", inform);
 bestOffer = min;
 do {
 send(bestOffer, cfp);
 nbAnswered = 0;
 parallelize();
 Message msg = receive(propose, inform, refuse);
 if(msg.getType() != propose)
 return;
 nbAnswered++;
 int offer = (Integer) msg.getContent();
 if(offer > bestOffer) {
 bestOffer = offer;
 winner = getRunningAgent();
 }
 join();
 for(Agent a:getInterlocutors())
 send(bestOffer, a == winner? accept: reject, a);
 } while(nbAnswered > 1);
}

Fig. 8. run() method of the behavior component EnglishAuctionInitiator

5 By lack of space, the algorithm used to implement parallelize() and join() are not

detailed here. The corresponding Java code may be downloaded from the author’s web page.

Parallel section:
here the automaton is
duplicated in n sub-
automatons, managed by
n continuations, until all
of them reach join(),
which switches back to
synchronous mode

propose, inform, refuse, cfp,
accept and reject are values of the
enumerated type Message.Type

 Continuations and Behavior Components Engineering in Multi-Agent Systems 157

 In figure 8 the whole management of this auction protocol role is handled in a few
simple lines of code, which demonstrates the applicability and elegance of this ap-
proach. An equivalent behavior, implemented using classical explicit finite state au-
tomaton, would require numerous states, conditions and switches, and would result in
a fragmented code, difficult to read and debug.

Note that the variables bestOffer, nbAnswered and winner are here attributes of
the EnglishAuctionInitiator class. These attributes are necessary here to commu-
nicate between sub-automatons in parallel mode, since Javaflow does not support
parameter passing (see the generator example in section 2.1).

The participant roles, quite symmetrical to the initiator roles, of course do not re-
quire the use of parallelize() and join(), since they don’t comprise parallelism.

5.2 Performance

Similarly to cooperative thread with respect to preemptive threads, a non preemptive
activation of agents’ behavior components, using continuation, give better perform-
ances. To evaluate this gain, we have compared the execution time of two versions of
our prototype: a preemptive version with one thread per behavior component and per
agent, and a non preemptive one, using round-robin activation and continuations. In
this test the initiator and participant agents combine the handshake and auction behav-
iors. The results exhibit an average gain of 50% using Javaflow continuations.

Fig. 9. Execution time, function of the number of participant agents. The upper curve corre-
sponds to the preemptive version, the lower curve to the non preemptive version.

6 Conclusion and Future Works

In this paper we have shown how to use continuations to facilitate conversational
agents’ behavioral components engineering. This approach allows an elegant, concise
and intuitive coding of agents behavior dynamics, in the form of automatons written as
“resumable” functions similar to coroutines or generators, while relieving the pro-
grammer from the explicit management of the automaton state and transitions. This
approach also allows benefiting from the host language native flow control structures.

0 500 1000 1500 2000 2500 3000

Number of participant agents

preemptive

non preemptive

E
xe

cu
tio

n
ti

m
e

(s
ec

on
ds

)

0

2

4

6

8

10

12

14

158 D. Jouvin

Its integration into existing platforms only depends on the support of continuations
in the host language, and is quite straightforward. It gives to the designer a great flex-
ibility in the mode of activation of agents and their behavior components.

In the general case, it allows to get rid of multithreading synchronization problems,
but can still be combined with multithreading if necessary.

The main perspective to this work is the integration to the Jade platform, by defin-
ing a ContinuationBehavior. If the adoption of continuations in the MAS commu-
nity follows its adoption in the Web application programming community, they will
represent a promising new technology for agents, and become a common practice in
agent behavioral components engineering.

References

1. Allison, L.: Continuations Implement Generators and Streams. In The Computer Journal,
volume 33(5), 1990. Oxford Journals, 460-465

2. Bellifemine, F., Poggi, A., Rimassa, G.: JADE – A FIPA-compliant agent framework. In
proceedings of the International Conference and Exhibition on the Practical Application of
Intelligent Agents and Multi-Agent Technology (PAAM 1999), London. 97-108.

3. Bölöni, L., Marinescu, D.: A Multi-Plane State Machine Agent Model. Acts of the Inter-
national Conference on Autonomous Agents (AA 2000). Barcelona, Spain. ACM.

4. Hewitt, C.: Viewing control structures as patterns of passing messages. In Artificial Intel-
ligence, volume 8(3), 1977. Elsevier. 323-364.

5. Haynes, C.T., Friedman, D. P., Wand, M.: Obtaining coroutines with continuations. In
Computer Languages, volume 11(3), 1986. 143-153.

6. Jouvin, D., Hassas, S.: Role Delegation as Multi-Agent Oriented Dynamic Composition.
In proceedings of the Intl. Workshop on Agent Technology and Software Engineering
(AgeS 2002, collocated with NOD 2002), Erfurt, Germany.

7. Luck, M., McBurney, P., Preist, C.: Agent Technology: Enabling Next Generation Com-
puting, A Roadmap for Agent Based Computing. Agentlink II report, 2003.

8. Mertz, D., Charming Python: Iterators and simple generators. IBM technical report, 2001.
http://www-128.ibm.com/developerworks/library/l-pycon.html

9. Mertz, D., Charming Python: Generator-based state machines. IBM technical report, 2002
http://www-128.ibm.com/developerworks/library/l-pygen.html

10. Nwana, H., Ndumu, D., Lee, L., Collis, J.: ZEUS: A Toolkit and Approach for Building
Distributed Multi-Agent Systems. In proceedings of the International Conference on Auto-
nomous Agents (AA 1999), Seattle, USA. ACM press.

11. Pettyjohn, G, Clements, J., Marshall, J., Krishnamurthi, S., Felleisen, M.: Continuations
from Generalized Stack Inspection. In proceedings of the ACM SIGPLAN International
Conference on Functional Programming (ICFP 2005), Tallinn, Estonia. ACM press.

12. Poslad, S., Buckle, P., Hadingham, R., The FIPA-OS Agent Platform Open Source for
Open Standards. In proc. of International Conference and Exhibition on the Practical Ap-
plication of Intelligent Agents and Multi-Agent Technology (PAAM 2000), Manchester,
UK.

13. Strachey, C., Wadsworth, C.: Continuations: A mathematical semantics for handling full
jumps. In Programming Research Group Technical Monograph PRG-11, Oxford, 1974.
Reedited in Higher-Order and Symbolic Computation, volume 13(1/2), 2000. 135-152.

14. Tate, B.: Crossing borders: Continuations, Web development, and Java programming, A state-
ful model for programmers, a stateless experience for users. IBM technical report, 2006
http://www-128.ibm.com/developerworks/java/library/j-cb03216/

Evaluating Mobile Agent Platform Security

Axel Bürkle, Alice Hertel, Wilmuth Müller, and Martin Wieser

Fraunhofer Institute for Information and Data Processing,
Fraunhoferstraße 1, 76131 Karlsruhe, Germany

{axel.buerkle, alice.hertel, wilmuth.mueller,
martin.wieser}@iitb.fraunhofer.de

Abstract. Agent mobility requires additional security standards. While
the theoretical aspects of mobile agent security have been widely stud-
ied, there are few studies about the security standards of current agent
platforms. In this paper, test cases are proposed to assess agent plat-
form security. These tests focus on malicious agents trying to attack
other agents or the agency. Currently, they have been carried out for
two agent platforms: JADE and SeMoA. These tests show which of the
known theoretical security problems are relevant in practice. Further-
more, they reveal how these problems were addressed by the respective
platform and what security flaws are present.

1 Introduction

Over the past years software agents in general and mobile agents in particular
have become more and more important in many areas of computer science such
as distributed systems, autonomous systems and robotics as well as artificial
intelligence.

Mobile agents are a special sort of software agents that possess the ability
to migrate to other hosts. In contrast to classical distributed systems, where
processes are bound to the host they were launched on, mobile agents can transfer
their code and context to another host where their execution continues.

Especially the technical advantages of mobile agents such as delegation of
tasks, asynchronous processing, adaptable service interfaces, and code shipping
versus data shipping provide an interesting approach to distributed systems [1].

Application domains where mobile agents have proven to be valuable are
telecommunication applications [2], IP-network configuration and management
[3], sensor networks [4], electronic commerce, information retrieval [5], [6], mobile
computing, and dynamic deployment of software, just to mention a few.

Despite these proven demonstrations of valuable contributions for building
systems and applications in different domains, the number of commercial appli-
cations built with mobile agents is still rather small. One of the principle reasons
for this is security concerns. Companies and individuals are skeptical of allowing
an uncontrollable piece of code to appear on their machines and execute, which
is basically the same as what a virus does [7]. Agent users are worried about
the confidentiality and integrity of sensitive data carried by the agent, e.g. an

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 159–171, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

160 A. Bürkle et al.

electronic purse in an e-commerce application, when the agent is running on a
remote and potentially malicious platform.

All application domains mentioned above demand guarantees of agent behav-
ior and safe interaction with the underlying operating system and other involved
legacy systems.

In the last decade a number of publications focused on security aspects of
mobile code in general and mobile agents in particular. Some of them analyze
theoretical security problems [8], [9], [10] while others propose mechanisms and
architectures to overcome these problems [11], [12], [13], [14].

While the theoretical aspects have been widely studied, there is a lack of
studies about the practical realization of security concepts in available agent
platforms. This paper introduces test cases for the evaluation of security mech-
anisms of mobile agent platforms. They are based on the results of theoretical
studies on mobile agent security and designed with respect to practical relevance.

The agent plattforms covered in this paper are JADE (Java Agent DEvelop-
ment Framework) [15], an open source software distributed by Telecom Italia,
and SeMoA (Secure Mobile Agents) [16], a freely available agent platform devel-
oped and distributed by Fraunhofer IGD. SeMoA was specially designed with
focus on security aspects of mobile agents.

The paper is organized as follows: in Sect. 2, a taxonomy of possible attacks is
introduced. Sects. 3 and 4 present test cases and results for JADE and SeMoA.
Finally, Sect. 5 discusses the findings of our study.

2 Taxonomy of Possible Attacks

With mobile agents there are four different sorts of attacks according to whether
the agent or the agency is malicious and whether the agent or the agency is
attacked [1], [9].

2.1 Malicious Agents Attacking the Hosting Agency

– Denial of Service (DoS) attacks: The agent excessively consumes the re-
sources of the agency such as memory, CPU cycles or bandwidth so that the
agency is not able to provide its services to other agents.

– Unauthorized access to the agency’s data: The agent tries to access confi-
dential data, e.g. keystores or policy files (usually, these are locally stored on
the agency’s hard disk(s)), or tries to manipulate the agency’s management
mechanisms.

– Masquerading: The agent masquerades as another agent with more permis-
sions and gains access to sensitive data or services.

– Complex attacks through cooperation with other agents [17]

2.2 Malicious Agents Attacking Other Agents (Located on the
Same Agency)

– Changing the other agent’s state or task
– Reading or manipulating the other agents’ data

Evaluating Mobile Agent Platform Security 161

– Masking its identity to deceive other agents and gain sensitive information
from them or using services on behalf of other agents without paying

– Retarding another agent or detaining it from fulfilling its task [17]
– Denial of Service attacks on other agents by sending spam messages

2.3 Malicious Agencies Attacking Other Agencies

– Eaves-dropping on the communication between two agencies and capturing
agents to extract useful information from the agents’ state or code

– Traffic analysis attempting to find patterns in the communication between
two agencies to derive assumed behaviors based on these patterns

– Sending an agent to attack the agency - this could be either a malicious
agent or an agent manipulated to act maliciously

2.4 Malicious Agencies Attacking Agents

– Accessing the agent’s data: Reading confidential data, e.g. private keys, or
manipulating the collected data

– Accessing the agent’s code and / or workflow: Reading the migration path or
the algorithms; permanently or temporarily changing the agent’s behavior
for the benefit of the malicious agency or to damage of other agencies [1].

– Delaying or even denying the agent’s execution.
– Cut-and-Paste attack: The agency cuts data items from the agent and pastes

it into a new agent. If this data is encrypted, the agent can migrate to the
agency where a decryption is possible and come back with the decrypted
data.

2.5 Security Solutions

There are multiple mechanisms for providing security against the above men-
tioned attacks. However, to list them all is out of the scope of this paper, so we
refer to [1], [14], [18] and present only the most important security solutions:

– Encryption: The data the agent is carrying, or even the whole agent, is
encrypted to prevent unauthorized access to data.

– Digital signatures and certificates: Using PKI (Public Key Infrastructure) is
the most common way for communication partners to authenticate against
one another, i.e. agent against agency and vice versa.

– Central management of security mechanisms and access authorizations: Each
agency has its own security management where authentication and autho-
rization of incoming agents and the monitoring of their actions during their
stay is managed.

– Sandbox: Every agent is executed in a secure environment and any attempt
to access anything outside this environment is strictly controlled by a security
manager.

– Secure Socket Layer (SSL): This technique provides a secure way for mobile
agents to migrate from agency to agency.

162 A. Bürkle et al.

2.6 Test Purposes

From the above mentioned attacks we chose to consider only those initiated by
malicious agents, as we did not intend to modify any code of the platforms.
Consequently we disregarded the case of malicious agencies. Furthermore, we
did not analyze the security mechanisms of the underlying operating system,
the JVM (Java Virtual Machine) or the network. Neither did we examine the
security of encryption algorithms or signatures. Our purpose was to test existing
platforms for mobile agents on their ability to ensure security in practice.

So far, our tests were carried out for the platforms JADE and SeMoA. JADE
has been chosen since it is probably the most widely used agent platform today.
SeMoA was considered because of its focus on security. It was specially designed
with respect to security and seems to provide the most elaborate security con-
cept. It is interesting to see how these two platforms compare.

All test cases are based on the before described taxonomy of attacks. However,
they were adapted to the individual platform in order to meet the peculiarity
of each platform. E.g. JADE and SeMoA greatly differ in their architecture and
their security concepts. Instead of developing a homogeneous test methodology
for all platforms we considered it more appropriate to approach platform security
from a practical point of view. The following sections present the test cases and
test results for JADE and SeMoA.

3 JADE Security Test

JADE provides security features through an add-on [19]. It comprises the fol-
lowing services:

– SecurityService: Authentication using the corresponding Java functional-
ity.

– PermissionService: Granting permissions to access Java libraries (using
the Java Authentication and Authorization Service JAAS) and to perform
agent-specific actions (e.g. start, kill or clone or send-to agents).

– SignatureService: Signing of messages to avoid falsification.
– EncryptionService: Encryption of messages to avoid unauthorized read-

ing.

To test the JADE security add-on (we tested “Version 3[1].3” with JADE
Version 3.3), especially in conjunction with mobile agents, we implemented a
specific test environment. This test environment uses the JADE test suite tool
[20] to manage the execution of the test cases. Test cases are small pieces of code
to test a specific behavior of the security add-on; a sequence of logically related
test cases is called a test suite. The JADE test suite tool provides a graphical
user interface for configuring and starting test suites and base classes for test
suite and test case agents.

Evaluating Mobile Agent Platform Security 163

3.1 Test Agents

The JADE security test environment comprises the following agents:

– a test suite agent for each test suite to parameterize and start the test cases,
and to clean up the platform after test case execution,

– a test case agent for every test case which executes the test procedure step
by step,

– a database access agent, which represents the normal application part and
provides a service to read metadata of an image from a database according
to the read conditions contained in the read request, and

– a user agent, which is able to represent a regular user agent who retrieves
image data using the service of the database access agent, as well as a ma-
licious user agent who tries to disturb the regular users and to attack the
platform. The user agent is generated and stimulated by the currently active
test case agent to behave as regular or as malicious user.

3.2 Test System

The test system consists of three JADE containers: The test container, where
the test suite and test case agents are located, the user container, where the user
agents are generated, and the main container, where the default JADE agents
(ams, df, rma) and the database access agent are located. The main and the test
container on one side, and the user container on the other side, have different
owners, so that different owner-specific permissions can be granted within the
policy file. Fig. 1 shows the testbed architecture.

3.3 Test Cases

Denial of Service (DoS) Tests. Denial of Service test cases check if malicious
mobile agents are able to disturb or even prevent the tasks of regular agents by
overloading the CPU or by extensive use of operating system resources. All
DoS test cases start with generating a regular user agent in the user container
and migrating it to the main container. Then a malicious user agent is started
in the user container and migrated to the main container as well. The regular
user agent then requests image data from the database access agent and the
execution time is measured. Then, if requested by the test case, the malicious
user agent is cloned to produce many malicious user agents. The malicious user
agent(s) start(s) its (their) work, while the regular user agent executes image
requests again. The execution time is measured again and compared with the
execution time in the undisturbed case to find out if the DoS attack succeeded.
The following test cases for DoS tests were implemented:

– TC1: Recursively cloning malicious agents.
– TC2: Malicious agents try to overload the agency by flooding the ams (agent

management system) agent with agent search requests.

164 A. Bürkle et al.

Fig. 1. JADE security testbed

– TC3: Malicious agents activate non-blocking behaviors, resulting in endless
loops for many threads.

– TC4: Malicious agents send a message to many receivers, forcing message
decoding for all receiving agents at the same time.

Unauthorized Access Tests. Unauthorized access test cases check if mobile
agents can access vital functionality of the agent platform or of the runtime envi-
ronment so that they can sabotage the platform operation or access confidential
information. Unauthorized access test cases start with generating a regular user
agent in the user container, migrate it to the main container, then a malicious
user agent is started in the user container and migrated to the main container as
well. After that the malicious user agent tries to attack the platform. The test
case ends with removing all user agents from the main container. The following
unauthorized access test cases were implemented:

– TC5: Try to modify the policy file.
– TC6: Try to replace the Java security manager.
– TC7: Try to kill another agent.
– TC8: Try to deregister another agent at the ams agent (i.e. deregister from

white pages).
– TC9: Try to deregister another agent at the df agent (i.e. deregister from

yellow pages).
– TC10: Try to create a new container.
– TC11: Try to kill the JADE platform.

Evaluating Mobile Agent Platform Security 165

Agent Attack Tests. Agent attack test cases check if malicious mobile agents
are able to attack regular agents operating in the same container. The test case
procedure is similar to the one used for DoS test cases. The following agent
attack test cases are currently implemented:

– TC12: A malicious agent sends a lot of dummy requests to a regular user
agent, trying to prevent it from doing its work.

– TC13: A malicious agent sends a lot of spam messages (inform messages
with no useful content) to a regular user agent, trying to prevent it from
doing its work.

– TC14: A malicious agent tries to suspend a regular agent.
– TC15: A malicious agent tries to send a signed message with a fake sender

ID.

3.4 Test Results

All test cases have been carried out in four different environments to take into
account and study hardware and operating system specific effects. The four test
setups were (cf. Fig. 1):

– PC2 was a laptop computer (Pentium M 760, 2.0 GHz, 1 GB RAM) runnig
Windows XP Professional

– PC2 was a PC (Pentium D 830, 3.0 GHz, 2 GB RAM) running Windows
XP Professional 64 Bit

– PC2 was a PC (Pentium D 830, 3.0 GHz, 2 GB RAM) running SuSE Linux
10.0 (64 Bit)

– PC2 was a HP workstation (PA-8800, 900 MHz, 4 GB RAM) running HP-UX
11.0

The effectiveness of the DoS attacks (TC1 - TC4) and the attacks against
other agents (TC12 and TC13) was measured by comparing the execution time
of the regular agent in the undisturbed scenario to the execution time when under
attack. Fig. 2 shows the mean execution times in milliseconds for 100 iterations
of each test case in the respective environment. In case of the spamming attack,
the user agent was completely blocked on the laptop. On the workstation, the
mean execution time was beyond 30 seconds.

To build the JADE permission service, the JADE security add-on uses the
Java security system and adds some agent-specific permission checks. Assuming
that the Java security system and the JADE-specific add-ons cannot be cor-
rupted (for example by falsifying the identity of an agent), and if the policy file
is edited carefully, most of the described attacks can be prevented, except the
following:

– Recursively cloning and non-blocking behaviors cannot be prevented.
– Registering at and deregistering from yellow pages can only be allowed for

all agents or for none.

166 A. Bürkle et al.

0

500

1000

1500

2000

2500

3000

TC1:
 C

lon
ing

TC2:
 A

ge
nc

yO
ve

rlo
ad

TC3:
 N

on
Bloc

kin
gB

eh
av

ior

TC4:
 S

en
dM

an
yM

es
sa

ge
s

TC12
: D

um
m

yR
eq

ue
st

TC13
: S

pa
m

m
ing

Windows Laptop (Regular)

Windows Laptop (Attacked)

Windows PC (Regular)

Windows PC (Attacked)

Linux PC (Regular)

Linux PC (Attacked)

HP Workstation (Regular)

HP Workstation (Attacked)

Fig. 2. JADE DoS test results (execution time im msecs)

– Spam and dummy requests cannot be avoided.
– During migration, the ownership of the agent is lost (non-persistent data)

and can be easily replaced by an arbitrary ownership, which is used to vali-
date the send-to permission. With the send-to permission obtained by fraud
it is possible to deregister any other agent at the df.

– It is possible for an agent to generate a new pair of keys using a fake agent
name in order to sign messages with a fake sender ID.

4 SeMoA Security Test

SeMoA provides several mechanisms in order to prevent attacks in terms of
a layered security architecture. The first layer is the transport layer, where a
protocol such as TLS or SSL can be used for agent transport. In the second layer
an incoming or outgoing agent has to pass a pipeline consisting of several security
filters. Each filter can accept or reject an agent. Furthermore this layer checks
an incoming agent’s signatures, decrypts it and finally assigns permissions to it
[21]. In this context, Java’s permission classes as well as SeMoA-specific classes
can be used. An important example for the latter is the EnvironmentPermission.
It can be granted for a specific path in an agency’s environment and can allow
an agent to lookup, publish or retract information or services. The assignment
of permissions is done according to a configurable role-based security policy. If
an agent tries to execute an action without the corresponding permission, access
is denied and an exception is thrown.

Evaluating Mobile Agent Platform Security 167

After passing the filter pipeline successfully, every agent gets its own class
loader. The class loader supports loading classes bundled with the agent and
those that are specified as URLs in the agent’s static resources. The classes to
be loaded are verified against a list of cryptographic hash values signed by the
agent’s owner. This verification represents layer three. As a fourth security layer,
a so-called sandbox is created for each agent: it gets its own threadgroup and is
though strictly separated from other agents [21].

Every agent’s static part is signed by its owner and the whole agent is signed
again by every server that forwards it. Moreover, each agent gets a globally
unique “implicit” name which is generated by means of its owner’s signature [21].

4.1 Test System

For our tests we used the SeMoA distribution “semoa complete 050812.zip”,
released on August 12, 2005. We created a simple agent (the user agent) that
migrates from its home agency (AgencyA) to another agency (AgencyB) and
requests a database lookup service there (a search for some images in an image
database with the images’ URLs as a result). After getting the results the agent
migrates back to AgencyA and displays the URLs within a GUI. A malicious
agent now migrates from a third agency (AgencyC) to AgencyB and attacks
either the agency or the reporting agent (Fig. 3). In order to detect the impact
of the attacks we launch the user agent in an endless loop and each time quantify
the duration it needs to fulfill its task.

PC1

AgencyA

user agent

AgencyB

DB lookup service

Image DB

AgencyC

malicious agent

PC2

LAN

: migration
: database access

Fig. 3. SeMoA testbed

4.2 Test Cases

Denial of Service (DoS) Tests. In the majority of cases, an agent
needs special permissions to be able to attack an agency. We assume that the

168 A. Bürkle et al.

agency is not vulnerable unless these permissions are granted to the malicious
agent.

Possible targets for DoS attacks are the agency’s environment, the agency’s
computing resources and the Java Virtual Machine.

– TC1: Consuming the agency’s computing resources (the malicious agent
launches agents from AgencyC to AgencyB; each of these agents starts an
endless loop where it just increments a counter).

– TC2: Consuming the agency’s memory (nesting AWT-Threads).
– TC3: Spamming the agency with agents (as SeMoA does not provide a

cloning mechanism we simulate it in terms of the malicious agent endlessly
launching agents from AgencyC to AgencyB).

– TC4: Overloading the agency by too many database accesses (invoking the
database access service in an endless loop)

– TC5: Spamming the agency by publishing too many objects (requires an
EnvironmentPermission with a wildcard for publishing objects or services
on AgencyB).

– TC6: Incorrect code (synchronization on the Thread -class).
– TC7: Shutdown of the JVM (executing System.exit(0))

Unauthorized Access Tests. The malicious agent migrates to AgencyB and
tries to directly access files in the agency’s file system using Java’s FileInput-
Stream. This is possible with a corresponding FilePermission which can be
granted for read and/or write for individual files or directories.

To access the database on AgencyB the malicious agent can use JDBC or
invoke the database lookup service. Either way at least the permissions to access
the data and the database driver (again FilePermissions) are required.

Another target for unauthorized access are the agency’s management mech-
anisms. SeMoA has several management mechanisms which are located in the
agency’s environment under specific paths and are therefore only accessible if
the EnvironmentPermissions for these paths exist. An exception is the policy
file which can be manipulated like any file if and only if a corresponding FilePer-
mission exists. The most important management mechanisms are:

– The policy file which contains all roles and permissions.
– The vicinity service which shows all available SeMoA servers in the LAN.
– The FarSight service which shows all available SeMoA servers within the

network.
– The ATLAS (Agent Tracking and Location Service) which serves to track

agents; an ATLAS client is integrated in each SeMoA server.
– The security filters
– The /agents/active path which contains the contexts of all agents that reside

on an agency.

For these management mechanisms we decided to implement the following
attacks:

Evaluating Mobile Agent Platform Security 169

– TC8: Modifying the policy file.
– TC9: Replacing the policy filter.
– TC10: Replacing the Java security manager.
– TC11: Deregistering an agent from the /agents/active path.

Agent Attack Tests. Attacking an agent in SeMoA is only possible if its
implicit name is known. This name can be found either through accessing the
agent’s context with the EnvironmentPermission for the /agents/active path or
if the agent itself publishes its name via a service (if an agents wants to receive
messages from other agents it must let these agents know its implicit name,
which serves as the agent’s address).

– TC12: Spamming the agent with messages / blocking the agent.
– TC13: Manipulating the agent’s resources (changing the result of the data-

base lookup).

4.3 Test Results

Fig. 4 shows the effectiveness of the DoS attacks (TC1 - TC5) in four test setups
analogous to Sect. 3.4. Note, that for these test cases all necessary permissions
have been granted.

0

100

200

300

400

500

600

700

800

900

1000

TC1:
CPUOve

rlo
ad

TC2:
M

em
or

yO
ve

rlo
ad

TC3:
Age

nc
yS

pa
mm

ing

TC4:
Age

nc
yO

ve
rlo

ad

TC5:
Age

nc
yS

pa
mm

ing

Windows Laptop (Regular)

Windows Laptop (Attacked)

Windows PC (Regular)

Windows PC (Attacked)

Linux PC (Regular)

Linux PC (Attacked)

HP Workstation (Regular)

HP Workstation (Attacked)

Fig. 4. SeMoA DoS test results (execution time im msecs)

Most attacks can be prevented by correctly configuring the security policy. Crit-
ical permissions like EnvironmentPermission for the security and management

170 A. Bürkle et al.

mechanisms should only be granted to an agency’s administrator and permissions
for publishing objects in an agency’s environment should not be granted with wild-
cards. Nevertheless, some attacks cannot be avoided:

– Too many agents on one agency are not critical if they terminate soon, but
if they execute an endless loop, this heavily burdens the agency.

– The synchronization on the Thread -class is a widely known drawback of Java
and cannot be prevented.

– The nesting of AWT-Threads is a crucial attack which crashes not only the
agency but also the whole operating system. This attack cannot be prevented
by the security policy.

– Spamming an agent cannot be prevented if the agent regularly reads its
messages (otherwise the sender gets the message “recipient not available”).
While the spamming itself does not cause much harm, it can result in block-
ing the agent, because all messages are stored in the agent’s resources. So
the agent can become too big to migrate. This can be avoided by emptying
the mailbox before migrating.

5 Conclusion

The tests showed that the implemented security mechanisms of the evaluated
agent platforms can prevent several of the theoretically possible attacks pro-
vided that the access permissions are configured appropriately. Nevertheless,
DoS-attacks and spamming cannot be prevented completely. Granting permis-
sions in a very restrictive way avoids some of the DoS-attacks on the SeMoA
agent platform. It depends on the application scenario and system environment
at hand, as to whether those permissions are necessary for the agents to perform
their intended task.

The tests revealed some critical flaws in the security mechanisms of JADE
if used in combination with agent mobility. Especially the possibility to fake
the owner of an agent when migrating enables several severe attacks and under-
mines the available security measures. The SeMoA agent platform is well pro-
tected against most of the tested attacks, but is inferior with respect to agent
communication and cooperation mechanisms.

The next steps will be to examine further agent platforms and define test
cases for malicious agency scenarios.

References

1. Braun, P., Rossak, W.: Mobile Agents. Basic Concepts, Mobility Models & the
Tracy Toolkit. dpunkt.verlag (2005)

2. Karmouch, A., Magedanz, T., Delgado, J., eds.: Proc. of the 4th Int. Workshop
on Mobile Agents for Telecommunication Applications. Volume 2521 of LNCS.,
Springer (2002)

Evaluating Mobile Agent Platform Security 171

3. Yang, K., Galis, A., Guo, X., Liu, D.: Rule-Driven Mobile Intelligent Agents for
Real-Time Configuration of IP Networks. In: Knowledge-Based Intelligent Infor-
mation and Engineering Systems: 7th Int. Conf., KES 2003. Volume 2773 of LNCS.,
Oxford, UK, Springer (2003) 921 – 928

4. Fok, C., Roman, G., Lu, C.: Mobile Agent Middleware for Sensor Networks: An Ap-
plication Case Study. In: Proc. of Fourth Int. Symposium on Information Process-
ing in Sensor Networks, IEEE CNF 2005 (2005) 382 – 387

5. Brewington, B., Gray, R., Moizumi, K., Kotz, D., Cybenko, G., Rus, D.: Mobile
agents in distributed information retrieval. Intelligent Information Agents, Springer
(1999)

6. Thati, P., Chang, P., Agha, G.: Crawlets: Agents for high performance web search
engine. In Picco, G.P., ed.: Mobile Agents, Proc. of the 5th Int. Conf. (MA 2001).
Volume 2240 of LNCS., Atlanta, USA, Springer (2001) 119–134

7. Geirland, J.: The Feature: Mobile Intelligent Agents.
http://www.thefeature.com/article?articleid=26051 (2002)

8. Gray, R., Kotz, D., Cybenko, G., Rus, D.: D’Agents : Security in a Multiple-
Language, Mobile-Agent System. In Vigna, G., ed.: Mobile Agents and Security.
LNCS, Springer (1998) 154–187

9. Jansen, W., Karygiannis, T.: Mobile Agent Security. Special Publication 800-19,
NIST (1999)

10. Roth, V.: Programming Satan’s Agents. In Fischer, K., Hutter, D., eds.: Proc.
of the 1st Int. Workshop on Secure Mobile Multi-Agent Systems, SEMAS 2001,
Elsevier (2002)

11. Hohl, F.: Time Limited Blackbox Security: Protecting Mobile Agents From Ma-
licious Hosts. In: Mobile Agents and Security. Volume 1419 of LNCS., Springer
(1998) 92–113

12. Jansen, W.: A Privilege Management Scheme for Mobile Agent Systems. Elec-
tronic Notes in Theoretical Computer Science, SEMAS 2001, First International
Workshop on Security of Mobile Multiagent Systems 63 (2002)

13. Tschudin, C.: Mobile Agent Security. In Klusch, M., ed.: Intelligent information
agents: agent based information discovery and management in the Internet, Chapt.
18, Springer (1999)

14. Vigna, G.: Protecting Mobile Agents Through Tracing. In: Proc. of the 3rd ECOOP
Workshop on Mobile Object Systems, Jyvalskyla, Finland (1997)

15. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE - A White Paper.
http://jade.tilab.com (2003)

16. SeMoA. http://www.semoa.org (2006)
17. Santana Torrellas, G.: A Network Security Architectural Approach for Systems

Integrity using Multi Agent Systems Engineering. Int. Symposium on Parallel
Architectures, Algorithms and Networks (ISPAN) (2004)

18. Borselius, N.: Mobile Agent Security. Electronics & Communication Engineering
Journal (2002)

19. JADE Board: JADE Security Guide. http://jade.tilab.com (2005)
20. Cortese, E., Caire, G., Bochicchio, R.: JADE Test Suite User Guide.

http://jade.tilab.com (2004)
21. Roth, V., Jalali, M., Pinsdorf, U.: Secure Mobile Agents (SeMoA).

http://www.inigraphics.net/press/brochures/sec_broch/sec/Security.pdf
(2006)

A New Model for Trust and Reputation
Management with an Ontology Based Approach

for Similarity Between Tasks�

Alberto Caballero, Juan A. Botia, and Antonio F. Gomez-Skarmeta

Universidad de Murcia. Campus Espinardo. Murcia, Espana
albe cu@yahoo.com, {juanbot, skarmeta}@um.es

Abstract. This paper proposes a new trust and reputation model to
assist decision making process into agents in P2P environments, taking
WSMO as the base for definition of tasks to contract. This work shows
the integration of trust and reputation model and WSMO in two ways:
1) how agents use WSMO as ontology to define their requirements, re-
sponses, domain-dependent features and metrics; and 2) how the Web
services discovery process in WSMO may be improved using trust and
reputation criteria given by the model from data stored by consumer
agents in previous interactions.

1 Introduction

In P2P environments, the peers interact in a decentralized manner trying to
obtain the solution for a given problem. For instance, peers can be providers
or consumers of resources [6,13]. Each node or agent may expose very different
behaviors, for this reason it is possible that consumers would want to contract
only providers with the best behaviors. For that, it is necessary that each node
manages his own updated model about the rest of nodes in the system. Trust
and reputation based models can help to separate good and bad nodes.

The paper proposes a new model to manage trust and reputation values that
an agent has about the rest of agents associated to the realization of a given
task. These values are obtained from the agent experience and the informa-
tion interchanged between agents. The experience of each agent must represent
the satisfaction that this agent obtained from others. The way to measure the
satisfaction may be very different according to the application domain, and rep-
resentations for tasks and responses. Many times, the task, that agents negotiate,
is a service request; and the response, the description of the service that satisfies
it. This way, task and response representations using WSMO [14] may be very
useful in order to define the domain-dependent features of the model. The model
can be used in environments where agents take WSMO as ontology of reference.

Moreover, the proposed trust and reputation model carries out the Web ser-
vice discovery process in a more flexible and intelligent way, using the previous
� This paper is supported by the Programme Alban scholarship No.E05D049799CU

and also by the Spanish Ministry of Education and Science by the Research Project
TIN-2005-08501-C03-02.

K. Fischer et al. (Eds.): MATES 2006, LNAI 4196, pp. 172–183, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A New Model for Trust and Reputation Management 173

knowledge of the system. Also, it identifies and uses some WSMO elements to
obtain several measures such as satisfaction of the task given the response, and
similarity between two tasks.

The rest of the paper is organized as follows: section 2 introduces the most
important elements treated in previous trust and reputation works that are taken
into account in our model; section 3 explains the role of WSMO as conceptual
framework of the model. The proposed trust and reputation model is described
in section 4. Section 5 shows, using an example, how WSMO elements may be
used in order to determine the task satisfaction and similarity between tasks. In
the final section, we draw conclusions and ongoing research work.

2 Antecedents on Trust and Reputation

A great amount of trust and reputation models considers trust as an emergent
property of direct interactions between agents and assume that agents interact
many times [8,14].Trust within an agent is calculated based on this performance
in past interactions using expressions that use measurable quantities. REGRET
system proposes a trust model based on direct experiences and reputations,
providing measures of reliability for these concepts [10].

Reputation may be viewed as an aggregation of opinions of members of the
community about one agent. Some authors propose to obtain some ratings from
social networks and a procedure to aggregate them to obtain a unique reputation
value. This way, it may be consider a community subset, through concepts like
groups or neighbors, to take only closest agents for a specific link [11,10,17].

Our work only considers decision making based on interaction patterns, tak-
ing into account that a very simple trust model must be characterized by the
following three features: (1) it is possible to calculate trust and reputation values
to indicate who trusts who, (2) these values are based on the experience of the
system taken from past interactions; (3) it is possible to refine this value based
on new acquired knowledge added to the experience of the agent.

Generally, trust and reputation values are obtained as global values only asso-
ciated to a peer [3,5,7,13,16], but it is logical to suppose that these values must
be associated also to the specification of tasks that agents need to delegate. This
way, Griffiths proposes a model to manage trust between agents with respect to
a particular task [4]. But, in some cases, it is possible that an agent does not
have enough information to produce a trust value for a given task, but he knows
instead the previous partner behavior performing similar tasks. It may obtain
an approximate trust value for the specified task using available trust informa-
tion about similar tasks.The way to estimate trust using the information about
similar tasks is one contribution of this work (please see section 4.3).

3 Representing Contracting Tasks with WSMO

WSMO offers a conceptual framework for ontologies and Web services descrip-
tions. WSMO consists on four main elements: ontologies (that define a common

174 A. Caballero, J.A. Botia, and A.F. Gomez-Skarmeta

terminology, used by other elements, providing concepts and relationships be-
tween these concepts), Web services (that represent the computational entities
providing access to services), goals (that represent the user desires) and media-
tors (that solve interoperability problems between the rest of elements) [14].

WSMO is a suitable framework to represent the knowledge structures needed
by a trust model for P2P environments based on Web services. Service requests
may be represented by tasks using the WSMO concept of ”Goal”. In other
hand, the response (describing the Web service that satisfies the task) may be
represented using the concept of ”Web Service” given by WSMO.

We will use this conceptual framework because 1) it is a new standard pro-
posal, enhancing existing standards in order to describe ontologies, that can
be used to represent a broad range of situations where users need to find the
most suitable resource in P2P environments based on Web services; 2) it offers
great facilities to Web service representation and discovery from different vari-
ants according the application requirements; 3) Web services, goals and other
elements have some non-functional properties that can be used to calculate trust
and quality in Web service discovery process; and 4) the Web service discovery
process in WSMO can be improved with the use of trust and reputation models
taking into account the system previous experience and behavior exposed.

In line with reason 3, we identify some interesting non-functional properties
of Web services and goals to manage trust, quality, costs, etc.:

– Accuracy - numbers of errors generated in a certain time interval.
– Network-Related QoS - network delay, delay variation and/or message loss.
– Performance - throughput, latency, execution time, and transaction time.
– Reliability - number of failures of the Web service in a certain time interval.
– Robustness - number of invalid inputs for which the Web service still function

correctly.
– Scalability - number of solved requests in a certain time interval.
– Trust - the trust worthiness of a Web service.

The trust model, presented in the next section, uses service discovery based
on simple semantic descriptions of services as a good and simple method to
evaluate the quality of a given response. This needs that the agent stores its
satisfaction degree for each initiated interaction. Stored information can be used
to enhance the WSMO discovery process in later system interactions. This way,
the proposed trust and reputation model allows to find the most suitable Web
service, in an intelligent form, using knowledge about past experiences.

4 Trust/Reputation Model

The main goal of the proposed model is to offer mechanisms to support adaptive
negotiations between agents. It enables mechanisms to decide which are the
agents with which it is necessary to negotiate based on the calculation of a
value of confidence, that is associated with the specification of the task that it
is necessary to contract.

A New Model for Trust and Reputation Management 175

Given the decentralized nature of P2P environments, the model must follow
a distributed approach. Each agent has its own bases of experiences to obtain
trust values and to interact with its neighbors if it needs to calculate reputation.

When an interaction is finalized, the initiator agent (i.e. the agent that began
the interaction) stores interaction data into a binnacle. If ai is the initiator
agent and aj is the contracted agent to execute the task, the interaction data is
represented as a tuple into the set (Initiator’s Experience of Trust):

IET
(t)
i = {(aj , sk, eti,j,k,l)|aj ∈ A, sk ∈ S, eti,j,k,l ∈ [0, 1]}

where IET
(t)
i is the trust experience of agent ai at time t, A is the set of agents

in the system, S is the set of possible specifications of tasks that the agent needs
to contract, eti,j,k,l is the satisfaction degree of agent ai when agent aj offers a
solution to the task sk for the l-th time.

Also, the initiator agent must store data about the reliability of other agents
when they offer reputation information (Initiator’s Experience of Reputation):

IER
(t)
i = {(aj , sk, eri,j,k)|aj ∈ A, sk ∈ S, eri,j,k ∈ [0, 1]}

where eri,j,k is the satisfaction degree of agent ai when aj offers reputation values
about other agents when they performed the task sk.

In order to update the bases of experiences, at the end of each interaction
t, the agent ai evaluates the interaction, taking into account the solution wj as
response of the task sk. The information about each particular interaction, that
agent ai carried out for a given task sk, may be grouped in the set:

I(t)(ai, sk) = {(aj, wj)|aj ∈ C(t)(ai, sk), wj ∈ W},

where wj is the response given in this interaction by agent aj ; W is the set of
all possible responses, and C(t)(ai, sk) is the set of the most reliable agents to
give solutions to task sk according to the experience of agent ai.

Updating process combines the interaction results I(t)(ai, sk) and stored ex-
periences in IET

(t)
i and IER

(t)
i using quality and satisfaction measurements.

4.1 Arranging Agents for Asking Them About Trust and
Reputation

At the beginning of each interaction, initiator agent needs to identify the more
reliable partners for the required task in order to interacts with them depending
on its previous behaviour. For each task sk, it can create two neighbors lists
according to the partner trust degree to give a response for the required task:

– Set of the most reliable agents to give a response (CT
(t)
sup(ai, sk))

– Set of agents with a doubtful confidence to give a response (CT
(t)
dud(ai, sk))

In the same way, we may stand out the group CR
(t)
sup(ai, sk) for the most reli-

able agents giving reputation values, according to confidence to give reputation
values for the specific task sk.

176 A. Caballero, J.A. Botia, and A.F. Gomez-Skarmeta

Agents from CT
(t)
sup(ai, sk) should be asked from responses for task sk, because

they are the most reliable agents. However, it is possible that some agents from
CT

(t)
dud(ai, sk) could come up with valuable information. The system is dynamic

and this allow the system to adapt. It would be desirable that these agents were
also asked for a response about sk. We define a set of agents with a doubtful
trust to give response, but with a high reputation:

C(t)
prom(ai, sk) = {aj | aj ∈ CT

(t)
dud(ai, sk), R(ai, aj , sk, CR(t)

sup(ai, sk)) ≥ γsup}

where the function R(ai, aj , sk, CR
(t)
sup(ai, sk)) represents the reputation value

assigned by ai to agent aj for task sk according to experience of the most reliable
agent given reputation information, and γsup is a threshold value.

Hence, we define

C(t)(ai, sk) = CT (t)
sup(ai, sk) ∪ C(t)

prom(ai, sk)

as the set of requested agents that agent ai will ask for task sk. This list is
populated by agents with a high trust value to give response and others with
doubtful trust value to give response but with a high reputation value according
to the most reliable agents given reputation information.

4.2 Obtaining Trust and Reputation

The concept of trust as used in this model not only takes into account the
partner in a given negotiation, but the trust value associated to the given task
specification. Also, it combines direct trust experience with opinions of high-
trusted neighbors. The global value of trust f

(t)
i,j,k is obtained from the bases of

experiences like in REGRET [10], using this function:

f
(t)
i,j,k ≡ T (ai, aj , sk) = DTRL(ai, aj, sk, IET

(t)
i) DT (ai, aj , sk, IET

(t)
i)+

(1 − DTRL(ai, aj , sk, IET
(t)
i))R(ai, aj , sk, CR(t)

sup(ai, sk))

where DT (ai, aj , sk, IET
(t)
i) represents the direct trust value that agent ai as-

signs to agent aj for task sk according to the experience in his own base IET
(t)
i ;

R(ai, aj , sk, CR
(t)
sup(ai, sk)) is the reputation value that agent ai assigns to agent

aj for task sk according to the experiences of the most reliable agents to give
reputation.

Direct trust DT (ai, aj , sk, IET
(t)
i) and its reliability DTRL(ai, aj , sk, IET

(t)
i)

are obtained using functions that query the base of experiences IET
(t)
i . Our

model uses a discount approach taking into account that experiences lose rele-
vance as they get older. The way to model the lose of relevance of experience
is carried out different than REGRET. If 0 ≤ δ ≤ 1 is a time modulating
parameter, that gives higher importance to experiences closer to t, trust can be
calculated as follows:

DT (ai, aj, sk, IET
(t)
i) =

∑
lp∈L

δ|L|−peti,j,k,p

A New Model for Trust and Reputation Management 177

where L is subset of different experiences that agent ai has about the perfor-
mance of agent aj associated to task sk (L ⊂ IET

(t)
i , |L| ≤ t). Subindex p, in

the new set L, indicates how old is the experience eti,j,k,p: lp2 is more recent
that experience lp1 only if p2 > p1. The eti,j,k,0 represents the oldest experience
that agent ai has about the performance of agent aj for task sk.

To model how reliable the direct trust measure is, we follow the models
given by SPORAS [18] and REGRET [10]. Reliability value is obtained from
the amount and variability of experiences used to calculated the trust:

DTRL(ai, aj , sk, IET
(t)
i) = No(ai, aj, sk, IET

(t)
i) · (1 − Dv(ai, aj , sk, IET

(t)
i))

where

No(ai, aj , sk, IET
(t)
i) =

{
sin(π·|L|

2·itm) : |L| ≤ itm
1 : otherwise

and

Dv(ai, aj, sk, IET
(t)
i) =

∑
lp∈L

δ|L|−p(|eti,j,k,p − DT (ai, aj , sk, IET
(t)
i)|)

where itm is a domain-dependent parameter to control the maximum number of
experiences taken into account to improve the reliability on the trust measure-
ment. Values greater than itm do not improve the reliability of the metric.

The deviation of the experiences from direct trust (Dv(ai, aj, sk, IET
(t)
i)) is

obtained following the same method to calculate direct trust. Differences between
experience value and direct trust loses relevance thorugh time.

In other hand, R(ai, aj, sk, CR
(t)
sup(ai, sk)) represents the reputation value that

agent ai assigns to agent aj according to the experiences of the most reliable
agents giving reputation information for task sk.

Taking into account some trust and reputation models, given by Golbeck and
Hedler [3,2], Zacharia [18] and Schillo [11], and considering that the reputation
is a task-associated value, we propose a reputation function based on the prop-
agation of reputation information from the most reliable agents:

R(ai, aj , sk, CR(t)
sup(ai, sk)) =

∑
aq∈CR

(t)
sup(ai,sk)

DT (aq, aj , sk, IET
(t)
q) · er

(t)
i,q,k

∑
aq∈CR

(t)
sup(ai,sk)

er
(t)
i,q,k

where agent ai, interested in obtaining reputation information, requests informa-
tion to the reliable agents aq to give reputation information for task sk (grouped
in CR

(t)
sup(ai, sk)) about trust on aj .

The trust value to give reputation information er
(t)
i,q,k is obtained directly from

the base of experiences IER
(t)
i . The agent ai stores, for each agent aq, a unique

trust value to give reputation information er
(t)
i,q,k, for each task sk. This value is

updated after each interaction is finalized (please, see section 4.4).

178 A. Caballero, J.A. Botia, and A.F. Gomez-Skarmeta

4.3 Obtaining Trust and Reputation from Similar Tasks

It is possible that an agent does not have information about performance of
other agents for a given task. In this case, it needs to approximate the trust and
reputation values using a similar task whose accomplishment has been previously
done by known agents and requested by ai. The model may obtain this approx-
imation using a similarity degree between the most similar well-known task and
the unknown one. In our model, the similarity between two tasks sk and sp is
obtained from the comparison of the task attributes. This is a domain-dependent
function.

This way, combining the trust or reputation in the most similar task (sp)
with the similarity degree between the two tasks D(sk, sp), we define indirect
trust (IT) or indirect reputation (IR) functions to approximate direct trust or
reputation values, respectively:

IT (ai, aj , sk, sp, IET
(t)
i)) = DT (ai, aj , sp, IET

(t)
i) · D(sk, sp),

IR(ai, aj , sk, sp, CR(t)
sup(ai, sk)) = R(ai, aj , sk, CR(t)

sup(ai, sk)) · D(sk, sp)

According to Rodriguez and Egenhofer [9] the similarity can be calculated
using elements from the set theory and Tversky’s measure [12] as indicator of
the semantic similarity between entities described using the same ontologies, in
this case, between two tasks described using WSMO.

Tversky [12] defines a similarity measure in terms of a matching process. This
measure produces a similarity value that is not only the result of the common,
but also the result of the different characteristics between objects.

In our model, similarity between tasks (D(sq, sp)) is a domain - dependent
concept that takes into account the Tversky’s measure and set theory [9,12]
over WSMO [14]. According to the Tversky’s model, the similarity between two
concepts a and b can be determined in the following way:

D(a, b) =
|A ∩ B|

|A ∩ B| + α(a, b)|A \ B| + (1 − α(a, b))|B \ A|

where 0 < α < 1; A and B are the set of properties of concepts a and b,
respectively.

D(a, b) is not necessarily symmetrical, unless a and b are equal or α(a, b) =
(1 − α(a, b)), that is to say, α(a, b) = 0.5. Rodriguez and Egenhofer [9] define
the function α taking into account the depth of compared concepts in the ontol-
ogy hierarchy. Using the same expression to obtain α, and comparing the same
concept of the same ontology (equal depth for each task) we take that α = 0.5
(symmetrical similarity measure D(a, b) = D(b, a)).

4.4 Updating the Bases of Experiences IET and IER

At the end of each interaction, the model must update the two bases of experi-
ences with the information generated in that time step.

A New Model for Trust and Reputation Management 179

To update the base of experiences IET
(t)
i , for each agent aj , that gives the

solution wj to the task sk, the model can generate the new experience:

edti,j,k = (ai, aj , sk, eti,j,k)

where
(aj , wj) ∈ I(t)(ai, sk)

where the trust value eti,j,k is a measure obtained from the real quality of the
solution (Q) and the fulfillment (P) of the promised satisfaction (eci,j,k):

eti,j,k = Q(wj , sk) · P (eci,j,k, Q(wj , sk))

This way, the proposed model avoids that an agent aj, with a low promised
satisfaction eci,j,k and a medium-quality solution for task sk, may obtain a high
satisfaction degree eti,j,k. The satisfaction degree must be the combination of
real quality of the solution (Q) and the fulfillment of the promised quality (P).
The definitions of functions P and Q are given in section 4.5.

Here, the model takes into account that is possible to add the new experience
edti,j,k, without having to analyze how many experiences are in the base IET

(t)
i .

The base of experiences for reputation IER
(t)
i has an unique value of repu-

tation er
(t)
i,j,k to indicate, according to experience of agent ai, the reliability of

agent aj to give reputation information about other agents performing task sk.
When agent aj was requested by agent ai about agents from CT

(t)
dud(ai, sk),

it may recommend some of them given their high reputation according to its
experience. The recommended agents by aj , to agent ai for task sk, can be
grouped under the set:

M
(t)
j (ai, sk) = {ar|ar ∈ CT

(t)
dud(ai, sk), f (t)

j,r,k ≥ γsup},

where γsup is a thershold value.
This way, agent ai must adjust er

(t)
i,j,k reputation value on the requested agent

aj , taking into account the variation (produced during the interaction) on trust
about recommended agents from M

(t)
j (ai, sk).

For each requested agent aj ∈ CR
(t)
sup(ai, sk), for current task sk, the model

analyzes the cases of each agent ar ∈ M
(t)
j (ai, sk), taking into account the trust

value that agent ai had about ar (denoted by f
(t)
i,r,k) at the beginning of the

interaction and the new value (denoted by f
(t+1)
i,r,k) at the end.

The trust value to give reputation information er
(t)
i,j,k is modified combining

the mean of all differences between final and previous trust values for each agent
ar, about agent aj . The value of the reputation er

(t+1)
i,j,k will be better than er

(t)
i,j,k

when the trust on recommended agents from M
(t)
j (ai, sk) is improved during the

interaction:

er
(t+1)
i,j,k = sigmod(er(t)

i,j,k +

∑
ar∈M

(t)
j (ai,sk)

f
(t+1)
i,r,k − f

(t)
i,r,k

|M (t)
j (ai, sk)|

)

180 A. Caballero, J.A. Botia, and A.F. Gomez-Skarmeta

where
sigmod(x) =

1
1 + e−ρ(x− 1

2)

The parameter ρ controls the squared-like shape of the function (the higher the
ρ value, the faster the function gets to its maximum).

4.5 Satisfaction: Fulfillment and Quality

As we treated in the previous section, our model needs two functions to evaluate
the satisfaction of the initiator agent through the fulfillment of the promised
satisfaction degree and the quality of the solution according to the task.

The fulfillment of the promised satisfaction indicates to what extent, the re-
sponder agent fulfills the promised quality eci,j,k. We understand this function
as a comparison between the agreement quality value eci,j,k and the real quality
of the given solution, denoted by Q(wj , sk). To determine the fulfillment of the
satisfaction agreement, we may define a function P :

P (eci,j,k, Q(wj , sk)) =
{

1 : Q(wj , sk) ≥ eci,j,k

1 − (eci,j,k − Q(wj , sk)) : Q(wj , sk) < eci,j,k

comparing the promised quality value (eci,j,k) with the quality of the solution
wj for task sk. If the real satisfaction degree overcomes the promised value, the
function returns 1, otherwise it is an indicator of the difference between values.

The quality of the solution, Q(wj , sk), indicates how much the response wj

satisfies the requirements specified in the task sk. Calculation of this value is
based on the comparison of both concepts, it is a domain-dependent function.

To obtain the value of satisfaction degree, our model proposes to consider the
Web service discovery process in WSMO [15]. In this case, tasks are represented
by goals and responses by Web services descriptions, discovery process given by
WSMO acts as a function that indicates the matching degree of the Web service
(response wj) and the desired goal (task sk). Section 5 shows an example of
the definition of the quality function using WSMO discovery process based on
simple semantic descriptions of services.

5 How to Compute Satisfaction and Similarity

It is possible to apply this model into a simple provider - consumer P2P scenario.
This way, we try to ilustrate how we can use this model in an scenario where a
consumer agent requests tasks and obtains solutions from providers.

Each task request sk or response wj (represented by Goal or WebService,
respectively) is described by the set of non-functional properties listed in section
3 (i.e. accuracy, performance, reliability, etc.). Also, according to this application
domain, we may add two properties: speed, representing the download speed, and
quality, representing the quality of downloaded resource.

For each property of Goal or WebService, the model must define a normal-
ization function to make independent the domain of the real world values from

A New Model for Trust and Reputation Management 181

model-managed values. For that, the model uses values in the range [0,1] to
represent the convenience of the property, independent of the original property
domain: a value near to 0 indicates a non-desired value in the original property,
and values near to 1 indicate high-desired values in the original properties. For
instance, when download speed is very fast, the value of the property ”speed” is
near to 1, but when the number of errors generated in a certain time interval is
high, the value of the attribute ”accuracy” is near to 0 (please, see section 3).

In WSMO, the Web Service discovery process using simple semantic descrip-
tions of services is based on set theory and exploits ontologies as formal, machine-
processable representation of domain knowledge [14,15].

The set of elements of Goals and WebServices can be analyzed in different
ways, given a non-unique semantic interpretation. For instance, using the same
set of elements to describe a Goal, we can specify that the user wants to satisfy all
properties or only some of them. The same situation occurs with WebServices
concept. For this reason, it is necessary to specify the intention (universal or
existential) of the description of Goal or WebService, in order to determine the
type of coincidence between Goal and WebService in the discovery process. For
instance, if the user wants to satisfy all request attributes, the intention of the
goal is universal; in other hand, if the purpose is to satisfy only some of them,
the intention is existential.

Following the discovery approach based on the simple description of Web
services [15], for each goal (sk) or Web service (wj), we need to group the good-
value attributes in the sets Rg and Rw, respectively.

Rg and Rw consist of the most prominent attributes for each concept, accord-
ing to the value of each attribute. To construct these sets, we consider that the
attribute bi of sk is a good-value attribute and hence bi ∈ Rg if sk.bi ≥ λi (λi is
a domain-dependent threshold value). In the same way, an attribute bi of wj is
a good-value and bi ∈ Rw if wj .bi ≥ λi.

Considering universal intentions for goals and Web services Ig = Isk
= ∀ and

Iw = Iwj = ∀ over the sets Rg and Rw (that contain good-values attributes of
sk and wj , respectively), we may define the value of satisfaction degree:

Q(wj , sk) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 : Rg = Rw Match
0.75 : Rg ⊆ Rw Match
0.5 : Rg ⊇ Rw PartialMatch
0.5 : Rg ∩ Rw �= ∅ PartialMatch

0 : Rg ∩ Rw = ∅ NoMatch

According to this definition, maximum satisfaction degree is obtained when all
important (good-value) attributes desired in goal sk are important (good-value)
attributes in Web services wj . Contrary, the worst satisfaction is obtained when
no prominent attributes of goal sk are satisfied by important attributes of Web
services wj . Also, the satisfaction function considers intermediate cases.

To determine the similarity between two tasks sq and sp, using the definition
of D defined in section 4.3, we consider the sets Rgq and Rgp of prominent non-
functional and domain - dependent properties of tasks sq and sp, respectively:

182 A. Caballero, J.A. Botia, and A.F. Gomez-Skarmeta

D(sq, sp) =
|Rgq ∩ Rgp|

|Rgq ∩ Rgp| + 0.5|Rgq \ Rgp| + 0.5|Rgp \ Rgq|
This way, we have a general method to obtain two needed domain-dependent

measures in the proposed trust and reputation model: task satisfaction given
a response and similarity between two tasks. It offers a very simple definition
based on the set theory and WSMO elements.

When linking trust and reputation model to WSMO, the satisfaction and
similarity measures use the concepts of Goals and WebServices in the definition
of the tasks (the users’ requirements) and the answers (services that satisfy the
requirements), respectively. However, it can consider other domain-dependent
characteristics like in this example: download speed and download quality. For
this reason, the model can be adapted to different application domains where
WSMO is the used ontology framework.

6 Conclusions and Future Work

This paper proposes a model to manage trust and reputation taking WSMO as
conceptual framework in a P2P environment, where agents should be able to
contract the Web service of best behavior. The combination of the trust model
with the ontological representation offered by WSMO allows the service discovery
process to take advantage of the previous knowledge of the system, taking into
account the satisfaction degree of the previous tasks.

It is considered that the trust and the reputation in each agent can be different
in dependence of the specified task or requirement. Nevertheless, if the model
ignores the behavior of the service for a given task, the values of trust can be
approximated using the similarity between this and a well known task.

For the description of the services and their requests, the model suggests
the concepts given by WSMO: Web Service and Goal. This way, it facilitates
the definition of some characteristics and functions that are dependent of the
application domain, such as the satisfaction of a task given the answer or the
similarity between two tasks.

We intend to implement and prove the trust and reputation model based
on WSMO, comparing different configurations, trying to affirm experimentally
that the quality of discovery process in WSMO is improved when the trust and
reputation model is used. We will identify the parameters that affect the system
performance and their high-recommended values.

Now, the model is being adapted to ART [1] trying to prove its operation
in front of other models of trust and reputation, evaluating and adjusting its
capacities of reactivity and representation of the behavior of other agents. We
identify some common characteristics and match some related concepts between
this model and ART. However, there are several concepts difficult to match,
that require ingenious and hard work. Also, we expect that the initial partition
of neighbors, proposed by our model, enhances the agents’ profits because it
reduces unnecessary message interchanging, taking into account that in ART
each opinion request has associated a given cost.

A New Model for Trust and Reputation Management 183

References

1. K. Fullam, T. Klos, G. Muller, J. Sabater, Z. Topol, K. S. Barber, J. S. Rosenschein,
and L. Vercouter. The Agent Reputation and Trust (ART) Testbed Architecture.
In Proc. of Trust Workshop at AAMAS, 2005.

2. J. Golbeck and J. Hendler. Accuracy of metrics for inferring trust and reputation
in semantic web-based social networks. In Proc. of EKAW’04, 2004.

3. J. Golbeck and J. Hendler. Filmtrust: Movie recommendations using trust in
web-based social networks. In Proc. of the IEEE Consumer Communications and
Networking Conference, January 2005.

4. N. Griffiths. Task delegation using experience-based multi-dimensional trust. In
Proc. of Trust Workshop at AAMAS, 2005.

5. S. Marti. Trust and Reputation in Peer-to-Peer Networks. PhD thesis, Stanford
University, 2005.

6. D. Milojicic, V. Kalogeraki, and R. L. R. Peer-to-peer computing. Tech report:
Hpl-2002-57, Hewlett Packard, 2002.

7. M. Montaner, B. Lopez, and J. L. de la Rosa. Developing trust in recommender
agents. In Proc. of the First International Joint Conference on Autonomous Agents
and Multi-Agent Systems. C. Castelfranchi and L. Johnson (eds), 2002.

8. S. Ramchurn, D. Huynh, and N. Jennings. Trust in multi-agent systems. Knowledge
Engineering Review, 1(19):1–25, 2004.

9. M. A. Rodriguez and M. J. Egenhofer. Determining semantic similarity among
entity classes from different ontologies. IEEE Transactions on knowledge and Data
Engineering, 15(2):442–456, 2003.

10. J. Sabater and C. Sierra. Regret: a reputation model for gregarious societies.
In Proc. of the First International Joint Conference on Autonomous Agents and
Multi-Agent Systems, pages 475–482. C. Castelfranchi and L. Johnson (eds), 2002.

11. M. Schillo, P. Funk, and M. Rovatsos. Using trust for detecting deceptive agents in
artificial societies. Applied Artificial Intelligence, Special Issue on Trust, Deception,
and Fraud in Agent Societies, 14:825–848, 2000.

12. A. Tversky. Features of similarity. Psychological review, 84(4):327–352, 1977.
13. Y. Wang and J. Vassileva. Trust and reputation model in peer-to-peer networks.

In Proc. of IEEE Conference on P2P Computing. Sweden, September 2003.
14. WSMO Team. Web Service Modeling Ontology (WSMO). W3C, http://www.w3.

org/Submission/WSMO/, 2005.
15. WSMO Team. WSMOWeb Service Discovery. WSML Working Draft. W3C, http://

www.wsmo.org/2004/d5/d5.1/v0.1/, 2005.
16. T. Yamagishi, K. Cook, and M. Watabe. Uncertainty, trust, and commitment

formation in the united states and japan. American Journal of Sociology, 104(1)
165–194, 1998.

17. B. Yu and M. Singh. Distributed reputation management for electronic commerce.
Computational Intelligence, 18(4):535–549, 2002.

18. G. Zacharia. Collaborative reputation mechanisms for communities. PhD thesis,
Massachusetts Institute of Technology, 1999.

Author Index

Alonso, Fernando 24
Andriotti, Gustavo Kuhn 61
Aranda, Gustavo 1

Benguria, Gorka 110
Berre, Arne-Jørgen 123
Botia, Juan A. 172
Botti, Vicent 1
Bürkle, Axel 159

Cabac, Lawrence 12
Caballero, Alberto 172

Davidsson, Paul 73

Elvesæter, Brian 110, 123
Escrivá, Miguel 1

Fernández, Rafael 24
Fischer, Klaus 110, 123
Frutos, Sonia 24

Garćıa-Fornes, Ana 1
Gierke, Martina 49
Gomez-Skarmeta, Antonio F. 172
Gujo, Oleg 37

Hahn, Christian 123
Henesey, Lawrence 73
Hertel, Alice 159
Himmelspach, Jan 49
Hoogendoorn, Mark 135

Jonge, Femke de 86

Jonker, Catholijn M. 135
Jouvin, Denis 147
Julian, Vicente 1

Klügl, Franziska 61
Knaak, Nicolas 12

Madrigal-Mora, Cristián 123
Moldt, Daniel 12
Mors, Adriaan W. ter 98
Müller, Wilmuth 159

Palanca, Javier 1
Persson, Jan A. 73

Röhl, Mathias 49
Rölke, Heiko 12
Roos, Nico 86

Schwind, Michael 37
Soriano, Javier 24
Steenhuisen, J. Renze 98
Stockheim, Tim 37

Uhrmacher, Adelinde M. 49

Valk, Jeroen M. 98
Vayssière, Julien 110

Wieser, Martin 159
Witteveen, Cees 86, 98

Zinnikus, Ingo 110, 123

	Frontmatter
	Agent Communication and Interaction
	Adding New Communication Services to the FIPA Message Transport System
	Analysis of Multi-Agent Interactions with Process Mining Techniques
	Engineering Agent Conversations with the DIALOG Framework
	Agents' Bidding Strategies in a Combinatorial Auction

	Applications and Simulation
	Modeling and Simulation of Tests for Agents
	Agent-Based Simulation Versus Econometrics -- from Macro- to Microscopic Approaches in Route Choice Simulation
	Agent Based Simulation Architecture for Evaluating Operational Policies in Transshipping Containers

	Agent Planning
	Diagnosis of Multi-agent Plan Execution
	Framework and Complexity Results for Coordinating Non-cooperative Planning Agents

	Agent-Oriented Software Engineering
	A Model Driven Approach to Agent-Based Service-Oriented Architectures
	Meta-models, Models, and Model Transformations: Towards Interoperable Agents
	Formation of Virtual Organizations Through Negotiation
	Continuations and Behavior Components Engineering in Multi-Agent Systems

	Trust and Security
	Evaluating Mobile Agent Platform Security
	A New Model for Trust and Reputation Management with an Ontology Based Approach for Similarity Between Tasks

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

