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Abstract. The manufacturing quality can be evaluated only by consid-
ering the failure behavior of the product in the field. When relating man-
ufacturing events to failure events, the main challenge is to master the
huge number of combinations of both event types, of which each is only
covered by a small number of occurrences. Additionally, this leads to the
problem of selection of interesting findings - the appropriateness of the
selection criterion for consequent decision making is a critical point. An-
other challenge is the necessity of mapping the process of manufacturing
tests to a vector of variables characterizing the manufacturing process.
The solution presented, focuses on correct rule generation and selection
in the case of combinations with low coverage. Therefore statistical and
decision theory approaches were used. The multiple hypothesis aspect
of the rule set has also been considered. The application field was qual-
ity control of electronic units in automotive assembly, with thousands of
variables observed.

1 Introduction

In the automotive assembly, testing of individual functions is frequently embed-
ded in the assembly process. The focus is on testing the functionality of electronic
units, whose number amounts, in the premium car segment, are up to several
hundreds.

The ultimate criterion of manufacturing quality is the behavior of the product
in the field. This is why it’s important to learn as much as possible about the
relationships between the assembly and testing procedure on the one hand, and
the field quality measures on the other hand. In this case the task is to examine
two different databases, each representing one part of the product life cycle: the
assembly database, which stores the results of the electronic unit tests during the
manufacturing process, and the field failure data collected in a company-wide
service and warranty database.

The relationships between the assembly process and the field failure can be
captured, in a the classical Data Mining manner, by association rules for which
exist numerous algorithms. However, several fundamental characteristics of our
application made some additional developments necessary:
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1. There is a considerable number of assembly process features and failure
types. Even in large event data bases, each event combination is very scarce,
which leads to the necessity to evaluate the statistical properties of rules
based on small samples. Also it’s not necessary to consider complex combi-
nations of three and more variables, because the support can be expected to
tend to zero.

2. The interestingness of results found has to be viewed in economic terms:
interesting rules are those, that have a large economic potential.

3. The large number of process features and failure types typically leads to a
large number of rules found. Even with rule selection criteria considering
the statistical significance, a certain amount of the rules found are random.
Therefore, to have an idea about the reliability of the results, a rough as-
sessment of the proportion of such random rules is desirable.

These aspects are specific, but not restricted to this application. Many large
scaled industrial applications exhibit similar characteristics.

2 Process Model of Manufacturing Tests

The testing process for electronic units in the automotive industry is rather com-
plex. Each car is tested several times during the assembly process to ensure an
error-free delivery to the costumer. During each test, a pre-defined, assembly-
status based scale of electronic units and their individual and interrelated func-
tionality are tested. Each test is either performed automatically or with the
additional input of a assembly worker and has basically two outcomes: either
positive (without errors but eventually with warnings), possibly accompanied
by the list of warnings, or negative, accompanied by the list of errors. Therefore,
if a particular test results in a warning or error message of the tested devices,
several consequent actions may be taken i.e. ignoring the message, repeating the
test, taking the car out of the assembly line (so called rework) and so on.

This variety of procedures implies, that the same test may be performed more
than once, with different results, each of which has to be interpreted individu-
ally. In order to combine and compare the field results with the test results, it
is necessary to transform the test information from the manufacturing process
into a binary representation, holding relevant information from the whole testing
process of a specific electronic unit in a car during assembly - the so called his-
tory of a electronic unit. It captures the information which error was reported1,
whether this error emerge in other tests or not, did this error lead to rework and
did this error appear as a warning in another test. Additionally, the production
weekday and month are logged to capture time fluctuations of the quality.

3 Rule Generation

To improve the assembly process and its testing procedure, the relationship be-
tween the attributes of the assembly and testing process on the one hand, and the
1 In the binary coding: has a given error appeared or not.
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field failures on the other hand has to be clarified and hence can mathematically
be described by association rules.

Let I = {i1, i2, ..., im} and J = {j1, j2, ..., jm} be sets of items or literals. Let
D be a transaction database over I ×J where each transaction T = (Ta, Tb) is a
subset of I × J . Further let A be a set of items with A ⊆ Ta. The implication of
the from A → B with A ⊆ I and B =⊆ J is called association rule. The support2

of a rule A → B can be defined as the numbers of transactions containing A and
B (nA∧B) beeing nA∧B := |{T ∈ D : A ∪ B ⊆ T }|, nA := |{T ∈ D : A ⊆ Ta}|,
nB := |{T ∈ D : B ⊆ Tb}| and n := |D|.

However, the causes of a failure may be more complex: Boolean functions of
multiple assembly terms describe the influence. Sophisticated algorithms exist
for solving this frequent item set problem [2,5]. Considering the fact that even
the occurrences of simple terms are scarce, the support of simple rules of type
A → B can be expected to be very low. This makes the probability of finding
complex rules of three and more antecedent terms with a significant support to
vanish. Instead, all pairs of significant (see the next section) simple rule pairs
Ai → B, Aj → B have been combined to rules of the form f(Ai, Aj) → B with f
being some of 8 possible nontrivial Boolean functions of two arguments, having
higher significance3 than each simple rule.

4 Rule Significance

In machine learning community, it is usual to select interesting rules with help
of measures such as support, confidence, lift or combinations of both [8]. This
approach may be adequate for a support exceeding some substantial count such
as 30. However, many applications, including the ours, lack this property as
obvious from the right graph in Fig. (2). For example in quality monitoring,
early warning is essential. The number of failures occurred grows with the time
interval of observation. The same rules might have been found earlier, if the
observation interval would have been shorter, and it’s thus always preferable, to
use the shorter interval. Consequently, interesting rules cannot, per definition,
exhibit a high support - it is necessary to discover them with a lower support
possible. This is why statistical measures of significance have to be used for
application of this type.

A widely used measure is the χ2-measure of mutual dependence. Unfortu-
nately, this measure can answer only the question how certain it is, that there is
some dependence between the variables, no matter how strong this dependence
is. What is really needed, is a statistically founded statement about the strength
of dependence, which would allow us to identify strong and significant influences
on the failure rates. One possibility are interval estimates of interestingness mea-
sures. An example for this is what we have called ,,safe lift” - an interestingness
2 Mostly the support of a rule is defined as fraction of transactions (see i.e. [6,1]). In

our application we always refer to the number count when talking about support.
3 Here significance refers to an appropriated interestingness measure as explained in

the following sections.
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measure based on the well known lift. It can be expressed with help of sample
counts (see Section (3)) and substituting sample probabilities for real ones:

L(B|A) =
P (B|A)
P (B)

=
nA∧B

nA

nB

n

(1)

Obviously, neither P (B|A) nor P (B) can be determined exactly, since both are
computed from sample counts (nA∧B, nA, nBandn respectively). Assuming that
nB and n are sufficiently large (which is frequently satisfied), we can confine
ourselves to an interval estimate of P (B|A), given sample counts nA∧B and nA.

The confidence interval estimate for the posteriori conditional probability
based on Gaussian approximation of binomial distribution (with sample count
nA, number of positive outcomes (nA∧B)) is the Wilson confidence interval
[T l

nA
(conf(A → B)), T u

nA
(conf(A → B))] (see [4]):
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α
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with qα := u1−α
2

(the quantile of the standard normal distribution for given
significance level α) and p := nA∧B

nA
being the empirical posterior conditional

probability. For sufficiently large nA, we can say 1

1+
q2
α

nA

→ 1, q2
α

2nA
→ 0, qα

4n2
A

→ 0

and therefore the lower interval bound (2) simplifies to p−qα

√
p(1−p)

nA
. The ”safe

lift” can thereby be defined as the ratio of the simplified lower interval bound
and the posteriori probability of the consequence4.

5 Decision Oriented Rule Selection

To select the best rules within the founded rules, the goal of the application has
to be considered. One possibility is the attempt, to quantify the benefit from
knowing the rule.

Each rule concerning a field failure gives a hint to it’s causes and can be used
to take an action ro reduce the failure rate. In an idealized setting, the benefit
of such an action can be quantified i.e. in monetary terms. Usually, these effects
can only be quantified partially. The effectiveness of the action taken cannot
be predicted exactly, but a reasonable assumption may be, that the action may
reduce the conditional failure rate to the level of the unconditional rate. For
example, if the failure rate of reworked cars is higher than an average one, the
reworking process may be scrutinized to reach at least the average performance.
Then, the total savings through the failure rate reduction would amount to:

nA (P (B|A) − P (B)) cB =
(
nA∧B − nAnB

n

)
cB (3)

with cB being the unit costs of the failure B - or so called potential.
4 In [7,10] a similar interesting measure was introduced as a kind of correlation factor.
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The quantification of the action costs will scarcely be feasible in advance, since
the actions themselves will be mostly designed only after viewing the rules. This
is why the action costs will not be able to be included in the decision measure,
and so we did in this application.

6 Multiple Hypothesis Problem

For an application as the present one, it is characteristic that the total number
of significant findings can be very high. Therefore, a specific problem becomes
particularly serious: the multiple hypothesis problem.

Rules received from a sample data set are a result of a random process. This
randomness is quantified by significance measures. Accepting a rule on a certain
significance level means that it is highly improbable that the law described by
the rule does not exist. Nevertheless, the rule still might be a result of pure
chance - only the probability of this is low. If our goal was to accept or reject all
rules together, the procedure of testing individual rules against a given individual
significance level was completely faulty. If each rule was a result of a rejection of
a null hypothesis on a significance level π, the probability, that at least one rule
is still a random product (while its null hypothesis is valid) is π = 1 − (1 − α)n.
Vice versa, to ensure that the totality of rules are valid on the given level π, the
significance level of individual rules would be α = 1− (1−π)

1
n , a drastically low

figure5 for n of the order or magnitude of hundreds or thousands. Fortunately,
we do not have to be so ambitious. A good rule set is such, that we can trust at
least a significant portion of it. But it is still desirable to assess how large the
portion of trustworthy rules really is - otherwise we would risk there are none.

The qualitative relationships within this problem can be illustrated with help
of hypotheses about Gaussian distribution. Suppose the null hypothesis is, that
a sample is drawn from the distribution N(0, 1) while the alternative hypothesis
postulates N(m, 1). For a given significance level α, if the sample value is greater
than the quantile qα (such that 1 − F (qα) = α), the probability of this sample
value if the sample is drawn from the null-hypothesis distribution N(0, 1) is
α while the corresponding probability if the sample is drawn from N(m, 1) is
γ = 1 − N(qα − m, 1). The values of γ in dependence from α for some mean
values of the alternative hypothesis m are given in left graph of Fig. (1) and
the the ratio of γ/α in the right graph respectively. Obviously, the ratio grows
with diminishing α. This is exactly what we expect: for higher significance level,
the separation between correctly identified alternative-hypothesis samples, and
wrongly identified null-hypothesis samples improves.

Going back to the case of discovering rules, suppose there are N rules whereof
M are valid. Consequently N − M rules are invalid, corresponding to the null
hypothesis of no dependence between the antecedent and consequent. With a
significance level of α, we can expect, in average, the testing algorithm to deliver
Ei = (N − M)α invalid, and Ev = Mγ valid rules. In reality, neither M nor γ
is known in advance. However, if the algorithm proposes K rules, we know that
5 In literature this value is often referred to as Bonferroni correction [3,9].
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Fig. 1. Left: Ratio γ/α for different mean values of the alternative hypothesis m. Right:
Histogram of the support for simple rules applying the number counts from Table (1).

this corresponds to the sum K = (N − M)α + Mγ = Nα + M(γ − α). Since
Nα > (N − M)α, we can expect a minimum of K − Nα rules to be valid. Thus
the ratio K

Nα gives a good idea of proportion of usable rules in the rule set.
More precisely, we have estimated the number of invalid, randomly generated

rules with help of its expected value (N −M)α. Nα was the upper bound of this
estimate. For large values of (N − M)α, the sample fluctuations around the ex-
pected value are small. For small (N −M)α, an interval estimate is more reliable.
The number of invalid rules generated by the algorithm is binomial distributed
with sample size N −M and probability α. The standard deviation of this num-
ber is

√
(N − M)α(1 − α) ≈

√
(N − M)α. So the upper interval boundary is

approximately (N −M)α+ q
√

(N − M)α, with q being some quantile. Since we
are ignorant of the value of M , the upper bound to be compared with the total
number of rules found K is L(α) := Nα + q

√
Nα.

7 Computing Results and Conclusion

There was a considerable number of variables in the described automotive test
application with 3789 field failure (goal variables) and 3310 process attributes
(influence variables). The aim of our application was to find relevant rules within
this domain that are useful for the quality improvement process. Therefore there
were 15,520,749 simple rules to examine and following the description of the
previous section and applying the constraints from Table (1) we obtained a set
of 7441 rules of which 6910 were simple and 525 complex rules.

The low support of complex rules is striking (see left graph of Fig. (2)), which
seems to substantiate the commitment to a maximum of two antecedent variables
(three or more influence variables would hardly produce a non-trivial support).
Also the distribution of lift based on the contingence table (see right graph of
Fig. (2)) shows, that there is a considerable number of seemingly valid rules,
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Table 1. Rule pre-selection constraints used in the field feedback application

Constrains Value Constrains Value Constrains Value
minnA∧B 4 Factor for std. deviation 1 α for safe lift 0.2
minnA = minnB 4 Factor for composed rules 1.5 minimum safe lift 1.5
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Fig. 2. Left: Histogram for nA∧B for significant complex rules Right: Histogram of lifts
and safe lifts for significant rules

having a lift ≥ 1.5. However, the histogram of safe lift (Fig. (2)) exhibits, that
the bulk of these rules are hardly statistically significant as only 80% of these
rules have a safe lift ≥ 1.0. This shows, how important it is, to consider the
statistical properties and justifies the pre-selection criterion of rules based on
the safe lift.

The search for economically useful rules makes a trade-off between the ex-
tensive (considering many rules) and intensive (only the most important rules)
approach necessary. This can be reached by the potential measure defined in
Section 5. Ordering and accumulating the rules by their potential, results into a
marginal utility function, which allows to set an economically meaningful cut-off
point. The slope of this function can be compared with the estimated average
costs of considering the rule and taking a corrective action. The cut-off point
would have to be set at the potential value for which the slope and the costs are
equal.

The multiple hypothesis problem can be illustrated by a selected subset of
rules for a particular electronic unit. From the total number of 218363 possi-
ble rules of this subset, only 2900 were considered as candidates6. Using the
constraints listed in Table (1) we found 61 rules. These rules were significant on
different levels. For a given significance level, we can compute the expected mean
number, and the upper bound of ,,random” rules, as discussed in the previous
section. For example, there were 35 rules with α > 0.005. From these rules, at

6 Applying nA > 10 and nB > 4 reduced the overall amount of rules to the candidate
rules.
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most 17 can be expected to be random, using the last formula of Section 6. This
is a considerable number, but still an acceptable proportion.

Concluding, in this work we have presented a framework for the analysis
of quality data, with the goal to find relationships between the assembly and
testing process and the failures in the field. The basic method was the search
for association rules. However, several characteristics of our application lead to
extensions of mainstream methods:

1. It was necessary to map the assembly process data to a feature vector, with
help of expert knowledge.

2. The considerable number of variables involved lead to high number of value
combinations and thus to low supports of individual candidate rules. This
made considering the statistical properties of rule selection criteria necessary,
to avoid the risk of obtaining random rules.

3. Due to the industrial context, the rules selection criteria had to consider the
economic impact of the rules.

4. The large number of rules obtained by the sample, justifies the question how
many of them are really valid and which are random. We used a simple
framework to determine these proportions and showed that a large part of
the rules founded are valid.

Since these characteristics are shared by many industrial applications, the solu-
tions presented may be useful for a broad scope of Data Mining problems.
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