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Abstract. A method is described for learning a distance metric for use
in object identification that does not require human supervision. It is based
on two assumptions. One is that pairs of different names refer to different
objects. The other is that names are arbitrary. These two assumptions jus-
tify using pairs of data items for objects with different names as “cannot-
be-linked” example pairs for learning a distance metric for use in clustering
ambiguous names. The metric learning is formulated using only dissimi-
lar example pairs as a convex quadratic programming problem that can
be solved much faster than a semi-definite programming problem, which
generally must be solved to learn a distance metric matrix. Experiments
on author identification using a bibliographic database showed that the
learned metric improves identification F-measure.

1 Introduction

Object identification, which is used for example to determine whether the names
of people in documents or databases refer to the same person or not, is an
important problem in information retrieval and integration. It is most often used
for personal name disambiguation, e.g., author identification in bibliographic
databases. Citation and bibliographic databases are particularly troublesome
because author first names are often abbreviated in citations. Resolving these
ambiguities is necessary when evaluating the activity of researchers, but major
citation databases such as the ISI Citation Index1 and Citeseer’s Most Cited
Authors in Computer Science2 cannot distinguish authors with the same first
name initial and last name.

Object identification problems are generally solved by clustering data contain-
ing the target names based on some similarity measure or distance metric [1].
Similarity and distance are important factors in clustering, and an appropriate
similarity/distance measure must be used to achieve accurate results. Several
methods have been proposed for learning a similarity measure [2,3] or distance

1 http://isiknowledge.com/
2 http://citeseer.ist.psu.edu/mostcited.html
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metric [4] from humanly labeled data. One advantage of using a distance metric
rather than a general similarity/dissimilarity measure is that it satisfies math-
ematical properties such as the triangle inequality and can be used in many
existing clustering algorithms. One problem in learning a distance metric is that
labeling by a person involves costs. In previous research, labeling was given
as pairwise feedback, such as two data items are similar and must be in the
same cluster (“must-be-linked”) or dissimilar and cannot be in the same clus-
ter (“cannot-be-linked”), but disambiguating two people with the same name or
similar names is a subtle and time-consuming task even for a person.

We have developed a distance metric learning method that requires no human
supervision for object identification. It is based on two assumptions.

Different names refer to different objects. In many object identification
problems, pairs of different names presumably refer to different objects with
few exceptions. For example, two J. Smiths are ambiguous, while J. Smith
and D. Johnson cannot be the same person (neglecting, of course, the pos-
sibility of false names or nicknames).

Names are arbitrary. There is no reason to believe that the data for two peo-
ple with the same name are more similar than the data for two people with
different names. For example, the research papers written by two different J.
Smiths are not assumed to be more similar than those written by J. Smith
and D. Johnson. We assume that a pair of data items for two people with
different names has the same statistical properties as a pair of data items
for two people with the same name.

These two assumptions justify the use of pairs of data items collected for
different names (for example, J. Smith and D. Johnson) as cannot-be-linked
examples for learning a distance metric to be used for clustering data for people
with the same or similar names. The learned distance metric that gives good
separation of the data for people with different names can be expected to separate
the data for different people with the same name as well. These cannot-be-
linked example pairs can be formed mechanically without manual labeling. In our
setting, no similar (must-be-linked) example pairs are used. After formulating
the distance metric learning problem with only dissimilar example pairs as a
convex quadratic programming problem, we present experimental results for
author identification using a bibliographic database.

2 Preliminaries

In this paper, xm ∈ X denotes data (documents or database records) that
contain names, where the superscript m is the index for each data item. Each
data item xm is represented as a D dimensional feature vector (xm

1 , . . . , xm
D)T ,

in which each feature corresponds to, for example, a word in a document or an
attribute in a database. The superscript T denotes the transpose of a vector or
matrix.
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Given vector representations of the data, we can define various distance met-
rics. For the function d : X × X → R to be a (pseudo) metric, it must satisfy
the following conditions3:

d(xm, xn) ≥ 0
d(xm, xn) = d(xn, xm)
d(xm, xl) + d(xl, xn) ≥ d(xm, xn) .

The Euclidean metric treats each feature equally and independently and does
not represent interaction among features. Using D × D matrix A = {ai,j}, we
can define a distance metric in a more general form:

dA(xm, xn) =
(
(xm − xn)T A(xm − xn)

) 1
2

=

⎛

⎝
D∑

i=1

D∑

j=1

ai,j(xm
i − xn

i )(xm
j − xn

j )

⎞

⎠

1
2

.

The necessary and sufficient condition for dA being a pseudo metric is that
A be a positive semi-definite matrix, in other words, a symmetric matrix in
which all eigenvalues are non negative. Xing et al. [4] proposed a distance metric
learning method in which similar and dissimilar pairs of examples are given, and
a matrix A is found that minimizes the sum of the distances between similar
pairs while keeping the distances between dissimilar pairs greater than a certain
value. However, the optimization problem includes a constraint: matrix A must
be positive semi-definite. We thus have a semi-definite programming problem
[5], which is harder to solve than a convex quadratic programming problem, like
that used in support vector machine learning [6].

3 Distance Metric Learning from Only Dissimilar
Example Pairs

3.1 Problem Formalization

In our setting, only pairs of dissimilar (cannot-be-linked) examples (xm, xn) ∈ D
are given, where D ⊂ X × X is the set of paired examples that are considered
to be referring to different objects, that is, examples with different names.

We want examples in such a pair to belong to different clusters. To ensure
that, we use a matrix A that enlarges the distance between the two examples
dA(xm, xn). However, multiplying A by a large scalar makes the distance be-
tween any two points long and thus not meaningful. Therefore, we introduce a
constraint that the norm of matrix A must be a certain constant, say 1, and find
the A that induces a long distance between dissimilar examples in a pair while

3 d becomes a metric in the strict sense when d(xm, xn) = 0 if and only if xm = xn.
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satisfying the constraint. As the matrix norm, we use the Frobenius norm:

‖A‖F =

⎛

⎝
D∑

i=1

D∑

j=1

a2
i,j

⎞

⎠

1
2

.

We can now formalize distance metric learning from only dissimilar example
pairs as an optimization problem:

max
A

min
(xm,xn)∈D

dA(xm, xn) (1)

s.t. ‖A‖F = 1 (2)
A � 0 . (3)

A � 0 means that A should be positive semi-definite. Objective function (1)
requires finding the A that maximize the distance between the closest example
pair. This idea is similar to large margin principles in SVMs [6] and is justified
because clustering errors most probably occur at the cannot-be-linked points
closest to each other, and keeping these points far from each other reduces the
risk of errors.

To simplify the subsequent calculation, we translate the above problem into
an equivalent one:

min
A

1
2
‖A‖2

F (4)

s.t. dA(xm, xn) ≥ 1 ∀(xm, xn) ∈ D (5)
A � 0 . (6)

3.2 Positive Semi-definiteness of Learned Matrix

We now consider an optimization problem consisting of only (4) and (5) without
(6). To solve this problem, we introduce the Lagrangean

L(A, α) =
1
2
‖A‖2

F +
∑

(m,n)

α(m,n) (1 − dA(xm, xn))

=
1
2
‖A‖2

F +
∑

(m,n)

α(m,n) (
1 − (xm − xn)T A(xm − xn)

)
, (7)

with Lagrange multipliers α(m,n) ≥ 0.
In the solution of (4) and (5), the derivative of L(A, α) with respect to A

must vanish; that is, ∂L
∂A = 0. This leads to the following expansion:

A =
∑

(m,n)

α(m,n)(xm − xn)(xm − xn)T . (8)

A necessary and sufficient condition for D × D matrix A being positive semi-
definite is that for all D dimensional vectors v, vT Av ≥ 0 holds. This is always
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the case for a matrix A in the form of (8). Noting that α(m,n) ≥ 0, we can
confirm this as follows:

vT Av =
∑

(m,n)

α(m,n)((xm − xn)T v)2 ≥ 0 .

This means that without condition (6), the positive semi-definiteness of A is
automatically satisfied. In fact, the optimization problem consisting of only (4)
and (5) is a convex quadratic programming problem and can be solved much
faster than a semi-definite programming problem with condition (6).

3.3 Relationship to Support Vector Machine Learning

Our formalization of learning a distance metric from only dissimilar example
pairs is closely related to support vector machine learning. Actually, the opti-
mization problem can be translated into an SVM learning problem [6] and can
be solved by existing SVM software with certain settings.

The optimization problem for training an SVM that classifies the data into
two classes is as follows [6]:

min
w,b

1
2

‖w‖2 (9)

s.t. ym(〈w, xm〉 + b) ≥ 1 ∀(xm, ym) ∈ T . (10)

T is the set of training examples (xm, ym), where xm is a data vector and
ym ∈ {−1, +1} is the class label. 〈x, z〉 is the inner product of vectors x and z.

Using the Frobenius product

〈A, B〉F =
D∑

i=1

D∑

j=1

ai,jbi,j

of two D × D matrices, we can rewrite the problem of (4) and (5):

min
A

1
2
‖A‖2

F (11)

s.t. 〈A, (xm − xn)(xm − xn)T 〉F ≥ 1 ∀(xm, xn) ∈ D . (12)

Comparison of (11) and (12) with (9) and (10) reveals that our problem cor-
responds to unbiased SVM learning (b = 0) from only positive data (ym = 1), if
we consider the examples and the learned weight of D × D matrices as D2 di-
mensional vectors. The expansion form of the SVM solution w =

∑
m ymαmxm

makes clear why our method can avoid semi-definite programming. We use only
positive examples (cannot-be-linked pairs), thus all the coefficients for the exam-
ples become positive in the solution. If we also used negative examples (must-
be-linked pairs), the coefficients for these examples become negative and the
solution is not always positive semi-definite.
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Substituting (8) into (7) gives us the dual form of the problem:

max
∑

(m,n)

α(m,n)

−1
2

∑

(m,n)

∑

(m′,n′)

(
α(m,n)α(m′,n′)〈xm − xn, xm′ − xn′〉2

)

s.t. α(m,n) ≥ 0 .

These formulas indicate that our learning problem can be solved by using
the quadratic polynomial kernel on D dimensional vectors and that we do not
need to calculate the Frobenius products between the D × D matrices. As with
standard SVMs, our method can be “kernelized” [7]. By substituting a positive
semi-definite kernel function k(x, z) = 〈φ(x), φ(z)〉 (φ(x) is a map to a higher
dimensional space) for the inner product 〈x, z〉, we can virtually learn the dis-
tance metric matrix for a very high (possibly infinite) dimensional feature space
by the so-called “kernel trick.” In addition, a distance metric for structured
data, such as trees or graphs, can be learned with a kernel function defined on
the space of such data.

4 Experiments

We tested our method on the DBLP data set, which is a bibliography of computer
science papers.4 The entries were made by people, and many author names
include the full first name, not only an initial. We assume that the same first
and last names refers to the same person.

From among the Most Cited Authors in Computer Science,5 we selected eight
cases of first-initial-plus-surname names, which involve a collapsing of many
distinct author names. We retrieved papers written by authors with the same
last name and the same first initial from the DBLP data and randomly selected
100 examples for each abbreviated name. Then we abbreviated first names into
initials and removed middle names. Training data were built by pairing examples
of different abbreviated names, for example, J. Smith and D. Johnson. We used
words in titles, journal names, and names of coauthors as features. Since few
words appear more than once in a bibliographic entry, we used binary features.

To learn a distance metric, we used SVMlight[8]. The learned metric was used
in clustering the data from the same-first-initial-and-last authors. We used the
single-linkage clustering algorithm [9]. The results of clustering were evaluated
by referring to the original full names.

The results with the learned metric were compared to the results with two
other metrics, one was the Euclidean distance and the other was the IDF weight-
ing [10]. Since each bibliography entry is short and the same word rarely appears

4 http://dblp.uni-trier.de/
5 http://citeseer.ist.psu.edu/mostcited.html
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Table 1. Maximum F-measure values

Abbreviated F-measure Abbreviated F-measure
name Learned IDF Euclidean name Learned IDF Euclidean

D. Johnson .644 .390 .399 L. Zhang .278 .165 .158
A. Gupta .490 .170 .169 H. Zhang .423 .226 .226
J. Smith .417 .270 .292 R. Jain .709 .569 .552
R. Johnson .508 .253 .227 J. Mitchell .640 .535 .536

more than once in the entry, we did not apply TF weighting. We neither normal-
ized the feature vectors because the lengths of bibliographic entries are rather
uniform. The clustering algorithm enables us to specify the number of clus-
ters. We measured the pairwise precision and recall for each number of clusters.
The maximum F-measure (harmonic mean of precision and recall [10]) for each
combination of name and metric is given in Table 1. Use of the learned met-
ric consistently resulted in the highest F-measure, while the values varied for
different names.

5 Related and Future Work

Xing et al. [4] proposed a distance metric learning from similar and dissimilar
example pairs. They formulated the problem as a semi-definite programming
problem, and their algorithm needs a full eigenvalue decomposition to ensure
that the learned matrix is positive semi-define. Schultz & Joachims [11] proposed
a method for learning a distance metric from relative comparison such as “A is
closer to B than A is to C.” They also formulated the metric learning as a
constrained quadratic programming. In their method, the interactions between
features are fixed and optimization is applied to a diagonal matrix. Our method
can learn a full distance metric matrix by using only cannot-be-linked pairs.

Shalev-Shwartz, Singer & Ng [12] proposed an online learning algorithm for
learning a distance metric. Their algorithm does not strictly solve the constrained
optimization problem; it finds successive approximate solutions using an iterative
procedure that combines a perceptron-like update rule and the Lanczos method
to find a negative eigenvalue. While designed for learning from both similar and
dissimilar pairs, their algorithm can avoid the eigenvalue problem, as ours does,
if it uses only dissimilar example pairs. The performance of the online kernel per-
ceptron algorithm is close to, but not as good as, that of SVMs for the same prob-
lem, while saving significantly on computation time [13]. This suggests an inter-
esting direction for future work: adopting online algorithms that learn only from
dissimilar examples and comparing the results to those of our learning method.

6 Conclusion

We proposed a method for learning a distance metric for use in object identifica-
tion that is based on two assumptions: different names refer to different objects
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and the data for two people with exactly the same name are no more similar
than the data for two people with different names. It learns the distance metric
from only dissimilar example pairs, which are mechanically collected without
human supervision. We formalized our learning problem as a convex quadratic
programming problem, which can be efficiently solved by existing SVM software.
Experiments using the DBLP data set showed that the learned metric improves
F-measure for object identification.
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