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Abstract. Closed sets are being successfully applied in the context of
compacted data representation for association rule learning. However,
their use is mainly descriptive. This paper shows that, when considering
labeled data, closed sets can be adapted for prediction and discrimina-
tion purposes by conveniently contrasting covering properties on positive
and negative examples. We formally justify that these sets character-
ize the space of relevant combinations of features for discriminating the
target class. In practice, identifying relevant/irrelevant combinations of
features through closed sets is useful in many applications. Here we ap-
ply it to compacting emerging patterns and essential rules and to learn
descriptions for subgroup discovery.

1 Introduction

Rule discovery has been addressed from two different perspectives: data min-
ing and machine learning. Data mining mainly explores unlabeled data, and the
focus resides on finding all rules over a certain confidence that summarize the
original data. On the other hand, machine learning is mainly concerned with
the analysis of class labeled data, resulting in the induction of classification and
prediction rules, and—more recently—also descriptive rules that aim at provid-
ing insightful knowledge from the data (subgroup discovery, contrast set mining).
Traditional rule learning algorithms for classification include CN2 [3] and Ripper
[4]. Other approaches have been proposed that are based on the association rule
technology but are applied to class labeled data (e.g., the Apriori-C classifier [8]
and the Essence algorithm for inducing “essential” classification rules based on
the covering properties of frequent itemsets [1]).

In subgroup discovery the aim is to find subgroup descriptions that are char-
acteristic for examples with a certain property of interest, and the closely related
contrast set mining aims at capturing discriminating features that contrast in-
stances between classes. Special rule learning algorithms for subgroup discovery
include Apriori-SD [9], CN2-SD [11] or SD [7]. These descriptive mining algo-
rithms aim at finding characteristic rules as combinations of features with high
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coverage. If there are several rules with the same coverage, most specific rules
(with more features) are appropriate for description and explanation purposes.
On the other hand, algorithms for contrast set mining are STUCCO [2], and
recently, an innovative approach was presented in the form of mining Emerging
Patterns [5]. Basically, Emerging Patterns (EP) are sets of features in the data
whose supports change significantly from one class to another.

Indeed, we can see all these described tasks on labeled data (learning classifica-
tion rules, subgroup discovery, or contrast set mining) as a process of searching
a space of concept descriptions (hypotheses in the form of rule antecedents).
Some descriptions in this hypothesis space may turn out to be more relevant
than others for characterizing and/or discriminating the target class. Searching
for relevant descriptions for rule construction has been extensively addressed in
descriptive data mining. A useful insight was provided by closure systems, aimed
at compacting the whole space of descriptions into a reduced system of relevant
sets that formally conveys the same information as the complete space. The ap-
proach has successfully evolved towards mining closed itemsets (see e.g. [12,14]).
Intuitively, closed itemsets can be seen as maximal sets of items/features cover-
ing a maximal set of examples. Despite its success in the data mining community,
the use of closed sets is mainly descriptive. For example, they can be used to
limit the number of association rules produced without information loss.

To the best of our knowledge, the notion of closed sets has not yet been
exported to labeled data, neither used in the learning tasks for labeled data
described above. In this paper we show that raw closed sets can be adapted for
discriminative purposes by conveniently contrasting covering properties on pos-
itive and negative examples. Moreover, thanks to the final structural properties
and the feature filtering theory of [10], we formally justify that our obtained sets
characterize the space of relevant combinations of features for discriminating the
target class.

In practice, our approach to discovering closed sets from labeled data, (de-
scribed in Sections 3 and 4) turns out to be very useful in many applications:
from constructing rule based classifiers of increased accuracy, to finding most
interpretative descriptions for subgroup discovery, among others. In particular,
we have applied our proposal to reduce the number of EPs and to compress
the number of essential rules (Section 6.1), and finally, to learn descriptions for
subgroup discovery (Section 6.2).

2 Background

Features, used for describing the training examples, are logical variables rep-
resenting attribute-value pairs (called items in association rule learning). If
F = {f1, . . . , fn} is a fixed set of features, we can represent a training example
as a tuple of features f ∈ F with an associated class label. For instance, Table 1
contains examples for the simplified problem of contact lens prescriptions [13].
Patients are described by four attributes and each tuple is labeled with a class
label: none, soft or hard. Here F is the set of all attribute-value pairs in the
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data, i.e. F = {Age=young, . . . , Tear=normal} (the class label is not included
in F ). This dataset is known to be complete and we will use it throughout the
paper to ease the understanding of our proposals.

We consider two-class learning problems where the set of examples E is di-
vided into positives (P , labeled by +) and negatives (N , labeled by −), and
E = P ∪N . Multi-class problems can be translated to a series of two-class learn-
ing problems. For instance, when the class soft of Table 1 is the target class (in
Table 2), all examples labeled with none and hard are considered negative.

Table 1. The contact lens data set

Spectacle Tear
Id Age prescription Astig. prod. Lens

1 young myope no normal soft
2 young hypermetrope no normal soft
3 pre-presbyopic myope no normal soft
4 pre-presbyopic hypermetrope no normal soft
5 presbyopic hypermetrope no normal soft
6 young myope no reduced none
7 young myope yes reduced none
8 young hypermetrope no reduced none
9 young hypermetrope yes reduced none
10 pre-presbyopic myope no reduced none
11 pre-presbyopic myope yes reduced none
12 pre-presbyopic hypermetrope no reduced none
13 pre-presbyopic hypermetrope yes reduced none
14 pre-presbyopic hypermetrope yes normal none
15 presbyopic myope no reduced none
16 presbyopic myope no normal none
17 presbyopic myope yes reduced none
18 presbyopic hypermetrope no reduced none
19 presbyopic hypermetrope yes reduced none
20 presbyopic hypermetrope yes normal none
21 young myope yes normal hard
22 young hypermetrope yes normal hard
23 pre-presbyopic myope yes normal hard
24 presbyopic myope yes normal hard

Table 2. In this table we show the pos-
itive examples when the class soft is se-
lected as the target class (thus, forming
the set of examples in P ). Instances of
the classes none and hard will be consid-
ered non-target, thus treated together as
negative data N .

Spectacle Tear
Id Age prescription Astig. prod. Class

1 young myope no normal +
2 young hypermetrope no normal +
3 pre-presbyopic myope no normal +
4 pre-presbyopic hypermetrope no normal +
5 presbyopic hypermetrope no normal +

Given a rule X → + formed from a set of features X ⊆ F : true positives (TP)
are those positive examples covered by the rule, i.e. p ∈ P such that X ⊆ p, and
false positives (FP) are those negative examples covered by the rule, i.e. n ∈ N
such that X ⊆ n; reciprocally, true negatives (TN) are those negative examples
not covered by X .

2.1 Relevant Features for Discrimination

The main aim of the theory of relevancy, described in [10] is to reduce the
hypothesis space by eliminating irrelevant features from F in the pre-processing
phase. As proposed by the authors:

Definition 1 (Coverage of features). Feature f ∈ F covers another feature
f ′ ∈ F if and only if TP(f ′) ⊆ TP(f) and TN(f ′) ⊆ TN(f) (or equivalently,
TP(f ′) ⊆ TP(f) and FP(f) ⊆ FP(f ′)).

Then, it is stated that f ′ ∈ F is relatively irrelevant if there exists another feature
f such that f covers f ′. To illustrate this notion we take the data of Table 1: if
examples of class none form our positives and the rest of examples are considered
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negative, then the feature Tear=reduced covers Age=young, hence making this
last feature irrelevant for the discrimination of the none class.

2.2 Closed Itemsets

From the practical point of view of data mining algorithms, closed itemsets
are maximal sets among those other itemsets occurring in the same examples.
Formally, let supp(X) denote the number of examples where the itemset X ⊆ F
is contained. Then: a set X ⊆ F is said to be closed when there is no other
set Y ⊆ F such that X ⊂ Y and supp(X) = supp(Y ). In the example from
Table 2 the itemset corresponding to {Age=young} is not closed because it can
be extended to the maximal set {Age=young, Astigmatism=no, Tear=normal}
that has the same support in this data. Notice that by treating positive examples
separately, the positive label will be already implicit in the closed itemsets mined
on the target class data. Efficient algorithms for discovering closed itemsets over
a certain minimum support threshold can be found in [6].

The foundations of closed itemsets are based on the definition of a closure
operator on a lattice of items. The standard closure operator Γ for items acts as
follows: given a binary relation, the closure Γ (X) of a set of items X ⊆ F includes
all items that are present in all examples having all items in X . According to the
classical theory, operator Γ satisfies the following properties: (1) Monotonicity:
X ⊆ X ′ ⇒ Γ (X) ⊆ Γ (X ′); (2) Extensivity: X ⊆ Γ (X); and (3) Idempotency:
Γ (Γ (X)) = Γ (X).

From the formal point of view of Γ , closed sets are those coinciding with their
closure, that is, for X ⊆ F , X is closed iff Γ (X) = X . Also, when Γ (Y ) = X
for a set Y �= X , it is said that Y is a generator of X . By extensitivity of Γ we
always have Y ⊆ X for Y generator of X . Closed sets of items can be graphically
organized in a Hasse diagram, such as the one depicted in Figure 1 for the closed
itemsets mined from data in Table 2.

3 Closed Sets on Target-Class Data

Given an example set E = P ∪N it is trivial to realize that for any rule X → +
with a set of features X ⊆ F , the support of itemset X in P (target class exam-
ples) exactly corresponds to the number of true positives of the rule; reciprocally,
the support of X in N (non-target class examples) is the number of false posi-
tives of the rule. Also, because of the anti-monotonicity property of support (i.e.
Y ⊆ X implies supp(X) ≤ supp(Y )) the following useful property can be easily
stated. For the sake of simplicity and due to a lack of space, proofs are omitted,
although a proof sketch will be provided to justify important results.

Proposition 1. Let X, Y ⊆ F such that Y ⊆ X, then TP(X) ⊆ TP(Y ) and
FP(X) ⊆ FP(Y ).

For convenience, let supp+(X) denote the support of the set X in the positive
set of examples P , and supp−(X) the support in the negative set of examples
N . Following the last proposition, the next property can be readily seen:
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Fig. 1. The lattice of closed itemsets for data in Table 2

Lemma 1. Feature f ∈ F covers another feature f ′ ∈ F (as in Definition 1),
iff supp+({f ′}) = supp+({f, f ′}) and supp−({f}) = supp−({f, f ′}).

Indeed, this last result allows us to rewrite, within the data mining language,
the definition of relevancy proposed in [10]: a feature f is more relevant than f ′

when supp+({f ′}) = supp+({f, f ′}) and supp−({f}) = supp−({f, f ′}). In other
words, f ′ is irrelevant with respect to f if the occurrence of f ′ always implies
the presence of f in the positives, and at the same time, f always implies the
presence of f ′ in the negatives.

To the effect of our later arguments it will be useful to cast the result of
Lemma 1 in terms of the formal closure operator Γ . Again, because we need to
formalize our arguments against positive and negative examples separately, we
will use Γ+ or Γ− for the closure of itemsets on P or N respectively.

Lemma 2. A feature f is more relevant than f ′ iff Γ+({f ′}) = Γ+({f, f ′}) and
Γ−({f}) = Γ−({f, f ′}).

Interestingly, operator Γ is formally defined for the universe of sets of items, so
that these relevancy results on single features can be directly extended to sets
of features. This provides a proper generalization:

Definition 2 (Relevancy of feature sets). Set of features X ⊆ F is more
relevant than set Y ⊆ F iff Γ+(Y ) = Γ+(X ∪ Y ) and Γ−(X) = Γ−(X ∪ Y ).

To illustrate Definition 2 take the positive examples from Table 2, with nega-
tive data formed by classes none and hard together. Feature Spectacle=myope
alone cannot be compared to feature Astigmatism=no alone with Definition 1
(because Astigmatism=no does not always imply Spectacle=myope in the neg-
atives). For the same reason, Spectacle=myope cannot be compared to feature
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Tear=normal alone. However, when considering these two features together, then
Spectacle=myope turns out to be irrelevant w.r.t. the set {Astigmatism=no,
Tear=normal}. So, the new semantic notion of Definition 2 allows us to decide if
a set of features is structurally more important than another for discriminating
the target class. In the language of rules: rule Y → + is irrelevant if there exists
another rule X → + with Γ+(Y ) = Γ+(X ∪ Y ) and Γ−(X) = Γ−(X ∪ Y ).

Moreover, from the structural properties of operator Γ and from Proposition
1, we can deduce that the semantics of relevant sets in Definition 2 is consistent:

Lemma 3. A set of features X ⊆ F is more relevant than set Y ⊆ F (Definition
2) iff TP(Y ) ⊆ TP(X) and FP(X) ⊆ FP(Y ).

The forward proof of this result is based on Proposition 1, which ensures that
TP(X ∪ Y ) ⊆ TP(Y ) when X is more relevant than Y . Moreover, since we
have that Γ+(Y ) = Γ+(X ∪ Y ) by hypothesis, we can derive after a couple of
steps that TP(Y ) ⊆ TP(X). Similarly, we can conclude FP(X) ⊆ FP(Y ) for the
negative part. The backward direction of Lemma 3 is also simple: if X and Y are
two sets with TP(Y ) ⊆ TP(X) and FP(X) ⊆ FP(Y ), we can imply after some
deduction steps that supp+(Y ) = supp+(X∪Y ) and supp−(X) = supp−(X∪Y ).
By construction of Γ this means Γ+(Y ) = Γ+(X∪Y ) and Γ−(X) = Γ−(X∪Y ).

3.1 Closed Sets for Discrimination

Together with the result of Lemma 3, it can be shown that only closed itemsets
mined in the set of positive examples suffice for discrimination.

Theorem 1. Let Y ⊆ F be a set of features such that Γ+(Y ) = X and Y �= X.
Then, set Y is less relevant than X (as in Definition 2).1

The proof of this theorem is mainly based on the construction of Γ : Γ+(Y ) = X
ensures that |TP(Y )| = |TP(X)|; but because Y ⊆ X it must be true that
TP(Y ) = TP(X). This, together with Proposition 1 leads to X being more
relevant than Y according to Definition 2.

Typically, in approaches such as Apriori-C [8], Apriori-SD [9] and RLSD [15]
frequent itemsets with very small minimal support constraint are initially mined
and subsequently post-processed in order to find the most suitable rules for dis-
crimination. The new result presented here states that not all frequent itemsets
are necessary: as shown in Theorem 1 only the closed sets have the potential to
be relevant.
1 We are aware that some generators Y of a closed set X might be exactly equivalent

to X in terms of TP and FP, thus forming equivalence classes of rules. The result
of this theorem characterizes closed sets in the positives as those representatives of
relevant rules; so, any set which is not closed can be discarded, and thus, efficient
closed mining algorithms can be employed for discrimination purposes. The next
section will approach the notion of the shortest representation of a relevant rule,
which will be conveyed by these mentioned equivalent generators.
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To illustrate this result we use again the data in Table 2. There, we have
Γ+({Astigmatism=no} = {Astigmatism=no,Tear=normal}. Thus, rule Astig-
matism=no → + can be discarded: it covers exactly the same positives as
{Astigmatism=no, Tear=normal}, but more negatives. Thus, a rule whose an-
tecedent is {Astigmatism=no, Tear=normal} would be preferred for discrimi-
nating the class soft.

However, Theorem 1 simply states that closed itemsets suffice but some of
them might not be necessary to discriminate the target class. It might well be
that a closed itemset is irrelevant with respect to another closed itemset in the
system. The next section is dedicated to the task of reducing the closure system
of itemsets to characterize the final space of relevant sets of features.

4 Characterizing the Space of Relevant Sets of Features

This section studies how the dual closure system on the negative examples is
used to reduce the lattice of closed sets on the positives. This reduction of the
lattice will characterize a complete space of relevant sets of features for discrimi-
nating the target class. First of all, we raise the following two important remarks
following from Proposition 1.

Remark 1. Given two different closed sets on the positives X and X ′ such that
X � X ′ and X ′ � X (i.e., there is no ascending/descending path between them
in the lattice), then they cannot be compared in terms of relevancy, since they
cover different positive examples.

We exemplify Remark 1 with the lattice of Figure 1. The following two closed
sets: {Age=young, Astigmatism=no, Tear=normal} and {Spectacle=myope, As-
tigmatism=no, Tear=normal}, are not comparable with subset relation: they
cover different positive examples and they cannot be compared in terms of
relevance.

Remark 2. Given two closed sets on the positives X and X ′ with X ⊂ X ′,
we have by construction that TP(X ′) ⊂ TP(X) and FP(X ′) ⊆ FP(X) (from
Proposition 1). Notice that because X and X ′ are different closed sets in the
positives, TP(X ′) is necessarily a proper subset of TP(X); however, regarding
the coverage of false positives, this inclusion is not necessarily proper.

Remark 2 points out that two different closed sets in the positives, yet being
one included in the other, may end up covering exactly the same set of false
positives. In this case, we would like to discard the closed set covering less true
positives. Because of the monotonicity property of support, the smaller one will
be the most relevant. From these two remarks we have:

Theorem 2. Let X ⊆ F and X ′ ⊆ F be two different closed sets in the positives
such that X ⊂ X ′. Then, we have that X ′ is less relevant than X (as in Definition
2) iff Γ−(X) = Γ−(X ′).
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Table 3. The three closed sets corre-
sponding to the space of relevant sets of
features for data in Table 2

Occurrence list Closed Set
1, 2, 3, 4, 5 {Astigmatism=no, Tear=normal }

2, 4, 5 {Spectacle=hypermetrope,
Astigmatism=no, Tear=normal }

3, 4 {Age=pre-presbyopic,
Astigmatism=no, Tear=normal }

1, 2 {Age=young, Astigmatism=no,
Tear=normal }

Fig. 2. The evaluation of relevant
combinations of features in the ROC
space

The forward direction of this proof is simple: when X ⊂ X ′ then X ′ = X ′ ∪ X ,
so that Γ+(X ′) = Γ+(X ′ ∪ X) and Γ−(X) = Γ−(X ′ ∪ X) gets trivial, thus
satisfying Definition 2. The backward direction of the proof is also based on
rewriting Γ−(X) = Γ−(X ′) as Γ−(X) = Γ−(X ′∪X), and Γ+(X ′) as Γ+(X ′) =
Γ+(X ′ ∪ X); therefore, we also satisfy conditions of the definition.

Thus, by Theorem 2 we can reduce the closure system constructed on the pos-
itives by discarding irrelevant nodes: if two closed itemsets are connected by an
ascending/descending path on the lattice of positives (i.e., they are comparable
by set inclusion ⊂), yet they have the same closure on the negatives (i.e., they
cover the same false positives, or equivalently, their support on the negatives is
exactly the same), then just the shortest set survives as a relevant set.

Finally, after Theorem 1 and Theorem 2, we can characterize the space of
relevant sets of features for discriminating the selected target class as follows.
These final sets can be directly interpreted as antecedents of discriminating
rules.

Definition 3 (Space of relevant sets of features). The space of relevant
combinations of features for discriminating the target class is defined as those
sets such that: Γ+(X) = X and there is no other closed set Γ (X ′) = X ′ such
that Γ−(X ′) = Γ−(X).

It is trivial to see after Remarks 1 and 2, that by construction, any two sets in
this space cover always a different set of positives and a different set of negatives.

The three closed sets forming the space of relevant sets of features for the
class soft are shown in Table 4. It can be checked that CN2 algorithm [3] would
output the rule whose antecedent corresponds to the closed set in the first entry
of Table 4; Ripper [4], would obtain the most specific relevant rules, i.e. those
corresponding to the three last entries from Table 4. Finally, other algorithms
such as Apriori-C would also output rules whose antecedents are not relevant
such e.g. Astigmatism=no → Lenses=soft.
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4.1 Shortest Representation of a Relevant Set

Based on Theorem 1 we know that generators Y of a closed set X are character-
ized to cover exactly the same positive examples, and at least the same negative
examples. Because of this, any generator will be redundant w.r.t. its closure.
However, we have FP(X) ⊆ FP(Y ) for Y generator of X ; so, it might happen
that some generators Y are equivalent to their closed set X in that they cover
exactly the same true positives and also the same false positives.

Definition 4. Let Γ+(Y ) = X and Y �= X. We say that a generator Y is
equivalent to its closure X if FP(X) = FP(Y ).

The equivalence between true positives of Y and X is guaranteed because Γ+(Y )
= X . Therefore, it would be only necessary to check if generators cover the same
false positives than its closure to check equivalence. Generators will provide a
more general representation of the relevant set (because Y ⊂ X by construction).
So, Y → + is shorter than the rule X → + and it is up to the user to choose
the more meaningful to her or to the application.

In terms of the closure operator of negatives, we have that Y is an equivalent
generator of X iff Γ−(X) = Γ−(Y ).

5 Evaluation of Relevant Sets in the ROC Space

The ROC space is a 2-dimensional space that shows classifier (rule/ruleset) per-
formance in terms of its false positive rate (also called ’false alarm’), FPr =

FP
TN+FP = FP

|N | plotted on the X-axis, and true positive rate (also called ‘sensitiv-
ity’) TPr = TP

TP+FN = TP
|P | plotted on the Y -axis. The ROC space is appropriate

for measuring the quality of rules, since rules with the best covering properties
are placed in the top left corner, while rules that have similar distribution of
covered positives and negatives as the distribution in the entire data set are
close to the main diagonal.

The combinations of features of Definition 2 can be interpreted as condition
parts of rules. Since they are induced with a minimal support constraint on the
positives, they all lie above the minimum true positive rate constraint line (in
Figure 2 denoted as minTPr). The rules removed by the relevancy filter are never
those on the ROC convex hull (the empty circles are removed while the other
remain). Furthermore, it can be trivially proved that we discover all the rules in
the dataset on the ROC convex hull above the minimum true positives constraint
(the full circles connected with a line). Therefore there are no rules outside the
convex hull (grey area on the Figure 2 denotes an area without rules).

Sometimes an extra filtering criterion is required. In such cases we can imply
a maximum FPr constraint covered by our relevant sets (in Figure 2 this con-
straint is represented by the dashed line, the rules eliminated by this constraint
are shown in squares), or we can imply a minimum confidence constraint (rep-
resented by the dotted line, the rules eliminated by this constraint are crossed
in Figure 2), or simply output rules on the convex hull, among others.



172 G.C. Garriga, P. Kralj, and N. Lavrač

6 Experimental Evaluation

The presented theoretical study can be briefly summarized in the following steps:

– First, mining the set S = {X1, . . . , Xn} of frequent closed itemsets from the
target class (Theorem 1). This requires a minimum support constraint on
true positives. Here we will use the efficient LCM algorithm [6].

– Second, reducing S to the space of relevant set of features by checking the
coverage in the negatives (Theorem 2). Schematically, for any closed set
Xi ∈ S, if there exists another closed set Xj ∈ S s.t. both have same support
in the negatives and Xj ⊂ Xi, then Xi is removed.

Finally, depending on the purpose of the application we can apply an extra
filtering criterion, or compute minimal equivalent generators of the relevant sets
as described above. For short, we will name this computing process as RelSets
(for the Relevant Sets of features of Definition 2 we are discovering).

6.1 Emerging Patterns and Essential Rules on UCI Data

Emerging Patterns (EP) [5] are sets of features in the data whose supports
change significantly from one class to another. More specifically, EPs are itemsets
whose growth rates (the ratio of support from one class to the other, i.e. TPr

FPr
of the pattern) are larger than a user-specified threshold. In this experimental
setting we want to show that some of the EPs mined by these approaches are
redundant, and that our relevant sets correspond to the notion of compacted
data representation for labeled data. Indeed, EPs are a superset of the result
returned by RelSets.

In our comparisons we calculate relevant sets over a certain rate growth thresh-
old (1.5 and infinite), and we compare this with the number of EPs by using the
same rate growth constraint. Numerical attributes in the datasets are discretized
when necessary by using four equal frequency intervals. Results are shown in the
first part of Table 4.

Essential rules were proposed in [1] to reduce the number of association rules
to those with nonredundant properties for classification purposes. Technically,
they correspond to mining all frequent itemsets and removing those sets X s.t.
there exists another frequent Y with Y ⊂ X and having both the same support
in positives and negatives. This differs from our proposal in the way of treating
the positive class with closed sets. The compression factor we do for these rules
is shown in the second part of Table 4. Note that essential rules are not pruned
by rate growth threshold, and this is why their number is usually higher than
the number of Emerging Patterns.

6.2 Subgroup Discovery in New Application Domains

Subgroup discovery [11,7] is a supervised descriptive induction task. The result
of subgroup discovery is a set of subgroup descriptions (a rule set) that preferably
has a low number of rules while each rule has high coverage and accuracy.
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Table 4. Compression factor (CF% = (1 − |Relsets|
|EPs| ) × 100) of EPs and essential rules

in UCI datasets. Note that we did not impose any minimum true positive threshold on
any dataset, except for Lymphography and Crx, where all EPs, Relsets and essential
rules were discovered with a 10% threshold on true positives. Also, note that in the
second part of the table, essential rules and RelSets are not pruned by any rate growth
threshold.

EMERGING PATTERNS ESSENTIAL RULES
Rate growth > 1.5 Rate growth ∞

Dataset Class Distrib. % EPs RelSets CF% EPs RelSets CF% Essence RelSets CF%
Lenses soft 20.8 31 4 87.10 8 3 62.5 43 4 90.69

hard 16.9 34 3 91.18 6 2 66.67 39 3 92.30
none 62.5 50 12 76.00 42 4 9.52 89 19 78.65

Iris setosa 33.3 83 16 80.72 71 7 90.14 76 20 73.68
versicolor 33.3 134 40 70.15 63 10 84.13 111 41 63.06
virginica 33.3 92 16 82.61 68 6 91.18 96 27 71.87

Breast-w benign 65.5 6224 316 94.92 5764 141 97.55 3118 377 87.90
malignant 34.5 3326 628 81.12 2813 356 87.34 2733 731 73.25

SAheart 0 34.3 4557 1897 58.37 2282 556 75.64 6358 4074 35.92
1 65.7 9289 2824 69.60 3352 455 86.43 9622 4042 58

Balance-scale B 7.8 271 75 72.32 49 49 0.00 415 147 88.67
R 46 300 84 72.00 90 90 0.00 384 364 5.20

Yeast MIT 16.4 3185 675 78.81 250 40 84.00 2258 1125 50.17
CYT 31.2 3243 808 75.08 68 16 76.47 2399 1461 80.78
ERL 0.3 1036 5 99.52 438 4 99.09 417 5 98.80

Monk-1 0 64.3 1131 828 26.79 321 18 94.39 1438 1135 21.07
1 35.7 686 9 98.69 681 4 99.41 1477 363 75.42

Lymphography metastases 54.72 36435 666 98.17 10970 90 99.18 1718 369 78.52
10% min supp. malign 41.21 61130 740 98.79 19497 55 99.72 2407 476 80.22
Crx + 44.5 3366 782 76.76 304 26 91.44 2345 1091 53.47
10% min supp. − 55.5 3168 721 77.24 12 5 58.33 2336 1031 55.86

Table 5. Comparison of algorithms RelSets and SD on new subgroup discovery prob-
lems. Column RelSets-ROC shows the number of RelSets rules on the ROC convex
hull.

Dataset Class Num. of rules AUC Time
RelSets RelSets-ROC SD RelSets SD RelSets SD

potato sensitive 1 1 20 100% 100% <1s >1h
microarray resistant 1 1 20 100% 91% <1s >1h

dribble kick 110 7 20 89% 61% <1s 3min
pass pass 8 4 0 88% 0% <1s 3min

shoot 1 1 20 100% 100% <1s 3min

The first experiment is performed on a real life potato microarray dataset
with high dimensionality on the number of attributes. The goal is to distinguish
between two different classes of resistance of four transgenic potato lines. After
data preprocessing, we have only 12 examples (6 virus resistant and 6 virus sen-
sitive examples) and 19,131 attributes. In Table 5 it can be seen how slowly the
subgroup discovery algorithm SD performs and that RelSets performs better
in terms of the area under the ROC curve (AUC) in the ROC space. More-
over, standard subgroup discovery algorithms present subgroups that are not as
satisfactory to end users as subgroups found by RelSets.

The second experiment was performed on a real world strategy learning prob-
lem of robots playing soccer. In this dataset we have four classes: three classes
represent successful moves made by the robots and the majority class (92%)
when nothing interesting happens. We ran RelSets with a minimum true posi-
tive rate constraint of 20%. In Table 5 we show that we do not only outperform
the algorithm SD in time, but also in quality (area under ROC convex hull).
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7 Conclusions

We have presented a theoretical framework that, based on the covering proper-
ties of closed itemsets, characterizes those sets of features that are relevant for
discrimination. We call them closed sets for labeled data, since they keep similar
structural properties of classical closed sets, yet taking into account the posi-
tive and negative dimension of examples. In practice the approach shows major
advantages for: compacting Emerging Patterns and essential rules and solving
hard subgroup discovery problems. Thresholds on positives make the method
tractable even for large databases with many features. Future work may adapt
efficient algorithms of EPs in [5] for discovering relevant sets.
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