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Abstract. We introduce an adaptive prequential learning framework
for Bayesian Network Classifiers which attempts to handle the cost-
performance trade-off and cope with concept drift. Our strategy for incor-
porating new data is based on bias management and gradual adaptation.
Starting with the simple Näıve Bayes, we scale up the complexity by
gradually increasing the maximum number of allowable attribute de-
pendencies, and then by searching for new dependences in the extended
search space. Since updating the structure is a costly task, we use new
data to primarily adapt the parameters and only if this is really neces-
sary, do we adapt the structure. The method for handling concept drift is
based on the Shewhart P-Chart. We evaluated our adaptive algorithms
on artificial domains and benchmark problems and show its advantages
and future applicability in real-world on-line learning systems.

1 Introduction

We consider adaptive learning algorithms forBayesian NetworkClassifiers (BNCs)
in an on-line learning framework. In this framework data arrives at the learning
system sequentially. The actual decision model must first make a prediction and
then update the current model with new data. This philosophy about on-line
learning frameworks has been exposed by Dawid in his prequential approach [6]
for statistical validation of models. An efficient adaptive algorithm in a prequen-
tial learning framework must be able, above all, to improve its predictive accuracy
over time while reducing the cost of adaptation. However, in many real-world situ-
ations it may be difficult to improve and adapt to existing changing environments.
This problem is known as concept drift. In changing environments, learning algo-
rithms should be provided with some control and adaptive mechanisms that try
to adjust quickly to these changes.

The Näıve Bayes classifier (NB) is one of the most used classifiers in real-world
on-line applications mainly due to its effectiveness, simplicity and incremental
nature. NB simplifies learning by assuming that attributes are independent given
the class. However, in practice, the independence assumption is violated which
can lead to a poor predictive performance. We can improve the NB if we trade-
off the bias reduction which leads to the addition of new attribute dependences,
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and, consequently, to the estimation of more parameters, with the variance re-
duction by accurately estimating the parameters. Different classes of BNCs [5]
attempt to reduce the bias of the NB by adding attribute dependences to the
NB structure. Nevertheless, not always do the more complex BNCs outperform
the NB. Increasing complexity decreases bias but increases the variance in the
parameters. These issues are still more challenging in a prequential framework,
where the training data increases with time. In this case, we should adjust the
complexity of BNCs to suit the available data.

In this paper we present the Adaptive Prequential Framework for Supervised
Learning, AdPreqFr4SL, which attempts to handle the cost-performance trade-
off and cope with concept drift. The AdPreqFr4SL strategy for incorporating new
data is based on bias management and gradual adaptation. The motivations for
bias control, along with some results of its application, were first presented in
[3]. In the present work we have integrated more elaborated control tools for
bias management with a method for handling concept drift based on Statistical
Quality Control presented in [2] into the unified framework AdPreqFr4SL.

We chose the class of k-Dependence Bayesian Classifiers (k-DBC) [9] to il-
lustrate our approach. A k-DBC is a Bayesian Network, which contains the
structure of the NB and allows each attribute to have a maximum of k attribute
nodes as parents. This class is very suitable for our proposal. By increasing k
we can obtain classifiers that move smoothly along the spectrum of attribute
dependencies. For instance, NB is a 0-DBC, TAN [5] is a 1-DBC, etc. Instead
of using the learning algorithm proposed in [9] based on the computation of the
conditional mutual information, we use a hill-climbing search procedure due to
its obvious simplicity for computational implementation. The algorithm builds
a k-DBC starting with an NB structure. Then it iteratively adds arcs between
two attributes that result in the maximal improvements in a given score until
there is no more improvement for that score or until it is no possible to add a
new arc.

This paper is organized as follows. In the next section the AdPreqFr4SL is
described. In Section 3 a compact overview of the conducted experiments that
demonstrate the advantages of our adaptive approach is presented. In the last
section we give some conclusions and lines for future work.

2 The Adaptive Prequential Learning Framework

The main environmental assumption that drives the design of the AdPreqFr4SL is
that observations arrive at the learning system not at the same time, which allows
the environment to change over time. Without loss of generality, we assume that
at each time point data arrives in batches B. The main goal is to sequentially
predict the classes of the next batch. Many adaptive systems employ regular
update while new data arrives. The AdPreqFr4SL, instead, is provided with some
controlling mechanisms that try to select the best adaptive actions according
to the current learning goal. To this end, for each batch B of examples the
current hypothesis is used to do prediction, the correct class is observed and
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some performance indicators are assessed. Then, the indicator values are used
to estimate the current system’s state. Finally, the model is adapted according
to the estimated state.

In the AdPreqFr4SL two performance indicators are monitored over time: the
batch error ErrB (the proportion of misclassified examples in one batch) and
the model error ErrS (the proportion of misclassified examples in the total of
the examples that were classified using the same structure), in order to esti-
mate one of the following states: [S1] - IS IMPROVING: the performance is improving;
[S2] - STOP IMPROVING: the performance stops improving in a desirable tempo; [S3] -
CONCEPT DRIFT ALERT: a first alert of concept drift is signaled; [S4] - CONCEPT DRIFT:
there is a gradual concept change; [S5] - CONCEPT SHIFT: there is an abrupt concept
change; [S6] - STABLE PERFORMANCE: the performance reaches a plateau. In the next
subsections we present the adaptive actions and control strategies that we have
adopted in the AdPreqFr4SL for handling the cost-performance trade-off and
concept drift.

2.1 Cost-Performance Management

The adaptation strategy for handling cost-performance is based upon two main
policies: i) bias management - starting with an NB structure, we scale up the
model’s complexity by gradually increasing k and then searching for new at-
tribute dependences in the resulting search space; ii)gradual adaptation - we
define four levels of adaptation so that increasing the level increases its cost. In
the initial level a new model is built using the simple NB. In the first level

only the parameters are updated with new data (optionally we can use the Iter-
ative Bayes [7] for parameter refinement). In the second level the structure is
updated with new data. In the third level, if it is still possible, k is increased
by one, and the current structure is once again adapted.

The rationale is as follows. We initialize k-DBC to the simple NB by set-
ting k = 0. Whenever new data arrives, we first try to improve the NB by
adapting only its parameters. When there is evidence indicating that the per-
formance of the NB stops improving in a desirable tempo, we start adapting the
structure. Only in this case (for k = 0) do we move from the first level to the
third level of adaptation: increment k by one and start searching a 1-DBC us-
ing the hill-climber search procedure only with arc additions. At this time point
we must have more data available which allows the search procedure to find
new 1-dependencies. Next, the algorithm continues to perform only parameter
adaptation. Thus, whenever a new structure is found, the algorithm continues
working from the first level of adaptation, that is, by performing only parameter
adaptation, until there will be again evidence that the performance of the cur-
rent hypothesis stops improving and this moves to the second level: update the
current structure by searching for new attribute dependencies. At this stage and
to correct from previous errors, the search procedure is also allowed to perform
arc deletions. Only if the resulting structure remains the same, do we move to
the third level of adaptation by incrementing k by one and continue searching for
new dependencies, now in an augmented search space. For avoiding k to increase
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unnecessarily, we recover the old value of k whenever the search procedure is not
able to find new dependencies, thus keeping the original search space. Only if an
abrupt concept drift is detected, do we come back to the initial level and build a
new NB using the examples from a short-term memory (see next section). This
adaptation process will continue until it is detected that it does not make more
sense to continue adapting the model. However, we will continue monitoring the
performance. If any significant change in the behaviour is observed, then we will
once again to activate the adaptation procedures.

The control policy defines the criteria for tracking two situations: i) At which
time point do we start adapting the structure?; ii) At which time point do we
stop doing any adaptation? If it is detected that the performance of the current
model no longer improves in a desirable tempo (the state S2), we start adapting
the structure. If it is detected that the performance reaches a plateau (the state
S6), we stop adapting the model. To detect the states S2 and S6, we plot
the values of successive model errors, y(t) = Err

(t)
S , in time order and connect

them by a line, thus obtaining the model-error learning curve (model-LC). We
consider that the state S2 is met if: i) the model-LC starts behaving well [1], i.e,
the curve is convex and monotically non-increasing for a given number of points;
ii) its slope is gentle. Thus, whenever we start using a new structure we will
wait until model-LC starts behaving well and shows only little improvements in
the performance in order to trigger a new structure adaptation. If the structure
does not change after adaptation, we once again look at the model-LC to detect
whether it has already reached its plateau (i.e. S6 is signaled).

The following question thus arises: How does one verify whether the required
criteria are met? From all the explored methods, we empirically found that by
using a method based on the geometrical properties of the model-LC, which
analyzes the graphical behaviour of the most recent q points, we could more
consistently determine discrete convexity and the slope of the model-LC taking
into account the local variance. We obtained the best results by setting q = 7.

As illustrated in Figure 1 we construct a triangle T with the points p1, p4, p7
and use its signed area, A(T ), to test for discrete convexity [8]. The points
p1, p4, p7 are arranged in a convex pattern iff A(T ) is positive. In this case the
path p1 → p4 → p7 is oriented counterclockwise around the triangle. Taking into
account the local variance we consider a convex pattern, if A(T ) > δa where δa

is a very small negative number (our tolerance for convexity). Then, we analyze

Fig. 1. The last seven points p1, p2, ..., p7 in the current model-error curve are analyzed
to determine the existence of a convex pattern and a decreasing trend
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the angles formed between middle segments, � 1 = � p1, p2, p4, � 2 = � p1, p3, p4,
� 3 = � p4, p5, p7 and � 4 = � p4, p6, p7 to determine if the remaining points are
almost colinear given a tolerance δc, where δc is a very small positive number,
that is, if sin(� l) < δc, ∀� l, l = 1, 2, 3, 4. We then use the Sen’s slope estimator
[10] for determining whether there is a non-increasing trend in these observed
points. We consider a non-increasing trend if SenSlope(q) < δs where δs is a
very small positive number. We obtained satisfactory empirical results by set-
ting δa = −0.0001 (our tolerance for convexity), δs = 0.001 (our threshold for
non-increasing trend) and δc = 0.001 (our tolerance for colinearity).

Thus, we consider that the points p1, p2, . . . , p7 are arranged in a convex pat-
tern with a non-increasing trend and gentle slope if for a given positive small
number ε1, the threshold for the gentle slope, the following criterion is met:

δa < A(T ) < ε1 ∧ sin(� l) < δc, ∀� l, l = 1, 2, 3, 4 ∧ SenSlope(7) < δs (1)

We consider that the stopping criterion is met if given a positive small number
ε2, the threshold for the plateau, such that ε2 < ε1, the following criterion is met:

|A(T )| < ε2 ∧ sin(� l) < δc, ∀� l, l = 1, 2, 3, 4 (2)

In addition, we use a heuristic based on the observation of the batch error be-
fore and after the adaptation, which has been demonstrated [3] to be efficient for
an early detection of the point at which we should start adapting the structure.
Whenever we obtain a decrease of the batch error after adaptation, we consider
that the learner is still able to learn using the current structure. Otherwise, if
for a pre-defined number of consecutive times, maxTimes, the batch error does
not decrease after parameter adaptation we assume that increasing the number
of training examples will not result in further improvements on the parameter
estimates and signal the state [S2] .

Figure 2 illustrates the behaviour of the model-LC for one randomly generated
sample of the adult dataset using batches of 100 examples. To serve as a baseline,
we also plot the error rates obtained with the NB and with a 3-DBC (the class-
model with best performance) induced from scratch at each learning step. During
all the learning process the structure changed only five times. The graphical
behavior of the model error neatly corresponds to the detected conditions which
lead to a structure-adaptation action. The k value slowly increases from 0 to 3
until that the stopping criteria is met at t = 120 and the model is not further
adapted with new data.

2.2 Using the P-Chart for Handling Concept-Drift

Concept drift refers to unforeseen changes in the distribution underlying the data
that can also lead to changes in the target concept over time [11]. Several avail-
able concept drift trackers employ different approaches that include some control
strategies in order to decide whether adaptation is really necessary because a
concept change has occurred. To this end, a process that monitors the value of
some performance indicators is implemented. If a concept drift is detected, some
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Fig. 2. Behavior of the model-LC for the adaptive algorithm. Vertical lines indicate the
time points at which the structure changed. On top, the resulting structures with their
corresponding k-DBC class-models are presented.

actions to adapt the model to these changes are taken, which usually lead to
build a new model. Some concept drift trackers are also capable of recognizing
the extent of concept drift. The term concept drift is more oftenly associated to
gradual changes whereas the term concept shift defines abrupt changes.

We integrated into the AdPreqFr4SL a method for handling concept drift [2]
based on a Shewhart P-Chart - an attribute control chart that monitors the
proportion of a dichotomous count variable. We use the P-Chart for monitoring
the batch error ErrB . The values p(t) = Err

(t)
B are plotted on the chart in

time order and connected by a line. The chart has a center line (CL), an upper
control limit (UCL) and an upper warning limit (UWL). If the sample sizes are
large (≥ 30) the sample proportion approaches the Normal distribution with
parameters μ = p ; σ =

√
p(1 − p)/n (p is the population proportion). Therefore,

the use of three-sigma control limits is a reasonable choice. Suppose that an
estimate p̂ is obtained from previous data. We can obtain the P-Chart’s lines
as follows: CL = p̂; UCL = p̂ + 3σ; UWL = p̂ + ασ, 0 < α < 3. In this work, we
set α to 2. To better follow the natural behaviour of the learning process we set
the target value p̂ to the minimum value of the current model error ErrS . We
denote it by Errmin. Whenever a new structure S is found, Errmin is initialized
to some big number. Then, at each time step if Err

(t)
S +SErr

(t)
S < Errmin then

Errmin is set to Err
(t)
S , where SErr

(t)
S is its standard deviation.

Thus, at each time point t, p̂ is set to Errmin and the P-Chart’s lines are
computed, accordingly. Then, it is observed where the new proportion p(t) =
Err

(t)
B falls on the P-Chart. If p(t) falls above the UCL, a concept shift is signaled.

If p(t) falls between the UCL and the UWL for the first time, then a concept drift
alert is signaled. Otherwise, if this situation occurs for two or more consecutive
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times then a concept drift is detected. If p(t) falls under UWL we assume that the
learner is in control and then proceed to analyze the behaviour of the model-LC
as described in the previous section.

The adaptive strategy for handling concept drift mainly consists of manipu-
lating a short-term memory (SHORT-MEMORY) to store those examples that we
suspect belongs to a new concept. If a concept shift is detected then all the
examples from the SHORT-MEMORY are used to build a new NB classifier. After-
wards, the SHORT-MEMORY is cleaned for future uses. Whenever a concept drift
alert or concept drift is signaled, the examples of the current batch are added to
the SHORT-MEMORY. However, after signaling a concept drift, the new examples
are not used to update the model in order to force a great degradation of the
performance. This way the P-Chart will more quickly be able to recognize a con-
cept shift and re-build the model. Algorithm 1 depicts the pseudo-code of the
whole algorithm for learning k-DBCs in the AdPreqFr4SL that summarizes all
the above described strategies for handling cost-performance and concept drift.

Algorithm 1. The algorithm for learning k-DBCs in AdPreqFr4SL
Require: A dataset D divided in batches of m examples, a kMax value for the maximum allowable

k, the thresholds: eps1 for the gentle slope and eps2 for the plateau, the number of consecutive
times maxTimes that ErrB does not decrease after parameter adaptation, a boolean variable
bIterativeBayes for using Iterative Bayes or not, a scoring function Score(S,D)

Ensure: A classifier hC = (S, ΘS) belonging to the class of k-DBCs
1: AdaptiveAction(hC, SHORT-MEMORY, INITIAL LEVEL) {build a new NB classifier}
2: for each next batch B of m examples of D do
3: predictions ← predict(B, hC)
4: observed ← getFeedback(B) {get feedback}
5: p(t) ← Err

(t)
B , y(t)← Err

(t)
S {asses current indicators}

6: Add (t, y(t)) to model-LC
7: state ← getState(p(t), P-Chart){concept drift detection using the P-Chart}
8: if state is CONCEPT SHIFT then
9: Add B to SHORT-MEMORY

10: AdaptiveAction(hC, SHORT-MEMORY, INITIAL LEVEL) {build a NB classifier}
11: Clean SHORT-MEMORY
12: else if state is CONCEPT DRIFT ALERT ∨ CONCEPT DRIFT then
13: Add B to SHORT-MEMORY
14: else
15: Clean SHORT-MEMORY
16: // if state is IN CONTROL then observe the model-LC
17: if model-LC is Convex-NonIncreasing-with-GentleSlope(eps1) then
18: state ← STOPS IMPROVING {conditions 1 are met}
19: else
20: state ← IS IMPROVING
21: if state IS IMPROVING ∨ CONCEPT DRIFT ALERT then
22: AdaptiveAction(hC, B, FIRST LEVEL, bIterativeBayes){update parameters}
23: if consecCounter(Err

tAFTER−ADAP
B ≥ Err

tBEF−ADAP
B ) = maxTimes then

24: state ← STOP IMPROVING
25: if state STOPS IMPROVING then
26: if k > 0 then AdaptiveAction(k-DBC, B, SECOND LEVEL,. . .) {update structure}
27: if (not change(S)∧ k < Maxk) ∨ k= 0 then
28: AdaptiveAction(hC, B, THIRD LEVEL,k, . . .) {increment k; continue searching}
29: if not change(S) then
30: // verify the stopping criterion
31: if model-LC Has-Plateau(eps2) then
32: stopAdapting ← TRUE; state ← STABLE PERFORMANCE
33: end for
34: return hC
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3 Experimental Evaluation

We carried out a series of experiments for evaluating the AdPreqFr4SL for k-
DBCs, using both, artificially generated datasets and benchmark problems from
the UCI repository. Due to space limitations, we here provide only an overview
of all the conducted experiments and results. A complete description is given in
[4]. We evaluated two versions of adaptive algorithms, Adap1 and Adap2, using
Algorithm 1. Adap2 additionally implements Iterative Bayes (IB). We compared
Adap1 and Adap2 against NB and several k-DBCs (varying k) induced from
scratch, i.e., in each learning step, a batch hill-climber learning procedure was
used to learn a k-DBC from all seen examples. Since learning from scratch use all
the data provided so far, this approach for updating the classifier is essentially
optimal in terms of the quality of the hypotheses it can induce. We set kMax=5
and maxTimes=2. The thresholds eps1 (for the gentle slope) and eps2 (for the
plateau) were set according to the domain’s complexity. Intuitively, we choose
lower thresholds for more complex domains. All the results were obtained as
average values over 10 generated samples. Here we present the results using the
Bayesian score (the marginal likelihood). In [3,4] we give a more in depth study
comparing the performance for different scores.
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3.1 Evaluation with Benchmark Problems

We here only show the results for three selected datasets from the UCI reposi-
tory: balance, nursery and adult. We set eps1=0.01, eps2=0.001 for balance and
nursery and eps1=0.001, eps2=0.0001 for adult. Figure 3 compares the per-
formance of Adap1 and Adap2 against NB and several k-DBCs induced from
scratch at each time point. In most cases, Adap1 approaches the performance
of the best k-DBC and Adap2 outperforms Adap1. For the balance dataset, the
ErrS approaches 0 and k approaches 3, thus evidencing that Adap1 and Adap2
were able to find structures that represent the existing strong degree of attribute
dependences.

Table 1 helps us to evaluate the performance, complexity and cost of adaptation
per dataset at the last learning step. The results show that both, Adap1 and
Adap2, are able to perform a more artful cost-performance trade-off than non-
adaptive versions. The reduction of the cost of updating is evident if we compare
the small number of adaptations performed on the structure by Adap1 and Adap2
in contrast to the great cost of searching for a new structure at each learning
step. The number of times the structure really changed in the case when a
search procedure was invoked at each point time is very small (e.g. for the
adult this proportion is 8.6/160) thus evidencing that it is more appropriate to
perform adaptations on the structure when there is some accumulated data and
the search procedure is able to find new dependences. Although both, Adap1
and Adap2, show a desirable behaviour, results evidence that Adap2 ensures the
best cost-performance trade-off in these three particular domains: the number
of structure adaptations and the resulting error are smaller. We also observed
that the increasing slope of the k value using Adap2 is more gradual, specially
for more complex domains, thus inducing less complex classifiers than Adap1.
Adap2 can get trapped in less complex structures while reducing the bias on
the parameter estimates [7]. By using AdPreqFr4SL with IB, specially for more
complex domains, we can better trade-off the reduction of the bias resulting

Table 1. Analysis of the Final Performance, Complexity and Cost of Adaptation per
dataset. The column "Last ErrB" shows the error of the last batch of examples,
which was not used to update the classifier. The column "� Add. Arcs" shows the
final number of arcs added to NB. The column "� Str.Adap." shows the total number
of times that a structure-adaptation action was executed. The column "� Str.Chang."
shows the number of times the structure really changed over time.

Balance Nursery Adult
Last � Add. � Str. � Str. Last � Add. � Str � Str Last � Add. � Str � Str

k-DBCs ErrB Arcs Adap. Chang. ErrB Arcs Adap. Chang. ErrB Arcs Adap. Chang.
NB 8.10 − − − 12.00 − − − 16.80 0.0 − −

1-DBC 5.80 3.0 100 11.2 5.80 5.4 128 6.4 14.60 12.0 160 8.6
2-DBC 4.60 5.0 100 17.6 7.40 8.0 128 8.8 14.60 18.0 160 13.4
3-DBC 0.00 6.0 100 18.5 7.20 9.0 128 9.8 14.60 18.0 160 13.2
Best 0.00 6.0 100 18.5 5.80 5.4 128 6.4 14.60 12.0 160 8.6

Adap1 0.30 5.6 4.7 3.2 6.80 8.0 18.8 6.0 13.60 16.8 4.0 3.2
Adap2 0.00 6.0 4.2 3.8 4.40 7.0 11.6 5.2 13.20 12.2 2.6 2.4
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from the assumptions of attribute independence with the reduction of the bias
resulting from the estimation error by also improving the parameter estimates.

3.2 Evaluation with Generated Concept Shift and Drift Scenarios

Five concept shift scenarios (CSSs) and five concept drift scenarios (CDSs) were
generated using randomly generated k-DBCs with 9 binary attributes and a
binary class node for k = 1, 2, 3, 4, 5. Both, CSSs and CDSs represent a sequence
of five different learning contexts, associated to different generative k-DBCs.
Whereas k remains constant in a CSS, we used k-DBCs of increasing k for
generating a CDS (a 1-DBC for the first context, a 2-DBC for the second one,
etc.). In CSSs we simulated four abrupt concept changes by forcing the underlying
k-DBC to change after every 2000 examples. We used batches of 100 examples
for CSSs and batches of 50 examples for CDSs. In CDSs we simulated four gradual
changes by setting the parameters of a simulation procedure [11]: t1 = 37, t2 =
77, t3 = 117, t4 = 157 (the time points at which the concept begins to drift),
Δ = 300 (the drift rate) and α = 3/4 (each 3 examples of the old concept
appears one example of the new concept). We set eps1=0.05 and eps2=0.005
for artificial datasets.

Figure 4 illustrates the adaptive and control strategies in one of generated
CDS. In the first drift phase (between t=37 and t=43) the P-Chart detected
two concept shifts and a new NB was built using the examples of the current
batch. In the second drift phase (between t=77 and t=83) almost all the points
fell above the UWL but very close to the UCL. The P-Chart signaled concept
drift and the adaptation process was temporarily stopping to force the ErrB

to jump outside the UCL. Later, at t=83, when a concept shift was detected,
all the examples stored in the SHORT-MEMORY were used to build a new NB. For
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Fig. 4. The P-Chart(on the left) and the model error ErrS (on the right) for a gen-
erated CSS. Parallel light-grey dotted lines on the P-Chart indicate the beginning and
the end of each drift phase. Vertical light-grey dotted lines and black dashed lines on
the model-error’s figure indicate the time points at which the current structure was
adapted or rebuilt, respectively; and vertical dark-grey dotted lines, the time points
at which the adaptation process was stopped.In the top, the resulting structures with
their corresponding k-DBC class-models are presented.
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the remaining drift phases our detection method using P-Chart also worked as
expected. As a result, the structure was rebuilt five times, at time points that
belong to the drift phases. Note that the complexity of the induced k-DBCs
increased from context to context: in the first context the resulting k-DBC is a
1-DBC, in the third - a 3-DBC, in the fourth - a 4-DBC, in the last context it is
a 4-DBC too (searching for more complex structures can require more training
data). Only in the second context the NB structure was not modified since the
adaptation process was stopped early. However, the model error showed a good
behaviour in this context.

Figure 5 compares the performance over time of all the algorithms in the CSS
associated to a 2-DBC (CS-II) and one CDS scenario (CD-I). Results evidence
that significant improvements in the performance are achieved by using adaptive
algorithms instead of their non-adaptive versions. After a concept drift occurs,
the performance of all the algorithms suffers a significant deterioration. However,
Adap1 and Adap2 show a good recoverability capability and are able to control
the performance, trying to improve it back to a level, that even approaches the
performance of the true model. In drift phases, the k value falls to 0, which
evidences that a concept shift has been detected and a new NB has been built.
Results also evidence that adaptive algorithms approach the appropriate class-
model associated to each learning context. The k value approaches 2 for all the
learning contexts in CS-II while it increases from context to context in CD-I.
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Fig. 5. Error Rate, Model Error and k-values for CS-II and CD-I

4 Conclusions and Future Work

We have presented the AdPreqFr4SL, which attempts to handle cost vs. per-
formance and cope with concept drift. Instead of selecting a particular class of
BNCs and using it during all the learning process, we propose to use the class
of k-DBCs and start with the simple NB by setting k = 0. Then, we use simple
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control strategies to decide when to do the next move in the spectrum of at-
tribute dependencies (by gradually increasing k) and to start searching for new
dependences. As a result, our strategy leads to the scaling up of the model’s
complexity slowly enough so that the use of more training data will reduce bias
at a rate that also reduces variance and consequently the classification error.
This bias control leads to the selection of the optimal class-model for the current
training data (i.e. the optimal k value), thus avoiding overfitting or underfitting
of the current model to the actual data. Since updating the structure is a costly
task, we reduce the cost of updating during the whole learning process by first
adapting parameters. We adapt the structure only when there is evidence that
the performance stops improving in a desirable tempo. The AdPreqFr4SL also
includes a method for handling concept drift based on the P-Chart, which has
been demonstrated to be efficient for recognizing concept changes. Since NB is
one of the most used classifiers in real-world on-line applications and results ev-
idence significant improvements of the NB over time, obvious topic for this line
of investigation include the application of the proposed AdPreqFr4SL framework
to real-world on-line learning systems.
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