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Preface

The two premier annual European conferences in the areas of machine learning
and data mining have been collocated ever since the joint conference in Freiburg,
Germany, 2001. The European Conference on Machine Learning was established
20 years ago, when the first European Working Session on Learning was held in
Orsay, France, in 1986. The conference is growing, and is more lively than ever.
The European Conference on Principles and Practice of Knowledge Discovery in
Databases celebrates its tenth anniversary; the first PKDD took place in 1997 in
Trondheim, Norway. Over the years, the ECML/PKDD series has evolved into
one of the largest and most selective international conferences in these areas,
the only one that provides a common forum for the two closely related fields.
In 2006, the 6th collocated ECML/PKDD took place during September 18-22,
when the Humboldt-Universität zu Berlin hosted the 17th European Conference
on Machine Learning (ECML) and the 10th European Conference on Principles
and Practice of Knowledge Discovery in Databases (PKDD).

The successful model of a hierarchical reviewing process that was introduced
last year for the ECML/PKDD 2005 in Porto has been taken over in 2006. We
nominated 32 Area Chairs, each of them responsible for several closely related
research topics. Suitable areas were selected on the basis of the submission sta-
tistics for ECML/PKDD 2005 to ensure a proper load balance among the Area
Chairs. For the first time, a joint Program Committee was nominated for the
two conferences, consisting of 280 renowned researchers, mostly proposed by the
Area Chairs. This joint PC, the largest of the series to date, allowed us to exploit
synergies and deal competently with topic overlaps between ECML and PKDD.

ECML/PKDD 2006 received 564 full paper submissions that entered the re-
viewing process. The submissions were manually assigned to the Area Chairs,
who coordinated the reviewers thereafter. Reviewer assignment was based on bid-
ding with CyberChairPRO, as in the previous years. With very few exceptions,
every submission was reviewed by three PC members. Based on these reviews,
on feedback from the authors, and on discussions among the reviewers, the Area
Chairs provided a recommendation for each paper. Continuing the tradition of
previous events in the series, we accepted full papers for oral presentation and
short papers for poster presentation. The final decision was made by us based on
the recommendations of the Area Chairs. We selected 46 full papers and 36 short
papers for ECML, and 36 full papers and 26 short papers for PKDD. The accep-
tance rate for full papers is 14.5% and the overall acceptance rate is 25.5%, in
accordance with the high-quality standards of the conference series. Next to the
paper and poster sessions, ECML/PKDD 2006 also featured five invited talks,
ten workshops, seven tutorials and the ECML/PKDD discovery challenge.

We distinguished eight outstanding contributions; the awards were generously
sponsored by the Machine Learning Journal and the KD-Ubiq network.
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ECML Best Paper: Quoc Le, Alex Smola, Thomas Gärtner, Yasemin Altun:
Transductive Gaussian Process Regression with Automatic Model Selection.

PKDD Best Paper: Pauli Miettinen, Taneli MielikÃďen, Aristides Gionis, Gau-
tam Das, Heikki Mannila: The Discrete Basis Problem.

ECML Best Student Paper: Bernd Gutmann and Kristian Kersting: TildeCRF.
Conditional Random Fields for Logical Sequences.

PKDD Best Student Paper: Arik Friedmann, Assaf Schuster, Ran Wolff: k-
Anonymous Decision Tree Induction.

ECML Innovative Contribution: Alexander Clark, Christophe Costa Florencio,
Chris Watkins: Languages as Hyperplanes: Grammatical Inference with String
Kernels.

PKDD Innovative Application: Herna Viktor, Eric Paquet, Hongyu Guo: Mea-
suring to Fit: Virtual Tailoring Through Cluster Analysis and Classification.

The ECML/PKDD Best Presentation and the ECML/PKDD Best Poster
Presentation awards were elected by participants of the conference.

This year’s Discovery Challenge focused on personalized spam filtering and
generalization across related learning tasks. Steffen Bickel organized the chal-
lenge; 26 teams participated. For task A, three teams achieved a first rank:
Khurram Nazir Junejo, Mirza Muhammad Yousaf, and Asim Karim; Bernhard
Pfahringer; and Kushagra Gupta, Vikrant Chaudhary, Nikhil Marwah, and Chi-
rag Taneja. Task B was won by Gordon Cormack. The solution of Bernhard
Pfahringer was distinguished with the Creativity Award.

We are indebted to the Area Chairs, Program Committee members and ex-
ternal reviewers for their effort and engagement in making a rich but selective
scientific program for ECML/PKDD. Special thanks go to those reviewers that
helped with additional reviews at very short notice to assist with at difficult deci-
sions. We further thank our two workshop and tutorial chairs Tapio Elomaa and
Bart Goethals for selecting and coordinating the ten workshop and seven tutorial
events that accompanied the conference; the workshop organizers, tutorial pre-
senters, and the organizers of the discovery challenge; Richard van de Stadt and
CyberChairPRO for competent and flexible support; the Local Organizing Com-
mittee; and all other people that contributed to the organization of this event.
Finally, we are grateful to the the Steering Committee and the ECML/PKDD
community that entrusted us with the organization of ECML/PKDD 2006.

Most of all, however, we would like to thank all the authors who honored us
by submitting their work to this conference, thereby facilitating the success of
this event.

September 2006 Johannes Fürnkranz
Tobias Scheffer

Myra Spiliopoulou



Sponsors

We wish to express our gratitude to our sponsors for their great contributions to
the conference. We wish to thank Google for featuring the Google ECML Poster
Reception and providing ten Student Travel Awards; the Humboldt-Universität
zu Berlin for providing the conference venue; the German Science Foundation
DFG for supporting all invited speakers; KD-Ubiq for supporting the PKDD
Poster Reception and European Projects Poster Reception, four Student Travel
Awards, and the Best Paper Awards; the European Office of Aerospace Research
and Development (EOARD), Air Force Office of Scientific Research, United
States Air Force Research Laboratory for generous financial support; Strato
AG for providing the awards to the winners of the Discovery Challenge; the Pas-
cal Network of Excellence and IBM for financial support; the Machine Learning
Journal for supporting the Student Best Paper Awards.

AFOSR/EOARD support is not intended to express or imply endorsement by
the U.S. Federal Government.
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On Temporal Evolution in Data Streams
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Abstract. In recent years, the progress in hardware technology has
made it possible for organizations to store and record large streams of
transactional data. This results in databases which grow without limit at
a rapid rate. This data can often show important changes in trends over
time. In such cases, it is useful to understand, visualize, and diagnose the
evolution of these trends. In this talk, we discuss a method to diagnose
the changes in the underlying data stream and other related methods
for change detection in streams. We also discuss the problem of data
stream evolution in the context of mining algorithms such as clustering
and classification. In many cases, mining algorithms may not function as
effectively because of the change in the underlying data. We discuss the
effects of evolution on mining and synopsis construction algorithms and
a number of opportunities which may be available for further research
on the topic.
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Abstract. CiteSeer, a public online computer and information science
search engine and digital library, was introduced in 1997 and was a
radical departure from the traditional methods of academic and scien-
tific document access and analysis. Computer and information scientists
quickly became used to and expected immediate access to their litera-
ture and CiteSeer provided a popular partial solution. CiteSeer was based
on these features: actively acquiring new documents, automatic citation
indexing, and automatic linking of citations and documents. CiteSeer,
now hosted at the Pennsylvania State University with several mirrors,
has over 750,000 documents. The current CiteSeer model is to a limited
extent portable and was recently extended to academic business docu-
ments (SMEALSearch).

Why has CiteSeer been so popular and how should it progress? What
is its role with regards to other similar systems such as the Google Scholar
and DBLP? What role should CiteSeer play in the open access move-
ment? We discuss this and the Next Generation CiteSeer project, Cite-
Seerx, which will emphasize CiteSeer as a research tool, research web
service, and researcher facilitator and testbed. In contrast to the current
tightly integrated CiteSeer architecture, CiteSeerx will be modular, scal-
able and self managed. We will discuss how new intelligent data mining
and information extraction algorithms will provide improved and new
indexes, enhanced document access, expanded and automatic document
gathering, collaboratories, new data and metadata resources, active mir-
roring, and web services. As an example of new features, we point out
our new API based acknowledgement index and search. This new feature
not only provides insight into the impact of acknowledged individuals,
funding agencies and others, but also presents an architectural model for
integration and expansion of our legacy system.
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Abstract. Games have played a major role in the history of artificial
intelligence research. The goal of this research largely has been to build
programs capable of defeating strong human players. Most of the litera-
ture has been devoted to two-player, perfect information games—games
where the research results have little wide-spread applicability. However,
over the past few years the need for improved AI techniques have be-
come apparent in commercial computer games, a $25 billion industry.
Laird and van Lent call the new generation of commercial games “AI’s
killer application”. The buying public wants to see realistic artificial in-
telligence in these products. Here the the metric is a “fun” experience,
not winning. Hence, the outcomes from research using these applications
will be of much wider applicability. This talk will discuss the challenges
of using machine learning in commercial computer games to create “fun”.
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Abstract. The DARPA Grand Challenge has been the most significant
challenge to the mobile robotics community in more than a decade. The
challenge was to build an autonomous robot capable of traversing 132
miles of unrehearsed desert terrain in less than 10 hours. In 2004, the
best robot only made 7.3 miles. In 2005, Stanford won the challenge and
the $2M prize money by successfully traversing the course in less than 7
hours. This talk, delivered by the leader of the Stanford Racing Team,
will provide insights in the software architecture of Stanford’s winning
robot. The robot massively relied on machine learning and probabilistic
modeling for sensor interpretation, and robot motion planning algorithms
for vehicle guidance and control. The speaker will explain some of the
basic algorithms and share some of the excitement characterizing this
historic event. He will also discuss the implications of this work for the
future of the transportation.
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Challenges of Urban Sensing
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Abstract. Wireless sensor networks are emerging as a critical informa-
tion technology, and they are continuing the trend originating in main-
frame computing currently at the stage of mobile computing. This trend
shows several aspects consistent in the evolution of computing including
the increasing hardware miniaturization of the computing units and an
increasing emphasis of the role of communication between the comput-
ing units – “networking”. In addition from the software side there is an
increasing need to software solutions that are robust, exhibit distributed
control, collaborative interfaces resulting in adaptive capabilities also
at the system level. Like the present Internet, wireless sensor networks
are large-scale distributed systems, but composed of smart sensors and
actuators. They will eventually infuse the physical world and provide
“grounding” for the Internet thus creating the Internet of Things. Re-
search on wireless sensor networks has been taking place at several levels,
from the lowest physical level to the highest information level – the latter
is much less developed than the research at the physical levels. In addi-
tion, much of the research in wireless sensor networks has been focusing
on military or science applications. However, wireless sensor networks can
also play an important role in the realization of ubiquitous computing
for everyday life - creating what we call “Urban sensing environment”.
In urban sensing many natural gateways exist to collect and process the
sensor information – static ones such as media devices, or mobile devices
such as smart phones that can collect sensor information when entering
the communication range of an active sensor. Some of the applications
of wireless sensor network technology at home include, in addition to
the surveillance functions, adding “intelligence” to utility consumption,
electronic tagging, contamination control and disaster monitoring. Simi-
larly at the community level “traffic monitoring” including people allows
a development of totally unseen services from micro weather forecasts to
new ways for “sensing the environment” for entertainment. In this talk
we will outline some of the research challenges for urban sensing, and the
role of learning and data analysis techniques for solving those challenges.
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Abstract. In this paper we present the novel SD-Map algorithm for exhaustive
but efficient subgroup discovery. SD-Map guarantees to identify all interesting
subgroup patterns contained in a data set, in contrast to heuristic or sampling-
based methods. The SD-Map algorithm utilizes the well-known FP-growth
method for mining association rules with adaptations for the subgroup discovery
task. We show how SD-Map can handle missing values, and provide an experi-
mental evaluation of the performance of the algorithm using synthetic data.

1 Introduction

Subgroup discovery [1,2,3,4] is a powerful and broadly applicable method that focuses
on discovering interesting subgroups of individuals. It is usually applied for data ex-
ploration and descriptive induction, in order to identify relations between a dependent
(target) variable and usually many independent variables, e.g., ”the subgroup of 16-25
year old men that own a sports car are more likely to pay high insurance rates than the
people in the general population”, but can also be used for classification (e.g., [5]).

Due to the exponential search space commonly heuristic (e.g., [2,6]) or sampling
approaches (e.g., [7]) are applied in order to discover the k best subgroups. However,
these do not guarantee the discovery of all the optimal (most interesting) patterns. For
example, if a heuristic method implements a greedy approach or uses certain pruning
heuristics, then whole subspaces of the search space are not considered. Furthermore,
heuristic approaches usually have ”blind spots” that prevent certain patterns from being
discovered: Considering beam search for example, if only a combination of factors is
interesting, where each single factor is not, then the combination might not be identified
[2]. In consequence, often not all interesting patterns can be discovered by the heuris-
tic methods, and only estimates about the best k subgroups are obtained. This can be
a problem especially for explorative and descriptive methods since some of the truly
interesting patterns cannot be identified. In contrast to heuristic methods exhaustive ap-
proaches guarantee to discover the best solutions. However, then the runtime costs of
an exhaustive algorithm usually prohibit its application for larger search spaces.

In this paper we propose the novel SD-Map algorithm for fast and exhaustive sub-
group discovery, based upon the FP-growth algorithm [8] for mining association rules
with adaptations for the subgroup discovery task. We show how SD-Map can efficiently

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 6–17, 2006.
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handle missing values that are common for some domains, and also how the algorithm
can be applied for more complex description languages using internal disjunctions. Ad-
ditionally, we provide an experimental evaluation of the algorithm using synthetic data.

The rest of the paper is organized as follows: We introduce the subgroup discovery
setting in Section 2, and present the SD-Map algorithm in Section 3. After that, an
experimental evaluation of the algorithm using synthetic data is provided in Section 4.
Finally, we conclude the paper with a discussion of the presented work, and we show
promising directions for future work in Section 5.

2 Subgroup Discovery

The main application areas of subgroup discovery are exploration and descriptive in-
duction, to obtain an overview of the relations between a target variable and a set of
explaining variables. Then, not necessarily complete relations but also partial relations,
i.e., (small) subgroups with ”interesting” characteristics can be sufficient.

Before describing the subgroup discovery setting, we first introduce the necessary
notions concerning the used knowledge representation: Let ΩA be the set of all at-
tributes. For each attribute a ∈ ΩA a range dom(a) of values is defined. Furthermore,
we assume VA to be the (universal) set of attribute values of the form (a = v), where
a ∈ ΩA is an attribute and v ∈ dom(a) is an assignable value. We consider nominal
attributes only so that numeric attributes need to be discretized accordingly. Let CB
be the case base (data set) containing all available cases, also often called instances. A
case c ∈ CB is given by the n-tuple c = ((a1 = v1), (a2 = v2), . . . , (an = vn)) of
n = |ΩA| attribute values, where vi ∈ dom(ai) for each ai.

A subgroup discovery setting mainly relies on the following four main properties:
the target variable, the subgroup description language, the quality function, and the
search strategy. In this paper we focus on binary target variables. Similar to the MIDOS
approach [3] we try to identify subgroups that are, e.g., as large as possible, and have
the most unusual (distributional) characteristics with respect to the concept of interest
given by the target variable.

The description language specifies the individuals belonging to the subgroup. In the
case of single-relational propositional languages a subgroup description can be defined
as follows:

Definition 1 (Subgroup Description). A subgroup description sd = {e1, e2, . . . , en}
is defined by the conjunction of a set of selection expressions. These selectors ei =
(ai, Vi) are selections on domains of attributes, ai ∈ ΩA, Vi ⊆ dom(ai). We define
Ωsd as the set of all possible subgroup descriptions.

A quality function measures the interestingness of the subgroup mainly based on a sta-
tistical evaluation function, e.g., the chi-squared statistical test. It is used by the search
method to rank the discovered subgroups during search. Typical quality criteria include
the difference in the distribution of the target variable concerning the subgroup and the
general population, and the subgroup size. We assume that the user specifies a minimum
support threshold TSupp corresponding to the number of target class cases contained in
the subgroup in order to prune very small and therefore uninteresting subgroup patterns.
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Definition 2 (Quality Function). Given a particular target variable t ∈ VA, a qual-
ity function q : Ωsd × VA → R is used in order to evaluate a subgroup description
sd ∈ Ωsd, and to rank the discovered subgroups during search.

Several quality functions were proposed, e.g., [1,2,7]. For binary target variables, ex-
amples for quality functions are given by

qBT =
(p− p0) ·

√
n√

p0 · (1− p0)
·
√

N

N − n
, qRG =

p− p0

p0 · (1− p0)
,

where p is the relative frequency of the target variable in the subgroup, p0 is the relative
frequency of the target variable in the total population, N = |CB | is the size of the total
population, and n denotes the size of the subgroup.

Considering the subgroup search strategy an efficient search is necessary, since the
search space is exponential concerning all the possible selectors of a subgroup descrip-
tion. In the next section, we propose the novel SD-Map algorithm for exhaustive sub-
group discovery based on the FP-growth [8] method.

3 SD-Map

SD-Map is an exhaustive search method, dependent on a minimum support threshold: If
we set the minimum support to zero, then the algorithm performs an exhaustive search
covering the whole unpruned search space. We first introduce the basics of the FP-
growth method, referring to Han et al. [8] for a detailed description. We then discuss
the SD-Map algorithm and describe the extensions and adaptations of the FP-growth
method for the subgroup discovery task. After that, we describe how SD-Map can be
applied efficiently for the special case of (strictly) conjunctive languages using internal
disjunctions, and discuss related work.

3.1 The Basic FP-Growth Algorithm

The FP-growth [8] algorithm is an efficient approach for mining frequent patterns. Sim-
ilar to the Apriori algorithm [9], FP-growth operates on a set of items which are given
by a set of selectors in our context. The main improvement of the FP-growth method
compared to Apriori is the feature of avoiding multiple scans of the database for testing
each frequent pattern. Instead, a recursive divide-and-conquer technique is applied.

As a special data structure, the frequent pattern tree or FP-tree is implemented as an
extended prefix-tree-structure that stores count information about the frequent patterns.
Each node in the tree is a tuple (selector, count, node-link): The count measures the
number of times the respective selector is contained in cases reached by this path, and
the node-link links to the nodes in the FP-tree with the same assigned selector. The
construction of an FP-tree only needs two passes through the set of cases: In the first
pass the case base is scanned collecting the set of frequent selectors L that is sorted
in support descending order. In the second pass, for each case of the case base the
contained frequent selectors are inserted into the tree according to the order of L, such
that the chances of sharing common prefixes (subsets of selectors) are increased. After
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construction, the paths of the tree contain the count information of the frequent selectors
(and patterns), usually in a much more compact form than the case base.

For determining the set of frequent patterns, the FP-growth algorithm applies a di-
vide and conquer method, first mining frequent patterns containing one selector and
then recursively mining patterns conditioned on the occurrence of a (prefix) 1-selector.
For the recursive step, a conditional FP-tree is constructed, given the conditional pattern
base of a frequent selector of the FP-Tree and its corresponding nodes in the tree. The
conditional pattern base consists of all the prefix paths of such a node v, i.e., consid-
ering all the paths Pv that node v participates in. Given the conditional pattern base,
a (smaller) FP-tree is generated, the conditional FP-tree of v utilizing the adapted fre-
quency counts of the nodes. If the conditional FP-Tree just consists of one path, then
the frequent patterns can be generated by considering all the combinations of the nodes
contained in the path. Otherwise, the process is performed recursively.

3.2 The SD-Map Algorithm

Compared to association rules that measure the confidence (precision) and the support
of rules [9], subgroup discovery uses a special quality function to measure the inter-
estingness of a subgroup. A naive adaptation of the FP-growth algorithm for subgroup
discovery just uses the FP-growth method to collect the frequent patterns; then we also
need to test the patterns using the quality function.

For the subgroup quality computation mainly four parameters are used: The true
positives tp (cases containing the target variable t in the given subgroup s), the false
positives fp (cases not containing the target t in the subgroup s), and the positives
TP and negatives FP regarding the target variable t in the general population of size
N . Thus, we could just apply the FP-growth method as is, and compute the subgroup
parameters as

– n = count(s),
– tp = support(s) = count(s ∧ t),
– fp = n− tp,
– p = tp/(tp + fp), and
– TP = count(t),
– FP = N − TP ,
– p0 = TP/(TP + FP).

However, one problem encountered in data mining remains: The missing value prob-
lem. If missing values are present in the case base, then not all cases may have a de-
fined value for each attribute, e.g., if the attribute value has not been recorded. For
association rule mining this usually does not occur, since we only consider items in
a transaction: An item is present or not, and never undefined or missing. In contrast
missing values are a significant problem for subgroup mining in some domains, e.g.,
in the medical domain [4,10]. If the missing values cannot be eliminated they need
to be considered in the subgroup discovery method when computing the quality of a
subgroup: We basically need to adjust the counts for the population by identifying the
cases where the subgroup variables or the target are not defined, i.e., where these have
missing values.
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So, the simple approach described above is redundant and also not sufficient, since
(a) we would get a larger tree if we used a normal node for the target; (b) if there
are missing values, then we need to restrict the parameters TP and FP to the cases
for which all the attributes of the selectors contained in the subgroup description have
defined values; (c) furthermore, if we derived fp = n−tp, then we could not distinguish
the cases where the target is not defined.

In order to improve this situation, and to reduce the size of the constructed FP-tree,
we consider the following important observations:

1. For estimating the subgroup quality we only need to determine the four basic sub-
group parameters tp, fp, TP , and FP with a potential adaptation for missing val-
ues. Then, the other parameters can be derived: n = tp + fp, N = TP + FP .

2. For subgroup discovery, the concept of interest, i.e., the target variable is fixed,
in contrast to the arbitrary ”rule head” of association rules. Thus, the necessary
parameters described above can be directly computed, e.g., considering the true
positives tp, if a case contains the target and a particular selector, then the tp count
of the respective node of the FP-tree is incremented.

If the tp, fp counts are stored in the nodes of the FP-tree, then we can compute the qual-
ity of the subgroups directly while generating the frequent patterns. Furthermore, we
only need to create nodes for the independent variables, not for the dependent (target)
variable. In the SD-Map algorithm, we just count for each node if the target variable oc-
curs (incrementing tp) or not (incrementing fp), restricted to cases for which the target
variable has a defined value. The counts in the general population can then be acquired
as a by-product.

For handling missing values we propose to construct a second FP-tree-structure, the
Missing-FP-tree. The FP-tree for counting the missing values can be restricted to the set
of frequent attributes of the main FP-Tree, since only these can form subgroup descrip-
tions that later need to be checked with respect to missing values. Then, the Missing-
FP-tree needs to be evaluated in a special way to obtain the respective missing counts.
To adjust for missing values we only need to adjust the number of TP , FP correspond-
ing to the population, since the counts for the subgroup FP-tree were obtained for cases
where the target was defined, and the subgroup description only takes cases into account
where the selectors are defined. Using the Missing-FP-tree, we can identify the situa-
tions where any of the attributes contained in the subgroup description is undefined:
For a subgroup description sd = (e1 ∧ e2 ∧ · · · ∧ en), ei = (ai, Vi), Vi ⊆ dom(ai) we
need to compute the missing counts missing(a1∨a2∨· · ·∨an) for the set of attributes
M = {a1, . . . , an}. This can be obtained applying the following transformation:

missing(a1 ∨ · · · ∨ an) =
n∑

i=1

missing(ai)−
∑

m∈2M

missing(m) , (1)

where |m| ≥ 2. Thus, in order to obtain the missing adjustment with respect to the set
M containing the attributes of the subgroup, we need to add the entries of the header
nodes of the Missing-FP-tree corresponding to the individual attributes, and subtract
the entries of every suffix path ending in an element of M that contains at least another
element of M .
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Algorithm 1. SD-Map algorithm

Require: target variable t, quality function q, set of selectors E (search space)
1: Scan 1 – Collect the frequent set of selectors, and construct the frequent node list L for the

main FP-tree:
1. For each case for which the target variable has a defined value, count the (tpe, fpe) for

each selector e ∈ E.
2. Prune all selectors which are below a minimum support TSupp , i.e., tp(e) =

frequency(e ∧ t) < TSupp .
3. Using the unpruned selectors e ∈ E, construct and sort the frequent node list L in

support/frequency descending order.
2: Scan 2 – Build the main FP-tree:

For each node contained in the frequent node list, insert the node into the FP-tree (according
to the order of L), if observed in a case, and count the number of (tp, fp) for each node

3: Scan 3 – Build the Missing-FP-tree (This step can also be integrated as a logical step into
scan 2):

1. For all frequent attributes, i.e., the attributes contained in the frequent nodes L of the
FP-tree, generate a node denoting the missing value for this attribute.

2. Then, construct the Missing-FP-tree, counting the (tp, fp) for each (attribute) node.
4: Perform the adapted FP-growth method to generate subgroup patterns:
5: repeat
6: for each subgroup si that denotes a frequent subgroup pattern do
7: Compute the adjusted population counts TP ′,FP ′ as shown in Equation 2
8: Given the parameters tp, fp,TP ′,FP ′ compute the subgroup quality q(si) using a

quality function q
9: until FP-growth is finished

10: Post-process the set of the obtained subgroup patterns, e.g., return the k best subgroups, or
return the subgroup set S = {s | q(s) ≥ qmin}, for a minimal quality threshold qmin ∈ R
(This step can also be integrated as a logical filtering step in the discovery loop (lines 5-9)).

By considering the (tp, fp) counts contained in the Missing-FP-tree we obtain the
number of (TPmissing ,FPmissing ) where the cases cannot be evaluated statistically
since any of the subgroup variables are not defined, i.e., at least one attribute contained
in M is missing. To adjust the counts of the population, we compute the correct counts
as follows:

TP ′ = TP − TPmissing ,FP ′ = FP − FPmissing . (2)

Then, we can compute the subgroup quality based on the parameters tp, fp,TP ′,FP ′.
Thus, in contrast to the standard FP-growth method, we do not only compute the fre-
quent patterns in the FP-growth algorithm, but we can also directly compute the quality
of the frequent subgroup patterns, since all the parameters can be obtained in the FP-
growth step. So, we perform an integrated grow-and-test step, accumulating the sub-
groups directly. The SD-Map algorithm is shown in Algorithm 1.

SD-Map includes a post-processing step for the selection and the potential redun-
dancy management of the obtained set of subgroups. Usually, the user is interested only
in the best k subgroups and does not want to inspect all the discovered subgroups. Thus,
we could just select the best k subgroups according to the quality function and return
these. Alternatively, we could also choose all the subgroups above a minimum quality
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threshold. Furthermore, in order to reduce overlapping and thus potentially redundant
subgroups, we can apply post-processing, e.g., clustering methods or a weighted cov-
ering approach (e.g., [11]), as in the Apriori-SD [12] algorithm. The post-processing
step could potentially also be integrated into the ”discovery loop” (while applying the
adapted FP-growth method), see Algorithm 1.

A subgroup description as defined in Section 2 can either contain selectors with
internal disjunctions, or not. Using a subgroup description language without internal
disjunctions is often sufficient for many domains, e.g., for the medical domain [4,10].
In this case the description language matches the setting of the common association rule
mining methods. If internal disjunctions are not required in the subgroup descriptions,
then the SD-Map method can be applied in a straight-forward manner: If we construct
a selector e = (a, {vi}) for each value vi of an attribute a, then the SD-Map method
just derives the desired subgroup descriptions: Since the selectors do not overlap, a
conjunction of selectors for the same attribute results in an empty set of covered cases.
Thus, only conjunctions of selectors will be regarded as interesting if these correspond
to a disjoint set of attributes. Furthermore, each path of a constructed frequent pattern
tree will also only contain a set of selectors belonging to a disjoint set of attributes.

If internal disjunctions are required, then the search space is significantly enlarged in
general, since there are 2m− 1 (non-empty) value combinations for an attribute with m
values. However, the algorithm can also be applied efficiently for the special case of a
description language using selectors with internal disjunctions. In the following section
we describe two approaches for handling that situation.

3.3 Applying SD-Map for Subgroup Descriptions with Internal Disjunctions
Efficiently

Naive Approach. First, we can just consider all possible selectors with internal dis-
junctions for a particular attribute. This technique can also be applied if not all internal
disjunctions are required, and if only a selection of aggregated values should be used.
For example, a subset of the value combinations can be defined by a taxonomy, by the
ordinality of an attribute, or by background knowledge, e.g., [4].

If all possible disjunctions need to be considered, then it is easy to see that adding
the selectors corresponding to all internal disjunctions significantly extends the set of
selectors that are represented in the paths of the tree compared to a subgroup description
language without internal disjunctions. Additionally, the selectors overlap: Then, the
sizes of many conditional trees being constructed during the mining phase is increased.
However, in order to improve the efficiency of this approach we can apply the following
pruning techniques:

1. During construction of a conditional tree, we can prune all parent nodes that con-
tain the same attribute as the conditioning node, since these are subsumed by the
conditioning selector.

2. When constructing the combinations of the selectors on a single path of the FP-tree
we only need to consider the combinations for disjoint sets of the corresponding
attributes.
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Using Negated Selectors. An alternative approach is especially suitable if all internal
disjunctions of an attribute are required. The key idea is to express an internal disjunc-
tion by a conjunction of negated selectors: For example, consider the attribute a with
the values v1, v2, v3, v4; instead of the disjunctive selector (a, {v1, v2}) corresponding
to the value v1 ∨ v2 we can utilize the conjunctive expression ¬(a, {v3}) ∧ ¬(a, {v4})
corresponding to ¬v3 ∧ ¬v4.

This works for data sets that do not contain missing values. If missing values are
present, then we just need to exclude the missing values for such a negated selec-
tor: For the negated selectors of the example above, we create ¬(a, {v3, vmissing}) ∧
¬(a, {v4, vmissing}). Then, the missing values are not counted for the negated selectors.
If we need to consider the disjunction of the all attribute values, then we add a selector
¬(a, {vmissing}) for each attribute a. Applying this approach, we only need to create
negated selectors for each attribute value of an attribute, instead of adding all internal
disjunctions: The set of selectors that are contained in the frequent pattern tree is then
significantly reduced compared to the naive approach described above. The evaluation
of the negated selectors can be performed without any modifications of the algorithm.
Before the subgroup patterns are returned, they are transformed to subgroup descrip-
tions without negation by merging and replacing the negated selectors by semantically
equivalent selectors containing internal disjunctions.

3.4 Discussion

Using association rules for classification has already been proposed, e.g., in the CBA [13],
the CorClass [14], and the Apriori-C [15] algorithms. Based upon the latter, the Apriori-
SD [12] algorithm is an adaptation for the subgroup discovery task. Applying the notion
of class association rules, all of the mentioned algorithms focus on association rules
containing exactly one selector in the rule head.

Compared to the existing approaches, we use the exhaustive FP-growth method that
is usually faster than the Apriori approach. To the best of the authors’ knowledge, it is
the first time that an (adapted) FP-growth method has been applied for subgroup dis-
covery. The adaptations of the Apriori-style methods are also valid for the FP-growth
method. Then, due the subgroup discovery setting the memory and runtime complexity
of FP-growth can usually be reduced (c.f., [15,12]). In comparison to the Apriori-based
methods and a naive application of the FP-growth algorithm, the SD-Map method uti-
lizes a modified FP-growth step that can compute the subgroup quality directly with-
out referring to other intermediate results. If the subgroup selection step is included
as a logical filtering step, then the memory complexity can also be decreased even
further.

Moreover, none of the existing algorithms tackles the problem of missing values
explicitly. Therefore, we propose an efficient integrated method for handling miss-
ing values. Such an approach is essential for data sets containing very many missing
values. Without applying such a technique, an efficient evaluation of the quality of a
subgroup is not possible, since either too many subgroups would need to be consid-
ered in a post-processing step, or subgroups with a high quality might be erroneously
excluded.
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Furthermore, in contrast to algorithms that apply branch-and-bound techniques re-
quiring special (convex) quality functions, e.g., the Cluster-Grouping [16] and the Cor-
Class [14] algorithms, SD-Map can utilize arbitrary quality functions.

4 Evaluation

In our evaluation we apply a data generator for synthetic data that uses a Bayesian
network as its knowledge representation. The prior-sample algorithm is then applied
in order to generate data sets with the same characteristics, but different sizes. The
Bayesian network used for data generation is shown in Figure 1. It models an artificial
vehicle insurance domain containing 15 attributes with a mean of 3 attribute values.

Fig. 1. Artificial vehicle insurance domain: Basic Bayesian network used for generating the syn-
thetic evaluation data

The conditional probability tables of the network were initialized with uniform value
distributions, i.e., each value in the table of an unconditioned node is equiprobable, and
the conditional entries of a conditioned node are also defined by a uniform distribution.

In the experiments described below we compare three subgroup discovery algo-
rithms: a standard beam search algorithm [2], the Apriori-SD method [12] and the pro-
posed novel SD-Map algorithm. The beam search method and the Apriori-SD approach
were implemented to the best of our knowledge based on the descriptions in the litera-
ture. All the experiments are performed on a 3.0 GHZ Pentium 4 PC machine running
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Windows XP, providing a maximum of 1GB main memory for each experiment (the
size of the main memory was never a limiting factor in the experiments).

4.1 Results

We generated data sets containing 1000, 10000 and 100000 instances. In each of these,
there are exponentially numerous frequent attribute value combinations as the support
threshold is reduced, considering the total search space of about 1010 patterns with
respect to all combinations of the attribute values without internal disjunctions.

We measured the run-times of the algorithms by averaging five runs for each algo-
rithm for each of the test data sets. For the beam search method we applied a quite
low beam width (w = 10) in order to compare a fast beam search approach to the
other methods. However, since beam search is a heuristic discovery method it could
never discover all of the interesting subgroups compared to the exhaustive SD-Map and
Apriori-SD algorithms in our experiments.

Since the minimal support threshold is the parameter that is common to all search
methods we can utilize it in order to compare their scalability: In the experiments, we
used two different low support thresholds, 0.01 and 0.05, to estimate the effect of in-
creasing the pruning threshold, and to test the performance of the algorithms concerning
quite small subgroups that are nevertheless considered as interesting in some domains,
e.g., in the medical domain. We furthermore vary the number of instances, and the num-
ber of attributes provided to the subgroup discovery method in order to study the effect
of a restricted search space compared to a larger one. Thus, by initially utilizing 5, then
10 and finally 15 attributes, an exponential increase in the search space for a fixed data
set could be simulated. We thus performed 18 experiments for each algorithm in total,
for each description language variant. The results are shown in the tables in Figure 2.
Due to the limited space we only include the results for the 0.05 minimum support level
with respect to the description language using selectors with internal disjunctions.

4.2 Discussion

The results of the experiments show that the SD-Map algorithm clearly outperforms
the other methods. All methods perform linearly when the number of cases/instances is
increased. However, the SD-Map method is at least faster by one magnitude compared
to beam search, and about two magnitudes faster than Apriori-SD.

When the search space is increased exponentially all search method scale propor-
tionally. In this case, the SD-Map method is still significantly faster than the beam
search method, even if SD-Map needs to handle an exponential increase in the size of
the search space. The SD-Map method also shows significantly better scalability than
the Apriori-SD method for which the runtime grows exponentially for an exponential
increase in the search space (number of attributes). In contrast, the run time of the
SD-Map method grows in a much more conservative way. This is due to the fact that
Apriori-SD applies the candidate-generation and test strategy depending on multiple
scans of the data set and thus on the size of the data set. SD-Map benefits from its
divide-and-conquer approach adapted from the FP-growth method by avoiding a large
number of generate-and-test steps.
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MinSupport=0.01
#Attributes 5 10 15 5 10 15 5 10 15
SD-Map 0.06 0.19 1.0 0.2 0.6 4.4 2.0 3.9 24.2
Beam search (w=10) 0.7 2.2 4.8 6.8 26.4 45.8 63.0 275.4 421.3
Apriori-SD 1.3 39.2 360.1 11.7 366.0 2336.1 108.7 3762.1 22128.5

MinSupport=0.05
#Attributes 5 10 15 5 10 15 5 10 15
SD-Map 0.02 0.05 0.14 0.2 0.4 1.1 2.0 3.7 9.2
Beam search (w=10) 0.5 1.8 3.1 4.6 12.2 25.7 49.4 173.0 295.8
Apriori-SD 0.3 2.3 6.0 2.4 23.2 63.7 23.7 229.5 632.6

MinSupport=0.05
#Attributes 5 10 15 5 10 15 5 10 15
SD-Map (Negated S.) 0.05 0.4 8.5 0.3 1.4 38.7 2.8 6.1 144.5
SD-Map (Naive) 0.09 0.8 13.9 0.6 3.5 91.0 5.5 12.9 425.6
Beam search (w=10) 3.6 6.9 15.9 34.1 63.7 142.9 450.2 473.5 1093.6
Apriori-SD 6.9 124.3 7307.4 59.7 1000.2 23846.3 609.3 10148.3 208849

Runtime (sec.) - Conjunctive Description Language (No Internal Disjunctions)
1000 instances 10000 instances 100000 instances

1000 instances 10000 instances 100000 instances

Runtime (sec.) - Conjunctive Description Language (No Internal Disjunctions)
1000 instances 10000 instances 100000 instances

Runtime (sec.) - Conjunctive Description Language (Internal Disjunctions)

Fig. 2. Efficiency: Runtime of the algorithms for a conjunctive description language either using
internal disjunctions or not

As shown in the tables in Figure 2 minimal support pruning has a significant effect
on the exhaustive search methods. The run-time for SD-Map is reduced by more than
half for larger search spaces, and for Apriori-SD the decrease is even more significant.

The results for the description language using internal disjunctions (shown in the
third table of Figure 2) are similar to these for the non-disjunctive case. The SD-Map
approach for handling internal disjunctions using negated selectors is shown in the first
row, while the naive approach is shown in the second row of the table: It is easy to see
that the first scales usually better than the latter. Furthermore, both outperform the beam
search and Apriori-SD methods clearly.

5 Summary and Future Work

In this paper we have presented the novel SD-Map algorithm for fast but exhaustive
subgroup discovery. SD-Map is based on the efficient FP-growth algorithm for mining
association rules, adapted to the subgroup discovery setting. We described, how SD-
Map can handle missing values, and how internal disjunctions in the subgroup descrip-
tion can be implemented efficiently. An experimental evaluation showed, that SD-Map
provides huge performance gains compared to the Apriori-SD algorithm and even to
the heuristic beam search approach.
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In the future, we are planning to combine the SD-Map algorithm with sampling ap-
proaches and pruning techniques. Furthermore, integrated clustering methods for sub-
group set selection are an interesting issue to consider for future work.
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Abstract. Hierarchical multilabel classification (HMC) is a variant of
classification where instances may belong to multiple classes organized
in a hierarchy. The task is relevant for several application domains. This
paper presents an empirical study of decision tree approaches to HMC
in the area of functional genomics. We compare learning a single HMC
tree (which makes predictions for all classes together) to learning a set
of regular classification trees (one for each class). Interestingly, on all 12
datasets we use, the HMC tree wins on all fronts: it is faster to learn
and to apply, easier to interpret, and has similar or better predictive
performance than the set of regular trees. It turns out that HMC tree
learning is more robust to overfitting than regular tree learning.

1 Introduction

Classification refers to the task of learning from a set of classified instances
a model that can predict the class of previously unseen instances. Hierarchical
multilabel classification differs from normal classification in two ways: (1) a single
example may belong to multiple classes simultaneously; and (2) the classes are
organized in a hierarchy: an example that belongs to some class automatically
belongs to all its superclasses.

Examples of this kind of problems are found in several domains, including
text classification [1] and functional genomics [2]. In functional genomics, an
important problem is predicting the functions of genes. Biologists have a set of
possible functions that genes may have, and these functions are organized in a
hierarchy. It is known that a single gene may have multiple functions.

Hierarchical multilabel classification (HMC) can be performed by just learning
a binary classifier for each class separately, but this has several disadvantages.
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First, it is less efficient, because the learner has to be run |C| times, with |C|
the number of classes, which can be hundreds or thousands. Second, it often
results in learning from strongly skewed class distributions: among hundreds of
classes, there are likely to be some that occur infrequently. Many learners have
problems with strongly skewed class distributions [3]. Third, hierarchical rela-
tionships between classes are not taken into account. The constraint that an
instance belonging to a class must belong to all its superclasses is not automat-
ically imposed. Finally, from the knowledge discovery point of view, the learned
models identify features relevant for one class, rather than identifying features
with high overall relevance.

Some authors have therefore studied HMC as a separate learning task, and
developed learners that learn a single model that predicts all the classes of an ex-
ample at once (see below). These learners include a few decision tree approaches,
but for these no in-depth empirical study has been presented up till now. In this
paper we perform such an in-depth study, using datasets from functional ge-
nomics. Our study yields novel insights about the suitability of decision trees for
HMC, and in particular gene function prediction.

In Section 2 we discuss previous work; in Section 3 we present the system
used for the empirical study described in Section 4. In Section 5 we conclude.

2 Related Work

Much work in hierarchical multilabel classification (HMC) has been motivated
by text classification. Rousu et al. [1] present the state of the art in this domain,
which consists mostly of Bayesian and kernel-based classifiers.

Another application domain of HMC is functional genomics: a typical learn-
ing task is to learn a model that assigns to a gene a set of functions, selected
from a hierarchy. Barutcuoglu et al. [2] recently presented a two-step approach
where support vector machines are learned for each class separately, and then
combined using a Bayesian learner so that the predictions are consistent with
the hierarchical relationships; this solves one of the four issues mentioned above.

From the point of view of knowledge discovery, it is sometimes useful to ob-
tain more interpretable models, such as decision trees, and that is the kind of
approach we will study here.

Clare and King [4] presented a decision tree method for multilabel classifi-
cation in the context of functional genomics. In their approach, a tree predicts
not a single class but a vector of boolean class variables. They propose a simple
adaptation of C4.5 to learn such trees: where C4.5 normally uses class entropy,
their version uses the sum of entropies of the class variables. Clare [5] extended
the method to predict classes on several levels of the hierarchy, assigning a larger
cost to misclassifications higher up in the hierarchy, and presented an extensive
evaluation on twelve datasets from functional genomics. We use this method as
a reference to validate our own approach; we further refer to it as C4.5H.

Blockeel et al. [6] independently proposed a decision tree learner for HMC
that is based on the concept of predictive clustering trees [7], where decision
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trees are viewed as cluster hierarchies, and present preliminary experiments in
text classification and functional genomics as a proof of concept. The approach
has been used in some later work [8,9].

Until now these approaches have been evaluated mainly from the biologists’
point of view, who commented on the discovered rules and their accuracy. No
thorough performance evaluation from a machine learning point of view (what
are the advantages over learning a single HMC tree over learning several regular
trees?) has been made. Such an evaluation is in fact not trivial, when domain
experts want to see as few rules as possible that predict as many classes as possi-
ble as correctly as possible. This work is the first thorough empirical comparison
between HMC tree learning and learning multiple regular trees.

3 The Clus-HMC Approach

We first define the HMC task more formally; next, we describe the Clus-HMC
system in detail.

3.1 Formal Task Description

We define the hierarchical multilabel classification task as follows:

Given: an instance space X and class hierarchy (C,≤h), where C is a set of
classes and ≤h is a partial order structured as a rooted tree, representing the
superclass relationship (for all c1, c2 ∈ C: c1 ≤h c2 if and only if c1 is a superclass
of c2); a set T of examples (xi, Si) with xi ∈ X and Si ⊆ C such that c ∈ Si ⇒
∀c′ ≤h c : c′ ∈ Si; and some quality criterion q (which typically rewards models
with high predictive accuracy and low complexity)
Find: a function f : X → 2C (where 2C is the power set of C) such that
c ∈ f(x) ⇒ ∀c′ ≤h c : c′ ∈ f(x) and f maximizes q.

3.2 Clus-HMC: An HMC Decision Tree Learner

Fig. 1 presents the Clus-HMC algorithm. It is a variant of the standard greedy
top-down algorithm for decision tree induction [10,11]. It takes as input a set
of training instances T . The main loop of the algorithm searches for the best
acceptable attribute-value test that can be put in a node. If such a test t∗ can be
found then the algorithm creates a new internal node labeled t∗ and calls itself
recursively to construct a subtree for each subset in the partition P∗ induced
by t∗ on the training instances. If no acceptable test can be found, then the
algorithm creates a leaf.

Up till here, the description is no different from that of a standard decision
tree learner. However, decision tree learners normally predict only one target
attribute, whereas an HMC tree needs to predict a set of classes. To achieve
this, the following changes are made to the learning procedure [6].

First, the example labels are represented as vectors with boolean components;
the i’th component of the vector is 1 if the example belongs to class ci and 0
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procedure Clus-HMC(T ) returns tree
1: (t∗, h∗, P∗) = (none, ∞, ∅)
2: for each possible test t
3: P = partition induced by t on T
4: h =

∑
Tk∈P

|Tk|
|T | Var(Tk)

5: if (h < h∗) ∧ acceptable(t,P)
6: (t∗, h∗, P∗) = (t, h, P)
7: if t∗ �= none
8: for each Tk ∈ P∗

9: treek = Clus-HMC(Tk)
10: return node(t∗,

⋃
k{treek})

11: else
12: return leaf(v̄)

Fig. 1. The Clus-HMC induction algorithm

otherwise. It is easily checked that the arithmetic mean of a set of such vectors
contains as i’th component the proportion of examples of the set belonging to
class ci. We define the variance of a set of examples as the average squared
Euclidean distance between each example’s label and the set’s mean label.

The heuristic for choosing the best test in a node of the tree is then minimiza-
tion of the average variance in the created subsets (weighted according to the
size of the subsets, see line 4 of Fig. 1). This corresponds to the heuristic typi-
cally used when learning regression trees and to CART’s Gini index [10], and is
in line with the “predictive clustering trees” view [7]. The heuristic ensures that
examples labelled with similar sets of classes tend to go into the same subset.

In the HMC context, it makes sense to consider similarity on higher lev-
els of the hierarchy more important than similarity on lower levels. To that
aim, we can use for the variance a weighted Euclidean distance d(x1, x2) =√∑

k wk · (v1,k − v2,k)2, where vi,k is the k’th component of the class vector vi

of instance xi, and the weights wk decrease with the depth of the class ck in
the hierarchy (e.g., wk = w

depth(ck)
0 ). Consider for example the class hierarchy

shown in Fig. 2, and two examples (x1, S1) and (x2, S2) with S1 = {1, 2, 2/2}
and S2 = {2}. Using a vector representation with consecutive components rep-
resenting membership of class 1, 2, 2/1, 2/2 and 3, in that order, d(x1, x2) =
dEuclidean([1, 1, 0, 1, 0], [0, 1, 0, 0, 0]) =

√
w0 + w2

0 .
A decision tree normally stores in a leaf the majority class for that leaf; this

class will be the tree’s prediction for examples arriving in the leaf. But in our
case, since an example may have multiple classes, there is no “majority class”.
Instead, the mean v̄ of the vectors of the examples in that leaf is stored; in
other words, for each class ci, the proportion of examples belonging to ci is kept.
An example arriving in the leaf will be predicted to belong to class ci if the
i-th component of v̄ is above some threshold ti. To ensure that the predictions
fulfill the constraint that whenever a class is predicted its superclasses are also
predicted, it suffices to choose ti ≤ tj whenever ci ≤h cj.
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1 2

2/1 2/2

3 1 (1) 2 (2)

2/1 (3) 2/2 (4)

3 (5)

(a) (b)

vi = [1,
(1)

1,
(2)

0,
(3)

1,
(4)

0
(5)

]

Fig. 2. (a) A toy hierarchy. Class label names reflect the position in the hierarchy,
e.g., ‘2/1’ is a subclass of ‘2’. (b) The set of classes {1,2,2/2}, indicated in bold in the
hierarchy, and represented as a vector.

The predictive accuracy of the model is maximized by taking all ti = 0.5,
but as we are dealing with skewed class distributions, accuracy is not a very
good evaluation criterion, and hence there is no good reason to try to maximize
it. Precision-recall based evaluation is preferred in such cases [12]. Precision is
the probability that a positive prediction is correct, and recall is the probability
that a positive instance is predicted positive. When decreasing ti from 1 to
0, an increasing number of instances is predicted as belonging to ci, causing
the recall for ci to increase whereas precision may increase or decrease (with
normally a tendency to decrease). Thus, a tree with specified threshold has
a single precision and recall, and by varying the threshold for a single tree a
precision-recall curve (PR curve) is obtained. Such curves allow us to evaluate
the predictive performance of a model regardless of t.

Finally, the function acceptable in Fig. 1 verifies for a given test that the
number of instances in each subset of the corresponding partition P is at least
mincases (a parameter) and that the variance reduction is significant according
to a statistical F -test.

The version of Clus-HMC described here is exactly the same as in Struyf et
al. [8], except that the latter commits to a treshold of 0.5 whereas our version
does not. Commitment to a fixed threshold causes models to be partially ordered
in a precision-recall evaluation (e.g., a model may have higher recall but lower
precision than another model), which is undesirable.

4 Experiments in Yeast Functional Genomics

The goals of our experiments are twofold. First, we wish to validate the “pre-
dictive clustering trees” approach to HMC, as implemented in Clus-HMC, by
comparing its precision-recall behaviour to C4.5H, the state of the art in deci-
sion tree based HMC. Second, and most importantly, we evaluate the strengths
and weaknesses of HMC tree learning as compared to learning a separate tree for
each class. The expectation here is that HMC tree learning is faster and yields a
tree that is more complex than an individual single-class tree, but less complex
than the whole set of trees; one would further hope that this simplicity does not
come at the cost of worse predictive performance.
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1 METABOLISM
1/1 amino acid metabolism
1/2 nitrogen and sulfur metabolism
...
2 ENERGY
2/1 glycolysis and gluconeogenesis
...

Fig. 3. A small part of the hierarchical FunCat classification scheme

Table 1. Dataset properties: number of instances |D|, number of attributes |A|

Dataset |D| |A| Dataset |D| |A|
D1 Sequence (seq) 3932 478 D7 DeRisi et al. (derisi) 3733 63
D2 Phenotype (pheno) 1592 69 D8 Eisen et al. (eisen) 2425 79
D3 Secondary structure (struc) 3851 19628 D9 Gasch et al. (gasch1) 3773 173
D4 Homology search (hom) 3867 47034 D10 Gasch et al. (gasch2) 3788 52
D5 Spellman et al. (cellcycle) 3766 77 D11 Chu et al. (spo) 3711 80
D6 Roth et al. (church) 3764 27 D12 All microarray (expr) 3788 551

4.1 Datasets

Saccharomyces cerevisiae (baker’s or brewer’s yeast) is one of biology’s classic
model organisms, and has been the subject of intensive study for years. Its
genes have annotations provided by the Munich Information Center for Protein
Sequences (MIPS) under their FunCat scheme for classifying the functions of
the products of genes. FunCat is a hierarchical system of functional classes. A
small part of this hierarchy is shown in Fig. 3. Many yeast genes are annotated
with more than one functional class.

We use the 12 datasets from [5]. An overview of these datasets is given in Ta-
ble 1. The different datasets describe different aspects of the genes in the yeast
genome. Five types of bioinformatic data for yeast are considered: sequence
statistics (D1), phenotype (D2), predicted secondary structure (D3), homology
(D4), and expression as measured with microarray chips (D5 – D12). The bi-
ologists’ motivation for this is that different sources of data should highlight
different aspects of gene function. More information on how the datasets were
constructed and relevant references to the literature can be found in [5].1

Each gene in the datasets is annotated with one or more classes selected
from the MIPS FunCat hierarchical classification scheme. The annotations and
classification scheme available on 4/24/2002 were used. The hierarchy has 250
classes: 17 at the first level, 102 at the second, 89 at the third, and 42 at the
fourth level.

4.2 Method

Clare [5] presents models trained on 2/3 of each dataset and tested on the re-
maining 1/3. In our experiments we use exactly the same training and test sets.
1 Available together with the datasets at http://www.aber.ac.uk/compsci/Research/
bio/dss/yeastdata/
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To evaluate C4.5H, we computed the precision and recall of Clare’s models.
These models were presented as rules derived from the trees.

Clus-HMC results were obtained as follows. The weights used for the weighted
Euclidean distance were chosen as wk = w

depth(ck)
0 , with w0 set to 0.75, and

mincases was set to 5. The F-test stopping criterion takes a “significance level”
parameter s, which was optimized as follows: for each out of 18 available values
for s, Clus-HMC was run on 67% of the training set and its PR curve for the
remaining 33% was constructed. The model having the largest area under this
validation PR curve was then used to construct a PR curve for the test set. PR
curves were constructed with non-linear interpolation between points [12].

To compare HMC tree learning to regular tree learning, we can use Clus on
both sides. Indeed, the Clus system can be used for single classification just by
reducing the class vector to a single component; its heuristic then reduces to
CART’s Gini index [10], and it performs comparably to regular decision tree
learners. We refer to this version as Clus-SC. The results for Clus-SC were ob-
tained in the same way as for Clus-HMC, but with a separate run for each class
(including separate optimization of s for each class).

With 250 classes, each of which has its own PR curve, there is the question
of how to evaluate the overall performance of a system. We can construct a
single “average” PR curve for all classes together by counting instance-class-
couples instead of instances. An instance-class couple is (predicted) positive if
the instance has (is predicted to have) that class. The definition of precision and
recall is then as before.

4.3 Results

Comparison with C4.5H. For each of the 12 datasets, average PR curves were
generated and plotted against the points obtained by C4.5H. As we are com-
paring curves with points, we speak of a “win” for Clus-HMC when its curve is
above C4.5H’s point, a “loss” when it is below. Under the null hypothesis that
both systems perform equally well, we expect as many wins as losses. For the
average PR curves, we found 12 wins out of 12 for Clus-HMC. 4 representative
plots are shown in Fig. 4. We have also included results for “Clus05”, the prede-
cessor of Clus-HMC where the s parameter was optimized for maximal precision
given a fixed threshold of 0.5 [8]. Without the F-test optimization, the points
of Clus05 would be on the Clus-HMC curve; small differences are due to the
slightly different optimization criteria. It can clearly be seen that committing to
a threshold of 0.5 kept Clus05 from achieving maximal precision.

We also made a class-by-class comparison: for each dataset and for each class
for which C4.5H produced rules, we compared its PR to the Clus-HMC curve.
Here we found 25 wins and 6 losses. Fig. 5 details the performance on the gasch1
dataset for the 7 classes predicted by C4.5H. Class 6/13/1 is the only class where
Clus-HMC did not yield any classifiers strictly better than C4.5H. For Class 1
the C4.5H point is slightly above the Clus-HMC curve, yet Clus-HMC yields one
classifier with the same precision but more than twice the recall.
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Fig. 4. Average precision/recall over all classes for Clus-HMC, C4.5H, and two versions
of Clus-HMC’s predecessor [8]

Fig. 5. Class by class comparison between Clus-HMC and C4.5H (gasch1)

Comparing the interpretability and precision/recall of individual rules (where
a rule describes a single leaf of the tree), Clus-HMC also performs well. For
instance, in the gasch1 dataset, for the class 40/3 (with prior frequency 14%),
C4.5H learned two rules:

IF 29C_Plus1M_sorbitol_to_33C_Plus_1M_sorbitol___15_minutes <= 0.03 AND
constant_0point32_mM_H2O2_20_min_redo <= 0.72 AND
1point5_mM_diamide_60_min <= -0.17 AND
steady_state_1M_sorbitol > -0.37 AND
DBYmsn2_4__37degree_heat___20_min <= -0.67

THEN 40/3

IF Heat_Shock_10_minutes_hs_1 <= 1.82 AND
Heat_Shock_030inutes__hs_2 <= -0.48 AND
29C_Plus1M_sorbitol_to_33C_Plus_1M_sorbitol___5_minutes > -0.1

THEN 40/3

They have a precision/recall of 0.52/0.26 and 0.56/0.18, respectively. Clus-SC’s
most precise rule for 40/3, obtained by selecting a high threshold, is



26 H. Blockeel et al.

IF Nitrogen_Depletion_8_h <= -2.74 AND Nitrogen_Depletion_2_h > -1.94 AND
1point5_mM_diamide_5_min > -0.03 AND 1M_sorbitol___45_min_ > -0.36 AND
37C_to_25C_shock___60_min > 1.28

THEN 40/3

with a precision/recall of 0.97/0.15. The second point on the PR curve turns
out to represent the same rule with the last condition dropped; this rule scores
0.92/0.18. The best model consisting of two rules scores 0.92/0.23, and the best
3-rule model 0.81/0.31.

These results confirm that under precision-recall evaluation Clus-HMC per-
forms at least as well as C4.5H, and can thus be considered a state-of-the-art
HMC tree learner.

Comparison with Single Classification. We now turn to a comparison of
HMC tree learning with learning separate trees for each class, using the Clus-
HMC and Clus-SC instantiations. To limit the total runtime of Clus-SC, 40
classes were sampled from the hierarchy – 10 for each level.

For each dataset two average PR curves were generated: one for single classifi-
cation, one for multilabel classification. Fig. 6 shows a few representative graphs.
The single classification curve usually lies completely below the multilabel classi-
fication curve. Table 2 shows the difference in area under the PR curve (AUPRC)
between Clus-HMC and Clus-SC; all differences are positive.

Fig. 7 shows some representative PR curves for gasch1. There are notice-
able differences: sometimes Clus-SC performs better, sometimes Clus-HMC. So
for individual classes the outcome is less clear-cut, but on average, Clus-HMC
performs slightly better.

This is unexpected: one would think that Clus-SC has the advantage because
it can learn a different optimal model for each class. Our original conjecture
was that this was due to Clus-HMC performing better on the lower levels of
the hierarchy.2 But a per-level computation of the AUPRC difference (see again
Table 2) does not confirm this: Clus-HMC tends to perform better overall, there
is no clear correlation with depth in the hierarchy.

Further investigation revealed that Clus-SC tends to overfit more than Clus-
HMC. Subtracting the area under the PR curve (AUPRC) obtained on the test
set from that on the training set gives an indication of how strongly the approach
overfits. Clus-SC scored a difference of 0.219, Clus-HMC 0.024.3

In hindsight, it makes sense that Clus-HMC overfits less than Clus-SC: over-
fitting 250 target values is simply more difficult than overfitting a single target
2 Level four classes are very infrequent and therefore difficult to learn, but in Clus-

HMC the parent classes may help in keeping the instances from class x/y/z together
in the tree, and within a node with mainly x/y/z instances, a class x/y/z/u has a
higher relative frequency.

3 To make sure that this overfitting behaviour is not an artifact of our particular
implementation, we also ran M5’ from Weka [13] on the same datasets. M5’ did not
produce better results on the test set than Clus-SC and overfitted even more, with
an AUPRC difference of 0.387. The tendency of M5’ to overfit more than Clus-SC
is consistent with our previous experience and with an earlier analysis by [14].
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Fig. 6. Average precision/recall over all classes for Clus-SC and Clus-HMC

Fig. 7. Class by class comparison between Clus-SC and Clus-HMC (gasch1)

value. This is also visible in the tree sizes: Clus-HMC trees contain on average
24 nodes, whereas Clus-SC learns per dataset 250 trees with an average size of
33 nodes. In addition, Clus-HMC naturally takes dependencies between different
classes into account (e.g., the constraints imposed by the hierarchy).

Clus-HMC runs slower than Clus-SC because it takes information about |C|
classes into acount, but on the other hand Clus-SC needs to be run |C| times. On
our twelve datasets Clus-HMC was 4.5 to 65 times faster than running Clus-SC
for 250 classes, with an average speedup factor of 37.

Table 2. Overall and level-wise comparison of the area under the PR curve (AUPRC)
of Clus-HMC and Clus-SC. Numbers are AUPRC(Clus-HMC) – AUPRC(Clus-SC).

Dataset All level 1 level 2 level 3 level 4
seq 0.142 0.135 0.086 0.056 0.025
pheno 0.030 0.025 0.001 0.022 0.010
struc 0.061 0.035 0.001 0.043 0.039
hom 0.057 0.058 0.032 0.028 0.036
cellcycle 0.038 0.037 -0.035 0.007 0.007
church 0.070 0.066 0.052 0.031 0.019
derisi 0.112 0.124 0.029 0.020 0.046
eisen 0.067 0.085 0.023 0.011 0.021
gasch1 0.044 0.027 0.041 0.032 0.018
gasch2 0.096 0.103 0.043 0.055 0.013
spo 0.095 0.102 0.022 -0.012 0.040
expr 0.099 0.071 0.062 0.031 0.021
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5 Conclusions

We have conducted an empirical study of decision tree approaches to hierarchical
multilabel classification.

Minor contributions of this study are, in the context of the predictive cluster-
ing trees (Clus) approach to HMC, (1) the description of a better tuned version
of Clus-HMC (one that does not use thresholds that are suboptimal for precision-
recall evaluation), and (2) a comparison showing that this version is at least as
good as, and perhaps slightly better than, earlier HMC tree learning systems: it
tends to yield rules with higher precision and recall and similar interpretability.

The major contribution however is the comparison between (a) learning a
single tree that predicts all classes at once with a HMC-oriented algorithm, and
(b) learning a separate decision tree for each class. We find that learning a single
HMC tree is much faster than learning many regular trees, and it has the ad-
ditional advantage of identifying features that are relevant for all the functions
together (instead of separate features for each function). Obviously, a single HMC
tree is also much more efficient to apply than 250 separate trees. Somewhat less
expectedly, the HMC tree has on average a comparable predictive performance
for each single class as a regular tree optimized for just that class. Our conjecture
that the information contained in the hierarchy improves classification for infre-
quent classes in the lower parts of the hierarchy, which would partially explain
this, was not confirmed. Instead, it turns out that the HMC approach is less
susceptible to overfitting than the single classification approach. Fitting a model
to many classes is indeed harder than fitting it to one class. Further, the HMC
approach naturally takes into account dependencies between class membership,
which may help it in making the right decisions during learning.

Given that HMC decision trees can yield better efficiency and interpretability
without suffering a decline in predictive accuracy compared to learning separate
trees, their use should definitely be considered in HMC tasks where interpretable
models are desired.
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Abstract. It is well known that connectivity analysis of linked documents pro-
vides significant information about the structure of the document space for un-
supervised learning tasks. However, the ability to identify distinct clusters of
documents based on link graph analysis is proportional to the density of the graph
and depends on the availability of the linking and/or linked documents in the col-
lection. In this paper, we present an information theoretic approach towards mea-
suring the significance of individual words based on the underlying link structure
of the document collection. This enables us to generate a non-uniform weight
distribution of the feature space which is used to augment the original corpus-
based document similarities. The experimental results on the collection of scien-
tific literature show that our method achieves better separation of distinct groups
of documents, yielding improved clustering solutions.

1 Introduction

Document clustering refers to the task of extracting latent groupings in text databases.
In broad terms, clustering is an optimization problem that attempts to find a partition
of the document collection such that the items belonging to the same cluster are as
similar as possible (cluster compactness) and the discovered clusters as separate as pos-
sible (cluster distinctness) based on a specified (dis)similarity metric within the high
dimensional space that the document objects exist. In document collections where the
only measure of similarity is textual content of documents, the traditional approach is
the identification of meaningful features from documents and selection of the subset
of features from the text corpus that yield better separation of distinct groups of docu-
ments. The clustering algorithm is then applied to this lower dimensional input space
to discover distinct clusters.

The rapidly growing world wide web and the increasing volume of scientific litera-
ture available in digital format on the web has stimulated supervised and unsupervised
data mining research to focus on linked documents. For linked documents, in addi-
tion to the textual content similarity, which can be thought of as an implicit similarity,
we now have the link graph of the documents that depicts the relatedness information

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 30–41, 2006.
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conveyed by the authors of the digital content. Conventional clustering algorithms use
attribute information to group documents under the assumption that two documents are
related to each other if they have similar attribute values. However, relational data are
richer in structure, hence provide more information available to disambiguate group-
ings. Therefore, link structure analysis has been studied extensively and has shown to
be a significant aid for both supervised and unsupervised data analysis tasks. In this
paper, we focus on clustering in the collection of scientific literature to discover topi-
cal groupings of papers using the textual content of papers combined with the citation
graph of the collection. In a citation graph, papers are represented as vertices of the
graph and citations as directed edges between citing and cited documents. The papers
and citation graph have been obtained from CiteSeer’s1 repository.

CiteSeer [6] is a scientific literature digital library that has grown to index over
740.000 academic publications in Computer Science and related fields. Citations of the
papers are extracted and linked to cited papers by Autonomous Citation Indexing [16].
The citation graph that is constructed through this process provides wealth of informa-
tion since citations in research publications represent an important knowledge source
regarding the context of scientific work. The citation relationships have been shown to
be a valuable resource for a number of tasks such as ranking search results, identifica-
tion of related research documents, trend analysis and social network analysis. Besides
topical relevance, there have been identified multiple factors influencing citations, in-
cluding the desire to publicize own research [10] and promoting own field, author’s
ability to access the document [15] and to read the language that it is written in [24].
Regardless of the reason for citations, comparatively, citation relationships between sci-
entific documents convey a more valuable information than a collection of linked web
documents. However, the citation graph itself can have limited clustering performance
in digital libraries due to the following issues:

1) Cited Document Availability. CiteSeer collects the papers by crawling the web. Thus,
the citations of a paper (i.e. target papers) may not be locally available in CiteSeer’s
repository due to several reasons: a) the citations may not be available on the web, b)
they may just not have been crawled, or c) they may not be related to Computer Science
or a similar field and may not be indexed. If any of these cases is true, the citations
point to virtual metadata records that is identified by the extracted fields of the citation,
including title, authors, publication venue, etc. However, the unavailability of the textual
content of the cited papers prevents detailed analysis on the semantic similarity between
the citing and cited papers.
2) Identity Uncertainty. Citations are references to unique documents, but their repre-
sentations may vary, and finding the best matches for citations is a problem known as
identity uncertainty [19]. The task of ACI is to uncover the identity of the paper that a
citation refers to in order to group together similar citations to the same document, and
to link citations to real documents – those that exist inside the ACI system and those
that are yet to be crawled. Although ACI has been highly effective, it is still possible
that distinct representations of the same citation may be mapped to different documents,
or two citations to different papers be linked to the same target paper.

1 http://citeseer.ist.psu.edu
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The aforementioned reasons lead us to use only the citations where both the cited
and citing documents are available in the collection, which sparsifies the link graph sig-
nificantly. In this paper, we show that taking an information theoretic approach towards
textual content analysis of pairs of documents with citation relationships provides a sig-
nificant improvement in the discovery of document clusters. Further, we believe that the
methodology presented here is applicable to web document collections where similar
link constraints can be observed. One example is hierarchical clustering of documents
where lower level taxonomies may not exhibit strong connectivity. Another application
domain is search engine result clustering [9], an often employed technique to facilitate
users’ quick browsing through search results. Both applications suffer from the lack
of sufficient links between the documents in a given subspace of the entire collection,
which can be addressed by the algorithm proposed here.

2 Related Work

Document Clustering algorithms can be broadly categorized as text-based [20,2,21],
link-based [22,11] and hybrid [23,18,14] approaches. In the domain of linked docu-
ments, link analysis for clustering and classification purposes has generally been stud-
ied in the context of web documents. PageRank [1] and HITS [13] are two of the most
popular algorithms showing the importance of link structure for analyzing associations
between documents.

For merging text-based and link-based information, [5] and [3] use generative prob-
abilistic models of document content and connectivity. He et al. [23] use the hyper-
link structure to cluster web pages using spectral graph partitioning. In their work,
the link graph is used as the dominant source of similarity between documents, and
the link-based similarity measures are augmented by textual content similarity and co-
citation similarity. [14] propose a probabilistic model of link structure based on the
cluster membership. The model is optimized based on observed data where the at-
tributes determine the group membership and group membership determines the link
structure. Modha et al. [17] propose an algorithm for clustering hypertext documents
by using both the document contents and link structure. The algorithm uses an extended
version of the classical Euclidean K-means clustering algorithm that performs cluster-
ing based on word similarity, in-link similarity and out-link similarity. The effect of
each similarity is controlled by a parameter, which needs to be explicitly set by the
user.

A number of algorithms have been proposed for link prediction, which is the task of
identifying the missing entity or entities of a partially observed link by using the exist-
ing observation of the data sample available in the domain. [4] uses directed graphical
models (Bayesian Networks and Probabilistic Relational Models) to represent a proba-
bilistic model of both links and data object attributes. A comparison of various machine
learning approaches for link prediction/completion is given in [8]. One major draw-
back of model-based link prediction is the dependence on the training data. That is, the
learner’s builds a probabilistic model on the training data, it will lack confidence in the
probabilities of the entities that have not been included in the training set.
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3 Problem Description

Documents on similar topics exhibit specific characteristics that separate them from
non-relevant documents. Similar documents cite each other and they contain some level
of textual similarity, measured by the amount of overlapping words/phrases. Some of
those terms are very general and are not useful for clustering purposes. Some, on the
other hand, are highly correlated with the topics of the papers and they are very valuable
for identifying topical clusters in the collection. Although both textual content and link
structure can be used independently for topical clustering, an algorithm that merges both
sources of heterogeneous data has the potential of yielding better clustering solutions
than using either data source alone. If the link structure of the documents are dense
enough, then link based clustering, augmented by textual content, will generally yield
well separated clusters. On the other hand, in situations where link graph is sparse,
access to linking and/or linked documents is limited, or there is some sort of ambiguity
in the link structure itself, the link graph can not be used as the dominant source of
clustering. Thus, it is crucial to find a text-based clustering solution that incorporates
information from the available link structure as well. Our work addresses this problem
and provides an algorithm that bridges the disconnect between text and citations of
papers by discovering the set of words that are most informative in terms of identifying
citation relationships. We then place higher emphasis on such words in the clustering
stage, and discover topical clusters in the citation-augmented feature space.

4 Algorithm

In this section, di
n denotes the m documents in the collection and C denotes the

non-symmetric citation matrix where Ci j 1 if di cites d j, and zero otherwise. Each
document is represented as a vector in the feature space. Following L2 normalization of
the document vectors so that each di 1, we generate a similarity matrix S from the
cosine similarities of each document pair:

S i j cos(di d j)
dT

i
d j

di d j
(1)

We then calculate, for each citing document, the average distance of its citations using
the similarity matrix S and the citation graph as follows:

i

n
j 1 S i j Ci j

ki
(2)

where i represents the average citation distance(ACD) of document di, and ki is the
total number of citations of document di that is present in the collection. In this defini-
tion, only the citations in the collection can affect the distance metric, since, for missing
citations, we do not have the text of the document and hence, S i j will be zero. We are
interested in evaluating the significance of each word by comparing its popularity both
in document pairs with and without citations. To achieve this goal, the ACDs enable us
to view the document space from these two perspectives by populating the following
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Fig. 1. Schematical view of the algorithm. The ACDs are used to find the expected citations and
the given link structure is split into Actual Citation Graph GA and Expected Citation Graph GE

(Steps 1 & 2). The set of words appearing in both in citing and cited documents in GAare inserted
in the Citation Text Corpus T (Step 3). For each word in T, we use the link and word co-occurence
information from GA and GE to calculate the expected entropy loss scores (Step 4).

two sets: The first set, GA is the Actual Citation Graph and is populated with the citing
papers and their citations. This set is the collection of documents that form the citation
graph. The second set, GE , is the Expected Citation Graph and it is populated using the

i’s in the following fashion. For each document di having ki citations (i.e. the citing
documents in GA), we select ki documents that are not cited by di and is separated from
di by a distance closest to a radius i. That is, for each citing document di, we find
ki documents such that their content-wise similarity to di suggests that di should also
be citing these documents, but no such citation exists in the graph for di. This set of
documents is called Expected Citation Graph since we would expect these citations to
exist based on the textual content of the papers.

Algorithm. Non-uniform Feature Weighting
1. Populate GA with the documents in the citation graph
2. Initialize GE , T ti j for Ci j 1
3. for each citing document di in GA with ki citations do
4. GE GE {ki not-cited documents of di closest to i}
5. end
6. for each tp T do
7. Ep = Entropy loss calculated from equation 5.
8. w̄(di tp) (1 ) w(di tp) Ep di d1 d2 dm

9. end
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Fig. 2. Effect of integrating entropy scores of citation corpus. Documents are mapped to 3D space
by Singular Value Decomposition (SVD).

After populating GE with the citing documents in GA and their respective expected
citations, the sets GA and GE have exactly the same number of edges, since we restrict
GE to contain the same linking vertices as GA and insert exactly the same number of
(expected) citations to it. This way, we enable each vertex (i.e. citing document) to be
equally represented both in GA and GE . We then collect the common words between
citing and cited documents in GA. We do not consider the shared terms in the document
pairs that are in GE , since our aim is to identify the importance of the terms that appear
in actual citation relationships.

We use expected entropy loss measure [7] to calculate the amount of information
that each term in T conveys about citations. Our intuition is to find a numerical rep-
resentation of the importance of each feature that is shared by the documents linked
together. This also enables us to learn what makes document A cite document B and
not cite C, although B and C may also be similar based on textual content. Clearly, it
is not possible for a paper about, say, data mining to cite all the literature about this
topic. Due to this fact, since lack of a citation can’t be regarded as irrelevance, if we can
identify the terms that influence citations, we can reflect the information obtained from
the citations to better utilize the textual information of the documents for clustering
purposes. If a word occurs frequently between citing and cited documents in GA, but
not in the expected citations in GE , this word is regarded as a good candidate for being
a topical word and is emphasized in the clustering algorithm. This approach serves as a
means of eliminating one shortcoming of clustering algorithms; that is, each feature is
weighted based on some corpus statistics and almost all clustering algorithms treat the
attributes of data objects uniformly. We break this uniformity by reflecting the informa-
tion obtained from the citation graph by scoring the shared terms of the citations using
expected entropy loss.

4.1 Expected Entropy Loss

Given a text corpus comprising of n distinct features and k categories, expected entropy
loss measures amount of categorical discriminative power of each feature in the dataset.
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In formal definition, let CA and CE be the events of a sample being a member of the
specified class, where the superscripts A and E refer to the actual and expected citation
graphs, respectively. A sample in our case is the shared term between citing and cited
documents. The prior entropy of the class distribution is

e P(CA)lgP(CA) P(CE)lgP(CE) (3)

The posterior entropy of the class distribution when feature f is present in the citation
text corpus is

e f P(CA f )lgP(CA f ) P(CE f )lgP(CE f ) (4)

The posterior entropy of the class distribution when feature f is absent in the corpus
is denoted as e f̄ and can be found in a similar manner. Thus, the posterior expected
entropy is e f P( f ) e f̄ P( f̄ ) and expected entropy loss is defined as

Ent Loss( f ) e (e f P( f ) e f̄ P( f̄ )) (5)

which is always positive for every feature f .

4.2 Feature Weight Adjustment

The citation text corpus T contains the shared words between citing and cited docu-
ments in GA (which is a subset of the original feature space) and we use this subset
to realign the document vectors. Expected entropy loss based ranking of the most and
least informative words in the corpus T is given in Table 1. It can be noted that more
meaningful and topic bearing terms rank higher than less informative terms. Hence, by
integrating the entropy loss information into the document vector representations, it is
possible to achieve better separation of the distinct clusters. For each word in T , we
update each document vector containing that feature as follows:

w̄(di f j) (1 ) w(di f j) Ent Loss( f j) (6)

for i [1 n], f j di. w(di f j) represents the original Term Frequency-Inverse
Document Frequency (TF-IDF) score of feature f j in document di and is a param-
eter that adjusts the effect of the information gain of the feature on the final weight,
which can also be thought of as relative bias of that term in the document. 0
refers to the original weighting scheme and 1 corresponds to purely entropy score
based weighting. Hence, has the effect of proportionally reducing the significance
of the features that don’t exist in the citation corpus. Following the weight updates
of the features of all documents, the document vectors are re-normalized to unit length.
We then perform clustering on the updated document vectors. A visual representation of
the effects of the weight readjustment is shown in Figure 2 for categories 1 and 4 of our
dataset, which are the two clusters most difficult clusters to separate. It can be seen that
comparably cleaner separation of the clusters can be achieved by entropy based weight
readjustment of the features for these most overlapping categories. Computationally,
given a dataset with N documents, C citations and a text corpus of T , the complexity of
generating the similarity matrix and formation of the expected citation graph is O(T N2)
and the calculation of the expected entropy losses is bounded by O(CT ). So the overall
complexity of the algorithm is O(T (N2 C)).
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Table 1. Features ranked by decreasing expected entropy loss

Rank Feature

1. automata
2. radio
3. collapse
4. realtime
5. switchboard
6. tcp
7. molecular
8. fluctuate
9. grayscale
10. dendogram
... ...
... ...
... ...
5547. statement
5548. quinlan
5549. roth

5 Experiments

We used a selection of 7227 papers from CiteSeer’s repository as our dataset. The papers
are split into 5 groups based on their publication venues. The categorical distribution
of the publication venues is shown in Table 2. We selected the first 1000 words of each
paper, resulting in a text corpus of 9601 distinct features after preprocessing the text by
stemming, stop word and infrequent word removal. The clustering is performed both
using the original TF-IDF scores of words and the scores augmented by the entropies
of the words. A total of 4404 citation relationships exist between the papers in the
dataset. The text corpus T of the citation relationships consists of distinct 5449 words.
We used the Cluto [12] clustering toolkit in our experiments. Cluto implements some of
the most widely used clustering algorithms in the literature, including agglomerative,
divisive and graph-based techniques and hence, provides good baseline comparisons.

5.1 Evaluation Metric

The clustering performance is evaluated by comparing the predicted cluster of each
document with the categorical labels (venues) from the document corpus. We used the
standard F1 and entropy measures as our evaluation criteria. F1 measure combines pre-
cision (p) and recall (r) with equal weight in the form of F1(p r) 2 p r

p r . We report
results both on Macro-averaged F1 and Micro-averaged F1 scores. The key difference
between those two F1 measures is that macro-averaging gives equal weight to each
cluster, whereas micro-averaging equally weights each document. The cluster entropy
measure shows the distribution of various classes of documents within each cluster. For
each cluster Ci of size ni, the entropy of this cluster is defined as

E(Ci)
1

log k

k

j 1

n j
i

ni
log

n j
i

ni
(7)
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Table 2. Dataset Venue Distribution

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Venue Samples Venue Samples Venue Samples Venue Samples Venue Samples
AAAI 662 POPL 599 ICCV 682 ICML 990 VLDB 1049
IJCAI 599 PLDI 664 CVPR 830 ECML 211
ICTAI 232 ML 80

KDD 629

total 1493 total 1263 total 1512 total 1910 total 1049

where k is the number of classes in the dataset and n j
i is the number of documents of

the ith class that were assigned to the jth cluster.
The entropy of the entire clustering solution is the average of the cluster entropies

adjusted by their respective sizes, given by k
i 1

ni
n E(Ci). A smaller entropy score indi-

cates better clustering solution over the entire dataset.

5.2 Results on Four Criterion Functions

We evaluated our algorithm using the following four different similarity criterion func-
tions. Each criterion function represents the objective that we try to optimize for dis-
covering clusters. The first criterion, Isim, is an internal similarity metric that tries to
maximize the similarity between each document and the centroid of its assigned clus-
ter. The second criterion function, Esim, is an external approach that tries to separate the
documents of each cluster from the entire collection. The hybrid approach, Hsim, tries
to find a clustering solution by optimizing the inter-cluster (Isim) and intra-cluster (Esim)
similarity metrics simultaneously. The final criterion, Gsim, uses the similarity graph
of the documents and tries to find the optimum cuts of the graph using MinMaxCut
algorithm.

maximize Isim(S )
k

r 1 di S r

cos(di Cr) (8)

minimize Esim(S )
k

i 1

ni
v S i u S cos(v u)

v u S i
cos(v u)

(9)

maximize Hsim(S )
Isim

Esim
(10)

minimize Gsim(S )
k

m 1

n2
m

cut(S m S S m)

di d j S m
cos(di d j)

(11)

The results of the clustering solutions using the four criterion functions are given in
Table 3 for 0 and 0 15. S and refer to the original and updated document
similarities, respectively.

In all four criterions, we were able to achieve better clustering solutions using the
entropy-based weight adjustments of the features. The most benefit can be observed
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Table 3. Results on four different clustering criterion functions

Internal Similarity External Similarity Hybrid Graph-based
Isim(S ) Isim( ) Esim(S ) Esim( ) Hsim(S ) Hsim( ) Gsim(S ) Gsim( )

F1(Micro) 80.7% 85.7% 80.8% 81.9% 76.1% 82.5% 81.5% 84.4%
F1(Macro) 81.5% 86.7% 81.4% 82.3% 76.8% 83.2% 81.8% 84.8%

Entropy 36.7% 28.7% 37.5% 33.5% 41.8% 32.8% 36.3% 34.3%
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for Isim and Hsim similarity metrics, indicating that similar documents are grouped into
much compact clusters. This behavior is expected since the citations we used were
mostly to the papers that are in the same category, hence we boosted the weights of the
terms that collectively define their respective categories, hence maximizing the inter-
nal similarity of the documents of the same cluster. In Figures 3 and 4, we show the
effect of varying on F1 and entropy scores of the clustering solution for all criterion
functions. Even for the 0 05 case which indicates only a slight support from the
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entropies on the feature values, all four criterion functions achieve significant accuracy
improvement. Further increasing over 0.25 either has no, or negative effect on the
clustering solution.

Since the entropy values are needed for the bias effect on feature weights, increasing
beyond a certain point starts to cause a dominating effect on the document vectors.

In that case, the documents containing just a couple of common words (i.e. ”database”,
”collection”, ”learning”) tend to group together, causing an adverse effect. It is therefore
desirable to keep at values that is sufficient enough to contribute to the weights without
significantly modifying them.

6 Conclusions

Most clustering algorithms assume that the components of data objects are independent
and identically distributed. This assumption has led to the design of numerous super-
vised and unsupervised learning algorithms to work on such ”flat” data, where each
data instance is a fixed length vector of attribute values. For data sets where the data set
has richer structure, such as hyperlinks in web documents and citations in scientific lit-
erature, an efficient and effective solution to incorporate the connectivity information in
the clustering solution yields better clustering performance. In this paper, we presented
an algorithm that incorporates the citation graph of a collection of scientific literature
to the clustering solution to better identify distinct groups of documents. The existence
and non-existence of citation relationships of papers are used to identify the most im-
portant topic-bearing words in the papers, based on expected entropy loss measure. We
have shown that a feature weighting scheme incorporating the citation-based extraction
of topically significant words and applying partial bias for those terms can effectively
discover clusters of similar papers.
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Abstract. We present VOGUE, a new state machine that combines two
separate techniques for modeling long range dependencies in sequential
data: data mining and data modeling. VOGUE relies on a novel Variable-
Gap Sequence mining method (VGS), to mine frequent patterns with
different lengths and gaps between elements. It then uses these mined
sequences to build the state machine. We applied VOGUE to the task of
protein sequence classification on real data from the PROSITE protein
families. We show that VOGUE yields significantly better scores than
higher-order Hidden Markov Models. Moreover, we show that VOGUE’s
classification sensitivity outperforms that of HMMER, a state-of-the-art
method for protein classification.

1 Introduction

Many real world applications, such as in bioinformatics, web accesses, and text
mining, encompass sequential/temporal data with long and short range depen-
dencies. Techniques for analyzing such types of data can be classified in two
broad categories: sequence pattern mining [12], and data modeling via Hidden
Markov Models (HMMs) [4, 8]. HMMs depend on the Markovian property, i.e.,
the current state i in the sequence depends only on the previous state j, which
makes them unsuitable for problems where general patterns may display longer
range dependencies. For such problems, higher-order and variable-order HMMs
[8–10] have been proposed, where the order denotes the number of previous
states that the current state depends upon. However higher-order HMMs often
suffer from a number of difficulties, namely, high state-space complexity, reduced
coverage, and sometimes even low prediction accuracy [3].

In this paper we present a new approach to temporal/sequential data analysis
via a novel state machine, VOGUE (Variable Order Gaps for Unstructured
Elements). The first step of our method uses a new sequence mining algorithm,
called Variable-Gap Sequence miner (VGS), to mine variable-length frequent
patterns, that may contain different gaps between the elements. The second
step of our technique uses the mined variable-gap sequences to build the VOGUE
state machine. In fact, VOGUE models multiple higher order HMMs via a single
variable-order state machine. Although VOGUE has a much wider applicability,
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in this paper we apply it to a problem in biological sequence analysis, namely,
multi-class protein classification. Given a database of protein sequences, the
goal is to build a statistical model so that we can determine whether a query
protein belongs to a given family (class) or not. Statistical models for proteins,
such as profiles, position-specific scoring matrices, and hidden Markov models
[4] have been developed to find homologs. However, in most biological sequences,
interesting patterns repeat (either within the same sequence or across sequences)
and may be separated by variable length gaps. Therefore a method like VOGUE
that specifically takes these kind of patterns into consideration can be very
effective. We show experimentally that VOGUE’s modeling power is superior
to higher-order HMMs while reducing the latter’s state-space complexity, and
improving their prediction capabilities. VOGUE also outperforms HMMER [4],
a HMM model especially designed for protein sequences.

2 Related Work

HMMs have been proposed to model longer range dependencies. However, such
models suffer from high state-space complexity, since a k-th order HMM, with
alphabet Σ, can potentially have |Σ|k states. Estimating the joint probabilities
of each k-th order state is also difficult. The all-k-order Markov model was
proposed in [8], where one has to maintain a Markov model of order j (where
the current state depends on the j previous states) for all 1 ≤ j ≤ k. Three
post-pruning techniques were proposed in [3] to improve the prediction accuracy
and coverage, and to lower the state complexity of the all k-order Markov model.
However, multiple models still have to be maintained.

In [9], mixed order Markov models were proposed. However, they rely on Ex-
pectation Maximization (EM) algorithms that are prone to local optima. Fur-
thermore, mixed order Markov models depend on a mixture of bigrams over k
consecutive previous states, whereas VOGUE automatically ignores irrelevant
states. Another approach combines the mining of sequences with a Markov pre-
dictor for web prefetching [7], but it is tuned specifically for web usage mining
since it relies on the knowledge of the site structure. In [10], a suffix tree is
incorporated in the training of the HMM which is done by an EM algorithm.
Although this algorithm reduces the state space complexity of an all-k-order
HMM, it still uses the previous k states and relies on an EM method. The
Episode Generating HMM (EGH) [6] is especially relevant. However, there are
notable differences in the EGH approach versus VOGUE. Instead of building
EGHs per subsequence, VOGUE is a single variable-order state machine incor-
porating all the frequent sequences. In VOGUE, the gap states have the notion
of duration which enables our system to account for long range dependencies.
The Hierarchical HMM (HHMM) approach in [2] extracts episodes (using se-
quence alignment methods) from which (left-to-right) HMMs are built. HHMM
also emits a random or “any” symbol in a gap state. In contrast, VOGUE si-
multaneously models all non-consecutive patterns, as well as gap symbol and
duration statistics.
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3 VOGUE State Machine

As noted earlier, building higher order HMMs is not easy, since we have to
estimate the joint probabilities of the previous k states in a k-order HMM. Also,
not all of the previous k states may be predictive of the current state. Moreover,
the training process is extremely expensive and suffers from local optima due
to the use of an EM (also known as Baum-Welch) algorithm for training the
model. VOGUE addresses these limitations. It first uses the VGS algorithm to
mine variable-gap frequent sequences that can have g other symbols between any
two elements; g varies from 0 to a maximum gap (MAXGAP ). These sequences
are then used as the estimates of the joint probabilities for the states used to
seed the model.

Consider a simple example to illustrate our main idea. Let the alphabet be
Σ = {A, · · · , K} and the sequence be S = ABACBDAEFBGHAIJKB. We
can observe that A → B is a pattern that repeats frequently (4 times), but with
variable length gaps in-between. B → A is also frequent (3 times), again with
gaps of variable lengths. A first-order HMM will fail to capture any patterns
since no symbol depends purely on the previous symbol. We could try higher
order HMMs, but they will model many irrelevant parts of the input sequence.
More importantly, no fixed-order HMM for k ≥ 1 can model this sequence, since
none of them detects the variable repeating pattern between A and B (or vice
versa). This is easy to see, since for any fixed sliding window of size k, no k-
letter word (or k-gram) ever repeats! In contrast our VGS mining algorithm is
able to extract both A → B, and B → A as frequent subsequences, and it will
also record how many times a given gap length is seen, as well as the frequency
of the symbols seen in those gaps. This knowledge of gaps plays a crucial role
in VOGUE, and distinguishes it from all previous approaches which either do
not consider gaps or allow only fixed gaps. VOGUE models gaps via gap states
between elements of a sequence. The gap state has a notion of state duration
which is executed according to the distribution of length of the gaps and the
intervening symbols.

The training and testing of VOGUE consists of three main steps: 1) Pattern
Mining via the novel Variable-Gap Sequence (VGS) mining algorithm. 2) Data
Modeling via our novel Variable-Order state machine. 3) Interpretation of
new data via a modified Viterbi method, called VG-Viterbi, to model the most
probable path through a VOGUE model. Details of these steps appear below.

3.1 Mining: Variable-Gap Sequences (VGS)

VGS is based on cSPADE [11, 12], a method for constrained sequence mining.
Whereas cSPADE essentially ignores the length of and symbol distributions in
gaps, VGS is specially designed to extract such patterns within one or more
sequences. Note that whereas other methods can also mine gapped sequences
[1, 11], the key difference is that during mining VGS explicitly keeps track of all
the intermediate symbols, their frequency, and the gap frequency distributions,
which are used to build VOGUE.
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Table 1. VGS: Subsequences of
Length 1

A B C D E F G H I

frequency 4 3 2 2 1 1 1 1 1

Table 2. VGS: Subsequences of
Length 2

subsequence freq g = 0 g = 1 g = 2
A → C 2 1 1 0
A → B 3 0 1 2
A → D 2 1 0 1
C → B 2 2 0 0
C → D 2 0 1 1
C → A 2 0 1 1
B → D 2 1 1 0
B → A 2 1 1 0
D → A 2 1 0 1

VGS takes as input the maximum gap
allowed (maxgap), the maximum sequence
length (k), and the minimum frequency
threshold (minsup). VGS mines all se-
quences having up to k elements, with a gap
of at most maxgap length between any two
elements, such that the sequence occurs at
least minsup times in the data. For exam-
ple, let S = ACBDAHCBADFGAIEB be
an input sequence over the alphabet Σ =
{A, · · · , I}, and let maxgap = 2, minsup =
2 and k = 2. VGS first mines the frequent
subsequences of length 1, as shown in Ta-
ble 1. Those symbols that are frequent are
extended to consider sequences of length 2,
as shown in Table 2. For example, A → B is a
frequent sequence with frequency freq = 3,
since it occurs once with gap of length 1
(ACB) and twice with a gap of length 2
(AHCB and AIEB). Thus the gap length
distribution of A → B is 0, 1, 2 as shown under columns g = 0, g = 1, and
g = 2, respectively. VGS also records the symbol distribution in the gaps for
each frequent sequence. For A → B, VGS will record gap symbol frequencies as
C(2), E(1), H(1), I(1), based on the three occurrences. Since k = 2, VGS would
stop after mining sequences of length 2. Otherwise, VGS would continue mining
sequences of length k ≥ 3, until all sequences with k elements have been mined.

3.2 Modeling: Variable-Order State Machine

VOGUE uses the mined sequences to build a variable order/gap state machine.
The main idea here is to model each non-gap symbol in the mined sequences as
a state that emits only that symbol and to add intermediate gap states between
any two non-gap states. The gap states will capture the distribution of the gap
symbols and length. Let F be the set of frequent sequences mined by VGS, and let
k be the maximum length of any sequence. While VOGUE can be generalized
to use any value of k ≥ 2, for clarity of exposition and lack of space we will
illustrate the working of VOGUE using mined sequences of length k = 2. Let F1
and F2 be the sets of all frequent sequences of length 1 and 2, respectively, so
that F = F1∪F2. Thus, each mined sequence si ∈ F2 is of the form si : vf → vs,
where vf , vs ∈ Σ. Let Γ = {vf |vf → vs ∈ F2} be the set of all the distinct
symbols in the first position, and Θ = {vs|vf → vs ∈ F2} be the set of all the
distinct symbols in the second position, across all the mined sequences si ∈ F2.
The VOGUE model is specified by the 6-tuple λ = {Q, Σ, A, B, ρ, π} where each
component is defined below.

Alphabet (Σ): The alphabet for VOGUE is Σ = {v1, · · · vM}, where |Σ| = M
is the number of observations emitted over all states. The alphabet’s size is
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g1
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Fig. 1. VOGUE State Machine for Running Example

defined by the number of symbols that occur at least once in the training data,
obtained as a result of the first iteration of VGS, as shown in Table 1. For our
example S in Section 3.1, we have nine distinct frequent symbols, thus M = 9.

Set of States (Q): The set of states in VOGUE is given as Q = {q1, · · · , qN},
where |Q| = N = Nf+Gi+Ns+Gu. Here, Nf = |Γ | and Ns = |Θ| are the number
of distinct symbols in the first and second positions, respectively. Each frequent
sequence si ∈ F2 having a gap g ≥ 1 requires a gap state to models the gaps. Gi

thus gives the number of gap states required. Finally Gu = 1 corresponds to an
extra gap state, called universal gap, that acts as the default state when no other
state satisfies an input sequence. For convenience let Q = Qf∪Qi∪Qs∪Qu be the
partition of Q where the first Nf states belong to Qf , the next Gi states belong
to Qi, and so on. For our example S in Section 3.1, we have Nf = 4, since there
are four distinct starting symbols in Table 2 (namely, A, B, C, D). We also have
four ending symbols, giving Ns = 4. The number of gap states is the number of
sequences of length 2 with at least one occurrence with gap g ≥ 1. Thus Gi = 8,
C → B is the only sequence that has all consecutive (g = 0) occurrences. With
one universal gap state Gu = 1, our model yields N = 4 + 8 + 4 + 1 = 17 states.

Transition Probability Matrix (A): The transition probability matrix be-
tween the states, A = {a(qi, qj)|1 ≤ i, j ≤ N}, where a(qi, qj) = P (qt+1 =
qj |qt = qi), gives the probability of moving from state qi to qj (where t is the
current position in the sequence). The probabilities depend on the types of states
involved in the transitions. The basic intuition is to allow transitions from the
first symbol states to either the gap states or the second symbol states. The
second symbol states can go back to either the first symbol states or to the uni-
versal gap state. Finally the universal gap state can go to any of the starting
states or the intermediate gap states. We discuss these cases below.

Transitions from First States: Any first symbol state qi ∈ Qf may transition to
either a second symbol state qj ∈ Qs (modeling a gap of g = 0) or to a gap
state qj ∈ Qi (modeling a gap of g ∈ [1, maxgap]). Let siy : vi → vy ∈ F2 be
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a subsequence mined by VGS. Let freqg
i (y) denote the frequency of siy for a

given gap value g, and let freqi(y) denote the total frequency of the sequence,
i.e., freqi(y) =

∑maxgap
g=0 freqg

i (y). Let R = freq0
i (j)∑

y∈Qs
freqi(y) denote the fraction

of gap-less transitions from qi to qj over all the transitions from qi to qy ∈ Qs.
The transition probabilities from qi ∈ Qf are given as:

a(qi, qj) =

⎧⎪⎨⎪⎩
R for qj ∈ Qs

freqi(j)∑
y∈Qs

freqi(y) −R for qj ∈ Qi

0 for qj ∈ Qf ∪Qu

Transitions from Gap States: Any gap state qi ∈ Qi may only transition to
second symbol state qj ∈ Qs. For qi ∈ Qi we have:

a(qi, qj) =

{
1 for qj ∈ Qs

0 for qj ∈ Q\Qs

Transitions from Second States: A second symbol state qi ∈ Qs may transition
to either first symbol state qj ∈ Qf (modeling a gap of g = 0), or to the universal
gap state qj ∈ Qu (modeling other gaps). Let T =

∑
sx∈F2

freq(sx) be the sum
of frequencies of all the sequences in F2. For qi ∈ Qs we have:

a(qi, qj) =

⎧⎪⎨⎪⎩
0.99×

∑
qy∈Qf

freqj(y)

T for qj ∈ Qf

0.01 for qj ∈ Qu

0 for qj ∈ Qi ∪Qs

Note that the transitions to universal gap have a small probability (0.01). Tran-
sitions back to first states are independent of qi, i.e., the same for all qi ∈ Qs. In
fact, these transitions are the same as the initialization probabilities described
below. They allow the model to loop back after modeling a frequent sequence.
Note that the values 0.99 and 0.01 above were chosen to allow (via pseudo-
counts) for unseen symbols.

Transitions from Universal Gap: The universal gap state can only transition to
the first states or the intermediate gap states. For qi ∈ Qu we have:

a(qi, qj) =

⎧⎪⎨⎪⎩
0.9×

∑
qy∈Qf

freqj(y)

T for qj ∈ Qf

0.1× 1
Gi

for qj ∈ Qi

0 for qj ∈ Q\Qf

Since the first states can emit only one symbol, we allow transitions from uni-
versal gap to intermediate gap states, to allow for other symbol emissions. This
probability is at most 10% (empirically chosen) across all the gap states. In the
remaining 90% cases, the universal gap transitions to a first state with proba-
bilities proportional to its frequency.
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Figure 1 shows transitions between states and their probabilities in VOGUE
for our running example. Each gap state’s duration is considered explicitly within
a state. The notation gi (e.g., g3) is the name of the gap state between the
elements of the sequence, (e.g., C → D), and not the value of the gap. The
symbol states, on the other hand, are named after the only symbol that can be
emitted from them, for example C is the only symbol that is emitted from the
first symbol state.

Symbol Emission Probabilities (B): The symbol emission probabilities are
state specific. We assume that each non-gap state (qi ∈ Qf ∪Qs) outputs only a
single symbol, whereas gap states (qi ∈ Qi ∪Qu) may output different symbols.
The emission probability matrix is then given as: B = {b(qi, vm) = P (vm|qi), 1 ≤
i ≤ N and 1 ≤ m ≤ M}, where b(qi, vm) = P (vm|qi) is the probability of
emitting symbol vm in state qi. b(qi, vm) differs depending on whether qi is a
gap state or not. Since there is a chance that some symbols that do not occur in
the training data may in fact be present in the test data, we assign them a very
small probability of emission in the gap states.

Non-gap States: If qi ∈ Qf ∪Qs, then b(qi, vm) = 1 for the distinct symbol that
can be emitted for that state, and b(qi, vm) = 0, otherwise. For example, the
first and second states are labeled by their emission symbol in Figure 1.

Universal Gap: For qi ∈ Qu we have b(qi, vm) =
(

freq(vm)∑
vm∈Σ freq(vm)

)
× 0.99 + c′,

where c′ = 0.01/M . This means that vm is emitted with probability proportional
to its frequency in the training data. The c′ term handles the case when vm does
not appear in the training set.

Gap States: If qi ∈ Qi, its emission probability depends on the symbol distribu-
tion mined by VGS. Let Σqi be the set of symbols that were observed by VGS

in the gap qi. We have b(qi, vm) =
( ∑

g≥1 freqg(vm,qi)∑
vm∈Σqi

∑
g≥1 freqg(vm,qi)

)
×0.99+ c, where

c = 0.01/|Σqi|.
Note that the above summations are for gap ranges g ∈ [1, maxgap], since

gap g = 0 is treated as a direct transition from one state to another. Note that
the values 0.99 and 0.01 above arise from the pseudo-count approach used for
previously unseen symbols. In our running example, for the symbol vm = C and
the gap state g4 between the states that emit A and B, we have the frequency of
C as 2 out of the total number (5) of symbols seen in the gaps (see Section 3.1).
Thus C’s emission probability is 2

5 × 0.99 + 0.01
4 = 0.399.

Gap Duration Probabilities (ρ): The probability of generating a given num-
ber of gaps from the gap states Qi is given by the gap duration probability
matrix: ρ = {ρ(qi, g)|qi ∈ Qi, g ∈ [1, maxgap]}. Let qi be the gap state be-
tween a state qx ∈ Qf and a state qy ∈ Qs corresponding to the sequence
s : vx → vy ∈ F2. The gap duration probability is proportional to the frequency
of observing a given gap value for s, i.e., ρ(qi, g) = freqg

i (y)∑
g∈[1,maxgap] freqg

i (y) ; and

ρ(qi, g) = 1 for qi ∈ Q\Qi. In our running example, for the gap state g4 between
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the states that emit A and B, we have ρ(g4, 2) = 2
3 = 0.67, since we twice observe

a gap of 2, out of three occurrences.

Initial State Probabilities (π): The probability of being in state qi initially
is given by π = {π(i) = P (qi|t = 0), 1 ≤ i ≤ N}, where

π(i) =

⎧⎪⎨⎪⎩
0.99×

∑
qy∈Qf

freqi(y)

T for qi ∈ Qf

0.01 for qi ∈ Qu

0 for qi ∈ Qi ∪Qs

We use a small value for the Universal Gap state as opposed to the states in
Qf to accentuate the patterns retained by VGS while still providing a possibility
for gaps after and before them.

3.3 Interpretation: Variable-Gap Viterbi

Once VOGUE is built, given a new test sequence of observations O = o1o2 · · · oT ,
there is a need to interpret the sequence given the model. This problem is equiv-
alent to finding the best sequence of states, i.e., the most probable path, through
the VOGUE model λ, for the test sequence O. That is finding a sequence of states
q∗ = {q1

∗, q
2
∗, · · · , qT

∗ } from the model λ such that: q∗ = arg maxq P (q|λ, O), over
all such sequence of states q. The algorithm that is most often used to solve this
problem for biosequences, is the Viterbi algorithm [4]. Due to the unique struc-
ture of VOGUE, where gap states have a notion of duration, we adjusted Viterbi
to take this into account. We call our new method Variable-Gap Viterbi (VG-
Viterbi). For the lack of space, we omit the algorithmic details of VG-Viterbi.

4 Experimental Results and Analysis

In recent years, a large amount of work in biological sequence analysis has fo-
cused on methods for finding homologous proteins. Given a database of protein
sequences, the goal is to build a statistical model so that we can determine
whether a query protein belongs to a given family or not. HMMER [4], a profile
HMM, is one of the state-of-the-art approaches to this problem that depends
heavily on a good multiple sequence alignment. It models gaps, provided they
exist in the alignment of all the training sequences. However, if a family of se-
quences has several overlapping motifs which may occur in different sequences,
these sequences will not be aligned correctly and HMMER will not perform
well. Here, we analyze the performance of VOGUE compared to HMMER and
higher-order HMMs with various orders k ∈ [1, 10].

Dataset: The data used in our experiments is a set of 9 families downloaded
from the PROSITE (http://www.expasy.org/prosite) database of protein fam-
ily and domains, namely, PDOC00662, PDOC00670, PDOC00561, PDOC00064,
PDOC00154, PDOC00224, PDOC00271, PDOC00397, PDOC00443. We will refer
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to these families as F1, F2, · · · , F9, respectively. The number of sequences in
each family is, respectively: N1 = 45, N2 = 225, N3 = 85, N4 = 56, N5 = 119,
N6 = 99, N7 = 150, N8 = 21, N9 = 29. The families consist of sequences of
lengths ranging from 597 to 1043 characters, taken from the alphabet of the
20 amino acids: Σ = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y }.
Each family is characterized by a well-defined motif. Family F1, for example,
shares the consensus motif [G] − [IV T ] − [LV AC] − [LV AC] − [IV T ] − [D] −
[DE] − [FL] − [DNST ], which has 9 components. Each component can con-
tain any of the symbols within the square brackets. For example, for the second
component, namely [IV T ], either I, V or T may be present in the sequences.
We treat each PROSITE family as a separate class. We divided the data set
of each family Fi, into two subsets: the training data N i

train consists of 90% of
the data, while the test data N i

test contains the remaining 10%. For example,
N1

train = 40 and N1
test = 5. There are a total of 103 test sequences across all

families.

Evaluation and Scoring: We built three models for each family, namely VOGUE,
HMMER and k-th order HMMs, using the training set of that family. We score
the test sequences against the model for each of the nine families, and after
sorting the scores in decreasing order, we use a threshold on the scores to assign
a sequence to a given family.

For evaluation of the classifiers, we use Receiver Operating Characteristic
(ROC) curves [5], that represent the relationship between the false positive
rate and true positive rate across the full spectrum of threshold values. Fur-
ther, we plot the Area Under the Curve (AUC), to evaluate the goodness of
the classifiers. The AUC is calculated using the following equation [5]: AUC =
1

pn

∑p
i=1
∑n

j=1 ϕ(Ri, Rj). Here Ntest = n + p is the number of test sequences, p
is the number of sequences from a given class and n is the number of sequences
that don’t belong to the class. These sequences are ranked based on their score
from 1 to Ntest, assigning 1 to the test sequence with the highest score and Ntest

to the one with the lowest score. Ri, i = 1 · · · p represent the rankings of the
p sequences and Rj , j = 1 · · ·n represent the rankings of the n sequences and
ϕ(Ri, Rj) = 1if Ri < Rj , or else ϕ(Ri, Rj) = 0. AUC for each class is calculated
separately, by treating each class as p, and the remaining as n.

We score the test sequences by computing the log-odds score, i.e., the ra-
tio of the probability of the sequence using a given model, to the probabil-
ity of the sequence using a Null model, given as follows: Log-Odds(seq) =
log2

(
P (seq/Model)
P (seq/Null)

)
. P (seq/Model) is computed using the Viterbi algorithm that

computes the most probable path through the model, as Viterbi is the default
method used for scoring in HMMER. The Null model is a simple one state HMM
that emits the observations (the amino acids) with equal probability (1/|Σ|).
Since we have 20 amino acids, the emission probability for each symbol is 1/20.
The log-odds ratio measures whether the sequence is a better match to the given
model (if the score is positive) or to the null hypothesis (if the score is negative).
Thus, the higher the score the better the model.
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4.1 Comparing VOGUE, HMMER and k-th Order HMMs

We built VOGUE state machines with different values of minsup correspond-
ing to 50%, 75% and 100% of the number of instances in the training data,
and maxgap (10, 15, 20, 25, 30) but with the constant k = 2 for the length
of the mined sequences in VGS. We then choose the best set of parameters
and fix them for the remaining experiments. For HMMER, we first need to align
the training sequences using CLUSTAL-W (http://www.ebi.ac.uk/clustalw). We
then build a profile HMM using the multiple sequence alignment and compute
the scores for each test sequence using HMMER, which directly reports the
log-odds scores with respect to the Null model mentioned above. We also built
several k-th order HMMs for various values of k using an open-source HMM soft-
ware (http://www.cfar.umd.edu/∼kanungo/software). We tried different values
for the number of states ranging from the size of the protein alphabet (20) to
roughly the size of VOGUE (500) and HMMER (900). A k-th order HMM is
built by replacing each consecutive subsequence of size k with a unique symbol.
These different unique symbols across the training and test sets were used as
observation symbols. Then we model the resulting sequence with a regular 1st
order HMM.

Table 3. Test Sequence Log-Odds Scores for VOGUE, HMMER and k-th Order HMMs

Seq VOGUE HMMER k = 1 k = 2 k = 4 k = 8 k = 10
M = 20 M = 394 M = 17835 M = 20216 M = 19249

S1 7081 912.4 −4 × 103 −1.3 × 104 −2.3 × 104 −2 × 104 −2.6 × 104

S2 7877 155 −3.4 × 103 −1.3 × 104 −2.2 × 104 −1.9 × 104 −2.9 × 104

S3 2880 −345 −2.2 × 103 −1 × 104 −1.8 × 104 −1.6 × 104 −2.3 × 104

S4 5763 9.8 −4.7 × 103 −1.5 × 104 −2.4 × 104 −2.2 × 104 −3.0 × 104

S5 5949 −21.3 −4.7 × 103 −1.5 × 104 −2.4 × 104 −2.2 × 104 −3.1 × 104

Score Comparison: We first compare VOGUE with k-order HMMs and HM-
MER. Table 3 shows the comparison on the 5 test sequences for family F1 when
scored against the model for F1. For VOGUE we used minsup = 27(75%) and
maxgap = 20. For k-order HMMs we tried several values of the order k (shown
as k = 1, k = 2, k = 4, k = 8 and k = 10) in the table with 20 states for each
k-th order HMM. The number of observations M for the k = 1 case was set to
20 since it is the number of amino acids. M = 394; 17835; 20216; 19249 were the
number of observations used for, respectively, k = 2; 4; 8; 10. These values were
obtained from a count of the different new symbols used, as described earlier,
for each value of k. The best score for each sequence is highlighted in bold. In
Table 3, we find that k-th order HMMs were not able to model the training
sequences well. All their scores are large negative values. HMMER did fairly
well, which is not surprising, since it is specialized to handle protein sequences.
However, for all the 5 test sequences VOGUE vastly outperforms HMMER. This
is a remarkable result when we consider that VOGUE is completely automatic
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and does not have explicit domain knowledge embedded in the model, except
what is recovered from relationship between symbols in the patterns via mining.

Table 4. Run Times

VOGUE HMMER k = 1 k = 2 k = 4 k = 10
4.6s 34.42s 2s 5.29s 6.40s 11.46s

Time Comparison: In Table 4, we
show the execution times for family
F1. The time for VOGUE includes
the mining by VGS, and for HM-
MER, the alignment by CLUSTAL-
W. We can see that VOGUE’s execution time is in general much better than
HMMER and is also better than higher-order HMMs (except for k = 1). Thus,
not only is VOGUE more accurate in modeling the input, but it also executes
faster.
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Fig. 2. ROC Curve of VOGUE and HMMER for the 9 families

Full Comparison (ROC Curves and AUC): Figure 2 presents the ROC
curves of the 9 families generated from all the test sequences. Here we focus on
comparing HMMER and VOGUE, since k-th order HMMs gave highly negative
scores for all the test sequences. The ROC curves represent the trade-off between
coverage (TPR on the y-axis) and error rate (FPR on the x-axis) of a classifier.
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A good classifier will be located at the top left corner of the ROC graph. A trivial
rejector will be at the bottom left corner of the ROC graph and a trivial acceptor
will be at the top right corner of the graph. Each one of the graphs in Figure
2 has two ROC curves for VOGUE and HMMER, respectively, for different
threshold values. The total AUC for the two methods is given in the legend.
VOGUE was run with parameter typical values of minsup = 75% and maxgap =
20; there were some minor variations to account for characteristics of different
families. The ROC curves of all the families show clearly that VOGUE improved
the classification of the data over HMMER because the AUC of VOGUE is
constantly higher than HMMER. In the case of family F9 the AUC of both
VOGUE and HMMER were comparable. In two cases, for families F1 and F6,
the AUC was 1 for VOGUE showing that VOGUE was able to capture the
patterns of those families perfectly. Moreover, in 6 out 9 families the AUC for
VOGUE was higher than 0.9 as opposed to HMMER whose AUC was greater
than 0.9 in only 3 out of 9 families. This again shows that VOGUE outperforms
HMMER.

5 Conclusions and Future Work

One of the main contribution of VOGUE is that it can simultaneously model
multiple higher-order HMMs. We showed experimentally on protein sequence
data that VOGUE’s modeling power is superior to higher-order HMMs, as well
as a domain-specific algorithm HMMER. To generalize VOGUE for sequences
of k > 2 (after VGS), a special topology will be needed to handle interleav-
ing patterns. Furthermore, some patterns mined by VGS are artifacts of other
patterns, for example, if A → B is frequent, then there is a good chance that
B → A will be frequent as well. We need special pruning mechanisms to separate
primary patterns from artifacts. Moreover, there are applications where there is
not always an exact match for the subsequences to be mined. In future work we
plan to allow for approximate matches for the mined sequences and states.
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Abstract. This paper investigates the trade-off between the expressive-
ness of the pattern language and the performance of the pattern miner
in structured data mining. This trade-off is investigated in the context
of correlated pattern mining, which is concerned with finding the k-best
patterns according to a convex criterion, for the pattern languages of
itemsets, multi-itemsets, sequences, trees and graphs. The criteria used
in our investigation are the typical ones in data mining: computational
cost and predictive accuracy and the domain is that of mining molecular
graph databases. More specifically, we provide empirical answers to the
following questions: how does the expressive power of the language affect
the computational cost? and what is the trade-off between expressive-
ness of the pattern language and the predictive accuracy of the learned
model? While answering the first question, we also introduce a novel
stepwise approach to correlated pattern mining in which the results of
mining a simpler pattern language are employed as a starting point for
mining in a more complex one. This stepwise approach typically leads to
significant speed-ups (up to a factor 1000) for mining graphs.

1 Introduction

Whereas initially the data mining community focused on mining simple pattern
languages, such as itemsets, there has been a recent shift towards mining more
and more complex pattern languages, such as sequences, trees and graphs [1,2,3].
This is often motivated by challenging applications domains such as chemo-
informatics and network analysis, which can naturally be modeled as graphs.
Whereas experience gained while mining simpler representations, such as the
exploitation of the apriori-property [4], has been transferred into structured data
mining, little research has been devoted to the trade-off between expressiveness
of the pattern language and the performance of the pattern miner. Within the
field of computer science, insight into the trade-off between expressiveness and
performance has been of critical importance, and therefore also seems essential
to the field of data mining and its applications.

The setting that we shall employ is that of correlated pattern mining, where
one is given a dataset divided into two classes, and the aim is to find the k-best
patterns expressed within a pattern language L according to some statistical
criteria, such as significance, or information gain [5,6]. Correlated pattern miners
typically employ a branch-and-bound technique. Because graph miners are today

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 55–66, 2006.
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the most prominent representatives of structured data mining systems, and their
application has been to a large extent targeted towards molecular applications
in chemo-informatics such as structure activity relationship prediction [7], our
experimental investigation targets such applications. The pattern languages L
considered are those of itemsets, multi-itemsets, sequences, trees, and connected
graphs. Even though there are many possible performance criteria in data mining,
computational cost and predictive performance are certainly the most prominent
ones, which we will therefore also adopt in our study. W.r.t. computational cost,
the question is how the computational cost is affected by growing expressiveness
of the language. While answering this question, we also introduce the technique
of stepwise correlated pattern mining, which first finds the k best patterns in the
simpler language, and then employs the score of the k-th best pattern as a bound
while mining the more expressive language in a branch-and-bound algorithm. In
some of our experiments, the stepwise approach leads to speed-ups of a factor
1000 for large molecular datasets. To gain insight into the second trade-off,
which is concerned with predictive performance, we employ the typical approach
of using the k best patterns as features in a classifier. This then allows us to
construct a predictive model in the form of a decision tree, rule-set or naive
Bayes model, and hence, to evaluate the predictive performance of the resulting
model and thus, pattern language.

The paper is structured as follows: In the next section we introduce the nota-
tions used throughout the rest of the paper. In section 3, we describe correlation
measures and the branch-and-bound approach used to solve the mining task. The
experiments and their results are described and discussed in detail in section 4.
In the last section we conclude and point towards related and future work.

2 Pattern Languages

In this section, we introduce the various pattern languages employed in our
study, and discuss the relationship among them.

Definition 1 (Graphs). An undirected, labeled graph G(V, E, λ, Σ) consists
of a finite set V of vertices, a set E ⊆ {{u, v}|u, v ∈ V, u �= v} of edges, an
alphabet Σ and a labeling function λ : (V ∪ E) → Σ.

A graph G(V, E, λ, Σ) is called connected iff ∀u, v ∈ V there exists a sequence of
vertices ∃v1, ..., vn ∈ V with v1 = u and vn = v and {vx, vx+1} ∈ E.

Definition 2 (Trees). A (free) tree is a connected graph with |V| = |E|+ 1.

Connected graphs that are not trees thus have cycles and are called cyclic graphs.

Definition 3 (Sequences). A sequence is a tree (and hence a graph) where no
vertex has more than two edges (i.e. no branches), ∀v ∈ V :

∣∣{{v, u}|u ∈ V}
∣∣ ≤ 2.

Definition 4 (Multi-itemset). A multi-itemset is a graph G(V, E, λ, Σ) where
the set of edges is empty, E = ∅.
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Definition 5 (Itemset). A multi-itemset is called itemset iff ∀va, vb ∈ V :
(va = vb) ∨ (λ(va) �= λ(vb)).

Perhaps the definitions of multi-itemset and itemset are a bit unusual, but they
are convenient for showing the relationship among the different pattern types.
It is useful to use the following notation for the pattern languages: LG, the set
of all graphs; LC , the set of all connected graphs; LT , the set of all trees; LS ,
the set of all sequences; LM , the set of all multi-itemsets; and LI , the set of all
itemsets. From the definitions introduced above, it directly follows that

Proposition 1. LI ⊂ LM ⊂ LG and LS ⊂ LT ⊂ LC ⊂ LG

At the same time, the subgraph isomorphism relation can be used as the covers
and generality relation to structure the search:

Definition 6 (Graph Isomorphism). Two Graphs G(V,E,λ,Σ),G′(V′,E′,λ′,Σ)
are called isomorphic if there exists a bijective function ϕ : V → V′ such that:
∀v ∈ V : λ(v) = λ′(ϕ(v))∧ E′ = {{ϕ(v1), ϕ(v2)}|{v1, v2} ∈ E}∧ ∀{v1, v2} ∈ E :
λ({v1, v2}) = λ′({ϕ(v1), ϕ(v2)})

Definition 7 (Subgraph). Given two graphs G(V, E, λ, Σ), G′(V′, E′, λ′, Σ),
G′ is called a subgraph of G iff V′ ⊆ V ∧ E′ ⊆ E ∧ ∀v ∈ V′ : λ(v′) = λ(v)∧
∀e ∈ E′λ(e′) = λ(e)

A graph G′ is subgraph-isomorphic to another graph G if and only if it has a
subgraph S that is isomorphic to G′. The subgraph isomorphism relation can be
applied to the more specific pattern languages and results in a natural notion of
coverage or generality for these languages as well.

3 Correlated Pattern Mining

A correlation measure compares the expected frequency of the joint occurence
of a pattern and a certain class value to the observed frequency. If the resulting
value is larger than a given threshold the deviation is considered statistically
significant and there is evidence for a causal relationship between the pattern
and the class.

c1 c2

φ p n p + n
¬φ P − p N − n |D| − (p + n)

P N |D|

Fig. 1. A contingency table

<0,0>

<0,n>
<p,n>

<p,0>

N

P

Fig. 2. Convex hull of future 〈p′, n′〉

We organize the observed frequencies in a contingency table, cf. Figure 1. Let
φ be the pattern and c1, c2 the two classes. P and N denote the total number
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of instances having class c1, c2, respectively, in dataset D. The frequencies of
those two classes amongst the instances covered by the pattern are referred to
as p and n. Since p and n are sufficient for calculating the value of a correlation
measure on this table, we view these measures as real-valued functions on N2 for
the remainder of this paper.

Correlation measures are neither monotone nor anti-monotone, hence the
search becomes more difficult than in frequent pattern mining. However, if the
correlation measure is convex, an upper bound on the score for the refinements
of a given pattern can be calculated, which enables the use of an effective branch-
and-bound algorithm.

Convex functions like χ2 and Information Gain (see [5] for a proof) take their
extreme values at the points forming the convex hull of their domain.

For a pattern inducing the tuple 〈p, n〉, specialization will decrease p, n, both,
or none. This leads to points lying within the rectangle shown in Figure 2.
Evaluating the correlation measure at 〈p, 0〉 and 〈0, n〉 will give an upper bound
on the value the measure can take for specializations of the current pattern. For
an in-depth discussion of upper bound calculation we refer the reader to [5,6].

Correlated pattern miners now compute either the k best patterns within
a language of patterns L or else finds all patterns within L whose correlation
measure exceeds a certain threshold. Furthermore, to avoid redundancy in the
resulting solution set, one typically employs patterns that are free, i.e., it is not
allowed that two patterns φ1 and φ2 occur in the solution set for which φ2 is a
refinement of φ1 and both patterns reach the same score.

The solutions to the first task can be conveniently modeled using

Thk(L, D) = {φ ∈ L|free(φ, D), φ among the k-best patterns w.r.t. score(φ, D) in L}

where D denotes the dataset under consideration, and score the correlation
measure considered. Solutions to the second type of query are represented as

Th>(L, D, t) = {φ ∈ L|free(φ, D) ∧ score(φ, D) > t}

It will be convenient to combine the notations and introduce:

Thk(L, D, t) = {φ ∈ L|free(φ, D) and score(φ, D) > t and
φ is amongst the k-best patterns w.r.t. score(φ, D) in L}

In the light of the hierarchies of languages introduced above, it is now instruc-
tive to look at some straightforward properties of these solution sets.

Proposition 2. Whenever L1 ⊆ L2, then for all datasets D and thresholds t:
Th>(L1, D, t) ⊆ Th>(L2, D, t).

This property actually states that whenever L1 ⊆ L2, it will be the case that so-
lutions found within L1 will also be solutions within the more expressive pattern
language L2. Another useful property is

Proposition 3. Whenever L1 ⊆ L2, then for all datasets D:
Thk(L2, D) ∩ L1 ⊆ Thk(L1, D).
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It states that the solutions of a top k query in a larger language L2 may contain
some top k solutions from a less expressive language L1.

These properties actually motivate the stepwise correlated pattern mining
algorithm, which we will now sketch. Algorithm 1 assumes a given hierarchy of
pattern languages L1 ⊂ L2 ⊂ L3 . . .Ln, a dataset D, and a value for k. The goal
is to find Thk(Ln, D).

Algorithm 1. Stepwise Correlated Pattern Mining.
t0 := −∞;
for i = 1 to n do

compute Thk(Li, D, ti−1)
ti := min

p∈Thk(Li,D,ti−1)
score(p,D)

return Thk(Li, D, ti)

The idea underlying the stepwise algorithm is that one first searches for the
k best patterns in the simpler language Li, and then records the score of the
k-th best solution found in Li. This score must be lower than or equal to the
score of all solutions in Thk(Li+1, D), and can therefore be used as a threshold
when searching for the solutions at the next level. Given that correlated pattern
miners employ a branch-and-bound algorithm, this is likely to result in addi-
tional pruning when searching Li+1. This process is then iterated until the final
language Ln is considered.

It is easy to see that the stepwise correlated pattern mining algorithm will
produce exactly the same results as directly computing the Thk(Ln, D). The
question however is whether this stepwise technique is more efficient than the
direct approach. In the experimental section, we shall provide evidence that this
typically is the case for the hierarchies of pattern languages considered, and that
the speed-up can be significant (up to a factor of about 1000).

4 Experimental Evaluation

In this section, we experimentally answer the following questions:

Q1 Does the stepwise correlated pattern miner speed up the correlated pattern
mining process for the mining of graphs?

Q2 How does the expressiveness of the pattern language influence the running
times of the correlated pattern miner?

Q3 How does the expressiveness of the pattern language influence the predictive
performance of the models learned using correlated patterns as features ?

4.1 Experimental Set-Up

In all experiments, we employed a correlated pattern miner to computeThk(L, D)
for the values k = 1, 10, 100 and 1000, and the languages L = LI ,LM ,LS ,LT

and LC . For the mining step we implemented two correlated pattern miners. For
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the itemsets and multi-itemsets a simple Apriori-SMP [5]-like implementation
was used. For sequences, trees and graphs a modified gSpan [2] implementation,
able to mine correlated patterns, was employed. The correlation measure used
was χ2 and the starting minimum threshold for the first step in the stepwise
mining procedure and all direct runs was 3.84.

To guarantee that we find all k-best free patterns, it is essential that for
every large graph, all its subgraphs are enumerated first. Otherwise, it might
happen that the addition of a small subgraph to a set of k-best patterns neces-
sitates the removal of several k-best supergraphs, and, consequently, one could
not guarantee that we find all k-best free patterns. It can be shown however that
the enumeration schemes that we are using (both the stepwise approach, and
gSpan’s method for enumerating graphs) have this desirable property. Further-
more, the properties of the DFS-Encoding used for graphs in gSpan allowed in a
straightforward manner to restrict the mining process to only trees (sequences)
by not allowing structures with cycles (branches).

All running time experiments were performed on a 2.8GHz Machine with 2GB
of main memory running Linux.

The two evaluation criteria employed were, on the one hand, the computa-
tion time needed to compute Thk(L, D) and, on the other hand, the predictive
accuracy. As directly evaluating the predictive accuracy of a correlated pattern
is typically not very interesting, we rather evaluate the predictive accuracy of
a set of patterns Thk(L, D) indirectly. This is realized by employing these pat-
terns as features in binary vectors describing the datasets to the WEKA toolkit.
We then employed WEKA’s [8] implementations of Ripper [9], C4.5 [10], a
Support Vector Machine, and Näıve Bayes to build classifiers whose ac-
curacies can be measured. All accuracy estimates were obtained using ten-fold
cross-validation, and the results were compared against each other w.r.t. sig-
nificance. The WEKA experimenter environment was used for this task since
accuracy averaging and significance testing is automated in this tool.

4.2 Datasets

For the experimental evaluation, we used four different real-world datasets,
namely the NCI HIV dataset [3], a biodegradability dataset [11], and two muta-
genicity datasets [12,7]. All these datasets contain a number of graphs describing
chemical compounds. Atoms are represented as vertices and labeled with the
atom type, whereas bonds between atoms are represented as edges, also labeled
with the type of edge (which can be single bond, double bond or aromatic bond).

To answer the first two questions, we performed running time experiments
on the HIV and on the Mutagenicity I datasets. Due to the small size of the
other two datasets, running times measured are in the range of a few seconds
at most, making differences unreliable. We used 5 different setups of the HIV
dataset, namely active vs. inactive (CA vs CI), active vs. moderate (CA vs
CM), moderate vs. inactive (CM vs CI), active vs. moderate and inactive (CA
vs CMCI), and active and moderate vs. inactive (CACM vs CI). For each of the
6 setups, we mined the k-best patterns for k = 1, 10, 100, and 1000.
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Table 1. Characteristics of the used datasets

Name Total Size Number of Classes Class sizes
HIV 41768 3 (CA,CM,CI) CA: 417, CM: 1069, CI: 40282
Biodegradability 328 2 (BD, NBD) BD: 185, NBD: 143
Mutagenicity I 4337 2 (M,NM) M: 2401, NM: 1936
Mutagenicity II 684 2 (M,NM) M: 341, NM: 343

4.3 Stepwise Correlated Pattern Mining Q1

Our first question was whether the stepwise approach would speed up the mining
process compared to the direct approach. The experiments performed show that
the stepwise approach was up to 2800 times faster with an average of 202.81
(σ = 600.66) on all settings. Some of the results are shown in Table 2. The
direct approach for k = 1000 in the CS vs. CM on the HIV dataset took more
than 48 hours1! Figure 3 shows an explanation for the acceleration of the mining
process. After evaluating only 600 sequences, the threshold reaches a value of 769.
When mining trees (resp. graphs) directly, a similar threshold is reached after
analyzing 2700 (resp. 4200) patterns. The quickly rising threshold enforced by
mining stepwise allows a much more efficient pruning than the direct approach.

However, we observed some contrary cases that require further explanation.
First, when comparing the direct and the stepwise approach on multi-itemset min-
ing (LM ), the stepwise approach does not help in terms of speed-up. Fortunately,
it does not hurt either. Furthermore, on the Mutagenicity I dataset the step-
wise approach was always slightly slower than the direct approach with the worst
case for k = 10. Finally the direct mining of the 1000-best patterns on the CA
vs. CI HIV dataset was 13.41% faster than the stepwise mining. In this case, the
sequence-mining step could raise the threshold to 18.62 only which does not help
much in the next mining step, especially considering the score of the 1000th-best
pattern in LC with 796.82. Furthermore, each step has to rebuild the k-best list
since only the threshold is reused. This can be time consuming and might - as in
this case - have the effect that the stepwise approach is slower than the direct ap-
proach. This could be improved by reusing not only the threshold obtained by a
mining step, but the whole k-best list.

4.4 Running Time Q2

This second question considers the influence of the expressiveness of the pattern
language on the runtime. More precisely: How are the running times distributed
among the steps for mining LS to LT to LC? In principle, mining LS could
increase the threshold tS to such a high level that mining LT using tS is faster
than the mining of LS . The experiments in Table 3 show that this is never the
case. The time spent in the tree mining step is on average 22 times as high as
the sequence mining step. The graph mining step, on the other hand, is never

1 Before it ran out of memory.
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Fig. 3. Threshold vs. evaluated patterns for the stepwise and the direct approach on
HIV CA vs. CM with k = 100. Mining LS (dotted) followed by LT (solid) and then
LC (dashed) evaluates much less patterns than mining LT followed by LC . Mining LC

directly has to evaluate the most patterns.

much more expensive than the tree mining step. We also performed experiments
on itemsets and multi-itemsets, which showed that itemsets were much faster
than multi-itemsets. The results are not listed as other experiments showed that
these features are not competitive.

Table 2. Running times of the stepwise and the direct approach for mining connected
graphs (LC)

Approach k Muta I CA vs CM CACM vs CI CA vs CI CM vs CI CA vs CMCI
direct 1000 0:05.16 >48h 7:48.21 0:19.54 4:07.15 0:23.51

stepwise 1000 0:06.39 0:03.57 5:11.19 0:22.59 3:02.15 0:23.15
direct 10 0:00.12 1:47.25 7:04.48 0:07.42 3:02.26 0:09.31

stepwise 10 0:00.22 0:00.14 0:05.63 0:01.03 0:07.18 0:01.10

Table 3. Running times of the stepwise approach for mining LS , LT , and LC , respec-
tively. (k = 1, 100 are not listed).

Approach k Muta I CA vs CM CACM vs CI CA vs CI CM vs CI CA vs CMCI
LS 1000 00:00.11 00:00.07 00:01.42 00:01.15 00:01.37 00:01.18
LT 1000 00:04.37 00:03.47 05:08.16 00:21.57 02:57.67 00:22.15
LC 1000 00:06.39 00:03.57 05:11:19 00:22.59 03:02.15 00:23.15
LS 10 00:00.03 00:00.04 00:00.56 00:00.36 00:00.57 00:00.38
LT 10 00:00.12 00:00.09 00:03.06 00:01.11 00:04.15 00:01.16
LC 10 00:00.22 00:00.14 00:06.13 00:01.03 00:07.18 00:01.10

4.5 Predictive Performance Q3

A typical usage of patterns found via a data mining approach is to employ
them as features for describing instances to a propositional machine learning
algorithm. Since mining more complex structures requires more time, as can be
seen above, naturally the question arises whether this increase in mining effort
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Table 4. Accuracy results on the HIV and Mutagenicity I datasets

(a) HIV CA vs CM

LI LM LS LT LC k

72.88 74.16 76.78 77.06 77.06
72.88 74.16 76.78 77.06 77.06 1
72.88 74.16 76.78 77.06 77.06
72.88 74.16 76.78 77.06 77.06
72.88 74.16 76.45 76.28 76.28
72.71 74.13 76.35 77.06 77.06 10
72.82 74.16 76.45 76.85 76.85
72.08 73.02 76.52 76.65 76.65
73.05 74.16 77.46 77.06 77.06
71.91 73.49 76.38 77.06 77.06 100
72.72 74.56 77.09 76.72 76.72
69.38 72.21 76.31 76.58 76.58
73.05 75.54 83.21 75.95 75.95
71.91 74.84 81.29 76.52 76.42 1000
72.72 74.50 81.97 75.84 75.81
69.38 72.11 77.83 76.65 76.65

Algorithm

J48
JRip
SVM
NB
J48
JRip
SVM
NB
J48
JRip
SVM
NB
J48
JRip
SVM
NB

(b) Mutagenicity I

k LI LM LS LT LC

60.89 61.15 58.20 58.40 58.40
1 60.89 61.15 58.20 58.40 58.40

60.89 61.15 58.20 58.40 58.40
60.89 61.15 58.20 58.40 58.40
61.40 61.07 70.96 68.55 68.55

10 61.15 60.92 70.96 68.50 68.53
61.43 60.45 70.19 68.52 68.49
61.17 61.06 67.44 59.12 59.12
62.00 65.67 76.37 70.94 70.79

100 61.33 65.11 74.06 70.74 70.89
62.17 59.59 72.39 70.23 70.17
61.21 60.24 70.08 65.67 65.90
62.00 61.30 79.73 74.83 74.68

1000 61.33 60.89 76.40 72.23 71.66
62.17 67.24 80.14 71.24 70.61
61.21 60.80 71.70 57.61 57.33

is matched by an increase of the quality of the description derivable by using
the found patterns (Q3).

The first evaluated setting involved the HIV active and moderately active
datasets. Accuracy estimates are show in Table 4(a). In this table, and all fol-
lowing ones, the best value an algorithm achieves for a given k is shown in bold
numbers. All values that are significantly worse at σ = 5% are italicized. Item-
sets never manage to capture enough information to be useful as features in this
case and multi-itemsets also perform worse than the structured representations
even though the difference is not significant except in the case k = 1000. As
for the structured patterns - sequences, trees, and connected graphs - there is
no significant difference for k = 1, 10, 100. For k = 1000, sequences significantly
outperform trees and graphs except when used with the Näıve Bayes classifier
which is overwhelmed by the number of features.

The second dataset was first used in a machine learning setting in [12]. Accu-
racy results on this dataset are summarized in Table 4(b) Except when only one
feature is used, sequences are the most successful pattern type w.r.t. accuracy
of the learners using those as features. The improvement in comparison to the
other feature classes is significant except for the SVM when k = 100.

On the biodegradability dataset, there is no significant difference in accuracy
for k = 1 and k = 10 as shown in Table 5(a). All representations more com-
plex than pure itemsets perform very similarly to each other for the other two
settings, with the notable differences that the SVM makes far better use of the
sequence-type feature than of tree and graph features for k = 100 and that
trees perform better than graphs in J48 and SVM for k = 1000. Finally, on
the second mutagenicity dataset, for which results are reported in Table 5(b),
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Table 5. Accuracy results on the Biodegradability and Mutagenicity II datasets

(a) Biodegradability

LI LM LS LT LC k

67.05 67.38 65.25 65.25 65.25
67.05 67.38 65.25 65.25 65.25 1
67.05 67.38 65.25 65.25 65.25
67.05 67.38 65.25 65.25 65.25
65.51 68.43 72.42 72.27 72.27
64.45 68.44 74.56 74.42 74.42 10
67.05 67.34 71.96 72.43 72.43
67.05 68.13 74.09 73.95 73.95
65.51 72.58 76.22 71.96 71.81
64.45 76.41 77.89 72.73 72.73 100
67.05 75.32 80.04 71.96 71.81
67.05 69.04 68.93 66.80 66.80
65.51 73.45 74.10 76.07 71.20
64.45 77.45 76.36 78.95 72.42 1000
67.05 74.89 76.08 78.66 73.02
67.05 68.79 64.65 63.13 62.98

Algorithm

J48
JRip
SVM
NB
J48
JRip
SVM
NB
J48
JRip
SVM
NB
J48
JRip
SVM
NB

(b) Mutagenicity II

k LI LM LS LT LC

64.47 64.91 64.32 64.32 64.32
1 64.47 64.91 64.32 64.32 64.32

64.47 64.91 64.32 64.32 64.32
64.47 64.91 64.32 64.32 64.32
65.86 64.91 70.46 70.46 70.46

10 66.08 62.27 70.39 70.39 70.39
65.93 62.79 70.39 70.39 70.39
64.62 64.47 67.82 67.82 67.82
65.86 64.39 70.90 70.39 70.53

100 66.08 64.75 71.48 71.12 71.12
65.93 65.50 72.72 71.71 71.78
64.25 66.08 72.07 71.05 71.05
65.86 65.12 71.63 71.55 72.06

1000 66.08 67.87 74.41 72.95 74.48
65.93 69.14 75.95 74.99 75.13
64.25 64.77 71.26 72.50 72.87

itemsets and multi-itemsets are significantly outperformed by the more complex
representations. These in turn show no clear best or worst language class among
themselves. The results of all experiments are surprising in that the use of more
expressive pattern languages than LS does not seem to pay off in terms of pre-
dictive accuracy. In all settings, sequences were at least as informative as trees
and graphs when representing molecules. Yet sequences are much easier to han-
dle and to compute than trees and graphs. On the other hand, the information
stored in itemsets and multi-itemsets is typically not precise enough to be useful
for a propositional learner. To gain more insight into the underlying reasons for
these findings, we set up a further experiment in which we selected the k = 1000
best patterns in LC∪LM and classified them as (cyclic) graphs, trees, sequences,
multi-itemsets and itemsets.

The two charts in Figure 4 show the distribution of the patterns, as well as the
number of such patterns, their average score, and the standard deviation. Most
of the experiments resulted in a chart similar to the one shown in Figure 4 (right)
where the vast majority are trees, and the best scoring pattern is also a tree.
In two exceptions like in Figure 4 (left), the multisets scored surprisingly well
whereas in most of the other cases no single multiset or itemset ever appeared
among the 1000 best. In two cases, the highest scoring structure was a sequence,
and even though the sequences were much less frequent, they scored comparative
to the trees. Furthermore, graphs (with cycles) usually had very low scores. A
feasible explanation for these results might be in the fact that a graph contains
far more sub-trees than sub-sequences and cyclic sub-graphs, and hence, that
correlated pattern miners have to process much more trees (with similar scores)
than sequences or cyclic graphs.
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Fig. 4. Distribution of the k = 1000 best patterns for Biodegradability (left) and HIV
CA vs. CM (right)

5 Conclusions

We have presented an empirical evaluation of the influence of the expressiveness
of the pattern language on the performance of correlated graph miners. Perhaps
the most surprising result of this study was that the use of more complex patterns
such as cyclic graphs and trees does not necessarily lead to a better accuracy.
Indeed, the best results obtained were by using sequential patterns, which are far
easier to compute. A further result of our investigation was the introduction of a
novel stepwise approach to correlated pattern mining, in which one first searches
for k correlated patterns in a simpler language and then employs the score of
the k-th best pattern as a lower bound for finding patterns at the next level of
expressiveness. This stepwise approach led in virtually all cases to a significant
speed-up, sometimes with a factor of up to 1000.

This work is related to the Quickstart approach by Nijssen and Kok [13]
where a monotone constraint was considered. In this paper we study a branch-
and-bound search using a convex constraint. This leads to further important
differences. In our opinion, a constrained pattern mining algorithm consists of
several elements: an algorithm that determines which candidates should be eval-
uated as it is not known yet if they satisfy the constraint, an algorithm that
removes duplicate candidates and finally an algorithm that performs this eval-
uation. In the Quickstart approach, the last two steps were optimized. In
this paper, we intend to optimize the first part. By considering a set of simple
patterns first, we hope to find a threshold that allows for more pruning. Even
though there were also speed-ups in the Quickstart approach, the magnitude
was certainly not comparable to the factors obtained in correlated pattern min-
ing. Finally, it would even be possible to combine both approaches. Concerning
the influence of the predictive performance, related questions have arisen for in-
stance in the kernel community, cf. [14], where different graph kernels take into
account different types of information. Also, in the chemo-informatics commu-
nity, cf. [15], it is often argued that one should take into account 3D information
about the compounds in addition to the 2D graph structure. Doing this within
our framework would be an interesting question for further research. It would
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also be interesting to repeat our investigation in other domains than computa-
tional chemistry.
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Abstract. We introduce an adaptive prequential learning framework
for Bayesian Network Classifiers which attempts to handle the cost-
performance trade-off and cope with concept drift. Our strategy for incor-
porating new data is based on bias management and gradual adaptation.
Starting with the simple Näıve Bayes, we scale up the complexity by
gradually increasing the maximum number of allowable attribute de-
pendencies, and then by searching for new dependences in the extended
search space. Since updating the structure is a costly task, we use new
data to primarily adapt the parameters and only if this is really neces-
sary, do we adapt the structure. The method for handling concept drift is
based on the Shewhart P-Chart. We evaluated our adaptive algorithms
on artificial domains and benchmark problems and show its advantages
and future applicability in real-world on-line learning systems.

1 Introduction

We consider adaptive learning algorithms forBayesian NetworkClassifiers (BNCs)
in an on-line learning framework. In this framework data arrives at the learning
system sequentially. The actual decision model must first make a prediction and
then update the current model with new data. This philosophy about on-line
learning frameworks has been exposed by Dawid in his prequential approach [6]
for statistical validation of models. An efficient adaptive algorithm in a prequen-
tial learning framework must be able, above all, to improve its predictive accuracy
over time while reducing the cost of adaptation. However, in many real-world situ-
ations it may be difficult to improve and adapt to existing changing environments.
This problem is known as concept drift. In changing environments, learning algo-
rithms should be provided with some control and adaptive mechanisms that try
to adjust quickly to these changes.

The Näıve Bayes classifier (NB) is one of the most used classifiers in real-world
on-line applications mainly due to its effectiveness, simplicity and incremental
nature. NB simplifies learning by assuming that attributes are independent given
the class. However, in practice, the independence assumption is violated which
can lead to a poor predictive performance. We can improve the NB if we trade-
off the bias reduction which leads to the addition of new attribute dependences,
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and, consequently, to the estimation of more parameters, with the variance re-
duction by accurately estimating the parameters. Different classes of BNCs [5]
attempt to reduce the bias of the NB by adding attribute dependences to the
NB structure. Nevertheless, not always do the more complex BNCs outperform
the NB. Increasing complexity decreases bias but increases the variance in the
parameters. These issues are still more challenging in a prequential framework,
where the training data increases with time. In this case, we should adjust the
complexity of BNCs to suit the available data.

In this paper we present the Adaptive Prequential Framework for Supervised
Learning, AdPreqFr4SL, which attempts to handle the cost-performance trade-
off and cope with concept drift. The AdPreqFr4SL strategy for incorporating new
data is based on bias management and gradual adaptation. The motivations for
bias control, along with some results of its application, were first presented in
[3]. In the present work we have integrated more elaborated control tools for
bias management with a method for handling concept drift based on Statistical
Quality Control presented in [2] into the unified framework AdPreqFr4SL.

We chose the class of k-Dependence Bayesian Classifiers (k-DBC) [9] to il-
lustrate our approach. A k-DBC is a Bayesian Network, which contains the
structure of the NB and allows each attribute to have a maximum of k attribute
nodes as parents. This class is very suitable for our proposal. By increasing k
we can obtain classifiers that move smoothly along the spectrum of attribute
dependencies. For instance, NB is a 0-DBC, TAN [5] is a 1-DBC, etc. Instead
of using the learning algorithm proposed in [9] based on the computation of the
conditional mutual information, we use a hill-climbing search procedure due to
its obvious simplicity for computational implementation. The algorithm builds
a k-DBC starting with an NB structure. Then it iteratively adds arcs between
two attributes that result in the maximal improvements in a given score until
there is no more improvement for that score or until it is no possible to add a
new arc.

This paper is organized as follows. In the next section the AdPreqFr4SL is
described. In Section 3 a compact overview of the conducted experiments that
demonstrate the advantages of our adaptive approach is presented. In the last
section we give some conclusions and lines for future work.

2 The Adaptive Prequential Learning Framework

The main environmental assumption that drives the design of the AdPreqFr4SL is
that observations arrive at the learning system not at the same time, which allows
the environment to change over time. Without loss of generality, we assume that
at each time point data arrives in batches B. The main goal is to sequentially
predict the classes of the next batch. Many adaptive systems employ regular
update while new data arrives. The AdPreqFr4SL, instead, is provided with some
controlling mechanisms that try to select the best adaptive actions according
to the current learning goal. To this end, for each batch B of examples the
current hypothesis is used to do prediction, the correct class is observed and
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some performance indicators are assessed. Then, the indicator values are used
to estimate the current system’s state. Finally, the model is adapted according
to the estimated state.

In the AdPreqFr4SL two performance indicators are monitored over time: the
batch error ErrB (the proportion of misclassified examples in one batch) and
the model error ErrS (the proportion of misclassified examples in the total of
the examples that were classified using the same structure), in order to esti-
mate one of the following states: [S1] - IS IMPROVING: the performance is improving;
[S2] - STOP IMPROVING: the performance stops improving in a desirable tempo; [S3] -
CONCEPT DRIFT ALERT: a first alert of concept drift is signaled; [S4] - CONCEPT DRIFT:
there is a gradual concept change; [S5] - CONCEPT SHIFT: there is an abrupt concept
change; [S6] - STABLE PERFORMANCE: the performance reaches a plateau. In the next
subsections we present the adaptive actions and control strategies that we have
adopted in the AdPreqFr4SL for handling the cost-performance trade-off and
concept drift.

2.1 Cost-Performance Management

The adaptation strategy for handling cost-performance is based upon two main
policies: i) bias management - starting with an NB structure, we scale up the
model’s complexity by gradually increasing k and then searching for new at-
tribute dependences in the resulting search space; ii)gradual adaptation - we
define four levels of adaptation so that increasing the level increases its cost. In
the initial level a new model is built using the simple NB. In the first level
only the parameters are updated with new data (optionally we can use the Iter-
ative Bayes [7] for parameter refinement). In the second level the structure is
updated with new data. In the third level, if it is still possible, k is increased
by one, and the current structure is once again adapted.

The rationale is as follows. We initialize k-DBC to the simple NB by set-
ting k = 0. Whenever new data arrives, we first try to improve the NB by
adapting only its parameters. When there is evidence indicating that the per-
formance of the NB stops improving in a desirable tempo, we start adapting the
structure. Only in this case (for k = 0) do we move from the first level to the
third level of adaptation: increment k by one and start searching a 1-DBC us-
ing the hill-climber search procedure only with arc additions. At this time point
we must have more data available which allows the search procedure to find
new 1-dependencies. Next, the algorithm continues to perform only parameter
adaptation. Thus, whenever a new structure is found, the algorithm continues
working from the first level of adaptation, that is, by performing only parameter
adaptation, until there will be again evidence that the performance of the cur-
rent hypothesis stops improving and this moves to the second level: update the
current structure by searching for new attribute dependencies. At this stage and
to correct from previous errors, the search procedure is also allowed to perform
arc deletions. Only if the resulting structure remains the same, do we move to
the third level of adaptation by incrementing k by one and continue searching for
new dependencies, now in an augmented search space. For avoiding k to increase
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unnecessarily, we recover the old value of k whenever the search procedure is not
able to find new dependencies, thus keeping the original search space. Only if an
abrupt concept drift is detected, do we come back to the initial level and build a
new NB using the examples from a short-term memory (see next section). This
adaptation process will continue until it is detected that it does not make more
sense to continue adapting the model. However, we will continue monitoring the
performance. If any significant change in the behaviour is observed, then we will
once again to activate the adaptation procedures.

The control policy defines the criteria for tracking two situations: i) At which
time point do we start adapting the structure?; ii) At which time point do we
stop doing any adaptation? If it is detected that the performance of the current
model no longer improves in a desirable tempo (the state S2), we start adapting
the structure. If it is detected that the performance reaches a plateau (the state
S6), we stop adapting the model. To detect the states S2 and S6, we plot
the values of successive model errors, y(t) = Err

(t)
S , in time order and connect

them by a line, thus obtaining the model-error learning curve (model-LC). We
consider that the state S2 is met if: i) the model-LC starts behaving well [1], i.e,
the curve is convex and monotically non-increasing for a given number of points;
ii) its slope is gentle. Thus, whenever we start using a new structure we will
wait until model-LC starts behaving well and shows only little improvements in
the performance in order to trigger a new structure adaptation. If the structure
does not change after adaptation, we once again look at the model-LC to detect
whether it has already reached its plateau (i.e. S6 is signaled).

The following question thus arises: How does one verify whether the required
criteria are met? From all the explored methods, we empirically found that by
using a method based on the geometrical properties of the model-LC, which
analyzes the graphical behaviour of the most recent q points, we could more
consistently determine discrete convexity and the slope of the model-LC taking
into account the local variance. We obtained the best results by setting q = 7.

As illustrated in Figure 1 we construct a triangle T with the points p1, p4, p7
and use its signed area, A(T ), to test for discrete convexity [8]. The points
p1, p4, p7 are arranged in a convex pattern iff A(T ) is positive. In this case the
path p1 → p4 → p7 is oriented counterclockwise around the triangle. Taking into
account the local variance we consider a convex pattern, if A(T ) > δa where δa

is a very small negative number (our tolerance for convexity). Then, we analyze

Fig. 1. The last seven points p1, p2, ..., p7 in the current model-error curve are analyzed
to determine the existence of a convex pattern and a decreasing trend
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the angles formed between middle segments, � 1 = � p1, p2, p4, � 2 = � p1, p3, p4,
� 3 = � p4, p5, p7 and � 4 = � p4, p6, p7 to determine if the remaining points are
almost colinear given a tolerance δc, where δc is a very small positive number,
that is, if sin(� l) < δc, ∀� l, l = 1, 2, 3, 4. We then use the Sen’s slope estimator
[10] for determining whether there is a non-increasing trend in these observed
points. We consider a non-increasing trend if SenSlope(q) < δs where δs is a
very small positive number. We obtained satisfactory empirical results by set-
ting δa = −0.0001 (our tolerance for convexity), δs = 0.001 (our threshold for
non-increasing trend) and δc = 0.001 (our tolerance for colinearity).

Thus, we consider that the points p1, p2, . . . , p7 are arranged in a convex pat-
tern with a non-increasing trend and gentle slope if for a given positive small
number ε1, the threshold for the gentle slope, the following criterion is met:

δa < A(T ) < ε1 ∧ sin(� l) < δc, ∀� l, l = 1, 2, 3, 4 ∧ SenSlope(7) < δs (1)

We consider that the stopping criterion is met if given a positive small number
ε2, the threshold for the plateau, such that ε2 < ε1, the following criterion is met:

|A(T )| < ε2 ∧ sin(� l) < δc, ∀� l, l = 1, 2, 3, 4 (2)

In addition, we use a heuristic based on the observation of the batch error be-
fore and after the adaptation, which has been demonstrated [3] to be efficient for
an early detection of the point at which we should start adapting the structure.
Whenever we obtain a decrease of the batch error after adaptation, we consider
that the learner is still able to learn using the current structure. Otherwise, if
for a pre-defined number of consecutive times, maxTimes, the batch error does
not decrease after parameter adaptation we assume that increasing the number
of training examples will not result in further improvements on the parameter
estimates and signal the state [S2] .

Figure 2 illustrates the behaviour of the model-LC for one randomly generated
sample of the adult dataset using batches of 100 examples. To serve as a baseline,
we also plot the error rates obtained with the NB and with a 3-DBC (the class-
model with best performance) induced from scratch at each learning step. During
all the learning process the structure changed only five times. The graphical
behavior of the model error neatly corresponds to the detected conditions which
lead to a structure-adaptation action. The k value slowly increases from 0 to 3
until that the stopping criteria is met at t = 120 and the model is not further
adapted with new data.

2.2 Using the P-Chart for Handling Concept-Drift

Concept drift refers to unforeseen changes in the distribution underlying the data
that can also lead to changes in the target concept over time [11]. Several avail-
able concept drift trackers employ different approaches that include some control
strategies in order to decide whether adaptation is really necessary because a
concept change has occurred. To this end, a process that monitors the value of
some performance indicators is implemented. If a concept drift is detected, some
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Fig. 2. Behavior of the model-LC for the adaptive algorithm. Vertical lines indicate the
time points at which the structure changed. On top, the resulting structures with their
corresponding k-DBC class-models are presented.

actions to adapt the model to these changes are taken, which usually lead to
build a new model. Some concept drift trackers are also capable of recognizing
the extent of concept drift. The term concept drift is more oftenly associated to
gradual changes whereas the term concept shift defines abrupt changes.

We integrated into the AdPreqFr4SL a method for handling concept drift [2]
based on a Shewhart P-Chart - an attribute control chart that monitors the
proportion of a dichotomous count variable. We use the P-Chart for monitoring
the batch error ErrB . The values p(t) = Err

(t)
B are plotted on the chart in

time order and connected by a line. The chart has a center line (CL), an upper
control limit (UCL) and an upper warning limit (UWL). If the sample sizes are
large (≥ 30) the sample proportion approaches the Normal distribution with
parameters μ = p ; σ =

√
p(1− p)/n (p is the population proportion). Therefore,

the use of three-sigma control limits is a reasonable choice. Suppose that an
estimate p̂ is obtained from previous data. We can obtain the P-Chart’s lines
as follows: CL = p̂; UCL = p̂ + 3σ; UWL = p̂ + ασ, 0 < α < 3. In this work, we
set α to 2. To better follow the natural behaviour of the learning process we set
the target value p̂ to the minimum value of the current model error ErrS . We
denote it by Errmin. Whenever a new structure S is found, Errmin is initialized
to some big number. Then, at each time step if Err

(t)
S +SErr

(t)
S < Errmin then

Errmin is set to Err
(t)
S , where SErr

(t)
S is its standard deviation.

Thus, at each time point t, p̂ is set to Errmin and the P-Chart’s lines are
computed, accordingly. Then, it is observed where the new proportion p(t) =
Err

(t)
B falls on the P-Chart. If p(t) falls above the UCL, a concept shift is signaled.

If p(t) falls between the UCL and the UWL for the first time, then a concept drift
alert is signaled. Otherwise, if this situation occurs for two or more consecutive
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times then a concept drift is detected. If p(t) falls under UWL we assume that the
learner is in control and then proceed to analyze the behaviour of the model-LC
as described in the previous section.

The adaptive strategy for handling concept drift mainly consists of manipu-
lating a short-term memory (SHORT-MEMORY) to store those examples that we
suspect belongs to a new concept. If a concept shift is detected then all the
examples from the SHORT-MEMORY are used to build a new NB classifier. After-
wards, the SHORT-MEMORY is cleaned for future uses. Whenever a concept drift
alert or concept drift is signaled, the examples of the current batch are added to
the SHORT-MEMORY. However, after signaling a concept drift, the new examples
are not used to update the model in order to force a great degradation of the
performance. This way the P-Chart will more quickly be able to recognize a con-
cept shift and re-build the model. Algorithm 1 depicts the pseudo-code of the
whole algorithm for learning k-DBCs in the AdPreqFr4SL that summarizes all
the above described strategies for handling cost-performance and concept drift.

Algorithm 1. The algorithm for learning k-DBCs in AdPreqFr4SL
Require: A dataset D divided in batches of m examples, a kMax value for the maximum allowable

k, the thresholds: eps1 for the gentle slope and eps2 for the plateau, the number of consecutive
times maxTimes that ErrB does not decrease after parameter adaptation, a boolean variable
bIterativeBayes for using Iterative Bayes or not, a scoring function Score(S,D)

Ensure: A classifier hC = (S, ΘS) belonging to the class of k-DBCs
1: AdaptiveAction(hC, SHORT-MEMORY, INITIAL LEVEL) {build a new NB classifier}
2: for each next batch B of m examples of D do
3: predictions ← predict(B, hC)
4: observed ← getFeedback(B) {get feedback}
5: p(t) ← Err

(t)
B , y(t) ← Err

(t)
S {asses current indicators}

6: Add (t, y(t)) to model-LC
7: state ← getState(p(t), P-Chart){concept drift detection using the P-Chart}
8: if state is CONCEPT SHIFT then
9: Add B to SHORT-MEMORY

10: AdaptiveAction(hC, SHORT-MEMORY, INITIAL LEVEL) {build a NB classifier}
11: Clean SHORT-MEMORY
12: else if state is CONCEPT DRIFT ALERT ∨ CONCEPT DRIFT then
13: Add B to SHORT-MEMORY
14: else
15: Clean SHORT-MEMORY
16: // if state is IN CONTROL then observe the model-LC
17: if model-LC is Convex-NonIncreasing-with-GentleSlope(eps1) then
18: state ← STOPS IMPROVING {conditions 1 are met}
19: else
20: state ← IS IMPROVING
21: if state IS IMPROVING ∨ CONCEPT DRIFT ALERT then
22: AdaptiveAction(hC, B, FIRST LEVEL, bIterativeBayes){update parameters}
23: if consecCounter(Err

tAFTER−ADAP
B ≥ Err

tBEF−ADAP
B ) = maxTimes then

24: state ← STOP IMPROVING
25: if state STOPS IMPROVING then
26: if k > 0 then AdaptiveAction(k-DBC, B, SECOND LEVEL,. . .) {update structure}
27: if (not change(S) ∧ k < Maxk) ∨ k= 0 then
28: AdaptiveAction(hC, B, THIRD LEVEL,k, . . .) {increment k; continue searching}
29: if not change(S) then
30: // verify the stopping criterion
31: if model-LC Has-Plateau(eps2) then
32: stopAdapting ← TRUE; state ← STABLE PERFORMANCE
33: end for
34: return hC
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3 Experimental Evaluation

We carried out a series of experiments for evaluating the AdPreqFr4SL for k-
DBCs, using both, artificially generated datasets and benchmark problems from
the UCI repository. Due to space limitations, we here provide only an overview
of all the conducted experiments and results. A complete description is given in
[4]. We evaluated two versions of adaptive algorithms, Adap1 and Adap2, using
Algorithm 1. Adap2 additionally implements Iterative Bayes (IB). We compared
Adap1 and Adap2 against NB and several k-DBCs (varying k) induced from
scratch, i.e., in each learning step, a batch hill-climber learning procedure was
used to learn a k-DBC from all seen examples. Since learning from scratch use all
the data provided so far, this approach for updating the classifier is essentially
optimal in terms of the quality of the hypotheses it can induce. We set kMax=5
and maxTimes=2. The thresholds eps1 (for the gentle slope) and eps2 (for the
plateau) were set according to the domain’s complexity. Intuitively, we choose
lower thresholds for more complex domains. All the results were obtained as
average values over 10 generated samples. Here we present the results using the
Bayesian score (the marginal likelihood). In [3,4] we give a more in depth study
comparing the performance for different scores.

Fig. 3. Error Rate, Model Error and k-values for UCI’s datasets
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3.1 Evaluation with Benchmark Problems

We here only show the results for three selected datasets from the UCI reposi-
tory: balance, nursery and adult. We set eps1=0.01, eps2=0.001 for balance and
nursery and eps1=0.001, eps2=0.0001 for adult. Figure 3 compares the per-
formance of Adap1 and Adap2 against NB and several k-DBCs induced from
scratch at each time point. In most cases, Adap1 approaches the performance
of the best k-DBC and Adap2 outperforms Adap1. For the balance dataset, the
ErrS approaches 0 and k approaches 3, thus evidencing that Adap1 and Adap2
were able to find structures that represent the existing strong degree of attribute
dependences.

Table 1 helps us to evaluate the performance, complexity and cost of adaptation
per dataset at the last learning step. The results show that both, Adap1 and
Adap2, are able to perform a more artful cost-performance trade-off than non-
adaptive versions. The reduction of the cost of updating is evident if we compare
the small number of adaptations performed on the structure by Adap1 and Adap2
in contrast to the great cost of searching for a new structure at each learning
step. The number of times the structure really changed in the case when a
search procedure was invoked at each point time is very small (e.g. for the
adult this proportion is 8.6/160) thus evidencing that it is more appropriate to
perform adaptations on the structure when there is some accumulated data and
the search procedure is able to find new dependences. Although both, Adap1
and Adap2, show a desirable behaviour, results evidence that Adap2 ensures the
best cost-performance trade-off in these three particular domains: the number
of structure adaptations and the resulting error are smaller. We also observed
that the increasing slope of the k value using Adap2 is more gradual, specially
for more complex domains, thus inducing less complex classifiers than Adap1.
Adap2 can get trapped in less complex structures while reducing the bias on
the parameter estimates [7]. By using AdPreqFr4SL with IB, specially for more
complex domains, we can better trade-off the reduction of the bias resulting

Table 1. Analysis of the Final Performance, Complexity and Cost of Adaptation per
dataset. The column "Last ErrB" shows the error of the last batch of examples,
which was not used to update the classifier. The column "� Add. Arcs" shows the
final number of arcs added to NB. The column "� Str.Adap." shows the total number
of times that a structure-adaptation action was executed. The column "� Str.Chang."
shows the number of times the structure really changed over time.

Balance Nursery Adult
Last � Add. � Str. � Str. Last � Add. � Str � Str Last � Add. � Str � Str

k-DBCs ErrB Arcs Adap. Chang. ErrB Arcs Adap. Chang. ErrB Arcs Adap. Chang.
NB 8.10 − − − 12.00 − − − 16.80 0.0 − −

1-DBC 5.80 3.0 100 11.2 5.80 5.4 128 6.4 14.60 12.0 160 8.6
2-DBC 4.60 5.0 100 17.6 7.40 8.0 128 8.8 14.60 18.0 160 13.4
3-DBC 0.00 6.0 100 18.5 7.20 9.0 128 9.8 14.60 18.0 160 13.2
Best 0.00 6.0 100 18.5 5.80 5.4 128 6.4 14.60 12.0 160 8.6

Adap1 0.30 5.6 4.7 3.2 6.80 8.0 18.8 6.0 13.60 16.8 4.0 3.2
Adap2 0.00 6.0 4.2 3.8 4.40 7.0 11.6 5.2 13.20 12.2 2.6 2.4
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from the assumptions of attribute independence with the reduction of the bias
resulting from the estimation error by also improving the parameter estimates.

3.2 Evaluation with Generated Concept Shift and Drift Scenarios

Five concept shift scenarios (CSSs) and five concept drift scenarios (CDSs) were
generated using randomly generated k-DBCs with 9 binary attributes and a
binary class node for k = 1, 2, 3, 4, 5. Both, CSSs and CDSs represent a sequence
of five different learning contexts, associated to different generative k-DBCs.
Whereas k remains constant in a CSS, we used k-DBCs of increasing k for
generating a CDS (a 1-DBC for the first context, a 2-DBC for the second one,
etc.). In CSSs we simulated four abrupt concept changes by forcing the underlying
k-DBC to change after every 2000 examples. We used batches of 100 examples
for CSSs and batches of 50 examples for CDSs. In CDSs we simulated four gradual
changes by setting the parameters of a simulation procedure [11]: t1 = 37, t2 =
77, t3 = 117, t4 = 157 (the time points at which the concept begins to drift),
Δ = 300 (the drift rate) and α = 3/4 (each 3 examples of the old concept
appears one example of the new concept). We set eps1=0.05 and eps2=0.005
for artificial datasets.

Figure 4 illustrates the adaptive and control strategies in one of generated
CDS. In the first drift phase (between t=37 and t=43) the P-Chart detected
two concept shifts and a new NB was built using the examples of the current
batch. In the second drift phase (between t=77 and t=83) almost all the points
fell above the UWL but very close to the UCL. The P-Chart signaled concept
drift and the adaptation process was temporarily stopping to force the ErrB

to jump outside the UCL. Later, at t=83, when a concept shift was detected,
all the examples stored in the SHORT-MEMORY were used to build a new NB. For

Fig. 4. The P-Chart(on the left) and the model error ErrS (on the right) for a gen-
erated CSS. Parallel light-grey dotted lines on the P-Chart indicate the beginning and
the end of each drift phase. Vertical light-grey dotted lines and black dashed lines on
the model-error’s figure indicate the time points at which the current structure was
adapted or rebuilt, respectively; and vertical dark-grey dotted lines, the time points
at which the adaptation process was stopped.In the top, the resulting structures with
their corresponding k-DBC class-models are presented.
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the remaining drift phases our detection method using P-Chart also worked as
expected. As a result, the structure was rebuilt five times, at time points that
belong to the drift phases. Note that the complexity of the induced k-DBCs
increased from context to context: in the first context the resulting k-DBC is a
1-DBC, in the third - a 3-DBC, in the fourth - a 4-DBC, in the last context it is
a 4-DBC too (searching for more complex structures can require more training
data). Only in the second context the NB structure was not modified since the
adaptation process was stopped early. However, the model error showed a good
behaviour in this context.

Figure 5 compares the performance over time of all the algorithms in the CSS
associated to a 2-DBC (CS-II) and one CDS scenario (CD-I). Results evidence
that significant improvements in the performance are achieved by using adaptive
algorithms instead of their non-adaptive versions. After a concept drift occurs,
the performance of all the algorithms suffers a significant deterioration. However,
Adap1 and Adap2 show a good recoverability capability and are able to control
the performance, trying to improve it back to a level, that even approaches the
performance of the true model. In drift phases, the k value falls to 0, which
evidences that a concept shift has been detected and a new NB has been built.
Results also evidence that adaptive algorithms approach the appropriate class-
model associated to each learning context. The k value approaches 2 for all the
learning contexts in CS-II while it increases from context to context in CD-I.

Fig. 5. Error Rate, Model Error and k-values for CS-II and CD-I

4 Conclusions and Future Work

We have presented the AdPreqFr4SL, which attempts to handle cost vs. per-
formance and cope with concept drift. Instead of selecting a particular class of
BNCs and using it during all the learning process, we propose to use the class
of k-DBCs and start with the simple NB by setting k = 0. Then, we use simple
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control strategies to decide when to do the next move in the spectrum of at-
tribute dependencies (by gradually increasing k) and to start searching for new
dependences. As a result, our strategy leads to the scaling up of the model’s
complexity slowly enough so that the use of more training data will reduce bias
at a rate that also reduces variance and consequently the classification error.
This bias control leads to the selection of the optimal class-model for the current
training data (i.e. the optimal k value), thus avoiding overfitting or underfitting
of the current model to the actual data. Since updating the structure is a costly
task, we reduce the cost of updating during the whole learning process by first
adapting parameters. We adapt the structure only when there is evidence that
the performance stops improving in a desirable tempo. The AdPreqFr4SL also
includes a method for handling concept drift based on the P-Chart, which has
been demonstrated to be efficient for recognizing concept changes. Since NB is
one of the most used classifiers in real-world on-line applications and results ev-
idence significant improvements of the NB over time, obvious topic for this line
of investigation include the application of the proposed AdPreqFr4SL framework
to real-world on-line learning systems.
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Abstract. Classifying large datasets without any a-priori information
poses a problem in many tasks. Especially in the field of bioinformatics,
often huge unlabeled datasets have to be explored mostly manually by a
biology expert. In this work we consider an application that is motivated
by the development of high-throughput microscope screening cameras.
These devices are able to produce hundreds of thousands of images per
day. We propose a new adaptive active classification scheme which estab-
lishes ties between the two opposing concepts of unsupervised clustering
of the underlying data and the supervised task of classification. Based on
Fuzzy c-means clustering and Learning Vector Quantization, the scheme
allows for an initial clustering of large datasets and subsequently for the
adjustment of the classification based on a small number of carefully cho-
sen examples. Motivated by the concept of active learning, the learner
tries to query the most informative examples in the learning process and
therefore keeps the costs for supervision at a low level. We compare our
approach to Learning Vector Quantization with random selection and
Support Vector Machines with Active Learning on several datasets.

1 Introduction

Traditionally, a classifier is built on a given set of labeled training data. This
is known as supervised learning, as the classifier gets supervision in the form of
labeled instances. This can be very useful in many settings - however, sometimes
a large pool of unlabeled data is available and the cost of determining the class
label for all these examples is prohibitively high. An example for such a setting
may be the categorization of web pages, where we have a small set of labeled
webpages and a large set of unlabeled examples.

One traditional technique to make use of unlabeled data is clustering - group-
ing objects that are similar to each other. It is classically used to reveal the
underlying structure of the given data. The most important advantage of this
method is that it can be used without any supervision by the user. This technique
is known as unsupervised learning.

There are also semi-supervised learning techniques that take advantage of a
small pool of labeled examples that help to guide the algorithm; they are still
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influenced by the unlabeled data. Examples for techniques that use a small set
of labeled examples in clustering can be found in [15] and [1].

A more recent approach is the concept of active learning [4]. Active learning
handles the setting where a large pool of unlabeled samples is available and
where we have access to a (usually noiseless) oracle, often a human expert, that
can determine the class label of an instance. The examples to query are chosen
by the learner with a certain strategy so as to optimize the prediction accuracy
while at the same time keeping the number of queries low.

In this work, we consider a more special setting that is based on the clas-
sification of cell assay images (see Section 4). In our scenario, a large number
of unlabeled images of cell assays are available, whereas we only have a human
biology expert who is able to provide us with class labels for each cell image.

As we do not have any labeled instances at the beginning, we introduce a new
approach that establishes ties between the opposed methods of unsupervised
and supervised learning. First, the dataset is explored to find the groupings
(hopefully related to possible clusters of the same class) whereas in the second
step, the accuracy of the classifier is optimized by querying “useful” examples.

In Section 2, we recapitulate the concept of active learning. Section 3 describes
the Fuzzy c-means algorithm with noise detection and the Learning Vector Quan-
tization algorithm, which formed the foundation for our proposed adaptive active
clustering scheme that is described in more detail at the end of this section. A
useful application for this scheme – mining of cell assay images – is explained
in Section 4. We study the behavior of our algorithm and compare it to other
methods in Section 5, before we draw conclusions in Section 6.

2 State of the Art

In many classification tasks it is common that a large pool of unlabeled examples
U is available whereas the cost of getting a label for an example is high. The
concept of active learning [4] tackles this problem by enabling a learner to pose
specific queries, chosen from an unlabeled dataset. In this setting, we assume
that we have access to a noiseless oracle that is able to predict the class label
of a certain sample. Given an unlabeled dataset U , a labeled dataset L and
a set of possible labels C, we can describe an active learner as a tuple (f, q).
f : L ∪ U �→ C is the classifier, trained on the labeled (and sometimes also the
unlabeled) data. The query function q makes a decision based on the currently
labeled samples, which examples from U should be chosen for labeling. The
active learner returns a new classifier f ′ after each pool query or a fixed number
of pool queries.

Many active learning strategies for different kinds of algorithms exist. In [4],
a selective sampling is performed according to where the most general and the
most specific hypotheses disagree. The hypotheses were implemented using feed-
forward neural networks with backpropagation. Active Learning with Support
Vector Machines (SVM) has also become very popular. The expensive learn-
ing process for the SVM can be reduced by querying examples with a certain
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strategy. In [16], the query function chooses the next unlabeled data point closest
to the decision hyperplane in the kernel induced space. Support Vector Machines
with active learning have been widely used for image retrieval problems [12] [17]
or in the drug discovery process [18]. However, they require at least some la-
beled examples from the start, which usually results in some randomly chosen
examples to be queried, which is rather inefficient.

To make use of the underlying distribution of the given unlabeled data, we
use an approach that clusters the data. To date, research on approaches that
combine clustering and active learning has been sparse.

In [1], a clustering of the dataset is obtained by first exploring the dataset with
a Farthest-First-Traversal and providing must-link and cannot-link constraints.
In the second Consolidate-phase, the initial neighborhoods are stabilized by pick-
ing new examples randomly from the dataset and again by providing constraints
for a pair of data points.

In [7], an approach for active semi-supervised clustering for image database
categorization is investigated. It includes a cost-factor for violating pairwise con-
straints in the objective function of the Fuzzy c-means algorithm. The active
selection of constraints looks for samples at the border of the least well-defined
cluster in the current iteration.

However, our approach differs from the others in the way that the data is
preclustered before supervision enhances the classification accuracy. Thus, our
scheme is able to first explore and later finetune the classification of a large
unlabeled dataset in an efficient and accurate way.

3 Active Classification

In this section,wepresentournewactive classificationscheme.Startingwitha short
revision of theFuzzy c-means algorithm(withnoise detection) in 3.1and theLearn-
ing Vector Quantization (LVQ) algorithm in 3.2, we propose a query function in 3.3
and put the pieces together for our adaptive active classification scheme in 3.4.

3.1 Fuzzy c-Means with Noise Detection

The Fuzzy c-means (FCM) algorithm [2] is a well-known unsupervised learning
technique that can be used to reveal the underlying structure of the data based
on a similarity measure. Fuzzy clustering allows each data point to belong to
several clusters, with a degree of membership to each one. We use the extended
version from [5] for the added detection of noise.

Let T = �xi, i = 1, . . . , |T | be a set of feature vectors for the data items
to be clustered, W = �wk, k = 1, . . . , c a set of c clusters. V is the matrix
with coefficients where vi,k denotes the membership of �xi to cluster k. Given a
distance function d, the fuzzy c-means algorithm with noise detection iteratively
minimizes the following objective function with respect to v and w:

Jm =
|T |∑
i=1

c∑
k=1

vm
i,kd(�wk, �xi)2 + δ2

|T |∑
i=1

(
1−

c∑
k=1

vi,k

)2

. (1)
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m ∈ (1,∞) is the fuzzification parameter and indicates to what extent the
clusters are allowed to overlap each other. The first term corresponds to the
normal fuzzy c-means objective function, whereas the second term arises from
the noise cluster. δ is the distance from every data point to the auxiliary noise
cluster (thus, there are c + 1 cluster with the extra cluster serving as the noise
cluster). This distance can either be fixed or updated in each iteration according
to the average interpoint distances. Objects that are not close to any of the
cluster centers �wk are therefore detected as having a high membership to the
noise cluster. Jm is subject to minimization under the constraint

∀i : 0 ≤
c∑

k=1

vi,k ≤ 1. (2)

FCM is often used when there is no a-priori information available and thus
can serve as an overview technique. Based on the prototypes obtained from the
FCM algorithm, we can classify the dataset by first querying the class label for
each cluster prototype and then by assigning each data point the class label of
the closest prototype. A common problem is that the cluster structure does not
necessarily correspond to the distribution of the classes in the dataset. Therefore,
we have to update the cluster prototypes subsequently. As the fuzzy c-means
algorithm does not provide any way to do this, we use the Learning Vector
Quantization algorithm for this task, which is introduced in the next section.

3.2 Learning Vector Quantization

Learning Vector Quantization [11] is a so-called competitive learning method.
The algorithm works as follows: for each training pattern, the nearest prototype
is identified and updated. The update depends on the class label of the prototype
and the training pattern. If they possess the same class label, the prototype is
moved closer to the pattern, otherwise it is moved away. The learning rate ε
controls the movement of the prototypes. The learning rate is decreased during
the learning phase, a technique known as simulated annealing [10]. The LVQ
algorithm terminates if the prototypes stop changing significantly.

One basic requirement in the LVQ algorithm is that we can provide a class
label for each training point �xi that is randomly sampled. We assume that the
training set is unlabeled – however an expert can provide us with class labels for
some selected examples. As we can only label a small set of examples, we need
to optimize the queries with a strategy to boost the classification accuracy while
keeping the number of queries at a low level. In the next section, we propose a
query function that attempts to solve this problem.

3.3 Selection of Patterns to Query

The selection of patterns is of particular importance as it influences the per-
formance of the classification. Assuming access to a noiseless oracle it is vital
to gain as much information as possible from the smallest possible number of
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examples. We propose a sampling scheme that covers two aspects: exploration
and exploitation. This coincides with the ideas proposed in [14] that an active
learning scheme should not only refine the decision boundaries but also needs
to verify the current hypothesis. The prior data distribution plays an important
role. In [3] the authors propose to minimize the expected error of the learner:∫

x

ET

[
(ŷ(x; D)− y(x))2|x

]
P (x)dx (3)

where ET denotes the expectation over P (y|x) and ŷ(x; D) the learner’s out-
put on input x given training set D. If we act on the assumption that the
underlying structure found by the FCM algorithm already inheres an approxi-
mate categorization, we can select further examples by querying data points at
the classification boundaries. That means we approximately take into account
the prior data distribution P (x).

Exploration. In order to have information about the general class label of
the cluster itself that represents our current hypothesis, we perform a technique
known as Cluster Mean selection [6]. Each cluster is split into subclusters. Sub-
sequently, the nearest neighbor of each subcluster prototype is selected for the
query procedure. If a subcluster is not homogeneous – meaning, the labels of the
subclusters in the current cluster are different – this subcluster is split up again
until the labels are homogeneous or we have reached a given recursion depth.

Exploitation. We assume that the most informative data points lie between
clusters of different classes that are not well separated from each other. We call
these regions areas of possible confusion. This coincides with the findings and
results in [6] and [13].

To identify the data points that lie on the frontier between two clusters, we
propose a new procedure that is easily applicable in the fuzzy setting. Rather
than dynamically choosing only one example for the labeling procedure in each
step (which would make it too slow), we focus on a selection technique that
selects a whole batch of N samples to be labeled. Note that a data item �xi is
considered as belonging to cluster k if vi,k is the highest among its membership
values. If we consider the data points between two clusters, they must have an
almost equal membership to both of them. The selection is performed in two
steps: first, all data points are ranked according to their memberships to cluster
prototypes with different classes. Then, the most diverse examples are chosen
from this pool of examples. The ranking is based on the fuzzy memberships and
can be expressed for each data point �xi as follows:

Rank(�xi) = 1− (min |vi,k − vi,l|) ∀k, l = 1, . . . , c ∧ k �= l (4)

Note that we also take into account the class label of each cluster. Only if the
clusters correspond to different classes, the rank is computed. After all data
points have been ranked, we can select a subset with high ranks to perform the
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next step: diversity selection. This prevents the active clustering scheme from
choosing points that are too close to each other (and therefore are altogether
not that interesting). We refer to the farthest-first-traversal [8] usually used in
clustering. It selects the most diverse examples by choosing the first point at
random and the next points as farthest away from the current set of selected
instances. The distance d from a data point x to the set S is defined as d(S, x) =
miny∈S d(x, y), known as the min-max-distance.

3.4 Adaptive Active Classification

Our adaptive active classification procedure is based on a combination of the
techniques mentioned above. All steps are listed in Algorithm 1. We start to
cluster our dataset with the fuzzy c-means algorithm, because we expect dense
regions in the feature space to occur which are likely to bear the same class
label. Therefore, the fuzzy c-means algorithm should give us a good initializa-
tion and prevents us from labeling unnecessary instances in the first querying
step. The noise detection in the clustering procedure serves the same purpose:
rare data points that represent borderline cases should not be selected, as these
noise labels would influence classification in a negative way. Furthermore, these
samples would be useless for classification. Note that in this way we have the
possibility to present strange cases to the user, which is often also of interest.
After a batch of N examples has been selected from within each cluster and at
the borders of the clusters, the user interaction takes place: the expert has to
label the selected examples. The newly labeled samples are then added to the
current set of labeled samples L. After this step, the cluster prototypes can be
moved based on the training set L.

Algorithm 1. Adaptive Active Clustering Procedure
1: L ← 0
2: Perform the fuzzy c-means algorithm with noise detection (unsupervised).
3: Filter out data points belonging to noise cluster.
4: while Classification accuracy not satisfactory do
5: Select N training examples within the clusters and at the borders.
6: Ask the user for the labels of these samples, add them to L.
7: Move the prototypes according to L (supervised).
8: Decrease the learning rate ε.
9: end while

One open question is when to stop the movement of the prototypes. The
simulated annealing in the LVQ algorithm will stop the movement after a certain
number of iterations. However, an acceptable solution may be found earlier,
which is why we propose further stopping criteria:

Validity Measures: Such measures can give us information on the quality of
the clustering [19]. We employ the within cluster variation and the between
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cluster variation as an indicator. This descriptor can be useful for the initial
selection of attributes. Naturally, the significance of this method decreases
with the proceeding steps of labeling and adaptation of the cluster proto-
types.

Classification Gradient: We can make use of the already labeled examples
to compare the previous to the newly obtained results. After the labels of
the samples inside and between the clusters have been obtained, the cluster
prototypes are moved. The new classification of the dataset is derived by
assigning to each data point the class of its closest cluster prototype. By
comparing the labels given by the user to the newly obtained labels from
the classification, we can calculate the ratio of the number of correctly labeled
samples to the number of falsely labeled examples.

Tracking: Another indicator for acceptable classification accuracy is to track the
movement of the cluster prototypes. If they stop moving because new examples
do not augment the current classification, we can stop the procedure.

Visual Inspection: If the data points are linked to images (as in the setting
we describe in Section 4), we can make use of this additional information.
Instead of presenting the numerical features, we select the corresponding
image of the data tuple that is closest to the cluster prototype. We display the
images with the highest membership to the actual cluster and the samples
at the boundary between two clusters if they are in different classes. The
decision whether the classification accuracy needs improvement can be made
by the user based on this visual inspection.

4 Application: Cell Assay Mining

The development of high throughput imaging instruments, e.g. fluorescence mi-
croscope cameras, resulted in them becoming a promising tool to study the effect
of drug candidates on different cell types. These devices are able to produce hun-
dreds of thousands of images per day.

The goal of the cell assay image mining is to label a few selected cell images by
hand and to automatically label the vast majority of the images afterwards. In
order to obtain a classification of one image, it is segmented into small subimages,
each containing one cell of the original image. The segmentation allows us to
consider the cells separately in order to distinguish between different reactions
of cells in the same image. When most of the small subimages are classified, a
classification of the original image can be made by a majority decision.

Our Cell Assay Image Mining System consists of three major elements: the
segmentation module, the feature extraction module, and the classification ele-
ment. Obviously the number of data points is very large; because we segment
thousands of images into small subimages, we reach an order of millions of im-
ages. This dataset is an ideal instance for an active learning scheme. In this
setting, the oracle is represented by a biology expert who is able to provide a
class label for a cell image that is shown to him.
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Fig. 1. Error plot using different sampling strategies for 1 pattern per time

The classification of new images is obtained by classifying each individual cell
within the given image. Each cell is assigned to a cluster and its corresponding
class. The proportion of the distribution of the different classes is the decisive
factor for classifying the whole image. If a clear majority decision can be made,
the image is not considered further. Borderline cases with equal distributions of
classes are sorted into a special container to be assessed manually by the biology
expert. It becomes apparent that this approach allows for a rather high fault
tolerance, as a human will have no objections to label a few images by hand
rather than to risk a misclassification.

5 Experimental Results

To demonstrate the behavior of our adaptive active classification scheme, we
first want to show the behavior of our algorithm on artificial data; in the second
section we show examples with real world cell image data.

5.1 Artificial Data

The artifical data used in this section is a 2-dimensional dataset consisting of
several classes that overlap in the feature space. The class distribution is skewed,
taking arbitrary shapes.

In the first setting, we compare our approach to random selection usually
used in the LVQ algorithm. As our prototypes are all well initialized, we omit
the exploration step (the initial Fuzzy c-means (sub)clustering and labeling) and
only focus on the exploitation step of our active classification scheme.

The query function we introduced prevents the LVQ algorithm from choosing
instances that are not relevant for classification. The error plot in Figure 1
shows that the active selection leads to a significantly faster convergence of the
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Fig. 2. Classification error of our active classification scheme against active Support
Vector Machine on the two-class problem

classification, especially at the first iterations. This is exactly our goal as we
want to keep the user interaction at a low level.

Another issue that we want to take a look at is the benefit of batch sampling.
One could argue that it is enough to determine the most interesting point at
each iteration and then to move the prototypes. We perform a batch sampling
that allows a diversity selection to be carried out for performance reasons as
well. The benefit of batch sampling is demonstrated in Figure 3, where we plot
the error in percent for sampling just one data point at each iteration versus
sampling multiple points in each iteration. In fact, the single sampling approach
performs much worse than batch selection in this case.

5.2 Cell Assay Image Data

As the cell image data we use is confidential, we show results on a different
dataset from the same application area from the NISIS pap-smear competi-
tion [9]. The task is to classify pre-stages of cervical cancer in cells before they
progress to invasive carcinoma. The data consist of 917 images of Pap-smear
cells, classified carefully by cyto-technicians and doctors. Each single cell image
is described by 20 numerical features, and the cells fall into 7 classes. A basic
data analysis [9] includes linear classification results, in order to provide lower
bounds on the acceptable performance of other classifiers. We compared our ap-
proach to an approach with a Support Vector Machine with active learning [16].
However, note that the active SVM is initialized differently by choosing random
examples from each class. In our setting of cell assay image mining, where we
have no labeled instances at the beginning, this step would not be possible, and
a random initialization of the SVM would increase the number of queries for
the active SVM significantly. Note also, that the performance of the active SVM
depends heavily on the chosen kernel function. We used a polynomial kernel,
with which the active SVM performed best.
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Fig. 4. Classification error of our active classification scheme against active Support
Vector Machine on the seven-class problem

The original pap-smear cell dataset with 7 classes can be transformed into
a 2-class problem. The results of the comparison between our scheme and the
active SVM are shown in Figure 2. The classification error of the linear classifier
(trained on 90% of the data) is approximately 10%. As can be seen, both clas-
sifiers can reach this performance, the active SVM reaches a classification error
of approximately 6% after approximately 600 queries. Our adaptive active clas-
sification scheme reaches an error of approximately 11% on the data, however it
reaches this performance considerably faster.

On the original 7-class problem, we compared our scheme to active SVM after
300 steps. Since SVMs built binary classifiers, for each class an independent
SVM has to be trained against all other classes. Therefore computation for the
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optimization of the SVM was not feasible with more steps. Naturally, the batch
size of queries for the active SVM is much higher than for our scheme, as we
need examples for all classes in each iteration. The results of the comparison can
be seen in Figure 4. The classification error of the linear classifier has been given
with approximately 40%. Neither the SVM nor our scheme reach this accuracy
after 300 queries. The active SVM has an error of approximately 45% whereas
our scheme reaches approximately 56%.

From these results we conclude, that our adaptive active classification scheme
is a promising approach to tackle the problem of cell assay classification. Its
performance is superior to random selection and comparable with a Support
Vector Machine with Active Learning on the two-class problem. For the multi-
class problem performance is still acceptable but lower than the active SVM.
However, the active SVM requires carefully chosen kernels and some pre-labeled
examples. Our approach is also computationally more efficient, which is essential
for our application where we need to classify tens of millions of cell images.

6 Conclusions

In this work, we have addressed the problem of classifying a large dataset when
only a few labeled examples can be provided by the user. We have introduced
a new adaptive active classification scheme that starts with the fuzzy c-means
algorithm for an initial clustering. The classification of the dataset is obtained by
labeling the cluster prototypes and assigning the label of the closest prototype
to all data points. We have proposed to move the cluster prototypes, similar to
the Learning Vector Quantization (LVQ) method to obtain results closer to the
expectation of the user. From the unlabeled pool of instances, new examples are
chosen by a query function that makes use of the fuzzy memberships to the clus-
ter prototypes combined with a diversity selection. Based on the labels of the se-
lected examples at the borders between clusters and the labeled examples inside
clusters, the prototypes are moved. We have shown that the misclassification rate
can be improved more quickly. We have discussed an application in the mining of
cell assay images, where the data often inherits the aforementioned properties.
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Graphs from Ranking Preferences
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Abstract. Semi-structured entity-relation (ER) data graphs have di-
verse node and edge types representing entities (paper, person, com-
pany) and relations (wrote, works for). In addition, nodes contain text
snippets. Extending from vector-space information retrieval, we wish to
automatically learn ranking function for searching such typed graphs.
User input is in the form of a partial preference order between pairs of
nodes, associated with a query. We present a unified model for rank-
ing in ER graphs, and propose an algorithm to learn the parameters of
the model. Experiments with carefully-controlled synthetic data as well
as real data (garnered using CiteSeer, DBLP and Google Scholar) show
that our algorithm can satisfy training preferences and generalize to test
preferences, and estimate meaningful model parameters that represent
the relative importance of ER types.

1 Introduction

There is much recent interest [12,14,1] in learning to order entities represented by
feature vectors, given a partial order ≺ involving some of the entities. The order
is defined by a scoring function whose parameters have to be learned. A popular
scoring function, suitable for ranking documents in Information Retrieval (IR),
is an inner product β′xi between the feature vector xi representing entity i and
an estimated parameter vector β; if i ≺ j, we want β′xi ≤ β′xj .

Increasingly, documents are not isolated sequences of words, but are intercon-
nected through a network. This is true not only of the Web, where hyperlinks
greatly assist ranking [5,15], but also of entity-relationship (ER) graphs [4,2]
and XML data [10] where nodes represent entities with textual attributes and
edges represent diverse relations. A sample ER graph is shown in Fig. 1. Activa-
tion spreading or Pagerank-like Markovian random walks are often used to score
nodes given a query. Typically, a database administrator has to assign and/or
tune edge weights, which are used to bias the walks or activation propagation.

In Section 2 we will review a number of efforts to learn some of the parameters
of the Markov walk system, most typically via heuristic search [17], quadratic
programs [20] or local hill-climbing [7,9].

To our knowledge, no single existing approach covers the scenario we address
in Section 3: User preference is provided as ≺ (not as absolute score targets
� Contact author.
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Fig. 1. ER graph with diverse node
and edge types

Fig. 2. Typed graph with word nodes

as in some previous work), and ranking is query-specific. We must learn to
combine information from feature vectors associated with nodes as well as edge
types to output a total order that agrees well with ≺ and generalizes to unseen
preferences. As a by-product we learn a notion of relative conductivity of different
edge types.

In Section 4 we carefully evaluate our proposed algorithm using synthetic data
as well as real data from DBLP, CiteSeer and Google Scholar. Unlike some of
the earlier work, we give a very detailed account of loss functions, constraints
on parameters and model parsimony, the nature of the optimization surface and
parameter search techniques. We will release our code and data in the public
domain [16].

2 Related Work

Learning to rank feature vectors: Learning to rank items represented by feature
vectors from partial orders or point-scale training input (ordinal regression) is
well-explored in machine learning [12,14,1]. In RankSVM [14], a slack variable
sij ≥ 0 is introduced for each constraint i ≺ j, and the preference is expressed
as β′xj + sij ≥ β′xi + 1, or, equivalently, sij ≥ max{0, 1 − (β′xj − β′xi)} =
hinge(1+β′xi−β′xj), where hinge(y) = max{0, y} is the classic hinge loss. The
objective is to minimize β′β + B

∑
i≺j sij , where B is a magic parameter that

trades off the norm of β against the severity of training set errors. Summarizing,
RankSVM seeks to minimize β′β + B

∑
i≺j hinge(1 + β′xi− β′xj), which can be

done using standard quadratic programming tools. However, observe that the
training set error is just

∑
i≺j step(β′xi− β′xj), where step(y) = y > 0 . ( I is

1 if condition I is true and 0 otherwise.) RankSVM upper bounds the training
error with

∑
i≺j hinge(1 + β′xi − β′xj), which is more amenable to quadratic

optimization.

Pagerank basics: We review the “random surfer” model of Pagerank [5] briefly.
Items are now nodes in a graph G = (V, E), not feature vectors. In the steady
state, the random surfer is at node j with probability pj =

∑
i pip(j|i). If we

write p(j|i) as a transition or conductance matrix C, the row vector p solves
p = Cp. C is designed as
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C(j, i) =

{
α (i,j)∈E

OutDegree(i) + (1 − α)rj , i �∈ leaf(V )
rj , otherwise

(UnweightedConductance)

leaf(V ) is the set of dead-end nodes without outlinks. The two design variables
are α, the probability of walking to a neighbor instead of jumping to a random
node; and r = (rj), the teleport or personalization vector, which, in ordinary
Pagerank, is set uniformly to (1/n, . . . , 1/n) where n = |V |. With r set thus, p
depends only on the structure of G and the value of α.

Follow-up work on Pagerank has attempted to modify the teleport vector r to
“personalize” the scores heuristically, based on topics [11], words [18,2], or user
preferences on graph nodes [13], but the transitions are designed by hand, not
learnt from preference data.

Learning link-based ranking: Recently there have been efforts to learn r and
even C automatically. Tsoi et al. [20] used a quadratic programming approach
to optimize only the teleport vector r in (UnweightedConductance), but their
formulation had only one kind of edges. Chang et al. [7] proposed tuning edge
weights for HITS [15] using relevance feedback without a notion of edge types.
Nie et al. [17] tried local search exhaustively over each edge type. Diligenti
et al. [9] fit edge weights using back-propagation in a neural network, in case
there are known absolute target scores for a few specific pages. In applications, it
is easier to collect partial orders between nodes rather than absolute scores. None
of the above approaches combine query and per-node feature vectors with link
information.

Combining links and text in ranking: Pagerank [5] is precomputed on the entire
Web graph and combined with text-based scores at query time in undocumented
and proprietary ways. In HITS [15], query keywords drive a heuristic procedure
for collecting a limited subgraph of the Web, which is then scored. We know of
only a few attempts to combine link and text information for ranking (for the
classification task much more is known) in a unified, principled manner. Cohn
and Hofmann [8] propose an elegant joint generative model combining text and
links, but leave the application to search and ranking unspecified. Silva et al. [19]
extend Turtle and Croft’s approach to IR scoring using Bayesian networks [21] to
include link information, but as precomputed scores from standard HITS—the
learning is limited to the Bayesian network and there is no learning associated
with hyperlink edges.

3 Learning Markov Parameters from Preferences

We are given a directed graph G = (V, E). Edge (i, j) has type t(i, j) belonging
to a set of types numbered 1, . . . , T . Each type t has an associated importance
represented by a weight β(t). Thus, edge (i, j) has weight β(t(i, j)). We will
require that our learning algorithm keep these weights positive, to ensure that
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the graph topology is not altered by effectively erasing these edges. We will
revisit this issue in Section 3.4.

(UnweightedConductance) is modified to use weights as follows. As before,
columns are source nodes and rows are destination nodes. Each column adds up
to 1. Teleport is handled by adding a dummy node d to the graph, connecting
each node i ∈ V to d and back again, i.e., edges (i, d) and (d, i).

C(j, i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i �= d, j �= d, i ∈ leaf(V )
α β(t(i,j))∑

j′ β(t(i,j′)) , i �= d, j �= d, i �∈ leaf(V )

1, i �= d, j = d, i ∈ leaf(V )
1− α, i �= d, j = d, i �∈ leaf(V )
rj i = d, j �= d

0, i = d, j = d

(WeightedConductance)

Here “i ∈ leaf(V )” means i has no outlinks in G. The Pagerank vector p ∈
(|V |+1)×1 for a given C satisfies p = C p. In addition, we wish p to satisfy ≺,

i.e., for each i ≺ j, we must have pi ≤ pj . Unfortunately, searching over feasible
values of both β and p together will introduce problematic quadratic constraints,
thanks to the requirement p = C p.

3.1 Truncating the Recursion

To make the learning problem manageable, we truncate the recursion. In prac-
tice, the Pagerank vector is frequently computed via power iteration, by initial-
izing p = p0 = 1(|V |+1)×1/(|V |+1) and iterating p ← Cp until convergence. The
number of iterations needed, which we call the horizon H , depends strongly on
α but is less sensitive to other aspects of C, and typically grows slowly with the
size of the graph. As we shall see, p = CHp0 is often an excellent approximation,
even for modest values of H (10–50). Therefore, the problem reduces to looking
for β such that, for each i ≺ j, (CH p0)i ≤ (CH p0)j . Although we describe our
learning procedure in terms of a fixed H , in an implementation we need not pick
a fixed horizon, but iterate until a specific error tolerance is satisfied.

3.2 Choice of Loss Function

Next we will look at various choices of the loss function. We need to approximate∑
i≺j step((CH p0)i − (CH p0)j). Because ‖p0‖1 = 1 and columns of C add up

to 1, ‖p‖1 = 1 as well. Therefore −1 ≤ (CH p0)i − (CH p0)j ≤ 1, and thus
picking loss(y) = hinge(1+ y) is meaningless because we end up just minimizing∑

i≺j(1+(CH p0)i−(CH p0)j) where a satisfied constraint contributes a negative
amount to the sum.

(Note that this is a non-issue for RankSVM because there, ‖β‖2 can be inflated
by the optimizer to prevail over these effects. Moreover, if the training input
comprises absolute score targets [9] for nodes, rather than the more realistic
partial order preferences, this problem does not arise.)
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In optimizing conditional models, it is very common to replace the hinge loss
with a “soft” hinge loss of the form log(1 + ey), which asymptotes to the hinge
loss for large |y|. Yet another possibility is to directly approximate the step
function step(y) with the logit function logit(y) = 1/(1 + e−y). Unfortunately,
neither soft hinge nor logit works for us. A detailed study showed that the reason
is that they are both positive at y = 0 (and small negative values), adding a
“noise floor” to the objective even for satisfied preferences, making it very hard
for the optimizer to find a reliable gradient. It is very important that loss(y) is
exactly zero for y ≤ 0. After quite some experimentation we picked the Huber
loss with window W given by

huber(y) =

⎧⎪⎨⎪⎩
0, y ≤ 0
y2/(2W ), y ∈ (0, W ]
y −W/2, W < y

; huber′(y) =

⎧⎪⎨⎪⎩
0, y ≤ 0
y/W, y ∈ (0, W ]
1, W < y

3.3 Newton Method

All that remains to plug in our formulation into a Newton method is the com-
putation of (∂/∂βt)

∑
i≺j loss((CH p0)i − (CH p0)j), which is∑

i≺j loss′
(
(CH p0)i − (CH p0)j

) (
∂(CH p0)i/∂βt − ∂(CH p0)j/∂βt

)
.

We can compute this easily if we had a (|V |+1)×T matrix of Pagerank gradients
∂

∂βt
(CH p0)i where i = 1, . . . , |V |+ 1 and t = 1, . . . , T . This matrix can be built

up inductively over h = 0, . . . , H as follows:

∂

∂βt
(C0p0)i = 0 for all t and i, (1)

and for h = 1, . . . , H:

∂

∂βt
(Chp0)i =

∑
j

[
∂C(i, j)

∂βt
(Ch−1p0)j + C(i, j)

∂

∂βt
(Ch−1p0)j

]
(ChainRule)

Finally we compute ∂C(i,j)
∂βτ

from (WeightedConductance), where the only inter-
esting case is i �= d, j �= d, i �∈ leaf(V ):

∂C(i, j)
∂βτ

=

⎧⎪⎪⎨⎪⎪⎩
−α

β(t(i, j))
∑

w τ = t(i, w)
(
∑

w β(t(i, w)))2
τ �= t(i, j)

α

∑
w β(t(i, w)) − β(t(i, j))

∑
w τ = t(i, w)

(
∑

w β(t(i, w)))2
, τ = t(i, j)

(2)

In case we wish to also make α a variable in the optimization, (ChainRule)
carries over unchanged, and the nonzero derivatives of conductance are:

∂C(i, j)
∂α

=

{
β(t(i,j))∑
w β(t(i,w)) , i �= d, j �= d, i �∈ leaf(V )

−1, i �= d, j = d, i �∈ leaf(V )
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Each iteration of the Newton update takes O((|V | + |E|)H) floating point op-
erations. O(T |V |) main memory is adequate; the edge list E can be scanned
sequentially from disk. We use the BLMVM optimizer [3].

3.4 Keeping the Model Parsimonious

In RankSVM, the model parameters are penalized by a β′β terms in the objec-
tive, which is equivalent to imposing a Gaussian prior with zero mean on each
element of β. Zero mean does not make sense for us. In fact, any βt going to
zero may change the topology of G and its Markov properties in serious ways.
We can see at least two reasonable choices for penalizing model complexity.

Centered at 1: If we consider Equation (UnweightedConductance) as the most
parsimonious model, we should center the βts at 1. E.g., we might assess a
penalty of

∑
t(βt − 1)2, choosing square loss for computational simplicity. For

the reasons above we also need to lower bound each βt strictly away from zero,
which involves yet another magic number that we do not like.

Scale-free floating: There is nothing special about 1 as center; given a solution,
we can scale all βts by a factor and C in Equation (WeightedConductance) (and
therefore p) will remain unchanged. We can therefore lower bound all βt ≥ 1
without loss of generality, and modify the penalty to try to keep all the βts close
together without centering any of them:

∑
t,t′(βt − βt′)2. Suppose there are two

solution vectors, one a constant multiple of the other. The violations and losses
are the same, but the solution with smaller magnitude has lower model penalty,
so we will naturally prefer that one.

3.5 Incorporating Queries and Node Features

Much recent work on algorithms to learn ranking functions have used an intrinsic
feature vector representation of the objects being ranked, whereas we have, thus
far, ignored the objects and considered only the graph that connect them. There
was also no notion of a query.

We propose two ways to incorporate node features and queries into our frame-
work. The first implements teleport through word nodes and resembles Object-
Rank [2] and the intelligent surfer [18]. The second, more pedestrian approach
fits a linear combination of Pagerank-induced and node feature-induced scores.

Teleport through word nodes: We assume each node has a set of associated words,
and the query is also a set of words. As shown in Fig. 2, we introduce a node
for every word. The dummy node d is connected only to nodes corresponding to
query words (edge type “3”) and other word nodes are deleted. Each matched
word node is connected to all entity nodes where the word occurs (edge type “2”).
Entity nodes are interconnected as in the rest of this paper (collectively marked
as edge type “1” although there could be more than one type of edges here).
d also connects to entities directly (edge type “4”)—this sets up a competition
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between text match and network prestige. Finally, entity nodes teleport back to
d as usual (edge type “5”). Our algorithm has to be invoked on this graph for
each query and query-specific preferences.

Linear score combination: The above approach retains a “pure Markovian fla-
vor”, but requires a query-time Pagerank computation, which is expensive. Prac-
tical implementations are more likely to adopt our second approach.

In this approach we first compute a match function μ(q, i) ∈ + between the
query and the node features. E.g., each node may be a document, and the query
and documents may be represented in vector space and μ may be the commonly-
used cosine similarity between q and the text of node i. For a fixed query, we
will omit q and use μi in place of μ(q, i). For simplicity we will assume that the
text score vector μ has been scaled so that ‖μ‖1 = 1.

We use uniform teleport to compute CHp0, but integrate signal from μ by
writing the score vector as p = (1− γ)CHp0 + γμ, where γ ∈ [0, 1] is part of the
optimization, with

∂

∂γ

∑
i≺j

loss(pi − pj) =
∑
i≺j

loss′(pi − pj)
[
μi − μj + (CHp0)j − (CHp0)i

]
.

4 Experiments

Here are the main steps of our evaluation scheme:

1. Get G from real data or a synthetic graph generator.
2. Get ≺ from real data and do a test-train split, or, for synthetic generation:

(a) Compute unweighted PagerankpuwonGusing (UnweightedConductance).
(b) Assign hidden parametersβ (and possiblyαand γ), and compute weighted

Pagerank pw using the hidden parameters and (WeightedConductance).
(c) Draw stratified samples (typically 1:1 for us) from agreements and dis-

agreements between scores of node pairs as per puw and pw. This re-
flects the reasonable null hypothesis of (UnweightedConductance), and
the belief that training data must expose the implausibility of the null
hypothesis.

3. Give our algorithm G and ≺train but not the hidden weights.
4. Our algorithm estimates β∗ (and possibly α∗ and γ∗).
5. Compute weighted Pagerank p∗w using these estimated parameters.
6. Evaluate what fraction of ≺test is satisfied by p∗w.

Graphs: We experimented with synthetic and real-life graphs. SynthDBLP, a syn-
thetic citation graph, had author, affiliation and paper nodes (total 21000) con-
nected by “works-for”, “wrote” and “cited” edges (total 128592). SynthIMDB, a
synthetic graph modeling http://imdb.com, had actor, movie, and genre nodes
(total21000)with“acted-in”and“belongs-to” edges (total 97121).WeusedRMAT
[6] to generate the synthetic graphs that satisfy typical properties of social net-
works. The real citation graph curated from DBLP and CiteSeer had author, pa-
per, andvenue (conference/journal) nodes (total 147870)and “cited”, “wrote” and
“appeared-in” edges (total 1145393).
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Edges and weights: Except for experiments involving teleport through word
nodes, each edge is made bidirectional, and “hidden” weights are associated
with each direction to reflect heuristic values used in the literature [4,2]. Part
of our goal is to see if the algorithm can discover these hidden weights given
preference data. (Details about data generation can be found in an extended
version of this paper [16].)

Error, loss, and convergence: The success of the optimizer depends on how
closely our loss approximation tracks training loss. Our general experience is
that Huber loss works well for large α (say, larger than 0.4) typically used in
Pagerank, but deteriorates at small α. This is not a problem with Huber loss per
se, because hinge loss (without a margin, defined as

∑
i≺j max{0, pi− pj}) is an

even poorer approximation. Fig. 3 shows training error, hinge loss and Huber
loss for variate α. For values of α commonly used in Pagerank algorithms, Huber
loss gave reliable convergence (Fig. 4).

Robustness to noisy training data: In real life, our hypothesis that ranking is
determined by weighted edges may not hold, and relevance feedback may not
even be consistent. Our algorithm seems very robust to random flipping (i ≺ j
replaced by j ≺ i) of training pairs (Fig. 5). Even when over 20% of ≺ has been
corrupted, the error on (clean) test data is less than 6%. It is also reassuring to
note that as noise increases, the algorithm cuts back on investments in model
complexity (measured as the floating penalty).

Learning rate and validation: To check if the model generalizes well, we generated
≺train and ≺test to be node disjoint, so that our algorithm cannot, e.g., benefit
from discovering transitivity. We increased | ≺train | and plotted the test error
in Fig. 6. Just a few hundred preference pairs appear adequate to learn a model
that generalizes well.

Effect of horizon choice H: Is the truncation of iterations in Section 3.1 reason-
able for both objective and gradient? Fig. 7 shows the effects of varying horizon
H on the number of iterations to convergence and the error rate (out of 4000
node pairs). As H is increased, the objective and gradient estimates become
more accurate (but computationally expensive) and the Newton method con-
verges in fewer iterations. Furthermore, the edge model learnt is more accurate
and therefore test error reduces. Even for larger real-life graphs, it appeared that
H > 30 is always sufficient.

Effect of known α: As α goes to zero, edge weight tuning struggles harder and
test error goes up, although, even at α = 0.05, test error is less than 5%. Note
that in Fig. 8, the algorithm knows α and estimates only the βs.

Edge weight (β) discovery: Fixing G, we varied 2–3 hidden βts at a time and
ran our algorithm. Recall that all βts can be scaled arbitrarily without changing
conductance C. In principle, our model penalty should force an automatic scaling
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down, but the complex optimization surface can prevent the scaling down once
training error is minimized. Therefore we scaled all βts by their minimum value.
In Fig. 9 we plot the ratio of estimated to hidden βts against the hidden value.

Typically the two largest βts are estimated very well, but, thanks to our
regularization scheme, there is a slight upward pressure on small values and a
downward pressure on large values. However, note that the optimization problem
is fundamentally degenerate in that, while we start from a specific hidden β, the
same Pagerank ordering can be achieved by an infinite number of β vectors, so
the deviations below the diagonal hurt neither training nor test error.

Combined α, β search: Fig. 3 shows that the approximate loss surface has local
minima. Therefore, a Newton method will need multiple restarts to locate the
global optimum. We varied α between 0 and 1, but this was hidden (as was β)
from the algorithm, which had to estimate α and β together.

Fig. 10 shows that α is reconstructed with surprising perfection, despite our
ignorance of both α and βts, (the latter were all initialized to 2, which always
led us to the global optimum for any fixed α—this, and the much better quality
of reconstructing α, merit a future study). Compared to the fixed α case, more
care was needed with B to avoid overfitting.

We performed all our experiments above using synthetic ≺ on both synthetic
graphs and the real graph culled from DBLP and CiteSeer, and all the results
were very similar and consistent.

Integrating queries and text match: We collected queries in the areas of databases
and XML (Fig. 11). First, for each query, we pinned down all edge weights ex-
cept for dummy-to-word edges, which we varied to inspect the rankings obtained.
Fig. 12 shows the results. For small dummy-to-word weights, text match is ig-
nored and generic classic papers are listed at the top, whereas at larger weights,
the query gets more attention (but citations are still important). Given there are
only a handful of query words and about 80000 papers, naturally the dummy-
to-word edges need to be quite heavy to have an effect.

Second, we set a hidden weight for dummy-to-word edges and fixed all other
edge weights at 1, and tested if our algorithm can discover the hidden weight.
The results broadly paralleled our study on other β(t)s and are omitted. The
accuracy was not as good as in Fig. 9. Overestimates like βhidden = 100 and
βestimated ≈ 20000 were seen, but training and test errors went down reliably as
before. Therefore, the “teleport through word nodes” model works as intended.

Third, we sent the queries to Google Scholar (http://scholar.google.com)
and sampled the (prefix of the) total order returned to derive ≺train and ≺test.

1: database xml structure index inverted, 2: "data streams" "query processing",
3: database concurrency control deadlock handling, 4: recovery shadow paging,
5: relation nested subquery optimization, 6: transaction serializability,
7: query processing sensor networks, 8: set "similarity join", 9: xml twig join,
10: heterogeneous schema integration "machine learning"

Fig. 11. Queries for DBLP and CiteSeer
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transaction serializability, β(dummy → word) = 1
Graph based algorithms for boolean function manipulation (506)
Scheduling algorithms for multiprogramming in a hard real time environment (413)
A method for obtaining digital signatures and public key cryptosystems (312)
Rewrite systems (265)
Tcl and the Tk toolkit (242)
transaction serializability, β(dummy → word) = 106

On serializability of multidatabase transactions through forced local conflicts (38)
Autonomous transaction execution with epsilon serializability (6)
The serializability of concurrent database updates (104)
Serializability a correctness criterion for global concurrency control in interbase (41)
Using tickets to enforce the serializability of multidatabase transactions (12)

Fig. 12. β(dummy→word) gives a learnable trade-off between word match and citation
popularity. Top paper nodes shown with number of citations.

We injected this ≺ into the “teleport through word nodes” model with only one
variable edge weight, β(dummy → word); there was no known “ground truth”.

α = 0.05
Q# |≺test| Errors γ
q1 945 390 0.0272911
q3 771 310 0.0272881
q5 1008 406 0.0209949
q4 993 409 0.0272896

α = 0.7
Q# |≺test| Errors γ
q1 945 326 0.9888147
q3 771 219 0.9364531
q5 1008 382 0.6016729
q4 993 343 0.9833497

Fig. 13. Fitting γ with fix-
ed α

Estimates were between 1 and 2 in 4 of 10 cases,
and 21, 127, 172, 509, 650, and 6686 for the others.
Training error was typically around 25% but test
error was higher, around 35–40%; see comments at
the end of this Section.

Finally, to test the “linear score combination”
model, we used the IR TFIDF cosine score between
the query and the paper titles to obtain μ, and used
≺ from Google Scholar. We set a few values of α by
hand and estimated γ and β. For small α, G asserts
little effect, the Pagerank distribution is very flat,
so the optimizer can afford and prefers very small
γs. For large α, G provides some valuable signal
(absolute error goes down nicely), but it becomes
more important to emphasize text: γ rises substantially (Fig. 13).

The results involving ≺ from Google Scholar are preliminary and come with
an important caveat: Google Scholar uses a. paper body text and b. a much
larger and different graph compared to our sample of DBLP and CiteSeer, so its
ranking function is using information not accessible to us.

5 Conclusion

We have presented models and numerical methods for learning Markov and other
parameters for ranking nodes in ER graphs from partial order preferences. The
optimization surfaces involved are not always benign, but they must be searched
satisfactorily, given the widespread and increasing applicability of such models.
We initiate an in-depth treatment of the choice of loss functions, optimization
surfaces, search procedures, and parameter settings. In ongoing work we are
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investigating text-match models more deeply and seeking to extend the loss
framework to become rank-sensitive.
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Abstract. Online auctions have gained immense popularity by creating an ac-
cessible environment for exchanging goods at reasonable prices. Not surpris-
ingly, malevolent auction users try to abuse them by cheating others. In this 
paper we propose a novel method, 2-Level Fraud Spotting (2LFS), to model the 
techniques that fraudsters typically use to carry out fraudulent activities, and to 
detect fraudsters preemptively. Our key contributions are: (a) we mine user 
level features (e.g., number of transactions, average price of goods exchanged, 
etc.) to get an initial belief for spotting fraudsters, (b) we introduce network 
level features which capture the interactions between different users, and (c) we 
show how to combine both these features using a Belief Propagation algorithm 
over a Markov Random Field, and use it to detect suspicious patterns (e.g., un-
naturally close-nit groups of people that trade mainly among themselves). Our 
algorithm scales linearly with the number of graph edges. Moreover, we illus-
trate the effectiveness of our algorithm on a real dataset collected from a large 
online auction site.  

1   Introduction 

Given a set of transactions among online auction users, how do we spot fraudsters? 
Suppose we want to transact with a user u, and we want to know how honest he is. 
Suppose we also have a lot of historical information (product names, amounts sold 
for, feedbacks from other users, timestamps, etc.), and that we also have a list of user 
IDs, who have committed frauds in the past. Currently, users of online auction sites 
can view the past feedbacks of a user u, which may very well be fabricated. How can 
we include the vast amount of historical information about the user and his trading 
partners, to spot fraud more effectively? In this paper we present 2LFS, the first sys-
tematic approach to attack auction fraud.  

Online auctions have gained immense popularity. For example, eBay, the world’s 
largest auction site, had over 192.9 million registered users at the end of Q1 2006, a 
31% increase over the previous year [4]. Unfortunately, auction frauds happen, and 
they are by far the most serious problems that auction sites face today. In 2005, the 
Internet Crime Complaint Center (IC3) received 231,493 complaints, 62.7% of which 
were auction frauds. 41% of the victims reported monetary loss with an average loss 
of $385 [7]. In some elaborate fraud schemes, the total incurred loss was in the order 
of millions [10]. 
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(a)  Initial (b) Labeled (c) Manually labeled 

Fig. 1. 2LFS in action: (a) given graph (b) after labeling by 2LFS: fraud (red triangles), honest 
(green circles), “accomplices” (yellow diamonds) (c) after manual rearrangement, to highlight 
the “bipartite cores”. The nodes in the two black rectangles are confirmed fraudsters.  

The goal of our work is to treat the auction fraud problem systematically, using 
data mining and machine learning techniques to spot unnatural patterns in auctions. 
We propose the 2LFS algorithm, and illustrate its effectiveness on real, public data 
from a large auction site. Figure 1(a) illustrates a small graph from the large auction 
site, in which it is difficult to spot any suspicious patterns. The result of labeling by 
2LFS is shown in Figure 1(b). Fraudsters are the red triangles and honest users are the 
green circles. The yellow diamonds correspond to accomplices, which we will discuss 
in detail later in the paper. Figure 1(c) shows the same graph after manual rearrange-
ment so that nodes with the same label are grouped together. Now we can clearly 
observe the existence of a bipartite core between the fraudsters and accomplices. As 
we will explain later, such bipartite cores are a tell-tale sign of a popular fraud 
scheme. In fact, the nodes in the two rectangles in Figure 1(c) are confirmed fraud-
sters, who have received many negative feedbacks from buyers who had paid for 
items that never got delivered.  

The rest of the paper is organized as follows. Section 2 provides an overview of re-
lated work. Section 3 describes the auction fraud detection problem. Section 4 de-
scribes in detail the 2LFS algorithm. Section 5 provides empirical evidence for the 
effectiveness, robustness and scalability of our method. Section 6 discusses some 
observations on how easily we can generalize our method to other fraud detection 
problems. Finally, we present a brief summary of our results in Section 7 with point-
ers for future work. 

2   Related Work 

To the best of our knowledge, this is the first work that uses a systematic approach to 
analyze and detect electronic auction frauds. We survey earlier attempts to detect such 
frauds, as well as literature related to trust propagation. 

Auction Frauds and Reputation Systems. Reputation systems are extensively used 
by electronic auctions to prevent frauds. Although helpful, these systems are very sim-
ple and can be easily foiled. To study the effectiveness of today’s reputation systems, 
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Melnik et al. [9] and Resnick et al. [14] conducted empirical studies which showed 
that selling prices of goods are positively affected by the seller’s reputation. In an 
overview, Resnick et al. [13] summarized that today’s reputation systems face many 
challenges which include the difficulty to elicit honest feedback and to show faithful 
representations of users’ reputation. Common-sense approaches to avoid frauds can 
be easily found on Web sites [5] and in news articles [15]. However, they require 
people to invest substantial amount of time and to constantly maintain a high level of 
vigilance, something that the average person cannot afford to do. Some researchers 
[3] have categorized auction fraud into different types, but they have not suggested 
any formalized methods to deal with them.  

Trust and Authority Propagation. Authority propagation, an area highly related to 
fraud detection, has been studied by milestone papers and systems, and specifically by 
PageRank [1] and HITS [8] which treat a Web page as “important” if other important 
pages point to it, thus propagating the importance of pages over the Web graph. How-
ever, none of them explicitly focus on fraud detection. Trust propagation was used by 
TrustRank [6] to detect Web spam, and their goal was to distinguish between “good” 
sites and “bad” sites (like phishers, adult-content sites, etc). Also related is the work 
by Neville et al. [11, 12], where the goal is to aggregate features from neighboring 
nodes, to do classification, in movie and stock databases.  

None of the above techniques focuses on a systematic way to do online auction 
fraud detection, which is the focus of our work. 

3   Problem Description 

We define our Auction Fraud Detection Problem as follows: given (a) a user of inter-
est u (b) the historical information of user u, as well as of many other users and (c) 
the fact that some of them are known fraudsters, find whether user u is a potential 
fraudster. 

We focus on describing the setup of eBay as other auction sites work similarly. A 
new user begins by registering an ID (also called “handle”) with the site. The user 
may then buy or sell items through bidding and auctioning. All auctions are time-
stamped and detailed information about auctions occurring in the last six months is 
usually available on the site. After a transaction, the site allows the buyer and the 
seller to rate each other on a scale of positive, neutral and negative (1, 0, -1) and leave 
a brief comment (e.g., “Great buyer! Prompt payment.”). These ratings are added up 
to form the feedback score of a user. Other users can see the score of a given user 
before they choose to transact with him. The key idea of the feedback system is to 
provide an estimate of trustworthiness for each user, that future dealers can consult.  

The most prevalent auction fraud is the non-delivery fraud, where the fraudster re-
ceives a payment for an item but never delivers it. To be able to commit such a fraud, 
fraudsters try to devise methods to trick the reputation system and boost their feed-
back score (we will see how this is done later in the paper.) Other types of frauds 
include selling faulty, counterfeit, or stolen goods. 
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4   2-Level Fraud Spotting (2LFS) Algorithm 

We now present the 2LFS algorithm, which tackles the fraud detection problem in 
two steps: (1) it examines user level features, i.e., information intrinsic to individual 
users (e.g., “age” of the user, the number and prices of items sold/bought, the bursti-
ness of the transaction times, etc.), and (2) it examines network level features to detect 
suspicious patterns in the network of transactions between users.  

4.1   User Level Features 

Auction sites keep records of their users. For each user, we can divide the stored in-
formation into two parts, profile and past transactions. To determine a set of user 
level features that distinguish fraudsters from honest users, we begin by learning from 
frauds that were widely publicized in newspaper articles and examining the involved 
fraudsters. Our observations indicate that fraudsters tend to be short-lived, they ex-
hibit bursty trading patterns (many, fake sales, on a single day) and a bi-modal distri-
bution of prices (cheap items to real, honest users; fictitious, expensive items to their 
alter-egos).  

 

Fig. 2. 17 user level features 

We believe that the trends (medians) and fluctuations (standard deviations) in the 
prices of items traded over time (first 15 days, first 30 days, etc) are the most impor-
tant features that we should use for classification, as they have direct relevance to 
fraudsters’ investments, costs and profits. The final set of 17 features is summarized 
in Figure 2. For example, one of the features is the standard deviation of prices of 
items sold within the first 15 days since the user registered. These features were pre-
viously evaluated to achieve a precision of 82% and a recall of 83% on some real 
eBay test data [2]. 

The feature values can be extracted from the profiles and transaction history of us-
ers, available from the Web. The class labels (fraud/honest) are derived manually, by 
inspecting users with many negative feedback scores. We train a decision tree with 
the C5.0 classification system, and use this tree to classify other user nodes. These 
class labels are then fed into the network level detection algorithm described in the 
next section. 

4.2   Network Level Features 

Transactions between users can be modeled as a graph, with a node for each user and 
an edge for all the transactions between two users. As is the case with hyperlinks on 
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the Web, an edge between two nodes can be assigned a definite semantics, and can be 
used to propagate properties from one node to its neighbors. For instance, an edge 
between two nodes can be interpreted as an indication of similarity in their behavior, 
since honest users will interact more often with other honest users, while fraudsters 
will interact in small cliques of their own. This semantics is very similar in spirit to 
the one used by TrustRank[6]. However, preliminary experiments with our dataset, as 
described in Section 5, suggest that fraudsters do not directly interact with other 
fraudsters, as this could cause them to suffer extensive “loss” relatively easily – sup-
pose one of the fraudulent account involved in a fraud is exposed, the auction site 
may easily identify and void other fraudulent accounts in the clique, which would 
destroy the “infrastructure” that the fraudster had invested in for carrying out the 
fraud. To carry out another fraud, the fraudster will have to re-invest efforts in build-
ing a new clique. 

A bit of manual inspection of the data unveiled an alternate way in which fraud-
sters behave to build a reusable infrastructure for their fraudulent activities. They 
create several identities and arbitrarily split them into two categories – fraud and 
accomplice. The fraud identities are eventually used to carry out the actual fraud, 
while the accomplices exist only to help the fraudsters by boosting their feedback 
rating. Accomplices themselves behave like perfectly legitimate users and interact 
with other honest users to achieve high feedback ratings. On the other hand, they also 
interact with the fraud identities to form near-bipartite cores, which helps the fraud 
identities gain high feedback ratings. Once a fraud is committed, the fraud identities 
get voided by the auction site, but the accomplices manage to beat contemporary 
fraud detection schemes (owing to their interactions with honest users) and linger 
around for reuse by new fraudsters. Through 2LFS, we propose a systematic way to 
model the network level interactions between users and identify suspicious graph 
patterns. In a nutshell, each node is given three scores (fraud-, accomplice-, honest-
scores), and we update these scores to be in harmony with the neighbors’ scores. 

The Markov Random Field Model. Markov Random Fields (MRFs) are a class of 
graphical models particularly suited for solving inference problems with uncertainty 
in observed data. The data is modeled as a graph with two types of nodes – hidden 
and observed. Observed nodes correspond to values that are actually observed in the 
data. For each observed node, there is a hidden node which represents the true state 
underlying the observed value. The state of a hidden node depends on the value of its 
corresponding observed node as well as the states of its neighboring hidden nodes. 
These dependencies are captured via an edge compatibility function ( )σσψ ′,  and a 

node compatibility function ( )ωσφ , . ( )σσψ ′,  gives the probability of a hidden node 

being in state σ ′  given that it has a neighboring hidden node in state σ . ( )ωσφ ,  

gives the probability of a node being in state σ  given that its corresponding observa-
tion was ω . 

We model the auction users and their mutual transactions as a MRF. We create a 
hidden node for each user, which can be in any of three states – fraud, accomplice, and 
honest. Let us denote this set of possible states by S. A transaction between two users 
is represented by an edge between their corresponding hidden nodes. With each hidden 
node n, we associate a belief vector nb , such that ( )σnb  equals the probability of 
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node n being in state σ  (which we call the belief of node n in state ). Further, each 
hidden node is also associated with an observed node, which corresponds to our initial 
(and possibly noisy) observation of its state. 

 Fraud Accomplice Honest 

Fraud pε  pε21−  pε  

Accomplice 0.5 pε2  pε25.0 −  

Honest pε  2/)21( pε−  2/)21( pε−
 

 Fraud Honest 

Fraud oε−1 oε  

Accomplice 0 0 

Honest oε  oε−1  
 

Fig. 3. The Propagation Matrix for an edge. Entry (i, 
j) gives the conditional probability that the destina-
tion node is at state j, when the source node is at 
state i.  

Fig. 4. The Observation Matrix for an 
edge. Entry (i, j) gives the observed 
probability that the destination node is at 
state j, when the source node is at state i. 

To completely define the MRF, we need to instantiate the compatibility functions 
ψ  and φ . For now, let us assume that we do not have an initial observation about the 

states of any of the nodes, and choose φ  such that ( ) ωσωσφ ,,/1, ∀= S . The edge 

compatibility function can be viewed as a matrix (which we call the Propagation 
Matrix) of dimension SS × . Figure 3 shows a sample instantiation of the propaga-

tion matrix based on the following intuition: a fraudster heavily links to accomplices 
but not to other fraudsters; an accomplice links to both fraudsters and honest nodes, 
with a higher affinity for fraudsters; a honest node links to other honest nodes as well 
as accomplices (since an accomplice effectively appears to be honest to the innocent 
user.) In our experiments, we set pε  to 0.05. We would like to set pε to zero, but this 

would create numerical problems with multiplications. Thus we set it to a small value, 
to denote the fact that it is highly unlikely that a fraudster will have a transaction with 
another fraudster. Ideally, we would “learn” the value of pε , as well as the form of 

the propagation matrix itself, if we had a large training set. 

The Belief Propagation Algorithm. The Belief Propagation (BP) algorithm has been 
successfully applied to a variety of disciplines (bayesian networks, MRFs, error-
correcting codes, etc.) In all of its applications, BP takes as input some form of a 
network of nodes, each of which can be in a finite number of states. Some encoding 
of how the state of a node influences its neighbors is also known beforehand. The BP 
algorithm then infers the posterior state probabilities of all nodes in the network given 
the observed states of some of the network nodes. We refer the reader to [16] for an 
excellent discussion on the BP algorithm and its generalizations to various problems. 

Here, we present the version of BP suitable for MRFs. The algorithm functions via 
iterative message passing between the different nodes in the network. Let ijm  denote 

the message that i passes to j. The message ijm  is a vector with 3 values (fraud-, 

accomplice- and honest-score), and it represents i’s opinion about the belief of j. At 
every iteration, each node i computes its belief based on messages received from its 
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neighbors, and uses the propagation matrix to transform its belief into messages for its 
neighbors. Mathematically,  

( ) ( )
( )

( )σσσψσ
σ

∏
∈′

′←
jiNn

niij
\

, mm ; ( ) ( )
( )

∏
∈

=
iNj

jii k σσ mb  (1)

where k is a normalization constant to make the beliefs sum up to 1. Initially, a suit-
able prior on the beliefs of the nodes is assumed. The algorithm then proceeds by 
iteratively passing messages between nodes based on previous beliefs, and then up-
dating beliefs based on the passed messages. The purpose of iteration is to reach a 
fixed point (equilibrium), that is, status-assignments to nodes that are as compatible 
with their neighbors as possible. The iteration is stopped as soon as the beliefs con-
verge, or a maximum limit for the number of iterations is exceeded. Theoretically, 
convergence is not guaranteed, although in practice, BP has been found to converge 
quickly to reasonably accurate solutions. 

4.3   Merging the Two Levels – 2LFS 

We now present the 2LFS algorithm, which combines the user level features (Section 
4.1) with the network level features (Section 4.2) to detect suspicious patterns in a 
graph of transactions between online auction users. 

We treat the user level features as noisy observations of the states of users, and use 
them to instantiate the observed values of nodes in the MRF model for the network 
level features. We believe that such a combination would yield the following benefits: 
(a) suitable prior knowledge will help the belief propagation to converge to a more 
accurate solution in less time, and (b) incorrect inference at the user level can be cor-
rected by the network level propagation of features. 

To combine these observations with the belief propagation, we need to modify the 
previously stated instantiation of the node compatibility function φ . Recall that 

( )ωσφ ,  gives the probability of a hidden node being in state σ  given that the corre-

sponding observation was ω . Let the domain of observed values be Ω . Then, the 
function φ  can be encoded as a matrix (which we call the Observation Matrix) of 

dimension Ω×S . In our case, the user level features classify users into only two 

categories – fraud and honest. A sample instantiation of φ  is shown in Figure 4. oε  

can be interpreted as the uncertainty in observation at the user level. In our experi-
ments, we set oε  = 0.2. 

Let iω  denote the observed value for node i. To incorporate the effect of the ob-

served values, the update rules in Equation 1 can be extended as follows: 
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These equations together constitute the 2LFS algorithm. The pseudo code for the 
same is provided in Figure 5. 
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Fig. 5. Pseudo code for network-LFS 

5   Experiments 

Here we describe the experiments we did, on real and synthetic datasets. Our goal was 
to answer the following questions: 

1. Robustness: how well does 2LFS work for fraud detection when the topology 
of the auction graph deviates from the ideal bipartite core setting? 

2. Effectiveness: how effective is 2LFS in focusing our attention on suspicious 
bipartite cores occurring in real auction data? 

3. Scalability: how well does the network level belief propagation scale with 
graph size? 

The algorithm was implemented in C++ and the experiments were performed on a 
desktop running Red Hat Linux 9 on a Intel P4 3.00GHz processor, with 1GB RAM, 
25GB disk space, and a 100Mbps internet connection. 

Robustness of 2LFS. Graphs observed in practice will almost never have exact bipartite 
cores; there will always be some “missing” edges. To successfully identify suspicious  
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Fig. 6. 43×G with labels assigned by 2LFS 
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nodes in such settings, 2LFS should be robust in nature and be able to tolerate minor 
deviations from the ideal scenario. In this section, we describe an experiment we 
designed to systematically test the robustness of 2LFS. 

We generated synthetic graphs which mimic ideal fraudulent behavior, and then 
randomly deleted a few edges from them. We started with the graph shown in Figure 
6 (called 43×G ) which contains 12 nodes – 4 fraud, 4 accomplice and 4 honest. This 

graph closely agrees with the propagation matrix shown in Figure 3. 2LFS when run 
on top of 43×G , converges in 3 iterations and assigns correct labels to all the nodes. 

Similar results were observed for xG ×3 with x varying from 5 to 20. 

  

Fig. 7. Min Detection Size vs noise - lower is 
better: 2LFS is robust to minor deviations in
graph structure, and even to wrong priors  

 Fig. 8. 2LFS scales almost linearly with the 
number of edges  

Next, we deleted edges in xG ×3  with a fixed probability p (called the Edge Dele-

tion Probability). The lowest value of x for which 2LFS produces the correct labeling 
is called the Minimum Detection Size (MinDS) for the given edge deletion probability. 
Further, to understand how critically 2LFS depends on the user level features, we 
introduced prior observations for some of the nodes in xG ×3 . Our observations are 

summarized in Figure 7. Each curve in this figure corresponds to a specific prior 
value. A prior of 0 means all the nodes were initialized with unbiased priors, a posi-
tive prior of z  means z  nodes were initialized with the correct prior observation, 
while a negative prior of z−  means z  nodes were initialized with an incorrect prior. 
With unbiased priors and edge deletion probabilities below 0.5, the MinDS is 9, 
which indicates that for large real-world graphs 2LFS can be expected to robustly 
tolerate deviations from the ideal xG ×3  scenario. Further, minor changes in the prior 

do not seem to significantly affect the stability of 2LFS. In case the prior knowledge 
is correct, performance is improved, while (interestingly) in case the prior knowledge 
is incorrect, the network level features are able to offset the error in the prior and 
2LFS still converges to the correct solution. 

Effectiveness of 2LFS. To test the effectiveness of 2LFS we decided to use a dataset 
crawled from eBay, the world’s largest auction site. EBay allows public access to the 
profiles and feedbacks of (almost) all its users. The feedbacks of a user tell us about 
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other users with whom he has interacted in the past. The pricing information of the 
items exchanged is also available only for transactions over the last six months.  

 

Fig. 9. Labeling of eBay users output by 2LFS 

To propagate the network level features, we rely on a complete and accurate de-
scription of the graph. However, user level features (i.e., pricing information) are 
available only for the last six months. Since the utility of our chosen user level fea-
tures is evident from [2], we focused on evaluating the effectiveness of the network 
level features alone, and we set all belief scores to 1/3, for all nodes. 

The data was collected by a breadth-first crawl starting from 5 users. The resulting 
graph had 55 nodes and 620 edges. We then manually observed the feedbacks for 
each of the 55 users and found six of them to be confirmed fraudsters. Next, we ran 
2LFS over this graph and recorded the labeling assigned to each node in the graph. 
The entire graph arranged as per the labellings produced by 2LFS is shown in Figure 
9 (same as Figure 1(c)). The nodes labeled as fraud and accomplice form a near bipar-
tite core, one end of which is disconnected from the rest of the graph. As mentioned 
earlier, the existence of such disconnected bipartite cores is unnatural and suspicious. 
Moreover, all the six confirmed fraudsters were found to be a part of this core. Thus, 
2LFS clearly succeeds in drawing our attention to suspicious patterns in the graph. 
Such cores, once identified, can be used to predict which users are likely to commit 
frauds in the future or are serving to boost the feedback ratings of fraudsters. We 
believe this aspect of 2LFS is invaluable in the context of fraud detection. 

Scalability of 2LFS. To test the scalability of our algorithm, we chose to generate 
synthetic graphs, since we are able to systematically control their sizes and structures. 
We measured the time taken by 2LFS to execute over xG ×3  for various values of x 

(averaged over 100 runs.) The results are shown in Figure 8. We observe that the 
absolute amount of time taken is very small (less than 0.15 seconds for 35003×G .) 

Moreover, the running time appears to grow linearly with the number of edges, which 
indicates that 2LFS can easily scale to very large real-world graphs. 
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6   Discussion 

We would like to emphasize some important observations. The first is the generality 
of our method, and the second is its potential for heavy impact on fraudsters. 

 Fraud Honest 
Fraud ε−1  ε  
Honest ε ′  ε ′−1  

Fig. 10. Propagation matrix for clique detection ( εε ′<< ) 

Generality. Thanks to the propagation matrix, 2LFS is general in applicability. The 
propagation matrix of Figure 3 can spot bipartite cores. With different instantiations 
of the propagation matrix, we might be able to spot a broader variety of graph pat-
terns. For example, near cliques could be spotted by the propagation matrix shown in 
Figure 10. 

Making fraud unprofitable. Not only does 2LFS find confirmed fraudsters, it also 
spots the accomplices, who help the fraudsters and can themselves commit frauds in 
the future. Accomplices are valuable to fraudsters, because they take time and effort 
to build, and they provide a reusable infrastructure for fraudsters to build positive 
feedbacks quickly. Spotting accomplices can be a hard blow to fraudsters, because 
accomplices take much more time, money and effort to create and manage. In re-
sponse, the fraudsters might resort to more sophisticated schemes to hide their evils. 
However, these schemes will require more effort and cost, thus making fraud increas-
ingly unprofitable for them.  

7   Conclusions 

We have shown how to use data mining, machine learning and trust propagation 
methods to address the problem of fraud detection in the complex settings of auction 
sites. Users and their respective transactions form a rich social network, with much 
more information than just nodes and links – feedbacks, timestamps, the prices and 
types of items sold, and more. To handle the complexity of the problem and to exploit 
useful pieces of information hidden in the social network of auction users, we propose 
2LFS, a novel, two-step algorithm that merges user level and network level informa-
tion to detect fraudulent users. Our main contributions include: 

• The careful extraction of user level features 
• The use of belief propagation and MRFs to combine user level and network 

level features 
• Experiments on synthetic and real data, proving the robustness, scalability, 

and effectiveness of 2LFS. 

Future research directions include the generalization of 2LFS, so that it can auto-
matically learn the propagation matrix from data, and the inclusion of game theory, to 
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anticipate and guard against new fraud schemes, in addition to Fraud-Accomplice 
bipartite cores. 
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Abstract. Clustering with constraints is an active area of machine learn-
ing and data mining research. Previous empirical work has convincingly
shown that adding constraints to clustering improves performance, with
respect to the true data labels. However, in most of these experiments, re-
sults are averaged over different randomly chosen constraint sets, thereby
masking interesting properties of individual sets. We demonstrate that
constraint sets vary significantly in how useful they are for constrained
clustering; some constraint sets can actually decrease algorithm perfor-
mance. We create two quantitative measures, informativeness and coher-
ence, that can be used to identify useful constraint sets. We show that
these measures can also help explain differences in performance for four
particular constrained clustering algorithms.

1 Introduction

The last five years have seen extensive work on incorporating instance-level con-
straints into clustering methods [1,2,3,4,5]. Constraints provide guidance about
the desired partition and make it possible for clustering algorithms to increase
their performance, sometimes dramatically. Instance-level constraints specify
that two items must be placed into the same cluster (must-link, ML) or different
clusters (cannot-link, CL). This semi-supervised approach has led to improved
performance for several UCI data sets as well as for real-world applications, such
as person identification from surveillance camera clips [5], noun phrase corefer-
ence resolution and GPS-based map refinement [6], and landscape detection from
hyperspectral data [7].

Constraints can be generated from background knowledge about the data
set [6,8] or from a subset of the data with known labels [1,2,3,4,5]. Based on
the strong positive empirical results that have been reported, the opinion of the
community is that constraints help improve clustering performance with respect
to accuracy, as measured on the set of extrinsic labels used to generate the con-
straints. While we might expect that different constraint sets would contribute
more or less to improving clustering accuracy, we have found that, surprisingly,
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some constraint sets actually decrease clustering performance. We present exper-
imental evidence of this phenomenon in Section 2. We observe that constraints
can have ill effects even when they are generated directly from the data labels
that are used to evaluate accuracy, so this behavior is not caused by noise or
errors in the constraints. Instead, it is a result of the interaction between a given
set of constraints and the algorithm being used.

The two major contributions of this work are:

1. The first explicit identification of the adverse effects constraints can have on
the clustering process, and

2. The first attempt to characterize constraint set utility to explain clustering
performance.

The key question that this work addresses is: Why do some constraint sets in-
crease clustering accuracy while others have no effect or even decrease accuracy?
We propose two measures, informativeness and coherence, that capture relevant
properties of constraint sets (Section 3). These measures provide insight into the
effect a given constraint set has for a specific constrained clustering algorithm.
In experiments on several data sets, we find that in general, constraint sets with
high informativeness and coherence are most beneficial, and that this trend holds
for four different algorithms (Section 4). Finally, we use the CMU Face Images
data set [9] to show visual examples of informative and coherent constraint sets.

2 Motivation: Constraints Can Decrease Performance

The operating assumption behind all constrained clustering methods is that
the constraints provide information about the true (desired) partition, and that
more information will increase the agreement between the output partition and
the true partition. Therefore, if the constraints originate from the true partition
labels, and they are noise-free, then it should not be possible for them to decrease
clustering accuracy. However, as we show in this section, this assumption does
not always hold.

The experimental methodology adopted by most previous work in constrained
clustering involves generating constraints by repeatedly drawing pairs of data
points at random from the labeled subset (which may be the entire data set).
If the labels of the points in a pair agree, then an ML constraint is generated;
otherwise, a CL constraint is generated. Once the set of constraints has been
generated, the constrained clustering algorithm is run several times and the
average clustering accuracy is reported. Learning curves are produced by re-
peating this process for different constraint set sizes, and the typical result is
that, on average, when more constraints are provided, clustering accuracy in-
creases [1,2,3,4,5,6,7,8]. However, the focus on characterizing average behavior
has obscured some interesting and exceptional behavior that results from spe-
cific constraint sets. In this work, we will empirically demonstrate such cases and
provide insight into the reasons for this behavior.

We begin by examining the behavior of four different constrained clustering
algorithms on several standard clustering problems. The two major types of
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Table 1. Average performance (Rand Index) of four constrained clustering algorithms,
for 1000 trials with 25 randomly selected constraints. The best result for each algo-
rithm/data set combination is in bold.

Algorithm
CKM PKM MKM MPKM

Data Set Unconst. Const. Unconst. Const. Unconst. Const. Unconst. Const.
Glass 69.0 69.4 43.4 68.8 39.5 56.6 39.5 67.8

Ionosphere 58.6 58.7 58.8 58.9 58.9 58.9 58.9 58.9
Iris 84.7 87.8 84.3 88.3 88.0 93.6 88.0 91.8

Wine 70.2 70.9 71.7 72.0 93.3 91.3 93.3 90.6

constrained clustering techniques are (a) direct constraint satisfaction and (b)
metric learning. The techniques of the first category try to satisfy the constraints
during the clustering algorithm; the latter techniques treat an ML (or CL) con-
straint as specifying that the two points in the constraint and their surrounding
points should be nearby (or well separated) and tries to learn a distance metric
to achieve this purpose. We evaluated an example of each kind of algorithm as
well as a hybrid approach that uses both techniques:

– COP-KMeans (CKM) performs hard constraint satisfaction [1].
– PC-KMeans (PKM) performs soft constraint satisfaction (permits some con-

straints to be violated) [4].
– M-KMeans (MKM) performs metric learning from constraints, but does not

require that the constraints be satisfied [4].
– MPC-KMeans (MPKM) is a hybrid approach, performing both soft con-

straint satisfaction and metric learning [4].

Table 1 compares the results (averaged over 1000 trials) for each algorithm
in terms of its unconstrained and constrained performance, when provided with
25 randomly selected constraints. We evaluated these algorithms on four UCI
data sets [10]: Glass (n = 214), Ionosphere (n = 351), Iris (n = 150), and Wine
(n = 178). Clustering performance was measured in terms of the Rand Index [11].
The Rand Indices of the unconstrained algorithms differ (e.g., 69.0% for CKM
vs. 43.4% for PKM on the Glass data set) because of variations such as different
cluster centroid initialization strategies and data pre-processing. In general, as
expected and previously reported [1,3,4], average constrained clustering accuracy
was equal to or greater than average unconstrained accuracy. The exception is
MKM and MPKM’s performance on the Wine data set, for which the constraints
resulted in a reduction in average accuracy.

A careful examination of individual trials reveals that several constraint sets
adversely affect clustering performance. Table 2 shows the fraction of these 1000
trials that suffered a drop in clustering accuracy when using constraints, com-
pared to not using constraints. Note that each trial involved the same initial-
ization of the centroids for both the unconstrained and constraint experiments
so any change in performance is due to the constraints. We see that, for CKM
on all data sets, at least 25% of the constraint sets resulted in a decrease in
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Table 2. Fraction of 1000 randomly selected 25-constraint sets that caused a drop in
accuracy, compared to an unconstrained run with the same centroid intialization

Algorithm
Data Set CKM PKM MKM MPKM

Glass 28% 1% 11% 0%
Ionosphere 26% 77% 0% 77%

Iris 29% 19% 36% 36%
Wine 38% 34% 87% 74%

performance. For the other algorithms, the fraction of negative results ranges
up to 77% (for PKM and MPKM) and 87% (for MKM). The high proportion of
negative results for MKM and MPKM on the Wine data set help explain why
the average results show a decrease in performance (Table 1). These negative
results occur frequently for all data sets and algorithms. In fact, only two of the
16 cases presented in Table 2 are completely free of the negative effect (MKM
and MPKM with the Ionosphere and Glass data sets respectively). The average
performance results tend to mask this effect, since positive gains are often of
more magnitude than negative losses. However, for most real applications, we
are more interested in performance for the (single) set of available constraints
than “average” performance over many sets of constraints.

The possibility of a negative impact from constraints has significant impli-
cations for the practice of constrained clustering. First, the assumption that
constraints are always helpful (or at least, do no harm) for clustering has been
disproven by this empirical evidence. The adverse effects we observe are not re-
stricted to a single data set or constrained clustering algorithm. This underscores
the need for a means of characterizing relevant properties of a given constraint
set, so that we can understand why it has a positive or negative effect on clus-
tering. Such a characterization can also aid in future studies, so that useful
constraints can be selected preferentially and constraints with adverse effects
can be avoided. In the next section, we offer two constraint set measures that
provide the first steps toward this goal.

3 Characterizing the Utility of Constraint Sets

A major contribution of this work is the introduction of two measures, informa-
tiveness and coherence, that quantify important constraint set properties.

– Informativeness refers to the amount of information in the constraint set
that the algorithm cannot determine on its own. It is determined by the
clustering algorithm’s objective function (bias) and search preference. For
example, in Figure 1(a), an algorithm such as CKM would be biased to-
wards grouping nearby points together and separating distant points, but
the specified constraints contradict this bias.

– Coherence measures the amount of agreement within the constraints them-
selves, with respect to a given distance metric. Figure 1(b) shows two
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(b)

X

(a)

X X

X

X

Fig. 1. Simple illustrative examples of (a) constraints with high informativeness for
CKM and (b) highly incoherent constraints, given a Euclidean distance metric. Must-
link constraints are depicted as solid line segments; cannot-link constraints have an ‘X’
through them.

constraints (ML and CL) that are very close and parallel. The ML con-
straint indicates that the distance between the points (and surrounding
points) should be small, while the CL constraint implies the opposite. With
respect to a Euclidean distance metric, these two constraints are incoherent.

The hypothesis that we investigate in this paper is that constraint sets with
high informativeness and coherence are most likely to provide performance gains.
We also expect that the negative performance effects are caused by highly in-
coherent constraint sets. First, incoherent constraints (as in Figure 1(b)) can
cause metric learning methods (MKM, MPKM) to learn suboptimal global met-
rics. Also, since these algorithms use the constraints to initialize the cluster
centroids, incoherent constraint sets are more likely to lead to a bad cluster ini-
tialization, increasing the chance of the clustering algorithm getting stuck in a
poor local minimum.

3.1 Quantifying Informativeness

We begin this section with some straightforward but necessary definitions.

Definition 1. Partition Specification. For any partition P of a data set D
containing n items, a set of constraints C completely specifies P if it is a set
of at most

(
n
2

)
must-link and cannot-link constraints that uniquely defines P.

Definition 2. Incomplete Constraint Set. A set of constraints Ĉ is incom-
plete with respect to a data set D if it does not specify a unique partition P of D.

In practice, most interesting problems will have an incomplete set of constraints,
so that there exist multiple partitions that satisfy all constraints. We first in-
troduce an idealized definition of constraint set informativeness.

Definition 3. Idealized Informativeness. Let P ∗ be the partition that glob-
ally minimizes the objective function of some algorithm A, in the absence of any
constraints. Let C∗ specify P ∗ in the sense given in Definition 1. The informa-
tiveness in a given constraint set C is the fraction of constraints in C that are
violated by C∗.
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That is, {C∗ − C} is the set of constraint relationships that A is unable to cor-
rectly determine using its default bias. These constraints are therefore informa-
tive with respect to maximizing clustering accuracy. For illustration, consider a
data set {a, b, c, d, e} with P ∗ = {[a, b], [c, d, e]}. Using definition 1, we obtain C∗,
which can be compactly represented as {ML(a, b), ML(c, d), ML(d, e), CL(a, c)}
due to the transitive and entailment properties of ML and CL constraints re-
spectively [1]. If we are given a set of constraints C1 = {ML(a, b), ML(c, d)},
then C1 has an informativeness of 0; each of the constraints was already satisfied
by the algorithm’s default output P ∗. In contrast, C2 = {ML(a, b), ML(b, c)}
has an informativeness of 0.5 because ML(b, c) is not in C∗ and is therefore new
information.

This definition of informativeness cannot be realized in practice, since we
do not know P ∗ prior to clustering. We next present an efficiently computable
approximation.

Approximate Measure of Informativeness. Our approximation is based
on measuring the number of constraints that the clustering algorithm cannot
predict using its default bias. Given a possibly incomplete set of constraints C
and an algorithm A, we generate the partition PA by running A on the data set
without any constraints. We then calculate the fraction of constraints in C that
are unsatisfied by PA:

IA(C) =
1
|C|

[∑
c∈C

unsat(c, PA)
]

(1)

where unsat(c, PA) is 1 if P does not satisfy c and 0 otherwise. This approach
effectively uses the constraints as a hold-out set to test how accurately the algo-
rithm predicts them. Given this equation, we can quantify the informativeness
of the constraint sets in Figure 1 for the CKM algorithm as ICKM (Ca) = 1.0
and ICKM (Cb) = 0.5.

3.2 Quantifying Coherence

Coherence is the amount of agreement between the constraints themselves, given
a metric D that specifies the distance between points. It does not require knowl-
edge of the optimal partition P ∗ and can be computed directly. The coherence
of a constraint set is independent of the algorithm used to perform constrained
clustering.

One view of an ML(x, y) (or CL(x, y)) constraint is that it imposes an at-
tractive (or repulsive) force within the feature space along the direction of a
line formed by (x, y), within the vicinity of x and y. Two constraints are inco-
herent if they exert contradictory forces in the same vicinity. We consider all
constraint pairs composed of an ML and a CL constraint (pairs composed of the
same constraint type cannot be contradictory). To determine the coherence of
two constraints, a and b, we compute the projected overlap of each constraint on
the other as follows (see Figure 2 for examples).
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a

bproj   a
b

a

bproj   a
b

a

b

over  ab

(a) (b) (c)

(over  a  = 0)b

proj   a
b

over  ab

Fig. 2. Three cases of computing the projected overlap between constraints a and b

Let −→a and
−→
b be vectors connecting the points constrained by a and b respec-

tively. Without loss of generality, we use the convention (x1, x2) to refer to the
points connected by a vector −→x . In the context of Figure 2, x1 appears to the
left of x2 for all vectors shown. We first project −→a onto

−→
b :

−→p = proj−→
b
−→a =

(
|−→a | cos θ

) −→
b

|−→b |
,

where θ is the angle between the two vectors. Next, we calculate how much of
this projection overlaps with

−→
b . Since −→p and

−→
b are colinear (θ = 0), we simply

compute the distance from b2 to each of b1, p1, and p2. There are three cases,
corresponding to the three examples in Figure 2:

overba =

⎧⎪⎨⎪⎩
0 if db2,b1 ≤ db2,p2 , db2,b1 ≤ db2,p1

db1,p2 if db2,p2 < db2,b1 , db2,p1 ≥ db2,b1

dp1,p2 if db2,p2 < db2,b1 , db2,p1 < db2,b1

(2)

Given this background, we now define coherence, COH, as the fraction of
constraint pairs that have zero projected overlap:

COHD(C) =

∑
m∈CML,c∈CCL

δ(overcm = 0 and overmc = 0)
|CML||CCL|

(3)

We quantify the coherence of the constraint sets in Figure 1 as COH(Ca) = 0.0
(all ML/CL pairs have some overlap) and COH(Cb) = 0.0 (the single constraint
pair completely overlaps).

Our measure of coherence is applicable to any space where vector projec-
tion is defined. The preceding examples and the experimental results presented
later all make use of a Euclidean distance metric, since the four algorithms we
evaluate use either Euclidean distance or a close variant, such as a generalized
Mahalanobis (weighted Euclidean) distance metric.

4 Experimental Results

In this section, we present three important results. First, we analyze the rela-
tionship between the proposed measures (informativeness and coherence) and
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Table 3. Average measures of informativeness (I) and coherence (COH) of 5000 ran-
domly generated 3-constraint sets. Compare with Table 1.

Algorithm
Data Set ICKM IPKM IMKM IMPKM COH

Glass 0.34 0.43 0.50 0.50 0.45
Ionosphere 0.41 0.41 0.42 0.42 0.27

Iris 0.12 0.12 0.11 0.11 0.51
Wine 0.28 0.28 0.06 0.06 0.60

constrained clustering performance. Next, we show the benefits that can be ob-
tained when using these measures to filter constraint sets. Finally, we analyze
constraint sets from an image data set and show how informativeness and coher-
ence can provide insights into why clustering performance increases or decreases.

4.1 Impact of Informativeness and Coherence on Clustering
Performance

To understand how these constraint set properties affect various algorithms, we
performed the following experiment. We randomly generated constraint sets of
just three constraints 5000 times. With such a small number of constraints,
the possible combinations of informativeness and coherence values is limited,
permitting a detailed study. For each data set, we can compare the performance
of each algorithm for each possible informativeness/coherence situation.

First, we report the average informativeness and coherence we observed for
each algorithm and data set (Table 3). Although Tables 1 and 3 are not directly
comparable due to the difference in constraint set sizes, we see an interesting
trend. In Table 1, the Glass data set exhibited the largest increases in accuracy
when using constraints; we find in Table 3 that the average informativeness for
these constraints is also high. However, high informativeness is not sufficient
for predicting accuracy improvement: the Ionosphere constraints, although in-
formative, also tend to have very low coherence. Incoherent sets are difficult to
completely satisfy, and we see this reflected in the lack of significant improve-
ment when using constraints with this data set. Conversely, the Iris constraints
have relatively high coherence but low informativeness, leading to the modest
(but positive) average effect on performance for all algorithms. The Wine con-
straints have a remarkable lack of informativeness for MKM and MPKM, so
the incoherence of the data set dominates performance and explains the small
decrease in average accuracy.

We have shown that average results can obscure individual behavior. There-
fore, we conducted a detailed analysis to better understand the relationships
between each measure and performance. Table 4 focuses on constraint sets that
are fully coherent, comparing performance between sets with high vs. low infor-
mativeness. We find that high informativeness almost always leads to an increase
in performance, for all algorithms. The exception is MKM and MPKM on the
Wine data set. Table 5 explores the opposite situation, focusing on constraint
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Table 4. Average accuracy for fully coherent constraint sets, comparing performance
of sets with high (“Inform.”) and low (“Uninf.”) informativeness

Algorithm
CKM PKM MKM MPKM

Data Set Inform. Uninf. Inform. Uninf. Inform. Uninf. Inform. Uninf.
Glass 68.9 67.8 57.8 57.1 58.1 49.6 54.9 54.3

Ionosphere 58.9 58.9 58.8 58.7 58.9 58.9 93.9 93.5
Iris 89.2 88.1 88.1 86.7 92.9 89.2 93.9 93.5

Wine 71.8 71.8 72.1 71.8 92.2 93.9 93.5 93.9

Table 5. Average accuracy for non-informative constraint sets, comparing performance
of coherent (“Coh.”) and incoherent (“Incoh.”) sets

Algorithm
CKM PKM MKM MPKM

Data Set Coh. Incoh. Coh. Incoh. Coh. Incoh. Coh. Incoh.
Glass 67.9 67.4 57.1 54.3 49.6 49.4 54.8 50.2

Ionosphere 58.9 58.9 58.7 58.7 58.9 58.9 58.8 58.8
Iris 86.7 85.2 86.7 85.2 89.2 89.2 89.3 88.8

Wine 71.8 71.8 71.9 71.8 94.0 93.9 93.5 93.2

sets that have low informativeness but a variety of coherence values. Incoherence
tends to adversely affect performance, particularly for the Glass and Iris data
sets. It has less impact on the Ionosphere and Wine data sets.

4.2 Constraint Selection Based on Coherence

We posit that informativeness and coherence can provide guidance in select-
ing the most useful constraint sets. Returning to the 25-constraint experiments
from Section 2, we applied a coarse constraint set selection strategy by removing
the 500 least coherent constraint sets and calculating average performance on
the remaining 500 sets (Table 6). We find a small but consistent increase in the
average accuracy with those sets removed, suggesting that generating or select-
ing constraint sets with high coherence can provide gains in future constrained
clustering experiments. The Iris data set, when analyzed by MPKM, is an excep-
tion to this rule. The MPKM results suggest that there are some less-coherent
constraint sets that yield very good performance, when both metric learning
and constraint satisfaction are used. We plan to investigate this exception more
thoroughly in future work.

4.3 Visualizing Informative and Coherent Constraint Sets

We have demonstrated empirically that highly informative and coherent con-
straint sets lead to improved clustering performance, while incoherent sets can
have an adverse effect. In this section, we show examples of constraint sets from
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an image data set that permit us to visualize informative and coherent constraint
sets.

For these experiments, we used the CMU Face Images data set [9]. We used a
subset containing 271 images of human faces with a variety of orientations and
expressions. Each image is labeled as Male or Female, and the goal is to identify
clusters that correspond with these categories (215 Male and 56 Female images).
Each image is approximately 120×120 pixels, yielding a total of 14402 features.
We conducted 100 trials, each time generating two randomly selected constraints.
Without constraints, the algorithms achieved Rand Indices of: CKM (53.2%),
PKM (53.9%), MKM (51.9%) and MPKM (51.9%). When using two randomly
selected constraints, the performance ranges were: CKM [53.6%,54.5%], PKM
[53.6%, 55.3%], MKM [49.8%,53.7%], MPKM [49.9%, 66.3%]. For this problem,
just two constraints can significantly improve the performance of the MKM and
MPKM algorithms, suggesting that the constraints are very useful for metric
learning.

Since the items in this data set are images, we can directly visualize the con-
straint sets. Figure 3 shows two constraint sets (one per line) that improved the
performance of MPKM from 51.9% to over 65%; both sets have an informa-
tiveness and coherence of 1.0. Figure 4 shows two constraint sets (one per line)
that either provided no improvement (CKM) or adversely affected performance
(PKM, MKM, and MPKM) with respect to the unconstrained performance; both
sets have an informativeness and coherence of 0.0.

We see that the beneficial constraint sets have an intuitive interpretation: the
must-linked images connect examples with different facial orientations, while the
cannot-link constraints are between images with very similar orientations. Be-
cause “orientation” is not a feature provided to the algorithm, these constraints
are very informative. They encourage the algorithm to create clusters that avoid
grouping images simply based on where the bright “face” pixels are located.
In contrast, in the constraint sets that have negative effects, the must-linked
instances are of different faces in the similar orientation, and the cannot-link
constrained instances have different orientation. This biases the constrained clus-
tering algorithms towards clustering faces with the same orientation, which is

Table 6. Clustering performance (Rand Index) when using constraint sets selectively.
We report average accuracy over all 1000 25-constraint sets (results copied from Ta-
ble 1) compared to average accuracy over the 500 most coherent sets. Statistically
significant increases at the 95% confidence interval are shown in bold.

Algorithm
CKM PKM MKM MPKM

Data Set All Top 500 All Top 500 All Top 500 All Top 500
Glass 69.4 70.4 68.8 70.6 56.6 56.6 67.8 68.4

Ionosphere 58.6 59.3 58.9 58.9 58.8 59.3 58.9 58.9
Iris 87.8 88.3 88.3 88.3 93.6 94.5 91.8 91.4

Wine 70.9 71.5 72.0 72.5 91.3 93.3 90.6 91.1
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           Must-link                   Cannot-link

      

Informativeness: 1, Coherence: 1 

             Must-link                Cannot-link 

      
  

Informativeness: 1, Coherence: 1 

Fig. 3. Examples of beneficial constraint sets (one per line) that significantly improved
the performance of MPKM

Must-link                Cannot-link 

      

Informativeness: 0, Coherence: 0  

              Must-link                  Cannot-link          

      

Informativeness: 0, Coherence: 0 

Fig. 4. Examples of constraint sets (one per line) that had no effect or an adverse effect
on algorithm performance

not a useful strategy when trying to separate images by gender. Our measures of
informativeness and coherence correctly capture this concept by characterizing
the likely utility of each set.

5 Conclusions and Future Work

The contributions of this paper are two-fold. First, we have shown the first
evidence that constraints can result in a decrease in clustering accuracy. This
occurs even with constraints that are completely accurate and noise-free. In
experiments with four UCI data sets and four constrained clustering algorithms,
we found that the fraction of randomly generated constraint sets that result in a
performance drop can range well above 50%. Second, we proposed two constraint
set properties, informativeness and coherence, that provide a quantitative basis
for explaining why a given constraint set increases or decreases performance.
We demonstrated that performance gains are largely attributable to constraint
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sets with high informativeness and coherence, while drops in performance are
associated with incoherent data sets.

Our experiments with selectively filtering randomly generated constraints to
remove sets with low coherence suggest a promising avenue for future work
with constrained clustering algorithms. We plan to more fully explore the use of
informativeness and coherence to select the most useful constraints for clustering.
Ultimately, this research direction could lead to reduced computational effort
(since fewer constraint sets are needed to assess performance) and higher average
performance on a variety of data sets.
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Abstract. The discovery of interesting regions in spatial datasets is an impor-
tant data mining task. In particular, we are interested in identifying disjoint, 
contiguous regions that are unusual with respect to the distribution of a given 
class; i.e. a region that contains an unusually low or high number of instances of 
a particular class. This paper centers on the discussion of techniques, method-
ologies, and algorithms to discover such regions. A measure of interestingness 
and a supervised clustering framework are introduced for this purpose. More-
over, three supervised clustering algorithms are proposed in the paper: an ag-
glomerative hierarchical supervised clustering named SCAH, an agglomerative, 
grid-based clustering method named SCHG, and lastly an algorithm named 
SCMRG which searches a multi-resolution grid structure top down for interest-
ing regions. Finally, experimental results of applying the proposed framework 
and algorithms to the problem of identifying hotspots in spatial datasets are 
discussed.  

1   Introduction 

Because of advances in database technologies, data collection techniques, and data 
gathering devices the amount of spatial data has been growing tremendously in recent 
years. The goal of spatial data mining is to automate the extraction of interesting and 
useful patterns that are not explicitly represented in spatial datasets. 

This paper centers on discovering interesting regions in spatial datasets; in particu-
lar, on identifying disjoint, contiguous regions that are unusual with respect to the 
distribution of a given class, i.e. a region that contains an unusually low or high num-
ber of instances of a particular class. Methodologies, techniques, and algorithms are 
proposed for this purpose. Challenges that this task faces include the capability to find 
regions of arbitrary shape and at arbitrary levels of resolution, the definition of suit-
able parameterized measures of interestingness to instruct discovery algorithms what 
they are supposed to be looking for, and the need to reduce computational complexity 
due to the large size of most spatial datasets. 

The paper assumes that datasets contain classified examples, and treats region discov-
ery as a clustering problem in which clusters have to be found that maximize an exter-
nally given reward scheme. Section 2 proposes reward-based evaluation framework for 
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region discovery. In sections 3 and 4 three supervised clustering algorithms are intro-
duced and compared. Section 5 discusses related work and section 6 gives a conclu-
sion. Table 1 summarizes the notations used in this paper. 

Table 1. Notations used  

Notation Description 

O={o1, …, on} Objects in a dataset (or training set) 

n Number of objects in the dataset 

ci⊂ O The i-th cluster 

X={c1, …, ck} A clustering solution consisting of clusters c1 to ck 

q(X) Fitness function that evaluates a clustering X 

C A class label 

2   Measuring the Interestingness of a Set of Regions 

As we explained earlier, our approach uses supervised clustering algorithms to iden-
tify interesting regions in a dataset. A region, in our approach, is defined as a surface 
containing a set of spatial objects; e.g. the convex hull of the objects belonging to a 
cluster. Moreover, we require regions to be disjoint and contiguous; that is, for each 
pair of objects belonging to a region, there always must be a path within this region 
that connects the pair of objects. Furthermore, we assume that the number of regions 
is not known in advance, and therefore finding the best number of regions is one of 
the objectives of the clustering process. Therefore, our evaluation scheme has to be 
capable of comparing clusterings that use a different number of clusters. 

Our approach employs a reward-based evaluation framework. The quality q(X) of 
a clustering X is computed as the sum of the rewards obtained for each cluster c∈X. 
Cluster rewards are weighted by the number of objects that belong to a cluster c. In 
general, we are interested in finding larger clusters if larger clusters are equally inter-
esting as smaller clusters. Consequently, our evaluation scheme uses a parameter β 
with β>1 and fitness increases nonlinearly with cluster-size dependent on the value of 
β, favoring clusters c with more objects. 

)||)*(()(
∈

=
Xc

ccrewardXq β   (1) 

Selecting larger values for the parameter β usually results in a smaller number of 
clusters in the best clustering X. The proposed evaluation scheme is very general; 
different reward schemes that correspond to different measures of interestingness can 
easily be supported in this framework, and the supervised clustering algorithm that 
will be introduced in the second half of the paper can be run with different fitness 
functions without any need to change the clustering algorithm itself. 



 Discovery of Interesting Regions in Spatial Data Sets Using Supervised Clustering 129 

In this paper, due to the lack of space, we only introduce a single measure of inter-
estingness that centers on discovering hotspots and coldspots in a dataset. The measure 
is based on a class of interest C, and rewards regions in which the distribution of class 
C significantly deviates from its prior probability, relying on a reward function τ. τ 
itself, see Fig. 1, is computed based on p(c,C), prior(C), and based on the following 
parameters: γ1, γ2, R+, R−  with γ1≤1≤γ2; 1≥ R+,R−≥0, η>0 .  

 

Fig. 1. The reward function Cτ for η=1 

The fitness function q(X) is defined as follows: 
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(3) 

In the above formula prior(C) denotes the probability of objects in dataset belong-
ing to the class of interest C. The parameter η determines how quickly the reward 
grows to the maximum reward (either R+ or R−). If η is set to 1 it grows linearly; in 
general, if we are interested in giving higher rewards to purer clusters, it is desirable 
to choose larger values for η; e.g. η=8.  

Let us assume a clustering X has to be evaluated with respect to a class of interest 
“Poor” with prior(Poor) = 0.2 in a dataset that contains 1000 examples. Suppose that 
the generated clustering X subdivides the dataset into five clusters c1, c2, c3, c4, and 
c5 with the following characteristics: |c1| = 50, |c2| = 200, |c3| = 200, |c4| = 350, |c5| = 
200; p(c1, Poor) = 20/50, p(c2, Poor) = 40/200, p(c3, Poor) = 10/200, p(c4, Poor) = 
30/350, p(c5, Poor) = 100/200. Moreover, the parameters used in the fitness function 
are as follows: γ1 = 0.5, γ2 = 1.5, R+ = 1, R− = 1, β = 1.1, η=1. Due to the settings of 
γ1 = 0.5, γ2 = 1.5, clusters that contain between 0.5 x 0.2 = 10% and 1.5 x 0.2 = 30% 
instances of the class “Poor” do not receive any reward at all; therefore, no reward is 
given to cluster c2. The remaining clusters received rewards because the distribution 
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of class “Poor” in the cluster is significantly higher or lower than its prior distribution. 
For example, the reward for c1 that contains 50 examples is 1/7 x (50)1.1; 1/7 is ob-
tained as follows: τ(c1) = ((0.4-0.3)/(1-0.3)) * 1 = 1/7.  
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3   Supervised Clustering Algorithms for Region Discovery 

As part of our research, we have designed and implemented seven supervised cluster-
ing algorithms three of which will be described in this Section.  

3.1   Supervised Clustering Using Agglomerative Hierarchical Techniques 
(SCAH) 

SCAH is an agglomerative, hierarchical supervised clustering algorithm. Initially, it 
forms single object clusters, and then greedily merges clusters as long as the clustering 
quality improves. In more detail, a pair of clusters (ci, cj) is considered to be a merge 
candidate if ci is the closest cluster to cj or cj is the closest cluster to cj. Distances be-
tween clusters are measured by using the average distance between the objects belong-
ing to the two clusters. The pseudo code of the SCAH algorithm is given in Fig. 2.  

Inputs: 
A dataset O={o1,...,on} 
A dissimilarity Matrix D = {d(oi,oj) |  oi,oj ∈ O }, 
Output: 
Clustering X={c1, c2, …, ck}  
 
Algorithm: 

1) Initialize:  
Create single object clusters:  ci = {oi}, 1  i  n; 
Compute merge candidates   

2) DO FOREVER 
a) Find the pair (ci, cj) of merge candidates that improves q(X) the most 
b) If no such pair exist terminate, returning X = {c1, c2, … ck} 
c) Delete the two clusters ci and cj from X and add the cluster ci U cj to X 
d) Update merge candidates  

Fig. 2. The SCAH Algorithm 

In general, SCAH differs from traditional hierarchical clustering algorithms which 
merge the two clusters that are closest to each other in that it considers more alterna-
tives for merging clusters. This is important for supervised clustering because merging 
two regions that are closest to each other will frequently not lead to a better clustering, 
especially if the two regions to be merged are dominated by instances belonging to 
different classes.  
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3.2   Supervised Clustering Using Hierarchical Grid-Based Techniques (SCHG)  

Grid-based clustering methods are designed to deal with the large number of data 
objects in a high dimensional attribute space. A grid structure is used to quantize the 
space into a finite number of cells on which all clustering operations are performed. 
The main advantage of this approach is its fast processing time which is typically 
independent of the number of data objects, and only depends on the number of occu-
pied cells in the quantized space.  

SCHG is an agglomerative, grid-based clustering method. Initially, each occupied 
grid cell is considered to be a cluster. Next, SCHG tries to improve the quality of the 
clustering by greedily merging two clusters that share a common boundary. The algo-
rithm terminates if q(X) cannot be improved by further merging.  

3.3   Supervised Clustering Using Multi-Resolution Grids (SCMRG) 

Supervised Clustering using Multi-Resolution Grids (SCMRG) is a hierarchical grid 
based method that utilizes a divisive, top-down search: each cell at a higher level is 
partitioned further into a number of smaller cells in the next lower level, but this 
process only continues if the sum of the rewards of the lower level cells is higher than 
the obtained reward for the cell at the higher level. The returned cells usually have 
different sizes, because they were obtained at different level of resolution. The algo-
rithm starts at a user defined level of resolution, and considers three cases when proc-
essing a cell: 

1. If a cell receives a reward, and its reward is larger than the sum of the re-
wards associated of its children and larger than the sum of rewards of its 
grandchildren, this cell is returned as a cluster by the algorithm.  

2. If a cell does not receive a reward and its children and grandchildren do not 
receive a reward, neither the cell nor any of its descendents will be included 
in the result.  

3. Otherwise, all the children cells of the cell are put into a queue for further 
processing. 

The algorithm also uses a user-defined cell size as a depth bound; cells that are 
smaller than this cell size will not be split any further. The employed framework has 
some similarity with the framework introduced in the STING Algorithm [13] except 
that our version centers on finding interesting cells instead of cells that contain an-
swers to a given query, and only computes cell statistics when needed and not in ad-
vance as STING does. 

4   Experimental Evaluation 

4.1   Datasets 

In order to study the performance of the clustering algorithms presented in section 3, 
we conducted experiments on a benchmark consisting of 6 spatial datasets. Table 2 
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gives a summary for the datasets used. Objects belonging to those data sets consist of 
longitude and latitude and a non-spatial part which is the class label associated with 
that object. 

Table 2. Datasets used in the benchmark 

 
Dataset Name # of objects # of classes 

1 B-Complex9 3,031 2 
2 Volcano 1,533 2 
3 Earthquake-1 3,161 3 
4 Earthquake-10 31,614 3 
5 Earthquake-100 316,148 3 
6 Wyoming-Poverty 493,781 2 

B-Complex9 is a two dimensional synthetic spatial dataset whose examples are dis-
tributed having different, well-separated shapes. Earthquake and Volcano are spatial 
datasets containing the longitude and latitude of earthquakes and volcano eruptions, 
that are classified based on their severity of the event. Earthquake-1 and Earthquake-
10 are smaller datasets contains 1% and 10% of the original data respectively. Wyo-
ming-Poverty is a two dimensional spatial dataset indicating the poverty status of 
residents of the state of Wyoming based on 2000 census data. For more details about 
the datasets see [12].  

4.2   Experimental Evaluation 

The proposed algorithms have been evaluated on a benchmark consisting of the data-
sets described in section 4.1. We tested the algorithms’ capability to identify very 
pure, potentially very small regions (β=1.01, η=6, γ1=0.5, γ2=1.5, R+=1, R−=1) and 
to identify larger regions (β=3, η=1, γ1=0.5, γ2=1.5, R+=1, R−=1). Table 3 summa-
rizes the results and Fig. 6 and 7 visualize the result of SCAH, SCHG and SCMRG 
for the B-Complex9 and Volcano datasets. The result of SCAH on B-Complex9 and 
Volcano is identical for both set of parameters, so we visualized them only once. 
Purity and quality of final clustering and the number of clusters obtained are reported 
for each algorithm-dataset pair. Quality is measured using q(X) that was introduced in 
Section 2. Purity of a clustering is defined as the number of examples that belong to 
the most frequent class of a cluster over the total number of examples belonging to 
clusters. All Experiments were conducted on a DELL D600 workstation with an Intel 
Pentium M processor 1.80GHz and 1 GB of main memory. SCAH did not succeed in 
producing results (indicated by DNF in Table 3) within 6 hours for the Earthquake-10 
dataset and ran out of storage for the Wyoming and Earthquake-100 datasets when 
creating the initial clustering.  
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Table 3. Experimental Results for β = 1.01/η = 6 and β = 3/η = 1 

Algorithms SCAH SCHG SCMRG SCAH SCHG SCMRG 
Dataset 

Parameters  = 1.01,  = 6  = 3,  = 1 

Purity 1 0.998 1 1 0.997 0.863 
Quality 0.974 0.974 0.957 0.008 0.044 0.002 B-Complex9 

Clusters 17 15 132 17 9 22 
Purity 1 0.692 0.979 1 0.692 0.885 

Quality 0.940 0.091 0.822 1E-5 7E-4 1E-4 Volcano 

Clusters 639 56 311 639 31 221 
Purity 1 0.844 0.938 0.853 0.840 0.814 

Quality 0.952 0.399 0.795 0.004 0.086 0.006 Earthquake-1 

Clusters 479 33 380 161 10 93 
Purity DNF 0.840 0.912 DNF 0.834 0.807 

Quality DNF 0.398 0.658 DNF 0.077 0.006 Earthquake-10 

Clusters DNF 37 506 DNF 12 153 
Purity  DNF 0.842 0.909 DNF 0.837 0.808 

Quality DNF 0.389 0.560 DNF 0.083 0.006 
Earthquake-

100 
Clusters  DNF 38 780 DNF 9 191 
Purity   DNF 0.772 0.721 DNF 0.769 0.661 

Quality  DNF 0.027 0.227 DNF 0 0.001 Wyoming 

Clusters  DNF 489 89 DNF 391 78 

As can be seen in Table 3, SCAH outperforms SCHG and SCMRG for β=1.01/ η=6, 
and, in general, performs quite well for small β values, such as 1.01. In general, we 
observed for these and other datasets that SCAH merges pure clusters that share the 
same majority class initially. Consequently, it does a quite good job, if the task is to 
identify small regions that are pure. However, when SCAH reaches the point when it 
runs out of pure clusters to merge, it has the tendency to terminate prematurely with 
too small regions. It should be noted that the penalty for having more clusters is quite 
small if β is 1.01 and the penalty for losing purity when merging clusters is quite high 
when η is 6. However, for β=3/η=1, the reward gains from having larger clusters are 
quite significant. This explains why SCAH is outperformed by the other two algo-
rithms for several datasets. 

Why does SCAH terminate prematurely when we are interested in obtaining large 
clusters? The first reason is that SCAH only considers a single merge candidate 
per cluster whereas SCHG considers four merge candidates per cluster initially; there-
fore, SCHG has more options for merge, and therefore is less likely to terminate 
prematurely.  

The second reason is that SCAH’s look-ahead horizon is too limited. For example, 
when running SCAH for the B-Complex9 dataset for β=3, the algorithm terminates 
with 17 clusters, seven of which are depicted in Fig. 3: the outside elliptical shape 
belongs to class 1 and the two inside spots belong to class 0. Based on average  
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Fig. 3. A part of the B-Complex9 Dataset 

distance, the merge candidates considered by SCAH are: 1 and 6, 5 and 6, 3 and 7, 2 
and 7, 4 and 7. SCAH will stop here since no improvement made using a single 
merge. However, for β=3 a higher reward can be obtained by merging all 7 clusters, 
but SCAH fails to do so, because it terminates if q(X) cannot be improved by a single 
merge. 

Another interesting observation is that the SCHG algorithm outperforms the 
SCMRG for β=3 for all datasets tested. On the other hand,  SCMRG algorithm per-
forms better, compared to SCHG, on the datasets containing chain patterns such as 
volcano, as depicted in Fig. 4, for β=1.01. This can be attributed to the fact that 
SCHG is limited to the predefined size of the cells, whereas SCMRG uses grid-cells 
of different size. As we see in Fig. 6, regions discovered for the volcano dataset are 
purer than those discovered by the SCHG algorithm.  

(a) (b) 

Fig. 4. Original Volcano and Earthquake Datasets, a) Part of Volcano b) Earthquake 

The average running time of each algorithm is depicted in Fig. 5. The SCAH algo-
rithm is less efficient compared to SCHG and SCMRG. The slowness SCAH can be  
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Time Relationship of SCAH,SCHG and SCMRG

3685.2655

72
271.73325

0

500

1000

1500

2000

2500

3000

3500

4000

SCAH SCHG SCMRG

Algorithms

T
im

e(
se

co
n

d
s)

 
Fig. 5. Average running time of SCAH, SCHG and SCMRG  

attributed to its time consuming distance computations: SCAH is required to compute 
distances between pairs of clusters in order to make the decision of which two clusters 
have to be merged in the next step, whereas SCHG and SCMRG do not compute any 
distances at all, and determine merge/split candidates quickly from the underlying 
grid structure. Moreover, the average running time of SCMRG is higher than SCHG 
because SCMRG looks for the regions of interest at different levels of resolution, 
whereas SCHG searches for the interesting clusters using grid cells of fixed size. 

 

  

Fig. 6.  The result of running supervised algorithms, from top to bottom SCAH, SCHG and 
SCMRG on two datasets for parameters β = 3/η= 1 



136 C.F. Eick et al. 

 

  
Fig. 7. The result of running SCAH, SCHG and SCMRG on two datasets for β = 1.01/η= 6 

5   Related Work  

Supervised Clustering [7] centers on partitioning classified examples, maximizing 
cluster purity while keeping the number of clusters low. Supervised clustering algo-
rithms have been originally proposed to enhance classification algorithms [6]. Our 
work also has some similarity with work in search-based semi-supervised clustering 
(also see [1]); for example, Demiriz et al. [5] propose an evolutionary clustering algo-
rithm in which solutions consist of k centroids and the objective of the search process 
is to obtain clusters that minimize (the sum of) cluster dispersion and cluster impurity. 
This paper centers on the application of supervised clustering to a new problem: re-
gion discovery in spatial datasets containing classified examples.  

There also has been some work on co-location rule discovery whose relationship to 
our work is worth discussing. Co-location rule discovery centers on finding subsets of 
spatial features frequently located together.  Approaches to discover co-location rules 
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in the literature can be categorized into three groups: spatial statistics [3, 4], associa-
tion rules [9] and event centric spatial co-location [10]. It should be noted that all 
mentioned approaches center on finding frequent, global patterns that characterize the 
complete dataset, whereas our approach centers on finding local regions that are un-
usual or unexpected with respect to the global characteristics of the dataset. 

Hotspot discovery has also been investigated by past research. Williams [14] pro-
poses an evolutionary hotspot discovery architecture that uses traditional clustering, 
rule induction, and a domain specific fitness function. Tay & Lim et al. [11] describes 
a region growing method for hotspot discovery, which selects seed points first and 
then grows clusters from seed points by adding neighbor points as long as a density 
threshold condition is satisfied. Brimicombe proposes the Geo-ProZone algorithm [2] 
for hotspot discovery that employs adaptive recursive tessellations. This algorithm 
supports different level of resolution and recursively decomposes the space with vari-
able decomposition ratios using rectangular grid cells. Finally, Klösgen and M. May 
[8] propose a multi-relational framework for subgroup discovery within a spatial 
database system.  

6   Summary  

In this paper, we introduced a supervised clustering approach and a reward-based 
evaluation framework for region discovery. Finding interesting regions in spatial 
datasets is viewed as a clustering problem, in which the sum of rewards for the ob-
tained clusters is maximized, and where the reward associated with a cluster reflects 
its degree of interestingness for the problem at hand. We explained that this approach 
is quite different from most other work in spatial data mining that mostly uses asso-
ciation rules. Different measures of interestingness can easily be supported in the 
proposed framework by designing different reward-based fitness functions; in this 
case, neither the supervised clustering algorithm itself nor our general evaluation 
framework has to be modified. We also discussed how hierarchical, and grid-based 
clustering algorithms can be adapted for supervised clustering in general, and for 
region discovery in particular, and presented evidence concerning the usefulness of 
the proposed framework for hotspot discovery problems. Finally, the paper identified 
some shortcomings of agglomerative clustering algorithms, such as SCAH. Our cur-
rent work explores the use preprocessing techniques to speed up SCAH, and on the 
use of proximity graphs to merge clusters more intelligently. 
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Abstract. We propose a new algorithmic framework that solves fre-
quency-related data mining queries on databases of strings in optimal
time, i.e., in time linear in the input and the output size. The additional
space is linear in the input size. Our framework can be used to mine
frequent strings, emerging strings and strings that pass other statistical
tests, e.g., the χ2-test. In contrast to the presented result for strings, no
optimal algorithms are known for other pattern domains such as itemsets.
The key to our approach are several recent results on index structures
for strings, among them suffix- and lcp-arrays, and a new preprocess-
ing scheme for range minimum queries. The advantages of array-based
data structures (compared with dynamic data structures such as trees)
are good locality behavior and extensibility to secondary memory. We
test our algorithm on real-world data from computational biology and
demonstrate that the approach also works well in practice.

1 Introduction

In many applications, e.g., in computational biology, the goal is to find inter-
esting string or sequence patterns in data. Application areas are, among others,
finding discriminative features for sequence classification or segmentation [1],
discovering new binding motifs of transcription factors, or probe design [2]. In
this paper, we focus on string mining under frequency constraints, i.e., predicates
over patterns depending solely on the frequency of their occurrence in the data.
This category encompasses combined minimum/maximum support constraints,
constraints concerning emerging substrings, and constraints concerning statisti-
cally significant substrings. We present an algorithm that is able to answer such
queries optimally, that is, in time linear in the size of the input database, plus
the time to output the solution patterns.

In previous work [2], we investigated string mining approaches based on break-
through results on index structures for strings, among them suffix arrays and
longest common prefix (lcp) tables [3,4,5]. Suffix arrays are essentially a represen-
tation of the lexicographic order of all suffixes of a string. lcp tables contain the
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length of the longest common prefix of two consecutive suffixes in a suffix array.
For both suffix arrays and lcp tables, fast construction algorithms are known.
As in our previous approach, we assume that the suffix array and the lcp table
are computed in a preprocessing step. The key to the approach presented here
is another preprocessing scheme for so-called range minimum queries (RMQs).
RMQs generalize the lcp table in the sense that the length of the longest common
prefix can be answered for arbitrary suffixes. Taking advantage of recent results
[6,7], it is possible to answer RMQs in constant time. Another technical novelty
is the solution to computing the frequency counts. The solution first determines
the number of all occurrences (counting several occurrences per example), and
then subtracts so-called correction terms to obtain the final counts per example.
It is shown that the presented approach is able to answer all frequency-related
constraints in linear time, i.e., optimally. For instance, it is possible to compute
all statistically significant substrings between two classes of strings in time lin-
ear in the total length of the strings in the database, plus the total length of
all such significant strings (i.e., the output size). It is interesting to note that
no optimality results are known for other pattern domains such as itemsets or
graphs (see, e.g., [8]).

While the focus of this paper lies on the algorithm and the theoretical re-
sult, we also implemented and tested the approach to show that it works in
practice. In our experiments, we compared protein sequences from humans and
mice, in total more than 40MB of sequence data. The aim of the experiments
was to mine all frequent substrings (Probl. 1, Sect. 2) and emerging substrings,
respectively (Probl. 2). The only known algorithm for emerging substrings [9]
runs in quadratic time, and is therefore not applicable. The experiments con-
firm that our approach works well in practice. In particular, most queries for
emerging substrings can be answered in less than three minutes, and the mining
of frequent substrings is 2–3 times faster than our previous method presented
in [2].

2 Preliminaries

We consider patterns from the domain of strings. For a finite ordered alphabet
Σ, a string φ is a chain φ1 . . . φn of letters φi ∈ Σ. We often write φn..m to
denote the substring of φ ranging from position n to m. |φ| denotes the number
of letters in φ. Σ� is the set of all strings over Σ. For φ, ψ ∈ Σ� we write φ � ψ
if φ is a substring of ψ. lcp(φ, ψ) gives the length of the longest common prefix
of φ and ψ. For example, lcp(aab, abab) = 1. Given a database D ⊆ Σ� with
strings over Σ, we write |D| to denote the number of strings in D, and ‖D‖ to
denote their total length, i.e., ‖D‖ =

∑
φ∈D |φ|. We define the frequency and the

support of a pattern φ ∈ Σ� in D as follows:

freq(φ,D) := |{d ∈ D : φ � d}|, supp(φ,D) :=
freq(φ,D)
|D|

Note that this is not the same as counting all occurrences of a φ in D, because one
database entry could contain multiple occurrences of φ. The main contribution
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of this article is to show how one can compute the frequency (or support) of all
strings occurring at least once in one of the databases in optimal time, i.e., in
time linear in the size of the input databases. This allows us to solve frequency-
related mining queries in optimal time, i.e., in time linear in the sum of the
input- and the output-size. Naturally, the query must be computable from the
frequency (or support) in constant time.

We now introduce three problems that can be solved optimally with our ap-
proach. The first one is as follows.

Problem 1. Given m databases D1, . . . ,Dm of strings over Σ and m pairs of fre-
quency thresholds (min1,max1), . . . , (minm,maxm), the Frequent Pattern Min-
ing Problem is to return all strings φ ∈ Σ� that satisfy mini ≤ freq(φ,Di) ≤
max i for all 1 ≤ i ≤ m.

This well-known problem has been addressed by many authors using different
solution strategies and data-structures ([10,11,2]), but none of these is optimal.

Next, we consider a 2-class problem for a (usually positive) database D1 and
a (usually negative) database D2. We define the growth-rate from D2 to D1 of a
string φ as

growthD2→D1
(φ) :=

supp(φ,D1)
supp(φ,D2)

, if supp(φ,D2) �= 0 ,

and growthD2→D1
(φ) = ∞ otherwise. The following definition is motivated by

the problem of mining Emerging Patterns [12]:

Problem 2. Given two databases D1 and D2 of strings over Σ, a support thresh-
old ρs (0 < ρs ≤ 1), and a minimum growth rate ρg > 1, the Emerging Substrings
Mining Problem is to find all strings φ ∈ Σ� such that supp(φ,D1) ≥ ρs and
growthD2→D1

(φ) ≥ ρg.

The patterns satisfying both the support- and the growth-rate condition are
called Emerging Substrings (ESs). ESs with an infinite growth-rate are called
Jumping Emerging Substrings (JESs), because they are highly discriminative
for the two databases. The only known solution for finding ESs [9] is quadratic
in the input size. The following example will be continued throughout this paper.

Example 1. Let D1 = {aaba, abaaab}, D2 = {bbabb, abba}, ρs = 1, and ρg = 2.
Then the emerging substrings from D2 to D1 are aa, aab and aba. In this case,
these are also the jumping ESs. �

As a last example problem that our method can solve optimally we mention the
χ2-test.

Problem 3. Given m databases D1, . . . ,Dm of strings over Σ and a threshold ρ.
Let n =

∑m
j=1 |Dj | be the total number of strings, f =

∑m
i=1 freq(φ,Di) the total

frequency of φ, and Ej = f · |Dj |/n be the expected value of φ’s frequency. Then
φ is significant if it passes the χ2-test, i.e., if χ2 =

∑m
j=1

(freq(φ,Dj)−Ej)2

Ej
≥ ρ.
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2.1 Suffix- and lcp-Arrays

This section introduces two fundamental data structures that we need for our
algorithm. We write A[1, n] for an array A of length n, and A[i] denotes the i’th
entry of A. To make the following definitions as general as possible, let t denote
an arbitrary string of length n. Later, t will be formed from the input databases
(fully explained in Sect. 3.1). Recall that ti..j is the substring from i to j.

The suffix array SA (see [3,4]) for t is used to describe the lexicographic order
of t’s suffixes, in the sense that it “enumerates” the suffixes from the smallest to
the largest. More formally, SA[1, n] is an array of integers s.t. its entries contain
all of the numbers from 1 to n (i.e., {SA[1], . . . , SA[n]} = {1, . . . , n}), and tSA[i]..n
is lexicographically less than tSA[i+1]..n for all 1 ≤ i < n. See Fig. 1(a) for an
example, which builds on the databases D1 and D2 from Ex. 1.

The suffix array for t can be computed in O(n) time, either indirectly by con-
structing a suffix tree for t, or directly with some recent methods, e.g. [13]. In
practice, however, asymptotically slower algorithms [14,15] have been shown to
perform faster. The method in [15] has the further advantage that it uses only
εn additional bytes of space, which is close to optimal. Here, ε is a tunable pa-
rameter that determines the speed of the algorithm and can be made arbitrarily
small.

The lcp-array LCP[1, n] for t is defined by LCP[i] = lcp(tSA[i]..n, tSA[i−1]..n) for
all 1 < i ≤ n, and LCP[1] = 0. That is, LCP contains the lengths of the longest
common prefixes of t’s suffixes that are consecutive in lexicographic order. Kasai
et al. [5] gave an algorithm to compute LCP in O(n) time, and Manzini [16]
adapted this algorithm to use only one integer array. It can be argued that most
of the LCP-values are small compared with the size of the text and could thus
be stored in less than n words, but we do not pursue this approach here.

2.2 Range Minimum Queries

The last tool we need for our linear-time approach is a preprocessing of the lcp-
array such that range minimum queries (RMQs) can be answered in constant
time. The reason for using RMQs on LCP is that they generalize the lcp-array,
in the sense that we can compute the lcp between arbitrary suffixes, and not
only between those that are lexicographically adjacent. Formally, for two given
indices i and j the query rmqLCP(i, j) asks for the position of the minimum
element in LCP[i, j], i.e., rmqLCP(i, j) := argmink∈{i,...,j}{LCP[k]}. We return
the smallest index if the minimum is not unique.

Lemma 1. Let t ∈ Σ� be a text and LCP be the lcp-array for t. Then for all
1 ≤ i < j ≤ |t|, lcp(tSA[i]..|t|, tSA[j]..|t|) is given by LCP[rmqLCP(i + 1, j)].

This follows immediately from the definition of the lcp-array. Stated differently,
Lemma 1 says that the i’th- and the j’th-smallest suffix of t are equal in exactly
their LCP[rmqLCP(i + 1, j)] first characters.

It has been shown that a linear preprocessing of any input array A is suffi-
cient to find rmqA(i, j) in time O(1) [6]. This method has recently been refined
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to use only o(n) extra space [7]. The basic idea for both approaches is to di-
vide the array into blocks of size Θ(log n). Then each block is preprocessed such
that a query that lies completely inside one block can be answered in constant
time. This step is accomplished by applying the so-called Four-Russians-Trick
[17] to the blocks (precomputation of all results for sufficiently small instances).
A final step preprocesses the array such that queries that exactly span over sev-
eral blocks can be answered efficiently. In total, each range minimum query
can be decomposed into at most three sub-queries, where the first and the
last of these are in-block-queries, and the second is an out-of-block-query. As
each sub-query can be answered in constant time, the overall query time is
O(1) [6,7].

3 The New Algorithm

In this section we present our linear-time algorithm for answering frequency-
related mining queries (e.g., emerging substrings). Logically, the algorithm can
be divided into three main phases: (1) Preprocessing, (2) Labeling, and (3) Ex-
traction. The preprocessing step constructs all necessary data structures: the
suffix- and lcp-array, and the preprocessing for RMQ. The labeling step does
the principal work for a fast calculation of the string-frequencies. Finally, the
extraction step returns all strings passing the frequency-based criterion.

The main idea for computing the frequencies is as follows. Let Dj = {sj,1, . . . ,
sj,|Dj|} be the given databases (1 ≤ j ≤ m). For the strings φ occurring in any of
the databases, we compute the total number of occurrences in Dj and store the
respective numbers in SDj (φ). We further compute so-called correction terms
CDj (φ) that count how often string φ has a repetition in the same string of Dj :

SDj (φ) = |{(i, k) : sj,k
i..i+|φ|−1 = φ}|, CDj (φ) =

|Dj |∑
k=1

(|{i : sj,k
i..i+|φ|−1 = φ}|−1) (1)

Then freq(φ,Dj) clearly equals SDj (φ) − CDj (φ). In our example, SD1(ab) = 3
(there are 3 occurrences of ab in D1) and CD1(ab) = 1 (ab is repeated once in
the second string s1,2 = abaaab of D1). We will see in Sect. 3.3 that it is not
very hard to compute the S-numbers in linear time; the real difficulty lies in the
computation of the C-numbers. The following lemma suggests how the lcp-array
can be used to calculate these correction terms (cf. Lemma 1):

Lemma 2. For any string φ occurring in Dj, CDj (φ) is given by the number
of times that φ is a prefix of the longest common prefix of two lexicographically
adjacent suffixes from the same string sj,k in Dj:

CDj (φ) =
|Dj|∑
k=1

|{(i, i′) : φ prefix of lex. adj. suffixes of sj,k starting at i �= i′}|
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Fig. 1. (a) The suffix array for w and its lcp-table. Below position i we draw the string
tSA[i]..n until reaching the first end-of-string marker. The solid line going through these
strings indicates the lcp-values. (b) Computation of the C′-numbers. The intervals
are those for which range minimum queries on LCP are executed; the position of the
minimum is depicted by a solid circle. Empty fields in the two arrays denote 0.

We omit the proof of this result due to space limitations. As an example, the
suffixes of s1,2 = abaaab are (in lexicographic order) aaab, aab, ab, abaaab, b,
and baaab. The third and the fourth have ab as their longest common prefix.
Because no suffixes from s1,1 = aaba have ab as their longest common prefix,
the value of CD1(ab) is 1.

The calculation of the correction terms is done in phase (2) and (3) of our
algorithm. In phase (2), we create auxiliary arrays that allow an easy compu-
tation of the actual correction terms. The computation of the C-terms is then
done along with the computation of the S-numbers in phase (3). The following
sections describe the three phases in greater detail.

3.1 Preprocessing

We form a (conceptual) string s1,1#1
1 . . . s1,|D1|#1

|D1| . . . s
m,1#m

1 . . . sm,|Dm|#m
|Dm|

which we denote by t. The #k
i ’s are new symbols that do not occur in any of the

databases and serve to mark the end of a string from the respective database.
Note that the length of t is n :=

∑m
j=1(‖Dj‖ + |Dj |). The preprocessing then

consists of constructing the following data structures for t (in this order): the
suffix array SA, the lcp-array LCP, and the information to answer rmqLCP(i, j)
in O(1). All steps take time O(n). See Fig. 1(a) for an example.

A short definition is necessary at this point: We say that entry SA[i] points
to string sj,k in database Dj iff the first end-of-string marker in tSA[i]..n is #j

k.
For example, in Fig. 1(a), SA[8] = 9 points to s1,2, because t9..23 = aab#1

2bb....
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Algorithm 1. Labeling of the lcp-array.
Input. suffix array SA and lcp-array LCP of size n for m databases D1, . . . , Dm

Output. m arrays C′
D1 , . . . , C′

Dm
of size n

Let lastDi be an array of size |Di|, initialized with all 0 (i = 1, . . . , m);1

Let C′
Di

be an array of size n, initialized with all 0 (i = 1, . . . , m);2

for i = 1, . . . , n do3

Let j and k be defined such that SA[i] points to sj,k;4

if lastDj [k] �= 0 then5

l ← rmqLCP(lastDj [k] + 1, i);6

increase C′
Dj

[l] by 1;7

end8

lastDj [k] ← i;9

end10

3.2 Labeling

Alg. 1 augments the lcp-array LCP with arrays C′
D1

, . . . , C′
Dm

which facilitate
the computation of the correction terms in phase 3. Although the C′

Dj
’s are

represented by new arrays of size n, we call this step “labeling” because it is
derived from the tree labeling technique by Hui [18]. We want C′

Dj
[i] to be equal

to the number of lexicographically adjacent suffixes from the same string in Dj

that share a longest common prefix of length LCP[i]. More formally, C′
Dj

[i] equals
the number of triples (a, b, k) that fulfill the following constraints:

1. 1 ≤ a < i ≤ b ≤ n, and SA[a] and SA[b] point to the same string sj,k in Dj .
2. No entry strictly between a and b points to sj,k.
3. lcp(tSA[a]..n, tSA[b]..n|) = LCP[i].

Note that point 3 actually states that two lexicographically consecutive suffixes
of sj,k have an lcp-value of LCP[i], because of 1 and 2. Note also that due to the
definition of the lcp-array (lengths of longest common prefix of lexicographically
adjacent suffixes) there must be an i ∈ [a, b] with LCP[i] = lcp(tSA[a]..n, tSA[n]..n|),
so C′

Dj
[i′] �= 0 for at least one i′ between a and b.

The C′-numbers are computed as follows: the for-loop (lines 3–10) scans the lcp-
array from left to right. Array lastDj [k] holds the rightmost position in SA to the
left of i that points to sj,k. Thus, if SA[i] points to sj,k, setting a = lastDj [k] and
b = i fulfills constraints 1 and 2 above. Because of Lemma 1, lcp(tSA[a]..n, tSA[b]..n|)
is given by rmqLCP(lastDj [k] + 1, i) (line 6). See Fig. 1(b) for an example.

We now sketch how the C′-numbers help to compute the actual correction
terms. We compute C(φ) for the strings φ that are maximally repeated (also
called branching in [5]), which means that they occur more than once in t, say x
times, but all extensions of φ (i.e., strings of which φ is a proper prefix) occur less
than x times.1 The number of such strings is clearly linear, and the frequency
of all other strings can be derived from one of the maximally repeated strings.
1 Note that the maximally repeated strings are exactly those strings that correspond

to an internal node in the suffix tree [19] for t.
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Lemma 3. Let φ � t. The following is equivalent:

1. φ is maximally repeated.
2. There exist 1 ≤ l ≤ r ≤ n s.t.

(a) LCP[l − 1] < LCP[l] and LCP[r] > LCP[r + 1] ,
(b) LCP[i] ≥ |φ| for all l ≤ i ≤ r ,
(c) ∃ q ∈ {l, . . . , r} with LCP[q] = |φ| and φ = tSA[q]..SA[q]+|φ|−1 .

Parts (a) and (b) say that (l, r) is a maximal interval in SA where all suffixes have
a common prefix (namely φ), and (c) says that at least two of the suffixes in this
interval differ after position |φ|. We refer the interested reader to [20] for a proof
of this non-trivial result. From now on, we call (l, r) an lcp-interval representing
string φ if it fulfills the conditions of Lemma 3. A child-interval of (l, r) is a
maximal proper sub-interval of (l, r) that represents a different string. E.g., in
Fig. 1(a), the lcp-interval representing a is (6, 14), which has the child-intervals
(8, 9) (representing aa) and (11, 14) (representing ab).

Now, if (l, r) is the lcp-interval that represents φ, with Lemma 2 we see that

CDj (φ) =
∑

l≤i≤r

C′
Dj

[i] =
∑

l≤i≤r
LCP[i]=|φ|

C′
Dj

[i] +
∑

(l′,r′) child-interval of (l,r)
(l′,r′) represents ψ �=φ

CDj (ψ) . (2)

(The last step is to enable a recursive calculation of the C-terms.)

Example 2. In Fig. 1, the interval (8, 9) (representing aa) gives CD1(aa) =∑
8≤i≤9 C′

D1
[i] = 1 + 0 = 1, and the interval (11, 14) (representing ab) gives

CD1(ab) = 1 + 0 + 0 + 0 + 0 = 1. Having this, we can compute CD1(a) as
C′

D1
[6] + C′

D1
[7] + CD1(aa) + C′

D1
[10] + CD1(ab) = 1 + 0 + 1 + 2 + 1 = 5. �

Kasai et al. [5] gave an algorithm that simulates a bottom-up-traversal of the
suffix tree by scanning the lcp-array from left to right. We could thus calculate
the C-numbers by a modification of their algorithm, applying (2) to all lcp-
intervals in a bottom-up manner. However, this step can be incorporated into
the extraction step (which we explain next), thereby avoiding the need to store
the C-numbers in separate arrays.

3.3 Extraction

We now describe how to output all strings that pass the frequency-based crite-
rion. As mentioned above, this step is accomplished by a simulated depth-first-
traversal of the suffix tree [5], calculating for each lcp-interval representing string
φ the values SDj (φ) and CDj (φ) for j = 1, . . . , m, thereby yielding the frequency
of φ in Dj as SDj (φ) − CDj (φ). The formula for the C-numbers is given by (2),
and for the S-numbers we have SDj (φ) =

∑
l−1≤i≤r

SA[i] points to Dj

1 (again, (l, r) is φ’s

lcp-interval). As in (2), this can be rewritten to allow a recursive calculation.
Alg. 2 is used for the extraction phase. If one deletes lines 5, 17 and 19 from

Alg. 2 and substitutes lines 8–13 by the single command “print tSA[i]..SA[i]+v.h−1”,
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Algorithm 2. Extraction of all substrings satisfying p.

Input. suffix array SA, lcp-array LCP, C′
Dj

as computed by Alg. 1 (all of size n),
frequency-based predicate p(suppD1

, . . . , suppDm
)

Output. All substrings satisfying p

S is a stack holding tuples v of the form1

(v.h, v.SDj , . . . , v.SDm , v.SD2 , v.CD1 , . . . , v.CDm )
Let v be a stopper element with v.h = −∞, push v on S2

for i = 1, . . . , n + 1 do3

v ← top(S) {v represents the string to be examined next}4

SDj ← 0 for all j = 1, . . . , m5

while v.h > LCP[i] do6

v ← pop(S), w ← top(S) {w points to top of stack throughout the loop}7

if w.h ≥ LCP[i] then w.SDj += v.SDj , w.CDj += v.CDj for all j8

suppDj
←

v.SDj
−v.CDj

|Dj | (for all j = 1, . . . , m)9

if p(suppD1
, . . . , suppDm

) then10

for h = max{w.h, LCP[i]} + 1, . . . , v.h do print tSA[i]..SA[i]+h−111

end12

SDj ← v.SDj for all j = 1, . . . , m13

v ← w14

end15

if v.h < LCP[i] then push (LCP[i], SD1 , . . . , SDm , 0, . . . , 0) on S16

top(S).CDj += C′
Dj

[i] for all j = 1, . . . , m17

if i ≤ n then18

Let SA[i] point to Dj ; set SDj ← 1 and all other SDj′ ’s to 019

push (n − SA[i] + 1, SD1 , . . . , SDm , 0, . . . , 0) on S20

end21

end22

this yields exactly the algorithm in Fig. 7 of [5] which solves the substring traver-
sal problem, i.e., the enumeratation of all maximally repeated substrings. The
idea behind this algorithm is to visit all suffixes of t in lexicographic order and to
keep all maximally repeated prefixes of the current suffix on a stack S, ordered by
their length with the longest being on top. A more formal desciption is as follows.
Each element on S is represented by a tuple (h, SD1 , . . . , SDm , CD1 , . . . , CDm),
where h is the length of the prefix (i.e., the corresponding prefix is tSA[i]..v.h−1),
and the other variables are the counters as defined by (1) (page 143). At the
beginning of step i of the for-loop (lines 3–22), we have that the (i− 1)’th suffix
and all maximally repeated prefixes of tSA[i−1]..n are on S. Then the (i − 1)’th
suffix is visited (line 4) and the following steps are performed:

1. The while-loop (lines 6–15) removes from S all tuples representing strings
with length at least lcp(tSA[i−1]..n, tSA[i]..n) = LCP[i]. These are exactly the
prefixes of tSA[i−1]..n which are not a prefix of tSA[i]..n. All strings passing the
statistical criterion are returned (line 11).
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2. The counter-values SDj(φ) and CDj (φ) of the current string v are added to
the respective counters of the string on top of the stack (line 8). This step
takes care of the last sum in (2), as v represents a child of the string on top.

3. When pushing the longest common prefix of two lexicographically adjacent
suffixes on S (line 16), the counter-values are initialized correctly.

4. The C′-numbers are added to the correct string (line 17) which is again on
top of the stack. This step takes care of the first sum in (2).

5. The suffix tSA[i]..n is pushed on S with the correct counter-values (lines 18–
21). Line 19 accounts for the initialisation of the SDj -values.

It is shown in [5] that this algorithm visits all maximally repeated substrings
of t, and its running time is O(n) (apart from the for-loop that outputs the
solutions, line 11). The discussion from Sect. 3.2 shows that the S- and C-values
are calculated correctly, and thus in line 9 we have that the support of the string
φ that is represented by v is calculated correctly. We thus have the following

Theorem 1. For m databases of strings of total length n, all strings that satisfy
a frequency-based criterion (e.g., emerging substrings) can be calculated in time
O(n + s), where s is the total size of the strings that satisfy the criterion.

4 Practical Performance

The aim of this section is to show that our new method also works fast in
practice, even on large datasets. We implemented the algorithm from Sect. 3 in
C++ (available at www.bio.ifi.lmu.de/∼fischer/) so that it finds emerging
substrings (Problem 2) and frequent substrings (Problem 1), respectively. For the
construction of SA we used the method presented in [15]. We used two datasets
consisting of the primary structure of all protein data from human and mouse,
which were obtained from Swissprot using the keywords HUMAN and MOUSE
in the NEWT taxonomy browser [21]. The human dataset contained 57,020
proteins of total length≈23MB, and the mouse dataset contained 50,680 proteins
of total length ≈22MB. Because the implementation of the emerging-substring-
miner from [9] is not publicly available we could not compare against their
method. However, due the sheer size of the input (more than 45MB) it is very
unlikely that their quadratic-time approach would work well. As an example,
their fastest method takes 20–40 seconds to mine data of approximately 2MB
total size, depending on the input parameters [9].

We ran several tests on an Athlon XP 3000 with 2GB of RAM under Linux.
We redirected all output to the null-device in order to remove the influence of
secondary storage devices. To remove the influences from the multi-user oper-
ating system (caching, network access,. . . ) we repeated all experiments 5 times.
Fig. 2 shows the average results for the ES-mining problem, for different values of
ρg and ρs. The bottom line shows the time spent on preprocessing and labelling
(phases 1 and 2). The top three lines are the total running times (phases 1–3)
for ρg = 6/3, 5/3 and 4/3, respectively. As expected, larger values for ρg result
in shorter running times, because less strings have to be returned. This is also
the case for larger values of ρs.
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Fig. 3 shows results for mining frequent substrings. Again, we used the human
dataset as the positive database, and the mouse dataset as the negative one. The
maximum frequency threshold for MOUSE was held fixed at 95%, but similar
graphs could be shown for other values. Because we have already shown in [2]
that methods based on suffix tries [10,11] are not competitive with suffix-array
based methods, we just compared with our previous approach [2]. As one can
see in the figure, our new method is 2–3 times faster than our old method. This
shows again that the method presented in this paper is also of practical value.

5 Conclusion

We presented a theoretically optimal solution to string mining under frequency
constraints. As in previous work, we build upon results on index structures for
strings. One of the building blocks is the fast computation of range minimum
queries. Given this algorithmic framework, it is possible to compute solutions,
e.g., for emerging substrings and patterns statistically associated with classes of
sequences, very efficiently. In future work, we will focus on applications, such as
finding new binding motifs, consider the integration of syntactic constraints and
study the use of persistent index structures for strings.
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Abstract. In this paper we explore an approach to privacy preserving
data mining that relies on the k-anonymity model. The k-anonymity
model guarantees that no private information in a table can be linked
to a group of less than k individuals. We suggest extended definitions of
k-anonymity that allow the k-anonymity of a data mining model to be
determined. Using these definitions, we present decision tree induction
algorithms that are guaranteed to maintain k-anonymity of the learning
examples. Experiments show that embedding anonymization within the
decision tree induction process provides better accuracy than anonymiz-
ing the data first and inducing the tree later.

Keywords: k-anonymity, privacy preserving data mining, decision trees.

1 Introduction

In recent years, the effectiveness of data mining tools in revealing the knowledge
locked within huge databases has raised concerns about its impact on the privacy
of individuals. Two main approaches to privacy preserving data mining were
suggested. The data transformation approach – e.g., [1] – tries to modify the
data so as to hide the sensitive information while retaining interesting patterns.
The cryptographic approach – e.g., [2,3,4] – uses cryptographic tools to prevent
information leakage during the computation of the data mining model. The latter
approach only applies to distributed data mining and does not prevent leakage
due to the model itself (see, for example, [5]).

k-anonymity – a definition for privacy that was conceived in the context of
databases – has come a long way in the public arena. Roughly speaking, k-
anonymity provides a “blend into the crowd” approach to privacy. It assumes
that the owner of a data table can separate the columns into public ones (quasi-
identifiers) and private ones. Public columns may appear in external tables,
and thus be available to an attacker. Private columns contain data which is not
available in external tables and needs to be protected. The guarantee provided by
k-anonymity is that an attacker would not be able to link private information to
groups of less than k individuals. This is enforced by making certain that every
combination of public attribute values appears in at least k rows of the released
table, or in no row at all. k-anonymity is accepted today by both legislators
and corporations, and is considered to provide the kind of privacy required by
legislation such as the HIPAA [6].
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Table anonymization is NP-Hard [7]. Thus, heuristic efficient anonymization
of tables is the concern of most work in the area [8,9,10,11,12,13]. Specific care is
given to preserving as much of the original data as possible. Interestingly, some
of this work deals with preserving data which would be useful should the table
be data mined following its release [9,10,11]. Data mining is envisioned as the
main target application of released data.

This paper takes a direct approach for the combination of k-anonymity and
data mining. Rather than asking how data can be anonymized so that it is useful
for data mining, we ask how can data be mined so that the resulting model is
guaranteed to provide k-anonymity. We specifically discuss this question in the
context of decision tree induction. In this context, anonymity is at risk when the
decision tree overfits a small set of learning examples and allows the attacker
to predict their private attribute values. We describe a decision tree induction
algorithm whose output is guaranteed not to compromise the k-anonymity of the
data from which it was induced. An independent work [14] presents a similar
concept in the context of itemset mining. However, that work does not differenti-
ate public attributes from private attributes, and is limited to binary attributes.
In addition, anonymity is achieved by postprocessing of the data mining output,
while we suggest an integration of the two processes.

Our approach is superior to existing methods (e.g., [9,10,11]), which guarantee
k-anonymity of a data mining model by building it from a k-anonymized table.
For the sake of efficiency, these methods generalize attributes homogenously over
all the tuples. This kind of anonymization was termed single-dimension recoding
[15]. Using our method, however, attributes can be generalized differently in
each tuple, depending on other attribute values. This kind of anonymization
was termed multi-dimensional recoding. Furthermore, in the existing methods,
heuristic cost metrics are the driving force. For example, a classification metric,
which is in essence the classification error over the entire data, may be used.
Such metrics are not necessarily optimal for a specific data mining task. We
show that a decision tree induced using our method is usually more accurate
than that induced by existing methods. Needless to say, both decision trees
provide the same level of anonymity.

This paper makes the following contributions:

– It suggests extended definitions of k-anonymity, which allow the k-anonymity
of a data mining model with respect to the learning examples to be deter-
mined.

– It demonstrates how the definitions of k-anonymity can be applied to deter-
mine the anonymity of a decision tree.

– It presents a decision tree induction algorithm which guaranteesk-anonymous
output and which performs better than existing methods in terms of accuracy
on standard benchmarks.

The organization of this paper is as follows: Section 2 outlines the extended
definitions of k-anonymity of data mining models. Section 3 demonstrates
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how the definitions can be incorporated within decision tree induction algorithms
to guarantee k-anonymous output. Section 4 compares this new algorithm ex-
perimentally to previous work. Conclusions are drawn in Sect. 5.

2 Extending k-Anonymity to Models

We start by extending the definition of k-anonymity beyond the release of tables.
Just as in the original k-anonymity model, we assume that the data owner can
determine which attributes are known to a potential attacker and can be used to
identify individuals, and which attributes are private knowledge. Additionally,
without loss of generality, we assume that each tuple in the database pertains
to a different individual.

Definition 1 (A Private Database). A private database T is a collection of
tuples from a domain D = A×B = A1× ...×Ak×B1× ...×B� . A1, . . . , Ak are
public attributes (a.k.a. quasi-identifiers) and B1, . . . , B� are private attributes.

We denote A = A1× . . .×Ak the public subdomain of D. For every tuple x ∈ D,
the projection of x into A, denoted xA, is the tuple in A that has the same
assignment to each public attribute as x. The projection of a table T into A is
denoted TA = {xA : x ∈ T } .

Definition 2 (A Model). A model M is a function from a domain D to an
arbitrary output domain O.

Every model induces an equivalence relation on D, i.e., ∀x, y ∈ D, x ≡ y ⇔
M(x) = M(y) . The model partitions D into respective equivalence classes such
that [x] = {y ∈ D : y ≡ x} . The model alone imposes some structure on the
domain. However, when a data owner releases a model based on a database, it
also provides information about how the model relates to the database.

Definition 3 (A Release). Given a database T and a model M , a release MT

is the pair (M, pT ), where pT (for population) is a function that assigns to each
equivalence class induced by M the number of tuples from T that belong to it,
i.e., pT ([x]) = |T

⋂
[x]| .

In our terminology, a decision tree model is a function that assigns bins to tuples
in D. Accordingly, every bin within every leaf constitutes an equivalence class.
Two tuples which fit into the same bin cannot be distinguished from one another
using the tree, even if they do not agree on all attribute values. A release of a
decision tree includes the partition into bins, as well as the number of learning
examples that populate each bin.

Note that other definitions of a release, in which the kind of information
provided by pT is different, are possible as well. For example, a decision tree
may provide the relative frequency of a bin within a leaf, or just denote the bin
that constitutes the majority class. In this paper we assume the worst case, in
which the exact number of learning examples in each bin is provided. The effect



154 A. Friedman, A. Schuster, and R. Wolff

of different kinds of release functions on the extent of private data that can be
inferred by an attacker is an open question. Nevertheless, the anonymity analysis
provided herein can be applied in the same manner. In other words, different
definitions of pT would reveal different private information on the same groups
of tuples.

We now turn to see how the database and the model are perceived by an
attacker. One of the fundamental assumptions of the k-anonymity model is about
the data available to the attacker.

Definition 4 (A Public Identifiable Database). A public identifiable data-
base TID = {(idx, xA) : x ∈ T } is a projection of a private database T into the
public subdomain A, such that every tuple of TA is associated with the identity
of the individual to whom the original tuple in T pertained.

Although the attacker knows only the values of public attributes, he can nev-
ertheless try to use the release MT to expose private information of individuals
represented in TID. Consider a tuple (idx, xA) ∈ TID. As each equivalence class
in M may rely on both private and public attributes, the attacker, could he
associate xA with the correct equivalence class, could then infer which private
attribute values are possible for x according to this equivalence class. However,
depending on the unknown private attribute values of x, there might be a num-
ber of possible equivalence classes [x] to which an attacker can associate xA. We
call this set of equivalence classes the span of xA.

Definition 5 (A Span). Given a model M , the span of a tuple a ∈ A is the
set of equivalence classes induced by M and which contain tuples x ∈ D, whose
projection into A is a. Formally, SM (a) = {[x] : x ∈ D ∧ xA = a} . When M
is evident from the context, we will use the notation S(a).

For example, in a decision tree, the span of a tuple is the set of bins to which
the tuple can be routed when any combination of private attribute values is
possible for it. Given a public identifiable database TID and a model M , we use
S(a)TID = {(idx, xA) ∈ TID : S(xA) = S(a)]} to denote the set of tuples that
appear in TID and whose span is S(a). These are tuples from TID which are
indistinguishable with respect to the model M – each of them is associated with
the same set of equivalence classes of M . Just as associating an individual with
an equivalence class would allow private attribute values to be inferred, knowing
the values of pT for each equivalence class in S(a) allows the possible private
attribute value combinations for the tuples in S(a)TID to be constrained, hence
compromising the privacy of the individuals.

Definition 6 (Linking Attack Using a Release). A linking attack using a
release MT and a public identifiable database TID is performed by grouping tuples
in TID according to their spans. Each group of tuples is then linked to the list of
possible private attribute value combinations, according to MT .

Definition 7 (k-Anonymous Model). A model M is k-anonymous with re-
spect to a private table T if a linking attack on the tuples in TID using the release
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MT will not succeed in linking private data to fewer than k individuals. In other
words, a model M is k-anonymous with respect to T if, for every (idx, xA) ∈ TID,
|S(xA)TID | ≥ k.

For example, consider the decision tree in Fig. 1. The decision tree was formed
using the data in Table 1. The Marital Status attribute is public, while the
Sports Car and Loan Risk attributes are private. The Loan Risk attribute is
the class attribute. The decision tree includes six bins, each with its popula-
tion denoted in the tree. The tuples of Anna and Ben belong to the same bin,
because of the Sports Car and Loan Risk attributes. The model ignores the
value of the Marital Status attribute for these tuples. On the other hand, an
attacker, who has no access to the Sports Car attribute values, is forced to
consider routing Anna’s tuple to the leaf lUnmarried, and routing Ben’s tuple to
the leaf lMarried, in addition to routing each of them to the leaf lNo. Therefore,
the decision tree implies two spans: {lMarried/good, lMarried/bad, lno/good, lno/bad}
for John, Ben, and Laura, and {lUnmarried/good, lUnmarried/bad, lno/good, lno/bad}
for Lisa, Robert, and Anna. The attacker can use the populations to induce the
distribution of class attribute values within each span, but he cannot know, for
example, which of the three tuples in the first span belongs to lMarried/good.
As each span contains three tuples, the model is 3-anonymous with respect to
Table 1.

Table 1. Mortgage company data

Name Marital Sports Loan
Status Car Risk

Lisa Unmarried Yes good
John Married Yes good
Ben Married No bad

Laura Married No bad
Robert Unmarried Yes bad
Anna Unmarried No bad

Sports Car

Marital Status

Yes No

Married Unmarried
1 good
0 bad

1 good
1 bad

0 good
3 bad

lMarried lUnmarried

lNo

l0

lYes

Fig. 1. A 3-anonymous decision tree

3 Inducing k-Anonymous Decision Trees

This section presents an algorithm which induces k-anonymous decision trees.
The algorithm is based on the well-known ID3 algorithm [16] and on its ex-
tension, C4.5 [17]. ID3 applies greedy hill-climbing to construct a decision tree.
Starting from a root that holds the entire learning set, it chooses the attribute
that maximizes the information gain, and splits the current node into several
new nodes. The learning set is then divided among the new nodes according to
the value each tuple takes on the chosen attribute, and the algorithm is applied
recursively on the new nodes.

The k-anonymity preserving equivalent of ID3, kADET (Algorithm 3.1), uses
the same hill-climbing approach, with two changes: First, when considering



156 A. Friedman, A. Schuster, and R. Wolff

all possible splits of a node, kADET eliminates splits which would lead to k-
anonymity breach. Second, the algorithm is not recursive. Instead, all the po-
tential splits are considered in a single priority queue and the best one of all those
that retain k-anonymity is picked. This method is required since k-anonymity
is defined in terms of spans, which may include bins from several decision tree
nodes. A decision regarding one node may thus influence other nodes.

3.1 kADET Algorithm

The input of kADET is a private database T , the public attributes P , the pri-
vate attributes Q, the class attribute C, and the anonymity parameter k. First,
kADET computes the initial set of equivalence classes (bins) and spans: a single
span containing all of the bins and all of the tuples if the class is private, and as
many spans as bins, with each span containing a single bin and its tuple popu-
lation if the class is public. If one of the spans contains less than k tuples from
T , kADET returns nil and terminates. Otherwise, kADET creates the initial
queue of possible splits, where each candidate split contains the root node and
an attribute from P or Q. The queue is ordered according to the gain from each
split. kADET then enters its main loop.

The main loop of kADET has the following steps: First, the most gainful
candidate split (node, attribute, gain) is popped out of the queue. If the node
regarded in this candidate is already split, the candidate is purged. Otherwise,
kADET tests whether splitting the node according to the suggested attribute
would breach k-anonymity. If it would, then, again, this candidate is purged.
However, if the attribute can be generalized, then a new candidate is inserted
to the queue, this time with the generalized attribute. Finally, if k-anonymity is
not breached, the node is split.

Several actions are taken in the splitting of a node: First, every bin of the
parent node is split between the descendant nodes, according to the value of
the splitting attribute. Accordingly, every span that contains this bin is updated
with the new list of bins. The descendant nodes inherit the list of spans from
their parent, and are added to the lists of nodes of those spans. If the splitting
attribute is private, no further action is required, as the attacker cannot distin-
guish between the new bins. However, if the splitting attribute is public, then
the attacker can use the split to distinguish tuples. Specifically, tuples that are
routed to one of the new nodes will not be routed to its sibling nodes. Therefore,
each of the spans in the split node, is split into new spans, one for each new de-
scendant node. Each new span contains the bins from the original span, except
for those of the sibling nodes. Likewise, the population of the original span is
divided according to the value the tuples take on the splitting attribute. Nodes
whose bins are contained in the new spans, and which are not descendant of the
original node, are associated with all of the new spans.

Figure 2 demonstrates an execution of kADET , using the data in Table 1 as
input. Marital Status is a public attribute; Sports Car and Loan Risk are private
attributes. The result of the execution is the decision tree in Fig. 1.
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Algorithm 1. k-Anonymous Decision Tree (kADET)
1: Input: T – private dataset, P – public attributes, Q – private attributes, C – the

class attribute, k – anonymity parameter
2: procedure Main
3: Create root node in Tree
4: Create in root one bin bc for each value c ∈ C and divide T among the bins
5: if C ∈ P then
6: Create one span Sc for every value c ∈ C,

Sc.Bins ← {bc} , Sc.Population ← bc.Population , Sc.Nodes ← {root}
7: set root.Spans to the list of all spans
8: else
9: Create a single span s. Set s.Bins to the list of all bins,

s.Population ← T , s.Nodes ← {root} , root.Spans ← {s}
10: if ∃span ∈ root.Spans such that 0 < |span.Population| < k then return nil
11: for att ∈ P

⋃
Q \ {C} do add (root, att, gain(root, att)) to Queue

12: while Queue has elements with positive gain do
13: Let (n, a, gain) = arg max

gain
{Queue}

14: if n.sons �= ∅ then continue
15: if Breach (n, a, k) then
16: if a has generalization a′ then insert (n, a′, gain(n, a′)) to Queue

17: else Split(n, a)
18: Set the Class variable in each leaf to the value with the largest bin.
19: return Tree

20: procedure Breach(node, att, k)
21: if att ∈ Q then return false

22: for v ∈ att.values and span ∈ node.Spans do
23: if 0 < |{t ∈ span.Population : t[att] = v}| < k then return true

24: return false

25: procedure Split(node, att)
26: for v ∈ att.values do
27: Let node.sons[v] be a new descendant node
28: Let node.sons[v].Bins[b] be a new bin, which refines node.Bins[b] such that

node.sons[v].Bins[b].tuples ← {t ∈ node.Bins[b].tuples : t[att] = v}
29: Let node.sons[v].Spans ← node.Spans

30: for span ∈ node.Spans do replace each bin of the original node with its refine-
ments, computed above, and add the new nodes to span.Nodes

31: if att ∈ P then
32: for span ∈ node.Spans do
33: Remove span from every node n ∈ span.Nodes
34: for v ∈ att.values do
35: Create a new span sv

36: sv.Nodes ← span.Nodes \ {node.sons[u] : u �= v}
37: sv.Bins ← span.Bins \ {bin ∈ node.sons[u].Bins : u �= v}
38: sv.Population ← {t ∈ span.Population : t[att] = v}
39: Add s to node.sons[v].spans
40: Add s to every node n ∈ span.Nodes \ node.sons
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Population: T
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Fig. 2. Execution of kADET

3.2 Correctness and Overhead Analysis

The key to proving correctness of the algorithm is in showing that the population
of each span, as computed by the algorithm, is the same as the one defined in
Sect. 2: the set of tuples which, without knowledge of private attribute values,
can be routed to the same set of bins. The proof is omitted due to lack of space.

The computational overhead incurred by the algorithm, respective to that of
ID3, stems from the need to compute and track all of the different spans. In the
worst case, the number of spans may reach the size of the public domain A. To
see how, consider a tree in which all of the top nodes split on private attributes,
until the number of leaves is equal to the number of public attributes and then,
every leaf is split according to a different public attribute. The number of spans
in the tree is equal to the size of A.

While this overhead is indeed high, it is inherent to the problem, because
of the need to validate that every span is populated by k tuples or more. In
practice, the number of spans will be much smaller. For example, when only the
class attribute is private, the number of spans is the number of leaves.

3.3 From ID3 to C4.5

C4.5 was introduced by Quinlan [17] in order to extend and improve ID3. It im-
plements better attribute scoring metrics (gain ratio instead of gain), error-based
pruning, continuous attribute quantization, and treatment of missing values. All
these extensions, other than the change of the scoring function – which has no
effect on privacy – require careful analysis when used to extend kADET.

Pruning. C4.5 uses error-based pruning in two ways: discarding subtrees and
replacing them with leaves, and replacing subtrees with one of their branches.
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Using the first method is safe – undoing a split unifies equivalence classes, and
may unify spans, meaning that the population of a span can only increase.
The second method, however, may cause a k-anonymous tree to become
non-k-anonymous, as it induces different spans with different populations.
Therefore we avoid this technique in our implementation.

Continuous attributes. In the C4.5 algorithm, continuous attributes are han-
dled by creating binary splits. The algorithm considers all the possible split
points, and chooses the one with the best information gain. We implemented
the same approach, adding the constraint that a split point should not cause
a breach of k-anonymity.

Missing values. Missing values extend the k-anonymity model in ways which
have not been modelled yet. It is not clear, for instance, whether a value that
is missing in the learning examples would be missing in the data available
to the attacker. We leave the extension of the k-anonymity model to missing
values for further research.

4 Evaluation

To conduct our experiments we implemented the algorithms using the Weka
package [18]. We use as a benchmark the Adults database from the UC Irvine
Machine Learning Repository [19], which contains census data, and has become
a commonly used benchmark for k-anonymity. The data set has 6 continuous
attributes and 8 categorial attributes. The class attribute is income level, with
two possible values, ≤50K or >50K. After records with missing values have been
removed, there are 30,162 records for training and 15,060 records for testing
(of which 24.5% are classified >50K). For the categorial attributes we use the
same generalization hierarchies described in [10]. For the ID3 experiments we
dropped the continuous attributes, because of ID3 limitations. The experiment
was performed on a 3.0GHz Pentium IV processor with 512MB memory.

The anonymized decision trees algorithms use the training data to induce
an anonymous decision tree. Then the test data (in a non-anonymized form) is
classified using the anonymized tree. For all values of k the decision tree induction
took less than 4 seconds for ID3, and less than 10 seconds for C4.5.

4.1 Accuracy vs. Anonymity Tradeoffs

Our first goal is to assess the tradeoff between classification accuracy and the
privacy constraint.

Figure 3 shows the classification error of the anonymous ID3 for various k
parameters, compared to the classification error for ID3 and C4.5. In spite of the
anonymity constraint, the classifier maintains good accuracy. At k = 750 there
is a local optimum when the root node is split using the Relationship attribute.
At k = 1000 this attribute is discarded because of an anonymity breach, and the
Marital Status attribute is chosen instead, yielding better classification.

We compared our results with those obtained using the top-down special-
ization (TDS) algorithm presented in [10], the goal of which is to produce
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anonymized data useful for classification problems. The algorithm starts with
the topmost generalization level, and iteratively chooses attributes to specialize,
using a metric that measures the information gain for each unit of anonymity
loss. The same generalization scheme is applied on all the tuples. We note that
TDS uses both training and test data to choose a generalization. This may
provide different generalization results, though not necessarily better or worse
than those obtained when generalizing the training data alone. TDS results also
appear in Fig. 3. In contrast to the TDS algorithm, our algorithm can apply
different generalizations on different groups of tuples, and it achieves an average
reduction of 0.6% in classification error with respect to TDS.

Figure 4 shows a similar comparison using all 14 attributes of the Adult
dataset with the anonymous C4.5 algorithm. The large size of the quasi-identifier
affects the accuracy of the TDS generalization, and our algorithm reduces the
classification error by an average of 3% with respect to TDS.

4.2 Privacy Risks and �-Diversity

k-anonymity makes no restriction regarding private attribute values. Therefore,
it is possible that a k-anonymous model would allow a complete inference of these
values. In this section, our goal is to assess how many individuals are prone to
immediate inference attacks and show how such attacks can be thwarted.

We look at the number of individuals for whom an attacker may infer the
class attribute value with full certainty. This is the number of tuples associated
with spans for which all the tuples share the same class. Because of space limits,
we provide only the main figures. For the anonymous ID3, this number drops
to zero only for values of k beyond 750, and even then the attacker may still
be able to infer attribute values with high probability. The inference problem is
less acute in the case of the anonymous C4.5, because of pruning. The number
of exposed tuples drops to zero at k = 75, and is very low (below 0.5%) even for
smaller values of k.

The �-diversity model [20] suggests solving the inference problem by requiring
a certain level of diversity in class values for every group of identifiable tuples.
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For example, entropy �-diversity is maintained when the entropy of the class
values for every such group exceeds a threshold value log(�).

We altered our algorithms by replacing the Breach() function with one that
checks the entropy �-diversity constraint, ruling out splits that violate this con-
straint. Note that the parameters for k-anonymity and �-diversity are not com-
parable. In particular, as there are only two class values, the best we can hope
for is entropy 2-diversity. This is achieved when there is equal chance for each
class value. However, for � < 2, entropy �-diversity limits the attacker’s confi-
dence in inference attacks. The confidence limit is the maximal probability of
any private value for any individual. The data owner can control the confidence
limit by manipulating the � parameter. For example, to deny the attacker the
ability to infer a class value with confidence greater than 85%, entropy higher
than 0.85× log(1/0.85) + 0.15× log(1/0.15) = 0.61 should be maintained. This
amounts to applying entropy �-diversity with � = 1.526 (log 1.526 = 0.61).

Following this discussion, Figures 5 and 6 display the tradeoff between the
confidence limit and the accuracy of the induced decision trees. So long as the
confidence threshold is high enough, it is possible to induce decision trees without
a significant accuracy penalty. The lowest achievable confidence level is 75.1%,
as it pertains to the class distribution in the root node. In the case of ID3,
every split of the root node results in a node with confidence greater than 85%.
Therefore, a confidence limit of 85% or lower prohibits the induction of a useful
decision tree. The additional attributes available to the C4.5 algorithm allow the
boundary to be stretched to a lower confidence threshold.
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5 Conclusions

In this paper we presented decision tree induction algorithms which guarantee
k-anonymous output. Using our definitions, it is possible to introduce similar
constraints in other data mining algorithms as well. Another interesting use of
this method is promoted by the ability to construct a table that is equivalent to a
data mining model. Such a table would maintain k-anonymity, while preserving
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the data patterns evident in the data mining model. Hence data mining algo-
rithms can be used as templates for pattern-preserving anonymization schemes.
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Abstract. Closed sets are being successfully applied in the context of
compacted data representation for association rule learning. However,
their use is mainly descriptive. This paper shows that, when considering
labeled data, closed sets can be adapted for prediction and discrimina-
tion purposes by conveniently contrasting covering properties on positive
and negative examples. We formally justify that these sets character-
ize the space of relevant combinations of features for discriminating the
target class. In practice, identifying relevant/irrelevant combinations of
features through closed sets is useful in many applications. Here we ap-
ply it to compacting emerging patterns and essential rules and to learn
descriptions for subgroup discovery.

1 Introduction

Rule discovery has been addressed from two different perspectives: data min-
ing and machine learning. Data mining mainly explores unlabeled data, and the
focus resides on finding all rules over a certain confidence that summarize the
original data. On the other hand, machine learning is mainly concerned with
the analysis of class labeled data, resulting in the induction of classification and
prediction rules, and—more recently—also descriptive rules that aim at provid-
ing insightful knowledge from the data (subgroup discovery, contrast set mining).
Traditional rule learning algorithms for classification include CN2 [3] and Ripper
[4]. Other approaches have been proposed that are based on the association rule
technology but are applied to class labeled data (e.g., the Apriori-C classifier [8]
and the Essence algorithm for inducing “essential” classification rules based on
the covering properties of frequent itemsets [1]).

In subgroup discovery the aim is to find subgroup descriptions that are char-
acteristic for examples with a certain property of interest, and the closely related
contrast set mining aims at capturing discriminating features that contrast in-
stances between classes. Special rule learning algorithms for subgroup discovery
include Apriori-SD [9], CN2-SD [11] or SD [7]. These descriptive mining algo-
rithms aim at finding characteristic rules as combinations of features with high
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J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 163–174, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



164 G.C. Garriga, P. Kralj, and N. Lavrač

coverage. If there are several rules with the same coverage, most specific rules
(with more features) are appropriate for description and explanation purposes.
On the other hand, algorithms for contrast set mining are STUCCO [2], and
recently, an innovative approach was presented in the form of mining Emerging
Patterns [5]. Basically, Emerging Patterns (EP) are sets of features in the data
whose supports change significantly from one class to another.

Indeed, we can see all these described tasks on labeled data (learning classifica-
tion rules, subgroup discovery, or contrast set mining) as a process of searching
a space of concept descriptions (hypotheses in the form of rule antecedents).
Some descriptions in this hypothesis space may turn out to be more relevant
than others for characterizing and/or discriminating the target class. Searching
for relevant descriptions for rule construction has been extensively addressed in
descriptive data mining. A useful insight was provided by closure systems, aimed
at compacting the whole space of descriptions into a reduced system of relevant
sets that formally conveys the same information as the complete space. The ap-
proach has successfully evolved towards mining closed itemsets (see e.g. [12,14]).
Intuitively, closed itemsets can be seen as maximal sets of items/features cover-
ing a maximal set of examples. Despite its success in the data mining community,
the use of closed sets is mainly descriptive. For example, they can be used to
limit the number of association rules produced without information loss.

To the best of our knowledge, the notion of closed sets has not yet been
exported to labeled data, neither used in the learning tasks for labeled data
described above. In this paper we show that raw closed sets can be adapted for
discriminative purposes by conveniently contrasting covering properties on pos-
itive and negative examples. Moreover, thanks to the final structural properties
and the feature filtering theory of [10], we formally justify that our obtained sets
characterize the space of relevant combinations of features for discriminating the
target class.

In practice, our approach to discovering closed sets from labeled data, (de-
scribed in Sections 3 and 4) turns out to be very useful in many applications:
from constructing rule based classifiers of increased accuracy, to finding most
interpretative descriptions for subgroup discovery, among others. In particular,
we have applied our proposal to reduce the number of EPs and to compress
the number of essential rules (Section 6.1), and finally, to learn descriptions for
subgroup discovery (Section 6.2).

2 Background

Features, used for describing the training examples, are logical variables rep-
resenting attribute-value pairs (called items in association rule learning). If
F = {f1, . . . , fn} is a fixed set of features, we can represent a training example
as a tuple of features f ∈ F with an associated class label. For instance, Table 1
contains examples for the simplified problem of contact lens prescriptions [13].
Patients are described by four attributes and each tuple is labeled with a class
label: none, soft or hard. Here F is the set of all attribute-value pairs in the
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data, i.e. F = {Age=young, . . . , Tear=normal} (the class label is not included
in F ). This dataset is known to be complete and we will use it throughout the
paper to ease the understanding of our proposals.

We consider two-class learning problems where the set of examples E is di-
vided into positives (P , labeled by +) and negatives (N , labeled by −), and
E = P ∪N . Multi-class problems can be translated to a series of two-class learn-
ing problems. For instance, when the class soft of Table 1 is the target class (in
Table 2), all examples labeled with none and hard are considered negative.

Table 1. The contact lens data set

Spectacle Tear
Id Age prescription Astig. prod. Lens

1 young myope no normal soft
2 young hypermetrope no normal soft
3 pre-presbyopic myope no normal soft
4 pre-presbyopic hypermetrope no normal soft
5 presbyopic hypermetrope no normal soft
6 young myope no reduced none
7 young myope yes reduced none
8 young hypermetrope no reduced none
9 young hypermetrope yes reduced none
10 pre-presbyopic myope no reduced none
11 pre-presbyopic myope yes reduced none
12 pre-presbyopic hypermetrope no reduced none
13 pre-presbyopic hypermetrope yes reduced none
14 pre-presbyopic hypermetrope yes normal none
15 presbyopic myope no reduced none
16 presbyopic myope no normal none
17 presbyopic myope yes reduced none
18 presbyopic hypermetrope no reduced none
19 presbyopic hypermetrope yes reduced none
20 presbyopic hypermetrope yes normal none
21 young myope yes normal hard
22 young hypermetrope yes normal hard
23 pre-presbyopic myope yes normal hard
24 presbyopic myope yes normal hard

Table 2. In this table we show the pos-
itive examples when the class soft is se-
lected as the target class (thus, forming
the set of examples in P ). Instances of
the classes none and hard will be consid-
ered non-target, thus treated together as
negative data N .

Spectacle Tear
Id Age prescription Astig. prod. Class

1 young myope no normal +
2 young hypermetrope no normal +
3 pre-presbyopic myope no normal +
4 pre-presbyopic hypermetrope no normal +
5 presbyopic hypermetrope no normal +

Given a rule X → + formed from a set of features X ⊆ F : true positives (TP)
are those positive examples covered by the rule, i.e. p ∈ P such that X ⊆ p, and
false positives (FP) are those negative examples covered by the rule, i.e. n ∈ N
such that X ⊆ n; reciprocally, true negatives (TN) are those negative examples
not covered by X .

2.1 Relevant Features for Discrimination

The main aim of the theory of relevancy, described in [10] is to reduce the
hypothesis space by eliminating irrelevant features from F in the pre-processing
phase. As proposed by the authors:

Definition 1 (Coverage of features). Feature f ∈ F covers another feature
f ′ ∈ F if and only if TP(f ′) ⊆ TP(f) and TN(f ′) ⊆ TN(f) (or equivalently,
TP(f ′) ⊆ TP(f) and FP(f) ⊆ FP(f ′)).

Then, it is stated that f ′ ∈ F is relatively irrelevant if there exists another feature
f such that f covers f ′. To illustrate this notion we take the data of Table 1: if
examples of class none form our positives and the rest of examples are considered
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negative, then the feature Tear=reduced covers Age=young, hence making this
last feature irrelevant for the discrimination of the none class.

2.2 Closed Itemsets

From the practical point of view of data mining algorithms, closed itemsets
are maximal sets among those other itemsets occurring in the same examples.
Formally, let supp(X) denote the number of examples where the itemset X ⊆ F
is contained. Then: a set X ⊆ F is said to be closed when there is no other
set Y ⊆ F such that X ⊂ Y and supp(X) = supp(Y ). In the example from
Table 2 the itemset corresponding to {Age=young} is not closed because it can
be extended to the maximal set {Age=young, Astigmatism=no, Tear=normal}
that has the same support in this data. Notice that by treating positive examples
separately, the positive label will be already implicit in the closed itemsets mined
on the target class data. Efficient algorithms for discovering closed itemsets over
a certain minimum support threshold can be found in [6].

The foundations of closed itemsets are based on the definition of a closure
operator on a lattice of items. The standard closure operator Γ for items acts as
follows: given a binary relation, the closure Γ (X) of a set of items X ⊆ F includes
all items that are present in all examples having all items in X . According to the
classical theory, operator Γ satisfies the following properties: (1) Monotonicity:
X ⊆ X ′ ⇒ Γ (X) ⊆ Γ (X ′); (2) Extensivity: X ⊆ Γ (X); and (3) Idempotency:
Γ (Γ (X)) = Γ (X).

From the formal point of view of Γ , closed sets are those coinciding with their
closure, that is, for X ⊆ F , X is closed iff Γ (X) = X . Also, when Γ (Y ) = X
for a set Y �= X , it is said that Y is a generator of X . By extensitivity of Γ we
always have Y ⊆ X for Y generator of X . Closed sets of items can be graphically
organized in a Hasse diagram, such as the one depicted in Figure 1 for the closed
itemsets mined from data in Table 2.

3 Closed Sets on Target-Class Data

Given an example set E = P ∪N it is trivial to realize that for any rule X → +
with a set of features X ⊆ F , the support of itemset X in P (target class exam-
ples) exactly corresponds to the number of true positives of the rule; reciprocally,
the support of X in N (non-target class examples) is the number of false posi-
tives of the rule. Also, because of the anti-monotonicity property of support (i.e.
Y ⊆ X implies supp(X) ≤ supp(Y )) the following useful property can be easily
stated. For the sake of simplicity and due to a lack of space, proofs are omitted,
although a proof sketch will be provided to justify important results.

Proposition 1. Let X, Y ⊆ F such that Y ⊆ X, then TP(X) ⊆ TP(Y ) and
FP(X) ⊆ FP(Y ).

For convenience, let supp+(X) denote the support of the set X in the positive
set of examples P , and supp−(X) the support in the negative set of examples
N . Following the last proposition, the next property can be readily seen:
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Fig. 1. The lattice of closed itemsets for data in Table 2

Lemma 1. Feature f ∈ F covers another feature f ′ ∈ F (as in Definition 1),
iff supp+({f ′}) = supp+({f, f ′}) and supp−({f}) = supp−({f, f ′}).

Indeed, this last result allows us to rewrite, within the data mining language,
the definition of relevancy proposed in [10]: a feature f is more relevant than f ′

when supp+({f ′}) = supp+({f, f ′}) and supp−({f}) = supp−({f, f ′}). In other
words, f ′ is irrelevant with respect to f if the occurrence of f ′ always implies
the presence of f in the positives, and at the same time, f always implies the
presence of f ′ in the negatives.

To the effect of our later arguments it will be useful to cast the result of
Lemma 1 in terms of the formal closure operator Γ . Again, because we need to
formalize our arguments against positive and negative examples separately, we
will use Γ+ or Γ− for the closure of itemsets on P or N respectively.

Lemma 2. A feature f is more relevant than f ′ iff Γ+({f ′}) = Γ+({f, f ′}) and
Γ−({f}) = Γ−({f, f ′}).

Interestingly, operator Γ is formally defined for the universe of sets of items, so
that these relevancy results on single features can be directly extended to sets
of features. This provides a proper generalization:

Definition 2 (Relevancy of feature sets). Set of features X ⊆ F is more
relevant than set Y ⊆ F iff Γ+(Y ) = Γ+(X ∪ Y ) and Γ−(X) = Γ−(X ∪ Y ).

To illustrate Definition 2 take the positive examples from Table 2, with nega-
tive data formed by classes none and hard together. Feature Spectacle=myope
alone cannot be compared to feature Astigmatism=no alone with Definition 1
(because Astigmatism=no does not always imply Spectacle=myope in the neg-
atives). For the same reason, Spectacle=myope cannot be compared to feature
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Tear=normal alone. However, when considering these two features together, then
Spectacle=myope turns out to be irrelevant w.r.t. the set {Astigmatism=no,
Tear=normal}. So, the new semantic notion of Definition 2 allows us to decide if
a set of features is structurally more important than another for discriminating
the target class. In the language of rules: rule Y → + is irrelevant if there exists
another rule X → + with Γ+(Y ) = Γ+(X ∪ Y ) and Γ−(X) = Γ−(X ∪ Y ).

Moreover, from the structural properties of operator Γ and from Proposition
1, we can deduce that the semantics of relevant sets in Definition 2 is consistent:

Lemma 3. A set of features X ⊆ F is more relevant than set Y ⊆ F (Definition
2) iff TP(Y ) ⊆ TP(X) and FP(X) ⊆ FP(Y ).

The forward proof of this result is based on Proposition 1, which ensures that
TP(X ∪ Y ) ⊆ TP(Y ) when X is more relevant than Y . Moreover, since we
have that Γ+(Y ) = Γ+(X ∪ Y ) by hypothesis, we can derive after a couple of
steps that TP(Y ) ⊆ TP(X). Similarly, we can conclude FP(X) ⊆ FP(Y ) for the
negative part. The backward direction of Lemma 3 is also simple: if X and Y are
two sets with TP(Y ) ⊆ TP(X) and FP(X) ⊆ FP(Y ), we can imply after some
deduction steps that supp+(Y ) = supp+(X∪Y ) and supp−(X) = supp−(X∪Y ).
By construction of Γ this means Γ+(Y ) = Γ+(X∪Y ) and Γ−(X) = Γ−(X∪Y ).

3.1 Closed Sets for Discrimination

Together with the result of Lemma 3, it can be shown that only closed itemsets
mined in the set of positive examples suffice for discrimination.

Theorem 1. Let Y ⊆ F be a set of features such that Γ+(Y ) = X and Y �= X.
Then, set Y is less relevant than X (as in Definition 2).1

The proof of this theorem is mainly based on the construction of Γ : Γ+(Y ) = X
ensures that |TP(Y )| = |TP(X)|; but because Y ⊆ X it must be true that
TP(Y ) = TP(X). This, together with Proposition 1 leads to X being more
relevant than Y according to Definition 2.

Typically, in approaches such as Apriori-C [8], Apriori-SD [9] and RLSD [15]
frequent itemsets with very small minimal support constraint are initially mined
and subsequently post-processed in order to find the most suitable rules for dis-
crimination. The new result presented here states that not all frequent itemsets
are necessary: as shown in Theorem 1 only the closed sets have the potential to
be relevant.
1 We are aware that some generators Y of a closed set X might be exactly equivalent

to X in terms of TP and FP, thus forming equivalence classes of rules. The result
of this theorem characterizes closed sets in the positives as those representatives of
relevant rules; so, any set which is not closed can be discarded, and thus, efficient
closed mining algorithms can be employed for discrimination purposes. The next
section will approach the notion of the shortest representation of a relevant rule,
which will be conveyed by these mentioned equivalent generators.
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To illustrate this result we use again the data in Table 2. There, we have
Γ+({Astigmatism=no} = {Astigmatism=no,Tear=normal}. Thus, rule Astig-
matism=no → + can be discarded: it covers exactly the same positives as
{Astigmatism=no, Tear=normal}, but more negatives. Thus, a rule whose an-
tecedent is {Astigmatism=no, Tear=normal} would be preferred for discrimi-
nating the class soft.

However, Theorem 1 simply states that closed itemsets suffice but some of
them might not be necessary to discriminate the target class. It might well be
that a closed itemset is irrelevant with respect to another closed itemset in the
system. The next section is dedicated to the task of reducing the closure system
of itemsets to characterize the final space of relevant sets of features.

4 Characterizing the Space of Relevant Sets of Features

This section studies how the dual closure system on the negative examples is
used to reduce the lattice of closed sets on the positives. This reduction of the
lattice will characterize a complete space of relevant sets of features for discrimi-
nating the target class. First of all, we raise the following two important remarks
following from Proposition 1.

Remark 1. Given two different closed sets on the positives X and X ′ such that
X � X ′ and X ′ � X (i.e., there is no ascending/descending path between them
in the lattice), then they cannot be compared in terms of relevancy, since they
cover different positive examples.

We exemplify Remark 1 with the lattice of Figure 1. The following two closed
sets: {Age=young, Astigmatism=no, Tear=normal} and {Spectacle=myope, As-
tigmatism=no, Tear=normal}, are not comparable with subset relation: they
cover different positive examples and they cannot be compared in terms of
relevance.

Remark 2. Given two closed sets on the positives X and X ′ with X ⊂ X ′,
we have by construction that TP(X ′) ⊂ TP(X) and FP(X ′) ⊆ FP(X) (from
Proposition 1). Notice that because X and X ′ are different closed sets in the
positives, TP(X ′) is necessarily a proper subset of TP(X); however, regarding
the coverage of false positives, this inclusion is not necessarily proper.

Remark 2 points out that two different closed sets in the positives, yet being
one included in the other, may end up covering exactly the same set of false
positives. In this case, we would like to discard the closed set covering less true
positives. Because of the monotonicity property of support, the smaller one will
be the most relevant. From these two remarks we have:

Theorem 2. Let X ⊆ F and X ′ ⊆ F be two different closed sets in the positives
such that X ⊂ X ′. Then, we have that X ′ is less relevant than X (as in Definition
2) iff Γ−(X) = Γ−(X ′).
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Table 3. The three closed sets corre-
sponding to the space of relevant sets of
features for data in Table 2

Occurrence list Closed Set
1, 2, 3, 4, 5 {Astigmatism=no, Tear=normal }

2, 4, 5 {Spectacle=hypermetrope,
Astigmatism=no, Tear=normal }

3, 4 {Age=pre-presbyopic,
Astigmatism=no, Tear=normal }

1, 2 {Age=young, Astigmatism=no,
Tear=normal }

Fig. 2. The evaluation of relevant
combinations of features in the ROC
space

The forward direction of this proof is simple: when X ⊂ X ′ then X ′ = X ′ ∪X ,
so that Γ+(X ′) = Γ+(X ′ ∪ X) and Γ−(X) = Γ−(X ′ ∪ X) gets trivial, thus
satisfying Definition 2. The backward direction of the proof is also based on
rewriting Γ−(X) = Γ−(X ′) as Γ−(X) = Γ−(X ′∪X), and Γ+(X ′) as Γ+(X ′) =
Γ+(X ′ ∪X); therefore, we also satisfy conditions of the definition.

Thus, by Theorem 2 we can reduce the closure system constructed on the pos-
itives by discarding irrelevant nodes: if two closed itemsets are connected by an
ascending/descending path on the lattice of positives (i.e., they are comparable
by set inclusion ⊂), yet they have the same closure on the negatives (i.e., they
cover the same false positives, or equivalently, their support on the negatives is
exactly the same), then just the shortest set survives as a relevant set.

Finally, after Theorem 1 and Theorem 2, we can characterize the space of
relevant sets of features for discriminating the selected target class as follows.
These final sets can be directly interpreted as antecedents of discriminating
rules.

Definition 3 (Space of relevant sets of features). The space of relevant
combinations of features for discriminating the target class is defined as those
sets such that: Γ+(X) = X and there is no other closed set Γ (X ′) = X ′ such
that Γ−(X ′) = Γ−(X).

It is trivial to see after Remarks 1 and 2, that by construction, any two sets in
this space cover always a different set of positives and a different set of negatives.

The three closed sets forming the space of relevant sets of features for the
class soft are shown in Table 4. It can be checked that CN2 algorithm [3] would
output the rule whose antecedent corresponds to the closed set in the first entry
of Table 4; Ripper [4], would obtain the most specific relevant rules, i.e. those
corresponding to the three last entries from Table 4. Finally, other algorithms
such as Apriori-C would also output rules whose antecedents are not relevant
such e.g. Astigmatism=no → Lenses=soft.
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4.1 Shortest Representation of a Relevant Set

Based on Theorem 1 we know that generators Y of a closed set X are character-
ized to cover exactly the same positive examples, and at least the same negative
examples. Because of this, any generator will be redundant w.r.t. its closure.
However, we have FP(X) ⊆ FP(Y ) for Y generator of X ; so, it might happen
that some generators Y are equivalent to their closed set X in that they cover
exactly the same true positives and also the same false positives.

Definition 4. Let Γ+(Y ) = X and Y �= X. We say that a generator Y is
equivalent to its closure X if FP(X) = FP(Y ).

The equivalence between true positives of Y and X is guaranteed because Γ+(Y )
= X . Therefore, it would be only necessary to check if generators cover the same
false positives than its closure to check equivalence. Generators will provide a
more general representation of the relevant set (because Y ⊂ X by construction).
So, Y → + is shorter than the rule X → + and it is up to the user to choose
the more meaningful to her or to the application.

In terms of the closure operator of negatives, we have that Y is an equivalent
generator of X iff Γ−(X) = Γ−(Y ).

5 Evaluation of Relevant Sets in the ROC Space

The ROC space is a 2-dimensional space that shows classifier (rule/ruleset) per-
formance in terms of its false positive rate (also called ’false alarm’), FPr =

FP
TN+FP = FP

|N | plotted on the X-axis, and true positive rate (also called ‘sensitiv-
ity’) TPr = TP

TP+FN = TP
|P | plotted on the Y -axis. The ROC space is appropriate

for measuring the quality of rules, since rules with the best covering properties
are placed in the top left corner, while rules that have similar distribution of
covered positives and negatives as the distribution in the entire data set are
close to the main diagonal.

The combinations of features of Definition 2 can be interpreted as condition
parts of rules. Since they are induced with a minimal support constraint on the
positives, they all lie above the minimum true positive rate constraint line (in
Figure 2 denoted as minTPr). The rules removed by the relevancy filter are never
those on the ROC convex hull (the empty circles are removed while the other
remain). Furthermore, it can be trivially proved that we discover all the rules in
the dataset on the ROC convex hull above the minimum true positives constraint
(the full circles connected with a line). Therefore there are no rules outside the
convex hull (grey area on the Figure 2 denotes an area without rules).

Sometimes an extra filtering criterion is required. In such cases we can imply
a maximum FPr constraint covered by our relevant sets (in Figure 2 this con-
straint is represented by the dashed line, the rules eliminated by this constraint
are shown in squares), or we can imply a minimum confidence constraint (rep-
resented by the dotted line, the rules eliminated by this constraint are crossed
in Figure 2), or simply output rules on the convex hull, among others.
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6 Experimental Evaluation

The presented theoretical study can be briefly summarized in the following steps:

– First, mining the set S = {X1, . . . , Xn} of frequent closed itemsets from the
target class (Theorem 1). This requires a minimum support constraint on
true positives. Here we will use the efficient LCM algorithm [6].

– Second, reducing S to the space of relevant set of features by checking the
coverage in the negatives (Theorem 2). Schematically, for any closed set
Xi ∈ S, if there exists another closed set Xj ∈ S s.t. both have same support
in the negatives and Xj ⊂ Xi, then Xi is removed.

Finally, depending on the purpose of the application we can apply an extra
filtering criterion, or compute minimal equivalent generators of the relevant sets
as described above. For short, we will name this computing process as RelSets
(for the Relevant Sets of features of Definition 2 we are discovering).

6.1 Emerging Patterns and Essential Rules on UCI Data

Emerging Patterns (EP) [5] are sets of features in the data whose supports
change significantly from one class to another. More specifically, EPs are itemsets
whose growth rates (the ratio of support from one class to the other, i.e. TPr

FPr
of the pattern) are larger than a user-specified threshold. In this experimental
setting we want to show that some of the EPs mined by these approaches are
redundant, and that our relevant sets correspond to the notion of compacted
data representation for labeled data. Indeed, EPs are a superset of the result
returned by RelSets.

In our comparisons we calculate relevant sets over a certain rate growth thresh-
old (1.5 and infinite), and we compare this with the number of EPs by using the
same rate growth constraint. Numerical attributes in the datasets are discretized
when necessary by using four equal frequency intervals. Results are shown in the
first part of Table 4.

Essential rules were proposed in [1] to reduce the number of association rules
to those with nonredundant properties for classification purposes. Technically,
they correspond to mining all frequent itemsets and removing those sets X s.t.
there exists another frequent Y with Y ⊂ X and having both the same support
in positives and negatives. This differs from our proposal in the way of treating
the positive class with closed sets. The compression factor we do for these rules
is shown in the second part of Table 4. Note that essential rules are not pruned
by rate growth threshold, and this is why their number is usually higher than
the number of Emerging Patterns.

6.2 Subgroup Discovery in New Application Domains

Subgroup discovery [11,7] is a supervised descriptive induction task. The result
of subgroup discovery is a set of subgroup descriptions (a rule set) that preferably
has a low number of rules while each rule has high coverage and accuracy.
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Table 4. Compression factor (CF% = (1 − |Relsets|
|EPs| ) × 100) of EPs and essential rules

in UCI datasets. Note that we did not impose any minimum true positive threshold on
any dataset, except for Lymphography and Crx, where all EPs, Relsets and essential
rules were discovered with a 10% threshold on true positives. Also, note that in the
second part of the table, essential rules and RelSets are not pruned by any rate growth
threshold.

EMERGING PATTERNS ESSENTIAL RULES
Rate growth > 1.5 Rate growth ∞

Dataset Class Distrib. % EPs RelSets CF% EPs RelSets CF% Essence RelSets CF%
Lenses soft 20.8 31 4 87.10 8 3 62.5 43 4 90.69

hard 16.9 34 3 91.18 6 2 66.67 39 3 92.30
none 62.5 50 12 76.00 42 4 9.52 89 19 78.65

Iris setosa 33.3 83 16 80.72 71 7 90.14 76 20 73.68
versicolor 33.3 134 40 70.15 63 10 84.13 111 41 63.06
virginica 33.3 92 16 82.61 68 6 91.18 96 27 71.87

Breast-w benign 65.5 6224 316 94.92 5764 141 97.55 3118 377 87.90
malignant 34.5 3326 628 81.12 2813 356 87.34 2733 731 73.25

SAheart 0 34.3 4557 1897 58.37 2282 556 75.64 6358 4074 35.92
1 65.7 9289 2824 69.60 3352 455 86.43 9622 4042 58

Balance-scale B 7.8 271 75 72.32 49 49 0.00 415 147 88.67
R 46 300 84 72.00 90 90 0.00 384 364 5.20

Yeast MIT 16.4 3185 675 78.81 250 40 84.00 2258 1125 50.17
CYT 31.2 3243 808 75.08 68 16 76.47 2399 1461 80.78
ERL 0.3 1036 5 99.52 438 4 99.09 417 5 98.80

Monk-1 0 64.3 1131 828 26.79 321 18 94.39 1438 1135 21.07
1 35.7 686 9 98.69 681 4 99.41 1477 363 75.42

Lymphography metastases 54.72 36435 666 98.17 10970 90 99.18 1718 369 78.52
10% min supp. malign 41.21 61130 740 98.79 19497 55 99.72 2407 476 80.22
Crx + 44.5 3366 782 76.76 304 26 91.44 2345 1091 53.47
10% min supp. − 55.5 3168 721 77.24 12 5 58.33 2336 1031 55.86

Table 5. Comparison of algorithms RelSets and SD on new subgroup discovery prob-
lems. Column RelSets-ROC shows the number of RelSets rules on the ROC convex
hull.

Dataset Class Num. of rules AUC Time
RelSets RelSets-ROC SD RelSets SD RelSets SD

potato sensitive 1 1 20 100% 100% <1s >1h
microarray resistant 1 1 20 100% 91% <1s >1h

dribble kick 110 7 20 89% 61% <1s 3min
pass pass 8 4 0 88% 0% <1s 3min

shoot 1 1 20 100% 100% <1s 3min

The first experiment is performed on a real life potato microarray dataset
with high dimensionality on the number of attributes. The goal is to distinguish
between two different classes of resistance of four transgenic potato lines. After
data preprocessing, we have only 12 examples (6 virus resistant and 6 virus sen-
sitive examples) and 19,131 attributes. In Table 5 it can be seen how slowly the
subgroup discovery algorithm SD performs and that RelSets performs better
in terms of the area under the ROC curve (AUC) in the ROC space. More-
over, standard subgroup discovery algorithms present subgroups that are not as
satisfactory to end users as subgroups found by RelSets.

The second experiment was performed on a real world strategy learning prob-
lem of robots playing soccer. In this dataset we have four classes: three classes
represent successful moves made by the robots and the majority class (92%)
when nothing interesting happens. We ran RelSets with a minimum true posi-
tive rate constraint of 20%. In Table 5 we show that we do not only outperform
the algorithm SD in time, but also in quality (area under ROC convex hull).



174 G.C. Garriga, P. Kralj, and N. Lavrač

7 Conclusions

We have presented a theoretical framework that, based on the covering proper-
ties of closed itemsets, characterizes those sets of features that are relevant for
discrimination. We call them closed sets for labeled data, since they keep similar
structural properties of classical closed sets, yet taking into account the posi-
tive and negative dimension of examples. In practice the approach shows major
advantages for: compacting Emerging Patterns and essential rules and solving
hard subgroup discovery problems. Thresholds on positives make the method
tractable even for large databases with many features. Future work may adapt
efficient algorithms of EPs in [5] for discovering relevant sets.
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11. N. Lavrač, B. Kavšek, P. Flach, and L. Todorovski. Subgroup discovery with CN2-
SD. Journal of Machine Learning Research, 5:153–188, 2004.

12. N. Pasquier, Y. Bastide, R. Taouil L., and Lakhal. Closed set based discovery of
small covers for association rules. In Proc. ICAD, pages 361–381, 1999.

13. I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java implementations. Morgan Kaufmann, 2005.

14. M. Zaki. Mining non-redundant association rules. Data Mining and Knowledge
Discovery: An Int. Journal, 4(3):223–248, 2004.

15. J. Zhang, E. Bloedorn, L. Rosen, and D. Venese. Learning rules from highly
unbalanced data sets. In ICDM’04, pages 571–574, 2004.



Finding Trees from Unordered 0–1 Data

Hannes Heikinheimo, Heikki Mannila, and Jouni K. Seppänen

HIIT Basic Research Unit, Lab. Computer and Information Science,
FI-02015 Helsinki University of Technology, Finland

{Hannes.Heikinheimo, Heikki.Mannila, Jouni.Seppanen}@tkk.fi

Abstract. Tree structures are a natural way of describing occurrence
relationships between attributes in a dataset. We define a new class of
tree patterns for unordered 0–1 data and consider the problem of dis-
covering frequently occurring members of this pattern class. Intuitively,
a tree T occurs in a row u of the data, if the attributes of T that oc-
cur in u form a subtree of T containing the root. We show that this
definition has advantageous properties: only shallow trees have a signifi-
cant probability of occurring in random data, and the definition allows a
simple levelwise algorithm for mining all frequently occurring trees. We
demonstrate with empirical results that the method is feasible and that
it discovers interesting trees in real data.

1 Introduction

Frequent pattern discovery has been extensively studied, especially in the case
of 0–1 data, where various algorithms exist for mining frequent itemsets and
association rules. Here we propose a new class of co-occurrence patterns: trees.
The idea is to search for hierarchies of general and more specific attributes. For
example, consider document data and a tree with attribute A as the root and B
and C as the children of A, and D as the child of B (see Figure 1). This means
that A is the general concept, B and C are more specific terms related to A,
and D is a further specialization of B.

An observed row u follows the hierarchy described by the tree if the attributes
in the tree that are 1 in u form a subtree of T containing the root. In the example

A

B C

D

Fig. 1. Example tree

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 175–186, 2006.
Springer-Verlag Berlin Heidelberg 2006
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tree of Figure 1 a row with u(A) = u(B) = u(C) = 1 and u(D) = 0 satisfies this
condition, but a row with u(A) = u(D) = u(C) = 1 and u(B) = 0 does not.

We consider the task of finding trees T such that there are sufficiently few
rows violating the subtree condition (few conflicts). To prevent trivial trees con-
sisting only of attributes occurring very rarely, we additionally require that each
attribute occurring in T has a high enough frequency in the data. The task we
consider is, given two thresholds τ and σ, to find all trees that have at most τ
conflicts and each attribute occurring in the tree has frequency at least σ.

While there has been lots of research on finding trees from tree- or graph-
structured data (see, e.g., [1,2,3,4,5,6]), the crucial difference is that we start
from unstructured 0-1 data, as in mining frequent sets and association rules. Hi-
erarchical clustering or finding phylogenetic trees (see, e.g., [7]) looks for finding
trees from 0-1 data, but typically the goal is to find one tree containing all the
attributes of the data. The same is true for finding tree-structured Bayes nets
from data. Another difference is that in a hierarchical clustering or phylogenetic
tree all attributes of the data are in the leaves of the tree. We seek trees where
all nodes of the tree are items from the data.

Another somewhat analogous class of patterns are approximate itemsets, such
as error-tolerant or dense itemsets [8,9,10]. These are relaxed versions of frequent
itemsets: the set is considered to occur in a row provided most of the attributes
of the set are equal to 1 in the row. Similarly to these patterns, in this work
a tree can be supported by rows that do not have all of the items of the tree.
The tree structure reflects more closely the kinds of co-occurrence that are in
fact present in the data. Fragments of order [11] are a type of directed itemsets:
a fragment is violated by rows having two of its items but lacking at least one
item that appear between the two. Fragments of order can be viewed as simple
unrooted trees having only one branch.

The rest of this paper is structured as follows. In Section 2 we present the
definition of tree patterns. We discuss their theoretical properties in Section 3.
In Section 4 we give algorithms for discovering trees, and present two measures
for selecting interesting trees. Empirical results demonstrating that the method
is feasible and that it finds interesting trees are given in Section 5. Extensions to
the pattern class are discussed in Section 6, and Section 7 is a short conclusion.

2 Tree Patterns and 0–1 Data

Let R be a set of 0-1 valued attributes (also called items). A 0-1 dataset D over
R is a table of rows of 0s and 1s with R as the set of column headers. The dataset
D can be also considered as an unordered multiset of rows u, where each row is
a subset of R. We denote attributes by the letters A, B, and C, and by u(A) the
value 1 or 0, according to whether the attribute A is present in u or not. We de-
note by n the number of rows in D and by m the number of attributes, i.e., |R|.
The frequency f(A) of an attribute A is the fraction of rows u such that u(A) = 1.

A tree is a pair T = (A, C), where A is an attribute and C = {T1, T2, . . . , Tk }
is the set of subtrees, each of which is a tree. (For leaves of the tree the set C
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is empty.) We say that A is the root of the tree. Each Ti has the form Ti =
(Ai, Ci); the attributes A1, . . . , Ak are called the children of A (this phrasing is
unambiguous as we require that each attribute appears in the tree at most once).
An attribute B is a descendant of A (or, equivalently, A is an ancestor of B)
either if B is a child of A or B is a descendant of a child of A. The set of nodes
of the tree T are simply all attributes occurring in the tree.

The conflict count c(T, D) of T in D is the number of rows u ∈ D such that
there is a node A and its descendant B such that u(A) = 0 and u(B) = 1. Given
thresholds τ and σ, both in [0, 1], the collection of trees T P(D, τ, σ) consists
of all trees T such that c(T, D) ≤ τn and f(A) ≥ σn for all A occurring in T ,
where n is the number of rows in the dataset D.

The computational problem we consider in this paper is the following.

Problem 1. Given D, σ, and τ , compute T P(D, τ, σ).

Note that in the definition of T P(D, τ, σ) we use an upper bound τ on the
number of conflicts, while frequent patterns typically are defined by a lower
bound on the number of occurrences. Our parameter σ has this role, preventing
attributes with very low frequency from being considered.

3 Basic Properties of Tree Patterns

In this section we consider the basic properties of tree patterns and the pattern
collection T P(D, τ, σ).

Monotonicity. The first observation is simple monotonicity property typical
for frequent patterns. A tree S is a rooted subtree of tree T , if S can be obtained
from T by a series of removals of leaves. The following proposition is immediate.

Proposition 1. The pattern classT P(D,τ,σ) is monotone with respect to rooted
subtrees, i.e., if T ∈ T P(D, τ, σ) and S is a subtree of T , then S ∈ T P(D, τ, σ).

Trees and Association Rules. Next we discuss the relationship of trees and
association rules. For a simple tree T containing root A and a child B, the conflict
count c(T ) is n(f(B)− f(AB)), where f(AB) is the frequency of the attribute
set AB, i.e., the relative number of rows u with u(A) = u(B) = 1. Noting that
γ = f(AB)/f(B) is the accuracy (confidence) of the association rule B → A, we
have that c(T ) = nf(B)(1− γ). One can ask whether other, more complex trees
could be reduced to association rules? Could we perhaps find all the trees in
T P(D, τ, σ) just by postprocessing a set of association rules between attributes?
(See, e.g., [12,13,14,15,16] for interesting work on postprocessing collections of
association rules.) This turns out not to be the case, however.

A row u satisfies the subtree condition for tree T if the rule C → D is true on u
for all pairs (C, D) such that C is a descendant of D in T . However, there is no
simple formula for the conflict count of a tree T given the accuracies of the rules
C → D for attributes occurring in T . The reason is that a tree conflicts with
a row u if at least one rule is violated: the frequency under which this happens
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depends on the interaction of the different rules. As an example, consider the tree
with root A, and B and C as the children of A. If f(A) = f(B) = f(C) = 0.2
and f(AB) = f(AC) = 0.1, the accuracies of the rules B → A and C → A are
both 0.5. The conflict count of the tree T can, however, vary between 0.2n0.5
and 2(0.2n0.5), depending on whether the conflicts are on the same rows or not.
Hence there is no algorithm for computing T P(D, τ, σ) that would take as input
only the association rules between attributes.1

Number of Possible Trees. The number of rooted labeled trees on m vertices
is mm−1. This follows from a theorem of Cayley, which states that the number
of labeled trees is mm−2; see e.g. [17, Section 3.3] or [18, sequence A000169]. The
number of possible roots is of course m, from which the result follows. This implies
that it would be infeasible to consider all trees even for moderate values of m.

Trees in Random Data. We next address the question how many trees are in
the collection T P(D, τ, σ) in random data, similarly to the discussion in [19] on
frequent itemsets. Suppose D contains independent and identically distributed
entries, with probability p of a 1 for each entry. Trees that only have a root and
k children cause a conflict only if the value of the attribute of the root is 0; thus
the conflict probability is fairly low.

For trees with longer branches it is straightforward to demonstrate that the
probability q of a conflict grows fast. Using Chernoff bounds it is then easy to
show that the probability that a tree with longer branches has less than, say, nq/2
conflicts is at most exp(−cnq) for some constant c. There are P =

(
m
k

)
kk−1 trees

with k nodes selected from the set of m attributes, implying that the expected
number of trees with less than nq/2 conflicts is thus bounded by P exp(−cnq).
We have log P ≤ k(log m + log k) ≤ 2k log m. Thus, if 2k log m ≤ cnq, the
expected number of trees (with sufficiently long branches) in T P(D, τ, σ) is at
most 1. We omit the details.

4 Generating the Collection T P(D, τ, σ)

4.1 The Levelwise Algorithm

Proposition 1 allows using a standard levelwise algorithm for computing trees
in T P(D, τ, σ), as when computing frequent itemsets: start from single at-
tributes, and on every pass combine trees of size k into trees of size k + 1.
However, the combination phase is not as simple as for itemsets.

One approach would be to try adding every attribute into every possible po-
sition in each tree, but with a large number of attributes this would force the
algorithm to consider prohibitively many candidate trees. Another possibility is
to try combining all pairs of trees, which takes quadratic time in the number
1 The exponential collection of frequencies of all frequent sets for frequency threshold

0 specify the distribution of the data rows uniquely, so that exponential input would
suffice to determine also the collection T P(D, τ, σ).
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of trees. Instead, we use the approach of Zaki [6]. Briefly, a tree is represented
as a string by traversing it depth-first in preorder, recording the attribute in
each node, and −1 when backtracking. For example, the tree in Figure 1 would
be encoded as (A, B, D,−1,−1, C,−1). In this encoding, it is sufficient to con-
sider combining pairs of trees sharing the same (k − 1)-prefix, which limits the
quadratic behavior to much smaller sets than the complete set of k-trees. For
details, see [6]; note that since we restrict attributes to occur at most once in
each tree, not all combinations listed by Zaki are needed.

A drawback of the combination method is that each (k + 1)-tree is gener-
ated multiple times as isomorphic copies: for example, the isomorphic trees
(A, B,−1, C,−1) and (A, C,−1, B,−1) get both generated. We optimize the
database pass by only accessing the database for trees where the children of
each node are in alphabetical order, and using the same information for iso-
morphic trees. However, it is not possible to completely prune the copies. For
example, the 4-tree (A, C,−1, D, B,−1,−1) can only be generated from the 3-
trees (A, C,−1, D,−1) and (A, C,−1, B,−1), the latter of which does not have
the order property. Another possibility would be to work only with some canon-
ical forms of trees, as in [4].

The size of the class T P(D, τ, σ) is highly sensitive to the values of the two
parameters. A way to ameliorate this problem is to use a top-k algorithm similar
to that developed for dense itemsets [10].

We remarked in the previous section that in random data trees of small depth
can have low conflict count. It is straightforward to modify the above algorithm
to construct only, e.g., binary trees, thus guaranteeing longer branches. We omit
the details.

4.2 Selecting Interesting Trees

The collection T P(D, τ, σ) will in many cases be quite large, and tools are needed
for selecting the most interesting trees.

We present two measures for selecting interesting trees: specificity and conflict
ratio. The specificity φ(T ) of a tree T is the size of the transitive closure of the
tree, when it is viewed as a relation on the set of attributes. In other words,
it is the number of (ancestor, descendant) pairs in the tree. A single-branch
tree has maximal specificity and a shallow tree whose leaves are the children of
the root has minimal specificity. The conflict ratio E[c(T )]/c(T ) of a tree T is
obtained by comparing the number c(T ) of conflicting rows in the data to its
expectation E[c(T )] under the assumption that the attributes are independent
and have the marginal frequencies observed in the data.

The expectation E[c(T )] can be computed recursively for each tree. For T =
(A, C), the probability of no conflict, under the independence assumption, is

1− Pr(u conflicts with T ) = Pr(u(A) = 0)
∏
B

Pr(u(B) = 0)

+ Pr(u(A) = 1)
∏
S∈C

(1− Pr(u conflicts with S)),
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where the first product is taken over all attributes B represented in T , except
for the root A, and the second over all child-trees S of T .

The conflict ratio will be high for trees that have much fewer conflicts than
would be expected under the independence assumption, i.e., trees that capture
interesting co-occurrence patterns in the data. The two interestingness measures
can be used to rank the trees in various ways.

5 Experiments

In this section we report on the experimental results we have obtained on gener-
ated and real data. Due to space constraints we discuss the results only briefly.

5.1 Generated Data

We generated data using the following procedure. First, a number of disjoint trees
with different values of the specificity measure were created by hand. The number
of trees used for the experiment was varied by taking different subcollections of
the trees. Given such a collection S, data was produced as follows. A row u was
generated by first making all attributes of u equal to 0. Then, each tree T ∈ S
was selected with probability p. If T was selected, we sampled a subset X of the
nodes of T by taking each node with probability q. Letting Y be the set of all
ancestors of nodes in X , we let u(A) = 1 for all A ∈ X ∪ Y . Finally, each bit
in the dataset was flipped independently with probability r to create noise. The
parameter values used were p = q = 0.5 and r = 0.1, and 1000 data rows were
generated.

From the generated data, trees were mined using a Java implementation of
the levelwise algorithm described in Section 4. The parameter σ was chosen to
be 0.2, since each tree has a p = 0.5 chance of occurring, and each attribute
in the tree may have as low as a pq = 0.25 chance of occurring. The parame-
ter τ was chosen as large as possible so that a reasonable number of trees was
still obtained; typically τ = 0.3 was close to the limit. Selecting the parameters
was also the reason that only disjoint trees were considered. With overlapping
trees large numbers of shallow subtrees are generated, and the conflict thresh-
old has to be quite low. This prevents the discovery of the more interesting
trees. With disjoint trees, the result set T P was reasonably small, while con-
taining all the trees in S. In order to test how well these trees were positioned
in the results with respect to the two interestingness measures, the mined trees
were partitioned into classes by their specificity φ, and each class was sorted by
the conflict ratio E[c]/c. From each specificity class, trees were selected into the
final result set R in decreasing order of conflict ratio until all trees in S had
been selected. The size |R| of the final result set is thus a measure of how close
to the top the generating trees in S were. The results are shown in Table 1.

We see that in every case the number of trees one needs to examine in order
to find the generating trees is fairly low. In fact, most of the extra trees are
variations of the generating trees: for example, in the smallest data set, one of
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the two generating trees is found immediately, and three of its simple variants
precede the other generating tree in conflict ratio order. The sensitivity to the
parameter is evident in that while we have σ = 0.2 and τ = 0.3 in all the cases
shown the size of the output |T P| varies non-monotonically in m.

5.2 Real Data

We used three real datasets in our experiments: data about terms used in NFS
abstracts [20], a database about students and courses at the Computer Science
Department of the University of Helsinki, and paleontological data [21,22]. We
present the results only for the first two data sets; the results were similar for
the third one.

Abstracts Data. The data set [20] consists of 128820 abstracts describing
NSF awards for basic research. The observations correspond to the abstracts
and the variables correspond to the terms occurring in them. For preprocessing
we applied the Porter Stemming Algorithm [23] to merge variables corresponding
to terms with a common stem. In addition, we reduced the dataset by taking a
random 2% sample of the observations and choosing 66 subjectively interesting
stem terms2 for the experiments. The final preprocessed data set consisted of
2510 observations (rows) and 66 variables (columns), with a total of 11262 entries
of 1s and an average of 4.5 1s per row.

Table 2 shows the number of trees obtained for different conflict thresholds τ
and frequency thresholds σ. We see that the number of elements in the answer
increases rapidly with decreasing frequency threshold σ and increasing conflict
threshold τ . One should observe, however, that it is quite easy to iteratively find
values of σ and τ that produce outputs of desired size.

When inspected visually, the resulting trees look intuitive. As an example, we
found the tree depicted in Figure 2(a), at a conflict count frequency of 13.1%
and a conflict ratio of 1.58. With another set of parameters, we found the very
intuitive tree in Figure 2(b) at a conflict count frequency of 21.2% and a con-
flict ratio of 1.19. The tree in Figure 2(a) has specificity 5, whereas the tree in
Figure 2(b) has specificity 6.

Course Enrollment Data. The data consists of course enrollment records
for courses held at the Department of Computer Science at the University of
Helsinki. The data set has 3506 observations corresponding to students and 98
variables corresponding to courses. The mean number of 1s per row is 4.6. The

2 The terms chosen were algebra, algorithm, atom, behavior, biolog, carbon, cell, cel-
lular, channel, chemistri, climat, code, comput, distribut, dna, document, earth,
ecolog, ecosystem, educ, electron, energi, environment, enzym, evolut, genet, ge-
olog, hardwar, internet, isotop, life, light, link, magnet, materi, mathemat, matter,
metal, molecular, morpholog, natur, network, nonlinear, nuclear, numer, ocean, oxid,
physic, pi, plasma, protein, quantum, record, scienc, semiconductor, social, softwar,
statist, surfac, temperatur, theoret, topolog, transit, transport, water and web.
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Table 1. Results on generated data. m: number of attributes; |S|: number of trees
used in the generating process; σ, τ : thresholds for frequency and conflicts; |T P|: size
of the output set; |R|: size of the final result set obtained by taking enough trees to
cover S .

m |S| σ τ |T P| |R|
10 2 0.2 0.30 1343 5
14 3 0.2 0.30 1172 8
18 4 0.2 0.30 1965 21
20 5 0.2 0.30 2208 27
23 6 0.2 0.30 1674 45
28 7 0.2 0.30 5469 43

Table 2. Results for the abstracts data set. The number of trees in the collection
T P(D, τ, σ) for various values of τ and σ. k = max |T |, the largest tree; h = max φ(T )
the maximal specificity.

τ σ |T P| k h cand time/sec.

0.14 0.12 26 3 2 194 0.573
0.16 0.12 33 3 3 250 0.603
0.18 0.12 51 3 3 397 0.835

0.14 0.08 649 3 3 12514 5.284
0.16 0.08 1894 3 3 39091 19.22
0.18 0.08 3890 4 4 108825 96.05

0.14 0.06 6637 5 6 204741 339.1
0.16 0.06 14927 5 7 538334 1970
0.18 0.06 48176 6 7 1683841 30300

total number of 1s in the data is 16086. Table 5.2 shows the number of trees
obtained for different conflict and frequency thresholds τ and σ.

For the course enrollment data there is an ordering in which the department
recommends the students to take some of the courses. For instance, some courses
require only basic understanding of programming concepts, whereas some of the
courses have more specific prerequisites. As an example of this, we found the tree
depicted in Figure 3 at a conflict threshold of 16.3% and a high conflict ratio
of 2.20. The tree reflects the fact that the more advanced courses Data struc-
tures and Programming in C have Java programming as a prerequisite, whereas
for Computer Organization the course Introduction to Programming suffices.
This is also the order in which the department recommends these courses to be
taken.

Outlier Detection. To evaluate the usefulness of discovered trees we exper-
imented with their use in outlier detection. An observation that conflicts with
several of the strongest tree patterns is likely to be an outlier. As a test of this,
we performed the following experiment. We took the course enrollment data set,
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Fig. 2. Two example trees in abstracts data

Table 3. Results for the course enrollment data. The number of trees in the collection
T P(D, τ, σ) for various values of τ and σ. k = max |T |, the largest tree; h = max φ(T )
the maximal specificity.

τ σ |T P| k h cand time/sec.

0.14 0.12 68 3 3 581 0.524
0.16 0.12 124 4 3 991 0.795
0.18 0.12 220 4 5 1830 1.163

0.14 0.1 262 4 5 1929 1.318
0.16 0.1 484 5 6 4128 2.733
0.18 0.1 998 5 7 9367 6.373

0.14 0.08 3955 6 8 71982 145.6
0.16 0.08 11475 7 10 281398 3310
0.18 0.08 35398 8 12 1221143 93740

Introduction to
Programming

Programming
in Java

Data
Structures

Programming
in C

Computer
Organization

Fig. 3. Example tree found in course enrollment data

here denoted by D, and generated an additional data set N with independent
attributes with the same marginal frequencies as in D. The size of N was 5%
of the original data D. Then, frequent trees T P = T P(E, τ, σ) were mined
from the augmented data E = D ∪ N with τ = 0.14 and σ = 0.08. From each
specificity class, the 30 trees with maximal conflict ratio were selected to form
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Fig. 4. Histogram for the conflict count between the rows in the data and the 164
generated trees. The figure on the left depicts the histogram for the real rows in the
data (total 3506). The figure on the right depicts the histogram for the 5% added noise
rows (total 175). The original data rows have fewer conflicts with the chosen 164 trees
than the added rows. See the text for details.

a subset S ⊂ T P . The specificities ranged from 1 to 6, but since the generated
number of trees with specificity 5 and 6 was 23 and 21 a total of 164 trees were
selected to S. For each row u ∈ E, we determined how many trees T ∈ S conflict
with u.

The result was that for rows u ∈ D, the average conflict count was 16.8,
with a standard deviation of 24.5, and for u ∈ N , the average was 37.8 with
a standard deviation of 31.2. Figure 4 shows the histograms of the number of
conflicts per row for the real data D and for the added rows N . Thus, the noise
rows behave clearly differently from the real data rows from the viewpoint of
tree patterns.

6 Extensions

A problem clearly seen in the experiments is that a large number of small,
shallow trees crop up and slow the algorithm down before it has investigated more
interesting trees. A possible solution is to restrict the class of trees considered.
For example, if the number of children of each node is restricted to be at most
two, a levelwise algorithm would still be possible, and there would be much fewer
shallow trees to consider.

Another way to approach the problem is to change the search strategy from the
levelwise, breadth-first search. In the case of frequent itemsets, there are depth-
first algorithms for mining the maximal frequent itemsets without considering
all their subsets (see, e.g, [24] and [25]). Adapting such algorithms for trees is
an interesting direction for future research.

If more efficient search strategies are developed, it would also be interesting
to broaden the class of patterns: directed acyclic graphs would be a natural
generalization of trees.
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7 Conclusion

We have introduced the idea of mining trees from unordered 0–1 data and shown
that this pattern class is distinct from traditional frequent itemsets or association
rules. We have shown empirically that the levelwise algorithm can find interesting
trees in both generated and real data. In real data, our experiments show that
there are interesting co-occurrence patterns that are naturally captured as trees.
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Abstract. We propose a technique for identifying latent Web commu-
nities based solely on the hyperlink structure of the WWW, via random
walks. Although the topology of the Directed Web Graph encodes im-
portant information about the content of individual Web pages, it also
reveals useful meta-level information about user communities. Random
walk models are capable of propagating local link information throughout
the Web Graph, which can be used to reveal hidden global relationships
between different regions of the graph. Variations of these random walk
models are shown to be effective at identifying latent Web communi-
ties and revealing link topology. To efficiently extract these communities
from the stationary distribution defined by a random walk, we exploit a
computationally efficient form of directed spectral clustering. The perfor-
mance of our approach is evaluated in real Web applications, where the
method is shown to effectively identify latent Web communities based
on link topology only.

1 Introduction

Increasingly, the World Wide Web is playing an important role in peoples’ lives
as a main destination for information. However, the sheer heterogeneity of Web
users and authors—given diverse backgrounds and interests—hampers tradi-
tional information retrieval approaches that rely on content analysis alone. The
Web is comprised of multiple communities [5] created by different groups of peo-
ple having common interests. The identification of Web communities can help
users with their information retrieval goals, by allowing the construction of pre-
classified directories and the creation of more effective recommendation services.
Random walk models have been successfully used for Web ranking in the past
[12,11], and have also raised interest in identifying Web communities.

In this paper we investigate how the directed hyperlink information conveyed
via random walks can help one efficiently identify latent Web communities from
the hyperlink topology alone. Our work on identifying Web communities exploits
recent progress on directed spectral clustering [16], and contributes further un-
derstanding to the nature of such clustering techniques. Here, we analyze directed
spectral clustering from a random walk perspective.

Intuitively, a coherent Web community can be identified by a subset of Web
pages that is strongly connected within the subset, while only being weakly
connected with pages outside the subset. We assume that if two pages are directly
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linked, their interests are assumed to be somewhat related [7]. We also take co-
citation [15] and co-reference [9] relations into account to accurately identify
latent Web communities. Such high level connections provide useful relationship
information, since sometimes connections between Web pages might not be as
obvious as such direct links.

For Web community identification, we first examine a one-step random walk
model that captures low level aspects of hyperlink connectivity. We then con-
sider a two-step random walk model with different variations that captures higher
level information by exploiting the existence of co-reference and co-citation rela-
tionships in the link topology. For the two-step model, we introduce a damping
process that samples the entire Web uniformly, which allows the random walk
to be properly applied to general Web graphs.The selection of the damping fac-
tor is essential to both computation and performance. Finally, we examine the
performance of different random walk models and damping factors in identifying
Web communities from pure graph topology. The empirical results demonstrate
that our random walk models are sufficiently flexible to capture different levels
of relationships in the link topology to achieve significant performance in Web
community identification. This provides a practical understanding how various
random models behave in Web community identification.

2 Background

Before analyzing our specific models, we briefly review related work on identify-
ing Web communities in general.

The problem of identifying Web communities is clearly related to the more
fundamental problem of graph partitioning. For general graph partitioning, one
can often resort to straightforward principles such as unrestricted minimal cut,
or the dual principle of maximum flow. However, the graphs used by most such
techniques are undirected, and therefore they ignore the directionality infor-
mation encoded in Web hyperlinks [4,8]. Another simple approach is to extract
similarity measurements between neighboring vertices (Web pages) directly from
the link structure to perform a generic clustering method [9]. However, the simi-
larity should be measured from the global structure of the graph. A more global
approach to Web graph clustering suggests, therefore, that some sort of aggre-
gate similarity measure be used, such as those based on the spectrum of the
connectivity matrix. For undirected graph clustering, a common suggestion is
to partition by performing a singular value decomposition (SVD) on W [13].
However again, the connectivity matrix W is not symmetric.

By considering the directed links of Web pages, Kleinberg showed that the
HITS ranking algorithm [10] converges to a spectral method that uses the princi-
ple eigenvectors of WT W and WWT —the final weight scores for the authorities
and hubs. Later, it was observed that this technique can in fact be used to iden-
tify web communities, where Web pages with highest authority and hub scores
are used to define the core of a community [6]. However, one can see that this
approach reduces to SVD on an undirected graph weight matrices WWT and
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WT W . In fact, this approach suffers from two drawbacks: first, a straightforward
graph partition method based on simply computing the principle eigenvectors is
not very effective in general; and second, the directed hyperlink information is
significantly diminished through the symmetric transformations. Regarding the
first drawback, a more appropriate way to solve the graph partitioning problem
is to consider it as a balanced minimum cut problem, which usually results in
more accurate clusters being obtained. Although most versions of the balanced
minimum cut are NP-complete, the eigenvectors of graph Laplacians [2] provide
a good approximation to this NP-hard problem. The efficiency and effectiveness
of such balanced spectral clustering methods has been demonstrated in many
domains, e.g. [14]. Unfortunately, these methods have only been developed for
undirected graphs, and do not consider directionality information.

To address these shortcomings, we require a balanced spectral clustering prin-
ciple that can take into account the directionality of Web hyperlinks. Recently,
a new approach to directed graph clustering has been proposed in [16], which of-
fers a mathematically clean solution to this problem. It minimizes a balanced cut
criterion for directed graphs that has a very natural interpretation in a random
walk framework. Unfortunately, the work presented in [16] does not address the
specific role of random walks in Web graph clustering. A Web graph differs from
a general directed graph in that it posesses particular topological properties. It is
therefore critical to formulate a proper random walk model that ensures similar
pages are grouped into coherent Web communities. In this paper, we analyze two
random walk models with their variants that are sufficiently flexible to capture
important aspects of Web graph topology, and disclose how walk connectivity
is related to page similarity in directed spectral clustering. Below we investi-
gate the performance of these random walk models in comparison with standard
models of spectral clustering on undirected graphs [6].

3 Directed Spectral Clustering

To identify Web communities in a Directed Web Graph we employ the efficient
spectral clustering technique for directed graphs developed in [16]. The criterion
for directed graph partitioning is given by a combinatorial partition criterion that
generalizes the normalized cut criterion for undirected graphs [14]. It requires
no transformation of the asymmetric adjacency matrix into a symmetric one.

A directed graph G = (V, E) can be associated with a Markov chain defined
by a random walk on the graph. The stationary distribution π of this random walk
gives a probability of occupancy over a vertex vgiven infinite time. So given a subset
S of vertices in G, we define the probability with which the random walk occupies
vertices in S as P (S) =

∑
v∈S π(v). Let Sc denote the complement of S. Obviously,

P (S)+P (Sc) = 1. Define the probability with which the random walk jumps to Sc

from S as P (S → Sc) =
∑

u∈S,v∈Sc π(u)p(u, v). We then consider partitioning the
directed graph G into two nonempty subsets S and Sc by minimizing the following

cut(S) =
P (S → Sc)

P (S)
+

P (Sc → S)
P (Sc)

(1)
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Intuitively, a good partitioning of a directed graph under this criterion cor-
responds to a cut such that the probability of escaping from one community to
another is small, whereas the probability of remaining in the current community
is high. Note that these escape and retention probabilities are measured with
respect to a long run of the random walk, so the optimal partition is determined
by the global link topology of the graph. Minimizing this objective is NP-hard
[2] but an approximation can be efficiently obtained by solving for the eigenvec-
tors of a directed graph Laplacian Δ defined as follows [16]. Let Π denote the
diagonal matrix with Π(v, v) = π(v) for all v ∈ V . Let P denote the transition
probability matrix and PT the transpose of P. Then define

Θ =
Π1/2PΠ−1/2 + Π−1/2PT Π1/2

2
. (2)

Then, Δ = I −Θ, where I denotes the identity. The directed spectral clustering
algorithm is then to compute the eigenvector Φ of Θ corresponding to the sec-
ond largest eigenvalue, and then partition the vertex set V of G into two parts
according to the sign. In practice, for multiple clusters, it is standard to detect
and visualize clusters based on the sorted eigenvalues [1].

4 Random Walks on Digraphs

The random walk model is a free parameter in the directed spectral clustering
framework outlined above. Technically, the only requirement is that the tran-
sition probabilities of the random walk satisfies the balance equation π(v) =∑

u→v π(u)p(u, v) where u → v ∈ E denotes page v is pointed by page u.
However, for the purposes of identifying latent Web communities in a Directed
Web Graph, we need to specify an appropriate random walk to ensure that
tightly coupled Web pages share a common topic or interest. This provides a
practical understanding of different behavior of random walk models in Web
clustering.

One-Step Random Walk

The one-step random walk model we examine initially is the teleporting random
walk model of [12]. Given that the random surfer is currently at a vertex u: (a)
with probability ε it chooses an outlink uniformly at random and follows the
link to the next page; or (b) with probability 1 − ε it jumps to a Web page
uniformly at random over the entire Web (excluding itself). Here, a damping
factor ε (0 < ε < 1) is introduced in the case where the current page has no
outlink. Such a random walk is guaranteed to converge to a unique stationary
distribution which can be computed by numerically solving the balance equation.
The transition probability ptele(u, v) between u and v under this model can
be written as ptele(u, v) = εw(u,v)

d+(u) + pε(u, v), where pε(u, v) = w(u, v)/ volG if
d+(u) = 0 and pε(u, v) = (1−ε)w(u, v)/ volG if d+(u) > 0; volG =

∑
u(d+(u)+
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d−(u)). Here w(u, v) is the weight value along each edge; d−(v) =
∑

u→v w(u, v)
and d+(v) =

∑
u←v w(v, u) are the in-degree and out-degree of v.

This random walk makes the simple assumption that similar pages are directly
linked. The stationary probability of a Web page corresponds to the frequency
that a surfer visits the page following forward links. This can be viewed as an
authority effect in the Web page ranking. We refer to this random walk as the
one-step authority model (OneStepA). Conversely, we can consider another
random walk that traverses backward along the hyperlinks [3]. This is equivalent
to the hub effect, since a good hub page should be able to visit many other
related pages. Therefore, we refer to this random walk as the one-step hub model
(OneStepH ).

Two-Step Random Walk

Web pages are “connected” by more than their direct hyperlinks. Intuitively,
commonality between two Web pages is revealed by the presence of common
co-citation or co-reference pages. The random walk we employ should therefore
also consider these implicit connections in Web community identification.

We now consider a two-step random walk model motivated by the Hubs and
Authorities model in [10]. Assume temporarily that each Web page has inlinks
and outlinks. Then, starting from a page u, the random surfer first jumps back-
ward to an adjacent hub vertex h with probability p−(u, h) = w(h, u)/d−(u),
then it jumps forward to a page v adjacent from h with probability p+(h, v) =
w(h, v)/d+(h). Then the two-step transition probability pA(u, v) between two
authorities u and v is given by

pA(u, v) =
∑

h

p−(u, h)p+(h, v) (3)

The stationary distribution πA of this random walk is πA(u) = d−(u)/ volG−

where volG− =
∑

u∈V d−(u). This follows from the fact that

∑
u∈V

πA(u)pA(u, v) =
∑
u∈V

d−(u)
volG−

∑
h∈V

w(h, u)w(h, v)
d−(u)d+(h)

=
1

volG−

∑
h∈V

w(h, v)
d+(h)

∑
u∈V

w(h, u) =
d−(v)
volG− = πA(v)

This random walk is performed by treating pages as authorities.
Using the same argument, we can define a two-step random walk by treating

pages as hubs. The random walk performs among hubs u and v by first taking
a forward step and then a backward step along the edges u → a and a ← v,
yielding the transition probability between hubs

pH(u, v) =
∑

a

p+(u, a)p−(a, v) (4)
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Similarly, this random walk between hubs has the stationary distribution
πH(u) = d+(u)/ volG+. The two-step random walk exploits the co-citation and
co-reference effects in the high level Web link topology. The assumption here is
that two similar pages should share more common hubs or authorities.1

The above two-step random walks require that each Web page has inlinks
and outlinks, but this is not always true for real Web graphs. To be able to
handle the general case, we propose to combine the two-step random walk with
a teleporting step, so that each forward and backward step through an outlink
and a inlink has a damping factor. Therefore, to obtain the mixed two-step
random walk, simply plug the modified transition probabilities p− and p+ into
formulas (3) and (4) to modify pA and pH among authorities and hubs. In our
experiments below we only use the mixed version of the two-step random walks,
but for simplicity we just refer to them as TwoStepA and TwoStepH respec-
tively. Finally, we consider a convex combination of the two types of two-step
random walks that address the hyperlink structure in a more flexible manner
P = βPA +(1−β)PH , where β is a tuning parameter that controls the different
weights of co-citation and co-reference effects. The advantage of this combination
is that it can help us determine which effect is dominant in the link structure,
based on the results. Or conversely, given some prior knowledge about the levels
of link structure, we can set a proper value for β that consistently matches the
hyperlink topology.

Spectral Clustering with Random Walks

To partition a Directed Web Graph, we can simply use the adjacency matrix A
with unit weights (i.e., a(u, v) = 1 when u → v). It is interesting to compare
the results of the different random walk models and the symmetrized trans-
formation models in this case. To demonstrate the differences in a simple toy
example, we computed the second eigenvectors of Θ formulated as in (2) for
both the one-step and two-step random walks on the graph in Figure 1. We set
ε = 0.95. We also obtain the principal eigenvectors of AT A and AAT , corre-
sponding to the symmetrized authority and hub scores mentioned in the Back-
ground section [10]. We refer to these symmetrized methods as Auth and Hub
respectively.

One can partition the directed graph into two clusters by examining the values
in the eigenvector thresholding at zero. Pages within an initial grouping can then
be partitioned further after the first partitioning [1], and so on. In addition to
just partitioning the vertices, however, the eigenvector values can also be used to
assign a weight or confidence that each Web page belongs to its assigned cluster.
That is, the greater the eigenvector value at a page, the more likely the page
is to belong to the given cluster. We will therefore refer to these values as the
weights of pages below. We visualize the partitioning by assigning each vertex
on a solid line as shown in Figure 1.
1 We briefly note that [11] uses the stationary distribution proportional to vertex

in-degrees to perform a simple ranking method and showed similar derivations of
stationary distributions.
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Fig. 1. Left: A toy example of a directed graph. Right: Illustrating partitioning by
sorted values. Here, “|” indicates the threshold value (zero) such that vertices on each
sides are grouped into separate clusters.

In the toy example, the partitions are the same for OneStepA and OneStepH,
which tend to extract highly correlated clusters via direct connections. Moreover
the vertices that have large values (e.g., 1 and 8) are also the vertices that have
the highest stationary distributions under the random walks. It is known that
PageRank ranks Web pages by their stationary distribution, but pages with high
stationary probabilities might be of dissimilar topics. However, besides cluster-
ing, this method can provide rearranged rankings within each cluster which is
very useful to current search engines.

TwoStepA tends to group strong authorities (4, 5, 6, 7) together that are
linked by common pages. TwoStepH extracts the hub vertices (1, 8) that link to
similar vertices directly and/or indirectly, e.g., vertex 1 points to vertices 4 and
5 after passing 2 and 3. Vertex 8 points to vertices 4 and 5 directly. This random
walk tends to group good hubs that link to common pages either implicitly
or explicitly. The partition using the symmetrized authority score is similar to
TwoStepA, but it does not distinguish among the vertices 1, 2, 3 and 8. The
partition using the symmetrized hub score also ignores any differences among
the vertices in each group, and is thereby less meaningful.

Random walks are able to effectively capture the differences between direct
hyperlink and indirect second order hyperlink topologies that have different co-
citation and co-reference patterns in directed spectral clustering. All of these
can be exploited to efficiently identify vertex communities via directed spectral
clustering.

Table 1. Web graphs statistics

Root queries vertex num edge num
1. “waterloo” 2130 4688
2. “movies”+“olympics” 6634 65536
3. “risk analysis”+“bussiness optimization” 3357 10490
4. “differential geometry”+ “parallel computing” 2575 6844
5. “data mining”+“computer vision” 3907 12416
6. “body arts”+“fashion design” 3091 4122
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5 Empirical Results

5.1 Experimental Design

We construct Web graphs of varying degrees of difficulty by either building the
graph from a single topic query, which results in multiple topics that can be
hard to distinguish, or building the graph from multiple queries, which results
in a few more easily distinguishable topics. To obtain Web graphs, we first chose
some root queries, submited these to Google, and retrieved the first t html pages
(not including pdf or ps files). For a given query or set of queries, we then
combined the retrieved pages as roots and perform a one level expansion by
adding pages that are linked from or link to the root pages. Finally, we filtered
out non-informative links that exist among Web pages as follows. We restrict
the number of pages that link to or are pointed to by every root URL to be at
most d pages. This operation was first proposed in [10]. We also filter out all cgi
scripts links. We set t and d equal to 100 and 50 respectively. The collections we
finally obtained were relatively sparse graphs. In our experiments, we use several
groups of root queries. Their statistics are listed in Table 1. The root queries
focus on a variety of interests. Pages retrieved from queries that have significant
overlap intuitively should increase the difficulty of Web page clustering.

5.2 Results

Choosing Parameters. Practically, two parameters need to be selected when
defining the random walks on the Web graphs: the damping factor ε in the
one-step and two-step random walks, and the tuning parameter β in the two-
step random walks. We test with 2 root queries using the damping factor ε
set to 0.75, 0.85 and 0.95. Clustering performance is evaluated by counting the
correctly classified pages that have the 30 greatest weights among those ranked
within top 100 by Google.

Figures 2 plot the confusion matrix values corresponding to the numbers of
pages among the 30 with the greatest weight that are classified as “movie” (class
1) and “olympics” (class 2). Ideally, the best result should have corresponding
numbers of 30, 0, 0, 30. Since OneStepA and OneStepH give very similar results
in this experiment, we only show the results of OneStepA. One can see from
these figures that the directed spectral method with OneStepA obtains the best
performance when ε equals 0.85. Thus, we fix this value for OneStepA in later
experiments. For TwoStepA, the results are competitive when ε takes value 0.85
and 0.95. Since each result has a better performance for one of the communities,
we choose ε = 0.90 as an compromise value in the following experiments.

Next, we consider the tuning parameter β that balances between PA and
PH in the two-step random walk. Figure 3 (left) shows the results when β
changes from 1 to 0 in the “movies+olympic” Web graph. Instead of reporting
the confusion matrix values in detail, we summarize it by the F measure, which
can be derived from the confusion matrix as 2(precision×recall)

(precision+recall) where precision =
C11/(C11 + C21) and recall = C11/(C11 + C12). The Figure shows that the best
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Fig. 2. OneStepA results(left) and TwoStepA results(right). Plot of confusion matrix
values C11, C12, C21, C22(from left to right of each column block) for ε = 0.75, 0.85, 0.95.

Fig. 3. Left: F scores when β changes in two-step random walk, ε = 0.90. Right: F score
for 4 binary clustering tasks. Blue: TwoStepA, Red: OneStepA, Yellow: Undirected.

performance is obtained when β = 1. This means that the Web page similarities
are most correctly assessed when the transition matrix is PA for this Web graph.
Not surprisingly, this result is consistent with the ranking methods that consider
inlink degree and authority scores from AT A [6,11]. These studies have already
shown that important pages can be found by evaluating their authority scores
only. Thus, we set β = 1 in our following experiments, although one should point
out that this is not a globally optimal choice.

Single Broad-Topic Query. Table 2 lists the communities detected by the
directed spectral method using OneStepA. For each community, we list the URLs
with significant PageRanks. We can visulize that using only hyperlink structure,
one can still identify reasonable communities from a Web graph constructed by a
single broad topic query. The weights of pages in clusters 1 to 4 are closer to each
other than to the pages in other clusters. This discloses that the first 4 clusters are
related within a broader scope: they are mainly pages from Waterloo, Canada,
including academic institutions, social communities and living. The observation
that the weights of clusters 5 and 6 are closer to each other than to the others
identifies they are the pages of Waterloo locales in the US. The sub-topics are
generalized upward to larger common topics. Cluster 9 identifies the pages from
Wikipedia, even though we eliminated links among pages from the same domain.
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Table 2. Communities from query “waterloo”

Cluster 1: Pages from universities and schools at Wa-
terloo, Canada

Cluster 2: Pages for the public community service in
Waterloo, Canada

www.uwaterloo.ca/ www.city.waterloo.on.ca/
www.wlu.ca/ www.waterloorecords.com/
www.lib.uwaterloo.ca/ www.therecord.com/
www.math.uwaterloo.ca/ www.wpl.ca/
www.cs.uwaterloo.ca/ www.wrps.on.ca/
www.wcdsb.edu.on.ca/ www.oktoberfest.ca/
Cluster 3: Pages for living at Waterloo, Canada Cluster 4: Pages for life at Waterloo, Canada
www.waterlooinn.com/ www.kwymca.org/
www.waterloochamber.org/ www.waterloo.ca/
www.kwhumane.com/ www.kwag.on.ca/
www.kwsymphony.on.ca/ www.uptownwaterloojazz.ca/

www.kwsc.org/
www.waterloo-biofilter.com/
www.wnhydro.com/

Cluster 5: Pages for Waterloo, Iowa, USA Cluster 6: Pages for Waterloo in the USA
www.wplwloo.lib.ia.us/waterloo/ www.waterloobucks.com/
www.wcfsymphony.org/ www.waterloo.k12.ia.us/
www.waterloocvb.org/ www.waterloo.il.us/
www.waterlooindustries.com/ www.waterlooindustries.com/
Cluster 7: Pages for Waterloo in Europe Clusters 8 and 9: Pages for the history of Waterloo from

public pages and from wiki
www.trabel.com/waterloo/ waterloo-thebattle.htm/ www.garywill.com/waterloo/ history.htm/
www.waterloo.org.uk/ www.bbc.co.uk/history/war/ trafalgar waterloo/
www.trabel.com/waterloo/waterloo.htm/ en.wikipedia.org/wiki/ Battle of Waterloo/
www.napoleonguide.com/ battle waterloo.htm/ en.wikipedia.org/wiki/Waterloo station/
www.waterloo.co.uk/

Multiple Topic Related Queries. We also evaluated clustering performance
for 4 Web graphs that are obtained from multiple root queries. We compare
the directed spectral methods using one-step random walk and two-step random
walks to the undirected method that uses the symmetrized authority scores
from AT A (referred to as the undirected method in the results). This undirected
method is more efficient than performing SVD on AT A in undirected graph
clustering which is essentially the method in [6] as been explained in Background.
Therefore our comparison is more challenging.

Figure 3–Right shows the clustering results for 4 Web graphs obtained from
root queries 3, 4, 5 and 6. Not surprisingly, both of the directed spectral methods
outperformed the undirected method in all cases.

Table 3. Pages with the top 10 significant weights for Queries of “computer vision”
+ “data mining”

Directed spectral method with OneStepA Undirected method.
URL Cat URL Cat

cmp.felk.cvut.cz/eccv2004/ 1 dms.irb.hr/index.php 2
iris.usc.edu/Vision-Notes/bibliography/contents.html 1 www.comp.leeds.ac.uk/vision/ 2
www.intel.com/research/mrl/research/opencv/ 1 www.comp.leeds.ac.uk/vision/ 1
marathon.csee.usf.edu/ 1 www.statsoft.com/textbook/stdatmin.html 2
vis-www.cs.umass.edu/ 1 lear.inrialpes.fr/people/triggs/events/iccv03/ 1
www.cs.cmu.edu/ cil/vision.html 1 dir.groups.yahoo.com/group/datamining2/ 2
www.sciencedirect.com/science/journal/10773142 1 www.acv.ac.at/ 1
www.cs.cmu.edu/ cil/v-source.html 1 www-ai.ijs.si/SasoDzeroski/RDMBook/ 2
iris.usc.edu/Information/Iris-Conferences.html 1 www.autonlab.org/tutorials/ 2
homepages.inf.ed.ac.uk/rbf/CVonline/ 1 www.cs.columbia.edu/ sal/hpapers/USENIX/

usenix.html 2
itmanagement.webopedia.com/TERM/D/ www.scd.ucar.edu/hps/GROUPS/dm/dm.html 2
data mining.html 2
www.ncdm.uic.edu/ 2 www.kdnuggets.com/ 2
www.kdnuggets.com/ 2 www.spss.com/ 2
www.dmg.org/ 2 www.eco.utexas.edu/ norman/BUS.FOR/course.mat/

Alex/ 2
www.salforddatamining.com/ 2 www.acm.org/sigkdd/ 2
www.spss.com/ 2 www.infogoal.com/dmc/dmcdwh.htm 2
www.acm.org/sigkdd/ 2 www.the-data-mine.com/ 2
www.megaputer.com/ 2 www.thearling.com/text/dmwhite/dmwhite.htm 2
www.cacs.louisiana.edu/ icdm05/ 2 www.ncdm.uic.edu/ 2
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Table 4. Pages with top 15 significant weights for Queries “movies”+ “olympics”

Directed spectral method with TwoStepA Undirected method
URL Cat URL Cat

www.saltlake2002.com/ 1 www.fhw.gr/olympics/ancient/ 1
www.specialolympics.org/ 1 cityguide.aol.com/main.adp 1
www.olympic.org/ 1 www.dallasnews.com/sharedcontent/dws/spt/olympics/

vitindex.html
1

www.torino2006.it 1 www.baltimoresun.com/sports/olympics/ 1
sports.espn.go.com/oly/index 1 www.latimes.com/sports/olympics/ 1
www.athens2004.com/athens2004/ 1 diveintomark.org/howto/ipod-dvd-ripping-guide/ 2
www.perseus.tufts.edu/Olympics/ 1 movies.nytimes.com/pages/movies/ 2
www.perseus.tufts.edu/Olympics/sports.html 1 news.bbc.co.uk/sport1/hi/other sports/olympics 2012/

default.stm 1
news.bbc.co.uk/sport1/hi/olympics 2004/default.stm 1 www.austin360.com/movies/content/movies/ 2
www.nbcolympics.com/ 1 www.musicfromthemovies.com/default.asp 2
www.olympics.com.au/ 1 sports.yahoo.com/olympics 1
www.fhw.gr/projects/olympics/ 1 movies.yahoo.com/mv/upcoming/ 2
www.london2012.org/ 1 www.fairolympics.org/en/ 2
en.beijing-2008.org/ 1 cbs.sportsline.com/u/olympics/2002/ 1
www.imdb.com/ 2 www.imdb.com/ 2
us.imdb.com/ 2 us.imdb.com/ 2
www.imdb.com/search 2 rogerebert.suntimes.com/ 2
movies.go.com/ 2 www.lordoftherings.net/ 2
www.usatoday.com/life/movies/front.htm 2 www.allmovie.com/ 2
movies.aol.com/ 2 www.rottentomatoes.com/ 2
movies.yahoo.com/ 2 www.infonegocio.com/xeron/bruno/olympics.html 1
movies.guide.real.com 2 www.brainpop.com/ 2
www.rottentomatoes.com/ 2 www.foxmovies.com/ 2
www.hollywood.com/ 2 www.hollywood.com/ 2
www.boxofficemojo.com/ 2 www.reel.com/ 2
www.movieflix.com/ 2 www.perseus.tufts.edu/Olympics/ 1
www.ifilm.com/ 2 www.ucmp.berkeley.edu/geology/tectonics.html 1

We also show some of the clustering results by listing the highly ranked URLs
with the most significant weights in corresponding communities in Tables 3 and
4.“Cat” denotes the ture category for each URL. Once again, we can see that the
directed spectral methods work better than the undirected method by tending to
group pages more correctly. For example, in Table 3, the pages correctly clustered
in the data mining community are about major conferences, term explanations,
and companies in data mining. In Table 4, we see in the olympics community,
multiple homepages from the olympic game hosts were obtained. Although these
pages do not have hyperlinks between them, they all are pointed to by the
Olympic Games organization (olympic.org). Thus, the two-step random walk was
able to detect their similarity by identifying a common hub. Similar observations
can be made about the pages classified in the movies community. In each of these
tasks, the undirected method failed to identify pages from same communities,
and tended to mix pages from the different communities.

6 Conclusion

To automatically identify Web communities from hyperlink topology, we ad-
dressed a key component in directed spectral clustering: the random walk model
that should be used to infer relationships between Web pages. In addition to
one-step random walks, we also proposed variations of two-step random walk
models that can detect higher order similarities between pages. The linear com-
bination of two-step random walks suggests a practical approach to inferring
the relationship between link structure and topic similarity by inspecting the
clustering results. The experiments show that the different random walk models
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can capture different relationships based on the hyperlink topology in directed
spectral method.
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Abstract. Real-world data often involves objects that exhibit multiple
relationships; for example, ‘papers’ and ‘authors’ exhibit both paper-
author interactions and paper-paper citation relationships. A typical
learning problem requires one to make inferences about a subclass of
objects (e.g. ‘papers’), while using the remaining objects and relations
to provide relevant information. We present a simple, unified mechanism
for incorporating information from multiple object types and relations
when learning on a targeted subset. In this scheme, all sources of relevant
information are marginalized onto the target subclass via random walks.
We show that marginalized random walks can be used as a general tech-
nique for combining multiple sources of information in relational data.
With this approach, we formulate new algorithms for transduction and
ranking in relational data, and quantify the performance of new schemes
on real world data—achieving good results in many problems.

1 Introduction

Currently, most text classification and clustering algorithms base their inference
on the co-occurrence statistics of terms appearing in documents by representing
document-term relations via a bipartite graph. Many algorithms have been devel-
oped for clustering in bipartite graphs, i.e., [9,2,8,4,3]. The underlying intuition
behind these approaches is that the similarities among one type of object can
be used by the other type of object for clustering.

One obvious limitation of existing co-clustering methods is that they can only
deal with two types of data objects, whereas most data sets contain more than
two types of objects. For example, in a paper classification task, beyond the bi-
partite interaction between papers and authors, it is also useful to consider other
sources of relevant information, such as the conferences where the papers were
published. Such additional paper-conference information could help enhance the
classification performance. In this case, one could construct a tripartite graph
G = (〈A, B, C 〉, E), where the vertex sets correspond to authors, papers, and
conferences respectively, and E is the set of edges, as shown in Figure 1–left.
One could consider addressing the problem of higher-order-partite graphs in a
trivial manner by applying co-clustering on each pair of object types; that is,
apply a co-clustering method on A, B, and then on B, C individually. However

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 199–210, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Left: A tripartite graph. Right: A graph of Web pages and terms.

it is hard to ensure the solutions are consistent at the intersection on B. [1]
and [5] proposed methods for solving clustering with interactive relationships
among multiple object types using ideas from information theory and spectral
graph clustering, but they needed to employ sophisticated and computation-
ally expensive methods like semidefinite programming to keep the partitions
consistent.

Beyond tripartite clustering, more complex scenarios arise when one considers
relationships among data objects of the same type. Previous work on clustering
with bipartite and k-partite graphs has, for the most part, not taken the relation-
ships between objects of the same type into account. Obviously, such information
is simply ignored if we present the data as a k-partite graph.

Moving beyond documents and terms, if one considers clustering Web pages,
it is clear that the bipartite graph information between Web pages and terms ig-
nores significant relevant information encoded in the hyperlink structure [7,6,10].
When clustering Web pages, it seems clear that both hyperlink structure and
term co-occurrence are relevant sources of useful information that one would like
to take account of in a unified way. Ideally, one would just model the relation-
ships between Web pages and terms as vertices in a graph like the one shown in
Figure 1–right. To the best of our knowledge, clustering in data sets with mul-
tiple object types, and multiple relationships between objects of various types
has not been well studied in the graph partitioning literature.

In this paper, we propose a simple, unified mechanism for learning in complex
scenarios, like the ones shown above, in a graph based approach. We model all
data objects as vertices in a graph; e.g., a k-partite graph or a mixed graph as
shown in Figure 1–right. The graph based representation allows a simple mech-
anism for propagating useful information globally throughout a large database
of objects: based on the graph, a natural random walk model can be defined
that communicates information in a Markov chain. To summarize information
from multiple object types and relations when making inferences about one ob-
ject type, we marginalize the transition probability of the random walk onto the
target subset, based on the transition probability of the induced subgraph and
the transition probability between the subset and its complement. In this way,
we obtain a valid, new random walk model on the induced subgraph that sum-
marizes all external sources of relevant information. Two objects in the target
subgraph that share a lot of common external information will be highly linked
in the induced random walk, even if they share no direct links in the induced
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subgraph. Once a valid random walk model has been defined, one can derive
algorithms for transductive classification, clustering and ranking, by performing
random walks over a Markov Chain [10]. The idea of marginalization is a simple
and elegant way of dealing with many types of complex scenarios uniformly. In-
terestingly, when dealing with graphs that happen to be bipartite, the clustering
method implied by marginalization is equivalent to the spectral co-clustering
method proposed in [9,2]. That is, we recover prominent bipartite graph based
inference methods as a special case.

Furthermore, the marginalization idea can be extended to solve more general
and interesting types of inference problems on graphs than having been com-
monly studied in graph partitoning. Consider the problem of clustering the set
of blog pages on the Web. In a conventional approach, one could use the induced
subgraph on blog pages (namely the subgraph of all the blog pages and their hy-
perlink structure) to classify the blog pages with respect to their common topics.
However, the difficulty with this approach is that there is not much information
in the hyperlinks between blog pages, as the owners of the blogs typically do not
add links to other blogs if they do not know each other. Therefore, the infor-
mation obtained directly from the subgraph is not enough to identify blogs of
common interest. It therefore makes sense to explore the hyperlinks that connect
blog pages to other general web pages. For example, people who are interested
in computer programming might add a link from their blogs to the page “the
art of computer programming” created by Donald Knuth. Although the blogs
themselves may have only a few direct links, the blogs can still be clustered
into identifiable communities by detecting the pages of common interest linked
from the blogs. The scheme we propos can fully exploit all sources of relevant
information in a graph of heterogeneous objects to achieve better performance
on the target subset.

2 Preliminaries

A bipartite graph G = (〈A, B 〉, E) is a graph that consists of two disjoint sets
of vertices, A and B, and a set of edges, E, between A and B. (Typically,
the two sets represent different objects, e.g. documents and terms.) Each edge
(a, b) is associated with a similarity weight w(a, b). One can generalize bipartite
graphs to higher order k-partite graphs, whose vertices are divided into k disjoint
sets.

Given an undirected graph, a natural random walk can be defined by the
transition probability p : V × V →  ≥0 such that p(a, b) = w(a, b)/d(a) for
all (a, b) ∈ E, where d(a) =

∑
b w(a, b). If the edges have directions, then p is

defined by p(u, v) = w(u, v)/d+(u) for all (u, v) ∈ E and 0 otherwise, where
d+(u) =

∑
u→v w(u, v). The random walk on a connected graph has unique

stationary distribution π that satisfies the balance equation πp = π.
Given a general graph G = (V, E) (directed or undirected), and a subset

S ⊂ V of the vertices, the induced subgraph with respect to S is the subset V of
vertices of G together with any edges whose endpoints are both in V .
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3 Learning on a Ergodic Markov Chain

Before presenting our approach in detail, we briefly review related techniques
for clustering and transductive learning in graphs involved with Markov chain
properties of natural random walks [10]. A graph G = (V, E) can be associated
with a Markov chain defined via a random walk on the graph. The stationary
distribution of this random walk gives a probability distribution over the vertices
v in the graph.

Let H(V ) denote the space of partitions of the vertices V , in that each f ∈
H(V ) maps each v ∈ V into real values between -1 and 1. We assume that
most linked vertices as similar—that is, belong to the same class. This means,
in particular, that all vertices from a densely linked subgraph are likely to have
the same label. This motivates us to define the functional

Ω(f) :=
1
2

∑
[u,v]∈E

π(u)p(u, v)

(
f(u)√
π(u)

− f(v)√
π(v)

)2

that sums the weighted variation of a function on each edge of the directed graph.
The labels are smoothed over the entire graph by minimizing the variation.

There is a equivalent way to express Ω(f). Let Π denote the diagonal matrix
with Π(v, v) = π(v) for all v ∈ V ; let P denote the transition probability matrix;
and let PT the transpose of P . Then

Θ =
Π1/2PΠ−1/2 + Π−1/2PT Π1/2

2
.

Using I for the identity matrix, it can be proved that Ω(f) = fT (I −Θ)f . The
functional Ω(f) can also be derived with respect to a normalized cut criterion
that generalizes the standard spectral clustering criterion to directed graphs [10].

4 Marginalized Random Walks on a Subgraph

We can model many versions of graph-based inference problems as learning on
an induced subgraph. Typical learning tasks in this setting are classification and
clustering on a target subset, where one would like to utilize not only the origi-
nal structure of the subgraph, but also the global structure and the interactions
between the subgraph and its complement. To propagate the information needed
to perform these tasks, the graph based approach depends upon a random walk
model to communicate the relevant information globally throughout the graph.
In the case where the inference problem is to be localized on a focused sub-
set of the graph, we need a new random walk model that communicates the
sources of relevant information to the subset. With an appropriate marginalized
random walk model, we can then derive principled techniques for transductive
classification, clustering and ranking.

Given a graph G = (V, E) (either directed or undirected), and a subset of
vertices A ⊂ V , we are interested in performing a learning task in A, e.g.,
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learning a classification of A’s vertices. We let Ac denote the complement of A.
For example, in the blog example where A is the set of blog pages we want to
classify based on topic, Ac is the set of non-blog Web pages that have connections
to the blog pages. In the example of a tripartite graph for a citation network
including papers, authors and conferences, A is the set of papers and Ac includes
all the authors of the papers and the conferences.

Typically, the transition probability P of a natural random walk model on
the graph can be written as in Section 2. Here we can equivalently rewrite the
transition probability in a blockwise form with respect to A and Ac

P =
(

PAA PAAc

PAcA PAcAc

)
where PAAc denotes the transition probability between vertices in A and Ac, etc.

One could attempt to perform classification in A based only on PAA, by apply-
ing the framework reviewed in Section 3. However this ignores the information
that connects A and Ac, which could be significant. A extreme case is that when
we have no interactive relationships in either A or Ac but only PAAc and PAcA;
that is, a bipartite graph (when edges between A and Ac are undirected). We will
see later in Section 4.1 that co-clustering methods utilize PAAc and PAcA in an
undirected case. Now our goal is to define a new random walk in A incorporating
all relevant information.

Given a vertex u in A, we first assume it has outlinks to a vertex v in A and
a vertex vc in Ac. The random walk has the following two options starting from
u: it can follow the outlink to v (and so stay within A), or to vc (and so leave
A). If it stays in A, the random surfer follows the transition probability PAA.
If the random surfer jumps out of A to Ac, its walk will follow the transition
probability PAAc . Once it enters Ac, there is a non-zero chance it will take any
number of steps in Ac before possibly returning to A. Therefore, we can write
the transition probability between u and v in A, if the surfer re-entered A after
transiting from A to Ac and back to A as,

Pout = PAAc

(
I +

n→∞∑
i=1

P i
AcAc

)
PAcA = PAAc(I − PAcAc)−1PAcA

In addition, define Pin = PAA if the surfer stays within A. Combining these
two transition models yields a new random walk on the subgraph A, whose
transition probability P ∗

AA is given by

P ∗
AA = Pin + Pout

To ensure Pout and P ∗
AA are well defined, we assume P is ergodic. We then

have the following claims.

Claim. I − PAcAc is invertible.

Proof (of claim). Assume I − PAcAc is singular. Then (I − PAcAc)x = 0 has a
non-trivial solution x = PAcAcx. Taking norms, we have |x| = |PAcAcx| ≤
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|PAcAc | |x| < |x|. The last inequality follows because the row sum of PAcAc is
less than 1. Contradiction.

Claim. P ∗
AA is a valid transition probability; i.e. the sum of each row equals 1.

Proof. Consider the ways a random surfer can start from a vertex u in A and
return to another vertex v in A. In the first step, u has two choices, either follow
links in A or jump out of A to Ac. If it stays in A, the transition probability is
Pin. If it jumps out of A, then the surfer has an infinite number of paths lenghts
that stay in Ac, before (possibly) returning to A. Here, Pout is the probability
of transiting from u to v via Ac and Pin is the transition probability from u to v
without entering Ac. Thus the sum of these two disjoint transition probabilities
is a valid transition probability.

We let P ∗
AA denote the new transition probability on A by marginalizing the

random walk on subset A, taking all sources of information into account. The
similarity among vertices in A is measured by a combination of the transition
probability within A, Pin, and the probability of escaping from A to Ac and then
returning to A, Pout. Therefore, we define a new Markov Chain over the subset
of the graph. We can use the functional (3), to produce graph-based algorithms
for transductive classification, clustering and ranking on complex graphs:

f∗ = argmin
f
{Ω(f) + μ ||f − y||2}

Here y = 〈 yi 〉 is the partially labeled vector; where each labeled data is either 1
or −1, and yi = 0 for each unlabeled data point. For ranking, we label the root
data as 1 and the rest as 0. Also, μ is a tuning parameter; where for clustering
tasks we set μ = 0 since we do not have any label information.

4.1 Learning with a Bipartite Graph

In this section, we will show that the original spectral co-clustering on a bipartite
graph [9,2] can be equivalently interpreted as defining new random walk models
on each subset of the bipartite graph in our scheme.

Given a bipartite graph G = (〈A, B 〉, E), where A and B are disjoint subsets
of vertices, the transition probability P over G has the following blockwise form:

P =
(

0 PAB

PBA 0

)
Thus, as in the previous section, we can define new random walk in A and B as

PA = PABPBA, (1)

PB = PBAPAB (2)

Intuitively, such random walks can be also understood as a two step random
walk, motivated by the Hub and Authority model. We take vertices in B as
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the evidence of existing similarities between nodes in A. The similarities are
mutually reinforced via the random walk between them, as follows.

First consider the random walk among vertices in A (B will be isomorphic).
If the random surfer is currently at vertex ai ∈ A, it first takes a backward step
along edge (ai, b) to some vertex b ∈ B. Then if b also has an edge connected to
aj , the surfer will visit aj along the edge (b, aj).

The two-step transition probability pA(ai, aj) is determined by the surfer
taking one backward step and one forward step. Therefore,

pA(ai, aj) =
∑

b

p(ai, b)p(b, aj) =
∑

b

w(ai, b)w(b, aj)
d(ai)d(b)

(3)

which is exactly the same as the PA obtained in (1).
The stationary distribution πA of this random walk is

πA(a) =
d(a)

volGA
(4)

where volGA =
∑

a∈A d(a). This means

∑
ai∈A

πA(ai)pA(ai, aj) =
∑
ai∈A

d(ai)
volGA

∑
b∈B

w(ai, b)w(b, aj)
d(ai)d(b)

=
1

volGA

∑
b∈B

w(b, aj)
d(b)

∑
ai∈A

w(ai, b) =
d(aj)
volGA

= πA(aj)

Similarly, we can define the two step transition process among nodes in B,
yielding the transition probability

pB(bi, bj) =
∑

a

p(bi, a)p(a, bj) =
∑

a

w(bi, a)w(a, bj)
d(bi)d(a)

(5)

which corresponds to (2). Moreover, the stationary distribution πB is

πB(b) =
d(b)

volGB
(6)

To obtain classification or clustering results on both subsets simultaneously,
we define a smoothness function f over A from (3) that is measured by

SA(f) =
1
2

∑
ai,aj

PA(ai, aj)π(ai)

(
f(ai)√
π(ai)

− f(aj)√
π(aj)

)2

Similarly, the smoothness function g over B is defined as

SB(g) =
1
2

∑
bi,bj

PB(bi, bj)π(bi)

(
g(bi)√
π(bi)

− g(bj)√
π(bj)

)2
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We can use (3), (4), (5) and (6) to prove that

SA(f) =
1

volGA
fT ΔAf, SB(g) =

1
volGB

gT ΔBg

where

ΔA = I −D
−1/2
A WT D−1

B WD
−1/2
A = I −MMT

ΔB = I −D
−1/2
B WD−1

A WT D
−1/2
B = I −MT M

where DA = We, DB = WT e and M = D
−1/2
A WT D

−1/2
B using the all-1 vector

e. W is the weight matrix between A and B. The solutions for f and g are the
eigenvectors of MMT and MT M with second largest eigenvalues.

It is known the solution of spectral co-clustering on A and B is the second
largest left and right singular vectors of M [9,2]. It is easy to see that from the
singular value decomposition, that the non-zero left singular eigenvalues of M are
the square roots of the non-zero eigenvalues of MMT with the same eigenvector
space. The eigenvector space of M ’s right eigenvectors is the same as the one
of MT M . Therefore, the two solutions are exactly the same, but with different
motivations.

The advantage of having marginalized random walk models on each subset is
that we can treat each set individually while using their mutual relationships. As
expected, the solution is exactly the same as when we considered the combina-
torial cut problem in bipartite graphs. In spectral co-clustering method, the goal
is to define a cut criterion for the weight matrix that minimizes the cut over the
unmatched edges and maximizes the matched vertices in the subgraphs. Such
cuts naturally partition the bipartite graph into two parts in each set. The solu-
tion is not clear though if we want different number of partitions on each subset.
While using our scheme, we can obtain k-cluster results using the first k eigen-
vectors of ΔA and ΔB. Moreover, as discussed in Section 4, this method can
be easily generalized into more complex graphs, which would have been difficult
from graph cut perspective.

5 Experiments

In this section, we demonstrate several problem settings that involve data repre-
sented in complex graph structures. We evaluate our information marginalization
approach by applying it to two datasets; see Sections 5.1 and 5.2.

The first dataset is from WebKB (www.cs.cmu.edu/afs/cs.cmu.edu/
project/theo-20/www/data), which includes pages from four universities: Cor-
nell, Texas, Washington and Wisconsin. After removing isolated pages, the Web
pages have been manually classified into seven categories: student, faculty, staff,
department, course, project and other. We take advantage of the link structure
and page-word relationships for the following two learning tasks.

(1a) Given the link structure of all the pages and the words used in them,
discriminate student (course) pages from non-student (non-course) pages. Here,
A corresponds to the web pages, and Ac to the words. See Figure 1.
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(1b) Given only the link structure, discriminate student pages (labeled as 1)
from course pages (labeled as -1). For this task, A corresponds the pages of
students and courses, and Ac to the web pages from other classes.

The second dataset is based on CiteSeer (citeseer.ist.psu.edu/)—a well-
known scientific digital library that catalogues primarily computer and informa-
tion science literature. We construct our citation networks based on paper-paper
and paper-author relationships from CiteSeer. We extract a set of papers P with
authors U . Here, we focus on two kinds of ranking.

(2a) Given some papers (i.e., seed papers) in P labeled as relevant to a specific
topic T , rank the rest of the papers based on their relevance to T . Here, A is P ,
Ac is U .

(2b) Given some authors (i.e., seed authors) in A identified as relevant since
they share similar research interests, rank the remaining authors based on how
much they share the research interests with these seed authors. A is U , Ac is P .

To build citation networks, we scout ahead following the paper citation and
corresponding authors information from the OAI records (citeseer.ist.psu.
edu/oai.html). We start a crawl from a set of pre-selected authors (i.e., root
authors), then collect all their papers and the co-authors of these papers. The co-
authors are added to a growing set of authors that is used in the next iteration.
We repeat this iteration n = 3 times to collect a number of related authors and
papers. In our experiment, we choose the root authors from two different areas:

Root authors # Authors # Papers
“Berhard Scholkopf” + “John Kleinberg” 7156 4979
“Vladimir Vapnik” + “Jianbo Shi” 3048 2097

Therefore, the citation network contains authors with different research subjects,
which is more realistic.

5.1 Results: Web Classification

We compare the performance of two algorithms for Web page classification in
transductive setting. It is well-known that transductive classification typically
outperforms supervised one because it take advantages of unlabled data in the
learning procedure. The first transductive algorithm uses our marginalized ran-
dom walk P ∗, and the second one uses hyperlink structure PAA only. We use
canonical 0-1 weights over the directed hyperlinks. We set the tuning parameter
μ = 2.5 for both algorithms. We increase the size of the labeled data sample at
each iteration. The comparison is based on 0/1 classification error, averaged by
20 iterations.

Figures 2 and 3 show the comparison results for problem (1a), and Figure 4,
for problem (1b). It is clear that the methods using information marginaliza-
tion outperforms the one with only the local hyperlink information from subset.
Specifically, this implies that the marginalized random walk is able to convey
more global information onto the subset, efficiently improving the performance
in classification.s
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Fig. 2. Classification error on discriminating course pages from non-course pages (left)
and student pages from non-student pages (right) from Washington
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Fig. 3. Classification error on discriminating course pages from non-course pages (left)
and student pages from non-student pages (right) from Wisconsin

5.2 Results: Ranking in Citation Networks

For problem (2a), Table 1 shows the top 20 results of paper ranking with respect
to the labeled paper “Kernel Principal Component Analysis”; and Table 2 shows
the top 10 papers ranked with respect to “Authoritative Sources in a Hyperlinked
Environment”. We can see that the information maginalization method works
better than only using citation links information as the highly ranked papers
are closer to the labeled paper in information marginalization scheme. If we
only consider citation links, some papers from slightly different domain may be
included in the top ranking list because they may have citations with similar
papers. With the help of author-paper relationships, the relationship between
the labeled paper and other papers become more clear thus lead more accurate
ranking results.

For problem (2b),Table 3 lists the ranking results of authors with respect
to Vladimir Vapnik in the second citation network. The information from the
citation links moves some authors—Chris Burges, Bernhard Scholkopf, Olivier
Chapelle and Alex Smola—to higher ranking positions than only using author-
paper relationships. The reason is that these authors also have many citation
links among their papers that strengthen the similarities with respect to the
labeled author.
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Fig. 4. Classification error on discriminating course pages from student pages

Table 1. Papers Ranked closest to “Kernel Principal Component Analysis”

marginalized random walk use only citation links
title title

1. Regression Estimation with Support Vector Learning
Machines

1. Model Selection for Support Vector Machines

2. Model Selection for Support Vector Machines 2. SV Estimation of a Distribution’s Support
3. Support Vector Method for Novelty Detection 3. Support Vector Method for Novelty Detection
4. A Generalized Representer Theorem 4. Optimal Hyperplane Classifier with Adaptive Norm
5. Optimal Hyperplane Classifier with Adaptive Norm 5. Inclusional Theories in Declarative Programming
6. Incorporating Invariances in Support Vector Learning

Machines
6. Studies on the Formal Semantics of Pictures

7. Latent Semantic Kernels 7. A Noise-Tolerant Hybrid Model of a Global and a Local
Learning Module

8. Sparse Kernel Feature Analysis 8. Latent Semantic Kernels
9. Extracting Support Data for a Given Task 9. Incorporating Invariances in Support Vector Learning

Machines
10.Support-Vector Networks 10.A Generalized Representer Theorem
11.Kernel Methods: A Survey of Current Techniques 11.Equivalent Conditions for the Solvability of Nonstan-

dard LQ-Problems with Applications to Partial Differ-
ential Equations with Continuous Input-Output Solu-
tion Map

12.A Training Algorithm for Optimal Margin Classifiers 12.Hyperbolic Conservation Laws with a Moving Source
13.Improving the Accuracy and Speed of Support Vector

Machines
13.Extracting Support Data for a Given Task

14.The Connection between Regularization Operators and
Support Vector Kernels

14.Support-Vector Networks

15.Generalization Performance of Regularization Net-
works and Support Vector Machines

15.On Molecular Approximation Algorithms for NP Opti-
mization Problems

16.Statistical Learning and Kernel Methods 16.Kernel Methods:A Survey of Current Techniques
17.The Kernel Trick for Distances 17.CPU Management for UNIX-based MPEG Video Ap-

plications
18.On a Kernel-based Method for Pattern “Recognition,”

“Regression,” “Approximation”
18.Efficient Lossless Compression of Trees and Graphs

19.Advances in Kernel Methods - Support Vector Learn-
ing

19.A Precise Semantics For Vague Diagrams

20.Estimating the Support of a High-Dimensional Distri-
bution

20.Redescription, Information And Access

Table 2. Papers Ranked closest to “Authoritative Sources in a Hyperlinked Environ-
ment”

marginalized random walk use only citation links
title title

1. Fast Monte-Carlo Algorithms for finding low-rank ap-
proximations

1. volutionary Strategies For Solving Frustrated Prob-
lems

2. Evolutionary Strategies For Solving Frustrated Prob-
lems

2. Fast Monte-Carlo Algorithms for finding low-rank ap-
proximations

3. The Anatomy of a Large-Scale Hypertextual Web
Search Engine

3. Reconstruction From The Multi-Component Am-Fm
Image

4. Latent Semantic Indexing: A Probabilistic Analysis 4. The Anatomy of a Large-Scale Hypertextual Web
Search Engine

5. Challenges in Web Search Engines 5. Latent Semantic Indexing: A Probabilistic Analysis
6. How to Personalize the Web 6. Learning Decision Strategies with Genetic Algorithms
7. Efficient and Effective Metasearch for Text Databases

Incorporating Linkages among Documents
7. A Model for Sequence Databases

8. The PageRank Citation Ranking: Bringing Order to
the Web

8. Semantically Driven Automatic Hyperlinking

9. New Results for Online Page Replication 9. Applications of a Web Query Language
10.Searching the Web: General and Scientific Information

Access
10.Efficient and Effective Metasearch for Text Databases

Incorporating Linkages among Documents
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Table 3. Author ranking result in network 2

marginalized only author-paper re-
lationships

marginalized only author-paper re-
lationships

name name name name
1.Chris Burges 1.Sayan Mukherjee 11.Mark Stitson 11.Vladimir Vovk
2.Bernhard E.Boser 2.Chris Burges 12.Alex Gammerman 12.Alex Gammerman
3.Isabelle M. Guyon 3.Bernhard E. Boser 13.Vladimir Vovk 13.Mark Stitson
4.Sayan Mukherjee 4.Isabelle M.Guyon 14.Chris Watkins 14.Klaus-Robert Muller
5.Donghui Wu 5.Donghui Wu 15.Partha Niyogi 15.Federico Girosi
6.Bernhard Scholkopf 6.Steven E.Golowich 16.Olivier Chapelle 16.Koh.Sung
7.Heinrich H.Bulthoff 7.Volker Blanz 17.Alex Smola 17.Partha Niyogi
8.Thomas Vetter 8.Bernhard Scholkopf 18.Adnan Aziz 18.Jason Weston
9.Volker Blanz 9.Thomas Vetter 19.Jason Weston 19.Olivier Chapelle
10.Steven Golowich 10.Chris Watkins 20.Koh.Sung 20.Alex Smola

6 Conclusions

We have proposed a unified mechanism for incorporating information from mul-
tiple object types and relations when making inferences about a targeted subset.
Our technique can be applied to learning problems with data embedded in com-
plex graphs. We quantify the performance of our new schemes on two real world
relational data and achieve good results in challenging inference problems. Fu-
ture work will deeply explore more interesting applications of this method.
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Abstract. The data mining and machine learning communities were
surprised when Keogh et al. (2003) pointed out that the k-means cluster
centers in subsequence time-series clustering become sinusoidal pseudo-
patterns for almost all kinds of input time-series data. Understanding
this mechanism is an important open problem in data mining. Our new
theoretical approach (based on spectral clustering and translational sym-
metry) explains why the cluster centers of k-means naturally tend to form
sinusoidal patterns.

1 Introduction

Subsequence time-series clustering (STSC) is one of the best-known pattern dis-
covery techniques from time series data. In STSC, time series data is represented
as a set of subsequence vectors generated using the sliding window (SW) tech-
nique (see Fig. 1 (a)), and the generated subsequences are grouped, typically
using the k-means clustering technique. The cluster centers (the mean vectors
of the cluster members) are thought of as representative patterns of the time
series.

STSC-based stream mining methods enjoyed popularity until a surprising
fact was discovered in 2003 [8]: k-means STSC is “meaningless” as a pattern
discovery technique in that the resultant cluster centers tend to form sinusoidal
pseudo-patterns almost independently of the input time series.

For clarity, we reproduced the result of Ref. [8]. Figure 2 (a) shows the k-means
cluster centers calculated for the time series in Fig. 11. We set the number of
clusters and the size of the SW to be k = 3 and w = 128, respectively. It is
surprising that we have sinusoidal patterns in Fig. 2 (a), which are not at all
similar to the original patterns in the data. Close inspection shows that the three
sinusoids have the same wavelength of w, separated by a phase of 2π/3.

To date, little effort has been made to theoretically pinpoint the origin of the
sinusoidal pseudo-patterns, or the sinusoid effect. Empirical studies are substan-
tially the only way to validate the attempts to improve STSC. It seems that the
lack of theoretical understanding is causing a lack of progress in this area.
1 A long time series (an example segment is shown in Fig. 1 (a)) was made by con-

catenating 90 random instances of the Cylinder, Bell, and Funnel (CBF) patterns,
whose example instances are shown in Fig. 1 (b).

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 211–222, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) sliding window technique

subsequence

w
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(b) CBF data

C

B

F

Fig. 1. (a) Sliding window technique and example segment of the concatenated CBF
data. (b) Instances of the Cylinder(C)-Bell(B)-Funnel(F) data. There are 30 random
instances for each.

This is a theoretical paper. We theoretically show that the SW-based k-means
STSC introduces a mathematical artifact into the data, and, unexpectedly, that
the artifact is so strong that the resulting cluster centers are dominated by it,
irrespective of the details of the data. To the best of the author’s knowledge,
this is the first work that succeeds in theoretically explaining the sinusoid effect.

The layout of this paper is as follows. In Section 2, we summarize the sinusoid
effects and point out a connection to spectral clustering. In Section 3, we present
a new theoretical model for time series, which enables us to easily analyze sym-
metry properties hidden within the problem. In Section 4, we point out that
k-means cluster centers can be found by directly solving an eigen equation. In
Section 5, we explicitly show why the cluster centers in STSC become sinusoids.
In Section 6, we validate our formulation using standard data sets. In the final
section, we summarize the paper.

2 Sinusoid Effect in Spectral Clustering

Recently, spectral techniques have attracted great attention as a powerful
method for clustering. Some authors [10,9,2,3] have shown the theoretical con-
nection between k-means and certain eigen problems. One interesting question
here is whether or not the sinusoid effect is observed in spectral formulations
of STSC. Experimentally, it seems that the answer is yes [6]. Specifically, if we
think of subsequences generated from a time series as column vectors, and de-
fine a matrix H by arranging the vectors as columns, the resulting left singular
vectors of H will form sinusoids. We show in Fig. 2 (b) the top three left singular
vectors calculated for the same concatenated CBF data. We see that the first
(u(1)) and the second (u(2)) ones are sine waves with wavelength of w, showing
clear similarities to Fig. 2 (a).

To summarize these observations in the CBF data:

Observation 1. The cluster centers of k-means STSC are well approximated by
sinusoids with a wavelength of w. While the additive phases are unpredictable,
each sinusoid is separated by a phase of integer multiples of 2π/k.
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Fig. 2. (a) The k-means cluster centers (k = 3, w = 128). (b) The top three feature
vectors by SVD (w = 128).

Observation 2. The left singular vectors of the subsequence matrix H are well
approximated by sinusoids. The top few singular vectors have the wavelength
of w.

These observations suggest that the k-means and singular value decomposition
(SVD) of H have a common mathematical structure, and the commonality is the
origin of the sinusoid effect. Encouraged by this, we will elucidate the sinusoid
effect (1) by reducing the k-means task to that of spectral clustering, and (2) by
focusing on the translational symmetry of the problem. In (1), we will introduce a
new formulation which directly seeks the cluster centers, instead of the standard
formulation based on membership indicators.

3 Preliminaries

3.1 Lattice Model for Time Series Analysis

We define a time series Γ as an ordered set of n real-valued variables x1, x2, ..., xn.
Given a Γ , a subsequence sp of length w ≤ n is defined by (xp, xp+1, ..., xp+w−1).
A subsequence sp can be viewed as a w-dimensional column vector sp. In STSC,
the sps are thought of as independent vectorial data objects. We focus on SW-
based STSC with unit step size and a fixed window size of w in this paper. The
number of clusters is represented by k. All vectors are column vectors hereafter.

Any time series Γ can be represented as a vector Γ in an n-dimensional
space. Consider a vector space H0 spanned by orthonormal bases {e1, ..., en},
and attach each base el to each time point l. Due to the orthonormality, Γ can
be written as

Γ =
n∑

l=1

xlel (1)

with xl = eT
l Γ , where the superscript T represents transpose. We call this

expression the site-representation (SR) because we can think of our model as
the one where each weight xl is associated with each lattice point or site of a
one-dimensional lattice having n lattice points.

3.2 Linear Operators in H0

Let L be the set of linear operators which transforms a vector in H0 into another
vector. We distinguish the operators by usingˆhereafter. By definition, ∀ô ∈ L
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can be written as a matrix. In particular, it can be written with outer products
of the bases in the SR as

ô =
n∑

l,l′=1

ol,l′ele
T
l′ . (2)

The translation operator τ̂ (l)

τ̂ (l) ≡
n∑

l′=1

el′+le
T
l′ (3)

is of particular importance. It is easy to verify τ̂ (l)em = em+l and eT
mτ(l) =

em−l
T. The latter suggests

τ̂ (l)T = τ̂ (−l). (4)

Hereafter, we assume the periodic boundary condition (PBC) to satisfy ∀l, el+n =
el. As long as n ! 1, the discrepancies due to this artificial condition will be
negligible.

3.3 Discrete Fourier Transformation

Consider a subspace H spanned by {e1, ..., ew} ⊆ H0. Here we do not assume
the periodicity of w in H. For example, e1 �= e1+w unless w = n.

We define an orthogonal transformation from the site basis into the Fourier
basis as

fq =
1√
w

w∑
l=1

eifq(l−l0)el ; el =
1√
w

∑
q∈Df

e−ifq(l−l0)fq, (5)

where l0 is an arbitrary real number. For simplicity, we abuse the notation fq

to represent 2πq/w, which we call the wave number. The subscript q runs over
Df = {−w−1

2 , ..., 0, 1, .., w−1
2 } when w is odd, and over {−w

2 + 1, ..., 0, 1, .., w
2 }

when w is even. It is straightforward to show fT
q fq′ = δq′,q, and thus, {fq} forms

a complete set in H.
For ∀γ ∈ H, the discrete Fourier transformation (DFT) is defined as

γ =
∑

q∈Df

fq〈fq|γ〉 ; 〈fq|γ〉 =
w∑

l=1

〈fq|el〉〈el|γ〉, (6)

where 〈fq|el〉 = 1√
w

e−ifq(l−l0), and we used the bracket notation to represent the
inner product between vectors (〈el|γ〉 ≡ eT

l γ, etc). We call the representation
based on {fq} the Fourier representation (FR). If γ is the expression of real-
valued time series data, the weight on l must be real, so it follows that

〈el|γ〉 =
1√
w

∑
q∈Df

|〈fq|γ〉| cos(fql + φ), (7)

where φ = −fql0 + arg〈fq|γ〉.
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4 Density Matrix Formulation of k-Means

4.1 Objective Function of k-Means

Consider a general k-means clustering task for a set of vectors {sp ∈ H |p =
1, 2, ..., n}. It is well-known that the k-means algorithm attempts to minimize
the sum-of-squared (SOS) error [4]:

E =
k∑

j=1

∑
p∈Cj

∣∣∣∣∣∣ sp −m(j)
∣∣∣∣∣∣2 =

n∑
p=1

〈sp|sp〉 −
k∑

j=1

|Cj |〈m(j)|m(j)〉, (8)

where Cj and |Cj | represent the members of the j-th cluster and the number of
members in the cluster, respectively. The centroid of Cj is denoted by m(j).

The first term does not depend on the clustering. For the second term, E2,
by substituting the definition of the centroid m(j) = 1

|Cj |
∑

p∈Cj
sp, it becomes

E2 = −
k∑

j=1

1
|Cj |

∑
p,r∈Cj

〈sp|sr〉. (9)

To remove the restricted summation, we introduce an indicator vector u(j) ∈ H,
where 〈sp|u(j)〉 = 1/

√
|Cj | for sp ∈ Cj and 0 otherwise, to have

E2 = −
k∑

j=1

n∑
p,r=1

〈u(j)|sp〉〈sp|sr〉〈sr|u(j)〉.

Now we introduce a linear operator ρ̂ as

ρ̂ =
n∑

p=1

sps
T
p

and call ρ̂ the density matrix, following the statistical-mechanical terminology.
Since the sps are generated by the SW technique, we see

ρ̂
.=

n∑
l=1

τ̂ (l)TΓΓ Tτ̂ (l) (10)

holds, where “ .=” means “the left and the right sides have the same matrix
elements when represented in H (not H0)”.

Using ρ̂, we get the final form of the objective function as

E2 = −
k∑

j=1

〈u(j)|ρ̂2|u(j)〉, (11)

where 〈·|ô|·〉 is defined as 〈·|ô·〉 for ∀ô ∈ L. The k-means clustering task has now
been reduced to seeking the solution {u(j)} which minimizes E2.
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4.2 Connection to Eigen Problem

To this point, the vector u(j) has been an artificially defined indicator to simplify
the objective in Eq. (9). From the original definition, it is easy to see that {u(j)}
satisfy

n∑
p=1

〈u(i)|sp〉〈sp|u(j)〉 = 〈u(i)|ρ̂|u(j)〉 = δi,j . (12)

Now we relax the original binary restriction, and take this as the new restriction
on the optimization problem, so that the k-means task is reduced to the gener-
alized eigen problem which minimizes E2 subject to Eq.(12). This eigen problem
can be written as

ρ̂u(j) = λju
(j) s.t. 〈u(i)|u(j)〉 = δi,j , (13)

where λj is the eigenvalue corresponding to the eigenstate u(j) labeled in de-
scending order of the eigenvalues. In the SR, 〈el|ρ̂|el′〉 corresponds to the (l, l′)
element of HHT, where H = [s1, ..., sn] (note that H has n columns by PBC).
Thus, Eq. (13) can be written as

HHTu(j) = λu(j).

This equation also shows the u(j)s are the left singular vectors of H.

4.3 Cluster Centers and Eigenstates

Apart from the formal definition as the (relaxed) indicator, let us further consider
the meaning of u(j). Before the relaxation, the indicator satisfied

m(j) ≡ 1
|Cj |

∑
p∈Cj

sp =
1√
|Cj |

n∑
p=1

sp〈sp|u(j)〉.

After the relaxation, u(j) is the eigenstate of ρ̂ =
∑

p sps
T
p . Thus, it follows that

the k-means cluster centers correspond to the eigenstates of ρ̂, or

m(j) ∝ u(j). (14)

Note that our formulation directly seeks the cluster centers as the eigen vectors.
This is in contrast to the standard spectral formulations [3].

Now, we summarize this section as Theorems:

Theorem 1. The eigenstates of ρ̂, which can be computed also as the left sin-
gular vectors of H, minimize the SOS objective.

Theorem 2. The eigenstates of ρ̂ formally correspond to the k-means cluster
centers.
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In spite of this, the correspondence between the k-means and our spectral for-
mulation is not perfect. The major discrepancy comes from the fact that the
eigenstates must be orthogonal to each other. The problem is that the cluster
centers are not necessarily orthogonal in general. One reasonable expectation is
that the top eigenstate u(1) would be a good estimator representing the averaged
direction of a few of the major k-means clusters. For the other eigenstates, the
direction would be more or less influenced by the top one. 2 We will discuss this
topic theoretically and experimentally later.

5 Fourier Representation of ρ̂

5.1 The w = n Case

Let us consider the extreme case of w = n. In this case, H ( = H0) can be
thought of as periodic, so that the Fourier state fq is the exact eigenstate of
τ̂ (l). Explicitly,

τ̂ (l)fq =
1√
w

n∑
l′=1

eifq(l′−l0)el′+l = e−ifqlfq. (15)

Here we used the fact that eifqn = 1 if fq = 2πq/n.
Using Eqs. (10) and (15), we can calculate 〈fq|ρ̂|fq′〉 as

n∑
l=1

〈fq |τ̂ (l)T|Γ 〉〈Γ |τ̂(l)|fq′〉 =
n∑

l=1

〈fq |Γ 〉〈Γ |f ′
q〉ei(fq−fq′ )l = n|〈fq |Γ 〉|2δq,q′ , (16)

which means the matrix representation of ρ̂ is diagonal in FR. Thus, we conclude
that the Fourier state itself is the eigenstate of ρ̂ completely independently of the
input data. Which fq is chosen depends on the magnitude of |〈fq|Γ 〉|2, the power
of the Fourier component. Note that the eigenstate must be a pure sinusoid even
when the power spectrum does not have any dominant fq

3. When a q1 was chosen,
the resultant distribution is sinusoidal with the wave number fq1 (see Eq. (7)).
Thus, based on Theorems 1 and 2, the k-means cluster centers are expected to be
approximated by the sinusoids apart from the orthogonality problem.

5.2 The w < n Case

For w < n, the fqs are not exactly the eigenstates of τ̂ (l), since H cannot be
thought of as periodic. As a result, we have the matrix elements like

〈fq|ρ̂|fq′〉 ≈ n|〈fq|Γ 〉|2δq,q′ +
n∑

l=1

eilΔq′qJl(q, q′), (17)

2 The k = 1 case is special. The cluster center is the simple mean vector, and can be
written as |m〉 =

√
wx̄|f0〉, where x̄ denotes the mean of Γ over the whole domain.

This gives a constant distribution, having no relationship with the u(j)s.
3 This is not the case when some of the |fq|s have exactly the same power, but it is

unlikely in real-world time-series data under normal conditions.
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instead of Eq. (16). It is straightforward to get the exact expression of Jl(q, q′)
although we do not show it here. However, under normal conditions, we can
assume that the first term is the leading term since n ! 1 and phase cancellations
are unavoidable in the second term. In particular, if the power spectrum has a
single-peaked structure at |fq|, which is the case in the CBF data (see the next
section), the top eigenstate will be well approximated by the f|q|, irrespective of
the details of the spectrum. As a result, Eq. (7) reads

〈el|u〉 ∝ cos(fql + φ). (18)

Since l0 was arbitrary, the real number φ is also arbitrary. From this, we can
naturally understand the unpredictability of the additive phase as stated in
Observation 1. Now we get Theorem 3, which directly explains Observation 2:

Theorem 3. When a |q| is dominant, the singular vectors of H are well approx-
imated by sinusoids with the wavelength of w/|q|, irrespective of the details of
the input time series data.

In addition, by considering Theorems 1 and 2, the k-means cluster centers will
be sinusoidal except for the orthogonality problem. This is the mathematical
explanation of Observation 1.

When the power spectrum is almost flat, the eigenvectors will be mixtures of
many fqs, so that the cluster centers will be far from pure sinusoids.

5.3 Optimizing the Relative Phases

If the data has a dominant q, the subsequences can be approximated as

sp =
∑

q′∈Df

fq′〈fq′ |sp〉 ≈
∑

q′∈Df

eifq′ pfq′ 〈fq′ |Γ 〉 ≈ fq〈fq|Γ 〉eifqp. (19)

Define gq,φ ∈ H by 〈el|gq,φ〉 = cos(fql + φ). Equation (19) means that the k-
means STSC is reduced to that for {gq,φ} with uniformly distributed φ.

Since {gq,φ} consists of sinusoids of fq, the cluster centers must be sinusoids
of fq. Let the cluster centers be gq,φj (j = 1, ..., k). The distribution of φ may be
modeled as a continuous uniform distribution over [0, 2π). The SOS objective is
now written as

E(φ1, ..., φk) =
1
2π

∫ 2π

0
dφ

k∑
j=1

θj(φ)e(φ, φj), (20)

where 1/(2π) represents the probability density of φ, and e(φ, φj) ≡ ||gq,φ −
gq,φj ||2 = 4 sin2 φ−φj

2 . The function θj(φ) indicates cluster assignment, and takes
the value 1 when the j-th cluster center is closest to φ, or 0 otherwise. For
example, if we have φ1 < φ2 < φ3 when k = 3, θ2(φ) will be 1 for φ1+φ2

2 ≤
φ < φ2+φ3

2 and 0 otherwise. Solving the minimization problem of E w.r.t. the
phases is straightforward but tedious. However, it is intuitively clear that the
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most balanced assignment is optimal. In fact, Eq. (20) is symmetric w.r.t. j, so
the solution should be also symmetric if it is the unique solution. Now we arrive
at Theorem 4, which summarizes the theoretical proof of the phase question in
Observation 1:

Theorem 4. If a Γ has a dominant fq, the k-means STSC is reduced to that for
uniformly distributed sinusoids of fq. The optimal cluster centers are separated
by a phase of integral multiples of 2π/k.

6 Experiments

6.1 Cylinder-Bell-Funnel Data

The CBF data [7] includes three types of patterns literally having Cylinder, Bell,
and Funnel shapes. We randomly generated 30 instances for each type (examples
in Fig. 1 (b)) with a fixed length of 128 (= w) using Matlab code provided by [7].
We also concatenated them in order after standardizing each one (zero mean and
unit variance). We did 100 random restarts and chose the best one in the k-means
calculation.

Figures 3 (a)-(c) show the power spectra of each instance as a function of
the wave number. To handle the variation of the instances, we simply averaged
the resultant spectra for all instances. We see that the most of the weight is
concentrated on the |q| = 1 component in all of the cases. The f0 component is
naturally missing because of the standardization.

The results of k-means and SVD were shown in Fig. 2. The wavelength of w
can be understood from the large |q| = 1 weight in Fig. 3 (a)-(c). Due to the
orthogonality condition, the third singular vector necessarily has a wavelength
of about w/2. This is an example of the difference between the two formulations
in how the calculated cluster centers interact with each other. Apart from this,
our formulation is completely consistent with the results.

6.2 Synthetic Control Chart Data

The Synthetic Control Chart (SCC) data [7] consists of six types of 100 instances,
each with 60 data values. Out of the six types, we focus on the Cyclic and
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Normal types (Fig. 4), which have very different (averaged) power spectra from
the CBF spectra, as shown in Fig. 3. We see that the weight is concentrated on
the wavelengths of w

4 , w
5 , and w

6 in the Cyclic data (w = 60). In contrast, the
distribution is almost flat for the Normal data, as expected for white noise.

We made a concatenated data set with 100 standardized Normal instances
followed by 100 standardized Cyclic instances. Figures 5 (a) and (b) show the
k-means cluster centers (k = 2, the best one among 100 random restarts) and
the two highest singular vectors, respectively. We set w = 60. Since the sps in the
Normal part do not favor any particular direction, the clustering results seem to
be dominated by the Cyclic part. In both figures, amplitude-modulated sinusoids
with a periodicity of about w/5 are observed instead of pure sinusoids. The
waves are separated by the phase intervals which can be naturally understood
from Theorem 4 for (a) and from the orthogonality condition for (b).

The amplitude modulation can be understood as beat in physics. As shown
in Fig. 3, the Cylinder part is dominated by the f|4|, f|5| and f|6| components.
Since SVD extracts the major direction of {sp}, the top singular vector u will
be approximated as a linear combination of those components like

〈el|u〉 ≈
6∑

q=4

cq cos [fq(l − l0)] .

Within the accuracy up to the order of (2π/w)2, it reads

〈el|u〉 ∝ e−
1
2 Δ2

2(l−l0)2 cos [(fq −Δ1)(l − l0)] , (21)

where Δ ≡ 2π/w, and

Δ1

Δ
=

c4 − c6

c4 + c5 + c6
,

Δ2

Δ
=

√
4c4c6 + c5(c6 + c4)

c4 + c5 + c6
.

To derive this, we used Taylor expansion formulas with ε # 1 such as

ln
(
c5 + c6eiε) ≈ ln(c5 + c6) +

iεc6

c5 + c6
− ε2

2
c5c6

(c5 + c6)2
.

The line shape in Eq. (21) is known as beat in physics. If we set cq ∝ |〈fq|Γ 〉|
(in the Cyclic part), we get Δ1 = 0.1Δ and Δ2 = Δ/1.3 from Fig. 3 (d). This
leads to a sine wave with wavelength w/4.9 modulated by a beat wavelength of
1.3w. Except for the region where Δ(l − l0) $ 1, Equation (21) explains Fig. 5
reasonably well.

It is interesting to see what happens when we have only the Normal data.
As expected, the resulting cluster centers are far from sinusoids when w = 60
(not shown). However, STSC produces sinusoids when w = n (=6000), despite
the white noise nature of the data. Our theory clearly explains this counter
intuitive result. As discussed in Subsection 5.1, the top singular vector must be
the pure sinusoid of the largest power. In this case, we have the largest power at
|fq| = 0.358 in Fig. 6 (a) (marked by the triangles). Thus, the wavelength must
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be 2π/|fq| = 17.6, which is completely consistent with Fig. 6 (c). In addition,
we see that the singular vector is a good estimator of the k-means cluster center
by comparing Figs. 6 (b) and (c).

While some authors attribute the sinusoidal patterns to simple smoothing
effects caused by superposition of slightly shifted subsequences [1], such a dis-
cussion clearly fails to explain the origin of the sinusoidal curves for the Normal
data. Also, it is not capable of explaining the beat waves.

7 Concluding Remarks

We have performed a theoretical analysis of the sinusoid effect in STSC. In
particular, we pointed out that the k-means clustering task can be reduced to
the eigen problem of the density matrix ρ̂. Thanks to the translational symmetry
of ρ̂, the eigenstate can be approximated by a Fourier state if a single |fq| forms a
conspicuous single peak in DFT. We also found that the k-means cluster centers
produce beat waves (Fig. 5) when a few neighboring frequencies are dominant.

Mathematically, the sinusoid effect can be understood from the fact that the
Fourier states are the irreducible representations of the translational group. In
another paper [5], we used a point group for pattern discovery. This paper also
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can be seen as one of the first studies which introduce the concept of group into
machine learning.

Our theory also provides a practical basis for attempts to make STSC mean-
ingful. As long as the coherent superposition is used to define the cluster cen-
ters, sinusoid pseudo-patterns are more or less unavoidable. One possibility is
to utilize incoherent superposition of subsequences. Medoid-based methods are
perhaps the simplest way to use the incoherence, and are known to give bet-
ter results than the simple STSC. Detailed discussion on this issue will appear
elsewhere.
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Abstract. We present a generative model based approach for trans-
ductive learning for text classification. Our approach combines three
methodological ingredients: learning from background corpora, latent
variable models for decomposing the topic-word space into topic-concept
and concept-word spaces, and explicit knowledge models (light-weight
ontologies, thesauri, e.g. WordNet) with named concepts for populating
latent variables. The combination has synergies that can boost the com-
bined performance. This paper presents the theoretical model and ex-
tensive experimental results on three data collections. Our experiments
show improved classification results over state-of-the-art classification
techniques such as the Spectral Graph Transducer and Transductive Sup-
port Vector Machines, particularly for the case of sparse training.

Keywords: transductive learning, latent models, expectation-maxim-
ization.

1 Introduction

1.1 Motivation

Many applications require classification models able to learn from few labeled
data and rich background corpora. Examples could be Amazon organizing book
descriptions into pre-defined categories, Google or Yahoo! classifying crawled
Web pages into topic directories for more convenient access, or Wikipedia catego-
rizing encyclopedia articles for better search and browsing. A learning paradigm
in which the data collection to be automatically labeled is available beforehand
is referred to as transductive inference.

Transductive learning is particularly attractive for text classification with very
few explicitly labeled training documents, which happens whenever human as-
sessment is the (time or cost) bottleneck on rapidly growing and highly di-
verse corpora. In such a setting, being able to harness the feature distributions
and relations among the unlabeled documents is an important asset to improve
the classifier. Another potentially beneficial asset is explicit knowledge about
concepts, words and phrases that express concepts, and the semantic relations
among concepts (e.g., hyponymy). Such knowledge sources may be given in the
form of an ontology or thesaurus.
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Prior work has mostly pursued “latent semantic” models such as spectral anal-
ysis, and the few approaches that have attempted to leverage explicit knowledge
sources focused on concept-aware feature spaces and did not integrate concept-
word relationships into the learning procedure itself. Moreover, many of these
prior methods faced difficult model selection problems regarding feature engi-
neering and parameter tuning. In the current paper, we develop a novel approach,
based on a generative model with explicit concepts, that combines background
ontologies with transductive learning on large corpora. Our approach aims to
make classifiers more robust and improve classification accuracy with very few
training data and as little model tuning as possible.

1.2 Contribution

Our approach is based on a generative model for text documents where words
are generated by concepts which in turn are generated by topics. We postulate
conditional independence between words and topics given the concepts. Once
the corresponding probabilities for word-concept and concept-topic pairs are es-
timated, we can use Bayesian inference to compute the probability that a test
document with known words but unobservable concepts belongs to a certain
topic. The concepts are used as latent variables here, but unlike earlier work
on spectral decomposition and latent semantic models [2], [6], [8] our concepts
are named and can be explicitly identified in the underlying ontology or the-
saurus. We employ an iterative EM (expectation-maximization) procedure for
maximum-likelihood parameter estimation. The effectiveness of EM greatly ben-
efits from a judicious initialization step that estimates word-concept probabilities
on the unlabeled part of the document collection, thus leading us to a transduc-
tive learning method.

For illustration, consider a training document that contains the ambiguous
word Java and belongs to the topic geography. Our method uses the background
ontology and the word-occurrence contexts of the entire corpus, comprising both
training and unlabeled documents, to map the word Java to its corresponding
concept Java, island belonging to Indonesia and, at the same time, estimate
the probability distribution of words that can express this concept (with, e.g.,
“Sumatra” or “Jakarta” having higher probabilities than “method” or “inheri-
tance”). The statistics gained from the full corpus are fed into the EM procedure
to further improve the concept-word estimates and to learn the concept-topic
distribution. This technique populates only latent concept variables that have
significant probability of being associated with the words occurring in docu-
ments, thus making the EM iterations much more efficient and effective. We
consider the following as our main contributions:

1. By using explicit concepts from an ontology or thesaurus and by using a
heuristic technique for bootstrapping the word-to-concept mapping, we avoid
the model selection problem inevitably faced by all techniques based on
latent dimensions (i.e., choosing an appropriate number of dimensions).
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2. By the same token, we avoid the combinatorial explosion in the space of pa-
rameters to be estimated (i.e., concept-word pairs), and we largely eliminate
the need for parameter smoothing (which is often a very tricky issue).

3. The initial word-to-concept mapping is very beneficial for fast convergence of
EM, and reduces the danger of getting stuck in local maxima of the likelihood
function. The latter is an issue especially with very few training data.

4. Our method provides an intuitive and effective way of exploiting the avail-
able resources, unlabeled documents from the full corpus and ontological
relationships among concepts, resulting in improved classification accuracy
with few training data.

5. Our approach is more robust in the sense that it requires considerably less
tuning than other transductive methods.

In our experiments, with real-life datasets from the Reuters newswire corpus,
Amazon book reviews, and Wikipedia articles, we compare our method with
the Spectral Graph Transducer [11] and Transductive SVM classifiers [12] and
demonstrate the viability and superiority of our approach.

1.3 Related Work

There are many approaches to transductive learning. Transductive SVMs were
introduced by [20] and applied to text classification by [1], [12]. They exploit
the structure in both training and test data for better positioning the maximum
margin hyperplane. However, as shown empirically and theoretically in [21],
learning a maximum margin from the unlabeled data in order to assign the labels
is unreliable. Generative model based approaches can exploit the information in
the unlabeled test collection for better estimating the generating distribution.
An example is the usage of unlabeled data for re-weighting labeled examples
[16]. Other methods represent the dataset as a graph and exploit the structure
in the entire dataset in search for mincuts [4] or for min average cuts [11].

Various latent aspect models have been proposed in the literature [2], [6], [8].
In all this prior work, latent dimensions are mathematical constructions without
any association to explicitly denoted concepts. This can make the interpretation
of classification results by such methods difficult or unintuitive. Moreover, all
prior methods require careful tuning of the number of latent dimensions. Finally,
latent aspect models are either completely unsupervised or used as preprocessing
step for feature engineering.

Explicit knowledge sources like ontologies, thesauri, or dictionaries have been
used in prior work on text classification only for feature engineering, e.g., con-
structing composite words or phrases as features based on a thesaurus. Most
notably, the WordNet thesaurus [7] has been leveraged in various approaches of
this kind [3], [19]. In contrast, we propose integrating explicit knowledge about
word-concept relationships into the learning procedure itself.

2 Transductive Latent Model

In this section we introduce our framework and the theoretical model proposed.
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2.1 Generative Model

We are given a large document collection, D = {d1, . . . , dr}, split into a small
training set with known topic labels, T = {t1, . . . , tm}, and a large test set
with unknown topic labels. We have access to an ontology graph of concepts,
C = {c1, . . . , ck}, where each concept has a set of synonyms and a short textual
description, and is related to other concepts by semantic edges (e.g., hyper-
nymy/hyponymy relations). From the given collection we can select a set of
features, F = {f1, . . . , fn} (words or phrases). A document is considered to be
a multiset of features. Our generative model for feature-topic co-occurrence can
be described as:

1. Select a topic t with probability P [t];
2. Pick a latent variable c with probability P [c|t], the probability that concept

c describes topic t;
3. Generate a feature f with probability P [f |c], the probability that feature f

means concept c.

The pairs (f, t) can be directly observed, while the existence of concepts implies
some form of word sense disambiguation; concepts are treated as latent variables.

Mathematically, our model is similar to the aspect model developed in [8].
However, while in the aspect model the number of concepts has to be known
a priori and the concepts themselves are implicit (an abstract mathematical
notion), our model uses existing knowledge resources (ontologies, thesauri) to
identify and select explicit concepts at runtime. A similar model was used in our
earlier work [9] for the inductive learning setting.

2.2 Learning Model Parameters

For tractability reasons, the generative model is based on two independence
assumptions: The observation pairs (f, t) are generated independently and the
features f are conditionally independent of the topics t, given the latent variable
c: P [(f, t)|c] = P [f |c]·P [t|c]. Using explicit concepts from a fine-grained ontology
like WordNet helps alleviating the impact of these assumptions on the model
robustness. To describe the generative process of an observation (f, t), we sum
up over all the possible values that the latent variables might take

P [f, t] =
∑
c∈C

P [c] · P [(f, t)|c]. (1)

We assume that the (f,t) pairs are generated from a multinomial distribution.
Thus, the likelihood of the observed (f, t) samples can be expressed as:

L = Πf∈F,t∈T P [f, t]n(f,t) (2)

= Πf∈F,t∈T (
∑
c∈C

P [c] · P [(f, t)|c])n(f,t)

= Πf∈F,t∈T (
∑
c∈C

P [f |c] · P [c|t] · P [t])n(f,t)
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where n(f, t) is the number of occurrences of feature f in the training set of topic
t (multiple occurrences in one document count multiple). The learning problem
consists in estimating the parameters (P [f |c], P [c|t], P [t]) of the generating
distribution, given the observed (f, t) samples. This can be formally expressed
as a maximization of the observed data log-likelihood:

l =
∑

f∈F,t∈T

n(f, t) · log(
∑
c∈C

P [f |c] · P [c|t] · P [t]) (3)

Due to the sum inside the logarithm direct maximization of the log-likelihood
by partial derivatives is difficult. To overcome this problem, we employ an
Expectation-Maximization (EM) algorithm (see [10] for more details). The EM
algorithm works by 2 iterative steps:

– E-Step: Expectation step, in which posterior probabilities are estimated for
the latent variables, taking as evidence the observed data. For calculating
the estimates of the E-step, we use Bayes’ formula:

P [c|(f, t)] =
P [(f, t)|c] · P [c]∑

c′∈C P [(f, t)|c′] · P [c′]
=

P [f |c] · P [c|t] · P [t]∑
c′∈C P [f |c′] · P [c′|t] · P [t]

(4)

=
P [f |c] · P [c|t]∑

c′∈C P [f |c′] · P [c′|t]
– M-Step: Maximization step, in which the current parameters are updated

based on the expected complete data log-likelihood, which depends on the
posterior probabilities estimated in the E-Step. Detailed justification for the
equations (5), (6) and (7) is given in [10].

P [f |c] =
∑

t∈T n(f, t)P [c|(f, t)]∑
f ′∈F

∑
t∈T n(f ′, t)P [c|(f ′, t)]

(5)

P [c|t] =

∑
f∈F n(f, t)P [c|(f, t)]∑

c′∈C

∑
f∈F n(f, t)P [c′|(f, t)]

(6)

P [t] =

∑
f∈F,c∈C n(f, t)P [c|(f, t)]∑

t′∈T

∑
f∈F,c∈C n(f, t′)P [c|(f, t′)]

(7)

In order to compute the conditional probability of a document given a topic
P [d|t], postulating feature independence, the estimates P [f |c] and P [c|t] are
used:

P [d|t] = Πf∈dP [f |t] = Πf∈d

∑
c∈C

P [f |c] · P [c|t] (8)

Once we have estimates for the marginal distribution describing the generative
model, we can use Bayes’ rule to reverse the model and predict which topic
generated a certain document:

P [t|d] =
P [d|t] · P [t]

P [d]
=

P [d|t] · P [t]∑
t′∈T P [d|t′] · P [t′]

(9)

We then substitute (8) into (9) and have a decision procedure for the classifier.
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2.3 Problems and Solutions

EM faces two major problems:

1. The combinatorial explosion of the variable space in the model, since the
number of parameters is directly proportional to the cross-product of the
number of features, concepts and topics. These parameters are sparsely rep-
resented in the observed training data.

2. The possibility of slow convergence or convergence to a local maximum of
the likelihood function and missing the global optimum.

For the first problem, it is desirable to prune the parameter space to
reflect only the meaningful latent variables. We propose two techniques to this
end.

Feature Selection. From the given collection we extract a set of features using
tf · idf ranking as a quality measure. For each term we compute its frequency in
the entire collection (tf) and its inverse document frequency (idf). We normalize
these quantities [5] and rank the terms according to their tf · idf value. As a
preprocessing step, we extract compound words, e.g. “exchange market”, using
a sliding window parser and a background dictionary (e.g WordNet), and treat
them as individual features. This step can play a role in capturing the semantics
of interesting and common language constructions; it also reduces some of the
computational overhead, while helping model robustness: many compounds have
only one meaning, e.g. “exchange market”, versus “exchange” and “market”.

Concept Set Selection. We use the WordNet thesaurus [7] as the basis for our
ontology graph. WordNet contains around 150,000 concepts (word senses) linked
by hierarchical relations. Using the entire set of concepts would result in a high
computational overhead and a high amount of noise. A better approach is to
select from the ontology only a subset of concepts that reflects the semantics
of the data collection. We call this the candidate set of concepts. This set is
selected in a preprocessing step, before running the EM algorithm; details are
given below. The size of this subset is only a few thousands concepts, as opposed
to some hundred-thousands available in the ontology.

For the second problem, slow or suboptimal convergence, it is desirable to
pre-initialize the model parameters to values that are close to the global
maximum of the likelihood function. In order to get a good initialization for our
parameters P [f |c] and P [c|t] we use a similarity-based mapping approach. The
technique consists of mapping features to concepts and concepts to topics, based
on similarity measures between contexts. The WordNet thesaurus can be seen as
a directed acyclic graph (DAG) where the nodes are the different concepts and
the edges are semantic relationships [7]. Let w be a word that we want to map to
the ontological senses. First, we query WordNet for the possible meanings of word
w. Let {c1, . . . , cm} be the set of meanings associated with w. By taking also the
synonyms of these word senses, we can form synsets for each of the word mean-
ings. Next, we apply a word sense disambiguation step by computing the overlap
between the local contexts of both the word observed in a document and each of
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its possible meanings. This type of approach is commonly used in the word sense
disambiguation literature. For each occurrence of word w in the text collection,
its local context is a text window around its offset; the context for the concept
is taken from the ontology: for each sense ci we take its hypernyms, hyponyms,
holonyms and their short textual descriptions. The context of a concept in the
ontology graph can be taken until a certain depth, depending on the amount of
noise one is willing to introduce in the disambiguation process. In this work we
use depth 2. For each of the candidate senses ci, we compute the cosine similar-
ity between the tf vectors of context(w) and context(ci), i ∈ {1, . . . , m}. Only
the most dominant meaning (over all occurrences of w) is kept in the concept
space. For words having multiple meanings, our hypothesis is that “secondary”
meanings are introduced by their corresponding features, e.g., for the word Java
having meanings island and coffee, if island is selected as the main meaning of
Java, the second meaning coffee can still be introduced in the concept space by
occurrences of words like espresso, latte, coffee beans, etc.

In a similar fashion, we relate concepts to topics based on similarity of con-
texts. The context for a topic t is defined to be the bag-of-features selected from
the training collection by decreasing Mutual Information (MI) [14] value. For
our implementation, we used the top 50 terms with regard to MI rank. Once
we have computed all the similarities for the (feature, concept) and (concept,
topic) pairs, we normalize them, and interpret them as estimates of the proba-
bilities P [f |c] and P [c|t]. In the sim(f, c) and sim(c, t) computations, we only
consider the (f, c) and (c, t) pairs in the pruned parameter space. The com-
puted values are then used for enhancing the EM algorithm in the model fitting
process.

Transductive Learning. Our feature-concept mapping does not require labeled
documents, thus it can be computed on the entire unlabeled collection. This has
the effect of drastically reducing the need for training data. The concept-topic
mapping might be poorly estimated from sparse training as the topics might be
poorly described in the training set. This problem can be alleviated by extending
the topic description using background corpora. For example, we can improve
the training description of the topic Biology by using a better description from an
encyclopedia, e.g. the Biology page from Wikipedia. We note that this method-
ology of using background knowledge makes our model robust to variations in
vocabulary or data distribution, problems that can occur when directly adding
background data to the training set.

2.4 Enhanced EM Algorithm

The mapping step presented in Section 2.3 can be seen as defining a prior proba-
bility distribution on the model parameters P [f |c], P [c|t]. This can be exploited
in a Maximum A Posteriori (MAP) estimation of parameters, rather than sim-
ple maximum likelihood estimation. We denote by θ = (θf |c, θc|t, θt), θf |c =
P [f |c], θc|t = P [c|t], θt = P [t] our model parameters. Let θf |c ∼ Dirichlet(αc

f)
and θc|t ∼ Dirichlet(βt

c), where αc
f = sim(f, c) for each f ∈ F and c ∈ C and
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βt
c = sim(c, t) for each c ∈ C and t ∈ T . Let θt be uniformly distributed, with

density g(θt) = 1
|T | . The corresponding densities for θf |c and θc|t are:

g(θf |c) ∼ Πf∈F θf |c
αc

f , θf |c ≥ 0, αc
f ≥ 0,

∑
f∈F

θf |c = 1, ∀c ∈ C (10)

g(θc|t) ∼ Πc∈C θc|t
βt

c , θc|t ≥ 0, βt
c ≥ 0,

∑
c∈C

θc|t = 1, ∀t ∈ T (11)

Because θf |c, θc|t and θt are independent random variables, their joint density
can be written as: g(θ) = g(θf |c, θc|t, θt) = g(θf |c) ·g(θc|t) ·g(θt). Let x = (f, t) be
an observation from a multinomial distribution. Let F (θ|x) = g(θ)·L(x|θ), where
g(θ) defines a prior distribution on the parameters and L(x|θ) is the likelihood
of the (f, t) samples (as in Section 2.2). We want to compute the MAP estimate

θ = argmaxθ F (θ|x) (12)

As g(θt) is a constant function, it does not influence the maximization, and we
leave it out in the following estimations. Let

F (θ|x) = (Πc,f θf |c
αc

f ) · (Πt,c θc|t
βt

c) · [Πf,t (
∑

c

θf |c · θc|t · θt)n(f,t)] (13)

For maximizing the above function we employ an EM algorithm (similar to
the estimation in Section 2.2). The E-Step remains the same. The parameter
estimates θf |c and θc|t for the M-Step become:

θf |c = P [f |c] =
αc

f +
∑

t∈T n(f, t)P [c|(f, t)]∑
f ′∈F (αc

f ′ +
∑

t∈T n(f ′, t)P [c|(f ′, t)])
(14)

θc|t = P [c|t] =
βt

c +
∑

f∈F n(f, t)P [c|(f, t)]∑
c′∈C(βt

c′ +
∑

f∈F n(f, t)P [c′|(f, t)])
(15)

Combining the similarity-based estimates with the estimates based on training
counts strengthens the model robustness. We show in the next section how the
additional flexibility of our model helps learning even when, due to little train-
ing, other methods fail.

3 Experiments

3.1 Methodology

The experimental setup is the following: given a large unlabeled collection of doc-
uments, the goal is to categorize it into predefined categories. For this purpose,
we want to find out how much labeled data is needed for obtaining a reasonable
classification accuracy, and what classifier methods perform best. As we most
likely have a small amount of labeled (training) data and a large amount of
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unlabeled (test) data, the most interesting methods are those that learn over
the entire dataset, i.e. transductive techniques. For comparison, we show ex-
periments with both inductive (i.e. methods that learn only from training) and
transductive methods. Our results are averaged over 10 repetitions with random
splits into training and test data, with the size of the splits ranging from 0.25%
training data and 99.75% test data, up to 10%− 90% training-test splits.

3.2 Test Collections

We evaluate our techniques on three test collections. For all three collections,
both stemming and stop-word removal are used.

The first one is the Reuters-21578 dataset collected from the Reuters
newswire in 1987. Of the 135 potential categories only the most frequent 10
are used (so that enough training/test documents are present) and we keep only
documents labeled with a unique topic. This results in a total of 8,024 docu-
ments.

The Amazon dataset1 was extracted from http://www.amazon.com. It con-
tains editorial reviews of books, organized into categories. From the available
categorization, we selected all the editorial reviews for books in Biological Sci-
ences, Mathematics, and Physics. This amounts to 5,634 documents.

The Wikipedia collection2 was obtained by a topic-focused crawl of http://
www.wikipedia.org. The selected topics were Politics, Computer Science, Phy-
sics, Chemistry, Biology, Mathematics, and Geography. The crawl was started
from the main pages of each of these classes and topic-specific words in the
anchor text were used as indicators for whether an outgoing link should be
followed. The dataset gathered this way contains 5,384 documents. Due to the
crawling procedure, this dataset contains a considerable amount of noise. The
last two collections differ in nature from the Reuters dataset: their vocabulary
is much richer and expressive, the language ambiguity is higher.

3.3 Results

The following experiments show the effect of using explicit knowledge models for
transductive inference. As a baseline for comparison the results of a multinomial
Naive Bayes (NB) [14], the inductive version of our model coined ILM (Inductive
Latent Model) using the MAP estimator of Section 2.4, inductive SVM (ISVM)
[13], transductive SVM (TSVM) [12] and the Spectral Graph Transducer (SGT)
[11] are shown. Our transductive model is coined TLM (Transductive Latent
Model). Based on previous studies [18] about robust evaluation measures for
text classification we chose microaveraged F1 as our main performance metric.

In settings with few training data, parameter tuning is infeasible: it is difficult
to perform cross-validation or to provide held-out data. For this reason, for all
the methods presented, the parameters are kept fixed across experiments. For
1 Available at http://www.mpi-sb.mpg.de/∼ifrim/data/Amazon.zip
2 Available at http://www.mpi-sb.mpg.de/∼ifrim/data/Wikipedia.zip
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Table 1. Reuters. Microaveraged F1 for different training set sizes.

Training NB ILM ISVM TSVM SGT TLM

split0.4 64.5 67.1 71.8 57.6 76.5 79.7
split0.5 67.2 70.0 73.5 50.2 79.7 80.7
split1 77.2 76.5 81.0 60.8 88.6 84.1
split2 83.4 81.7 82.2 72.7 89.9 85.1
split5 91.1 90.0 84.9 87.1 92.1 89.4
split10 92.9 92.0 88.4 89.4 93.0 89.6

Table 2. Wikipedia. Microaveraged F1 for different training set sizes.

Training NB ILM ISVM TSVM SGT TLM

split0.25 72.7 70.4 43.0 32.5 70.5 79.2
split0.5 76.0 74.8 61.3 52.0 77.1 80.5
split1 77.9 76.9 73.2 63.1 79.3 80.9
split2 80.8 80.7 78.9 69.3 81.4 80.8
split5 83.6 82.1 83.2 77.8 82.9 82.8
split10 85.8 84.5 85.0 81.6 84.3 84.8

Table 3. Amazon. Microaveraged F1 for different training set sizes.

Training NB ILM ISVM TSVM SGT TLM

split0.25 77.2 72.7 48.7 64.1 77.8 83.7
split0.5 79.1 74.8 63.0 68.0 82.4 84.9
split1 81.1 77.9 72.2 75.6 85.0 85.1
split2 83.3 81.4 78.2 82.1 86.0 85.2
split5 84.2 83.2 83.8 85.8 87.5 85.5
split10 85.2 84.9 84.5 86.7 88.1 85.9

NB, ILM and TLM, the vocabulary size is fixed to 10,000 terms selected by
Mutual Information for NB and ILM and tf · idf rank for TLM. Due to our
bootstrapping mapping, our enhanced EM algorithm converges very fast, in one
or two iterations; for TLM we set the number of EM iterations to 1. As suggested
by [12] we do not use any feature selection for SVMs. We use SVMLight [13]
with linear kernels and default parameter settings. The parameters for SGT are
fixed to the values found in [11] to give the best results on the Reuters dataset:
c = 3200, d = 80 and k = 800; no feature selection is done.

As mentioned in Section 2.3, the concept-topic mapping might be poorly es-
timated from sparse training. We propose solving this problem by automatically
querying Wikipedia as background knowledge for improving the bag-of-words
context of a given topic, prior to computing the initial topic-concept mapping.
For a fair comparison, we give all the other methods the same information as
used by TLM. Directly adding the background knowledge to training (e.g. we add
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the Coffee page from Wikipedia as training for the Coffee topic from Reuters)
sometimes decreases the accuracy of the other methods (due to variation in
vocabulary and data distribution), and sometimes increases the accuracy, par-
ticularly for sparse training. We report the best results for all the other methods,
so as to give them the best possible advantage against our TLM method.

Table 1 shows results for the Reuters dataset. Using only 33 labeled documents
(0.4% of the total dataset), TLM improves the microaveraged F1 from 71.8%
for ISVM and 76.5% for SGT, to 79.7%. In our experiments with this dataset,
transductive SVM performed considerably worse than inductive SVM for small
training sets. This result is different from the one in [12]. We suspect TSVM is
particularly sensitive to parameter tuning, thus using default parameters could
affect the results. We also note that even if SGT uses its best parameter setting
on Reuters, TLM outperforms it for small training data.

Table 2 gives results for the Wikipedia dataset. For the interesting case of
little training, TLM outperforms all other methods by a significant margin. The
results are particularly impressive for very small training sets, when our model
proves to be robust in spite of the little supervised information available. In most
of our experiments NB is better than SVM for small training sets; this result is
in compliance with existing text classification literature [15], [17].

Table 3 shows results for the Amazon dataset. The results show the same
trend: for little training TLM outperforms all other methods. For small training
sets (split0.25: 14 documents) TLM outperforms SGT by 6%; for training data
large enough (split2: 113 documents) SGT becomes slightly better.

In order to understand the mutual benefits of the bootstrapping mapping and
the EM algorithm, we studied the effect of the similarity-based mapping on the
classification results, as compared to the results after applying one EM iteration
(using maximum likelihood estimates, not MAP). On Reuters, the mapping re-
sults were considerably improved by using EM iterations. This can be explained
by the nature of this dataset: topics overlap heavily at concept level, thus the
mapping alone cannot discriminate well among topics. For both Amazon and
Wikipedia the situation differed. For sparse training, employing EM iterations
degraded a bit the results obtained with the bootstrapping mapping. This prob-
lem of bootstrapping mapping versus EM iterations’ quality is largely solved by
combining the two estimates in a MAP estimate as shown in Section 2.4.

Running time. The most time consuming part for our method is the mapping
of features to concepts which takes about 20 minutes for 10,000 features. Due
to our bootstrapping mapping, EM converges very fast, in one or two iterations.
Classifying the entire collection is done in a few seconds.

4 Conclusion

This paper has introduced a generative model and a parameter learning algo-
rithm for transductive text classification with explicit background knowledge. In
contrast to previously proposed latent semantic models, our approach has ex-
plicit concepts associated with its latent variables, which enables it to bootstrap
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the EM-based parameter estimation procedure in a highly efficient and effec-
tive manner and provides the flexibility for learning from the unlabeled part of
the corpus or even additional background corpora. Our extensive experiments
have shown significant improvements of classification accuracy, in comparison
to state-of-the-art techniques like Spectral Graph Transducer and Transductive
as well as Inductive Support Vector Machines. The gains are most pronounced
for small training sets, a typical and inevitable situation in many real-life text
mining applications.

Acknowledgments. We would like to thank Thomas Hofmann, Deepak Ajwani
and the anonymous reviewers for their helpful suggestions.
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Abstract. We discuss issues raised by applying von Neumann kernels to graphs
with multiple communities. Depending on the parameter setting, Kandola et al.’s
von Neumann kernels can identify not only nodes related to a given node but
also the most important nodes in a graph. However, when von Neumann kernels
are biased towards importance, top-ranked nodes are the important nodes in the
dominant community of the graph irrespective of the communities where the tar-
get node belongs. To solve this “topic-drift” problem, we apply von Neumann
kernels to the weighted graphs (community graph), which are derived from a
generative model of links.

1 Introduction

Link analysis techniques are useful for mining knowledge from graph-structured data
such as WWW and citation networks. Researchers have been trying to establish mea-
sures for evaluating the importance of individual nodes (documents) in a graph, and
PageRank and HITS [1] are the two most popular ‘global importance’ measures. A dif-
ferent type of link analysis measures, the ‘relatedness’ between graph nodes, has been
studied in bibliometrics. Co-citation coupling [2] is a classical measure of relatedness
still widely used.

Our previous work [3] showed that it is possible to define a ‘mixture’ between the
HITS global importance and co-citation relatedness through the parameterization of
(von) Neumann kernels [4]. These kernels enable to compute the importance of nodes
relative to individual ‘root’ nodes, where the degree of relativity is controlled by the
parameter of the kernels.

The Neumann kernels enjoy the properties of HITS, while at the same time they
inherit the problem of HITS called ‘topic drifts’ [5]. This problem is noticeable when
the graph consists of multiple communities each addressing different topics. If the Neu-
mann kernels are biased towards importance and applied to a multi-community graph,
they assign the highest scores to the nodes in the dominant community irrespective of
the root node.

This paper proposes a method to avoid topic drifts when we apply the Neumann ker-
nels to multi-community graphs. To this end, we model the generative process of links,
and construct distinct graphs for individual communities. Edges in these graphs have
the weights determined by the generation probability of the citation in the respective
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community. Applying Neumann kernels to the community graphs, we can take com-
munities into consideration even when we bias Neumann kernels to importance.

We also discuss the connection between our proposed kernels and the related meth-
ods, including pHITS [6] and Hofmann’s Fisher kernels based on pLSI [7].

2 Preliminaries

This section reviews the link analysis measures relevant to the subsequent discussion.

Co-citation Coupling Relatedness. Co-citation [2] is the standard methods of com-
puting relatedness (or similarity) between nodes in a citation graph. Co-citation cou-
pling defines relatedness between documents as the number of other documents citing
them both. Given the adjacency matrix A of a citation graph, the number of co-citations
between nodes i and j is given by the (i, j)-element of the co-citation matrix ATA.

HITS Importance. Kleinberg’s HITS [1], along with PageRank, is probably one of the
most popular methods for evaluating document importance. HITS assigns two scores to
each document, called the authority and hub scores. Let A be the adjacency matrix of a
citation graph. The HITS algorithm computes the following recursion over n = 0, 1, . . .
starting from a(0) = h(0) = 1.

a(n+1) = ATh(n)/|ATh(n)|, h(n+1) = Aa(n+1)/|Aa(n+1)|.

The i-th component of the authority vector limn→∞ a(n) represents the authority score
of node i. Similarly, the hub vector limn→∞ h(n) gives the hub scores. It is well known
that under a mild assumption, the authority and hub vectors exist and equal the principal
eigenvectors of ATA and AAT, respectively.

Neumann Kernels. In our previous work [3][8], we analyzed the properties of Kan-
dola et al.’s Neumann kernels [4] as a link analysis measure.

The Neumann kernel matrices K̂γ and M̂γ , with a parameter γ (0 ≤ γ < 1) called
diffusion factor, are defined by the following equations.

K̂γ =
∞∑

n=1

(
γ

λ
)n−1 (ATA

)n
, M̂γ =

∞∑
n=1

(
γ

λ
)n−1 (AAT

)n
(1)

Here, λ represents the dominant eigenvalue of a nonnegative symmetric matrix ATA.
Eq. (1) shows that the Neumann kernel matrix K̂γ (or M̂γ) is a weighted sum of

(ATA)n (or (AAT)n) over n = 1, 2, . . .. Given that the (i, j)-element of the term
(ATA)n represents the number of paths of length n between nodes i and j in the co-
citation graph, we see that each element of the kernel matrix equals the weighted sum
of the number of paths between nodes.

We showed in [3] that Eq. (1) can be interpreted as the mixture of co-citation re-
latedness and HITS importance. As a special case, the Neumann kernels K̂γ subsume
co-citation at γ = 0. At the ceiling of γ $ 1, on the other hand, the rankings induced
by any rows of the K̂γ are identical to the HITS importance ranking.
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(a) Citation graph with multi-communities (b) Co-citation graph derived from Fig 1 (a)

Fig. 1. A citation graph with multi-communities, and the induced co-citation graphs

3 Topic Drift Problem and Neumann Kernels

HITS is known to suffer from the problem called ‘topic drifts’ [5]. If applied to a graph
with multiple communities1, HITS assigns the highest scores to the documents in the
dominant community of the graph. It follows that the highest scores are assigned to
documents unrelated to user’s interest, if the topic of dominant community is unrelated
to the queries from users.

Consider the graph of Fig 1 (a), which contains two communities. The HITS author-
ity ranking of this graph is n2 > n1 > n3 > n5 > n4 > n6, and we see that ranks of
documents in Community 2, namely n4, n5 and n6, are uniformly lower than those of
documents in Community 1 (n1 and n2).

The Neumann kernels reduces to HITS when γ $ 1. This also means that they inherit
the issue of topic drifts from HITS. Fig 1 (b) depicts the co-citation graph induced by
the graph of Fig 1 (a). The Neumann kernels matrix K̂0.99 is shown below.

K̂0.99 =

⎛⎜⎜⎜⎜⎜⎜⎝
108.53 225.98 59.64 7.16 29.30 1.36
225.98 477.37 127.64 15.33 62.70 2.90
59.64 127.64 37.87 5.30 21.67 1.00
7.16 15.33 5.30 5.16 7.34 2.17
29.30 62.70 21.67 7.34 23.74 1.39
1.36 2.90 1.00 2.17 1.39 1.60

⎞⎟⎟⎟⎟⎟⎟⎠ . (2)

Only the sub-matrix of the kernel matrix for documents n1 through n6 is shown. The
remaining rows and columns are omitted because these rows and columns correspond
to the isolated nodes in Fig 1 (b) and hence all their elements are 0 in the matrix.

The (i, j)-element of this matrix represents the importance of j-th document relative
to the i-th document. For example, relative to document n3 (third row), document n2
is the most important document because the (3,2)-element (127.64) is the largest in the
third row of the matrix.

1 To the best of our knowledge, there seems to be no consensus on what constitutes ‘community’
in the literature. Roughly speaking, a ‘community’ in this paper is a set of documents in a graph
citing more documents within the community than those outside.



238 T. Ito et al.

Now let us focus on the 6-th row in the matrix. In this row, n2 in Community 1
has the largest value. However, this ranking for n6 is different from our intuition. The
importance score of n5, a node in the same community as n6, should be higher than n2,
because the community in n2 is different from that of n6.

If we increase a diffusion factor (e.g., γ = 0.999), the ranking relative to each docu-
ment will eventually be identical to that of the HITS authority ranking and determined
irrespective of the community where the document belongs.

To prevent the importance rankings from diverting away from the topic (or com-
munity) users are interested in, Kleinberg [1] proposed to first extract documents that
include query terms, and apply the HITS algorithm to the subgraph of the extracted
documents.

We may also apply the Neumann kernels to the subgraph of documents containing
query terms. However, depending on the type of data (e.g., citation networks), the doc-
ument contents are not always available. Moreover, Bharat et al. [5] pointed out that
there can be a discrepancy between queries and the topics of high-ranked documents,
even if HITS is applied to the subgraph of documents containing query terms.

4 Proposed Method

To alleviate topic drifts in the Neumann kernels, we model the generative process of
citations, and apply the Neumann kernels to the weighted graphs induced by the model.
Unlike Kleinberg’s solution, document contents are not used to derive these graphs.

4.1 Generative Model for Citations

Probabilistic Latent Semantic Indexing [9] (pLSI) is a method of modeling the genera-
tive process of documents. In pLSI, the joint probability between document di and word
wj is given by the following equation.

p(di, wj) =
N∑

t=1

p(t)p(di|t)p(wj |t) (3)

where t ∈ {1, 2, . . . , N} represents a hidden topic of documents. The maximum likeli-
hood parameters for p(t), p(di|t) and p(wj |t) are estimated by the EM algorithm.

Cohn et al. [6] modeled the generative process of citations in a similar manner to
pLSI. Their model computes the generation probability of citations by using citations
in place of words in Eq.(3). Thus, the probability that document i cites j is

p(di, cj) =
N∑

t=1

p(t)p(di|t)p(cj |t)

where di represents a citation emanating from document i, and cj represents a citation
to document j.

They also proposed to use p(cj |t), which is the generative probability of a citation
within Community t, as the importance of document j in Community t. Although this
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method (pHITS) gives the importance rankings by taking the communities into account,
it cannot compute the relatedness or relative importance among documents such as
those given by the Neumann kernels.

4.2 Applying Neumann Kernels to Community Graphs

In this section, we propose a method to solve the topic drift problem in the Neumann
kernels. The proposed method maintains the property of the Neumann kernel as a mix-
ture of importance and relatedness, and also takes communities into consideration, even
when it is biased towards importance. This method consists of three steps.

Step 1. Apply pLSI to the citation graph to obtain p(t|di, cj), which is the probabil-
ity that a citation from document i to another document j is made in the context of
community t (t = 1, . . . , N ).

Create community graph Gt for t = 1, . . . , N , with the same vertex set as the original
citation graph, but assign the probability p(t|di, cj) as the weight to the edge from i to
j. Thus the adjacency matrix of the t-th community graph At = A(Gt) is a square
matrix with (i,j)-element of A(Gt) = p(t|di, cj) if (i, j) ∈ E, and 0 otherwise.

Step 2. For each t, apply the Neumann kernels to the co-citation matrix AT
t At. The

Neumann kernel for community t is given by the following equation.

K̂t,γ =
∞∑

n=1

(
γ

λ
)n−1 (AT

t At

)n
(4)

This equation is identical to Eq.(1), except that At is used in place of the adjacency
matrix of the original citation graph.

Step 3. Finally, sum the Neumann kernels in Eq. (4) over all communities t as follows.

Rγ =
N∑

t=1

K̂t,γ . (5)

This matrix Rγ retains positive semi-definiteness, because the sum of positive semi-
definite kernels is still a positive semi-definite kernel [10].

4.3 Relation to Hofmann’s pLSI-Based Fisher Kernels

The Fisher kernels [11] are a method to obtain a kernel from generative models. To
derive Fisher kernels from a generative model, we need to compute the Fisher score
u(d, θ), the gradient of the log-likelihood function for data d with respect to the param-
eters θ. Given the Fisher score u(d, θ), the Fisher kernel is given by following equation.

K(di, dj) = u(di; θ)TI(θ)−1u(dj ; θ)

Here, I(θ) is the Fisher information matrix, typically approximated by the unit matrix.
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Hofmann [7] proposed a Fisher kernel for computing document similarity based on
pLSI. The log-likelihood function of pLSI is given as follows.

log p(di) =
∑

j

p̂(wj |di)
N∑

t=1

log p(wj |t)p(t|di)

where p(wj |t) and p̂(wj |d) respectively represent the probability that word wj is gen-
erated from topic t, and the empirical probability of word wj in document d. Hof-
mann computed the derivatives of the log-likelihood function of pLSI wrt parameters
ρjt = 2

√
p(wj |t) and ρt = 2

√
p(t) to yield two types of Fisher kernels. The deriva-

tives wrt ρjt is given by

∂ log p(di)
∂ρjt

=
p̂(wj |di)p(t|di, wj)√

p(wj |t)
.

So the resulting Fisher kernel is

K̄(d, d′) =
∑
j=1

p̂(wj |d)p̂(wj |d′)
N∑

t=1

p(t|d, wj)p(t|d′, wj)
p(wj |t)

.

Analogously, we can define the Fisher kernels for citation networks by replacing word
wj with cj , namely a citation to document j. The Fisher kernel K̄ based on ρjt in this
case can be written as a matrix

K̄ =
N∑

t=1

ĀT
t Āt, (6)

where the (i,j)-element of Āt is p(t|di, cj)/
√

p(cj |t) if (i, j) ∈ E, and 0 otherwise.
As seen from the term ĀT

t Āt in Eq.(6), this Fisher kernel essentially computes the
sum of (reweighted2) co-citation graphs for communities t = 1, . . .N . Because compu-
tation for each community t is identical to co-citation coupling, the score is zero for any
pair of documents not directly co-cited. By contrast, as mentioned in Section 4.2, our
proposed kernels (Eq.(5)) compute the weighted sum of all paths between documents,
so they assign non-zero weights to any document pair as long as they are connected in
a community graph; see the discussin on the Neumann kernels in Section 2.

Hofmann used another Fisher kernel based on parameter ρt to compensate for this
problem. This kernel is defined as

K̃(d, d′) =
N∑

t=1

p(t|d)p(t|d′)/p(t).

However, this kernel does not have a clear interpretation as a link analysis measure,
since this equation does not involve citation c.

2 A subtle difference between the graphs induced by Āt and At is that the edge weights in the
former are reweighted by

√
1/p(cj |t).
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(a) community graph 1 (b) community graph 2

Fig. 2. Two community graphs induced by the graph of Fig 1 (a). Edges without weight labels
mean their weights equal to 1.0.

4.4 Example

The three steps of our proposed methods (Section 4.2) are demonstrated with a graph of
Fig 1 (a). We set the parameter γ for Neumann kernels to 0.99, and the hyperparameter
(the number of latent communities) N to 2 in pLSI. In the first step, we apply pLSI to
Fig 1 (a) and obtain the two community graphs shown in Fig 2 (a), (b).

In Step 2, the Neumann kernels are applied to each community graph. Because the
nodes n1 and n2, the most important nodes in terms of HITS authority ranking, are not
connected to n4, n5 and n6 in the two community graphs, the scores for n1 and n2
relative to the latter nodes are 0 in the respective Neumann kernels.

In Step 3, our proposed kernels (Eq. (5)) sum the Neumann kernel matrices over
communities 1 and 2. As a result, the ranking for documents that only have citations
within a community graph is biased towards the importance in that community. The
ranking relative to the document n3 located between the two communities is a mixture
the importance in two communities.

At γ = 0.99, the final kernel R0.99 is given as follows.

R0.99 =

⎛⎜⎜⎜⎜⎜⎜⎝
115.04 235.81 43.56 0.00 0.00 0.00
235.81 489.90 91.63 0.00 0.00 0.00
43.56 91.63 40.82 37.59 90.96 10.18
0.00 0.00 37.59 69.38 157.23 20.07
0.00 0.00 90.96 157.23 375.79 42.60
0.00 0.00 10.18 20.07 42.60 6.70

⎞⎟⎟⎟⎟⎟⎟⎠ . (7)

The rankings in the 4-th to 6-th rows are quite different from those of K̂0.99 (Eq. (2)).
For example, in the 6-th row of K̂0.99, the highest score (2.90) is assigned to n2, which
is a node in Community 1, despite that n6 is in Community 2. By contrast, Eq. (7) as-
signs the largest value (42.60) to n5, the node with the most in-links in Community 2.
We can see that our proposed kernels are biased towards the importance in the commu-
nity where each document belongs.
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Table 1. HITS authority rankings on community graphs. Columns T, H and P respectively show
the index of the communities, HITS authority ranking in the community graph, and the ranking
of pHITS.

T H P Title
1 1 1 Building a large annotated corpus of English: the Penn Treebank

2 3 Statistical decision-tree models for parsing
3 2 A new statistical parser based on bigram lexical dependencies
4 6 Unsupervised word sense disambiguation rivaling supervised methods
5 5 Word-sense disambiguation using statistical models of Roget’s categories trained

2 1 2 A stochastic parts program and poun phrase parser for unrestricted text
2 1 Transformation-based error-driven learning and natural language processing
3 3 A practical part-of-speech tagger
4 5 A maximum entropy model for part-of-speech tagging
5 8 MBT: A memory-based part of speech tagger-generator

3 1 3 Aligning sentences in parallel corpora
2 1 The mathematics of statistical machine translation: parameter estimation
3 4 Text-translation alignment
4 5 A program for aligning sentences in bilingual corpora
5 6 Char again: a program for aligning parallel texts at the character level

4 1 30 Generating summaries of multiple news articles
2 25 Empirically designing and evaluating a . . . model for summary generation
3 10 Generation of extended bilingual statistical reports
4 33 Practical issues in automatic documentation generation
5 20 MURAX: A robust linguistic approach for question answering . . .

5 1 1 Attention, intentions, and the structure of discourse
2 3 Multi-paragraph segmentation of expository text
3 4 Lexical cohesion computed by thesaural relations as an indicator of the structure of text
4 7 Combining multiple knowledge sources for discourse segmentation
5 11 A prosodic analysis of discourse segments in direction-giving monologues

5 Experiments

To evaluate the characteristics of the measures induced by our proposed kernels, we ap-
ply them to a bibliographic citation network in the field of natural language processing
consisting of 2280 nodes (papers). In the experiments throughout this section, we set
the number of communities (N ) in pLSI to 5.

5.1 Community Graphs

Before examining the characteristics of the kernels, we check whether communities
induced by Step 1 of our method are sensible. We computed the HITS and pHITS
rankings for each community graph Gt to elucidate the central topic of each community.
The top-5 lists are shown in Table 1.

From the title of the top ranked papers, we see that Community 1 represents a mix-
ture of ‘parsing’ and ‘word sense disambiguation’. Community 2 is the ‘part-of-speech
tagging’ community. Community 3 is on ‘machine translation’. Note that ‘sentence
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Table 2. The top-10 list generated by the plain Neumann kernels for ‘Empirical studies in dis-
course’ (γ = 0.001)

K̂ C H Title
1 1 771 Empirical studies in discourse
2 2 1 Building a large annotated corpus of English: the Penn Treebank
3 2 50 Attention, intentions, and the structure of discourse
4 2 76 Assessing agreement on classification tasks: the Kappa statistic
5 2 201 The reliability of a dialogue structure coding scheme
6 2 604 Message Understanding Conference (MUC) tests of discourse processing
7 2 1061 Effects of variable initiative on linguistic behavior in . . . language dialogue
8 − 3 Statistical decision-tree models for parsing
9 − 4 A new statistical parser based on bigram lexical dependencies

10 − 96 Centering: a framework for modeling the local coherence of discourse
11 − 8 Three generative, lexicalised models for statistical parsing

alignment’ is a fundamental technique to statistical machine translation. Community 4
represents the related fields of ‘summarization’ and ‘generation’ of documents. Finally,
community 5 is concerned about ‘discourse processing’. There is a clear similarity be-
tween the ranking from HITS and pHITS on each community except community 43.

5.2 Comparison

We computed (i) plain Neumann kernels, and (ii) our proposed kernels (Eq. (5)). Each
kernel matrix was treated as a ranking method by taking the i-th row vector of the matrix
as the score vector for the i-th node (paper). Given the i-th score vector, or the ranking
induced thereof, we call the i-th node as the root paper of this ranking.

To observe the differenc in the character of these kernels, We compare the top-10
papers relative to a fixed root paper, ‘Empirical studies in discourse’ by M. A. Walker
and Johanna D. Moore, Computational Linguistics 23(1):1–12, 1997. This paper was
used in our previous work as well, and ranks 14-th in Community 5 by HITS. Another
reason we selected this root paper is that it is a paper on discourse processing. Because
papers on discourse are not ranked among the top 10 HITS ranking (see column H in
Table 4), the ranking for this root paper is prone to the topic drift phenomenon.

Plain Neumann Kernels. Tables 2 (γ = 0.001), 3 (γ = 0.95) and 4 (γ = 0.9999)
show the list of top-10 papers induced by the plain Neumann kernels relative to the
root paper ‘Empirical studies in discourse.’ Columns K̂, C and H respectively display
the rankings induced by the plain Neumann kernels, co-citation coupling, and the HITS
authority score. A ‘−’ in column C indicates that the paper was not co-cited with the
root paper. Tht titles of papers on discourse processing are shown in boldface.

When γ = 0.001 (Table 2), the majority is formed by the papers on discourse pro-
cessing. Ranked topmost is the root paper, followed by the six papers co-cited with the
root paper, as indicated by column C.

3 In community 4, the rankings between HITS and pHITS are not similar, but pHITS also ranked
paper on summarization and generation topmost.
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Table 3. The top-10 list generated by the plain Neumann kernels for ‘Empirical studies in dis-
course’ (γ = 0.95)

K̂ C H Title
1 2 1 Building a large annotated corpus of English: the Penn Treebank
2 − 3 Statistical decision-tree models for parsing
3 − 2 A stochastic parts program and noun phrase parser for unrestricted text
4 − 4 A new statistical parser based on bigram lexical dependencies
5 2 50 Attention, intentions, and the structure of discourse
6 1 771 Empirical studies in discourse
7 − 8 Three generative, lexicalised models for statistical parsing
8 2 76 Assessing agreement on classification tasks: the Kappa statistic
9 − 6 Word-sense disambiguation using statistical models of Roget’s categories trained

10 − 5 Unsupervised word sense disambiguation rivaling supervised methods

Table 4. The top-10 list generated by the plain Neumann kernels for ‘Empirical studies in dis-
course’ (γ = 0.9999)

K̂ C H Title
1 2 1 Building a large annotated corpus of English: the Penn Treebank
2 − 2 A stochastic parts program and noun phrase parser for unrestricted text
3 − 3 Statistical decision-tree models for parsing
4 − 4 A new statistical parser based on bigram lexical dependencies
5 − 5 Unsupervised word sense disambiguation rivaling supervised methods
6 − 6 Word-sense disambiguation using statistical models of Roget’s categories trained
7 − 7 The mathematics of statistical machine translation: parameter estimation
8 − 8 Three generative, lexicalised models for statistical parsing
9 − 9 Transformation-based error-driven learning and natural language processing

10 − 10 Integrating multiple knowledge sources to disambiguate word sense

In Table 3, we show the ranking at γ = 0.95 as a measure midway between relat-
edness and importance. Although the parameter value γ = 0.95 might seem too biased
towards 1.0 (HITS importance), transition from relatedness to importance occurs rather
late in the parameter range (typically in the range of 0.9 < γ < 1.0) [3]. As a result,
the ranking at γ = 0.5, for example, is mostly identical to γ = 0.1.

Only three papers on discourse remain in Table 3. These three eventually fall out of
top 10 at γ = 0.9999 (Table 4). The ranking at γ = 0.9999 is identical to HITS impor-
tance ranking. We also sampled several other parameter points between γ = 0.001 and
0.9999. None of these ranking lists included discourse papers other than those appeared
in Table 2 for γ = 0.001.

Proposed Kernels. Tables 5 (γ = 0.001), 6 (γ = 0.95) and 7 (γ = 0.9999) show
the lists of top-10 papers induced by the proposed ‘community-aware’ kernels Rγ rel-
ative to ‘Empirical studies in discourse.’ In these tables, column R shows the rankings
induced by the proposed kernels.

At γ = 0.001 (Table 5), the ranking is similar to that of the plain Neumann kernels
(Table 2) and most of top ranked papers are on discourse processing.
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Table 5. The top-10 list generatd by the proposed kernels for ‘Empirical studies in discourse’
(γ = 0.001)

R C H Title
1 1 771 Empirical studies in discourse
2 2 201 The reliability of a dialogue structure coding scheme
3 2 76 Assessing agreement on classification tasks: the Kappa statistic
4 2 1061 Effects of variable initiative on linguistic behavior in . . . language dialogue
5 2 50 Attention, intentions, and the structure of discourse
6 2 1 Building a large annotated corpus of English: the Penn Treebank
7 2 604 Message Understanding Conference (MUC) tests of discourse processing
8 − 96 Centering: a framework for modeling the local coherence of discourse
9 − 374 A trainable document summarizer

10 − 60 Evaluating a focus-based approach to anaphora resolution

Table 6. The top-10 list generated by the proposed kernels for ‘Empirical studies in discourse’
(γ = 0.95)

R C H Title
1 1 771 Empirical studies in discourse
2 2 201 The reliability of a dialogue structure coding scheme
3 2 76 Assessing agreement on classification tasks: the Kappa statistic
4 2 50 Attention, intentions, and the structure of discourse
5 2 1061 Effects of variable initiative on linguistic behavior in . . . language dialogue
6 2 1 Building a large annotated corpus of English: the Penn Treebank
7 − 96 Centering: a framework for modeling the local coherence of discourse
8 − 61 Multi-paragraph segmentation of expository text
9 − 77 Lexical cohesion computed by thesaural relations . . .

10 − 115 Combining multiple knowledge sources for discourse segmentation

Table 7. The top-10 list generated by the proposed kernels for ‘Empirical studies in discourse’
(γ = 0.9999)

R C H Title
1 2 50 Attention, intentions, and the structure of discourse
2 − 61 Multi-paragraph segmentation of expository text
3 − 77 Lexical cohesion computed by thesaural relations . . .
4 − 115 Combining multiple knowledge sources for discourse segmentation
5 − 198 A prosodic analysis of discourse segments in direction-giving monologues
6 2 76 Assessing agreement on classification tasks: the Kappa statistic
7 − 150 An automatic method of finding topic boundaries
8 − 162 Text segmentation based on similarity between words
9 − 317 Intention-based segmentation: Human reliability and correlation with . . .

10 − 340 Replicability of transaction and action coding in the map task corpus

At γ = 0.95 (Table 6), we see the increase in the number of discourse papers, which
is contrastive to the plain Neumann kernel with γ = 0.95 (Table 3) listing only three
discource papers.



246 T. Ito et al.

The ranking list in Table 7 for γ = 0.9999 consists solely of papers on discourse
processing and text segmentation, a subtask of discourse processing. The root paper
and most of the papers co-cited with the root are not on this list, but the top 5 papers
match the most important papers for Community 5 (Table 1).

Fron these results, we see taht our proposed kernels did not suffer from the topic drift
problem for this root paper; when γ is increased, they tend towards importance within
the community where the root paper belongs. By contrast, plain Neumann kernels often
assigned higher scores to papers in other communities, such as ‘A new statistical parser
based on bigram lexical dependencies’; see Tables 2, 3 and 4.

6 Conclusions

We constructed a citation graph for each community using a technique similar to pLSI
and pHITS. Applying Neumann kernels to each community graph, we can rank docu-
ments by taking the community of each individual document into consideration.

The technique proposed in this paper can be extended with other latent topic models
beside pLSI. We are planning to apply Latent Dirichlet Allocation [12] to construct
community graphs.
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Abstract. In this paper we introduce distribution rules, a kind of as-
sociation rules with a distribution on the consequent. Distribution rules
are related to quantitative association rules but can be seen as a more
fundamental concept, useful for learning distributions. We formalize the
main concepts and indicate applications to tasks such as frequent pattern
discovery, sub group discovery and forecasting. An efficient algorithm for
the generation of distribution rules is described. We also provide interest
measures, visualization techniques and evaluation.

1 Introduction

Learning and discovering probability distributions is an important and difficult
problem in statistics, machine learning and data mining [12]. Machine learning
has focused particularly on learning conditional probabilities of one target vari-
able y (either numerical or categorical) with respect to a set of input variables X .
However, the output of a learning algorithm is typically reduced to associating
the most adequate value of y to each combination of values of the variables in X .
This is the case in regression, classification and association discovery. Learning
whole distributions goes beyond point estimation. In this paper, we approach
the problems of discovering and presenting important conditional distributions
of a target variable with respect to a set of input variables. Our approach is
based on association rule discovery [1].

Association rules (AR) are highly legible chunks of knowledge that can be
discovered from data. On top of that, the process for generating association
rules is efficient enough to deal with very large databases, and the intended
result is very well defined and free of heuristics. Although devised mainly for
descriptive purposes, AR can also be useful in classification [14], clustering [10],
regression [17], recommendation and subgroup discovery [11].

Typically, algorithms for the discovery of AR deal with categoric attributes
only. Srikant [19] proposed a specific approach for the discretization of numer-
ical attributes bearing in mind the descriptive aim of AR. In predictive tasks
� Supported by POCI/TRA/61001/2004 Triana Project (Fundação Ciência e Tecnolo-

gia), FEDER e Programa de Financiamento Plurianual de Unidades de I & D.
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such as regression, [17] or classification [14] the independent numeric variables
can be discretized using the supervised discretization MDL based algorithm [8].
Avoiding pre-discretization, Fukuda et al. [9] proposed an algorithm for han-
dling pairs of numeric attributes on the LHS of association rules. Aumann and
Lindell [2] introduced Quantitative Association Rules (QAR), where a frequent
itemset (on the LHS of the rule) is associated with a statistical summary of a
numeric attribute of interest(on the RHS). Numeric attributes appearing on the
LHS are pre-discretized. Other authors have meanwhile improved some aspects
of the original QAR [20,21], in a different direction from the work proposed
here.

To learn and discover distributions we propose distribution rules (DR). These
associate a frequent itemset with an empirical distribution of a numeric attribute
of interest without any loss of information. Distribution rules can be used in de-
scriptive data mining tasks with the advantage of avoiding pre-discretization
of the numeric variable of interest. We provide an efficient algorithm that dis-
covers distribution rules and describe how to filter interesting rules, using the
statistical distribution of Kolmogorov-Smirnov. Distribution rules can be easily
visualized as frequency polygons and viewed by a domain expert or data analyst.
Besides, DRs can also potentially be used in a predictive setting, and are not
fundamentally limited to numeric properties of interest.

2 Distribution Rules

Definition. A distribution rule (DR) is a rule of the form A → y = Dy|A, where
A is a set of items as in a classical association rule, y is a property of interest
(the target attribute), and Dy|A is an empirical distribution of y for the cases
where A is observed. This attribute y can be numerical or categorical. Dy|A is
a set of pairs yj/freq(yj) where yj is one particular value of y occurring in the
sample and freq(yj) is the frequency of yj for the cases where A is observed. �
In this paper we will assume y is a numeric variable. Nevertheless, the concept
of distribution rules is extended for categorical attributes as well. The attributes
on the antecedent are either categorical or are discretized as in [8].

Example. Suppose we have clinical data describing habits of patients and their
level of cholesterol. The distribution rule smoke ∧ young → chol = {180/2,
193/4, 205/3, 230/1} represents the information that, of the young smokers on
the data set, 2 have a cholesterol of 180, 4 of 193, 3 of 205 and 1 of 230. This
information can be represented graphically, for example, as a frequency polygon.
The attribute chol is the property of interest.�
Given a dataset S, the task of distribution rule discovery consists in finding all the
DR A → y = Dy|A, where A has a support above a determined mininum σmin

and Dy|A is statistically significantly different (w.r.t. a pre-defined threshold)
from the default distribution Dy|∅. The default distribution is the one obtained
with all the values of y for the whole dataset.
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Fig. 1. Graphical representation of one distribution rule for the dataset auto-mpg

2.1 Presentation and Visualization

Although distribution rules can be output as text, the length of the empirical
distribution is normally too long to be readable in practice. Since the consequent
of one distribution rule is an empirical distribution, it can be represented as a
frequency polygon. In Figure 1 we can see 4 rules obtained from the dataset auto-
mpg [16]. The antecedent of each rule (e.g., the leftmost) is displayed as the main
title. Some selected measures of the distribution and the name of the property
of interest (P.O.I.: MPG) are shown within the plot. The x axis is the domain of
the P.O.I. and the y axis the estimated probability density. The polygon is drawn
by binning the domain of the P.O.I. into a given number of intervals (default
10) with equal width w. For each interval I, the pair x, y is plotted. The value
of x is the lower limit of the interval and y = freqI/(freqr ∗w), where freqI is
the number of values in I and freqr is the total number of values of the P.O.I.
covered by the rule.

The distribution for the set of cases that satisfy the condition is shown in
black, and the default distribution for the whole population is shown in grey.
For the distribution rule shown in Figure 1 we can see that cars with 6 cylinders
built on the US tend to make less miles per galon than the whole set of cars. For
those cars, the values of MPG are very concentrated around 20. Nevertheless, we
can see that there are some economic cars in this group because of the right tail
of the black curve. The interest of this rule is shown as KS.int, the complement to
1 of the Kolmogorov-Smirnov test p-value as explained in the following section.

Alternatively, the empirical distribution could be represented by a parametric
distribution curve (e.g., Normal), or a boxplot. In this paper we adopted the fre-
quency polygon, since it does not require any assumption about the distribution
of the P.O.I. and it minimizes the loss of information regarding the distribution.

2.2 Measuring the Interest of DRs

The interest of a discovered pattern can be measured according to objective
and subjective criteria [18]. In the case of association rules, objective interest
measures typically try to assess how much the observed frequency of the conse-
quent of the rule, under the conditions imposed by the antecedent, deviate from
the frequency that would be expected assuming that antecedent and consequent
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were independent. This is the case of measures such as lift (a.k.a. interest), lever-
age or conviction[5]. The χ2 statistical test has also been extensively used for
testing the statistical independence between the antecedent and consequent of
association rules [15].

In the case of distribution rules, objective interest can be measured by as-
sessing the difference between the distribution of the consequent and a reference
distribution. This, in principle, is the distribution of the whole population. The
difference between two empirical distributions can be assessed through a statis-
tical goodness of fit test, such as Kolmogorov-Smirnov [7].

Definition. Given a set of transactions DS, a property of interest y in DS, and
a distribution rule A → Dy|A obtained from DS, the KS-interest of that rule is
1−p where p is the p-value of the Kolmogorov Smirnov test for the two empirical
distributions Dy|A and Dy|∅. �
Given this notion of the interest of a distribution rule, we can filter a set of
DR’s by selecting the ones with KS-interest above a pre-defined threshold. This
threshold can be intuitively set by a data analyst since it has a clear statistical
meaning. Although other notions of interest can also be defined using other
statistical tests, we will for now focus on the use of the KS test.

3 Using DRs

Distribution rules can be used in descriptive pattern discovery tasks, although
they can also be adopted in predictive tasks as well. One immediate advantage
of their use in these situations is that it is not required to previously discretize
the attribute y.

One way to handle distribution rules is by working with them as regular asso-
ciation rules. In Table 1 we can see a textual representation of one rule discovered
for the dataset Determinants of Wages from the 1985 Current Population Sur-
vey in the United States, a.k.a. Wages, also used in [2]. While the antecedent of
each of these rules is a frequent itemset, the consequent is a raw distribution.
Although the rules can be represented in this textual form, they are internally
stored using compact data structures. To present the rule, it is more effective to
graphically visualize them, or to summarize them, as for example in [2].

Having obtained a set of distribution rules, these can be presented, sorted
and filtered in many different ways. In this paper, we propose one particular
graphical multi-plot presentation (Figure 2). In each plot, the default distri-

Table 1. A distribution rule produced for the dataset Wages, with min-sup=0.1, min-
KS.int=1 − 0.05 and a minimal KS improvement of 0.01

Sup=0.118 KS.int=1-0.0085 Mean=10.982 St.Dev=6.333
EDUCATION=(12.5-15.5] & SOUTH=0 & RACE=3
-> WAGE={ 3.98/1,4.0/1,4.17/1,4.5/1,4.55/1,4.84/1,5.0/1,5.62/1,5.65/1,5.8/1,6.0/1,6.25/4,7.14/1,7.5/1,7.67/1,7.7/1,7.96/1,

8.0/2,8.4/1,8.56/1,8.63/1,8.75/1,8.9/1,9.22/1,9.63/1,9.75/1,9.86/1,10.0/3,10.25/1,10.5/1,10.53/1,10.58/1,10.61/1,
11.11/1,11.25/2,12.0/1,12.47/1,12.5/4,13.07/1,13.75/1,13.98/1,14.29/1,15.0/1,16.0/1,16.14/1,16.42/1,17.25/1,17.86/1,
18.5/1,21.25/1,22.5/1,26.0/1,44.5/1 }
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Fig. 2. Multi plot of a set of 8 distribution rules. Each is plotted against the default
distribution.

bution is used as a term of comparison and appears in grey. The rules shown
are a subset of the 35 rules produced for the dataset Wages, obtained with a
minimal antecedent support of 0.1 and a min KS-interest of 0.95. We have also
applied an improvement filter, as suggested in [4], on the KS-interest. In this
case, improvement(A → B) can be defined as min({KS-interest(A → B)−KS-
interest(As → B) | As ⊆ A}. The minimal KS-interest improvement used in
these experiments was 0.01.

The 35 rules can be visualized in mosaic plots of n ×m. We show a mosaic
of 2 × 4 with 8 rules selected from the 35. The selection can be done visually
by paging the 35 rules in mosaics of n×m. We will refer to the rules on Figure
2 by number from 1 to 8, reading from left to right and from top to bottom.
Rules 1 and 2 describe people with 13 to 15 years of education which are not
from the South. Their wages distribution is significantly different from the whole
population and visibly better although concentrated on the same interval. Rule
2 is a refinement of rule 1 with higher interest. It seems that people with race=3
(white) in the conditions stated before have a slightly but significantly better
situation. Rule 3 describes married males, and rules 4 and 5 show that occupation
1 has a wider and higher range of income than occupation 3. Rule 6 shows the
impact of age, and rule 8 the positive effect of holding a union membership. Rule
7 indicates that people with higher education have higher wages.

Used in this setting, distribution rules are selected by the Kolmogorov-Smirnov
statistic. Improvement enables the elimination of non informative sub rules. The
visualization of the distributions gives a broader picture of the subset of data cov-
ered by each rule. With these parameters (min KS-int=0.95 and min improve-
ment=0.01) we get very few rules.

Distribution rules can be naturally applied to the data minig task of sub-
group discovery [13] both for numeric and categorical properties of interest. An
interesting subgroup corresponds to a KS-interesting distribution rule.



252 A.M. Jorge, P.J. Azevedo, and F. Pereira

Input: minsup, KS-int = 1 − α, DB
Rules = ∅;1

First database scan (count items)2

Build DI = {items of the form y = vi belonging to property of interest};3

Build AI = {antecedent items with count ≥ minsup} ;4

Second database scan (bitmaps mounting)5

Mount coverage bitmap for each item in AI and DI;6

Compute Dy|∅ using DI bitcounting;7

foreach transaction t ∈ DB do8

Set correspondent bit in each item (in AI and DI) occurring in t;9

Count 2-itemsets occurring in t;10

end11

/* (Expansion phase) */
foreach frequent item i ∈ AI do12

Compute Dy|i from bitmap(i) and bitmaps(DI);13

if KS(Dy|∅, Dy|i) < α then Rules = Rules ∪ {i → Dy|i};14

foreach frequent item i′ > i (> refers to items ordering) do15

a = {i, i′}16

bitmap(a) = bitmap(i) ⊕ bitmap(i′);17

if support(a) ≥ minsup then18

Compute Dy|a from bitmap(a) and bitmaps(DI);19

if KS(Dy|∅, Da) < α then Rules = Rules ∪ {a → Dy|a};20

Rules = Rules ∪ Expansion(a, i′, Dy|∅, α);21

end22

end23

end24

Output: Rules

Algorithm 1. CAREN-DR Depth First Distribution rules derivation

Distribution rules can also potentially be used in predictive tasks such as
regression as in [17] or probability density estimation as in [6]. In this paper we
have focused on the fundamental concepts and on the processes of generating,
filtering and presenting the rules.

4 Rule Generation

A set of distribution rules can be obtained from a given database by computing
all the frequent itemsets a not involving the property of interest y. For each
frequent itemset a we compute the associated distribution Dy|a. Counting oper-
ations are efficiently implemented through the use of bitmaps.

4.1 Algorithm and Computational Complexity

The algorithm CAREN-DR works by finding frequent itemsets and, simultane-
ously, their associated p.o.i. distributions. For each antecedent item, a bitmap
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Input: (itemset,lastitem,Dy|∅,α)
R = ∅;1

foreach i ∈ AI , i > lastitem (> refers to items ordering) do2

if ∀ a ∈ itemset support({a, i}) ≥ minsup then3

new = itemset ∪ {i};4

bitmap(new) = bitmap(itemset) ⊕ bitmap(i);5

support(new) = bitcount(new);6

if support(new) ≥ minsup then7

Compute Dy|new from bitmap(new) and bitmaps(DI);8

if KS(Dy|∅, Dnew) < α then R = R ∪ {new → Dnew}9

R = R ∪ Expansion(new, i, Dy|∅, α);10

end11

end12

end13

return R14

Function Expansion(itemset,lastitem,Dy|∅,α)

that represents its coverage is built. Antecedents are formed by depth first ex-
pansion. When an item is added to the antecedent to build a new itemset, a new
bitmap is calculated (through bit-intersection) and its support can be counted
through a bitcounting operation. To help in unfrequent itemset pruning during
itemset expansion, the algorithm builds a flat matrix with 2-itemsets counts.
Thus, expensive bitcounting operations can be avoided if subsets of the candi-
date itemsets are not frequent.

For an efficient rule’s consequent calculation, each distribution item (the nu-
meric values associated with the p.o.i.) also keeps a bitmap. Deriving a new dis-
tribution requires intersection operations between the bitmap of the antecedent
itemset and the bitmaps of the distribution items. The algorithm extracts sig-
nificant rules by performing a Kolmogorov-Smirnov test between each new rule
(Dy|a) and the a priori distribution (Dy|∅).

The algorithm receives as input a minsup for antecedent filtering and an α
that is used to set the minimal KS-interest threshold in 1−α. It can also receive
an improvement threshold value. The theoretical complexity of the method is
dominated by the complexity of finding frequent itemsets, which is known to
be linear on the number of cases. Bitmap operations for the P.O.I. distribution
update are also linear on the number of cases.

CAREN-DR algorithm conceptually resembles OPUS-IR algorithm [20], since
it also uses a depth-first approach. In fact, with minimal adjustments, our pro-
posal can be easily modified to work in a top-N rules search mode. However, we
use bitmaps to represent itemset coverage and to calculate p.o.i. distributions.
Our implementation of CAREN-DR is part of the java-based association rule
discovery engine CAREN [3]. In relation to the QAR proposal of Aumann and
Lindell, our algorithm does not require an extra database scan to compute the
distributions associated to each rule. Furthermore our method outputs whole
distributions and defines the interest of a rule in terms of comparison of distri-
butions rather than the comparison of means.

.
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Table 2. Description of the datasets used to measure the computation time (upper
table). The column #Distinct indicates the number of distinct values of the property
of interest (p.o.i.). Times in seconds and number of rules generated for the datasets for
different minimal supports (lower table).

Dataset #Attr #Records p.o.i. #Distinct
mpg 7 398 MPG 129
housing 13 506 MEDV 211
abalone 8 4177 RINGS 28
cal. houses 9 20640 mhousevalue 3842

Time in seconds Number of rules generated
min.sup MPG Housing Abalone Cal. Houses MPG Housing Abalone Cal. Houses

0.3 3.202 6.811 12.425 36.993 4 98 4 6
0.2 3.220 7.107 12.313 43.936 15 310 4 22
0.1 3.629 8.790 12.281 56.326 67 1490 41 74

0.05 5.089 13.894 12.790 72.084 240 5848 516 197
0.01 5.643 48.962 15.095 153.867 1369 51185 3158 1867

5 Evaluation

In this section we show how our algorithm CAREN-DR performs on 4 different
datasets described in Table 2. The algorithm has been run with different values
of minimal support for a minimal KS-interest of 0.95 and with the improvement
switch turned off. We can see that the algorithm scales up quite well with the
number of examples and the value of minimal support. Table 2 (bottom) shows
the times in seconds spent on a Pentium IV, 1.6GHz and 1GB RAM. These
times include writing the rules to a csv file (one of the possible output modes).
Table 2 (bottom) also shows the number of rules produced per run. We stress,
however, that by turning improvement on, the number of rules falls dramatically.

These experiments show that the algorithm is capable of generating a very
large number of distribution rules (and writing them as text to disk) in a very
reasonable time (51185 rules for Housing in 49 seconds). In the case of the dataset
Cal. Houses, CAREN-DR processes the 20640 cases in 2.5 minutes. Additional
experiments with this dataset show that the time spent by CAREN-DR grows
practically linearly as the number of examples rises from 5000 to 20000. In
another set of experiments we observe that the time spent by the KS-test is also
linear w.r.t the size of the distributions.

In our approach, the number of different values of the property of interest is
also a source of complexity. However, typical numerical attributes tend to have
low numerical precision, thus low variety of values. In the event of having to deal
with a high precision attribute, we can round the values to a reasonable number
of significant digits. Experimentally, we observe that the p-value of the KS test
is robust to rounding to 3 significant digits.

5.1 An Artificial Dataset

In order to test the ability of the KS test to identify interesting rules, we have
generated an artificial dataset with 1000 cases. The values of the attributes were
chosen so that specific interesting distribution rules should appear. Thus, we have
randomly initially generated the values for the p.o.i. y from a N(0,1) distribution.
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Fig. 3. Distribution rules for the artificial dataset

After that we have randomly assigned values of r or s to the categorical attributes
a, b, and c. Whenever a and b had the values r we added to the value of y an extra
random value from a distribution N(-2,1). The algorithm CAREN-DR produced
the distribution rules shown in Figure 3 with a minimal support of 0.1, and a
minimal KS-interest of 0.95. The minimal improvement on KS-interest used was
0.001. If the improvement filter is turned off, some redundant rules appear.

As we can see, only 5 rules have been identified, apart from the a priori rule.
The condition a = r & b = r appears as expected, but also its items separately
and their complements. The attribute c does not appear since the distribution
of y|c is similar to the distribution of y|∅.

6 Case Study

We have applied distribution rules to the analysis of the main causes of delays in
trip time duration for buses in a urban centre. This is a real dataset with about
8000 cases describing trips of a specific bus line. The dataset has 16 attributes
plus the property of interest TripTime. The numeric attributes of the antecedent
have been previously discretized using an implementation of the algorithm of
Fayyad and Irani [8]. Since this discretization approach requires a class attribute,
it is done with respect to a discretized version of the P.O.I, as in [17]. Afterwards,
the P.O.I. is used in its continuous version. We obtain 36 relevant rules with
support above 0.05 and KS-interest above 1-1E-05. Improvement is 0.0001.

In Figure 4 we can see a selection of the rules. Most rules have only one
condition on the antecedent due to the effect of improvement filtering. We can
see for example the difference in the distribution of the time a bus takes to make
its route in March (Month=3) and in August (Month=8). Holydays also have
a positive impact on trip time (plot 6) . The last two plots show the difference
between Sundays and Fridays. The other attributes that appear on Figure 4 are
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Fig. 4. Distribution rules for the buses dataset

Start, which is the starting time of the bus trip in seconds, DayOfYear, which is
the number of days passed since 1st of January of the year being studied, and
TypeOfDay, which can have values normal, or bank holiday.

This type of rules are being used to attempt to reduce the costs with personnel,
since unpredicted delays often force the bus company management to pay for
extra labour time. This way, distribution rules can be used both to give managers
indications about the most relevant causes of delay and also enable to predict
the probability that TripTime will be higher than a certain threshold.

7 Related Work

Distribution rules are mainly related to learning probability distributions [12],
subgroup discovery [13] and quantitative association rules (QAR).

Aumann and Lindell’s work on QAR uses a z-test to identify rules significance.
As already pointed by Webb [20], z-test is inappropriate for small samples. The
OPUS-IR authors propose the use of the standard t-test to decide on rules sig-
nificance since the t-test tends to the z-test as the number of degrees of freedom
increases. However, both z-test and t-test assume normality which in pratice
cannot be guaranted. In this sense, using the KS approach is an advantage since
no further distribution assumptions need to be considered.

Aumann and Lindell [2] propose an elaborated mechanism to identify and filter
all the significante basic rules and sub-rules. They propose a notion of basic rule
and an algorithm to find all significante “sub-rules” and “super-rules”. The algo-
rithm works as a post-mining step and builds a lattice of frequent sets to identify
when a rule is basic or a sub-rule. The notion of super-rule is related to our notion of
improvement. We also filter super-rules that do not bring about an improvement in
the property of interest (in our case the KS-interest). However, applying improve-
ment filtering does not require any sofisticated algorithm with lattice traversel. In
fact, improvement filtering is computed on the fly, along rule derivation.
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The QAR authors also present a mechanism to derive rules with more than
one p.o.i. in the consequent. In pratice, it seems interesting to analyse several
numerical properties in parallel. QAR has this feature as a post-processing step.
We include this feature in the CAREN-DR engine during rule derivation. Thus,
it is only required to specify the different properties to derive rules for.

Association rules have been used in subgroup discovery. APRIORI-SD [11]
uses association rules to discover interesting subgroups with categorical proper-
ties of interest. Our approach enables the discovery of subgroups with numeric
and categoric properties of interest. In this paper we employ the KS test to
handle numeric properties.

8 Conclusion

We have introduced the concept of Distribution Rules as a generalization of asso-
ciation rules. We provide the basic concepts, such as the general form, support
and objective interest of distribution rules. We also describe how to visualize
distribution rules. DRs are particulary interesting when there is a numerical
property of interest, although the concept can be extended to categorical prop-
erties as well. With classical association rules we would have to pre-discretize
the numerical attribute of interest. With quantitative association rules, we would
reduce the set of values in the consequent to a summary given by the mean or
median. In the case of distribution rules, we keep the whole set of values of the
property of interest and use these in graphical representations or post process-
ing. Distribution rules can be presented as text or graphically and can be used
in tasks of descriptive and predictive knowledge discovery.
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Abstract. When we consider the problem of finding influential nodes
for information diffusion in a large-scale social network based on the
Independent Cascade Model (ICM), we need to compute the expected
number of nodes influenced by a given set of nodes. However, a good es-
timate of this quantity needs a large amount of computation in the ICM.
In this paper, we propose two natural special cases of the ICM such that
a good estimate of this quantity can be efficiently computed. Using real
large-scale social networks, we experimentally demonstrate that for ex-
tracting influential nodes, the proposed models can provide novel ranking
methods that are different from the ICM, typical methods of social net-
work analysis, and “PageRank” method. Moreover, we experimentally
demonstrate that when the propagation probabilities through links are
small, they can give good approximations to the ICM for finding sets of
influential nodes.

1 Introduction

Recently, considerable attention has been devoted to investigating social net-
works [9,5,4,7,11,6], since the progress of the Internet, the World Wide Web,
and blogs has enabled us to collect real large-scale social networks. Here, a social
network is a network of relationships and interactions among social entities such
as individuals, organizations and groups. Examples include email networks, hy-
perlink networks of web sites, trackback networks of blogs, and scientific collab-
oration networks. Since information, ideas, and influence can propagate through
a social network in the form of “word-of-mouth” communications, it is an im-
portant research issue to find influential nodes for information diffusion in the
underlying network in terms of sociology and marketing. Namely, it is significant
to investigate the problem of finding nodes that generate a large spread of in-
formation. For example, Domingos and Richardson [2,12], and Kempe et al. [5]
in particluar studied the influence maximization problem, that is, the problem
of choosing a set of k nodes to target for initial activation such that it yields the
largest expected spread of information, where k is a given integer.

In order to investigate these problems, we need a model of information diffu-
sion in a social network. Although models for diffusion processes in a network
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have been studied in various fields including epidemiology, sociology, marketing
and physics [5,4], one of the conceptually simplest models is the Independent
Cascade Model (ICM) used by Goldenberg et al. [3], Kempe et al. [5], and Gruhl
et al. [4]. The ICM is a stochastic process model in which information propa-
gates from a node to its neighboring nodes at each time-step according to some
probabilistic rule. Therefore, when we consider the problem of finding sets of
influential nodes in a social network based on the ICM, we need to compute the
expected number σ(A) of nodes influenced by a given set A of nodes. It is an
open question to compute σ(A) exactly by an efficient method, and so good esti-
mates were obtained by simulating the random process many times [5]. However,
such computations become very heavy for a large-scale social network.

In this paper, as natural special cases of the ICM, we propose two novel in-
formation diffusion models such that a good estimate of σ(A) can be efficiently
computed. Using large real data from a blog network and a scientific collabora-
tion network, we experimentally explore properties of the proposed models. First,
we experimentally compare the proposed models with the ICM, typical methods
of social network analysis [13], and “PageRank” method [1] in terms of ranking
methods to extract influential nodes, and show that the proposed models provide
novel scalable ranking methods that can in general extract nontrivial nodes as
influential nodes. We also demonstrate that when the propagation probabilities
through links are small, the proposed models can provide good approximations
to the ICM for finding sets of influential nodes in a social network. On the other
hand, if we consider the influence maximization problem in the ICM, a provable
performance guarantee for a natural greedy alogrithm was obtained by Kempe
et al. [5]. We extend this result to the proposed models.

2 Independent Cascade Model

Based on the work of Kempe et al. [5], we recall the definition of the ICM, and
an approximation theory for the influence maximization problem in the ICM.

2.1 Definition

We consider the ICM for the spread of a certain information through a social
network represented by a directed graph. First, we call nodes active if they have
accepted the information. We assume that nodes can switch from being inactive
to being active, but cannot switch from being active to being inactive. When
node u first becomes active at step t, it is given a single chance to activate
each currently inactive child v, and succeeds with probablity pu,v. Here, pu,v is
a constant that is independent of the history of the process, and node v is called
a child of node u and node u is called a parent of node v if there is a directed
link (u, v) from u to v. If u succeeds, then v will become active at step t + 1. If
multiple parents of v first become active at step t, then their activation attempts
are sequenced in an arbitrary order, but performed at step t. Whether or not
u succeeds, it cannot make any further attempts to activate v in subsequent
rounds. The process terminates if no more activations are possible.
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For an initial active set A, let σ(A) denote the expected number of active
nodes at the end of the process. We call σ(A) the influence of target set A.

2.2 Approximation Theory

We consider the influence maximization problem in the ICM. Namely, for a given
positive integer k, we consider finding a set A∗

k of k nodes to target for initial
activation such that σ(A∗

k) ≥ σ(B) for any set B of k nodes based on the ICM.
For this problem, we analyze the following natural greedy algorithm:

1. Start with B = ∅.
2. for i = 1 to k do
3. Choose a node vi maximizing σ(B ∪ {vi})− σ(B).
4. Set B ← B ∪ {vi}.
5. end for

Let Bk denote the set of k nodes obtained by this algorithm. Then, Kempe
et al. [5] proved that σ(Bk) ≥ (1 − 1/e) σ(A∗

k), that is, they presented an ap-
proximation guarantee for this algorithm. Their proof relies on the theory of
submodular functions [8]. Here, for a function f that maps a subset of a finite
ground set U to a nonnegative real number, f is called submodular if f(S ∪{u})
− f(S) ≥ f(T ∪{u}) − f(T ) for any u ∈ U and any pair {S, T } of subsets of U
with S ⊂ T . They proved the result of the approximation guarantee by showing
that the function σ is submodular for the ICM.

However, for a naive implementation of this greedy algorithm, we need to
compute the influence σ(A) for each target set A. Since it is not clear how to
evaluate σ(A) exactly by an efficient method, Kempe et al. [5] obtained a good
estimate by simulating the random process 10, 000 times for each target set.
They argued that the quality of the approximation after 10, 000 iterations is
comparable to that after 300, 000 or more iterations.

3 Proposed Models

We propose two novel information diffusion models as natural special cases of
the ICM, and describe an approximate computation of influence σ(A) for them.
Moreover, we extend the approximation theory for the influence maximization
problem by Kempe et al. [5] to the proposed models.

3.1 Definitions

We define two natural special cases of the ICM. Let A be the initial active set
in the network, that is, the set of nodes that first become active at step 0. For
nodes u and v in the network, let d(u, v) denote the graph distance from u to v,
and let d(A, v) denote the graph distance from A to v, that is, d(A, v) = minu∈A

d(u, v). When there is no path from u to v, we set d(u, v) = ∞. Note that the
value of d(A, v) can be efficiently computed by graph theory [9].
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First, we define the Shortest-Path Model (SPM). The SPM is a special case of
the ICM such that each node v has the chance to become active only at step t =
d(A, v). In other words, each node is activated only through the shortest paths
from the initial active set. Namely, the SPM is a special type of the ICM where
only the most efficient information spread can occur.

Next, we slightly generalize the SPM within the ICM, and define the SP1
Model (SP1M). In the SP1M, each node v has the chance to become active only
at steps t = d(A, v) and t = d(A, v) + 1. In other words, node v cannot be
activated excluding the paths from A to v whose length are equal to d(A, v) or
d(A, v) + 1.

We define the influence σ(A) of target set A for the SPM and SP1M in the
same way as the ICM.

3.2 Approximate Computation of Influence

We consider computing efficiently an approximate value of σ(A) for the SPM
and SP1M. Let V be the set of all the nodes in the network, N the number of
elements of V , and VA the set of nodes v such that d(A, v) < ∞. For any v ∈ V ,
let Pt(v; A) denote the probability that v first becomes active at step t, and let
PA(v) denote the set of all the parent nodes of v. Here, note that Pt(v; A) = 0
for any t ≥ 0 if v /∈ VA. Note also that for each v ∈ A, Pt(v; A) = 1 if t = 0, and
Pt(v; A) = 0 if t > 0.

We begin with the SPM. We consider calculating σ(A) from a computation
of Pt(v; A) for any t ≥ 0 and v ∈ V . Note first that for any v ∈ VA, Pt(v; A) =
0 if t �= d(A, v). Thus, we focus on t = d(A, v) for any v ∈ VA. Then, it is easily
shown that Pt(v; A) is computed by

Pt(v; A) =
∑

W⊂PA(v)

Pt−1(W |PA(v); A)Pt(W → v), (1)

where the summation is taken over all subsets of PA(v), Pt−1(W |PA(v); A)
denotes the probability that subset W first becomes active at step t − 1 in
PA(v), and Pt(W → v) denotes the probability that v is activated from W at
step t when W is infectious. Here, we put PA(v) = {u1, · · · , uK}, and use the
following one-to-one correspondence between a subset W of PA(v) and a binary
K-vector h = (h1, · · · , hK); for each k, hk = 1 if uk ∈ W , and hk = 0 if uk /∈ W .
Following Domingos and Richardson [2], we approximate the joint probabilities
{Pt−1(W |PA(v); A); W ⊂ PA(v)} by their maximal entropy estimates given the
mariginals {Pt−1(uk; A); k = 1, · · · , K}. This yields

Pt−1(W |PA(v); A) =
K∏

k=1

Pt−1(uk; A)hk (1− Pt−1(uk; A))1−hk

. (2)

Note here that we can also obtain the same result by assuming that events
E1,t−1, · · · , EK,t−1 are independent, where each Ek,t−1 is the event that node
uk first becomes active at step t− 1. Thus, by (1) and (2), we have
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Pt(v; A)

=
∑
h

[{
K∏

k=1

Pt−1(uk; A)hk (1− Pt−1(uk; A))1−hk

} {
1−

K∏
k=1

(1− puk,v)
hk

}]
,

Pt(v; A) =
∑
h

K∏
k=1

Pt−1(uk; A)hk(1− Pt−1(uk; A))1−hk

−
∑
h

K∏
k=1

{
Pt−1(uk; A) (1− puk,v)

}hk (1− Pt−1(uk; A))1−hk

=
K∏

k=1

{Pt−1(uk; A) + (1− Pt−1(uk; A))}

−
K∏

k=1

{
Pt−1(uk; A) (1− puk,v) + (1− Pt−1(uk; A))

}
= 1−

K∏
k=1

(
1 − puk,v Pt−1(uk; A)

)
.

Under this approximation, we estimate σ(A) as σ(A) =
∑

v∈VA
Pd(A,v)(v; A).

Next, we consider the SP1M. In this case, for any v ∈ VA, Pt(v; A) = 0 if t �=
d(A, v), d(A, v) + 1. Thus, we focus on t = d(A, v) and t = d(A, v) + 1 for any
v ∈ VA. In the same way as the case of the SPM, we approximate Pt(v; A) by

Pt(v; A) = (1− Pt−1(v; A))

⎧⎨⎩1−
∏

u∈PA(v)

(
1 − pu,v Pt−1(u; A)

)⎫⎬⎭ .

Under this approximation, we estimate σ(A) as σ(A) =
∑

v∈VA
(Pd(A,v)(v; A) +

Pd(A,v)+1(v; A)).
As investigated by Leskovec et al. [6], it seems that large cascades of informa-

tion diffusion happen rarely. We believe that this kind of real situations can be
reasonably simulated by using SPM or SP1M with relatively small pu,v. Using
real social networks, we experimentally confirmed that the proposed estimation
methods can be effective for the SPM and SP1M especially with relatively small
pu,v (see Appendix). These results imply that for the SPM and SP1M, σ(A) can
be efficiently estimated in a reasonable situation.

3.3 Extension of Approximation Theory

For the SPM and SP1M, we consider the influence maximization problem, and
investigate an approximation guarantee for the greedy algorithm defined in
Sect. 2.2. We fix an integer k (1 ≤ k < N). Let A∗

k be a set that maximizes
the value of σ over all k-element subsets of V , and let Bk be the k-element set
obtained by the greedy algorithm. Then, we can obtain the same result as that
for the ICM.
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Theorem 1. In the SPM and SP1M, we have the following approximation guar-
antee for the greedy algorithm: σ(Bk) ≥ (1− 1/e)σ(A∗

k).

Proof. We prove this inequality in the same way as [5]. By the theory of sub-
modular functions (see Theoerm 2.1 in [5]), it is sufficient to prove that σ is
submodular in the SPM and SP1M. According to the proof of Theorem 2.2 in
[5], we view the ICM in terms of live and blocked links. We first consider the
SPM. Let X denote one sample set of outcomes for all the coin flips on the
directed links in the network. Let P (X) denote the probability of sample X . For
any u ∈ V , let S(u) be the set of shortest paths from u to each node in V , and let
L(u; X) be the set of live link paths from u with respect to X . We define R(u; X)
to be the set of nodes that belong to the paths in S(u) ∩ L(u; X). For any A ⊂
V , we define σX(A) to be the number of nodes in ∪u∈AR(u; X). Then, we have
σ(A) =

∑
X P (X)σX(A), where the summation is taken over all samples. We

can easily prove that σX is submodular and a nonnegative linear combination of
submodular functions is also submodular. Hence, σ is submodular in the SPM.
Similarly, we can also prove that σ is submodular in the SP1M.

4 Experimental Evaluation

Using real large-scale social networks, we experimentally explore properties of
the proposed models.

4.1 Data Sets

We used two different data sets of large-scale social networks. The details of
these data sets are given below.

Blog Network Data. First, we used a tackback network of blogs as an example
of a social network. By tracing ten steps ahead the trackbacks from the blog of the
theme “JR Fukuchiyama Line Derailment Collision” in the site “Theme salon of
blogs” (http://blog.goo.ne.jp/usertheme/), we collected a large connected
trackback network in May, 2005. Here, the total numbers of blogs and trackbacks
were 12, 047 and 39, 960, respectively. Since bloggers discuss various topics and
establish mutual communications by putting trackbacks on each other’s blogs,
we regarded a link created by a trackback as a bidirectional link for simplicity.
We call this data set the BN data.

Collaboration Network Data. Next, we employ a collaboration network ob-
tained from co-authorships of physics papers as an example of a social network,
where each undirected link is regarded as a bidirectional link. We used the co-
authorship network of the Los Alamos Condensed Matter e-print archives in-
vestigated by Palla et al. [11]. Here, the total numbers of nodes and undirected
links were 30, 561 and 125, 959, respectively. The network consisted of 668 con-
nected components, and the total number of nodes in the maximal connected
component was 28, 502. We call this data set the CN data.
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4.2 Experimental Settings and Fundamental Statistics

In our experiments, we assigned a uniform probability of p to each directd link
in the network for the ICM, SPM, and SP1M, that is, pu,v = p for any directed
link (u, v). As regards large and small propagation probabilities, we investigated
p = 10% and p = 1%, respectively.

According to the work of Kempe et al. [5], we estimated the influence σ(A) of
target set A in the ICM as follows: We started the process by initially activating
A, and counted the number of active nodes at the end of the process. We then
used the empirical mean obtained by simulating the stochastic process 10, 000
times as the estimate. However, these estimates needed very heavy computations.
For example, for the CN data, the estimates of {σ(v); v ∈ V } for the ICM with
p = 1% needed about 3 hours, and those with p = 10% needed about 115 hours.
Incidentally, in both cases of p = 1% and p = 10%, it took about 5 and 20
minutes, respectively, to compute the estimates of {σ(v); v ∈ V } for the SPM and
SP1M based on the proposed estimation methods. Here, all our experimentation
was undertaken on a single Dell PC with an Intel 3GHz Pentium D processor,
with 2GB of memory. From these facts, we also confirm that as p increases,
the processing time for estimating {σ(v); v ∈ V } for the ICM much increases,
while the processing times for the SPM and SP1M hardly change. Therefore,
we can deduce that unlike the proposed models, the ICM needs a very large
amount of computation for solving the influence maximization problem with
p = 10% in a large-scale network based on the natural greedy algorithm. In
particular, sophisticated techniques such as parallel computing must be needed
to practically solve this problem for the ICM with p = 10% in our data sets.

When we estimated {σ(v); v ∈ V } through 10, 000 simulations for the ICM, we
also computed the standard deviation for each node. For example, for p = 10%,
the average standard deviations in the BN data and the CN data were 139.12
and 2, 092.60, respectively. Here, the average of {σ(v); v ∈ V } in the BN data
and that in the CN data were 87.80 and 1, 586.59, respectively. We see from
these facts that the number of finally influenced nodes can greatly vary every
simulation in the ICM.

From the above observations we deduce that a large amount of computation
can be generally needed to obtain good estimates of {σ(v); v ∈ V } for the ICM
in a large-scale network, and so the ICM can be a computationally expensive
model. Thus, for reference purposes, we also investigated the special case where
the influence σ(A) of target set A is estimated through 100 simulations in the
ICM. We refer to this special model as the ICM100.

4.3 Ranking Problem

First, we consider extracting influential nodes from the network by ranking nodes
based on influence measure. The ICM, ICM100, SPM, and SP1M can measure
the influence of node v by σ(v). On the other hand, “degree centrality”, “close-
ness centrality”, and “betweenness centrality” are commonly used as influence
measure in sociology [13], where the degree of node v is defined as the number
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Fig. 1. Results for ranking similarities in the BN data. Left: p = 1%. Right: p =
10%. ( “�”: ICM100. “◦”: SPM. “�”: SP1M. “×”: degree centrality. “♦”: closseness
centrality. “∗”: betweenness centrality. “�”: PageRank. )

of links attached to v, the closeness of node v is defined as the reciprocal of the
average distance between v and other nodes in the network, and the betweenness
of node v is defined as the total number of shortest paths between pairs of nodes
that pass through v. We also consider measuring the influence of each node by
its “authoritativeness” obtained by the “PageRank” method [1], since this is a
well known method for identifying authoritative or influential pages in a hyper-
link network of web pages. This method has a parameter ε; when we view it as
a model of a random web surfer, ε corresponds to the probability with which a
surfer jumps to a page picked uniformly at random [10]. In our experiments, we
used a typical setting of ε = 0.2.

In terms of ranking methods for extracting influential nodes from the network,
we compare the proposed models with the others for each value of p, so we
introduce the ranking similarity F (r) at rank r that quantifies the degree of
similarity between two ranking methods. Based on F -measure, F (r) is defined
as follows: Let L(r) and L′(r) be the respective sets of top r nodes for the two
ranking methods that we compare. Then, F (r) = |L(r) ∩ L′(r)| / r, where |S|
indicates the number of elements in a set S. We focus on ranking similarities at
high ranks since we are interested in extracting influential nodes.

Figs. 1 and 2 show the experimental results, where the ranking similarities
F (r) between the ICM method and the other methods are displayed at rank
r (1 ≤ r ≤ 100). Here, downward-pointing triangles, circles, squares, crosses,
diamonds, asterisks, and upward-pointing triangles indicate the results for the
ICM100, SPM, SP1M, degree centrality, closeness centrality, betweenness cen-
trality, PageRank, respectively. We can observe that as ranking methods to ex-
tract influential nodes, the proposed models in general yield ranking results that
are different from the ICM, typical methods of social network analysis, and
PageRank method. This implies that the SPM and SP1M can provide novel
ranking methods that in general extract nontrivial nodes as influential nodes.
We can also observe that for p = 1%, the ranking similarities of the proposed
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Fig. 2. Results for ranking similarities in the CN data. Left: p = 1%. Right: p =
10%. ( “�”: ICM100. “◦”: SPM. “�”: SP1M. “×”: degree centrality. “♦”: closseness
centrality. “∗”: betweenness centrality. “�”: PageRank. )

models and ICM were very high, and higher than those of the ICM100 and
ICM. These results imply the following remarkable result: When p is small, the
SPM and SP1M can give good approximations to the ICM in terms of ranking
methods for extracting influential nodes in a social network. However, we note
that the SPM and SP1M do not necessarily provide good estimates of {σ(v);
v ∈ V } for the ICM even if p is small. On the other hand, we can see that
the ranking similarities of the ICM100 and ICM were not high for p = 10% in
particular. These results imply that good estimates of {σ(v); v ∈ V } for the
ICM cannot necessarily be obtained by using 100 simulations.

Moreover, we note that unlike the ICM, the proposed models can provide
scalable ranking methods such as the typical methods of social network analysis.
Namely, the ranking methods based on the proposed models can practically
be applied even to a large-scale social network with p = 10%. In fact, their
computational complexities are almost comparable to those of the betweenness
centrality and closeness centrality methods. We believe that this property is
important for a practical ranking method based on information diffusion in a
social network.

4.4 Influence Maximization Problem

We further investigate whether or not the proposed models can approximate the
ICM for extracting sets of influential nodes in a social network, when propagation
probabilities through links are small. For this purpose, we employ the task of ap-
proximately solving the influence maximization problem in the ICM with p = 1%.
To perform this task, we apply the ICM, ICM100, SPM, and SP1M with p = 1% in
the following way: As an approximate solution for a target set size k, we use the op-
timal k-element set obtained by the natural greedy algorithm based on each model.
Let B0

k, B1
k, B2

k, and B3
k denote the optimal k-element sets based on the ICM,

ICM100, SPM, and SP1M, respectively. To simplify our explanation, let σ0(A) de-
note the influence σ(A) of targe set A for the ICM with p = 1%. We evaluate the
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Table 1. Performance of approximate solutions for the influence maximization problem
in the ICM with p = 1% in the BN data

Target set size ICM ICM100 SPM SP1M

k = 1 3.87 3.87 3.87 3.87
k = 10 30.06 27.67 30.07 30.06
k = 20 51.84 44.40 51.84 51.87
k = 30 71.83 57.79 71.96 72.01

Table 2. Performance of approximate solutions for the influence maximization problem
in the ICM with p = 1% in the CN data

Target set size ICM ICM100 SPM SP1M

k = 1 3.78 3.78 3.78 3.78
k = 10 33.35 30.61 33.44 33.42
k = 20 59.40 51.80 59.39 59.53
k = 25 71.59 59.76 71.33 71.69

performance of an approximate solution Bi
k by the value of σ0(Bi

k). Of course, we
estimated σ0(Bi

k) through 10, 000 simulations.
In our experiments, we examined such approximate solutions from k = 1 to

k = 30 in the BN data, and from k = 1 to k = 25 in the CN data. Tables 1 and
2 show the experimental results, where the value of σ0(Bi

k) (i = 0, 1, 2, 3) for
each target set size k is displayed. We observe that the evaluation values for the
proposed models were almost the same as those for the ICM, and better than
those for the ICM100. These results imply that when p is small, the proposed
models can provide good approximations to the ICM for finding sets of influential
nodes in a social network.

We also examined the processing times for computing the approximate solu-
tions. Let t+(k) be the processing time for computing Bi

k given Bi
k−1. Fig. 3

shows the processing time t+(k) at target set size k for each model, where
left-pointing triangles, downward-pointing triangles, circles, and squares indi-
cate the ICM, ICM100, SPM, and SP1M, respectively. We can see that as k
increases, t+(k) does not increase so much for the SPM and SP1M, but it sub-
stantially increases for the ICM and ICM100. This implies that the methods
based on the proposed models can be practically performed even for a large
target set size k. Namely, we can see that the proposed models are also scal-
able to solve the influence maximization problem based on the greedy algo-
rithm. On the other hand, the total processing time for obtaining {Bi

k; k =
1, · · · , 30} in the BN data and that for obtaining {Bi

k; k = 1, · · · , 25} in the CN
data were as follows: In the BN data, the total processing times for the ICM,
ICM100, SPM, and SP1M were about 5 days, 1 hour, 19 minutes, and 1 hour,
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Fig. 3. Processing time t+(k) for target set size k. Left: BN data. Right: CN data.
( “�”: ICM. “�”: ICM100. “◦”: SPM. “�”: SP1M. )

respectively. In the CN data, the total processing times for the ICM, ICM100,
SPM, and SP1M were about 21 days, 4 hours, 2 hours, and 8 hours, respec-
tively. Note here that the total processing times for the ICM were more than
100 times those for the ICM100 since σ0(B0

k) > σ0(B1
k) for k > 1. These re-

sults show that a very large amount of computation is needed to solve the in-
fluence maximization problem for the ICM in a large-scale social network by
using the greedy algorithm. Moreover, the following interesting observation is
made: For the influence maximization problem in the ICM with small p, the
methods based on the proposed models can be much faster than the ICM-
based method, and can provide as good approximate solutions as the ICM-based
method.

5 Conclusions

We have proposed two natural models for information diffusion in a social net-
work, called the SPM and SP1M, such that the influence σ(A) of a target set
A can be efficiently estimated in a reasonable situation. For the influence maxi-
mization problems in the proposed models, we have provided a provable perfor-
mance guarantee for the natural greedy algorithm. Using real large-scale social
networks, we have experimentally explored properties of the SPM and SP1M.
First, we have demonstrated that the proposed models can provide novel scal-
able ranking methods for extracting influential nodes in a social network. Next,
we have demonstrated that when the propagation probabilities through links
are small, they can give good approximations to the ICM for finding sets of
influential nodes in a social network. Moreover, we have demonstrated that for
solving the influence maximization problem based on the greedy algorithm, the
proposed models can be scalable, and also be much faster than the ICM. Hence,
we consider that the SPM and SP1M can be important models for social network
analysis based on information diffusion.
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Appendix

Performance Evaluation of Influence Estimation. In Sect. 3.2, we have
proposed methods to estimate the influence σ(A) of a target set A for the SPM
and SP1M. Using several real social networks, we experimentally confirmed that
the methods can be effective for the SPM and SP1M with relatively small prop-
agation probabilities through links. Here, we describe the experimental results
for the estimates of {σ(v); v ∈ V } in the BN data.

In the experiments, we examined both cases of p = 1% and p = 10%. First,
we estimated the values of σ(v) for the SPM and SP1M through simulating the
stochastic processes 10, 000 times like the case of the ICM, and adopted them as
the true values of σ(v). Then, the average m and standard deviation s of {σ(v);
v ∈ V } were as follows:

SPM: (p = 1%: m = 1.081, s = 0.126), (p = 10%: m = 4.212, s = 4.061).
SP1M: (p = 1%: m = 1.085, s = 0.138), (p = 10%: m = 8.322, s = 10.668).



Tractable Models for Information Diffusion in Social Networks 271

Let σ̂(v) denote the estimate of σ(v) by the proposed methods for the SPM and
SP1M. We measured the approximation performance by error E =

∑
v∈V |σ(v)−

ˆσ(v)| / N . The results were as follows:

SPM: (p = 1%: E = 0.002), (p = 10%: E = 0.045).
SP1M: (p = 1%: E = 0.003), (p = 10%: E = 0.479).

These results show that the proposed estimation methods can be effective in a
reasonable situation.
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Abstract. We present a discriminative method to classify data that have inter-
dependencies in 2-D lattice. Although both Markov Random Fields (MRFs) and
Conditional Random Fields (CRFs) are well-known methods for modeling such
dependencies, they are often ineffective and inefficient, respectively. This is be-
cause many of the simplifying assumptions that underlie the MRF’s efficiency
compromise its accuracy. As CRFs are discriminative, they are typically more ac-
curate than the generative MRFs. This also means their learning process is more
expensive. This paper addresses this situation by defining and using “Decoupled
Conditional Random Fields (DCRFs)”, a variant of CRFs whose learning pro-
cess is more efficient as it decouples the tasks of learning potentials. Although
our model is only guaranteed to approximate a CRF, our empirical results on
synthetic/real datasets show that DCRF is essentially as accurate as other CRF
variants, but is many times faster to train.

1 Introduction

Much of data mining deals with ways to learn classifiers from data samples. While
many standard learning systems (e.g., SVM, Logistic Regression, Naı̈ve Bayes, Deci-
sion Trees, etc.) are designed to deal with independent and identically distributed data,
this paper deals with interdependent data — viz., classifying regions in a 2-D lattice.
In particular, we consider the task of detecting and delimiting tumors in Magnetic Res-
onance (MR) images of a patient’s brain, which involves labeling each pixel as either
tumor or non-tumor. Since most tumors are contiguous regions, we expect the labels
of spatially adjacent pixels to belong to the same class, assuming they have sufficiently
similar features.

Many effective region classifiers incorporate spatial constraints to encode the fact
that the labels of neighboring pixels are typically correlated. In particular, there are
a number of “random field” approaches for such tasks, including generative models
like Markov Random Field (MRF) [12,8], as well as discriminative models, includ-
ing Conditional Random Field (CRF) [10] and its variants — Discriminative Random
Field (DRF) [9], Associative Markov Nets (AMN) [18] , and our recent Support Vec-
tor Random Field (SVRF) [11]. As an MRF assumes conditional independence among
observations given class labels, their learning procedures tend to be faster than the dis-
criminative models (variants of CRFs); however, this assumption means they are typ-
ically not as accurate. The more accurate models, unfortunately, can be prohibitively
slow to train, which may not be tolerable to a data mining task. We therefore propose
a novel variant to our discriminative random fields model to make them more efficient

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 272–283, 2006.
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to train: we develop a “decoupled” learner, DCRF that reduces the expense of learning
the random fields. We found that, as expected, the resulting DCRF is much faster to
train than other CRF variants. Moreover, we were pleasantly surprised to find that this
improvement in speed did not cost a degradation in accuracy!

Section 2 presents a quick overview of related systems. It motivates our approach by
noting that these related systems – especially the ones that produce accurate labelings –
can be very slow to train. Section 3 introduces our novel “Decoupled Conditional Ran-
dom Field” (DCRF) approach, and provides algorithms for both learning the parameters
and for inference (i.e., classification — here segmentation). Section 4 demonstrates the
accuracy and efficiency of our model by presenting experimental results over various
domains, including the challenging real-world problem of segmenting brain tumor from
MRI scans.

2 Related Work

There are now many systems for learning the spatial correlations; this paper focuses on
ones based on random fields.

An Markov Random Field (MRF)is a generative approach that models the joint prob-
ability distributions over a set of instances x = 〈xi 〉 (where each xi corresponds to a
vector of values describing the ith pixel) and their associated class labels y = 〈 yi 〉.
As with other random fields, a MRF provides a form for computing P (y |x ), based on
both properties of each instance (i.e., “pixel”) as well as features of their “neighbors”
(i.e., “properties and perhaps labels of adjacent pixels”), towards returning the most
likely y∗(x) = argmaxy P (y |x ) .

In the MRF framework, the posterior over the n joint labels y given the observations
x is P (y |x ) ∝ P (y )P (x |y ) = P (y )

∏n
i P (xi | yi ). Estimating the likeli-

hood is computationally tractable as it is factored as P (x |y ) =
∏

i P (xi | yi ). As
this factorization is only a crude approximation to reality, this approach will typically
produce inferior labels. The prior P (y ) can explicitly incorporate dependencies among
the labels. Considering the equivalence between MRF and Gibbs Distributions [1], the
posterior is formulated as

P (y |x ) =
1

Z(x)
exp

[∑
c∈C

Vc(yc) +
∑
i∈S

log(P (xi | yi ))

]
, (1)

where C is a set of cliques defined in 2-D lattice.Vc(y) is a clique potential function
of labels for clique c ∈ C, S is the set of nodes (i.e., pixels), and the “partition func-
tion” Z(x) =

∑
y′ exp

[∑
c∈C Vc(y′

c) +
∑

i∈S log(P (xi | y′
i ))
]

is used to normalize
the resulting values. Notice Vc(yc) depends only on the labels {yi}, but not on the in-
formation about the pixels {xi}. Therefore, a MRF prefers a set of labels y∗ where
neighbors have the same value [1,12], independent of properties of these pixels. Also,
as the partition function Z(x) involves summing over all |L|n possible labelings (as-
suming there are |L| labels for each pixel), it is very expensive to compute the exact
value of the partition function.

A discriminative model, Conditional Random Field (CRF) [10], attempts to over-
come the disadvantages of a MRF — notably its conditional independence assumption
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and the absence of observation information in the second potential — by directly mod-
eling the posterior distribution P (y |x ) as

P (y |x ) =
1

Z(x)
exp

⎛⎝∑
i∈S

⎡⎣Φw(yi,x) +
∑
j∈Ni

Ψν(yi, yj ,x)

⎤⎦⎞⎠ (2)

which directly computes a posterior distribution without modeling the prior P (y ). The
notation is essentially the same as in Equation 1: Z(x) is the partition function, S is
the set of pixels in an image, x = 〈xi 〉 is the set of descriptions of those pixels, and
y = 〈 yi 〉 is the set of labels. Here Ni is the set of neighbors of node xi — in 2D, the
pixel at location (a, b) has 4 neighbors, at (a − 1, b), (a + 1, b), (a, b − 1) and (a, b +
1) [1,8]. For notation, “Φw(yi,x)” is called the “Association” potential, which deals
with a single instance. While its value can depend on all of x, it typically relies only
on xi. The “Ψν(yi, yj ,x)” term is called the “Local-Consistency” (or “Interaction”)
potential in variants of CRF such as SVRFs and DRFs; it is typically used to prefer
labeling that assign the same class labels to neighboring pixels. (We can view Ψν(·) as
a data dependent smoothing function; this differs from a MRF, which instead use only
a “data independent” term.) Here, w and ν refer to the parameters associated with these
potential functions.

Note that a CRF and its variants — DRFs and SVRFs— typically produce better ac-
curacy than their generative alternative MRF. However, their good performance comes
at a cost: the learning process is significantly more expensive. For example, the learning
task in DRF and SVRF involves estimating the parameters w and ν that maximize the
(log)likelihood of the given data sample, and both systems use a regularization term to
avoid overfitting. The log-likelihood is formulated as

〈 ŵ, ν̂ 〉 =

argmax
w,ν

{ M∑
k=1

S∑
i=1

Φw(yi,x) +
∑
j∈Ni

Ψν(y(k)
i , y

(k)
j ,x(k))− log(Z(k)(x))

}
− νT ν

2τ

(3)

Although a SVRF can significantly improve the accuracy of a DRF, especially when
features may be correlated, the study [11] has shown that selecting the appropriate τ
in a SVRF and a DRF is a non-trivial task, which makes the learning procedures more
challenging and costly. Associative Markov Nets (AMN) [18], which discriminatively
train Markov nets, exploit the spatial correlations by adopting the maximum-margin
principle of maximizing the margin between target labels and the best runner-up label
assignments. Hence, this process employs the same ideas underlying SVMs. (Note that
our SVRF differs by actually performing the same basic computations that an SVM
performs.) A Boosted Random Field (BRF) [19] combines the set of iid classifiers that
correspond to Association potentials. Each potential in a BRF is trained on a specific
class to quantify the likelihood of a class on a pixel. Hence, BRF does not explicitly
consider the spatial correlation.



Efficient Spatial Classification Using Decoupled Conditional Random Fields 275

We see there are problems in training each of the systems mentioned in this section:
some are inaccurate (as they use inappropriate models), while others require too much
computation time.

3 The DCRF System

This section presents the foundations to formalize our Decoupled Conditional Random
Field, DCRFof random fields. We first motivate our approach of decoupling the training
of the two potentials, then discuss inference — i.e., how to use the resulting system to
classify pixels in an image.

First, if we ignore the dependencies among the labels of the pixels (i.e., assume that
they are independent and identically distributed), we would use only the “Association”
potential, which attempts to maximize

PA(y |x ) ∝ exp

(∑
i∈S

Φ(yi,x)

)
(4)

Many existing classifiers (e.g., Naı̈ve Bayes, Logistic Regressions, SVM, etc.) are (per-
haps implicitly) attempting to optimize Equation 4.

Alternatively, a discriminative model that only considers spatial coherence would
attempt to optimize

PLC(y |x ) ∝ exp

(∑
i∈S

Ψ(yi, yNi ,x)

)
(5)

where yNi are the labels of i’s neighbors.
Equation 4 and 5 provide different frameworks for approximating the posterior prob-

ability distributions P (y |x ). Each is only partial, in that the first (second) does not
properly incorporate spatial coherence (resp., the local observations).

Notice typical CRF models involve the sum of these equations — written in log space
as ∑

i∈S

Φ(yi,x) +
∑
i∈S

Ψ(yi, yNi ,x) (6)

(Compare to Equation 2. Note that the neighborhood is considered in Ψ(·) explicitly.)
We now observe that each classifier form in Equation 6 follows MAP formulations

for the joint probability over labels: that is, we can approximate the global optimal
joint class labels by maximizing the local posterior probability distribution using the
principles of pseudo-likelihood and Iterative Conditional Modes (ICM)1 [3] — i.e.,
P (y |x ) =

∏
i∈S P ( yi | yNi ,x ). Thus, for each pixel i, the log of ensemblized poste-

rior distribution P ( yi | yNi,x ) given its neighbors yNi is:

Φw(yi,x) +
∑
j∈Ni

Ψν(yi, yj ,x) (7)

1 Pseudo-likelihood and ICM are only guaranteed to achieve local maxima, the discussion of the
global optimality issues is beyond the scope of this paper.
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N.b., as we will only be seeking the argmax, we do not need to consider the normalizing
“− log(zi)” term that shown in Equation 3, as it will be constant here.

Equation 7 shows that we can approximate a CRF model using a decoupled system,
corresponding to the simple sum of two different potentials, which are learned sepa-
rately. (This differs from standard ensemble methods [4], as we are directly combining
potentials rather than classifiers.) However, there is one remaining question: how to
deal with the relative scaling issues when combining of the two potentials. This will be
discussed in the following sections. We will also see that, as expected, it is much faster
to learn these individual summands individually, before combining them. Our empirical
evidence shows that, surprisingly, the resulting DCRF system can be as accurate!

Association-only Potential. The association potential provides a local posterior for
each pixel: PA( yi |xi ). Our “decoupling” principle allows us to select a function that
quantifies the conditional probability for a given observed instance. We incorporate a
maximal margin approach where the two classes of pixels are classified based on a
hyperplane that maximizing the distances between the two classes.

As suggested above, we will consider a potential based on SVMs; note this method
inherits the SVM’s relative insensitivity to class imbalance, and its ability to typically
outperform other discriminative classifiers such as GLMs, especially in cases where the
classes overlap [17], which is common case in imaging applications.

We select the hyperplane by solving the following optimization problem (over the t
instances):

max
w,b,γ

γ

subject to yi(wT xi + b) ≥ γ, i = 1, · · · , t ; ‖w‖2 = 1 (8)

where γ is a margin, b is a bias term, and the vector w is normal to a hyperplane that
we are seeking, which separates the positive from the negative examples. Using its dual
formulation with dual variables αi, we solve this optimization problem using Quadratic
Programming (QP) over the αis, to produce f(x) =

∑t
i=1 αi yi xT

i x + b then
use the decision function sign ( f(x) ) to classify the test instance x. Note this learning
process requires only polynomial time. Our implementation actually uses Sequential
Minimal Optimization (SMO) [14], which is an efficient implementation.

Notice that f(x) computes the distance to the hyperplane from the instance x. We
can use this to compute (something like) a posterior probability function [15,13]:2

Φw(yi,x) =
1

1 + exp(AA × yi(wT xi) + BA)
(9)

using the parameters AA and BA that optimize the fit of the training data to a sigmoid
function [15,11].

Local-Consistency-only Potential. We use our “local-consistency-only” potential to
model the “neighborhood coherence” between pixels. Its goal is to encourage “similar”

2 Of course, we augment the instance xi by including a constant 1, and hence the w include a
“constant” term as well.
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instances within the specified each neighborhood to have the same labels. Although we
can use the associated potential as a stand-alone decision function, its function here is
mainly to smooth regions (and hence remove errors) produced by the Association-only
potential.

For similar instances in a neighborhood to have similar (in our discrete case, “iden-
tical”) class labels, we introduce a max-margin based potential, which tries to make the
labels of a testing instance the same as the labels of its neighbors. This potential learns
a pairwise max-margin model that quantifies the likelihood that two pixels will have the
same class labels, given their descriptions:

Ψν(yi, yj,x) = I(yi, yj)× [νT 〈ψ(xi, xj) 〉] (10)

where I(yi, yj) returns +1 if yi = yj , and −1 otherwise. (We define ψ(xi, xj) below.)
Equation 10 reduces the pairwise discriminative learning problem to the binary class
problem, over similar versus dissimilar classes. That is, we apply QP to the training set

Snew = { (ψ(xr, xj), I(yr, yj)) | j ∈ Nr }

over all instances r with neighbors j ∈ Nr, to find the optimal parameter ν.
Note that each pair of pixels is projected by ψ(·) onto a similarity feature space. For

instance, we could use ψ(xi, xj) = xT
i xj that produces a scalar: the cosine measure of

the similarity. Note this attains its largest value as the two vectors match one another.
Due to “localized” neighborhood system we consider for Local-consistency potential,
the increment only grows linearly with the number of pixels. Notice that feature-wise
space depends on ψ(·).

As we will need to combine this potential with the Association-only one, we need to
produce values within a “comparable” range. We therefore convert Equation 10 to the
posterior probability scale, using the same transformation used to produce Equation 9.

Ψ(yi, yj ,x) =
1

1 + exp (ALC × I(yi, yj)(νT 〈ψ(xi, xj) 〉) + BLC) (11)

where again ALC and BLC are set to optimize the fit to a sigmoid, which produces a
probability distribution as in Association-only potential

3.1 Inference

Our goal in producing this DCRF system is then to find relevant regions within im-
ages — e.g., tumor regions within MR images of a brain. This involves inferring a
binary label (tumor versus non-tumor) for each individual pixel. As noted above, this
corresponds to computing the most likely vector y∗ = argmaxy P (y |x ) given the ev-
idence vector x, based on the (possibly unnormalized) potential functions. In our case,
we will use the potential functions in Equation 7, which is the sum of the Association-
only PA( · ) (Equation 4) and Local-Consistency-Only PLC( · ) (Equation 5) potentials.
While this exact computation can be expensive, there are several existing approxima-
tion algorithms for CRF, including Iterative Conditional Modes (ICM) [3], Graph-Cuts
(GC) [2], and Loopy Belief Propagation (LBP) [6]. DCRF uses ICM since it converges
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quickly and has been shown empirically to produce accurate results [11,1].3 Also, while
ICM may converge to local optima for the joint distribution problem, it works suffi-
ciently well by iteratively propagating the belief for each pixel to its neighboring pixels:

y∗
i = argmax

yi∈{+1,−1}
P ( yi | yNi ,x ) = argmax

yi∈{+1, −1}
Φ(yi,x) +

∑
j∈Ni

Ψ(yi, yj ,x) (12)

Of course, we could add the normalization factor zi in Equation 12, which constrains
outputs to follow probability axioms. However, the constant factor is irrelevant, since
our inference approach seeks only the most likely value.

3.2 Complexity

Our DCRF model uses Quadratic Programming to learn the parameters, within SMO.
Assuming each image has S pixels, and each pixel has E neighbors then learning the
Association-only potential requires O(S2) steps per image, and Local-Consistency-only
potential requires O( (S × E)2 ) per image. Note that in our paper, we used E is 4.

Inference (here, classifying the regions in a test image) requires O(S + (S × E) )
per iteration. Empirically, we found that ICM converged after 5 iterations, on average.

4 Experiments

We implemented the Decoupled CRF described above, DCRF, and compared it with
other random field techniques on both synthetic and real-world tasks. As many imaging
tasks are very imbalanced (in that the “positive” class includes only a small percentage
of the pixels), the standard evaluation criteria of “accuracy” is problematic. We there-
fore use the Jaccard score — J = TP

TP+FP+FN — to measure its performance, using
true positives (TP), false positives (FP), and false negatives (FN).

Synthetic image sets. The primary goal in using the synthetic data sets is to see how
the various algorithms segment objects in the presence of noise. We therefore evaluated
these techniques over 15 synthetic image sets, each with its own shape, whose inten-
sities were each independently corrupted by noise generated from N (0, 1). Here each
image is of size 64-by-64 (4096 pixels). Note that some of image sets are significantly
imbalanced, while others are balanced.

Figure 1 shows some of the experiment results. All Jaccard scores and elapsed learn-
ing times that appear are averaged over 3-fold cross-validation. Each row in Figure 1
presents one example, showing (from left to right), the test images, the true labels, and
outputs from Logistic Regression (LR), DRF, SVM, SVRF, and DCRF. We see that,
overall, SVRF and DCRF are most accurate. Especially when the test images are im-
balanced (the first row in Fig. 1), LR (third column) and DRF (fourth column) produce
degraded outputs caused by the poor parameter estimations from the imbalanced data.

3 While GC and LBP are often considered be the best inference methods, even if the graph
structure has loops, we used ICM for the reasons shown above. Note this issue is orthogonal
to the goal of this paper, which is to compare the training time and accuracy of our DCRF to
other CRF-related models.
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Test Image Target LR DRF SVM SVRF DCRF

Fig. 1. Results from synthetic image sets. Rows 1 to 5 from the top down correspond respectively
to datasets 7, 3, 10, and 11 in Fig. 2
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Fig. 2. Average Jaccard scores on 15 synthetic data sets

The second row illustrates the sensitivity of the regularization term τ in the SVRF
frameworks. Although the correct value for this parameter can produce good segmen-
tation results, in general it is not trivial to find such “good” values. While we can use
cross-validation method to estimate this parameter, others [11,9] have shown that this
does not guarantee acceptable performance. Also, note that SVM-based approaches ap-
pear robust to the class imbalance, as empirically shown in [11].

Figure 2 shows that DCRF and SVRF are the two best performers overall, at this
segmentation task, dealing with both the balanced and imbalanced data: Each was sig-
nificantly better than the others at the p < 1.14E-12 level based on a paired example
t-test; moreover, DCRF performs better than SVRF at the p < 0.0037 level. Note that
SVRF can sometimes produce better results than DCRF — see data sets 3, 9, and 12
in Figure 2. Here, we assume that SVRF found good estimates for τ . Data sets 6, 7,
9, 12, and 14 show that good estimation of the regularization in DRF performs better
than SVM.
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Table 1. Average elapsed learning time (seconds)

DRF SVRF DCRF
Synthetic 1581.3 714.5 21.2

Brain Tumor 1392.4 1209.4 82.3

The first row of Table 1 reports the average learning time for DRF, SVRF and DCRF
over these 15 cases. Notice first that our DCRF requires significantly less time than the
other two approaches — 30 times faster than SVRF (and so p < 1.165E-17) and over 70
times faster than DRF. This is because there are fast ways to solve DCRF’s underlying
QPs which we attribute to the observation that the SVRF learner regards the Associa-
tion potential as a constant while learning the Local consistency potential, but a DRF
attempts to optimize both potentials simultaneously. (Note this is more than compen-
sates for the fact that DRF’s Logistic Regression learning, by itself, would be faster than
SVRF’s QP.) Finally, recall that DCRF does not compute the partition function during
the training.

Real-world problems. We next applied these various learners to the task of segmenting
brain tumors from MR images. Tumor segmentation is challenging for many reasons,
including the differences between the brains of different individuals, and the fact that
the same intensity values can be a tumor in one part of the image, but normal tissue in
another [5,7]. Automatic tumor segmentation would be very useful, as it would enable
radiation oncologists to effectively locate the tumor, with sufficient precision that they
can use this to perform diagnosis and to plan treatments.

Our experimental data sets consists of 13 volumes taken from 7 patients, each having
either a grade 2 astrocytoma, an anaplastic astrocytoma, or a glioblastoma multiform.
We focused only on the axial MRI slices — there were around 21 such slices per patient-
visit. For each slice, there are three complete images, corresponding to three standard
modalities, called “t1”, “t2” and “t1c” [7]. These represent challenging cases since the
tumor area is typically heterogeneous.

We used the multi-scale feature set based on [16], which contains traditional image-
based features in addition to three types of ‘alignment-based’ features: spatial proba-
bilities for each of the 3 normal tissue types (white matter, gray matter, CSF), spatial
expected intensity maps, and a characterization of left-to-right symmetry; each mea-
sured at multiple scales. As with many of the related works on brain tumor segmenta-
tion (such as [5,20]), our training is a patient-specific scenario, where training data for
the classifier is obtained from the patient to be segmented. Note that pixels to be tested
are from a brain slice that is different from the slice containing the training pixels.

In our experiment, we evaluated the following 7 classifiers on the 13 different time
points from the 7 patients brain volumes. Maximum Likelihood (ML ≡ degenerate
MRF), Logistic Regression (LR ≡ degenerate DRF), SVM (degenerate SVRF), MRF,
DRF, SVRF and DCRF. For each of the Random Field methods, we initialized inference
with the corresponding degenerate classifier (i.e., Maximum Likelihood, Logistic Re-
gression, or SVM). To provide a fair comparison between SVM-based models (SVRF
and DCRF) and the other models, we only used the linear kernel.
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Table 2. Jaccard Percentage Scores for Enhancing Tumor and Edema Tumor Areas

Enhancing Tumor Area Edema Area
Studies ML MRF LR DRF SVM SVRF DCRF ML MRF LR DRF SVM SVRF DCRF

1-1 23.1 24.6 44.4 46.1 50.7 52.8 53.2 21.9 21.6 35.7 36.7 58.0 58.2 58.0
2-1 0.0 0.0 61.3 61.5 87.4 87.7 87.1 33.3 34.2 59.2 61.4 89.4 89.2 89.3
3-1 69.2 69.7 61.8 61.8 83.0 84.8 86.8 34.4 34.4 75.5 77.2 81.7 82.2 81.9
3-2 40.1 40.3 84.8 84.6 85.7 85.8 85.8 47.6 48.1 73.6 74.1 80.3 81.1 80.5
4-1 26.9 27.3 49.1 50.4 78.8 81.7 82.6 28.3 29.1 38.6 41.2 54.0 55.4 54.6
4-2 58.9 59.7 68.3 70.2 76.7 77.9 79.2 43.2 46.8 45.3 46.7 54.7 57.7 54.9
4-3 49.2 50.2 71.3 71.6 88.2 88.1 88.8 35.4 35.4 69.9 70.6 69.2 69.1 69.1
4-4 65.6 68.2 87.5 87.1 87.0 87.1 86.9 44.1 43.7 78.6 79.0 77.7 77.3 79.5
5-1 67.0 67.5 52.2 51.4 82.8 84.3 84.1 47.8 48.6 63.6 65.7 74.8 76.9 74.6
6-1 37.4 37.6 76.4 76.2 79.2 80.4 80.0 40.3 40.1 79.3 79.7 82.2 83.7 82.9
7-1 63.2 63.0 75.5 76.7 81.0 81.4 81.1 74.9 77.7 91.2 92.4 94.8 94.9 94.9
7-2 37.7 39.3 75.9 75.8 86.5 87.3 86.8 39.2 40.4 80.9 82.7 83.1 82.8 83.1
7-3 45.3 45.6 81.8 81.5 87.7 87.6 87.8 54.1 53.9 79.3 80.7 84.6 84.5 85.6

Average 44.9 45.6 63.6 68.8 81.1 82.1 82.3 41.9 42.6 62.2 68.3 75.7 76.4 76.1

Table 3. Jaccard scores for Gross Tumor Areas

Gross Tumor Area
Studies ML MRF LR DRF SVM SVRF DCRF

1-1 19.3 19.5 39.4 40.9 40.7 40.5 41.1
2-1 35.4 35.7 65.1 66.1 78.2 76.9 78.0
3-1 44.4 46.1 72.9 73.4 77.9 78.7 78.2
3-2 51.2 51.3 76.3 76.2 78.1 78.8 80.2
4-1 37.4 38.7 39.4 40.1 41.4 41.2 42.1
4-2 38.0 40.2 39.7 39.4 62.1 64.9 62.1
4-3 66.0 68.5 73.3 73.5 64.4 64.5 64.1
4-4 46.7 45.8 83.8 83.5 86.0 87.0 86.2
5-1 50.1 50.9 65.3 68.3 82.8 84.8 83.4
6-1 46.6 47.6 79.6 79.4 87.6 88.2 87.8
7-1 66.4 66.3 71.9 73.2 74.6 74.1 74.7
7-2 49.6 52.4 68.3 67.9 72.7 72.9 72.5
7-3 43.4 43.7 73.5 72.7 81.6 81.2 82.0

Average 45.7 46.7 60.6 65.7 71.4 71.8 71.7

The first task was the relatively easy one of segmenting the “enhancing” tumor areas
— the region that appears hyper-intense after injecting a contrast agent. The second
task was segmenting the entire edema area associated with the tumor; this is signifi-
cantly more challenging due to the high degree of similarity between the intensities of
edema areas and normal cerebrospinal fluid in the various modalities. The final task
was segmenting the gross tumor area as defined by the radiologist. This can be a subset
of the edema but a superset of the enhancing area, and is inherently a very challenging
task even for human experts, given the modalities examined.
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Tables 2 and 3 present the classification results for the three tasks. Over all three
tasks, we see that the best results were typically obtained by either DCRF and SVRF,
which were comparable to each other, and statistically better than the rest: The differ-
ences between SVRF and the next best, SVM, across the three tasks was significant at
the p < 0.000002 level based on a paired example t-test, but the same t-test between
SVRF and DCRF across the tasks indicates no difference — i.e., here p = 0.37. How-
ever, Table 1 (second row) shows that our method requires significantly less training
time — by a factor of 14! (p < 2.285E-34) Although SVM performed very well visu-
ally on the three tasks, just as we saw on the synthetic data results, this performance
can not always be guaranteed. In Table 2, the results from the second patient “2-1”
produced an interesting observation; significant overlap between Gaussians in the high
dimensional feature space leads ML and subsequently MRF to misclassify the entire
area as non-tumor. This example shows that inappropriate modeling of P (x |y ) can
generate extremely poor performance. Although the segmentation tasks for edema and
gross tumor areas are very hard, the best discriminative approaches (i.e., SVRF and
DCRF) still produce segmentations that are typically very similar to the manual seg-
mentations, for all 3 tasks.

5 Conclusions

Learning to classify regions in an image is a challenging task, partly because labeling
each pixel in an image can require modeling spatial correlations among neighboring
pixels, which can be difficult to learn. As standard independent and identically dis-
tributed classification algorithms do not model these correlations, they typically fail to
correctly classify data instances. Such spatial correlations can, however, be effectively
modeled by various Random Field frameworks. However, these systems (especially the
ones that work effectively.) can require a significant amount of time to learn. This time
constraint makes such models inappropriate for large scale real-world problems, such
as segmenting brain tumors.

In this paper, we have proposed a Decoupled CRF (DCRF) to improve the efficiency
of a discriminative Random Field method for finding regions in an image. Our proposed
model first learns the two potentials (Association and Local-consistency) independently,
each based on a variant of Support Vector Machines. Afterwards, to segment regions in
a novel image, it uses a new potential that is the simple sum of these potentials, using
ICM (with respect to this combined potential) to produce a labeling. Our empirical
results — on both synthetic and real-world data — show that this DCRF approach is
virtually as accurate as the most accurate random field for this task (SVRF), but the
learning time is many times faster (here, by a factor over 14 in one case, and over 30
in another). In addition, our model produces effective classification results, even when
data sets are heavily imbalanced.
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Abstract. In this work, we take the traditional notation of contrast sets and 
extend them to other data types, in particular time series and by extension, 
images. In the traditional sense, contrast-set mining identifies attributes, values 
and instances that differ significantly across groups, and helps user understand 
the differences between groups of data. We reformulate the notion of contrast-
sets for time series data, and define it to be the key pattern(s) that are maximally 
different from the other set of data. We propose a fast and exact algorithm to 
find the contrast sets, and demonstrate its utility in several diverse domains, 
ranging from industrial to anthropology. We show that our algorithm achieves 3 
orders of magnitude speedup from the brute-force algorithm, while producing 
exact solutions. 

1   Introduction 

As noted by Bay and Pazzani, “A fundamental task in data analysis is understanding 
the differences between several contrasting groups”. While there has been much work 
on this topic for discrete and numeric objects, to the best of our knowledge, the 
problem of mining contrast sets for time series or other multimedia objects has not 
been addressed before. This work makes two fundamental contributions to the 
problem. 

• We introduce a formal notion of time series contrast set. 
• We introduce a fast and exact algorithm to find time series contrast sets. 

Contrast-set mining is a relatively new data-mining task, designed to identify 
differences among various groups of data. It can be roughly viewed as a variant of 
association rule mining [1, 4, 9]. While association rule mining discovers rules that 
describe or explain the current situation, contrast-set mining finds rules that 
differentiate contrasting groups of data, by identifying attributes and values (or 
conjunctions thereof) that differ meaningfully across them [2, 3]. Knowing these 
attributes that characterize the discrepancies across various groups can help users 
understand the fundamental differences among them, and make independent decisions 
on those groups accordingly. 
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In this work, we introduce the concept of contrast-set mining for time series 
datasets. Due to the unique characteristics of time series data, the notion of contrast-
set mining deviates from the traditional sense as defined on discrete data. More 
specifically, time series contrast-set mining aims to identify the key patterns rather 
than rules that differentiate two sets of data. 

While this paper addresses time series contrast set explicitly, we note it is 
possible to convert many kinds of data into time series. For example, Figure 1 
shows that we can convert shapes to time series. Other types of data, from text to 
video to XML [11], have also been converted into time series with varying degrees 
of success. 

 

Fig. 1. Shapes can be converted to time series. A) A bitmap of a human skull. B) The distance 
from every point on the profile to the center is measured and treated as the Y-axis of a time 
series of length n (C) The mapping of the skull to time series. 

Time series contrast-set mining should not be confused with clustering or 
summarization, in which the aim is to compare the average behavior of different 
sets. Suppose we are given two datasets that come from the same source; for 
example, two sets of time series telemetry from two shuttle launches, or two sets of 
ECG heartbeats from one patient – one before a drug was given and one after, or 
two sets of skulls, one set from Asia and one set from Europe. For some external 
reason, we suspect or actually know that there is something different about one 
group - maybe one shuttle crashed, or the patient had a heart attack. It might be the 
case that one entire group is different and this explains the problem. Maybe all the 
shuttle telemetry from the first launch has an amplitude scaling increase, or maybe 
all the ECG collected after the drug was administered show a faster heart rate. 
However, maybe a single or a few object(s) explain the difference. This is exactly 
what we are aiming to find. 

As we shall show, our work has potential applications in detecting anomalies or 
differences in time series datasets in several diverse domains, and in certain images. 
The paper is organized as follows. In Section 2 we provide a brief overview on related 
work and necessary background. Section 3 describes the brute-force algorithm on 
finding time series contrast sets. In Section 4, we introduce an algorithm that offers 3 
orders of magnitude speedup from the brute-force algorithm. Section 5 shows some 
experimental results on some time series datasets and image data. Section 6 concludes 
and offers suggestion for future work. 
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2   Related Work and Background 

The most representative work on contrast-set mining is perhaps the work by Bay and 
Pazanni [2]. The authors introduce the task of contrast-set mining, and their algorithm 
STUCCO offers efficient search through the space of contrast-sets, based on the Max-
Miner [4, 14] rule-discovery algorithm. Follow-up work by Webb et al. [14] 
discovered that existing commercial rule-finding system, Magnum Opus [13], can 
successfully perform the contrast-set task. The authors conclude that contrast-set 
mining is a special case of the more general rule-discovery task. He et al. [6] applies 
contrast-set mining on customer clusters to find cluster-defined actionable rules. In 
[10] Minaei-Bidgoli et al. proposed an algorithm to mine contrast rules on a web-
based educational system. Their work is unique in that it allows rule discovery with 
very low minimum support, so rules that would have been otherwise overlooked can 
be discovered. 

2.1   Notation  

For simplicity and clarity we will speak only of time series below; however, as we 
hinted in Figure 1, and as we explicitly address in Section 5.2, these ideas can be 
extended to images and other types of data 

Definition 1. Time Series: A time series T = t1,…,tm is an ordered set of m real-valued 
variables. 

For data mining purposes, we are typically not interested in any of the global 
properties of a time series; rather, we are interested in local subsections of the time 
series, which are called subsequences.   

Definition 2. Subsequence: Given a time series T of length m, a subsequence C of T is 
a sampling of length n ≤ m of contiguous position from p, that is, C = tp,…,tp+n-1 for  1 
≤  p ≤ m – n + 1. 

Since all subsequences may potentially be attributing to contrast sets, any algorithm 
will eventually have to extract all of them; this can be achieved by use of a sliding 
window. We also need to define some distance measure Dist(C,M) in order to 
determine the similarity between subsequences. We require that the function Dist be 
symmetric, that is, Dist(C,M) = Dist(M,C). There are dozens of distance measures for 
time series in the literature. However recent evidence strongly suggests that simple 
Euclidean distance is very difficult to beat for classification and clustering problems, 
so without loss of generality we will exclusively use it in this work. 

Definition 3. Euclidean Distance: Given two time series Q and C of length n, the 
Euclidean distance between them is defined as:           

( ) ( )−≡
=

n

i
ii cqCQDist

1

2,  

Each time series subsequence is normalized to have mean zero and a standard 
deviation of one before calling the distance function, because it is well understood 
that in virtually all settings, it is meaningless to compare time series with different 
offsets and amplitudes [7]. 
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We may wish to be able to find a pattern that occurs in one time series, but does 
not have a close match in another. Since such patterns could be used to differentiate 
time series, we call such patterns TS-Diffs. 

Definition 4. TS-Diff: Given two time series T and S, and a user-given parameter n, 
TS-Diff(T,S,n) is the subsequence C of T, of length n, that has the largest distance to 
its closest match in S.  

Note that this definition is not generally symmetric; that is, TS-Diff(T,S,n) ≠ TS-
Diff(S,T,n). We may wish to be able to find the patterns that differentiate the two time 
series.  

Definition 5. Time Series Contrast Sets: Given two time series T and S, a user given 
parameter n, let C = TS-Diff(T, S, n) and D = TS-Diff(S, T, n). The contrast set CS for 
T and S is {C, D}.  

Often there might be more than one pattern that differentiates two time series. The 
definition above can be easily extended to K time series contrast sets. 

3   Finding Time Series Contrast Sets 

We begin by describing the simple and obvious brute-force algorithm for finding the 
contrast sets between two time series T and S. For simplicity, let’s assume that the two 
sets of data are of the same length, m, although in reality, their lengths need not be the 
same. Furthermore, let’s assume that we are interested in finding patterns or 
subsequences of length n that differentiate the data. Since the results are not 
necessarily symmetric, we need to process T and S separately.  

Intuitively, the definition of contrast sets tells us that the brute-force algorithm will 
need to compute the pairwise distances between all subsequences in T and S. That is, 
for each subsequence C in T, we need to compute its distance to all subsequences in S, 
in order to determine the distance to its closest match in S. The subsequence in T that 
has the greatest such value is then TS-Diff (T, S, n). This can be achieved with nested 
loops, where the outer loop considers each candidate subsequence in T, and the inner 
loop is a linear scan to identify the candidate’s nearest match in S. The brute-force 
algorithm is easy to implement and produces exact results. However, its O(m2) time 
complexity makes this approach untenable for even moderately large datasets. 

Fortunately, the following observations offer hope for improving the algorithm’s 
running time. Recall what we wish to find here: we wish to identify the subsequence 
in T that is farther away from its nearest match in S than all other subsequences are 
from their respective nearest matches. Hence, we can keep track of the candidate that 
has the largest nearest match distance so far. This implies that we might not need to 
know the actual nearest match distance for every subsequence in T. The only piece of 
information that is crucial is whether or not a given subsequence in T can be the 
candidate for TS-Diff. This can be achieved by determining if the given subsequence 
has the potential of having a large nearest match distance.  

Suppose we use the variable best_so_far_dist to keep track of the largest nearest-
match distance so far. Consider the following scenario. Suppose after examining the 
first subsequence in T, we find that this subsequence is 10 units away from its nearest 
match in S (and we initialize best_so_far_dist to be 10). Now suppose as we move 
on to the next candidate subsequence in T, we find that it’s 2 units away from the first 
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subsequence in S. At this point, we know that the current candidate could not be the 
candidate for TS-Diff, since its nearest match distance is at most 2 units, which is far 
less than best_so_far_dist. We can therefore safely abandon the rest of the search 
for this candidate’s nearest match. In other words, when we consider a candidate 
subsequence C in T, we don’t actually need to find its true nearest match in S. As soon 
as we find any subsequence in S that has a smaller distance to C than 
best_so_far_dist, we can abandon the search process for C, safe in the knowledge 
that it could not be TS-Diff.  

Clearly, the utility of such optimization depends on the order in which the 
subsequences in T are considered, as well as the order in which the subsequences in S 
are matched against the current candidate. The earlier we examine a subsequence in S 
that has a smaller Dist(C, D) than best_so_far_dist, the earlier we can abandon the 
search process for the current candidate. This observation brings us to reducing the 
TS-Diff problem into a generic framework where, instead of examining all 
subsequences in sequential order, it allows one to specify any customized ordering of 
the subsequences to be examined. Table 1 shows the pseudocode.  

Table 1. Heuristic TS-Diff Discovery 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23  

Function  [dist, I]= Heuristic_Search(T, S, n, Outer, Inner ) 
 best_so_far_dist = 0 
 best_so_far_TS = NaN 
 
// Begin Outer Loop                        
For Each C  iin T  ordered by heuristic Outer   
     nearest_neighbor_dist = infinity    
      
      // Begin Inner Loop 
      For Each D  iin  S ordered by heuristic Inner             
          IF Dist (C, D)  < best_so_far_dist 
              BBreak                                 // Break out of Inner Loop 
          EEnd 
          IIF Dist (C, D)  < nearest_neighbor_dist 
              nearest_neighbor_dist = Dist (C, D) 
          EEnd 
     End                                             // End Inner Loop  
      IIF nearest_neighbor_dist > best_so_far_dist 
          best_so_far_dist = nearest_neighbor_dist 
          best_so_far_TS  = C 
      EEnd 
End                                                  // End Outer Loop  
Return[ best_so_far_dist, best_so_far_TS] 

 

We can consider the following to be the best scenario: for the ordering Outer, the 
subsequences in T are sorted by descending order of distances to their closest 
matches in S, so that the true TS-Diff is the first object examined, and 
best_so_far_dist is at its maximum value after the first iteration of the outer loop. 
For the ordering Inner, the subsequences in S are sorted in ascending order of 
distances to the current candidate C so that it’s guaranteed that the first object 
examined in the inner loop will have a distance smaller than best_so_far_dist 
(otherwise C would have been placed towards the front of the queue). For this 
heuristic, the first invocation of the inner loop will run to completion to determine 
best_so_far_dist. Thereafter, all subsequent invocations of the inner loop will be 
abandoned after only one iteration, i.e. after discovering that the current distance is 
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smaller than best_so_far_dist. The total time complexity is thus O(m). This is the 
best possible scenario. We call this heuristic magic. 

On the other hand, we should expect the worst-case scenario to be the exact 
opposite of the best-case scenario. In this scenario, the true TS-Diff will be the last 
object to be examined. More specifically, this heuristics has the worst-possible 
ordering such that for Outer, the subsequences in T are sorted by ascending order of 
distance to the closest match in S. For Inner, the time series in S are sorted in 
descending order of distance to the current candidate. In this case, we are back to the 
quadratic time complexity as the brute-force algorithm. This is the perverse heuristic. 

Another possible strategy is to order the subsequences randomly for both Outer 
and Inner heuristics. Empirically it works reasonably well, and the inner loop is 
usually abandoned early, considerably speeding up the algorithm. 

The three strategies discussed so far suggest that a linear-time algorithm is 
possible, but only with the aid of some very wishful thinking. The best-case heuristic 
requires perfect orderings of subsequences in the inner and outer loops. The only 
known way to produce such ordering is to actually compute the distances, which 
indirectly solve the problem. Even if the distances are known in advance, any sorting 
algorithm requires at least O(mlogm) time complexity. To ensure that the total 
running time is no worse than the worst-case running time, we must require a linear-
time heuristic for T (outer loop, invoked once for the whole program), and a constant-
time heuristic for every invocation of S ordering.  

Observe that, however, for Outer, we do not actually need to achieve a perfect 
ordering to achieve dramatic speedup. All we really require is that among the first few 
candidate subsequences being examined, we have at least one that has a large distance 
to its closest match. This will give the best_so_far_dist variable a large value early 
on, which will allow more early terminations of the inner loop. 

Similar observation goes for Inner. In the inner loop, we also do not actually need 
a perfect ordering to achieve dramatic speedup. We just need that among the first few 
subsequences in S being examined, we have at least one that has a distance to the 
current candidate that is smaller than the current value of best_so_far_dist. This is a 
sufficient condition to allow early termination of the inner loop. 

We can imagine a full spectrum of algorithms, which only differ by how well they 
order subsequences relative to the best-case ordering. The random heuristic is 
somewhere between the best and the worst heuristics. Our goal then is to find the best 
possible approximations to the best-case heuristic ordering, which is the topic of the 
next section. 

4   Group SAX: Approximating the Best-Case Heuristic 

Our techniques for approximating the perfect ordering returned by the hypothetical 
best-case heuristic require us to discretize the real-valued time series data first. We 
choose Symbolic Aggregate ApproXimation (SAX) representation of time series 
introduced in [8] to be the discretization technique. Since our algorithm finds 
differences between groups of time series using SAX, we call it Group SAX. 

SAX works by first approximating the original time series of length m with w 
coefficients (w << n) via Piecewise Aggregate Approximation (PAA) [8]. These w 
coefficients are then converted to symbols of cardinality , according to where they 
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reside in the Gaussian space. Therefore, the discrete approximation of the time series 
is a string of length w. Due to the space constraints, we direct interested readers to [8] 
for more information on SAX. 

4.1   The Outer Loop Heuristic 

We begin by creating two data structures to support our heuristics. Before that, there 
are two parameters associated with SAX that we must consider. They are the 
cardinality of the SAX alphabet size α, and the SAX word size w. Extensive 
experiments carried out by the current authors and dozens of other researchers 
worldwide [8] suggest that a value of either 3 or 4 for α is best for virtually any task 
on any dataset. Furthermore, while the choice of w depends on the data, we observe 
empirically that the speedup does not critically depend on w. We refer interested 
readers to [8] for more details on SAX parameter setting, but note that the parameters 
only affect the efficiency of the algorithm, not the final results. The subsequences are 
extracted by sliding a window of length n across the time series, which are then 
converted to SAX words. These SAX words are inserted to an array where the index 
refers back to the original sequence. Figure 2 gives a visual intuition of this, where 
both α and w are set to 3. Once we have this ordered list of SAX words, we construct a 
hash table. Each bucket in the hash table represents a unique word and contains a 
linked-list index of all subsequences that map to the corresponding string. The hash 
function we used assigns each SAX word a unique address ranging from 0 to 1−wα , 
hence guarantees minimal perfect hashing. The memory consumption for creating an 
empty hash table is considerably small and can be ignored. 

 

Fig. 2. The data structure used to support the Inner and Outer heuristics. (left) An array of SAX 
words (right). An excerpt of the hash table that contain pointers to the corresponding 
subsequences. 
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The process is repeated for both time series datasets that we wish to contrast. Each 
dataset has its own array and hash table. Once the hash tables are constructed for T 
and S, we can now determine the ordering of the outer loop objects. Recall that for 
Outer, the goal is to have a large nearest-match distance early in the loop. Thus, 
intuitively, we want to identify the subsequences in T that have the smallest count of 
matching SAX word in S (virtually zero). The reason is simple. Since SAX 
approximates and captures similarities between time series, we can expect that similar 
time series are likely to map to the same SAX representation. Conversely, 
subsequences mapped to SAX strings that are exclusive to T, i.e., they appear in T but 
not in S, are unlikely to have close matches in S. Therefore, by considering the 
candidate subsequences that map to such unique or rare SAX words with respect to S 
early in the outer loop, we have a great chance of obtaining large best_so_far_dist 
value among the first few candidates examined, thus allowing early termination in the 
subsequent inner-loop iterations. 

To achieve this, we utilize the two hash tables we build from T and S. We perform 
a linear scan in Hash_S, and for each empty bucket we encounter, check if the 
corresponding bucket in Hash_T is empty as well. If not, then we record the 
subsequence indices from this bucket in Hash_T, and add them to a list which we call 
Preferred_List. We end up with a list that contains indices of subsequences whose 
SAX representations are unique in T. The subsequences referred to by the 
Preferred_List will be given to the outer loop to search over first. After the outer loop 
has exhausted this set, the rest of the candidates are visited in random order. 

4.2   The Inner Loop Heuristic 

Our Inner heuristic also leverages off Hash_T and Hash_S. Recall that in the inner 
loop, as soon as we encounter a subsequence similar enough to the current candidate 
in the outer loop, such that their distance is smaller than best_so_far_dist, then the 
search for the current candidate can be abandoned. The heuristic used for the outer 
loop gives us hope that best_so_far_dist will take on a large value early on in the 
process. For the inner loop, we take the optimization one step further by putting the 
subsequences that might cause early termination in the front of the queue so they are 
examined first. By identifying and eliminating those that could not possibly have a 
nearest match distance larger than best_so_far_dist early in the iteration, many 
unnecessary computations can be spared. Note that all it takes is having one distance 
that is smaller than best_so_far_dist.  

To achieve this, we determine the ordering of the inner loop as follows. When 
candidate i is first considered in the outer loop, we look up the SAX word that it maps 
to, by examining the ith word in the array for T. We then compute the key for the SAX 
word, and order the first items in the inner loop in the order of the elements in the 
linked list index found at the corresponding bucket in Hash_S. These subsequences 
will be visited first by the inner loop. After this list is exhausted, the rest of the 
subsequences are visited in random order. 

Note that in the beginning, since the outer loop considers the unique words in T 
first, there will be no matching words in S, thus no optimization for the inner loop. 
One option would be to limit the size of Preferred_List in the outer loop; however, 
empirically we find that even without doing so, the speed up is already significant that 
it is not necessary to put a threshold on the number of “unique” subsequences to 
examine first in the outer loop. 
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5   Empirical Evaluation 

5.1   The Utility of Contrast Sets: Time Series 

We begin by considering the contrast set between German and Italian consumer 
electrical power demands. We obtained the last 9 nine years data from two towns, 
Dortmumd and Florence. Both time series are sampled hourly, and thus each is of 
length 269,379. We are interested in monthly patterns, so we set parameter n to 672 (4 
weeks). Figure 3 shows the number one TS-Diff(Italian, German, 672) found. 

The difference is striking. The German time series simply shows the typical 
weekly pattern repeated 4 times. The typical weekly pattern for power demand 
corresponds to 5 major peaks for the Monday to Friday 9 to 5 work hours, followed 
by a much smaller peak for Saturday and minimal power demand for Sunday. In 
contrast, the Italian demand shows a dramatic reduction in power demand as the 
month of August progresses. What is behind this difference?  
 

 

Fig. 3. The four weeks of Italian Power Demand, beginning on Monday July 31st 1995 is 
radically different from the most similar four weeks of German Power Demand, beginning on 
3rd of May 1999. 

The answer lies in an Italian cultural phenomenon. According to travel writer Nella 
Nencini, “By the middle of July, normal activity begins to wane and by the beginning 
of August, shops no longer close between 1 and 4 p.m., they close for two or three 
weeks. Dry cleaners close, mechanics close, factories close, wineries close, 
restaurants close, even some museums close. Cities like Florence and Venice would 
be abandoned if not for the tourists braving the heat to visit artistic treasures”. The 
dramatic change in power demand reflects the fact that most major employers (like 
Fiat and many government offices) simple shut down for the month. This difference is 
obvious if we zoom out and look at a full year of Florence’s power demand, as shown 
in Figure 4. 

 

Fig. 4. One Year of Italian Power Demand (1995). Note that August is radically different from the 
rest of the year. 
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5.2   The Utility of Contrast Sets: Shapes 

As noted in Section 1, we can trivially apply our ideas to shapes, since shapes 
typically represented as a 1-dimensional signal. In this section we show some 
examples of mining image datasets. 

Petroglyphs are images incised in rock by prehistoric peoples. They were an 
important form of pre-writing symbols, used in communication from approximately 
10,000 B.C. to modern times, depending on culture and location. Petroglyphs have 
been found on every continent except Antarctica. In virtually all cases, there is still 
great controversy about who created the petroglyphs, when, and for what purpose. 
The controversy is not for the want of evidence, for example the petroglyph shown in 
Figure 6A is just one of more than 100,000 petroglyphs to be found in an area of a 
mere 91 square miles of Sierra Nevada called Renegade Canyon. 

We believe that contrast sets offer one possible tool for examining massive 
archives of petroglyph images. As a preliminary experiment we began by contrasting 
petroglyphs from the aforementioned site in Nevada with a similarly dense site in 
Sheep Springs in Kern County California.  

For simplicity we only consider petroglyphs of animals, however it has be estimated 
that 51% of the Renegade Canyon petroglyphs are of animals, and as the name “Sheep 
Springs” suggests, the Californian site is similarly dense with images of sheep. 

There are several technical problems that must be faced before we apply our 
algorithm. First of all there is the issue of image processing and shape extraction. This 
task is non-trivial, but not of direct interest here. Note that the representation we use is 
scale and translation invariant.  

Once the shapes have been extracted and converted to time series we must consider 
two important issues. Do we wish to be enantiomorphic invariant? That is to say do 
we wish to attach any significance to whether an animal is facing left or right? After 
consulting with an anthropologist we decided to ignore such directional information. 
This we achieve by simply augmenting the database of time series to include the 
mirror image of each image. We can achieve this directly in the time series 
representation. Recall that a single time series C is defined as: C = c1,c2,…,cj,…,cn. 

For each such time series we also add C’ to the database:  C’ = cn,cn-1,…,c2,…,c1.  
We must also consider the problem of rotation invariance. Should we attach any 

significance to the angle at which the animals are drawn? For two reasons our answer 
is no. The first is pragmatic. Finding “correct” orientation of a shape is difficult 
problem in general. The second reason why we choose to be invariant to orientation is 
an observation by our anthropologist that often the animals are drawn to align with 
cracks and fissures in the rocks, and the orientation appears to have no significance. 

Once again, achieving rotation invariance in our representation is easy to achieve 
by augmenting our database to contain additional time series.  Let C be all n circular 
shifts of C: 
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By adding all such circular shifts to our database we achieve rotation invariance. 
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Figure 5 shows some examples of shapes from Renegade Canyon and their closest 
match from Sheep Springs, including the one that maximizes TS_Diff(Renegade 
Canyon, Sheep Springs). 

 

Fig. 5. Three petroglyphs shapes from Renegade Canyon (light lines) and their best matches from the 
Sheep Springs database. While most shapes are like A and B in having a close match in the other 
database, the shape from Renegade Canyon shown in C is unusually different from its nearest 
counterpart in Sheep Springs. 

Why is one image from Renegade Canyon so different to any image from Sheep 
Springs? An inspection of the original images, as shown in Figure 6, reveals the 
answer. While there are a handful of images that show a spear stuck into the body of a 
sheep in Renegade Canyon, including the one shown in Figure 6 (top), a careful 
manual inspection of the Sheep Springs database reveals that there are no such 
petroglyphs in Sheep Springs. 

 

Fig. 6. A) A petroglyph from Renegade Canyon of a Bighorn Sheep with a spear stuck in it has 
its profile automatically extracted (B) and converted to a time series. C) A petroglyph from 
Sheep Springs of a Bighorn Sheep with a spear stuck in it has it profile automatically extracted 
(D) and converted to a time series. Note that the two shapes are not a good match, mainly 
because the part of the time series corresponding to the spear (E) creates a relatively large 
Euclidean distance between the two shapes.   

5.3   The Utility of Our Search Technique 

In Figure 7, we compare the brute force algorithm to our algorithm in terms of the 
number of times the Euclidean distance function is called. Since we are now 
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interested in the scalability of both approaches, we use random walk datasets of 
lengths 100,000 and 200,000. For our algorithm we averaged the results over 100 runs 
for each data length.  

 

Fig. 7. The number of calls to the distance function required by brute force and heuristic search. 
The window length is 64 for all cases.  

Note that as the data sizes increase, the differences get larger. For a time series of 
length 200,000, our approach is almost seven thousand times faster than brute force 
approach. This experiment is in fact pessimistic in that we used the datasets (random 
walk) that did not have any obvious structures in them. In general, if the data exhibit 
some structures, as the ones used in Section 5.1 and 5.2, then our approach would be 
even faster since there would be a lot more potential matches for most subsequences, 
to allow early termination. 

6   Conclusions and Future Work 

In this work, we have introduced the notion of time series contrast sets, a data mining 
task that identifies key differences across data groups. We introduced an algorithm to 
efficiently find time series contrast sets and demonstrated its utility of a host of 
domains. Many future directions suggest themselves; most obvious among them are 
extensions to multidimensional time series, to streaming data, and to other distance 
measures. We will also investigate the possibility of combining the processes of TS-
Diff(T, S, n) and TS-Diff(S, T, n) to avoid redundant computations. 
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Abstract. We examine the effectiveness of distance preserving trans-
formations in privacy preserving data mining. These techniques are po-
tentially very useful in that some important data mining algorithms can
be efficiently applied to the transformed data and produce exactly the
same results as if applied to the original data e.g. distance-based cluster-
ing, k-nearest neighbor classification. However, the issue of how well the
original data is hidden has, to our knowledge, not been carefully stud-
ied. We take a step in this direction by assuming the role of an attacker
armed with two types of prior information regarding the original data.
We examine how well the attacker can recover the original data from the
transformed data and prior information. Our results offer insight into
the vulnerabilities of distance preserving transformations.

1 Introduction

Recent interest in the collection and monitoring of data using data mining tech-
nology for the purpose of security and business-related applications has raised
serious concerns about privacy issues. For example, mining health-care data for
detection of bio-terrorism may require analyzing clinical records and pharmacy
transaction data of certain off-the-shelf drugs. However, combining such diverse
data sets belonging to different parties may violate privacy laws. Privacy Pre-
serving Data Mining (PPDM) strives to provide a solution to this dilemma. It
aims to allow useful data patterns to be extracted without compromising privacy.

Data perturbation represents one common approach in PPDM. Here, the orig-
inal dataset is perturbed and the result is released for data analysis. Perturbation
approaches typically face a “privacy/accuracy” trade-off. On the one hand, per-
turbation must not allow the original data records to be adequately recovered.
On the other, it must allow “patterns” in the original data to be recovered. In
many cases, increased privacy comes at the cost of reduced accuracy and vice
versa. For example, Agrawal and Srikant [1] proposed adding randomly gener-
ated i.i.d. noise to the dataset. They showed how the distribution from which
the original data arose can be estimated using only the perturbed data. How-
ever, Kargupta et al. [2] and Huang et al. [3] pointed out how, in many cases,
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the noise can be filtered off leaving a reasonably good estimation of the original
data. These results point to the fact that unless the variance of the additive
noise is sufficiently large, original data records can be recovered unacceptably
well. However, this increase in variance reduces the accuracy with which the
original data distribution can be estimated. This privacy/accuracy trade-off is
not limited to additive noise, some other perturbation techniques suffer from a
similar problem e.g. k-anonymity [4].

Recently, distance preserving data perturbation [5,6] has gained attention
since it mitigates the privacy/accuracy trade-off by guaranteeing perfect accu-
racy. Many important data mining algorithms can be efficiently applied to the
transformed data and produce exactly the same results as if applied to the orig-
inal data. e.g. distance-based clustering and k-nearest neighbor classification.
However, the issue of how well the original data is hidden has, to our knowledge,
not been carefully studied. In this paper, we address this issue by studying how
well an attacker can recover the original data from the transformed data and
prior information. We restrict our attention to the class of distance preserving
transformations that fix the origin and consider recovery of the original data
in the presence of two different classes of prior information (described later).
Our analysis explicitly illuminates scenarios where privacy can be breached. As
such, valuable information is gained into the effectiveness of distance preserving
transformation for privacy preserving data mining.

The remainder of this paper is organized as follows. Section 2 discusses some
basic mathematical properties of distance preserving transformations, the ap-
plication of these transformations to privacy-preserving data mining, and two
classes of attacker prior knowledge. Sections 3 and 4 examine in detail how
knowledge in each of these classes can be used to estimate the original data from
the transformed data. Section 5 discusses related work. Finally, section 6 con-
cludes the paper with a brief discussion of a suggested remedy for the attacker’s
approach in one of the classes of prior knowledge.

2 Distance Preserving Transformations

Throughout this paper (unless otherwise stated), all matrices and vectors dis-
cussed are assumed to have real entries. All vectors are assumed to be column
vectors and M ′ denotes the transpose of any matrix M . An m× n matrix M is
said to be orthogonal if M ′M = In, the n× n identity matrix.1 Let On denote
the set of all n×n, orthogonal matrices. A function T : Rn → Rn is distance pre-
serving if for all x, y ∈ Rn, ||x− y|| = ||T (x)−T (y)||, where ||.|| denotes l2-norm
of a vector. Here T is also called a rigid motion. It has been shown that any
distance preserving transformation is equivalent to an orthogonal transforma-
tion followed by a translation [7, pg. 128]. In other words, there exists MT ∈ On

and vT ∈ Rn such that T equals x ∈ Rn �→ MT x + vT . If T fixes the origin,
T (0) = 0, then vT = 0, hence, T is an orthogonal transformation. Henceforth
we assume T is a distance preserving transformation which fixes the origin – an
1 If M is square, it is orthogonal if and only if M ′ = M−1 [7, pg. 17].
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orthogonal transformation. Next we describe the privacy application scenarios
where orthogonal transformation can be used to hide the data while allowing
important patterns to be discovered without error.

2.1 Privacy Application Scenarios

We consider two privacy application scenarios as follows.

Census scenario: An organization has a private dataset X (each column is
a data record) and wishes to make it publicly available for data analysis while
keeping the original data records private. To accomplish this, Y = MT X is re-
leased to the public. The distance preserving nature of T allows a public entity
to easily recovery many useful patterns from Y . For example, the cluster mem-
bership produced by a Euclidean distance-based K-means clustering on Y will
be exactly the same as that produced on X . This model is widely studied in the
field of security control for statistical databases. We refer the reader to [8] for a
nice overview on this topic.

Storage outsourcing scenario: An organization continuously generates pri-
vate data records, but does not wish to invest in the infrastructure (both per-
sonnel and hardware) needed to manage the storage. Outsourcing this job can
be an attractive alternative i.e. the data records are handed over to an outside
agency who manages their storage. However, the original data records are sensi-
tive and the organization would rather avoid releasing them in the plain to the
outsourcing agency. To accomplish this, the owner applies T to each data record
and releases the results to the outsourcing agency. Whenever the owner wishes
to retrieve records from the outsourced database, she transforms her query by
the same T and sends it to the outsourcing agency who carries out similarity
comparison on the data and, in turn, sends the results back to the owner. This
scenario is closely related to work on secure database outsourcing, e.g. [17].

2.2 Prior Knowledge

Let the n×m matrix X denote a private dataset, with each column of X being
a record and each row an attribute. We assume that the attacker knows that T
is an orthogonal transformation and knows the perturbed data Y = MT X . In
most realistic scenarios, the attacker has some additional prior knowledge which
can potentially be used effectively for breaching privacy. We consider two types
of prior knowledge.

Known input-output: The attacker knows some collection of linearly inde-
pendent private data records. In other words, the attacker has a set of linearly
independent input-output pairs.

Known sample: The attacker knows that the original dataset arose as inde-
pendent samples of some n-dimensional random vector V with unknown p.d.f.
Also the attacker has another collection of independent samples from V . For
technical reasons, we make a mild additional assumption: the covariance matrix
of V has distinct eigenvalues.
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In the next two sections, we describe and analyze an attack technique for each
type of prior knowledge listed above.

3 Known Input-Output Attack

Let Xk denote the first k columns of X and Xm−k the remainder (likewise for Y ).
We assume that columns of Xk are all linearly independent and Xk is known to
the attacker (Y is, of course, also known). The goal of the attacker is to recover
some columns in Xm−k with at most ε ≥ 0 error (described later). If k = n, then
the attacker can recover Xm−k perfectly as it equals (YkX−1

k )′Ym−k. Thus, we
assume k < n. Based on known information, the attacker can narrow down the
space of possibilities for MT to M(Xk, Yk) = {M ∈ On : MXk = Yk}. Since the
attacker has no additional information, any of these matrices is equally likely to
have been MT . The attacker chooses M̂ uniformly from M(Xk, Yk) and chooses
index 1 ≤ î ≤ m − k using some criterion (described later), then produces
x̂ = M̂ ′yî = M̂ ′MT xî as an estimate of xî, where xî is the îth column of Xm−k.
We say that an ε-privacy breach occurs if ||x̂ − xî|| ≤ ||xî||ε. We define ρ(xî, ε)
as the probability that an ε-privacy breach occurs. This serves as the criterion
for choosing î.

Next, for any vector x ∈ Rn, we develop a closed form expression for ρ(x, ε),
the probability that ||M̂ ′MT x− x|| ≤ ||x||ε. This is the ε-privacy breach proba-
bility for x. Due to space limitations, all proofs are omitted.

3.1 Probability of Privacy Breach

Let Col(Xk) denote the column space of Xk and Col⊥(Xk) denote its orthogonal
complement, i.e. {z ∈ Rn : z′w = 0, ∀w ∈ Col(Xk)}. Since the columns of Xk

are linearly independent, then there exists orthogonal matrices Uk (n × k) and
Un−k (n× (n− k)) such that Col(Xk) = Col(Uk) and Col⊥(Xk) = Col(Un−k).
It can be proved that

M(Xk, Yk) = {MT UkU ′
k + MT Un−kPU ′

n−k : P ∈ On−k}.

Hence, linear map L : M ∈ M(Xk, Yk) �→ (MT Un−k)′MUn−k ∈ On−k is a
bijection. It can be further shown that

||M̂ ′MT x− x|| = ||L(M̂)′U ′
n−kx− U ′

n−kx||.

Thus, ρ(x, ε) equals the probability that a matrix P̂ drawn uniformly from On−k

satisfies
||P̂ ′U ′

n−kx− U ′
n−kx|| ≤ ||x||ε. (1)

Now let Sn−k(U ′
n−kx) be the hypersphere in Rn−k centered at the origin with

radius ||U ′
n−kx||. Vector P̂ ′U ′

n−kx and U ′
n−kx from inequality (1) are points on

the surface of Sn−k(U ′
n−kx). Let Sn−k(U ′

n−kx, ||x||ε) be the portion of Sn−k

whose distance from U ′
n−kx is no larger than ||x||ε, i.e. Sn−k(U ′

n−kx, ||xε||) =
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{z ∈ Sn−k(U ′
n−kx) : ||z − U ′

n−kx|| ≤ ||x||ε}. From inequality (1), it follows that
ρ(x, ε) is the probability that a randomly chosen P̂ ∈ On−k satisfies P̂ ′U ′

n−kx
∈ Sn−k(U ′

n−kx, ||x||ε). Therefore, this probability equals the ratio of the surface
area of Sn−k(U ′

n−kx, ||x||ε) to the surface area of Sn−k(U ′
n−kx). Then, it can be

shown:

ρ(x, ε) = (
1
π

)2arcsin(
||x||ε

2||U ′
n−kx|| ) if ||x||ε < 2||U ′

n−kx||; 1 otherwise.

An alternate characterization of ||U ′
n−kx|| yields a more intuitive form of the

second right-hand side. Consider UkU ′
kx the projection of x into Col(Xk). The

distance, d(x, Xk), of x from Col(Xk) is ||x − UkU ′
kx||. It can be shown that

||U ′
n−kx|| = d(x, Xk). Therefore,

ρ(x, ε) = (
1
π

)2arcsin(
||x||ε

2d(x, Xk)
) if ||x||ε < 2d(x, Xk); 1 otherwise. (2)

This formula allows us to observe the behavior of the ε-privacy breach proba-
bility for x in terms of ||x||ε and the distance of x from Col(Xk). Indeed the prob-
ability is approximately inversely proportional to d(x, Xk) for d(x, Xk) >> ||x||ε.
2 On the other hand, as ||x||ε → 2d(x, Xk), the breach probability goes to one.
In the extreme case where x ∈ Col(Xk), a breach occurs with probability 1 for
any ε.

3.2 Attack Technique

Using equation (2), ρ(xî, ε) can be computed from ||xî||, ε, and d(xî, Xk). Since
the attacker knows Y , she can compute ||yî|| = ||MT xî|| = ||xî|| and Vk an
n × k, orthogonal matrix such that Col(Vk) = Col(Yk). It can be shown that
d(xî, Xk) = d(yî, Yk) = ||MT xî − V V ′MT xî||. Therefore, the attacker chooses î
to maximize ρ(xî, ε). If the data owner knows that Xk is in the attacker’s prior
knowledge, then the owner can protect against this attack by simply not releasing
MT xi for any xi where d(xi, Xk) is unacceptably small. On the other hand, if
the owner does not know Xk is prior knowledge, then this attack technique can
be quite damaging.

4 Known Sample Attack

In this scenario, we assume that each data record arose as an independent sam-
ple from a random vector V with unknown p.d.f. We also make the following
mild technical assumption: the population covariance matrix ΣV of V has all
distinct eigenvalues. We make this assumption because it holds in most practical
situations [9, pg. 27]. Furthermore, we assume that the attacker has a collection
of p samples that arose independently from V – these are denoted as the columns

2 For small z, arcsin(z) is approximately linear.
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of matrix S. In this section we design a Principal Component Analysis (PCA)-
based attack technique by which the attacker produces X̂, an estimate of X ,
from Y = MT X and S. Unlike Section 3, we do not attempt a rigorous analy-
sis of the attacker’s success probability. Instead, we analyze the recovery error
through experiments.

4.1 PCA Preliminaries

Let ΣV denote the population covariance matrix of V . Since ΣV is an n × n,
symmetric matrix (and we assume it has all distinct eigenvalues), it has n real
eigenvalues λ1 > . . . > λn [10, pg. 295]. Associated with each eigenvalue λi is its
eigenspace, {z ∈ Rn : ΣV z = zλi}. It can be shown that since ΣV has distinct
eigenvalues, the eigenspaces are pair-wise orthogonal and each has dimension one
[10, pg. 295]. As is standard practice, we restrict our attention to only a small
number of eigenvectors. Let Z(V )i denote the set of all eigenvectors z ∈ Rn such
that ΣV z = zλi and ||z|| = 1. Now consider random vector T (V ) = MT V and
let ΣMT V denote its covariance matrix. The eigenspaces of ΣV are related in a
natural way to those of ΣMT V , as shown by the following theorem (all proofs
are omitted due to space constraints).

Theorem 1. The eigenvalues of ΣV and ΣMT V are the same and MTZ(V )i =
Z(MT V )i where MTZ(V )i equals {MT w : w ∈ Z(V )i}.

Since all the eigenspaces of ΣV have dimension one, it can be shown that Z(V )i

contains only two eigenvectors zi,−zi, i.e. Z(V )i = {zi,−zi}. Let zi be the
lexicographically larger vector among zi,−zi, and let Z be the n × n matrix
whose ith column is zi. Since the eigenspaces of ΣV are pairwise orthogonal
and ||zi|| = 1, Z is orthogonal. Similarly, we have that Z(MT V )i = {wi,−wi}
(wi is the lexicographically larger among wi,−wi) and W is the matrix with
ith column wi (W is orthogonal). The following result forms the basis of the
attacker’s attack algorithm.

Corollary 1. Let In be the space of all n×n, matrices with each diagonal entry
±1 and each off-diagonal entry 0 (2n matrices in total). There exists D0 ∈ In

such that MT = WD0Z
′.

4.2 PCA Attack Algorithm

First assume the attacker knows the population covariance ΣV and ΣMT V . Thus,
the attacker can compute W and Z ′. By Corollary 1, the attacker knows that
MT equals WD0Z

′ for some D0 ∈ In, and therefore, the original data would
be recovered by M ′

T Y = ZD0W
′Y . The problem is how to choose the right D0

from all the possible 2n elements in In. To do so, the attacker must utilize S
and Y , in particular, the fact that these arose as independent samples from V
and MT V , respectively. For each D ∈ In, each column of WDZ ′S arose as an
independent sample from WDZ ′V . If D = D0, then WDZ ′ = MT , so, WDZ ′S
and Y should come from the same p.d.f. The attacker will choose D ∈ In such
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that WDZ ′S is most likely to have arisen from the same p.d.f. as Y . To make
this choice, a similarity function G(WDZ ′S, Y ) is introduced, and the D that
maximizes G is chosen. There might be many ways to define this function. In this
paper, we use a multivariate two-sample hypothesis test for equal distributions
[11]. The two-sample problem assumes that there are two sets of independent
samples x1, x2, . . . , xm1 and y1, y2, . . . , ym2 of independent random vectors with
distributions F1 and F2, respectively. The goal of two-sample problem is to
test H0 : F1 = F2, versus the composite alternative H1 : F1 �= F2. For each
D ∈ In, we compute the p-value of the test on WDZ ′S and Y , denoted by
ρ(D). Here the p-value is defined as the smallest level of significance at which
H0 would be rejected on a given data set. Small p-values suggest that the null
hypothesis is unlikely to be true. The smaller it is, the more convincing is the
rejection of the null hypothesis. Therefore the value of function G is nothing
but the p-value, and the D matrix that is associated with the highest p-value is
chosen.

In practice, the population covariance ΣV and ΣMT V are unknown, and will
be replaced by the sample covariance ΣS and ΣY from S and Y (independent
samples arising from V and MT V ). Algorithm 4.2.1 shows the complete PCA-
based attack procedure.

Algorithm 4.2.1. PCA-based Attack Technique
Inputs: S, an n × p matrix where each column arose as an independent sample from

V (a random vector with unknown p.d.f). Y = MT X where MT is an unknown,
n × n, orthogonal matrix; and X is an n × m unknown matrix where each column
arose as an independent sample from V .

Outputs: X̂ , an estimation of X.
Assumptions: ΣV has all distinct eigenvalues.
1: Compute sample covariance matrix Σ̂S from S and sample covariance matrix Σ̂Y

from Y . [O(n2m + n2p)]
2: Compute the eigenvector matrix Ẑ of Σ̂S and Ŵ of Σ̂Y . Each eigenvector has unit

length and is sorted in the matrix by the corresponding eigenvalue. [O(n3)]
3: Choose D0 = argmax{G(ŴDẐ′S, Y ) : D ∈ In}. [O(2nB)]
4: Compute X̂ = ẐD0Ŵ

′Y . [O(n3 + n2m)]

The computation cost of Algorithm 4.2.1 is O(n2(m+p)+n3+2nB) assuming
G(., .) requires O(B) computation. For the two-sample test, B = (m + p)2, so,
the total computation of the algorithm is O(2n(m + p)2).

4.3 Effectiveness

The effectiveness of the PCA Attack algorithm depends on two correlated as-
pects: 1) the p.d.f., f , of V ; and 2) the quality of covariance estimation.

PDF of V: First, suppose for some D1 �= D0 ∈ In, f is invariant over D1 in
the sense that fD1 = fD0 where fDi is the p.d.f. x ∈ Rn �→ f(WDiZ

′x). Then,
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WD0Z
′S, WD1Z

′S and Y all arose from the same p.d.f., so ρ(D0) may not be
larger than ρ(D1), and the attack algorithm will fail. An example of such an
f is the n-variate Gaussian with mean vector zero and covariance matrix In.
This distribution is invariant to orthogonal transformation. Second, suppose the
eigenvalues of ΣV are nearly identical. For example, suppose f has a diagonal
covariance matrix whose diagonal entries (from top-left to bottom-right) are
d, d − ε, d − 2ε, . . ., d − nε where d − nε > 0 and 0 < ε < 1. Small errors
in estimating ΣV from S can produce a different ordering of the eigenvectors,
hence, large errors in the attacker’s recovery.

Quality of Covariance Estimation: A great deal of work has been conducted
in the statistics community on estimating the covariance matrix of a random vec-
tor based on an independent sample [9, Chapter 10.4]. Any estimation technique
can be used in our technique. In experiments we use the simple, standard sample
covariance estimator.

4.4 Experiments

To validate the PCA-based attack algorithm, we conducted experiments on both
synthetic and real world data. One such synthetic dataset contains 1000 data
points, which are generated from a two-dimensional Gaussian distribution with
mean (−10, 10) and covariance

(
1 1.5

1.5 3

)
. The attacker has 50 sample data points

(5% of the size of original data) chosen from the same distribution. Figure 1
shows the results of perturbation and recovery. It can be seen that although
the perturbed data is very different from the original one, the recovered data
almost overlaps with the original data.3 To further examine how sample size
affects the quality of the attack, we fixed the orthogonal perturbation matrix,
and variated the number of samples from 1% of the original data to 20%. For
each sample ratio, 20 independent trials were conducted. We computed 95%
confidence interval of the results. Figure 2 shows that as the sample size increases,
the average relative distance between the columns of X and X̂ decreases.4

For real world data, we chose the Adult Database from the UCI machine
learning repository. This data set contains 32, 561 records, and it is extracted
from the census bureau database. For the purpose of visualization, we only se-
lected three continuous attributes: age, education-num and hours-per-week, for
the experiment. We first randomly separated the dataset into two disjoint sets.
One set is viewed as the original data, and the other one is the attacker’s sam-
ple data, which accounts for 5% of the original data. The left column of Figure
3 shows the difference between the original data and the perturbed data; the
right column of Figure 3 depicts the results of PCA-based attack. It can be seen
that the recovered data approximates the original data very well. To examine
the influence of sample size, we fixed the orthogonal perturbation matrix, and
3 Note that the shape of the perturbed data does not appear very similar to the shape

of the original data because the axes scales are not even.

4 The average relative distance between the columns is defined as
∑numCols

i
||Xi−X̂i||

||Xi||
numCols

.
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Fig. 1. Performance of PCA-based attack
for two-dimensional Gaussian data
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Fig. 2. Performance (average of 20 inde-
pendent trials) w.r.t. sample size. Error
bars show 95% confidence intervals.

variated the number of samples from 2% of the original data to 20%. For each
sample ratio, 20 independent trials were conducted. Figure 4 gives the result.

To evaluate the complexity of the PCA attack algorithm, we generated mul-
tivariate Gaussian data with dimensionality ranging from 2 to 12. Each data
set contains 5250 records, 250 records of which are used as samples. The energy
test proposed in [11] was used to quantify similarity (G(., .)), The experiment
was conducted in Matlab on a dual-processor workstation with 3.00GHz and
2.99GHz Xeon CPUs and 3.00GB RAM. We observed that for 2-dimensional
data, it took 143.1090 seconds, and for 12-dimensional data, it took 1.2442×105

seconds. Although the running time goes up rapidly as the dimension increases,
this algorithm is still computationally feasible for relatively high dimensional
data.

5 Related Work

This section presents a brief overview of the literature on data perturbation
for PPDM. There is another class of PPDM technique using secure multi-party
computation (SMC) protocols for implementing common data mining algorithms
across distributed datasets. We refer interested readers to [12] for more details.

Additive perturbation: Agrawal and Srikant [1] proposed the addition of
i.i.d., white noise for privacy protection. They describe a technique by which the
original data distribution can be estimated from the perturbed data. Kargupta
et al. [2] questioned the use of additive, white noise by showing how, in some
cases, the noise can be effectively filtered off revealing a good approximation of
the original data. This technique was further investigated by Huang et al. [3].
To our knowledge, these techniques are not applicable to this paper since it is
concerned with non-additive perturbation.

Multiplicative perturbation: Two basic forms of multiplicative noise have
been studied in the Statistics community [13]. One multiplies each data element
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Fig. 4. Performance (average of 20 inde-
pendent trials) of PCA-based attack w.r.t.
sample size for Adult data. Error bars
show 95% confidence intervals.

by a random number that has a truncated Gaussian distribution with mean
one and small variance. The other takes a logarithmic transformation of the
data first, adds multivariate Gaussian noise, then takes the exponential function
exp(.) of the noise-added data. Neither of these perturbations preserve distance
and are fundamentally different than the type we study, orthogonal transforma-
tions. To facilitate large scale data mining applications, Liu et al. [14] proposed
an approach where the data is multiplied by a randomly generated matrix – in
effect, the data is projected into a lower dimensional space. This technique pre-
serves distance on expectation. However, the privacy analysis there did not take
into account prior knowledge as we do. Oliveira and Zaiane [6], Chen and Liu
[5] discuss the use of random rotation for privacy-preserving clustering and clas-
sification. These authors observe that the distance preserving nature of random
rotation makes it useful in this setting, but do not analyze its privacy limitations.

Categorical data perturbation: Evfimievski et al. [15], Rizvi and Haritza
[16] consider the use of data categorical perturbation. They develop algorithms
from which association rules present in the original data can be estimated from
the perturbed data. Along a related line, Verykios [18] consider perturbation
techniques which allow the discovery of some association rules while hiding others
considered to be sensitive.

Data anonymization: Sweeney [4] developed the k-anonymity framework
wherein the original data is transformed so that the information for any in-
dividual cannot be distinguished from k-1 others. Values from the original data
are generalized (replaced by a less specific value) to produce the anonymized
data. This technique makes no accuracy guarantees for subsequent analysis of
the transformed data.
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Data swapping: This technique transforms the database by switching a subset
of attributes between selected pairs of records so that the individual record
entries are unmatched, but the statistics are maintained across the individual
fields. A variety of refinements and applications of data swapping have been
addressed since its initial appearance. We refer readers to [19] for a thorough
treatment.

6 Conclusions

We considered the use of distance-preserving maps as a data perturbation tech-
nique for privacy-preserving data mining. On the one hand, this technique is
quite useful as it is computationally efficient, and it allows many interesting data
mining algorithms to be applied directly to the perturbed data and produce an
error-free result e.g. K-means clustering and k-nearest neighbor classification.
On the other hand, the privacy offered by distance preserving transformations
has, to our knowledge, not been well-studied. We take a step in this direction
by considering two types of prior knowledge an attacker may have and use to
design attack techniques to recover the original data. The first is based on basic
properties of linear algebra and the second on principal component analysis.

We conclude the paper by pointing out a potential remedy to the privacy
problems described earlier for the PCA attack. Recall that the attacker, with a
good estimate of the original and transformed covariance matrices, could gain
a lot of information about the orthogonal transformation T itself and, there-
fore, undo it quite well to recover the original data. We suggest, however, that
the data owner instead use a randomized transformation which is orthogonal
on expectation – namely, random projection. The owner generates R̂, a � × n
matrix with each entry sampled independently from a distribution with mean
zero and variance one and releases Y = RX where R = �−1/2R̂ (this type of
data perturbation for � ≤ n was discussed in [14]). It can be shown that matrix
R is orthogonal on expectation and the probability of orthogonality approaches
one exponentially fast with �. By increasing �, the data owner can guarantee
that distances are preserved with arbitrarily high probability. However, it can
be shown that the randomness introduced by R kills the covariance in Y used
by the PCA based attack. Specifically, given random vector V , it can be shown
that, ΣRV (the covariance matrix of RV ) equals Inγ for some constant γ. Any
vector in Rn is an eigenvector of ΣRV , therefore, the PCA based attack will not
work. The exploration of this kind of randomized orthogonal transformation is
a good direction for future work.
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Abstract. To achieve the concept of smart roads, intelligent sensors are being 
placed on the roadways to collect real-time traffic streams. Traditional method 
is not a real-time response, and incurs high communication and storage costs. 
Existing distributed stream mining algorithms do not consider the resource 
limitation on the lightweight devices such as sensors. In this paper, we propose 
a distributed traffic stream mining system. The central server performs various 
data mining tasks only in the training and updating stage and sends the 
interesting patterns to the sensors. The sensors monitor and predict the coming 
traffic or raise alarms independently by comparing with the patterns observed in 
the historical streams. The sensors provide real-time response with less wireless 
communication and small resource requirement, and the computation burden on 
the central server is reduced. We evaluate our system on the real highway 
traffic streams in the GCM Transportation Corridor in Chicagoland.  

Keywords: data stream, distributed computing, real-time, traffic, sensor. 

1   Introduction 

Advances in computing and communication over wired and wireless networks have 
resulted in many pervasive distributed computing environments, such as PDAs, cell 
phones, sensors, etc. Data in such applications is increasingly getting transformed to 
continuous data streams, which are dynamically changing, exhibit high volume, have 
high dimensionality, and are potentially infinite in length. Several issues related to 
mining stream data have been investigated in [1, 2, 3, 4, 8, 11]. The ever-increasing 
computational capacity of ubiquitous equipments presents an opportunity for 
intelligent data analysis to be performed “anytime, anywhere” with constrained 
resources. Stream mining on pervasive computing devices has a broad range of 
applications. For example, commercial fleet management companies spend a lot of 
                                                           
* This work was done during the first author’s doctoral study in Northwestern University. 
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time and labor in collecting vehicle performance data, studying the data offline, and 
estimating the condition of the vehicle primarily through manual efforts. If on-board 
PDA was installed in every vehicle and connected with the remote server through 
wireless networks, real-time analysis of vehicle data streams would be achieved by 
the PDAs with less communication with the server. Patient health monitoring, forest 
fire monitoring, and security surveillance by sensor networks are also good examples.  

Mining of highway traffic data, such as that of Gary-Chicago-Milwaukee (GCM) 
Corridor Transportation System, is a typical example of distributed stream mining 
application, where hundreds of sensors collect and send the traffic status data to a 
central server all day long over the expensive wireless and wired connections. 
Currently, a central server collects all the data and performs congestion analysis 
offline. This traffic analysis results are then published to the travelers through a 
central interface. However, this centralized process has several shortcomings: 1) over 
1.2 GB data is sent to the server every day (5 MB per sampling) in GCM, which must 
be a communication burden on low bandwidth networks. 2) The huge amount of data 
per day is also a heavy burden on the storage system. 3) The traffic information 
provided to the travelers is not a real-time response due to the communication 
overhead. 4) This traffic data corresponds to only a small fraction of roads in the 
Chicago area and thus is likely to increase over time when more roads are equipped 
with sensors. There is an astonishing fact that traffic congestion wastes 2 billion 
gallons of fuel per year in the United States alone. 135 million US drivers spend 2 
billion hours trapped in congestion per year. The total cost to Americans due to traffic 
congestion exceeds $100 billion per year. It would be highly beneficial to predict the 
congestion level as early as possible so that the drivers can avoid being trapped by 
choosing another route in advance. Therefore, there is an urgent demand for a traffic 
analysis system where traffic data is processed and mined in a distributed fashion, and 
the sensors are able to perform stream data analysis techniques on the fly (such as 
abnormal events real-time detection, traffic jam prediction, flow speed prediction, 
etc.). This demand for such a system is likely to increase with the increase in the use 
of mobile database devices inside the vehicles. As a matter of fact, this problem is 
very difficult because of the following issues:  

1) Very little research has been done in distributed stream mining. Most of the 
existing algorithms are designed to work as a centralized application. This type of 
approaches is not scalable when the number of ubiquitous devices is large and 
cannot provide real-time response.    

2) Although some distributed data mining algorithms have been proposed in [10], 
they don’t consider the unique characteristics of data streams that the patterns 
change dynamically.  

3)  Sensors are lightweight devices, short of power supply, computation capability and 
storage size. Data mining on resource-constrained devices is not well explored yet. 

In this paper, we propose a scalable distributed traffic stream mining system. It is 
designed to monitor the current roadway traffic status and predict the coming traffic 
in real-time. The proposed system consists of the following four phases: 
preprocessing, training, monitoring/predicting and updating. In the training phase, the 
central server performs various offline data mining techniques on the cleaned 
historical data streams, and ships the discovered patterns back to the sensors. Based 
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on the similarity of the patterns, it also groups the sensors into clusters. In the 
monitoring/predicting phase, each sensor predicts the coming traffic using the global 
patterns. If an “abnormal” event is predicted or observed at a sensor, the sensor raises 
an alarm immediately. The alarm is sent to the central server which can notify all the 
members in the group. Real-time analysis is achieved because each sensor works 
independently and incurs no communication delay. The updating phase is triggered 
periodically or when the number of mispredictions exceeds a threshold. There are 
three main characteristics of our real-time distributed traffic stream mining system: 1) 
The central server takes the major computation tasks in the training phase and the 
updating phase using its strong computation capability; 2) the sensors or similar 
lightweight devices perform predicting or monitoring using their constrained 
resources; 3) the data mining techniques used in the updating phase update the 
patterns efficiently. The design of this system tries to target the three challenges 
mentioned above. The proposed framework can be applied to similar applications, 
like forest fire monitoring, vehicle health monitoring, etc.  

Data from a real roadway transportation system (GCM) is used in our experiments 
to evaluate our proposed system. It shows good scalability in various aspects. 
Memory usage on each sensor and communication overheads are small.  

The rest of this paper is organized as follows. Section 2 briefly introduces the 
related algorithms and systems. Section 3 describes a highway transportation system. 
Section 4 presents the overall architecture of the real-time distributed traffic stream 
mining system and describes the methodology in each phase, respectively. 
Experimental results are presented in Section 6, and Section 7 summarizes this paper. 

2   Related Work 

2.1   Stream Mining 

Lossy Counting [8] presents an algorithm for computing frequency counts exceeding 
a user-specified threshold over data streams. Gianella et al. [3] proposed an efficient 
approach to mine time-sensitive frequent patterns. It incrementally maintains only the 
historical information of (sub)frequent patterns. In order to adapt quickly to the 
changes of the underlying data stream, Aggarwal et al. [2] trains and tests streams 
simultaneously by selecting an appropriate window of past data to build the classifier. 
In [4] Guha et al. proposed a constant-factor approximation algorithm for K-Median 
problem in data stream clustering. This algorithm maintains a consistently good 
quality using a small amount of memory and time.  

2.2   Time-Series Data Mining 

A time-series database consists of sequences of values or events changing with time. 
Similarity search [12] finds sequences that differ only slightly from a given sequence. 
Similarity search analysis is useful in stock data analysis, cardiogram analysis, traffic 
patterns, power consumption analysis, etc.  
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2.3   Distributed Stream Mining 

As many large transaction databases are available, [15] proposes Fast Distributed 
Mining (FDM), which generates a small number of candidate sets and reduces the 
number of messages to be passed. [14] extends the traditional ARM to peer-to-peer 
computing environments. This algorithm combines ARM, executed locally at each 
node, with a majority voting protocol to discover all the rules that exist in the 
combined database. It is asynchronous and communication efficient. 

VEDAS, a real-time on-board stream mining system for vehicle-health-monitoring 
and driver status characterization, is developed in [6]. The PDAs perform most of the 
data management and mining tasks and send the analysis results to the central server 
site. This system minimizes bandwidth usage by limiting the centralization of the 
sensed data. The mobile stock monitoring system in [7], and the health monitoring 
tool in [5] are similar to VEDAS in terms of conceptual design. Our proposed system 
is sensor networks based, where the sensors have very limited computation capability 
and resources. Therefore, the central server has to take the main computation tasks.  

2.4   Roadway Traffic Management System 

Contemporary roadway traffic management systems have investigated issues related 
to route planning, automatic accident detection, short-term travel prediction, and 
better user interfaces for answering these questions. Advanced traffic management 
systems such as TrafficWise (Indiana's Intelligent Transportation System) rely on 
traffic flow speed sensors and cameras, as well as information from emergency 
responders and roadside assistance patrols, to detect traffic problems and determine 
the underlying causes. The information is centrally collected, analyzed, and then the 
results are delivered back to drivers, dispatchers, and emergency responders. 
Grossman et al. [13] have developed a framework that detects real-time changes in 
highway traffic data and send real-time alerts. However, the data collected at different 
sensors are centralized to a supercomputer cluster system for analysis. In contrast, our 
system doesn’t need to transmit any data streams unless updating the patterns.  

3   Gary-Chicago-Milwaukee (GCM) Corridor Transportation 
Data 

The GCM Corridor (Figure 1) consists of the 16 urbanized counties and 2,500 miles 
of roadways which connect the three cities. 855 sensors are placed on the roads, and 
each sensor collects 288 streams every day (one sampling every 5 minutes). Each 
sensor collects the real-time traffic data at its location and sends it to the central server 
over wireless connections periodically. Each stream consists of static attributes 
(longitude, latitude, length, direction, etc.) and dynamic attributes (vehicle speed, 
congestion level, occupancy, volume, etc.)  

GCM travel system is providing a number of services to travelers, for example, in 
Figure 1, the different colors on the roadways mean different congestion levels. 
Currently, all of the data analysis is still performed offline on a central server. It is not 
real-time response because the sensors collect data every 5 minutes. In addition, the 
computation burden on the server is heavy.   



 A Scalable Distributed Stream Mining System for Highway Traffic Data 313 

4   Framework of Distributed Traffic Stream Mining System 

In order to reduce data transmission and computation time of the traditional 
centralized stream mining model, we propose a distributed traffic stream mining 
system. In our proposed system, the central server performs data mining techniques 
to discover patterns in the training phase and update patterns in the updating phase, 
respectively. The sensors perform monitoring and predicting tasks. This system 
incurs little data transmission except the transmission for the discovered patterns, 
alerts and the new streams for rebuilding the model. As the sensors in a roadway 
traffic system usually do not have as sufficient power supply or computation 
capability as on-board PDAs in VEDAS, most of the computation has to be 
assigned to the central server. Figure 2 shows the framework of our proposed 
system, which consists of four phases: preprocessing, training, monit-
oring/predicting, and updating. Each phase is described   in detail in the following 
subsections. 

5.1   Preprocessing Phase 

The central server collects streams from the distributed servers, then, extracts time-
series attributes that dynamically change with time (vehicle speed, congestion level, 
etc.) from the raw data, and eliminates the static attributes. Clean the outliers and fill 
up the missing numbers. 

Fig. 1. Gary-Chicago-Milwaukee Corridor Transportation System 
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5.2   Training Phase 

In this phase, the central server performs various data mining techniques on the 
preprocessed data. A number of interesting patterns or trends can be mined. Then, the 
interesting patterns are relayed to the sensors over the wireless network connections. 
Since the congestion level prediction is very valuable to travelers as mentioned in 
Section 1, we use “frequent episode mining” technique, which can help predict the 
congestion level, as an example to illustrate the training phase. We would like to 
emphasize that there are several algorithms can be applied to this application. 
However, due to limitations in space, we only present the details of one technique, 
although we would like to provide more. 

Frequent Episode Mining. In roadway traffic data, the “congestion level” observed 
by each sensor can be viewed as a sequence (A sequence is a series of events where 
each event has an associated timing stamp.). A congestion level sequence database is 
created by putting all the sequences from all the distributed sensors together. An 
example of a congestion level sequence taking place at a sensor is  

(non, 06:05), (light, 06:10), (medium, 06:15), (light, 06:20), (medium, 06:25), (heavy, 06:30) 

The numbers indicate the timings when the events happened. The episode 
“light_congestion followed by medium_congestion” occurs twice in a window of  
6 events.  

Frequent episode mining is to find the collections of events which occur so 
frequently that exceed a pre-defined threshold [9] in the sequence database. Note that, 
here, we are only interested in the episodes where the events have no intervals in 
between. In the example sequence, if the threshold is set at 2, “non_congestion 
followed by medium_congestion” is not considered as a frequent episode because 
“medium_congestion” doesn’t follow “non_congestion” immediately. Figure 3 
presents the pseudo code of the frequent episode mining algorithm used in our system. 
It adopts an Apriori-like level-wise searching approach that generates new candidates 
and calculates their supports by scanning the database at each level. Remember that 
all the subepisodes of any frequent episode must be frequent. Please note line 6 in 
Figure 3. For each occurrence of candidate episode c in sequence s, the support of c is 
increased by 1, which is different from the support counting in association rule mining 

Fig. 2. Framework of the distributed traffic stream mining system 
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where the support of c is only increased by 1 no matter how many times c occurs in s. 
In addition, we keep track of which sensor and when each frequent episode happens.  

The frequent congestion level episodes can help transportation domain experts 
answer questions such as how the episodes evolve over time by sorting the interesting 
patterns by the timing stamps, how a congestion propagates spatially (what is the 
origin of the congestion and by what routes the congestion propagates) by combining 
the knowledge of the spatial relations (distance, direction, inter-connection, etc.) 
between the corresponding sensors, etc. Spatial effects are indirectly taken into 
account because we do observe unusual effects of traffic pattern in one area to another 
one in a “seemingly unrelated area”, which is not so obvious.  

Consistent Pattern. We proceed to find the consistent patterns. Assume we have N 
days’ data and a user-specified threshold M. If a frequent episode fe happens on M 
out of the N days at a sensor A at a certain time t, we call (A, t, fe) a consistent 
pattern. All the sensors that have a common fe are clustered into a same group. A 
counter is maintained in each group to record the number of updating request. 
Finally, we send the consistent patterns to the corresponding sensors over wireless 
connections. We are interested in the consistent patterns and the corresponding 
sensors because the patterns tend to re-occur. In addition, since the sensors in the 
same group show similar traffic flow trends for known or unknown reason, a 
sensor’s coming traffic could be predicted based on the most recent observations 
from its group members. 

One may have a question that why not to let each sensor predict its coming traffic 
by using its local statistical values, such as the mean speed of the traffic flow 

Input: sequence database SD, congestion level set E, min support threshold min_fr 
Output: frequent episodes collection FE 
1. C1 := {{e} | e ∈ E}; 
2. i := 1; 
3. while Ci ≠ ∅ do 
4.    forall s ∈ SD do       //scan database, calculate support 
5.       forall c ∈ Ci do 
6.          for each occurrence of c in s, c.support ++; 
7.       end forall 
8.    end forall 
9.    forall c ∈ Ci do //identify frequent episodes 
10.       if c.support > min_fr  
11.          add c to FEi; 
12.       end if 
13.    end forall 
14.    build Ci+1 from FEi; //generate candidate episodes  
15.    i := i + 1; 
16. end while 
17. FE := ∪ FEi; 

Fig. 3. Pseudo code of the frequent episode mining algorithm 
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observed in the past few days at a given time, or the mean congestion level in the past 
few days at a given time, or the observations of the last day. The answer is in the 
following three aspects: 1) the storage cost is higher than using our proposed 
framework and algorithms. A sensor needs a relatively large memory to store the 
streams in the past few days in order to maintain the statistical numbers. In contrast, 
in our system, each sensor only stores the frequent patterns delivered by the central 
server. 2) It requires higher computation capability and power consumption for a 
sensor to calculate the statistical values, which may exceed the capability of any 
similar lightweight devices in pervasive environments. In contrast, the computation on 
each sensor in our system is very simple: Compare the new observations with the 
patterns; if not matching, send an updating request to increase its group counter by 1, 
otherwise, do nothing. 3) Using local statistics, a sensor only sees its local view with 
no chance to know the global view of the neighboring areas, which actually may 
impact its traffic flow. A group of sensors that share a common consistent pattern 
may have similar traffic behaviors. Therefore, it may be more confident to predict the 
coming traffic at a certain sensor based on an event happened a moment ago. For 
example, consider that sensors A, B, and C always experience the same congestion 
level sequence (light, medium, medium, medium) from 6:30am, 6:50am, and 7:20am 
for the subsequent 20 minutes, respectively. A, B, and C may or may not be spatially 
connected to each other. If today, somehow, the congestion level sequence observed 
at A at 6:30am is (medium, heavy, heavy, heavy), it is highly likely that this early rush 
hour jam will happen at B and C soon. So A will send a warning to the server, and 
then the server will notify B and C so that they can send out “early traffic jam” 
warning signals to its local external devices in advance.  

Predictive models (decision tree, logistic regression, Naive Bayesian classifier, 
etc.) could be used to predict if a heavy congestion would happen in the next 
moment. However, either the computation or the storage cost (there must be a 
number of rules for different time slots) is larger than those of the frequent episode 
mining algorithm.  

5.3   Monitoring/Predicting Phase 

Each sensor stores its significant patterns mined from the recent historical data, 
such as the frequent congestion level episodes at some timing points, the speed 
fluctuating patterns, etc. The monitoring/predicting phase is designed to predict the 
local roadway coming traffic flow and detect abnormal events deviating from the 
observed patterns. For example, sensor X predicts the forthcoming congestion level 
l. If l is a severe situation, then X will send a warning to its external device and an 
alarm to the server as well. Then, the server will notify all the members of the 
cluster containing X. If l is different from the actual level l’, sensor X will send an 
updating request to augment the counter in its corresponding group on the server. 
The server maintains a counter for each group. The aim of the predictions is to 
provide travelers with up-to-date information so that they can choose routes to 
avoid being stuck in traffic jams.  
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5.4   Updating Phase 

While monitoring their local traffic streams, the sensors send updating requests to 
augment the counter in its corresponding group on the server whenever any 
misprediction happens. The server maintains a counter for each group. Once the 
counter exceeds a user-specified threshold, the server starts to download new streams 
from the sensors which send out the requests. Thus, the data transmission cost is 
much smaller than that of collecting new streams from all the sensors. It is not a 
heavy burden for the central server, and will not exhaust the sensors’ power. 

One important feature of data stream is that its patterns change dynamically, 
therefore, there is no need to keep the old patterns when updating the patterns. The 
server replaces the oldest day’s data in the database with today’s new data. Then, it 
starts to perform some corresponding data mining algorithms. Finally, the updated 
patterns are relayed to the sensors over wireless connections. The members in this 
specific group may have to wait for one day to be informed the latest patterns.  

6   Experimental Results 

We evaluate our distributed traffic stream mining system on real traffic streams from 
a roadway transportation system, Gary-Chicago-Milwaukee (GCM) Corridor 
Transportation System (See details of GCM in Section 3). For the purpose of our 
experiment, we extract the dynamic attribute “congestion level”. Each sensor of the 
855 sensors contributes a sequence of 288 congestion levels every day. There are four 
different congestion levels: non, light, medium, and heavy. We download the traffic 
streams of 5 weekdays.  

In this section, we only discuss the performance of frequent episode mining. Its 
scalability and prediction accuracy are analyzed. Communication overheads and 
memory usage are also discussed. All the experiments are performed on a 700-MHz 
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Xeon 8-way shared memory parallel machine with a 4GB memory, running the Red 
Hat Linux Advanced Server 2.1 operating system. The program is implemented in C.  

6.1   Scalability in Training Phase 

Since the central server performs the data mining tasks in the training stage, we would 
like to investigate the scalability of the data mining algorithms on the server, 
specifically the scalability of frequent episode mining when varying the number of 
sensors, minimum support or maximum pattern length. 

As the number of sensors in different systems may be different, the scalability 
when varying the number of sensors is evaluated in Figure 4. The number of sensors 
is varied from 107 to 855. The maximum length of a frequent episode is set to be 8. 
The execution time on one day’s (24 hours) congestion level sequences scales well 
when the number of sensors is increasing. 

In order to provide real-time congestion prediction, short episode is more useful. 
Thus, we restrict the maximum length of the frequent episodes in each run. The total 
number of frequent episodes increases as the maximum length increases. Figure 5 
presents the execution time on one day’s (24 hours) congestion level sequences. The 
support threshold is varied from 0.25% to 0.75%. When the support is set at 0.25%, 
the execution time is increasing fast because both the number of frequent episode 
candidates and the number of database scans are huge due to the low support 
threshold. For the case of 0.5% and 0.75%, it scales well as the length of episodes 
increases.  

6.2   Traffic Prediction 

As described in Section 5.2, all the sensors (associated with the same timing t) that 
have a common “consistent frequent episodes fe” are clustered into the same group. 
Then the consistent frequent episodes are sent to the corresponding sensors over 
wireless connections for monitoring or predicting purpose. We use a fraction of the 5 
weekdays’ data for training and the rest for predicting. Table 1 shows the prediction 

Days for training Threshold Days for predicting Avg. cluster size Accuracy 

day_1,day_2,day_3 3 day_4 10.3 25.2% 

day_1,day_2,day_3 3 day_5 10.3 7% 

day_2,day_3,day_4 3 day_5 22.4 11.9% 

day_1,day_2 2 day_3 106.4 9.7% 

day_1,day_2 2 day_4 106.4 7.7% 

day_1,day_2 2 day_5 106.4 8.6% 

day_2,day_3 2 day_4 105.8 21.5% 

day_2,day_3 2 day_5 105.8 8.9% 

day_3, day_4 2 day_5 291.8 6.6% 

 

Table 1. Traffic congestion level prediction accuracy
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accuracy. The maximum pattern length is set to be 8 because users are more interested 
in short-term predictions. The support threshold is 0.75%. Overall speaking, the 
prediction accuracy is not high. The best case happens when using day_1, day_2 and 
day_3’s patterns to predict day_4’s traffic, where the overall accuracy is 25.2%. In 
addition, in this case, 27% of the sensors get 100% prediction accuracy (All the 
predictions made at these sensors match the actual streams.). The results in this table 
verify the dynamic nature of traffic data streams.  

As described in the monitoring/predicting phase in Section 5.3, if an “abnormal” 
event is observed, the sensor sends an alert to the central server, and then, the server 
notifies all its group members. In our experiments, we observe that the warnings are 
pretty helpful in some cases. For example, sensor #337, #415, #731 and #732 are in 
the same group because they have (light, light, light) at 1:00am, 1:20am, 3:10am, 
respectively. The congestion levels on sensor #337 at 1:00am was (medium, medium, 
medium), deviating from the pattern (light, light, light). Then, (medium, light, 
medium) happened on sensor #415 at 1:20am, (medium, medium, light) happened on 
sensor #731 and #732 at 3:10am. If the server sent an “abnormal congestion” alert to 
sensor #415, #731 and #732 at 1:15am, they would have sent warning signals to the 
drivers in advance, so that they could avoid the jam near sensor #731 and #732 at 
3:10am. This observation verifies our claim that congestions may propagate spatially 
and temporally between roadways where similar behaviors often happen. 

6.3   Storage 

As the storage resource on a sensor or a lightweight computing device is very limited, 
we would like to investigate the cost for storing the patterns. Table 2 presents the 
average number of patterns stored on each sensor. We use 3 days’, and 4 days’ data 
for training and set the “consistent” pattern threshold as 2, 3, respectively. From Table 
2 we can see that the average number of patterns on each sensor is quite small for any 
case. Therefore, our proposed system doesn’t require a large storage resource.  

6.4   Communication Cost 

The number of mispredicitons is small, ranging from 300 to 3000 per day. Thus, the 
data transmission cost must be small, because there is no data transmission between 

Days for training Consistent pattern threshold Avg. # of patterns / sensor 

day_1, day_2, day_3 3 0.46 

day_2, day_3, day_4 3 0.46 

day_3, day_4, day_5 3 0.97 

day_1,day_2 2 4.6 

day_2, day_3 2 4.6 

day_3,day_4 2 14 

 

Table 2. Average number of patterns on each sensor
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the central server and a sensor unless a misprediction happens. In contrast, if the 
central server were to download all the streams from all the sensors to analyze and 
then provide up-to-date information, the data transmission cost must be huge.  

7   Conclusions and Open Issues 

This paper presented a scalable distributed traffic stream mining system. In the 
training phase, the central server performs various data mining techniques on 
historical data streams to find useful patterns. In the monitoring/predicting phase, 
each sensor predicts the forthcoming data or raises alarms if an abnormal situation is 
predicted by comparing with the patterns in recent historical streams. Our experiment 
results on the real traffic data from GCM demonstrate that this model is scalable and 
effective. The “abnormal” congestion warning is helpful. This system can provide 
travelers with real-time traffic information and help transportation domain experts 
understand the characteristics of a transportation system. It achieves real-time analysis 
with low communication cost. In addition, the computation resource requirement on 
each sensor is small as well as the storage requirement.  

The proposed system is at an early stage of development and will be substantially 
enhanced by incorporating the following aspects: 

1) The most challenging part is how to build a model to involve both temporal and 
spatial features. We plan to use connected graph to represent the spatial relations 
between different sensors, and incorporate graph mining algorithms to our system. 
The prediction accuracy must be improved a lot by then.  

2) In order to discover more interesting patterns, more stream mining techniques 
applicable to traffic streams should be explored.  

3) Building of a simulation environment where we can see how the “early” warnings 
affect the traffic flow. 
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Abstract. Due to the vast amount and pace of high-dimensional data
production and their distribution among network nodes, the fields of
Distributed Knowledge Discovery (DKD) and Distributed Dimensional-
ity Reduction (DDR) have emerged as a necessity in many application
areas. While a wealth of centralized dimensionality reduction (DR) al-
gorithms is available, only few have been proposed for distributed envi-
ronments, most of them adaptations of centralized ones. In this paper,
we introduce K-Landmarks, a new DDR algorithm, and we evaluate its
comparative performance against a set of well known distributed and
centralized DR algorithms. We primarily focus on each algorithm’s per-
formance in maintaining clustering quality throughout the projection,
while retaining low stress values. Our algorithm outperforms most other
algorithms, showing its suitability for highly distributed environments.

Keywords: Distributed dimension reduction, distributed knowledge
discovery.

1 Introduction

Distributed Knowledge Discovery (DKD) has emerged as one of the most chal-
lenging tasks in large scale distributed data management. This is partly due to
the inapplicability of centralized approaches in current research problems, which
is more evident with the advent of new application areas that are inherently
distributed, such as sensor networks and peer-to-peer (P2P) systems. The main
characteristic of P2P systems is the lack of global knowledge, in the sense that no
peer can gather all available data. In large scale P2P networks, data is distributed
to peers (in horizontal partitioning manner) making the cost of centralized as-
sembly and subsequent computation of any centralized algorithm prohibitive. On
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the other hand, globally described data can be of very high dimensionality, while
peer local dimensions can be different from each other (vertical partitioning).

Dimensionality reduction techniques tackle these problems through the defi-
nition of various methods for embedding the data from the initial space Rn to
the target space Rk, where k < n. These algorithms are extremely useful in
various disciplines related to knowledge discovery. The latter becomes a difficult
task as the number of dimensions increases, because of two distinct problems:
the ”empty space phenomenon”, and the ”curse of dimensionality” [4]. The for-
mer denotes the fact that data in high dimensional spaces is sparsely situated,
having almost equal distance from one another. The latter refers to the fact
that the sample needed to estimate a function of several variables to a given de-
gree of accuracy grows exponentially with the number of variables. A thorough
investigation of both problems can be found in [5].

The motivation for our work emerges from the need to apply dimensionality
reduction on data distributed in a P2P network. This task is directly applicable
in P2P information retrieval applications, where documents are represented as
high dimensional points using the vector space model. Distributed dimensionality
reduction (DDR) algorithms are then necessary to decrease the representation
costs and to reveal potentially interesting or hidden structure in the data.

Towards this objective, we focus on the DKD problem, assuming that the data
set is partitioned horizontally (i.e. non overlapping sets of identically structured
tuples) and distributed on peers. We identify the following requirements for DDR
algorithms: 1) each point’s projection should be computed independently from
other points, 2) distances between points should be preserved, 3) the algorithm
should be fast and linear to the number of projected points, and 4) the algorithm
should incur low communication cost (in a distributed context).

In this paper, we present a DDR algorithm, called K-Landmarks, aiming
to retain clustering quality at the projected space. K-Landmarks first selects
an aggregator node that picks k points (henceforth called landmark points)
from the whole dataset of cardinality d, and projects them from Rn to Rk

with FastMap [3]. The projections of the remaining d − k points are com-
puted by requesting the preservation of distances, meaning that each point pro-
jected must be at equal distance from all landmark points, both in the original
and in the projection space. Our algorithm is not an adaptation of a central-
ized algorithm; on the contrary it is inherently distributed. Preliminary work
describing the initial idea and algorithm was presented in [8]. In this paper,
we present additionally the formal description of the algorithm, its geomet-
ric interpretation, the proof of convergence and new extensive experiments on
various UCI datasets1, comparing our algorithm’s performance with the most
promising DDR algorithms in the literature. The rest of the paper is organized
as follows: in Section 2 we present a brief overview of the related work. Sec-
tion 3 describes K-Landmarks, while in Section 4 the conducted experiments
are presented. In Section 5 we conclude the paper and sketch future research
directions.

1 http://www.ics.uci.edu/∼mlearn/MLSummary.html
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2 Related Work

In the following presentation we mainly concentrate on distributed approaches
and provide only a brief outline of the most prominent centralized algorithms.
For the rest of this paper we assume that the goal is to project d data vectors
defined in Rn and represented as a matrix Xdxn in the Rk subspace.

One of the first dimensionality reduction methods was Multidimensional Scal-
ing (MDS) [4] that is now referenced as classic-MDS. FastMap [3] was proposed
as a solution to the high computational complexity of MDS while Landmark
MDS (LMDS) [2] addresses the high memory requirements of classic-MDS. The
dimensionality reduction techniques widely used in practice, due to their concep-
tual simplicity, are Principal Components Analysis (PCA) and Singular Value
Decomposition (SVD) [4]. Adaptations of the convergence criterion of MDS and
PCA have resulted in the definition of Independent Component Analysis and
Projection Pursuit algorithm respectively [4].

In the field of DDR we report two promising approaches, the Distributed PCA
and the Distributed FastMap. The intuition of distributed PCA (DPCA) [11] is
based on the aggregation of a fragmented covariance matrix, which is computed
by the equation: dC = XT (I − d−111T )X . For each node i possessing di data
the following statistics are denoted: xi as the vector of column means, ki as the
number of required principal components from node i, Xi as the local dataset and
Λi, Ui as the matrices of the ki largest eigenvalues and corresponding eigenvectors
(in descending order) of location i. Furthermore the expression I − d−111T , is
transformed into (I − V ) + (V − d−111T ), where x = d−11T X is the n column
means vector, 1 is a vector containing ones (1s) and V is a diagonal matrix
(vii = d−1

i 11T ). DPCA is based on the following decomposition scheme of the
covariance matrix (see [11] for details):

dC =
∑s

i=1 UiΛ
2
i U

T
i +

∑s
i=1 di(xi − x)(xi − x)T (1)

Initially, an aggregator node is selected that performs the merging and local ki

values are set. Then the statistics (di,ki,xi,Λi,Ui) are calculated on each network
node and communicated to the aggregator. The latter, based on equation (1),
calculates the global covariance matrix dC, and transmits its first k eigenvectors
together with the global mean value x back to the s network nodes. Finally,
each node computes its dataset embedding as follows: Di = (Xi − 1xT )Uk.
Another approach, called Collective PCA, is considered in [6]. However it solves
the problem of vertical data partitioning, while we focus on the horizontal case.

In [9] two distributed adaptations of FastMap are proposed, the One-Time
Distributed FastMap and the Iterative Distributed FastMap. The former iter-
ates on the data of each node independently, and communicates the generated
pivot points to a randomly selected aggregator. Received pivots are used as
input to FastMap which generates a global pivot set that is broadcasted and
used for the subsequent projection of local datasets. On the other hand, the
Iterative Distributed FastMap employs an iteration-by-iteration pivots compu-
tation scheme where global pivots are computed on iteration basis according to
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Table 1. Assessment of the various algorithms. Number of points (d), initial dimen-
sionality (n), projection space (k), nodes (s), and number of sampled points (f).

Algorithmic Memory Addition of Network
Complexity Requirements a new point load

PCA O(n2d + n3) O(n2 + nd) O(kn) —

DPCA O(n2di + n3) O(n2 + ndi) O(kn) O(nsk)

FastMap O(dk) O((k + n)d + d2) O(k) —

One-Time O(dik) or O((k + n)di + d2
i ) O(k) O(skn + k2)

D.FastMap O(dik + sk2)

Iterative O(dik) or O((k + n)di + d2
i ) O(k) O(skn + k2)

D.FastMap O(dik + sk2)

LMDS O(kfd + f2 + f3)or O(f(n + k) + f2)or O(kf) —
O(kfd + f2 + f3 + k2d + k3) O(n2 + f2)

Distributed O(kfdi + f2) or O(f(n + k)) or O(kf) O(fn + fk)
LMDS O(kfdi + f2 + f3) O(f(n + k) + f2)

PAA O(d) O(n) O(1) 0

the find-distant-objects heuristic. Although the two adaptations do not guaran-
tee that the set of pivots selected will be identical with the ones of centralized
FastMap, in large data collections they approximate well the original set and
provide quality results marginally equal to the original approach.

Piecewise Aggregate Approximation (PAA) [7] is a simple and effective algo-
rithm that can be considered as DDR, which substitutes a set of %n/k& variables
with their mean value. The only drawback that PAA exhibits is its dependence
on the size of the rolling window (%n/k&). If the latter is big (k << n) then
sharp changes in data will be lost.

The final algorithm outlined is our proposition concerning the distributed
adaptation of LMDS, which we refer to as D-LMDS. LMDS is an algorithm that
by construction has been developed to work with only a fraction of the total
data. In our variation, the dataset is assumed to be distributed among s network
nodes. We initially select an aggregator node that will be assigned the classic
MDS computation. Afterwards, each node selects fi points (

∑s
i=1 fi = f) from

its local dataset and forwards them to the aggregator. The latter performs classic
MDS and produces their embedding in the Rk subspace. Then, the aggregator
forwards all landmark points and their embeddings to network nodes. Finally,
each node applies for each of the local points distance-based triangulation.

Table 1 provides a short comparative assessment of the algorithms presented
above. Under certain assumptions all presented algorithms provide potential
solutions to the DDR problem. DPCA or D-LMDS will deteriorate quickly and
need to recompute the decomposition in the case that many new points are
added. In addition, the sampling procedure in the case of D-LMDS will not
depict the current state of the network and will have to be recomputed.

Similar disadvantages occur in all other algorithms, except PAA. This is be-
cause all are adaptations of already existing centralized approaches that have not
been designed for distributed environments. For example, the application of the
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Iterative Distributed FastMap can only take place in a context where commu-
nication between nodes as well as their availability is guaranteed (to ensure the
large scale message exchange that is necessary) otherwise the synchronization
of network nodes is practically impossible. Moreover, the addition of new points
in an existing projection imposes the re-execution of FastMap, as its credibil-
ity lays in the pivots selection. On the other hand, PAA seems to be a viable
solution.

It is therefore obvious that a new approach is required, that will combine
the salient features of the aforementioned algorithms in terms of network load,
algorithmic complexity and quality of results, while being immune to subsequent
(after execution) changes in the processed data (i.e. massive addition or deletion
of points). Moreover, the algorithm sought has to be inherently distributed and
adaptable to potential network failures and topology changes. Finally it has to
apply to the full extend of distributed applications, starting from controllable
laboratory environment and reaching large scale P2P networks.

3 The K-Landmarks Algorithm

The K-Landmarks algorithm is a novel algorithm for DDR, designed specifically
for distributed environments. It conforms to the four requirements stated in the
introduction and in addition it is immune to data changes. K-Landmarks capi-
talizes on the general principles of D-LMDS, while differentiating in the way each
step is performed and exhibiting lower complexity and network traffic. Given d
resources represented as points in Rn, distributed arbitrarily in a network of s
nodes, with each node storing di resources, we want to find a projection of the
data in Rk, while retaining distances among points and the ability to achieve
clustering quality comparable to the one in the original space.

Theorem 1. A set of k points defined in Rn can be embedded in the Rk subspace
without loss of distance information (zero stress projection2).

Proof. The set of processed points define matrix Xkxn. The latter can be pro-
jected in Rk through the transformation X ′

kxk = XkxnQT
kxn where the Q rows

are the singular vectors of X . The relationship between the inner products ma-
trix of the projected data and the inner products matrix of the original data is
given by the following computations:

C′ = X ′
kxkX ′T

kxk = XkxnQT
kxn(XkxnQT

kxn)T = XkxnXT
kxn = C

Moreover, each cell (i,j) of C is populated by the value xix
T
j and based on

equality C = C′ we conclude that xix
T
j = x′

ix
′
j
T . Then the new distance between

points x′
i,x

′
j is:

2 Stress measure, defined as
∑

(dij − d′
ij)

2/d2
ij , where dij is the distance of points

i,j in the original space and d′
ij their distance in the projection space, signifies the

quality of the projection in terms of distances preservation.
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Algorithm 1. K-Landmarks algorithm
1: Input: Projection dimensionality (k), number of landmark points from node i (ki),

local dataset defined in Rn

2: Output: local dataset defined in Rk

3:
4: if node is aggregator then
5: Select ki points from local dataset
6: Create landmark set, LS=∅
7: Create projected landmark set, PLS=∅
8: for i = 1 to s do
9: Receive ki landmarks from node i

10: LS=LS ∪ ki

11: end for
12: PLS = FastMap(k, LS)
13: Communicate PLS, LS to all nodes
14: else
15: Select ki points from local dataset
16: Send points to aggregator
17: Receive LS, PLS
18: end if
19: for i = 1 to all local points x do
20: Solve ‖x

(k)
i − PLS

(k)
i ‖ = ‖x

(n)
i − LS

(n)
i ‖ for i=1 to k

21: end for
22: return x

(k)
i //the projection of x

(n)
i in Rk

d(x′
i, x

′
j) =

√∑k
p=1(x

′
ip − x′

jp)2 =
√∑k

p=1(x′2
ip + x′2

jp − 2x′
ipx

′
jp)

=
√

x′
ix′T

i + x′
jx′T

j − 2x′
ix′T

j =
√

xixT
i + xjxT

j − 2xixT
j = d(xi, xj)

Hence, the projection of k points from Rn to Rk can be defined without loss of
distance information and consequently zero stress.

Algorithm 1 is the formal description of K-Landmarks. In the first step, an
aggregator node is selected. The latter uses k landmark points (LS) sampled
from the network (line 9) and projects them to Rk with FastMap (line 12). The
original set of landmark points and the generated mapping (PLS) are forwarded
to all nodes (line 13), which in turn project local points independently (line 20).
The successful projection of a point in Rk maintains its distances from the
landmark points both in the original and in the projection space.

The equation: ‖x(k)
i −PLS

(k)
i ‖ = ‖x(n)

i −LS
(n)
i ‖ represents a hypersphere cen-

tered at PLS
(k)
i with radius ||x(n)

i −LS
(n)
i ||. The algorithm searches the common

trace of all k hyperspheres, which is the projection of point xi in the embed-
ding space. The result is obtained by solving the above system of non-linear
equations with the Newton method. An example of the algorithm is depicted in
Fig. 1. Note that the hyperspheres defined by the algorithm expose two common
traces, which are symmetric to the line defined by points A′B′. This is due to the
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fact that the coordinates of each point result from a square root computation.
We choose to retain only positive results and therefore the implementation of
our algorithm discards the second solution. In any case, one can select either the
projection laying on plane Π1 or Π2 without affecting the final result, as long
as the same plane selection algorithm is employed for point D.

Theorem 2. For any non linear system of equations defined by K-Landmarks,
the Newton method produces a solution if the triangular inequality is sustained
in the original space.

Proof. For any point C of the initial space and any pair of landmark points A
and B, a triangle ABC is defined. Without loss of generality, we assume that
‖−−→CB‖ ≤ ‖−→CA‖ and based on the triangular inequality we derive:

‖−→CA‖ - ‖−−→CB‖ ≤ ‖−−→AB‖ ≤ ‖−→CA‖ + ‖−−→CB‖ (1)

The system defined for the projection is the following:

‖−→CA‖ = ‖−−→C′A′‖ and ‖−−→CB‖ = ‖−−−→C′B′‖

This system has no solution if there exists no common trace between the afore-
mentioned hyperspheres. This is translated to: ‖−−−→A′B′‖ < ‖−−→C′A′‖ − ‖−−−→C′B′‖ or
‖−−−→A′B′‖ > ‖−−→C′A′‖+ ‖−−−→C′B′‖ and equally:

‖−−−→A′B′‖ > ‖−→CA‖+ ‖−−→CB‖ (2) or ‖−−−→A′B′‖ < ‖−→CA‖ − ‖−−→CB‖ (3)

However, based on [10] and Theorem 1 we obtain a zero stress projection from
FastMap, thus deriving:

‖−−−→A′B′‖ = ‖−−→AB‖ (4)

Consequently, based on (1), (4) we conclude that equations (2), (3) are never
true, meaning that the system in question always has a solution (there always

 

Fig. 1. Geometrical interpretation of the K-Landmarks algorithm. Projection of point
C from R3 (left) to R2 (right). A, B are the landmark points.
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Table 2. K-Landmarks evaluation matrix

Algorithmic Memory Addition of Network
Complexity Requirements a new point load

K-Landmarks ((di − ki)k3/3) O(kn + k2) O(k3/3) O(nk + k2)

exists a projection) provided that the triangular inequality is sustained in the
original space.

One thing that has not yet been discussed is the selection of initial points.
K-Landmarks employs three different initialization techniques namely: random,
MaxMin and MaxDist. In random selection each node selects ki points from
its dataset randomly. The MaxMin heuristic [2] enforces the selection of points
that maximize the minimum distance from any of the already selected landmark
points while the MaxDist selects the furthest from the existing landmark points.
Both heuristics select their first point randomly and are applied on local datasets
for the retrieval of the ki points requested by the algorithm.

To sum up, the proposed algorithm differs significantly from other widely
employed DDR approaches since it achieves the projection of the vast majority
of points independently from the rest, implying that only the (few) landmark
points’ projection will be done in a centralized manner. Moreover, the projec-
tion remains unaffected by subsequent additions of data points. This is due to
the fact that any new point will be mapped analogously close or far from the
landmark points depending on its distance from the latter in the original space.
Consequently, no re-computation of the projection is needed in order to guar-
antee projection quality preservation. Furthermore, the minimization criterion
employed by the algorithm (

∑
|LS| |distanceorig − distancenew|) is applied to

each point independently, contrary to the widely employed stress that is applied
to the whole dataset. Finally, the network load imposed (see Table 2) is lower
than the load of other algorithms.

Apart from the above, the proposed algorithm is inherently distributed, in
contrast to the other distributed algorithms described in Section 2. One can
imagine its usage in a P2P environment. These networks exhibit certain intrinsic
peculiarities, such as instability, bandwidth restrictions, etc. If K-Landmarks is
used, the sampling procedure will be carried out once in the lifetime of the
network and the result will be forwarded to all nodes entering the network at
any time. The added value of the approach is apparent, as its immunity to
additions saves both local and network resources.

4 Experiments

We study the comparative performance of K-Landmarks on various datasets
(Table 3) from the UCI Machine Learning Repository. We highlight the use of
datasets both of higher dimensionality (up to 617 dimensions) and cardinality
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(up to 1559 objects) compared to relevant work [3,9]. Our goal is to achieve
results of quality close to well-known centralized and distributed algorithms 3.

4.1 Experimental Setup

The experimental scenario involves clustering various data sets before and after
the application of a DDR algorithm. The quality metrics we use are the stress
value and the clustering quality maintenance. Stress evaluates the quality of
the projection in terms of distances’ preservation, while the second measure
enables us to observe how DDR affects the clustering quality. We capitalize on the
well known clustering quality index F-Measure [1] and define clustering quality
preservation as the ratio of the F-measure values before and after the DDR
process, i.e. F−Measure(Rk)

F−Measure(Rn) . The clustering algorithm employed is K-Means [1].
The experiments also allow measuring the effect of changing the projection

dimensionality on the stress and F-measure values. Each dataset was evaluated
with 5 different projection dimensions (5 points for each algorithm on the charts),
which were defined as a fraction of the initial dimensionality of the dataset. Each
time the projection dimensionality is increased by 2% of the initial dimensions.

Assume a network of s nodes, with d data vectors distributed evenly among
them. The vectors are defined in Rn and projected in Rk. The algorithms we
use in comparison to K-Landmarks are PCA, FastMap, Distributed FastMap,
Distributed PCA, Distributed LMDS and PAA. The notation employed in the
diagrams is the following: KL refers to K-Landmarks, LMDS to the D-LMDS and
DFM to distributed FastMap. DPCA uses the k principal eigenvectors generated
by each peer separately, while K-Landmarks and LMDS randomly select from
each node 'k/s( and 'k+1/s( points respectively. The reason for the selection of
'k+1/s( points for LMDS lays in the original publication [2], where it is advised
to choose at least k + 1 landmarks. Also, the Newton method employed by K-
Landmarks is initialized with the k first coordinates of each processed vector
in the original space. All experiments have been carried out on a commodity
2.4GHz Pentium IV machine with 768MB of RAM. The results are mean values
of 50 executions and each setup simulates a network of s = 20 nodes.

4.2 Results

In the first set of experiments, we measure for each algorithm and target dimen-
sionality value the F-measure quality preservation (y-axis) versus the respective
stress value of the projection (x-axis). Our aim is to identify the DDR algorithms
that exhibit low stress while maintaining clustering quality.

In Fig. 2, experiments on the ”Ionosphere” dataset show that K-Landmarks
outperforms all its competitors, even the centralized approaches such as PCA
and FastMap. Most of the K-Landmarks measurements reflect extremely low
stress and high clustering quality maintenance, close to or higher than 100% (i.e.

3 An extended set of experiments is available at http://www.db-net.aueb.gr/
cdoulk/content/papers/xKLandmarks.pdf
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Table 3. Datasets used in the experiments

Dataset Objects Dimensions Classes Description
Ionosphere 351 34 2 Radar observations

Isolet5 1559 617 26 Letters of the alphabet
P.I.Diabetes 768 8 2 Medical observations
Segmentation 2000 19 7 Outdoor images segments

Synthetic control 600 60 6 Randomly generated data
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Fig. 2. Clustering Quality vs. stress for the ”Ionosphere” and ”Isolet” datasets

centralized clustering quality). This is due to the empty space phenomenon and
the curse of dimensionality. LMDS exhibits the worst behavior proving rather
unstable. Experiments on ”Isolet5” provide better insight. All algorithms ex-
cept from PAA and LMDS performed similarly, with PCA performing better.
PAA also exhibits satisfactory results in clustering quality maintenance, but
higher stress than the rest. Finally, LMDS is rather unsatisfactory in both qual-
ity axes.

The experiments on ”pima indians diabetes” and ”synthetic control” (Fig. 3)
gave similar results to the ”ionosphere” dataset. K-Landmarks achieves the best
overall performance, showing both low stress and high clustering quality main-
tenance. PAA and LMDS achieve marginally equal clustering quality results,
compared to the rest of the approaches, but with higher stress values. However
PAA proves to be better than LMDS, when both measures are considered.

In Fig. 4, we measure F-measure maintenance and stress for different pro-
jection dimensionality values (k) for the ”image segmentation” dataset. The
aim is to study the effect of k on these two measures. Stress values decrease
monotonously as k increases (Fig. 4 left), because the ability to express dis-
tances between data increases too. The same general tendency appears in the
case of clustering quality maintenance (Fig. 4 right). For the majority of the
algorithms, clustering quality maintenance ameliorates with k. The conclusion
is that DDR algorithms perform better with increasing projection dimension-
ality. We clarify that the average variance of all measured values in the 50 ex-
ecutions for all datasets is in the order of 10−4, showing the stability of our
algorithm.
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Fig. 3. Results from experiments on ”P.I.diabetes” and ”synthetic control” dataset
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Fig. 4. Stress and F-Measure deviation in the ”image segmentation” dataset

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

Stress

F
−

M
ea

su
re

/O
rig

in
al

 F
−

M
ea

su
re

Synthetic Control dataset

KL−IRR
KL−RS
KL−MinMax
KL−MaxDist

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Stress

F
−

M
ea

su
re

/O
rig

in
al

 F
−

M
ea

su
re

Segmentation dataset

KL−IRR
KL−RS
KL−MinMax
KL−MaxDist

Fig. 5. K-Landmarks immunity to the addition of data

In the last set of experiments, we demonstrate the robustness of K-Landmarks
to retain clustering quality, with regards to new data points added to the dataset.
In Fig. 5, we study the algorithm’s different initialization setups. The new setup
depicted is KL-IRR, in which the algorithm was initiated with k points that
were randomly generated and did not belong to the dataset (we remind here the
3 other initialization setups: random, MaxMin and MaxDist).



K-Landmarks: Distributed Dimensionality Reduction 333

The datasets are subsequently added to the projection. In the ”synthetic con-
trol” dataset, we added 600 points, while for the ”image segmentation” dataset
we added 2000. In both cases points were inserted after the algorithm’s exe-
cution with the initial k landmarks. The obtained results exhibit an aggrava-
tion tendency in the stress measure, yet the clustering quality remains almost
the same. These experiments show K-Landmarks is barely affected by the mas-
sive insertion of data points and can guarantee clustering quality maintenance
with a slight loss in the preservation of the original distances. Another con-
clusion, clearly depicted on the right diagram, is that the results obtained by
our algorithm are not affected by the way initial points are selected. Therefore,
based on our experiments, we suggest the random selection initialization scheme
(KL-RS).

5 Conclusions and Future Work

In this paper we proposed a new effective, inherently distributed, algorithm for
DDR, K-Landmarks. We compared experimentally our approach to well known
DDR approaches with regards to stress and clustering quality preservation. The
results show that K-Landmarks is a robust algorithm outperforming existing
DDR approaches. Moreover, it is comparable and sometimes even superior to
centralized methods. Clustering quality is retained with dimensionality reduc-
tion, in spite of the small loss in distance preservation. Our future work will
mainly focus on the evaluation of K-Landmarks with text data and its combi-
nation with distributed clustering approaches.
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Pauli Miettinen1, Taneli Mielikäinen1, Aristides Gionis1, Gautam Das2,�,
and Heikki Mannila1

1 HIIT Basic Research Unit, Department of Computer Science,
University of Helsinki, P.O. Box 68, FIN-00014, Finland

{pamietti, tmielika, gionis, mannila}@cs.Helsinki.FI
2 Computer Science and Engineering Department,

University of Texas at Arlington, Arlington TX 76019, USA
gdas@cse.uta.edu

Abstract. Matrix decomposition methods represent a data matrix as
a product of two smaller matrices: one containing basis vectors that
represent meaningful concepts in the data, and another describing how
the observed data can be expressed as combinations of the basis vec-
tors. Decomposition methods have been studied extensively, but many
methods return real-valued matrices. If the original data is binary, the
interpretation of the basis vectors is hard. We describe a matrix decom-
position formulation, the Discrete Basis Problem. The problem seeks for
a Boolean decomposition of a binary matrix, thus allowing the user to
easily interpret the basis vectors. We show that the problem is com-
putationally difficult and give a simple greedy algorithm for solving it.
We present experimental results for the algorithm. The method gives
intuitively appealing basis vectors. On the other hand, the continuous
decomposition methods often give better reconstruction accuracies. We
discuss the reasons for this behavior.

1 Introduction

Given an n×m matrix C and an integer k < m, classical matrix decomposition
methods aim at finding an n×k matrix S and a k×m matrix B such that C can
be approximately represented as the product of S and B. The decomposition
method represents the data by using k components: the matrix B tells how the
components are related to the original attributes (columns), and the matrix S
indicates how strongly each component is related to each row.

Singular value decomposition (svd) [1] and nonnegative matrix factorization
(nmf) [2] are typical examples of decomposition methods; the difference between
the two is that nmf assumes that C is nonnegative and requires that S and B
are nonnegative. Other matrix decomposition methods include latent Dirichlet
allocation (lda) [3] and multinomial pca [4]; see Section 3 for additional discus-
sion of related work.
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These (and other) matrix decomposition methods allow the matrices S and
B to contain arbitrary real numbers. However, if the input matrix C is binary,
it is natural to require that S and B are also binary. In this paper we consider
the matrix decomposition problem created by this requirement. In this case the
combination operation of matrices S and B is the Boolean matrix product (i.e.,
the matrix product in the semiring of Boolean ∧ and ∨).

The intuition behind considering Boolean operations is as follows. Consider a
course enrollment dataset in a CS department. Such a dataset indicates which
students enroll to which courses. Naturally, courses are divided into specializa-
tion areas. A student X interested in the Systems specialization needs to take,
among others, courses on {Operating Systems, Programming languages}, and
a student Y interested in the Software specialization needs to take courses on
{Compilers, Programming languages}. On the other hand, a student Z inter-
ested in combining both of the above two specializations should take all courses
{Compilers, Operating systems, Programming languages} (among others).
The point is that student Z should (obviously) take Programming languages only
once. Thus the set union operation is more appropriate for describing the actual
data from the basis vectors (specialization areas).

Following the intuition in the previous example, we formulate the problem of
finding a decomposition into binary matrices that give the best approximation
to the input matrix. We call this problem the Discrete Basis Problem (dbp). We
show that dbp is NP-hard and it cannot be approximated unless P = NP.

We give a simple greedy algorithm for solving the dbp and assess its empirical
performance. We show that the algorithm produces intuitively appealing basis
vectors. On the other hand, the continuous decomposition methods often give
better reconstruction accuracies and are also stronger in providing predictive
features for classification. We discuss the reasons for this behavior.

The rest of the paper is organized as follows. In Section 2 we formally define
the Discrete Basis Problem and in Section 3 we review related work. In Sec-
tion 4 we compare continuous and discrete matrix decomposition approaches. In
Section 5 we discuss issues related to the computational complexity of dbp. In
Section 6 we present our greedy algorithm, and in Section 7 we report experi-
mental results. Finally, Section 8 is a short conclusion.

2 Problem Definition

Consider an n×m binary matrix C. The rows of the matrix represent observa-
tions and the columns the attributes of the dataset. For instance, in a document
corpus dataset, rows are documents and columns are words, and Cij = 1 denotes
that the i’th document contains the j’th word.

A basis vector, intuitively, represents a set of correlated attributes. In the
document corpus example, a basis vector corresponds to a set of words that
constitute a topic. The dbp formulation aims at discovering the topics that are
present in the dataset, and also discovering how each observation (document) in
the dataset can be expressed by a combination of those topics.
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Let S and B be binary matrices of dimensions n× k and k×m, respectively.
Let P = S ◦B denote the (n ×m matrix) Boolean product of S and B, i.e.,
the matrix product with addition defined by 1 + 1 = 1. The i’th row of P is the
logical OR of the rows of B for which the corresponding entry in the i’th row
of S is 1. Intuitively, S is the usage matrix, i.e., it contains information about
which topics appear in each observation, and B is the basis vector matrix, i.e.,
it contains information about which attributes appear in each topic.

The dbp seeks k binary basis vectors such that the binary data vectors can
be represented by using disjunctions of the basis vectors. The key aspect of
the formulation is that both decomposition matrices, S and B, are required to
be binary, and are thus more easily interpretable than arbitrary real matrices.
Formally, the dbp is defined as follows.

Problem 1 (The Discrete Basis Problem). Given a binary n×m matrix C and
a positive integer k < min{m, n}, find an n × k binary matrix S and a k ×m
binary matrix B that minimize

|C − S ◦B| =
n∑

i=1

m∑
j=1

|cij − (S ◦B)ij | . (1)

3 Related Work

Probably the best-known method to decompose a matrix is the Singular Value
Decomposition (svd) [1]. The svd decomposes a matrix A into the form UΣV T ,
where U and V are orthonormal matrices and Σ is a diagonal matrix with pos-
itive entries—the singular values of A. SVD gives the optimal rank-k approxi-
mation of the matrix A (simply by setting all but the k largest singular values
to 0). Optimality of svd means that the approximation produced by svd is the
best with respect to the squared reconstruction error and using normal matrix
multiplication for real matrices. SVD has been widely used in data mining for
matrix simplification and topic identification.

One problem with svd is that the factor matrices can also contain negative val-
ues that are difficult to interpret (see also Section 4). To overcome this problem,
and also to avoid the restriction to orthogonal matrices, Lee and Seung proposed
a method known as non-negative matrix factorization (nmf) [2]. While nmf does
not minimize the global squared reconstruction error, the existing algorithms for
nmf converge to the local optima [5].

In addition to svd and nmf, many other matrix decomposition methods have
been proposed, most of which are based on probabilistic models. Such methods
include multinomial pca [4], probabilistic Latent Semantic Indexing [6], Latent
Dirichlet Allocation [3], aspect Bernoulli models [7], and topic models [8]. The
last two models are closest to dbp as they are designed for binary data.

Also hierarchical descriptions of binary data have been studied: the Prox-
imus framework constructs a hierarchical clustering of rows of a given binary
matrix [9] and hierarchical tiles are probabilistic models hierarchically decom-
posing a binary matrix into almost monochromatic 0/1 submatrices [10].
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Tiling transaction databases (i.e., binary matrices) is another line of related
research [11]. A tiling covers a given binary matrix with a small number of
submatrices full of 1’s. The main difference to dbp is that no 0’s can be covered in
a feasible tiling. Methods have been developed for finding also large approximate
tiles, for example fault-tolerant patterns [12] and conjunctive clusters [13], but
obtaining an accurate description of the whole dataset with a small number of
approximate tiles has not been studied previously explicitly.

Boolean factorization, i.e., factoring Boolean functions [14], is an important
part of logic synthesis. Rectangular coverings of Boolean matrices are one method
used to obtain good factorizations. However, the weight functions used and the
acceptance of noise are different to those of our work.

Finally, in co-clustering (or bi-clustering) the goal is to cluster simultaneously
both dimensions of a matrix [15]. A co-cluster is thus a tuple (R, C), R giving
the indices of rows and C giving the indices of columns. Decomposing a Boolean
matrix into two matrices can be seen as a co-clustering of binary data where the
clusters can overlap. Different methods for co-clustering have been proposed,
see, for example, work of Banerjee, Dhillon and others [15].

4 Continuous and Discrete Decompositions

In this section we discuss the properties of continuous and discrete approaches
to matrix decomposition, and in particular the properties of svd as compared
to those of dbp.

In svd the resulting matrices, U and V , have real-valued and even nega-
tive entries, so they do not necessarily have an intuitive interpretation. As an
example, consider the case of matrix C and its rank-2 svd decomposition:

C =

⎛⎝1 1 0
1 1 1
0 1 1

⎞⎠ , U =

⎛⎝0.50 0.71
0.71 0
0.50 −0.71

⎞⎠ , Σ =
(

2.41 0
0 1

)
, V =

⎛⎝0.50 0.71
0.71 0
0.50 −0.71

⎞⎠ .

The basis vectors in V are not the easiest to interpret. Matrix C has rank 3,
and the approximation to C produced by svd with rank-2 decomposition is

UΣV T =

⎛⎝1.10 0.85 0.10
0.85 1.21 0.85
0.10 0.85 1.10

⎞⎠ .

By the optimality of svd, this is the best that can be achieved by looking at real
matrices and squared error. On the other hand, dbp produces the representation

C =

⎛⎝1 1 0
1 1 1
0 1 1

⎞⎠ =

⎛⎝1 0
1 1
0 1

⎞⎠ ◦ (1 1 0
0 1 1

)
,

which has no error and is easy to understand.
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As noted above, svd produces optimal rank-k representations of matrices with
respect to the Frobenius norm (sum of squares of elements). It is also relatively
fast to compute, requiring time O(nm min{n, m}) [1].

Optimality for arbitrary matrices is not the whole story, however. For binary
matrices, one can study two types of ranks. The real rank rR(C) of a binary
matrix C is simply the smallest value of k such that C = SB with an n × k
matrix S, a k × m matrix B, and using normal matrix multiplication. The
Boolean rank rB(C) of C is the smallest k such that C = S ◦B, where S is an
n × k matrix, B is a k ×m matrix, and the matrix multiplication is Boolean.
It can be shown that there are matrices C for which rR(C) < rB(C) and vice
versa [16]. The complement of the identity matrix of size n × n is an example
where rB(C) = O(log n), but rR(C) = n [16]. This shows that while svd can
use the space of reals, dbp can take advantage of the properties of Boolean
operations to achieve much smaller rank than svd. Empirical experiments on
generated data support this conclusion. Thus it is not a priori obvious that svd
will produce more concise representations than the Boolean methods.

The concepts of real and Boolean rank discuss the exact representation of the
matrix C, and we are more interested in the approximate representation. One
could define the ε-ranks rε

R(C) and rε
B(C) as the smallest k such that there

is a representation of C as SB or S ◦ B with B being a k × m matrix and
|C − SB| < ε. Even less seems to be known about such concepts than about
exact real and Boolean ranks. One goal of our paper is to investigate empirically
and theoretically whether the Boolean decompositions are feasible alternatives
of the continuous methods.

5 Computational Complexity of DBP

The dbp is an optimization problem: find the matrix decomposition into k basis
vectors that minimizes the representation error according to the definition of
Problem 1. To put the problem in the perspective of complexity theory, we
formulate the decision version of the problem. This is defined as in Problem 1,
but additionally we are given a target cost t and the task is to decide whether
there is a decomposition of the input binary matrix C into binary matrices S
and B that yields an error at most equal to t.

The problem is NP-hard as the Set Basis Problem (sbp) [17, problem SP7] is
a special case of the decision version of the dbp.

Problem 2 (The Set Basis Problem). Given a collection C of subsets of a finite
universe U and a positive integer k, decide whether or not there is a collection
B ⊆ 2U of at most k sets (|B| ≤ k) such that for every set C ∈ C there is a
subcollection BC ⊆ B with

⋃
B∈BC

B = C.

More specifically, for any instance of sbp there is an equivalent instance of dbp
with t = 0, even when only the matrix B is requested. The NP-hardness can
also be shown by observing that the Biclique Covering Problem is a special case
of dbp with t = 0 where both S and B are needed. It is immediate that dbp is
in NP. Thus we have:
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Theorem 1. The decision version of dbp is NP-complete.

The reduction from sbp to dbp with t = 0 implies also the following simple
inapproximability result:

Theorem 2. DBP cannot be approximated within any factor in polynomial
time, unless P = NP.

The problem of solving the whole decomposition of the matrix for given basis
vectors, i.e., finding the matrix S for given B and C, can be solved by a straight-
forward algorithm in time O(2kmn) where k is the number of basis vectors (i.e.,
the number of rows in B): Each of the n rows in C can be decomposed indepen-
dently and there are only 2k different ways to choose a subset of basis vectors.
Thus the problem of finding the optimal decomposition after the basis vector
matrix is known, is in the class of fixed-parameter tractable problems (see [18]).

6 The Algorithm

In this section we give a greedy algorithm for dbp. The basic idea of the algo-
rithm is to exploit the correlations between the columns. First, the associations
between each two columns are computed. Second, the associations are used to
form candidate basis vectors. Third, a small set of candidate basis vectors are
selected in a greedy way to form the basis.

In the rest of the section we denote a row vector of a matrix M by mi, a
column vector by m·i and a matrix entry by mij . The confidence of an association
between the i-th and j-th column is defined as in association rule mining [19], i.e.,
c(i ⇒ j) = 〈c·i, c·j〉 / 〈c·i, c·i〉, where 〈·, ·〉 is the vector inner product operation.
An association between columns i and j is τ -strong if c(i ⇒ j) ≥ τ .

We construct an association matrix A where row ai consists of 1’s in columns
j such that c(i ⇒ j) ≥ τ . Each row of A is considered as a candidate for being a
basis vector. The threshold τ controls the level of confidence required to include
an attribute to the basis vector candidate, and it is assumed that τ is a parameter
of the algorithm.

The dbp objective function, described by (1), penalizes equally for both types
of errors: for 0 becoming 1 in the approximation, and for 1 becoming 0. We have
found that in practice the results of dbp can be improved if we distinguish
between these two types of error. Thus we introduce weights w+ and w− that
are used to reward for covering 1’s and penalize for covering 0’s, respectively.
Clearly, without loss of generality, we can assume that w− = 1.

The basis vectors are selected from the matrix A and the columns of the
usage matrix S are fixed in a greedy manner as follows. Initially B = 0k×m and
S = 0n×k. The basis B is updated in the iteration l by setting the row bl to be
the row ai in A and the column s·l to be the binary vector maximizing

cover (B, S, C, w+, w−) = w+|{(i, j) : cij = 1, (S ◦B)ij = 1}|
− w−|{(i, j) : cij = 0, (S ◦B)ij = 1}|,
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Algorithm 1. An algorithm for the dbp using association rules
Input: Matrix C ∈ {0, 1}n×m for data, positive integer k < min{n, m}, threshold

value τ ∈]0, 1], and real-valued weights w+ and w−.
Output: Matrices B ∈ {0, 1}k×m and S ∈ {0, 1}n×k .
1: function Association(C , k, τ, w+, w−)
2: for i = 1, . . . , n do � Construct the association matrix A row by row.
3: ai ← {j : c(i ⇒ j) ≥ τ}
4: B ← 0k×m

5: for l = 1, . . . , k do � Select the k basis vectors from A.
6: bl ← ai and s·l ← {0, 1}n maximizing cover (B, S, C , w+, w−)
7: return B and S

which can be considered as the “profit” of describing C using the basis B and
the decomposition S.

The association matrix can be constructed in time O(nm2) and a single dis-
crete basis vector can be obtained in time O(nm2). Thus, Algorithm 1 has time
complexity O(knm2). The run-time can be improved in practice by using upper
bounds and approximations for the confidences.

The algorithm has two parameters that control the quality of results: the
threshold τ , and weight w+ (again assuming that w− = 1). The straightforward
way to set the parameters is to try several different possibilities and take the
best. Alternatively the weight w+ can be used to express different valuations for
covering 1’s and 0’s.

Unfortunately there exist cases, where the algorithm is able to find only sub-
optimal solution. For example, if all 1’s in some basis vector occur in some other
basis vectors, then the algorithm is unable to find that basis vector.

7 Experimental Results

We have performed tests using Algorithm 1 on generated and real-world datasets.
The goals of the experiments are (i) to verify whether dbp produces intuitive
basis vectors, (ii) to check whether dbp can reconstruct basis vectors used to
generate artificial data, and (iii) to compare the reconstruction accuracy of dbp
against svd and nmf both for real and generated data.

7.1 Data and Error Measures

Generated data. We generated three sets of data to test the effects of (i) noise,
(ii) overlap between basis vectors, and (iii) input size. First, a set of basis
vectors was generated; then random subsets of these basis vectors were used to
generate the data rows; finally, random uniform noise was added. Details on the
parameters used to generate the three sets of data are shown in Table 1.

Real data. The real data consists of the following datasets: NSF Abstracts, 20
Newsgroups, Digits, and Courses. Details of the datasets are given in Table 2.
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Table 1. Details on generated datasets. Each row represents a set of generated datasets.
#bv: number of basis vectors; #bv/row: average number of basis vectors used to gen-
erate each data row; 1s/bv: number of 1’s per basis vector; noise: number of entries
flipped in the data as a percentage of the total number of 1’s.

dataset rows columns #bv #bv/row 1s/bv noise

set 1 1000 500 12 4 50 5–40%
set 2 1000 500 12 4, 8 25–200 0%
set 3 1K–16K 1K–16K 10–160 5–80 0.5K–80K 0%

NSF Abstracts1 contain document–word information on a collection of project
abstracts submitted for funding by NSF. 20 Newsgroups2 is a collection of ap-
proximately 20000 newsgroup documents across 20 different newsgroups [20].
Digits3 is a collection of 1000 binary images of handwritten digits [21]. Courses
is a student–course dataset of courses completed by the CS students of the Uni-
versity of Helsinki. A random sample of NSF Abstracts and 20 Newsgroups was
used for comparisons between different algorithms due to memory constraints of
svd and nmf implementations.

Table 2. Attributes of the real-world datasets

dataset rows columns 1s in data avg. 1s/row avg. 1s/column

NSF Abstracts 12 841 4 894 564 462 43.96 115.34
20 Newsgroups 10 000 5 163 455 526 45.55 88.23
Digits 2 000 240 291 654 145.83 1 215.23
Courses 2 405 615 52 739 21.92 85.75

Error measures. We use two measures to quantify the error of the approximation:
sum-of-absolute-values distance d1 and Frobenius distance d2, defined as

d1(A, B) =
∑

i

∑
j

|aij − bij | and d2(A, B) =
√∑

i

∑
j

(aij − bij)2.

7.2 Results

Reconstructing the basis vectors from generated data. We studied the effects of
noise and overlap between basis vectors to the reconstruction error. The main
measure was the d1 distance. Algorithm 1 was compared against svd and nmf.
For svd and nmf we also used the knowledge that the matrix is supposed to be
binary, and rounded the reconstructed matrix before computing the error with
respect to the original matrix. Values smaller than 0.5 are rounded to 0 and
1 http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
2 http://people.csail.mit.edu/jrennie/20Newsgroups/
3 http://www.ics.uci.edu/∼mlearn/databases/optdigits/
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values greater than 0.5 are rounded to 1. We call these methods rounded svd
and rounded nmf.

The effects of noise are illustrated in Figure 1(a). Lines for plain svd and
nmf coincide at the top of the figure, partly because of the logarithmic scale. In
general, plain svd and nmf are the worst, rounded svd and nmf are the best,
and dbp is in between. Additionally, all methods seem to be rather immune to
small amounts of noise. With one input set, rounded nmf converged far from
global optimum, thus causing a peak in the graph.
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Fig. 1. Reconstruction errors using d1 as a function of (a) noise (dataset 1), and (b) 1’s
in basis vector (dataset 2). Points in plots represent the mean error over five random
data matrices with the same attributes. Logarithmic scale on both axes of both plots.

Figure 1(b) illustrates the effects of basis vector’s overlap. The expected over-
lap of two random vectors is uniquely defined by the number of 1’s in basis vec-
tors, i.e., the values in x-axis of Figure 1(b). If basis vectors have high overlap,
it becomes harder to distinguish the basis vectors using association confidences.
Thus higher overlap degrades the quality of dbp results, as one can clearly see
from Figure 1(b). On the other hand, rounded svd and nmf seem to have more
problems on reconstructing data with high overlap in basis vectors. In this ex-
periment, rounded svd and nmf are again the best, plain svd and nmf the
worst, and dbp is in between. The only exception is the first point, in which the
dbp is the best. The explanation is that with small overlap, Algorithm 1 is very
effective.

Reconstruction errors for real data. Reconstruction errors for the real datasets
are given in Tables 3 (d1 distance) and 4 (d2 distance).

We used two additional methods in these experiments, namely 0–1 svd and
0–1 nmf. The idea is to make binary the factor matrices of svd and nmf and
multiply them using Boolean algebra. However, it is far from obvious how to
binarize the factor matrices. We used again a threshold approach: values below
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the threshold are rounded to 0 and values above the threshold are rounded to 1.
To be fair, we used a brute-force search to select the optimal thresholds for both
factor matrices (different threshold for each matrix).

Table 3 shows that in d1 dbp is comparable to other methods, including
rounded svd. For example, in 20 Newsgroups and NSF Abstracts with k = 5
dbp gives the smallest error. While dbp cannot beat svd or nmf in d2 (Table 4),
it is not too far away from them in most of the cases. The 0–1 svd and 0–1 nmf
have the largest reconstruction error.

Table 3. Reconstruction error of real-world datasets using d1 distance. Values are
scaled and truncated to three decimals.

algorithm

dataset k scale svd nmf r. svd r. nmf 0–1 svd 0–1 nmf dbp

NSF Abstr. 5 106 1.124 1.089 0.563 0.563 5.171 3.328 0.559
NSF Abstr. 10 1.152 1.091 0.561 0.561 6.065 5.890 0.554
NSF Abstr. 20 1.197 1.099 0.555 0.556 9.605 10.228 0.545
20 Newsgr. 5 106 0.900 0.875 0.450 0.450 4.185 2.612 0.449
20 Newsgr. 10 0.928 0.881 0.446 0.447 4.950 4.447 0.446
20 Newsgr. 20 0.969 0.889 0.440 0.441 7.293 8.096 0.441
Digits 5 105 1.308 1.382 0.763 0.855 1.678 1.113 2.133
Digits 10 1.070 1.206 0.471 0.610 1.817 0.967 2.125
Digits 20 0.878 1.028 0.254 0.444 1.678 0.815 2.119
Courses 5 104 6.467 6.204 3.215 3.350 8.202 6.418 3.783
Courses 10 6.164 5.779 2.770 2.951 14.051 9.840 3.515
Courses 20 5.949 5.186 2.219 2.495 20.490 17.021 3.160

Empirical time complexity. Set 3 was used to verify the empirical time complexity
of the algorithm. The results obtained agreed with theoretical complexity results
perfectly, i.e., the running time of Algorithm 1 increased linearly with the number
of rows in data and with the size of the basis, and quadratically with the number
of columns in data.

Quality of basis vectors for real data. We used the NSF Abstracts dataset to
examine the quality of the dbp basis vectors. We used τ = 0.3 and w+ = 6
as the set of parameters that gave the most intuitive results. Examples of basis
vectors and representative words are as follows.

<fund, NSF, year>,
<cell, gene, molecular, protein>,
<gopher, internet, network, world, wide, web>,
<behavior, effect, estim, impact, measure, model, overestimate,
predict, test>, and
<course, education, enrol, faculty, institute, school, student,
undergraduate>.
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Table 4. Reconstruction error of real-world datasets using d2 distance. Values are
rounded to the nearest integer.

algorithm

dataset k svd nmf r. svd r. nmf 0–1 svd 0–1 nmf dbp

NSF Abstr. 5 727 728 751 750 2 274 1 825 748
NSF Abstr. 10 719 721 749 749 2 463 2 427 745
NSF Abstr. 20 709 713 745 746 3 099 3 198 738
20 Newsgr. 5 649 650 671 672 2 046 1 616 671
20 Newsgr. 10 643 644 668 669 2 225 2 109 668
20 Newsgr. 20 634 637 664 665 2 701 2 845 665
Digits 5 239 248 276 293 410 334 462
Digits 10 201 221 217 247 426 311 461
Digits 20 168 196 159 211 410 286 460
Courses 5 165 167 179 183 286 253 195
Courses 10 154 158 166 172 375 314 188
Courses 20 141 147 149 158 453 413 178

8 Discussion and Conclusions

We have described the Discrete Basis Problem, investigated its computational
complexity, given a simple algorithm for it, and have shown empirical results on
the behavior of the algorithm. The results indicate that the algorithm discovers
intuitively useful basis vectors. In generated data, the method can reconstruct
the basis vectors that were used to generate the data; this holds even with high
amounts of noise.

On the other hand, in many cases, svd has lower reconstruction error than
dbp. There are several possible reasons for this. The first possibility is that svd
is in some sense inherently more powerful than dbp. This is of course vaguely
expressed. While we know that svd is optimal with respect to the Frobenius
norm, we also know that the Boolean rank of a matrix can be much smaller
than its real rank. svd in some ways has more power than dbp, as svd works
on the continuous values; on the other hand, dbp can take advantage of the
Boolean semiring on which it operates. This suggests that the relative perfor-
mance of dbp against svd should improve as the overlap between basis vectors
increases.

The second alternative reason for the good performance of svd is that the
dbp algorithm is suboptimal. This suboptimality certainly degrades the results:
for example, overlap between the basis vectors makes them harder to be dis-
covered. However, for our generated data, in many cases, the dbp algorithm
reconstructs the original basis vectors perfectly. Thus, at least for those data
sets the algorithm is sufficiently good.

We have shown that Boolean approaches to matrix decomposition form a vi-
able alternative for traditional methods. For further work, it would be of interest
to understand the relationship between the approximate Boolean and real ranks
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of binary matrices better. Also, a more detailed comparison of dbp against the
probabilistic approaches such as lda and multinomial pca would be useful.
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Abstract. Traditional discretization techniques for machine learning,
from examples with continuous feature spaces, are not efficient when
the data is in the form of a stream from an unknown, possibly changing,
distribution. We present a time-and-memory-efficient discretization tech-
nique based on computing ε-approximate exponential frequency quan-
tiles, and prove bounds on the worst-case error introduced in computing
information entropy in data streams compared to an offline algorithm
that has no efficiency constraints. We compare the empirical performance
of the technique, using it for feature selection, with (streaming adapta-
tions of) two popular methods of discretization, equal width binning
and equal frequency binning, under a variety of streaming scenarios for
real and artificial datasets. Our experiments show that ε-approximate
exponential frequency quantiles are remarkably consistent in their per-
formance, in contrast to the simple and efficient equal width binning that
perform quite well when the streams are from stationary distributions,
and quite poorly otherwise.

1 Introduction

Increasing number of real world applications now involve data streams ; e.g.,
applications in telecommunications, e-commerce, stock market tickers, fraud and
intrusion detection, sensor networks, astronomy, biology, geography, and other
sciences [1]. These data streams, whether commercial or scientific, spatial or
temporal, almost always contain valuable knowledge, but are simply too fast and
too voluminous for it to be discovered by traditional techniques. The objective of
modern practitioners is to find time-and-memory-efficient ways of modeling and
learning from the streaming data, possibly at the cost of some loss in accuracy.
The generally accepted definition of time-and-space efficiency in streams is this:
if n elements of the stream have been seen thus far, the algorithm should take
time and space at most polylogarithmic in n [1].

There are special cases in which it is relatively easy to learn efficiently in
data streams. One such scenario is when the stream is assumed to be a random
sample drawn from a stationary or a slowly shifting distribution, often called
the “i.i.d. assumption” (for independent and identically distributed). In such
situations, a reasonably sized sample, typically not larger than polylog(n), of
the data stream can be assumed to describe the overall distribution (and hence,
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the entire stream) quite accurately, and the problem reduces to learning from
such a sample. Another such case is when the underlying domain(s) of the data
values is discrete, either nominal or consisting of a few numerical values (again,
at most polylog(n)). The trick in discrete domains is to simply count the number
of instances of each value and use that as a representation of the data. Often
this simple representation is sufficient and we get by with memory usage much
less than the actual size of the stream.

Many real-world applications, however, involve continuous feature values from
unknown, and possibly changing, distributions. In these, learning algorithms de-
signed for nominal feature spaces are inapplicable. A simple work-around is
to discretize the continuous feature space, and then use techniques similar to
those for nominal feature spaces. Discretization of continuous feature spaces is,
in fact, quite common in machine learning, primarily because many machine
learning algorithms either require a discrete feature space or perform better
with discretized features. Naive-Bayes, for example, often uses discretized fea-
tures to improve performance. Accordingly many supervised and unsupervised
discretization methods have been proposed; e.g., Dougherty et al. [2] identify
defining characteristics and present an empirical evaluation of several methods.
Examples of these methods are equal interval width binning, equal frequency
width binning, monothetic contrast criterions (supervised and unsupervised),
and k-means clustering. Most of these methods are unsuitable for discretizing
data that comes in a stream as they, essentially, require the dataset to be sorted,
and that cannot be done efficiently in a stream.

In this paper, we study discretization techniques that allow us to learn effi-
ciently in data streams with continuous feature spaces even when generated by
unknown, changing (and therefore non-i.i.d.) distributions. As motivating appli-
cations we use feature selection and Naive-Bayes classification. Our objective is
to find a discretization technique(s) for efficiently performing these two learning
tasks on streams, and evaluate the technique(s) both analytically and empiri-
cally in “worst-case” scenarios. To differentiate from traditional discretization
techniques that are not suited for streams, we shall call those we are interested in
summarization techniques, emphasizing that their job is to summarize the vast
amount of information in a stream. For our applications, as we shall see later (in
Section 2), a summarization technique needs to be able to answer the following
question: For any feature Xi of the examples in the data stream, any value vi in
the domain of Xi, and any class label y associated with the examples, what is
the number of examples seen thus far with a class label y and with values for the
feature Xi at most vi? Naturally no scheme that is time-and-memory-efficient
in data streams can answer the question exactly. Thus the quality of a scheme
depends on the amount of error in the answer, in particular, on the relation-
ships between the nature of the error, the application, and the type of streaming
scenario.

The main summarization technique we study is, whatwe call, the ε-approximate
exponential frequency quantiles (denoted by exp in the figures) technique. It is
based on maintaining quantiles for each feature-class pair. The φ quantile of
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n elements, for φ ∈ (0, 1] is the 'φn(th smallest element in the set (we assume
each element is a number, as in our case). An ε-approximate φ quantile is an ele-
ment that lies in a position between 'φn(1−ε)( and 'φn(1+ε)( in the sorted data
set. In our technique we maintain quantiles for values of φ = α−i for some constant
α > 1 and 0 ≤ i ≤ lgα n; hence the term “exponential frequency” in the name.
Gupta and Zane [3] developed efficient techniques for maintaining such quantiles
and used it in the context of counting inversions in data streams. We extend the
technique to perform feature selection. Towards an analytical evaluation of this
technique, we show that its performance for feature selection is exceptionally good
by proving worst-case bounds on the error introduced in the computation of in-
formation entropy (as required in feature selection) (Section 4). To the best of our
knowledge these are the first known error bounds related to (continuous) feature
selection in streams. Our empirical evaluation of the technique is quite extensive:
first of all we compare its performance with two other popular summarization tech-
niques: the equal width summary and the ε-approximate equal frequency quantiles.
The former is just the equal width binning technique constrained to perform in a
stream. The latter is an adaptation of the quantile technique to implement equal
frequency binning. We compare these three summarization techniques, and an of-
fline optimal technique that is not constrained by time or memory limitations. We
examine their performance andmemoryusage on large-sized real and artificial data
sets, under various streaming scenarios: a stationary distribution (i.i.d), various
non-stationary (non-i.i.d.) distributions, and even a distribution that has missing
feature values (Section 5).

Related Work
Here, constrained by space, we give only a brief survey of the related research.
There has been some research in classification in data streams: either on learning
a single classifier [4,5] or a set of classifiers [6]. Hulten et al. [5,7] build decision
trees in data streams from nominal domains under the i.i.d. assumption on a
stationary or a slowly shifting distribution. They make a clever use of the Ho-
effding bounds to decide when a sufficiently large sample has been observed and
use that to create their tree. If they observe that the distribution is shifting,
they change to a different tree that represents the new data. Gehrke et al. devel-
oped BOAT [4], an incremental decision tree algorithm that handles continuous
feature spaces, and scales to large datasets, often requiring just 2 scans of the
data (we limit ourselves to one).

Gama and Pinto [8] present a method for incremental discretization on a
data stream that is based on a histogram summary of the data. They use these
histograms to further discretize the data using a variety of the standard dis-
cretization techniques (equal width, equal frequency, entropy-based etc.) and
test the accuracy of Naive-Bayes classifiers built from these discretizations on
relatively small datasets (≤ 58000 examples). Guha et al. [9] give a number of
methods for computing the entropy of a data stream: a two-pass algorithm that
computes a (1+ ε) approximation in Õ(1/(ε2H)) space, where H is the entropy,
a single-pass e/(e− 1) + ε approximation algorithm that takes polylog(n) space,
as well as a single pass algorithm that achieves a multiplicative approximation
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even when H is very small, but uses significantly more space. It is not clear,
however, if these algorithms can be adapted to compute information gain in a
data stream.

2 Motivating Applications

We use feature selection and Naive-Bayes classification as our applications. Due
to space constraints, we omit the discussion and results of Naive-Bayes; however,
these are available in [10]. Both these methods have commonly been studied in
the context of discretization techniques even in non-streaming scenarios, as they
are both typically implemented using discretized data.

Feature selection is a common process in machine learning, in which a subset
of the features available from the data are selected for application of a learning
algorithm, such as for classification. Selecting features based on information gain
is a popular method; in this a feature is selected based on the maximum decrease
in information entropy possible from a partition based on that feature.

Specifically, let there be d features denoted by X = {X1, X2, . . . , Xd} and c
class labels denoted by the set Y. Let Sn denote the stream after n examples. In
particular, Sn = (x(1), y(1), (x(2), y(2)), . . . , (x(n), y(n)) is the stream of n ordered
pairs, each consisting of a feature vector x(i) and a class label y(i). Suppose
we wanted to determine the information gain resulting from partitioning the
examples in Sn at Xi = vi. Let SL

n be the subset of examples such that Xi ≤ vi

and SR
n be the remaining examples in Sn. Additionally, let Sn,y denote the

examples in Sn with the class label y. The information entropy in Sn is defined
as

I(Sn) =
∑
y∈Y

(
−|Sn,y|
|Sn|

lg
|Sn,y|
|Sn|

)
. (1)

The information gain by partitioning at Xi = vi is defined as the decrease in
entropy due to the partitioning, i.e.,

gain(Sn, Xi, vi) = I(Sn)−
[
|SL

n |
|Sn|

I(SL
n ) +

|SR
n |

|Sn|
I(SR

n )
]

(2)

Observe that to compute information gain, we need to be able to compute |SL
n,y|,

i.e., the number of examples with class y such that Xi ≤ vi.

3 Summarization Methods

We now describe the three methods of data streams summarizations that we
study. We do not explicitly describe the process, but it will be clear from the
description how each method can be used to estimate the answer to the basic
question our applications need answered: How many examples with class label
y are there in the stream thus far with the Xi feature value at most vi, for any
class y, feature Xi and value vi?
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3.1 Equal Width Summary

Equal width binning is a simple, yet popular, discretization method that divides
the the range of each feature into equally sized intervals. It can be accomplished
in one pass only if the minimum and maximum values for each feature are known
ahead of time. Equal width summary is an adaptation of equal width binning for
stream that uses the first k examples of the stream to estimate the minimum and
maximum values of each feature. This information is used to create a specified
number of bins (which is polylog(n)). The first k examples are placed in their
respective bins, and all subsequent examples are used to update counts of items
in the bins without storing the example.

3.2 Approximate Exponential Frequency Quantile Summary

The approximate exponential frequency quantile summary is based on the ap-
proximate quantile structure developed by Gupta and Zane [3]. In it, we maintain
ε-approximate φ quantiles for φ = α0, α−1, α−2, . . ., in which α = (1 + ε). The
quantile values are denoted Q(α0), Q(α−1), Q(α−2), . . . respectively. They are
maintained using a collection of random samplers. Here we give a very brief, in-
tuitive description of these samplers; please see the paper by Gupta and Zane [3]
for details. Suppose we want to maintain the value at rank nα−i (the α−i quan-
tile). We sample each element in the stream with a probability Tαi/n, where
T = O(log n/ε2) is a parameter, and keep the T smallest values. We expect the
largest value in the sampler to have rank nα−i, as desired. To ensure we have
the correct value with high probability we just to need to maintain samplers at
finer intervals: we can get ε-approximate quantiles for φ = α−i with proba-
bility 1 − 1/n2 if we maintain random samplers corresponding to ranks at βj ,
0 ≤ j ≤ logβ n, in which β = 1 + ε/10 and T = 8 ε−2 lnn [3].

We use the samplers above, albeit with the following modification: we main-
tain α−i quantiles for only values such that 0 ≤ α−i ≤ 1/2 — which we call the
left quantiles; for the rest, we maintain 1− α−i quantiles, for 0 ≤ α−i ≤ 1/2 —
which we call the right quantiles. Suppose we want to find the number of ele-
ments with value at most a given v, we first determine whether v “falls” in the left
quantiles or in the right quantiles. Then we determine the largest quantile α−i

such that Q(α−i) ≤ v (or the smallest quantile 1−α−i such that Q(1−α−i) > v)
and use nα−i+0.5 (or n(1 − α−i+0.5)) as a (1 + ε)1.5-approximation of the re-
quired number of elements. On the whole we keep O(logβ n) samplers, so the
overall space is O(log2 n/ε−3). For learning in a stream, one set of left and right
quantiles is maintained for each feature-class pair. This allows us to calculate
(1+ε)1.5-approximation of the number of elements of class y with values Xi ≤ vi

for any class y, any feature Xi, and any value vi with high probability.

3.3 Approximate Equal Frequency Quantile Summary

The approximate equal frequency quantile summary is like the approximate ex-
ponential frequency quantile summary, except instead of maintaining βi quan-
tiles for different values of i, we keep the quantiles equally spaced — with equal
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number of examples between any consecutive pair. For a fair comparison with
the other methods, the number of examples between two consecutive quantiles
is chosen so that the same number of bins are created. These quantiles too are
maintained independently for each feature-class pair.

4 Analytical Evaluation of Exponential Frequency
Quantiles

In this section we present our theoretical evaluation of the performance of the
exponential-frequency quantiles summarization when used to compute the infor-
mation entropy at any point in a stream. In particular, suppose that we have
seen n examples in the stream, and we are given a feature Xi and a value vi,
and are asked the following question: What would be the information entropy
if the set of examples seen thus far were partitioned into two subsets based on
the question “Is Xi ≤ vi?” We show that we can bound the error introduced if
this information entropy was computed using the exponential-frequency quantile
summary. As far as we know, this is the first such bound known for computing
entropy in a data stream, i.e., by an algorithm that makes one pass over the data
stream which contains examples that have continuous features and are generated
by some evolving, possibly changing, distribution, and such that the algorithm
takes at most polylogarithmic space in the number of examples seen thus far.
The error bound has a relative (multiplicative) as well as an absolute (additive)
component, and is described precisely in the following theorem.

Theorem 1. Let the information entropy, at any given point in the stream, re-
sulting from partitioning at Xi ≤ vi, for a given Xi and vi be I∗. Let I be the
corresponding information entropy computed using exponential-frequency approx-
imate quantile summarization. Then (1 − 9ε)I∗ − 9ε ≤ I ≤ (1 + 9ε)I∗ + 9ε.

Proof. Let the given point in the stream be after n examples and, as before,
let Sn be the set of examples seen thus far. Let SL

n be the subset of examples
such that Xi ≤ vi and SR

n be the remaining examples in Sn. Additionally, let
Sn,y denote the examples in Sn with the class label y, for every y ∈ Y . Finally,
let SL

n,y be the subset of Sn,y such that Xi ≤ vi and SR
n,y be the remaining

examples in Sn,y. We saw earlier that the exponential-frequency approximate
quantile summarization can be used to compute a (1 + ε)1.5 = 1 + 1.5ε + Θ(ε2)
approximation of |SL

n,y| and |SR
n,y|. We shall show how this ensures a bounded

approximation for the information entropy. In the rest of the proof we ignore
terms that are O(ε2) in the interest of a simpler presentation. The expression
for the entropy I∗ is

|SL
n |

|Sn|
I(SL

n ) +
|SR

n |
|Sn|

I(SR
n ).

We first develop the upper bound; a lower bound will follow in a similar fashion.
For the upper bound, consider I(SL

n ). Observe that this is essentially a sum of
terms of the following form, one for each (non-empty) class y ∈ Y :
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−
|SL

n,y|
|SL

n |
lg
|SL

n,y|
|SL

n |
.

Now |SL
n | =

∑
y |SL

n,y|. Since we can compute an (1 + 1.5ε)-approximation of
|SL

n,y|, for each y, it follows that by adding each such approximation we can
compute a (1+1.5ε)-approximation of the sum |SL

n |. Thus our approximation of
|SL

n,y|/|SL
n | is upper bounded by |SL

n,y|(1 + 1.5ε)/(|SL
n |(1 − 1.5ε)) =|SL

n,y|/|SL
n | ·

(1 + 3ε), and lower bounded by |SL
n,y|/|SL

n | · (1− 3ε). Let |SL
n,y|/|SL

n | be denoted
by p, and let the approximate value we obtain be denoted by p̃. Thus we have

−p̃ lg p̃ ≤ −p(1 + 3ε) lg(p(1− 3ε)).

(Recall that − lg p̃ is a positive number since p̃ is always at most one, and that
the right hand side has the factor − lg(p(1 − 3ε)) instead of − lg(p(1 + 3ε))
since it is the larger of the two.) We consider two cases: the first will result in
both relative and absolute error terms, and the second in just a relative error
term. In Case 1, assume p > 1/2. If we use the approximation ln(1 − x) = −x
and ignore terms that are O(ε2), we get the following bound: − lg(p(1− 3ε)) =
− lg p − ln(1 − 3ε)/ ln 2 = − lg p + 3ε/ ln 2 ≤ − lg p + 4.33ε. Thus −p̃ lg p̃ ≤
−(1 + 3ε)p lg p + (1 + 3ε)p · 4.33ε ≤ −(1 + 3ε)p lg p + 4.33ε, since p ≤ 1. For
Case 2, assume p ≤ 1/2. Thus − lg(p(1 − 3ε)) ≤ − lg p + 4.33ε as before, which
in this case is bounded by − lg p(1 + 4.33ε) since − lg p ≥ 1. This results in
−p̃ lg p̃ ≤ −(1 + 3ε)p(1 + 4.33ε) lgp = −(1 + 7.33ε)p lg p. Note, in I(SL

n ), at
most one such term can have p > 1/2, i.e., be in Case 1. Thus, by adding the
approximations for each term, we have an approximation for I(SL

n ) that is upper
bounded by (1+7.33ε)I(SL

n )+4.33ε. To bound the term |SL
n |/|Sn| ·I(SL

n ) in our
expression for entropy, note that |Sn| = n is known exactly, and we can obtain an
(1+1.5ε)-approximation for |SL

n |. We can similarly bound the approximation we
get for |SR

n |/|Sn| · I(SR
n ). Combining both, we get the following upper bound on

the computed value of the entropy I: (1+1.5ε)(1+7.33ε)I∗+2·(1+1.5ε)·4.33ε≤
(1 + 8.53ε)I∗ + 8.66ε.

5 Empirical Evaluation

In this section we evaluate the accuracy and memory usage of the three sum-
marizations empirically for feature selection and compare them with an offline
algorithm that has no time or memory constraints. We present results only for
experiments in which ε (as required by the approximate quantiles) is set to 0.5.
This is because, based on experiments presented in [11] (e.g., see Figure 1), at
this value we have, informally, a good compromise between low relative error
and reasonable usage of memory. In experiments using equal width summaries
we use k = 100 examples to establish the bin boundaries. In addition, for a fair
comparison, we maintain as many bins as there are quantiles in the summaries
for ε = 0.5.
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Fig. 1. Computing information gain for different ε: 0.25, 0.50, and 0.75 [11]

Datasets
Large data sets are essential for our experiments, but we were limited to those
available in the public domain. Table 1 summarizes the datasets we used. Among
the large real data sets we found, we chose four to get a set with different char-
acteristics. Since our method is for continuous features and nominal features
will, in practice, be handled separately, we pruned the nominal features (if any)
from each dataset. We also generated a large artificial dataset to stress-test
the summarizations. Brief description of the data sets: (1) We generated the
feature values of the Artificial dataset using normal distributions, and added
random noise using different normal distributions. The class labels were deter-
mined by partitioning the space of the two “important” features into two using
a random vector. (2) The Can dataset is from a scientific simulation of a can
being crushed [12]. The data portion in which the can is being crushed (8,360
out of 443,872 examples) is labeled “very interesting” and the rest labeled “un-
known.” (3) The Covtype dataset is from the UCI repository [13] and is about
forest cover types for different geographical features. It has 7 classes with a
highly imbalanced distribution; we selected the 10 continuous features out of a
total 54 features. (4) The Census-Income dataset is also from UCI and highly
unbalanced. We selected the seven continuous features out of a total 45 fea-
tures. (5) The UCSD dataset [14] is a large classification dataset used at the
UCSD student data mining competition. We pruned its 42 features to 8 in our
experiments.

Streaming Scenarios
We tested the summarization techniques on four different types of streaming
scenarios: (1) The Stationary distribution which models an i.i.d scenario. For
this the examples are randomly shuffled to create the stream. (2) The Non-
Stationary–Feature distribution, in which the examples are sorted in increasing
order of the most significant feature to create a “worst-case” non-i.i.d. distribu-
tion. (3) The Non-Stationary–Class distribution, in which the stream starts with
a single class, followed by all classes occurring with the same frequency until all
the examples of one (or more) class(s) are exhausted, to create another non-i.i.d.
distribution. (4) The Missing Values distribution, which is like the stationary
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Table 1. Datasets

Dataset Size Classes Features
Artificial 1,000,000 2 6
Can 443,872 2 9
Covtype 581,012 7 10
Census-Income 199,523 2 7
UCSD 1,837,583 2 8

distribution, except 30% of the feature values have been removed at random.
The non-stationary distributions may seem contrived, but our objective is to
develop “bullet-proof” methods for unknown, rapidly evolving, streams.

5.1 Performance of Feature Selection

For each dataset and streaming scenario, we calculate the information gain at
every tenth point of the total stream. Figure 2 shows the average relative error
computing the gain for the best feature (according to gain), plotted for each
combination of summarization, dataset, and streaming scenario. The approxi-
mate exponential frequency quantile technique shows remarkable consistency:
its relative error is almost always between 0.01 and 0.1. When some features
have missing values, it performs even better: relative error between 0.001 and
0.01. The likely reason for this is that we let the technique take memory based
on the original size of the stream, without accounting for the smaller number of
examples for each class-feature pair. In contrast, the equal width summary per-
forms much better than the exponential frequency quantile summary for the sta-
tionary, non-stationary–class, and missing values distributions: with error better
10−7 and 0.01 most of the time. But for non-stationary–feature distribution, and
the Covtype dataset on non-stationary–class distribution, its error shoots up to
nearly 1. Thus the exponential frequency quantile summary is better suited for
unknown streams. The equal frequency quantile summary rarely performs better
than the exponential frequency quantile summary, and performs poorly on the
non-stationary–feature distribution. Thus the strength in the exponential fre-
quency quantile summary is in the exponential frequency part of the technique;
as was also demonstrated by the analysis in Section 4.

Since we are considering information gain as a tool for feature selection, we
examine how the feature rankings for each approximation correlates with the
precise feature ranking. Figures 3 shows the Spearman rank correlations of the
features sorted in descending order of importance, based on the information
gain, for the Covtype dataset on the stationary, non-stationary–feature, and
non-stationary–class distributions (we only show one dataset due to space con-
straints). Notice that the equal width summary produces a perfect ranking for
the stationary distribution, but degrades on the non-stationary–feature distri-
bution. For the non-stationary–feature distribution, the feature on which the
data stream was sorted (in this case, the most important feature) is likely to be
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Fig. 2. Average relative error between the information gain of the best feature for each
dataset and streaming scenario; Y-axes are in log-scale

misranked since the bins for that feature are established on a small subset of the
range of the feature.

5.2 Memory Usage

Figures 4 shows the memory usage for the offline and three approximations. In all
cases, the equal width method needs the least amount of memory. The quantile
based summarizations always require less memory than offline algorithm. The
anomalous behavior of equal frequency quantiles can be explained. Note that
the number of samplers that are actually useful depends upon the number of
values that have been inserted into the quantile structure. If the structure isn’t
full (which it won’t be unless all examples belong to a single class) there will
be samplers that have been partially populated but aren’t used. This is wasted
space. This is particularly problematic for the Covtype dataset since there are a
large number of classes compared to the number of examples, and some classes
have only a small number of examples. If we measure the memory usage where
each example in the Covtype dataset is inserted into the quantile summary
structures four times — essentially simulating a longer stream — the equal
frequency quantile summary requires less memory than offline.
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Fig. 3. Correlation between the feature ranking of offline and each summarization on
Covtype for stationary and non-stationary distributions
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6 Conclusion

In this paper we developed the ε-approximate exponential frequency quantiles
based technique for summarizing data streams. Although this technique takes
time and memory that are at most polylogarithmic in size of the stream, we
showed that its performance in computing information entropy is very good by
proving worst-case bounds on the error introduced in the computation compared
to an offline optimal algorithm that has no time and memory constraints. In ad-
dition we empirically evaluated this technique and two other popular techniques
— equal width summary and ε-approximate equal frequency quantiles — for fea-
ture selection under a variety of streaming scenarios for both real and artificial
datasets. The ε-approximate exponential frequency quantiles based technique is
remarkably consistent, even in “worst-case” scenarios (its relative error is al-
most always around 0.1), and should be the technique of choice for streams
with continuous feature spaces that are from unknown or non-stationary distri-
butions (when the i.i.d. assumption does not hold). If, however, we know that
the i.i.d. assumption is valid for a given stream, the technique to use (not sur-
prisingly) is equal width summary, for its simplicity, performance, and memory
usage.
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Abstract. We address the problem of analyzing spatial correlation be-
tween event types in large point data sets. Collocation rules are unsat-
isfactory, when confidence is not a sufficiently accurate interestingness
measure, and Monte Carlo testing is infeasible, when the number of event
types is large. We introduce an algorithm for mining correlation patterns,
based on a non-parametric bootstrap test that, however, avoids the ac-
tual resampling by scanning each point and its distances to the events in
the neighbourhood. As a real data set we analyze a large place name data
set, the set of event types consisting of different linguistic features that
appear in the place names. Experimental results show that the algorithm
can be applied to large data sets with hundreds of event types.

1 Introduction

Consider a large set of spatial point objects. Each object may be an instance
(event) of zero, one, or several event types of interest, and the number of event
types is large (e.g, 100-2000). We are interested in analyzing spatial correlation
between the point patterns of different event types.

As an example of real data, Fig. 1 illustrates the variation of frequency of place
names in East Finland in a corpus of the National Land Survey of Finland. A
small dot is plotted at all named locations. For illustration purposes, the events
of three linguistic features occurring in the place names are also indicated. The
indicated event types are some of the lexical features that are of interest in the
study of the settlement in East Finland during the Iron Age, and the ancient
interaction between the Finns and the Saami in the region.

These features are just examples. As a very large set of different lexemes, and
other linguistic features, appear in place names, the number of event types may
be large, hundreds, or even more.

Fig. 1 shows that the overall frequency of place names is not constant across
the area. We see, for instance, that lakes are discerned from the surroundings
with lower frequencies of events, whereas on the shores the density of events
is high. Instances of event types may correlate simply because they both occur
more frequently in the regions of high overall intensity, and less frequently in the
regions of low intensity. Thus, to obtain reliable results, we desire to relate the
interestingness of an observed correlation to the overall frequency of objects.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 359–370, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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There are no methods available that can do with a lot of data and more than
a few event types. Collocation rules only consider the plain frequencies of nearby
instances of event types in each rule, ignoring the overall frequency of events.
They can include several event types, but in practice the algorithms may be
very slow if the number of event types is large [9]. In spatial statistics Monte
Carlo tests are usually employed. They are computationally infeasible when the
number of event types is large.

Fig. 1. Locations of place names (very small dots) in East Finland in the corpus of
the National Land Survey. Instances of three event types: 1) unfilled (blue) triangles
=name elements assumed to be of Saami origin; 2) filled (red) triangles = instances
of lexemes akka,akko, ’old woman’; 3) circles = instances of lexeme louhi (the female
ruler of Pohjola in Kalevala, the Finnish national epic.)

We propose a method that can be seen as a non-parametric bootstrap test
that, however, avoids the actual resampling from the data by scanning each
point and its distances to the points in the neighbourhood in turn. A preliminary
version of the test, using Monte Carlo methods, was outlined in [6]. In this paper
we extend the idea to large sets of event types by introducing a novel algorithm
that computes the tests without actual resampling. Theoretical complexity of
the algorithm is O(n2), where n is the number of events. In practice, a small
fraction of distances between points has to be evaluated, and our experiments
show that the algorithm can evaluate correlations in large data sets and event
type sets in feasible time. The results provide more detailed knowledge than
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collocation rules, since the distribution of all points is considered when assessing
how interesting individual rules are.

This paper is organized as follows. In Section 2 the related work is introduced.
In Section 3 the notion of correlation pattern is proposed for measuring the
significance of two-feature collocation rules. A new algorithm for finding such
patterns is introduced in Section 4. Experiment results on real and synthetic
data sets are provided in Section 5. Section 6 is a conclusion.

2 Related Work

Collocation rules are often used to describe dependencies in spatial data. Col-
location rule mining algorithms are typically based on first finding interesting
collocation patterns, and then extracting rules from them. A neighbourhood re-
lation R of spatial objects is assumed to be explicitly given. In case of points,
the definition is usually based on the Euclidean distance of at most a predefined
ε Let E be a set of features (or event types). A collocation pattern is defined as
a set Q ⊆ E [3,4,8,9].

Further let S = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a set of spatial point ob-
jects. The type of data considered in this paper can be represented as a binary
S × E-matrix. We say that p ∈ S is an instance (or event) of event type A ∈ E
in data D if Dp,A = 1. A set S′ of spatial objects is a (row) instance of Q if for
all oi, oj ∈ S′, dist(oi, oj) ≤ ε, and S′ contains instances of all the event types in
Q, and no proper subset of S′ does so [3].

Let P and Q be collocation patterns, and P ∩ Q = ∅. Then P → Q is a
collocation rule. The confidence of P → Q in data D is the fraction of instances
of P such that they are also instances of P ∪ Q.

Interestingness measures for collocation patterns include prevalence, which
is defined as min{pr(F,P), F ∈ P}, and maximum participation ratio (MPR),
max{pr(F,P), F ∈ P}, where pr(F,P) is the proportion of the events of type
F that appear in the instances of P . A high prevalence indicates that P can be
used to generate confident collocation rules [8]. Correspondingly, a high MPR
implies that at least one of the event types, denote it by T , rarely occurs outside
P . Hence, the collocation rule {T } → P \ {T } is likely to be interesting [4].

Levelwise search algorithms for finding all interesting patterns were introduced
by [4,8]. The algorithm proposed by Zhang et al. finds for each object in turn
the maximal pattern instance in which the object participates [9].

Let Z ⊂ R2 be the observation region under investigation. In spatial statistics
point patterns are typically modeled as point processes {X(t) : t ∈ Z} which
generate events t on Z. If there are k event types, X(t) is a k-dimensional
binary vector indicating the event types whose instance point t is. Hypothesis
testing selects a point process for modeling the null hypothesis H0 of no spatial
correlation, and a test statistic T measuring the correlation in an observed point
pattern. The simplest choice is the Poisson process conditioned on the numbers
of events of the event types to be tested (complete spatial randomness, CSR).
In practice, Monte Carlo methods are usually needed to simulate the selected
process to obtain an approximation for the sample distribution of T [1,2].
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Intensity function of a point process intuitively describes the average fre-
quency of events in a unit area. It is defined as λ(s) = lim|ds|→0 E(Y (ds))/|ds|,
where ds is a “small” region around s ∈ Z, |ds| is the area of ds, and Y (ds) is
the random variable indicating the number of events in ds. For the number of
instances in Z ′ ⊆ Z, it holds that E(Y (Z ′)) =

∫
Z′ λ(s)ds.

Leino et al. study significances of two-feature collocation rules in lake name
data, where different lake names form the set of event types. Their approach
takes the overall frequency of lakes into account, but unrealistically assumes the
probability of an instance of each event type to be constant across Z [5].

3 Testing Collocation Rules

We next consider collocation rules of type A → B, where A and B are single
event types, in the context of hypothesis testing. The notation is summarized in
Table 1.

Let us assume that the data S (or S × E) is a sample from population F .
It is natural to investigate a test statistic based on the definition of confidence
of a collocation rule. Accordingly, let us denote the conditional probability of
observing an instance of B within a distance ≤ ε from a given instance of A by
GA,B(ε), and its observed value, which is the confidence of A → B, in data by
gA,B(ε). We define a correlation pattern as a statistically significant collocation
rule A → B as follows:

Definition 1. Let {X(s) : s ∈ Z} be a bivariate spatial point process under
a null hypothesis H0, that is, it specifies the probability distribution of point
patterns of two event types, denote them by A and B, under H0. A collocation
rule A → B is a correlation pattern in data S × E with significance level α iff
Prob(GA,B(ε) ≤ gA,B(ε)|X(s)) ≤ α.

For practical purposes, the general definition is, of course, useful only if a com-
putationally feasible H0 can be found, and it describes in a meaningful way the
vague concept of “no spatial correlation” between A and B. Below we devise
methods to solve this key problem.

The CSR null hypothesis that assumes a constant intensity of the generating
process everywhere in Z is too simple in practice. Assuming that, in addition to
events of types A and B, a lot of point data is available, the following bootstrap
test may be a better alternative: sample from S to obtain A∗ and B∗, and com-
pare gA,B(ε) against the obtained distribution of ĜA,B(ε)|H0. Now, the intensity
of the generating process under H0 is not assumed to be constant but a bootstap
estimate λF̂ (s) of λ in population F .

This testing procedure works, if the intensities λA and λB can be assumed to
be proportional to λF . Unfortunately, this assumption is often not valid either.
For the same reason permutation testing of the whole data is not meaningful.
All event types do not usually occur in the whole area of investigation, and they
may be rare somewhere, and common somewhere else, not necessarily following
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Table 1. Notation

Symbol Explanation

E = {A, B, . . .} set of event types
S set of all spatial point objects in current data
F population from which S is a sample

A, B, . . . sets of events of event type A, B etc.
GA,B(ε) conditional prob. in F : given a ∈ A, ∃b ∈ B, s.t.dist(a, b) ≤ ε.
gA,B(ε) observed value of GA,B(ε) in current data

λA(s) intensity of the process (at location s) that generated A
A∗ pseudosample of A (number of events equal to |A|)

the variation of frequency of all objects (see, e.g., the event type indicated by
unfilled triangles in Fig. 1).

Thus, to be realistic H0 should somehow depend on the spatial variation of
frequencies of A and B, of course in a carefully controlled way. Accordingly, con-
sider generating events independently for A∗ and B∗ from the processes whose
intensities are kernel density estimates λ̂A(s) and λ̂B(s). A kernel density es-
timate λ̂A is obtained by inserting, e.g., a bivariate Gaussian f , around each
ai ∈ A, and λ̂A(s) =

∑n
i=1

1
h2 f( s−ai

h ). The parameter h (bandwidth) controls
the degree of smoothing.

When h → ∞, this corresponds to sampling under the CSR. On the other
hand, when h → 0 the procedure converges to the resampling from sets A and B.
This is the regular bootstrap approach for parameter estimation, but it is not a
valid approach for testing, since the resamples are not drawn under H0. However,
by conducting trials with several h we can study the value of the test statistic
as the function of h, that is, the impact of “weighting” the CSR hypothesis by
λ̂A(s) and λ̂B(s).

While this method is interesting, it still investigates only the events of types
A and B, ignoring the information available in the distribution of S. A simple
modification that yields a better solution is as follows. Consider sampling from S
to obtain A∗ and B∗. Let us weight each point t ∈ S by λ̂A(t) (or λ̂B(t)). When
h → ∞, the same weight is assigned to all points, resulting in plain sampling
from S. Similarly to the previous case, when h → 0 the procedure converges to
resampling from sets A and B.

Fig. 2 illustrates this in case of two event types in the place name data (lex-
emes musta ’black’ and valkoinen ’white’). The indicated different bandwidths
correspond to different weightings of the plain sampling from S, which is ti-
tled “no weight”. The errorbars show the 99 % intervals of ĜA,B(ε)|H0. The
results show that the observed gA,B(1 km) = 275 cannot be obtained even by
the strongly weighted null hypotheses (h = 0.5 km), and, hence, the rule A → B
is clearly very significant. The plain sampling from S indicates remarkable de-
viation from H0, when the neighbourhood is extended to 4 km, whereas gA,B(4
km) is included in the 99 %-intervals of more realistic weighted versions.
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Fig. 2. Significance of rule A → B with different neighbourhood definitions (distance in
y-axes), and weighted versions of H0 (bandwidth h of Gaussian kernel). Errorbars and
circles indicate 99 %-intervals of ĜA,B(distance)|H0, and gA,B(distance), respectively.

All the described testing procedures rely on Monte Carlo methods. We next
propose a method that avoids them. Consider the previous approach, but fix
the events in B, and only draw pseudosamples A∗ from S. If |S| is small,
or no reference data is available, i.e. S = A ∪ B, then it is easy to see that
E(ĜA,B|H0) > gA,B, i.e., the pseudosamples are on average closer to some b ∈ B
than the original data, and thus, the estimator is biased. Obviously, when more
reference data are available, the dependence becomes weaker, and in the limit,
when |S| → ∞, |A|/|S| → 0, and |B|/|S| → 0, then E(ĜA,B|H0) → GA,B|H0.
Thus, the estimator is asymptotically unbiased. Results on synthetic data in Sec.
5.1 demonstrate this.

Conditioning the method on one of the event types makes it possible to develop
an efficient algorithm for computing the significant associations without actually
generating the pseudosamples. The assumptions needed are, accordingly, that S
is “large”, and the proportions |A|/|S|, |B|/|S| of individual event types to be
tested are “small”.

Let us again consider rule A → B. Now, it holds, under H0, that GA,B(ε) ∼
Bin(|A|, pA,B), where pA,B is the probability that during the resampling for A∗

an event that is within ε from an event of type B is selected. The probability p
is determined by the kernel estimates λ̂A(t), t ∈ S.

Denote by S∗ ⊆ S the set of events such that for each x ∈ S∗, dist(x, b) ≤ ε
for some b ∈ B. Then,

pA,B =
∑

x∈S∗ λ̂A(x)∑
y∈S λ̂A(y)

=

∑
x∈S∗

∑
ai∈A f(x−ai

h )∑
y∈S

∑
ai∈A f(y−ai

h )
. (1)

The sums in Eq. 1 can be approximately computed by inspecting the occur-
rences “sufficiently” close to the events in A∪B. The significance of the observed
number of co-occurrences can then be evaluated by comparing gA,B(ε) with the
binomial distribution of GA,B |H0 (e.g., by applying normal approximation).
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4 Algorithm for Finding Associations

In this section we introduce an algorithm that computes the significances of
correlation patterns between the instances of pairs of event types.

A useful kernel function decreases monotonically as a function of distance from
its mode. For instance, 99.7% of the probability mass of a bivariate Gaussian
kernel function f with bandwidth h is concentrated inside a circle with radius
3h. Hence, by setting, for example η = 4h, we can safely assume that f(η) ≈ 0,
and ignore the events that are not within η from the mode. When inspecting
each t ∈ S to compute the approximations for pX,Y , (X, Y ) ∈ E × E in Eq. 1,
we use this: the “influence” of t does not extend to any location s such that
dist(s, t) > η.

Consider location t in the left panel of Fig. 3. The events of type A, and the
closest event of type B (b1) are shown. The events a4, a5 that are not within a
distance of η from t are indicated by dashed edges. One should compute λ̂A(t),
i.e., to evaluate the kernel function three times to obtain w =

∑3
i=1 f( t−ai

h ).
This yields the contribution of t to the denominator of Eq. 1. Further, if the
distance of t and b1 is less than ε, w should also be included in the sum of the
numerator in Eq. 1.

The right panel of Fig. 3 describes a more realistic setting, where there are
several event types, and one should compute pi,j for each ordered pair of event
types (i, j) ∈ E × E . Now all the events within η from the central node t are
shown: a2 ∈ A, b1, b2 ∈ B, and c1, c2 ∈ C. The events (b1, c2) within a distance
less than ε from t are indicated by thick edges. Instead of only one pair of
event types, we now have to find the sums for all pairs (i, j) ∈ {A, B, C}, i �= j,
according to exactly the same simple procedure as in the previous case.

The procedure can be generalized as follows. Let t be the location of the
central object, and further let y be an instance of Y such that dist(t, y) ≤ ε. If
there are instances x1, x2, . . . , xk of X such that dist(t, xi) < η, 1 ≤ i ≤ k then,
for computation of pX,Y of Eq. 1, the term

∑k
i=1 f( t−xi

h ) has to be included
in the numerator of Eq. 1. If several event types are allowed to occur at one
location, the sums for each event type are updated at each location.

a2

b1

a3

1a t
<ε?

a4

a5

λA(t)

a2
b2

c1

b1 c2<ε <ε
t

Fig. 3. Star graphs for computing sums of kernel density estimates

Hence, consider the following algorithm for testing collocation rules. The ob-
jects are first sorted according to their x-coordinates in order to avoid computing
distances between all objects (line 1). The y-coordinates of two objects are in-
spected only if their x-coordinates are sufficiently close to each other, and the
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kernel function is evaluated only if the distance of objects < η (lines 7–11). The
main loop (lines 3–19) scans the η-neighbourhood of each object. Lines 4–6 ini-
tialize the list L of features with an instance within η from oi, and the sums
of weights of each event type. Each event type whose instance is closer than
η to oi is added to L in line 13. Indicator function fX(oi) returns TRUE if oi

is an instance of event type X (lines 12–13). The sums of each pair of event
types are updated in function update pairwise weights. The counter of real
co-occurrences of event types X and Y is g[X, Y ]. These counters are updated in
line 18. After iterating all objects in S, the significances of g[X, Y ] are evaluated
by comparing them to the binomial distributions of the test statistics.

Algorithm. test collocations (o1, . . . , on ∈ S, ε, η, set of event types E)
1. sort o1, . . . , on according to their x-coordinates;
2. k ← 1
3. for each 1 ≤ i ≤ n do
4. L ← ∅
5. for each X ∈ E do
6. wε[X] ← 0; wη[X] ← 0
7. while oi.x − ok.x ≥ η do k ← k + 1
8. j ← k
9. while oi.x − oj .x < η do

10. if (dist(oi, oj) < η) then
11. z = weight(oi, oj)
12. for each {X ∈ E|fX(oi) = TRUE} do WX ← WX + z
13. for each {Y ∈ E|fY (oj) = TRUE} do L ← L ∪ Y
14. if (dist(oi, oj) ≤ ε) then wε[X] ← wε[X] + z
15. else wη[X] ← wη[X] + z
16. j ← j + 1
17. for each Y ∈ L such that wε[Y ] > 0
18. g[X, Y ] ← g[X,Y ] + 1
19. update pairwise weights(L, wε, wη)
20. for each ordered pair (X, Y ) ∈ E × E
21. compute significance of g[X, Y ] based on WX and W Y

X

Function update pairwise weights(L, wε, wη)
1. for each X ∈ L
2. for each Y ∈ L
3. if wε[X] > 0 then W X

Y ← W X
Y + wε[Y ] + wη[Y ]

4. if wε[Y ] > 0 then W Y
X ← W Y

X + wε[X] + wη[X]

In the worst case the algorithm has to compute the distances between all
objects. Thus, the time complexity is O(n2), where n is the number of objects.
In practice, the number of potential nearby objects of an arbitrary object is
a fraction of all objects. Further, the run time is influenced by the proportion
of events and unlabelled locations, frequency of them, and bandwidth. We are
conducting systematic experiments of the influence of different factors.

Fixing a distance of ε is inconvenient (demonstrated in Fig.2). Further, fixing
bandwidth h corresponds to the problem that there is usually not a single correct
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way of defining H0 of ”no correlation”.Thus, it is, for data mining purposes, mean-
ingful to study significance values as function of h (as in Fig.2). For clarity the al-
gorithm was presented above in a form that takes as input only single values for
ε and h. We extended it to inspect several εi and hi in the same run, with a very
small increase in computational cost, which is dominated by max(hi).

If the data or data structures are too large to be stored in main memory,
the hashing strategy introduced by [9] can easily be included as a preprocessing
phase. The algorithm can be applied to each bucket separately, and the weights
are finally summed up over all of them.

Though the analysis above used the probability GA,B(ε) as the test statistic,
the method and algorithm can be extended to the analysis of other test statis-
tics. For instance, the so-called KA,B(ε)-function considers the number of events
within ε, instead of the nearest neighbour only.

When testing the significance of correlation between point patterns of two
event types, spatial autocorrelation of event types may be a distorting factor.
Though the selected H0 assumes independence between the event types, it should
allow dependence of events that are instances of the same event type. In our
method, the binomial distribution of GA,B(ε)|H0 was based on the assumption
of independence of the samples. However, the distorting effect of possible auto-
correlation is reduced by two facts. First, though the samples are independent,
the autocorrelation is implicitly taken into account by weighting the samples ac-
cording to the kernel density estimated intensities. A remarkable concentration
of events (i.e., autocorrelation) increases the probability of selecting a sample
from the neighbourhood. Second, the testing of rule A → B is carried out by
fixing the locations of b ∈ B. Thus, the possible autocorrelation in B is kept
unchanged. We are currently studying the subtle problem of autocorrelation by
conducting further experiments with synthetic data.

5 Experiments

5.1 Synthetic Data

We tested the algorithm on synthetic data with 100 event types, each having 1000
uniformly randomly generated events. Different numbers of unlabelled points
from zero up to 700,000 were also generated, keeping the locations of the labelled
events fixed in each trial. The observation region was a square of size 100, 000×
100, 000. We studied the values of gi,j(ε) for each pair (i, j) ∈ E × E , and the
significances of the deviation from the distribution of Gi,j(ε)|H0 the algorithm
assigned to them.

Since the data are independently generated, the average deviation from H0
should be zero. As described in Sec. 3, the estimates are biased with small S.
When increasing the number of unlabelled points, the average tended to zero.
Fig. 4 summarizes the results in the case that S included the maximum of
700,000 unlabelled points, and the 100,000 labelled events. There is a dot for
each ordered pair (i, j) ∈ E × E . The x-axis indicates the value gi,j(1000). The
y-axis shows the significance of the deviation from the H0-distribution that our
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Fig. 4. Trial on synthetic data (100 event types, each with 1000 randomly gener-
ated events, 700,000 unlabelled points). Each dot represents an ordered pair (i, j) of
event types: gi,j(1000) (x-axes) vs. the significance of deviation of gi,j(1000) from
Ĝi,j(1000)|H0 of no spatial correlation (y-axes) assigned by the proposed algorithm.

algorithm assigned to each gi,j(1000). The range [-1.96,1.96] corresponds to 95
% confidence interval. The kernel function was the bivariate Gaussian, h = 5000
(symmetric, ρ = 0). The average significance was very slightly biased (0.08).
The running time (Pentium 1.33 GHz Linux) was 2 h 25 min. Another test run
with a larger generated data (500 event types, 1000 events in each, resulting in
500,000 labelled events, and |S| = 1, 000, 000) took 5 1/2 hours.

Given a value of the x-coordinate, the range of values of the y-coordinate
indicates the range of different assessments of significance, the value of gi,j being
the same. This spread is due to the statistical error inherent in any bootstrap
approach, caused by the difference of population F , and sample S. Though the
intensity of the generating process is constant, random variation causes events
of some event types to be located, on average, in regions of larger overall density,
resulting in different significance assessments.

5.2 Real Data: Linguistic Analysis of Place Names

The Place Name Register maintained by the National Land Survey of Finland
contains 717,746 Finnish place names, including the coordinates and types of
the named locations. Each named object is represented by a pair of coordinates.

Linguistic features appearing in place names are of interest for many different
research fields. Place names preserve features that have disappeared from the
current language. Thus, they are significant for the research on, e.g., the history
of languages. Loan words are signs of interaction between cultures, and provide
material for the research on cultural history and history of settlement. As an
example, Finnish place names of Saami origin give evidence for Saami inhabitants
in South and Central Finland during the Iron Age.

In many languages, e.g., in German and Finnish, place names are typically com-
pound words. A natural approach is to consider the different lexemes (words) as
different event types, and to study their relationships. As a tedious preprocessing
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Fig. 5. Events of name elements raja ’boundary’ (left-side map), and pelto ’arable
land’ (right-side map). Summary of significances of rules raja → B (top), pelto →
B (bottom), ε = 1.5 km, where B is in turn each of the 100 most common name
elements indicated by x-axis in decreasing order of the number of instances. Errorbars
indicate the different bandwidths of Gaussian kernel functions: 1500, 5000, and 10,000
metres, the widest bandwidth indicated by points.

phase of the data, we first extracted the individual name elements from the com-
pound names, and found the basic forms of the inflected words.

Since the endings and first parts of compound names have different semantic
functions, it is useful to analyze them separately. In the following we only con-
sider the first parts. We studied the pairwise correlation patterns between the
name elements such that the number of instances as the first parts of compound
names is at least 30. The number of event types was 1,707. The running time of
the algorithm was 37 minutes (1.33 GHz Linux Pentium) when using the Gaus-
sian kernel, h = 5000 metres. For a detailed description of the results of the
analysis, see [7].

We illustrate the analysis of profiles of correlation patterns by an example. Fig.
5 displays the instances of two name elements: raja, meaning ’boundary’, and
pelto, meaning ’field’ (arable land). Though both event types have approx. 2,500
instances occurring in the same (larger) areas, they differ remarkably in a local
level. Instances of raja, unlike those of pelto, are not located in the immediate
neighbourhood of the other common name elements as indicated by Fig. 5. In
this case the meaning of raja, boundary, gives reason to the explanation that
the instances are located apart from the heart of the (earlier) settlement, unlike
those of pelto, referring to arable land.

6 Conclusion

The methods of spatial data mining and spatial statistics have been quite sepa-
rated when it comes to finding associations in spatial point data and evaluating
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their significances. While data mining approaches have concentrated on devel-
oping algorithms in the spirit of association rules and frequent patterns, the
statisticians have been working with point process models leading to tedious
simulations for evaluating attraction and repulsion patterns in data.

We develop an intermediate approach, and introduce an algorithm for evalu-
ating associations of features in large spatial data sets with even thousands of
features. Compared to collocation rules, the associations found by the developed
algorithm provide more detailed knowledge, since they take characteristics of
the whole data set into account when assessing the significance of an observed
association.

We tested the methods on synthetic data, and a large place name data set.
The different name elements appearing in compound words were extracted, and
they were treated as features with a location. The number of name elements is
large, and thus, novel methods are needed in the analysis.
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Abstract. Dense subgraphs of Protein-Protein Interaction (PPI) gra-
phs are believed to be potential functional modules and play an impor-
tant role in inferring the functional behavior of proteins. PPI graphs are
known to exhibit the scale-free property in which a few nodes (hubs) are
highly connected. This scale-free topology of PPI graphs makes it hard to
isolate dense subgraphs effectively. In this paper, we propose a novel re-
finement method based on neighborhoods and the biological importance
of hub proteins. We show that this refinement improves the functional
modularity of the PPI graph and leads to effective clustering into dense
components. A detailed comparison of these dense components with the
ones obtained from the original PPI graph reveal three major benefits
of the refinement: i) Enhancement of existing functional groupings; ii)
Isolation of new functional groupings; and iii) Soft clustering of multi-
functional hub proteins to multiple functional groupings.

1 Introduction

Protein-Protein interaction (PPI) graphs have been obtained through accumula-
tions of experimentally determined interactions between proteins. The presence
of biologically relevant functional modules in PPI graphs has been theorized by
many researchers [8,14]. Mining these graphs to isolate functional modules is a
crucial task for the purposes of function prediction and identification in com-
putational proteomics. However, extraction of these functional modules using
traditional mining/clustering algorithms has proven to be difficult [21,24].

The primary property of the PPI graph that is detrimental to traditional
graph mining is its scale-free topology [22] with the degree distribution follow-
ing the power law as F (k) ∼ kα where α < 0. Most proteins in the graph
participate in a small number of interactions while a few proteins, known as
hubs, are involved in a large number of interactions. The topology typically con-
sists of a giant central core containing a significant amount of proteins and their
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interactions. The rest of the proteins are either completely disconnected or part
of small disconnected groups. The scale-free topology, makes isolation of modules
hidden inside the central core all but impossible [21].

Another challenge in clustering PPI graphs is the need to assign proteins to
different groups (soft clustering) based on their functions. Hub proteins typically
have multiple functions and are likely to be essential for the organism. Recently,
Karypis et al [1] presented several multi-level graph partitioning algorithms to
address the difficulty of partitioning scale-free graphs. Although the proposed
algorithms result in better groupings compared to traditional algorithms, they
still do not perform soft clustering.

In order to address these issues, we suggest a key refinement of the PPI graph,
motivated by the topological and biological importance of the hub proteins [15].
Our aim is to target the neighborhood of these potentially multi-faceted pro-
teins and isolate, for each of their functions, corresponding densely connected
regions. Our approach consists of two stages. In the first stage, we refine the
PPI graph to improve functional modularity, using hub-induced subgraphs. We
employ the Edge betweenness measure [19] to identify dense regions within the
neighborhoods. In the second stage, we cluster the refined graph using tradi-
tional algorithms. Our end goal is to isolate components with high degree of
overlap with known functional modules. An additional advantage of the refine-
ment process is its ability to perform soft clustering of hub proteins.

Earlier approaches that focus on elimination of hubs from the scale-free graphs
have found that this disconnects the graph and breaks down the modules as
well [2,12]. Recently, Costa [11] introduced a hub-centered community detection
algorithm. We believe that this will not be effective in scale-free graphs since
hubs have a large number of neighbors which cannot all be part of the same
community. To the best of our knowledge, we are the first to suggest duplicating
hubs to improve modular decomposition of scale-free graphs. Although, in this
work, we focus on PPI graphs, our refinement technique is applicable to any
scale-free graph.

Other groups have attempted to extract dense regions to isolate protein com-
plexes from PPI graphs [5,17] using concepts such as k-cores or cliques. Although
dense regions of the PPI graph are highly associated with known functional
modules, they are by themselves not entirely informative in terms of function
prediction. Mining the entire PPI graph will definitely prove to be a superior
source for novel discovery of protein functions. Hence, we aim to improve the
modularity of a PPI graph, as a whole, which enables enhanced functional pre-
diction/identification of every protein of the graph.

The proposed refinement technique is evaluated on the PPI graph of Saccha-
romyces Cerevisiae obtained from the DIP (Database of Interacting Proteins)
database. In order to quantify the quality of our clustering, we employ both
topology-based and domain based validation metrics. We find that the clusters
we obtain after refinement match very well with known biological annotations. In
addition, we obtain groupings after refinement that could not be obtained from
the original graph. Our technique also allows soft clustering of multi-functional
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proteins. We find that each of these clusters include proteins sharing a certain
function with the multi-functional protein.

2 Graph Refinement

2.1 Evolutionary Implications

Recently, several groups [6,10,25] have suggested mathematical models to explain
the evolutionary growth of Protein-Protein interactions graphs. They claim that
preferential attachment is one of the main causes for the scale-free topology
of interaction graphs. According to the duplication-divergence model proposed
by Vazquez et al [25], there is a linear relation between a node’s degree and
the probability of a new node attaching to that node, known as preferential
attachment. Since hubs have very high degrees, new proteins added to the graph
are more likely to interact with hubs rather than other nodes. Hence, if a hub
belongs to a functional module, most of the other proteins in that module will
prefer to connect to the hub rather than a node with the same function but
less degree. This suggests that proteins with the same function interact within
themselves and also individually with at least one hub. For this reason, we believe
that it is important to consider neighborhoods of hubs to isolate functional
modules.

2.2 Hub-Induced Subgraphs

As stated before, hubs typically tend to be essential proteins [15], having sev-
eral important functions inside the cell. Hubs can therefore be linked to several
functional modules. However, most of their interactions do not imply a func-
tional similarity. In this work we are aiming to identify the neighbors of hubs
that share functionalities with the hub protein. Hence, our goal is to identify all
dense components that lie within the neighborhood of a hub. Once such com-
ponents are identified, the neighboring hub is duplicated and all its interactions
with the members of the group reassigned to the duplicate. In addition, all the
duplicates will be linked to the original hub to preserve the original interactions
of the proteins belonging to the isolated dense component. Note that we are not
eliminating any interactions. We are merely re-assigning interactions between
the proteins belonging to the dense components and the hub to the duplicate.

If the proteins of a functional module are divided across neighborhoods of
several hubs, each of those hubs will be duplicated once and will be included in
the functional module. This will isolate the functional module from the unrelated
neighbors of the hubs and create a tightly knit group. An example can be seen
in Figure 1.

We perform duplication of hubs into several new nodes for each dense com-
ponent in the hub’s neighborhood. In order to identify these dense components,
we introduce the notion of a hub-induced subgraph.
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(a) Example graph (b) Graph after hub duplications

Fig. 1. Illustration of Hub Duplication. Proteins pi and pj are duplicated and the
duplicates, p′

i and p′
j are connected to dense components as well as the original proteins.

Definition 1. Let G = (V, E) be a graph. G′ = (V ′, E′) is a vertex-induced
subgraph of G if V ′ ⊆ V and E′ is all the edges of G between elements of V ′.

Definition 2. A hub-induced subgraph of G is a graph G′′ = (V ′′, E′′), where
V ′′ corresponds to a hub’s adjacency list.

Thus, for every hub of the graph, there exists a corresponding hub-induced sub-
graph obtained from the adjacency list of the hub. We isolate these hub-induced
subgraphs to identify potential functional modules. For more details on our anal-
ysis of these hub-induced subgraphs, please refer our technical report [23].

2.3 Hub Duplication

To obtain information about the neighborhoods of hubs, we use the Edge be-
tweenness measure which was first introduced by Newman et al [19]. This mea-
sure favors edges between communities and disfavors ones within communities.
Newman et al introduced three different Edge betweenness measures; Shortest-
path, Random-walk and Current-flow. We use the Shortest-path betweenness
measure, which considers the number of shortest paths between all pair of nodes
going along each edge.

Given a graph, G(V, E) and ‘known number of partitions’(k), the algorithm
identifies k sub-groups such that the intra-group connections are dense and inter-
group connections sparse, by repetitively removing edges with high Betweenness
values. Our goal is to detect dense regions inside each hub-induced subgraph.
We implement the algorithm without the k parameter and include the clustering
coefficient of the subgraphs as the stopping criteria.

The clustering coefficient [26] is a measure that represents the interconnec-
tivity of a vertex’s neighbors. The clustering coefficient of a vertex v is defined
as the proportion of edges between its direct neighbors to the number of edges
that could possibly exist between them. The clustering coefficient for the whole
graph is the mean over the coefficients of all vertices in it and lies between 0 and
1. Tightly knit groups are associated with high clustering coefficients.

Although the Shortest-path betweenness algorithm is computationally costly
(O(E2V ) running time), since the hub-induced subgraphs are small in size (<
284 nodes), it is tractable for our purpose. The pseudo-code of our refinement
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Algorithm 1. Identify-Dense-Regions(Gi)
INPUT Gi = (Vi, Ei) : hub-induced subgraph of Hubi

if size(Gi) < Tsize then
Return

else if CC(Gi) ≥ Tcc then
DuplicateHub(Hubi,Gi)

else
e = most-between-edge(Gi)
//remove e from Gi

Gi ← Gi − e
recalculate Edge betweenness values
if Gi is partitioned into G1

i and G2
i then

Identify-Dense-Regions(G1
i )

Identify-Dense-Regions(G2
i )

else
Identify-Dense-Regions(Gi)

end if
end if

algorithm with Shortest-path betweenness and clustering coefficient measures
is given in Algorithm 1. Here, most-between-edge(Gi) returns the edge with the
highest Shortest-path betweenness score in the Gi subgraph. Tsize represents the
minimum size(number of nodes) of the dense components we will consider and
Tcc represents the clustering coefficient threshold. When a component (of size
>= Tsize) is dense enough, algorithm calls DuplicateHub function to duplicate
the corresponding hub and re-assign its interactions with the members of the
dense component to the duplicate. For each dense component identified from a
hub-induced subgraph a duplication event takes place.1

3 Methods

3.1 Clustering Algorithms

Once the PPI graph is refined using hub-induced subgraphs, the resulting graph
is clustered to separate out the functional modules. We used two graph clustering
algorithms - a single-level Spectral algorithm and kMETIS [16], a multi-level
partitioning algorithm. The Spectral-based algorithm uses Eigenvectors of the
Laplacian matrix constructed from the graph to determine effective clusters of
the graph. These clusters minimize the total weight of the edge cut. The kMETIS
algorithm, obtains a k-way partition of the approximate graph and refines it to
construct a k-way partitioning of the original graph. For more details about these
algorithms please refer our technical report [23].

1 Note that the Betweenness scores are recalculated whenever an edge is removed from
the graph to capture the topology of the remaining graph.
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3.2 Validation Measures

Topological Measure. To evaluate our clusters, we use a topology-based mod-
ularity metric proposed by Newman [19]. This metric considers a k X k symmetric
matrix of clusters where each element aij represents the fraction of edges that
link nodes between clusters i and j and each aii represents the fraction of edges
linking vertices within cluster i. The modularity measure is given by

M =
∑

i

(aii − (
∑

j

aij)2) (1)

Statistical Measure based on Domain Information. To test if the clus-
ters obtained correspond to known functional modules, we need to validate our
dense components using known biological associations. We used the Gene On-
tology Consortium Online Database [4] to look for biological relations between
proteins assigned to the same cluster. The Gene Ontology (GO) is a controlled
vocabulary designed to accumulate the result of all investigations in the area of
genomics and biomedicine by providing a large database of known associations
containing common terminology that can be used among researchers. GO pro-
vides three ontologies - cellular component(CC), molecular function(MF) and
biological process(BP). Cellular component terms refer to the localization of
proteins inside the cell. Molecular function terms refer to shared activities at the
molecular level and biological process terms refer to entities at both the cellular
and organism levels of granularity. We used all three annotations for validation
and comparison in accordance with earlier works [24,3].

Merely counting the proteins that share an annotation will be misleading
since the underlying distribution of genes among different annotations is not
uniform. Hence, we use p-values to calculate the statistical significance of a
group of proteins that share a GO term. The p-values essentially represent the
chance of observing that particular grouping, or better, given the background
distribution. Assume we have a cluster of size n, out of which m proteins share
a particular annotation. Also, assume there are N proteins in the database with
M of them known to have that same annotation. Then using the Hypergeometric
Distribution, the probability of observing m or more proteins that are annotated
with the same GO term out of n proteins is:

p− value =
n∑

i=m

(
M
i

)(
N−M
n−i

)(
N
n

) (2)

Smaller p-values imply that the grouping is not random and is more signifi-
cant biologically than one with a higher p-value. A cut-off parameter (alpha
level) is used to differentiate significant groups from the insignificant ones. If a
group of proteins are associated with a p-value greater than the cut-off, they
are considered insignificant. We used the recommended cut-off of 0.05 for all our
validations.

As the p-value of a single cluster is statistically not representative, we define
a Clustering score function in order to quantify the overall clusters. We defined
this score as follows.
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Clustering score =
∑nS

i=1 min(pi) + (nI ∗ cutoff)
nS + nI

(3)

where nS and nI denotes the number of significant and insignificant clusters,
respectively. cutoff stands for the alpha level(0.05) whereas min(pi) denotes
the smallest p-value of the significant cluster i. Hence, each cluster is associated
with one p-value for each of the three ontologies.

4 Experimental Results

In this section, we discuss our experimental results.

Topology-based Evaluation: First, we use the Modularity metric on the clus-
ters obtained using both the kMETIS and Spectral algorithms. Figure 2-b shows
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Fig. 2. a) Degree distribution of DIP dataset b) Modularity scores before(Original)
and after (CC : 0.3 to CC : 0.8) refinement

the modularity comparison between the original graph and refined graphs for
the two algorithms. We find that the refinement improves the modularity of the
graph for both algorithms. From the curve, we find that the modularity scores
peak at clustering coefficient values between 0.4 and 0.6 in both cases. Further,
the modularity for clustering the original graph is much lower than for any of
the refined graphs. kMETIS produces clusters with higher modularity(upto 45%
better than the original) than Spectral(upto 8% better than the original) for the
refined graphs.

Domain-based Evaluation: Next, we test the effectiveness of our refinement
technique by comparing with the clusters obtained from the original graph. The
DIP dataset consists of 15147 interactions among 4741 proteins. In our work,
we analyzed the degree distribution of the graph (shown in Figure 2-a) and de-
fined all nodes of degree greater than 25 (2% of all nodes) to be hubs. We ran
the algorithm to find all dense components within every hub-induced subgraph
using the clustering coefficient and size as stopping criteria. We chose 6 as the
size threshold for dense components, since components with size smaller than 6
are likely to be insignificant. To choose a suitable threshold for the clustering
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coefficient, there are two things that we should consider. First, we want the re-
sulting components to be dense enough to correspond to a functional module.
We vary the clustering coefficient parameter (Tcc) between 0.3 and 0.8 and ob-
tain refined graphs for each. We believe that, considering the incompleteness in
PPI graphs and the need for obtaining dense components, a reasonable cluster-
ing coefficient value would be around 0.5-0.6. Components that have clustering
coefficients within this range are likely to be dense enough to be considered as
functional groups and would not be affected too much by the incomplete na-
ture of the dataset. The refined graphs and the original graph are clustered by
kMETIS and Spectral clustering algorithms separately. The results obtained are
depicted in Figure3. As can be seen from this figure, Clustering scores are re-
ducing (improving) after refinement for both algorithms. Our above hypothesis
is validated by the fact that, although an improvement is observed for every
clustering coefficient threshold, this improvement is small for low and high val-
ues. Also, both algorithms have their smallest Clustering scores for the threshold
values of 0.5, 0.6 and 0.7. If we consider the improvement in this clustering coeffi-
cient range, our refinement technique improves Clustering scores up to 52%, 48%
and 28% for MF, BP and CC ontologies in the case of kMETIS and 30%, 21%
and 38% for the same three ontologies for the Spectral algorithm. This confirms
that kMETIS produces better clusters than the Spectral algorithm. Note that
our Clustering score considers both significant and insignificant clusters. Next,
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Fig. 3. Clustering scores before and after refinement algorithm using kMETIS and
Spectral clustering algorithms. Original refers to the PPI dataset before the refine-
ment. CC : 0.3, CC : 0.4 ,CC : 0.5 ,CC : 0.6 , CC : 0.7 , CC : 0.8 and CC : 0.9 refer
to refined graphs with the respective clustering coefficient threshold. Process, Func-
tion and Component represent Biological Process, Molecular Function and Cellular
Component ontologies respectively.

we evaluate the significance of our clustering results for all three ontologies. In
Figure 4(a-c) we show the p-value distribution of significant clusters in both
original and refined graphs for all three ontologies. For all ontologies, we find
that the refined graph can be clustered into more biologically meaningful groups.
For example, the best cluster we obtained on the original graph had a p-value
of 8.2089e-25 for Biological Process, whereas the best cluster after refinement
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had a p-value of 5.4658e-41 for the same ontology. We obtained similar results
for the other two ontologies. In addition, we are able to identify more significant
clusters after the refinement for all three ontologies.
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Fig. 4. P-value distribution of significant clusters before and after the refinement. The
y axis represents the log(p-value) for each corresponding cluster.

5 Discussion and Conclusion

In this paper, we have proposed a refinement technique to improve modular de-
composition of PPI graphs. We refined the PPI graph based on Shortest-path
betweenness and clustering coefficient measures. From our experimental results,
we found that duplicating the hubs of a scale-free PPI graph improves the mod-
ularity of the graph. Thus, we are able to obtain topologically and biologically
more significant clusters even using traditional clustering algorithms. A detailed
examination of the obtained clusters revealed that the proposed method has
three major benefits:

– Enhancement of available functional groupings: We obtain larger groups of
proteins that are annotated with the same GO term from our refined graph
than on the original graph.

– Isolation of new functional groupings: We find groupings of proteins that
could not be obtained from the original graph.
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– Soft-clustering: Our approach can identify multi-functional hub proteins and
group them into modules corresponding to each of their functions.

We now provide some illustrations from our results for each of these cases. For
more details, please refer our technical report [23]: KAP95 (karyopherin beta), an
essential protein is known to take part in ‘nucleocytoplasmic transport’. Specif-
ically, it participates in a complex mediating nuclear import via a localization
signal(NLS). It interacts with nucleoporins to guide transport across the nuclear
pore complex [13]. When we cluster the original DIP dataset, this protein is cor-
rectly grouped with 8 proteins that are also annotated with ‘nucleocytoplasmic
transport’ term with p-value 1.14e-08.

Using our refinement technique, KAP95 is duplicated once. The hub and its
duplicate appear in two separate clusters when we use the kMETIS algorithm.
In one, KAP95 is grouped with proteins 18 other proteins that share the same
biological process (‘nucleocytoplasmic transport’) with p-value 1.07e-27. The
major difference between this group and the one from the original graph are
the inclusion of NUPs(Nucleoporins - 8 proteins) and KAPs(Karyopherins - 3
proteins). Transport through the nuclear pore complex is facilitated by tran-
sient interactions between the KAPs and the nuclear pore complex proteins
(NUPs) [20]. Thus, locating NUPs and KAPs together is a noticeable bene-
fit caused by our refinement. Clearly, our approach groups more proteins that
belong to the same functional module together. This suggests that hub dupli-
cations make isolation of modules easier. These clusters are also valuable for
predicting the functions of unknown proteins. In the above group, four proteins
(YKL061W,YKR064W, YNL122C, YER004W) do not have a known function.
Among these four, YKL061W is predicted by Brun et al [7] to take part in
‘nucleus-cytoplasm transport’ process which is in accordance with our findings.
Since two different datasets and approaches are used to infer the same conclusion
about protein YKL061W, the overlap is noteworthy. This also suggests that the
other three proteins might have an unrevealed task in ‘nucleocytoplasmic trans-
port’ biological process.

In addition to enhancing clusters, our method is able to assign hub proteins
which were originally in insignificant clusters into significant clusters. To illus-
trate this, we consider the hub protein LSM8. The LSM(Sm-like) proteins in-
teract with each other and with U6 snRNA complex and influence pre-mRNA
splicing [18]. In the original dataset, this protein is assigned to a cluster which
does not have any significant annotations. However, after the refinement, this
protein is located into a cluster which has a biological process annotation with
p-value 1.2e-12. In addition to LSM8, ten other proteins in this group are asso-
ciated with ‘mRNA splicing’. LSM8 is located with the members of its complex
(other SM-like proteins) as well as the components of U6 snRNP complex(PRP
proteins). This example shows that our technique not only improves functional
modules which can be identified from the original dataset, but also allows detec-
tion of functional modules which cannot be discovered from the original dataset.

Another advantage of our refinement technique is its ability to perform soft
clustering on certain hub proteins. CKA1 is one of these multi-faceted proteins
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and is involved in several cellular events such as maintenance of cell morphology
and polarity, and regulating the actin and tubulin cytoskeletons [9]. When the
original dataset was clustered, CKA1 and seven other proteins, annotated with
‘transcription, DNA-dependent’ term are located in the same cluster(p-value
3.47e-05). On the other hand, our algorithm duplicates CKA1 twice. When we
cluster, these 3 nodes are then assigned to different clusters resulting in three
different groupings for protein CKA1. All three correspond to different functional
modules of the CKA1 protein. One of these clusters is an enhancement of the
‘transcription, DNA-dependent’ functional module(very low p-value of 2.3e-19).
The second cluster includes proteins which are annotated with the biological
process term ‘protein amino acid phosphorylation’ with p-value 1.2e-05. CKA1
is itself annotated with the same term. The third cluster contains 21 proteins
and CKA1, all of which are annotated for ‘organelle organization and biogenesis’
(with p-value 3.2e-12). Thus, we found that our technique, not only improved
the obtainable clusters (by decreasing p-value from 3.47e-05 to 2.3e-19), but also
grouped CKA1 with proteins that share its different functions. Altogether these
examples indicate the effectiveness of our approach on isolation of functional
modules from the PPI graphs.

Although, in this work, we have applied our refinement technique to PPI
graphs, we strongly believe that it will be equally effective for all other scale-free
graphs such as social networks.
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Abstract. In relational learning, predictions for an individual are based
not only on its own properties but also on the properties of a set of related
individuals. Many systems use aggregates to summarize this set. Features
thus introduced compare the result of an aggregate function to a thresh-
old. We consider the case where the set to be aggregated is generated
by a complex query and present a framework for refining such complex
aggregate conditions along three dimensions: the aggregate function, the
query used to generate the set, and the threshold value. The proposed
aggregate refinement operator allows a more efficient search through the
hypothesis space and thus can be beneficial for many relational learners
that use aggregates. As an example application, we have implemented the
refinement operator in a relational decision tree induction system. Ex-
perimental results show a significant efficiency gain in comparison with
the use of a less advanced refinement operator.

1 Introduction

In relational learning, predictions for an individual are based not only on its
own properties but also on the properties of a set of related individuals. Many
systems use aggregates to summarize this set. Features are then constructed
by comparing the result of the aggregate function to a threshold, we call such
a feature an aggregate condition. For example, in the context of a data set
on parents and children, a possible feature could be “the maximum age of the
person’s children is larger than 10”.

Many learning systems rely on a general-to-specific ordering of the hypotheses
to traverse the hypothesis space in an efficient way. Only few of the existing sys-
tems that learn hypotheses with aggregates extrapolate this generality ordering
to the aggregate conditions, and when they do, they do it in a restricted way. For
instance, the feature just mentioned could be refined in three ways: by changing
the aggregate function (e.g., change maximum into average), the subset aggre-
gated over (e.g., specialize children into daughters) or the threshold compared
with (e.g., increase 10 to 15). No current relational learners consider all three
kinds of refinements, and indeed the effect of such refinements on the generality
of a rule, and the interaction between these effects, are non-trivial and have not
been studied up till now.
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This paper presents the first comprehensive study of these effects and interac-
tions. This study leads to the description of a refinement operator that enables
relational learners to traverse the hypothesis space more efficiently.

The paper is organized as follows. We start by describing several approaches
to learning that use aggregates in Sect. 2. Then we elaborate on the monotonicity
properties of aggregate conditions and present a general framework for special-
izing them (Sect. 3). In Sect. 4, we apply the framework to a relational decision
tree learner and assess the efficiency gain that this results in. Finally, conclusions
and ideas for further research are presented in Sect. 5.

2 Related Work

Perhaps the most closely related work, at first sight, is the research started by
Ng et al. [1] on finding frequent itemsets that fulfill constraints with aggrega-
tions (for instance, in addition to minimal support, one can impose that the
average price of the items in an itemset must be above some threshold). That
research also involves studies of the monotonicity properties of aggregates, but
the goals are different from ours: the aggregates occur in the constraints defin-
ing the hypothesis space rather than in the learned hypotheses; they summarize
information over attributes of one entity rather than over different entities; etc.
As a result also the methods developed are very different.

On the other hand, there is work that shares our goal of learning hypothe-
ses with aggregates. Here we can distinguish methods that use a fixed set of
aggregates defined in advance [2,3,4,5], and methods that construct the aggre-
gates as part of the learning process. The latter, on which we will focus, are
especially useful when one wants to consider complex aggregates, where the set
to be aggregated over is generated by a complex query: there may be too many
such aggregates to compute and store them all during preprocessing. Perlich and
Provost [6] provide a detailed examination of aggregation in relational learning
and demonstrate that such complex aggregate conditions can significantly im-
prove generalization performance.

Unfortunately, finding good hypotheses with complex aggregate conditions is
difficult. Besides the fact that the hypothesis space is significantly expanded by al-
lowing complex aggregate conditions, it also becomes more difficult to search this
space in a structured way, because the effect of refinements of the aggregate con-
dition on the generality of the hypothesis is not well-understood in general. As a
result, all current relational learners are somehow limited with respect to the ag-
gregates they can learn. Krogel and Wrobel [7] introduce in their propositional-
ized table aggregate functions that apply not only to single attributes, but also to
pairs of attributes, one of which has to be nominal and serves as a group by con-
dition. The resulting aggregate conditions are still of limited complexity and are
not refined further during the search. Knobbe et al. [8] propose a method for subse-
quently specializing the set to be aggregated. By restricting the application of this
specialization operator to aggregate functions where its effect is well-understood,
they can search the hypothesis space in a general-to-specific way, but this obvi-
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ously limits the kind of complex conditions that can be found. Van Assche et al. [9]
discuss refinement of aggregate conditions in the context of relational decision tree
induction. They handle the expansion of the feature space by upgrading the tree
learner into a random forest induction system, where random feature subsampling
reduces the number of features tested at each node in a tree. Uwents and Blockeel
[10] describe relational neural networks as a subsymbolic approach towards learn-
ing complex aggregates. Their approach is not constrained to using predefined ag-
gregate functions and does not make a distinction between searching for aggregate
functions and searching for complex conditions, but the resulting theories are also
not interpretable in terms of well-understood aggregates and conditions.

Clearly none of the existing approaches fully solve the problem of searching
general-to-specific in a hypothesis space that may include aggregates of arbitrary
complexity. This paper presents the first solution to it.

3 Specializing Aggregate Conditions

ILP systems (inductive logic programming [11]) learn sets of logic clauses, typ-
ically by learning one clause at a time. A single clause has the form h ←
b1, b2, . . . , bn, where h and bi are literals. The ILP system usually finds a clause
by starting with the empty clause h ← and gradually refining it, adding literals
to the body of the clause, until it is consistent with the data. It is known that
adding literals to the body cannot increase the coverage of the clause, and this
can be used to prune the search space. We call refinements that never increase
the coverage of a clause, valid refinements.

Now assume that one of the bi is an aggregate condition of the form F ({V |Q})
θ R, where F is an aggregate function, Q a conjunctive query, V a variable
occurring in Q, θ one of {≤,≥} and R a numeric value. For instance, the clause

person(P, pos) ← max({A|child(P, C), age(C, A)}) ≥ 10

classifies a person as positive if the maximum age of his children is higher than
10. Such a clause could now be refined not only by extending the clause itself
with a literal bn+1, but also by extending the query Q, or by changing F or
R. The question is then under what conditions such refinements are valid. For
instance, changing the preceding aggregate condition into

max({A|child(P, C), age(C, A), male(C)}) ≥ 10

is a valid refinement, but with min instead of max this would not be the case.
Also with ≤ instead of ≥ the above refinement would not be valid.

In this section, we will provide an answer to which refinements of aggregate
conditions are valid. We start by discussing aggregate conditions in more detail
(Sect. 3.1). Then we present several classes of aggregate functions with an order
relation (Sect. 3.2). Afterwards, we elaborate on the refinement of aggregate con-
ditions (Sect. 3.3). Finally, we discuss so-called refinement cubes that visualize
possible refinements (Sect. 3.4). Although in this section we have chosen the ILP
formalism for expressing relational concepts, the theory behind it can be applied
to other relational representations as well.
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3.1 Aggregate Conditions

The aggregate conditions that we consider have the following general form:
F (S) ∈ I, with F an aggregate function, I a numerical interval, and S a set
to be aggregated. For now we will make abstraction of the fact that S is gen-
erated by some query Q. More formally, an aggregate condition c takes the
following signature: c : F× S× I → B, with F a set of aggregate functions (e.g.,
F = {count,max,min,sum,avg}), S a set of sets, I a set of intervals, and B the
set of boolean values, that indicate whether the condition F (S) ∈ I holds.

In order to define valid refinements of aggregate conditions we need the con-
cept of monotonicity.

Definition 1. A function f(x1, ..., xn) is

– monotone in xi iff xi < xi′ ⇒ f(x1, ..., xi, ..., xn) < f(x1, ..., xi′ , ..., xn),
– anti-monotone in xi iff xi < xi′ ⇒ f(x1, ..., xi, ..., xn) > f(x1, ..., xi′ , ..., xn),
– and non-monotone in xi otherwise.

To investigate the monotonicity properties of an aggregate condition F (S) ∈ I,
an order relation is needed on the domains F, S, I, and B. We define these
relations as follows:

– F: F1 �F F2 ⇔ ∀S ∈ S : F1(S) ≤ F2(S), this is discussed in the next section,
– S: S1 �S S2 ⇔ S1 ⊆ S2,
– I: I1 �I I2 ⇔ I1 ⊆ I2,
– B: false �B true.

3.2 Ordering the Aggregate Functions

In this section we discuss several parameterized classes of aggregate functions
that are ordered and together cover all aggregates of interest. For this paper, we
set the aggregate functions of interest to be those defined in standard SQL, i.e.,
max, min, avg, sum, and count.

Generalized Averages. We define a class of generalized averages as follows:

Definition 2

avgk(S) = (
∑

i(x
k
i )

n )1/k with S = {x1, ..., xn}

The function avgk(S) is defined for −∞ ≤ k ≤ ∞ (k �= 0) if S ⊆ R+ and for
k = {1,−1,∞,−∞, 2 ∗ z} with z ∈ Z if S ⊆ R. If S ⊆ R+, then the following
order relation holds: i ≤ j ⇒ avgi �F avgj . While this relation holds for all k,
in practice only some of these k-values are commonly used: avg1(S) = avg(S),
lim

k→∞
avgk(S) = max(S), and lim

k→−∞
avgk(S) = min(S). Moreover, the order

relation min �F avg �F max also holds for sets S that contain negative numbers.
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Generalized Sums. For sum we can define an aggregate function class very
similar to the generalized averages:

Definition 3

sumk(S) = (
∑

i(x
k
i ))1/k with 1 ≤ k ≤ ∞ and S = {x1, ..., xn}

We have that sum1(S) = sum(S) and lim
k→∞

sumk(S) = max(S). In other words,

these generalized sums range from max to sum. If S contains only positive
numbers, we obtain the following order relation: i ≥ j ⇒ sumi �F sumj.

Generalized Counts. Our last aggregate function of interest is count. An
aggregate function that can form an aggregate class with count is count distinct.
This function counts the number of different values in the set. We have the
following order relation: count distinct �F count.

Summary. While the proposed aggregate classes contain an infinite amount of
aggregate functions, for the most important ones, we obtain the following order:
min �F avg �F max, max �F sum if S ⊆ R+, and count distinct �F count.

Remark that other parameterized classes for these aggregate functions exist.

3.3 Refinement of Aggregate Conditions

Having defined an ordering relation on the domains F, S, I, and B of an aggregate
condition, we can discuss the monotonicity properties of each domain and define
valid refinements.

Monotonicity Properties. For the ease of explanation, we look at an aggre-
gate condition F (S) ∈ I as the composition of two functions:

– an aggregate function a : F× S → R,
– a member function m : R× I → B.

For each of the functions, we can now describe the monotonicity properties.
Afterwards, we describe some issues that come along when composing them.

Monotonicity of the aggregate function. The function a(F, S) is monotone in F ,
because the order on F is defined as such.

The monotonicity of a(F, S) w.r.t. S depends on F . The function a(F, S) is
monotone in S if F ∈ {count, count distinct, max} (if any of these functions is
applied to a subset S′ ⊆ S, its resulting value will decrease). Similarly, a(min, S)
is anti-monotone, and a(sum, S) and a(avg, S) are non-monotone in S1.

Monotonicity of the member function. The member function m(R, I) is mono-
tone in I: decreasing the interval can cease the membership of R.

The monotonicity in R depends on I: m(R, [v,∞[) (with v ∈ R) is monotone
in R, m(R, ]-∞, v]) anti-monotone, and m(R, [v, w]) (v, w ∈ R) non-monotone.
1 For sum the monotonicity depends on the set S, e.g., if this set contains only positive

numbers then a(sum, S) behaves monotone.
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Monotonicity of the composite function. Care is needed when composing the
aggregate function and the member function. The monotonicity properties in
F and S are inherited by m(a(F, S), I) if this function is monotone in a(F, S).
However, the monotonicity in F and S is reversed if the composed function is
anti-monotone in a(F, S). For example, a condition max(S) ∈ ]-∞, v] is anti-
monotone in max and S.

Similarly, when the composed function is non-monotone in a(F, S), the mono-
tonicity properties in F and S are broken. For instance, for a condition max(S) ∈
[v, w], the monotonicity properties in max and S are lost. Therefore, in the fol-
lowing we do not consider intervals of the form [v, w], with v, w ∈ R. We only
consider the aggregate conditions F (S) ≤ v and F (S) ≥ v.

Refinement. In order to define valid refinements for an aggregate condition,
we can use the monotonicity properties described above. Keeping in mind that
the goal is to obtain more specific conditions (i.e. refinements that make the
condition false for some of the examples for which it was true), Definition 1
learns that a function that is monotone (anti-monotone) in one of its inputs can
be validly refined by decreasing (increasing) its value for that input.

Before turning to an example, we explain how a set S can be increased or
decreased in an ILP system.

Increasing or decreasing S. An aggregate condition like max(S) ≥ v can be
validly refined by decreasing S, i.e., reducing the set to be aggregated. In ILP,
this can be achieved by specializing the query Q used to generate the set.

An aggregate condition like min(S) ≥ v can be validly refined by increasing
S. This can be obtained in ILP by generalizing the query that is used to generate
the set, thus, by removing literals from it.

Example. We now illustrate the possible refinements with a small example. Sup-
pose we have the following clause:

person(P, pos) ← max({A|child(P, C), age(C, A)}) ≥ 10.

The aggregate condition F (S) ∈ I in this clause can be refined in three ways:

– decrease I (because the member function m(R, I) is monotone in I)

max({A|(child(P, C), age(C, A)}) ≥ 15.

– decrease max(S) (because for I = [v,∞[ the member function m(R, I) is
monotone in R). This can be achieved by

• decreasing max (since the aggregate function a(F, S) is monotone in F )

avg({A|child(P, C), age(C, A)}) ≥ 10.

• decreasing S (since a(max, S) is monotone in S).

max({A|child(P, C), age(C, A), male(C)}) ≥ 10.
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3.4 The Refinement Cubes

We have presented three dimensions along which aggregate conditions can be
refined: the aggregate function F , the query Q (or equivalently, the set SQ, i.e.,
the set generated by Q), and the interval bound v. The whole set of hypotheses
spanned by these three dimensions can be visualized in what we call a refinement
cube (see Fig. 1). Every discrete point in the cube represents a hypothesis and can
be constructed in a finite number of steps, starting from one aggregate condition.
A chain of refinements in the cube will be called a path. For simplicity, we only
consider refinements along one direction at a time. We are only interested in valid
refinements, therefore we only allow monotone paths in the refinement cubes, i.e.
paths that consist only of valid refinements.

For a given aggregate function class, refinement of aggregate conditions pro-
ceeds as follows. For every numeric attribute A, we look for a query Q that gen-
erates the set of values SQ for each example. We take the smallest and largest
aggregate function in the class (Fsmall and Flarge respectively) and look for the
smallest possible value returned by Fsmall(SQ) and the largest possible value
returned by Flarge(SQ) (Vsmall and Vlarge respectively). Then we construct two
start conditions: Flarge(SQ) ≥ Vsmall and Fsmall(SQ) ≤ Vlarge. For each aggre-
gate function class and each start condition there is a corresponding refinement
cube that shows the allowed refinements.

The Refinement Cubes for the Generalized Averages. The generalized
averages range from min to max. Possible thresholds for these functions range
from the minimum to the maximum value in the dataset for the attribute un-
der consideration. Hence, the two start conditions for this aggregate class are
max(SQ) ≥ min value and min(SQ) ≤ max value. The corresponding refine-
ment cubes are shown in Fig. 1(a), with the start conditions indicated as a large
dot. The arrows show the directions in which we can generate monotone paths
starting from these aggregate conditions. Observe that when moving along the
F -axis, the monotonicity properties of the aggregate function in SQ change,
so moving along the Q axis is only allowed in the top or bottom faces of the
cube.

The Refinement Cubes for the Generalized Sums. Figure 1(b) shows the
refinement cubes for the generalized sums. The V -axis ranges from the lowest
value in the range of max (the minimal value for the numeric attribute) to
the largest value in the range of sum (the maximum of the sum of the values
for the attribute A, grouped by example, this value is called sum value in the
cube). The start conditions from which we can generate the whole cube are thus
sum(SQ) ≥ min value and max(SQ) ≤ sum value. The second start condition
is anti-monotone in SQ, and therefore positioned at the specific side of Q.

In this case moving along the F -axis does not change monotonicity (under
the assumption that the generalized sums are only applied to sets of positive
numbers), so the previous restriction does not apply here.
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(a)

(b)

Fig. 1. (a) The refinement cubes for the generalized averages. (b) The refinement cubes
for the generalized sums.

Remark that, when stretching the V -axis, the bottom face of the cubes can
be connected to the top face of the cubes for the generalized averages, resulting
in a combined refinement space.

The Refinement Cubes for the Generalized Counts. For the general-
ized counts the F -axis only contains the functions count and count distinct.
The V -axis ranges from 0 to the maximum size of the set generated by Q
(cnt value). The start conditions are count(SQ) ≥ 0 and count dist(SQ) ≤
cnt value. The monotone paths are the same as those for the generalized sums
(see Fig. 1(b)).

Example. We now illustrate the use of the refinement cubes with an example.
Consider the following start condition for the generalized sums:

person(P, pos) ← sum(A, (child(P, C), age(C, A)), R), R ≥ 10.

Suppose we only use the functions sum and max, only use the threshold values
10 and 15, and only add a literal male(C) to the query. Figure 2 schematically
shows the refinements that are generated. Note that an aggregate condition can
be obtained via more than one path, so in practice one has to take care to
generate the conditions only once.
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sum,ch,10

sum,son,10 max,ch,10 sum,ch,15

max,son,10 sum,son,15 max,ch,15

max,son,15

Fig. 2. Refinements generated for the start condition max({A|child(P, C),
age(C,A)}) ≥ 10 by the cube for the generalized sums. In each node, the function
F , query Q, and threshold value v are shown. The query is abbreviated: ch stands for
(child(P, C), age(C,A)) and son means (child(P, C), age(C,A),male(C)).

Summary. Using the refinement cubes we obtain a search strategy that is

– efficient: only valid refinements are generated in each step, which allows to
prune the aggregate search space,

– complete: every aggregate condition is reachable in a finite number of steps
starting from the start conditions.

Remark that this efficiency can only be achieved by considering all three di-
mensions F , Q, and V together. A system that does not allow refinements
along the F -axis (e.g., max → avg → min) can not obtain the aggregate
conditions in a monotone (general-to-specific) way. For example, the condition
avg({A|child(P, C), age(C, A), male(C)}) > 10 can only be obtained via the
monotone path max({A|child(P, C), age(C, A)}) > 10 → max({A|child(P, C),
age(C, A), male(C)}) > 10 → avg({A|child(P, C), age(C, A), male(C)}) > 10.

4 Application

In the previous section we have presented a general framework towards refining
aggregate conditions. The framework can be beneficial for any relational learning
system that learns aggregates and makes use of a general-to-specific ordering of
the hypotheses to guide the search (e.g., decision tree learners, rule learners,
frequent pattern miners,. . . ). We now illustrate its usefulness by applying it
to the relational decision tree learner Tilde [13] and showing that it yields a
significant, though still modest, efficiency gain.

4.1 Tilde

Tilde is a relational decision tree learner. It learns trees with a divide and
conquer algorithm similar to C4.5 [14]. The main point where it differs from the
latter is that the tests to be considered at a node are Prolog queries. To split a
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true

sum,ch,10 ...

sum,son,10

max,ch,10

sum,ch,15

max,son,10

sum,son,15

max,ch,15...

max,son,15

(a)

true

... sum,ch,10 ...

sum,son,10 max,ch,10 sum,ch,15

max,son,10 sum,son,15 max,ch,15

max,son,15

(b)

Fig. 3. (a) Original search space structure. (b) Optimized search space structure.

node, a refinement operator generates all allowed tests using a given hypothesis
language specification. For each example corresponding to the node all tests are
executed2. The test yielding the highest information gain is chosen.

Van Assche et al. [9] described how to add aggregate conditions to the hy-
pothesis language of Tilde. Since the generality order on aggregate conditions
was insufficiently understood, no structure was imposed on the aggregate search
space, i.e., the tests in it were executed in random order. However, using the
monotonicity properties discussed here, we know that whenever a test T fails
for an example, none of the tests that can be obtained from T via monotone
paths of the refinement cubes has to be executed against that example. Exploit-
ing this knowledge would obviously result in an efficiency gain, while the same
search space as before would be searched, and hence, the same tree would be
obtained.

4.2 Experiments

We re-implemented Tilde’s refinement operator in such a way that it struc-
tures the aggregate search space following the monotone paths of the refinement
cubes3. Figure 3 shows how the search space for the example from Fig. 2 would
be organized, both for the original and for the optimized refinement operator. If
the test sum(A, (child(P, C), age(C, A)), R), R ≥ 10 fails for an example, with
the optimized method we could prune all its children in the search space, whereas
in the original unstructured space, they would still all be tested.

In our experiments we compare the induction times obtained using the opti-
mized refinement operator to those obtained when the original approach is used.
In order to get the same set of tests at each node, we used the Tilde-LA setting
[9] for the original refinement operator, where a lookahead of depth one is used

2 This corresponds to the “examples in outerloop” approach (see [15]).
3 In Tilde a query can only be refined by specializing it, not by dropping literals.

Thus, in the context of the refinement cubes, refinements along the Q-axis can only
take place in one direction.
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Table 1. Runtime comparison of Tilde’s optimized and original refinement operator

Data Set Search Optimized (sec) Original (sec) Speedup Ratio
Sp. Size Total Exec Total Exec Total exec

Mutagenesis 53086 3792.54 2406.24 12079.97 10775.26 3.19 4.48
Financial 34900 4854.50 4717.08 12886.53 12751.98 2.65 2.70
Diterpenes 30533 12037.56 10518.78 16081.92 14535.39 1.34 1.38

in the aggregate query. For our comparison we used three datasets well-known
in the ILP community: Mutagenesis [16], Financial [17], and Diterpenes [18].

For each of the experiments we used the aggregate functions count, count dis-
tinct, max, avg, and min. Table 1 gives an overview of the results we obtained4.
The total runtime is reported, as well as the total time needed for executing the
tests (summed over all nodes). Also the maximum size of the search space at a
node in the tree is included. A first observation when looking at the table is that
with the new method, a speedup factor of up to 4.5 is achieved for executing
the tests. Second, since a large proportion of the total runtime goes into query
execution, a significant overall runtime speedup is accomplished.

5 Conclusions and Future Work

The contributions of this paper are twofold. First, we have presented an in-depth
study of the monotonicity of aggregate conditions, which is useful for refining
models with aggregates. We have identified three dimensions along which mono-
tonicity properties of an aggregate condition can be investigated: the aggregate
function, the set to be aggregated, and the threshold value. This first dimen-
sion has never been explored before, but turns out to be crucial to obtain an
efficient refinement strategy for aggregate conditions. Second, this derived strat-
egy was applied to an existing relational decision tree learning system, illus-
trating the efficiency gain that can be achieved by using the results from this
study.

An obvious direction for further work is to apply the framework to other
relational systems. Another idea for future research is to search for aggregate
function classes that contain other aggregate functions than the set we used.
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Abstract. Clothes should be designed to tailor well, fit the body ele-
gantly and hide obvious body flaws. To attain this goal, it is crucial to
know the interrelationships between different body measurements, such
as the interplay between e.g. shoulder width, neck circumference and
waist. This paper discusses a study to better understand the typical
consumer, from a virtual tailor’s perspective. Cluster analysis was used
to group the population into five clothing sizes. Next, multi-relational
classification was applied to analyze the interplay between each group’s
anthropometric body measurements. Throughout this study, three-
dimensional (3-D) body scans were used to verify the validity of our
findings. Our results indicate that different sets of body measurements
are used to characterize each clothing size. This information, together
with the demographic profiles of the typical consumer, provides us with
new insight into our evolving population.

1 Introduction

Designing clothes that fit the population well is an important issue in the in-
dustry. This is of crucial importance, not only for the mass market, but also for
expensive designer labels. Consider today’s highly competitive clothing market.
If a clothing brand that sells, for example jeans, do not produce garments that
tailor well, the customers will take their business elsewhere. Clothes must fit the
population. Otherwise, they will not sell. This implies that the different sizes
(e.g. small, medium, large) must correspond to real body shapes, in the sense
that one or more archetypes should represent any individual member belonging
to the cluster. Clothing designers cannot utilize averages, since, if one average
many human bodies, one ends up with a blob that has no relation whatsoever
with any human being.

This gives rise to a number of important questions. What is the typical profile
of consumers’ bodies? How do the body measurements within different clothing
sizes interrelate? For example, what is the interplay between the arm length,
waist size and shoulder width of a typical medium-size male? What are the
interrelationships with the demographic profiles of our consumers, in terms of
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income, education, number of children, and age, amongst others. We may want
to consider, e.g., the hip circumference, thigh circumference and bottom to knee
height of the members of the female population with a high income, in order
to design expensive pants to fit these consumers well. This paper discusses our
experimental results when attempting to answer these questions. Here, we discuss
how we analysed the body measurements of a number of human subjects, as
contained in the CAESARTM anthropometric database. We verified the outcome
of our results against a set of corresponding 3-D body scans, i.e. the scans of the
subjects who are sitting and standing. This approach is used in order to ensure
that our results correspond to reality.

This paper is organized as follows. Section 2 introduces the CAESARTM

database, an anthropometric repository. Next, in Section 3, we introduce the
experimental approach we followed to analyze this data. Section 4 contains the
experimental results. This is followed, in Section 5, by our analysis of the results
and the lessons learned. Section 6 concludes the paper.

2 CAESARTM Database

What is anthropometry? Anthropometry is the study of human body measure-
ments (height, weight, size, proportions, etc.) and its biomechanical characteris-
tics, including the stature, sizes of body parts and the space in which the body
functions, e.g. reach its limits and clearances needed for movement. Anthropo-
metric data therefore refer to a collection of physical dimensions of a human
body. The aim of anthropometry is to characterize the human body by a set of
measurements [1,2]. The field of anthropometry has many applications, ranging
from the architectural and interior design of restricted spaces such as airline and
vehicle seats, to the design of spaces for easy access by the elderly and the dis-
abled. Anthropometry is also very important in retail tailoring, in order to ensure
that the clothing fits the person well, is esthetically pleasing and comfortable.
This application is the focus of our research, i.e. to investigate anthropomet-
ric body measure m! ents from a tailoring point of view. To this end, we are
analyzing the CAESARTM database, as discussed next.

The CAESARTM Project is an international anthropometric survey that was
carried out in the United States, Italy, the Netherlands and Canada. This survey
involved a large number of individuals in each country. For each individual, a
series of highly accurate anthropometric measurements was performed and ques-
tions of demographic nature were recorded. The anthropometric measurements
included forty-nine details which have been recorded by domain experts, using
standard anthropometric practices [1]. These include the stature, weight, thigh
circumference, acromial height, feet length, and so on. The demographic data
corresponding to the answers of the participants to questions regarding their
family income, number of children, age, etc.

What makes the originality of this survey is that each person was scanned in
three dimensions using a full body scanner. Different types of technologies were
used but they are all built around the same principles. A few laser scanners move
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along a rigid frame and capture a full body scan in a few seconds. Within the
CAESARTM Project, each subject was scanned in three different postures. The
3-D body scans were described using a global shape-based descriptor, which is
an abstract and compact representation of the three-dimensional shape of the
corresponding body [1,2]. In essence, each scan was represented by a set of three
histograms, which constitutes a 3-D shape index for the human body. Interested
readers are referred to [2] for a detailed description of our cord-based approach.

This database thus represents a detailed and accurately measured subset of
the typical human morphology, together with a 3-D body scan which maps these
measurements and demographic profiling information.

Fig. 1. An example of 3-D human body scans as contained in the CAESARTM database

3 Methodology

This section describes the experimental approach we followed to analyze the
CAESARTM data. This data resides in an IBM DB2 relational database and
our aim was to utilize this structure when mining the data directly, using multi-
view learning.

Initially, the data was grouped into clusters based on the anthropometric body
measurements. The aim here was to create clusters that correspond to typical
industry-based clothing sizes, such as small, medium, etc. That is, to identify
the natural body size groupings within the CAESARTM , in which intra-cluster
similarity is high and inter-cluster similarity is low [3,4].

Next, this clustering information was used to determine the class labels, based
on the body (or clothing) size. Figure 2 shows the Entity-Relationship (ER) dia-
gram of the CAESARTM database. The figure shows that the database consists
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of six (6) relational tables, with the BodySize class label as an attribute in the
Top measurements table. The database also contains tables describing the demo-
graphics of the human subjects, including the financial information, perceived
fitness and body size, age, education and so on. This relational database was
used for multi-view relational classification, as discussed next.

Fig. 2. The Entity Relationship (ER) diagram for the CAESARTM database

3.1 Multi-view Relational Classification

Recall that the CAESARTM data resides in a commercial IBM DB2 relational
database. Our goal is to directly and transparently mine the data, without flat-
tening or propositionalizing the database into a universal relation [5,6]. Our
motivation is as follows. It usually takes considerable time and effort to convert
relations into the required flat format. Another drawback is that this process
can cause a loss of information [5] and can create a large amount of redundant
data. Furthermore, a universal relation with a large amount of entities and at-
tributes often leads to efficiency and scaling challenges. We aim to provide the
clothing designers and anthropometric domain experts, who are not necessarily
data miners, with easy, intuitive access to the CAESARTM database. Also, we
envisage that the end results of our research presented here will, in future, be
applied to much larger anthropometric databases with complex schemas. To this
end, we engaged in multi-view learning, as discussed next.

What is multi-view learning? In the multi-view setting, each view of the data
can be expressed in terms of a set of disjoint features of the training data. The
target concept is learned independently, i.e. on each of these separate views using
the features present. As in the example given by Blum and Mitchell [7], one can
classify segments of televised broadcast based either on the video or on the audio
information.



Measuring to Fit: Virtual Tailoring Through Cluster Analysis 399

When considering a relational database, each relation (or table) thus corre-
sponds to a view. One of these tables are considers as the target, while the others
act as background relations. Each relation usually has a naturally divided dis-
joint feature set. When considering relational data mining, each of the relations
therefore has diverse set of attributes, each providing different viewpoint (or
”views”) regarding the target concepts to be learned. This is especially evident
when considering the CAESARTM database. Here, each relation describes differ-
ent characteristics of a specific person. For example, the Demographic relation
contains a person’s demographic information, but the Top-measurements and
LifeStyle relations identify a person’s body measurements, income and automo-
bile details. In other words, each relation from this database provides different
types of information, or views, of the person.

Formally, in a relational classification setting, we have a database DB and a
target relation Ttarget which includes a target variable y. The relational classi-
fication task is to find a function F (x) which maps each tuple x of the target
table Ttarget to the category y.

y = F (x, DB, Ttar)|x ∈ Ttar

In the above scenario, the Ttar table is considered the target relation while all
others are background relations.

Our multi-view learning approach consists of two stages, firstly, an Informa-
tion Propagation stage and, secondly, a Multiple View Learning stage
[8]. During Information Propagation, the training data sets of the multiple
views are constructed. Here, each background relation obtains the classes from
the target relation. Aggregation information, if any, is also propagated. (Note
that the CAESARTM database denotes a special case, with one-to-one rela-
tionships between tables.) Next, each of the views is used to construct var-
ious hypotheses on the target concept, using traditional single-table learning
algorithms.

Let us again consider the construction of the view for the Demographics table.
During the InformationPropagationStage, both relationsTop-measurements
and Demographics have the class labels to be learned. Thus, each of them is indi-
vidually able to construct a target function for the target concept. However, the
relation Top-measurements only includes information about a person’s body mea-
surements. Therefore hypothesis produced by this relation will only reflect how
those body measurements such as Stature and Weight relate to the class label,
namely, BodySize. On the other hand, the Demographics relation only consists
of information about a person’s demographic information. Consequently, classi-
fication model built using this relation will only have the relationship between
class BodySize and people’s demographic information, such as Age, Education
and Marital Status, etc.

Note that a detailed discussion of our multi-view learning method falls beyond
the scope of this paper. Interested readers are referred to [8] of an overview of
our approach.
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4 Experimental Results

We implemented the experiments using the WEKA data mining system, a Java-
based knowledge learning and analysis environment developed at the University
of Waikato in New Zealand [9]. The Cleopatra multimedia information retrieval
system was used to verify the quality of the end results, against the 3-D body
scans [1]. Recall that the CAESARTM database was implemented in IBM DB2.

The original data set consisted of the data of 670 human subjects, each con-
taining one 3-D body scan of a person facing the scanner and 15 demographic
attributes, together with 49 anthropometric attributes for females and 48 an-
thropometric attributes for males. (Note that no under bust circumference of
the male subjects was recorded.) The data was separated into two sets based
on the gender of the subject, to form two sets of 414 males and 256 females, re-
spectively. The results when exploring the data regarding the 414 male subjects
are reported here. The subjects we analyzed were all residents of the USA, thus
making them a pool of similar genetic and environmental conditions.

Fig. 3. Visualization of Clusters

4.1 Cluster Analysis

Firstly, the anthropometric data was considered in order to identify typical clus-
ters within the male population. A number of clustering algorithms was consid-
ered. These included partitioning, hierarchical, density-based, model-based and
grid-based approaches [3,4]. We also considered the use of principal component
analysis (PCA) to reduce the number of attributes prior to clustering.

In our experiments, the number of initial clusters was set to five (5), since
that corresponds to the number of clothing sizes we were interested in identify-
ing. By inspection, through the analysis of the results using the Cleopatra and
Weka systems, the k-means classifier algorithm was found to produce the best
clusters. Also, it was found that there where no need to apply PCA prior to clus-
tering, since the inter-cluster relationships were weak. The k-means algorithm
is a Centroid-based partitioning technique, in which each cluster is represented
by the mean value of the objects in the cluster and the Centroid is viewed as
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the cluster’s centre of gravity [3,4]. This technique is highly suitable for discov-
ering similar sized clusters with convex shapes, on numeric attributes. Also, it
works well with domain with little noise or outliers. The body measurements
were recorded and verified by at least two anthropometric domain experts, thus
making the level of ! noise and occurrence of outliers rare.

Table 1. Body measurements of cluster Centroids as contained in the CAESARTM

database.

Small Medium Large X-Large XX-Large

BustChestCircumference 94.9(5.9) 99.4(6.8) 106.1(6.19) 106.9(6.6) 125.7(10.9)

WaistCircumference 82.0(6.8) 86.8(6.8) 92.3(7.5) 107.8(7.0) 116.6(16.0)

HipCircumference 96.70(4.80) 101.14(4.93) 106.48(5.42) 108.39(4.90) 123.15(14.33)

NeckBaseCircumference 44.6(1.9) 46.0(2.0) 48.0(2.19) 48.7(2.0) 52.7(3.04)

ArmShouldertoWrist 59.5(2.03) 62.4(1.79) 65.08(1.71) 68.7(1.96) 65.56(3.02)

Stature 167.0(5.9) 174.7(3.5) 180.6(3.6) 190.0(5.0) 181.9(4.6)

ShoulderBreadth 44.65(1.90) 45.96(2.03) 48.00(2.19) 48.69(2.00) 52.66(3.04)

Weight(lbs) 151.17(15.77) 172.19(17.70) 198.16(18.61) 212.85(20.04) 274.99(35.9)

Num. of Members 62 (15%) 131(31%) 131 (31%) 52 (13%) 38 (9%)

For the male population, the Centroids of the clusters are depicted in Table 1.
The distribution of the clusters is depicted in Figure 3. As can be seen from
Figure 3, the cluster sizes are comparable and the shapes thereof are convex,
therefore making k-means a good choice.

We subsequently verified the cluster membership through querying the 3-D
body scans using the Cleopatra system. Table 1 shows some of the characteristics
of the Centroids of the male population [10]. Shown are the means (in cm) and
standard deviations of each of the clusters and the number of cluster members.
Figure 4 shows the 3-D body scans of the human subjects that correspond to
these anthropometric measurements, highlighting the difference in body types
of the five clusters. The clusters as also depicted in Figure 3. From Table 1 and
Figures 3 and 4, and our manual inspection, it follows that the anthropometric
clusters distinguish between small, medium, large, extra-large and extra-extra-
large body sizes.

4.2 Multi-view Relational Classification

Next, we engaged in multi-relational classification, using the five clusters of body
size, as class labels. For our multi-relational experiments we used the benchmark-
ing C4.5 decision tree algorithm [11], the PART rule learner that constructs de-
cision list based on the repeated creation of partial decision trees [12] as well
as the widely used RIPPER propositional rule inductor, which have shown to
generate rules that are easy for humans to understand [13,14].

We proceeded to analyze the data in order to find the rules to describe the body
measurements within each class. To this end, we executed our multi-view learning
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Fig. 4. Cluster Centroids for Male Population

Table 2. Accuracy and number of rules for three multi-view learning tasks

Learning task Ripper C4.5 PART

Top measurements 78.7% (10) 78.2% (30) 76.6% (18)

Bottom measurements 76.3% (11) 78.2% (19) 77.5% (19)

Top and Bottom measurements 79.2% (12) 80.1% (30) 78.7% (21)

algorithm three times, used the (1) Top measurements, (2) Bottom measurements
and (3) Top and Bottom measurements relations as target relations.

Table 2 shows the accuracies of the three learners against the three different
learning tasks, for C4.5, RIPPER and PART. The table shows that the learning
approaches provided consistent results, in terms of accuracy and number of rules
constructed. Next, we identified those rules with high positive and little negative
coverage. This makes sense from an application point of view, since we aimed
to obtain interesting, general rules for application in industry. Table 3 shows
some of the most important rules we found for each body size, in terms of the
information given and the rule coverage. Shown are the positive and negative
coverage, as well as the percentage of subjects within that class which satisfies
each rule.

When considering the rule set in Table 3, the following observations are note-
worthy. The table shows that, for the extra-extra large size, the rules mainly
address the weight and stature. Again, this makes sense from an application
point of view. Extra-extra large individuals are often difficult to characterize,
due to the nature of their body shape and the difficulty to obtain accurate mea-
surements. This fact makes it difficult for tailors to design clothing that fits
these individuals well, as mentioned by many of the participants in this study.
From the rule set, one can, in addition, conclude that when designing clothes,
the attributes to be taken into account are different for each clothing size. For
example, for the large clothing size the width of the shoulders and the length
of the arms are important factors. Our rules also indicate that Small (or Thin)
individuals are usually shorter than the other body sizes. This implies that, for
this group, the majority ! of e.g. pants should have short lengths. Otherwise, a
mass market manufacturer may be left with an overflow of pants that cannot sell.
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Table 3. Some high coverage rules for each clothing/body size

Positive
Class Coverage Coverage(%) Learner

Learning Top Measurements

(Stature ≤ 170.9) AND Small (44/ 3) 71.0 RIPPER
(BustChestCircumference ≤ 100.2)

(167 < Stature ≤ 176) AND Medium (77/5) 58.8 C4.5
(163 < Weight ≤ 213.5) AND
(ArmShouldertoWrist ≤ 65.0)

(Weight > 179) AND (Stature ≤ 182.5) Large (73/1) 55.7 PART
AND (ArmShouldertoWrist > 60.4)

AND (ShoulderBreadth ≤ 54.4)

(Stature > 184.2) AND (Weight < 243) X Large (31/0) 59.6 C4.5
AND (ArmShouldertoWrist > 67.9)

(Weight ≥ 241) XX Large (38/5) 100.0 RIPPER

Learning Bottom Measurements

(Stature ≤ 170.9) AND (Weight ≤ 190) Small (52/3) 83.8 RIPPER

(167 < Stature ≤ 176) AND (Weight > 163) Medium (78/6) 59.5 C4.5
AND (HipCircumference ≤ 113.5)
AND (ButtockKneeLength ≤ 63.5)

(176<Statute≤182.5) AND (183<Weight≤243) Large (72/5) 55.0 C4.5
AND (CrotchHeight ≤ 87)

(Stature≥184.3) and (WaistCircumference≥93.2) X Large (35/5) 67.3 PART

(Stature > 176) AND (Weight > 243) XX Large (29/0) 76.3 C4.5
AND (CrotchHeight ≤ 84.3)

Learning Top and Bottom Measurements

(Stature ≤ 171.9) AND (HipCircumference ≤ 98.1) Small (36/1) 58.0 RIPPER

(167<Stature≤176) AND (163<Weight≤199.5) Medium (61/0) 46.5 PART
AND (HipCircumference ≤ 113.5) AND

(ButtockKneeLength ≤ 63.5)
AND (CrotchHeight > 73)

(183 < Weight ≤ 243) AND Large (94/8) 71.8 C4.5
(62 < ArmShouldertoWrist ≤ 66.9)

AND (CrotchHeight≤87) AND (Stature>176)

(ButtockKneeLength > 61.4) AND X Large (31/5) 59.7 PART
(BustChestCircumference ≤ 113)

(Weight ≥ 239) and XX Large (28/0) 73.7 RIPPER
(BustChestCircumference ≥ 118.4)

The positive coverages of the rules shown here indicate that they are general
enough to be applied when tailoring clothes. Their number is sufficient to con-
strain the design without increasing the production costs. Indeed, the later is
increased if too many rules or constraints need to be implemented.

Note that we also analyzed the data within each class to better understand
the demographic nature of our customer. When considering the typical pro-
files of the individuals who correspond to the individual clothing sizes, we were
able to pinpoint interrelationships between fitness, family income and education,
amongst others. For example, our exploration of the demographic profiles of the
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medium-sized males indicate that, for this data set, a 25 to 40 aged single male
with a high level of fitness who holds a Bachelors degree earns, on average, sub-
stantially more than an unfit person with the same background. Also, a married
person with a doctorate earns more than his single counterpart, irrespective of
his marital status. Due to limited space, interested readers are referred to [15]
for a detailed discussion.

5 Analysis of Results

Clothes must fit the population. If they do not, they will not sell. This implies
that the different sizes (e.g. small, medium, large) must correspond to real group-
ings within the population. Each cluster must be well defined in the sense that
one archetype can represent any individual member belonging to the cluster.
Clothing designers cannot utilize averages. This is not difficult to understand, if
one average many human bodies, one ends up with a blob that has no relation
whatsoever with any human being.

Consequently, it is important to define clusters that can be characterized by
one archetype, i.e. a representative individual that belongs to the cluster and
that represent any other member of the cluster. Usually this archetype corre-
sponds to the closest individual to the Centroid of the cluster. Such a working
hypothesis is based on the implicit assumption that the cluster has a spherical or
quasi spherical symmetry. One can also choose one of the individuals belonging
to the sub-region presenting the highest density in terms of number of individ-
uals. If it is not the case, more than one archetype might be necessary to fully
characterize the cluster. In practice, it is preferred to have only one. Each new
size of sub-size involves more costs and increase the complexity involved in both
the manufacturing and the distribution process.

It is also important that each cluster represent a large proportion of the
population. If it is not the case, clothes are manufactured for a size that fits
virtually nobody which again implies financial lost. Nevertheless, clusters with
a small number of members can be justified for very expensive clothes for which
a good fit is a paramount condition.

The method we utilised satisfies the above mentioned requirement because we
were able to group the individuals into one of five clusters with a well-defined
Centroid. Our verification, by means of the Cleopatra system, indicated that the
cluster membership do correspond to the reality, in the sense that the bodies did
correspond to our expectations of the cluster membership.

Also, we were able to create sets of rules that describe the interrelationships
between the different body measurements within each of the five groupings. Im-
portantly, the rules indicate which of these measurements need to be taken into
account when tailoring clothes. For example, for the medium-sized individuals,
the rules indicated that the Stature, Hip Circumference, Buttock to Knee Length
and Crotch Height are important when designing pants.

When exploring the clusters as class labels, we used three different classifica-
tion methods, which gave us consistent sets of rules, in terms of overall accuracy,
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as well as coverage. We have discovered some worth-while relationships between
this data. For example, it is interesting to note that, when e.g. distinguishing
between large and extra large subjects within the male population, the chest
and hip circumferences do not differ substantially. Rather, the waist circumfer-
ence and stature is of importance here. This reality is not reflected in the ”ideal”
clothing sizes and is thus an important factor to consider when designing clothes.
One of the most remarkable results that we have obtained is that the attributes
that must be considered when designing clothes differ according to clothing size.

6 Conclusion

Tailoring clothes that fit the population poses an important challenge to the
clothing industry. The mining of anthropometric body measurements, in order
to understand and future explore the body profile of the typical consumer has
application in the mass marketplace as well as in haute couture both for the
design and the distribution. Such an understanding is fundamental in order to
minimize the number of returned items in e.g. Internet shopping.

This paper discussed our results when analyzing a data set containing anthro-
pometric body measurements, together with demographic data. We were able
to cluster the population into five well-defined clusters. We also generated some
general rules with high coverage, for application in industry. Our results showed
that the body measurements to be taken into account for the various body sizes
differ substantially. That is, each clothing size is characterised by a different set
of anthropometric body measurements. We were able to verify the results of our
experimentation against a set of corresponding 3-D body scans. Future work will
include the analysis of the 3-D body scans to complement the results presented
in this paper. Our preliminary analysis, when clustering the 3-D body scan his-
tograms, indicate that clusters, which complement those presented here, can be
found [16].
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Abstract. We propose a new representation for high-dimensional data
that can prove very effective for visualization, nearest neighbor (NN)
and range searches. It has been unequivocally demonstrated that exist-
ing index structures cannot facilitate efficient search in high-dimensional
spaces. We show that a transformation from points to sequences can po-
tentially diminish the negative effects of the dimensionality curse, per-
mitting an efficient NN-search. The transformed sequences are optimally
reordered, segmented and stored in a low-dimensional index. The exper-
imental results validate that the proposed representation can be a useful
tool for the fast analysis and visualization of high-dimensional databases.

1 Introduction

Suppose that we are interested in performing search operations on a set of high-
dimensional data. For simplicity let us assume that the data lie in a unit hy-
percube C = [0, 1]d, where d is the data dimensionality. Given a query point,
the probability Pw that a match (neighbor) exists within radius w in the data
space of dimensionality d is given by Pw(d) = wd. Figure 1(a) illustrates this
probability for various values of w. Evidently, at higher dimensionalities the data
becomes very sparse and even at large radii, only a small portion of the entire
space is covered. This is also known as dimensionality curse, which in simple
terms translates into the following fact: for large dimensionalities existing index-
ing structures outperform sequential scan only when the dataset size (number
of objects) grows exponentially with respect to dimensionality.

In this work we propose a mapping from high-dimensional to low-dimensional
spaces that will boost the performance of traditional indexing structures—such
as R-trees—without changing their inner-workings, structure or search strategy.
This mapping will essentially condense the sparse/unused data space by group-
ing and indexing together dimensions that share similar characteristics. We will
accomplish this by applying the following transformations: i) Conceptually, we
will treat high-dimensional data as ordered sequences. ii) The original D di-
mensions will be reordered to obtain a globally smooth sequence representation.
This will lead to placement of dimensions with similar behavior at adjacent posi-
tions in the ordered representation as sequence. iii) The resulting sequences will
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Fig. 1. (a) Probability Pw(d). (b) Mapping of 25-D image features onto 2 dimensions
and correspondence of projected against original dimensions.

Fig. 2. Summarization of steps

be segmented into groups of K < D dimensions which can be then stored in a
K-dimensional indexing structure. The previous steps are illustrated in Figure 2.

Elements of our techniques are partially inspired by or adapted from con-
cepts in parallel coordinates visualization [4], time-series representation [9], co-
clustering and bi-clustering [8] methodologies. However, the final goal is distinct
from the previous techniques, since the focus of this work is primarily on the
indexing of high-dimensional data. We note, however, that since our approach
also relies on the efficient grouping of correlated/co-regulated attributes, the
proposed algorithms can also be utilized for the identification of the principal
data axes for high-dimensional datasets.

In Figure 1(b) we demonstrate an example of the dimension grouping and
dimensionality reduction achieved by our techniques. The dataset consists of
25-dimensional features extracted from multiple images using a 5×5 grid (more
details are provided in the experimental section). Each image belongs to one of
the following four shape classes: cube, ellipse, hexagon and trapezoid. The shapes
are drawn by humans, so they exhibit dislocations or distortions and no two im-
ages are identical. Using the proposed low dimensional projection/grouping, we
map each 25-dimensional point onto 2 dimensions. We depict the correspondence
between sets of original dimensions and each of the projected dimensions. Ob-
serve that peripheral and center parts of the image (which correspond to almost
empty pixel values) are collapsed together into one projected dimension. Simi-
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Table 1. Description of main notation

Symb. Description
N Database size (number of points).
D Database dimensionality.
ti Tuples (row vectors), ti ∈ RD.
ti(d) The d-th coordinate of ti.
T Database, as a N × D matrix.

Symb. Description
D An ordering of all D dimensions.
K Number of dimension partitions.
B Set of partition breakpoints.
Dk The k-th ordered partition.
Dk Size of Dk.

larly centrally located portions of the image are also grouped together to form
the second dimension. While this example illustrates the usefulness of our di-
mension grouping techniques for image/multimedia data, we should emphasize
the utility of our methods in a number of other domains:

1. High-dimensional data visualization: Our technique intelligently groups
of related dimensions, leading to an efficient low-dimensional interpretation and
visualization of the original data. Our methods provide a direct mapping from
the low-dimensional space to the original dimensions, permitting more coher-
ent interpretation and decision making based on the low-dimensional mapping
(contrast this with PCA, where the projected dimensions are not readily inter-
pretable, since they involve translation and rotation on the original attributes).
2. Gene expression data analysis: Microarray analysis provides an expedient
way of measuring the expression levels for a set of genes under different regu-
latory conditions. They are therefore very important for identifying interesting
connections between genes or attributes for a given experiment. Gene expression
data are typically organized as matrices, where the rows correspond to genes and
columns to attributes/conditions. Our techniques could be used to mine either
conditions that collectively affect the state of a gene or, conversely, sets of genes
that are expressed in a similar way (and therefore may be jointly affecting certain
variables of the examined disease or condition).
3. Recommendation systems: An increasing number of companies or online
stores use collaborative filtering to provide refined recommendations, based on
the historical user preferences. Utilizing common/similar choices between groups
of users, companies like Amazon or Netflix can provide suggestions on products
(or movies, respectively) that are tailored to the interests of each individual cus-
tomer. For example, Netflix serves approximately 3 millions subscribers provid-
ing online rentals for 60,000 movies. By expressing rental patterns of customers
as an array of customers versus movie rentals, our technique could be then used
for identifying groups of related movies based on the historical feedback.

Summarizing the main contributions of this work: (i) We provide an effi-
cient abstraction that can map high dimensional datasets into a low-dimensional
space. (ii) The new space can be used to visualize the data on two (or three)
dimensions. (iii) We demonstrate how the low dimensional space can be used
in conjunction with existing indexing structures (such as R-trees) for mitigat-
ing the adverse effect of high-dimensionality on the index search performance.
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(iv) Finally, the proposed data mapping effectively organizes the data features
into logical subsets. This readily allows for efficient determination of correlated
or co-regulated data features.

2 Preliminaries

In the following sections we will describe our methodology for data reorganization
which is called ‘RIVA’ (Reordering for Indexing and VisuAlization). Assuming
a database T that consists of N points (rows) in D dimensions (columns), the
goal is to reorder and partition the dimensions into K segments, K < D. We
denote the database tuples as row vectors ti ∈ RD, for 1 ≤ i ≤ N . The d-th value
of the i-th tuple is ti(d), for 1 ≤ d ≤ D. We begin by first defining an ordered
partitioning of the dimensions. Then we introduce the necessary measures that
characterize the quality of a partitioning, irrespective of order. Next, in Section 3
we will show how we can exploit reordering to find the partitions efficiently, with
a single pass over the database.

Definition 1 (Ordered partitioning (D,B)). Let D ≡ (d1, . . . , dD) be a to-
tal ordering of all D dimensions. The order along with a set of breakpoints
B = (b0, b1, . . . , bK−1, bK) defines an ordered partitioning, which divides the di-
mensions into K segments (by definition , b0 = 1 and bK = D + 1 always). The
size of each segment is Dk = bk− bk−1. We denote by Dk ≡ (dk,1, . . . , dk,Dk

) the
portion of D from positions bk−1 up to bk, i.e., dk,j ≡ dj−1+bk−1 , for 1 ≤ j ≤ Dk.
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Fig. 3. K-dimensional envelopes of D-dimensional points. On the right, order is D =
(2, 5, 4, 3, 1) with breakpoints B = (1, 3, 6) and partition sizes D1 = 2 and D2 = 3.

Next, we need a measure of quality. Given a partitioning, consider a single
point ti. Ideally, we want the smallest possible variation among values of ti

within each partition Dk. Figure 3 illustrates two different partitionings and
their corresponding envelopes (dashed lines), which are simply the minimum
and maximum values of ti within each set of dimensions Dk. The partition on
the right has smaller volume.
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Definition 2 (Envelope volume vi(D,B)). The envelope volume of a point
ti, 1 ≤ i ≤ N is defined by

vi(D,B) :=
∑K

k=1

(
maxd∈Dk

ti(d) −mind∈Dk
ti(d)

)
.

This is proportional to the average (over partitions) envelope width.

Definition 3 (Total volume V (D,B)). The total volume achieved by a par-
titioning is V (D,B) :=

∑N
i=1 vi(D,B)

We should point out that, although the width of an envelope segment Dk is
related to the variance within that partition, the envelope volume vi is different
from the variance (over dimensions) of ti. Furthermore, the total volume V is
not related to the vector-valued variance of all points, and hence is also not
related to the per-column variance of T, which is used in [2].

Summarizing, we shall seek a single partitioning of the dimensions for the
entire database. To that end, we would like to minimize the total volume V .

3 Reordering

In the previous section we defined the notions of an ordered partitioning and of
volume. Unfortunately, summation over all database points in V is the outermost
operation. Hence, computing or updating the value of V would require buffer
space kN for the minimum values and another kN for the maximum values, as
well as O(N) time. Since N is very large, direct use of V to find the partitioning
is infeasible. Surprisingly, we can intelligently use the dimension ordering and
recast the problem in a way that allows us to perform the search after a single
pass over the database. The reordering of dimensions is chosen to maximize
some notion of “aggregate smoothness” and serves two purposes: (i) provide
an accurate estimate of the volume V without requiring O(N) space and time,
and (ii) locate the partition breakpoints. The next sections make these ideas
precise.
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Fig. 4. Ordered volume for one data point, within a segment (see first segment in
Figure 5), showing exactly the two volumes. Points on the right are in optimal order
(see Lemma 1) and the ordered volume equals the “true” volume.
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3.1 Volume Through Ordering

Consider a point ti and a partition Dk. Instead of the difference between the
minimum and maximum over all values ti(d) for d ∈ Dk, we will consider the
sum of differences between consecutive values in Dk.

Definition 4 (Ordered envelope volume v̄i(D,B)). The ordered envelope
volume of a point ti, 1 ≤ i ≤ N is defined by

v̄i(D,B) :=
∑K

k=1
∑Dk

j=2 |ti(dk,j)− ti(dk,j−1)| =
∑D

j=1
j �∈B

|ti(dj)− ti(dj−1)|.

Figure 4 shows the ordered volumes of two different dimension orderings in one
segment. The thin double arrows show the segment’s volume. The thick lines
on the right margin show the consecutive value differences. Their sum is the
segment’s ordered volume (thick double arrow).

Lemma 1 (Ordered volume). ForanyorderingD,wehavevi(D,B)≤ v̄i(D,B).
Furthermore, holding B fixed, there exists an ordering D∗ for which the above holds
as an equality, v̄i(D∗,B) = vi(D,B).

The order D∗ for which the ordered volume matches the original envelope volume
of any point ti is obtained by sorting the values of ti in ascending (or descending)
order—the full proof is ommited for space.
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Fig. 5. One point and two total orders that correspond to the same partitioning (D = 7
and K = 3). The breakpoints bk, 0 ≤ k ≤ K are also shown, with the induced partition
sizes Dk, 1 ≤ k ≤ K. The total ordering serves two purposes. First, to make the ordered
volume within individual partitions close to the “true” volume. Second, to help us
find the best breakpoints, which minimize the envelope and total volumes. The first
reordering minimizes the sum of consecutive value differences, and achieves both goals.

Definition 5 (Total ordered volume). The total ordered volume achieved
by a partitioning is V̄ (D,B) :=

∑N
i=1 vi(D,B).

Lemma 1 says that, for a given point ti, the ordering D allows estimation of the
envelope volume using the sum of consecutive value differences. Furthermore,
using a similar argument, we can show that a reordering D also helps us find
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the best breakpoints for a single point, i.e., the ones that minimize its envelope
volume (see Figure 5—proof is straightforward but long and ommite d for space).

Lemma 2 (Envelope breakpoints). Let D∗ ≡ (d1, . . . , dD) be the ordering of
the values of ti in ascending (or descending) order. Given D∗, let the breakpoints
b1, . . . , bK−1 be the set of indices j of the top-(K−1) consecutive value differences
|ti(dj)− ti(dj−1)| for 2 ≤ j ≤ D. Then, vi(D∗,B∗) = v̄i(D∗,B∗) and this is the
minimum possible envelope volume over all partitionings (D,B).

3.2 Rewriting the Volume

Next, we show that optimizing for V̄ , instead of V , can be performed with only
a single pass over the database. By substituting the minimum and maximum
operations (in vi) with a summation (in v̄i), it is possible to exchange the sum-
mation order and make the summation over all points the innermost one. This
allows us to compute this quantity once, hence requiring only a single scan of
the database. First, we give a name to this sum.

Definition 6 (Dimension distance). For any pair of dimensions, 1 ≤ d, d′ ≤
D, their dimension distance is the L1-distance between the d-th and d′-th columns
of the database T, i.e.,Δ(d, d′) :=

∑N
i=1 |ti(d)− ti(d′)|.

The dimension distance is similar to the consecutive value difference for a single
point, except that it is aggregated over all points in the database. If some of
the dimensions have similar values and are correlated, then we expect their
dimension distance to behave similarly to the differences of individual points and
have a small value. If, however, they are uncorrelated, we expect their dimension
distance to be much larger. Now we can rewrite the expression for V̄ (D,B),

V̄ (D,B) =
∑N

i=1
∑D

j=1
j �∈B

|ti(dj)− ti(dj−1)| =
∑D

j=2
j �∈B

Δ(dj , dj−1). (1)

3.3 Partitioning with TSP

With multiple points, we can no longer find the optimal ordering and break-
points via a simple sorting. However, as observed before, sorting the values in
ascending (or descending) order is equivalent to finding the order that minimizes
the envelope volume and we can still seek an optimum of V̄ . As explained in Def-
inition 6, we expect the dimension distance to behave similarly to the individual
differences; it should be small for dimensions with related values and large for
uncorrelated dimensions.

Instead of optimizing simultaneously for D and B, we will first optimize for
D and subsequently choose the breakpoints in a fashion similar to Lemma 2.
Therefore, our objective function C(D) is similar to Equation (1), except that it
also includes dimension distances across potential breakpoints,
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Definition 7 (TSP objective). We will optimize for the cost objective

C(D) :=
∑D

j=2 Δ(dj , dj−1), (2)

This formulation implies that Δ(d1, dD) ≥ Δ(dj , dj−1), for 2 ≤ j ≤ D.

If the last condition were not true, a simple cyclical permutation of D would
achieve a lower cost. After we have found D∗ = arg maxD C(D), we will select the
breakpoints in a fashion similar to Lemma 2, by taking the indices of the top-(K−
1) dimension distances Δ(dj , dj−1), 2 ≤ j ≤ D. This simplification of optimizing
first for D has the added benefit that we can very quickly try different values of
K. But the objective of Equation (2) is that of the traveling salesman problem
(TSP), where nodes correspond to dimensions and edge lengths correspond to
dimension distances. In Figure 6(a) the TSP tour is shown with thick lines. The
breakpoints (for K = 2) are its two longest edges (dashed thick lines). The sketch
of the RIVA algorithm is given below:

1. Scan the database once to compute the D×D matrix of dimension distances.
2. Find a TSP tour D of the D dimensions, using the above distances.
3. If necessary, rotate it to satisfy the condition in Definition 7.
4. Choose the remaining K − 1 breakpoints in B as described above.

The column reordering problem for binary matrices, which is a special case
of the desired reordering for our problem is already shown to be NP-hard [5].
Finally, the dimension distance Δ satisfies the triangle inequality, in which case
a factor-2 optimal of C(D) can be found in polynomial time. In practice, even
better solutions can be found quite efficiently (e.g., for D = 100, typical running
time for TSP using Concorde1 is about 3 seconds).

4 Indexing

In the previous section we outlined how to find an ordered partitioning that
makes the points as smooth as possible, with a single pass over the database.
A natural low-dimensional representation of the points ti is the per-partition
average [9]. More precisely, we map each ti ∈ RD into t̂i ∈ RK defined by

t̂i(k) := 1
Dk

∑
d∈Dk

ti(d), for 1 ≤ k ≤ K.

Assume we want to index ti using any Lp norm. For 1 ≤ p ≤ ∞, we define the
lower-bounding norm ‖ · ‖lb(p) on the low-dimensional representations t̂i as

‖t̂i‖lb(p) :=
(∑K

k=1 Dk · |t̂i(k)|p
) 1

p , if p �= ∞, or ‖t̂i‖lb(∞) := ‖t̂i‖∞, if p = ∞.

That ‖ · ‖lb(p) is a lower-bounding norm for the corresponding Lp norm on the
original data ti is a simple extension of theorems for equal-length partitions [9].
We index t̂i using an R-tree (see Figure 6(b) for a simple 2D example), which

1 http://www.tsp.gatech.edu/concorde/
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Fig. 6. (a) Illustration of TSP problem, (b) R-tree structure

recursively groups points into bounding boxes (nodes). A range query prunes
nodes based on the minimum possible distance (mindist) of the query points
to any point contained within a node. NN queries are processed by depth-first
traversal and a priority queue, again using mindist. Since, ‖t̂i‖lb(p) ≤ ‖ti‖p,
computing mindist using ‖t̂i‖lb(p) guarantees no false dismissals. We chose the
partitioning (D,B) so as to make the segments as smooth as possible, therefore
we expect both the node volumes to be small. Furthermore, it is precisely the
smoothness that makes per-segment averages good summaries and ‖t̂i‖lb(p) a
good approximation of ‖ti‖p.

5 Experiments

5.1 Example for Image Data

We depict with a running example the usefulness of the dimension reordering
techniques for indexing and visualization. We utilize portions of the HHRECO2

symbol recognition database, which consists of approximately 8000 shapes signed
by 19 users. The user strokes are rendered on screen and treated as images
(200 × 150). Since it would be unrealistic to treat each image as 200-by-150
dimensional point we perform a simple compaction of the image features as
follows: by applying a k × m grid on the image, we record only k × m values
which capture the number of pixels falling into each bucket. Using a 5×5 grid and
starting from the top left image bucket we follow a meander ordering (Figure 7)
and transform each image into a 25-dimensional point. The exact bucket ordering
technique is of little importance, since the dimensions are going to be reordered
again by our technique (therefore z- or diagonal ordering could be equally used).

On the right of Figure 7 we show the originally derived 25D points for 12
images of the dataset. Figure 8 depicts the new sequences after the TSP-based
reordering and also the grouping of dimensions into 3 segments. Finally the
same figure also illustrates the averaging per group of projected dimensions.
The new projected dimensions correspond to a group of the original dimensions,
the correspondence of which is shown in Figure 10. Image regions corresponding
to empty image space are clustered together, while image portions that carry
stroke information are grouped into different segments.
2 http://www-cad.eecs.berkeley.edu/Respep/Research/hhreco/



416 M. Vlachos et al.

5 10 15 20 25
0

50

100

150

200

cube ellipse

hexagon trapezoid

(black) (gray)

(green) (orange)

30 21 47

188 67 64

93 145 63

55 17 73

107 17

Original Image
Bucketization and pixel 

counting Sequence mapping

k

m

k x m

Fig. 7. Left: Feature extraction from image, Right: Mapping of features as sequences

13 2 24 2216 11 25 2120 5 10 1 6 15 4 23 3 12 17 9 19 7 14 18 8
0

50

100

150

200

13 2 24 2216 11 25 2120 5 10 1 6 15 4 23 3 12 17 9 19 7 14 18 8
0

50

100

150

200

D1 D2 D3 D1 D2 D3

After reordering After reordering & averaging

Fig. 8. Left : After dimension reordering, Right : After dimension averaging

Plots on projected dimensions (like Figure 8) can be very useful for summariz-
ing and visualizing high-dimensional data. This mapping resembles the parallel
coordinate technique [4]. However, our approach additionally groups, reorders
and summarizes dimensions. When the images are projected into 2 or 3 groups
of dimensions, they can also be visualized in 2D or 3D. For example, by pro-
jecting the 25D points onto 2D and placing the 12 images at their summarized
projected coordinates we get the mapping of Figure 9. One can observe that
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Fig. 10. Correspondence between projected dimensions and portions of the image for
projected dimensionalities of 2, 3 and 4

relative distances are well preserved and similar-looking shapes (e.g., hexagons
and circles) are projected in the vicinity of each other.

5.2 Application for Collaborative Filtering

We use the MovieLens database 3 which is utilized as a movie recommendation
system. The database contains ratings for 1682 movies from 943 users. We sam-
ple a smaller portion of the database, containing all the ratings for 250 random
movies and we apply our dimension (≡ movies) reordering technique. Indicative
of the effective reordering is the measurement of the global smoothness, which
is improved, since the cost function C that we are optimizing is minimized by
a factor of 6.2. We also observed very meaningful groups of movies in the pro-
jected dimensions. For example, one grouping contains action blockbuster movies
like ”Indiana Jones”, ”Empire Strikes Back” and ”Terminator”, while another
contains more action thrillers like ”Conspiracy Theory” or ”The Game”.

5.3 Indexing with R-Trees

Now we quantify the performance gains of our reordering and dimension grouping
techniques on indexing structures (and specifically on R-trees). For this experi-
ment we use all the images of the HHRECO database, but we hold out 50 random
images for querying purposes. Images are converted to high-dimensional points
(as discussed before), using 9, 16, 36 and 64-dimensional features. These high-
dimensional features are reduced down to 3, 4, 5, 6 and 8 dimensions using the
proposed methodology. The original high-dimensional data are indexed in an
R-tree and their low-dimensional counterparts are also indexed in R-trees using
the modified mindist function as discussed in Section 4.

For each method we record the amount of retrieved high-dimensional data,
i.e., how many leaf records are accessed. Figure 11 displays the results normal-
ized by the total number of data. The R-tree on the original data exhibits very
little pruning power which was expected, since it operates at high dimensional-
ity. The new R-trees operating on the grouped dimensions exhibit much higher
efficiency. Notice that for 9D original dimensionality we can improve the search
3 http://www.grouplens.org/
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performance by 78% in the best case, which happens for 6 grouped dimensions.
For 16D data a projected group dimensionality of 8 is the one that gives the
best results, which is 62% better than the pruning power of the original R-tree.
For even higher data dimensionalities, the gain from the dimension grouping
diminishes slowly but one should bear in mind that the original R-tree already
fetches approximately all of the data for dimensionalities higher than 16. An in-
teresting research direction for future work would be to examine the possibility
of a connection between the projected group dimensionality at which the R-tree
operates most efficiently and the intrinsic data dimensionality. Realization of
such a connection can lead to more effective design of indexing techniques.
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Fig. 11. Savings from using our projected grouping in conjunction with an R-tree. Data
at various dimensionalities (x-axis) are projected down to 3, 4, 5, 6 and 8 dimensions.

Concluding, the indexing experiments have demonstrated that our methods
can effectively enhance the pruning power of indexing techniques. We should also
emphasize that essentially we have only reorganized and packetized differently
the data dimensions, but we have not modified in the least in inner-workings or
the structure of the R-tree index. Additionally, since there is a direct mapping
between the grouped and original dimensions our technique has the additional
benefit of enhanced interpretability of the results.

In the future, we plan to investigate additional ways of further improving
the index performance on the new data representation. For example, in this
work the grouped dimensions include all the original dimensions. However, some
dimension groups are less important than others and therefore do not have to
be indexed, leading to further reduction in the data dimensionality. One can
see this as an analog of the largest principal components. Furthermore, such an
addition to out methodology will allow for an indirect comparison with PCA,
which is something that we also intend to explore in the immediate future.

6 Related Work

Traditional clustering approaches, such as K-means, K-medoids or hierarchical
clustering focus on finding groups of similar values and not on finding a smooth
ordering, which is the main target of this work. In the mutually related fields
of co-clustering, bi-clustering, subspace clustering [1,8] (for a detailed review,
see [7]) and graph partitioning [6], the problem of finding pattern similarities



RIVA: Indexing and Visualization of High-Dimensional Data 419

has been explored. Among those, pCluster [8] also tries to minimize pairwise
differences, both among dimensions as well as among tuples. In general, all of
these approaches focus on clustering both rows and columns and treat them
symmetrically. In contrast, we assume an asymmetry (N ! D) which makes the
solution quite different. Most of these approaches are not suitable for large-scale
databases with millions of tuples.

Mamoulis et al. [2] propose a vertical partitioning scheme for nearest neigh-
bor query processing, which considers columns in order of decreasing variance.
As pointed out before, our cost objective is not related to the per-column vari-
ance. More importantly, [2] does not provide any grouping of the dimensions,
and hence is not suitable for visualization or indexing. Our dimension summa-
rization technique bares resemblances to the piecewice aggregate approximation
(PAA) and segment means [9]; however our scheme is more general, in that, it
allows segments of unequal size. Additionally those techniques perform no re-
ordering, since they are predicated on the smoothness assumption of time-series
data.

In the area of high-dimensional visualization, Fastmap [3] is a popular and fast
method for dimensionality reduction and visualization. Nonetheless, it does not
provide any bounds on the distance in the low-dimensional space, and therefore
cannot guarantee the no false dismissals claim, that is provided by our lower-
bounding criterion. Finally, our data representation can be seen as an extension
of the parallel coordinates method [4]. Our technique enriches the previous model,
making visualizations more coherent and useful, not only because it provides a
much smoother representation, but because it also performs the additional steps
of dimension grouping and summarization.

7 Conclusion

We presented RIVA, a new methodology for indexing and visualizing high-
dimensional data. By expressing the data in a parallel coordinate system we
attempt to discover a dimension ordering that will provide a globally smooth
data representation. Such a data representation is expected to minimize data
overlap and therefore enhance generic index performance as well as data visual-
ization. We solve the dimension reordering problem by recasting it as an instance
of the well-studied TSP problem. Our results indicate that R-tree performance
can reap significant benefits from this dimension reorganization.
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Abstract. Subgroup discovery is a popular form of supervised rule learn-
ing, applicable to descriptive and predictive tasks. In this work we study
two natural extensions of classical subgroup discovery to distributed set-
tings. In the first variant the goal is to efficiently identify global subgroups,
i.e. the rules an analysis would yield after collecting all the data at a single
central database. In contrast, the second considered variant takes the local-
ity of data explicitly into account. The aim is to findpatterns that point out
major differences between individual databases with respect to a specific
property of interest (target attribute). We point out substantial differences
between these novel learning problems and other kinds of distributed data
mining tasks. These differences motivate new search and communication
strategies, aiming at a minimization of computation time and communi-
cation costs. We present and empirically evaluate new algorithms for both
considered variants.

1 Introduction

The aim of data mining is to find useful patterns in large data collections. Dis-
tributed computing plays an important role in this process for several reasons.
First, data mining often requires huge amounts of resources in storage space and
computation time. To make systems scalable, it is important to develop mecha-
nisms that distribute the work load among several sites in a flexible way. Second,
data is often inherently distributed to several databases, making a centralized
processing of this data very inefficient and prone to security risks. Algorithms for
several data mining tasks were proposed, for example for distributed association
rule mining [1], classification, clustering and dimensionality reduction [2].

The goal of subgroup discovery [3] is to identify interesting rules. In this
paper we study two distributed subgroup discovery tasks. The first one aims at
the discovery of global subgroups from distributed databases using distributed
algorithms. Its two objectives are to find the same rules as centralized learners [4],
and to minimize communication costs. The second distributed task aims to detect
relative local subgroups, which describe characteristics of individual databases
concerning a target value. Such rules can, for instance, capture information how
sales deviate at certain branches of a company.

In Sec. 2 existing work on subgroup discovery is presented and extended to dis-
tributed settings in Sec. 3. Novel algorithmic solutions for distributed subgroup
discovery are proposed in Sec. 4 and evaluated in Sec. 5.
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2 Subgroup Discovery

Subgroup discovery aims at the identification of interesting and interpretable
rules [3,5]. Each subgroup describes a subset of the overall population in a
database, which deviates from the overall behavior in terms of a given prop-
erty of interest. Among the typical applications of subgroup discovery are the
identification of homogeneous groups of clients in marketing, and the induction
of interpretable rules in medical domains. Case studies illustrating benefits of
subgroup discovery for decision support can be found in [6]. An example appli-
cation in a medical domain with a focus on incorporating background knowledge
and user-defined preferences is described in [7].

Formally, the learning task shares some of the characteristics of classifier in-
duction. In particular it is also a supervised learning task. Instances of the pop-
ulation are referred to as examples x ∈ X in this paper, while the property of
interest can be formalized as a target attribute Y. Every subgroup is represented
by a rule A → C with antecedent A : X → {true, false} that is a conjunction
of literals, and a conclusion C : Y → {true, false}.

In subgroup discovery the interestingness of rules is measured in terms of a
user-given utility function, a parameter of the task itself. Hence, subgroup discov-
ery can be considered to define a very broad rule discovery framework, covering
classification as a specific case. However, the focus of subgroup discovery differs
from inducing classifiers. Although the discovered sets of rules can well be used
to make predictions if interpreted probabilistically [8], subgroup discovery is typ-
ically used for descriptive data analysis. Different selection metrics reflecting rule
interestingness have been motivated in [5]. The main objective of utility func-
tions is to trade-off between two quantities, which both indicate interestingness
but tend to be diametric. These quantities are formalized in the following two
definitions. To ease notation we denote the absolute number of true positives of
a rule r with p(r), and the number of its false positives with n(r). The argument
is omitted if clear from the context. P and N denote the number of positives
and negatives in the complete dataset.

Definition 1. For a given database E ⊆ X × Y the support of a rule A → C
is denoted as Sup(A → C). It is defined as

Sup(A → C) :=
|{A(x) | 〈x, y〉 ∈ E}|

|E| = p + n,

the fraction of examples 〈x, y〉 ∈ E for which the antecedent A evaluates to true.

The notion of rule support is well-known from frequent itemset mining [9].

Definition 2. The bias of a rule r : A → C is defined as the difference between
the conditional distribution of C given A and the default probability of C:

Bias(r) :=
p

p + n
− P

P + N
.
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The bias reflects the degree to which a subgroup differs from expectation, i.e. that
the target attribute is distributed as in the overall dataset. A broad variety
of utility functions have been suggested for rule discovery, most of which are
monotone in the bias and support of rules. Please refer to [10] for an overview.
The most popular utility function for subgroup discovery is the weighted relative
accuracy [5,11], which is exemplarily used in our algorithms proposed in Sec. 4.

Definition 3. The weighted relative accuracy of a rule r is defined as

WRAcc(r) := Sup(r) · Bias(r) =
p + n

P + N

(
p

p + n
− P

P + N

)
.

For selecting rules only the order induced by an evaluation metric is relevant.
Since P and N are constants for any fixed dataset we may multiply the term
above with (P+N)2

N and reach at a more convenient formulation:

WRAcc · (P + N)2

N
= (p + n) · (P + N)

N
·
(

p

p + n
− P

P + N

)
=

p · (P + N)− (p + n) · P
N

= p− P

N
· n = p− c · n (1)

for a database-dependent constant c ∈ IR+. This simple reformulation reflects
the fact that ROC isometrics of the weighted relative accuracy are parallel lines
with a slope of 1. Learners optimizing this evaluation metric handle class skews
differently than e.g. predictive accuracy does. Several search strategies have been
proposed to find rules optimizing this metric for different settings.

The most straight-forward subgroup discovery task is to identifying a set of
k rules with highest utility scores, where k is a user-given parameter. The ILP
system MIDOS [4] is the best-known algorithm for this task, optimizing the
weighted relative accuracy metric. It is designed for multi-relational learning
and searches the space of rules exhaustively, except for safe pruning. The use
of a refinement operator allows to evaluate rules from general to specific, while
making sure that no rule is evaluated twice. The pruning strategy exploits the
operator’s top-down search. The support of each rule r decreases monotoni-
cally with each refinement, so for p positive and n negative examples the upper
bound

WRAcc(r) ≤ Sup(r) ·
(

1− P

P + N

)
(2)

allows to prune all refinements of a rule with low support if it cannot improve
over the k-th best rule found so far.

In order to speed up the subgroup discovery process adaptive sampling has
been proposed [12]. The learning task needs to be reformulated to account for
the inevitable risk of drawing a poor sample. Hence, the goal is to find k approx-
imately best rules with high probability. For the most relevant utility functions
probabilistic guarantees can be given to find good rules with high probability.
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Several authors have addressed subgroup discovery in the presence of (or rel-
ative to) prior knowledge. A recently presented system exploits different kinds
of background knowledge to select relevant features, to discretize variables in a
meaningful way, and to exploit user-given preferences for guiding search heuris-
tics [7]. Knowledge-based sampling [8] generically incorporates probabilistic prior
knowledge and can be combined with any of the other approaches. It yields un-
expected patterns and supports the induction of accurate classifier ensembles.

3 Discovering Subgroups from Distributed Data

3.1 Global Distributed Subgroup Mining

An extension to classical subgroup discovery that has not yet been investigated
by the data mining community is the discovery of subgroups from distributed
data. We start with a few definitions for evaluating rules on distributed data to
ease the formulation of the formal learning problems studied in this work.

In the remainder of this paper the global data E is assumed to be distributed
to nodes {1, . . . , m}, each holding a local subset Ei ⊂ E so that E =

⊎m
i=1 Ei.

The number of positives and negatives at site i are denoted as Pi and Ni.

Definition 4. For any rule r : A → C the absolute number of covered positives
and covered negatives in node i are denoted as

pi(r) := |{A(x)∧C(y) | 〈x, y〉 ∈ Ei}| and ni(r) := |{A(x)∧C(y) | 〈x, y〉 ∈ Ei}|.

This allows to restate the support and bias of rules for individual databases Ei.

Definition 5. The local support of rule r at a site i is defined as

Supi(r) :=
pi(r) + ni(r)

|Ei|
,

while the local bias is defined as

Biasi(r) :=
pi(r)

pi(r) + ni(r)
− Pi(r)

Pi(r) + Ni(r)

Global utility functions can be adapted in a straight-forward manner based on
these local quantities. We confine ourselves to weighted relative accuracy.

Definition 6. Local weighted relative accuracy of rule r at node i is defined as

WRAcci(r) := Supi(r) ·Biasi(r).

The first studied distributed subgroup discovery task is referred to as global
subgroup discovery. It aims at the identification of the same k best subgroups in
the global data E, but without shifting all the data to a single database.

Global subgroup discovery is an unexpectedly hard problem. If the distribu-
tion underlying different databases Ei may deviate from the global distributions,
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i.e. they cannot be considered to be uniform subsamples of E, then globally best
rules may perform poor at all local sites [13]. More precisely, collecting all the
locally best rules with respect to WRAcci does not necessarily yield a set that
contains one of the k globally best rules, neither exactly nor approximately in the
sense of the approximately k best rules problem (see Sec. 2). As a consequence,
algorithms addressing global subgroup discovery need to exchange either exam-
ples or models and counts if guarantees are required. A new algorithm tailored
towards the specific characteristics of the task will be presented in Sec. 4.1.

3.2 Relative Local Subgroup Discovery

The novel task of relative subgroup mining takes the locality of data explicitly
into account. A rule is considered to be interesting, if it is well supported by local
data, and if its local confidence deviates substantially from the corresponding
confidence when evaluating the same rule globally.

Relative subgroups are relevant in several domains. E.g. in a marketing appli-
cation the corresponding rules may identify spatial regions in which the buying
behavior of customers differs from that observed in other parts of the country.
An unsupervised approach with a related aim, mining high contrast frequent
itemsets, has recently been presented [14]. Based on entropy, it identifies item-
sets with counts that are inhomogeneously distributed to the different sites. In
this paper we address supervised relative rule discovery, a learning task proposed
in recent prior work [13]. It aims at the identification of rules maximizing the
following evaluation metric:

Definition 7. The relative local utility of a rule r at node i is defined as

RLUi(r) := Supi(r) · (Biasi(r) −Bias(r) + ci) , with ci :=
Pi

Pi + Ni
− P

P + N
.

Different class skews Pi/Ni are of minor interest in this setting, so the term ci

is used to focus on deviations of globally and locally different conditional class
distributions for subsets covered by considered rules. This turns the term in
brackets into deviations of local and global confidences, as motivated above.
As for WRAcc, a more convenient version of the RLU metric can be derived:

RLUi(r) = Supi(r) ·
(

pi(r)
pi(r) + ni(r)

− p(r)
p(r) + n(r)

)

= |Ei|−1 ·

⎛⎜⎜⎜⎝pi(r) − p(r) · pi(r) + ni(r)
p(r) + n(r)︸ ︷︷ ︸
=:p̂i(r)

⎞⎟⎟⎟⎠ =
pi(r) − p̂i(r)

|Ei|

The term p̂i(r) can be interpreted as the estimated number of positives within
the subset covered by rule r at site i. This estimate is based on the fraction of
positives in the subset of the global data that are covered by the rule, i.e. on the
global confidence. A factor-equivalent metric to RLU is RLU∗

i (r) := pi(r)−p̂i(r).
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The task of discovering the best k relative local subgroups has been shown to
be at least as hard as discovering global subgroups from distributed data [13].

4 Algorithms for Distributed Subgroup Discovery

4.1 Distributed Global Subgroup Discovery

In this section we propose an algorithm for distributed global subgroup mining
based on count polling and distributed rule pruning based on optimistic esti-
mates. A basic principle of the algorithm is that for each rule r all refinements
of this rule r′ are created and counted at exactly one node. We use a refinement
operator as defined in [4]. The following definition assumes a fixed total order
on the set of attributes.

Definition 8. A refinement operator ρ is a function that maps each rule to the
set of its direct successors. A rule r′ : A′ → C′ is a direct extension of r : A → C,
if and only if C = C′, A′ = A ∪ {Xi = v} for a variable Xi with the property
that all attributes Xj in A have an index j which is strictly lower than i. The
transitive relation r′ < r denotes, that r′ is a refinement of r.

Our pruning method exploits the following relationship. If for each node the
counts for a rule r or a predecessor of r, denoted as r′ are known, we can
calculate a tight upper bound on the WRAcc(r). If this highest possible score
is worse than the currently k-best rule, then the algorithm can safely prune the
rule r.

Lemma 1. The (global) utility of a rule r is bounded by the following term

WRAcc(r) ≤
∑m

i=1 pi(r′i)
P + N

·
(

1− P

P + N

)
=

N

(P + N)2

m∑
i=1

pi(r′i),

where r′i = r or r < r′i. For the most specific rules pi(ri) is known for, this bound
is tight.

Proof. The correctness of the lemma follows from eqn. (1), implying that WRAcc
is order-equivalent to p− P

N ·n. Hence, optimal refinements discard all negatives
but no positives, which leads to the score used as an upper bound.

The difference to eqn. (2) is that the support is replaced by the fraction of
true positives, a quantity which is strictly smaller unless r cannot further be
improved by refinements, anyway. The pruning strategy exploits the fact that
WRAcc increases monotonically if refinements “discard” only negatives. It is
maximized by refinements that discard all negatives and no positives. For this
reason straightforward adaptations of eqn. (2) apply to the broad class of utility
functions sharing this property of monotonicity, e.g. to the binomial test func-
tion. It is sufficient to substitute the tightest known counts during optimistic
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score computation in lemma 1 for each rule, and to optimistically assume that
a subsequent refinement is able to discard only the covered negatives.

The lemma can be used to prune rules for which exact counts are available
only from a subset of all nodes. If the upper bound for WRAcc(r) is worse than
the k-th best rule, r can be pruned without polling further counts. Lemma 1 also
implies a second pruning condition. If a rule r′ is pruned, then all refinements
r < r′ of this rule can be pruned as well, as their optimistic scores are known to
be no better than the optimistic score of r′.

These pruning strategies are combined with count polling to derive an al-
gorithm for distributed subgroup mining that scales linearly in the number of
nodes. Each node i keeps three data structures. First, a list Bi containing the
k currently best hypotheses. Second, a list of pruned hypotheses Zi. These are
rules for which it is known that no descendant can reach a score better than

kbi := min
r∈Bi

WRAcc(r),

the k-th best score at node i. To this end an optimistic upper-bound is computed
using lemma 1. Finally, each node keeps a list of all rules, for which it is polling
counts. This list is denoted as Qi.

The algorithm is initialized by assigning all rules with an empty body to an
arbitrary node. The computation then follows Fig. 1. A node that receives an
assignment for a rule r generates all canonical refinements (direct successors)
ρ(r) and serves as their polling node. A rule r : A → C can be pruned (i) based
on its optimistic score, or (ii) because it is subsumed by a previously pruned rule
r′ : A′ → C′, that is C′ = C and A′ ⊂ A, so {A(x) | x ∈ X} ⊂ {A′(x) | x ∈ X}
and hence pi(r) < pi(r′) at all sites. For each refined rule r′ the algorithm
first obtains the local counts from the database and checks whether r′ can be
pruned. If the rule is pruned based on its optimistic score, the node additionally
informs all other nodes about this step of pruning. In contrast, subsumption-
based pruning of a rule r′ does not require to broadcast r′, since each node is
known to have a rule subsuming r′ in its list of pruned rules Zi. If a rule is not
pruned the node broadcasts a query for counts on r and adds r to the list of
open hypotheses Qi. The individual nodes then reply their local counts for r′. As
more and more local counts arrive the bound on the global count gets tighter.

If all local counts for a rule r are available and r cannot be pruned, it is first
checked, if the rule is better than kbi. If this is the case, it is inserted into Bi as
described above and broadcasted to all other nodes. Then the rule is assigned to
a node that is responsible for generating and counting the canonical refinements
of the rule. Besides the rule itself, the local counts for rule r are transmitted
from all the nodes. This information is necessary to allow for pruning based
on partially available counts, as described above. The node to which a rule is
assigned is determined by the support of the rule. The rationale of this choice is,
that such a node is the most likely to be able to prune the rule without querying
other nodes for counts.

The algorithm has communication costs in O(m|C|), where m is the number
of nodes and C is the set of evaluated candidates. Hence, the algorithm scales
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bestij(r,WRAcc(r)) ∈ Mj

WRAcc(r) > kbj

Bj

pruneij(r) ∈ Mj

Zj = Zj ∪ {r}

countij(r, ni(r), pi(r)) ∈ Mj

r

Zj = Zj ∪ {r}

r

WRAcc(r) > kbj

Bj r

best(r,WRAcc(r))
Qj = Qj \ {r}
m = argmaxi(ni(r) + pi(r))

assignjm(r, {(p1(r), ...)})

assignij(r, {(p1(r), ...)}) ∈ Mj

r′ ∈ refinements(r)
r′

not(prunable(r′))
query(r′)

Qj = Qj ∪ {r′}

queryij(r) ∈ Mj

countji(r, nj(r), pj(r))

r

r ≤ r′ : r′ ∈ Zj

optscore(r) < kbj

prune(r)

Fig. 1. Algorithm for distributed global subgroup mining at node j. Mj denotes the
input message queue of node j. bestij , pruneij , countij , queryij and assignij are
messages, where i denotes the sender and j the receiver. The procedures above are
executed as long as messages arrive.

linearly with the number of nodes and candidates. This can easily be seen from
the fact that at most O(m) messages are exchanged per candidate: a query for
counts, its replies, and possibly a broadcast for a new best hypothesis or for
pruning. These messages contain only rules and individual counts. Additionally,
at most one delegation message for a rule is produced, containing a set of local
counts. This message is of size O(m).

4.2 Distributed Relative Subgroup Discovery

Finding relative local subgroups differs from finding global subgroups in that
each node finds an own, individual set of rules. The score of a rule is defined
with respect to its local support and its relative bias. While the support of a rule r
can easily be computed locally at each database, global counts for r are required
for computing the bias. Global counts of rules are aggregated as described in
the last section. There is one important difference however. Rules can only be
pruned, if they are pruned at every node. We propose an algorithm that is based
on count polling and optimistic pruning. The following tight optimistic pruning
rule holds for the task of relative local subgroup mining.
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Lemma 2. For relative local subgroup discovery, rules r with pi(r) positives,
ni(r) negatives, and p̂i(r) estimated positives covered by rule r at site i,

RLUi(r′) ≤
pi(r) −max(0, p̂i(r) − ni(r))

|Ei|

is a tight upper-bound for the local utilities of all rules r′ < r.

Proof. Considering the factor-equivalent metric RLU∗ it is easily seen that an
optimal refinement of rule r reduces p̂i(r) by covering less examples that are
“predicted” positive, while not reducing pi(r). If the ni(r) negative examples
covered by r are predicted positive by p̂i(r), and if a refinement r′ < r exists
that covers only the pi(r) positive examples, then we reach at a utility of

RLU∗
i (r′) = pi(r) −max(0, p̂i(r) − ni(r)).

This cannot be improved any further by refinements, since r′ covers only pos-
itives, and further refinement reduces pi(r) at least as much as p̂i(r) − ni(r).
Since RLU∗ = RLU · |Ei| this proves the lemma.

Our algorithm for relative subgroup mining works as follows. Again, each node
has a list of best rules, pruned rules, and open rules. Additionally, nodes keep
a rule cache, that is used to store the global counts of rules for which a node
serves as the polling node. The mapping of rules to responsible nodes is realized
by a hash function.

Each node starts with an empty set of rule candidates. It then generates first-
level rules that are evaluated locally. If a rule r can be pruned based on lemma 2
it is discarded. Otherwise, the node requests global counts n(r) and p(r) for r
from a polling node that is determined by calculating a hash value for the rule.
The node that receives this request checks whether it finds the rule in its cache. If
so, it directly returns the corresponding global counts. Otherwise, the node first
queries all other nodes for their corresponding local counts. After aggregating
all local counts ni(r) and pi(r) the polling node stores and returns the global
counts. Given the global counts and the local counts for a rule r, the exact utility
score of r can be computed. If r is better than the k-best rule it is inserted into
Bi as described in the last section. If r, and thus each of its refinements, receive
an optimistic score that is worse than the lowest score in Bi, then r is pruned.
Neither best rules nor pruned rules are broadcasted, as they are not relevant to
other nodes.

While the pruning strategies for relative local subgroup mining are weaker
than for distributed global subgroup mining, the approach still scales linearly
with the number of nodes. Thus, relative local subgroup mining is in O(|C|m),
where |C| are the candidates considered by at least one node. Relative local
subgroup mining for all nodes is usually more expensive than global subgroup
mining, because rules may only be pruned, if they would be pruned at all nodes.
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5 Experiments

We performed experiments to analyze the properties of the proposed algorithms.
As both algorithms are guaranteed to find the best rules, evaluation is only
concerned with communication costs. These costs are evaluated on three datasets
taken from the UCI library, mushroom, adult, and german. For adult and german
numerical attributes were discretized using minimal entropy partitioning.

First of all the substantial difference between the tasks of subgroup and associ-
ation rule mining is illustrated exemplarily. Association rule and frequent itemset
mining rely on a user-provided support threshold and are usually applied to find
huge amounts of rules. Subgroup discovery finds only the k best rules with re-
spect to a user-specified utility function, not requiring a threshold. Even if the
best rule utility was known to a frequent itemset mining algorithm in advance, it
would be more costly to generate all itemsets based on a corresponding support
threshold in a distributed setting than to run distributed subgroup discovery;
state-of-the-art algorithms for distributed frequent itemset mining evaluate at
least all frequent itemsets at all nodes. E.g. the german dataset contains more
than 50.000 frequent itemsets using the support-based pruning threshold of the
MIDOS algorithm (see eqn. (2)) in combination with the (usually unknown) util-
ity of the best subgroup. In contrast, the global subgroup discovery algorithm
evaluates less than 3.000 candidates.

Still, the communication costs for our algorithm grow no more than linearly in
the number of nodes. We validated this property in a first experiment, measuring
costs by accounting 4 bytes for each rule transmitted over the network and
2 bytes for each count. To be able to measure the impact of data skews in
the distribution of data to individual nodes we used the following procedure.
First, the data was clustered using an EM algorithm. The number of clusters
was chosen as the number of nodes. We use a parameter pskew denoting the
probability that an example is assigned to a node according to the corresponding
cluster. Otherwise it is assigned randomly at equal probability. For pskew = 1
each node receives all data points in its corresponding cluster. For pskew = 0 all
examples are distributed randomly. This allows to adjust the data skew between
both extremes. The results for the datasets using pskew = 0 and finding one
global rule (k = 1) for rules of constrained length as in MIDOS (we searched
for best rules containing up to 3 literals) are shown in Fig. 2. For all three
datasets the curves confirm our theoretical findings concerning the scalability of
our method. Please note, that in this experiment each database contains about
the same amount of data, which is the worst case for our method.

The second experiment compares the communication costs for distributed
global and relative subgroup mining for varying degrees of skew. The results of
mining the most interesting rule of length up to 3 literals for the mushroom data
set is shown in Fig. 3 for a network of m = 5 nodes. We see that distributed
global subgroup mining shows a low sensitivity regarding the data skew. For rel-
ative subgroup mining the situation is different. Given a low skew, the costs for
finding relative subgroups increases. The reason is that relative subgroups can
only be found if the data distribution among nodes deviates. For low skews only
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rules with very low scores can be identified, which however forces all nodes to
search a very large search space as pruning cannot be applied. Reaching at a cer-
tain level of skew the distributions deviate sufficiently to identify corresponding
logical rules, leading to a sharp decrease of costs in Fig. 3 for relative subgroup
mining.

6 Discussion and Conclusion

Discovering distributed global and relative local subgroups are two novel know-
ledge discovery tasks. Since subgroup discovery is a supervised learning task it
could be approached with state of the art distributed classification algorithms,
e.g. distributed boosting [15] in order to find probabilistic rule ensembles as in [8].
Distributed boosting and similar algorithms are however not complete, thus do
not guarantee to find optimal rules. As noted in [15] the quality of rules that
can be discovered depends on the distribution of examples over the individual
databases. Results presented in [13] support this observation. For this reason we
focused on complete algorithms for distributed rule mining.

Existing complete algorithms for distributed rule mining are mostly concerned
with finding association rules [1]. A straightforward extension of the Apriori algo-
rithm is Count Distribution (CD) [16]. At each round, every database generates
all k + 1 candidates from the globally large k-itemsets and broadcasts all counts
to all other nodes. This procedure causes communication costs of Ω(|C|m2),
where |C| is the number of candidates and m is the number of nodes. One way
to improve the CD algorithm is to use a designated node for each candidate that
is responsible for polling and redistributing all counts of the candidate itemset.
This method is applied in the FDM algorithm [17]. It reduces the communication
complexity of the algorithm to Θ(|C|m). Two additional pruning techniques are
applied in FDM. Local pruning is based on the observation that for an item to
be frequent it must be frequent at least at one node. Only for such items counts
need to be exchanged. Second, nodes use an optimistic estimate for the support
of an itemset based on partial counts received from other nodes. If this estimate
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is smaller than the minimal support, the candidate can be pruned. The idea of a
polling site, as introduced by FDM helps to avoid costly broadcasts and is very
general.

The real power of the above approaches lies in their local pruning strategies,
however, which do not apply to distributed global subgroup mining as shown
in [13]; globally optimal rules can simultaneously be inferior at each individual
node, while pruning strategies applied to distributed frequent itemset mining
rely on the fact that globally frequent itemsets must be frequent at least at one
node. This reflects that subgroup utility functions are lacking the monotonic-
ity of rule support, a prerequisite for efficient itemset mining. This substantial
difference remains even for more sophisticated pruning strategies as proposed
in [14,18].

Association rule based approaches are not applicable to relative subgroup
mining either, because the relative score of each rule does not only depend on its
local support, but also on the (independent) local and global rule confidences.

Hence, we presented two new algorithms for distributed subgroup discovery
that guarantee to deliver optimal rules at communication costs linear in the num-
ber of nodes and rule candidates, an essential property for scalable distributed
algorithms. The complexity was shown theoretically and confirmed empirically.
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Abstract. In query based Web search, a significant percentage of user queries 
are underspecified, most likely by naive users. Collaborative ranking helps the 
naive user by exploiting the collective expertise. We present a novel 
algorithmic model inspired by the network flow theory, which constructs a 
search network based on search engine logs to describe the relationship between 
the relevant entities in search: queries, documents, and users. This formal model 
permits the theoretical investigation of the nature of collaborative ranking in 
more concrete terms, and the learning of the dependence relations among the 
different entities. FlowRank, an algorithm derived from this model through an 
analysis of empirical usage patterns, is implemented and evaluated. We 
empirically show its potential in experiments involving real-world user 
relevance ratings and a random sample of 1,334 documents and 100 queries 
from a popular document search engine. Definite improvements over two 
baseline ranking algorithms for approximately 47% of the queries are reported. 

Keywords: Graph models, Network flow, Graph theory, Collaborative ranking, 
User feedback, FlowRank. 

1   Introduction 

The intuition behind collaborative ranking is that in the context of Web search collective 
knowledge enhances the ranking of search results. A number of methods to facilitate 
collaborative ranking have been proposed and some effectively implemented, 
particularly in online recommendation systems. By introducing a formal model, this 
work systematically investigates the nature of collaborative ranking.  

Why does collaborative ranking work? Given the context of relevant queries, naïve 
queries can be improved by looking at relevant and articulated queries (and 
corresponding search results) from other users. By observing the collective patterns of 
access, the ranking system learns to favor certain search results. For the most part, 
existing collaborative ranking algorithms take into account the intricate relationships 
between relevant queries, documents, and collaborators. We propose a graph 
algorithmic model to study such relationships. Based on this model, a novel 
FlowRank algorithm translates the collaborative ranking problem into a network flow 
problem. The heterogeneous interactions between queries, documents, and 
collaborators are drawn into a concise and cohesive framework. Our paper makes the 
following contributions: 
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 We introduce a formal model of collaborative ranking, which mathematically 
describes the interactions between users, queries, and documents, and relates the 
ranking problem with the network flow problem for which there is a large body of 
work. 

 We propose a practical algorithm for collaborative ranking based upon our model, 
and empirically demonstrate its potential in a preliminary experiment using real-
world data. 

The rest of the paper is organized as follows1. In Section 2, we briefly review a 
number of relevant studies in collaborative ranking and graph modeling of the Web. 
We describe in detail the algorithmic model and propose a derived ranking algorithm, 
FlowRank, in Section 3. In Section 4, we present an evaluation involving realistic 
search scenarios. We conclude our paper with plans for future work in Section 5.  

2   Related Work 

There has been a considerable amount of work on the topic of collaborative search 
and ranking. We will discuss succinctly the major body of work that directly relate to 
ours, in particular to graph models of the Web and collaborative ranking algorithms.  

The Web graph [1, 2] has been explored with numerous studies focusing on the 
hyper-linked structure in order to aid web search [3, 4, 5, 6, 7]. Flow-based algorithms 
have been proposed to identify and mining online communities [8, 9], to perform 
clustering [32], and to identify the bottlenecks in a Markov decision process [10]. In 
particular, Chitrapura and Kashyap [11] proposed a flow-based model for document 
ranking, which uses the network flows in a search graph as a measurement of 
relevance. In their model, the volume of the flows indicating the degree of relevance 
of the nodes (documents) to the associated labels (queries) is used to compute a query 
dependent or independent ranking of the documents, which is similar to the 
underlying idea we propose. However, their model is a single-user model, while our 
model employs multiple collaborating users with various degrees of similarity to the 
target user and different relevance feedbacks. 

Collaborative search and ranking is in a way similar to meta-search; leveraging 
naïve and advanced users, the original search results are re-ranked based on collective 
knowledge. The search system can take into account the expertise level of the users 
through user profiling [12], biasing the relevance ranking by using such profiles. 
When a user is not satisfied with the search results, similar queries submitted by other 
users can be used to expand or improve the original query [13]. User clickthrough has 
been shown as an accurate reflection of users’ preferences on the retrieved pages [14], 
to suggest search intentions [15] and similar queries and documents [16]. A hit 
matrix, which records users’ clickthrough to pages, is implemented in the I-SPY 
system [17]. By using collective clickthrough as an indicator of the likeliness of web 
pages to be visited by users, the system estimates the pages’ relevance to a given 
query, and re-ranks the pages based on the learned preferences. One of the most 
recent evaluations of collaborative search involves studying the behavior of actual 
users [18].  

                                                           
1  Due to space constraints, an extended version of this paper discussing the generalization of 

the proposed model is available for download on the first author’s website. 
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Our work builds upon the idea of graph modeling of the Web search problem, in a 
framework of relevance ranking of documents based on the associated flows of 
information. However, to the best of our knowledge, there is no existing work that is 
similar to our approach of constructing the graph model and the derived collaborative 
ranking algorithm. 

3   The FlowRank Model 

3.1   Motivation 

Consider the following scenario of a typical collaborative search: A user ua searches 
the Web for query qo 'Olympic national park', and a document set Do has been 
retrieved. Then, suppose there is a collaborator ub who searches for a relevant query 
q' 'camping hiking Olympic', and a document set D' has been retrieved. We define 
collaborators to be those users whose queries and search results may be of interests to 
ua with respect to ua’s current search goal, regardless of whether they perform the 
search in a synchronous or asynchronous fashion, or whether they are aware of each 
other. How relevant ub’s query is to ua, and how similar ub is to ua in terms of interests 
and preferences, should be considered in the case of collaborative search. If ub 
frequently accesses (which may mean, for example, that the user clicks on) some of 
the returned documents, it could indicate that these documents are of high quality and 
are preferable to other documents. Thus ua might also prefer these on the condition 
that ub’s query is somewhat similar and ub has similar interests or preferences.  

From the above scenario, we see that a complete model for collaborative ranking 
needs to consider all of the following: the similarity between the original query (qo) 
and the retrieved documents (Do), the similarity between the original query (qo) and 
other relevant queries (q'), the similarity between the relevant queries (q') and the 
corresponding documents (D'), the similarity between the user (ua,) and the 
collaborators (ub), and the access patterns of  the users. All of these factors combined 
could contribute to the relevance judgment of the documents retrieved for a given 
query, and can be employed in a collaborative scheme of ranking those documents. 

We have devised a formal model of collaborative ranking, in which all these 
factors are accounted for in a unified formal framework that permits the study of 
correlated search events. We accomplish this by investigating the network flows of a 
transformed query graph. In our model, each retrieved document is represented by a 
sink node in the graph and associated with a flow value. The flow values are bounded 
by the various capacities of the arcs, which correspond to the factors discussed in the 
previous paragraph (details to follow in the next section). When the flow network 
becomes saturated, the values of the obtained flows associated with the documents are 
used to re-compute the collaborative relevance ranking. 

3.2   Graph Definition and Transformation 

A query graph visualizes relevant entities (queries, documents, and users) in a given 
collaborative search setting. We transform this graph into a network in which arc 
capacities encode the relationships between the entities. In this section we formally 
describe the steps to derive the graph model. An algorithm for collaborative ranking 
based on this model will be introduced in the next section. 
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We first discuss the graph structure that we associate with a user query, which 
links users, queries, and documents sets, denoted as U, Q, and D respectively. 

Assume that a target user ut, submits a target query qt, for which a set of documents 
Dt={di

t | i=1..m} matching the target query exists. Let Qt = {qi | ∃ j ∈ [1…n], arc(qi, dj

t) 
≠ null}be the set of all user queries that retrieve at least one of the documents 
retrieved by the target query qt. Let Ut = {ui | ∃ q ∈ Qt, arc(ui, q) ≠ null}denote the set 
of users who submitted the query that retrieved a document in Dt. Let G denote the 
whole search graph with no constraint. We denote by Gt the subgraph of G with the 
vertices Dt∪Qt∪Ut and all arcs incident in these vertices from G. Intuitively, the graph 
Gt includes those users who sent to the search engine the same query or a different 
query that retrieves at least one of the documents retrieved by the target query. Users 
who have not submitted qt and queries that do not retrieve any document in Dt will not 
be included in this graph. The goal is to rank collaboratively the documents in Dt by 
considering the appropriately relevant users, queries, and documents. Note that in 
practice, there can be various definitions for qi∈Qt. For example, qi can be an 
expansion of the target query qt [19] or a query submitted by a user that searched for 
qt in the same search session and/or within a certain interval of time. Figure 1 (a) 
depicts a sample query graph Gt. 

 
      (a)                                                                                   (b) 

Fig. 1. (a) A sample query graph G
t
 (b) An example of G' constructed from G

t 

We then construct G' based on Gt. Figure 1 (b) depicts G' constructed from Gt. 
There are three types of capacities assigned to the arcs in G': type (a) expresses the 
relevance between the target query and the documents; type (b) reflects various 
degrees of collective endorsement to the documents by the collaborators, either 
through the original query or alternative queries; type (c) specifies the relationship 
between the targeted user and his collaborators. In particular: 

 Some arcs have their directions reversed in order to form the cascade of bounds 
for the network flows, i.e. type (a) capacities are more important than type (b); 
type (b) are more important than type (c). This is arguably reasonable because in 
ranking the relation between the target query and the documents should always be 
considered first, while the collective endorsement by the collaborators is counted 
as an assistive measure. Please see the following algorithm for details on which 
arcs to be reversed. 
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 Steps (2)~(6) of the following algorithm provide a specific computation recipe of 
the arc capacities. However, alternative strategies/heuristics can be employed to 
weigh the relationships among the different entities.  

Let U' = Ut - {ut} denote all users in this graph except the target user and Q' = Qt - 

{qt} the set of all user queries in Gt excluding the target query qt. We construct G' as 
follows: 

(1) Remove the arc from ut to qt. The relationship between ut and qt will be 
implicitly expressed in the generated flow values (defined in Section 3.3). 
(2) Add an arc between any ui∈ U' and ut, and define its capacity C(ui, u

t) to be a 
similarity score between the two users, 0 < C(ui, ut) ≤ 1. This places an upper-
bound for the flow values proportional to the user-user similarity. 
(3) Define the capacity between qt and any dk∈Dt to be a value in [0, 1] that 
indicates a matching score between the target query qt and the document dk. This 
places an upper-bound for the flow values proportional to the query-document 
similarity. 
(4) For any ui∈U' and qj∈Q', if arc(ui ,qj) ≠ null (meaning that the user ui submitted 
query qj), reverse the direction of this arc and set the capacity C(qj, ui) = 1, so that 
the flow value on arc(qj, ui) is bounded only by the upstream capacities (i.e. query-
document similarity), because of the reversed arc direction. Otherwise, set the 
capacity C(qj, ui) = 0. At this point we do not consider the frequency of ui 
submitting query qj. 
(5) For any arc arc(qj, dk) from qj in Q' to a document dk∈Dt, reverse the 
direction of this arc and define the capacity C(dk, qj) to be C(dk, qj) = sim(qj, dk) ⋅ 
sim(qj, qt) ⋅ P(dk | Uj,k), where sim(qj, dk) in [0, 1] indicates a matching score 
between the query qj and the document dk; sim(qj, q

t) indicates how similar this 
alternative query qj is to the target query qt; P(dk | Uj,k) indicates the conditional 
probability of users visiting dk given that they submitted the query qj, which can 
also be written as: 

),,(

),,(
),(),(),( tDkjUClick

kdkjUClicktqjqsimkdjqsimjqkdC ⋅⋅=  

}.),(),('{, nullkdjqarcnulljqiuarcUiukjU ≠∧≠∈= Note that Uj,k typically contains 

more than one user; Click(Uj,k, dk) is the total number of clicks made by the users 
who submitted qj on dk; Click(Uj,k, D

t) is the total number of clicks of these users on 
the whole search result set. C(dk, qj) places an upper-bound for the flow value 
jointly decided by the similarity between an alternative query qj and the target 
query qt, the matching score between qj and the document dk, and the likelihood 
that a user visits dk given that he submits qj. 
(6) For any arc(ui, q

t) for which ∃dk∈Dt, arc(ui, dk) ≠ null, reverse the direction of 
arc(ui, dk) and assign C(dk, ui) = sim(qt, dk) ⋅ P(dk|ui) ⋅ [1-P(dk| }{ iu )], where the last 

two factors represent the probability of a user ui visiting dk and the conditional 
probability of the other users not visiting dk given that they submitted the target 
query qt . This can also be written as: 
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where }{ iu =U'-{ui}; Click(ui, dk) = 1 if ui clicked on dk and 0 otherwise; Click(ui, D
t) 

is the number of documents clicked by ui. C(dk, ui) places an upper-bound for the 
flow value jointly decided by the matching score between the target query qt and 
the document dk, and the likelihood that other users also visit dk given that they 
also submit qt. 
(7) Remove all the arcs from ui∈ U' to qt. Because the inherent relationship is 
already reflected in the definition of C(dk, ui), these arcs are redundant and do not 
contribute to the collaborative ranking process. 
(8) END 

Finally, we want to provide an intuitive justification for constructing G'. A query 
represents the information needs of a user, and the motivation of search is to satisfy 
such needs. In G', flows of relevant information are moving through a network of 
collaboration towards the target user via different routes. Each of these flows 
contributes as a part to the overall information gain pertinent to the user’s needs. On 
each of the routes, there are an appropriately relevant document, an appropriately 
relevant query, and an appropriately relevant user; all of them together determine the 
contribution of the associated flow. Flows, when saturated, represent the collaborative 
contribution to the overall satisfaction of the target user’s information needs. By 
investigating G', we are able to study the relationship between the collaborative 
entities when the flows are sorted in the order of their contributions to the overall 
satisfaction of the target user’s information needs. Accordingly the associated 
documents en route can also be ranked using the FlowRank algorithm described in the 
next section. 

3.3   The FlowRank Algorithm 

Let s denote the source and t denote the sink, Fmax(s, t) is defined as the maximum 
flow that can be routed from s to t, which obeys all the capacity constraints. 
Intuitively, if the arcs are water pipes, the vertices are where they join each other, and 
the capacities on the arcs represent the cross-sectional area of the pipes, to find the 
maximum flow is to find how much water can be moved from s to t, given the 
constraints of the cross-sectional area of the pipes. The FlowRank algorithm is 
described in Figure 2. 

The FlowRank algorithm is based on the well-known Maximum Flow - Minimal 
Cut theorem [20]. This theorem proves that the maximum flow of a given network is 
equal to the minimal cut that separates the source and the sink, which in our case the 
cut is Dt, proved as follows. A set of cut-vertex denotes the set of vertexes whose 
removal will disconnect the graph [30]. By assumption that Dt is not the set of cut-
vertex on G', we remove Dt and its related arcs, and still have qt connected to G' via a 
set of vertex Vqt. ∀vqt∈Vqt : vqt∉Q, because by definition there’s no arc exists between 
two queries; vqt∉U, because of step (4) and (5) in 3.2; thus vqt∉D. Because D = Dt∪D' 
and D' is removed in step (1) in 3.2, vqt∈Dt. But this contradicts the assumption that Dt 

has already been removed from G'. Q.E.D. 
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The above proof is important for the validity of the algorithm in that ∀F(qt, ut), ∃ 
di

t ∈Dt which is on the path of F(qt, ut). Because Dt is not inter-connected, we 
conclude the there is di

t on each of the paths of F(qt, ut), so that Dt can be ranked by 
sorting F(qt, di

t). 
 

Algorithm. FlowRank 

Input: Graph G' 

Output: Permutation π { )(),...,1(
t

md
t

d ππ }, td1 … t
md ∈Dt. 

1: Fmax(q
t, ut)  the maximum flow from source qt to sink ut 

2: foreach document 
t

id ∈Dt 

3:   F(qt,
t

id ) ← the flow value from source qt to sink
t

id  

4: Sort (descending) the documents
t

id in Dt using F(qt,
t

id )  

5: return ranks { })(),...,1(
t

md
t

d ππ  

Fig. 2. The FlowRank Algorithm 

4   Evaluation 

4.1   Experiment Setup 

From the query logs of a popular scientific document search engine, The CiteSeer 
Digital Library (http://citeseer.ist.psu.edu), we extracted a random sample of 100 
queries and the associated 1,334 unique documents retrieved by the search engine as 
relevant results. Obtaining editorial ratings for a large number of documents is an 
extremely time-consuming and labor-intensive process, however the size of our 
dataset is comparable to those used in [21]. The queries were anonymized, and then 
verified by human annotators to be meaningful [22]. 

Our evaluation required a log of user interactions (i.e. clickthroughs, etc.) with the 
documents. The extracted queries and documents were presented to five evaluators, 
all graduate students in Computer Science. For each document, the title and 
abstract/snippet were displayed. In order to minimize the potential bias induced by 
ranking, for each query the associated documents were shuffled so that the evaluators 
were not aware of the original ranking produced by the search engine, and the 
evaluators were explicitly informed about this process. The evaluators were asked to 
independently choose one of the three ratings for each document based on their 
subjective perception of how relevant a document is to the associated query. The three 
ratings were: “Definitely clicked”, which means the evaluator believes he/she would 
click on the document if he/she were to submit the query; “Probably clicked”, which 
means the evaluator may or may not click on the document, and “Never clicked”, 
which means the evaluator believes he/she would not click on the document. The data 
collected in this procedure is labeled as Ds. Ideally we would like to keep track of a 
user’s clicks on a document, denoted by a 4-tuple (q_id, doc_id, u_id, p_click), where 
q_id and doc_id denote the query and corresponding documents, u_id denotes the 
user, and p_click denotes the probability of the user clicking on the document. In 
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processing Ds, the rating “Definitely clicked” was translated into p_click=1.0; 
“Probably clicked” was translated into p_click=R where R is a random variable within 
(0, 1); “Never clicked” was translated into p_click=0.0. The obtained data Ds was then 
used to simulate user clickthrough. 

Relevance judgments for the dataset were generated by presenting the same queries 
and documents to another two evaluators who are both computer scientists. This time, 
the evaluators could check the actual content of the document when necessary. Each 
of the evaluators was asked to rate the document in a five-point scale from 0 to 4, 
defined as: 

0. Irrelevant match: the document did not contain any information about the 
query. 

1. Marginally relevant match: the query terms might appear in the document but it 
was mainly about something else. 

2. Borderline match: the document could be rated as 1 or 3. 
3. Fairly relevant match: the document contained relevant information about the 

query terms, but should not be picked if only one document were allowed. 
4. Best match: the document contained highly relevant information about the 

query terms, and could be picked if only one document were allowed. 
      Data collected in this phase is labeled as De. 

A number of measures have been proposed to quantitatively describe the similarity 
between queries [15, 24, 25, 27]. In our implementation, the definition of similarity 
between queries was similar to the common query title measurement as described  
in [25]:  

),max(
),(

jTiT

jTiT

jqiqsim
∩

=  

where qi, qj were two queries and Ti, Tj were the terms in the titles of the documents 
returned by the search engine. In other words, the similarity between the two queries 
was in proportion to the number of common terms in the titles of the search results. If 
the titles were similar, the queries were also similar. 

User similarity metrics are commonly adopted in collaborative recommendation 
and filtering systems, because by learning from other “like-minded” users, one can 
predict a user’s preference (see [25] for a recent survey). User similarity is inherent in 
our model because of step (2) of the algorithm. The user similarity score is the upper-
bound for the flow values. For simplicity of computation, we currently treat all users 
the same, so for any two users ui and uj, sim(ui, uj) = 1. We justify this assumption by 
noting that all of the five evaluators were graduate students in Computer Science and 
most likely familiar with the search topics. However, it would be interesting to 
observe the impact of different user similarity metrics in the next phase of evaluation. 

Finally, the similarity scores between the queries and documents were derived 
from the search engine. Now a transformed query graph was computed for each of the 
queries, and the FlowRank algorithm was implemented on the graphs to generate the 
collaborative rankings. Adjacent matrixes were built to represent the transformed 
query graphs, with elements being the arcs’ capacities. In our experiment, the 
maximum-flow calculation module was based on Rothberg’s implementation of 
Goldberg's Push-Relabel algorithm [23], which is usually considered the fastest in 
practice. 
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4.2   Results and Discussion 

The output of FlowRank (F) was compared with that of other two baseline ranking 
algorithms for evaluation. The HITS algorithm [4] was implemented and the ranking 
(H) for the documents was recorded. The original ranking (S) generated by CiteSeer 
was also recorded. The metrics to measure the ranking accuracy was the Discounted 
Cumulative Gain (DCG) first introduced in [26] and compared to other metrics in 
[28]. The main reason to use DCG is that it assigns more weights to highly ranked 
documents, and allows us to differentiate various levels of subjective relevance 
judgment for the human evaluators. For a given query q, DCG is defined as: 

                  ( )= +

−
=

N

d d

dR

NqDCG
1 1ln

1)(2
),(                                       (1) 

where R(d) is the editorial rating of the d’th webpage in the top N search results.  
Intuitively, a higher DCG reflect a better ranking of the search results. DCG was 

computed for the top 20 ranked documents in H, S, and F, since users seldom look 
beyond the first few result pages [31]. The ratings from the two evaluators in De were 
averaged as the editorial ratings to be used in the DCG calculation. 

FlowRank achieved significant improvements on the rankings produced by the two 
baseline algorithms. This advantage was reflected in the average DCG metrics. In 
both comparisons, FlowRank was able to improve the ranking for about 47% of the 
queries. Over all ranks, the average DCG for F was 59.42, compared with 57.54 for S 
and 57.37 for H. The number of queries with DCG increased, decreased, and without 
change was summarized in Figure 3(a). 

Figure 3(b) plots the average DCG curves for the three ranking algorithms (F, H, 
S) at ranks 1 – 20, together with the ideal curve. FlowRank outperformed the other 
two baseline algorithms and quickly approached the ideal curve, which began to level 
off upon the rank 10. This confirmed that the documents ranked below position 10 
were in fact less relevant. 

In order to further investigate if there is linear correlation between the collaborative 
contribution considered by FlowRank, and the amount of increase in the average DCG 
over the two baseline algorithms, the improvement in the DCG scores for each of the 
queries was cross-examined with the size of the transformed graph. Here an 
assumption was made that the larger the transformed query graph, the more 
collaborative the search process would be. A correlation test was performed on the 
two variables: size S and increase in the DCG I. The Pearson correlation of S and I 
was 0.334 with a P-value of 0.033 (α-level was 0.05), confirming a positive 
correlation between the two. 

A simplification was drawn in the current implementation of the flow-based model, 
in which the arc capacities between {ui'} and ut were assigned the same values, 
indicating identical collaborators. Three runs of the FlowRank algorithm were 
performed in which the number of users was purposefully changed. Correlated 
changes in the DCG improvement had been observed. The correlation was not 
significant, which we believed would be mostly due to the small number of users. 
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Fig. 3. (a) DCG changes for queries; FlowRank was able to improve the search ranking for 
about 47% of the queries. (b) Average DCG curves; The H and S curves hang below the F 
curve by about 15%. 

The maximum flows were currently calculated using the Push-Relabel algorithm 
[23], because the sizes of the graphs were relatively small, and runtime efficiency 
was a primary concern due to the online nature of collaborative ranking. However, 
depending on the scale (and often the subject domain) of a collaborative search,  
the graph can become very dense or sparse, or can become so huge that access to 
the entire graph is impractical. Different maximum-flow algorithms, e.g. the 
shortest augmentation path algorithm [29], should be used with case-by-case 
consideration. 

5   Conclusion and Future Work 

We proposed a comprehensive flow-based graph model of collaborative ranking. 
Exploiting the relationships between relevant queries, documents, and users, and 
users’ access patterns on the retrieved documents, this model translates the 
collaborative ranking problem into a flow-calculation problem in a search network. 
This unique perspective considers the ranking problem as a graph flow problem for 
which there is a large body of work. We discussed the implications of several ranking 
scenarios and presented a derived practical ranking algorithm. Evaluations in the 
document search domain using the DCG metrics showed its effectiveness by 
measurable improvements over the two baseline ranking algorithms.  

There are a number of directions towards which this work can be applied. Future 
work can explore different similarity metrics and use the FlowRank model to 
quantitatively investigate the complicated relationships between queries, documents, 
and users in a collaborative search setting. Obtaining editorial ratings for a large 
number of documents is an extremely time-consuming and labor-intensive process, 
which limited the scale of our preliminary experiment. A reasonable next phase of 
evaluation is to compare FlowRank against other collaborative ranking algorithms 
using a large-scale dataset. Instead of using simulated clickthrough data, real-world 
clickthrough logs can be used so that the definitions of the arc capacities can be 
further fine-tuned. Additionally, it may be valuable to also take into account user 
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interactions other than clickthroughs, such as how long a user spent reading a 
document. Given the generalizable nature of the proposed network flow model, we 
believe that it can be applied to a number of other problems dealing with user 
feedback and collaborative search behavior. 
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Abstract. Many clustering algorithms are not applicable to high-dimensional
feature spaces, because the clusters often exist only in specific subspaces of the
original feature space. Those clusters are also called subspace clusters. In this
paper, we propose the algorithm HiSC (Hierarchical Subspace Clustering) that
can detect hierarchies of nested subspace clusters, i.e. the relationships of lower-
dimensional subspace clusters that are embedded within higher-dimensional sub-
space clusters. Several comparative experiments using synthetic and real data sets
show the performance and the effectivity of HiSC.

1 Introduction

In high-dimensional feature spaces, many clustering algorithms are not applicable be-
cause the clusters often exist only in specific subspaces of the original feature space.
This phenomenon is also often called curse of dimensionality. To detect such lower-
dimensional subspace clusters, the task of subspace clustering (or projected cluster-
ing) has been defined recently. We will refer to a subspace cluster associated to a
λ-dimensional projection/subspace (i.e. spanned by λ attributes) as a λ-dimensional
subspace cluster. The dimensionality of a subspace associated to a subspace cluster is
called subspace dimensionality.

In this paper, we focus on a second class of algorithms that assign each object to a
unique cluster (or noise) rather than algorithms that allow overlapping subspace clus-
ters. Existing algorithms for non-overlapping subspace clustering usually have one se-
vere limitation in common. In case of hierarchically nested subspace clusters, i.e. several
subspace clusters of low dimensionality may together form a larger subspace cluster of
higher dimensionality, these algorithms will miss important information about the clus-
tering structure. For example, consider two axis-parallel lines in a 3D space that are
embedded into an axis-parallel 2D plane (cf. Figure 1(a)). Each of the two lines forms
a 1-dimensional subspace cluster. On the other hand the plane is a 2-dimensional sub-
space cluster that includes the two 1-dimensional subspace clusters. In order to detect the
lines, one has to search for 1-dimensional subspace clusters, whereas in order to detect
the plane, one has to search for 2-dimensional subspace clusters. Moreover, searching
subspace clusters of different dimensionality is essentially a hierarchical problem be-
cause the information that a point belongs e.g. to some k-dimensional subspace cluster
that is itself embedded into an l-dimensional subspace cluster (k < l) can only be un-
covered using a hierarchical approach.
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Several subspace clustering algorithms aim at finding all clusters in all subspaces
of the feature space. Those algorithms produce overlapping clusters where one point
may belong to different clusters in different subspaces. Well-known examples of such
algorithms include e.g. CLIQUE [1], ENCLUS [2], SUBCLU [3], and FIRES [4].

Here, we focus on finding non-overlapping subspace clusters, i.e. assigning each
point to a unique subspace cluster or noise. The probably most prominent examples for
subspace clustering algorithms producing non-overlapping clusters are e.g. PROCLUS
[5], DOC [6], and PreDeCon [7].

However, none of the proposed approaches to subspace clustering can detect nested
hierarchies of subspace clusters. Thus, in this paper, we propose HiSC (Hierarchical
Subspace Clustering), a new algorithm that applies a hierarchical approach to subspace
clustering and, thus, detects hierarchies of subspace clusters.

2 Hierarchical Subspace Clustering

Let D be a data set of n feature vectors of dimensionality d (D ⊆ d). Let A =
{a1, . . . , ad} be the set of all attributes ai of D. Any subset S ⊆ A, is called a sub-
space. The projection of an object o ∈ D into a subspace S ⊆ A is denoted by
πS(o). The distance function is denoted by dist. We assume that dist is one of the
Lp-norms.

The aim of HiSC is to detect clusters of lower dimensional subspaces contained in
clusters of higher dimensional subspaces. Our general idea is to evaluate whether two
points are contained in a common subspace cluster. For example, two points that are
in a 1D subspace cluster may be contained in a 2D cluster that consists of the two 1D
projections. We perfom this evaluation with a special distance measure called subspace
distance. This distance results in a small value whenever two points are in a common
low-dimensional subspace cluster, whereas the subspace distance is high if both points
are in a common high-dimensional subspace cluster or are not in a subspace cluster at
all. Therefore, our strategy is to merge those points into common clusters which have
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small subspace distances. A hierarchy of subspace clusters means that clusters with
small subspace distances are nested in clusters with higher subspace distances.

In order to define the already mentioned subspace distance, we assign a subspace
dimensionality to each point of the database, representing the subspace preference of
its local neighborhood. The subspace dimensionality of a point reflects those attributes
having a small variance in the local neighborhood of the point. As local neighborhood of
a point p we use the k-nearest neighbors of a point p, denoted by NNk(p). The variance
of the local neighborhood of a point p ∈ D from p along an attribute Ai ∈ A, denoted
by VARAi (NNk(p)), is defined as follows:

VARAi(NNk(p)) =

∑
q∈NNk(p)(πAi(q)− πAi(p))2

|NNk(p)| .

Intuitively, the subspace dimensionality is the number of attributes with high vari-
ance. Similar to [7], we assign a subspace preference vector to each point, indicating
attributes with high and low variance.

Definition 1 (subspace preference vector of a point)
Let α ∈ be a threshold value. The subspace preference vector of a point p ∈ D,
wp = (w1

p, . . . , wd
p)T, is defined as

wi
p =

{
0 if VARAi(NNk(p)) > α
1 if VARAi(NNk(p)) ≤ α

The subspace dimensionality of a point can now be defined as follows.

Definition 2 (subspace dimensionality of a point)
The subspace dimensionality λp of a point p ∈ D is the number of zero-values in the

subspace preference vector of p, wp, formally:

λp =
d∑

i=1

{
1 if wi

p = 0
0 if wi

p = 1

An example is visualized in Figure 1(b). The 9-nearest neighbors of the 3D point p
exhibit a 1D subspace cluster spanned by the attribute A3, i.e. the variance of the neigh-
borhood of p is high along attribute A3, whereas it is low along attributes A1 and A2.
Consequently, wp = (1, 1, 0)T and λp = 1.

Once we have associated the points of our database to a (local) subspace dimen-
sionality and to a subspace preference vector, we can now explain the main idea of
our hierarchical clustering algorithm. Conventional hierarchical clustering algorithms
like SLINK [8] or OPTICS [9] work as follows: They keep two separate sets of points,
points which were already placed in the cluster structure and those which were not. In
each step, one point of the latter set is selected and placed in the first set. The algorithm
always selects that point which minimizes the distance to any of the points in the first
set. By this selection strategy, the algorithm tries to extend the current cluster hierarchy
as close to the bottom of the hierarchy as possible.
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We will adapt this paradigm to the context of hierarchical subspace clustering where
the hierarchy is a containment hierarchy of the subspaces. Two or more 1D subspace
clusters may together form a 2D subspace cluster and so on. We simulate this behavior
by defining a similarity measure between points which assigns a distance of 1, if these
two points share a common 1D subspace cluster. If they share a common 2D subspace
cluster, they have a distance of 2, etc. Sharing a common subspace cluster may mean
different things: Both points may be associated to the same 2D subspace cluster, or both
points may be associated to different 1D subspace clusters that intersect at some point
or are parallel (but not skew).

If we assign a distance measure to a pair of points with the properties mentioned
before, we can generally use the well-known hierarchical clustering algorithms. Intu-
itively, the distance measure between two points corresponds to the dimensionality of
the data space which is spanned by the attributes of high variance of the neighborhoods
of the two points. We first give a definition of the subspace dimensionality of a pair
of points λ(p, q) which follows the intuition of the spanned subspace. Then, we will
define our subspace distance measure based on these concepts. In fact, the subspace
dimensionality is the most important component of our distance measure.

Definition 3 (subspace preference vector/dimensionality of a pair of points)
The subspace preference vector w(p, q) of a pair of points p, q ∈ D representing the

attributes with low and high variance of the combined subspace is defined by

w(p, q) = wp ∧ wq (attribute-wise logical AND-conjunction).

The subspace dimensionality between two points p, q ∈ D, denoted by λ(p, q), is the
number of zero-values in w(p, q).

A first approach is defining the subspace distance between two points p and q as the
subspace dimensionality λ(p, q). We only need a slight extension for points that have
the same subspace preference vector, but do not belong to the same subspace cluster.
For these points, we have to check whether the preference vectors of two points are
equal. If so, we have to determine the distance between the points along the attributes
of low variance. If this distance, which can be evaluated by a simple weighted Euclidean
distance using one of the preference vectors as weighting vector, exceeds α, the points
(or corresponding clusters) do not belong to the same cluster but belong to different
(parallel) clusters. The threshold α, playing already a key role in Definition 1, controls
the degree of jitter of the subspace clusters.

As λ(p, q) ∈ , many distances between different point pairs are identical. There-
fore, there are many tie situations during clustering. We resolve these tie situations
by additionally considering the Euclidean distance within a subspace cluster as a sec-
ondary criterion. This means, inside a subspace cluster (if there are no nested lower-
dimensional subspace clusters), the points are clustered in the same way as using a
conventional hierarchical clustering method. The Euclidean distance between p and q
hereby is weighted by the inverse of the combined preference vector w(p, q) (as given
in Definition 3). This inverse, w̄(p, q), weights the distance along attributes spanning
the cluster with 1, the distance along any other attribute is weighted with 0. Formally
we define:
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Definition 4 (subspace distance)
Let w = (w1, . . . , wd)T be a d-dimensional vector, and distw(p, q) =

∑
wi(πai(p)−

πai(q))2 be the weighted Euclidean distance w.r.t. w between two points p, q ∈ D.
The subspace distance between p and q, denoted by SDIST(p, q) = (d1, d2), is a pair
consisting of the following two values:

d1 = λ(p, q) +
{

1 if max{distwp(p, q), distwq (q, p)} > α
0 else,

d2 = distw̄(p,q)(p, q).

We say that SDIST(p, q) ≤ SDIST(r, s) if SDIST(p, q).d1 < SDIST(r, s).d1, or SDIST

(p, q).d1 = SDIST(r, s).d1 and SDIST(p, q).d2 ≤ SDIST(r, s).d2.

As discussed above, d1 corresponds to the subspace dimensionality of p and q, taking
special care in case of parallel clusters. The value d2 corresponds to the weighted Eu-
clidean distance between p and q, where we use the inverse of the combined preference
vector, w̄(p, q), as weighting vector.

Using the subspace distance as defined in Definition 4 as a distance measure, we
can basically run every hierarchical (or even non-hierarchical) clustering algorithm
which is based on distance comparisons. Examples for such algorithms are Single-Link,
Complete-Link, and the density-based method OPTICS [9]. HiSC computes a “walk”
through the data set similar to OPTICS and assigns to each point o its smallest subspace
distance with respect to a point visited before o in the walk. In each step of the algo-
rithm, HiSC selects that point o having the minimum subspace distance to any already
processed point. This process is managed by a seed list which stores all points that have
been reached from already processed points sorted according to the minimum subspace
distances. A special order of the database according to its subspace-based clustering
structure is generated, the so-called cluster order, which can be displayed in a subspace
distance diagram. Such a subspace distance diagram consists of the subspace distance
values on the y-axis of all points, plotted in the order which HiSC produces on the x-
axis. The result is a visualization of the clustering structure of the data set which is very
easy to comprehend and interpret. The “valleys” in the plot represent the clusters, since
points within a cluster typically have lower subspace distances than points outside of a
cluster. The complete integration of our distance measure into the algorithm HiSC can
be seen in Figure 1.

Input parameters. HiSC has two input parameters. First, the parameter k specifies the
locality of the neighborhood from which the local subspace dimensionality of each
point is determined. Obviously, this parameter is rather critical because if it is chosen
too large, the local subspace preference may be blurred by noise points, whereas if it
is chosen too small, there may not be a clear subspace preference observable, although
existing. However, in our experiments, choosing k in the range between 10 and 20
turned out to produce very stable and robust results. Second, the parameter parameter
α is important for specifying the attributes with low and high variance and, thus, α
also affects the computation of the (local) subspace dimensionality of each point. In
fact, attributes where the variance of the k-nearest neighbors of a point is below α are
relevant for the subspace preference of the point. In our experiments, it turned out that
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algorithm HiSC(D, k, α)
initialize empty priority queue pq // ordered by SDIST

for each p ∈ D do
compute wp;
p.SDIST = ∞;
insert p into pq;

while pq �= ∅ do
o := pq.next();
for each p ∈ pq do

pq.update(p, SDIST(o, p));
append o to the cluster order;

return the cluster order;

Fig. 1. The HiSC algorithm

HiSC is quite robust against the choice of α, as long as α is chosen between 0.1% and
0.5% of the attribute range, i.e. the maximum attribute value. However, if one expects
subspace clusters having a lot of jitter, α can be increased accordingly.

Runtime complexity. In the first loop the (local) subspace dimensionalities and prefer-
ence vectors are precomputed which requires the determination of the k-nearest neigh-
bors of each object. This step be done in O(n log n · d) time assuming the use of a
spatial index or in O(n2 · d) withou index support. During the run of HiSC, we have to
evaluate for each pair of points of the database its subspace dimensionality which is a
simple logical AND-conjunction on the subspace dimensionality vectors and, thus, has
a complexity of O(d). Thus, the overall runtime complexity of HiSC is O(n2 · d).

3 Experimental Evaluation

We evaluated the scalability of HiSC on a workstation featuring a 3.2 GHz CPU with
1GByte RAM. All parameters were choosen as suggested above. The scalability of
HiSC w.r.t. the data set size is depicted in Figure 2(a). The experiment was run on a
set of 3D synthetic data sets with varying number of records. Each data set contained
two 1D clusters, two 2D clusters, and noise points. As it can be seen, HiSC scales
nearly linearily w.r.t. the number of tuples in the dataset. A similar observation can be
made when evaluating the scalability of HiSC w.r.t. the dimensionality of the data set
(cf. Figure 2(b)). The experiments were obtained using data sets with 1,300 data points
with varying dimensionality. Each data set contained two (d− 2)-dimensional clusters,
two (d − 1)-dimensional clusters, and noise. Again, the result shows a linear increase
of runtime when increasing the dimensionality of the data set.

We first evaluated HiSC on several synthetic data sets. Exemplary, we show the re-
sults on two data sets. Data set “DS1” (cf. Figure 3(a)) contains 3D points grouped in
three hierarchical subspace clusters and noise. Two 1D clusters (cluster 1.1 and cluster
1.2) are both embedded within a 2D cluster (cluster 1). Data set “DS2” is a 20D data
set containing three clusters of significantly different dimensionality and noise: cluster
1 is a 15D subspace cluster, cluster 2 is 10 dimensional, and cluster 3 is a 5D subspace
cluster.
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Fig. 2. Scalability of HiSC

cluster 1.1 (1D)

cluster 1.2 (1D)

cluster 1 (2D)

(a) Data set.

cluster 1.1 cluster 1.2

cluster 1 noise

(b) Rechability diagram.

Fig. 3. Results on DS1 (3D)

The results of HiSC applied to DS1 are depicted in Figure 3(b). As it can be seen,
the complete hierarchical clustering structure can be obtained from the resulting reach-
ability plot. In particular, the nested clustering structure of the two 1D subspace clusters
embedded within the 2D subspace cluster can be seen at first glance. Similar observa-
tions can be made when evaluating the reachability diagram obtained by HiSC on DS2
(cf. Figure 4(a)). HiSC has no problems with the three subspace clusters of considerably
different dimensionality. The clusters can again be visually explored at first glance.

We also applied PreDeCon and PROCLUS on DS1 and DS2 for comparison. Neither
PreDeCon nor PROCLUS are able to detect the hierarchies in DS1 and the subspace
clusters of significantly different dimensionality.

We applied HiSC to a real-world data set containing metabolic screening data of
2,000 newborns. For each newborn, the blood-concentration of 43 different metabo-
lites were measured. Thus, the data set is 43-dimensional containing 2,000 objects. The
newborns are labeled by one of three categories. The healthy patients are marked by
“control”, newborns suffering phenylketonuria (a well-known metabolic disease) are
labeled with “PKU”, and newborns suffering any other metabolic disease are labeled
with “others”. The resulting reachability plot HiSC generates when applied to this data
set is visualized in Figure 4(b). As it can be seen, HiSC produced a large hierarchy of
17D to 22D subspace clusters nested into each other. All these clusters contain approx-
imately 98% newborns marked with “control”. A second hierarchy of nested clusters
contains only newborns marked with “PKU”. The rest is a mix of all three categories.
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Fig. 4. Results on higher-dimensional data

4 Conclusions

In this paper, we presented HiSC, the first subspace clustering algorithm for detecting
hierarchies of subspace clusters. HiSC scales linearly in the dimensionality of the data
space and quadratically in the number of points. Several comparative experiments using
synthetic and real data sets show that HiSC has a superior performance and effectivity
compared to existing methods.
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Abstract. Almost a decade ago, Imielinski and Mannila introduced
the notion of Inductive Databases to manage KDD applications just as
DBMSs successfully manage business applications. The goal is to follow
one of the key DBMS paradigms: building optimizing compilers for ad
hoc queries. During the past decade, several researchers proposed exten-
sions to the popular relational query language, SQL, in order to express
such mining queries. In this paper, we propose a completely different and
new approach, which extends the DBMS itself, not the query language,
and integrates the mining algorithms into the database query optimizer.
To this end, we introduce virtual mining views, which can be queried
as if they were traditional relational tables (or views). Every time the
database system accesses one of these virtual mining views, a mining al-
gorithm is triggered to materialize all tuples needed to answer the query.
We show how this can be done effectively for the popular association rule
and frequent set mining problems.

1 Introduction

Almost a decade ago, Imielinski and Mannila [9] introduced the concept of an
Inductive Database, in which a Knowledge and Data Discovery Management Sys-
tem (KDDMS) manages KDD applications just as DBMSs successfully manage
business applications. Generally speaking, besides allowing the user to query
the data, the KDDMS should also give users the ability to query patterns and
models extracted from these data. In this context, several researchers proposed
extensions to the popular relational query language, SQL, as a natural way to
express such mining queries [8,10,11].

In our work, we aim at extending the DBMS itself, not the query language.
That is, we propose an approach in which the user can query the collection of all
possible patterns as if these are stored in relational tables. The main challenge
is how this storage can be implemented effectively. After all, the amount of all
possible patterns can be extremely large, and impractical to store. For exam-
ple, in the concrete case of itemsets, an exponential number of itemsets would
need to be stored. To resolve this problem, we propose to keep these pattern
tables virtual. That is, as far as the user is concerned, all possible patterns are
stored, but on the physical layer, no such complete tables exist. Instead, when-
ever the user queries such a pattern table, or virtual mining view, an efficient
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data mining algorithm is triggered by the DBMS, which materializes at least
those tuples needed to answer the query. Afterwards, the query can be executed
as if the patterns had been there before. Of course, this assumes the user poses
certain constraints in his query, asking for only a subset of all possible patterns,
which should then be detected and exploited by the data mining algorithm. As
a first step towards this goal, we propose such a constraint extraction procedure
starting from a collection of simple constraints.

Notice that the user can now query mining results by using a standard re-
lational query language, such as SQL. Furthermore, the user does not need to
deal with the mining algorithms themselves as these are transparently triggered
by the DBMS. We show how this approach can be implemented for the popular
association rule and frequent set mining problems.

2 Related Work

The idea to integrate data mining into databases has been addressed in a num-
ber of works [8,9,10,11]. Some of these works focus on extensions of SQL, as a
natural way to give the user the ability to mine the data. For example, the query
language DMQL was proposed by Han et. al. for mining relational databases [8].
DMQL adopts an SQL-like syntax for mining different kinds of rules such as
classification rules and association rules. Another example, is the MINE RULE
operator proposed by Meo et. al. [11], designed as an extension of the SQL
language. This operator was proposed specifically for association rule mining
discovery. The MSQL language [10], proposed by Imielinski and Virmani, is also
focussed on association rules. It extends SQL with the operators GetRules and
SelectRules that can, respectively, generate and query a set of association rules.
Other examples of query languages for data mining are LDL++ [13] and ATLaS
[14] of Wang and Zaniolo, which are extensions of LDL and SQL, respectively.
A more theoretical study of a data mining query language is the data mining
algebra proposed by Calders et. al. [3].

3 Virtual Mining Views

An association rule, defined over a set of items I,is an implication of the form
X ⇒ Y , where X, Y ⊂ I, and X∩Y = ∅. We say that X is the antecedent and Y
the consequent of the rule [2]. Let D be a collection of transactions, where each
transaction is a subset of I. Then, the rule X ⇒ Y holds in D with support s,
if s transactions in D contain X ∪ Y , and confidence c if c% of the transactions
in D that contain X also contain Y .

The transaction database D can be stored as a binary relational data table.
For each transaction, there is a set of tuples of the form (tid , item), where tid is
the transaction identifier and item is an item in that transaction. Note that this
table can also be implemented as a database view on the real data, as this is
typically not represented in such a binary relation. Then, the association rules,
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generated from the mining of D , can be represented in the same database where
D is stored, by using the following schema.

1. Sets(sid , item): This table represents all itemsets. A unique identifier sid is
associated to each itemset and, item is an item in that itemset.

2. Supports(sid , supp) : This table represents the supports of the itemsets in
the Sets table. For each itemset, there is a tuple where sid is the identifier
of the itemset and supp the support.

3. Rules(rid , sida, sidc, sid , conf ): This table represents all association rules.
For each rule X ⇒ Y , there is a tuple with an association rule identifier rid ,
the antecedent identifier sida , the consequent identifier sidc, the set identifier
sid of the complete itemset (X ∪ Y ), and conf the confidence.

Note that the choice of the schema for representing itemsets and association
rules also implicitly determines the complexity of the queries a user needs to
write. For example, one of the three set identifiers for an association rule, sid ,
sida or sidc, is redundant, as it can be determined from the other two. Never-
theless, it would also imply the user would have to write much more complicated
queries. Essentially, only the data table D and the Sets table are necessary in
order to be able to select itemsets or association rules in a single query. In-
deed, without the Sets table, this is impossible because such a query explicitly
generates the powerset of I, which is well known to be impossible in SQL [1].

It is of course also still possible to add more attributes to these tables in
which, for example, also other interestingness measures could be stored.

The main goal of the proposed pattern tables is to give the user the ability
to query data mining results in the same way as traditional relational tables
are queried. As already explained, however, it is intractable to store all 2|I|

itemsets or 3|I| association rules. On the other hand, the entire set of patterns
does not always need to be stored, but only the patterns that satisfy the con-
straints within the user’s query (e.g., minimum support, minimum confidence,
etc.). Therefore, in our proposal, the pattern tables are actually empty, and af-
ter the user has posed his query, the necessary patterns are materialized by the
mining algorithm, immediately before the DBMS answers the query. Of course,
this means that the DBMS should be able to detect the constraints in the given
query. In our approach, we extract such constraints from a relational algebra
expression equivalent to the user’s query. Note that every SQL-query can easily
be transformed into an equivalent relational algebra expression [7]. Such a rela-
tional algebra expression has the advantage of being procedural as compared to
SQL, which is declarative, making the constraint extraction easier.

4 Extracting Constraints from Queries

For reasons of simplicity, we study a restricted class of constraints: for association
rules we have minimal and maximal support, minimal and maximal confidence,
plus the constraints that a certain item must be in the antecedent, in the conse-
quent, in the antecedent or the consequent, and Boolean combinations of these.
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The stricter the constraints we can extract, the more efficient query evalua-
tion will become, because the number of tuples that needs to be materialized
decreases when the extracted constraint is stricter. Note, however, that extract-
ing the best possible constraint, i.e. the most strict, is theoretically impossible,
even in the restricted case considered here. Indeed; suppose, for the sake of
contradiction, that an algorithm exists that always extracts the best possible
constraints. Then, this algorithm allows us to decide whether an SQL-query will
always return an empty answer as follows: given a query q, run the assumed
algorithm on the following query q′: select sid from Sets where not exists
(q); Obviously, on the one hand, if q always returns the empty answer, q′ will
never return any sid . In that case, the most strict constraint is “false”; i.e., no
itemsets nor rules should be mined. On the other hand, if q is not empty, q′

will produce the sid of every itemset, and hence, the constraint must be “true”.
Therefore, q is non-empty if and only if the assumed algorithm returns the con-
straint “true”. Deciding non-emptiness of SQL-queries, however, is well-known
to be undecidable [1]. Therefore, the algorithm proposed in this section is neces-
sarily incomplete. For simple queries, however, it will find strict constraints, as
will be illustrated with some examples.

As already explained earlier, the proposed constraint extraction algorithm
does not work directly on the SQL-query, but on an equivalent relational algebra
expression, which can be easily generated by existing algorithms.

Relational Algebra. A relational algebra expression is a sequence of set op-
erations on the relations, resulting in the answer of the query. Consider, for
example, the SQL-query shown in Fig. 1. The query asks for the rules and their
confidences, that have the item apple in the antecedent or consequent of the rule,
support of at least 40 and confidence of at least 80%. An equivalent relational
algebra expression for this SQL-query is

πR.rid ,R.conf σS2.sid=R.sid
(
σS1.sid=S2.sid (σS1.item=apple Sets)

× (σS2.supp≥40 Supports)
)
× (σR.conf ≥80% Rules)

In this expression, σR.conf ≥80% Rules expresses that we only select those tuples
from the relation Rules that satisfy the constraint R.conf ≥ 80%, × constructs
the Cartesian product of two relations, i.e., for every tuple of the first relation,
and every tuple of the second relation, a new tuple that is the concatenation of
the two tuples is in the result relation of ×. πR.rid ,R.conf produces a new relation
that has only the attributes R.rid and R.conf .

Notice that this expression can also be represented by its syntax tree, as is
illustrated in Fig. 1. For the sake of simplicity, we will continue working with
such expression trees instead of the relational algebra expressions themselves.

Algorithm. Given a query q as input, first, an equivalent tree of relational
algebra is constructed. As every leaf node in this tree represents a table or a
virtual mining view, the goal of the algorithm is to find which tuples should be
present in those nodes representing a virtual mining view, in order to answer to
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Fig. 1. An example query and its corresponding expression tree of relational algebra

the query. Thus, actually, the algorithm determines, for each of the aforemen-
tioned nodes, a constraint. For example, in Fig. 1, there are three leaf nodes that
represent virtual mining views: one with the Sets view, one with the Supports
view, and one with the Rules view. The goal of the algorithm is then to identify
that, in order to answer the query, it suffices to have in (a) and (b) only tuples
that come from itemsets having the item apple and with support of at least 40,
and in (c) only tuples that come from association rules with confidence of at
least 80% and generated from the same collection of itemsets present in (a) and
(b). We denote the subset of tuples of a virtual mining view V that come from
itemsets that satisfy φ by V [φ]. E.g., the subset of Sets needed to be materialized
for node (a) can be denoted Sets[apple ∧ supp ≥ 40].

Notice that because leaf nodes always correspond to the tables or virtual
mining views in the from-clause of the query, the algorithm finds, for every virtual
mining view in the from-clause, a constraint. If one virtual mining view is used
multiple times, multiple constraints will be extracted. This is not a problem, as
we can easily combine these different constraints by taking the union.

In this context, the procedure to extract the constraints on the virtual mining
views is as follows. Starting from the leaves, going bottom-up, the algorithm
determines for every node n in the expression tree which tuples should be in
the virtual mining views in order to answer the subquery associated with that
node, that is, the query represented by the subtree rooted at n. To answer the
subqueries associated with the leaf nodes themselves, obviously, all tuples should
be in, since the subquery is essentially asking for all tuples in the virtual min-
ing view. Going up, however, it becomes clear that, in fact, not the complete
virtual mining view is needed. E.g., in Fig. 1, for node (a), all tuples of Sets
are needed. When going up to node (d), however, we see that only those tu-
ples satisfying (item = apple) are needed. Henceforth, to answer the subquery
rooted at (d), it suffices that the virtual mining view Sets only contains those
tuples that come from itemsets having the item apple , that is, only Sets [apple ]
is needed.



Integrating Pattern Mining in Relational Databases 459

In the computation of the constraints on the virtual mining views, for every
node n, we annotate every node with a three-tuple (A,V ,O). In this three-tuple,
A is the set of attributes {A1, . . . , An} of that node, V is the set of virtual views
with the constraints for n {V1[φ1], V2[φ2], . . . , Vm[φm]}, and O a set of pairs
Ai −→ Vj denoting that the values in attribute Ai originate from the view Vj .
Notice that the values in an attribute can originate from more than one view
at the same time, namely if two views have been joined on this attribute. We
now give rules to compute the annotation of a node in the expression tree, if the
annotations of its child nodes have been given. In this section we will restrict
the detailed technical explanation to the constructions needed for the example
query given in Fig. 1. For the complete explanation, we refer the reader to [4].

Leaf annotation. The annotations for the leaves Sets S1 (node (a)) and Supports
S2 (node (b)) denote that there are two attributes connected to the views, named
S1 and S2, respectively, both associated to an empty constraint ([ ]). For the
leaf Rules R (node (c)), the annotation is a bit more complicated, as there are
in fact four objects that can be constrained: the antecedent of the rule, the
consequent, the union of the two, and the rule itself. Therefore, four variables
are introduced that represent respectively these objects: SR

a , SR
c , SR, and R.

Thus, the annotations for the leaves (a), (b) and (c) are, respectively:

S1.sid
S1[ ]

S1.item

S2.sid
S2[ ]

S2.supp

R.rid
R[ ]

R.conf
R.sida SR

a [ ]
R.sidc SR

c [ ]
R.sid SR[ ]

Annotation of internal nodes. In node (d), only those tuples coming from (a)
that satisfy the condition (item = apple) are selected. From the annotation of
node (a), we observe that the attribute S1.item originates from the view S1
(Sets). Thus, we can actually associate the constraint [apple ] to S1. By similar
reasoning, we can associate the constraint [supp ≥ 40] to S2 and the constraint
[conf ≥ 80%] to R. The annotation for nodes (d),(e) and (f) are, respectively:

S1.sid
S1[apple]

S1.item

S2.sid
S2[supp ≥ 40]

S2.supp

R.rid
R[conf ≥ 80%]

R.conf
R.sida SR

a [ ]
R.sidc SR

c [ ]
R.sid SR[ ]

In node (g), a cartesian product is made from the tuples coming from nodes
(d) and (e). Therefore, all tuples from nodes (d) and from node (e) should be
considered at this node. The annotation for node (g) is then the union of the
annotations of its child nodes:

S1.sid
S1[apple]

S1.item

S2.sid
S2[supp ≥ 40]

S2.supp

In node (h), only those tuples coming from node (g) that satisfy the condition
(S1.sid = S2.sid) are selected. From the annotation of node (g), we can see that
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S1.sid is connected to the view S1 with constraint [apple ] and S2.sid is connected
to the view S2 with constraint [supp ≥ 40]. Then, according to the related
condition, the tuples really needed to be considered in node (h) are those coming
from the itemsets present in both of the views S1[apple ] and S2[supp ≥ 40], that
is, the same collection of itemsets having the item apple and with support greater
than or equal to 40. We can thus associate the constraint [apple ∧ supp ≥ 40]
to both views. Furthermore, as the itemsets come from the same collection, the
set of attributes of S1 are now connected to the view S2 and vice versa. The
annotation for node (h) is as follows:

S1.sid
S1[apple ∧ supp ≥ 40]

S1.item

S2.sid
S2[apple ∧ supp ≥ 40]

S2.supp

The annotation for nodes (i) and (j) are constructed in the same way as the
annotations for nodes (g) and (h), respectively.

Finally, root node (l) projects the tuples coming from node (j) over the at-
tributes R.rid and R.conf . Its annotation is similar to that one of its child node
(j), keeping, however, only the attributes R.rid and R.conf and its connections.
The annotation for this node is then:

S1[apple ∧ supp ≥ 40]
S2[apple ∧ supp ≥ 40]

R.rid
R[conf ≥ 80%]

R.conf

SR
a [ ]

SR
c [ ]

SR[apple ∧ supp ≥ 40]

Observe that the annotation of the root node (l) has all the necessary infor-
mation we need in order to know exactly which tuples should be materialized
by the DBMS: According to the constraint [apple ∧ supp ≥ 40] associated to
the views S1 and S2, we can identify that the views Sets and Supports should
contain all tuples coming from itemsets having the item apple and with support
of at least 40. According to the constraint associated to the view R, it is easy to
deduce that the view Rules should contain the tuples coming from association
rules with confidence of at least 80%. Moreover, as SR is also associated to the
constraint [apple ∧ supp ≥ 40], the association rules should be generated from
the same collection of itemsets present in the views Sets and Supports. Note
that the constraints associated to SR

a and SR
c are both empty, which means that

there are no constraints considering the presence of items in the antecedent nor
the consequent of the rules, respectively. With this information, the DBMS can
trigger the necessary data mining algorithms with the identified constraints.

5 Conclusion

This paper proposes a different and new approach in which association rule
mining results can be queried as if they were stored in traditional relational
tables. This approach is based on the existence of virtual mining views that
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represent mining results. Every time the user queries one of these views, data
mining algorithms are triggered by the DBMS in order to materialize, according
to the constraints within the given query, the patterns needed to answer it.

From the user’s point of view, the virtual mining views will always contain
all association rules and itemsets, but, according to our proposal, none of the
patterns should be actually stored. In reality, the action of querying a virtual
mining view triggers a data mining algorithm or a set of data mining algorithms
transparently to the user, which means that the user does not need to know how
to use data mining algorithms. Moreover, due to the fact that only the DBMS
is extended, the user can query the data by using a standard relational query
language. Extensions of query languages are not necessary in our approach.
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Abstract. This paper describes an algorithm for discovering variable
length patterns in real-valued time series. In contrast to most existing
pattern discovery algorithms, ours does not first discretize the data, runs
in linear time, and requires constant memory. These properties are ob-
tained by sampling the data stream rather than processing all of the
data. Empirical results show that the algorithm performs well on both
synthetic and real data when compared to an exhaustive algorithm.

1 Introduction

Many of the data generated and stored by science, government, and industry
are multi-variate, real-valued, and streaming. These time series data come from
such diverse sources as financial markets, climatological satellites, and medical
devices. The potential uses of time series data are as varied as their sources. In
some cases, the goal is to make accurate predictions (e.g., finding patterns in
the fluctuations of the price of one stock that predict the price of another stock
3 days hence). In other cases, the goal is to gain a deeper understanding of the
underlying system generating the data. This paper is concerned with the latter
task, and presents a novel algorithm for finding recurring patterns (sometimes
called motifs [1]) in time series.

Most algorithms for discovering patterns in time series have one or more of
the following characteristics. The most common characteristic is an inability to
work with real-valued data except through prior discretization [2,3]. Even in
those cases where real-valued data are acceptable, multi-variate data typically
are not [4]. The algorithms also tend to be batch [5], rather than incremental,
which poses problems when the datasets are large or come from a high-volume
stream. Finally, there are often assumptions about the number or temporal ex-
tent of patterns that exist in the data [6]. In contrast, we present an incremental
algorithm with linear time and constant memory requirements for finding recur-
ring patterns in real-valued, multi-variate streaming data wherein the number
and temporal extent of the patterns are not known in advance.

The algorithm obtains these desirable properties by sampling. Given a data
stream, a user-specified number of large candidate windows of data are sampled
from the stream, sub-windowed, and stored. As time progresses, comparison win-
dows of the same size are periodically sampled, sub-windowed, compared to all
of the sub-windows from each of the candidate windows, and finally discarded.
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The similarity scores (according to DTW) of the k most similar comparison
sub-windows are kept for each candidate sub-window. If a candidate window
contains an instance of a pattern, then some of its sub-windows will contain
parts of that pattern, and the sampling process will yield comparison windows
and sub-windows with the same properties. To distinguish patterns from noise,
the mean similarity of the best matches for each candidate sub-window is com-
pared to a distribution of mean similarities constructed so as to enforce the null
hypothesis that the matching sub-windows do not contain instances of the same
pattern. When the null hypothesis is rejected, the candidate sub-window prob-
ably contains a part of a pattern instance, and adjacent sub-windows with this
property are “stitched” together to obtain the entire pattern.

Empirical results with a variety of datasets are reported. First, synthetic
datasets in which known patterns are added to a background of noise are used
to explore the ability of the algorithm to discover patterns of varying lengths
and frequencies of occurrence in the face of changes to user-defined parameters.
Second, the algorithm is run on real datasets for which the “true” patterns are
not known. The discovered patterns are compared to those found by an excep-
tionally expensive algorithm that performs an exhaustive search for patterns of
all lengths in the data. Results show that our algorithm finds many of the same
patterns found by the exhaustive algorithm, but with limited computation and
memory.

The remainder of this paper is organized as follows. Section 2 describes ap-
proaches to discovering patterns in data through discretization. Section 3 presents
our sampling algorithm and complexity analysis. Section 4 contains empirical re-
sults of our algorithm on real-valued data. Finally, section 5 summarizes our con-
tribution and points to future research directions.

2 Related Work

Extensive work has been done in the area of time series data mining, but little
of it has focused on mining recurring patterns in real-valued time series. Some
have applied clustering techniques to time series to mine interesting features of
the data.

Dynamic Time Warping (DTW) is used in Oates et al. [7] to cluster the
experiences of a mobile robot, using robotic sensor data as the source of the
time series, and in [8] to cluster multi-variate real-valued time series produced by
selecting one of k HMMs. While not focused on pattern discovery, they establish
that DTW can reliably be used as a similarity measure of real-valued multi-
variate data.

Colomer et al. [2] use DTW to classify patterns belonging to the same class of
operating situations in a level control system. Unlike our approach, they apply
DTW to episodes rather than to the original time series. Keogh and Pazzani [3]
propose a modification to DTW that operates on a piecewise linear representa-
tion of the data. Again this differs from our approach as it does not operate on
the raw observations.
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Lin et al. [4] define a motif as a previously unknown frequently occurring
pattern, and introduce a discovery method that uses a modified Euclidean dis-
tance function to improve the complexity of the search. To achieve this perfor-
mance they must reduce the dimensionality of the time series by means of a
piecewise aggregate approximation and then further transform the time series
into a discrete representation. Chiu et al. [1] extend Lin’s work, addressing the
scalability of the motif discovery algorithm and its ability to discover motifs
when noise is present in the time series. Lin et al. [9] extend the symbolic rep-
resentation introduced in [4] to better work with algorithms for streaming time
series.

Finally, Oates [5] investigates a variation of the pattern discovery problem,
wherein they determine what makes a set of sequences different from other se-
quences obtained from the same source. The approach operates on multi-variate
real-valued time series and uses DTW as the similarity measure, but does not
use a sampling approach.

3 Algorithm

Our sampling algorithm, figure 1, accomplishes two main tasks; the first is to
discover windows from a time series that contain pattern instances and the sec-
ond is to remove noise prefixes and suffixes in windows containing patterns. It
accomplishes these goals by repeatedly sampling fixed windows of the time series
looking for pairs of windows that have a small distance under DTW. We use the
distance between the windows as a measure of similarity, with large distances
indicating dissimilarity. We further constrain the algorithm by requiring it to
discover patterns without a priori knowledge of their existence. We must then
define some threshold for rejecting a match when the DTW distance between the
windows is too large. Since the goal is to distinguish patterns from noise, a distri-
bution of DTW distances between noisy windows is computed and used as a refer-
ence for thresholding the quality of a match. The algorithm performs these tasks
using bounded time and memory by fixing the number and size of the windows
that are compared. For an incremental version we sample windows on demand.

3.1 Noise Distribution

The sampling algorithm has no a priori knowledge of the existence of patterns in
the time series. We define the null hypothesis to be that two randomly sampled
windows do not contain instances of the same pattern. A distribution of window
similarities must be computed as a basis for rejecting the null hypothesis when
two windows contain a pattern instance. This is problematic because the core
assumption is that given a large enough window of time series, it will contain
some or all of a pattern instance with high probability if the patterns occur
frequently. We create windows containing non-contiguous observations from the
time series which ensures that these windows contain a pattern instance with low
probability. That is, we create a noise window of length w by randomly sampling
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and concatenating w individual observations. Warping these noise windows with
normal windows gives us a null hypothesis distribution.

3.2 Pattern Discovery

In the pattern discovery phase of the algorithm, we repeatedly sample candidate
windows from the time series and store the k-best matching comparison windows
to each. Our goal is to identify frequently occurring patterns, thus we rely on
sampling a sufficient number of windows to increase the probability of capturing
multiple instances of a pattern. For the algorithm to be successful, the window
length we choose must be large enough to fully contain any pattern we expect to
find, but this also means the windows will contain noise as well. Having noise in
the windows will increase the distance between them making it difficult to iden-
tify legitimate patterns. This is in addition to the problem of extracting only
the pattern from the window. To address both of these problems we consider
sub-windows. The relatively small size of a sub-window makes it useful for ad-
dressing this issue of granularity. Large windows contain noise and a large ratio
of noise to pattern will yield poor results under any distance measure because
the percentage of the window that will not have a strong matching region in
another window will be great.

The patterns are discovered as follows. Create two sets of sub-windows, the
candidate set, denoted candSW , and the comparison set, denoted compSW . It
is the candidate set from which we reject sub-windows that come from the noise
distribution and identify patterns from the remaining sub-windows. To populate
these sets, sample a window W having length w and generate all sub-windows Wi

having length w̄. This yields (w− w̄)+1 sub-windows which are added to either
set (candSW or compSW ) and repeat this process to a specified bound. Nor-
malize each sub-window to have mean 0 and standard deviation 1. When both
sets are populated, apply DTW to all pairs of sub-windows between the two sets.
Group the sub-windows in compSW by the window from which they were cre-
ated and add only the best Wi in compSW from each group to the list of matches
for Wi to which it is being compared. After warping all pairs, reduce the list of
matches for each Wi in candSW to the k with the smallest distance measures.

In the final step of the algorithm, bad matches are removed from the candi-
date set. Recall the noise distribution that was created by warping normal sub-
windows to sub-windows containing pure noise. As with candidate sub-windows,
keep only the k-best matches for each noise sub-window. Sort the noise set by in-
creasing average distance and a rejection threshold, γ, is established. Given some
α, γ = %(α ∗ n)&th average warp distance where n is the number of noise sub-
windows. Reject those sub-windows that have an average warp distance greater
than γ on the basis that the observed value is common in the noise distribu-
tion and therefore is not likely to be a pattern instance. After removing the
sub-windows containing bad matches, repeat the entire process using the now
smaller candidate set, the same noise set, and a new comparison set. The pro-
cess of eliminating candidate sub-windows is inherently error-prone because the
comparison windows are randomly chosen and therefore we may not get enough
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windows containing patterns to accurately accept or reject the candidate sub-
windows. By running multiple iterations of the algorithm we reduce the amount
of error introduced into the process.

sampling(timeSeries ,w , w̄ , iterations , alpha)
1 amtToSample ← amountToSample(timeSeries, w , 50)
2 compSW ← createSWSet(timeSeries, w , w̄ , amtToSample)
3 candSW ← createSWSet(timeSeries, w , w̄ , amtToSample)
4 noiseSW ← createNonContiguousSWSet(timeSeries, w)
5 combSW ← {∅}
6 addAll(noiseSW , combSW )
7 addAll(candSW , combSW )
8 for i ← 1 to iterations
9 do

10 if (iterations > 1)
11 then
12 compSW ← createSWSet(timeSeries, w , w̄ , amtToSample)
13 compareAllSubWindowPairs(candSW , compSW )
14 else
15 compareAllSubWindowPairs(combSW , compSW )
16
17 removeRejects(alpha, candSW , noiseSW )
18

Fig. 1. Batch Mode Pattern Discovery

When all iterations have completed we then stitch together the remaining
candidate sub-windows to form patterns. A pattern is formed by combining all
overlapping and adjacent sub-windows. The resulting window is then considered
to be a complete pattern instance.

The number of subwindows and the number of comparisons by DTW dom-
inates the space and time complexity, respectively. DTW has quadratic time
and space complexity, but the algorithm only considers pairs of subwindows of
length w̄, resulting in constant time and space costs. The algorithm samples n
candidate windows of length w and m comparison windows of length w requir-
ing O

(
n
)

and O
(
m
)

time and space. Each window of length w has (w − w̄ + 1)
subwindows of length w̄. Therefore, there are a total of n ∗ m ∗ (w − w̄ + 1)2

subwindows to compare and store, or O
(
nm
)

time and space. When considering
the incremental version of the algorithm, m = 1 so the complexity is linear in
the number of candidate windows.

4 Experiments

We have evaluated our algorithm by studying performance on a synthesized time
series with a recurring, embedded noisy pattern. Then we explore the uni-variate
time series of the Standard & Poor’s 500.
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We generated a uni-variate time series of 10,000 observations sampled uni-
formly in the range [0, 10]. The first 18 observations were used as a template for
the pattern to be embedded in the data. The template is duplicated 49 times and
noise chosen uniformly in the range [−1.0, 1.0] is added to each observation in
every copy of the template. We then insert the copies into the time series starting
at position 100 and incrementing by 100 until all 49 have been embedded.

We ran the sampling algorithm on the synthetic data varying the values for w̄
and α and we fixed w as 10∗w̄. To w̄ we assigned values from the set {5, 10, 15, 20}
and to α values from the set {0.05, 0.10, 0.15, 0.20}. It is expected that the noise
distributions will be normally distributed, and the false-positive rate should
increase proportionately with greater values of α. Sub-windows that overlap
a pattern should have higher quality matches than those that do not overlap
a pattern, and when sub-window stitching is performed the stitched pattern
should be 18 observations in length and align with the start of an embedded
pattern. Running multiple iterations of the sampling algorithm for a given set of
parameters, α and w̄, should reduce the number of errors made when selecting
candidate sub-windows to keep.

Type I and Type II errors made by the algorithm when it evaluates a sub-
window for either acceptance or rejection are important statistical measures
when determining if the algorithm is performing correctly. For our sampling
algorithm, a Type I error is made when the candidate sub-window spans an
instance of the embedded pattern but is rejected. Likewise, a Type II error is
made when the candidate sub-window does not span an instance of the embed-
ded pattern but is accepted. In this experiment we know the locations of every
instance of the pattern. Therefore counting the exact number of Type I and
Type II errors is possible.

Table 1. Type I & II Errors, w̄ = 5, α = 0.05

Iteration Total Accept Error Rate
Pattern 1 209 105 49.7%
Pattern 10 43 42 2.3%
Pattern 25 27 26 3.7%
Not Pattern 1 1057 45 4.2%
Not Pattern 10 5 4 80%
Not Pattern 25 2 2 100%

Table 1 displays the totals, categorized as sub-windows that span only pattern
observations and sub-windows that span only noise observations, after one, ten,
and twenty five iterations of the sampling algorithm for w̄ = 5 and α = 0.05. The
data are a good indication that our noise distribution is an accurate model of the
noise contained in the time series and performs well at eliminating sub-windows
spanning noise. After 25 iterations, we have nearly eliminated all sub-windows
spanning noise while keeping the percentage of Type I errors to a minimum. For
different values of α (i.e. 0.10 and 0.20), the algorithm performed similarly.
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4.1 Standard and Poor’s 500

In our real dataset experiment, we ran our algorithm on the daily closing price
of the S&P 500 for approximately 33 years. The data were 8760 uni-variate
time series observations, each fell in the range [4.4, 49.74]. As was the case
with the synthetic experiments, the parameters for this experiment were α =
{0.05, 0.10, 0.15, 0.20} and w̄ = {5, 10, 15, 20}.

Unlike in the previous experiment, we did not have knowledge of any patterns
occurring in this data. This made it necessary to perform an exhaustive search
of the time series to produce a basis for evaluating the quality of the patterns
discovered by our algorithm. Likewise, it is impossible to collect statistics with
regard to the quantity of Type I and II errors that were made, because there is
no way to determine when a window contains pattern observations and when it
does not.
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Fig. 2. S&P 500 Exhaustive Costs w̄ = 10

Figure 2 shows the patterns found exhaustively as a function of their aver-
age warp cost and sorted from best to worst. The exhaustive search warped all
pairs of sub-windows for a given sub-window length (ignoring overlapping sub-
windows) and maintained a list of the ten best matches for each candidate. The
warp cost depicted in the figures are the average of those ten matches for each
candidate sub-window. The plot shows that a small number of the candidates had
exceptionally good matches and a small number had exceptionally poor matches.

The top-ten candidate sub-windows found using the sampling algorithm for
sub-window size 10 all were in the 93rd-percentile out of 8751 sub-windows un-
der the exhaustive search results. Three of the ten results were in the top-100
candidates in the exhaustive search results. We have experimented on additional
datasets, including commonly cited multi-variate datasets (e.g. winding, sub-
cutaneous). The results of our algorithm on these data are analogous to the
uni-variate cases.

5 Conclusion

This paper described an incremental algorithm with linear time and constant
memory requirements for finding recurring patterns in real-valued, multi-variate
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streaming data wherein the number and temporal extent of the patterns is not
known in advance. Empirical results with synthetic data showed that it success-
fully finds known patterns and is robust with respect to the settings of user-
specified parameters. Empirical results with real data show that the patterns
found by the algorithm compare favorably to an (impractically expensive) ex-
haustive algorithm. Future work will focus on applications with high-volume
data streams (e.g., audio data) and automated representation tuning by, for ex-
ample, searching over sets of basis functions for those that yield high quality
(low match cost) patterns.
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Abstract. The Cognitive Drug Research (CDR) system is specifically
validated for dementia assessment; it consists of a series of computer-
ized tests, which assess the cognitive faculties of the patient to derive a
cognitive profile. We use six different classification algorithms to classify
clinically diagnosed diseases from their cognitive profiles. Good accuracy
was obtained in separating patients affected by Parkinson’s disease from
demented patients, and in discriminating between Alzheimer’s disease
and Vascular Dementia. However, in discriminating between Parkinson
disease with dementia (PDD) and dementia with Lewy bodies (DLB),
the accuracy was only slightly superior to chance; the existence of a sig-
nificant difference in the cognitive profiles of DLB and PDD is indeed
questioned in the medical literature.

Keywords: CDR computerized assessment system, dementia,
classification.

1 Introduction

Dementia is one of the most common disorders among the elderly; it causes a pro-
gressive decline in cognitive functions such as memory, attention and language.
The Cognitive Drug Research (CDR) system [1] is widely used in clinical trials
and has been specifically validated for use in dementia; it consists of a series of
computerized tests (tasks), which assess some cognitive faculties of the patient,
such as memory, attention, reaction times. The set of the measures collected
during all tasks represents the cognitive profile of the patient.

In [3] the cognitive profiles returned by the CDR test are used to address two
different classification problems: (a) to discriminate between demented patients
and controls, and (b) to discriminate from among the different types of dementia.
An accuracy higher than 90% was obtained on both tasks by using the Naive
Credal Classifier, a generalization of the Naive Bayes Classifier to imprecise
probabilities, or credal sets.
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In this paper, we propose a similar approach, but a few important differ-
ences in the data: (i) the number of tasks selected from the CDR battery is
smaller, and mainly restricted to the attentional measures. Indeed, it is not
clearly stated in literature whether the attentional measures of the cognitive
profile are really different between some kinds of dementia, and therefore the
subject is worthy of investigation. Moreover, a visit including only attentional
tasks would take no more than 10 mins., while a complete administration of
the CDR tasks would take between 30 and 45 mins. (ii) Standard deviation
and number of outliers of each featured measure are available, while only the
median was available in the previous study; indeed, fluctuations of cognitive
faculties, captured by the standard deviation of the variables, are important
to characterize the cognitive profiles, as shown in [4]; (iii) an enlarged set of
dementias is considered, and Parkinson’s patients are used instead of healthy
controls to assess whether the system is able to discriminate between motor im-
pairment and dementia. (iv) A peculiar investigation of this study is moreover
the inter-comparison of the accuracies obtained using the cognitive profiles as-
sessed at the first visit and at the third visit on the CDR test. Indeed, although
patients are usually trained twice in the clinical practice on the tests prior to
the definitive assessment of the cognitive profile at the third visit, performing
the classification directly on the first-visit data could allow for time and money
savings. We experimentally check whether first-visit data leads to classification
accuracy better or statistically not different from third-visit data (hypothesis
H0). If H0 is verified, we can indeed easily recommend the use of first-visit
data. If on the contrary the experiment show a statistical improvement of the
accuracy using third-visit data (hypothesis H1), the judgment becomes more
complex.

The aim of this paper is to better understand the domain of dementia anal-
ysis through cognitive profiles, which has been only rarely explored up to now
by means of ML techniques, and to provide findings useful to ML scientists
that will in the future work on similar data. We have looked for robust exper-
imental findings, supported by the results of a set of classification approaches,
rather than fine-tuning for performance a specific algorithm. We have therefore
considered a set of different classification algorithms, including very well-known
approaches such as J4.8, nave Bayes, logistic regression and other algorithms
which performed well on our data (classification via regression, lazy, etc.). Fur-
ther classification approaches have been excluded from the analysis because their
performance was remarkably worse compared to that of the algorithms eventu-
ally selected.

2 The CDR Test

Currently, there are more than 30 studies referenced in dementia literature based
on the CDR system. The system is entirely computerized, thus allowing for
precise measurement of the latency of each response.

The following tasks are considered in this study:
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– Simple reaction time (SRT): the patient should press the “yes” button as
quickly as possible as the word “yes” is displayed on the monitor. The task
is repeated 30 times.

– Digit VIGilance task (VIG): a random target digit is constantly displayed
on the monitor screen. A series of digits are then presented and the patient
should press “yes” as quickly as possible as the digit in the series matches
the target digit.

– Choice reaction time (CRT ): either the word “no” or the word “yes” is
displayed and the patient should press the corresponding button as quickly
as possible. 30 trials are performed.

– Delayed PICture recognition (DPIC): a series of 14 pictures is presented
on the monitor for the patient to remember. Afterwards, the same pictures
are presented to the patient, together with 14 distracting pictures; for each
picture the patient had to indicate whether or not it belongs to the first
series.

For each task, several index of performances are recorded.

3 The Dataset

Two separate datasets contain the cognitive profiles assessed at the first and
at the third visit on the CDR tasks. The dataset of the first visits contained
1842 records of cognitive profiles, while the dataset of the third visit contained
1670 records. Data were taken from patients before they entered different clinical
trials. The datasets used in this study contains patients from Western Europe,
Eastern Europe and Asia.

Different kinds of dementia are present in the dataset: Alzheimer disease (AD),
Dementia with Lewy Bodies (DLB), Parkinson Disease with Dementia (PDD),
Vascular Dementia (VAD); moreover, the dataset comprised patients affected
by Parkinson’s Disease (PD). PD patients are actually not demented, though
they suffer a significant motor impairment. The distribution of the diseases is as
follows: {AD 21%; DLB 10%; PDD 28.5%;VAD 34.5%; PD 6%} and it is almost
identical for the datasets of the first and of the third visit.

In particular, there is not yet gold standard for the clinical distinction of AD
and VAD, although there is the need of distinguishing between them because of
the differences in the necessary treatments.

PDD and DLB are also very similar diseases: they are characterized by both
dementia and parkinsonism, and their cognitive profiles have been found to be
striking similar [4].

Therefore, three classification tasks appear as of scientific interest:

– task 1 : to classify patients into three macro-classes as (AD-VAD, PDD-DLB,
PD);

– task 2a: to discriminate between PDD and DLB;
– task 2b: to discriminate between AD or VAD. This is the only task for which

features related to Delayed PIcture Recognition are available.
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The tasks have been implemented separately from each other, and evaluated
separately in this paper. However, in a real clinical use, they could be imple-
mented within an actual cascade classification system, the output of classifier 1
possibly feeding, depending on the classification output, classifier 2a or 2b. Such
an architecture would allow to easily use the additive DPIC features for tasks
2b.

4 Experimental Setting

Datasets have been analyzed using six different classification algorithms, imple-
mented within the open source1 WEKA software [5]. Classification algorithms
have been used with their default settings.

We relied on the indication of the CDR staff as for the set of features to be
used. All the considered features are numerical; however, we discretized them
through the MDL-based supervised discretization algorithm originally proposed
in [6]. Indeed, the experimental investigation carried out in [7] showed that quite
frequently the use of such discretization algorithm leads to improved accuracy
compared to the raw data. This turned out to be the case even for our dataset;
for instance, J4.8 improved of about 2 accuracy points thanks to the use of
discretized data.

The accuracy of the classifiers has been assessed via 10 runs of 10-fold cross
validation. The statistical significances of the differences in accuracy have been
tested via a t -test (5% significance); in particular, to properly manage the cross-
validation errors, we used the corrected resampled t -test implemented in WEKA.

For tasks (1) and (2a) the features related to simple reaction time, choice
reaction time, digit vigilance have been used; for task (2b), also the features
related to picture recognition have been used.

5 Results

5.1 Classification Task 1: {(AD/VAD), (PDD/DLB), (PD)}

The accuracies obtained on this task are shown in Table 1. Depending on the
classification algorithm, the classification accuracy ranges between 75% and 80%.

None of the 7 classification approaches showed a significant difference of ac-
curacy working on the data of the first visit rather that on the data of the third
visit; therefore, these results clearly support H0.

Classification-via-regression and logistic regression appear as the best per-
forming approaches. However, the objective of this study was mainly to get an
indication about the obtainable accuracy, rather than fine tuning the algorithms
for the best performance.

The confusion matrix for Logistic Regression is reported in Table 2; it shows
that most misclassifications occurs between (AD-VAD) and (PDD-DLB), while it

1 Available at the URL: http://www.cs.waikato.ac.nz/˜ml/index.html
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Table 1. Accuracy of different classification algorithms in task 1

1st visit 3d visit Significant
average std. dev. average std. dev. difference?

classifier
NAVE BAYES 75.81 3.18 74.90 3.46 NO

BAYES NETWORK 75.74 3.13 74.82 3.40 NO
J4.8 TREE 78.46 3.06 77.49 3.04 NO

SMO 78.12 2.89 78.11 2.90 NO
LOGISTIC REGRESSION 80.09 3.09 78.82 2.89 NO

LAZY.LBR 78.30 2.94 77.17 3.40 NO
CLASS. VIA REGR. (M5) 79.93 2.81 78.51 2.98 NO

Table 2. Confusion matrix for Logistic Regression on task 1

AD-VAD DLB-PDD PD ←classified as:

AD-VAD 898 117 6
DLB-PDD 181 510 13

PD 20 30 67

is quite rare for Parkinson’s disease to be confused with dementia. In particular,
a demented patient was likely to be diagnosed as PD with almost negligible
probability, while with slightly higher probability a PD patient is diagnosed as
demented. However, this was probably due also to the very low proportion of
PD in our dataset (6%).

5.2 Classification Task 2a: {(PDD), (DLB)}

By running the classifier on datasets containing all the instances of PDD and
DLB patients for first and third visit, we measured an accuracy between 70%
and 76%.

Table 3. Accuracy of different classification algorithms in discriminating between PDD
and DLB on a balanced dataset

1st visit 3d visit Significant
average std. dev. average std. dev. difference?

classifier
NAVE BAYES 56.00 6.51 58.29 7.03 NO

BAYES NETWORK 56.08 6.34 58.32 7.02 NO
J4.8 TREE 54.73 6.24 57.68 7.28 NO

SMO 55.63 6.19 57.23 6.90 NO
LOGISTIC REGRESSION 55.91 6.50 58.00 7.26 NO

LAZY.LBR 55.92 6.65 58.29 7.03 NO
CLASS. VIA REGR. (M5) 55.77 6.64 56.58 7.11 NO
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However, considering that (a) the ratio between PDD and DLB patients in
the dataset was about 3:1, and (b) that the similarity of the cognitive profiles
of PDD and DLB patients has been reported to be striking [4], we suspected
that the classifiers learned to predict the majority class, rather than effectively
discriminating between the two classes.

To check our hypothesis, we built balanced datasets, containing the same
number of PDD and DLB patients. The first-visit dataset contained 178+178
patients, and the third-visit dataset 155+155 patients. The results are reported
in Table 1.

The accuracy ranged between 54% and 58%; it was just slightly superior to
the 50% of a random guess. Also in this case, no significant differences were found
using either the first-visit or the third-visit data. However, the most important
finding of our analysis is that it is not possible, regardless the used data, to reli-
ably discriminate between the two diseases starting from the cognitive profiles.
The cognitive profiles of the two diseases were so similar that 9 out of the 11
features of the cognitive profile were discretized into a unique bin, i.e. they were
useless to discriminate between PDD and DLB.

We think these results to be mainly due to the largely overlapping features
of the two diseases; indeed, a recent clinical paper [8] states in its conclusions:
“from the pathologist’s point of view, the brains of PDD and DLB patients do
not present reliably distinctive features. Therefore, it is probable that in the near
future PDD and DLB will be recognized as the same disease with two different
courses”.

On the base of these findings, it seems hence advisable to merge these two
diseases into a unique class in future classification works.

5.3 Classification Task 2b: {(VAD), (AD)}

By running the classifier on datasets containing all the instances of VAD and
AD patients for first and third visit, we measured an accuracy between 71% and
74%. Also in this case, none of the classifiers showed a significant difference in
accuracy working on first-visit or third-visit data.

Table 4. Accuracy of different classification algorithms in discriminating between VAD
and AD on a balanced dataset

1st visit 3d visit Significant
average std. dev. average std. dev. difference?

classifier
NAVE BAYES 68.82 5.48 68.38 5.38 NO

BAYES NETWORK 68.27 5.44 68.34 5.37 NO
J4.8 TREE 70.08 4.92 68.96 5.38 NO

SMO 70.14 5.05 69.45 5.16 NO
LOGISTIC REGRESSION 70.18 4.98 69.19 5.11 NO

LAZY.LBR 69.14 5.21 68.77 5.26 NO
CLASS. VIA REGR. (M5) 69.70 4.87 68.58 5.10 NO
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The difference between the accuracy recorded on first-visit and third-visit was
lower than 2 points of accuracy for each classifier; nevertheless, 6 classifier out of 7
showed a better accuracy on the data of the first visit (2 times such improvement
was found to be significant). Overall, all classifiers support hence H0.

However also in this case, we wanted to avoid the prevalence of VAD patients
in the dataset (VAD/AD about 1.6 in the dataset), to bias the experimental
results; therefore, we cross-checked these results by running the classifiers also
on balanced datasets.

The balanced dataset of the first visit contains 355+355 patients, and that
of the third visit 346+346 patients. The accuracy is in this case around 70%,
with narrow differences between the different algorithms, as reported in Table 4.
Even the differences between the accuracies measured on the first visit data and
the third visit data are narrow; although 6 classifiers out of 7 show a slightly
higher accuracy on the first-visit data, in no case such difference is statistically
significant. Indeed, also these results fully support H0.

We finally report that a few features (mainly related to simple reaction time
and choice reaction time) were discretized into a single bin, being in practice
useless for classification.

6 Conclusions

The medical literature acknowledges the need for further research to improve
clinical definitions of dementia and to determine the utility of various standard-
ised instruments in increasing diagnostic accuracy, which currently average 58%
in DLB, 50% in in VAD and 81% in AD. The ability to apply a single diagnos-
tic assessment to a range of dementias, with good average sensitivity equivalent
to, or above that seen with current assessments, is hence a useful addition to
existing assessment tools and diagnostic criteria.

This paper provides some clear conclusions regarding the analyis of cogni-
tive profiles for dementia screening via ML techniques; in particular, we (a)
looked for robust results, inter-comparing the findings obtained by using differ-
ent classification algorithms and (b) we integrated our empirical results with
the domain-specific literature. Both such approaches are recommended when a
previously unexplored domain has to be investigated via ML techniques.

Our experimental results show that with accuracy up to 80% it is possible to
discriminate between Parkinson’s disease and the two dementia macro-classes
(PDD-DLB and AD-VAD). To reliably discriminate between PDD and DLB
starting from cognitive profiles is however not achievable; indeed, the actual
existence of a significant difference between the two diseases is currently strongly
debated within the medical literature. On the basis of these findings, we advice
to merge these two classes into a unique class in future classification works. A
further classification task of interest is to discriminate between AD and VAD
dementia; we show that in this case an accuracy up to 70% can be reached.
We have moreover found that a number of variables of the cognitive profile is
not useful in discriminating between AD and VAD; hence, machine learning
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algorithms appear to be useful also because they show the variables which are
sensitive for classification.

A interesting finding that using the first-visit data instead of third-visit data
does not lead to any worsening of the classification accuracy. Thus, we can indeed
strongly support the use of first-visit data, thus allowing for time and money
savings, from both the patients and the company viewpoint.
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Abstract. The Bayes optimal classifier (BOC) is an ensemble technique
used extensively in the statistics literature. However, compared to other
ensemble techniques such as bagging and boosting, BOC is less known
and rarely used in data mining. This is partly due to BOC being per-
ceived as being inefficient and because bagging and boosting consistently
outperforms a single model, which raises the question: “Do we even need
BOC in datamining?”. We show that the answer to this question is “yes”
by illustrating several recent efficient model averaging approximations
to BOC can significantly outperform bagging and boosting in realis-
tic situations such as extensive class label noise, sample selection bias
and many-class problems. That model averaging techniques outperform
bagging and boosting in these situations has not been published in the
machine learning, mining or statistical communities to our knowledge.

1 Introduction and Motivation

The typical aim of classification data mining is to build the most accurate model.
Research activity in the machine learning and data mining fields has produced
a large number of ensemble techniques such as boosting and bagging that can
combine multiple base models to increase accuracy beyond the single best model.
However, the use of the classic Bayesian statistical approach to multiple models,
Bayesian model averaging, is rarely reported in data mining and even when it is,
yields indifferent results [1,5]. The Bayesian approach of using multiple models is
to weight each model’s belief in a prediction (P (yi|x, θ)) by the model’s posterior
probability (P (θ|D)) and is known as Bayesian model averaging in the statistical
literature [11] and the Bayes optimal classifier (BOC) in the machine learning
and data mining literature [14]. The techniques we shall use in this paper are
approximations to the BOC since we do not average over all models. Given a test
set instance, x, to be classified into one of k classes (y1...yk), a training dataset
D and model space Θ the BOC chooses the class that maximizes equation (1).

argmaxyi : P (yi) =
∫

θ∈Θ P (yi|x, θ)P (θ|D)dθ (1)

The BOC is claimed to be optimal for a number of reasons under specific
conditions: Kohavi claims it reduces bias and variance [12] while Buntine claims
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it prevents overfitting [1] and Domingos [5] states “no other method can con-
sistently achieve lower error rates“. In addition there is significant experimental
evidence supporting its effectiveness in the statistical literature [11]. Yet there
seems to be little interest in using model averaging in data mining. Instead
the two most common ensemble model techniques are bagging and boosting [3].
These techniques are rightfully extensively used as they are relatively easy to
implement, have been shown to work for a variety of learners and a variety of
data sets. In contrast model averaging is typically more difficult to implement,
particularly since BOC in its rudimentary form requires performing an integra-
tion over the entire model space which is computationally prohibitive for the
complex model spaces such as trees and large datasets used in the data min-
ing. Compared to model averaging, ensemble techniques such as bagging and
boosting combine not average and the base unit is a vote not a probability.
Minka [15] succinctly notes the difference that BOC is a method of “soft model
selection” using multiple models when there is uncertainty to which model is the
best model. For example, if all posterior probabilities are the same then model
uncertainty is maximum. In contrast techniques such as bagging and boosting
are methods to combine multiple models to create a new (and potentially more
appropriate) model space than the base model space [15].

2 When Averaging Will Outperform Combining

In this section we compare and contrast model averaging and model combina-
tion and conclude the section by describing data set conditions where model
averaging should perform better than model combination. In later sections we
empirically test these claims. It may appear that model averaging and techniques
such as boosting and bagging are similar but how the multiple models are used
are quite different. Many ensemble techniques explicitly or implicitly combine
multiple models. For example, the serial nature of boosting to focus on misclas-
sified instances effectively means that the original tree built from the unweighted
training set has subsequent additional trees grafted onto the leaf nodes. In this
way the model space boosting is searching is a combination of the base model
class (trees). Similarly, it has been noted that bagging models can create a more
express model space than the base model space [15]. In contrast model averaging
never explicitly combines models. Rather, each model’s predictions are weighted
by the belief (posterior) that it is the true model. Furthermore, in the presence
of excessive number of training instances equation 1 will simply have most of
the posterior mass on a single model and perform no better than a single tree.
As the statistical literature [11] and Minka [15] note model averaging should
perform well when there is substantial model uncertainty where best-model un-
certainty can be quantified as being one minus the posterior probability of the
most probable model. We note that there are other general measures of model
uncertainty such as the entropy in the posterior [2]. Formally:



480 I. Davidson and W. Fan

Definition 1. Best-Model Uncertainty is the degree of belief that the most
probable model (θ∗) is not the best model in the model class (Θ). That is:
ModelUncertainty(Θ, D) = argminθ∈Θ (1 − P (θ|D))

When model uncertainty exists, it is because there is insufficient data to con-
clusively state that one model is the best and hence building combinations of
models can be perceived as building an overly complex model given the amount
of data. We see from definition 1 that model uncertainty is likely to exist if there
is no highly probable model. By a simple expansion of P (θ|D) = P (θ)P (D|θ)

P (D) using
Bayes theorem we see that this can occur if the numerator, particularly the like-
lihood is small. In decision tree learning this can occur for a number of reasons.
Since each tree path forms a distinct part of a model we can say that P (D|θ) =
Π1...nP (Di|Leaf(Di)) where Leaf(Di) is a function returning the leaf the ith in-
stance is assigned to. The term P (Di|Leaf(Di)) = Count(Class(Di),Leaf(Di))

Number(Leaf(Di))
where Count(Class(Di), Leaf(Di)) returns the number of training set instances
at the leaf having the same label as Di and Number(Leaf(Di)) the total number
of instances at the leaf node. The leaf nodes of the tree may be poorly or incor-
rectly populated for any number of reasons. The (non-exhaustive) set of data set
conditions we believe where this will occur and shall explore in this paper are:
1) Training sets with excessive class label errors (i.e. security/fraud applications
where labeling is difficult), 2) High dimensional data but a relatively few number
of instances (i.e. bioinformatics problems) and 3) Multi-class problems involving
a large number of classes (i.e. fault diagnosis).

In addition, even if model uncertainty is not particularly great, it may be
worth removing by averaging. In this paper we shall explore a situation discussed
in our recent work, sample selection bias [7]. Since the training and test data
sets are drawn from different distributions, even a highly probable model for the
training set may produce poor predictions on the test set.

3 Efficient Model Averaging Techniques

Random Decision Trees (RDT). RDT were originally proposed in [8]. Rather
than using purity functions (i.e. information gain) like traditional decision tree
algorithms, RDT chooses a feature/column to split on randomly. A discrete fea-
ture is chosen only once in each decision path. A continuous feature can be
chosen multiple times in the same decision path with a different decision thresh-
old each time. Since both feature and decision thresholds for continuous features
are chosen randomly, each RDT is likely to be different. The tree stops grow-
ing if either the number of instances at the current node is zero or the depth
of the tree exceeds some predefined limit. In our experiments, the depth of the
tree is limited to be up to the number of features in order to give each fea-
ture equal opportunity to be chosen in any decision path. During classification,
each random tree computes a posterior probability at the leaf node. That is, if
there are n examples at a leaf node and qi belong to class label yi, the posterior
probability P (yi|x, θ) = qi

n . For a given test instance, the posterior probability
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outputs from multiple decision trees are averaged to produce a final probabil-
ity estimate with the most probable class for an instance being the prediction.
As found in [8], typically 30 random trees give satisfactory results and as lit-
tle as 10 random trees produce results better than using a single traditionally
grown decision tree [8]. RDT have been shown to have accuracy comparable to
or higher than bagging and random forest but at a fraction of the training cost
for a variety of data sets including those with many irrelevant attributes [8,9].
Though with RDT each tree structure is created randomly the leaf probabil-
ities are estimated from the training data set. Therefore, in the limit as the
number of trees approaches infinity, RDT effectively computes the following:
P (yi|x, Θ) =

∑
θ∈Θ P (θ|D). qi,θ

nθ
RDT though superficially similar to random

forest of trees (RFT) are different in a number of ways (see [9] for details). Fur-
thermore, RDT are different to the random trees referred to by Dietterich [3] as
in that work the splits are randomly chosen from the twenty most informative
splits.

Parametric Bootstrap Model Averaging. The bootstrap model averaging
approach [2] is a frequentist approach to model averaging. The philosophy of
model averaging is to remove model uncertainty that arises due to a single
finite data set. The typical view of mining is that single training set of size
n is available from the underlying distribution that generated the data F . This
masks the underlying uncertainty that the training data is one of many that
could have been chosen/generated. Building a model for each possible data set
would create a distribution which is the frequentist analog to the posterior dis-
tribution but does not use a prior. However, typically we do not have the luxury
of many different data sets drawn independently of the same size so we can not
compute the uncertainty over the model space from them. To approximate this
distribution using a single data set, Efron [6] created the non-parametric and
parametric bootstrapping approaches. Non-parametric bootstrapping which has
been used extensively by the machine learning community is an example of at-
tempting to simulate draws from F when no knowledge of its form is known.
Parametric bootstrapping which has received little attention is used when some
underlying knowledge on the form of F is known. In this paper we make use of
a simple generative parametric model of F which assumes that the independent
variables are conditionally independent given the dependent variable value. The
parameters for this model are estimated from the data and virtual training ex-
amples are drawn/bootstrapped from it to build models. More complex models
of F could be used and remains an active research area. Formally the bootstrap
model averaging approach is: P (yi|x, Θ) =

∑
D′,θi=L(D′) P (yi|x, θi)P (D′|D) In

this paper, the learner, L, used with PBMA is J48 (Weka’s equivalent to C4.5)
to produce trees built with the default parameters.

4 Experiments

We now illustrate the performance of model averaging techniques and other
ensemble techniques when considering model uncertainty is beneficial (see section
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2) and find that bagging and boosting do not perform well. We use the Weka
software to perform bagging and AdaBoost using the J48 decision tree base
learner (equivalent to C4.5). This requires changing Weka slightly as the default
implementation of bagging in Weka aggregates conditional probabilities and not
votes [10]. In all experiments, regardless of the ensemble technique (PBMA,
Boosting, Bagging), the default parameters were used for J48. We randomly
divide the data into 80% for training and the remaining 20% for testing unless
otherwise stated.

Model Uncertainty Due to Class Label Noise
If there exists a deterministic relationship between the independent variables and
class label, and the model space is suitable, it is likely any reasonable learner
will find a highly probable model that can correctly map feature vectors of in-
dependent variables to their correct class labels. Hence the model uncertainty
would be relatively small. However, the addition of class label noise, i.e., the
correct class label being flipped to another class, would almost certainly reduce
the probability of the “correct model” otherwise trained from dataset without
label noise, hence increasing model uncertainty. We took several UCI data sets
and introduced 20% class label noise in the training sets only by randomly
flipping 20% of class labels. We then try the model averaging approaches and
compare them against the other ensemble techniques. To illustrate the efficiency
of PBMA and RDT we use only 30 models but use 100 models for bagging
and boosting. Table 1 (left) shows that the model averaging techniques out-
perform the other ensemble techniques and single models in each situation. A
pair-wise student t-test using the same training and test divisions, shows that
the poorer performing model average technique, PBMA, outperforms both bag-
ging and boosting at the 99% confidence interval for all data sets. As expected
boosting performs quite poorly as it apparently continues to build models to fit
the added noise while bagging can only occasionally significantly outperform a
single model.

Biased Training Sets
Recent work by Zadrozny and ourselves [17,7] has classified many learners in-
cluding decision trees and naive Bayes as global learners that can be affected by
sample bias. In particular the sample bias investigated is that the probability of
the instance being selected in the training data (denoted by the event, s = 1)
is conditionally independent of the instance label (y) given the instance’s de-
scription (x), formally: P (s = 1|x, y) = P (s = 1|x). This type of sample bias
is effectively when instances are not chosen at random to be in the training
set but instead depending on their description but not their label. The test set
is drawn randomly. This sample bias occurs prevalently in applications where
the occurrence of particular instances’ change but not the concept (i.e. relation-
ship between x and y). For the rest of this paper when we refer to sample
bias, we refer to this type of bias. Decision trees are known to be unstable,
and is categorized as “global“ classifier in [7]. The structure of decision tree
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is sensitive to sample selection bias, which makes it unlikely to find that most
probable decision tree otherwise trained from dataset without sample selection
bias.

Artificial Sample Selection Bias. We can artificially introduce sample bias
into the previously mentioned UCI data sets by first dividing the data into
training and test sets. We then sort only the training set on the attributes and
remove the first 10% of all instances. Note this introduces a training sample bias
but does not change the relationship between the independent variables and
class-labels as our previous experiments did. Table 1 (right) shows that model
averaging performs better than other ensemble techniques even though only 30
models are used and 100 models are used for bagging and boosting. Unlike the
previous situation, boosting performs better than bagging on average but both
perform worse than a single tree.

Sample Selection Bias in Newsgroup Classification. We now focus on the
newsgroup data where the training and test data sets are drawn from similar but
not identical distributions. We perform experiments on the 20 Newsgroups [16]
datasets using the standard bydate version division into training (60%) and test
(40%) based on posting date. The division creates a temporal bias. For example,
in the GUNS newsgroup the word “Waco” occurs extensively in news articles in
the training set but not in the test set as interest in the topic fades. However,
since the proportion of each class label is the same in the training and test
data sets there is no class label bias. We used the tool Rainbow [13] to extract
features from these news articles. The feature vector for a document consists of
the frequencies of top ten words by selecting words with highest average mutual
information with the class variable. To better understand the performance of
model averaging we treat the problem as binary classification between a variety of
newsgroups. Table 2 illustrates the improvement that model averaging provides.
Again, the better performance is obtained using only 30 models for the model
averaging approaches as opposed to 100 models for bagging and boosting. In
this situation boosting performs better than bagging but the model averaging
approaches outperform both and the single best model.

Table 1. Average error of various techniques on standard UCI data sets. Left: With
class label noise in training set only over one hundred repetitions. Right: With biased
training sets over one hundred repetitions. UP=Unpruned, P=Pruned.

Breast Vote Pima Credit Wine Breast Vote Pima Credit Wine
UP. Tree 10.6 5.2 31.8 36.5 37.6 1.5 3.7 26.5 3.1 35.3
P. Tree 4.5 12.6 31.8 37.4 37.0 2.1 3.7 27.6 12.2 35.3
RDT 0.5 3.7 30.0 30.6 26.4 0.5 2.7 26.1 1.0 27.8

PBMA 2.5 2.2 30.9 30.7 26.7 1.0 3.1 25.7 1.3 28.0
Bagging 4.0 4.2 33.9 34.3 34.3 4.04 3.7 28.0 5.61 38.2
Boosting 15.7 19.3 34.0 42.4 38.2 2.5 4.4 28.4 5.02 38.1
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Fig. 1. Accuracy versus No. trees: Bagging(-), Boosting(-x-), RDT(-o-) & PBMA(-+-)

Table 2. Error of various techniques on newsgroup data. Training set is first 60% of
the year’s postings and the test set the last 40%.

BaseBall Christian M.Cycle MidEast MidEast Mac.
Hockey Sale Guns Guns Electrical Religion

Unpruned Tree 15.7 7.9 10.5 20.3 14.4 18.4
Pruned Tree 15.7 7.4 10.2 20.3 14.4 18.7

RDT 11.9 6.6 8.5 10.5 7.2 12.7
PBMA 12.0 6.0 8.6 9.8 7.4 11.9
Bagging 14.8 7.9 10.5 20.3 14.4 18.4
Boosting 12.6 7.7 9.2 10.7 11.7 13.2

Model Uncertainty Due to Large Numbers of Classes
We examine four data sets where the number of classes is large: Digit (10), Glass
(6), Protein (6), Soybean (19). Furthermore, the number of columns is relatively
high and instances relatively small. For each data set the number of columns
and instances is: Digit (17, 469), Glass (10, 214), Protein (21, 116) and Soybean
(36, 683) respectively. Assuming a uniform distribution of classes amongst the
instances there are as little as 19 instances per class (not leaf) and hence model
uncertainty is likely to be high. We calculated the ten-fold cross-validated accu-
racy ten times for bagging, boosting, RDT and PBMA on these four data sets
building, 100, 250 and 500 trees. We found that the poorer performing model
average technique with respect to performance over all data sets, PBMA, out-
performs both bagging and boosting for all data sets at the 99% confidence
interval. When comparing the model combination approaches bagging, boosting
to the model averaging approaches RDT and PBMA we find that both averag-
ing approaches work significantly better except for the Glass data set when only
PBMA outperform both combination techniques (see Figure 1).

5 Conclusion and Future Work

Model averaging is a method of choice for statisticians to make use of multiple
models. However, model averaging is rarely used in data mining and instead
other ensemble techniques such as boosting and bagging are used extensively.
We believe this is for two primary reasons: a) Model averaging is perceived as
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being computationally inefficient and b) boosting and bagging have been shown
to work for a variety of problems. A valid question is then: “Does the data mining
practioner require model averaging as an ensemble technique?”. The answer to
this question is yes, there are situations where model averaging can significantly
outperform both bagging and boosting using two recent efficient approaches to
model averaging. This is because a) boosting and bagging are model combina-
tion not averaging approaches and b) model averaging works best when there is
model uncertainty. The situations where averaging to remove model uncertainty
is beneficial we explored in this paper include when the number of classes is
large, excessive class label noise and training sample bias occurs. We believe that
these are not academic situations but will occur in fields such as bioinformat-
ics and security and demonstrated that one of the situations (training sample
bias) occurs in the newsgroup data sets. In this work we identified situations
where model averaging performs well, but we empirically saw that boosting and
bagging performed badly. For some of these situations (i.e. class noise) and tech-
niques (boosting) it is well known why the technique performs badly, it would be
interesting to explore why bagging and boosting failed in these other situations.

Acknowledgements. We thank the reviewers for their helpful comments.
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Abstract. We analyze algorithms that, under the right circumstances,
permit efficient mining for frequent itemsets in data with tall peaks (large
frequent itemsets). We develop a family of level-by-level peak-jumping
algorithms, and study them using a simple probability model. The anal-
ysis clarifies why the jumping idea sometimes works well, and which
properties the data needs to have for this to be the case. The link with
Max-Miner arises in a natural way and the analysis makes clear the role
and importance of each major idea used in this algorithm.

1 Introduction

The frequent itemset mining (FIM) problem [1,2] is to determine combinations
of items that occur together frequently: frequent itemsets (FIS). In a store with
n items visited by s shoppers, the question is which of the 2n possible itemsets
are bought together by at least k shoppers, with k the threshold.

The support of itemset I, supp(I), is the number of shoppers that buy all
items from I. Itemset I is frequent if supp(I) ≥ k, and infrequent otherwise. If
J ⊆ I, then supp(J) ≥ supp(I). This is the monotonicity property of the support
function. If I contains m items and (1) if I is frequent, then all of its 2m subsets
are also frequent, and, (2) if I is infrequent, then all of its 2n−m supersets are also
infrequent. These principles are at the core of FIM algorithms because of their
potential to reduce the search space. Max-Miner [3] is the canonical example of
an algorithm that uses pruning principle (1) and Apriori [2] of principle (2).

Datasets with large FIS are called peaky. Algorithms designed to run on peaky
data, such as Max-Miner, MAFIA [4], certain versions of Eclat [10] and FP-
Growth [8], and GenMax [7] usually avoid outputting every FIS. Instead, they
can concentrate only on the maximal FIS. The basic idea for dealing efficiently
with large FIS is trying to jump up the peaks. Early in the processing, it is
important to determine the frequency of selected large itemsets. When a large
FIS is found, the challenge is to quickly avoid processing its subsets.

This paper uses simple probabilistic analysis to show that if you want (1) to
do FIM, (2) to handle peaky data efficiently, and (3) to use only simple ideas,
you are more or less forced into an algorithm that is very close to Max-Miner [3].
An alternate view is that if any key idea is omitted from Max-Miner, then its
performance will be much poorer for some simple real-world datasets.
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2 Two Shopper, Two Item Types Data Model

The two shopper, two item types data model is based on the following notation:
• si shoppers of type i (i = 1, 2),
• nj items of type j (j = 1, 2), and
• probability pij that a shopper of type i buys an item of type j.

By convention, p11 is the largest of the probabilities.
This shopping model brings out the most important aspects of peak-jumping

algorithm performance. The probability that a shopper of type i (i = 1, 2) buys
m1 different items of type 1 and m2 of type 2, regardless of what else is bought:

Pi(m1, m2) = pm1
i1 pm2

i2 . (1)

The expected support of an itemset that contains m1 particular items of the
first kind and m2 of the second:

s1P1(m1, m2) + s2P2(m1, m2), (2)
s1p

m1
11 pm2

12 + s2p
m1
21 pm2

22 . (3)

3 The Perfect Jump Algorithm

3.1 Perfect Jumps

Suppose an algorithm jumps and finds that some itemsets on a high level are
frequent. The question is how to make good use of this information. In principle,
monotonicity can be used. If we jump from level l to level x (x > l) and find some
FIS on level x, then the only candidates that need to be considered on level l+1
are formed from pairs of sets on level l that are not subsets of the FIS on level
x. Otherwise, the candidate is frequent based on monotonicity. Unfortunately,
there is no fast general algorithm to carry out this subsumption test.

This paper focusses on the idea: a jump to level x is successful if and only if
every candidate on level x is frequent. We call this a perfect jump. Now, every
candidate between levels l+1 and x is frequent. By only allowing perfect jumps,
the performance of the algorithm is limited, but the time for processing levels l
and x is proportional to the sum of the number of candidates on the two levels.

Suppose that on level l the FIS contain al distinct items. If all the FIS are
coming from a single peak, the itemset causing the peak contains al items. Fur-
thermore, the number of FIS on level l is

(
al

l

)
. When the number of FIS is not

given by this formula, there is no possibility that a perfect jump will occur.
Suppose, in a perfect jump case, we jump to level x. There are

(
al

x

)
candidates

on level x. They are formed by taking each combination of x items from the al

items that occur in the FIS on level l. If any early jump is successful, then
the jumping algorithm can be much faster than an algorithm that does not
try to jump. In particular, the jumping algorithm does not have to explicitly
determine the frequency status of the

∑x−1
j=l+1

(
al

j

)
itemsets that occur strictly

between levels l and x. Clearly, the biggest savings come from doing a jump from
a level l, small compared to al, to a level x near al. Therefore, we will tacitly
assume that jumps occur from small levels to high levels.
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3.2 The Algorithm

Based on the concept of perfect jumps, we present the Perfect Jump Algorithm.

1. (Start) Set l = 0. If the number of shoppers is greater than k then set the
empty set to frequent, otherwise set the empty set to infrequent.

2. (Check if done) If there are no FIS on level l then stop. Otherwise set l = l+1.
3. (Process level l) Determine the frequency of the itemsets of size l that can

be built from the FIS from level l− 1. (See [2] for details on how to do this.)
4. (Try to jump) Set al to the number of items that appear in the FIS on the

current level. If the number of FIS on this level is strictly smaller than
(
al

l

)
or l ≥ al/2 then go to Step 2.

5. (Try jumping) Set x = al − l. For every itemset that can be formed by
choosing x of the al items, determine whether or not the item set is frequent.
If every such itemset is frequent, then set l = x + 1 and go to Step 3.

6. (Continue) Go to Step 2.

When the conditions for attempting to jump are met, the Perfect Jump (PJ)
Algorithm tries jumping to level al− l because the number of candidate itemsets
to be tested at that level is the same as the number of FIS on level l. This
balances the work attempting jumps with the other work, thereby ensuring that
the algorithm is never slower than Apriori by more than a factor of two. In
favorable cases, i.e., when a large jump occurs, the PJ Algorithm is much faster.

4 Analysis of the Perfect Jump Algorithm

The shopping model from Section 2 generates a distribution of datasets. Every
dataset with s1 + s2 shoppers and n1 + n2 items will be generated with some
probability, but some of these sets have much higher probability than others. We
now consider a particular dataset in which the actual supports of the itemsets
equal the expected supports from the probability model.

To have a perfect jump, we must have a tall peak. Since p11 is the largest
probability, eqs. (1, 2) imply that there is no peak unless p11 is close to one.

We begin the analysis of the performance of the PJ Algorithm for the case
where the peak at level x = m1 − l is formed only from m1 items of type 1.

s1P1(m1 − l, 0) + s2P2(m1 − l, 0) ≥ k, (4)
s1p

m1−l
11 + s2p

m1−l
21 ≥ k. (5)

To meet the condition for a perfect jump the FIS on level l must be those itemsets
that contain l items of type 1 and no items of type 2. Obeying eq. (5) already
ensures that every itemset with l items of type 1 is frequent. To ensure that no
other itemsets are frequent, we need that for every r (1 ≤ r ≤ l),

s1P1(l − r, r) + s2P2(l − r, r) < k, (6)
s1p

l−r
11 pr

12 + s2p
l−r
21 pr

22 < k. (7)
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The first term on the left side of eq. (7) is biggest at r = 1, since p11 > p12. The
second term is biggest at r = 1 when p21 ≥ p22 and at r = l when p21 ≤ p22.

We now start a case analysis of the condition for a perfect jump to occur on
level l. The cases are selected for the most interesting parameter settings.

For the first case, assume that p21 = 0 and p22 = 0. To have a perfect jump
we need to have

pm1−l
11 ≥ k

s1
(8)

and

p12 <
k

s1p
l−1
11

. (9)

If we write p11 = 1− ε, then logarithm of eq. (8) says

(m1 − l) (−ε + higher order terms) ≥ ln(k/s1), (10)

ε ≤ − ln(k/s1)
m1 − l

(neglecting higher order term). (11)

Essentially, to have a perfect jump from a low level, p11 must be close to 1 and
p12 must be less than k/s1. For a particular dataset eq. (9) says that threshold k
has to be set large enough to filter out the noise from the items that are not part
of the peak, and eq. (8) determines whether there is any value of k that works.
The value of l plays only a small role in what is happening1. Thus, if this noise
resulting from shoppers buying the peak items and occasional not-peak items
causes trouble on level 1, it probably will cause trouble on the higher levels too.

In a second case, we assume that p21 and p22 are not both 0 but neither is
close to 1. In this case, we may not be able to make perfect jumps for small
values of l, but since in this case the second term in eq. (7) decreases rapidly
with l and the second term in eq. (5) only helps, we will be able to make a
perfect jump with a moderate value of l.

For a third case, we assume that p21 is large. When this is the case, both
types of shoppers contribute to the peak. We need both p12 and p22 to be small
(close to 0) to have a perfect jump to a peak based on items of just type 1.

A next case is considered, when three or four of the probabilities are large.
We now may have a peak based on all the items of both types. When s1 is small,
s2 is large, and p22 is large, we may have a peak based just on items of type 2.

In a last case, when p11 and p22 are near 1 but p12 and p21 are near 0, the
model is generating data with two peaks. The PJ Algorithm needs an additional
idea before it can do well on such data (See Section 6).

To summarize this section, the PJ Algorithm will do well on data with a single
peak so long as the subset of shoppers that are buying most of the peak items
are unlikely to buy any non-peak items. This is the case even in the presence of
other shoppers, so long as their buying patterns do not lead to other peaks.
1 If p11 is not extremely close to 1 (eq. (11)), we don’t have a peak. If p11 is quite close

to 1, then pl−1
11 is close to 1 for small l.
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5 The Perfect Jump Algorithm with Lower Bounds

If we know the frequency of all FIS on levels l − 1 and l, we can obtain a lower
bound on the frequency of the candidates on higher levels using [3]:

Supp(I * J) ≥
∑
j∈J

Supp(I * {j})− (|J | − 1)Supp(I), (12)

in which * denotes a union on disjoint sets. For us, I is a set on level l − 1 and
J is the set of items other than those in I that make up the peak.

We can modify the PJ Algorithm so that Step 5 replaces the actual count
on level x = m1 − l with the bound given by eq. (12) (where |I| = l − 1 and
|J | = m1− l−|I|). To analyze the conditions for a successful perfect jump using
this modified algorithm with data with a peak based only on items of type 1, we
still need eq. (9), but we need to replace eqs. (4, 5) with

s1[(m1 − 2l + 1)P1(l, 0)− (m1 − 2l)P1(l − 1, 0)]
+s2[(m1 − 2l + 1)P2(l, 0)− (m1 − 2l)P2(l − 1, 0)] ≥ k, (13)

s1p
l−1
11 [(m1 − 2l + 1)p11 − (m1 − 2l)]

+s2p
l−1
21 [(m1 − 2l + 1)p21 − (m1 − 2l)] ≥ k. (14)

For the case where p21 = 0, if we write p11 = 1 − ε, and carry out the
calculations to first order in ε, we obtain

(1− ε)l−1[1− (m1 − 2l + 1)ε] ≥ k

s1
, leading to ε ≤ 1− k/s1

m1 − l
. (15)

Suppose we write k/s1 = 1 − δ. For datasets associated with the probability
model, when k is almost as large as s1 (δ near 0), the PJ Algorithm needs p11
equally close to 1 whether it uses estimates or exact counts in order for the jump
to be successful. When k is less than s1 by a few powers of ten, the version of
the algorithm that uses exact counts will succeed in making perfect jumps with
values of p11 that are much further from 1.

6 The Perfect Jump Algorithm with Connected
Components

Items with intermediate probability interfere with the performance of the PJ
Algorithm. When this interference is coming from a second type of shoppers, it
can often be eliminated by breaking the data into disjoint components.

Define FIS I and J as connected when

|I| = |J | = |I ∩ J |+ 1. (16)

The resulting connectedness relation is symmetric, but not transitive2. The re-
flexive transitive closure is an equivalence relation. Therefore, we can divide the
2 This relation was previously used in some versions of the Eclat Algorithm [10].
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FIS on level l into equivalence classes by putting into the same class any two
frequent itemsets that are connected by a chain. Itemsets from two different
equivalence classes never interact in FIM algorithms. Indeed, if I and J are FIS
at level l and in different equivalence classes, then itemset I ∪ J can not be
frequent, because if it were, there would be a chain connecting I and J .

Thus, the PJ Algorithm remains correct if we partition the FIS on level l into
equivalence classes and process each equivalence class independently. On level 1,
all FIS are in the same class, but on higher levels there can be many classes.

For our random model, it is interesting to consider the conditions where the
itemsets made up of items of type 1 are in a different equivalence class than
those of type 2. To have two classes on level l, all those sets made up of l − t
items of type 1 and t items of type 2 with 1 ≤ t ≤ l− 1 must be infrequent. The
expected number of such sets is

s1P1(l − t, t) + s2P2(l − t, t). (17)

When this number is significantly below k the typical dataset from the model
will have two equivalence classes. Thus the condition for each peak to be in its
own equivalence class is the same eq. (7) except that eq. (7) permits t = l while
eq. (17) does not allow that case. The t = l case is associated with a peak that
will be in a separate component.

We see that by combining the idea of perfect jumps with partitions, we obtain
a simple algorithm that is efficient at finding the maximal FIS in some interesting
datasets with several large peaks.

7 The Max-Miner Algorithm

The PJ Algorithm with Connected Components is a fine algorithm except for
datasets with several items of intermediate probability. One way to overcome
this problem is to partition the search space of itemsets so that many of the
partitions don’t have itemsets with items of intermediate probability. This is the
first key idea of the Max-Miner Algorithm [3].

Max-Miner is a level-wise FIM algorithm that works like Apriori, except that
it also has peak-jumping capabilities. Throughout its running, it maintains a set
M which at the end will contain all the maximal FIS.

At the start, Max-Miner picks a total ordering σ on the set of all items. It then
begins its search for FIS. Assume that the algorithm has discovered the set Fl−1
of all FIS at level l− 1. From these sets, it generates the set Cl of all candidates
at level l. Based on σ and Fl−1, it then partitions Cl as follows. The ordering σ
induces a lexicographic order on the itemsets in Fl−1, say I1 < I2 < I3 < · · ·.
For I1, the algorithm finds all candidates that contain I1 and puts them in a
cell, called cell(I1). Then, from the remaining candidates, it finds all those that
contain I2 and puts them in cell(I2). It then determines cell(I3) etc. Notice that
some of these cells may be empty. After this partitioning phase, the algorithm
processes each non-empty cell as follows. For each itemset in cell cell(I), the
algorithm determines whether or not it is frequent. If it finds FIS, it constructs
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itemset JI which consists of all the items that occur in cell(I), except those that
are in I. Call peak (I) the set I ∪JI . The algorithm then enters its peak-jumping
phase. For each peak (I) it determines whether or not it is frequent (either by
explicit counting or by using the lower bound formula). If it is frequent, peak (I)
is added to M, otherwise the FIS in cell(I) are added to M. Then the algorithm
moves from level l to level l + 1.

When comparing Max-Miner with the PJ Algorithm, think of Max-Miner as
a parameterized version of the PJ Algorithm (relative to I) which attempts only
jumps from level 1 to the highest possible level (as determined by JI).

In practice, Max-Miner uses a more subtle strategy to update M. When it
adds peak (I), it removes from M all the itemsets that are subsumed by it.
And, when it considers adding the FIS in cell(I), it only adds those that are
not subsumed by an existing itemset in M. Clearly, under this update strategy,
there is the guarantee that at the end, M consist exactly of all maximal FIS.
Clearly this can be costly because each of the subsumption tests has to be done
explicitly, and no general algorithm exists that can do this efficiently. Regardless
of which update strategy is used, in the cases where peak (I) is frequent and JI is
large, Max-Miner can be expected to gain substantial performance improvements
(see the experimental results in [3]).

If the initial ordering σ picked by Max-Miner is a randomly selected ordering,
then the FIS at level l − 1, i.e. those in Fl−1, will also occur in some random
order. When the algorithm then enters its partitioning phase of the candidates at
level l, i.e. Cl, it can be expected that for I in Fl−1, the set JI will have a mixture
of low- to high-probability items. Even if JI is large, the analysis in Section 4
strongly suggests that peak (I) = I ∪ JI will be infrequent and the algorithm
will not be able to gain much from its peak-jumping abilities. Overcoming this
problem is the second key idea of Max-Miner. Rather than picking a random
ordering, it picks an ordering based on the supports of the items. Specifically,
the ordering is determined by arranging the items in increasing order of their
supports. This ordering is much more likely to decrease the generation of many
JI ’s which have a mixture of low- to high probability items. Consequently, the al-
gorithm considerably improves its opportunity to obtain significant performance
improvement on account of peak-jumping.

Max-Miner searches for FIS in level-wise (breadth-first) order. If one changes
to depth-first order, it is necessary to give up the full Apriori candidacy test.
Doing so leads to Eclat-like versions of Max-Miner [4,8,10,7]. However, with
respect to the performance gain due to peak-jumping, these Eclat-like algorithms
get essentially the same benefits as Max-Miner.

8 Discussion and Conclusion

When considering algorithms to process peaky data, it is necessary to consider
the variation of probability of various items and the correlations in the data.
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If the data has some low frequency items, some high frequency items, no
intermediate frequency items, and no important correlations, then the data may
have one peak. The P J Algorithm has good performance in this case.

If the data is the same as above but with important correlations, then there
may be several peaks. The PJ Algorithm needs to be augmented with a division
into independent components before it can handle such data efficiently.

These ideas still do not lead to an efficient algorithm if the dataset has several
items with intermediate probability. Many datasets have the property that the
occurrence of items is close enough to independent that the relative probability
of items on one level is similar to that on other levels. In such cases, one can do
jumps relative to an itemset that is missing the items of intermediate probability.
This is the essential reason why Max-Miner types of algorithms are efficient.

This line of reasoning makes it clear that ordering items from least-frequent to
most-frequent is critical to the success of Max-Miner. If for example, Max-Miner
had processed items in random order, it is unlikely that it would produce an
itemset that had all of the highly frequent but none of the moderately frequent
items. Likewise, it will not do well on datasets where the correlation structure
makes the frequency of items on one level greatly different from that on other
levels. Similar conclusions can be drawn for other maximal FIM algorithms.
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Abstract. Many classification algorithms suffer from a lack of human
interpretability. Using such classifiers to solve real world problems often
requires blind faith in the given model. In this paper we present a novel
approach to classification that takes into account interpretability and
visualization of the results. We attempt to efficiently discover the most
relevant snapshot of the data, in the form of a two-dimensional scatter
plot with easily understandable axes. We then use this plot as the basis
for a classification algorithm. Furthermore, we investigate the trade-off
between classification accuracy and interpretability by comparing the
performance of our classifier on real data with that of several traditional
classifiers. Upon evaluating our algorithm on a wide range of canonical
data sets we find that, in most cases, it is possible to obtain additional
interpretability with little or no loss in classification accuracy.

1 Introduction

In this paper we present a classification algorithm that takes into account human
interpretability of the results. We attempt to find the most relevant snapshot of a
data set, in the form of a two-dimensional scatter plot with easily understandable
axes. This search procedure results in a transformation of our original attributes
into two new features, which not only results in a potentially useful visualization
of the data, but can be used as the basis for a simple classifier. Using this
classifier, we can begin to investigate the trade-off between classification accuracy
and interpretability. We call this process Autonomous Visualization (AV).

Previously, there has been much work on the visualization of large data sets,
which usually involves projecting several dimensions onto a two-dimensional plot
that is easy for humans to comprehend. de Oliveira and Levkowitz provide a
recent survey of the field [4].

Many have tackled the problem of data-driven scientific discovery [11,6,8].
Others have attempted to add interpretability to clustering [15,14,1]. Our work
differs from these in that we are dealing with the problem of classification, and
that we do not limit our techniques to any specific application area.

Goldberger et al. describe a dimensionality reduction technique that can be
used for producing visualizations of high-dimensional data [9]. While their ap-
proach of finding an optimal transformation of the data to a lower-dimensional
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c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Left: The AV plot for a breast cancer data set separates the benign and ma-
lignant cases along a diagonal decision boundary. Right: This SDSS star/galaxy plot
produced by AV clearly separates the two classes while maintaining interpretable axes.

space before running nearest neighbor is similar in nature to what we are at-
tempting, one key difference is that the scatter plots they produce do not have
easily interpretable axes. This is also true for other techniques that produce fea-
tures that are linear combinations of the inputs, such as principal components
analysis and projection pursuit [7,13].

Others have proposed classifiers that take interpretability into account, but
we differ by not relying on the format of a rule set or nearest neighbor to make
our classifier interpretable, but rather on direct visualization [16,10,3].

2 Methodology

Our approach in designing a visualizable, interpretable classification algorithm
assumes that the data consists of real-valued input attributes and a single, dis-
crete output. At a high level, our technique consists of three steps: (1) We search
over two-dimensional scatter plots of the data, and select the most relevant plot
(where relevance in this context is defined below); (2) Given the most relevant
plot, we transform the data into the two dimensions defined by its axes, and
then train a simple classifier in this transformed space; (3) We classify future
data points by transforming them into this two-dimensional space, and applying
the classifier trained in the previous step.

2.1 Scatter Plots

In order to find the most relevant snapshot of the data, we search through
the space of possible two-dimensional scatter plots. To ensure that the features
plotted on the two axes are understandable to humans, as well as to make our
search tractable, we limit the types of scatter plots we consider. First, each of
the two axes in a scatter plot represents an arithmetic expression of only one or
two input attributes. Expressions of more than two attributes begin losing their
ease of interpretability. Furthermore, we limit the possible arithmetic expressions
to ones that contain commonly understood operators. We refer to the pair of
expressions that define a scatter plot as a pairexp (e.g., the axes in Figure 1).
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2.2 Relevance

The single most important aspect of the Autonomous Visualization process is
determining which scatter plots are better than others. This relies on defining
a relevance metric that allows us to score pairs of expressions on how likely
they are to produce interesting visualizations of the data. One characteristic of
visually appealing scatter plots is that points from the same class tend to be
grouped together, and apart from points in other classes. We developed a metric
based on this intuition, as well as an efficient algorithm to compute these scores.

We consider the input data to have been generated by a set of two-dimensional
Gaussian distributions, one per class. Thus, we transform the data into the two
dimensions defined by the current pairexp, and compute for each class k the
maximum likelihood Gaussian, with mean μk and covariance Σk. We then com-
pute the number of misclassifications that would occur if we used the Gaussians
to classify the points in our data set. We define the score of the current pairexp
to be this training set error. Intuitively, a plot that has well separated classes
should obtain a lower training set error, and thus a better score, than a plot
whose classes are not well separated. We use training set error rather than vali-
dation set error on a held out set because it is precisely the points in the training
set that we wish to visualize.

Our score can now be written as
∑

i I(ci �= ĉi), where I(·) is the indicator
function, ĉi = argmaxkP (xi|ci = k)P (ci = k) is the class predicted by the
Gaussian Bayes classifier, and ci is the correct output class for point xi.

2.3 Classification

Once we find the best pair of expressions, we have two human interpretable axes
on which to plot our data. However, we also now have transformed the original
m-dimensional input space to a two-dimensional space that can be used for
Gaussian Bayes classification. We classify new data points using the maximum
likelihood Gaussians learned for this new transformed space. Specifically, we
compute the predicted class ĉi for each point to be classified, as above.

3 Acceleration

3.1 Accelerating Score Computation

Näıvely, we can compute the relevance score for a pairexp by iterating through
every point in the data set and checking its Gaussian Bayes classification against
the true class label. This approach clearly takes linear time in the number of data
points, per pairexp. However, by exploiting the spatial structure of our data, we
developed an efficient algorithm for computing the score using kd-trees [2].

The first step in efficiently computing the score for a given pairexp of up to
four attributes (i.e., up to two per expression) is constructing a kd-tree with
these attributes as its dimensions. Note that although kd-tree construction is an
O(n log n) operation, since we are constructing the kd-tree with the raw attribute
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values (i.e., no expression-specific information) we only need to construct one tree
for all possible pairexps of these four attributes. With our current set of legal
expressions, this amounts to one tree constructed per nearly 3,000 pairexps.

We traverse the tree linearly, and at a given kd-tree node, we attempt to
calculate the number of misclassified points belonging to that node without
actually iterating through all of them. Given the bounding hyperrectangle for
the node, we check to see if any of the class Gaussians are dominant. In other
words, for every geometric location x in the bounding box, does there exist a
class k such that P (cx = k|x) > P (cx = l|x) for all classes l? If so, we say
that class k dominates this node, since every point will be classified as class k.
We can thus prune our search, because all points of other classes belonging to
this node will be misclassified, and we can immediately compute the score. If no
class dominates the node, we sum the results of recursive calls to the node’s two
children. We only ever iterate through the individual points of a node if we are
at a leaf node that is not dominated by any single class. For more details, please
refer to our technical report [5].

Finally, it is important to note that due to the monotonicity of our scoring
metric, we can perform early termination pruning, which is a significant source of
computational gain. As we traverse the kd-tree, we can terminate immediately
after computing a misclassification score that is greater than the best one so
far, even if we have only looked at a tiny portion of the tree. This allows this
algorithm to run much faster than the näıve one in practice.

3.2 Accelerating Pairexp Search

Finding the optimal scatter plot that represents the best scoring pairexp involves
a hefty combinatorial search. The search can be divided into a two-stage hierar-
chy. At an outer level, we iterate over tuples of attributes. In an inner loop, given
a tuple of attributes, we iterate over possible pairexps that can be generated from
those attributes. For high dimensional data sets, it is computationally infeasible
for both stages to be exhaustive, since we would have to consider O(m4) tuples,
where m is the number of dimensions.

Rather than exhaustively considering all possible 2-,3-, and 4-tuples of the
input attributes, we instead perform a greedy search, followed by one step of hill-
climbing: (1) We exhaustively consider all pairs of attributes, remembering which
pair produced the best scoring pairexp (e.g., if the best scoring two attribute
pairexp was [x, log y], then we remember (x, y) as the best pair); (2) Given the
best pair, we consider all triples that contain the best pair; (3) Given the best
triple, we consider all quadruples that contain the best triple; (4) Starting from
the best quadruple, we consider all other quadruples that can be obtained by
changing each of the four attributes, one at a time.

Note that only the outer stage is greedy; our inner loop search over pairexps
of a given tuple is exhaustive. This heuristic search now only has a quadratic
dependency on m, since steps 2-4 are now linear. Furthermore, this quadratic de-
pendency is ameliorated by the fact that, in contrast to quadruples, the number
of pairexps that can be generated from a pair of attributes is quite limited.
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4 Experimental Results

We evaluated both the näıve and kd-tree based implementations on twelve dif-
ferent data sets. Eleven come from the UC Irvine repository, while EDSGC is a
subset of the Edinburgh/Durham Southern Galaxy Catalogue.

4.1 Interpretability

We produced a scatter plot for each of the twelve data sets. Figure 1 contains
a representative sample, and the entire set of plots is available in our technical
report [5]. We see that our algorithm succeeds in producing some separation
of the classes. Furthermore, the axes represent simple expressions involving at-
tributes that are well known to the domain experts that would be interested
in analyzing the data. This stands in contrast to the alternative of plotting the
data as projected onto its top two principal components, since in this case, the
axes are no longer directly interpretable.

In order to verify that our algorithm was producing interesting and inter-
pretable visualizations of the data, we consulted a domain expert in astronomy,
who provided us with real data from the Sloan Digital Sky Survey (SDSS).
Given ten real input attributes, and a 50,000 record subset of the data cor-
responding to a region of the sky deemed interesting by the astronomer, AV
produced the star/galaxy plot seen in Figure 1. The domain expert confirmed
that the plot was precisely the kind of plot he would expect from this data.
This anecdotal evidence supports our claim that AV indeed produces useful
visualizations.

Furthermore, in order to determine whether the complexity of our binary
arithmetic expressions was warranted, we ran a version of our algorithm that
considered only pairexps with unary expressions on the two axes. When applied
to the SDSS data, this version produces a rather uninspiring plot, indicating
that there are indeed data sets that are best visualized by combining multiple
attributes on a single axis.

4.2 Classification Accuracy

We computed five-fold cross validation accuracies after running our AV classifier
on all the data sets. For the sake of comparison, we ran nine canonical classifiers
on the same data [17]. It should be noted that, for the sake of expediency, we
limited all larger data sets to 5,000 randomly selected records.

When we compare the classification accuracies of our classifier with those of
the canonical algorithms, we find that the AV classifier is competitive. In Fig-
ure 2, we see a pairwise comparison between our classifier and the nine canonical
classifiers. On average, the classification accuracy of AV is only 0.168 percentage
points lower than the other algorithms. In fact, AV outperforms 1-nearest neigh-
bor and näıve Bayes. On these data sets, the best performing algorithm was a
support vector machine with quadratic kernels, and AV is only 2.348 percentage
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Fig. 2. Left: A pairwise comparison between AV and canonical classifiers, showing the
difference in classification accuracy, averaged over all data sets. Right: Timing analysis
of AV on expanded EDSGC data set, as number of records is increased.

points less accurate on average. In Table 1, we see that AV outperforms the av-
erage canonical classifier on all data sets except iris, realmpg, sonar and vehicle.
However, although close at times, AV is never the most accurate classifier on a
given data set.

4.3 Efficiency

Table 1 shows timing results for running AV with both the kd-tree and non-
kd-tree implementations of the algorithm. We see that by implementing our
algorithm using kd-trees, we make noticeable gains in efficiency over the näıve
implementation, especially for larger data sets. The adult data set, for instance,
sees a 4.12 fold speed-up, and the EDSGC data set sees a speed-up of 8.12. It
is important to note, however, that the vehicle data set performs slightly more
slowly under the kd-tree algorithm than the näıve one. This is perhaps due to
the relatively small size of the data set preventing the algorithm from overcom-
ing the six pairwise class comparisons it must do per kd-tree node, a problem
not encountered in the 50,000 record forest data set, despite its seven output
classes.

Furthermore, we timed the kd-tree implementation on the EDSGC data set
as we varied the number of points from 50,000 to the full 1.4 million record data
set. The resulting plot, as shown in Figure 2, is mostly linear, but begins to dip
slightly as we approach the size of the full data set. When compared to the plot
for the näıve implementation, we see that the overhead of building the kd-trees
is a small price to pay for the gain in efficiency.

It is important to note that the timing costs reported here are only incurred
during the training phase of the classifier. Once a relevant pairexp has been
found during training, future data points can be classified simply by transforming
them to the two-dimensional space and applying the Gaussian Bayes classifier.
Alternatively, for a large data set, time can be saved by training only on a subset
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Table 1. Classification accuracy and timing results

Accuracy (%) Timing (sec)

Data set Records Attributes best average AV kd-tree Näıve

Abalone 4178 8 55.47 53.28 53.84 308 339
Adult 48844 6 83.92 80.87 82.02 502 2069

Breast-w 701 9 97.42 96.15 96.19 22 59
Diabetes 770 8 77.47 74.51 77.34 22 55
EDSGC 50000 22 99.46 95.16 99.16 2221 18037

Forest 50000 10 69.82 67.40 68.12 4856 8445
Heart-statlog 272 13 85.19 80.16 81.48 21 46

Ionosphere 357 34 91.74 87.59 91.17 69 183
Iris 155 4 96.67 95.78 93.33 2.0 7.2

Realmpg 394 7 82.91 72.79 70.66 2.0 6.8
Sonar 210 60 87.02 77.51 74.04 140 227

Vehicle 851 18 80.50 69.35 60.52 279 268

of the data in order to obtain the best pairexp, but then transforming the entire
data set for visualization purposes.

5 Discussion

There is much flexibility inherent to the AV process, which provides ample op-
portunity for exploration during algorithm design. For instance, before settling
on the Gaussian Bayes misclassification score, we implemented several others
for comparison. The first attempt was a pairwise count that penalized points of
differing classes that were in close proximity to each other. We found that this
algorithm generally produced poorer visualizations, and relied on several param-
eters that we found difficult to set. (Leban et al. propose a similar method, which
they use to successfully analyze and visualize gene expression data [12].) In an-
other attempt, we tried maximizing the Gaussian log likelihood of the data, and
found that while we produced visualizations that were at least as good as our
current results, it was difficult to optimize the algorithm in terms of efficiency,
which we believe is the key to making it tractable to search such an intense
diversity of scatter plots. We faced a similar situation when we tried a Gaussian
misclassification score that allowed full covariance matrices, rather than the di-
agonal matrices that we use in our current algorithm. In fact, since our relevance
score is simply a training set error, conceivably any classifier can be substituted
for the Gaussian Bayes classifier that we use, either for computing the score or
for classifying new data.

6 Conclusion

We have described a novel approach to classification that takes into account
interpretability of the results. We have detailed an algorithm that produces rel-
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evant scatter plots of real-valued data sets, and evaluated it in terms of inter-
pretability, classification accuracy, and efficiency. For most problems we consid-
ered, our algorithm was competitive with state-of-the-art classifiers. We provided
compelling evidence that it is possible to obtain additional interpretability with
little or no loss in classification accuracy. Furthermore, we showed that our al-
gorithm is efficient, making it feasible for use on large, real-world data sets.
Finally, our results demonstrate the potential for further investigation into the
opportunities and challenges of integrating visualization with classification.
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Abstract. Multinomial naive Bayes (MNB) is a popular method for
document classification due to its computational efficiency and relatively
good predictive performance. It has recently been established that pre-
dictive performance can be improved further by appropriate data trans-
formations [1,2]. In this paper we present another transformation that is
designed to combat a potential problem with the application of MNB to
unbalanced datasets. We propose an appropriate correction by adjusting
attribute priors. This correction can be implemented as another data
normalization step, and we show that it can significantly improve the
area under the ROC curve. We also show that the modified version of
MNB is very closely related to the simple centroid-based classifier and
compare the two methods empirically.

1 Introduction

Multinomial naive Bayes (MNB) is the version of naive Bayes that is commonly
used for text categorization problems. In this paper we identify a potential de-
ficiency of MNB in the context of skewed class sizes. The standard practice of
initializing word frequencies for all classes to the same value—normally, a value
of one is used—biases predictions in favor of the larger class: initial word counts
have a larger influence on the predicted probability when there is less data, as
in the smaller classes in a text categorization problem. We investigate the use
of distinct initial word counts for different-size classes, and propose a heuris-
tic for choosing the initial word count for each class. This modification can be
implemented as a pre-processing step that normalizes the word count vector as-
sociated with each class and can significantly improve predictive performance
as measured by the area under the ROC curve. We also compare the modified
version of MNB to the centroid classifier, to which it is closely related.

2 Naive Bayes for Text Classification

In the MNB classifier each document is viewed as a collection of words and the
order of words is considered irrelevant. The probability of a class value c given
a test document d is computed as

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 503–510, 2006.
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P (c|d) =
P (c)

∏
w∈d P (w|c)nwd

P (d)
, (1)

where nwd is the number of times word w occurs in document d, P (w|c) is the
probability of observing word w given class c, P (c) is the prior probability of
class c, and P (d) is a constant that makes the probabilities for the different
classes sum to one. P (c) is estimated by the proportion of training documents
pertaining to class c and P (w|c) is estimated as

P (w|c) =
1 +
∑

d∈Dc
nwd

k +
∑

w′
∑

d∈Dc
nw′d

, (2)

where Dc is the collection of all training documents in class c, and k is the size
of the vocabulary (i.e. the number of distinct words in all training documents).
The additional one in the numerator is the so-called Laplace correction, and
corresponds to initializing each word count to one instead of zero. It requires
the addition of k in the denominator to obtain a probability distribution that
sums to one. This kind of correction is necessary because of the zero-frequency
problem: a single word in test document d that does not occur in any training
document pertaining to a particular category c will otherwise render P (c|d) zero.

3 Unbalanced Class Sizes

Many text categorization problems are unbalanced. This can cause problems
because of the Laplace correction used in (2). Consider a word w in a two-
class problem with classes c1 and c2, where w is completely irrelevant to the
classification. This means the odds ratio for that particular word should be one,
i.e. p(w|c1)

p(w|c2)
= 1, so that this word does not influence the class probability.

Assume the word occurs with equal
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Fig. 1. Estimated odds ratio

relative frequency 0.1 in the text of
each of the two classes. Assume there
are 20,000 words in the vocabulary
(k = 20, 000) and the total size of
the corpus is 100,000 words. Figure 1
shows the estimated odds ratio, based
on (2), as the relative size of the two
classes changes. It has the desired
value of one when both classes contain
the same number of words. However,
the situation changes dramatically as
the class sizes become skewed. For ex-
ample, when c2 becomes very small and contains little text relative to the other
class, the presence of the irrelevant word w in a test document substantially
increases the estimated probability that the test document belongs to class c1.
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Fortunately it turns out that there is a simple remedy: we can normalize the
word counts in each class so that the total size of the classes is the same for both
classes after normalization. To do this we replace nwd, where d is in Dc, by

α× nwd∑
w′
∑

d∈Dc
nw′d

, (3)

i.e. we normalize the vector of word counts for each class to have length α when
measured according to L1 norm. This ensures that the estimated odds ratio for
our irrelevant word will be one, regardless of which particular value we choose
for the normalization constant α.

We can also view this normalization step as a modification of the Laplace
correction. Plugging the normalized counts into (2), it is easy to show that we
have effectively replaced the standard initial word count of one by the class-
specific initial word count (

∑
w′
∑

d∈Dc
nw′d)/α. This means that we are using

asymmetric word count priors.
The value of α determines the amount of smoothing across word counts in the

dictionary. Surprisingly, initial experiments on the Reuters data showed that a
value of α = 1 often works well, which corresponds to very heavy smoothing. As
we will see, α = 1 also results in good performance on other datasets included in
our experimental comparison. In the next section we will show that our modified
MNB with α = 1 is closely related to the centroid classifier for text classification.

4 Relationship to Centroid Classifier

In the centroid classifier [3], each class is represented by its mean word vector,
normalized to unit length using L2 norm. The centroid cc for class c is given by

cc = {
∑

d∈Dc
nw1d√∑

w(
∑

d∈Dc
nwd)2

,

∑
d∈Dc

nw2d√∑
w(
∑

d∈Dc
nwd)2

, . . . ,

∑
d∈Dc

nwkd√∑
w(
∑

d∈Dc
nwd)2

}.

Assuming xd = {nw1d, nw2d, . . . , nwkd} is the word vector representing a test
document d, the scoring function for the centroid classifier is

xd · c1 − xd · c2. (4)

Now consider MNB. The scoring function (log odds) for MNB can be written as[
log P (c1) +

k∑
i=1

nwid log(P (wi|c1))

]
−
[
log P (c2) +

k∑
i=1

nwid log(P (wi|c2))

]
.

(5)
The terms log P (c1) and log P (c2) are irrelevant when we rank documents. Com-
paring (4) and (5) we see that the only remaining difference is that log(P (wi|c)) is
used instead of the corresponding vector component from the centroid. However,
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these two terms have a very similar effect if we set α to one in our modified
version of MNB. When α = 1, using (3) in (2) means that

P (w|c) =
1 +

∑
d∈Dc

nwd∑
w′
∑

d∈Dc
nw′d

k + 1
.

The denominator is constant and can be dropped. Furthermore,∑
d∈Dc

nwd∑
w′
∑

d∈Dc
nw′d

<< 1

for practical text datasets, and log(1 + x) ≈ x for x << 1. Hence the only
remaining difference between the scoring functions in (4) and (5) is that L2
norm is used in the former and L1 norm in the latter.

As we will see in the next section, the modified MNB classifier with α = 1
indeed gives very similar results to the centroid classifier on most of the datasets
we investigated in our experiments.

5 Empirical Results

In this section we present experiments comparing MNB with and without our
modification, and the centroid classifier. Weka was used for the experiments, and
the area under the ROC curve (AUC) employed as the performance statistic.
All results are averages from ten runs of the hold-out method. For each run
66% of the data was used for training and 34% for testing, with stratification to
ensure that class proportions were preserved. The same runs were used for each
of the learning schemes that we investigated. To test for significant differences
we used the corrected resampled paired t-test [4], which has acceptable Type I
error.

Our experiments were based on four well-known text classification datasets:
Reuters-21578, WebKB, Industry Sector, and 20 Newsgroups. For each dataset
we created as many two-class classification problems as there were class values in
the data, with the exception of the Reuters-21578 data where we only used the
10 most frequent categories. All documents pertaining to a particular class value
were put into one category and all the remaining documents in the other. This
was necessary in order to use AUC for evaluation. Consequently we created 10
classification problems from the Reuters-21578 data, four from the WebKB data,
105 from the Industry Sector data, and 20 from the 20 Newsgroups data.

For each dataset we used the same steps to extract word features. All charac-
ters were converted to lowercase, only alphabetic tokens were considered, stop-
words and hapax legomena were removed, and the full resulting vocabulary was
used (i.e. no feature selection was performed).

We applied the following pre-processing steps to the raw word counts [1,2].
First, TF×IDF was used to transform nwd into n′

wd = log(1+nwd)×log(m/mw),
where m is the total number of training documents and mw is the number of
training documents that contain w. Secondly, following this transformation, the
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vector of transformed word frequencies for each document was normalized to
length l using L2 norm to counteract the effect of varying document lengths. The
vector length l was set to the average vector length in the training documents
before normalization. The transformed and normalized frequencies were then
used in both versions of MNB and the centroid classifier.

We will first look at the impact of our proposed modification using α = 1,
which is equivalent to normalizing the word vector for each class to length one
in L1 norm before applying standard MNB. Figure 2 shows the results for both
standard MNB and MNB with per-class normalization (MNBPCN ). Bars that
are striped mark differences that are statistically significant at the 5% level (in
these figures and all other figures in this paper).

The results show that our modification significantly improves the performance
of MNB on three of the ten Reuters-21578 categories. It significantly reduces
AUC on two categories. However, not taking the significance of the individual
differences into account, there are eight wins and only two losses. This win/loss
ratio has a p-value of 0.11 according to a two-sided sign test.

On the Web KB data the results are clear cut. MNBPCN achieves significant
gains on all four categories. Although there is only one significant win on the
Industry Sector data, there is no significant loss. Moreover, not taking signifi-
cance on individual Industry Sector categories into account, the win/loss ratio
is 81/24 in favor of the modified version, which is highly significant according to
a two-sided sign test (p-value = 4.64× 10−8).

The 20 Newsgroups data is the outlier in this collection of results. Here MNB
outperforms MNBPCN : there are 18 significant wins for MNB, and no significant
losses (without considering significance, the win/loss ratio is 20/0). However, it
turns out that the performance of MNBPCN can be improved by using a different
value for α when normalizing the word vectors for each class. Figure 3 compares
MNB to MNB with per-class normalization when the length of the word vector
for each class (i.e. α) is set to the minimum of the two class vector lengths
before normalization (MNBPCNmin). Using this value of α gives a much lower
influence to the attribute priors, and the results show that this is beneficial.
MNBPCNmin is on par with standard MNB on the 20 Newsgroups categories:
there is one significant win and one significant loss. The win/loss ratio is 10/10
when significance of individual differences is not taken into account. Hence it
appears that less smoothing is beneficial for the 20 Newsgroups data.

Unfortunately the new value for α is no silver bullet. Although it improves
performance further on the Industry Sector data, it results in significant degra-
dation on Reuters-21578 and WebKB.1 Hence the right amount of smoothing for
P (w|c) depends on the domain, and, for best performance, an appropriate value
of α should be chosen using a validation set or cross-validation.

In Section 4 we have shown that MNB with per-class normalization and α = 1
is closely related to the centroid classifier. In the following we investigate this
relationship empirically. Figure 4 shows the AUC for the centroid classifier and
the modified version of MNB using α = 1.

1 These results are not included here due to space constraints.
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Fig. 2. AUC for MNB (grey) and MNBPCN (black) on Reuters (top left), WebKB (top
right), Industry Sector (two middle graphs), and 20 Newsgroups (bottom)

Fig. 3. AUC for MNB (grey) and MNBPCNmin (black) on 20 Newsgroups
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Fig. 4. AUC for centroid classifier (grey) and MNBPCN (black) on Reuters (top left),
WebKB (top right), Industry Sector (two middle graphs), and 20 Newsgroups (bottom)

Fig. 5. AUC for centroid classifier (grey) and MNBPCNmin (black) on 20 Newsgroups
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Performance of the two methods is indeed very similar in most cases. Ignoring
the magnitude of the differences there is no clear winner on the Reuters-21578
data (two significant wins and one significant loss for the centroid classifier) and
no clear winner on the Web KB data (one significant win and one significant loss).

However, MNBPCN has an edge on the 105 Industry Sector categories.
There are five significant losses for the centroid classifier and no significant win,
and it almost always yields a lower AUC value. On the other hand, the centroid
classifier performs better than MNBPCN on the 20 Newsgroups data, with eight
significant wins and only one significant loss.

Although the AUC of MNBPCN and the centroid classifier is often very sim-
ilar, there are some noticeable differences, e.g. on the category earn in the
Reuters-21578 data. The obvious question is which of the differences discussed
in Section 4 is responsible for these discrepancies. To this end we performed a
further experiment where L1 normalization was used to normalize the centroids
in the centroid classifier. The AUC scores for this modified centroid classifier
were virtually indistinguishable from those obtained using MNBPCN : they did
not differ at all when rounded to the fourth decimal place. Hence the differences
in Figure 4 are almost exclusively due to L1 normalization vs. L2 normalization.

Note that MNB with per-class normalization outperforms the standard cen-
troid classifier with L2 normalization if α is set to the minimum vector length
before normalization (as in Figure 3). This is shown in Figure 5. There are eigh-
teen significant wins for MNB and no significant losses (the win/loss ratio is
20/0 if significance is not taken into account). A similar win/loss ratio holds for
standard MNB, which also outperforms the centroid classifier on this data.

6 Conclusions

In this paper we have identified a potential deficiency of MNB in the context
of unbalanced datasets and shown that per-class word vector normalization
presents a way to address the problem. Our empirical results show that nor-
malization can indeed significantly improve performance. We have also shown
that MNB with class vector normalization is very closely related to the standard
centroid classifier for text classification if the class vectors are normalized to unit
length, and verified the relationship empirically.
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Abstract. We consider the problem of efficiently executing data clus-
tering queries in a client-server setting. Extant solutions to this prob-
lem suffer from (a) a significant amount of remote I/O and (b) minimal
re-use of computation between both iterations of a kMeans query, and
executions of different kMeans queries. We propose to facilitate interac-
tive kMeans clustering by employing a client-side knowledge-cache. This
knowledge-cache is succinct and significantly reduces the amount of re-
mote I/O needed during execution. Furthermore, it permits the re-use of
computation, both within and between executions of the kMeans queries.

1 Introduction

The knowledge discovery process is interactive in nature. Therefore, minimiz-
ing query response-time is imperative, because a lengthy delay can disrupt the
formation of insight. To address this challenge, the past few years have seen re-
searchers make significant progress in reducing the time required to execute a sin-
gle data mining query. However, given the iterative and interactive nature of the
knowledge discovery process, one expects there to be significant repeated compu-
tation through successive executions of a data mining algorithm. Therefore, an
orthogonal and potentially beneficial approach to reduce a query’s response-time
would be to expose redundant computation between executions, cache this com-
putation, and re-use this cached computation in successive executions of the algo-
rithm. While the database community has looked at employing such a knowledge-
conscious approach to improve query processing performance, such efforts are
largely in their infancy in the data mining community [3,4,5].

Query 3: Cluster t0 − t9

Query 2: Cluster t4 − t9
Query 1: Cluster t0 − t3

Timeline

Data

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11
QUERY QUEUE

SERVERCLIENT

DATABASE

KNOWLEDGE CACHE

ENGINE
QUERY EXECUTION 

Fig. 1. a)Exploratory data clustering b)Knowledge-conscious mining framework
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The architecture of a knowledge-conscious mining framework is presented
in Figure 1b. The system consists of a client and a server. The server main-
tains a database, while the client manages a query queue, a query execution
engine, and a knowledge cache. The query execution engine accepts a query
from the query queue, and executes the query using the contents of the (local)
knowledge cache and the (remote) database. Furthermore, using the informa-
tion gathered through an execution, the query execution engine updates the
contents of the knowledge cache to improve performance when answering future
queries.

In this paper, we consider the problem of efficiently executing exploratory
data clustering queries [1] in which the user is interested in interactively clus-
tering different subsets of a data set to study its evolving behavior (Figure 1a).
Existing solutions to this problem suffer from (a) a significant amount of remote
I/O during execution and (b) a substantial amount of repeated computation
through iterations of a kMeans query and multiple kMeans queries. We show
how exploratory kMeans clustering can be made knowledge-conscious using a
client-side knowledge cache. This cache significantly reduces the amount of re-
mote I/O needed during execution. Furthermore, it also reduces the redundant
computation between both iterations of a kMeans query, and executions of dif-
ferent kMeans queries.

2 Background

Given a data set D consisting of n data points, each with d dimensions, the
data clustering problem is to partition this data set into k subsets such that
each subset behaves “well” under some measure. The popular kMeans clustering
algorithm can be briefly described as follows. First, it begins with k random
centers, C0 = {C0

1 , · · · , C0
k}. Next, for each of the n data points, it finds its

closest center in C0. The data points are partitioned into k subsets based on
their closest centers. The center of mass for each of these k subsets is used
to find the new set of k centers, C1 = {C1

1 , · · · , C1
k}. This process contin-

ues iteratively until we encounter an iteration i such that the centers Ci and
C(i+1) are identical. Each iteration of this naive kMeans algorithm scales as
O(nkd).

The state-of-the-art kMeans clustering algorithm, due to Pelleg and Moore,
improves the performance of the above mentioned algorithm by employing a
multi-resolution kd-tree [6]. Multi-resolution kd-trees have the following proper-
ties. First, they are binary trees. Second, each node in the kd-tree contains infor-
mation about all points contained in a hyper-rectangle h. This hyper-rectangle
is stored at the node using two boundary vectors hmax and hmin. At each node
is also stored the number and the center of mass of all points that lie within h.
All the children of a node represent hyper-rectangles contained within h. Third,
each node has a split dimension and a split point assigned to it. The value of the
split point on the split dimension is referred to as the split value of the node.
The children of a node represent two hyper-rectangles such that all points with
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values less than the split value on the split dimension are assigned to one child,
and all points with values greater than the split value on the split dimension are
assigned to the other child. This data structure has exactly n nodes.

Given a set of centers Ci and a hyper-rectangle h, owner(h, Ci) is defined as
the center c ∈ Ci for which any point in h is closer to c than any other center
in Ci. Note that h does not always have an owner in Ci. Pelleg and Moore used
this concept of ownership to improve the performance of the kMeans algorithm.
The multi-resolution kd-tree is used to assign the points to the k centers in each
iteration. The algorithm proceeds recursively and can be briefly described as
follows. First, beginning with the root node, it checks to see if the hyper-rectangle
associated with the node has a unique owner in Ci. If we have a unique owner,
statistics stored at the node (number of points and center of mass) can be used
to assign all points covered by the hyper-rectangle to the unique owner, and the
procedure can then return. Otherwise, the split point associated with the node
is assigned to one of the k centers, and the children of the node are processed
in a similar fashion, recursively. In the worst case, we need O(k2d) operations
to process each node. Therefore, if the entire kd-tree needs to be processed,
this algorithm will incur significant overheads from ownership checks and each
iteration will scale as O(nk2d). The authors show that on most data sets, hyper-
rectangles with unique owners can be discovered early in the search (i.e. at high
levels of the kd-tree), affording a significant performance improvement.

In exploratory data clustering [1], as can be seen in Figure 1a, the user is
interested in interactively clustering different subsets of the data set D. Further-
more, during this process, the user is also interested in varying k, the desired
number of clusters. Such an exploration of the data can provide the user with a
much deeper understanding of the evolving behavior of the clusters [1]. In order
to perform exploratory data clustering using the state-of-the-art, a system typ-
ically proceeds as follows. First, it queries the remote database to retrieve the
desired subset of the data. Next, it builds a multi-resolution kd-tree using the
data retrieved from the database. Finally, it uses the aforementioned variant of
the kMeans algorithm (due to Pelleg and Moore) to cluster the data.

3 Algorithmic Improvements

Existing solutions to exploratory data clustering suffer from the following draw-
backs. First, when the database it very large and cannot be cached on the client’s
side, during query execution, the system needs to retrieve a significant amount of
data from the remote database. This is often time-consuming. Second, there is no
re-use of computation between iterations of the kMeans algorithm and between
executions of two different kMeans clustering queries. This redundant compu-
tation is often excessive and significantly affects performance. We propose to
facilitate exploratory data clustering by employing a client-side knowledge cache
to tackle the above mentioned challenges.

Reducing Remote I/O: In order to reduce remote I/O during execution, we
propose to maintain a low-resolution summary of the data set on the client’s side.
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This low-resolution summary must have the following characteristics. First, given
that a summary with a satisfactory resolution is available, a kMeans clustering
using this summary should be identical to that when using the entire data set.
Second, when the clustering cannot be performed accurately, we should be able
to improve the resolution of this summary to the desired level, incrementally,
accessing only a small subset of the remote database.

In an exploratory setting, a data clustering query takes the following form:
Cluster(ts, te, k), where ts and te represent the start and the end of the desired
range, and k represents the desired number of clusters. To create a client-side
knowledge cache, first, we propose to divide the entire data set D into blocks,
D1, D2, ..., Dm, as can be seen in Figure 2. This partitioning is only conceptual
and does not need to be physically realized. An execution of a kMeans clustering
query typically builds a single kd-tree for all the points between ts and te and
iteratively assigns the points and hyper-rectangles in this kd-tree to the k centers.
Instead of building a single kd-tree for the entire range, we propose to build a
kd-tree for each of the blocks in D, as and when these data blocks intersect
the range specified in a kMeans query. This set of kd-trees contains all the
information that would be otherwise needed when clustering using a single kd-
tree. Such a partitioning allows us to define a unit of re-use between queries
spanning different ranges. Second, after query execution, for each kd-tree that is
built, the sub-tree that is accessed when executing the kMeans query is stored
at the client. This cached sub-tree is a low-resolution summary of the data in
a block. Furthermore, as the kd-tree is a hierarchically defined structure, this
cached sub-tree is also a complete summary of the data in a block. In other
words, every data point in the block is either represented as a point or is covered
by a hyper-rectangle in this sub-tree. Therefore, in most situations these cached
sub-trees on the client’s side can be used to perform kMeans clustering without
ever contacting the server, significantly reducing remote I/O.

When executing a query, we may encounter a leaf node in the cached sub-tree
that does not have a single owner. This situation requires that we increase the
resolution of this cached sub-tree. To do so, we need to re-construct the portion
of the kd-tree below this leaf node in the cached sub-tree. However, as it stands
this sub-tree cannot be grown incrementally. To facilitate incremental growth,
we re-order points in each data block as per the points order in the depth-first
traversal of the kd-tree for the block. Consequently, when we need to expand
a node in the cached sub-tree, all the data points needed to re-construct the
portion of the kd-tree below a node will be stored sequentially on the server
(Figure 2 illustrates how all children of node number 8 are stored sequentially
in the database after depth-first re-ordering). The data points required for node
expansion can be identified by simply using a starting and an ending position
in the database, and can be retrieved efficiently. We would like the readers to
note that using cached sub-trees does not affect the correctness of the kMeans
algorithm. We will find the same set of centers as the naive kMeans algorithm.

Reducing the Number of Ownership Checks: Ownership checks are ex-
pensive; they need O(k2) time per node in the cached sub-tree in the worst case.
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Fig. 2. Client-Side Knowledge Caching

The nodes in the cached sub-tree that are close to the root of the tree tend to
encode low-resolution information. This resolution progressively increases as we
descend to the lower levels of the cached sub-tree. Therefore, in the cached sub-
tree, ownership checks are likely to fail (or not identify a unique owner) at the
higher levels and be successful (or identify a unique owner) at some intermediate
levels. Furthermore, for two sets of centers, Ci and Cj , that are very similar,
during execution, failures and successes in ownership checks when processing a
cached sub-tree are likely to be aligned. To benefit from this behavior, we en-
code the execution history of an iteration of the kMeans query in the knowledge
cache. This execution history tracks whether the ownership checks succeeded or
failed for each node in the cached sub-tree. This execution history is stored for a
set of centers for each cached sub-tree. Therefore, each cached sub-tree can have
multiple execution histories, one for each set of distinct centers encountered.
When executing an iteration of the kMeans query, for the set of centers to be
used in the iteration, we check to see if we have an execution history for a similar
set of centers in the knowledge cache. If such an execution history is available,
we use it to skip owner checks that are likely to fail. This drastically reduces
the number of failing ownership checks and can significantly speed up execution.
We would like to point out that skipping an ownership check that would in fact
succeed does not affect the correctness of the algorithm.

Reducing the Number of Candidate Centers between Iterations: When
executing a kMeans query, the main operation is that of assigning a point or a
hyper-rectangle to one of the k candidate centers. In order to make an assign-
ment, for a data point, we need O(k) computations, and for a hyper-rectangle,
we need O(k2) computations. Using the execution history of a query, we pro-
pose to reduce the set of candidate centers, and thereby reduce the number of
computations needed to make an assignment.

Let us assume that in iteration i of a kMeans query, data points and hyper-
rectangles in the cached sub-tree are assigned to one of k centers in Ci. Let C(i+1)

be the new set of k centers to be used in (i + 1)th iteration. Let rad(Ci
j) be the
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radius of the jth center in Ci. Let d(Ci
j , C

i
k) be the euclidean distance between

centers Ci
j and Ci

k. Let maxdist(Ci
j , h) be the maximum distance between h (a

hyper-rectangle or a point) and a center Ci
j .

Lemma 1. If a hyper-rectangle or a data point is assigned to center Ci
j in iter-

ation i, then in the (i+1)th iteration, it cannot be assigned to any center C
(i+1)
k

for which d(Ci
j , C

(i+1)
j ) + d(Ci

k, C
(i+1)
k ) < d(Ci

j , C
i
k)/2− rad(Ci

j).

Lemma 2. If a hyper-rectangle (or a data point) h is assigned to center Ci
j in

iteration i, then in the (i + 1)th iteration, it cannot be assigned to any center
C

(i+1)
k for which d(Ci

j , C
(i+1)
j ) + d(Ci

k, C
(i+1)
k ) < d(Ci

j , C
i
k)/2−maxdist(Ci

j, h).

Lemma 3. Let Ci
j be the jth center in iteration i and Ci

j′ be the center that
is closest to Ci

j. For a hyper-rectangle (or data point) h, if d(Ci
j , C

i
j′)/2 >

maxdist(Ci
j , h), then Ci

j is the unique owner of h.

The kMeans using kd-trees algorithm is very easily modified to benefit from
the aforementioned lemmas. We augment the execution history stored in the
knowledge-cache to maintain radius of each center at the end of an iteration,
and maxdist and assigned center for each data point and hyper-rectangle in the
cached sub-tree. During the iterations of the kMeans algorithm, most data points
do not change assignments. For a data point or hyper-rectangle that is assigned
to a center Ci

j in iteration i, Lemma 1 allows us to prune away centers that are
not candidates in iteration i+1, even before we start processing the cached sub-
tree. This reduced set of candidate centers is reduced even further using Lemma
2 that considers maxdist for every data point or hyper-rectangle encountered.
Consequently, using Lemmas 1 and 2, data points or hyper-rectangles that are
not likely to be assigned to a new center can be processed in O(1) number of
floating point computations. In addition, for data points or hyper-rectangles
that are likely to change assignments, the pruned set of candidate centers due
to Lemmas 1 and 2 significantly improves performance. When a data point or
hyper-rectangle has multiple candidate centers, Lemma 3 is used as an initial
check, and is some cases, can help make assignments in O(1) number of floating
point computations (please refer to [2] for further details on the lemmas).

Reducing Redundant Computations between kMeans Queries: When
the system executes the first kMeans query, during the first iteration, the cached
sub-trees are allocated. Through subsequent iterations, old execution histories
are used or new execution histories are created and saved. For a subsequent
kMeans query, as discussed, one can re-use the cached sub-trees from a previ-
ous kMeans query. Furthermore, one can also re-use old execution histories. To
understand how execution histories can be used between queries, to begin with,
let us assume that the number of desired centers k′ for the new kMeans query q′

is the same as k1, the number of centers desired in the previous query q whose
1 We can also reuse the cached execution history of a query q when the new query q′

requires k′ clusters, which is different from k. Please refer to [2] for further details.
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execution history has been cached. The key to understanding how execution his-
tories can be re-used lies in the fact that Lemmas 1 and 2 are in fact iteration
independent. In other words, the execution history for an iteration i can be used
for any iteration (say i + 5), not just iteration i + 1. Consequently, when the
new query presents us with k′ initial random centers, we simply postulate that
these initial random centers were produced at the end of some iteration when
processing query q. Therefore, the execution history for some iteration i in q’s
execution can be used to speed up the execution of this new query q′. However,
to do so, we need to establish a 1-to-1 correspondence between the k cached
centers and the k′ new random centers. Note that any 1-to-1 correspondence
will suffice. We use a simple heuristic in which for each cached center, we locate
its closest center amongst the k′ centers. To breakup ties, once a new random
center has been deemed to be the closest center for some cached center, we do
not consider it when finding the closest centers for the other cached centers.

Fig. 3. Reduction in remote I/O and computation - DS1 and DS2

Fig. 4. Reduction in remote I/O and computation - DS3 and DS4

4 Experimental Results

In this section, we will evaluate the performance benefits of our optimizations
on a variety of data sets. We use two nodes in an Intel Pentium 4-based cluster,
and use MPI for message passing. We consider both synthetic and real data sets
for our performance evaluation (please see [2] for details). For the synthetic data
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sets, we scale each cluster using a scaling factor to vary the data set character-
istics. A scaling factor of 0.05 represents a data set with well separated clusters,
while a scaling factor of 0.95 represents a data set with clusters that overlap.
The real data set we consider is the kddcup 1999 intrusion detection data set.
We construct a synthetic kMeans query workload consisting of 30 queries for
our experiments; we are not aware of any real clustering workload. The desired
number of clusters (between 0 and 100) and the desired range for each query in
the workload are set randomly.

Figures 3 and 4 show the time required for remote I/O and computation
for the naive kMeans, the kMeans using kd-trees, and the knowledge-conscious
kMeans algorithms. DS1 through DS3 are synthetic data sets with varying scal-
ing factors, while DS4 is the kddcup data set. On these four data sets, we see up
to a 10-fold reduction in remote I/O time for the knowledge-conscious kMeans
algorithm when compared with the naive kMeans and the kMeans using kd-trees
algorithms. Furthermore, we see up to a 6-fold reduction in computation due to
knowledge re-use for the knowledge-conscious kMeans algorithm when compared
with the kMeans using kd-trees algorithm. This represents an overall 8-fold re-
duction in execution time for the knowledge-conscious kMeans algorithm when
compared with the kMeans using kd-trees algorithm. Furthermore, the reduction
in computation (up to 6-fold) is observed even when the entire remote database
can be cached locally. This experiment serves to illustrate that both cached
sub-trees and computation re-use can significantly improve the performance of
exploratory kMeans queries.

5 Conclusion

In this paper, we considered the problem of efficiently executing exploratory
kMeans clustering queries in a client-server setting. Extant solutions to this
problem suffer from a significant amount of remote I/O and repeated computa-
tion during execution. To address this challenge, we proposed to use a client-side
knowledge-cache with cached-subtrees that provide both compact and complete
representations of the remote data set. We also proposed to maintain execu-
tion histories in this knowledge-cache to help reduce redundant computation
between both iterations of a kMeans query, and multiple kMeans queries. These
optimizations afford nearly an order of magnitude reduction in execution time.
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Abstract. Additive Randomization has been a primary tool to hide sensitive pri-
vate information during privacy preserving data mining. The previous work based
on Spectral Filtering empirically showed that individual data can be separated
from the perturbed one and as a result privacy can be seriously compromised.
Our previous work initiated the theoretical study on how the estimation error
varies with the noise and gave an upper bound for the Frobenius norm of recon-
struction error using matrix perturbation theory. In this paper, we propose one
Singular Value Decomposition (SVD) based reconstruction method and derive a
lower bound for the reconstruction error. We then prove the equivalence between
the Spectral Filtering based approach and the proposed SVD approach and as a
result the achieved lower bound can also be considered as the lower bound of the
Spectral Filtering based approach.

1 Introduction

Additive randomization has been a primary tool to hide sensitive private information
during privacy preserving data mining. Consider a data set U with m records of n at-
tributes and a noise data set V with same dimensions as U . The random value perturba-
tion techniques generate a perturbed data matrix Ũ = U +V . Let Û denote the estimate
which the users (or attackers) can achieve. To preserve utility, we mean certain aggre-
gate characteristics (i.e., mean and covariance matrices for numerical data, or marginal
totals in contingency table for categorical data) of U should remain basically unchanged
in perturbed data Ũ or can be restored from estimated data Û . In other words, distri-
butions of U can be approximately reconstructed from perturbed data Ũ when some
a-priori knowledge (e.g., distribution, statistics etc.) about noise V is available using
distribution reconstruction approaches (e.g., [2,1]).

To preserve privacy, we mean not only the difference between Ũ and U but also that
of between Û and U should be larger than some tolerated threshold. The authors, in [5]
proposed a random matrix-based spectral filtering technique to retrieve original indi-
vidual data from the perturbed data (a similar Principle Component Analysis based ap-
proach investigated in [4]). As a result individual privacy can be seriously compromised.

The previous work only empirically assessed the effects of perturbation on the ac-
curacy of the estimated individual value. Hence one important question is what the
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IIS-0546027.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 520–527, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



On the Lower Bound of Reconstruction Error for Spectral Filtering 521

explicit form between reconstruction accuracy and noise added. In our recent work [3],
we derived one upper bound for the Frobenius norm of Û −U in terms of some knowl-
edge of V (e.g., the Frobenius and 2-norm of V ) using the matrix perturbation theory.
In this paper, we focus on the lower bound for the Frobenius norm of Û − U . While
the upper bound may be exploited by attackers to determine how close their estimates
are from the original data, the lower bound can help data owners determine how much
noise should be added to satisfy one given threshold of tolerated privacy breach.

Since the traditional matrix perturbation theory [6] mainly focuses on how the eigen-
values and the angle between eigenvectors (or invariance subspaces) of a perturbed ma-
trix A is upper bounded by one perturbation, we cannot borrow any result to derive the
lower bound. In this paper, we propose one Singular Value Decomposition (SVD) based
reconstruction method and derive a lower bound for the reconstruction error. We then
prove the equivalence between the Spectral Filtering based approach and the proposed
SVD approach and as a result the achieved lower bound of SVD approach can also be
considered as the lower bound of the Spectral Filtering based approach.

2 Spectral Filtering Reconstruction Method

We use the tilde conventions to denote perturbations. A symbol with a tilde over it
denotes a perturbed quantity. The unperturbed quantity is denoted by the same symbol
without a tilde. We denote A = UT U as the covariance matrix of U . The eigenvalues
of A, Λ(A) = {λ1, · · · , λn}, and their corresponding eigenvectors [e1, · · · , en] can be
obtained, where λ1 ≥ λ2 ≥ · · · ≥ λn. And those of Ã are Λ(Ã) = {λ̃1, · · · , λ̃n}.

We cast many of our analysis in terms of absolute and relative errors of matrix norm
(i.e., ‖A‖F and ‖A‖2 denote the Frobenius norm and 2-norm respectively), instead
of component-wise bounds. The use of absolute and relative errors gives perturbation
bounds a simplicity that makes them easier to interpret. Basically, the Frobenius form
is used to measure the magnitude of data in total while the 2-norm is used to denote the
largest eigenvalue of covariance matrix.

2.1 Spectral Filtering Revisited

The authors, in [5], provided an explicit filtering procedure as shown below.

1. Calculate the covariance matrix of Ũ by Ã = ŨT Ũ .
2. Apply spectral decomposition on Ã to get Ã = Q̃Λ̃Q̃T , where Q̃ is orthogonal

matrix whose column vectors are eigenvectors of Ã, and Λ̃ is the diagonal matrix
with the corresponding eigenvalues on its diagonals.

3. Using random matrix theory, the pair of λVmin and λVmax , which provide the theo-
retical bounds of the eigenvalues corresponding to the matrix V T V , are obtained.

4. Extract the first k components of Ã as the principal components by k=max{i|λ̃i≥
λVmax}. ẽ1, ẽ2, · · · , ẽk are the corresponding eigenvectors, which form an orthonor-
mal basis of a subspace χ̃. Let Q̃k = [ẽ1 ẽ2 · · · ẽk]. The orthogonal projection on to
χ̃ is Pχ̃ = Q̃kQ̃T

k

5. Obtain the estimated data set using Û = ŨPχ̃.
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The noise matrix V considered in [5] and this paper is generated using i.i.d. Gaussian
distribution with zero mean and known variance. This represents the scenario where the
noise is completely independent with original data.

The authors, in [3], investigated the explicit relation between Û − U and the noise
and derived the upper bound of ‖Û − U‖F in terms of ‖V ‖F shown as

‖Û − U‖F ≤ ‖Ũ‖F
2‖V ‖2F

(λ̃k − ||E||2)−
√

2‖V ‖2F
+
√

k/n||V ||F (1)

where E = V T V is the derived perturbation on covariance matrix A = UT U .

2.2 Strategies of Determining k

The original Spectral Filtering algorithm applied the following strategy to determine
the first k eigen components.

Strategy 1. k = max{i|λ̃i ≥ λVmax}. When the data set is large, λVmax ≈ λVmin ≈
λV . It becomes: k = max{i|λ̃i ≥ λV }
We would point out that the previous Strategy 1 applied in [5] in general would not give
the optimal reconstruction. The reason is that it aims to include all significant eigen
components (with λi > 0) in projection space for reconstruction. However, since the
inclusion of one eigen component also brings some additional noise projected on that
eigen vector, the benefit due to inclusion of one insignificant eigen component may be
diminished by the side effect due to the additional noise projected on this eigen vector.

In this paper, we propose a new strategy (as shown in Strategy 2) which compares
the benefit due to inclusion of one component with the loss due to the additional pro-
jected noise. We shall show that Strategy 2 is expected to give one approximate optimal
reconstruction.

Strategy 2. The estimated data using Û = ŨPχ̃ = ŨQ̃kQ̃T
k is approximate optimal

when k = min{i|λ̃i < 2λV } − 1.

Proof. In the Spectral Filtering method, when we select the first k components, the error
matrix can be expressed as

f(k) = Û − U

= (U + V )Q̃kQ̃T
k − U

= (U + V )Q̃
(

Ik 0
0 0

)
Q̃T − U

= V Q̃

(
Ik 0
0 0

)
Q̃T − U [Q̃IQ̃T − Q̃

(
Ik 0
0 0

)
Q̃T ]

= V Q̃

(
Ik 0
0 0

)
Q̃T − UQ̃

(
0 0
0 In−k

)
Q̃T (2)

Similarly, when we select the first k+1 components, the error matrix becomes

f(k + 1) = V Q̃

(
Ik+1 0

0 0

)
Q̃T − UQ̃

(
0 0
0 In−k−1

)
Q̃T



On the Lower Bound of Reconstruction Error for Spectral Filtering 523

= V [Q̃
(

Ik 0
0 0

)
Q̃T + ẽk+1ẽ

T
k+1]− U [Q̃

(
0 0
0 In−k

)
Q̃T − ẽk+1ẽ

T
k+1]

= (V Q̃

(
Ik 0
0 0

)
Q̃T − UQ̃

(
0 0
0 In−k

)
Q̃T ) + V ẽk+1ẽ

T
k+1 + U ẽk+1ẽ

T
k+1

= f(k) + V ẽk+1ẽ
T
k+1 + U ẽk+1ẽ

T
k+1 (3)

The last two parts in Equation 3 are the projections of noise and data on the (k+1)th
eigenvector. Assume ẽi ≈ ei, the strength of the data projection can be approximated
as

||U ẽk+1ẽ
T
k+1||2F ≈ ||Uek+1e

T
k+1||2F

= Tr[(Uek+1e
T
k+1)

T (Uek+1e
T
k+1]

= Tr(ek+1e
T
k+1U

T Uek+1e
T
k+1)

= Tr[ek+1e
T
k+1(

n∑
i=1

λieie
T
i )ek+1e

T
k+1]

= Tr(λk+1ek+1e
T
k+1)

= λk+1

For i.i.d noise, the effect of the projection on any vector should be the same. Thus,

||V ẽk+1ẽ
T
k+1||2F ≈ λV

Hence, we include the i-th component only when λi ≥ λV . The benefit due to inclu-
sion of the i-th eigen component is larger than the loss due to the noise projected along
the i-th eigen component.

It is easy to derive

Cov(Ui + Vi, Uj + Vj) = Cov(Ui, Uj) + E(Vi ∗ Vj)

V ar(Ui + Vi) = V ar(Ui) + V ar(Vi)

when the noise is independent to the data and also has no correlation among the noise.
Since λ̃i = λi + λV ≥ 2λV , hence

k = min{i|λ̃i < 2λV } − 1

3 Our SVD-Based Reconstruction

In this section, we first present one SVD based reconstruction method and then derive
the lower bound using the well-known Mirsky Theorem for SVD decomposition. We
shall prove the equivalence between the proposed SVD method and Spectral Filtering
method in Section 4. Hence the derived lower bound from SVD method can also be
considered as the lower bound of Spectral Filtering method.
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3.1 SVD Reconstruction

Singular Value Decomposition (SVD) decomposes a matrix U ∈ Rm×n (say m ≥ n)
into the product of two unitary matrices, L ∈ Rm×m,R ∈ Rn×n, and a pseudo-diagonal

matrix D = diag(σ1, · · · , σρ) ∈ Rm×n, such that U = LDRT or U =
n∑

i=1
σilir

T
i . The

diagonal elements σi of D are referred to as singular values, which are, by convention,
sorted in descending order: σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. The columns li and ri of L and R
are respectively called the left and right singular vectors of U . Similarly let Ũ = U +V
be a perturbation of U and let Ũ = L̃D̃R̃T be a perturbation of Ũ .

input Ũ , a given perturbed data set
V , a noise data set

output Û , a reconstructed data

BEGIN
1 Apply SVD on Ũ to get Ũ = L̃D̃R̃T

2 Apply SVD on V and assume σV is the largest singular value of V

3 Determine the first k components of Ũ by k = min{i|σ̃i <
√

2σV } − 1
Assume σ̃1 ≥ σ̃2 ≥ · · · σ̃k and l̃i, r̃i are the corresponding left and right singular vectors

4 Reconstructing U approximately as

Û = Ũk =
k∑

i=1
σ̃i l̃ir̃

T
i

END

Fig. 1. SVD Based Reconstruction Algorithm

Figure 1 shows our SVD based reconstruction method. Please note that the strategy
used for the SVD based reconstruction is k = min{i|σ̃i <

√
2σV } − 1. We shall show

its equivalence with the Strategy 2 of the Spectral Filtering method in Section 4.

3.2 Lower Bound Determination

Lower Bound. Consider Û = Ũk = L̃kD̃kR̃T
k as the estimation of the original data set

U. The estimation error between Û and U has its lower bound:

||Û − U ||F ≥ ||Uk − U ||F

where k = min{i|σ̃i <
√

2σV } − 1.

Proof. Uk and U are matrices of the same dimensions with singular values

σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n

σ1 ≥ σ2 ≥ · · · ≥ σn
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Since Ũk = L̃kD̃kR̃T
k

σ̃k+1 = · · · = σ̃n = 0

By Mirsky’s theorem [6]

||Û − U ||2F ≥
n∑

i=1

|σ̃i − σi|2 ≥ σ2
k+1 + · · ·+ σ2

n = ||Uk − U ||2F

The relationship between the reconstruction bias and perturbation (especially the
lower bound) will, in turn, guide us to add noise into the original data set. The lower
bound gives data owners the worst case security assurance since it is bounded any ma-
trix B of rank not greater than k derived by attackers. In order to preserve privacy, data
owners need to make sure ||Û − U ||F /||U ||F is greater than the privacy threshold τ ,
specified by users.

Based on the derived lower bound,

τ ||U ||F ≤ ||Uk − U ||F = σ2
k+1 + · · ·σ2

n

Hence k which might be chosen by attackers can be determined by

k = max{i|τ ≤ (σ2
i+1 + · · ·σ2

n)/||U ||F } (4)

Based on our approximate optimal strategy,λi ≥ λV , the data owner should add an
i.i.d. noise V and let the eigenvalue of (V T V ) satisfy

λk+1 < λV ≤ λk (5)

Since λV is the eigenvalue of V T V , the variance of the noise can be derived V ar(V ) =
λV /(m− 1), where m is the number of row in V .

4 Equivalence of SVD and SF Reconstruction

SVD explicitly constructs orthonormal bases for the nullspace and range of a matrix.
U = LDRT . The non-zero singular values for U are precisely the square roots of the
non-zero eigenvalues of the positive semi-definite matrix UUT , and these are precisely
the square roots of the non-zero eigenvalues of UT U . Furthermore, the columns of L
are eigenvectors of UUT and the columns of R are eigenvectors of UT U .

Theorem 1. The reconstructed data from Spectral Filtering is

ÛSF = ŨPχ̃ = ŨQ̃kQ̃T
k

where k = min{i|λ̃i < 2λV } − 1 while the reconstructed data from SVD is

ÛSV D = L̃kD̃kR̃T
k

where k = min{i|σ̃i <
√

2σV } − 1. We have ÛSF = ÛSV D and the k determined by
k = min{i|λ̃i < 2λV } − 1 and determined by k = min{i|σ̃i <

√
2σV } − 1 are the

same.
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Proof. We first prove these two methods are equivalent. Since R̃k = R

(
Ik

0

)
,

Ũ R̃k = Ũ R̃

(
Ik

0

)
= (L̃D̃R̃T )R̃

(
Ik

0

)
= L̃D̃

(
Ik

0

)
= L̃kD̃k

Since the columns of right singular vectors (R̃) are the eigenvectors of ŨT Ũ , that is
Q̃ = R̃. Then

ÛSF = Ũ R̃kR̃T
k = L̃kD̃kR̃T

k = ÛSV D

We then prove the equivalence of determining k. Based on the fact that the singular
value of U are the square root of eigenvalues of UT U or UUT , we have:

σ̃i =
√

λi(ŨT Ũ) =
√

λ̃i

√
2σV =

√
2λ(V T V ) =

√
2λV

So, σ̃i <
√

2σV ⇐⇒ λ̃i < 2λV . Hence, min{i|σ̃i <
√

2σV } − 1 = min{i|λ̃i <
2λV } − 1.

5 Empirical Evaluations

In our experiment, we use the artificial dataset, as specified similarly in [5]. Specifically,
U is a highly correlated data set with 35 variables. Each feature has a specific trend
like sinusoidal, square, and triangular shape and there is no dependency between any
two features. The additive noise follows i.i.d Gaussian distribution N(0,COV), where
covariance matrix COV = diag(σ2, · · · , σ2) (The same as in [5]). From the previous
discussion, we have ||V ||F ≈

√
σ2mn. In our following experiments, we perturb the

original data by different level of noises, which are generated by varying the covariance
matrix COV . For each perturbed data, we use our SVD technique to reconstruct the
point-wise data.

It is easy to see that different k leads to different reconstruction errors (which is mea-
sured by re(U, Û) = ||U − Û ||F /||U ||F ). From Table 1, we can see our SVD method
(or the Spectral Filtering method with our Strategy 2) can achieve optimal results for all
perturbations. Note the values with * denote the results achieved by our algorithm while
the values in with † denote the results following the previous Strategy 1. The values in
bold font highlight the best results achieved by varying k. Our proposed SVD method
(or the Spectral Filtering method with our Strategy 2) can match the best results while
the Spectral Filtering with the previous Strategy 1 suffers when relative large perturba-
tions are introduced.

When we examine the original data, there exist 6 principle components as the data is
highly correlated among 35 features. Hence, for relative small perturbations, the effects
on the remaining 29 components are safely filtered. However, when we increase the
noise level (i.e., ‖V ‖F increases), the noise will tend to affect the determination of k.
This is because the gain of correct inclusion of some (not very significant) principal
component is diminished by the loss due to the inclusion of noise projected on that
component.



On the Lower Bound of Reconstruction Error for Spectral Filtering 527

Table 1. The relative error re(U, Û) vs. varying V. The values with ∗ denote the results following
Strategy 2, while the values with † denote the results following the Strategy 1. The bold values
indicate those best estimations achieved by the spectral filtering technique. The noise is i.i.d.
Gaussian noise with zero mean and equal variance on each dimensions.

noise V1 V2 V3 V4 V5 V6 V7 V8 V9
variance 0.213 0.333 0.491 0.750 1.007 1.524 2.040 2.430 4.814

||V ||F /||U ||F 0.628 0.786 0.954 1.178 1.366 1.677 1.944 2.121 2.985
k=1 0.821 0.825 0.830 0.839 0.847 0.863 0.877 0.890 0.960
k=2 0.649 0.659 0.671 0.692 0.711 0.750 0.783 0.810 *0.956
k=3 0.440 0.461 0.488 0.529 0.565 0.636 0.694 *0.739 0.964

re(U, Û) k=4 0.297 0.337 *0.383 *0.450 *0.506 *0.607 *0.687 0.748 1.032
k=5 0.271 *0.324 0.383 0.465 0.532 0.651 0.745 0.816 1.141
k=6 *†0.260 †0.325 †0.395 †0.489 †0.567 †0.699 †0.805 †0.883 †1.245
k=7 0.282 0.353 0.428 0.530 0.614 0.757 0.873 0.956 1.348

6 Conclusion

Spectral filtering based technique has recently been investigated as a major means of
point-wise data reconstruction [5,4]. It was empirically shown that under certain con-
ditions this technique may be exploited by attackers to breach the privacy protection
offered by randomization based privacy preserving data mining methods. We present
an explicit lower bound of reconstruction accuracy in terms of Frobenius norm. This
lower bound can help users determine how much and what kind of noise should be
added when one tolerated privacy breach threshold is given. In the future we are inter-
ested in deriving the bounds at point-wise level.
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Abstract. Frequent pattern discovery has become a popular solution to many 
scientific and industrial problems in a range of different datasets. Traditional 
algorithms, developed for binary (or Boolean) attributes, can be applied to such 
data with a prerequisite of transforming non-binary (continuous or categorical) 
attribute domains into binary ones. As a consequence of this binarization, the 
discovered patterns no longer reflect the associations between attributes but the 
relations between their binned independent values, and thus, interactions be-
tween the original attributes may be lost. In this paper we propose to overcome 
this limitation by introducing the concept of mining frequent attribute profiles 
that describes the relationships between the original attributes. By this concept, 
previously hidden interactions can be discovered and redundant patterns that are 
identified by traditional methods are eliminated. A novel algorithm, called 
MAP, has been developed for mining attribute profiles that can be potentially 
applied to diverse data domains. The effectiveness of the proposed method is 
shown by using gene expression or microarray data. 

1   Introduction 

The problem of association pattern discovery (APD) originates from market basket 
analysis which aims at finding interesting relationships hidden in large datasets. Such 
relationships can be represented in the form of frequent itemsets and association rules. 
APD is a two-step process: the first and most time-consuming step is to find frequent 
sets of items (called itemsets) that occur together in at least as many transactions as a 
given support threshold. The support of an itemset is the number of transactions that 
contain the itemset. The number of potential frequent itemsets is exponential to the 
number of items, which presents the main problem of the first step. The second step 
generates association rules from the frequent itemsets. Based on the mining strategy by 
which frequent itemsets are discovered, two types of algorithm can be distinguished: 
breadth-first search and depth-first search. The most commonly used breadth-first 
search algorithm is Apriori [2,14] and its variants [4,8]; whereas Eclat [16] and FP-
growth [9] are popular depth-first search algorithms. For other APD algorithms together 
with precise descriptions and analyses, see [10]. 
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Since its introduction, APD has been successfully applied not only to market bas-
ket analysis but to many other scientific and industrial problems, and more recently to 
gene expression data [5,7,12]. In market basket analysis an item is purchased or not 
purchased in a transaction, which requires the data to be represented by binary attrib-
utes. Real-world datasets, however, often contain continuous and categorical values. 
In gene expression data, for instance, a real value is assigned to each gene that speci-
fies its expression level in a given tissue or condition. Applying conventional pattern 
mining algorithms to such datasets requires a preliminary transformation of non-
binary attributes to binary ones [15], which can only partly discover association pat-
terns. This limitation of traditional methods can be highlighted by a simple example 
taken from a gene expression experiment as shown in Table 1. The expression values 
of gene A, gene B, gene C and gene D were determined for four different conditions 
as significantly repressed (1), significantly expressed (2), or neither significantly re-
pressed nor expressed (3). 

Table 1. Sample gene expression data 

 gene A gene B gene C gene D 
cond1 2 3 2 3 
cond2 1 2 1 2 
cond3 1 1 1 2 
cond4 2 1 2 3 

The research problem in such data is to find relationships between co-regulated 
genes, or in other words, to discover frequent combinations and associations of genes 
that display co-occuring changes condition by condition. Using the traditional meth-
ods, first the sample data is transformed into binary data before any of the frequent 
pattern mining algorithms can be applied. Table 2 summarizes the frequent patterns 
and their supports for the binned data. 

Table 2. Frequent patterns vs. frequent profiles 

support Frequent patterns Frequent profiles 
4 - A{0}C{1}D  and its 3 subsets 
3 - - 
2 {A:1, C:1, D:2}, {A:2, C:2, D:3} 

and their 6 subsets 
A{1}B{-1}C{1}D 
and its 8 subsets 

The highest co-occurrence that can be identified by traditional methods is 50% and 
it is satisfied by two frequent patterns: {A:1, C:1, D:2} for condition 2 and 3, and 
{A:2, C:2, D:3} for condition 1 and 4. However, the data in Table 1 show that there is 
a real association between genes A, C and D for all conditions. Where the expression 
level of one of the genes is affected in a particular way (repressed, expressed or no 
change) the expression values of the other two genes are affected in the same way in 
all conditions. This allows for the identification of genes whose expression profiles 
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follow the same patterns in response to different conditions. Intriguingly, traditional 
techniques are unable to identify the relationship even between genes A and C despite 
the fact that they have identical expression values in all conditions because of the low 
support of their binned values. Moreover, with support threshold 2, an accurate 
method should result in a single pattern for genes A, C and D thus reducing the num-
ber of “redundant” patterns (patterns containing the same genes with different binned 
values). 

In this paper we tackle these problems by introducing the concept of mining fre-
quent attribute profiles. Attribute profiles consider the original attributes without the 
need for binarization, and present their “trends” that are not visible when only binary 
values are used. By this concept, associations between the original attributes can be 
discovered that remain hidden to traditional approaches. 

Since traditional frequent itemset mining algorithms cannot be applied to discover 
the introduced attribute profiles, in this paper we propose an efficient depth-first 
search attribute profile mining algorithm. More precisely, the original data set is first 
compressed into an attribute distance tree structure where information about the 
trends (distances) of attributes is stored. Secondly, a recursive searching technique 
identifies and collects all of the frequent attribute profiles from the attribute distance 
tree. The effectiveness of the proposed method is demonstrated for a real-world, gene 
expression dataset in Section 4. 

2   Frequent Attribute Profiles 

Our starting point is that continuous attributes are only discretized and the data has as 
many fields as the number of attributes. 

Let X and Y be two attributes and let d denote the difference between two attribute 
values of X and Y in a transaction t such that d = t[Y] – t[X]. The formula X{d}Y is 
called an attribute profile between attributes X and Y. It is also called attribute profile 
of length 2 since it contains two attributes. The support of an attribute profile p ⊆ P in 
dataset T is the number of transaction that contains the profile in T: 

supp(p) = |{ t | p ⊆ t, t ∈ T}| 

The frequency of an attribute profile p in T is the probability of p occurring in a trans-
action t ∈ T: 

freq(p) = supp(p) / |T| 

An attribute profile p is called frequent if its support (frequency) is greater than or 
equal to a (user defined) minimum support (frequency) threshold σsupp (σfreq): 

supp(p)  σsupp   (freq(p)  σfreq) 

The research problem of attribute profile mining is to find all attribute profiles with 
sufficient support (frequency). Table 2 summarizes the frequent attribute profiles and 
their supports for the data given in Table 1. 

In contrast to the frequent itemset mining which is unable to identify the associa-
tion between genes A, C and D in the example from Section 1, attribute profile mining 
can discover this relation, even when a high (100%) frequency threshold is set. More-
over, we can easily see the trends (distances) of attributes from the frequent attribute 
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profile. Note that each frequent pattern discovered by traditional methods can be 
obtained from frequent attribute profiles. For example, the two frequent patterns {A:1, 
C:1, D:2} and {A:2, C:2, D:3} with support values 2 are included in the attribute pro-
file A{0}C{1}D with support value 4. 

To summarize the advantages of attribute profile mining over frequent itemsets 
mining, we can conclude that 

1. Attribute profiles describe relationships between the entire attributes in contrast 
to traditional patterns, which identify associations between independent binned 
attribute values. 

2. By the definition of attribute profiles, trends or distances of non-binned attrib-
utes are taken into account in order to identify associations between the entire 
attributes having non-frequent binned values but frequent trends transaction by 
transaction. Thus, previously hidden (lost) patterns of related attributes can be 
discovered, which are not found among the patterns produced by traditional 
APD methods. 

3. By discovering attribute profiles, a considerable number of redundant associa-
tions can be eliminated. By using traditional methods, redundant associations 
can appear, when the binned expression values of a set of particular genes have 
sufficient frequency in more than one condition (or sample). 

Note that the distance between two attributes, introduced in this section, can be de-
fined in different ways based on the data domains. Therefore, the distance can be 
symmetric or asymmetric. Applying symmetric distance measure, patterns of nega-
tively (inversely) correlated genes can be also discovered by attribute profiles that are 
hidden by traditional patterns. Also note that our distance measure is close to the se-
mantics of functional (multivalued) dependencies, see [1, 13]. 

3   Mining Attribute Profiles 

In this section we present our Mining Attribute Profile algorithm (MAP). The proposed 
algorithm can be characterized as a depth first search, divide-and-conquer algorithm, 
such as FP-growth [9]. We chose this type of searching strategy in order to reduce the 
number of database scans and avoid the costly set-containment-test operation that can 
be the case in applying the breadth-first search strategy, such as Apriori [2]. 

The mining is carried out in two steps in which the first step constructs a compact 
data structure called a Frequent Attribute Distance Tree (or FAD-tree), and the second 
step extracts the frequent attribute profiles directly from this FAD-tree structure. 

3.1   Constructing a Frequent Attribute Distance Tree 

In order to construct a compact data structure for efficient attribute profile mining, we 
apply the idea of building a frequent pattern tree (FP-tree) [9]. Similar to the FP-tree, 
the FAD-tree is constructed by reading the database transaction by transaction and 
mapping each transaction onto a path in the FAD-tree. A path compression occurs 
when two or more transactions have the same attribute profiles starting from the first 
attribute. The main difference between our FAD-tree and the original FP-tree is that 
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while the FAD-tree is built by the entire attributes (each node is a frequent attribute), 
the FP-tree is constructed by binned attribute values as single items. Moreover, the 
FAD-tree considers and stores attribute distances (or trends) between two successive 
attributes. 

3.2   Mining Frequent Attribute Profiles Using the FAD-Tree 

The MAP algorithm generates frequent attribute profiles from the constructed FAD-
tree by exploring the tree in a top-down and recursive manner. It splits the problem 
into sub-problems by decomposing the FAD-tree into disjoint sub-FAD-trees and the 
header table into sub-header tables. This decomposition is carried out attribute by at-
tribute in a stepwise manner. For each attribute node, a parent distance is calculated 
between the node and the root of the FAD-tree by summing the distance values of in-
tervening nodes. Nodes with calculated equivalent distances are grouped together. For 
each group with a sufficient support value, a sub-FAD-tree is constructed, i.e. rooted 
by that attribute. A corresponding sub-header table is also constructed in which the 
child of the rooted attribute forms the first position. Note that the nodes in the FAD-
tree are gathered by using the linked lists in the header table. During the decomposi-
tion process, paths with the same parent distance are merged. 

The above procedure is applied in a recursive way so that each sub-FAD-tree is 
used as a FAD-tree in the next recursion. During the decomposition, the roots of sub-
FAD-trees are stored as frequent profiles. If the constructed sub-FAD-tree has only a 
single branch, then there is no need to build a new sub-FAD-tree, all frequent attribute 
profiles can be enumerated directly from the single branch. 

A high-level pseudo-code of the MAP algorithm is given in the following: 
 
 

Algorithm MAP – Mining Attribute Profiles 
Input: FAD-tree T, header table H, support threshold σsupp 

Output: The complete set of frequent attribute profiles 
Description: 
 1: // Check whether T has only a single path. 
 2: if T has only a single path then  
 3:   enumerate frequent attribute profiles from FAD-tree T 
 4: else 
 5:   // Main loop for each attribute in the header table 
 6:   // with sufficient support value. 
 7:   for all attribute a ∈ H, a.supp  σsupp do 
 8:      // Calculate parent distance between the nodes and the 
 9:      // root. 
10:      for all n ∈ a.nodes do 
11:         calculate n.parent_dist (the distance between n and 
12:         the T.root) 
13:      Group nodes with same equivalent parent distances 
14:      // For each group with sufficient support, create  
15:      // sub-FAD-tree and sub-header table. 
16:      for each set of a.nodes with same parent_dist and  
17:      sufficient support do 
18:         create sub_FAD-tree sub_T and sub_header table sub_H 
19:         update set of frequent attr. profiles by sub_T.root 
20:         call MAP(sub_T, sub_H, σsupp) 
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A sub-FAD-tree rooted by attribute A is used to demonstrate how the MAP algorithm 
works for the sample data (Table 1), where the support threshold is set to 2 (Figure 1). 
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Fig. 1. Applying the MAP algorithm to the FAD-tree rooted by attribute A 

4   Experimental Results 

In this section, we demonstrate the usability and efficiency of our proposed attribute 
profile mining method (MAP) by comparing the performance of MAP and the tradi-
tional frequent itemset mining method (FIM) when applied to the gene expression 
data set of Hughes et al. [11]. This data contains information about the expression lev-
els of 6316 genes throughout 300 diverse yeast mutants or wild type yeast challenged 
with different chemical treatments. 

We discretized each expression value of the normalized data to 3 integers 1, -1 and 
0 representing expressed, repressed and neither expressed nor repressed. This was 
achieved by assigning all expression values greater than 0.2 for the log base 10 of the 
fold change to a value of 1 (expressed), all values less than -0.2 to a value of -1 (re-
pressed) and those between -0.2 and 0.2 to 0 (neither expressed nor repressed). To 
limit the effect of noise, 0 is considered to be a missing value. For FIM, we needed an 
additional binarization step to bin the gene attributes of discretized data into single 
Boolean items. 

Both FIM and MAP methods were tested on 7 different support thresholds. As an 
example, here we analyze the lengths of the longest patterns (frequent itemsets and 
profiles with the greatest number of genes) and the number of maximal frequent pat-
terns. The reason for using the maximal patterns is to consider a hidden association 
only once, i.e. the longest one (as all subsets of a frequent pattern are frequent as 
well). Maximal frequent patterns are useful to identify a small representative set of 
patterns from which all other frequent patterns can be derived. A frequent pattern is 
called maximal if it has no superset that is frequent [3]. For example, in our sample 
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dataset, only the listed frequent itemsets and profiles are maximal (Table 2),  
i.e. having more than one gene. Table 3 summarizes the results for both methods. 
The frequency threshold values, σrel, were selected to keep the number of maximal 
frequent patterns manageable. 

Table 3. Comparison of FIM and MAP methods 

#genes in the 
longest patterns 

# max. patterns 
(itemsets/profiles) 

Running times 
(in seconds) σrel 

FIM MAP FIM MAP 

#max.hidden 
associations 

FIM MAP 
0.19 4 5 15 163 148 0.16 0.05 
0.18 4 6 27 303 276 0.2 0.11 
0.17 5 6 48 585 537 0.21 0.12 
0.16 6 8 96 1162 1066 0.25 0.19 
0.15 7 10 195 2330 2135 0.37 0.35 
0.14 8 13 425 4462 4037 1.55 3.45 
0.13 11 15 871 7374 6503 3.25 12.56 

For all support thresholds, MAP gives the longest and most associations. For ex-
ample, at a minimum frequency of 0.14 (equal to 42 treatments), the number of genes 
in the longest associations identified by FIM was 8 whilst MAP identified frequent 
associations between 13 genes. As a consequence, MAP discovered more maximal 
frequent patterns than FIM for the same threshold, where all of the associations rec-
ognized by FIM were also identified by MAP. The last column shows the number of 
maximal hidden associations, i.e. the associations that were identified by MAP and 
not by FIM. The result clearly shows that previously hidden associations can be dis-
covered by our introduced frequent profile mining method. 

To compare the running times of traditional FIM and the implemented MAP meth-
ods, we chose the FP-growth implementation, provided by Bart Goethals [6]. In situa-
tions when higher thresholds are set, MAP is the fastest, whereas in other cases it has 
the longest running time. However, this is due to the fact that it discovers much more 
co-regulations between genes for the same thresholds than are found by FIM methods. 
This is probably a general observation: more frequent profiles and thus, more candi-
date associations result in slower speed. Similar numbers of profiles and itemsets gen-
erate comparable running times. We also wish to point out that our implementation is 
an initial version with no additional enhancements to increase calculation speed. 

5   Conclusions 

In this paper, a novel attribute profile mining method was introduced for frequent pat-
tern discovery, as an improvement to the itemset mining approaches common today. 
The main idea of the method is that non-binary attributes are mined without a pre-
liminarily binarization. As a consequence, frequent patterns of entire attributes hidden 
to traditional methods can be discovered. An algorithm was developed for the pro-
posed problem and shown to perform effectively when applied to gene expression 
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data. We expect that the method could also be effectively applied to other large scale 
data in the area of systems biology, such as protein quantification data, single nucleo-
tide polymorphism data, and data from promoter studies. 
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Abstract. Name disambiguation can occur when one is seeking a list
of publications of an author who has used different name variations and
when there are multiple other authors with the same name. We present
an efficient integrative framework for solving the name disambiguation
problem: a blocking method retrieves candidate classes of authors with
similar names and a clustering method, DBSCAN, clusters papers by
author. The distance metric between papers used in DBSCAN is cal-
culated by an online active selection support vector machine algorithm
(LASVM), yielding a simpler model, lower test errors and faster predic-
tion time than a standard SVM. We prove that by recasting transitivity
as density reachability in DBSCAN, transitivity is guaranteed for core
points. For evaluation, we manually annotated 3,355 papers yielding 490
authors and achieved 90.6% pairwise-F1. For scalability, authors in the
entire CiteSeer dataset, over 700,000 papers, were readily disambiguated.

1 Introduction

Name disambiguation is desired in many cases: e.g., evaluating faculty publi-
cations, calculating statistics of social network and author impacts, etc. The
metadata of publications such as authors, titles etc. is very valuable for auto-
matic bibliometrics and citation analysis. Manual extraction of metadata can be
costly for large-scale digital libraries such as the Google Scholar and CiteSeer.
Automatic metadata extraction [1] is not perfect especially for papers crawled
from the web, where many items are missing or incomplete. With author pro-
files constructed from disambiguation, these fields can be correctly populated,
improving the quality of existing metadata.

Name disambiguation is an interesting data mining problem with AKA’s and
other pseudonyms. The problem is deemed challenging in large-scale digital li-
braries. First, name disambiguation is a meta problem. Unlike disambiguation
in NLP, name disambiguation in academic papers does not necessarily have con-
text in a document, since authors do not appear in the text. In our case we use
the metadata of an author’s papers to determine his identity. Moreover, scala-
bility is a significant concern for large-scale databases, thus giving a preference
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for unsupervised or semi-supervised methods since it’s implausible to annotate
and train a classifier for each namesake. In addition, expandability is an issue for
persistent disambiguation. As new papers come in, more information is available
to refine previous results and name clusters could be adjusted when appropriate.

Our contribution is addressing the above challenges as follows:

– We use an online SVM algorithm (LASVM) to build a supervised distance
function, which yields a simpler yet faster model with active learning.

– We overcome the transitivity problem commonly found in other disambigua-
tion work by using an efficient clustering algorithm DBSCAN.

– Our framework is easily expandable to new papers: the supervised learner for
the distance function can easily handle additional data with online learning;
also, DBSCAN can adjust name clusters based on the new information.

– The framework integrates supervised and unsupervised methods to provide
a scalable solution, and is readily amendable to various improvements.

2 Related Work

Prior name disambiguation work mainly deals with the citation matching
problem [2, 3, 4]. Hybrid Naive Bayes and Support Vector Machine [5] methods
are inappropriate for large-scale databases, due to the cost of human annotation.
K-spectral clustering was used in [4] to find an approximation of the global op-
timal solution. However, the computation complexity O(N2) is intractable for
large-scale databases. Also, K is unknown a priori for an increasing database.
The scalability issue is addressed in [6] by using a two-level blocking frame-
work, reducing computation complexity to O(C |B|) (C is the number of blocks
and |B| the average size of blocks). However, citations are differentiated by sin-
gle pairwise distance without clustering. Like earlier agglomerative clustering
approaches [7], this could lead to the transitivity problem, due to the noisy
data and the inaccurate distance function. Multiple distances instead of a thresh-
old on single pairs are accounted for in [8], imposing transitivity by adding an
additional feature (with weight −∞) into the Conditional Random Field model.
We ameliorate the problem by using an efficient unsupervised clustering method
DBSCAN [9], which also makes coreferent decisions based on multiple distances.

3 Methods

3.1 Solution Overview

We formalize name disambiguation in Fig.1 as:

Given a research paper p(i), each author appearance a
(i)
u in this pa-

per is associated with a metadata record r
(i)
u , consisting of a set of at-

tributes {t(i)u,k}m
k=1. Our goal is to find an assignment function Θ, such

that Θ(a(i)
u ) = Ew, where Ew represents the real entity; in other words,

Θ(a(i)
u ) = Θ(a(j)

v ) if and only if a
(i)
u and a

(j)
v refer to the same person.
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Fig. 1. Author disambiguation Fig. 2. Disambiguation system overview

Fig.2 shows the system architecture. The metadata extraction module [1]
first extracts author metadata records from each paper. The blocking mod-
ule then blocks namesakes into candidate classes including only non-conflicting
name variations, thus significantly reduces the number of similarity calculation
for pairs from the entire database to within candidate classes. Afterward, the
similarity function computes a similarity vector s(i,j)= [sim1(t

(i)
u,1,t

(j)
v,1),..., simm

(t(i)u,m, t
(j)
v,m)]T , from the attributes {t(i)u,k}m

k=1 and {t(j)v,k}m
k=1 in record pairs, cor-

responding to author appearances a
(i)
u and a

(j)
v in a candidate class. We use

different similarity predicates siml depending on the nature of the attributes.
For instance, the edit distance is used for emails and URLs; token-based Jaccard
similarity for addresses and affiliations; hybrid similarity Soft-TFIDF [10] for
name variations.

The SVM then uses the similarity vector s(i,j) as a feature vector to classify
whether r

(i)
u and r

(j)
v are coreferent, and the confidence of coreference is used

as a pairwise distance metric. Finally, DBSCAN constructs clusters based on
multiple pairwise distances, which addresses the transitivity problem. These last
two modules are described in more detail in the rest of this section.

3.2 Distance Function with Online SVM and Active Learning

In the hypothetical space R spanned by metadata records, we need to determine
the distance dist(s(i,j)) between two records r

(i)
u and r

(j)
v . The distance function

dist is non-trivial and data-driven, thus we use a supervised learning algorithm
to determine such a function. Support Vector Machine (SVM) [11] is originally
designed for binary classification and shows good generalization performance.
We, however, use the SVM’s to obtain the learner’s confidence in the corefer-
ent class as in [10]. The confidence values determine the distances between the
record pairs, i.e., the more confident the SVM model classifies two metadata
records as coreferent, the closer they are in R. For simplicity of notation, we
refer to the training sample s(i,j) as xk and its true label as yk. Given a labeled
training dataset {(x1, y1), ..., (xN, yN)} (yi ∈ {−1, +1}), the SVM aims to find



Efficient Name Disambiguation for Large-Scale Databases 539

an ‘optimal’ hyperplane (w · x) + b = 0 (w ∈ Rn, b ∈ R) that separates the
training data, after solving the optimization problem of minimizing the function
L(w) = ‖w‖2 /2, subject to yi[(w · xi) + b] ≥ 1 (i = 1, ..., N).

We efficiently train the SVM model with an online kernel classifier LASVM
[12]. LASVM relies on the traditional soft margin SVM formulation, while it
works faster and preserves the classification accuracy rates of the state-of-the-
art traditional SVM solvers. Traditional SVM works in a batch setting; whereas
LASVM works in an online setting, where its model is continually modified
as new training instances become available. The speed improvement and the less
memory demand with online learning makes LASVM applicable to very large
datasets. When the digital library is populated with new papers, LASVM can
integrate the information of the new data without retraining all the samples,
thus it is adaptable to growing datasets.

In our setting, the metadata records are inherently noisy, thus not all the
training samples are equally informative. We believe that by using only the most
informative samples and discarding the noisy samples, we will get a simpler and
sparser model. This can be accomplished by active sample selection. In SVM
based active learning, the most informative sample among all the training data is
the one closest to the hyperplane. Classical active learning method with SVM’s
[13] is computationally expensive as it requires a search through all the unseen
training samples. We use a method as in [12] that will not necessitate a full
search, but locates an approximate most informative sample by examining a
small constant number of randomly chosen samples. The method first picks M
(M = 50 as in [12]) random training samples and selects the best one among
them. Thus active sample selection can be done in reasonable time.

3.3 DBSCAN Clustering

We use the clustering method DBSCAN [9] to cluster author appearances in
papers and prove that it can handle the inconsistency of author labeling. We do
not simply classify whether two metadata records are coreferent or not simply
based on the pairwise distance dist(s(i,j)), due to the transitivity problem: for
a triad (o, p, q), point o is coreferent with p, and p with q, while o is not coreferent
with q. This is an inconsistent condition since coreference should be transitive,
and is due to errors in metadata extraction, imperfect similarity metric and
misclassification. We formally prove that DBSCAN for the most cases resolves
the transitivity problem. Other reasons that we choose DBSCAN include:

– Minimal domain knowledge is needed to determine the two parameters ε and
MinPts, which can be tuned by visualization methods such as OPTICS [14].

– DBSCAN can model clusters of any arbitrary shape and delimit clusters
more intuitively to human interpretation.

– DBSCAN is highly efficient, for its computation complexity is O(N log N).

We briefly review the definitions in DBSCAN that are used in our theorems.
For an author appearance a

(i)
u in a candidate class D, DBSCAN induces the

cluster C from D such that ∀a ∈ C, Θ(a) = Ew.



540 J. Huang, S. Ertekin, and C.L. Giles

Definition 1. Point p is directly density reachable from q, if p ∈ Nε(q) and
|Nε(q)| ≥ M inP ts(core point condition), where Nε(q) = {p ∈ D |dist(p, q) ≤ ε}.

Definition 2. Point p is density reachable from q if there exists a chain
p1 = p, ..., pn = q, such that pi+1 is directly density reachable from pi.

Definition 3. Point p is density connected to q if there exists o, such that
both p and q are density reachable from o.

Definition 4. A cluster C is a subset of D satisfying:
1.(Maximality) ∀p, q, if p ∈ C and q is density reachable from p, then q ∈ C.
2.(Connectivity) ∀p, q ∈ C, p is density connected to q.

Under the DBSCAN framework, we recast the coreference relationship as den-
sity connectivity, both of which are symmetric. Formally speaking, for all
p, q ∈ D, p is coreferent with q iff p is density connected to q. We prove the
following theorem which shows that the transitivity problem with DBSCAN is
no longer an issue for the most part.

Theorem 1. Transitivity is guaranteed as long as p is a core point.

Proof. A contradiction exists if the transitivity problem exists, i.e., o is not
coreferent with q. o is coreferent with p implies that o is density connected to p,
so there exists r such that p and o are density-reachable from r. Hence two chains
a1 = r, ..., ak = o and b1 = r, ..., bl = p exist, such that ai+1 and bi+1 are directly
density reachable from ai and bi respectively. Specifically, p ∈ Nε(bl−1) implies
bl−1 ∈ Nε(p). Since p is a core point, we have |Nε(p)| ≥ M inP ts. Thus bl−1 is
directly density reachable from p. Note that by definition of density reachable,
b1...bl−1 should all satisfy core point condition. This forms a reverse chain bl =
p, ..., b1 = r such that bi−1 is directly density reachable from bi. Now we have
formed a density reachable chain from p to o (bl = p, ..., b1 = a1 = r, ..., ak = o),
and similarly another chain from p to q. Thus o is density connected to q, which
violates the assumption that o is not coreferent with q. ,-

Theorem 2 determines the correctness of DBSCAN for coreference resolution,
and corollary 1 dictates the absence of transitivity problem within a cluster.

Theorem 2. ∀C and ∀p, q ∈ C, p is coreferent with q.

Proof. By connectivity property in definition 4, ∀p, q ∈ C, p is density connected
to q. Therefore, p is coreferent with q.

Corollary 1. The transitivity problem does not exist for any triad in a cluster.

Combining Theorem 1 and Corollary 1, we are left with the case where the
transitivity problem exists: p is a border point (|Nε(q)| < M inP ts) of different
clusters. The nature of density-based clustering implies that this is a rare case
since such points will lie on the cluster boundary and will be sparse. Such points
are due to insufficient information which would be necessary to disambiguate a
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Table 1. Author data-
sets (R=#records, A=#
authors)

ID Dataset R A
1 A. Gupta 506 44
2 A. Kumar 143 36
3 C. Chen 536 103
4 D. Johnson 350 41
5 J. Anderson 327 43
6 J. Robinson 115 30
7 J. Smith 743 86
8 K. Tanaka 53 20
9 M. Jones 352 53

10 M. Miller 230 34
Total 3,355 490

Table 2. SVM models testing results: LASVM vs.
LIBSVM

ID Error(%) Prediction Time(sec.)a

LIBSVM LASVM(%chg.) LIBSVM LASVM(%chg.)
1 19.34 17.989(-7.00%) 137.3 109.3(-20.4%)
2 6.491 6.149(-5.26%) 6.3 5.1(-19.0%)
3 4.882 4.885(+0.07%) 118.8 94.2(-20.7%)
6 2.814 2.335(-17.0%) 5.3 4.1(-22.6%)
7 9.721 9.168(-5.69%) 215.6 170.2(-21.1%)
8 11.00 10.513(-4.45%) 1.1 0.8(-27.3%)

10 21.31 18.35(-13.9%) 25.3 19.6(-22.5%)
Avg 11.218 9.913(-7.60%) 72.8 57.6(-23.5%)

a Test on Dell Precision 370 server (3.0GHz Xeon CPU)

particular person’s name on a paper. When more information is available, the
problem can be easily solved with DBSCAN by merging or splitting clusters.

To sum up, by using the SVM to learn the underlying distance function,
DBSCAN acts as an assignment function Θ to disambiguate authors in papers.

4 Experiments

We empirically study the efficiency and effectiveness of our proposed method by
testing both the supervised distance function and the entire framework. Using
the CiteSeer metadata (obtained from SVM-based metadata extraction [1]), 10
most ambiguous names are sampled from the entire dataset as listed in Table 1.
These names are in parallel with the names used in [5, 4] representing the worst
case scenario, and are geographically diverse to cover names of different origins.
3,355 papers are manually labeled yielding 490 authors. For those ambiguous
author names from different papers, we meticulously went through the original
papers, homepages, CVs, etc, to confirm their authorship.

4.1 Experiments on SVM Based Distance Function

We select datasets with ID number 4, 5 and 9 as a three-fold training dataset,
consisting of 81,073 pairwise coreference training samples. Our first goal is to
obtain a simpler model for efficient distance calculation. As we see in Fig. 3, in
active learning setups, after using certain number of training data, the number
of support vectors saturates and the test error stabilizes. We observe that adding
more training data after this point hardly changes the model. This implies that
the most informative samples are already included in the model and the remain-
ing samples do not provide extra information. Therefore, we determine an early
stopping point for training by cross validation results (Fig. 3). We first select
an interval of iteration number from 12,310 to 14,100, where the average cross
validation error is stably minimized. Then we fix the iteration number to 14,100,
where the number of support vectors is closest to saturation.
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Our LASVM model is trained on the entire training dataset, stopping the
training process at this iteration number. For comparison, we also train a classi-
cal SVM model with a popular implementation LIBSVM [15] using batch learn-
ing. Table 2 shows the test error and prediction time of LASVM, compared to
classical SVM, for the seven test datasets. Our model demonstrates 23.5% re-
duction in the prediction time on average, due to the decrease in the number
of support vectors from 9,822 to 7,809. This simpler model also achieves 7.6%
decrease in test error, implying a more accurate distance function.

Fig. 3. Cross-validation on three-fold training datasets (from left to right: train[4,5]
test[9]; train[4,9] test[5]; train[5,9] test[4]). The optimal iteration number for early
stopping is shown with a vertical line, and the LIBSVM test error with a triangle.

4.2 Name Disambiguation Performance

We measure disambiguation performance at two levels as in [3]. At the pair
level, pairwise precision pP is defined as the fraction of pairs in the same
cluster being coreferent, pairwise recall pR as the fraction of coreferent pairs
put into the same cluster, and pairwise F1 pF1 as the harmonic mean of pP
and pR. At the cluster level, cluster precision cP is the ratio of the number
of completely correct clusters to the total number of clusters retrieved, whereas
cluster recall cR is the portion of true clusters retrieved. Likewise, cluster F1
cF1 is the harmonic mean. The ratio of cluster size RCS is defined as the
number of clusters retrieved versus the number of true clusters. Note that cluster
level metrics give no credits to clusters that miss some papers or are partially
correct, making them more stringent and less telling than the pairwise metrics.

Table 3 shows the disambiguation accuracy of the entire system. Overall, it
achieves 90.6% pairwise F1 metric, and 63.8% of the author name clusters are
completely correct. The RCS is 0.944 (close to the optimal value 1.0), implying
that the number of unique authors can be estimated with the number of clusters
from disambiguation results. To test the efficiency, the entire CiteSeer metadata
dataset is disambiguated in 3,880 minutes, yielding 418,809 unique authors.

5 Conclusion

An integrative framework is introduced to efficiently and adaptively resolve the
name disambiguation problem. In this framework, a blocking module significantly
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reduces the cost of similarity calculation. Our results show that with active sam-
ple selection and early stopping, learning a distance function is faster and more
accurate than that of traditional SVM’s. Our framework is easily expandable to
the growing datasets. First, online setting enables the incorporation of new infor-
mation without retraining the entire collection. Second, DBSCAN corrects the
rare cases where the transitivity property is violated by merging or splitting clus-
ters. We also formally prove the correctness of using DBSCAN for coreference
resolution and the absence of transitivity problem for core points.

Table 3. Disambiguation accuracy

Dataset pP pR pF1 cF1 RCS Dataset pP pR pF1 cF1 RCS

A. Gupta 0.914 0.960 0.937 0.483 0.977 J. Smith 0.815 0.853 0.834 0.625 0.860
A. Kumar 0.995 0.941 0.972 0.667 0.845 K. Tanaka 0.980 1.000 0.990 0.923 0.950
C. Chen 0.782 0.970 0.866 0.739 1.049 M. Jones 0.895 0.873 0.884 0.717 0.774
D. Johnson 0.761 0.948 0.844 0.434 1.024 M. Miller 0.775 0.953 0.855 0.451 1.028
J. Anderson 0.909 0.978 0.942 0.675 0.791 Mean 0.873 0.944 0.906 0.638 0.944
J. Robinson 0.908 0.963 0.935 0.667 1.143 Std. Dev. 0.085 0.046 0.056 0.150 0.122
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LAMSADE Place du Maréchal de Lattre de Tassigny

75775 PARIS CEDEX 16
bernard.hugueney@lamsade.dauphine.fr

Abstract. Time series data-mining algorithms usually scale poorly with
regard to dimensionality. Symbolic representations have proven to be a
very effective way to reduce the dimensionality of time series even using
simple aggregations over episodes of the same length and a fixed set of
symbols. However, computing adaptive symbolic representations would
enable more accurate representations of the dataset without compromis-
ing the dimensionality reduction. Therefore we propose a new generic
framework to compute adaptive Segmentation Based Symbolic Repre-
sentations (SBSR) of time series. SBSR can be applied to any model
but we focus on piecewise constant models (SBSRL0) which are the
most commonly used. SBSR are built by computing both the episode
boundaries and the symbolic alphabet in order to minimize information
loss of the resulting symbolic representation. We also propose a new dis-
tance measure for SBSRL0 tightly lower bounding the euclidean distance
measure.

1 Introduction

Time series are easily collected in huge amounts only limited by the sampling
rate of the sensors used to fill the databases. However, the sheer amount of
available data prevents the direct analysis of those time series. Furthermore,
even the automated data-mining algorithms have a hard time scaling up to
the task handling long time series. For this reason, one usually computes new
representations of the time series. There can be two (non exclusive) goals for
those representations:

– Dimensionality reduction. The representations should preserve as much as
possible the underlying information. Usually, such representations allow to
reconstruct time series as close as possible to the original time series (accord-
ing to some distance measure). The difference between those representations

� This work as been supported by grants from Région-̂Ile-de-France.
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and the one used for compression is the need to enable some operations di-
rectly on those representation (for example computing distance measures).

– Information extraction. The representations should make the underlying in-
formation explicit. Those high-level representations must exhibit the rele-
vant information as defined beforehand. This is akin to pattern matching
and symbolic process-monitoring [10] where episodes of interest are detected
and labeled according to a predefined set of shapes.

There has recently been a growing interest in symbolic representations of time
series. The poster child of such representations being SAX (Symbolic Aggregate
approXimation)[9] which enables many data-mining tasks. Symbolic representa-
tions fall clearly into the information extraction kind of time series representa-
tions, where episodes are associated to symbols interpretable according to the
data-mining task. In this paper, we propose to learn those symbols without prior
knowledge in order to build more relevant symbolic representations. The rest of
this paper is organized as follows. Section 2 presents background and related
work in time series symbolic representations and adaptive versus non adaptive
representations. Section 3 presents our proposed Segmentation-Based Symbolic
Representations (SBSR) with an emphasis on those based on piecewise constant
segmentations (with linear model of order 0) SBSR-L0. In the same section,
we propose a generic algorithm to compute SBSR and a specific algorithm for
SBSR-L0. In sections 4, we evaluate the modeling accuracy of our algorithm. For
space constraint reasons, we could only illustrate the results on our real-world
dataset in this paper. However, more extensive evaluations, along with more
detailed algorithms, are available in an expanded version of this paper [2]. In
section 5 we discuss the distance measures that can be defined over SBSR in
order to take advantage of the accurate modeling for a better lower bounding
distance measure. We present our conclusions and current research directions in
section 6.

2 Background and Related Works

As we have seen in section 1, time series databases are usually much too large to
be tackled directly by data-mining algorithms. As far as this paper is concerned,
the problem does not come from the number of time series in the database, but
from the length of the time series. For this reason, we build representations of
time series in order to reduce the dimensionality of the dataset, as it is a very
common preprocessing step. A model for time series databases handling both
the number of time series and the length of those time series is presented in
[4]. Many time series data-mining algorithms are based on a distance measure
between time series, so defining such a distance measure is crucial when design-
ing new time series representations, as we will see in section 5. Amongst the
many time series representations already available, we will focus on those tack-
ling issues the most related to our need for concise and expressive time series
representations:
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1. SAX (Symbolic Aggregate approXimation), for the information extraction
process of turning numerical time series into strings of symbols,

2. APCA (Adaptive Piecewise Constant Aggregation), for the advantages of
locally adaptive representations with regard to conciseness / modeling accu-
racy tradedoff, when compared to its non-adaptive counterpart (Piecewise
Aggregate Approximation).

The dataset of the univariate time series to be represented is defined as fol-
lows: Let S = {TSi}i∈{1...M} be the dataset of M time-series. Each of the
time series is defined on the same time stamps: TSi = {(vi

j , dj)}i∈{1...N} with
vi

j ∈ R and dj ∈ D, D being the temporal definition domain of the time
series.

2.1 SAX: Symbolic Aggregate Approximation

The underlying principles of SAX are that the values taken by the normalized
time series follow a normal distribution, and that the time series are ”oversam-
pled” according to the interesting patterns. Amongst the advantages of such a
simple representation, is the fact that computational requierments for building
such representations are minimal and that it is easy to compare representations
of different time series if the episodes are of the same length. Another important
asset of SAX is the distance measure that can be defined to lower bound the eu-
clidean distance. SAX is based on the mean value of the time series over episodes
of the same length. The sequence of those means is in fact another time series
representation, but a numerical one, called Piecewise Aggregate Approximation
(PAA).

2.2 Adaptive Piecewise Constant Approximation Versus Piecewise
Aggregate Approximation

SAX is a kind of symbolic version of PAA, that is based on piecewise constant
models (or linear models of order 0) over episodes of the same duration, built
by quantizing the means according to a partition. PAA was introduced as an
effective representation of time series in [7] where it was shown to enable dimen-
sionality reduction and indexing of time series databases. As always, there is a
tradeoff to be made between the accuracy of the representation and its concise-
ness. The accuray is often measured by the sum of square errors (SSE) and the
conciseness by the complexity of the representation (i.e. the number of episodes
for PAA).

Better accuracy/conciseness tradeoffs can be achieved thanks to APCA([5]),
an adaptive variant of PAA where episode length is locally adapted to the values
taken by the time series. In search of time series symbolic representations that
would yield the benefits of adaptive representations, that is better conciseness
versus accuracy tradeoffs, we propose a new kind of symbolic representations
based on segmentations.
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3 SBSR: Segmentation-Based Symbolic Representations

3.1 Generic Framework for Symbolic Representations of Time
Series

With the notations presented in section 2, we defined the symbolic representa-
tions in [1] as follows:

– E = {ep = (dp, dp+1)}l∈{1...P} is a set of P episodes that is a partition of
the time domain D.

– Λ is a set of K symbols.
– SR(TS) = {(ep, λp, . . .)}p∈{1...P} is a symbolic representation of TS that

allows to define a function : E → Λ, ep �→ λp. Each tuple of SR(TS) is at
least made of an episode and a symbol, but other information can be added,
either numerical of symbolical in nature.

This very broad definition of symbolic representations encompasses a great
number of symbolic representations. Different kinds of such symbolic represen-
tations are studied in [3], but we now present a new kind of Segmentation-Based
Symbolic Representations (SBSR) that makes use of segmentation algorithms in
order to compute the sets of episodes.

3.2 Segmentation-Based Symbolic Representations

Segmented models of time series can be defined as Seg(TS) = {(ep, φp)} where
φp is a set of parameter values for the given model. PAA and APCA are both
segmented models for linear models of order 0, and linear models of order 1 are
used in [6].

SBSR generalizes the quantization of the means in PAA that leads to SAX
by defining clusters of parameters values. Let Λ = {λk}k∈{1...K} be the alpha-
bet of symbols associated to Γ = {γk}k∈{1...K} the partition of the param-
eter space, SBSR(TS) = {(ep, λp, . . .)}p∈{1...P} is a symbolic representation
such that ep �→ λk/φp ∈ γk for a given segmentation of TS into P segments
Seg(TS) = {(ep, φp)}p∈{1...P}.

SBSR can be applied to any model but we now focus on the representation
based on linear models of order 0, that we call SBSR-L0.

3.3 Segmentation-Based Symbolic Representations with Linear
Models of Order 0

SBSR-L0 are defined as follows:

– Λ = {λk}k∈{1...K} is the alphabet of symbols. Each λk is related to a pro-
totypical numerical value φ′

k ∈ R and an interval Ik = {φ ∈ R/(φ − φ′
k)2 <

(φ− φ′
l)

2∀l �= k}.
– E = {ep = (dp, dp+1)}p∈{1...P} is the partition of D into P episodes.
– SBSR-L0(TS) = {(ep, λp)}p∈{1...P}, where λp is the symbol relating to the

interval that contains TS[ep], the mean value of TS over the episode ep.
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What we call restricted segmentation is a segmentation where the model pa-
rameters can only take values from a finite subset of the parameter space (here
{φ′

k}k∈{1...K}). Fig.1 shows the SBSR-L0 representation of the daily extract of
the time series. It is important to note that the levels used for this extract are
computed in order to represent the whole time series and not only this small
extract, hence it is a daily extract of the SBSR-L0 representation of the whole
time series and not SBSR-L0 representation of a daily extract.
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SAX representation :
 BAAEEEFFEB
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−
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SBSR−L0 representation :
 (0,148)A,(148,198)D,(198,316)C,(316,409)D,(409,480)B

Fig. 1. Daily extract (over 480 points) of SAX and SBSR-L0 representations with 10
symbols

As we have seen in section 3.1 the most difficult part is often to devise efficient
algorithms to compute E and Λ in order to maximize the modeling accuracy.
However, it is possible to take advantage of the efficient segmentation algorithms
to compute SBSR in general and especially SBSR-L0.

3.4 Generic Algorithm for Computing SBSR

The generic algorithm that we propose is a two-step iterative process much like
the k-means[11] and E-M algorithms:

1. Compute initial segmentation
Seg0(TS) = {(ep

0, φp
0)}p∈{1...P} of TS into P segments with the best algo-

rithm affordable according to the number of points N .
2. Optimization of the interpretations of alphabet {φ′

k
s} for a given set of

episodes computed in previous step s. We cluster the set of extracts of
{TS[es

p]} into K clusters according to the clustering criterion and compute
prototypical values {φs

k} that minimize the reconstruction error when each
episode is associated to the prototypical value of its cluster.

3. Optimization of the set of episodes Es+1 according to a given set of in-
terpretations {φ′

k
s}. We perform restricted segmentation of TS with model

parameters values restricted to {φ′
k

s}.
4. Repeat from step 2 until convergence

4 Modeling Accuracy

In order to provide simple distance measures between the time series of our
datasets, we decided to compute only one set of episodes E and one set of symbols
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Fig. 2. SSE for numerical reconstructions from SAX and SBSR-L0 representations of
our real-world dataset

and their interpretations for the whole dataset, and not specific sets for each of
the time series. The modeling accuracy would have been even better with specific
sets of episodes and alphabets of symbols. Given that SAX representations do
not define a numerical reconstruction, we decided to assign to each SAX symbol
a numerical value that is the mean value of the normal distribution over the
associated interval.

The real-world dataset that we used to evaluate SBSR-L0 is based on urban
traffic information sampled every 3 minutes by 423 sensors. The time series are
normalized and the dataset is made of the 5000 daily extracts of 480 points from
those time series. With notations in section 2, we have M = 5000 and N = 480.
In Fig.2, we present the SSE for numerical reconstructions from SAX and SBSR-
L0 representations. Each curve represents the SSE for a number of symbols
(K ∈ {4 . . . 9}. It is important to notice that the SSE scale is logarithmic. The
dahsed lines (resp. plain lines) are all thoses corresponding to SBSR-L0 (resp.
SAX) representations.Within each of these groups the better results are of course
those of the representations with the most symbols. It is interesting to note that
SAX modeling is not always increasingly more accurate when more episodes are
used for the representations.

5 Distance Measures

As we have seen in section 1, in order to be useful for data-mining tasks, repre-
sentations of time series must enable the use of distance measures. Of course, the
main advantage of symbolic representations is to enable specific manipulations
using the domain semantic. A semantic distance between symbolic representa-
tions of time series would make use of an edit distance (or Levenshtein distance
[8]) between the symbol strings and a semantic distance between each symbol.

However, it is often very important to be able to compare time series according
to the underlying numerical data, for example by using the euclidean distance.

As we have just seen, the distance factor between symbols of SAX representa-
tions is based on the theoretical worst-case of mean values over the set of repre-
sented time-series extract. This pessimistic approach is good because it does not
require any information from the represented time series and is not dependent
on the datasets. However, it would be possible to lower bound more efficiently
the euclidean distance with information about the mean values actually taken
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by the time series in the dataset. This also makes the case for representations
both numerical and symbolical in nature. As for numerical computations such
as distance measures, one cannot beat the accuracy of numerical information.
From the smallest to the largest amount of numerical information that can be
put into SBSR-L0, we have:

1. No additionnal information, as in SAX. Let us call the associated distance
DSAX .

2. Dataset global information. For each symbol, we store the actual minimal
and maximal values of mean values taken by the time series extracts over
episodes represented by the symbol. Let us call the associated distance Dg.

3. Time series local information. For each symbol and each of the time series,
we store the actual minimal and maximal values of mean values taken by
the time series extracts over episodes represented by the symbol. Let us call
the associated distance Dl.

4. Episode local information, as in APCA. Let us call the associated distance
DAPCA.

It is obvious that we have DSAX(TSi1, TSi2)≤Dg(TSi1, TSi2)≤Dl(TSi1, TSi2)≤
DAPCA(TSi1, TSi2)≤D(TSi1, TSi2), ∀(TSi1, TSi2) ∈ S × S.

The best tradeoff between the space requirements and efficient lower bounding
is application dependent. In Fig.3, we show the results of the evaluation of the
distance functions over our real-world dataset (presented in section 4)for various
values of K and P .

We computed the mean thightness for all of the distances between each pair
of time series in the dataset. We represented the tightness of 4 distance mea-
sures (DSAX , Dg, Dl, DAPCA) on both SAX and SBSR-L0 representations. That
should be 8 curves but we can see only 6 because DSAX and Dg are extremely
close to each other.

From the lowest (worst) to the highest
(best), the curves that we can see are :

1. DSAX and Dg for SAX
2. DSAX and Dg for SBSR-L0
3. Dl for SAX
4. Dl for SBSR-L0
5. DAPCA for SAX
6. DAPCA for SBSR-L0
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Fig. 3. Mean tightness of lower bounding
by the various distance measures for 9 sym-
boles and 3 to 10 episodes on our real-world
dataset

6 Conclusions and Future Works

We have proposed SBSR, a new generic framework for locally symbolic and
numeric/symbolic representations of time series based on segmentations and a
generic algorithm to build those representations.
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Amongst SBSR, we focused on those based on piecewise constant models with
prototypical values associated to symbols: SBSR-L0. We proposed an algorithm
to build locally optimal SBSR-L0 and made experimental validations of the
modeling accuracy of SBSR-L0 on a real-world dataset. We proposed various
distance measures between SBSR-L0 representations, corresponding to different
tradeoffs between space requirements and accuracy of the euclidean distance
lower bounding and provided experimental results for those distances measures.

The SBSR framework allows to define numerous kinds of symbolic or nu-
meric/symbolic representations of time series. When the information to extract
concerns the local linear trends of time series, we ressort to SBSR based on
clustering of trends in linear models of order 1 (SBSR-L1-T).
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Abstract. In this paper we present a new approach to feature selection for se-
quence data. We identify general feature categories and give construction algo-
rithms for each of them. We show how they can be integrated in a system that
tightly couples feature construction and feature selection. This integrated process,
which we refer to as feature generation, allows us to systematically search a large
space of potential features. We demonstrate the effectiveness of our approach for
an important component of the gene finding problem, splice-site prediction. We
show that predictive models built using our feature generation algorithm achieve
a significant improvement in accuracy over existing, state-of-the-art approaches.

1 Introduction

Many real-world data mining problems involve data best represented as sequences. Se-
quence data comes in many forms including: 1) human communication such as speech,
handwriting and language, 2) time sequences and sensor readings such as stock market
prices, temperature readings and web-click streams and 3) biological sequences such
as DNA, RNA and protein. Sequence data in all domains contains useful ’signals’, fea-
tures, that enable the correct construction of classification algorithms.

Extracting and interpreting the features is known to be a hard problem. In many
cases a brute force approach is taken, in which the sequence classification models are
provided with a huge number of features in the hope that the important features are not
overlooked. The large number of features introduces a dimensionality problem which
has several disadvantages. First, enumerating all possible features is impractical. Sec-
ond, many features are irrelevant to the classification task and have an adverse effect
on accuracy. And third, knowledge discovery becomes difficult because of the large
number of parameters involved.

The focus of this paper is on a scalable method for feature generation for sequences.
We present an algorithm that explores the space of possible features and identifies the
most useful ones. Our focused feature generation algorithm (FGA) integrates feature
construction and feature selection in a systematic way. Our method is scalable because
it incrementally generates more complex features from currently selected ones.

We validate our method on the task of splice-site prediction for pre-mRNA se-
quences. Splice sites are the locations in the DNA sequence, which are boundaries for
protein coding and non-coding regions. Accurate location of splice sites is an impor-
tant component in the gene finding problems. It is a particularly difficult problem since

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 553–560, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the sequence characteristics, i.e. pre-mRNA sequence length, coding sequence length,
number of exons and their lengths, and interrupting intron sequence lengths do not fol-
low any known pattern, making it hard to locate the genes.

We demonstrate the effectiveness of our approach by comparing it with a state-of-
the-art method, GeneSplicer. Our predictive models show significant improvement in
accuracy. Our final feature set, achieves a 6.3% improvement in the 11-point average
precision when compared to GeneSplicer. At the 95% sensitivity level, our method
yields a 50% improvement in specificity. Our contribution is two-fold. First, we give
a general feature generation framework appropriate for any sequence data problem.
Second, we provide new results and identify a set of features for splice-site prediction
that should be of great interest to the gene-finding community.

2 Related Work

Feature selection techniques have been studied extensively in text categorization [1, 2,
3,4,5]. Recently they have begun receiving more attention for applications to biological
data. A good introduction for filtering methods in the prediction of translation initiation
sites is given in [6]. Various feature selection techniques for prediction of splice sites
have been studied in [7,8,9]. And in [10], SpliceMachine is described with compelling
results. In addition, there is a significant amount of work on splice-site prediction. One
of the most well-known approaches is GeneSplicer proposed by Pertea et al [11].

3 Data Description

We validate our methods on a dataset which contains 4, 000 RefSeq1 pre-mRNA se-
quences. In a pre-mRNA sequence, a human gene is a protein coding sequence which is
characteristically interrupted by non-coding regions, called introns. The coding regions
are referred to as exons. The acceptor splice site marks the start of an exon and the
donor splice site marks the end of an exon. All the pre-mRNA sequences in our dataset
follow the AG consensus for acceptors and GT consensus for donors.

We focus on the prediction of acceptor splice sites which is considered to be a harder
problem. Following the GeneSplicer format, we mark the splice site and take a subse-
quence consisting of 80 nucleotides upstream from the site and 80 nucleotides down-
stream. We construct negative examples by choosing random AG-pair locations that are
not acceptor sites and selecting subsequences as we do for the true acceptor sites. Our
data contains 20,996 positive instances and 200,000 negative instances.

4 Feature Generation

The feature types that we consider capture compositional and positional properties of
sequences. These apply to any sequence data defined over some fixed alphabet. For
each feature type we describe an incremental feature construction procedure. The fea-
ture construction starts with an initial set of features and produces an expanded set of
features. Incrementally, it produces richer, more complex features for each iteration.

1 http://www.ncbi.nlm.nih.gov/RefSeq/
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4.1 Feature Types and Construction Procedures

Compositional features. A general k-mer is a string of k-characters. This feature
type is useful for capturing information like coding potential and composition in the
sequence.

Construction Method. Given an initial set of k-mer features, this construction method
expands them to a set of (k + 1)-mers by appending the letters of the alphabet to each
k-mer feature.

Region-specific compositional features. Splice-site sequences characteristically have
a coding region and a non-coding region. For the acceptor splice-site sequences, the
region of the sequence on the left of the splice-site position (upstream) is the non-
coding region, and the region of the sequence from the splice-site position to the end of
sequence (downstream) is the coding region. These regions may exhibit distinct compo-
sitional properties. In order to capture these differences we use region-specific k-mers.
Construction Method. The construction procedure of upstream and downstream k-mer
features is the same as the general k-mer method, with the addition of region indicator.

Positional features. Position-specific nucleotides are the most common features used
for finding signals in the DNA stream data [12]. These features capture the correlation
between different nucleotides and their relative positions. The position specific k-mers
capture the correlations between k-adjacent nucleotides. At each position i in the se-
quence these features represent the substring appearing at positions i, i + 1, .., i + k.
Construction Method. This construction method starts with an initial set of position-
specific k-mer features and extends them to a set of position-specific (k + 1)-mers by
appending the letters of the alphabet to each position-specific k-mer feature.

Conjunctive positional features. To capture the correlations between different nu-
cleotides in nonconsecutive positions in the sequence, we propose conjunctive position-
specific features. We construct these complex features from conjunctions of basic
position-specific features. The dimensionality of this kind of feature is inherently high.

Construction Method. Given an initial set of k-conjuncts, this construction method
selects from the set of basic position-specific features to add another conjunct in an
unconstrained position, therefore constructing the set of (k + 1)-conjuncts.

4.2 Feature Selection

Feature selection methods reduce the set of features by keeping only the useful features
for the task at hand. The problem of selecting useful features has been the focus of
extensive research and many approaches have been proposed [1, 2, 3, 4, 5].

In our experiments we consider several feature selection methods to reduce the size
of our feature sets. We use several filter approaches including Information Gain (IG),
Chi-Square (CHI), Mutual Information (MI), KL-distance (KL) for initial pruning of
feature types sets during the generation stage. Due to space limitations, in the experi-
ments section, we present the combination that produced the best results. In our data,
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we found that mutual information performed best for selecting compositional features,
chi-squared for positional features and information gain for conjunctive features. At the
final collection step, we combine this with an embedded method based on recursive fea-
ture elimination [9] used in our final feature collection stage. The weights wi of the deci-
sion boundary of a linear SVM can be used as feature weights to derive feature ranking.
We use the C-Modified Least Squares (CMLS) classifier [13] and refer to this method
as W-CMLS. We recursively train the classifier and remove low scoring features.

4.3 Feature Generation Algorithm (FGA)

The traditional feature selection approaches consider a single brute force selection over
a large set of all features of all different types. By categorizing the features into different
feature types we can apply appropriate construction and selection methods suitable to
the different types. Thus we can extract relevant features from each feature type set
more efficiently than if a singe selection method had been applied to the whole set. We
use the following algorithm:

– Feature Generation. The first stage generates feature sets for each feature type. For
each defined feature type, we tightly couple the corresponding feature construction
step with a specified feature selection step. We iterate through these steps to gener-
ate richer and more complex features. During each iteration, we eliminate features
that are assigned a low selection score by the feature selection method.

– Feature Collection and Selection. In the next stage, we collect the features of dif-
ferent types and apply another selection step.

– Classification. The last stage of our algorithm builds a classifier over the final set
of features.

For this type of problem it is not unusual to spend a lot of computational resources,
especially in the training phase. While feature generation remains a computationally
intensive process, the organization of the generation process according to the different
types allows us to search a much larger space efficiently. For the time complexity of the
classification algorithm, we use CMLS which is very efficient. In addition, this feature
generation approach has other advantages such as the flexibility to adapt with respect
to the feature type and the possibility to incorporate the module in a generic learning
algorithm.

5 Experimental Results for Splice-Site Prediction

We conducted a wide range of experiments using a variety of classifiers, and here we
present a summary of them. We present results for the classifier that consistently gave
the best results, CMLS.

We use the 11-point average (11ptAvg) [14] to evaluate the performance of our al-
gorithm. For any recall ratio, we calculate the precision at the threshold which achieves
that recall ratio and compute the average precision. The 11ptAvg is the average of pre-
cisions estimated at recall values 0%, 10%, 20%, ., 100%. The ability of our algorithm
to discriminate true acceptor site sequences from normal sequences is evaluated also
using Receiver Operating Characteristic (ROC) curve analysis Another performance
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Accuracy Comparison for Upstream/Downstream
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3000 82.71 66.63 82.50 82.97
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Fig. 1. (a) Comparison between different feature type sets performances, upstream k-mers, down-
stream k-mers, and general k-mers shown for different k (b) 11ptAvg precision results for FGA
varying the feature set size of position-specific collection of k-mers through different feature
selection methods

measure commonly used for biological data is the false positive rate(FPr) defined as

FPr =
(

FP
FP+TN

)
where FP , and TN are the number of false positives and true

negatives respectively. FPr can be computed for all recall values by varying the de-
cision threshold of the classifier. We also present results using this measure. In all our
experiments, the results reported use three-fold cross-validation.

5.1 Accuracy Results of FGA

We begin with a brief evaluation of the effectiveness of the different feature types used
in isolation.

Compositional features and region-specific compositional features. We examine each
k-mer feature set independently for each value of k from 2 to 6. Figure 1(a) shows the
accuracy results for the region-specific k-mers and the general k-mer feature sets as we
collect them after each iteration. In our experiments, MI selection method worked best
for compositional features. We notice that k-mer features carry more information when
they are associated with a specific region (upstream or downstream) and this is shown
by the significant increase in their 11ptAvg precisions.

Positional features. Next, we examine each position-specific k-mer feature set inde-
pendently. We explore k-values from 1 to 6. The prediction results for this feature type
(data not shown) after each generation step gradually increase until level 3, then gradu-
ally drop. This can be explained with the exponential increase in the number of features
after each level. In Figure 1(b), we use feature selection to have a mix of position-
specific k-mers for k values from 1 to 3. This table shows results of repeated selection
for IG, MI, CHI and KL feature selection methods. Of these, CHI retains the highest
precision among the four methods. Our paired-t tests for statistical significance reveal
that these values although similar are statistically significant.
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Accuracy of Position Specific Features generated 
with FGA vs. Random
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Fig. 2. a) 11ptAvg results for the position specific feature sets generated with FGA algorithm
vs randomly generated features. b) Performance results of the FGA method for different feature
types as well as the GeneSplicer program.

Conjunctive positional features. Finally, we examine conjunctive positional features.
The number of these features grows exponentially and it is clearly very cumbersome
to test for relevance more than 40 million unique combinations of triple conjuncts.
We explore sets of 2 to 4 conjuncts denoted as (P2, P3, P4). We use the IG selection
method to select the top scoring 1, 000 features and repeat the generation on the selected
set to get the next level. In Figure 2(a), we show the performances of the conjunctive
feature sets. For comparison, we introduce a baseline method, which is the average of
10 trials of randomly picking 1, 000 conjunctive features from each level.

Summary. Next, we compare collections of different levels of the feature sets of differ-
ent types. The results are summarized in Figure 2(b).

Compositional features and region-specific compositional features. The first two
bars show the results for the best 2, 000 k-mer features for k ranging from 2 to
6. General k-mers result in an 11ptAvg of only 39.84%, while the result of the
combined upstream and downstream k-mer features is 77.18%.

Position-specific k-mers. The third bar shows the results for 5, 000 position-specific
k-mer features selected using the CHI selection method for k ranging from 1 to 3.
The 11ptAvg precision is 85.94%.

Conjunctive positional features. The next bar shows the results for a collection of
3, 000 conjunctive positional features for k ranging from 1 to 4 selected using
IG. The 11ptAVG precision that this collection set gives is 82.67%. These results
clearly show that using complex position-specific features is beneficial. Interest-
ingly, these features typically are not considered by existing splice-site prediction
algorithms.

Figure 2(b) also shows the performance of GeneSplicer on the same dataset. We see that
even in isolation, our position-specific features and our conjunctive positional features
perform better than GeneSplicer. These results are also statistically significant.



A FGA for Sequences with Application to Splice-Site Prediction 559

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
80

81

82

83

84

85

86

87

88

89

Feature set size

11
pt

A
V

G
 P

re
ci

si
on

Accuracy of FGA compared with GeneSplicer

FGA W−CMLS
GeneSplicer

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
False Positive Rate for FGA and GeneSplicer

Sensitivity (Recall)

F
al

se
 P

os
iti

ve
 R

at
e

FGA
GeneSplicer

(a) (b)

Fig. 3. (a) 11ptAvg precision results for FGA varying the feature set size, compared to GeneS-
plicer (b) The false positive rate results for FGA varying the sensitivity threshold, compared to
GeneSplicer

Results using the full feature-type collection. In the following set of experiments, we
show the results after we collect all the features that we have generated. We run our
CMLS classification algorithm with a total feature set of size 10, 000 containing gen-
eral k-mers, upstream/downstream k-mers, position-specific k-mers and conjunctive
position-specific features. We achieve an 11ptAvg precision performance of 88.20%.
This compares quite favorably with one of the leading programs in splice-site predic-
tion, GeneSplicer, which yields an accuracy of 81.89% on the same dataset. The pre-
cision results at all individual recall points (data not shown) are consistently higher
than those of GeneSplicer. In Figure 3(a) we explore more aggressive feature selection
options and see that smaller feature sets of even 2, 000 outperform GeneSplicer signif-
icantly. In these experiments it is the more expensive W-CMLS selection method that
we use in order to select a smaller working feature set.

We present the false positive rates for various recall values in Figure 3(b). Our fea-
ture generation algorithm, with its rich set of features, consistently performs better than
GeneSplicer. Our false positive rates are favorably lower at all recall values. At a 95%
sensitivity rate the FPr decreased from 6.92 to 3.44%. This significant reduction in
false positive predictions can have a great impact when splice-site prediction is incor-
porated into a gene-finding program. In terms of AUC score FGA gives a result of 0.971
compared to GeneSplicer of only 0.935. It should also be noted that there is no signifi-
cant difference in the running time of FGA compared to GeneSplicer. FGA performs a
linear search (in terms of sequence length) along the given sequence in search for high
scoring sites.

6 Conclusions

We presented a general feature generation framework which integrates feature con-
struction and feature selection in a flexible manner. We showed how this method can be
used to build accurate sequence classifiers. We presented experimental results for the
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problem of splice-site prediction. We were able to search over an extremely large space
of feature sets effectively, and we were able to identify the most useful set of features
of each type. By using this mix of feature types, and searching over combinations of
them, we were able to build a classifier which achieves an accuracy improvement of
6.3% over an existing state-of-the-art splice-site prediction algorithm. The specificity
values are consistently higher for all sensitivity thresholds and the false positive rate has
favorably decreased. In future work, we plan to apply our feature generation algorithm
to more complex feature types and other sequence prediction tasks, such as translation
start site prediction.
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Abstract. The diverse and distributed nature of the information pub-
lished on the World Wide Web has made it difficult to collate and
track information related to specific topics. Whereas most existing work
on web information fusion has focused on multiple document summa-
rization, this paper presents a novel approach for discovering associ-
ations between images and text segments, which subsequently can be
used to support cross-media web content summarization. Specifically,
we employ a similarity-based multilingual retrieval model and adopt a
vague transformation technique for measuring the information similar-
ity between visual features and textual features. The experimental re-
sults on a terrorist domain document set suggest that combining visual
and textual features provides a promising approach to image and text
fusion.

1 Introduction

The diverse and distributed nature of the information on the World Wide Web
has made it difficult to collate and track information related to specific topics.
Techniques for web information fusion, involving filtering of redundant informa-
tion, collating of information according to themes, and generation of coherent
presentation, are needed for information users. As a useful technique for infor-
mation fusion, document summarization has been discussed in a large body of
literatures. Most document summarization methods however focus on summa-
rizing text documents. As an increasing amount of non-text content, namely
images, video, and sound, is becoming available on the web, summarizing mul-
timedia information has posed a key challenge in web information fusion.

In this paper, we focus on one of the important problems in multimedia fu-
sion, namely the extraction of association between multimedia components, in
particular, images and texts. Our approach is consistent with those found in the
literatures of hypermedia authoring and cross-document text summarization,
that understanding the interrelation between information blocks are essential
for collating information and generating final presentations.

By extending a process for multi-document summarization [1], we present a
procedure for web document fusion (Figure 1) consisting of five stages as follows.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 561–568, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. An overview of the web information fusion process

1. The raw web documents are first clustered according to their topics.
2. Each document is divided into several atomic segments (atomic description

unit) according to sub-topics and media types.
3. For each document, the relations among document segments are determined.

In our work, we focus on the relations across media types.
4. Within a document cluster, the cross-document relations among document

segments are determined. Duplicated contents are detected.
5. The document segments are reorganized and presented according to a sum-

marization template and the in-document and cross-document relations.

We see that techniques developed for text documents can be used in the first
two stages of the cross-media summarization process, i.e. document clustering
and segmentation (where each multimedia object itself can be seen as a segment).
For detecting the associations and relationships between multimedia components
(e.g. text segments and images) within or across documents, we present a textual-
visual vague transformation technique, borrowed from the field of multilingual
retrieval [2], for extracting associations between images and texts from news web
documents. The extracted image-text associations can be subsequently used for
the third, fourth, and fifth stages of the summarization.

Note that our method is different from the existing efforts on image indexing
using statistical modelling approaches originally proposed in the field of natural
language processing [3]. Image indexing tends to establish the correspondence
between keywords (concepts) and particular image regions. Our task, however,
does not require such a correspondence between the contents of the text segments
and the associated images. In the next two sections, we present our methods for
data preprocessing and image-text association learning. Section 4 reports our
experiments. Concluding remarks are given in Section 5.

2 Harvesting and Preprocessing of Texts and Images

We develop an image crawler, named “ICrawl”, based on Yahoo Search API.
Upon receiving a query, ICrawl searches images through Yahoo search engine,
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downloads the images retrieved, and extracts the textual contents from the web
pages wherein the images appear. The extracted textual contents include the tips
and captions of the images, the keywords extracted from the URLs/tips/captions,
and long text paragraphs (more than 15 words).

2.1 Textual Feature Extraction

Currently, we treat each text paragraph extracted from web pages as a text
segment. We tokenize the text segments, add part-of-speech tags, remove stop
words, replace tokens with their stems, filter out terms with unwanted POS tags
(only nouns, verbs and adjectives are left), and finally generate term vectors. For
images downloaded from the web, their surrounding texts, including captions,
tips, and keywords in URL, are extracted. Like text segments, the extracted
surrounding texts are processed to form term vectors.

For calculating the term weights of the term vectors, we use a model, named
TF-ITSF, similar to a traditional TF-IDF model. For a text segment or an image
text description (the surrounding text of an image) ts in a web document d, we
use the following equation to weight a term w:

wd(ts) = tf(ts, w) · log
Nd

tsfd(w)
(1)

where tf(ts, w) denotes the frequency of w in the text segment ts, Nd is the
total number of text segments and text descriptions of images in web document
d, and tsfd(w) is the text segment frequency of term w in web document d.

2.2 Visual Feature Extraction from Images

For an image downloaded, we first segment it into 10×10 rectangle regions. For
each region we extract a visual feature vector, consisting of 6 color features
and 60 gabor texture features which have been proven to be useful in many
applications. Color features are the means and variances of the RGB color spaces.
Texture features are extracted by calculating the means and variations of the
Gabor filtered image regions on 6 orientations at 5 scales (frequencies). After
the visual feature vectors of the image regions are extracted, all image regions
are clustered using the k-means algorithm with k=500. The generated clusters,
called visterms, are treated as a vocabulary for the images. For enriching this
vocabulary of visterms with the high-level semantic features, a face detection
model is used for detecting the faces in the images, which we found useful for
understanding the contents of images in the domain of terror attack. Finally, a
vector of visterm frequencies (501 dimensions) is extracted for each image.

3 Identifying Associations Between Texts and Images

3.1 Similarity-Based Retrieval Model

The task of identifying image-text associations can be cast into an information
retrieval (IR) problem. Within a web document d containing images and text
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segments, we treat each image i in d as a query to find a text segment ts that is
most semantically related to i. Suppose each image i is represented by a visterm
vector, denoted as iv, together with a term vector of its surrounding text, denoted
as it. For calculating the similarity between the images and text segments, we
need to define a similarity measure simd(i, ts) = simd(< iv, it >, ts).

For simplifying the problem, we assume that, once an image i and a text
segment ts are given, the similarity between iv and ts and the similarity between
it and ts are independent. Therefore, we can calculate simd(i, ts) with the use
of a linear mixture model as follows:

simd(i, ts) = simd(< iv, it >, ts) = λ · simtt
d (it, ts) + (1− λ) · simvt

d (iv, ts). (2)

3.2 Text-Based Similarity Measure

We use cosine distance as in Eq. 3 to measure the similarity between the textual
features of an image and a text segment. The cosine distance measure is used as
it has been proven to be insensitive to the length of text documents.

simtt
d (it, ts) =

∑n
k=1 wd

k(it)wd
k(ts)

‖ it ‖‖ ts ‖ (3)

3.3 Cross-Media Similarity Measure

Measuring similarity between visual and textual features is similar to the task
of measuring relevance of documents in the field of multilingual retrieval for
selecting documents in one language based on queries expressed in another. For
multilingual retrieval, transformations are usually needed for bridging the gap
between different representation schemes based on different terminologies. An
open problem is that there is usually a basic distinction between the vocabularies
of different languages, i.e. word senses may not be organized with words in the
same way in different languages. Therefore, an exact mapping from one language
to another language may not exist. This problem can be more serious in visual-
textual transformation. Individual visterms can hardly convey any meaningful
semantics without considering the contexts where they are placed. However,
words in natural languages usually have relatively complete meanings. We can
imagine that in most cases visterms can hardly be directly and precisely mapped
to words because of the ambiguity. Vague transformations [2] [4] which have been
proved useful in IR seem suitable for solving the vague problem of mapping
visual representations of images to textual representations of text segments. In
this paper, we borrow the idea from statistical vague transformation methods in
multilingual retrieval for our cross-media similarity measure.

A drawback of the existing methods [2] [4] is that they require a large training
set to build multilingual thesauruses. Such a training set is usually unavailable.
In addition, as the construction of the multilingual thesauruses requires calcu-
lating an association factor for each pair of words picked from two languages, it
may be computationally formidable. To overcome these obstacles, we introduce
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Fig. 2. An illustration of cross-media transformation with information bottleneck

an intermediate layer for the transformation. This intermediate layer is a set
of domain information categories which can be seen as another vocabulary of a
smaller size for describing domain information. For example, in terror attack do-
main, information categories may include Attack Details, Impacts, and Victims
etc. Therefore, our cross-media transformation is in fact a concatenation of two
sub-transformations, i.e. from visterm space to domain information categories
and then to word space (see Figure 2). This is actually known as the informa-
tion bottleneck method. For each sub-transformation, as the number of domain
information categories is small, the size of the training data set for thesaurus
construction needs not be large and the construction cost can be affordable. As
discussed in Section 1, for an associated pair of image and text, their contents
may not be an exact match or mapping. However, we believe that they can
always be matched on a general domain information category.

Based on the above discussion, we aim to build two thesauri in the form
of transformation matrices, each of which corresponds to a sub-transformation.
Suppose the visterm space V has m dimensions and the textual feature space T
has n dimensions. In addition, we suppose the cardinality of the set of high-level
domain information categories C is l. Based on V , T , and C, we define the two
following transformation matrices:

MVC
m×l =

⎛⎜⎜⎝
mVC

11 mVC
12 . . mVC

1l

mVC
21 mVC

22 . . mVC
2l

. . .
mVC

m1 mVC
m2 . . mVC

ml

⎞⎟⎟⎠ , MCT
l×n =

⎛⎜⎜⎝
mCT

11 mCT
12 . . . . mCT

1n

mCT
21 mCT

22 . . . . mCT
2n

. . .
mCT

l1 mCT
l2 . . . . mCT

ln

⎞⎟⎟⎠ ; (4)

where mVC
ij represents the association factor between the visterm vi and the

information category cj ; and mCT
jk represents the association factor between the

information category cj and the textual feature tk. Currently, mVC
ij and mCT

jk

are calculated by

mVC
ij = P (cj |vi) ≈

#(vi, cj)
#(vi)

, mCT
jk = P (tk|cj) ≈

#(cj , tk)
#(cj)

; (5)
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where #(vi) is the number of images containing the visterm vi; #(vi, cj) is the
number of images containing vi and belonging to the information category cj ;
#(cj) is the number of text segments belonging to the category cj ; and #(cj , tk)
is the number of text segments belonging to cj and containing the term tk.

Based on Eq. 4, we can define the similarity between the visual part of an
image iv and a text segment ts as iTv MVC

m×lM
CT
l×nts. For embedding into Eq. 2,

we use its normalized form

simVT (iv, ts) =
iTv MVC

m×lM
CT
l×nts

‖ iTv MVC
m×lM

CT
l×n ‖‖ ts ‖ . (6)

Eq. 6 calculates the cross-media similarity using a single-direction transfor-
mation from visterm space to word space. However, it may still cause vague
problems. For example, suppose there is a picture i belonging to a domain infor-
mation category, Attack Details, and two text segments ts1 and ts2 belonging to
the categories of Attack Details and Victims respectively. If the two categories,
Attack Details and Victims, share many common words (such as kill, die, and
injure), the transformation result of iv might be similar to both ts1 and ts2.
To reduce the influence of common terms in different categories and employ the
strength of the distinct words, we consider another transformation from word
space to visterm space. We can similarly define another pair of transformation
matrices MT C

n×l = {mT C
kj }n×l and MCV

l×m = {mCV
ji }l×m, where i = 1, 2, ..., m,

j = 1, 2, ..., l, and k = 1, 2, ..., n. Then, the similarity from a text segment ts to
the visual part of an image iv can be defined as

simT V(ts, iv) =
tsT MT C

n×lM
CV
l×miv

‖ tsT MT C
n×lM

CV
l×m ‖‖ iv ‖

. (7)

Finally, we can define a cross-media similarity measure using the dual-direction
transformation which is the geometric mean of simVT (iv, ts) and simT V(ts, iv):

simvt
d (iv, ts) =

√
simVT (iv, ts) · simT V(ts, iv). (8)

4 Experiments

The experiments are conducted on an image collection, containing 285 im-
ages related to terrorist attacks, downloaded from the CNN and BBC news
web sites. We manually categorize about 1500 text segments and 285 images
into twelve domain information categories, i.e. Anti-Terror, Attack Details, Af-
ter Attack, Government Responses, Rescure, Impact, Investigation, Terrorist
Claims, Terrorist Suspects, Victims, Ceremony, and Others. We use a 5-fold
cross-validation to test the performance of our method in terms of precision de-
fined by precision = #(Correctly Identified Associations)

#(Total Images) . The correctness of the
extracted image-text associations are judged by human by inspecting the web
pages wherein the images appear.
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Caption In 
Web Pages 

Police photograph the body of 
the gunman. 

Wreckage of the base of the 
World Trade Center.  The 
CIA searched the wreckage. 

Injured man being helped 
away.

Cross-Media 
Measure  
(  = 0.0)

At least five people have died, 
and several others have been 
injured, in several incidents, 
including a shooting by a 
Palestinian gunman in the 
Israeli town of Kfar Saba, 
and a suicide bomb attack in 
north Jerusalem. (SC=0.129) 

A secret CIA office was 
destroyed in the 11 
September attack on the 
World Trade Center, the 
New York Times reports. 
(SC=0.142)

It was here on Thursday that 
a Palestinian suicide bomber 
blew himself up on board a 
crowded bus, killing five 
people and injuring about 50 
others. (SC=0.085) 

Text-Based 
Measure
(  = 1.0)

At least five people have died, 
and several others have been 
injured, in several incidents, 
including a shooting by a 
Palestinian gunman in the 
Israeli town of Kfar Saba, 
and a suicide bomb attack in 
north Jerusalem. (SC=0.089) 

The CIA sent a special 
team to scour the wreckage 
for vital intelligence 
reports after the attack, 
the paper says.  
(SC=0.268) 

Others were not even able to 
do that. One witness said he 
saw several people lying on 
the floor of the bus, including 
one man whose legs had been 
blown off. (SC=0.110) 

Mixture
Measure
(  = 0.6)

At least five people have died, 
and several others have been 
injured, in several incidents, 
including a shooting by a 
Palestinian gunman in the 
Israeli town of Kfar Saba, 
and a suicide bomb attack in 
north Jerusalem. (SC=0.104) 

The CIA sent a special 
team to scour the wreckage 
for vital intelligence 
reports after the attack, 
the paper says.  
(SC=0.216) 

Others were not even able to 
do that. One witness said he 
saw several people lying on 
the floor of the bus, including 
one man whose legs had been 
blown off. (SC=0.084) 

Fig. 3. A sample set of image-text associations extracted with similarity scores (SC).
The correctly identified associated texts are bolded.

As indicated by the experimental results shown in Table 1, we see that textual
information is essential for identifying image-text associations. In fact, pure text
similarity measure (λ = 1.0) outperforms pure cross-media similarity measure
(λ = 0.0) by 23.0%-25.7% in terms of average precision. However, the best result
(average precision of 67.2%) is achieved by the linear mixture model using both
text-based and cross-media similarity measures (with λ = 0.6). This shows that
visual features are useful for improving the performance of the identification task.
In fact, we observe that keywords extracted from surrounding texts of images
sometimes may be inconsistent with the contents of the images. Visual features
can provide more information for the disambiguation of the image semantics and
reducing the influence of the imprecision caused by textual features. Another
important observation is that pure dual-direction transformation is better than
pure single-direction transformation for measuring the cross-media similarity
(λ = 0.0). In general, the overall precision of using dual-direction transformation
is higher than that of using single-direction transformation.

A sample set of the extracted image-text associations is shown in Figure 3. We
notice that when text contents in web pages are quite different, e.g. belonging
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Table 1. The precision scores (%) for image-text association extraction

λ
Fold Transformation Used 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Single-Direction 41.5 56.6 62.3 69.8 71.7 69.8 66.0 66.0 66.0 66.0 62.3
1 Dual-Direction 43.4 56.6 64.2 67.9 73.6 69.8 69.8 69.8 67.9 67.9 62.3

Single-Direction 32.1 45.3 47.2 58.5 60.4 60.4 64.2 64.2 64.2 62.3 62.3
2 Dual-Direction 37.7 45.3 47.2 60.4 64.2 62.3 66.0 64.2 64.2 62.3 62.3

Single-Direction 26.4 34.0 45.3 54.7 62.3 64.2 69.8 69.8 69.8 67.9 66.0
3 Dual-Direction 26.4 34.0 43.4 54.7 62.3 66.0 69.8 69.8 69.8 67.9 66.0

Single-Direction 37.7 49.1 56.6 62.3 64.2 64.2 66.0 67.9 66.0 64.2 64.2
4 Dual-Direction 41.5 47.2 56.6 66.0 64.2 66.0 67.9 67.9 67.9 64.2 64.2

Single-Direction 43.4 58.5 66.0 64.2 64.2 66.0 64.2 62.3 58.5 54.7 54.7
5 Dual-Direction 45.3 54.7 60.4 64.2 66.0 64.2 62.3 62.3 60.4 54.7 54.7

Single-Direction 36.2 48.7 55.5 61.9 64.5 64.9 66.0 66.0 64.9 63.0 61.9
Average Dual-Direction 38.9 47.5 54.3 62.6 66.0 65.7 67.2 66.8 66.0 63.4 61.9

to different domain information categories, the cross-media similarity measure
may be efficient enough to identify the associated text for an image (see the
first and third column in Figure 3). For the case that contents in different text
segments are related to each other, using only the cross-media similarity measure
may not identify the most suitable text segment, but the extracted one can be
semantically relevant (the second column in Figure 3).

5 Conclusion

In this paper, we present an approach for extracting associations between
images and texts from web pages for cross-media information fusion. We use
a similarity-based multilingual retrieval model and adopt a vague transforma-
tion technique for measuring the similarity between visual features and textual
features. The experimental results suggest that combination of visual and textual
features can produce better results than using visual or textual features alone.

References

1. Radev, D.R.: A common theory of information fusion from multiple text sources
step one: cross-document structure. In: Proceedings of the 1st SIGdial workshop
on Discourse and dialogue, Morristown, NJ, USA, Association for Computational
Linguistics (2000) 74–83

2. Mandl, T.: Vague transformations in information retrieval. In: ISI. (1998) 312–328
3. Chang, S.F., Manmatha, R., Chua, T.S.: Combining text and audio-visual features

in video indexing. In: Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2005 (ICASSP ’05). (2005) 1005–1008

4. Sheridan, P., Ballerini, J.P.: Experiments in multilingual information retrieval using
the spider system. In: SIGIR ’96, New York, ACM Press (1996) 58–65



Mining Sequences of Temporal Intervals

Steffen Kempe and Jochen Hipp

DaimlerChrysler AG, Group Research, 89081 Ulm, Germany
{Steffen.Kempe, Jochen.Hipp}@daimlerchrysler.com

Abstract. Recently a new type of data source came into the focus of
knowledge discovery from temporal data: interval sequences. In contrast
to event sequences, interval sequences contain labeled events with a tem-
poral extension. However, existing algorithms for mining patterns from
interval sequences proved to be far from satisfying our needs. In brief, we
missed an approach that at the same time: defines support as the num-
ber of pattern instances, allows input data that consists of more than one
sequence, implements time constraints on a pattern instance, and counts
multiple instances of a pattern within one interval sequence. In this
paper we propose a new support definition which incorporates these prop-
erties. We also describe an algorithm that employs the new support defi-
nition and demonstrate its performance on field data from the automotive
business.

1 Introduction

Mining sequences from temporal data is a well known data mining task which
gained a lot of attention in the past, e.g. [2,5]. In all these approaches, the
temporal data is considered to consist of events. Each event has a label and a
timestamp. In the following, we want to focus on temporal data where an event
has a temporal extension. These temporally extended events are called temporal
intervals. Each temporal interval can be described by a triplet (b, e, l) where
b and e denote the beginning and the end of the interval and l its label. For
example a sequence of temporal intervals may describe the medical history of a
patient in a hospital or the data collected by a flight recorder.

At DaimlerChrysler we are interested in mining interval sequences in order
to further extend the knowledge about our products. Thus, in our domain one
interval sequence may describe the history of one vehicle. The configuration of a
vehicle, e.g. whether it is an estate car or a limousine, can be described by tem-
poral intervals. The build date is the begin and the current day is the end of such
a temporal interval. Other temporal intervals may describe stopovers in a garage
or the installation of additional equipment. Mining these interval sequences helps
us in tasks like quality monitoring or improving customer satisfaction.

In the following section we give formal definitions of the mining task. In Sec-
tion 3 we introduce a new support definition which is motivated by our experi-
ences in the automotive industry. Next, we propose a novel algorithm for finding
frequent patterns which implements the new support definition. The algorithm
is tested on real world data from our domain in Section 5.
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2 Foundations

As previously mentioned, we represent a temporal interval as a triplet (b, e, l).

Definition 1. (Temporal Interval) Given a set of labels l ∈ L, we say the triplet
(b, e, l) ∈ R × R × L is a temporal interval, if b ≤ e. The set of all temporal
intervals over L is denoted by I.

Definition 2. (Interval Sequence) Given a sequence of temporal intervals, we
say (b1, e1, l1), (b2, e2, l2), . . . , (bn, en, ln) ∈ I is an interval sequence, if

∀(bi, ei, li), (bj , ej, lj) ∈ I, i �= j : bi ≤ bj ∧ ei ≥ bj → li �= lj (1)

∀(bi, ei, li), (bj , ej , lj) ∈ I, i < j :
(bi < bj) ∨ (bi = bj ∧ ei < ej) ∨ (bi = bj ∧ ei = ej ∧ li < lj)

(2)

hold. A given set of interval sequences is denoted by S.

Equation 1 above is referred to as the maximality assumption [4]. The maximality
assumption guarantees that each temporal interval A is maximal, in the sense
that there is no other temporal interval in the sequence sharing a time with A
and carrying the same label. Equation 2 requires that an interval sequence has
to be ordered by the beginning (primary), end (secondary) and label (tertiary,
lexicographically) of its temporal intervals.

Without temporal extension there are only two possible relations. One event
is before (or after as the inverse relation) the other or they coincide. In case of
temporal intervals there are 7 possible relations (respectively 13 including inverse
relations). These interval relations have been described by Allen in [3] and are
depicted in Figure 1. Each relation of Figure 1 is a temporal pattern on its own
that consists of two temporal intervals. Patterns with more than two temporal
intervals are straightforward. One just needs to know which interval relation
exists between each pair of labels. Using the set of Allen’s interval relations I, a
temporal pattern is defined by:

Definition 3. (Temporal Pattern) A pair P = (s, R), where s : 1, . . . , n → L
and R ∈ In×n, n ∈ N, is called a “temporal pattern of size n”.

Fig. 1. Allen’s Interval Relations
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Fig. 2. a) Example of an Interval Sequence b) Example of a Temporal Pattern (e is
the abbreviation for equals, c for contains, etc.)

If a temporal pattern holds true (is valid) for an interval sequence we consider
this sequence as an instance of the pattern.

Definition 4. (Instance) A temporal pattern P = (s, R) holds true for an in-
terval sequence S = (bi, ei, li)1≤i≤n, if ∀i, j : s(i) = li ∧ s(j) = lj ∧ R[i, j] =
ir([bi, ei], [bj , ej]) with function ir returning the relation between two given inter-
vals. We say that the interval sequence S is an instance of temporal pattern P .
We say that an interval sequence S′ contains an instance of P if S ⊆ S′, i.e. S
is a subsequence of S′.

Obviously a temporal pattern can only be valid if its labels have the same order
as their corresponding temporal intervals have in an instance of the pattern.

Figure 2a) shows an example of an interval sequence which contains an in-
stance of the temporal pattern given in Figure 2b).

The mining task is to find all temporal patterns in a given set of interval
sequences which satisfy a user specified minimum support threshold. Note that
this mining task is closely related to frequent itemset mining [1].

3 A New Support Definition

Previous investigations on discovering patterns from sequences of temporal in-
tervals include the work of [4] and Papapetrou et al. [6]. Both approach the
problem very differently from each other.

Höppner mines patterns from one sequence of temporal intervals only. The
problem of multiple sequences is not addressed. He also requires that a pattern
occurs within a certain time window. In contrast, Papapetrou et al. analyze mul-
tiple sequences but they do not have any time constraints on pattern instances.

The main difference between both approaches is the definition of support for
a pattern. Höppner defines the temporal support of a pattern. This definition
is closely related to Mannila’s frequency in [5]. The temporal support can be
interpreted as the probability to see an instance of the pattern within the time
window if the time window is randomly placed on the temporal interval sequence.
On the other hand, Papapetrou et al. count the number of instances for each
pattern. The pattern counter is incremented once for each sequence that contains
the pattern. If a temporal interval sequence contains multiple instances of a
pattern then these additional instances will not further increment the counter.

Consider the pattern C before D in the example of Figure 2a). As the interval
sequence contains an instance of the pattern the support of Papapetrou et al. is
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1. Using a time window of 3 Höppner will calculate a support of 3 (a duration
of 2 for the first occurrence and 1 for the second).

Yet, for our needs and comparable applications the accurate number of pat-
tern instances is indispensable for generating knowledge in our domain. Thus we
developed a new support definition which: 1. counts the number of pattern in-
stances, 2. handles multiple instances of a pattern within one interval sequence,
and 3. allows time constraints on a pattern instance.

In [5], Mannila et al. introduced minimal occurrences as a support definition
for patterns in a single sequence of events. We extend the approach of minimal
occurrences to the circumstances of temporal intervals.

Given a temporal pattern P and an interval sequence S, a time window [tb, te]
of S is called minimal occurrence of P , if there is an instance of P in the time
window but not in one of its proper subwindows.

A special case is if the temporal pattern P is of size 1, i.e. it contains only
one label. Then every temporal interval (b, e, l) with b < e leads to an infinite
number of minimal occurrences. Therefore the minimal occurrences of P are [b, e]
for each temporal interval (b, e, l) and l is the label of P .

Minimal occurrences also provide an easy way to introduce time constraints
on a pattern instance. Suppose a pattern instance is only valid if it occurs within
a certain period of time, then we just need to count those minimal occurrences
whose lengths do not exceed the time limit.

After we introduced minimal occurrences in our application, we realized that
the support definition is still not sufficient. There is a subset of temporal patterns
whose supports are calculated differently than we expected. Figure 2a) gives an
example of such a temporal pattern (solid lines). The minimal occurrence is
[1, 11]. In any smaller time window, the relation equals between the temporal
intervals A and B is not visible. Thus if an interval sequence contains a second
C before D during the temporal intervals A and B (dashed lines in Figure 2a)), it
will not be counted as it produces the same minimal occurrence. This example is
important to us because the temporal intervals C and D might describe garage
stopovers for a car with A and B specifying its vehicle configuration. So we
want to count multiple instances of temporal patterns (here C before D) for
different combinations of configurations. Hence, in the example above, we have
to count the minimal occurrences of the subpattern C before D given that the
subpattern is contained in temporal intervals A and B.

As a result, we have to distinguish those temporal patterns from all other
patterns where a subpattern is decisive for the support calculation. In the latter
patterns there exists a subpattern which is contained in all other temporal inter-
vals of the temporal pattern. We can decide whether a given temporal pattern
P contains such a subpattern by transforming the problem into graph theory
based on the upper triangular matrix of its relation table. We start by creating
an empty graph. For each label of the temporal pattern we insert a vertex into the
graph. Next we create an edge for each relation in the upper triangular matrix
of the relation table which is not contains between the corresponding vertices
in the graph. If the resulting graph is unconnected then there is a subpattern
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which is contained in all other temporal intervals of the pattern. This subpattern
corresponds to one of the connected subgraphs.

We call a temporal pattern connected if its graph is connected. Otherwise we
call the temporal pattern unconnected. In contrast to [5] we define the support of
a connected pattern P as its total number of minimal occurrences in all sequences
of S. If P is unconnected the support is given by the total number of minimal
occurrences of its subpattern.

4 New Algorithm

As in existing approaches, the main idea is to generate all frequent temporal
patterns by applying the Apriori scheme of candidate generation and support
evaluation. These two steps are alternately repeated until no more candidates
are generated. Apriori starts with the frequent 1-patterns and then successively
derives all k-candidates from the set of all frequent (k-1)-patterns. This ap-
proach requires that each subpattern of a frequent pattern is frequent. Unfortu-
nately the extension of minimal occurrences to temporal intervals destroys this
downward closure property. The problem arises if a temporal interval is used
as the same part of a pattern for multiple instances. Consider, e.g., the inter-
val sequence (1,11,A), (2,3,C), (6,7,C) (see Figure 2a)). There are two minimal
occurrences of the pattern A contains C [2, 3] and [6, 7] but there is only one
minimal occurrence of A [1, 11]. Here A is used twice as the same part of the
pattern. Hence, the downward closure property is not guaranteed for minimal
occurrences.

A closer investigation shows that contains is the only relation for which the
property does not hold. Consider the pattern A overlaps B. The downward clo-
sure property can only fail if A overlaps two or more B ’s. This is impossible
as these B ’s would have to share a time interval which is prohibited by the
maximality assumption (Equation 1). The same argument holds for meets, is-
finished-by, is-started-by, equals and their inverse relations. In case of A before
B there can be several B ’s after the A but the definition of minimal occurrences
allows the first B to be counted.

Obviously the downward closure property only fails for unconnected tempo-
ral patterns. Our approach to solve this problem is by treating connected and
unconnected temporal patterns differently.

When generating candidates in the Apriori-way, the candidate pattern A
equals B, A and B contain C would be generated based on the two subpat-
terns A equals B and A contains C. However, A equals B needs not necessarily
be frequent even if the resulting candidate A equals B, A and B contain C is
frequent.

In the example above, the subpatterns A contains C and B contains C are
necessarily frequent if the candidate itself is frequent. Generally, in a valid un-
connected (k+1)-pattern, k ≥ 2, there exists a j, 1 ≤ j ≤ k, such that the first j
labels always describe those temporal intervals which contain all other temporal
intervals of the pattern (labels j + 1, . . . , k + 1). Contains implies “starts before
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and ends after”, so the ordering of sequences guarantees exactly this property.
Hence, in the opposite way, the last k + 1 − j labels of the pattern are always
responsible for the frequency of the pattern. If we remove the first or second label
from a frequent (k+1)-pattern the resulting k-patterns must still be frequent. In
other words, generating (k+1)-candidates by joining the two subpatterns that
share the last k–1 labels ensures that the set of generated (k+1)-candidates is
a superset of the frequent (k+1)-patterns. We only need to guarantee that the
initial set of frequent 2-patterns contains all frequent unconnected patterns.

Thus, by modifying the candidate generation step, we can transfer the com-
pleteness property of the Apriori approach, to unconnected temporal patterns.
In detail, our approach of candidate generation is as follows: The candidate pat-
terns of size 1 are generated by using all available labels in the dataset. In the
next step, we use all 1-candidates to create the candidate patterns of size 2. This
guarantees that we will find all frequent 2-patterns, albeit they are connected
or unconnected. For the actual candidate generation and test approach the fre-
quent patterns of size k (k ≥ 2) are used to generate the candidate patterns of
size k+1. This is achieved by joining every pair of temporal patterns P and Q
which are identical w.r.t. the last k-1 rows and columns of their relation table,
i.e. they share common (k–1)-pattern on the last k-1 labels. Each temporal pat-
tern describes the desired (k+1)-pattern except for one label. If we join P and
Q to the temporal pattern R, as it is illustrated in Figure 3, then there is only
one interval relation missing in R.

The missing interval relation describes the relation between the first labels of
P and Q (lp1 and lq1). Now we can extend R to a set of candidates by applying
Allen’s interval relations. The missing value in R is substituted by each of Allen’s
interval relations. Hence, the extension of R leads to 7 (k+1)-candidate patterns.

The second step is the support evaluation of the candidate patterns. As al-
ready mentioned, the labels of a valid temporal pattern have the same order as
their counterparts in an instance would have. Therefore we can find an instance
of a temporal pattern by using finite state machines which subsequently take
the temporal intervals of an ordered temporal sequence as input.

It is straightforward to derive a finite state machine from a temporal pattern.
For each label in the pattern a state is generated. The finite state machine starts
in an initial state. The next state is reached if we input a temporal interval that
contains the same label as the first label of the temporal pattern. From now
on the next states can only be reached if the shown temporal interval carries

Pattern P lp1 l2 . . . lk
lp1 e C
l2
... B A
lk

∪

Pattern Q lq1 l2 . . . lk
lq1 e E
l2
... D A
lk

=⇒

Pattern R lp1 lq1 l2 . . . lk
lp1 e ? C
lq1 ? e E
l2
... B D A
lk

Fig. 3. Temporal Patterns P , Q share a k-1 subpattern, joining P and Q yields R
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the same label as the state and its interval relation to all previously accepted
temporal intervals is the same as specified in the temporal pattern. If the finite
state machine reaches its last state it also reaches its final accepting state.

We can derive the minimal time window in which this particular pattern
instance is visible from the set of temporal intervals which has been accepted by
the state machine. We know that the time window contains an instance of the
pattern but we do not know whether it is a minimal occurrence. Therefore we
apply a two step approach. First we will find all occurrences of a pattern using
state machines. Second we will filter out all occurrences which are not minimal.

To find all occurrences of a pattern in an interval sequence we are maintaining
a set of finite state machines. At first, the set only contains the finite state
machine that is derived from the candidate pattern. Subsequently, each temporal
interval from the interval sequence is shown to every finite state machine in the
set. If a finite state machine can accept the temporal interval a copy of the state
machine is made and added to the set. The temporal interval is shown to only
one of these two state machines . Hence, there will always be a copy of the initial
state machine in the set trying to find an occurrence of the pattern.

5 Performance Evaluation and Conclusions

In order to evaluate the performance of the algorithm we employed a dataset
from our domain. This dataset contains information about 101 250 vehicles. We
performed 5 different experiments varying the minimum support threshold from
3 200 down to 200.

Figure 4a) shows the number of candidates that are generated in each iteration.
Obviously the number of candidates grows rapidly as the minimum support thresh-
old gets lower. This general behaviour is well known from frequent itemset mining.
In contrast to frequent itemsets, Figure 4a) shows two distinct peaks. There is one
peak for the candidate patterns of size 2 and one peak for patterns of sizes 6-7.
Moreover, the first peak does not vary with different minimum support thresholds.
This peak is a result of the special candidate generation in the first iteration of our
algorithm. The candidates of size 2 are generated by using all the candidates of size
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1 (the frequent patterns are only used in subsequent iterations). Consequently the
number of 2-candidates is independent of the chosen minimum support threshold.

In Figure 4b) the number of frequent patterns is depicted for each iteration.
For each minimum support threshold the maximum number of frequent patterns
is found between the 5-th and 7-th iteration. Again the number of frequent
patterns grows rapidly with decreasing minimum support thresholds.

The increasing number of frequent and candidate patterns also leads to longer
runtimes of the algorithm for decreasing minimum support thresholds. While the
first experiment (MinSupp=3 200) was finished within 36 minutes subsequent
experiments took 98, 295, 1052 and 2822 minutes.

In this paper we presented a new algorithm for discovering frequent temporal
patterns. The key advantages of this algorithm are the ability to mine data that
consists of several separate interval sequences, a new support definition that
allows counting multiple instances of a pattern per sequence, and finally the
consideration of time constraints on pattern instances.

Whereas on its own, these features have been described before, e.g. [4,6], an
algorithm implementing them all together had not yet been available. For our
and many other applications combining these features is essential. Thus, our
approach opens a broad range of new applications for sequence mining.

Combining the sketched features is far from being straightforward. The main
algorithmic challenge is that the downward closure property of support, also
known as the Apriori-criteria is not met. In other words, we had to develop an
algorithm that is efficient and still complete with respect to a minimal support
threshold, although subpatterns of a frequent pattern may be infrequent. We
finally tackled the issue by distinguishing so called connected and unconnected
patterns based on the temporal relation contains.

Based on an analysis of warranty data from the automotive domain, we showed
that the algorithm can be successfully applied to real world data. The results
contained valuable knowledge far beyond current approaches and were produced
within reasonable time.
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4. F. Höppner and F. Klawonn. Finding informative rules in interval sequences. Intel-
ligent Data Analysis, 6(3):237–255, 2002.

5. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in
event sequences. Data Mining and Knowledge Discovery, 1(3):259–289, 1997.

6. P. Papapetrou, G. Kollios, S. Sclaroff, and D. Gunopulos. Discovering frequent
arrangements of temporal intervals. In 5th IEEE Int. Conf. on Data Mining, 2005.



J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 577 – 584, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Pattern Teams 

Arno J. Knobbe1,2 and Eric K.Y. Ho1   

1 Kiminkii, Postbus 171, NL-3990 DD, Houten, The Netherlands 
a.knobbe@kiminkii.com, e.ho@kiminkii.com 

2 Utrecht University, P.O. box 80 089, NL-3508 TB Utrecht, The Netherlands 

Abstract. Pattern discovery algorithms typically produce many interesting pat-
terns. In most cases, patterns are reported based on their individual merits, and 
little attention is given to the interestingness of a pattern in the context of other 
patterns reported. In this paper, we propose filtering the returned set of patterns 
based on a number of quality measures for pattern sets. We refer to a small sub-
set of patterns that optimises such a measure as a pattern team. A number of 
quality measures, both supervised and unsupervised, is proposed. We analyse to 
what extent each of the measures captures a number of ‘intuitions’ users may 
have concerning effective and informative pattern teams. Such intuitions in-
volve qualities such as independence of patterns, low overlap, and combined 
predictiveness. 

1   Introduction 

Over the last few years, there has been an increasing interest in pattern discovery 
algorithms. In this branch of Data Mining, the emphasis lies on discovering a collec-
tion of local patterns that satisfy a number of inductive constraints provided by the 
user, rather than on the induction of a single global model of the data. Typically, a 
pattern represents some subgroup of the data, and patterns are selected on the basis of 
the support of the subgroup and one or more constraints on interestingness measures, 
for example based on the correlation with a target concept. Common examples of 
such Data Mining settings are frequent pattern discovery (itemsets, trees, graphs, etc.) 
[11], association rule mining [12] and subgroup discovery [1, 3, 9, 10, 12]. In most 
cases, patterns are reported based on their individual merits, and little attention is 
given to the interestingness of a pattern in the context of other patterns reported. As a 
result, the outcome of a pattern discovery exercise is often a large collection of pat-
terns, with high levels of redundancy, that is hard to inspect manually. It is our aim in 
this paper to improve the effectiveness of pattern discovery algorithms by considering 
the quality of patterns in the context of other patterns reported. 

Let us consider a busy end-user, who has only very limited time to inspect the out-
come of a pattern discovery exercise. If only a few patterns can be considered, a small 
yet effective set of patterns needs to be selected. Having already seen one or more 
patterns, the next pattern presented needs to both perform well, and be substantially 
different from the first patterns. If the next pattern effectively covers almost the same 
set of individuals as any combination of the previous ones (even though syntactically 
it might be completely different), it provides little new information. We present a 
method of selecting a small subset of patterns – a pattern team – that optimises some 
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given quality measure for sets of patterns. In this paper we consider four candidate 
quality measures that promote different desirable properties of sets of patterns. De-
pending on the (implicit) expectations of the end-user, different methods of pattern 
selection can thus be applied, resulting in different pattern teams. 

The quality measures presented are inspired by a number of intuitions end-users 
typically have about pattern mining results. We use the following list of intuitions, 
and test to what extent the four measures satisfy these intuitions: 

I1 No two patterns should cover (approximately) the same set of examples. 
I2 No pattern should cover (approximately) the complement of another pattern. 
I3 No pattern should cover (approximately) a logical combination of two or 

more other patterns. 
I4 Patterns should be (approximately) mutually exclusive. 
I5 When using patterns as input to a classifier, the pattern set should lead to the 

best performing classifier. 
I6 Patterns should lie on the convex hull of all patterns in ROC-space. 

Clearly, these six intuitions cannot all hold at the same time. In fact, some intui-
tions are to some extent competing (e.g. I2 and I4). One should think of these intui-
tions as descriptions of the kind of expectations an end-user may have about the set of 
patterns returned. Typically, we will only be interested in satisfying one, or a few of 
these intuitions. 

An important characteristic of the four quality measures presented is that they are 
syntax-independent (although one can envisage more syntax-oriented measures). This 
means that pattern sets are solely judged on the subgroups of individuals covered by 
each pattern, and the potential overlap or independence of these subgroups. As a re-
sult, our methodology applies to any mining paradigm where patterns represent sub-
groups. This includes complex domains such as structured and multi-relational  
domains, where rich pattern languages make purely syntactical comparisons of pat-
terns difficult or expensive. 

An extended version of this paper can be found in [5]. This version contains more 
examples, experiments and extended descriptions of related work. 

2   Pattern Team Discovery 

The process of filtering patterns will generally be preceded by a pattern discovery 
phase. The pattern discovery task can be defined as follows: given a pattern collection 
P, a set of interestingness measures φ1, …, φl , φi : P → [0, 1], and a set of threshold 
values σ1, …, σl , σi ∈ [0, 1], find all patterns p ∈ P such that ∀i : φi(p) ≥ σi. In an 
alternative setting, the top k patterns with respect to one of the interestingness meas-
ures is returned.  

In both settings, the outcome will typically be a large set of interesting patterns Pφ 
with considerable levels of redundancy. In this paper, we therefore propose a second 
phase, consisting of a pattern team discovery task: given a set of interesting patterns 
Pφ , and a quality measure for pattern sets Φ : 2P → R, find a pattern set P ⊆ Pφ of size 
k such that Φ(P) ≥ Φ(Q) for all Q ⊆ Pφ  of size k.  
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In this case, we are interested in a single pattern team of specified size k, but other 
variants of this task can be imagined. For example, one could query for all pattern 
teams of size k, or for an optimal pattern team regardless of its size. Alternatively, one 
can imagine a discovery task that returns all (or the top k) pattern sets P such that their 
quality exceeds some threshold: Φ(P) ≥ Σ. This setting however defies the purpose of 
pattern filtering, as potentially many pattern sets will be returned. 

Finding a pattern team of size k for any given pattern set quality measure Φ poten-

tially involves the consideration of ( )n
k  subsets of Pφ , where n = | Pφ |. In fact,  

Mielikäinen et al. [7] show that the general pattern team discovery problem is NP-
hard by relating it to the set-covering problem, making it infeasible for all but small 
values of k. Fortunately, for specific quality measures, it is possible to find optimal 
pattern sets efficiently, or to find approximations that can be shown to perform rea-
sonably well [7]. In [4], we provide some example algorithms for joint entropy, one of 
the quality measures considered in this paper. The thorough treatment of efficient 
implementations of pattern team discovery is outside the scope of this paper. 

3   Quality Measures 

In this section, we present four quality measures for pattern sets. Two of the four 
measures work in an unsupervised fashion: they consider properties of the subgroups 
covered (specifically independence and mutual exclusiveness), and ignore the poten-
tial predictive qualities of a pattern. Note that these two measures work on pattern sets 
discovered by algorithms working in either supervised or unsupervised fashion. Con-
versely, we could create a pattern team using one of the two supervised quality meas-
ures on patterns discovered in unsupervised mode (e.g. frequent patterns). We thus 
have a choice for supervised or unsupervised both for the initial pattern discovery 
phase, as well as the subsequent pattern filtering phase. 

The following basic definitions will allow us to define the four quality measures 
for pattern sets formally. We assume that our database d is a bag of labelled objects  
i ∈ D, referred to as individuals, taken from a domain D. Furthermore there is a func-
tion l: d → R that specifies the label of an individual. If the labels just have values 0 
and 1, we interpret the individuals as belonging to the negative (F) and positive (T) 
classes, respectively. Alternatively, we treat the mining task as a regression problem. 
We refer to the size of the database as N = |d|. 

We assume nothing about the syntax of the pattern language, and treat a pattern 
simply as a function p: D → {0, 1}. We will say that a pattern p covers an individual i 
iff p(i) = 1. A subgroup S(d, p) implied by a pattern is now simply the set of individu-
als i ∈ d that are covered by p: S(d, p) = {i ∈ d p(i) = 1}. For brevity we will omit the 
d from now on. s(p) = |S(p)| refers to the size of the subgroup implied by p. Further-
more, we will use expressions like l(i) = 1 to denote patterns related to the label of 
individuals, such that S(l(i) = 1) for example denotes the set of positive cases. 

When talking about sets of patterns P = {p1, …, pk} of size k, an individual may be 
covered by some patterns in P and not by others. In order to represent such contin-
gencies, we introduce codes c ∈ {0, 1}k. The subgroup implied by a given pattern set 
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P and a code c is defined by S(P, c) = {i ∈ d p1(i) = c1, …, pk(i) = ck}. s(P, c) =  
|S(P, c)| is the size of the subgroup implied by P and c. 

Joint Entropy. The first quality measure for pattern teams is based on our work on 
maximally informative k-itemsets (miki’s) [4]. In essence, we treat each pattern in Pφ 
as a binary feature (an item), and for each pattern set P ⊆ Pφ of size k, compute the 
joint entropy [4] of the features in P. A miki is then simply the itemset (pattern set) 
that optimises this joint entropy. Our first quality measure Joint Entropy H(P) is 
hence defined as: 
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The entropy is a measure for the uniformity of the distribution of individuals over the 
different contingencies. A uniform distribution is achieved if for all patterns s(p) = N / 2, 
and all patterns are independent. A pattern team that optimises the joint entropy will 
hence optimise the power to distinguish between individuals. Note that H is unsuper-
vised, as well as insensitive to replacing one or more patterns with their complement [4]. 
Patterns are merely used to distinguish two complementary sets of individuals.  

Exclusive Coverage. The second quality measure is inspired by intuition I4: pattern 
sets that reduce the amount of overlap between patterns are favoured. Because overlap 
is less likely with patterns of low support, we will also have to promote the support of 
individual patterns. The Exclusive Coverage EC(P) quality measure counts the cover-
age that is exclusive for each pattern, and is defined as follows: 
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Note that this measure counts the coverage of subgroups that correspond to the 
codes that contain only a single 1.  

DTM Accuracy. Unlike the first two measures, the third quality measure is super-
vised: it determines the quality of a pattern team on the basis of how well a simple 
classifier is able to predict the label of individuals, given the patterns as feature set. 
Finding the optimal pattern team hence amounts to selecting a pattern set by means of 
a wrapper approach [2].  

The classifier of choice is the Decision Table Majority classifier [6, 8], also known 
as a simple decision table. The idea behind this classifier is to build from the pattern 
set a contingency table for each possible code, and compute the relative frequency of 
positive cases for each contingency. For contingencies that do not appear in the data-
base, the relative frequency of positive cases is based on that of the whole database 
(i.e. the prior). An individual is now classified by computing its code, and returning 
the majority class within the associated subgroup. This simple approach works sur-
prisingly well, under two conditions: the features (i.e. patterns) have a low cardinality, 
and the decision table should be based on a relatively small number of features se-
lected from a larger set by means of a wrapper [6]. These conditions clearly hold for 
our application. The following definition captures the workings of a DTM classifier. 
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The function f computes a conditional probability estimate for l(i) = 1 for a code c, 
given a set of patterns P: 
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The DTM Accuracy Acc(P) quality measure uses the DTM classifier to determine 
how predictive a pattern set is by computing the accuracy of the classifier by means of 
cross-validation. This will reduce the risk of choosing a pattern set that over-fits. As a 
more efficient alternative, one might consider the purity (the accuracy based on in-
sample testing) of the DTM classifier as a quality measure. Informal experimentation 
has shown that results thus obtained are very close to the cross-validated accuracy. 

It is important to note that instead of a DTM classifier, any classifier can be ap-
plied. Furthermore, obtaining a good classifier is not our primary goal: we are merely 
using a classifier in order to obtain a well-performing pattern team.  

Area Under Curve. The Area Under Curve AUC(P) quality measure computes the 
area of the convex hull of the patterns in P in ROC-space [1]. The quality measure is 
computed by plotting the patterns in P in ROC-space, along with the points (0, 0), (1, 
0), (1, 1), and computing the area of the convex hull of these k + 3 points. 

4   Intuitions and Quality Measures 

The different quality measures introduced in the previous section capture different 
aspects of pattern sets. In this section, we examine how these measures fit the intui-
tions introduced in Section 0. Furthermore, we analyse the correlation between meas-
ures, and hence to what extent measures capture similar qualities of pattern sets. As 
the quality measures are chosen such that they capture at least one intuition perfectly, 
we can use the correlations between measures to understand how they map to intui-
tions. If a certain measure is uncorrelated with another measure that is designed to fit 
a particular intuition, then this first measure cannot be useful for said intuition. The 
following experiment will support our discussion of quality measures. 

Experiment. The database under consideration is the multi-relational database 
Mutagenesis [5]. It contains structured descriptions of 188 molecules that fall in two 
classes: mutagenic (66.5%) and non-mutagenic. Although multiple versions of the 
database exist, with various amounts of information about the molecular structure and 
properties of the molecules and atoms, we will use a version that contains the basic 
molecular structure, as well as two numeric attributes on the molecule level (Lumo 
and LogP). Additionally we have added two aggregated attributes on the molecule 
level, describing the number of atoms and the number of distinct elements. Hence 
there is a certain level of redundancy in the database, which may lead to different 
patterns capturing more or less similar properties of the molecules. Furthermore,  
the availability of multiple numeric attributes allows for a large range of decision 
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boundaries, which should lead to redundancy in the patterns, as well as moderate 
variations of patterns. 

Predictive patterns were discovered using Safarii in supervised mode. Subgroups 
were discovered using the absolute value of the novelty (a.k.a. weighted relative accu-
racy) interestingness measure, and a minimum support threshold of 5%. Relatively 
moderate search conditions were used in order to arrive at a manageable result set. 
The outcome is a collection of 51 multi-relational patterns describing subgroups that 
show a substantial deviation in mutagenicity, either positive or negative. The original 
database, as well as the propositionalised version of the 51 binary features can be 
obtained from the authors.  

These results lead to the following conclusions. The results are also summarised in 
Fig. 1. Each cell describes how useful a particular measure is for a given intuition. If a 
particular quality measure was defined with a specific intuition in mind, the corre-
sponding cell is coloured grey. For supporting data, see [5]. 

Joint Entropy. The quality measure H clearly captures Intuitions I1 to I3 [4]. If 
two patterns cover almost the same subgroup, having both of them in the pattern team 
will not give a significant improvement in uniformity of the distribution over just 
having one of the two (I1), and hence H will favour pattern sets with more diversity 
among the patterns. The same holds for patterns that follow directly from multiple 
other patterns (I3). As H is insensitive to replacement with complementary patterns, 
I2 applies. H and EC turn out to be uncorrelated, and hence a pattern team optimised 
with respect to H can not be expected to satisfy I4.  

Surprisingly, patterns teams optimised for H perform reasonably well for classifi-
cation, despite the unsupervised nature of this measure. Therefore, we can say that H 
captures I5 to a reasonable degree. H and AUC are uncorrelated, and hence H is not a 
good measure for finding pattern sets on the convex hull in ROC space (I6).  

Exclusive Coverage. The measure EC penalises overlap, and thus having two 
similar patterns is unlikely. EC therefore satisfies to some extent I1, with the excep-
tion of patterns with low support (and thus low penalty) that sometimes appear in 
copies. I2 and I3 however are not satisfied, because complements and logical redun-
dancy are promoted. Clearly I4 is satisfied. The performance of a DTM classifier is 
unrelated to the patterns being mutually exclusive: EC does not satisfy I5. The same 
holds for I6. 

DTM Accuracy. The measure Acc correlates quite well with H, and hence cap-
tures I1 to I3 moderately well. This should be no surprise, as redundancy in the pat-
tern set cannot benefit the classification score. It turns out that Acc in general does not 
provide mutually exclusive pattern sets (I4). Clearly I5 is satisfied. The experiment 
shows a very slight correlation between the classification score and the area under 
curve (I6). At least, poorly performing pattern sets consist of patterns below the con-
vex hull in ROC space. A higher correlation might be expected if only positive pat-
terns would have been produced in the initial discovery phase, as many predictive 
patterns now appear below the diagonal. 

Area Under Curve. As follows from the discussion above, the AUC measure is 
really only useful for I6. A pattern team consisting of patterns on the convex hull ap-
parently is not very useful as input to a classifier. The only purpose of such a pattern 
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team would therefore be to provide patterns that are optimal individually, rather than 
as a team.  

Joint Entropy Exclusive Coverage DTM Accuracy AUC 
Intuition 1 very high moderate high  
Intuition 2 very high  high  
Intuition 3 very high  high  
Intuition 4  very high   
Intuition 5 high   very high low 
Intuition 6   low very high 

Fig. 1. Informal analysis of how well the different quality measures fit the six intuitions 

5   Related Work 

The domain of feature selection [2, 6, 8] provides good inspiration for pattern filtering 
techniques, since every pattern in our view can be interpreted as a virtual binary fea-
ture. When selecting a feature selection technique, one has to make sure that one or 
more of our intuitions is satisfied. Many feature selection methods consider the qual-
ity of individual features, for example based on correlation with the target concept, 
and thus potentially produce redundant feature sets. Selection techniques that do con-
sider the value of features in the context of others are more precisely referred to as 
feature subset selection techniques. Wrapper methods are good examples of such 
techniques [6, 8]. For an overview, see [2]. 

A domain concerned with the production of a concise set of interesting patterns is 
known as Subgroup Discovery [1, 3, 9, 10, 12]. The typical approach is to define an 
interestingness measure, often related to correlation with the target, and then find the 
top k patterns with respect to this measure. Unfortunately, such techniques often do 
not consider potential redundancy, and therefore suffer from the same limitations as 
many feature selection methods. Zimmermann et al. [12] describe a method called 
CorClass for finding the top k predictive association rules, based on interestingness 
measures such as novelty, information gain or Χ 2. The convexity of such measures 
can be used to find the best rules efficiently. However, due to the redundancy among 
these rules, relatively high values of k ([12] proposes k = 1000) are needed to at least 
include the essential dependencies required for obtaining good predictive scores. A 
range of well-known rule combination strategies is used.  

For more related work, see [5]. 

6   Conclusions and Further Work 

We have presented a method for reducing the number of patterns returned to the user 
by a pattern discovery algorithm. The method works by selecting from the (potentially 
large) collection of patterns deemed interesting by the discovery algorithm a small set 
of patterns that optimises some quality function for pattern sets. We refer to such an 
optimal set of patterns of specific size as a pattern team. By only allowing a small 
number of patterns in the pattern set, and selecting the right quality measure, the 
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resulting pattern team reduces the amount of redundancy between patterns, while 
retaining as much of the information captured by the patterns as possible. We have 
presented four measures that capture different qualities of pattern sets. Two unsuper-
vised measures, Joint Entropy and Exclusive Coverage, promote independence or 
reduce overlap, respectively. The remaining two supervised measures, DTM Accuracy 
and Area Under Curve, are based and how well the pattern set performs as input to a 
simple classifier, and how well it performs as a collection of points in ROC-space, 
respectively. Initial experimentation shows that Joint Entropy and DTM Accuracy 
produce the most useful results, and satisfy a number of intuitive expectations of end-
users concerning non-redundancy and predictive quality of the patterns returned. 

We have implemented the proposed pattern team discovery scheme in the Safarii 
system. Space limitations unfortunately prevent a detailed description of algorithmic 
aspects of the efficient computation of pattern teams. Interesting optimisations over 
naïve implementations can however be obtained for the quality measures presented 
[4], and we intend to extend our work in this direction. Furthermore, alternative qual-
ity measures can be thought of. Apart from quality measures on the level of pattern 
sets, one could envisage selecting pattern sets on the basis of inductive queries based 
on relationships between its member patterns, for example by requiring a certain 
amount of dissimilarity between every pair of patterns. A pattern team would thus 
optimise a given quality measure, as well as satisfy a number of inductive constraints. 
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Abstract. Finding a comprehensive set of patterns that truly captures the char-
acteristics of a database is a complicated matter. Frequent item set mining at-
tempts this, but low support levels often result in exorbitant amounts of item 
sets. Recently we showed that by using MDL we are able to select a small 
number of item sets that compress the data well [11]. Here we show that this 
small set is a good approximation of the underlying data distribution. Using the 
small set in a MDL-based classifier leads to performance on par with well-
known rule-induction and association-rule based methods. Advantages are that 
no parameters need to be set manually and only very few item sets are used. 
The classification scores indicate that selecting item sets through compression 
is an elegant way of mining interesting patterns that can subsequently find use 
in many applications. 

Keywords: frequent item sets, MDL, classification. 

1   Introduction 

Ever since the first paper on association rule mining [1], mining for frequent item sets 
has been a popular topic, as it has many useful applications. By now there are many 
algorithms that discover the frequent item sets efficiently [1,5]. 

Another problem, however, is far from solved: the explosion of the number of 
results. Over the years, many solutions have been proposed, e.g., closed [15] and 
maximal [2] item sets. Most, if not all of these methods can be understood as a com-
pression of the result set, some methods are lossless (closed item sets) while others 
are lossy (maximal item sets). 

Recently, we proposed a radically different solution to this problem [11]. A set of 
item sets is interesting iff it yields a good (lossless) compression of the database 
rather than a good compression of the set of all frequent item sets. To determine 
whether or not a subset of the set of frequent item sets yields a good compression of 
the database, we used the Minimum Description Length Principle (MDL) [6]. 

As shown in [11], heuristic algorithms yield sets of frequent item sets that are eas-
ily four orders of magnitude smaller than the complete set of frequent item sets and 
give high compression ratios. Clearly, the MDL principle indicates that these small 
sets characterise the database. But, how characteristic are they? That is, do these small 
sets differentiate between different databases? In this paper we investigate this  
problem using classification. 
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The small set of item sets (well, actually the code table they come from) com-
presses the original database well. Of course, this compression scheme can be used 
for all possible transactions. If the code compresses such an arbitrary transaction well, 
it “belongs” to the database. 

This observation suggests a classification algorithm. Split the training database ac-
cording to class and remove the items indicating the class from all transactions. Then, 
compute a code table for each of these databases. The set of code tables so derived 
form a classifier: a transaction t gets assigned to the class C whose code table com-
presses t best. 

The accuracy of this classifier is an independent characterisation of the quality of 
the small set of item sets our compression based mechanism picks from the huge set 
available. The experiments of this paper show that this classifier performs on par with 
well-known rule-induction and association-rule based methods. In other words, com-
pression picks those sets that capture the data characteristics: the patterns that matter.  

2   Compression 

In this section we give a brief description of our compression based technique to filter 
out a small set of descriptive item sets from a vast amount of (frequent) item sets; a 
full description can be found in [11]. To make referring to our compression method 
easier, we will name it Krimp from now on (which is Dutch for “to shrink”). 

The first essential element of Krimp is a code table. Such a code table has item sets 
on the left-hand side and codes for these item sets on its right-hand side. The item sets 
in the code table are ordered descending on 1) item set length and 2) support. The ac-
tual codes on the right-hand side are of no importance, but their lengths are. 

A transaction t is encoded by Krimp by searching for the first item set c in the left-
hand side of the code table for which c ⊆ t. The code for c becomes part of the encod-
ing of t. If t \ c  ∅, the algorithm continues to encode t \ c. Since we insist that each 
coding table contains at least all singleton item sets, this algorithm gives a unique en-
coding to each (possible) transaction. The set of item sets used to encode a transaction 
is called its cover. Note that the coding algorithm implies that a cover consists of non-
overlapping item sets. 

The length of the code of an item in a code table CT depends on the database we 
want to compress; the more often a code is used, the shorter it should be. To compute 
this code length, we code each transaction in the database db. The frequency of an 
item set c∈CT is the number of transactions t∈db which have c in their cover. 

The relative frequency of c∈CT is the probability that c is used to encode an arbi-
trary t∈db. For optimal compression of db, the higher P(c), the shorter its code should 
be. In fact, we have the optimal code length [6] for c as –log(P(c)).  

The length of the encoding of a transaction is now simply the sum of the code 
lengths of the item sets in its cover. The size of the encoded database is the sum of the 
sizes of the encoded transactions. For the code table size, we only count those item 
sets that have a non-zero frequency. The size of the right-hand side column is obvi-
ous; it is simply the sum of all the different code lengths. For the left-hand side col-
umn, note that the simplest code table possibly consists of only the singleton item 
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sets. This is the standard encoding which we use to compute the size of the item sets 
in the left-hand side column.  

In [11] we defined the optimal set of item sets as that one whose associated code 
table minimizes the sum of the code table and encoded database sizes. The compres-
sion algorithm starts with a valid code table (generally only the collection of single-
tons) and a sorted list of candidates. These candidates are sorted descending on 1) 
support and 2) set length. Each candidate is considered by inserting it at the right po-
sition in CT and calculating the new compressed size. A candidate is kept in the code 
table iff the resulting total size is smaller than it was before (Naïve-Compression). 

The default Krimp algorithm, Compress-and-Prune, considers each existing code 
table element for pruning when a new candidate has been added: when an existing 
element does not contribute to compression it is permanently pruned. For more de-
tails, please see [11]. 

3   Classification 

As usual in data mining, we assume that our database of transactions is an i.i.d. sam-
ple from some underlying data distribution. The result of any data mining algorithm is 
only useful if it reflects structure in the underlying distribution rather than spurious 
structure in the sample. Translated to Krimp, this means that we expect Krimp to 
compress an arbitrary transaction sampled from the underlying distribution well.  

To make this more precise, assume that our code table CT has no zero-frequency 
item sets. Let t be an arbitrary transaction over the items , then: 
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The last equation is a Naïve Bayes [4] like assumption: we assume that the item sets 
that cover a transaction are independent. Clearly, this is overly optimistic as item sets 
in a cover are not allowed to overlap! However, Naïve Bayes is known to perform 
well, even if the independence assumption is violated. Therefore, we ignore this viola-
tion for the moment. 

Now, assume that we have two databases db1 and db2 generated from two different 
underlying distributions. We apply Krimp to both databases and get two code tables, 
CT1 and CT2. We are given a new transaction t that is generated under either the dis-
tribution for db1 or the one for db2, but we are not told which one. How do we decide 
to which distribution t belongs? Under the Naïve Bayes assumption, we have: 
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Hence, the Bayes optimal choice is to assign t to the distribution that leads to the 
shortest code length. We already know that the result of Krimp is a small set of item 
sets that is optimal with regard to the MDL principle. The above observation suggests 
an independent way to assess the quality of this result: how well does it classify?  
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The construction of the Krimp classifier works as follows: 

1. Split the training database according to class 
2. Remove the items that indicate the class from each transaction 
3. Compress each of the databases, yielding a code table CTi  for each class Ci 

Then, to classify an unseen transaction t: 

1. Compute lCTi(t) for all classes Ci  
2. Assign t to the class that minimizes lCTi(t) 

Note that we do a Laplace correction during classification. That is, all usage frequen-
cies are increased by one, ensuring valid code lengths for zero frequency sets. We 
generate code tables at fixed support intervals report-sup during compression, and use 
these for classification. To pair the code tables for classification we use two methods: 
absolute and relative. In absolute pairing, the code tables that have been generated at 
the same support levels are matched. Relative pairing matches code tables of the same 
relative support between 100% and 1% of max-sup (per class).  

4   Advanced Classifiers 

Many algorithms that can be used for classification have been proposed, many of 
which fall into either the class of rule-induction-based or that of association-rule-
based methods. Because we use classification as a quality measure for the patterns 
that Krimp picks, we will compare our results with those obtained by some of the best 
existing classifiers. Comparison can be done with rule-induction-based methods such 
as C4.5 [9], FOIL [10] and CPAR [14], but we are more interested in an in-depth 
comparison with association-rule-based algorithms like iCAEP [16], HARMONY 
[12], CBA [7] and LB [8]. We believe this comparison is more interesting because 
these methods also use a collection of item sets for classification. Because we argued 
that our method is strongly linked to the principle of Naïve Bayes (NB) [4] its impera-
tive we also compare to this method. Because these methods were devised with the 
goal of classification in mind, we would expect them to outperform the Krimp classi-
fier. The goal of Krimp is extracting a small set of interesting patterns. 

5   Experiments 

In order to assess the quality of Krimp’s data distribution approximation, we tested on 
a plethora of UCI databases and compared accuracies to those obtained by a large 
range of existing classification algorithms. As the algorithm currently only deals with 
item sets, we used discretised versions [3,5] of the databases. 

All experimental results were obtained using 10-fold cross-validation. We report 
the min-sup thresholds we used for each dataset. We compare to scores taken from the 
publications in which the respective classifiers were described [8,12,16]. These all 
used the same discretised datasets. The missing scores for Naïve Bayes and C4.5 have 
been acquired using Weka [13].  
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Although virtually any collection of 
item sets could be considered as candi-
dates, our focus has been on using all 
frequent and closed frequent item sets. 
Figure 1 shows that using either all or 
closed frequent item sets and Naïve-
Compression or Compress-and-Prune 
hardly influences classification. Be-
cause the reduction of the number of 
item sets is largest with all frequent item 
sets and on-the-fly pruning [11], we use 
this combination in all experiments pre-
sented in the rest of this section.  

Figure 2 shows that better compres-
sion generally leads to better classifica-
tion. This is not always the case though: 
for the mushroom dataset, a drop in to-
tal compressed size always results in a change in accuracy, but this change is not al-
ways positive. The drops in accuracy could have several causes, the most likely being 
that item sets characteristic for both classes are added to the code tables at that sup-
port level. This would make the encoded probability distributions look more alike and 
make discrimination more difficult. The longer candidates with lower support make 
an important difference between the classes though, as a 100% classification score is 
obtained later on. 

In case of the mushroom dataset, code tables for the two classes are paired abso-
lute, e.g. having the same minimum support. This is not possible for the anneal data-
set, as it consists of 5 classes that have a very skewed a priori distribution. However, 
using relative code table pairing, competitive scores can be obtained for anneal. The  
 

 

Fig. 2. Minimum support vs total compressed size per class and accuracy for mushroom (abso-
lute pairing, left) and anneal (relative pairing, right) 

 

Fig. 1. Accuracies for different candidate sets 
(all/closed frequent item sets) and pruning  
enabled/disabled, for 4 datasets 
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Table 1. Statistics on 8 UCI datasets using Compress-and-Prune with all frequent item sets as 
candidates. Numbers of candidates, resulting code table sizes |CT| (excluding singleton sets) 
and compression ratios at given min-sups are summed for all classes and 10-fold cross vali-
dated. The best 10-fold cross validated accuracies are given (not always belonging to min-sup). 

Dataset #rows |C| | | #candidates |CT| Compr
ratio Acc % min 

sup 
Adult 48842 2 97 1679483 994 3.40 84.6 50 
Anneal 898 6 71 2117941 110 2.47 97.0 1 
Ionosphere 351 2 157 42908227 107 1.47 90.6 35 
Led7 3200 10 24 12815 720 3.49 75.3 1 
Mushroom 8124 2 119 92163948 391 3.94 100.0 50 
Pendigits 10992 10 86 255838056 1996 2.19 88.6 1 
Waveform 5000 3 101 942271 741 1.71 77.2 100 
Wine 178 3 68 1049213 167 1.26 97.7 1 

accuracy graph emphasizes that better compression doesn’t always result in better 
classification: the highest accuracy is achieved shortly before min-sup is reached. This 
might be caused by slight overfitting. 

In Table 1 we provide an overview of the achieved compression together with clas-
sification scores of Krimp on a variety of UCI datasets. The numbers clearly indicate 
that Krimp copes with a wide range of datasets and always strongly reduces the num-
ber of candidates. The reduction of the number of item sets is enormous, up to 5 or-
ders of magnitude (in case of PenDigits, the beastly amount of 255 million item sets is 
cut back to only 1996!). Looking at the min-sups, only waveform seems like a strange 
outlier: because of its characteristics and density, compressing is computationally 
very intensive, despite the seemingly small numbers of rows and candidates. 

As compression proceeds and classification improves, average encoded transaction 
lengths also change. In general, the difference between the length of the correctly (in-
correctly) winning class and that of the losing class increases (decreases). This means 
that this difference could be used as uncertainty factor: a larger difference results in a 
higher certainty of assigning the correct class. (Not shown due to space limitations.) 

The comparison of classification accuracies in Table 2 shows that the Krimp code 
tables are of such high quality they can compete with many methods specifically built 
for classification. Our elegant though make-shift MDL based classification extension 
 

Table 2. Accuracy scores on 10 UCI datasets, 10-fold cross validated. Scores taken from [16], 
missing scores for Naive Bayes and C4.5 obtained using Weka [13].  

Dataset #cl #rows iCAEP NB LB CBA C4.5 Krimp min 
sup 

Adult 2 48842 80.9 82.7 85.1 75.2 85.5 84.6 50 
Anneal 6 898 95.1 86.3 98.1 90.4 97.0 1 
Breast (Wisc) 2 699 97.4 96.0 96.9 95.3 85.4 94.1 1 
Iono 2 351 90.6 82.6 92.1 91.5 90.6 35 
Iris 3 150 93.3 96.0 92.9 84.7 96.0 1 
Mushroom 2 8124 99.8 95.8 100.0 100.0 20 
Pima 2 768 72.3 74.7 75.8 73.1 72.5 75.0 1 
Tic-tac-toe 2 958 92.6 69.6 100 84.6 87.1 1 
Waveform 3 5000 81.7 80.0 79.4 75.3 75.1 77.2 100 
Wine 3 178 98.9 96.6 91.6 93.8 97.7 1 
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Table 3. Accuracy scores on 8 large UCI databases, 10-fold cross validated. Scores taken from 
[12]. Min-sup for Harmony set to 50. 

Dataset #cl #rows FOIL CPAR SVM Har-
mony 

Krimp min 
sup 

Adult 2 48842 82.5 76.7 84.2 81.9 84.6 50 
Led7 10 3200 62.3 71.2 73.8 74.6 75.3 1 
LetterRecog 26 20000 57.5 59.9 67.8 76.8 68.1 50 
Mushroom 2 8124 99.5 98.8 99.7 99.9 100.0 20 
Nursery 5 12960 91.3 78.5 91.4 92.8 92.4 1 
PageBlocks 5 5473 91.6 76.2 91.2 91.6 96.6 1 
PenDigits 10 10992 88.0 83.0 93.2 96.2 88.6 1 
Waveform 3 5000 75.6 75.4 83.2 80.5 77.2 100 

is always at the head of the pack and delivers two wins. Note that on average Krimp 
performs better than Naïve-Bayes, although it is based on the same assumption. Un-
fortunately no further results for LB and CBA were available. 

When comparing on some of the largest UCI datasets in Table 3, Krimp proves to 
do exceptionally well. The bigger datasets allow MDL to better work its magic, mak-
ing a good selection of which sets to include in its code tables. Overall, Krimp per-
forms very well, as it is always close to the best scores and puts down the best score a 
number of times.  

6   Discussion 

Outstanding classification was not the ultimate goal of the experiments presented in 
the previous section, as explained before. We are very content as our explicit intention 
was to verify that our method is very capable at representing data distributions with 
only few item sets. The results of the experiments clearly verify this hypothesis. 

Although Krimp has not been designed for classification and no attempts have 
been made to enhance the differences between code tables for different classes, the re-
sults show that it performs well compared to the best known classifiers. As the men-
tioned association-rule-based classifiers also select item sets that characterise the 
classes, it is interesting to compare our method with those in a qualitative way. 

The selection method iCAEP uses is far less effective than MDL: the amount of 
Emergent Patterns may grow enormously and a lot of item sets may be required in the 
end. Also, Krimp is independent of the base distribution, iCAEP is not. Large Bayes 
does succeed in selecting only a small set of item sets that is used to determine a 
class-based probability distribution, but it uses an interestingness measure that re-
quires a parameter that needs to be chosen manually. 

HARMONY selects at most one rule per transaction in the training database. Al-
though it is likely that equal rules are selected and therefore merged, the final set of 
rules can still be quite large. In Krimp, an item set is only used if it helps to compress 
the whole training database; we therefore believe that HARMONY is more prone to 
noise and overfitting than our method and the rules do not represent the data as well. 

The elegancy of the classifier based on Krimp lies in 1) the use of only MDL for 
building and applying the classifier, 2) the small amount of item sets required and 3) 
the natural way it deals with multi-class problems and skewed class distributions. 
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7  Conclusion 

Krimp picks the item sets that matter. From staggering amounts it selects only hand-
fuls of item sets that not only attain high compression ratios, but can compete with to-
day’s cutting edge classifiers as well. We therefore conclude that Krimp is well suited 
for capturing the characteristics of the data.  

As an independent measure of the quality of the selected item sets we used classifi-
cation. The training data is compressed per class, the resulting code tables are used to 
encode new test instances. Following Bayes optimal choice, the class with the code 
table assigning the shortest code has the highest probability of being the correct data 
distribution and is therefore chosen winner. Classification accuracies achieved are on 
par with the best known classifiers.  

Not only is the selected collection of item sets of high quality, the reduction of the 
number of candidates is huge, generally many orders of magnitude. Krimp thus 
proves to be a generic method that finds small sets of patterns that encapsulate the 
probability distribution of the data well. 
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Abstract. Although community discovery based on social network analysis has 
been studied extensively in the Web hyperlink environment, limited research 
has been done in the case of named entities in text documents. The co-
occurrence of entities in documents usually implies some connections among 
them. Investigating such connections can reveal important patterns. In this pa-
per, we mine communities among named entities in Web documents and text 
corpus. Most existing works on community discovery generate a partition of the 
entity network, assuming each entity belongs to one community. However, in 
the scenario of named entities, an entity may participate in several communities. 
For example, a person is in the communities of his/her family, colleagues, and 
friends. In this paper, we propose a novel technique to mine overlapping com-
munities of named entities. This technique is based on triangle formation, ex-
pansion, and clustering with content similarity. Our experimental results show 
that the proposed technique is highly effective. 

Keywords: Community of named entities, community mining. 

1   Introduction 

Knowledge discovery in social networks has attracted a great deal of attention due to 
its successful application in Web search engines. PageRank [2] and HITS [9] are two 
representative Web page ranking algorithms. Both algorithms regard each Web page 
as an entity in the social network, and each hyperlink is a relationship between the 
entities. In addition, HITS discovered that there exist multiple Web communities 
among relevant pages when the query term has several meanings.  

Going beyond the hyperlinked Web environment, we believe that communities also 
exist among named entities in text documents. In the Web, there are explicit links con-
necting entities. However, such links do not exist in free text documents. In this work, 
we consider that named entities are implicitly linked if they co-occur in the same 
sentence.  

Our objective in this work is to discover overlapping communities of named enti-
ties, i.e. the names of persons, organizations, from Web contents and text documents. 
Our research is motivated by two major factors. 
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1. Named entity terms are among the most frequently searched terms on the Web. 
Based on a report from Yahoo! in 20051, all the top ten search terms are named 
entities. For those frequently searched entities, users’ interests can be diverse. By 
finding the overlapping communities, we can separate the various facets about 
the entity of interest. 

2. Named entities are natural actors according to the definition of social networks 
[13]. The original concept of social network was proposed to study social rela-
tionships among people and organizations. By automating data analysis from vast 
volume of texts, we can analyze social network at a grand scale.  

Although many community-mining algorithms exist, we are unable to use them for 
our purpose because they are mainly partitioning algorithms [7][12] that do not allow 
the same entity to appear in multiple communities. In contrast, an entity belongs to 
multiple communities in most of realistic social networks.  

Given a named entity, our algorithm works as follows. It first collects a set of rele-
vant documents on the named entity. All the entities co-occurring in the sentences are 
linked together to generate a named entity graph. We also keep the contextual infor-
mation, which are noun terms in the co-occurrence sentences. The algorithm then 
identifies community cores, and clusters those fringe members into the cores. 

2   Related Work 

The work on community structure discovery on the Web first appeared in the HITS 
algorithm [9]. Since then the issue of community discovery has been studied in a 
variety of environments. However, we are not aware of any work on extracting com-
munities of named entities from text documents at the time of paper submission.  

[7] proposed a Web community mining algorithm based on Max flow-Min cut. In 
[12], a partitioning algorithm was also proposed, so does [3] but in the email context. 
In [5], the authors studied the community issue in a graph from a local perspective. 
They introduced the concept of “curvature” for each vertex v to measure how well 
connected v’s neighborhood is. The authors made an observation that a community 
expands mainly by triangles sharing a common edge. The same observation was also 
made in [12].  

In addition to the Web community issue, other works studied the community struc-
ture from other aspects. [4] applied the concept of community in the Word Sense 
Disambiguation problem. Link analysis also has other applications, such as group 
membership detection [10] and text summarization [6].  

Another related research focused on extracting binary relations from the Web. In 
[1], the author designed an algorithm to find a large number of book/author pairs from 
only several seeds. [8] extracts relations of named entities from a large text corpus. It 
groups relations of entities according to their text similarity. The work was not con-
cerned with communities because similar relations do not mean that the entities  
involved are in the same community. 

                                                           
1 http://tools.search.yahoo.com/top2005/ 
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3   Problem Definition 

This section defines communities, and the objective of this work.  

Definition (Community): Given a finite set of entities S = {s1, s2, …, sn}, a commu-
nity is a pair C = (T, G), where T is a theme and G ⊆ S is a subset of S that shares the 
theme T. If si ∈ G, si is called a member of the community C. If C = ∅, C is an empty 
community.   

A theme defines a community. Given a theme T, the set of members of the commu-
nity is uniquely determined. Thus, two communities are equal if they have the same 
theme. A theme can have a variety of forms: it can be an event or a concept. 

An element si in S can be in any number of communities, i.e. multiple communities 
may share members. We denote that an entity associates with a set of themes by 
si:{T1, T2, …, Tm}, where Tk is a theme of community Ck, to which entity si belongs. 

Given a data set, which can be a set of Web pages, emails, or text documents, usu-
ally there is no metadata regarding community available. The system needs to dis-
cover the hidden community structure from the linkage among entities. The forms that 
communities manifest themselves may vary.  

Web pages. Web page authors sharing common interests often cite others’ pages 
through hyperlinks. Members in a Web community are more likely to be linked with 
their peers than pages outside the community. The text from those community mem-
ber pages can be used to extract the community theme. 

Emails. Members of a community are more likely to communicate with one an-
other. The email contents of the community provide a good summary of the commu-
nity theme. 

Text documents. Named entities within a community are more likely to appear to-
gether in the same sentence. The words in those co-occurrence sentences reflect 
community themes.   

The key form of community manifestation is that its members are “linked” to each 
other in some sense. Such links indicate that they share a common theme. Given a 
data set containing named entities, our objective in this work is to discover the hidden 
communities of the named entities, and identify the community themes.  

4   Mining Overlapping Named Entity Communities 

There are two main tasks in discovering named entity communities from documents. 
The first one is to acquire named entity relationships; the second task groups named 
entities into different communities based on their relationships and the text contents.  

4.1   Finding Entity Relationships 

Given a named entity, the system first searches the Web, blogs or a document collec-
tion to find those relevant documents. It then uses a named entity parser MINIPAR 
[11] to tag the named entities in sentences. Furthermore, each sentence that contains 
at least two named entities of same type is extracted. All entities in a sentence are 
considered to be connected pair-wise with an edge. 
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After all documents are processed, a set of distinctive edges is produced. We attach 
a strength to each edge, which is computed using mutual information. In our case, the 
mutual information reflects the closeness of two entities. Let the entities of an edge be 
a and b, and Pr(a, b) be the co-occurrence probability of (a, b). If the total co-
occurrences of all edges is N, and there are n co-occurrences of a and b, then Pr(a, b) 
= n/N. Let f(a) and f(b) be the probabilities of occurrences of a and b respectively in 
the edges. The mutual information is defined as follows:  

)()(
),Pr(

log),Pr(),( 2 bfaf

ba
babaI =  (1) 

4.2   Mining Communities 

Our community-mining algorithm is a core-periphery clustering algorithm. First, we 
find all cohesive community cores based on the graph topology. After the formation 
of community cores, we exploit the content information of the relationships within 
each community core, and group the peripheral entities with the community cores to 
obtain the final communities.  

The basic building blocks of community cores in our algorithm are triangles. A tri-
angle is a complete graph itself, and is a component of larger complete graphs. It was 
observed in [5][12] that a community expands predominantly by triangles sharing a 
common edge.  

Our community-mining algorithm consists of three major steps.  

Finding Triangles. A triangle is formed by edges connecting three entities. It is 
defined as follows:  

Triangle: In a graph G = (V, E), V is a set of vertices, and E is a set of edges 
among V. For vertices a, b, c ∈ V, if edges (a, b) ∈ E, (a, c) ∈ E, and (b, c) ∈ E, we 
say vertices a, b, c form a triangle if each edge has at least τ instances and a positive 
mutual information. τ is a parameter. 

Finding Community Cores. An ideal community core is a complete subgraph, i.e., a 
clique, consisting of a set of vertices such that each pair of vertices is directly con-
nected by an edge. However, this definition is too strong for practical use because the 
data may be incomplete. We thus relax this definition and give an operational definition. 

Community core: Two candidate cores c1 and c2 are merged to form a larger com-
munity core if there are at least one triangle from c1 and one triangle from c2 that 
share a common edge and form a complete graph of 4 vertices. The resulting commu-
nity core satisfies the criterion that each vertex in the core is adjacent to three or more 
other vertices within the same core. We illustrate the definition with the following 
example. Fig. 1 shows two candidate cores, where c1 is a 4-vectex core and c2 is a 
triangle (which is a smallest core). Since the triangle CBD in c1 and the triangle BDE 
in c2 shares a common edge. If the link CE exists, BCD and BDE form a 4-vectex 
complete graph BCDE. Therefore, we can join c1 and c2 to produce c3.  

The core expansion algorithm works as follows. T is an array of triangles. For each 
triangle, a core c consisting of only the triangle is created. The algorithm tries to  
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Fig. 1. An example of community core 

merge these candidate cores by checking every triangle pair to see whether they can 
join. If the triangle T[i] can join with T[j], then their cores are merged together to 
form a larger core.  

Clustering around Community Cores. Our next task is to group the remaining tri-
angles and edges with the community cores. We exploit the content information of the 
community cores. If a triangle or an edge has a high content similarity, which is 
measured by text similarity, with a community core, it indicates that they are likely to 
share a common theme. Consequently, it will be clustered into that community. 

Let the set of cores be C = {c1, c2, …, ck}, and the remaining elements be S = {s1, 
s2, …, sm}, which include both triangles and edges. Those elements could not be 
merged to the cores form their own communities of smaller sizes.   

The algorithm first compares the similarity between each element si in S with each 
core. It then adds si to the core that has the highest content similarity with si. If si has 0 
similarity with every core, si forms a small community by itself. The similarity func-
tion between triangles is described below. 

triangleSimilarity(si, cj) computes the similarity of a triangle si and a core cj. This 
similarity is the largest similarity between the triangle si and triangle members in cj 
that share an edge with si. If a triangle si does not have a common edge with any tri-
angle in the core, the similarity is 0. 

The similarity between two triangles is computed as follows: If they do not share 
any edge, then their similarity is 0. If they share an edge, their similarity is computed 
like this: Let the two triangles be t1 and t2. t1 has three edges {ea, eb, ec}, and t2 has 
three edges {ed, ef, ec}. ec is the common edge. To calculate the triangle similarity 
between t1 and t2, we combine all the keywords in the edges ed and ef together to form 
a vector vd,f, and combine all the keywords of edges ea and eb to form a vector va,b. The 
cosine similarity, which is the standard similarity measure in information retrieval, 
between the two term vectors is the triangle similarity. In the same way, we can com-
pute the similarity between an edge and a community core.  

5   Empirical Evaluation  

This section evaluates the proposed technique. We first describe the test documents 
used. They come from different sources, as we want to test if the proposed algorithm 
is generally applicable. Our first document collection is from top 500 Web pages  
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retrieved through the Google search engine for a given entity. The other two docu-
ment collections are top 1000 relevant documents from Google blog search, and top 
300-500 relevant documents from Financial Times (FT) corpus.  

Table 1 shows our experiment results from the Web pages. Column 1 gives the 
name of each entity. Column 2 shows the community ID. Column 3 lists entities for 
each community sorted in descending order of their degree centrality scores. Due to 
the space limit, we used the initials for the first names in Table 1. We automatically 
extracted the top nouns from community context and listed them in the column 4. We 
also manually added some remarks on the discovered communities in column 5.  

To evaluate community members, we manually checked the co-occurrence sen-
tences extracted from original text documents. If an entity member in the discovered 
community is related to the community theme, we mark the entity member as correct. 
In Table 1, we used italic font for incorrect entity members. Among n members ex-
tracted for community c, there are m correct members; the community accuracy of c is 
A(c) = m/n. 

Let us now look at the communities of “Bill Clinton”. We can see that both com-
munities B1 and B2 contain very relevant persons. While B3 is much smaller, it also 
contains the family topic. In the Cheney’s communities, we would like to point out 
that “Mary Cheney” and “Lynne Cheney” are grouped into both political and family 
communities. In fact, both entities are legitimate members, and play different roles in 
the two communities. These highlight the key feature of our algorithm, mining over-
lapping communities. 

Table 1. The Discovered Named Entity Communities from Web Pages 

Entities ID Community members Summary Terms Remarks 

B1 

Bill Clinton, G. Bush, H. Clinton, J. Kerry, K. Starr, J. 
Edwards, A. Gore, J. F. Kennedy, R. Reagan, B. Dole, 
F. Roosevelt, R. Nixon, N. Gingrich, D. Rather, D. 
Cheney, J. Carter, J. Lehrer, V. Foster, R. Perot, S. 
Hussein, B. Laden, D. Morris, M. Beschloss, W. J. 
Clinton, T. Jefferson, M. Moore.  

president, election, 
stage, state, senator, 
campaign 

Political 
community  

B2 
Bill Clinton, P. Jones, M. Lewinsky, K. Starr, L. Tripp, 
J. Reno, K. Starr, W. J. Clinton, G. Flowers, R. Wright, 
K. Willey, D. Kendall, L. Johnson. 

case, president,  
testimony, lawsuit, 
jury, deposition 

The scandal 

Bill 
Clinton 

B3 Bill Clinton, Hillary Clinton, Chelsea Clinton. daughter, wife, time,  Family 

 
D1 

Dick Cheney, G. W. Bush, J. Kerry, S. Hussein, J. 
Edwards, C. Powell, B. Clinton, L. Cheney, B. Laden, 
R. Reagan, G. Ford, R. Clarke, R. Cheney, T. Russert, 
M. Cheney, M. Daniels, A. Gore, P. Leahy, D. Rums-
feld, R. Nixon, P. Wolfowitz, J. Lieberman, H. Chavez, 
J. Nichols, D. Quayle, P. Goss, J. Marshall, J. Wilson, 
B. Scowcroft, N. Schwarzkopf, A. Williams, R. Perle, 
Bush Sr, E. Olson, F. Olson, R. Armitage, T. Ridge, N. 
Mandela, J. Miller. 

president, Iraq, war, 
administration,  
defense, secretary 

Political 
community 

Dick 
Cheney 

D2 
Dick Cheney, L. Cheney, M. Cheney, L. A. Vincent, L. 
Cheney. 

daughter, wife, child, 
issue, family  

Family 

In the Table 2, the communities of “Tom Cruise” were extracted from Weblog 
data. We can observe that T1 and T2 are strong communities. To our surprise, T3 was 
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Table 2. The Discovered Named Entity Communities from Blogs 

Entities ID Community members Summary Terms Remarks 

T1 

T. Cruise, B. Shields, K. Holmes, M. Lauer, 
O. Winfrey, L. R. Hubbard, K. Preston, J. 
Fox, B. bush, N. Yan, M. Jackson, S. Johans-
son, D. Miscavige, M.Rogers, P.Kingsley, L. 
A. Devette, B. Pitt, J. Travolta. 

scientology,  
depression, actress, 
love, show, paxil 

Scientology 
& psychiatry 

T2 
Tom Cruise, K. Holmes, N. Kidman, M. 
Rogers, P. Cruz, C. Klein, S. Vergara, R. 
Thomas. 

actress, relationship, 
girlfriend, love, 
marriage, thing 

Dating life 

T3 
S. Spielberg, T. Cruise, J. Maguire war, director, film, 

year, movie, world 
Movies 

Tom 
Cruise 

T4 
R. Hubbard, J. Rodriguez, K. Holmes adviser, interview, 

member, scientology 
Katie& 
Scientology  

A1 

A. Jolie, B. Pitt, Maddox, Z. M. Jolie, J. 
Aniston, B. B. Thornton, J. Voight, G. 
Clooney, L. Dern, L. Croft, King N. Si-
hamoni, J. L. Miller.  

child, son, people, 
divorce, love, mar-
riage 

Private Life 

Ange-
lina 
Jolie 

A2 
A. Jolie, Good Shepherd, Ro. De Niro, M. 
Damon 

drama, cia, history, 
thriller, universal 

Movie 
Project 

a weak community. It indicates that not many blogs paid attention on his movie re-
lease. Similarly, T4 was also relevant, but a weak community. The community of 
“Angelina Jolie” shows the same pattern. Whereas both communities are valid, the 
private life community is larger than the movie community. 

Table 3. The Discovered Named Entity Communities from the FT Newswire Corpus 

NE ID Community members Summary Terms Remarks 

S1 
Sony, CBS Records, CBS, MCA,  
Matsushita, Columbia Pictures, GE. 

1988, acquisition, purchase, 
company, year, chairman 

Acquisition 
events 

S2 
Motorola, Sony, Apple Computer. product, media, general, 

magic, technology, company 
Cooperation 
events 

S3 
Sony, Warner Bros., Time Warner, 
Paramount.  

producer, contract, movie, 
Time, Warner, company 

Media 
companies 

Sony 

S4 
Sony, Toshiba, Panasonic, JVC, Fujitsu, 
NEC, IBM, Hitachi. 

Japan, company, electronics, 
USA, phone, industry 

Japanese 
companies 

I1 

IBM, Toshiba, NEC, Microsoft, Fujitsu, 
Intel, Hitachi, Groupe Bull, HP, Motorola, 
Apple Computer, NCR, Dell, Sony, 
Novell, GM, Nasdaq, TI, Time Warner 

PC, computer, company, chip, 
market, software 

PC makers 

IBM 

I2 
IBM, Sun, Groupe Bull, HP, MIPS. workstation, market, RISC, 

competition, deal, technology 
Workstation 
makers 

We used a newswire corpus in the last experiment. The results in Table 3 further 
demonstrate the effectiveness of our algorithm. Taking “Sony” as an example, com-
munity S3 lists its peer companies in the entertainment business, and S4 contains its 
peer Japanese companies. Communities I1 and I2 are also interesting. While there is a 
considerable overlapping between the workstation and PC makers, the link context 
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reveals two distinct community themes. The accuracy for community extraction from 
these six entities is 172/193 = 89.1%. 

6   Conclusion 

This paper studied the problem of mining named entity communities from text docu-
ments. So far little work has been done to investigate this issue. By exploiting the 
named entity co-occurrence, we mapped text documents into a named entity graph. 
An effective mining algorithm was proposed to mine overlapping communities using 
triangle expansion and content similarity. We applied our algorithm on a variety of 
document collections. Our experimental results show that the algorithm is able to 
discover interesting communities. This work is potentially useful to enhance the Web 
search related to named entity queries. 
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Abstract. Itemset mining typically results in large amounts of redun-
dant itemsets. Several approaches such as closed itemsets, non-derivable
itemsets and generators have been suggested for losslessly reducing the
amount of itemsets. We propose a new pruning method based on combin-
ing techniques for closed and non-derivable itemsets that allows further
reductions of itemsets. This reduction is done without loss of informa-
tion, that is, the complete collection of frequent itemsets can still be
derived from the collection of closed non-derivable itemsets. The number
of closed non-derivable itemsets is bound both by the number of closed
and the number of non-derivable itemsets, and never exceeds the smaller
of these. Our experiments show that the reduction is significant in some
datasets.

1 Introduction

Itemset mining often results in a huge amount of itemsets. Unfortunately the
result usually contains a large number of redundant itemsets. Redundancy is
inherent in the collection of all frequent itemsets and is the result of the fact
that many itemsets are uninformative if the user is already aware of some other
itemsets in that collection. In technical terms, an itemset can be considered re-
dundant if its support can be inferred from other itemsets. Removing redundant
itemsets produces a condensed representation of all frequent itemsets.

The best known condensed representations are closed itemsets [1] (or gener-
ators/free sets) and non-derivable itemsets [2]. The collection of non-derivable
itemsets often is smaller than the collection of closed sets, but given an arbi-
trary dataset either one may contain fewer itemsets. In this paper we propose
a method that combines the ideas of closed and non-derivable itemsets, and is
guaranteed to be at least as efficient as the better of the two, while retaining the
cabability of losslessly recovering the full collection of frequent itemsets.

2 Basic Concepts from Related Work

The frequent itemset mining problem can be described as follows [3]. We are given
a set I of items and a dataset (multiset) D of subsets of I called transactions. A
� Currently at University of Freiburg; supported by Humboldt foundation.
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set X of items is called an itemset. The support s(X) of X is the number of trans-
actions that contain X . An itemset is called frequent if its support is no less than a
given minimum support threshold δ. We denote the collection of all frequent item-
sets by F req. In the rest of the paper, we work on collections of frequent itemsets,
but often drop “frequent” for lingvistical simplicity.

One condensed representation of itemsets is based on the concept of closure [1].
The closure cl(X) of an itemset X is the maximal superset of the itemset X with
the same support as the itemset X . The closure is always unique. An itemset X
is a closed itemset if and only if its closure is the itemset X itself. We denote
the collection of closed frequent itemsets by Closed.

Given F req we can obtain Closed by taking the closure of each frequent
itemset. Vice versa, given Closed and an itemset, we obtain the support of the
itemset by finding its most frequent superset.

A more recent proposal [2] for pruning redundant itemsets takes advantage
of the inclusion-exclusion principle. If Y ⊂ X and |X \ Y | is odd, then the
corresponding deduction rule for an upper bound of s(X) is

s(X) ≤
∑

I:Y ⊂I⊂X,I �=X

(−1)|X\I|+1s(I). (1)

If |X \ Y | is even, the direction of inequality is changed and the deduction rule
gives a lower bound instead of an upper bound. Given all subsets of X , and their
supports, we obtain a set of upper and lower bounds for X . When the smallest
upper bound equals the highest lower bound, we have obtained the exact support
of X . Such an itemset is called derivable. The collection of non-derivable frequent
itemsets, denoted NDI, is a lossless representation of F req. NDI is downward
closed [2]. In other words, all supersets of a derivable itemset are derivable, and
all subsets of a non-derivable itemset are non-derivable.

Example. Consider the small transaction dataset of four items a, b, c and d
and six transactions given in the left panel of Figure 1. The deduction rules for
computing bounds for {a, c, d} are given in the right panel of Figure 1.

Example Dataset Deduction rules for s({a, c, d})

a b c d
c d

a b
a b d
a c
a c d

s({a, c, d}) ≤ s({a, c}) + s({a, d}) + s({c, d})
−s({a}) − s({c}) − s({d}) + s({})
= 3 + 3 + 3 − 5 − 4 − 4 + 6 = 2

s({a, c, d}) ≥ s({a, c}) + s({a, d}) − s({a}) = 3 + 3 − 5 = 1
s({a, c, d}) ≥ s({a, c}) + s({c, d}) − s({c}) = 3 + 3 − 4 = 2
s({a, c, d}) ≥ s({a, d}) + s({c, d}) − s({d}) = 3 + 3 − 4 = 2
s({a, c, d}) ≤ s({a, c}) = 3
s({a, c, d}) ≤ s({a, d}) = 3
s({a, c, d}) ≤ s({c, d}) = 3
s({a, c, d}) ≥ 0

Fig. 1. An example dataset and deduction rules

The support of the itemset {a, c, d} has a highest lower bound of 2, which is
equal to the lowest upper bound making {a, c, d} derivable. �
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3 Closed Non-derivable Itemsets

Both the collection of frequent itemsets and the collection of non-derivable item-
sets are downward closed, and the use of closed itemsets for compression utilizes
this property.

Definition 1. Let NDI be the collection of frequent non-derivable itemsets. The
collection of frequent closed non-derivable itemsets is CNDI = {cl(X) | X ∈
NDI}.

There are some subtleties. First, CNDI ⊂ NDI does not hold in general
(whereas always Closed ⊂ F req). From this it also follows that NDI cannot
be reconstructed by a straightforward downward closure of CNDI.

Example. Given our example dataset in Figure 1 and a support threshold of 2,
we have 12 frequent, 10 closed and 10 non-derivable itemsets, given in Figure 2.

Freq Closed

{}(6)

{a}(5) {b}(3) {c}(4) {d}(4)

{a,b}(3) {a,c}(3) {a,d}(3) {b,d}(2) {c,d}(3)

{a,b,d}(2) {a,c,d}(2)

{}(6)

{a}(5) {c}(4) {d}(4)

{a,b}(3) {a,c}(3) {a,d}(3) {c,d}(3)

{a,b,d}(2) {a,c,d}(2)

NDI CNDI

{}(6)

{a}(5) {b}(3) {c}(4) {d}(4)

{a,b}(3) {a,c}(3) {a,d}(3) {b,d}(2) {c,d}(3)

{}(6)

{a}(5) {c}(4) {d}(4)

{a,b}(3) {a,c}(3) {a,d}(3) {c,d}(3)

{a,b,d}(2)

Fig. 2. All, closed, non-derivable and closed non-derivable itemsets and their supports

The collection of closed itemsets has been obtained by taking the closure of
each frequent itemset. With regard to NDI, we showed earlier in Figure 1 that
{a, c, d} is a derivable itemset. This is also true for {a, b, d}.

As this example shows, neither NDI nor Closed is a subset of the other. For
instance, {a, b, d} is closed but derivable whereas {b} is non-derivable but not
closed. On the other hand, CNDI ⊂ Closed. A comparison of these collections
shows how {a, c, d} is not in CNDI since it is derivable. We emphasize that
CNDI cannot in general be obtained by removing all derivable itemsets from
Closed. In this example, |CNDI| = 9, which is less than |Closed| = 10 and
|NDI| = 10. �
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Depending on the dataset, either collection of closed or collection of non-derivable
itemsets may give a more condensed representation. However, the size of the col-
lection of closed non-derivable itemsets is guaranteed to always be at most as large
as the smallest of the two representations.

Theorem 1. The size of the collection of closed non-derivable itemsets CNDI
is smaller than or equal to the size of the collection of non-derivable itemsets
NDI: |CNDI| ≤ |NDI|.

Proof. By definition CNDI = {cl(X) | X ∈ NDI}. Since the closure operation
gives exactly one itemset, we trivially have |CNDI| ≤ |NDI|. �

Theorem 2. The size of the collection of closed non-derivable itemsets CNDI
is smaller than or equal to the size of the collection of closed itemsets Closed:
|CNDI| ≤ |Closed|.

Proof. By the definition of CNDI, given any X ∈ CNDI there exists Y ∈ NDI
such that X = cl(Y ). Since Y ∈ NDI ⇒ Y ∈ F req ⇒ cl(Y ) ∈ Closed ⇒ X ∈
Closed, i.e., CNDI ⊂ Closed. �

Experiments in the following section show that the reduction by closed non-
derivable itemsets may be significant in comparison to the reduction given by
either of the methods alone.

The definition of CNDI directly gives the simple Algorithm 1. Correctness
of the algorithm is trivial and follows directly from the definition.

Algorithm 1. CloseNDI(D, δ)
Input: A dataset D and a support threshold δ
Output: The collection CNDI of closed non-derivable itemsets
1: CNDI ← ∅
2: Mine all non-derivable itemsets NDI with support threshold δ from dataset D

(using methods from [2,4]).
3: for all X ∈ NDI do
4: CNDI ← CNDI ∪ {cl(X)}
5: end for
6: return CNDI

Obtaining all frequent itemsets and their supports from the closed non-
derivable itemsets is a bit more complex operation. First, given a collection
of closed non-derivable itemsets we can obtain the supports of all non-derivable
itemsets. Then the non-derivable itemsets in turn can be used to deduce the
supports of all frequent itemsets by a levelwise search of the itemset space.

Theorem 3. Algorithm 2 correctly recovers the frequent itemsets and their sup-
ports from the collection of closed non-derivable frequent itemsets CNDI.



Closed Non-derivable Itemsets 605

Algorithm 2. ExpandCNDI(CNDI, δ)
Input: A collection CNDI of frequent closed non-derivable itemsets and the corre-
sponding support threshold δ
Output: The collection Freq of frequent itemsets
1: Freq ← ∅
2: l ← 0
3: while ∃X such that |X| = l and for all Y ⊂ X, Y �= X: Y ∈ Freq do
4: for all X such that |X| = l and for all Y ⊂ X, Y �= X: Y ∈ Freq do
5: if support of X can be derived from supports of its proper subsets Y then
6: s ← Support of X as given by deduction rules (Equation 1)
7: if s ≥ δ then
8: Freq ← Freq ∪ (X, s)
9: end if

10: else if ∃Z ∈ CNDI such that X ⊂ Z then
11: s ← Support of the most frequent itemset Z ∈ CNDI for which X ⊂ Z
12: Freq ← Freq ∪ (X, s)
13: end if
14: end for
15: l ← l + 1
16: end while
17: return Freq

Proof. Let F be the true collection of all frequent itemsets while F req denotes
the result of the algorithm. We first show that F ⊂ F req by induction over
frequent itemsets X ∈ F in increasing size

– For the empty set we have s({}) ≥ δ ⇒ {} ∈ NDI ⇒ cl({}) ∈ CNDI by
definition of CNDI. The algorithm can not derive the support of the empty
set from its proper subsets (there are none). It thus proceeds to find the
support of the closure of the empty set on line 11 of the algorithm and by
properties of closed sets obtains the correct support.

– Let us now assume that the algorithm has correctly found all frequent item-
sets with size less than l, and consider a frequent itemset X ∈ F with |X | = l.
Now X ∈ F ⇒ X ∈ NDI or X ∈ F \ NDI. If X ∈ F \ NDI then by def-
inition of NDI its support can be derived from its proper subsets, which
have been correctly recovered by algorithm (the inductive hypothesis). X
and its support are thus correctly added to F req on line 8. If X ∈ NDI
then cl(X) ∈ CNDI by definition of CNDI, and the algorithm finds the
correct support of X from its closure on line 11.

To complete the proof we need to show that F req ⊂ F . Consider any X ∈
F req. It must have been added to F req on line 8 or 12. If it was added on line
8, s(X) ≥ δ due to the test on line 7. If it was added on line 12, s(X) ≥ δ since
there exists Z ∈ CNDI, X ⊂ Z (line 9) and by the definition of CNDI, Z must
be frequent. �

The most time consuming phase of the Algorithm 1 is mining NDI. Time to close
that collection depends on the number of itemsets in that collection. Algorithm 2
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uses inclusion-exclusion to check whether an itemset is derivable. Again this is
the dominant phase of the algorithm. For further analysis and efficient ways of
implementing inclusion-exclusion we refer to [2,4].

4 Experiments

For an experimental evaluation of the proposed algorithms, we performed several
experiments on real datasets. We implemented all algorithms in C++.

For primary comparison of methods we use four dense datasets: chess, connect,
mushroom and pumsb, all obtained from the UCI Machine Learning Reposi-
tory. The chess and connect datasets are derived from their respective game
steps, the mushroom database contains characteristics of various species of mush-
rooms, and the pumsb dataset contains census data. For further perspective into
the compression capabilities of the methods, we also use two sparse datasets,
T10I4D100K and T40I10D100K, which contain simulated market basket data
generated by the IBM Almaden Quest research group. Table 1 shows some char-
acteristics of the used datasets.

Table 1. Dataset characteristics

Dataset Items Avg. Trans. Size Std. Dev. of Trans. Size Transactions
chess 76 37 0 3 196
connect 130 43 0 67 557
mushroom 120 23 0 8 124
pumsb 7117 74 0 49 046
T10I4D100K 1000 10 3.7 100 000
T40I10D100K 1000 40 8.5 100 000

Figure 3 shows the results of the experiments: the number of closed itemsets,
non-derivable itemsets and closed non-derivable itemsets, in the six different
datasets as well as some of the results in numerical form.

The benefit of using closed non-derivable itemsets is biggest in mushroom and
pumsb datasets, where the number of closed non-derivable itemsets is about one
half of the number of non-derivable itemsets, and the reduction is even greater
when compared to the number of closed itemsets (note that y-axis is logarithmic).
In chess and connect datasets the compression for both non-derivable itemsets
and closed non-derivable itemsets, when compared to closed itemsets, is about
two orders of magnitude.

In all the dense datasets, the number of closed non-derivable itemsets is two to
four magnitudes smaller than the number of all frequent itemsets. In the sparse
market basket datasets, compression rates are much more modest, ranging about
15 − 35%. These two datasets are examples of the performance guarantee of
closed non-derivable itemsets: for T10I4D100K, there are fewer closed itemsets
than there are non-derivable itemsets, whereas in T40I10D100K the situation is
reversed. In both cases the number of closed non-derivable itemsets is guaranteed
not the exceed the smaller of these.
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(d) pumsb
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(e) T10I4D100K
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(f) T40I10D100K

chess connect mushroom pumsb T10 T40
Support 1 279 43 912 325 29 428 20 1 000
Threshold (freq.) (40%) (65%) (4.0%) (60%) (0.020%) (1.0%)
|Freq| 6 472 981 9 727 092 5 131 852 19 537 366 129 876 65 237
|Closed| 1 366 834 49 707 16 733 1 075 015 107 823 65 237
|NDI| 7 185 704 14 382 21 323 109 486 42 312
|CNDI| 7 015 646 8 240 12 081 102 869 42 312

Fig. 3. The number of closed, non-derivable and closed non-derivable itemsets

5 Conclusions

We proposed a new method for lossless compression of a collection of frequent
itemsets. The method takes advantage of the properties of two well-known tech-
niques, closed itemsets and non-derivable itemsets.
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We showed that the collection of closed non-derivable itemsets is a subset of
the collection of closed itemsets, and that its size is also limited by the num-
ber of non-derivable itemsets, i.e., the combined method is guaranteed to yield
better results than either one of the methods alone. We gave simple algorithms
for producing the collection of closed non-derivable itemsets and recovering the
collection of all frequent itemsets.

It is well known that closed itemsets and non-derivable itemsets give best
compression rates for dense datasets, such as the UCI datasets used in our ex-
periments, and give less benefits with sparse data, such as the IBM market basket
data. Our experiments indicate that this is the case also for closed non-derivable
itemsets. In our experiments with four real, dense datasets the reduction over
closed itemsets was always significant (50−99%). For two of them, the reduction
over non-derivable itemsets was small, but for the two others the collection of
closed non-derivable itemsets was approximately 43% smaller. This shows that
the collection of closed non-derivable itemsets can in practice be significantly
smaller than the two other condensed representations.

It is not easy to characterize datasets that compress particularly well with
closed non-derivable itemsets. An obvious factor is density: dense datasets lend
themselves better for compression. The advantage over closed and non-derivable
itemsets is largest when their compressions are complementary, as the use of
closed non-derivable itemsets can then benefit from both, as seemed to be the
case with mushroom and pumsb datasets. More research is needed to better
understand the different factors. On the other hand, for practical applications
such understanding is not needed: regardless of the data, closed non-derivable
itemsets are the optimal choice among the three compared alternatives.
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Abstract. A method is described for learning a distance metric for use
in object identification that does not require human supervision. It is based
on two assumptions. One is that pairs of different names refer to different
objects. The other is that names are arbitrary. These two assumptions jus-
tify using pairs of data items for objects with different names as “cannot-
be-linked” example pairs for learning a distance metric for use in clustering
ambiguous names. The metric learning is formulated using only dissimi-
lar example pairs as a convex quadratic programming problem that can
be solved much faster than a semi-definite programming problem, which
generally must be solved to learn a distance metric matrix. Experiments
on author identification using a bibliographic database showed that the
learned metric improves identification F-measure.

1 Introduction

Object identification, which is used for example to determine whether the names
of people in documents or databases refer to the same person or not, is an
important problem in information retrieval and integration. It is most often used
for personal name disambiguation, e.g., author identification in bibliographic
databases. Citation and bibliographic databases are particularly troublesome
because author first names are often abbreviated in citations. Resolving these
ambiguities is necessary when evaluating the activity of researchers, but major
citation databases such as the ISI Citation Index1 and Citeseer’s Most Cited
Authors in Computer Science2 cannot distinguish authors with the same first
name initial and last name.

Object identification problems are generally solved by clustering data contain-
ing the target names based on some similarity measure or distance metric [1].
Similarity and distance are important factors in clustering, and an appropriate
similarity/distance measure must be used to achieve accurate results. Several
methods have been proposed for learning a similarity measure [2,3] or distance

1 http://isiknowledge.com/
2 http://citeseer.ist.psu.edu/mostcited.html
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metric [4] from humanly labeled data. One advantage of using a distance metric
rather than a general similarity/dissimilarity measure is that it satisfies math-
ematical properties such as the triangle inequality and can be used in many
existing clustering algorithms. One problem in learning a distance metric is that
labeling by a person involves costs. In previous research, labeling was given
as pairwise feedback, such as two data items are similar and must be in the
same cluster (“must-be-linked”) or dissimilar and cannot be in the same clus-
ter (“cannot-be-linked”), but disambiguating two people with the same name or
similar names is a subtle and time-consuming task even for a person.

We have developed a distance metric learning method that requires no human
supervision for object identification. It is based on two assumptions.

Different names refer to different objects. In many object identification
problems, pairs of different names presumably refer to different objects with
few exceptions. For example, two J. Smiths are ambiguous, while J. Smith
and D. Johnson cannot be the same person (neglecting, of course, the pos-
sibility of false names or nicknames).

Names are arbitrary. There is no reason to believe that the data for two peo-
ple with the same name are more similar than the data for two people with
different names. For example, the research papers written by two different J.
Smiths are not assumed to be more similar than those written by J. Smith
and D. Johnson. We assume that a pair of data items for two people with
different names has the same statistical properties as a pair of data items
for two people with the same name.

These two assumptions justify the use of pairs of data items collected for
different names (for example, J. Smith and D. Johnson) as cannot-be-linked
examples for learning a distance metric to be used for clustering data for people
with the same or similar names. The learned distance metric that gives good
separation of the data for people with different names can be expected to separate
the data for different people with the same name as well. These cannot-be-
linked example pairs can be formed mechanically without manual labeling. In our
setting, no similar (must-be-linked) example pairs are used. After formulating
the distance metric learning problem with only dissimilar example pairs as a
convex quadratic programming problem, we present experimental results for
author identification using a bibliographic database.

2 Preliminaries

In this paper, xm ∈ X denotes data (documents or database records) that
contain names, where the superscript m is the index for each data item. Each
data item xm is represented as a D dimensional feature vector (xm

1 , . . . , xm
D)T ,

in which each feature corresponds to, for example, a word in a document or an
attribute in a database. The superscript T denotes the transpose of a vector or
matrix.
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Given vector representations of the data, we can define various distance met-
rics. For the function d : X × X → R to be a (pseudo) metric, it must satisfy
the following conditions3:

d(xm, xn) ≥ 0
d(xm, xn) = d(xn, xm)
d(xm, xl) + d(xl, xn) ≥ d(xm, xn) .

The Euclidean metric treats each feature equally and independently and does
not represent interaction among features. Using D × D matrix A = {ai,j}, we
can define a distance metric in a more general form:

dA(xm, xn) =
(
(xm − xn)T A(xm − xn)

) 1
2

=

⎛⎝ D∑
i=1

D∑
j=1

ai,j(xm
i − xn

i )(xm
j − xn

j )

⎞⎠
1
2

.

The necessary and sufficient condition for dA being a pseudo metric is that
A be a positive semi-definite matrix, in other words, a symmetric matrix in
which all eigenvalues are non negative. Xing et al. [4] proposed a distance metric
learning method in which similar and dissimilar pairs of examples are given, and
a matrix A is found that minimizes the sum of the distances between similar
pairs while keeping the distances between dissimilar pairs greater than a certain
value. However, the optimization problem includes a constraint: matrix A must
be positive semi-definite. We thus have a semi-definite programming problem
[5], which is harder to solve than a convex quadratic programming problem, like
that used in support vector machine learning [6].

3 Distance Metric Learning from Only Dissimilar
Example Pairs

3.1 Problem Formalization

In our setting, only pairs of dissimilar (cannot-be-linked) examples (xm, xn) ∈ D
are given, where D ⊂ X × X is the set of paired examples that are considered
to be referring to different objects, that is, examples with different names.

We want examples in such a pair to belong to different clusters. To ensure
that, we use a matrix A that enlarges the distance between the two examples
dA(xm, xn). However, multiplying A by a large scalar makes the distance be-
tween any two points long and thus not meaningful. Therefore, we introduce a
constraint that the norm of matrix A must be a certain constant, say 1, and find
the A that induces a long distance between dissimilar examples in a pair while

3 d becomes a metric in the strict sense when d(xm, xn) = 0 if and only if xm = xn.
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satisfying the constraint. As the matrix norm, we use the Frobenius norm:

‖A‖F =

⎛⎝ D∑
i=1

D∑
j=1

a2
i,j

⎞⎠
1
2

.

We can now formalize distance metric learning from only dissimilar example
pairs as an optimization problem:

max
A

min
(xm,xn)∈D

dA(xm, xn) (1)

s.t. ‖A‖F = 1 (2)
A . 0 . (3)

A . 0 means that A should be positive semi-definite. Objective function (1)
requires finding the A that maximize the distance between the closest example
pair. This idea is similar to large margin principles in SVMs [6] and is justified
because clustering errors most probably occur at the cannot-be-linked points
closest to each other, and keeping these points far from each other reduces the
risk of errors.

To simplify the subsequent calculation, we translate the above problem into
an equivalent one:

min
A

1
2
‖A‖2F (4)

s.t. dA(xm, xn) ≥ 1 ∀(xm, xn) ∈ D (5)
A . 0 . (6)

3.2 Positive Semi-definiteness of Learned Matrix

We now consider an optimization problem consisting of only (4) and (5) without
(6). To solve this problem, we introduce the Lagrangean

L(A, α) =
1
2
‖A‖2F +

∑
(m,n)

α(m,n) (1− dA(xm, xn))

=
1
2
‖A‖2F +

∑
(m,n)

α(m,n) (1− (xm − xn)T A(xm − xn)
)
, (7)

with Lagrange multipliers α(m,n) ≥ 0.
In the solution of (4) and (5), the derivative of L(A, α) with respect to A

must vanish; that is, ∂L
∂A = 0. This leads to the following expansion:

A =
∑

(m,n)

α(m,n)(xm − xn)(xm − xn)T . (8)

A necessary and sufficient condition for D×D matrix A being positive semi-
definite is that for all D dimensional vectors v, vT Av ≥ 0 holds. This is always
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the case for a matrix A in the form of (8). Noting that α(m,n) ≥ 0, we can
confirm this as follows:

vT Av =
∑

(m,n)

α(m,n)((xm − xn)T v)2 ≥ 0 .

This means that without condition (6), the positive semi-definiteness of A is
automatically satisfied. In fact, the optimization problem consisting of only (4)
and (5) is a convex quadratic programming problem and can be solved much
faster than a semi-definite programming problem with condition (6).

3.3 Relationship to Support Vector Machine Learning

Our formalization of learning a distance metric from only dissimilar example
pairs is closely related to support vector machine learning. Actually, the opti-
mization problem can be translated into an SVM learning problem [6] and can
be solved by existing SVM software with certain settings.

The optimization problem for training an SVM that classifies the data into
two classes is as follows [6]:

min
w,b

1
2
‖w‖2 (9)

s.t. ym(〈w, xm〉+ b) ≥ 1 ∀(xm, ym) ∈ T . (10)

T is the set of training examples (xm, ym), where xm is a data vector and
ym ∈ {−1, +1} is the class label. 〈x, z〉 is the inner product of vectors x and z.

Using the Frobenius product

〈A, B〉F =
D∑

i=1

D∑
j=1

ai,jbi,j

of two D ×D matrices, we can rewrite the problem of (4) and (5):

min
A

1
2
‖A‖2F (11)

s.t. 〈A, (xm − xn)(xm − xn)T 〉F ≥ 1 ∀(xm, xn) ∈ D . (12)

Comparison of (11) and (12) with (9) and (10) reveals that our problem cor-
responds to unbiased SVM learning (b = 0) from only positive data (ym = 1), if
we consider the examples and the learned weight of D ×D matrices as D2 di-
mensional vectors. The expansion form of the SVM solution w =

∑
m ymαmxm

makes clear why our method can avoid semi-definite programming. We use only
positive examples (cannot-be-linked pairs), thus all the coefficients for the exam-
ples become positive in the solution. If we also used negative examples (must-
be-linked pairs), the coefficients for these examples become negative and the
solution is not always positive semi-definite.
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Substituting (8) into (7) gives us the dual form of the problem:

max
∑

(m,n)

α(m,n)

−1
2

∑
(m,n)

∑
(m′,n′)

(
α(m,n)α(m′,n′)〈xm − xn, xm′ − xn′〉2

)
s.t. α(m,n) ≥ 0 .

These formulas indicate that our learning problem can be solved by using
the quadratic polynomial kernel on D dimensional vectors and that we do not
need to calculate the Frobenius products between the D ×D matrices. As with
standard SVMs, our method can be “kernelized” [7]. By substituting a positive
semi-definite kernel function k(x, z) = 〈φ(x), φ(z)〉 (φ(x) is a map to a higher
dimensional space) for the inner product 〈x, z〉, we can virtually learn the dis-
tance metric matrix for a very high (possibly infinite) dimensional feature space
by the so-called “kernel trick.” In addition, a distance metric for structured
data, such as trees or graphs, can be learned with a kernel function defined on
the space of such data.

4 Experiments

We tested our method on the DBLP data set, which is a bibliography of computer
science papers.4 The entries were made by people, and many author names
include the full first name, not only an initial. We assume that the same first
and last names refers to the same person.

From among the Most Cited Authors in Computer Science,5 we selected eight
cases of first-initial-plus-surname names, which involve a collapsing of many
distinct author names. We retrieved papers written by authors with the same
last name and the same first initial from the DBLP data and randomly selected
100 examples for each abbreviated name. Then we abbreviated first names into
initials and removed middle names. Training data were built by pairing examples
of different abbreviated names, for example, J. Smith and D. Johnson. We used
words in titles, journal names, and names of coauthors as features. Since few
words appear more than once in a bibliographic entry, we used binary features.

To learn a distance metric, we used SVMlight[8]. The learned metric was used
in clustering the data from the same-first-initial-and-last authors. We used the
single-linkage clustering algorithm [9]. The results of clustering were evaluated
by referring to the original full names.

The results with the learned metric were compared to the results with two
other metrics, one was the Euclidean distance and the other was the IDF weight-
ing [10]. Since each bibliography entry is short and the same word rarely appears

4 http://dblp.uni-trier.de/
5 http://citeseer.ist.psu.edu/mostcited.html
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Table 1. Maximum F-measure values

Abbreviated F-measure Abbreviated F-measure
name Learned IDF Euclidean name Learned IDF Euclidean

D. Johnson .644 .390 .399 L. Zhang .278 .165 .158
A. Gupta .490 .170 .169 H. Zhang .423 .226 .226
J. Smith .417 .270 .292 R. Jain .709 .569 .552
R. Johnson .508 .253 .227 J. Mitchell .640 .535 .536

more than once in the entry, we did not apply TF weighting. We neither normal-
ized the feature vectors because the lengths of bibliographic entries are rather
uniform. The clustering algorithm enables us to specify the number of clus-
ters. We measured the pairwise precision and recall for each number of clusters.
The maximum F-measure (harmonic mean of precision and recall [10]) for each
combination of name and metric is given in Table 1. Use of the learned met-
ric consistently resulted in the highest F-measure, while the values varied for
different names.

5 Related and Future Work

Xing et al. [4] proposed a distance metric learning from similar and dissimilar
example pairs. They formulated the problem as a semi-definite programming
problem, and their algorithm needs a full eigenvalue decomposition to ensure
that the learned matrix is positive semi-define. Schultz & Joachims [11] proposed
a method for learning a distance metric from relative comparison such as “A is
closer to B than A is to C.” They also formulated the metric learning as a
constrained quadratic programming. In their method, the interactions between
features are fixed and optimization is applied to a diagonal matrix. Our method
can learn a full distance metric matrix by using only cannot-be-linked pairs.

Shalev-Shwartz, Singer & Ng [12] proposed an online learning algorithm for
learning a distance metric. Their algorithm does not strictly solve the constrained
optimization problem; it finds successive approximate solutions using an iterative
procedure that combines a perceptron-like update rule and the Lanczos method
to find a negative eigenvalue. While designed for learning from both similar and
dissimilar pairs, their algorithm can avoid the eigenvalue problem, as ours does,
if it uses only dissimilar example pairs. The performance of the online kernel per-
ceptron algorithm is close to, but not as good as, that of SVMs for the same prob-
lem, while saving significantly on computation time [13]. This suggests an inter-
esting direction for future work: adopting online algorithms that learn only from
dissimilar examples and comparing the results to those of our learning method.

6 Conclusion

We proposed a method for learning a distance metric for use in object identifica-
tion that is based on two assumptions: different names refer to different objects
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and the data for two people with exactly the same name are no more similar
than the data for two people with different names. It learns the distance metric
from only dissimilar example pairs, which are mechanically collected without
human supervision. We formalized our learning problem as a convex quadratic
programming problem, which can be efficiently solved by existing SVM software.
Experiments using the DBLP data set showed that the learned metric improves
F-measure for object identification.
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Towards Association Rules with
Hidden Variables
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Abstract. The mining of association rules can provide relevant and
novel information to the data analyst. However, current techniques do
not take into account that the observed associations may arise from vari-
ables that are unrecorded in the database. For instance, the pattern of
answers in a large marketing survey might be better explained by a few
latent traits of the population than by direct association among mea-
sured items. Techniques for mining association rules with hidden vari-
ables are still largely unexplored. This paper provides a sound method-
ology for finding association rules of the type H ⇒ A1, . . . , Ak, where
H is a hidden variable inferred to exist by making suitable assump-
tions and A1, . . . , Ak are discrete binary or ordinal variables in the
database.

1 Contribution

Consider the problem of discovering association rules of the type

H ⇒ A1, A2, . . . , Ak (1)

where H is a variable that is not present in the database (a hidden, or latent
variable) but that explains the association among recorded discrete variables
{A1, . . . , Ak} ⊆ {X1, X2, . . . , XN}. This paper provides a novel algorithm for
mining such rules.

The motivation is two-fold: first, the outcome of such an analysis can aid the
discovery of plausible and novel hidden variables that may be used to characterize
the population of interest. Second, it might provide a more concise set of rules.

For instance, suppose that our data was generated by the graphical model
shown in Figure 1, where H is hidden and X1, . . . , X4 are observable. A typical
association rule algorithm might find all sorts of rules such as X1 ⇒ X2, X3,
X2 ⇒ X1, X3, X4, etc. A hidden variable approach could in principle output a
single rule subsumming all of such rules.

This paper is organized as follows: in Section 2, we introduce the particular
class of hidden variable association rules we use, making the link to related work
in latent variable graphical models. Section 3 is the main section of the paper,
describing the detailed approach. Experiments are discussed in Section 4.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 617–624, 2006.
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Fig. 1. Assume the data was generated according to the latent variable model in (a),
where H is not recorded in the database and not known to exist. A potential set of
association rules that ignore hidden variables is given in (b).

2 Probabilistic Formulation

Following the framework of [7], we assume that our data was generated by a
causal directed acyclic graph, where an edge A → B has the meaning that “A is a
direct cause of B”. There are several advantages on trying to extract subgraphs of
the original graph as a type of association rule, instead of discovering a full graph
[7], as further discussed in Section 2.1. Assuming there is a true graph G that
generates our data, the semantics of a latent association rule H ⇒ A1, . . . , Ak,
as given in this paper, are:

– H is a hidden node and a common ancestor of A1, . . . , Ak in G, i.e., H is a
hidden common cause of all elements in A1, . . . , Ak

– all variables A1, . . . , Ak are probabilistically dependent, but become inde-
pendent when conditioning on H1;

The problem of discovering hidden variables is ill-defined without making
extra assumptions. That is, if H is allowed to assume any distribution, then any
distribution over observed variables can be generated by a hidden variable. This
can be accomplished, for instance, by making H be a discrete variable with as
many states as the entries of the contingency table of A1× . . .×Ak. Such a rule
can never be falsified. Instead, we will assume that our data was generated by
some model from the family of latent trait models [1].

A model of this class is more easily understood through a graphical represen-
tation, as illustrated in Figure 2(a): each directed edge H → Xi from hidden
node H to observed node Xi can be interpreted by having some intermediate
hidden variable X∗

i on the path, as in H → X∗
i → Xi. The underlying X∗

i with
latent parents {HXi

1 , . . . , HXi

k } is given by

X∗
i =

∑k
j=1 λijH

Xi

j + εi; εi ∼ N(0, σ2
i );

and each λij corresponds to the linear effect of parent HXi

j on X∗
i . Latent vari-

ables are assumed to follow a multivariate Gaussian distribution, centered at
1 That is, unlike traditional association rules, the right-hand side of the rule is not

meant to assume any particular value (e.g., A1 = true). Instead, the interpretation
is that A1, . . . , Ak are associated, but independent conditioned on H .
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Fig. 2. (a) A graphical representation of a latent trait model with 5 ordinal observed
variables. (b) Two ordinal variables X1 and X2 can be seen as discretizations of two
continuous variables X∗

1 and X∗
2 . The lines in the graph above represent thresholds

that define the discretization. The ellipse represents a contourplot of the joint Gaussian
distribution of the two underlying continuous variables X∗

1 , X∗
2 .

zero. The observed variables Xi are then just discretizations of the respective
X∗

i , as illustrated in Figure 2(b). More details on this model are given by [1]
and [5].

This model imposes constraints on the observed joint distribution of the or-
dinal variables. Different graphical structures imply different correlations, and
this can be used to test plausible association rules, as discussed in Section 3.

Even though this family of models rely on strong parametric assumptions, it
has been successfully used to model binary and ordinal data, particularly survey
data such as marketing questionnaires, social sciences and public opinion polls.
It is also the basis of several psychological and educational testing studies [1].

2.1 Related Work

What do we gain by extracting association rules from a graphical model instead
of trying to learn the graphical structure directly? One major reason is scalabil-
ity, as motivated by [7]: the data might have been generated by a directed graph
that is too large to be efficiently learned from data. This is even more problem-
atic in latent trait models, which requires the computation of high-dimensional
Gaussian integrals. This scalability problem is also connected to the statistical
problem of trying to learn large structures: different substructures of the graph
might be more strongly supported by the data, and it would be of interest to
report only on those substructures (i.e., association rules) of high confidence.
Another major motivation is identifiability. As discussed at length by [6], there
might be many different graphical structures that equally explain the data, but
that agree on particular substructures. Rule mining focuses directly on those
substructures that are uniquely identifiable from the assumptions.

Although there are other approaches for discovering latent variable models for
discrete data (e.g., [3]), they do not address the issues raised above. The goal is
usually density estimation, not knowledge discovery. Morever, they often assume
that latent variables are marginally independent, an unnecessary assumption
made mostly for the sake of simplicity.
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Fig. 3. If the data is generated by the structure in (a), Lemma 1 alone could be used
to generate the rules in (b), with some incorrect information concerning the right-hand
sides. However, the rules shown in (c) can be obtained by application of Lemma 2.

3 Methodology

We now describe an algorithm that generates rules corresponding to subgraphs
of the (unknown) true graph G, which is assumed to have generated the data.
Traditionally, conditional independency constraints are used to discover graph-
ical structures. However, in a latent trait model, few, if any, of such constraints
are observable [6]. Other types of constraints should be used. Consider a set
of four variables, {W, X, Y, Z} such that σWXσY Z = σWY σXZ = σWZσXY ,
where σXY is the covariance of random variables X and Y . Under assump-
tions common in structure learning algorithms, the following holds in linear
models [6]:

Lemma 1. Let G be a linear latent variable model, and let {X1, X2, X3, X4}
be such that σX1X2σX3X4 = σX1X3σX2X4 = σX1X4σX2X3 . If σAB �= 0 for all
{A, B} ⊂ {X1, X2, X3, X4}, then there is a node P conditioned on which all
elements in {X1, X2, X3, X4} are independent.

This holds even if P is not observed, which means we can detect the existence of
latent variables by using the covariance matrix of the given observed variables2.
Lemma 1, however, does not provide enough information, since it does not in-
dicate if such variables are descendants of P or not. To solve this issue, we rely
on the following result (also in [6]):

Lemma 2. If constraints σX1Y1σX2X3=σX1X2σX3Y1 = σX1X3σX2Y1 , σX1Y1σY2Y3

= σX1Y2σY1Y3 = σX1Y3σY1Y2 , σX1X2σY1Y2 �= σX1Y1σX2Y2 all hold, then X1 and
Y1 do not have a common parent in G.

Notice that this result could be used to correct the rules in the example of
Figure 3: one can verify that the above result holds for the pairs {X1, X2, X3}×
{Y1, Y2, Y3}, {Y1, Y2, Y3} × {Z1, Z2, Z3} and {X1, X2, X3} × {Z1, Z2, Z3}.

What follows is an adaption of the algorithm in [6] to generate association
rules. The main algorithm, BuildLatentRules (Table 1), starts by generating
sets of variables (cliques) that could not be judged to measure different latents
2 In our case variables are ordinal or binary, not continuous. However, there is an

equivalent notion of covariance matrix for ordinal and binary variables, and tests of
statistical significance for such constraints [5]. If there is enough memory to cache
all second moments of the data, then this requires a single pass through the data.
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Table 1. An algorithm for learning association rules with hidden variables

Algorithm BuildLatentRules
Input: dataset D with observed variables X

1. Let C be a fully connected undirected graph with nodes in X
2. Remove edge Xi −Xj from C if Xi and Xj are statistically marginally independent
3. Remove Xi − Xj if Xi and Xj can be statistically separated as in Lemma 2
4. Let M be the set of maximal cliques in C.
5. RC ← PurifyIndividualSets(D,M).
6. Return FilterRedundant(RC).

Table 2. Identifying association rules from potential clusters of variables

Algorithm PurifyIndividualSets
Inputs: dataset D with observed variables X

Sets, a set of subsets of X;

1. Output ← ∅
2. Repeat Step 3 below for all Set ∈ Sets
3. If there is some {W,X, Y, Z} ⊂ Set such that constraint σXY σWZ = σXW σY Z =

σXZσWY is not true according to a statistical test, remove the node in Set that par-
ticipates in the largest number of violated constraints. Repeat until all constraints
are satisfied.

4. If Set has at least three variables, add it to Output.
5. Return Output.

(using Lemma 2). However, failure to be separated by Lemma 2 does not imply
such nodes indeed have latent parents in common. A second pass through such
sets has to be performed to “purify” each set, resulting in a desirable associa-
tion rule. This is performed by algorithm PurifyIndividualSets (Table 2): it
ensures that Lemma 1 holds for any foursome in a selected set3.

Because there might be several ways of “purifying” each candidate set, there
might be many rules that are a consequence of the same hidden variable. Op-
tionally, we might want to present just one rule for each hidden variable. This
is performed by algorithm FilterRedundant defined as follows: if two rules
overlap in three or more observed variables, then by Lemma 1 the hidden vari-
able responsable for this pattern should be the same. FilterRedundant will
allow only one rule for each hidden variable and also remove any rule whose
right-hand size is contained in the union of other rules. This helps to minimize
the number of spurious rules that are included by statistical mistakes.

3 This algorithm requires a rule to have at least three variables on its right-hand side.
For rules with fewer than three variables, see the complete algorithm in [5]. Moreover,
for technical reasons omitted for lack of space, due to identifiability limitations of
latent trait models it is possible that one (and at most one) of the elements on the
right-hand side might actually not be a child of the latent (see [5,6]).
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Fig. 4. The graphs used in our simulation studies

Table 3. Results obtained with BuildLatentRules and Apriori for the problem
of learning latent rules. For BuildLatentRules, each number is an average over 10
trials, with the standard deviation over these trials in parenthesis.

BuildLatentRules statistics
Sample Precision Recall #Rules

G1 1000 1.00(.0) 0.97(.1) 3.2(.4)
5000 0.98(.05) 0.97(.1) 2.9(.3)

G2 1000 0.94(.04) 1.00(.0) 3.2(1.03)
5000 0.94(.05) 1.00(.0) 3.4(0.70)

G3 1000 0.90(.06) 0.90(.16) 4.2(.91)
5000 0.90(.08) 0.90(.22) 3.5(.52)

Apriori statistics
Sample MIN MAX AVG STD

G1 1000 15 159 81 59.4
5000 9 546 116 163.9

G2 1000 243 2134 1070.4 681.2
5000 336 3565 1554.7 1072.2

G3 1000 363 6036 2916.7 1968.7
5000 158 4434 2608.3 1214.6

4 Experiments

In the following sections we evaluate our algorithm in a series of simulated ex-
periments, and exploratory results on a real data set. In the simulated cases, we
report statistics about the number of association rules that the standard algo-
rithm Apriori (using the implementation of [2]) returns on the same data. The
goal is to provide evidence that standard algorithms might produce thousands
of rules, despite the simple underlying latent variable model.

For the simulation study, let G be our true graph, from which we want to
extract association rules. The graph is known to us by simulation, but it is
not known to the algorithm. The goal of experiments with synthetic data is to
objectively measure the performance of BuildLatentRules4 in finding correct
and informative latent rules. Correctness is measured by a Precision statistic:
the average precision of each rule. The precision of a rule is the proportion of
items on the right-hand size that are in fact independent given the latent on the
left. Completeness is measured by a Recall statistic: the proportion of latents
{Hi} in G such that there is at least one corresponding rule in our output. In
our study we use the three graphs depicted in Figure 4, where all latents are
potentially identifiable. Given each graph, we generated 10 parametric models
and a sample of size 1,000 from each. Other 10 models were generated to sample
datasets of 5,000 cases. The sampling scheme is given in [5]. Results are shown

4 We use a slightly different variation of the algorithm to preprocess feasible candidate
rules. Details in [5], Chapter 5.
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Table 4. Examples of rules obtained by BuildLatentRules on Deck 6 of the Freedom
and Tolerance data set (question number and respective textual description)

Rule 1
X27 I feel it is more important to be sympathetic and understanding of other people

than to be practical and tough-minded
X3 I like to discuss my experiences and feelings openly with friends instead of

keeping them to myself
X31 People find it easy to come to me for help, sympathy, and warm understanding
X67 When I have to meet a group of strangers, I am more shy than most people
X7 I would like to have warm and close friends with me most of the time
Rule 2
X28 I lose my temper more quickly than most people
X30 I often react so strongly to unexpected news that I say or do things I regret
X41 I often push myself to the point of exhaustion or try to do more than I can
X61 I find it upsetting when other people don’t give me the support that I expect
Rule 3
X9 I usually demand very good practical reasons before I am willing to change my

old ways of doing things
X53 I see no point in continuing to work on something unless there is a good

chance of success
X46 I like to think about things for a long time before I make a decision
Rule 4

X3 I like to discuss my experiences and feelings openly with friends instead of
keeping them to myself

X40 I am slower than most people to get excited about new ideas and activities
X12 My friends find it hard to know my feelings because I seldom tell them

about my private thoughts

in Table 3. We also display the number of rules that are generated. Ideally, in
all cases we should generate exactly 3 rules. Due to statistical mistakes, more
or less than 3 rules can be generated. It is noticeable that there is a tendency
to produce more rules than necessary as the graph increases in complexity. It
is also worthy to point out that without the FilterRedundant algorithm, we
obtain around around 5 to 8 rules in most of the experiments. As a comparison,
we report the distribution of rules generated by Apriori in Table 3. We report
the maximum and minimum number of rules for each model and sample size
across the 10 trials, as well as average and standard deviation. The outcome is
that not only Apriori generates a very large number of rules, but the actual
number per trial varies enormously (see, e.g., G1 at sample size 5000).

We also applied BuildLatentRules to the data collected in a 1987 study5 on
freedom and tolerance in the United States [4]. This is a large study comprising
381 questions targeting political tolerance and perceptions of personal freedom
in the United States. 1267 respondents completed the interview. Each question

5 Available at http://webapp.icpsr.umich.edu/cocoon/ICPSR-STUDY/09454.xml
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is an ordinal variable with 2 to 5 levels, often with an extra non-ordinal value
corresponding to a “Don’t know/No answer” reply. However, several questions
are explicitly dependent on answers given to previous questions. To simplify
the task, in this empirical evaluation we will focus on a particular section of
this questionnaire, the Deck 6. This deck of questions is composed of a self-
administred questionnaire of 69 items concerning an individual’s attitude with
respect to other people. We obtained 15 rules, where 40 out of the 69 questions
appear on at least on rule. Some of such rules are depicted in Table 4. There is a
clear relation among items within most rules. For instance, items on Rule 1 cor-
respond to measures of a latent trait of empathy and easiness of communication.
Rule 2 has three items (X28, X30, X61) that clearly correspond to measures of
a tendency of impulsive reaction. The fourth item (X41) is not clearly related
to this trait, but the data supports the idea that this latent trait explains the
associations between pushing oneself too much and reacting strongly to other
people. See [5] for a more extensive discussion.

5 Conclusion

Our approach should be seen as a complement, not a substitute, to traditional
association rule mining. There are three clear limitations: scalability; the limita-
tion of a single hidden variable in the antecedent of each rule; and the adherence
to a particular linear parametric family. However, it does provide extra infor-
mation that typical association rule mining methods cannot replicate. As future
work, we want to investigate how dynamic programming can be used to scale
up the method, and how to better pre-process the data (e.g., by finding which
marginally independent variables can be efficiently separated). Moreover, there
are different sets of assumptions one can make in order to identify hidden vari-
ables [5]. To conclude, we hope that the ideas discussed in this paper can spark
a new generation of algorithms for rule mining with hidden variables.
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Abstract. The manufacturing quality can be evaluated only by consid-
ering the failure behavior of the product in the field. When relating man-
ufacturing events to failure events, the main challenge is to master the
huge number of combinations of both event types, of which each is only
covered by a small number of occurrences. Additionally, this leads to the
problem of selection of interesting findings - the appropriateness of the
selection criterion for consequent decision making is a critical point. An-
other challenge is the necessity of mapping the process of manufacturing
tests to a vector of variables characterizing the manufacturing process.
The solution presented, focuses on correct rule generation and selection
in the case of combinations with low coverage. Therefore statistical and
decision theory approaches were used. The multiple hypothesis aspect
of the rule set has also been considered. The application field was qual-
ity control of electronic units in automotive assembly, with thousands of
variables observed.

1 Introduction

In the automotive assembly, testing of individual functions is frequently embed-
ded in the assembly process. The focus is on testing the functionality of electronic
units, whose number amounts, in the premium car segment, are up to several
hundreds.

The ultimate criterion of manufacturing quality is the behavior of the product
in the field. This is why it’s important to learn as much as possible about the
relationships between the assembly and testing procedure on the one hand, and
the field quality measures on the other hand. In this case the task is to examine
two different databases, each representing one part of the product life cycle: the
assembly database, which stores the results of the electronic unit tests during the
manufacturing process, and the field failure data collected in a company-wide
service and warranty database.

The relationships between the assembly process and the field failure can be
captured, in a the classical Data Mining manner, by association rules for which
exist numerous algorithms. However, several fundamental characteristics of our
application made some additional developments necessary:
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1. There is a considerable number of assembly process features and failure
types. Even in large event data bases, each event combination is very scarce,
which leads to the necessity to evaluate the statistical properties of rules
based on small samples. Also it’s not necessary to consider complex combi-
nations of three and more variables, because the support can be expected to
tend to zero.

2. The interestingness of results found has to be viewed in economic terms:
interesting rules are those, that have a large economic potential.

3. The large number of process features and failure types typically leads to a
large number of rules found. Even with rule selection criteria considering
the statistical significance, a certain amount of the rules found are random.
Therefore, to have an idea about the reliability of the results, a rough as-
sessment of the proportion of such random rules is desirable.

These aspects are specific, but not restricted to this application. Many large
scaled industrial applications exhibit similar characteristics.

2 Process Model of Manufacturing Tests

The testing process for electronic units in the automotive industry is rather com-
plex. Each car is tested several times during the assembly process to ensure an
error-free delivery to the costumer. During each test, a pre-defined, assembly-
status based scale of electronic units and their individual and interrelated func-
tionality are tested. Each test is either performed automatically or with the
additional input of a assembly worker and has basically two outcomes: either
positive (without errors but eventually with warnings), possibly accompanied
by the list of warnings, or negative, accompanied by the list of errors. Therefore,
if a particular test results in a warning or error message of the tested devices,
several consequent actions may be taken i.e. ignoring the message, repeating the
test, taking the car out of the assembly line (so called rework) and so on.

This variety of procedures implies, that the same test may be performed more
than once, with different results, each of which has to be interpreted individu-
ally. In order to combine and compare the field results with the test results, it
is necessary to transform the test information from the manufacturing process
into a binary representation, holding relevant information from the whole testing
process of a specific electronic unit in a car during assembly - the so called his-
tory of a electronic unit. It captures the information which error was reported1,
whether this error emerge in other tests or not, did this error lead to rework and
did this error appear as a warning in another test. Additionally, the production
weekday and month are logged to capture time fluctuations of the quality.

3 Rule Generation

To improve the assembly process and its testing procedure, the relationship be-
tween the attributes of the assembly and testing process on the one hand, and the
1 In the binary coding: has a given error appeared or not.
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field failures on the other hand has to be clarified and hence can mathematically
be described by association rules.

Let I = {i1, i2, ..., im} and J = {j1, j2, ..., jm} be sets of items or literals. Let
D be a transaction database over I ×J where each transaction T = (Ta, Tb) is a
subset of I × J . Further let A be a set of items with A ⊆ Ta. The implication of
the from A → B with A ⊆ I and B =⊆ J is called association rule. The support2

of a rule A → B can be defined as the numbers of transactions containing A and
B (nA∧B) beeing nA∧B := |{T ∈ D : A ∪ B ⊆ T }|, nA := |{T ∈ D : A ⊆ Ta}|,
nB := |{T ∈ D : B ⊆ Tb}| and n := |D|.

However, the causes of a failure may be more complex: Boolean functions of
multiple assembly terms describe the influence. Sophisticated algorithms exist
for solving this frequent item set problem [2,5]. Considering the fact that even
the occurrences of simple terms are scarce, the support of simple rules of type
A → B can be expected to be very low. This makes the probability of finding
complex rules of three and more antecedent terms with a significant support to
vanish. Instead, all pairs of significant (see the next section) simple rule pairs
Ai → B, Aj → B have been combined to rules of the form f(Ai, Aj) → B with f
being some of 8 possible nontrivial Boolean functions of two arguments, having
higher significance3 than each simple rule.

4 Rule Significance

In machine learning community, it is usual to select interesting rules with help
of measures such as support, confidence, lift or combinations of both [8]. This
approach may be adequate for a support exceeding some substantial count such
as 30. However, many applications, including the ours, lack this property as
obvious from the right graph in Fig. (2). For example in quality monitoring,
early warning is essential. The number of failures occurred grows with the time
interval of observation. The same rules might have been found earlier, if the
observation interval would have been shorter, and it’s thus always preferable, to
use the shorter interval. Consequently, interesting rules cannot, per definition,
exhibit a high support - it is necessary to discover them with a lower support
possible. This is why statistical measures of significance have to be used for
application of this type.

A widely used measure is the χ2-measure of mutual dependence. Unfortu-
nately, this measure can answer only the question how certain it is, that there is
some dependence between the variables, no matter how strong this dependence
is. What is really needed, is a statistically founded statement about the strength
of dependence, which would allow us to identify strong and significant influences
on the failure rates. One possibility are interval estimates of interestingness mea-
sures. An example for this is what we have called ,,safe lift” - an interestingness
2 Mostly the support of a rule is defined as fraction of transactions (see i.e. [6,1]). In

our application we always refer to the number count when talking about support.
3 Here significance refers to an appropriated interestingness measure as explained in

the following sections.
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measure based on the well known lift. It can be expressed with help of sample
counts (see Section (3)) and substituting sample probabilities for real ones:

L(B|A) =
P (B|A)
P (B)

=
nA∧B

nA

nB

n

(1)

Obviously, neither P (B|A) nor P (B) can be determined exactly, since both are
computed from sample counts (nA∧B, nA, nBandn respectively). Assuming that
nB and n are sufficiently large (which is frequently satisfied), we can confine
ourselves to an interval estimate of P (B|A), given sample counts nA∧B and nA.

The confidence interval estimate for the posteriori conditional probability
based on Gaussian approximation of binomial distribution (with sample count
nA, number of positive outcomes (nA∧B)) is the Wilson confidence interval
[T l

nA
(conf(A → B)), T u

nA
(conf(A → B))] (see [4]):

T l
nA

=
1

1 + q2
α

nA

(
p +

q2
α

2nA
− qα

√
p(1− p)

nA
+

qα

4n2
A

)
(2)

with qα := u1−α
2

(the quantile of the standard normal distribution for given
significance level α) and p := nA∧B

nA
being the empirical posterior conditional

probability. For sufficiently large nA, we can say 1

1+
q2
α

nA

→ 1, q2
α

2nA
→ 0, qα

4n2
A
→ 0

and therefore the lower interval bound (2) simplifies to p−qα

√
p(1−p)

nA
. The ”safe

lift” can thereby be defined as the ratio of the simplified lower interval bound
and the posteriori probability of the consequence4.

5 Decision Oriented Rule Selection

To select the best rules within the founded rules, the goal of the application has
to be considered. One possibility is the attempt, to quantify the benefit from
knowing the rule.

Each rule concerning a field failure gives a hint to it’s causes and can be used
to take an action ro reduce the failure rate. In an idealized setting, the benefit
of such an action can be quantified i.e. in monetary terms. Usually, these effects
can only be quantified partially. The effectiveness of the action taken cannot
be predicted exactly, but a reasonable assumption may be, that the action may
reduce the conditional failure rate to the level of the unconditional rate. For
example, if the failure rate of reworked cars is higher than an average one, the
reworking process may be scrutinized to reach at least the average performance.
Then, the total savings through the failure rate reduction would amount to:

nA (P (B|A)− P (B)) cB =
(
nA∧B −

nAnB

n

)
cB (3)

with cB being the unit costs of the failure B - or so called potential.
4 In [7,10] a similar interesting measure was introduced as a kind of correlation factor.
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The quantification of the action costs will scarcely be feasible in advance, since
the actions themselves will be mostly designed only after viewing the rules. This
is why the action costs will not be able to be included in the decision measure,
and so we did in this application.

6 Multiple Hypothesis Problem

For an application as the present one, it is characteristic that the total number
of significant findings can be very high. Therefore, a specific problem becomes
particularly serious: the multiple hypothesis problem.

Rules received from a sample data set are a result of a random process. This
randomness is quantified by significance measures. Accepting a rule on a certain
significance level means that it is highly improbable that the law described by
the rule does not exist. Nevertheless, the rule still might be a result of pure
chance - only the probability of this is low. If our goal was to accept or reject all
rules together, the procedure of testing individual rules against a given individual
significance level was completely faulty. If each rule was a result of a rejection of
a null hypothesis on a significance level π, the probability, that at least one rule
is still a random product (while its null hypothesis is valid) is π = 1− (1− α)n.
Vice versa, to ensure that the totality of rules are valid on the given level π, the
significance level of individual rules would be α = 1− (1−π)

1
n , a drastically low

figure5 for n of the order or magnitude of hundreds or thousands. Fortunately,
we do not have to be so ambitious. A good rule set is such, that we can trust at
least a significant portion of it. But it is still desirable to assess how large the
portion of trustworthy rules really is - otherwise we would risk there are none.

The qualitative relationships within this problem can be illustrated with help
of hypotheses about Gaussian distribution. Suppose the null hypothesis is, that
a sample is drawn from the distribution N(0, 1) while the alternative hypothesis
postulates N(m, 1). For a given significance level α, if the sample value is greater
than the quantile qα (such that 1 − F (qα) = α), the probability of this sample
value if the sample is drawn from the null-hypothesis distribution N(0, 1) is
α while the corresponding probability if the sample is drawn from N(m, 1) is
γ = 1 − N(qα − m, 1). The values of γ in dependence from α for some mean
values of the alternative hypothesis m are given in left graph of Fig. (1) and
the the ratio of γ/α in the right graph respectively. Obviously, the ratio grows
with diminishing α. This is exactly what we expect: for higher significance level,
the separation between correctly identified alternative-hypothesis samples, and
wrongly identified null-hypothesis samples improves.

Going back to the case of discovering rules, suppose there are N rules whereof
M are valid. Consequently N −M rules are invalid, corresponding to the null
hypothesis of no dependence between the antecedent and consequent. With a
significance level of α, we can expect, in average, the testing algorithm to deliver
Ei = (N −M)α invalid, and Ev = Mγ valid rules. In reality, neither M nor γ
is known in advance. However, if the algorithm proposes K rules, we know that
5 In literature this value is often referred to as Bonferroni correction [3,9].
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Fig. 1. Left: Ratio γ/α for different mean values of the alternative hypothesis m. Right:
Histogram of the support for simple rules applying the number counts from Table (1).

this corresponds to the sum K = (N − M)α + Mγ = Nα + M(γ − α). Since
Nα > (N −M)α, we can expect a minimum of K −Nα rules to be valid. Thus
the ratio K

Nα gives a good idea of proportion of usable rules in the rule set.
More precisely, we have estimated the number of invalid, randomly generated

rules with help of its expected value (N−M)α. Nα was the upper bound of this
estimate. For large values of (N −M)α, the sample fluctuations around the ex-
pected value are small. For small (N−M)α, an interval estimate is more reliable.
The number of invalid rules generated by the algorithm is binomial distributed
with sample size N −M and probability α. The standard deviation of this num-
ber is

√
(N −M)α(1− α) ≈

√
(N −M)α. So the upper interval boundary is

approximately (N −M)α+ q
√

(N −M)α, with q being some quantile. Since we
are ignorant of the value of M , the upper bound to be compared with the total
number of rules found K is L(α) := Nα + q

√
Nα.

7 Computing Results and Conclusion

There was a considerable number of variables in the described automotive test
application with 3789 field failure (goal variables) and 3310 process attributes
(influence variables). The aim of our application was to find relevant rules within
this domain that are useful for the quality improvement process. Therefore there
were 15,520,749 simple rules to examine and following the description of the
previous section and applying the constraints from Table (1) we obtained a set
of 7441 rules of which 6910 were simple and 525 complex rules.

The low support of complex rules is striking (see left graph of Fig. (2)), which
seems to substantiate the commitment to a maximum of two antecedent variables
(three or more influence variables would hardly produce a non-trivial support).
Also the distribution of lift based on the contingence table (see right graph of
Fig. (2)) shows, that there is a considerable number of seemingly valid rules,
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Table 1. Rule pre-selection constraints used in the field feedback application

Constrains Value Constrains Value Constrains Value
minnA∧B 4 Factor for std. deviation 1 α for safe lift 0.2
minnA = minnB 4 Factor for composed rules 1.5 minimum safe lift 1.5
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Fig. 2. Left: Histogram for nA∧B for significant complex rules Right: Histogram of lifts
and safe lifts for significant rules

having a lift ≥ 1.5. However, the histogram of safe lift (Fig. (2)) exhibits, that
the bulk of these rules are hardly statistically significant as only 80% of these
rules have a safe lift ≥ 1.0. This shows, how important it is, to consider the
statistical properties and justifies the pre-selection criterion of rules based on
the safe lift.

The search for economically useful rules makes a trade-off between the ex-
tensive (considering many rules) and intensive (only the most important rules)
approach necessary. This can be reached by the potential measure defined in
Section 5. Ordering and accumulating the rules by their potential, results into a
marginal utility function, which allows to set an economically meaningful cut-off
point. The slope of this function can be compared with the estimated average
costs of considering the rule and taking a corrective action. The cut-off point
would have to be set at the potential value for which the slope and the costs are
equal.

The multiple hypothesis problem can be illustrated by a selected subset of
rules for a particular electronic unit. From the total number of 218363 possi-
ble rules of this subset, only 2900 were considered as candidates6. Using the
constraints listed in Table (1) we found 61 rules. These rules were significant on
different levels. For a given significance level, we can compute the expected mean
number, and the upper bound of ,,random” rules, as discussed in the previous
section. For example, there were 35 rules with α > 0.005. From these rules, at

6 Applying nA > 10 and nB > 4 reduced the overall amount of rules to the candidate
rules.
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most 17 can be expected to be random, using the last formula of Section 6. This
is a considerable number, but still an acceptable proportion.

Concluding, in this work we have presented a framework for the analysis
of quality data, with the goal to find relationships between the assembly and
testing process and the failures in the field. The basic method was the search
for association rules. However, several characteristics of our application lead to
extensions of mainstream methods:

1. It was necessary to map the assembly process data to a feature vector, with
help of expert knowledge.

2. The considerable number of variables involved lead to high number of value
combinations and thus to low supports of individual candidate rules. This
made considering the statistical properties of rule selection criteria necessary,
to avoid the risk of obtaining random rules.

3. Due to the industrial context, the rules selection criteria had to consider the
economic impact of the rules.

4. The large number of rules obtained by the sample, justifies the question how
many of them are really valid and which are random. We used a simple
framework to determine these proportions and showed that a large part of
the rules founded are valid.

Since these characteristics are shared by many industrial applications, the solu-
tions presented may be useful for a broad scope of Data Mining problems.
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Abstract. In this paper we introduce a novel approach for incrementally
building aspect models, and use it to dynamically discover underlying
themes from document streams. Using the new approach we present an
application which we call “query-line tracking” i.e., we automatically
discover and summarize different themes or stories that appear over time,
and that relate to a particular query. We present evaluation on news
corpora to demonstrate the strength of our method for both query-line
tracking, online indexing and clustering.

1 Introduction

In this paper we present a new unsupervised framework for mining a stream of
documents to extract and summarize the set of underlying themes. The system
discovers and isolates themes one by one using a novel approach that com-
bines EM and functional gradient methods. We show that our algorithm natu-
rally leads to incorporating a HITS-like spectral technique within a probabilistic
framework, thereby combining the power of both to create a unique document
mining framework. The most important functionality of our approach is its abil-
ity to handle streaming data without having to retrain the entire model. As
a result, the model can grow or shrink as needed leading to a faster, scalable
system that permits easier model selection as compared to a batch system.

Based on our incremental framework we present a new application called
“queryline tracking” which collects all documents relating to a query over time,
and automatically groups and summarizes these into themes. The system auto-
matically keeps track of themes that a user has seen and alerts the user to new
themes not seen by him/her, as soon as they are discovered. We further show
that our system makes meaningful summaries that correlate well with human
concepts, and also has good indexing properties (the model preserves the original
distances between documents as much as possible).

2 Incrementally Built Aspect Models (BAM)

BAM is motivated by ideas from density boosting [15,16], incremental EM [15],
and aspect models [5]. In spite of the word “boosting” in the title, density
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boosting (also referred to as unsupervised boosting) is closer to semi-parametric
maximum likelihood methods [3] than to traditional boosting.

Let the input be a set of documents D = {d1, d2, . . . , dN}, where each doc-
ument is represented by an M -dimensional vector of words taken from a vo-
cabulary W = {w1, w2, . . . , wM}. The data is represented by a word-document
co-occurrence matrix of size M ×N . The frequency of word w in document d is
given by nwd (or appropriately weighted versions of it like tfidf). Both M and N
can vary as new documents are added or older documents are deleted.

The aspect model is a latent variable model [5] where each document is a
mixture of underlying aspects, or themes. Each theme is represented by an the
distribution of words p(w|z). In PLSI [5] the word and document probabili-
ties are conditionally independent given the aspect z. The joint word-document
probability (with K hidden aspects) is

FK(w, d) =
K∑

k=1

P (zk)P (d|zk)P (w|zk) = (1 − α)FK−1 + αhK , (2.1)

where α = P (zk) gives the prior probability that any word-document pair be-
longs to the Kth aspect zK . Thus, given the current model FK−1(w, d) we wish
to compute hK (the distribution for the individual aspect K) and α (the combin-
ing parameter), to obtain FK using (2.1). Sometimes we will abuse the notation
and also refer to hK as the aspect or latent variable.

A natural objective function for this estimation is the empirical log-likelihood
LK =

∑
wd nwd log FK(w, d), which may be written as,

LK =
∑
w,d

nwd log
(
(1 − α)FK−1(w, d) + αhK(w, d)

)
(2.2)

≥
∑
w,d

nwd

[
(1 − pwd) log

(1 − α)FK−1

(1 − pwd)
+ pwd log

αhK

pwd

]
≡ Q(P̃ , hK , α), (2.3)

where P̃ = {pwd} ∀ w, d, and (2.3) provides a “surrogate function” that lower-
bounds LK , and can be maximized instead. Thus, the E-step maximizing (2.3)
over pwd is

pwd =
αhK(w, d)

(1 − α)FK−1(w, d) + αhK(w, d)
. (2.4)

Using (2.4) in (2.3) we get Q(P̃ , hK , α) =
∑

w,d nwdEP̃

[
log FK(w, d)

]
. In the

traditional M-step hK is estimated such that this Q-function is maximized.
Alternatively, we can perform a first-order functional gradient ascent on Q.
This idea is similar to the one used in AnyBoost [11], density boosting [16]
and semi-parametric methods [3]. To that end, we approximate the difference
LK − LK−1 ≈

∑
w,d nwdα〈∇L, hK − FK−1〉, where ∇L = ∂L(FK−1+δ1wd)

∂δ |δ=0 is
the functional derivative of L, and 〈∇L, hK−FK−1〉 is the directional derivative
in the new direction hK − FK−1. To ensure an increase in Q, it is enough to
maximize the expected value of the difference LK−LK−1. This leads to a gener-
alized EM approach, wherein the objective function is increased using a unique
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combination of EM and functional gradient based approaches. Consequently, we
call this new method Expectation Functional Gradient (EFG).

If a data point (w, d) is well explained by the existing model, then, FK =
FK−1, and the corresponding directional derivative is zero. Thus 〈∇L, hK −
FK−1〉 is non-zero only for points well represented by hK . For the log-likelihood
in (2.2) the expected change in Q, EP̃ [LK − LK−1] equals

α
∑
w,d

nwdpwd〈∇L, hK − FK−1〉 = α
∑
w,d

nwd pwd

(
hK(w, d) − FK−1(w, d)

FK−1(w, d)

)
. (2.5)

We can now maximize EP̃ [LK − LK−1] by solving

hK = argmax
h

∑
w,d

nwd pwdh(w, d)/FK−1(w, d). (2.6)

Once hK has been estimated, α can be estimated using line search on (2.2). We
note that as a natural consequence of the above maximization steps, the quanti-
ties 1/FK−1(w, d) act like weights—data points that are well represented by
the current model tend to be down weighted, and data points that are poorly
represented tend to be given more attention in the next BAM step. This
procedure is similar to the one used in boosting.

Estimating hK : Recall that hK(w, d) = p(w|z)p(d|z). Let w = p(w|zK) over
all words w, and d = p(d|zK) over all documents d. Introducing the matrix
V = [nwd pwd/Fwd] we write (2.6) as

min
w,d

Q(w,d) = −wT V d, where w, d ≥ 0. (2.7)

However, without further constraints on w and d (2.7) is unbounded. Using a
constraint on the L1 norm of the vector (which gives it a probabilistic interpre-
tation) leads to a formulation similar to PLSI (discussed later). Alternatively we
could use a regularization restricting the magnitude of the w and d vectors, and
then later re-interpret them as probabilities. This can be done in a principled
way starting with (2.2) to incorporate a regularizer. The rest of the analysis will
remain unchanged, but the regularized form of the function to be minimized in
(2.7) can be modified to be 1

Q(w,d) = −wT V d + ν(wT w) + μ(dT d).

where μ and ν are regularization parameters. Differentiating Q(w, d) with re-
spect to w and d and setting the derivatives to equal zero we obtain the system
of equations

w =
V d

ν
, d =

V T w

μ
, (2.8)

which can be solved iteratively. Setting w and d to the left and right singular
vectors (with ν, μ = 1) of V provides the solution. Readers will notice the
similarity of these steps to the popular HITS algorithm [7] which is a spectral

1 If w, d are initialized to be positive, they will stay positive, and the solution will
satisfy the non-negativity constraints.
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method. Due to its similarity to a spectral algorithm we call (2.8) the spectral M-
step. Since both w and d are non-negative, we can normalize them and interpret
them as probabilities. We obtain hK = wdT as the new aspect. Thereafter,
we determine α using line search and then obtain the updated model FK =
(1− α)FK−1 + αhK .

2.1 Understanding How BAM Works

Relation to PLSI: In PLSI, the traditional M -step leads to the solution
p(w|z) ∝

∑
d nwdpwd and p(d|z) ∝

∑
w nwdpwd, which can be re-written as

w ∝ V 1, d ∝ V T 1, (2.9)

where V = [nwdpwd]. Comparing this with (2.8) we can see that this M -step (2.9)
is essentially one spectral step with w and d initialized to 1 (and an unweighted
V ). The regular PLSI M-step simply computes an average of the pre-weighted
data. Due to this behavior, in an incremental setting, PLSI leads to a sequence
of averaged models, whereas BAM produces a sequence of coherent topics. It is
difficult to grow PLSI models to accommodate new topics, while BAM is built to
do so. One has to rerun PLSI with an increased number of aspects - increasing
the computational needs with no guarantee that the new themes will correspond
to the old ones, or that the old ones will be rediscovered. Model selection can also
be a problem with PLSI—multiple runs with different model sizes are needed.
Computationally BAM is faster since, unlike PLSI, it does not need annealing to
work well, plus spectral algorithms tend to exhibit fast convergence properties.

Following (2.8), we suggest a way to modify PLSI to grow the model - before
estimating a new aspect, the data is weighted by 1/FK−1. Then the regular M-
step is replaced by the spectral M-step, i.e., iterate as per (2.8) until convergence.
This is equivalent to replacing V in (2.8) by V = [nwdpwd]. In practice, both
these approaches seem to yield similar results, so in this paper we use the latter.

Relation to HITS: The updates in (2.8) are strikingly similar to another
very popular algorithm used in the IR community to rank a set of web documents
into authorities and hubs—HITS [7]. BAM uses a similar idea to rank words and
documents. HITS can be shown to discover tightly knit clusters (TKC) based on
link structure [9]; similarly, BAM discovers TKCs based on how strongly words
and documents are connected to each other, which is what we want to achieve.
Thus BAM looks at the data weighted by 1/F (which defines the search space),
and then finds an appropriate cluster within this space. We can think of these two
steps as restriction and discovery steps respectively. This process is repeated till
all relevant topics are found. BAM also reduces the chances of mixing up weakly
connected components, i.e., it reduces the chances of discovering mixed topics.
The TKC issue can be a problem for HITS because sometimes the best cluster
is not the most relevant one. For BAM, this is not a problem; in fact it is an
advantage. BAM can be thought of as performing a series of soft cuts on the
bipartite graph to extract many tightly-knit overlapping components from it.

Relation to other spectral graph partitioning approaches: There are
other ways to partition these graphs, e.g. normalized cut using the Fiedler vec-



Incremental Aspect Models for Mining Document Streams 637

tor (eigenvector corresponding to the second smallest generalized eigenvalue [4].
BAM uses the top left and right singular vectors. Norm-cut looks at both inter-
and intra-partition properties while our algorithm is thought to target the tight-
ness of the partition in question.

The convergence properties of BAM depend on the nature of the weighted
word-document graph at each BAM step. Due to lack of space, we defer a detailed
analysis of stability and convergence to future publications.

Other Relevant Work: We have briefly discussed BAM’s relation to PLSI.
Latent Dirichlet allocation (LDA) [2] addresses many of the issues faced by PLSI,
including the ability to grow with data [2,6], but at commensurate additional
computational costs. BAM could be extended to LDA, something that we defer
to the future. LSI is a spectral method to finding topics but lacks generative
semantics. There exist some incremental approaches to LSI (e.g. [1])

There has been a significant amount of work in topic tracking and detection [8]
but we only mention a couple that are very closely related to our method. The work
by Kumar, 2004 [14] uses non-probabilistic, graph theoretic ideas to extract story-
lines. It cannot handle overlapping categories, and is not dynamic or incremental.
Another recent work analyzes chunks of data over time using static PLSI-like mod-
els, but tracking is done using similarity of aspects across time scales [12].

2.2 Handling Streaming Data

To handle streaming data, first we need to understand how much of the new data
is already explained by the existing models. We use a “fold-in” approach similar
to the one suggested in [5]. For each aspect zk we keep p(w|zk) values fixed for
all the words that are already seen. We then use the spectral step to estimate the
probabilities of the new words (the p(w|z) vectors are normalized as needed),
and the document probabilities p(d|zk). Using the estimated probabilities we
compute a new F for all the new data, and use this new F as a starting point
to discover new themes as needed.

3 Experiments and Results

We present some preliminary results on news corpora to demonstrate the per-
formance of our algorithm in queryline tracking, indexing and clustering.

3.1 Tracking Storylines Around a Query

We present an interesting application of BAM, called Queryline Tracking, which
is a mixture of TREC tasks like filtering and novelty detection, but is centered
around a query. Essentially, this task involves discovering and tracking themes
or storylines [14] based upon a query. As new data comes in, we only wish to
surface new themes. We demonstrate this idea on the publicly available RCV1-
v2 Reuters news corpus (23,000 documents) [10]. We use data from the first 10
days (Aug 20-30 1996) and run BAM on it incrementally, one day at a time.
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Table 1. BAM captures all the storylines around the news alert “Clinton” over a
period of 10 days. Days 4 and 6 did not have enough articles

Day 1 Storylines Day 2 Day 3
Dole Wage McDougal drug Gingrich McCurry Zogby

Powell Clinton Whitewater Hatch terror Yeltsin vote
Clinton Minimum Susan Marijuana nuclear Chechnya gap

convention bill Arkansas coppl Libya strenuous poll
Kemp legist. sentence McCurry Iraq Russian narrow
Day 5 Day 7 Day 8 Day 9 Day 10
FDA train read Jackson Morris litigation

tobacco handgun Jeep Cuomo resign tobacco
smoke Brady liter Jesse Dick lung

cigarette Ohio Americorp welfare prostitute cancer
advert Huntington Cherokee disagree tabloid letter

We demonstrate the idea using the query “Clinton”. Each day we collect the
documents that contain the word “Clinton”. At the end of each day, we if we have
less than 20 documents, we defer the documents to the next day. Otherwise we run
BAM on the data to discover new storylines. We can see the results in Table 1.

The first day has stories about the presidential election, Clinton signing a bill
to raise minimum wage, The Whitewater case, Senator Hatch complaining to
the President about increase in drug use, and Gingrich cautioning the President
that the country needs to be preemptively deal with external nuclear threats.
On subsequent days the system discovers stories about Chechnya, Zogby’s elec-
tion tracking poll, Clinton asking the FDA to move against illegal practices in
tobacco advertisement, etc. Items belonging to the older themes are subsumed
by the older models and are available, but not surfaced. We can demonstrate the
advantage of the incremental algorithm by showing that for the same number of
topics discovered, the static model rediscovers themes from previous days.

We can show similar results using other queries (omitted due to lack of space).
The rest of the experiments in the paper are on query independent tasks.

3.2 Indexing Power

Just like LSI, BAM can also be used as an indexing algorithm. We evaluate this
by measuring how well it preserves distances between documents in the lower
dimensions. We demonstrate this using 1-nearest neighbor (1-NN) comparison
on the well known Reuters-21578 set. This dataset has 9063 documents in the
training set and 3699 documents in the testing set, with 22226 words and spans
113 different topics. First, we build a K-aspect BAM model using the training
data and then take the dot product of the data vector with each p(w|z) vector.
Hence the documents are projected from 22226 dimensional space to K dimen-
sions. Now for each projected document d, we choose the nearest neighbor n and
compare the labels of n against the true class labels for d. Let A be the number
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Table 2. F1 scores for the 113 class Reuters-21758 dataset using 1-NN. LMDS
scores are from [13].

No. of BAM LMDS
dimensions Testing data Training Training

10 0.584 0.606 0.625
20 0.677 0.697 0.714
50 0.724 0.757 0.754
100 0.750 0.777 0.768

Table 3. NMI and Rand Index scores for RCV12 and Reuters datasets, for BAM and
PLSI. (Higher scores are better) ∗ signifies that these difference of these scores from
those of BAM are statistically significant at the level of 0.02.

RCV1-v2 subset Reuters subset
NMI Rand NMI Rand

BAM 0.54 0.49 0.56 0.32
PLSI 0.54 0.49 0.51∗ 0.26∗

of matching labels over all documents, and B be the number of unmatched la-
bels. The microaveraged F1 score is then F1 = A/(A + B/2). For test data, we
can follow a similar procedure except we choose the nearest neighbor from the
training set in the reduced space. Table 2 shows the average F1 numbers as K
is varied from 10 to 100.

The F1 score using the unprojected training data was 0.719 [13]. BAM matches
this score when using around 50 aspects. The results on the unseen test data is sim-
ilar to that on the training data. Training data results for BAM are comparable to
LandmarkMDS (which is similar to LSI) [13].BAM sacrifices a little bit of indexing
power to gain the ability to grow, and to create higher quality topics.

3.3 Correlation of Aspects with Human Labels

The goal of this section is to quantitatively show that the aspects created by
BAM correlate well with human labeling. These experiments are done on two
selected subsets with 10 topics each - one from Reuters-21578 (8009 documents)
and another from RCV1-v2 (14814 documents). We run BAM incrementally to
get 10 aspects. Then, we do a hard classification for each document by assigning
it to the aspect with highest p(z|d) value. We then compute normalized mutual
information (NMI) and the Rand index for the resulting partitions by making
use of the topic labels assigned by human experts. We average over 10 runs to get
the numbers shown in on Table 3. BAM performs significantly better than PLSI
on the Reuters subset and performs just as well on the RCV1-v2 subset. The
number of documents per class is similar across classes in the RCV1-v2 subset,
and most clustering algorithms tend to do well on such sets. The Reuters subset
is very unbalanced, and we see that BAM does better on this set.
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4 Summary

In this paper we have introduced a new framework for building incremental as-
pect models incorporating the strengths of both spectral and probabilistic meth-
ods. The main advantage of this method is that it can handle documents arriving
in a stream, and the model can grow or shrink as needed. We demonstrated some
of the capabilities of the new approach in indexing and clustering. Using the new
framework we presented a new application called “queryline tracking”.

Acknowledgments. We thank John Platt, Chris Meek and Asela Gunawar-
dana for valuable discussions.
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Abstract. In this paper we consider the problem of learning approximate
Markov Random Fields (MRFs) from large transaction data. We rely on frequent
itemsets to learn MRFs on the data. Since learning exact large MRFs is generally
intractable, we resort to learning approximate MRFs. Our proposed modeling ap-
proach first employs graph partitioning to cluster variables into balanced disjoint
partitions, and then augments important interactions across partitions to capture
interdependencies across them. A novel treewidth based augmentation scheme is
proposed to boost performance. We learn an exact local MRF for each partition
and then combine all the local MRFs together to derive a global model of the data.
A greedy approximate inference scheme is developed on this global model. We
demonstrate the use of the learned MRFs on the selectivity estimation problem.
Empirical evaluation on real datasets demonstrates the advantage of our approach
over extant solutions.

1 Introduction

In this paper we address the problem of learning approximate Markov Random Fields
(MRF) from large transaction data. Examples of such data include market basket data,
web log data, etc. Such data can be represented by a high-dimensional data matrix, with
each row corresponding to a particular market basket (web session), and each column
corresponding to a particular item (web page). Each entry takes a value of “1” if the
corresponding item is in the corresponding basket, otherwise it takes a value of “0”.
The data matrix is binary, and very often in such applications, highly sparse in that the
number of non-zero entries is small.

To model such data effectively in order to answer queries about the data efficiently,
we consider the use of probabilistic models. Probabilistic models capture association
or causal correlations among attributes in data and have been successfully applied in
applications such as selectivity estimation in query optimization [1,2,3], link analy-
sis/recommender systems [4,5] and bioinformatics [6].

Specifically to tackle the selectivity estimation problem, Pavlov et al. [3] propose a
Maximum Entropy (ME) model based on frequent itemsets. The ME model is essentially
equivalent to an MRF and is effective in estimating query selectivity. However, a key
limitation of their approach is that it needs to learn a local model over query variables

� This work is supported in part by the following research grants: DOE Award No. DE-FG02-
04ER25611; NSF CAREER Grant IIS-0347662.
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on the fly for every query. Due to the fact that inferring an ME model is an expensive
iterative process, such a just-in-time model construction approach is not appropriate in
settings where online estimation time is crucial. The alternative is to first learn a global
model offline. Subsequently the queries can be answered on the fly using standard prob-
abilistic inference methods [7,8,9]. The advantages are a more accurate model (relies
on complete information from all the data) and online performance. The critical chal-
lenge is that a global model may be prohibitive to compute for large datasets of high
dimension (offline learning cost) . To address this problem, in this paper, we consider
the problem of employing frequent itemsets to learn approximate global MRFs on large
transaction data. Frequent itemsets capture important local distribution information of
the data. Hollmen et al. [10] proposed to use frequent itemsets to learn mixture models
on the local scale. Goldenberg et al. [5] proposed an approach (SNBS) of using frequent
itemsets to learn large Bayesian networks.

The main contributions of this paper are summarized below: a. We introduce a novel
divide-and-conquer style approach based on graph partitioning to learning approximate
MRFs from large transaction data; b. We introduce a novel interaction importance and
treewidth based augmentation scheme to capture interdependencies across partitions;
c. We conduct an extensive empirical study on real datasets to show the efficiency and
effectiveness of the new approach.

2 Background

Let I be a set of items, i1, i2, . . ., id. A subset of I is called an itemset. The size of
an itemset is the number of items it contains. An itemset of size k is a k-itemset. A
transaction dataset is a collection of itemsets, D = {t1, t2, . . . , tn}, where ti ⊆ I. For
any itemset α, we write the transactions that contain α as Dα = {ti|α ⊆ ti and ti ∈
D}. In the probabilistic model context, each item is modeled as a random variable1.

Definition 1. (Frequent itemset). For a transaction dataset D, an itemset α is frequent
if |Dα| ≥ σ, where |Dα| is called the support of α in D, and σ is a user-specified
non-negative threshold.

Definition 2. (Markov Random Field). An Markov Random Field (MRF) is an undi-
rected graphical model in which vertices represent variables and edges represent cor-
relations between variables. The joint distribution associated with an undirected graph-
ical model can be factorized as follows: p(X) = 1

Z(ψ)

∏
Ci∈C ψCi(XCi), where C is the

set of maximal cliques associated with the undirected graph; ψCi is a potential function
over the variables of clique Ci and 1

Z(ψ) is a normalization term.

Using Frequent Itemsets to Learn an MRF. The idea of using frequent itemsets to
learn an MRF was first proposed by Pavlov et al. [3]. A k-itemset and its support rep-
resents a k-way statistic and can be viewed as a constraint on the true underlying distri-
bution that generates the data. Given a set of itemset constraints, a Maximum Entropy
(ME) distribution satisfying all these constraints is selected as the estimate for the true

1 In this article we use these terms – item, (random) variable – interchangeably.
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Iterative-Scaling(C)
Input : C, collection of itemsets;
Output : MRF M;
1. Obtain all involved variables v and

initialize parameters of M;
//typically uniform over v;

2. while (Not all constraints are satisfied)
3. for (each constraint Ci)
4. Update M to force it to satisfy Ci;
5. return M;

Fig. 1. Iterative scaling algorithm

underlying distribution. This ME distribution is essentially equivalent to an MRF. A
simple iterative scaling algorithm can be used to learn an MRF from a set of itemsets.
Figure 1 presents a high-level outline of a computationally efficient version of the al-
gorithm given by Jelinek [11]. Efficient inference is crucial to the running time of the
learning algorithm. We call models learned through exact inference procedures exact.

The junction tree algorithm is a commonly-used exact inference engine for proba-
bilistic models. The time complexity of the junction tree algorithm is exponential in
the treewidth of the underlying model. For real world models, it’s quite common that
the treewidth will be well above 20, making learning exact models intractable. As a
result, we have to resort to learning approximate models. One possible approach is to
plug in approximate inference engines during the model learning process. However, it
is not clear whether or not the learning process will still converge when subjected to
approximate inference engines. In this paper, we pursue another approach – to learn a
simplified model which is feasible to learn exactly and is close to the true exact model.

3 Learning Approximate MRFs

Before discussing our proposed approach, let us consider an extreme case in which the
overall graph consists of a set of disjoint non-correlated components. Then the joint
distribution can be obtained in a straightforward fashion according to Lemma 1.

Lemma 1. 2 Given an undirected graph G subdivided into disjoint components D1,
D2, . . ., Dn (not necessarily connected components), and there is no edge across any
two components, then the probability distribution associated with G is given by: p(X) =∏n

i=1 p(XDi)

3.1 Clustering Variables Based on Graph Partitioning

The basic idea of our proposed divide-and-conquer style approach comes directly from
the above observation. Specifically, the variables are clustered into groups according
to their correlation strengths. We call the group variable-cluster. Then a local MRF is
defined on each variable-cluster. In the end we aggregate the local models to obtain a
global model. From Lemma 1, we see that if we have a perfect partitioning of an MRF

2 This follows immediately from the global Markov property of the MRF.
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in which there is no correlations across different partitions, the divide-and-conquer style
approach gives the exact estimate of the full model. Even for an imperfect partitioning,
if the correlations across partitions are not strong, we still expect a reasonable approx-
imation of the full model. Correspondingly, the first problem we face is how to cluster
the variables such that the correlations across partitions is minimized.

k-MinCut. The k-MinCut problem is defined as follows [12]: Given a graph G =
(V, E) with |V | = n, partition V into k subsets, V1, V2, . . . , Vk such that Vi ∩ Vj = ∅
for i �= j, |Vi| = n

k , and ∪iVi = V , and the number of edges of E whose incident
vertices belong to different subsets is minimized. Given a partitioning P , the number
of edges whose incident vertices belong to different partitions is called the edge-cut of
the partitioning. In the case of weighted graphs, we minimize the sum of weights of all
edges across different partitions.

The k-MinCut can serve our purpose of clustering variables. Each graph partition
corresponds to a variable-cluster. Intuitively, we want to maximize correlations among
variables within variable-clusters, and minimize correlations among variables across
variable-clusters. So we should make the weight of edges reflect the strength of corre-
lations between variables. We have the collection of all frequent itemsets. In particular,
itemsets of size 2 specify the connectedness structure of the graph, and their associ-
ated supports indicate the strength of pairwise correlations between variables. We can
use their supports as the edge weights directly. However, we also have higher-order
statistics available, i.e., the larger itemsets. We expect that taking into consideration the
information of all itemsets will yield a better weighting scheme. To this end, we pro-
pose an accumulative weighting scheme as follows: for each itemset, we add its sup-
port to all related edges, whose two vertices are contained by the itemset. Intuitively,
we strengthen the graph regions which involve closely related itemsets in the hope that
the edges within these regions will not be broken in the partitioning. An advantage of the
k-MinCut partitioning scheme is that the resulting clustering is forced to be balanced.
This is desirable for the sake of efficient model learning, since we will not encounter
very large variable-clusters which might result in very complex local models.

3.2 Interaction Importance and Treewidth Based Variable-Cluster
Augmentation

The balanced variable-clusters produced by the k-MinCut partitioning scheme are dis-
joint. Intuitively, there is significant correlation information that is lost during the par-
titioning. To compensate for this loss, we propose an interaction importance based
variable-cluster augmenting scheme to recover the damaged correlation information.
The idea is that for each variable-cluster, we let it grow outward. More specifically,
it attracts and absorbs most significant (important) interactions (edges) incident to its
vertices from outside to itself. As a result, some extra variables are pulled into the
variable-cluster. We control the augmentation through the number of extra vertices
pulled into the cluster (called growth factor). One can use the same growth factor for
all variable-clusters to preserve their balance.

As an optimization, we account for the model complexity during the augmentation.
We keep augmenting a partition until its complexity reaches a user-specified threshold.
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More specifically, we keep track of the growth of the treewidth during the augmenting
process for this purpose. 1-hop neighboring vertices are first considered by the aug-
mentation, followed by 2-hop neighboring vertices and so on. Meanwhile, we still stick
to the interaction importance criteria. The resultant augmented partitions are likely to
become unbalanced in terms of their size. The partitions with a small treewidth will
grow more significantly than those with a large treewidth. However, these partitions are
balanced in terms of their complexity. A benefit of this scheme is that usually more
interactions across different partitions will be accounted for in a computationally con-
trollable manner, leading to a more accurate global model. Figure ?? presents a sketch
of the overlapped variable-clusters after the augmentation.

3.3 Approximate Global MRFs and a Greedy Inference Algorithm

For each augmented variable-cluster, we collect all of its related itemsets and use the it-
erative scaling algorithm to learn an exact local model. This is computationally feasible
since the local model corresponding to each variable-cluster is much simpler than the
original model. Two local models are correlated to each other if they share variables.
The collection of all local models forms a global model of the original transaction data.
We note that this global model is an approximation of the exact global MRF, since we
lose dependency information by breaking edges in the exact graphical model. However,
most strong correlations are compensated during the variable-cluster augmentation.
As such, we believe that the proposed global model reasonably approximates the exact
model. Figure 2 provides the formal algorithm for learning an approximate global MRF.

LearnMRF(F, k, g)
Input : F, collection of frequent itemsets;

k, number of partitions for MinCut partitioning;
g, growth factor;

Output : M, global MRF ;
1. Construct a weighted graph G from F ;

//G specifies graphical structure of the exact MRF ;
2. k-MinCut G;
3. for each graph partition Gi

4. G′
i ← augment(Gi, g);

5. P ick itemsets Fi related to G′
i;

6. Mi ← LearnLocalMRF (Fi);
7. add Mi to M;
8. return M;

Fig. 2. Learning approximate global MRF algorithm

Given the global model consisting of a set of local MRFs, how do we make infer-
ences on this model efficiently? In the first case, where all query variables are subsumed
by a single local MRF, we just need to calculate the marginal probability within the lo-
cal model. In the second case, where query variables span multiple local models, we use
a greedy decomposition scheme to compute. First, we pick the local model that has the
largest intersection with the current query (i.e., covers most query variables). Then we
pick the next local model that covers most uncovered variables in the query. This cov-
ering process will be repeated until we cover all variables in the query. Simultaneously,
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all intersections between the above local models and the query are recorded. In the end,
we derive an overlapped decomposition of the query. We notice that locally the depen-
dency among small pieces in the decomposition often exhibits a tree-like structure, and
we use Lemma 2 to compute the marginal probabilities.

Lemma 2. 3 Given an undirected graph G subdivided into n overlapped components,
if there exists an enumeration of these n components, i.e., C1, C2, . . ., Cn, s.t., for any
2 ≤ i ≤ n, the separating set, s(Ci, ∪i−1

j=1Cj) ⊆ (Ci ∩ (∪i−1
j=1Cj)), then the probability

distribution associated with G is given by: p(X) =
∏n

i=1 p(XCi
)∏n

i=2 p(XCi
∩(∪i−1

j=1XCj
))

Essentially, Lemma 2 specifies a junction tree-like structure. Given any model and one
of its such decomposition, we can use the above formula to make exact inferences.
However, it is possible to have cyclic dependencies among the decomposed pieces.
Therefore, the greedy inference scheme is a heuristic. Also, we note that our global
model is not globally consistent in that there exists inconsistency across the local mod-
els. However, we expect that the global model is nearly consistent since two correlated
local models support the same evidence (itemsets) regarding their shared variables.

4 Experimental Results

In this section, we examine the performance of our proposed approach on real datasets.
We focus on its application on the selectivity estimation problem. We compare our
proposed model against the previous approach in [3] where a local MRF over query
variables is learned for every query in an online fashion. We call this approach online
local MRF approach (abbreviated as OLM).

Experimental Setup: All the experiments were conducted on a Pentium 4 2.66GHz
machine with 1GB RAM running Linux 2.6.8. The MRF learning algorithm was im-
plemented in C++. We used apriori [14] to collect frequent itemsets and Metis [12] to
obtain a k-MinCut of the exact graphical model.
Datasets: We used two publicly available datasets in our experiments: the Microsoft
Anonymous Web dataset (kdd.ics.uci.edu) with 32711 transactions and 294 items; the
BMS-Webview1 dataset (fimi.cs.helsinki.fi) with 59602 transactions and 497 items.
Query Workloads: We considered the workloads consisting of conjunctive queries
of different sizes. Following the same practice in [3], we first specified the number of
query variables n (varied from 4, 6, 8, 10 to 12), then we picked n variables according
to the probability of the variable taking a value of ”1” and generated a value for each
selected variable by its univariate probability distribution. Performance Metrics: We
considered the online time cost, the time taken to answer the queries using the model.
We also considered the offline time cost, the time taken to learn the model. We quantified
the accuracy of estimations using the average absolute relative error over all queries in
the workload. The absolute relative error is defined as |σ − σ̂| / σ, where σ is the true
selectivity and σ̂ is the estimated selectivity.

3 The complete proof can be found in the full version of this paper [13].
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Results on the Microsoft Web Data. In this section, we report the experimental results
on the Microsoft Web Data. We use the support threshold of 20 to collect the frequent
itemsets, which results in 9901 frequent itemsets. According to the Maximum Cardi-
nality Search (MCS)-ordering heuristic [15], the treewidth of the resulting MRF is 28
for which learning the exact model is intractable.
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Fig. 3. Varying k (g = 5): (a) estimation accuracy (b) online time (c) offline time

Figure 3a presents the estimation accuracy when k is varied (g is fixed as 5) for
queries of different sizes. As seen, our approach works very well compared with the
online local MRF approach. Our approach gives very close or even better estimations
compared with the online local MRF approach. These results are not surprising since
for the online local model, we only use the local information to estimate the selectivity.
However, for the offline global model, we rely on the global information to make the
estimation. Even though the graph partitioning phase results in information loss, since
the model is global in nature, in many cases it is still able to yield better estimations.
Furthermore, an obvious trend that stands out is that as the query size increases, the
quality of the estimations degrades. This is expected since for larger sized queries, esti-
mation errors grow for both approaches. Another observation is that the estimations are
more accurate when we use less variable-clusters. This is because with less variable-
clusters, the information loss due to the graph partitioning is smaller, thus we capture
better the correlations between partitions. Figure 3b illustrates how the online times
depend on k. It can be clearly seen the significant growth of the online times taken by
the online model (note the Y-axis scale). The extreme online timing efficiency of the
offline model can be clearly seen from the results. In most cases, it outperformed the
online model by two to three orders of magnitude. Further, we see that the smaller k re-
sults in higher online estimation time. This is expected since the smaller k is, the larger
each local model will be, which explains the slower estimation. In the extreme case
where k is 1, we revert to learning the exact global MRF, which has been shown to be
computationally infeasible. Figure 3c presents the offline learning times of the offline
model when varying k. An obvious trend is that as we increase k, overall the learn-
ing cost of the offline model decreases significantly. This is expected since the larger k
results in less complex local models.

Figure 4a presents the estimation accuracy when varying g (k is fixed as 20). As one
can see, the error decreases steadily with increasing g. When g is 0 (disjoint variable-
clusters), the estimations are most inaccurate. In contrast, the estimations are much



648 C. Wang and S. Parthasarathy

0

5

10

15

20

25

30

35

40

4 6 8 10 12

Query Size

A
vg

.R
el

E
rr

o
r

(%
)

OLM g=0 g=1 g=2 g=3 g=4 g=5

0.1

1

10

100

1000

10000

4 6 8 10 12

Query Size

R
es

p
o

n
se

T
im

e
(m

s)

OLM g=0 g=1 g=2 g=3 g=4 g=5

1

10

100

1000

10000

0 1 2 3 4 5

g

O
ff

lin
e

T
im

e
(s

)

Fig. 4. Varying g (k = 20): (a) estimation accuracy (b) online time (c) offline time

more accurate when g is 5. The results clearly show the effects of the interaction im-
portance based variable-cluster augmenting scheme. The offline model approximates
the exact global model better when more correlations across the local models are com-
pensated. Figure 4b presents the online times when varying g. We see from the results
that the model with the larger g takes more online time to answer the query. This is also
expected since the larger g results in more complex models (similar to the case of the
smaller k). Figure 4c presents the offline learning times of the offline model when vary-
ing g. An obvious trend is that as we increase g, the time cost increases significantly,
which is again expected.
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Figure 5a-c present the estimation accuracy, the online times and the offline learning
times of the offline global model when the treewidth based augmentation optimization
is used (k is fixed as 25). As seen, the optimization can further boost the estimation
performance. For example, the average relative estimation errors are 0.29%, 0.97%,
2.01%, 3.66% and 4.81% on the workloads consisting of queries of size 4, 6, 8, 10
and 12, respectively. In contrast, the corresponding errors of the online local MRF ap-
proach are 0.99%, 2.76%, 4.45%, 7.82% and 10.9%, respectively. Furthermore, the
offline model is faster by about two orders of magnitude in terms of online estimating
time. Moreover, as we raise the treewidth threshold, the estimations will become more
accurate, at a higher cost of online estimating and offline learning times.

The results on the BMS-Webview1 dataset overall are quite similar to that on the
Microsoft Web dataset and are omitted in the interest of space. However, the complete
results can be found in [13].



Learning Approximate MRFs from Large Transaction Data 649

5 Conclusion

In this paper, we have described a new approach to learning an approximate MRF on
large transaction data. Our proposed approach has been shown to be very effective and
efficient in solving the selectivity estimation problem. In the future, we would like to
exploit a belief propagation style approach to force the consistency of the model. Fur-
thermore, we would like to investigate the use of the approximate inference techniques
during the model learning process. Finally, it would be interesting to exploit the learned
models on various link analysis tasks.
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Abstract. Searching and mining nuclear magnetic resonance (NMR)-
spectra of naturally occurring products is an important task to investi-
gate new potentially useful chemical compounds. We develop a set-based
similarity function, which, however, does not sufficiently capture more
abstract aspects of similarity. NMR-spectra are like documents, but con-
sists of continuous multi-dimensional points instead of words. Probabilis-
tic semantic indexing (PLSI) is an retrieval method, which learns hidden
topics. We develop several mappings from continuous NMR-spectra to
discrete text-like data. The new mappings include redundancies into the
discrete data, which proofs helpful for the PLSI-model used afterwards.
Our experiments show that PLSI, which is designed for text data cre-
ated by humans, can effectively handle the mapped NMR-data originat-
ing from natural products. Additionally, PLSI combined with the new
mappings is able to find meaningful ”topics” in the NMR-data.

1 Introduction

Nuclear magnetic resonance (NMR)-spectra are an important finger printing
method to investigate the chemical structure of organic compounds from plants
or other tissues. Two-dimensional-NMR spectroscopy is able to capture the in-
fluences of two different atom types at the same time (e.g. 1H, hydrogen and
13C carbon). The result of an 2D-NMR experiment can be seen as an inten-
sity function measured over two variables1. Regions of high intensity are called
peaks, which contain the real information about the underlying molecular struc-
ture. The usual visualizations of 2D-NMR spectra are contour plots as shown
in figure 1. An ideal peak would register as a small dot, however, due to the
limited resolution available (dependent on the strength of the magnetic field)
multiple peaks may appear as a single merged object with non-convex shape. In
the literature peaks are noted by their two-dimensional positions without any
information about the shapes of the peaks. Content-based similarity search of
2D-NMR spectra would be a valuable tool for structure investigation by compar-
ing spectra of unknown compounds with a set of spectra, for which the structures
1 The measurements are in parts per million (ppm).

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 650–658, 2006.
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are known. While the principle is already in use for 1D-NMR spectra [5,4,1], to
the best of our knowledge, no effective similarity search method is known for
2D-NMR-spectra.

Fig. 1. 2D-NMR spectrum of
quercetrin. The plots at the axes
are the corresponding 1D-NMR
spectra.

Simplified, a 2D-NMR spectrum is a set of
two-dimensional points. There is an analogy
to text retrieval, where documents are usu-
ally represented as sets of words. Latent space
models [3,2] were successfully used to model
documents and thus improved the quality of
text retrieval.

The contribution of this paper are meth-
ods to map 2D-NMR spectra to discrete
text-like data, which can be analyzed and
searched by any text retrieval method. Addi-
tionally, we propose a simple similarity func-
tion, which operates directly on the peaks
of the spectra and serves as bottom line
benchmark in the experimental evaluation.
We demonstrate on real data that our mapping methods in combination with
PLSI [3] improve the quality of similarity search of 2D-NMR spectra. Our results
indicate at a larger scope that text retrieval and mining methods, designed for
text data created by humans, in combination with appropriate mapping func-
tions may yield the potential to be also successful for experimental data from
naturally occurring objects. In this paper we consider exemplarily 1H, 13C one-
bond heteronuclear shift correlation 2D-NMR spectra.

The paper is structured as follows: first, in section 2, we define 2D-NMR spec-
tra and propose a simple similarity function. In section 3, we propose the new
mapping functions for 2D-NMR spectra. In section 4, we describe our experi-
mental evaluation and section 5 concludes the paper.

2 Directly Computing Similarity

A two-dimensional NMR-spectrum of an organic compound captures many struc-
tural characteristics like rings and chains. Most important are the positions of
the peaks. As the shape of a peak and its height (intensity) strongly varies over
different experiments with the same compound, the representation of a spectrum
includes the peak positions only. A 2D NMR-spectrum A is defined as a set
of points {x1, . . . , xn} ⊂ R2. The | · | function denotes the size of the spectrum
|A| = n. A peak matches other peaks only within a certain spatial neighborhood,
which is defined by the ranges α and β. A peak x from spectrum A matches a
peak y from spectrum B, if |x.c− y.c| < α and |x.h− y.h| < β, where .c and .h
denote the NMR measurements for carbon and hydrogen respectively. Note that
a single peak of a spectrum can match several peaks from another spectrum.
Given two spectra A and B, the subset of peaks from A which find matching
partners in B is denoted as matches(A, B) = {x : x ∈ A, ∃y ∈ B : x matches y}.
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The function matches is not symmetric, but helps to define a symmetric sim-
ilarity measure Let be A and B two spectra and A′ = matches(A, B) and
B′ = matches(B, A), so the similarity is defined as

sim(A, B) =
|A′|+ |B′|
|A|+ |B|

The measure is close to one if most peaks of both spectra are matching peaks.
Otherwise the similarity drops towards zero.

3 Mapping 2D-NMR-Spectra to Document-Like Data

Like a 2D-NMR spectrum consists of a set of peaks, a document consists of
many words, which typically are modeled as a set. So assuming a 2D-NMR
spectrum can be transformed into a text-like object by mapping the continuous
2D peaks to discrete variables, a variety of text retrieval models can be applied.
However, it is an open question, whether models designed for quite different
data, namely texts created by humans, are effective on data which comes for
naturally occurring compounds and thus do not include human design patterns.
Because the patterns which are important to 2D-NMR spectra similarity search
might be quite different from pattern found in document collections, we chose
a retrieval model which is capable of learning relevant patterns from training
data. Probabilistic latent semantic indexing (PLSI) introduced in [3] is a model
for text retrieval with such a learning ability. For 2D-NMR spectra similarity
search it is not clear, what is the best way to map the peaks of a spectrum to
discrete words.

In this section we propose different methods to map the peaks of an NMR-
spectrum from the continuous space of measurements to a discrete space of
words. With the help of such a mapping, methods for text retrieval like PLSI
can be directly applied. However, the quality of the similarity search depend on
how the peaks are mapped to discrete words.

3.1 Grid-Based Mapping

First, we introduce a simple grid-based method, on which we will build more
sophisticated methods. A simple grid-based method is to partition each of the
both axis of the two-dimensional peak space into intervals of same size. Thus,
an equidistant grid is induced in the two-dimensional peak space and a peak
is mapped to exactly one grid cell it belongs to. When a grid cell is identi-
fied by a discrete integer vector consisting of the cells coordinates the map-
ping of a peak x ∈ R2 is formalized as g(x) = (gc(x.c), gh(x.h)) with gc(x.c) =⌊

x.c
wc

⌋
, gh(x.h) =

⌊
x.h
wh

⌋
The quantities wc and wh are the extensions of a cell

in the respective dimensions, which are parameters of the mapping. The grid is
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centered at the origin of the peak space. The cells of the grid act as words. The
vocabulary generated by the mapped peaks consists of those grid cells which
contain at least one peak. Empty grid cells are not included in the vocabulary.
A word consists of a two-dimensional discrete integer vector.

Unfortunately the grid-based mapping has two disadvantages. First, close
peaks may be mapped to different grid cells. This may lead to poor matching
of related peaks in the discrete word space. Second, peaks of new query spectra
are ignored when they are mapped to grid cells not included in the vocabulary.
So some information from the query is not used for the similarity search which
may weaken the performance.

3.2 Redundant Mappings

We propose three mappings which introduce certain redundancies by mapping
a single peak to a set of grid cells. The redundancy in the new mappings shall
compensate for the drawbacks of the simple grid-based mapping.

Shifted Grids. The first disadvantage of the simple grid-based method is that
peaks which are very close in the peak space may be mapped to different grid
cells, because a cell border is between them. So proximity of peaks does not
guaranty that they are mapped to the same discrete cell.

Instead of mapping a peak to a single grid cell, we propose to map it to a set
of overlapping grid cells. This is achieved by several shifted grids of the same
granularity. In addition to the base grid some grids are shifted into the three
directions (1, 0)(0, 1)(1, 1). One grid is shifted in each of the directions by half
of the extent of a cell. In general, there may be k − 1 grids shifted by fractions
of 1/k, 2/k, . . . , k−1/k of the extent of a cell in each direction respectively. For the
mapping of the peaks to words which consist of cells from the different grids,
two additional dimensions are needed to distinguish (a) the k − 1 grids in each
direction and (b) the directions themselves. The third coordinate represents the
fraction by which a cell is shifted and the fourth one represents the directions by
the following coding: value 0 is (0,0), 1 is (1,0), 2 is (0,1) and 3 is (1,1). So each
peak is mapped to a finite set of four-dimensional integer vectors. The mapping
of a peak x ∈ R2 is

s(x) = {(gc(x.c), gh(x.h), 0, 0)} ∪
k−1⋃
i=1

{
(gc(x.c + i/k · wc), gh(x.h), i, 1),

(gc(x.c), gh(x.h + i/k · wh), i, 2), (gc(x.c + i/k · wc), gh(x.h + i/k · wh), i, 3)
}

Thus, a single peak is mapped to 3(k − 1) + 1 words. A nice property of the
mapping is that there exists at least one grid cell for every pair of matching
peaks both peaks are mapped to.

Different Resolutions. The second disadvantage of the simple grid-based
mapping comes from the fact that empty grid cells (not occupied by at least
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one peak from the set of training spectra) do not contribute to the representa-
tion to be learned for similarity search. So peaks of new query spectra mapped to
those empty cells are ignored. That effect can be diminished by making the grid
cells larger. However, this is counterproductive for the precision of the similarity
search due to the coarser resolution. Thus, there are two contradicting goals,
namely (a) to have a fine resolution to handle subtle aspects in the data and (b)
to cover at the same time the whole peak space by a coarse resolution grid so
that no peaks of a new query spectrum have to be ignored.

Instead of finding a tradeoff for a single grid, both goals can be served by
combining simple grids with different resolutions. Given l different resolutions
{(w(1)

c , w
(1)
h ), . . . , (w(l)

c , w
(l)
h )} a peak is mapped to l grid cells of different sizes. In

order to distinguish between the different grids an additional discrete dimension
is needed. So the mapping function is

r(x) =
l⋃

i=1

{(g(i)
c (x), g(i)

h (x), i)}

with g
(i)
c and g

(i)
h use w

(i)
c and w

(i)
h respectively. Note that a hierarchical, quad-

tree like partitioning is a special case of the proposed mapping function with
w

(i)
c = 2i−1wc and w

(i)
h = 2i−1wh.

Combining shifted Grids with different Resolutions. Both methods are
designed to compensate for different drawbacks of the simple grid mapping. So
it is natural to combine both mappings. The parameters of such a mapping are
the number of shifts k, the number of different grid cell sizes l and the actual
sizes {(w(1)

c , w
(1)
h ), . . . , (w(l)

c , w
(l)
h )}. Beside the two coordinates for the grid cells,

additional discrete dimensions are needed for the shift, the direction and the
grid resolution. Using the the definitions from above the mapping function of
the combined mapping of a peak is

c(x)=
l⋃

i=1

{(
g(i)

c (x.c), g(i)
h (x.h), 0, 0, i

)}
∪

k−1⋃
j=1

{(
g(i)

c (x.c+ i/k·w(i)
c ), g(i)

h (x.h), j, 1, i
)
,

(
g(i)

c (x.c), g(i)
h (x.h+i/k·w(i)

h ), j, 2, i
)
,
(
g(i)

c (x.c+i/k·w(i)
c

)
, g

(i)
h (x.h+i/k·w(i)

h ), j, 3, i
)}

Thus a single peak is mapped to l(3(k− 1)+ 1) words. In the next section all
mappings are compared with respect to the effectiveness for similarity search.

4 Evaluation and Results

The data used are mostly secondary metabolites of plants and fungi. The sub-
stances cover a representative area of naturally occurring compoundsThedatabase
includes about 587 spectra, each has about 3 to 35 peaks. The total number of
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Group #Spectra #Peaks
Pregnans 11 17–26
Anthrquinones 8 3–6
Aconitanes 8 22–26
Triterpenes 17 24–31
Flavonoids 18 5–8
Isoflavonoids 16 5–7
Aflatoxins 8 8–10
Steroids 12 16–23
Cardenolides 15 18–25
Coumarins 19 3–8
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Fig. 2. Left: Groups with number of spectra and range of peaks, Right: Distribution
of the peaks of all spectra with the distribution within the groups of flavonoids and
steroids

peaks is 7029. Ten small groups of chemically similar compounds are included in
the database for controlled experiments. The groups with the number of spectra
and number of peaks are listed in figure 2 left. The peak space with all peaks in the
database is shown in figure 2 right.

4.1 Comparison

The different methods for similarity search of 2D-NMR-spectra are compared
using recall-precision curves. The search quality is high, when both – recall and
precision – are high. So the upper curves are the best.

First, the direct similarity function is tested. Each spectrum from the ten
groups is used as a query while the rest of the respective group should be found
as answers. The plot in figure 3a shows averages over all queries. The size of
the matching neighborhood is varied over α = 4, 6, 8, 10 and β = 0.4, 0.6, 0.8, 1.0
respectively. As expected, the search quality is low. In fact on average, it fails
to deliver a spectrum from the answer set in the top ranks which is indicated by
the hill-like shape of the curves.

Next, a series of experiments is conducted using our proposed mapping func-
tions in combination with PLSI. All curves are averages from cross validation
over all groups. As the groups are very small the leave-one-out testing scheme is
employed. The results for the simple grid-based mapping are shown in figure 3b.
The sizes of the grid cells are varied over wc = 4, 6, 8, 10 and wh = 0.4, 0.6, 0.8, 1.0
respectively. The results are already much better than those for the direct sim-
ilarity function. Small sizes give the best results. The use of shifted grids im-
proves the performance substantially over simple grids, as shown in figure 3c,d.
The plots show the experiments for k = 2, 3. The quality of wc = 4 and wh = 0.4
with k = 2 and k = 3 are almost identical. However, the vocabulary for k = 2 is
much smaller, so the model has much less parameters to train. In practise, the
smaller model with k = 2 shifts is favored.

Also the mapping based on grids with different grid cell sizes are assessed. Due
to lack of space, only the results from combinations of w

(1)
c = 4, w

(1)
h = 0.4 with



656 K. Wolfram, A. Porzel, and A. Hinneburg

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

P
re

ci
si

on

Recall

Direct Sim

wc 4
wc 6
wc 8
wc 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

P
re

ci
si

on

Recall

Simple Grid

wc 4
wc 6
wc 8
wc 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

P
re

ci
si

on

Recall

Shifted Grids k=2

wc 4
wc 6
wc 8
wc 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

P
re

ci
si

on

Recall

Shifted Grids k=3

wc 4
wc 6
wc 8
wc 10

(a) (b) (c) (d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

P
re

ci
si

on

Recall

Different Resolutions

wc 4, 6
wc 4, 8
wc 4, 10
wc 4, 12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

P
re

ci
si

on

Recall

Shifted Grids & diff. Res. k=2

wc 4, 6
wc 4, 8
wc 4, 10
wc 4, 12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

P
re

ci
si

on

Recall

Best Results

4&10,k=2
4,k=3
4,k=2
4&12
4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

P
re

ci
si

on

Recall

Shifted Grids & diff. Res. 4&10, k=2

32 asp.
20 asp.
10 asp.

(e) (f) (g) (h)

Fig. 3. Average recall-precision curves from leave-one-out cross validation experiments

other sizes are reported, because those performed best among all combinations.
Figure 3e shows that also the mapping based on different grid cell sizes outper-
forms the simple grid-based mapping. But the improvement is not as much as for
shifted grids. The set of resolutions {(w(1)

c = 4, w
(1)
h = 0.4), (w(2)

c = 12, w
(2)
h =

1.2)} performs best.
Last, experiments are performed with the combination of the previous two

mappings, namely a combination of shifted grids with those of different resolu-
tions. The performance results are shown in figure 3f which indicates that the
best combination, namely the resolution set {(w(1)

c = 4, w
(1)
h = 0.4), (w(2)

c =
10, w

(2)
h = 1.0)} with k = 2 shifts, outperforms both previous mappings. This

is more clearly seen in figure 3g which compares the best performing settings
from the above experiments. In summery, the mappings based on shifted grids
and those with different resolutions perform significantly better than the sim-
ple grid-based mapping. Finally, the combination of shifted grids and grids with
different resolutions is even better than the individual mappings.

The last point is the number of hidden aspects. For the experiments reported
so far, the PLSI model is used with 20 hidden aspects. Also different numbers
of aspects are tested using the best combination of mappings. Figure 3h shows
that the performance with 10 aspects drops a bit The increase in the num-
bers of aspects from 20 to 32 is only marginally reflected in increase of search
performance. So 20 is a reasonable number of aspects for the given data. In
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Fig. 4. (a) Main aspect of the flavonoid group which includes the region of aromatic
rings (upper right cluster) and the region for oxygen substituents (lower left cluster).
The gray shades indicate the strength of the association between grid cell and as-
pect. (b) An example of an flavonoid (3’-Hydroxy-5,7,4’-trimethoxyflavone) where the
aromatic rings and the oxygen substituents (methoxy groups in this case) are marked.

conclusion, the results prove experimentally that the PLSI model, designed for
text retrieval, is indeed effective for similarity search of 2D-NMR spectra from
naturally occurring compounds.

4.2 Analysis of the latent Aspects

We analyzed the latent aspects learned by the PLSI model using the mapping
based on the combination of shifted grids with different resolutions. The grid
cells (words) with high probability for a given aspect are plotted together to
describe the aspects meaning. Some aspects specialized on certain regions in the
peak space which are typical for distinct molecule fragments like aromatic rings
or alkane skeletons. However, also more subtle details of the data are captured
by the aspect model. For example, the main aspect for the group of flavonoids
specializes not only on the region for aromatic rings which are the main part of
flavonoids. It also includes a smaller region which indicates oxygen substitution.
A closer inspection of the database revealed that indeed many of the included
flavonoids do have several oxygen substituents. The main aspect for flavonoids
with the respective peak distribution of the flavonoid group is shown in figure
4a. We believe a detailed analysis of the aspects found by the model may help
to investigate unknown structures of new substances when their NMR-spectra
are included in the training set.

5 Conclusion

We proposed redundant mappings from continuous 2D-NMR spectra to discrete
text-like data which can be processed by any text retrieval method. We demon-
strated experimentally the effectiveness of the our mappings in combination with
PLSI. Further analysis revealed that the aspects found by PLSI are chemically
relevant. In future research we will study more recent text models like LDA [2]
in combination with our mapping methods.
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