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Abstract. We produce a parallel algorithm realizing the Laplace trans-
form method for symbolic solution of differential equations. In this paper
we consider systems of ordinary linear differential equations with con-
stant coefficients, nonzero initial conditions, and the right-hand sides
reduced to the sums of exponents with the polynomial coefficients.

1 Introduction

We produce a parallel algorithm applying the Laplace transform method to
symbolic solution of differential equations.

An application of Laplace transform in differential equations theory in spite
of its long history is topical. It has been very useful in classical or modified
forms for solving ordinary or partial differential equations [2, 3, 8, 19, 21]. It is
frequently applied for problems of fractional order equations [6, 20].

We consider systems of ordinary linear differential equations with constant
coefficients, nonzero initial conditions, and right-hand sides as composite func-
tions reducible to the sums of exponents with the polynomial coefficients. We
place an emphasis on the symbolic character of computations. The efficient al-
gorithmizataton of symbolic solution is achieved at several stages.

At the first stage, the preparation of data functions for the formal Laplace
transform is performed (section 3). It is achieved by applying the Heaviside func-
tion and moving the obtained functions into the bounds of smoothness intervals.
The parallelization of computations is realized as the multilevel tree, in the paper
it is evident from the numeration of algorithm blocks.

The second stage is the parallel solution of the algebraic system with polyno-
mial coefficients and the right-hand side obtained after the Laplace transform of
the data system (section 4). There are parallel algorithms that are very efficient
for solving this type of equations, and are different for various types of such
systems.

At the third stage, the obtained solution of algebraic system is prepared to
the inverse Laplace transform. It is reduced to the sum of partial fractions with
exponential coefficients. One of the problems is calculation of roots of a polyno-
mial. In [17, 18] the algorithm to determine the error of the roots sufficient for
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the required accuracy of the data system solution is obtained. The solution of
the algebraic system for reducing into the sum of partial fractions is performed
by means of parallel algorithms cited in the paper.

At the last stage, the solution of the data system is produced (section 5). It is
obtained as the real part of the inverse Laplace transform image of the algebraic
system solution prepared previously.

In the last section, an example is considered.

2 Input Data

Denote by xj , j = 1, . . . , n, unknown functions of argument t, t ≥ 0, xk
j is the

derivative of order k of the function xj , k = 0, . . . , N . As the right-hand sides
of equations we consider here composite functions fl, l = 1, . . . , n whose compo-
nents are represented as finite sums of exponents with polynomial coefficients.
So we have to solve the system

n∑

j=1

N∑

k=0

al
kjx

k
j = fl, l = 1, . . . , n, al

kj ∈ R, (1)

of n differential equations of order N with initial conditions xk
j (0) = xk

0j , k =
0, . . . , N − 1 with functions fl reduced to the form

fl(t) = f i
l (t), til < t < ti+1

l , i = 1, . . . , Il, t
1
l = 0, tIl+1

l = ∞, (2)

where

f i
l (t) =

Si
l∑

s=1

P i
ls(t)e

bi
lst, i = 1, . . . , Il, l = 1, . . . , n,

and P i
ls(t) =

∑Mi
ls

m=0 cli
smtm.

Remark. The algorithm tree is exposed by multi-index numbering of blocks.
For example, Block 42jk, k = 1, . . . , KΘ, denotes the vertex 42jk, which is an
entrance of the kth tree-edge, outgoing from the vertex 42j – Block 42j, and
there are KΘ such edges. As k is the fourth index in the multi-index 42jk, Block
42jk is the vertex of the fourth level. All the blocks Block 42jk, k = 1, . . . , KΘ

are performed independently and parallel.

Block1: Block10, Block1l, l = 1, . . . , n. Data file.

Data file contains the coefficients al
kj , the initial conditions xk

0j , k = 0, . . . , N−
1, j = 1, . . . , n, and the right-hand sides fl, l = 1, . . . , n.

The data for functions fl consists of the polynomial coefficients cli
sm, parame-

ters bi
ls of exponents, the bounds ti of smoothness intervals. Here m = 0, . . . , M i

ls,
s = 1, . . . , Si

l , i = 1, . . . , Il. The numbers M i
ls are degrees of corresponding poly-

nomials, Si
l are amounts of exponents in the expressions for fl.
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3 Laplace Transform

Denote the Laplace images of the functions xj(t) and fl(t) by Xj(p) and Fl(p),
respectively.

The Laplace transform of the left-hand side of system (1) with respect to the
initial conditions is performed by formal writing of the expression

n∑

j=1

N∑

k=0

al
kjp

kXj(p) −
n∑

j=1

N−1∑

k=0

xk
0jp

N−1−k,

starting directly from input data.

Block21l, l = 1, . . . , n. Preparation of right-hand functions fl(t) to the
Laplace transform .

The functions fl(t), l = 1, . . . , n are composite and reduced to form (2).
We use the Heaviside function η(t) and present fl(t) as a sum

fl(t) =
Il−1∑

i=2

[f i
l (t) − f i−1

l (t)]η(t − til) + f1
l (t)η(t).

Block21li, i = 1, . . . , Il. Transform into the function of t − til .

Transform f i
l (t) − f i−1

l (t) into the function of t − til:

f i
l (t) − f i−1

l (t) = φi
l(t − til).

Generally, the functions f i
l (t) − f i−1

l (t) are decomposed into power series at
point til.

In our case the function φi
l(t − til) is represented as a finite sum

φi
l(t − til) =

Si
l∑

s=1

ψi
ls(t − til)e

bi
lsti

lebi
ls(t−ti

l) −
Si−1

l∑

s=1

ψi−1
ls (t − til)e

bi−1
ls ti

lebi−1
ls (t−ti

l).

Here ψk
ls(t − til) = P k

ls(t) and ψk
ls(t − til) =

∑Mk
ls

m=0 γki
lsm(t − til)

m. Coefficients γki
lsm

are calculated by the formula

γki
lsm =

Mk
ls−m∑

j=0

clk
s,m+j

(
m + j

j

)
(til)

j .

Finally the function fl(t) is reduced to the form

fl(t) =
Il−1∑

i=2

φi
l(t − til)η(t − til) +

S1
l∑

s=1

P 1
ls(t)e

b1lstη(t).
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Block22l, l = 1, . . . , n. The parallel Laplace transform of the functions fl(t).

Since the Laplace image of (t − t∗)neα(t−t∗)η(t − t∗) is n!
(p−α)n+1 e−t∗p the

Laplace transform of φi
l(t − til)η(t − til) equals

Φi
l(p) =

⎡

⎣
Si

l∑

s=1

Mi
ls∑

m=0

γii
lsmebi

lsti
l

m!
(p − bi

ls)m+1

−
Si−1il∑

s=1

Mi−1
ls∑

m=0

γi, i−1
lsm ebi−1

ls ti
l

m!
(p − bi−1

ls )m+1

⎤

⎦ e−ti
lp.

Finally, the Laplace transform of fl(t) is the following:

Fl(p) =
Il−1∑

i=2

Φi
l(p) +

S1
l∑

s=1

M1
sl∑

m=0

cl1
sm

m!
(p − b1

ls)m+1 . (3)

In the case when the right-hand side of the given system is exposed in the
form

fl(t) =
Sl∑

s=1

Msl∑

m=0

cl
smtmeblst, l = 1, . . . , n,

the Laplace transform is performed formally – according to input data we present
the expression for Fl(p):

Fl(p) =
Sl∑

s=1

Msl∑

m=0

cl
sm

m!
(p − bls)m+1 , l = 1, . . . , n. (4)

For each l = 1, . . . , n we reduce (3)(or (4)) to the common denominator. The
common denominator is left factorized. At that the nominator is the sum of
exponents with polynomial coefficients.

In the case of a periodic function fl(t) with the period T , the respective
denominator contains the expression 1 − e−pT . Then such fraction is expanded
into power series.

4 Parallel Solution of Algebraic System

Block 31. The construction of the algebraic system.

As a result of the Laplace transform of system (1) we obtain an algebraic
system relative to Xj , j = 1, . . . , n:

n∑

j=1

N∑

k=0

al
kjp

kXj(p) =
n∑

j=1

N−1∑

k=0

xk
0jp

N−1−k + Fl(p), l = 1, . . . , n. (5)
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For each l = 1, . . . , n the expressions on the right-hand side of (5) are reduced to
the common denominator. The calculations are carried out in parallel. Denote

Φl(p) =
n∑

j=1

N−1∑

k=0

xk
0jp

N−1−k + Fl(p).

We obtain the system
n∑

j=1

N∑

k=0

al
kjp

kXj(p) = Φl(p), l = 1, . . . , n. (6)

Block 32. The parallel solution of the algebraic system.

The system (6) may be solved by any possible classical method, for exam-
ple, Cramer’s method. But now there are new effective procedures for parallel
computations, for example, p-adic method ([5], [9], [10]), modula method ([10]
- [14]), the method based on determinant identities ([10] – [16]). The fastest
method for solving such systems is p-adic method. But its code parallelization is
not very effective. The best one for parallelization is the modula method based
on Chinese Remainder Theorem.

5 Inverse Laplace Transform

Block41j, j = 1, . . . , n. Preparation of Xj(p) to the inverse Laplace trans-
form.

Finally the solution of (6), i.e., each desired function Xj(p), j = 1, . . . , n, is
represented as a fraction with polynomial denominator Dj(p). Note that Dj(p)
is partially factorized – it contains the multipliers of Fl(p) denominators and the
determinant D(p) of system (6). The nominator is the sum of exponents with
polynomial coefficients.

We reduce the function Xj(p), j = 1, . . . , n, to the sum of exponents with
fractional coefficients. The denominator of each fraction is Dj(p), and the nu-
merators are polynomials.

The next step is the decomposition of each fraction in the Xj(p) expansion
into the sum of partial fractions A/(p − p∗)v, p∗ ∈ C. The first action here is
the determination of the Dj(p) roots.

Block42j, j = 1, . . . , n. Computation of the denominator roots.

As it was pointed out the denominator Dj(p) is already represented as a
product of partial multipliers and the polynomial D(p). So we have to find the
roots of D(p).

The accuracy of these calculations is determined first of all. Its value must
be sufficient for the preassigned precision of system solution. An algorithm to
compute such accuracy is written about in §5.
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Block42jk, k = 1, . . . , KΘ. Decomposition into a sum of partial fractions.

We decompose rational fractions or fractional coefficients of exponents into the
sums of partial fractions A/(p − p∗)v, p∗ ∈ C. The calculations for all fractions
are in parallel, the number of blocks is formally denoted by KΘ. It depends upon
the parameters that we do not describe in detail here.

One step of the algorithm is the solution of a system of linear equations with
constant coefficients. Depending on the size of system matrix we use one or
another fast parallel algorithm, for example, modular method ([4] - [7], [10] -
[16]).

If the roots of D(p) have been found exactly, then we obtain the exact solution
of the system (6) – the functions Xj(p). Each of them is represented as a sum

Xj(p) =
∑

m

∑

k

Amk

(p − pik)βmk
e−αmp. (7)

Denote by Ξj(p) the expression that represents Xj(p) after its reduction to
the partial fractions form in the case when the roots of D(p) are calculated not
exactly. Each Ξj(p) is also written in the form (7).

Block43j, j = 1, . . . , n. Inverse Laplace transform.

The Laplace originals of functions Xj(p) are obtained formally – by writing
the expressions

xj(t) =
∑

m

∑

k

Amk

(βmk − 1)!
(t − αm)βmk−1epik(t−αm)η(t − αm), j = 1, . . . , n. (6)

In the case when the roots of D(p) are calculated not exactly denote by ξj(t)
the Laplace original of Ξj(p). It is also written in the form (7). In general,
the functions ξj(t) are complex valued. We take the real part of ξj(t) for each
j = 1, . . . , n. The functions Reξj(t) may be taken as the solution of system (1),
i.e., the required functions xj(t). It is easy to show that the error would not
exceed the established precision assured by the calculated accuracy of roots of
D(p).

6 On Accuracy Estimation

We shall consider all functions and make calculations on the interval [0, T ], where
T is sufficiently high for the input problem. Denote by x̃i(t) the approximate
value of the solution xi(t). We require the following accuracy for the solutions
on the interval T :

maxt∈[0,T ]|xi(t) − x̃i(t)| < ε, i = 1, . . . , n.

We must determine an error Δ of the D(p) roots sufficient for the required
accuracy ε for xi(t). An algorithm for computation of Δ is produced in ([17] -
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[18]). Notice only that Δ depends on the input parameters of the problem, T , the
numbers M(fi) = maxt∈[0,T ]|fi(t)|, i = 1, . . . , n, the appreciation δ of minimal
distance between the roots of D(p), the number σ such that the functions Xj(p)
are analytic in the domain Rep > σ for all j = 1, . . . , n.

7 Example

Block 10 (a1
kj) =

(
1 0 −1 −2
3 1 −2 0

)
; (a2

kj) =
(

−1 0 0 1
1 0 0 1

)
;

x0
01 = 5, x1

01 = 10, x2
01 = 30, x0

02 = 4, x1
02 = 14, x2

02 = 20;

Block 11 f1
1 = et, f2

1 = t2e2t, t11 = 0, t21 = 1;

Block 12 f1
2 = tet, f2

2 = e2t, t12 = 0, t22 = 1;

Block 211 f1 = (f2
1 − f1

1 )η(t − t21) + f1
1η(t);

Block 212 f2 = (f2
2 − f1

2 )η(t − t22) + f1
2η(t);

Block 221 F1 =
1

−1 + p
− e1−p

−1 + p
+

e2−p(p2 − 2p + 2)
(−2 + p)3

;

Block 222 F2 =
e2−p

−2 + p
+

1
(−1 + p)2

− e1−pp

(−1 + p)2
;

Block 31
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2X1 − pX1 + p3X1 + X2 − p3 = 10 − 4p − 4p2 + 5(−1 + p2)

+
1

−1 + p
− e1−p

−1 + p
+

e2−p(p2 − 2p + 2)
(−2 + p)3

−2pX1 + p2X1 + 3p3X1 + X2 + p3X2 = 110 + 14p + 4p2 + 10(1 + 3p)+
+ (−2 + p + 3p2)

+
e2−p

−2 + p
+

1
(−1 + p)2

− e1−pp

(−1 + p)2;
D(p) = −2 + p − p2 − 4p3 − 3p4 + p5 + 4p6;

Block 411

X1(p) = e−p(8e+2e2−4ep−4e2p+2ep2+2e2p2+9ep3−6e2p3−19ep4

(−2+p)3(−1+p)(−2+p−p2−4p3−3p4+p5+4p6)

+ 12e2p4+11ep5−8e2p5−2ep6+2e2p6

(−2+p)3(−1+p)(−2+p−p2−4p3−3p4+p5+4p6) )

+ −856+1692p−982p2+1061p3−1991p4+1398p5−412p6+160p7−95p8+20p9

(−2+p)3(−1+p)(−2+p−p2−4p3−3p4+p5+4p6);
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Block 412

X2(p) = e−p(−8e2−32ep+24e2p+64ep2−28e2p2−32ep3+17e2p3−24ep4−5e2p4

(−2+p)3(−1+p)2(−2+p−p2−4p3−3p4+p5+4p6) +

+ 34ep5−3e2p5−14ep6+5e2p6+2ep7−2e2p7

(−2+p)3(−1+p)2(−2+p−p2−4p3−3p4+p5+4p6) )+

+ 1776−4576p+3568p2−1404p3+2465p4−2751p5+841p6+133p7+2p8−68p9+16p10

(−2+p)3(−1+p)2(−2+p−p2−4p3−3p4+p5+4p6);

Block 421
px1

1 = 1, px1
2 = −0.5949378 − 0.830714i,

px1
3 = −0.5949378 + 0.830714i,

px1
4 = 0.355937 − 0.513128i, px1

5 = 0.355937 + 0.513128i, px1
6 = 1,

px1
7 = 1.228, px1

8 = 2, px1
9 = 2, px1

10 = 2,

Block 422
px2

1 = −1, px2
2 = −0.5949378 − 0.830714i, px2

3 = −0.5949378 + 0.830714i,
px2

4 = 0.355937 − 0.513128i, px2
5 = 0.355937 + 0.513128i, px2

6 = 1,
px2

7 = 1, px2
8 = 1.228, px2

9 = 2, px2
10 = 2, px2

11 = 2;

Block 431

x1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10.031249e−t − 1.25et + 5.538602e1.228001t+
+ 2e0.355937t(−3.735568Cos[0.513128t] + 15.529795Sin[0.513128t])+
+ 2e−0.594937t(−0.924357Cos[0.830713t] + 0.061193Sin[0.830713t]),

0 < t < 1;
9.425260e−t + 4.378584e1.228001t+

+ 0.322878e2t − 0.185554e2tt + 0.0441176e2tt2+
+ 2e0.355937t(−3.708886Cos[0.513128t] + 15.104078Sin[0.513128t])+
+ 2e−0.594938t(−0.953417Cos[0.830713t] + 0.057591Sin[0.830713t]),

t > 1;

Block 432

x2(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10.03125e−t + 0.5et − 8.948223e1.228001t + 0.5ett+
+ 2e0.355937t(−0.493116Cos[0.513128t] + 33.959275Sin[0.513128t])+
+ 2e−0.594938t(1.701602Cos[0.830713t] + 0.929609Sin[0.830713t]),

0 < t < 1;
9.42526e−t − 7.074087e1.228001t−

− 0.577176e2t + 0.435986e2tt − 0.117647e2tt2+
+ 2e0.355937t(−0.636666Cos[0.513128t] + 33.06373Sin[0.513128t])+
+ 2e−0.594938t(1.748891Cos[0.830714t] + 0.968596Sin[0.830714t]),

t > 1;

The table gives the values of Δ for three values of ε and three values of T .
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T \ε ε = 0.1 ε = 0.01 ε = 0.001
T = 2 1.37 · 10−10 1.37 · 10−11 1.37 · 10−12

T = 3 1.25 · 10−12 1.25 · 10−13 1.25 · 10−14

T = 4 5.93 · 10−15 6.10 · 10−16 5.55 · 10−17

The work is partially supported by the grant RFBR 04-07-90268b.
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