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Preface

ICIAR 2006, the International Conference on Image Analysis and Recognition,
was the third ICIAR conference, and was held in Póvoa de Varzim, Portugal.
ICIAR is organized annually, and alternates between Europe and North America.
ICIAR 2004 was held in Porto, Portugal and ICIAR 2005 in Toronto, Canada.
The idea of offering these conferences came as a result of discussion between
researchers in Portugal and Canada to encourage collaboration and exchange,
mainly between these two countries, but also with the open participation of other
countries, addressing recent advances in theory, methodology and applications.

The response to the call for papers for ICIAR 2006 was higher than the two
previous editions. From 389 full papers submitted, 163 were finally accepted (71
oral presentations, and 92 posters). The review process was carried out by the
Program Committee members and other reviewers; all are experts in various
image analysis and recognition areas. Each paper was reviewed by at least two
reviewers, and also checked by the conference Co-chairs. The high quality of
the papers in these proceedings is attributed first to the authors, and second to
the quality of the reviews provided by the experts. We would like to thank the
authors for responding to our call, and we wholeheartedly thank the reviewers
for their excellent work and for their timely response. It is this collective effort
that resulted in the strong conference program and high-quality proceedings in
your hands.

We were very pleased to be able to include in the conference program keynote
talks by three world-renowned experts: Ling Guan, Electrical and Computer
Engineering at Ryerson University, Canada; Mubarak Shah, Agere Chair of Com-
puter Science, University of Central Florida, USA, and John Oommen, School
of Computer Science at Carleton University in Ottawa, Canada. We would like
to express our sincere gratitude to each of them for accepting our invitations.

We would like to thank Khaled Hammouda, the webmaster of the conference,
for maintaining the Web pages, interacting with the authors and preparing the
proceedings. We would like to thank the conference secretariat for administrative
assistance. We would also like to thank members of the Local Organization
Committee for their advice and help. We also appreciate the help of the Springer
editorial staff, for supporting this publication in the LNCS series.

Finally, we were very pleased to welcome all the participants to this confer-
ence. For those who did not attend, we hope this publication provides a good
view into the research presented at the conference, and we look forward to meet-
ing you at the next ICIAR conference.

September 2006 Aurélio Campilho, Mohamed Kamel
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M. Vega-Rodŕıguez University of Extremadura, Spain
C. Vinhais Biomedical Engineering Institute, Portugal
A. Zaim University of Texas, USA



Table of Contents – Part I

Invited Session

Self-Organizing Trees and Forests: A Powerful Tool in Pattern
Clustering and Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Ling Guan

On Optimizing Dissimilarity-Based Classification Using Prototype
Reduction Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Sang-Woon Kim, B. John Oommen

Image Restoration and Enhancement

General Adaptive Neighborhood Image Restoration, Enhancement
and Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Johan Debayle, Yann Gavet, Jean-Charles Pinoli

Frozen-State Hierarchical Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Wesley R. Campaigne, Paul Fieguth, Simon K. Alexander

Fast and Robust Filtering-Based Image Magnification . . . . . . . . . . . . . . . . 53
Wenze Shao, Zhihui Wei

An Efficient Post-processing Using DCT Domain Projections Onto
Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Changhoon Yim

Rank-Ordered Differences Statistic Based Switching Vector Filter . . . . . . 74
Guillermo Peris-Fajarnés, Bernardino Roig, Anna Vidal

Mathematical Analysis of “Phase Ramping” for Super-Resolution
Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Gregory S. Mayer, Edward R. Vrscay

Blind Blur Estimation Using Low Rank Approximation of Cepstrum . . . 94
Adeel A. Bhutta, Hassan Foroosh

An Image Interpolation Scheme for Repetitive Structures . . . . . . . . . . . . . 104
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José Alberto Cuminato



XIV Table of Contents – Part I

Fuzzy Bilateral Filtering for Color Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Samuel Morillas, Valent́ın Gregori, Almanzor Sapena

MPEG Postprocessing System Using Edge Signal Variable Filter . . . . . . 146
Chan-Ho Han, Suk-Hwan Lee, Seong-Geun Kwon, Ki-Ryong Kwon,
Dong Kyue Kim

Computational Framework for Family of Order Statistic Filters
for Tensor Valued Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Bogus�law Cyganek

Gaussian Noise Removal by Color Morphology and Polar
Color Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Francisco Ortiz

Image Segmentation

A Shape-Based Approach to Robust Image Segmentation . . . . . . . . . . . . . 173
Samuel Dambreville, Yogesh Rathi, Allen Tannenbaum

Novel Statistical Approaches to the Quantitative Combination
of Multiple Edge Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Stamatia Giannarou, Tania Stathaki

Bio-inspired Motion-Based Object Segmentation . . . . . . . . . . . . . . . . . . . . . 196
Sonia Mota, Eduardo Ros, Javier Dı́az, Rodrigo Agis,
Francisco de Toro

An Effective and Fast Scene Change Detection Algorithm for MPEG
Compressed Videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Z. Li, J. Jiang, G. Xiao, H. Fang

Automatic Segmentation Based on AdaBoost Learning
and Graph-Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Dongfeng Han, Wenhui Li, Xiaosuo Lu, Tianzhu Wang, Yi Wang

Accurate Contour Detection Based on Snakes for Objects
with Boundary Concavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Shin-Hyoung Kim, Ashraf Alattar, Jong Whan Jang

Graph-Based Spatio-temporal Region Extraction . . . . . . . . . . . . . . . . . . . . . 236
Eric Galmar, Benoit Huet

Performance Evaluation of Image Segmentation . . . . . . . . . . . . . . . . . . . . . . 248
Fernando C. Monteiro, Aurélio C. Campilho

Improvement of Image Transform Calculation Based on a Weighted
Primitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
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Higinio Mora Mora, Gregorio de Miguel Casado



Table of Contents – Part I XV

Topological Active Nets Optimization Using Genetic Algorithms . . . . . . . 272
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Self-Organizing Trees and Forests: A Powerful Tool in 
Pattern Clustering and Recognition  

Ling Guan 

Multimedia Research Laboratory, Ryerson University, Toronto, ON Canada 
lguan@ee.ryerson.ca 

Abstract. As the fruit of the Information Age comes to bare, the question of how 
such information, especially visual information, might be effectively harvested, 
archived and analyzed, remains a monumental challenge facing today’s research 
community. The processing of such information, however, is often fraught with 
the need for conceptual interpretation: a relatively simple task for humans, yet 
arduous for computers.  In attempting to handle oppressive volumes of visual 
information becoming readily accessible within consumer and industrial sectors, 
some level of automation remains a highly desired goal. To achieve such a goal 
requires computational systems that exhibit some degree of intelligence in terms 
of being able to formulate their own models of the data in question with little or 
no user intervention – a process popularly referred to as Pattern Clustering or 
Unsupervised Pattern Classification. One powerful tool in pattern clustering is the 
computational technologies based on principles of Self-Organization. In this talk, 
we explore a new family of computing architectures that have a basis in self 
organization, yet are somewhat free from many of the constraints typical of other 
well known self-organizing architectures. The basic processing unit in the family 
is known as the Self-Organizing Tree Map (SOTM). We will look at how this 
model has evolved since its inception in 1995, how it has inspired new models, 
and how it is being applied to complex pattern clustering problems in image 
processing and retrieval, and three dimensional data analysis and visualization. 

1   Unsupervised Learning and Self Organization 

The goal of Unsupervised Learning is to discover significant patterns or features in a 
given set of data, without the guidance of a teacher. The patterns are usually stored as 
a set of prototypes or clusters: representations or groupings of similar data. 

In describing an unknown set of data, such techniques find much application across 
a wide range of industries, particularly in bioinformatics (clustering of genetic data, 
protein structure analysis), image processing (segmentation, image retrieval), and 
other applications that warrant a significant need for pattern discovery. 

Unsupervised Learning & Self-Organization are inherently related. In general, self-
organizing systems are typified by the union of local interactions and competition 
over some limited resource. In his book [2], Haykin identifies four major principles of 
self-organization: a) Synaptic Self-Amplification; b) Synaptic Competition; c) Co-
operation; and d) Knowledge through Redundancy 
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1.1   Synaptic Self-amplification and Competition 

The first principle of self organization is expressed through Hebb’s postulate of 
learning [3], which is supported by neurobiological evidence. This states that (on the 
cellular level) when two cells are within significant proximity enabling one to excite 
another, and furthermore, do so persistently, some form of physiological/metabolic 
growth process results. This process works to enhance the firing cell’s efficiency in 
triggering the second cell. This action of strengthening the association between two 
nodes functions as a correlation between their two states. 
     Typically, the Hebbian learning rule that ensues from this principle would 
eventually drive synapses into saturation were it not for the second principle, wherein 
some competition occurs for limited resources.  These properties combined, have led 
to the modified Hebbian adaptive rule, as proposed by Kohonen [4]:    
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where wk* is the synaptic weight vector of the winning neuron k* (see below), α is the 
learning rate, and some scalar response ϕ(⋅) to the firing of neuron k* (activation).  

 

Fig. 1. The 4 Principles of Self-Organization – work to filter & encode the redundant (ordered/ 
structured patterns from a set of input data) 

The activation function ϕ(⋅) is the result of the second principle (competition).  
Neurons generally compete to see which is most representative of a given input 
pattern presented to the network.  Some form of discriminative function oversees this 
process (for example, choosing a neuron as a winner if its synaptic vector minimizes 
Euclidean distance over the set of all neurons). This process is often termed 
Competitive Learning. 
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1.2   Co-operation 

Hebb’s postulate is also suggestive of the lateral or associative aspect to the way 
knowledge is then captured in the network, i.e. not just through the winner, but also 
through nearby neurons in the output layer. This property is generally implemented in 
self-organizing architectures by virtue of the way in which nodes are interconnected.  
Often the strength of connection is not considered, but rather a simple link functions 
as an indicator of which other nodes in the network will more readily be associated 
with a winning node.  Thus a local neighborhood is defined, and it is through this that 
knowledge may be imparted.  Local adaptation usually follows the simple Kohonen 
update rule, whereby a portion of information is learned by the winning node, with 
neighboring nodes extracting lesser portions from the same input. 

1.3   Knowledge Through Redundancy 

Although not explicitly encoded, the final principle of self-organization implicitly 
results from the action of the first three. When exposed, any order or structure inherent 
within a series of activation patterns represents redundant information that is ultimately 
encoded by the network as knowledge.  In other words, the network will evolve such 
that similar patterns will be captured and encoded by similar output nodes, while 
neighboring nodes organize themselves according to these dominant redundancies, each 
in turn focusing on and encoding lesser redundant patterns across the input space.  

1.4   The Kohonen Self-Organizing Map (SOM) 

Architectures such as Kohonen’s Self-Organizing Map (SOM) [4] represent one of the 
most fundamental realizations of these principles, and as such have been the 
foundation for much research in pattern clustering and discovery. 

Associative connections linking prototypes within SOM-based clustering algorithms 
are generally responsible for their innate ability to infer an ordered mapping of the 
underlying data space. Associations among nodes are advantageous as they help guide 
the evolution of such networks, and may also assist in formulating post-processing 
strategies or for extracting higher-level properties of any clusters discovered (e.g., inter-
cluster relationships). This type of property is often used for the visualization of high-
dimensional data – where multivariate data (of dimension greater than 3) is mapped 
onto a two- dimensional grid such as the lattice of a SOM.  Since topology is preserved, 
neighbouring nodes in the lattice are often representative of related properties in the 
original data [5]. Unsupervised learning, however, is ill-posed:  the nature of the 
underlying data is unknown, thus it is difficult to infer what an appropriate number of 
classes might be, or how they should be related. 

Dynamically generating self-organizing networks attempt to address this issue by 
formulating a set of dynamic associations as they grow to represent the data space. 
Among the many proposed dynamic extensions to the classic SOM algorithm, there 
exist two principal approaches: hierarchical and non-stationary, as well as hybrids of 
these two.  Many of these structures have foundations in various stationary methods 
including the SOM itself, Competitive Learning (CL) [6, 7], Neural Gas (NG) [8], or 
the Hierarchical Feature Map (HFM) [9]. 
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2   The Self-Organizing Tree Map (SOTM)  

The SOTM was first proposed in 1995 [10] and later developed [11, 12]. In the basic 
SOTM process, Competitive Learning is implemented just as in the SOM; however, 
the structure of the network is dynamic and is grown from a single node.  In many 
ways, the SOTM process draws inspiration from Adaptive Resonance Theory (ART) 
applied to an SOM-type framework. 

In ART [13-15], the network has an outer layer that is capable of storing a certain 
capacity of prototypes (output layer).  With each input, competitive learning locates 
the nearest prototype in the outer layer, and a test is performed to establish how 
similar the input is to the existing prototype(s).  This test is known as a vigilance test.  
If the input is within a tolerance of the winning prototype, then resonance is said to 
occur, resulting in the refinement of the winning prototype.  Otherwise, while there is 
still capacity, a new prototype is formed. 

Node or prototype insertion in the SOTM is driven by a top-down process that 
effectively explores the data space from the outside-in.  An ellipsoid of significant 
similarity [28] forms a global vigilance threshold H(t) that is used to evaluate the 
proximity of each new input sample against the closest existing prototype (winning 
node) currently in the network.  A hard decision is made: if the input is distant 
from the winner beyond the threshold, a new prototype is spawned as a child node 
to the current winner, and the process continues with the next input.  Otherwise, 
the input is deemed significantly similar and the winner is updated toward the 
input.  This insertion process is shown in Figure 16(a) (see [28] for a more detailed 
treatment). 

Through this dynamic vigilance function, Kohonen style adaptation and topological 
connections, the SOTM is distinguished from ART-based models. In fact, this vigilance 
is in a form of hierarchical control [22], as it evaluates proximity at decreasing levels 
during time and hierarchically partitions the data. The hierarchical approach naturally 
attempts to maximize discrimination across the entire data space in early phases of 
discovery before considering finer differences in the data. 

 
(a) (b) 

Fig. 2. Self-organizing data clustering; (a) performed by SOTM, no nodes converge to join the 
areas of zero data density; (b) performed by SOM, nodes converge to areas of zero data density 
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Error-driven mechanisms such as GNG, GCS and GG do not necessarily achieve 
this, as they unfold outward – expanding across the data space.  As such, if the net-
work was to exhibit a limited capacity for prototypes (i.e. be limited in the number of 
classes it uses), it is quite possible that nodes generated may not form a representation 
that adequately spans the data. 

Due to the relationship among new nodes and their parents (winners at the time of 
generation), a tree structure naturally evolves during SOTM growth.  This may also 
operate as an indicator of neighboring nodes, as they are generated according to 
proximity, as differing levels of granularity are parsed.  This can be seen in Figures 
3(a)-(b), which also show a comparison of the clustering efficiencies between the 
SOTM and the SOM on a two-dimensional feature space [11]. In these figures, the 
input vectors are uniformly distributed within many rectangular squares. The SOTM’s 
clustering performance in Figure 2(a) shows that there are no neurons lying in a zero-
density area. In contrast, although the SOM’s topology exhibits the distribution of the 
structured input vectors, it also introduces several false representations outside of the 
distribution of the input space, as shown in Figure 2(b). 

As indicated by this example, the SOTM realizes the learning such that its 
connections organize to form a suitable, efficient network structure. This property is 
necessary for a high-dimensional input space with a sparse data structure, where it is 
important to prioritize the formation of a model that effectively spans the data. 

3   Application of SOTM to Image Retrieval  

The goal of image retrieval is to find, from an image database, a set of images whose 
contents are similar to a given query. Each image in the database is considered as a 
vector point in the feature space that characterizes its color, shape, and texture 
information. A similarity function is applied to measure similarity among vectors. 

In order to reduce the gap between low-level features used for image indexing and 
the high-level concepts used by users, relevance feedback (RF) techniques were 
introduced [17, 20]. In these techniques, a user provides initial query and trains 
(supervises) a search engine on what is regarded as relevant images through relevance 
feedback learning. The search engine is considered as a supervised learning unit that 
adapts itself according to user feedback. 

There are two problems, however, associated with RF: a) the system requires a 
high degree of user workload in providing feedback samples through many cycles of 
relevance feedback before convergence, and b) the possible human subjective error is 
introduced when users provide relevance judgment to retrieved images. 

In view of the above problems, SOTM was applied to minimize user workload by 
implementing automatic relevance feedback process [18, 19]. Repetitive user interaction 
steps are replaced by an SOTM module that adaptively guides RF. Experimental results 
have demonstrated the effectiveness of SOTM-based automatic relevance feedback [19]. 

The basic SOTM algorithm not only extracts global intuition from an input pattern 
space but also injects some degree of localization into the discriminative process such 
that maximal discrimination becomes a priority at any given resolution. However, it 
suffers from two problems: it is unable to decide on the relevant number of classes in 
a relevancy identification task; and often loses track of the true query position. 
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3.1   The Directed Self-Organizing Tree Map (DSOTM) 

Losing the sense of query location within the input space can cause undesired effect 
on the true structure of the relevant class and can force the SOTM algorithm to spawn 
new clusters and form unnecessary boundaries within the query class as is illustrated 
in Figure 3. Therefore, retaining some degree of supervision to prevent unnecessary 
boundaries from forming around the query class is desirable. 

A recent addition to the SOTM family, the Directed Self-Organizing Tree Map 
(DSOTM) has been proposed to solve the aforementioned problem. The DSOTM 
algorithm not only provides a partial supervision on cluster generation by forcing 
divisions away from the query class but also makes a gradual decision on 
resemblance of the input patterns by constantly modifying each sample’s 
membership during the learning phase of the algorithm. As a result, a more robust 
topology with respect to the query, as well as a better sense of likeness, can be 
achieved [21]. 

On the other hand, DSOTM relies on the query position as the a-priori center of the 
relevant class and updates memberships according to this knowledge. Having said 
that, the synaptic vector adjustments in the DSOTM are not just limited to the 
winning node; the algorithm also constantly modifies all the centers according to the 
query position. Alternatively, if the winning center is not the query center, vector 
adjustments will affect both the winning node and the relevant center’s position by 
moving the winning node (center of the irrelevant class) more toward the irrelevant 
samples and moving the relevant center more toward the query center. Thus, as more 
samples are exposed to the network, the DSOTM algorithm will learn less from 
irrelevant samples and more from the relevant ones by maintaining the integrity of a 
relevant center near the original query position.  This action helps to foster a sense of 
generalization in the query class across feature subtleties that may objectively be 
deemed as discriminative by an independently operating SOTM. The DSOTM 
desensitizes partitioning in the region of a query. 

 
 (a) (b) (c) 

Fig. 3. 2-D mapping: (a) Input pattern with 5 distinct clusters, (b) 14 generated centers using 
SOTM, and (c) 5 generated centers using DSOTM. The SOTM forms a boundary near the 
query (triangle) contaminating relevant samples, where as some supervision is maintained in 
the DSOTM case, preventing unnecessary boundaries from forming. 
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3.2   Genetic Algorithm and Automatic CBIR System (GA-CBIR) 

The block diagram of the proposed GA-CBIR is illustrated in Figure 4. Since 
DSOTM seeks to provide a better judgment about resemblance of input samples to 
one another and since GA aims to select and reproduce a better fit population of 
candidate solutions, this DSOTM-GA combination can effortlessly achieve a fully 
automated retrieval engine. The GA thus attempts to mimic human attention by 
working and coordinating the search subjectively, feeding and evaluating results from 
the more objective DSOTM. This is possible by highlighting dominant characteristics 
of images through feature weighting which seeks to emphasize certain characteristics 
in an image (i.e. its color, texture, and/or shape) that might provide significant 
information to the DSOTM for a more robust classification. Assigning proper weights 
for individual features can significantly increase performance behavior of CBIR 
systems, reducing the need for human supervision. 

 

Fig. 4. Genetic Algorithm-Based CBIR 

Table 1. Experimental results in terms of rr 
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Sets 

CBIR 
with SOTM 

CBIR 
with 

DSOTM 
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CBIR with 

SOTM 

GA-CBIR 
with DSOTM 

A 47.5% 58.0% 66.8% 78.3% 
B 47.4% 59.6% 72.1% 76.7% 
C 51.0% 56.8% 74.4% 80.5% 

Ave. 48.6% 58.1% 71.1% 78.5% 

A number of experiments were conducted to compare behaviors of the automatic 
CBIR and GA-CBIR engines using SOTM and DSOTM clustering algorithms. 
Simulations were carried out using a subset of the Corel image database consisting of 
nearly 10,000 JPEG color images, covering a wide range of real-life photos from 100 
different categories. Each category consisted of 100 visually-associated objects to 
simplify the measurements of the retrieval accuracy during the experiments. Three 
sets of 100 images were drawn from the database. In sets A and B, images were 
randomly selected from the entire set without regard for class; whereas in set C, 
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images were randomly selected such that no two images were from the same class. 
Retrieval results were statistically calculated from each of the three sets. In the 
simulations, a total of 16 most relevant images were retrieved to evaluate the 
performance of the retrieval. The experimental results are illustrated in Table 1. A 
typical retrieval result is shown in Figure 5.  

 
 (a) (b) 

Fig. 5. Screenshot of the GA-CBIR Engine: (a) 62.5% retrieval rate for the query image (on 
top-left corner) using DSOTM classifier without GA feature weight detection; and (b) 100% 
retrieval rate for the same query using GA feature weight detection and DSOTM classifier 

4   SOTM-Cluster Modeling for Microbiological Image Analysis  

Microscopy has long been considered an essential investigative tool in the biological 
sciences.  Recent advances in confocal modalities, in particular, have allowed for the 
non-invasive capture of spatially registered 3-D information regarding the physical 
and chemical structure of complex microbiological environments.  With possibilities 
for new insights, interest is shifting from how to collect the pretty picture toward the 
more significant issue of how to adequately quantify this information for more 
systematic visualization, characterization and modeling. In such scenarios, any form 
of evaluation would typically be guided by an expert. Analysis often proceeds with an 
initial segmentation, wherein the expert attempts to identify meaningful biomass 
he/she wishes to analyze.  Such steps become quite prohibitive if dealing with large 3-
D volumes of data. In addition, they are rarely reproducible, particularly if evaluating 
data sets are highly heterogeneous (a common feature of biological image data). As 
such, an unacceptable level of subjectivity is introduced into the analysis. A 
systematic approach to microbiological image analysis is shown in Figure 7.   

4.1   Visualization 

As a visualization example, a volume rendering of a dataset could use the associations 
among classes to establish how to assign transparencies and color schemes to enhance 
or focus visualization on particular constituents of interest. Figure 8 shows such an 
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example of extracting orchid root tip chromosomes from a confocal stack captured 
using a phase-contrast modality [22]. The modality is necessary as the chromosomes 
are translucent in their natural state. Often, such methods yield subtleties in structural 
variation that cannot be detected with an epi-fluorescent modality In the current 
treatment, visualization of the chromosomes is achieved through segmentation with 
the SOTM, an extension of [23]. 

 

Fig. 6. Systematic Approach to Microbiological Image Analysis.  SOTM forms a cluster model, 
which acts as a backbone for visualization and characterization tasks.  

 
 (a) (b) (c) 

Fig. 7. SOTM Segmentation for Volume Visualisation. TOP Chromosome visualisation: 
(a) original slice 9/18, (b),(c) segmented and volume-rendered.  

In the SOTM case, the transition into a volume visualization framework is more 
natural, as topological associations provide a more suitable associative backbone 
through which opacities of extracted microstructure types may be more readily 
controlled.  In this instance, two dominant voxel prototypes within the chromosome are 
isolated and emphasized with imposed color contrast.  Figure 8 shows a sample 
chromosome slice and the resulting volume-rendered dataset. 
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4.2   Characterization and Analysis 

The other example highlights the problem of user-driven subjectivity for 
characterization. Consider two slices from different fields of view within a biofloc 
specimen (Figure 8 (a), (b)) which appear quite different; however, there are aspects 
that are similar; for instance, the localized clusters of bacteria nodules forming in 
surrounding fine grain material. 

Typically, characterization processes would involve thresholding process [24, 25].  
Such methods form a precursor to characterization software such as ISA [26] – an 
industry standard product for quantifying biofilm. In Biofloc, because a highly 
heterogeneous nature of the biomass, much potentially important information which 
characterizes the state of the biofilm/floc could be lost as indicated in Figure 8(d), 
where [24] cannot discriminate between internal constituents from Figure 8(b). 

The well-known K-Means algorithm was used in Figure 8 (c), initialized with the 
same number of classes as discovered by the SOTM result in Figure 8(e).  In this 
case, proximity features were incorporated in the feature extraction phase. 

 
 (a) (b) (c) 

 
 (d) (e) (f) 

Fig. 8. SOTM Segmentations of Biofilm; from left to right, top to bottom: (a),(b) two slices of 
biofilm. Segmentations of (b): (c) K-means and (d) Otsu’s threshold; (e) SOTM; (f) SOTM 
with dynamic feature weighting during learning. The final two cases show increased structural 
resolution and association in a manner that appears more perceptually relevant. 

The SOTM shows a highly efficient allocation of classes to foreground biomass. It 
represents a much more perceptually relevant decomposition of the original image 
slice of Figure 8(b) than was achieved by K-Means. Interestingly, relationships 
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associating nearby particles of similar content have been discovered by the SOTM: 
the two bacterial nodules shown as two major spatial groupings in Figure 8(e). 

Figure 8(f) shows an additional experimental result that implements a dynamic 
feature weighting strategy in learning. Essentially, proximity features were favored 
early during learning, and signal features were favored later. The flexibility of the 
SOTM tree structure allowed for an easy shift in allocation across these two feature 
subspaces.  In fact, along with the hierarchical parsing, this worked to resolve even 
more structural subtleties as discrimination was maximized at all levels of evolution. 

6   Local Variance Driven Self-Organization: Toward the 
Generation of Forests from Trees 

We recently proposed the Self-Organizing Hierarchical Variance Map (SOHVM) 
which is also rooted in the principles of the SOTM [27]. This model differs from the 
SOTM in that it utilizes an intelligent vigilance strategy based on the underlying data 
distribution as it is discovered, rather than a globally decaying hierarchical function. 

In addition to SOTM-based parent/children relationships, CHL is incorporated into 
the SOHVM’s adaptive mechanism. The methodology thus shares properties common 
to GNG variants in that, as it partitions the input space divisively, a topological 
preserving set of associative connections among nodes is simultaneously constructed.  
In doing so, it is also possible for regions of the data space to disassociate at lower 
hierarchical levels. In this sense, the model begins with the growth of trees but may 
expand at later phases into forests of trees encoding even higher levels of association. 

 

Fig. 9. A comparison of the decision regions used for node generation in an SOTM versus an 
SOHVM.  The latter attempts to new insert nodes (open circles) at the extremities of the data 
described by a winning node (closed circle) – wk* is the winning center, and its eigenvalue/vector 
pair (k*,qk*) describe local variance properties. X’s are invalid sites for node insertion. 

Each neuron in the network consists of a dual memory element to track 
information regarding a discovered prototype. In addition to center position (as in 
most other self-organizing structures), Hebbian-based Maximum Eigenfilters (HME) 
[28] simultaneously estimate the maximal variance of local data, presenting an 
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additional realization of the Hebbian postulate of learning to probe the nature of the 
covariance in the data within the vicinity of any given node. The HME embedded in 
each node provides for local orientation selectivity of the underlying data, by 
extracting the maximal eigenvector/eigenvalue pair from the locally surveyed data. 

Vigilance is now assessed via interplay among local variances extracted such that 
more informed decisions control and naturally limit network growth.  Figure 9 shows 
a comparison between the decision regions that result in the insertion of a new node in 
the SOTM versus the SOHVM.  The hierarchical threshold begins as in the SOTM 
(very large), yet as nodes are inserted, regions of the data are isolated, thus their local 
variances are generally reduced.  The hierarchical threshold decays in accordance 
with the variances discovered in the network.  This continues as long as reasonable 
clusters are extracted.  In regions where the hierarchical function falls below the local 
variance, the node is disabled, such that it can no longer act as a site for the spawning 
of new children.  This limits over-fitting. 

 

 

Fig. 10. GNG (top) evolves onto data space, but splits prematurely well before capturing all cluster 
positions. Classification thus subdivides clusters. SOHVM (bottom) maximally spans the data 
space through hierarchical partitioning; this property is localized through the HME units (lines 
show axis for orientation selectivity).  Network infers more accurate number of total clusters. 

Once the dense regions have been exposed, the network attempts to insert nodes 
into outlier or noise positions from which it is difficult to track back due to increased 
competition across the data space.  In the SOHVM, however, the discovery of such an 
outlier (typified by high local variance and low probability) also drives the local 
variance high, disabling the node. 

Ultimately, the SOHVM intelligently decides when to cease growing, thereby 
addressing one of the most difficult problems in unsupervised clustering – inferring 
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an appropriate number of clusters in which to partition the data. Figure 10 shows how 
the network unfolds over a sample data space in comparison to GNG.   

Should complete disassociation occur between the significantly separate regions in 
the data, multiple trees would be produced (a forest of trees) encoding even higher 
levels of association.  In such cases, the data may be evaluated in terms of collections 
of properties specific to individual tree groups, in addition to properties evaluated at 
the cluster level.  It is anticipated that such mining approaches may thus extract 
inherent, but less obvious hierarchical relationships among the data. 

7   Closing Remarks 

Complex tasks in visual data processing that normally require extensive human 
interaction or guidance become prohibitive when there are overwhelming volumes of 
data that need to be processed. In most, a certain amount of perception is required to 
successfully complete them (a highly non-linear challenge). Artificial neural networks 
based on self-organization are particularly suited to modelling such nonlinearities, 
thus they have generated much research interest.  Dynamically growing models of 
self-organization attempt to address the problem of inferring an appropriate number of 
classes from the underlying data distribution, and thus, exhibit greater flexibility than 
static approaches. In this discussion, the SOTM family of architectures is 
demonstrated for their propensity in formulating a topological set of classes that 
attempt to maximize pattern discrimination while hierarchically parsing an underlying 
distribution. The DSOTM and the SOHVM, newer variants of the SOTM have been 
proposed and applied with success to content-based image retrieval, and to analysis 
and visualization of 3-D microbiological data. It is demonstrated the SOTM variants 
are imperative components in the automation of perceptually-driven tasks. With the 
growing demand for such automation by many of today’s visual data analysis and 
applications, dynamic self-organization is well-poised to leave its mark. 
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1 Introduction

The field of statistical Pattern Recognition[1], [2] has matured since its infancy
in the 1950’s, and the aspiration to enlarge the horizons has led to numerous
philosophically-new avenues of research. The fundamental questions tackled in-
volve (among others) increasing the accuracy of the classifier system, minimizing
the time required for training and testing, reducing the effects of the curse of
dimensionality, and reducing the effects of peculiar data distributions.

One of the most recent novel developments in this field is the concept of
Dissimilarity-Based Classifiers (DBCs) proposed by Duin and his co-authors (see
[3], [4], [5], [6], [8]). Philosophically, the motivation for DBCs is the following:
If we assume that “Similar” objects can be grouped together to form a class,
a “class” is nothing more than a set of these “similar” objects. Based on this
idea, Duin and his colleagues argue that the notion of proximity (similarity or
dissimilarity) is actually more fundamental than that of a feature or a class.
Indeed, it is probably more likely that the brain uses an intuitive DBC-based
methodology than that of taking measurements, inverting matrices etc. Thus,
DBCs are a way of defining classifiers between the classes, which are not based
on the feature measurements of the individual patterns, but rather on a suitable
dissimilarity measure between them. The advantage of this methodology is that
since it does not operate on the class-conditional distributions, the accuracy can
exceed the Bayes’ error bound - which is, in our opinion, remarkable2. Another
salient advantage of such a paradigm is that it does not have to confront the
problems associated with feature spaces such as the “curse of dimensionality”,
and the issue of estimating a large numbers of parameters. The problem with this
strategy is, however, the need to compute, store and process the inter-pattern
dissimilarities for (in the worst case) all the training samples, and thus, the
accuracy of the classifier designed in the dissimilarity space is dependent on the
methods used to achieve this.

A dissimilarity representation of a set of samples, T = {x1, · · · , xn}, is based
on pairwise comparisons and is expressed, for example, as an n × n dissimilarity
matrix3 DT,T [·, ·], where the subscripts of D represent the set of elements on
which the dissimilarities are evaluated. Thus each entry DT,T [i, j] corresponds
to the dissimilarity between the pairs of objects 〈xi, xj〉, xi, xj ∈ T . When it
concerns testing any object in the sample space, x, the latter is represented by
a vector of proximities δ(x, Z) to the objects in a specific set Z, which is used
for the testing purposes. Thus, if x = xi, and Z = T , δ(xi, T ) is the ith row
of DT,T [·, ·]. The principle behind DBCs is that a new (testing) sample z, if

2 In our opinion, the theory of DBCs is one of the major contributions to the field
of statistical PR in the last decade. Duin and his colleagues [3] have ventured to
call this paradigm a featureless approach to PR by insisting that there is a clear
distinction between feature-based and non-feature based approaches. We anticipate
that a lot of new research energy will be expended in this direction in the future.

3 If the dissimilarity is not stored, but rather computed when needed, it would be
more appropriate to regard it as a function DT,T (·, ·).
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represented by δ(z, T ), is classified to a specific class if it is sufficiently similar
to one or more objects within that class.

The problem we study in this paper deals with how DBCs between classes rep-
resented in this manner can be effectively computed. The families of strategies
investigated in this endeavour are many. First of all, by selecting a set of proto-
types or support vectors, the problem of dimension reduction can be drastically
simplified. In order to select such a representative set from the training set, the
authors of [4] discuss a number of methods such as random selections, the k-
centers method, and others which will be catalogued presently. Alternatively,
some work has also gone into the area of determining appropriate measures of
dissimilarity using measures such as various Lp Norms (including the Euclidean
and L0.8), the Hausdorff and Modified Hausdorff norm, and some traditional PR-
based measures such as those used in Template matching, and Correlation-based
analysis. These too which will be listed presently4.

1.1 Contributions of the Paper

We claim two modest contributions in this paper based on rigorous tests done
on both established benchmark artificial and real-life data sets:

1. First of all, we show that a PRS5 can also be used as a tool to achieve
an intermediate goal, namely, to minimize the number of samples that are
subsequently used in any DBC system. This subset, will, in turn be utilized to
design the classifier - which, as we shall argue, must be done in conjunction
with an appropriate dissimilarity measure. This, in itself, is novel to the field
when it concerns the applications of PRSs.

2. The second contribution of this paper is the fact that we have shown that
using second-order distance measures, such the Mahalanobis distance, to-
gether with appropriate PRS, has a distinct advantage when they are used
to implement the DBC.

2 Dissimilarity-Based Classification and Prototype
Reduction Schemes

2.1 Foundations of DBCs

Let T = {x1, · · · , xn} ∈ Rp be a set of n feature vectors in a p dimensional
space. We assume that T is a labeled data set, so that T can be decomposed
into, say, c subsets {T1, · · · , Tc} such that ∀i �= j:
(1) Ti = {x1, · · · , xni}, (2) n =

∑c
i=1 ni, (3) T =

⋃c
k=1 Tk, and (4) Ti ∩ Tj = φ.

Our goal is to design a DBC in an appropriate dissimilarity space constructed
with this training data set, and to classify an input sample z appropriately.

4 For want of a better term, DBCs enhanced with these prototype selection methods
and the latter distance measures, will be referred to as “conventional” schemes.

5 Bezdek et al [9], who have composed an excellent survey of the field, report that
there are “zillions!” of methods for finding prototypes (see page 1459 of [9]).
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To achieve this, we assume that from Ti, the training data of class ωi, we
extract a prototype set6, Yi, where,

(1)Yi =
{
y1, · · · , ymi

}
, and (2) m =

∑c
i=1 mi.

Every DBC assumes the use of a dissimilarity measure, d, computed from the
samples, where, d(xi, yj) represents the dissimilarity between two samples xi

and yj . Since, d, is required to be nonnegative, reflexive and symmetric7:
d(xi, yj) ≥ 0 with d(xi, yj) = 0 if xi = yj , and d(xi, yj) = d(yj , xi).
The dissimilarity computed between T and Y leads to a n × m matrix,

DT,Y [i, j], where xi ∈ T and yj ∈ Y . Consequently, an object xi is represented
as a column vector as following :

[d(xi, y1), d(xi, y2), · · · , d(xi, ym)]T , 1 ≤ i ≤ n. (1)

Here, we define the dissimilarity matrix DT,Y [·, ·] to represent a dissimilarity
space on which the p-dimensional object, x, given in the feature space, is repre-
sented as an m-dimensional vector δ(x, Y ), where if x = xi, δ(xi, Y ) is the ith

row of DT,Y [·, ·]. In this paper, the column vector δ(x, Y ) is simply denoted by
δY (x), where the latter is an m-dimensional vector, while x is p-dimensional.

For a training set {xi}n
i=1, and an evaluation sample z, the modified training

set and sample now become {δY (xi)}n
i=1 and δY (z), respectively. From this

perspective, we can see that the dissimilarity representation can be considered
as a mapping by which any arbitrary x is translated into δY (x), and thus, if m
is selected sufficiently small (i.e., m << p), we are essentially working in a space
with much smaller dimensions. The literature reports the use of many traditional
decision classifiers including k -NN rule and the linear/quadratic normal-density-
based classifiers to the task of classifying z using δY (z) in the dissimilarity space.

2.2 Prototype Selection Methods for DBCs

We first consider the reported methods [6], [7], [8] by which each Ti is pruned
to yield a set of representative prototypes, Yi, where, without loss of generality
|Yi| < |Ti|. The intention is to guarantee a good tradeoff between the recognition
accuracy and the computational complexity when the DBC is built on DT,Y (·, ·)
rather than DT,T (·, ·). The reported comparison of [8] has been performed from
the perspective of the resultant error rates and the the number of prototypes
obtained. The experiments were conducted with seven artificial and real-life
data sets. Eight selection methods employed for the experiments were Random,
Random C, KCentres, ModeeSeek, LinProg, PeatSeal, KCentres-LP, and EdiCon.
In the interest of completeness, we briefly explain below (using the notation
introduced above) the methods that are pertinent to our present study.

1. Random : This method involves a random selection of m samples from the
training data set T .

6 Since we are invoking a PRS to obtain Yi from Ti, we do not require that Yi ⊆ Ti.
Rather Yi may be created or selected from Ti, and its computation may also involve
the other sets, Tj , j �= i.

7 Note that d(·, ·) need not be a metric [8].
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2. RandomC : This method involves a random selection of mi samples per class,
ωi, from Ti.

3. KCentres : This method8 consists of a procedure that is applied to each
class separately. For each class ωi, the algorithm is invoked so as to choose
mi samples which are “evenly” distributed with respect to the dissimilarity
matrix DTi,Ti [·, ·]. The algorithm can be summarized as follows:
(a) Select an initial set Yi =

{
y1, · · · , ymi

}
consisting of mi objects, e.g.

randomly chosen from Ti.
(b) For each x ∈ Ti, find its nearest neighbor in Yi. Let Nj, j = 1, · · · , mi, be

a subset of Ti consisting of objects that yield the same nearest neighbor
yj in Yi. This means that Ti = ∪mi

j=1Nj .
(c) For each Nj, find its center cj , which is the object for which the maximum

distance to all other objects in Nj is minimum (this value is called the
radius of Nj).

(d) For each center cj , if cj �= yj , then replace yj by cj in Yi. If any replace-
ment is done, then return to Step (b). Otherwise exit.

(e) Return the final representation set Y consisting of all the final sets Yi.

From the experimental results of [8], the authors seem to have deliberated
that systematic approaches lead to better results than those which rely on ran-
dom selection, especially when the number of prototypes is small. Furthermore,
although there is no single winner (inasmuch as the results depend on the char-
acteristics of the data), they indicate that, in general, the KCentres works well.

The details of the other methods (see [8]) such as ModeSeek, FeatSel, LinProg,
KCentres-LP, and EdiCon are omitted here as they are not directly related to
the premise of our work. Whereas our present work and the above three methods
pursue a pruning in the original feature space, the methods omitted here attempt
the same in the dissimilarity space.

2.3 Dissimilarity Measures Used in DBCs

Fundamental to DBCs is the measure used to quantify the dissimilarity between
two vectors9. The work in [8] reports extensive experiments conducted using
various dissimilarity measures (see Table 2 of [8]). A list of these measures where
we quantify the dissimilarity between v and w ∈ Rq, is given below:

1. City Block Norm : D1 =
∑q

i=1 |vi − wi|.
2. Euclidean Norm : DE(orD2) =

√
(v − w)T (v − w).

3. Max Norm : Dmax = Maxi|vi − wi|.
4. Lp or Minkowski Norm : Dp = (

∑q
i=1 |vi − wi|p)1/p

, p ≥ 1, p �= 2.
5. Hausdorff Norm :

h(A, B) = max
a∈A

min
b∈B

‖a − b‖ (2)

8 This procedure is essentially identical to the k-means clustering algorithm per-
formed in a vector space, and is thus heavily dependent on the initialization.

9 The details of the binary, categorical, ordinal, symbolic and quantitative features
are omitted here, but can be found in [8].
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The measures which were tested in [8] essentially fall into three categories :
(a) The City Block, L0.8, Euclidean, and Max Norm, which are special cases of
the Lp metric for p = 1, 0.8, 2 and ∞ respectively, (b) The Hausdorff Norm, and
its variants, which involve Max-Min computations, and (c) Traditional pattern
recognition norms such as the Template matching and Correlation Norms. The
details of the other measures such as the Median and Cosine, are omitted here
in the interest of compactness, but can be found in [6].

2.4 State-of-the-Art DBC Optimization

Based on the above, in all brevity, we state that the state-of-the-art strategy
applicable for optimizing DBCs involves the following steps:

1. Select the representative set, Y , from the training set T by resorting to one
of the methods given in Section 2.2

2. ComputethedissimilaritymatrixDT,Y [·, ·],usingEq. (1), inwhicheach individ-
ual dissimilarity is computed using one of the measures described in Section 2.

3. For a testing sample z, compute a dissimilarity column vector, δY (z), by
using the same measure used in Step 2 above.

4. Achieve the classification based on invoking a classifier built in the dissimi-
larity space and operating on the dissimilarity vector δY (z).

2.5 State-of-the-Art Prototype Reduction Schemes

In non-parametric pattern classification which use the Nearest Neighbour (NN)
or the k−NN rule, each class is described using a set of sample prototypes, and
the class of an unknown vector is decided based on the identity of the closest
neighbour(s) which are found among all the prototypes.To reduce the number of
training vectors, various PRSs have been reported in the literature - two excellent
surveys are found in [9], [10]. Rather than embark on yet another survey of the
field, we mention here a few representative methods of the “zillions” that have
been reported. One of the first of its kind is the Condensed Nearest Neighbour
(CNN) rule [11]. The reduced set produced by the CNN, however, customar-
ily includes “interior” samples, which can be completely eliminated, without
altering the performance of the resultant classifier. Accordingly, other methods
have been proposed successively, such as the Reduced Nearest Neighbour (RNN)
rule, the Prototypes for Nearest Neighbour (PNN) classifiers [13], the Selective
Nearest Neighbour (SNN) rule, two modifications of the CNN [17] Neighbour
(ENN) rule and the non-parametric data reduction method [12]. Besides these,
the Vector Quantization (VQ) and the Bootstrap [17] techniques and Support
Vector Machines (SVM) [15] have also been reported as being extremely effective
approaches to data reduction.

In selecting prototypes, vectors near the boundaries between the classes have
to be considered to be more significant, and the created prototypes need to be
adjusted towards the classification boundaries so as to yield a higher perfor-
mance. Based on this philosophy, we recently proposed a new hybrid approach
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that involved two distinct phases, namely, selecting and adjusting [18], [19]. To
overcome the computational burden for “large” datasets, we also proposed a
recursive PRS mechanism in [20]. In [20], the data set is sub-divided recursively
into smaller subsets to filter out the “useless” internal points. Subsequently, a
conventional PRS processes the smaller subsets of data points that effectively
sample the entire space to yield subsets of prototypes – one set of prototypes
for each subset. The prototypes, which result from each subset, are then coa-
lesced, and processed again by the PRS to yield more refined prototypes. In this
manner, prototypes which are in the interior of the Voronoi boundaries, and are
thus ineffective in the classification, are eliminated at the subsequent invoca-
tions of the PRS. As a result, the processing time of the PRS is significantly
reduced.

Changing now the emphasis, we observe that with regard to designing classi-
fiers, PRS can be employed as a pre-processing module to reduce the data set
into a smaller representative subset, and have thus been reported to optimize
the design of KNS classifiers in [21], [22]. The details of these are omitted here
as they are irrelevant.

3 Proposed Optimization of DBC’s

We have already seen (in Section 2) that the two fundamental avenues by which
DBCs can be optimized involve those of reducing the size of T 10, and determining
a suitable dissimilarity measure. The drawbacks which the reported methods
have, are the following:

1. The reported methods reduce the set T (to design Y ) by merely selecting
elements from the former.

2. When the reported methods compute the dissimilarity measure between two
vectors, they ignore the second-order properties of the data.

With regard to reducing the size of the representative points, rather than de-
ciding to discard or retain the training points, we permit the user the choice of
either selecting some of the training samples using methods such as the CNN, or
creating a smaller set of samples using the methods such as those advocated in
the PNN, VQ, and HYB. This reduced set effectively serves as a new “represen-
tative” set for the dissimilarity representation. Additionally, we also permit the
user to migrate the resultant set by an LVQ3-type method to further enhance
the quality of the reduced samples. To investigate the computational advantage
gained by resorting to such a PRS preprocessing phase, we observe, first of all,
that the number of the reduced prototypes is fractional compared to that of
the conventional ones, namely those obtained by random selection or clustering-
based operations. Once the reduced prototypes are obtained, the dissimilarity
matrix computation is significantly smaller since the computation is now done
for a much smaller set, i.e., for an n × m matrix, versus an n × n one.

10 In general, increasing the cardinality of the representative subset, drastically im-
proves the average classification accuracy of the resultant DBC.
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We propose to enhance DBC’s by modifying each of the above as follows:

1. Reduce the set T (to design Y ) by invoking a PRS on the former. The
advantages of doing this (over the methods given in Section 2.2) are:

(a) A PRS permits us to obtain Y by either selecting the representative set
or creating it.

(b) By choosing an appropriate PRS, we are able to obtain the representative
samples of each class Yi by also including the information in the other
Yj ’s (j �= i). This is especially true of the classes of PRSs which also
invoke LV Q3-type perturbations on the representative points.

(c) Most PRSs are designed with the specific task of determining the rep-
resentative subset of points so as to maximize the class-discriminating
properties. But incorporating such information in the subset used for
DBCs, we believe that the resultant optimized DBC will be superior to
the corresponding DBC which excludes this information. This is, indeed,
our experience.

2. Compute the dissimilarity measure between two vectors using the Maha-
lanobis distance, where the estimated covariance matrix of each class is ob-
tained by using the training samples of that class in T . The advantages of
doing this (over the methods given in Section 2.3) are:

(a) Defining a well-discriminating dissimilarity measure for a non-trivial
learning problem has always been known to be difficult. Indeed, design-
ing such a measure in a DBC is equivalent to defining good features in
a traditional feature-based classification problem. If a good measure is
found and the training set T is representative, the authors of [8] report
that the performance of the DBC can be enhanced.

(b) The dissimilarity measures used in [8] (refereed to in Section 2.3) do not
utilize the actual spread of the data in the feature space. It is well known
in the field that computing distances and achieving classification using the
available covariance information can lead to results superior to those ob-
tained by ignoring this information. We intend to take advantage of this.

(c) Although the reduced set of points Y is used in the DBC, the information
concerning the spread of the original data points is contained in the sets
{Ti}. Thus, we believe that we can take advantage of this information
by using the DBC obtained by the subset of points in {Yi}, but by
simultaneously incorporating the variance information contained in the
original sets, the Ti’s.

(d) The basic premise for the DBC methodology is that since it does not
operate on the class-conditional distributions, the accuracy can exceed
the Bayes’ errors bound. However, in attempting to achieve this, the
state-of-the-art DBC methods ignore the information contained in the
class-conditional distributions. Since this information can be summarized
in the moments, we intend to use the second-order moments to optimize
the design of DBCs. This is done, in our present scheme, by incorporating
it in the computation of the Mahalanobis distances.
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(e) Recently, Horikawa [7] experimented on the properties of NN classifiers
for high-dimensional patterns in DBCs. From the experimental results
reported, the author demonstrated that the performance of the NN clas-
sifiers constructed with DBCs increases with the dimensionality of the
pattern when the categorical pattern distributions are different from each
other. This is, indeed, what we want to take advantage of incorporating
this distinct information via the Mahalanobis distance computations.

Based on the above, our proposed strategy applicable for optimizing DBCs
involves the following steps:

1. From each Ti compute the estimate of Σi, the covariance matrix of the class
conditional density.

2. Select the representative set Y from the training set T by resorting to one
of the PRS methods given in Section 2.5.

3. Compute the dissimilarity matrix DT,Y [·, ·], using Eq. (1), in which each
individual dissimilarity is computed as the Mahalanobis distance evaluated
using the value for Σi estimated in Step 2 above.

4. For a testing sample z, compute a dissimilarity column vector, δY (z), by
using the Mahalanobis distance used in Step 3 above.

5. Achieve the classification based on invoking a classifier built in the dissimi-
larity space and operating on this dissimilarity vector, δY (z).

4 Experimental Results : Artificial/Real-Life Data Sets

Experimental Data: The proposed method has been tested and compared with
the conventional ones. This was done by performing experiments on a number
of data sets. The sample vectors of each data set are divided into two subsets
of equal size, and used for training and validation, alternately. The training set
was used for computing the prototypes and the respective covariance matri-
ces, and the test set was used for evaluating the quality of the corresponding
classifier.

In our experiments, the three artificial data sets “Random”, “Non normal 2”,
and “Non linear 2” were generated with different sizes of testing and training
sets of cardinality 400, 1,000, and 1,000 respectively. The data set described as
“Random” is generated randomly with a uniform distribution, but with irregu-
lar decision boundaries. In this case, the points are generated uniformly, and the
assignment of the points to the respective classes is achieved by artificially as-
signing them to the region they fall into, as per the manually created “irregular
decision boundary”.

The data set named “Non normal2”, which has also been employed as a bench-
mark experimental data set [1] for numerous experimental set-ups was generated
from a mixture of four 8-dimensional Gaussian distributions.

The data set named “Non linear2”, which has a strong non-linearity at its
boundary, was generated artificially from a mixture of four variables as follows:
p1(x) = {x1,

1
2x2

1 +y1}, p2(x) = {x2, − 1
2x2

2 +y2}, where x1, x2, y1, y2 are normal
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random variables whose means and variances are (0, 10), (10, 5), (3, 10) and
(20, 5), respectively. The total number of vectors per class is 500.

On the other hand, the data sets “Iris2”, “Ionosphere” (in short, “Iono”),
“Sonar”, “Arrhythmia” (in short, “Arrhy”) and “Adult4”, which are real bench-
mark data sets, are cited from the UCI Machine Learning Repository11. Their
details can be found in the latter site, and also in [17].

In the above, all of the vectors were normalized to be within the range [−1, 1]
using their standard deviations, and the data set for class j was randomly split
into two subsets, Tj ,t and Tj ,V , of equal size. One of them was used for choosing
the initial prototypes and training the classifiers, and the other one was used in
their validation (or testing). Later, the role of these sets were interchanged.

Experimental Parameters: As in all algorithms, choosing the parameters12

of the PRS and the conventional prototype selection schemes play an important
role in determining the quality of the solution. The parameters for the reported
conventional schemes such as the RAND, RAND C, and KCentres (the methods
referred to as Random, RandomC and KCentres in Section 2.2 respectively) and
the PRS-based schemes such as the CNN, PNN, and HYB, are summarized as:

1. Parameters for the RAND, RAND C, and KCentres : In RAND, a total
of 10 % of the samples were randomly selected from the original training data
set. In RAND C, for each class, 10 % of the samples were randomly selected
as prototypes. In KCentres, initially, 10 % of the samples (for each class) were
arbitrarily chosen as the initial cluster centers, after which a k-means clustering
algorithm was invoked, as explained earlier.

2. Parameters for the CNN and the PNN : None.
3. Parameters for the HYB : The initial code book size was determined by the

SVM. In this experiment, we hybridized the SVM and an LVQ3-type algorithm.
The parameters for the LVQ3 learning, such as the α, the ε, the window length,
w , and the iteration length, η, were specified as described in [18].

Selecting Prototype Vectors: In order to evaluate the proposed classifica-
tion mechanisms, we first selected the prototype vectors from the experimental
data sets using the CNN, the PNN and the HYB algorithms. In the HYB, we
selected initial prototypes using a SVM algorithm. After this selection, we in-
voked a phase in which the optimal positions (i.e., with regard to classification)
were learned with an LVQ3-type scheme. For the SVM and LVQ3 programs, we
utilized publicly-available software packages13. Table 1 shows a comparison of
the number of prototype vectors extracted from the artificial and real-life data
sets using the CNN, PNN, and HYB methods.

11 http://www.ics.uci.edu/mlearn/MLRepository.html
12 The same parameters were used for both the artificial and real-life data sets.
13 These packages can be available from: http://www-ai.cs.uni-dortmund.de/

SOFTWARE/SVM LIGHT/svm light.eng.html and
http://cochlea.hut.fi/research/
som lvq pak.shtml, respectively.
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Table 1. The number of prototype vectors extracted from experimental data sets using
the CNN, PNN, and HYB methods. The two values for each data set are the numbers
of prototype vectors obtained from the training and test subsets, respectively.

Dataset Dataset Whole Dataset Selected Prototypes (m1, m2)
Types Names (n1, n2) CNN PNN HYB

Artificial Random 200, 200 36, 30 30, 25 18, 15
Data Non normal2 500, 500 64, 66 56, 380 63, 57

Non linear2 500, 500 96, 109 87, 90 82, 58
Iris2 50, 50 15, 12 10, 7 6, 8

Real-life Ionosphere 176, 176 51, 42 37, 33 44, 46
Data Sonar 104, 104 52, 53 34, 33 53, 59

Arrhythmia 226, 226 32, 28 8, 7 65, 69
Adult4 4168, 4168 755, 752 659, 658 430, 448

From Table 1, for example, we see that the numbers of selected prototype
vectors of the “Random” dataset, (m1, m2), are (36, 30), (30, 25) and (18, 15),
respectively. Each of them is considerably smaller than the size of the original
data set. Using the selected vectors as a representative of the training data set, we
can significantly reduce the dimensionality of the dataset (and the consequential
computations) without degrading the performance. Once the reduced prototype
set Y = {y1, y2, · · · , ym}, is obtained, the dimensionality (and the classification
processing time) of the matrix DT,Y [·, ·] can be reduced into n × m, where the
dimensionality of the column vector is m, not n (e.g., 15 not 200).

Experimental Results: We report below the run-time characteristics of the
proposed algorithm for the artificial and real-life data sets as shown in Table 2,
where the ‘Wholeset’ approach represents the experimental results for the entire
original data sets, that is, DT,T [·, ·], without employing any selection method.
On the other hand, the results of the RAND, RAND C, and KCentres, and
the CNN, PNN, and HYB are obtained by calculating the dissimilarity matrix,
DT,Y [·, ·], using the representatives obtained with each respective method. Also,
each result is the averaged one for the training and the test sets, respectively.

Table 2 shows the DBC accuracy rates (%) of the classifiers designed with the
conventional prototype selection schemes, such as the RAND, RAND C, and
KCentres methods, on the artificial and real-life data sets, in which the dissim-
ilarity measure used is the Euclidean distance. It also presents the optimized
DBC accuracy rates (%) on the same data sets, in which the prototype selection
schemes are the PRS-based ones such as the CNN, PNN, and HYB methods,
which, as explained earlier, use the Mahalanobis distance.

A Comparison of Conventional DBCs and PRS-based Schemes: First of
all, it is worth mentioning that the data set “Adult4” possesses a noticeable class
imbalance14. Thus, although the number of prototypes obtained using the HYB
scheme are 430 and 448 for the training and test sets respectively, the number

14 For example, the sample points of two classes ω1 and ω2 of its training set are 3961
and 206, respectively.
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Table 2. The accuracy rates (%) of the DBCs for the artificial and real-life data sets.
The results reported concern the schemes designed with the conventional prototype
selection methods such as the RAND, RAND C, and KCentres methods which use the
Euclidean distance, and the optimized ones which use PRS-based schemes such as the
CNN, PNN, and HYB methods and the Mahalanobis distance. The other notation is
discussed in the text.

Dataset Dataset Conventional Schemes Proposed Schemes
Types Names Wholeset RAND RAND C KCentres CNN PNN HYB

Random 83.75 83.98 82.25 83.50 84.00 84.50 84.25
Artificial Non normal2 95.10 95.09 95.05 95.40 89.50 91.00 90.10

Non linear2 59.50 59.80 60.23 60.00 74.90 76.40 76.30
Iris2 77.00 76.90 71.00 83.00 90.00 88.00 88.00

Ionosphere 71.31 71.70 69.89 69.32 86.08 86.08 86.08
Real-life Sonar 60.10 58.61 56.11 55.29 70.19 69.23 69.71

Arrhythmia 92.92 87.23 85.40 82.31 92.92 92.92 95.13
Adult4 72.08 - 71.98 71.57 - - -

of prototypes in the second class is only about 10% of the number of prototypes
in the first. Since this precludes a meaningful comparison, we shall omit it in
further discussions. Suffice it to mention that the accuracy of the conventional
DBC (71.98%) is quite comparable to the accuracy for the ‘Wholeset’ (72.08%).

The overall remark that we can make from Table 2 is that, for every data set,
the accuracy of the conventionally optimized DBC is quite comparable to (and
sometimes even more accurate than) the accuracy when the ‘Wholeset’ is utilized.
This is true for both the artificial and real-life data sets. The reason for this in-
creased accuracy is that when a k-NN scheme is used in the dissimilarity space,
the effects of the outliers become much more prominent when the ‘Wholeset’ is
utilized. Thus, for the set “Iris2”, the accuracy for the DBC using the ‘Wholeset’
is 77%, and this increases to 83% if the KCentres method is used.

With regard to comparing the conventional and the new schemes, we again
refer the reader to Table 2. Generally speaking, we note that if we consider the
average accuracy obtained by using any of the conventional prototypes selection
schemes (namely, RAND, RAND C, KCentres), and compare them with the
average accuracy obtained by using any of the PRSs (namely, CNN, PNN, HYB),
the latter is almost always superior. Thus, to render the comparison more fair,
in what follows, we shall consider the best accuracy that a conventional scheme
yields, and compare it with the best accuracy that a PRS would yield.

Consider the artificial data set, “Non linear2”. In this case, the RAND C
method yields the best accuracy (60.23%) of the three conventional selection
methods when the Euclidean distance is used. The corresponding accuracy for
the optimized methods is obtained when the PNN is the PRS used, and it yields
an accuracy of 76.40%. Similarly, consider the real-life “‘Arrhythmia” data set.
In this case, the RAND method yields the best accuracy (87.23%) of the three
conventional selection methods when the Euclidean distance is used. The cor-
responding accuracy for the optimized methods is obtained when the HYB is
the PRS used, leading to an accuracy of 95.13%. The conclusion that we can
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make is that the optimized methods (the PRSs used in conjunction with the
Mahalanobis distance) are almost always superior (and sometimes, much more
superior) to the conventional schemes.

It is also interesting to note how a conventional selection scheme (such as the
RAND, RAND C, KCentres) would perform if the Mahalanobis distance is used.
The details of the results are omitted here in the interest of compactness, but
can be found in [17]. Here too, if the average accuracy of the schemes (RAND,
RAND C, KCentres) is compared to the average accuracy of the PRSs (CNN,
PNN and HYB), the latter is almost always the better option. The optimized
methods continue to be the superior ones if the best of the method is chosen in
each case, although the advantage is not so marked.

The general conclusion that we can make from the results is the following:
It is always advantageous to use a PRS to select the subset of representative
points, but when a PRS is used, one must not resort to using the Euclidean
distance to compute the dissimilarities. Rather, since the PRS implicitly takes
the data distribution into consideration, it must be used in conjunction with a
distribution-based dissimilarity measure, like the Mahalanobis distance.

From the above considerations, it is also worth mentioning that it is not so
easy to crown any one scheme to be superior to the others in the context of the
PRS method used. But a general observation seems to be that for artificial data
the PNN is the most advantageous, and the HYB seems to yield the best results
for the real-life data sets. From the other results given in [17], we also see that
the processing CPU-times can also be reduced significantly by employing a PRS
such as the CNN, PNN, and HYB without sacrificing the accuracy so much.

5 Conclusions

In this paper, we have suggested a novel strategy to enhance the computa-
tion for all families of Dissimilarity-Based Classifiers (DBCs). Rather than com-
pute, store and process the DBC based on the entire data set, we advocate
that the training set be first reduced into a smaller representative subset ob-
tained by invoking a Prototype Reduction Scheme (PRS), whose output yields
the points to be utilized by the DBC. Apart from utilizing PRSs, in the pa-
per we have also proposed simultaneously employing the Mahalanobis distance
as the dissimilarity-measurement criterion to increase the DBC’s classification
accuracy. Our experimental results demonstrate that the proposed mechanism
increases the classification accuracy when compared with the “conventional”
approaches for samples involving real-life as well as artificial data sets.
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Abstract. This paper aims to outline the General Adaptive Neighbor-
hood Image Processing (GANIP) approach [1–3], which has been recently
introduced. An intensity image is represented with a set of local neighbor-
hoods defined for each point of the image to be studied. These so-called
General Adaptive Neighborhoods (GANs) are simultaneously adaptive
with the spatial structures, the analyzing scales and the physical set-
tings of the image to be addressed and/or the human visual system.
After a brief theoretical introductory survey, the GANIP approach will
be successfully applied on real application examples in image restoration,
enhancement and segmentation.

1 The General Adaptive Neighborhood (GAN) Paradigm

This paper deals with 2D intensity images, that is to say image mappings defined
on a spatial support D in the Euclidean space R

2 and valued into a gray tone
range, which is a real numbers interval. The General Adaptive Neighborhood
paradigm has been introduced in order to propose an original image represen-
tation for adaptive processing and analysis. The central idea is the notion of
adaptivity which is simultaneously associated to the analyzing scales, the spa-
tial structures and the intensity values of the image to be addressed.

1.1 Adaptivity with Analyzing Scales

A multiscale image representation such as wavelet decomposition [4] or isotropic
scale-space [5], generally takes into account analyzing scales which are global and
a priori defined, that is to say extrinsic scales. This kind of multiscale analysis
presents a main drawback since a priori knowledge, relating to the features of the
studied image, is consequently required. On the contrary, an intrinsic multiscale
representation such as anisotropic scale-space [6], takes advantage of scales which
are self-determined by the local image structures. Such a decomposition does not
need any a priori information.

1.2 Adaptivity with Spatial Structures

The image processing techniques using spatially invariant transformations, with
fixed operational windows, give efficient and compact computing structures, in
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the sense where data and operators are independant. Nevertheless, they con-
sequently have several drawbacks such as creating artificial patterns, changing
the detailed parts of large objects, damaging transitions or removing significant
details. Alternative approaches towards context depend processing have been
proposed [7]. A spatially adaptive image processing implies that operators are
no longer spatially invariant, but must vary over the whole image with adaptive
windows, taking locally into account the image context.

1.3 Adaptivity with Intensity Values

In order to develop powerful image processing operators, it is necessary to rep-
resent intensity images within mathematical frameworks (most of the time of
a vectorial nature) based on a physically and/or psychophysically relevant im-
age formation process. In addition, their mathematical structures and operations
(the vector addition and then the scalar multiplication) have to be consistent
with the physical nature of the images and/or the human visual system, and
computationally effective. Thus, although the Classical Linear Image Process-
ing Framework (CLIP), i.e. with the usual vectorial operations, has played a
central role in image processing, it is not necessarily the best choice. Indeed,
it was shown [8] that the usual addition is not a satisfactory solution in some
non-linear physical settings, such as that based on multiplicative or convolutive
image formation model. The reasons are that the classical addition operation and
consequently the usual scalar multiplication are not consistent with the combi-
nation and amplification laws to which such physical settings obey. However,
using the power of abstract linear algebra, it is possible to go up to the abstract
level and to explore General Linear Image Processing (GLIP) frameworks [9,
10], in order to include situations in which signals or images are combined by
processes other than the usual vector addition. Consequently, operators based
on such intensity-based image processing frameworks should be consistent with
the physical and/or physiological settings of the images to be processed. For
instance, the Logarithmic Image Processing (LIP) framework of intensity images
(f, g, . . . ) has been introduced [11, 12] with its vector addition +� , its vector
subtraction −� and its scalar multiplication ×� defined respectively as following:

f +�g = f + g −
fg

M
(1)

f −�g = M

(
f − g

M − g

)
(2)

α ×�f = M − M

(
1 −

f

M

)α

, α ∈ R (3)

where M ∈ R denotes the upper bound of the range where intensity images are
digitized and stored.

The LIP framework has been proved to be consistent with the transmittance
image formation model, the multiplicative reflectance image formation model,
the multiplicative transmittance image formation model, and with several laws
and characteristics of human brightness perception [10, 13].
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2 GANs Sets

In the so-called General Adaptive Neighborhood Image Processing (GANIP)
approach [1–3], a set of General Adaptive Neighborhoods (GANs set) is identified
about each point in the image to be analyzed. A GAN is a subset of the spatial
support constituted by connected points whose measurement values, in relation
to a selected criterion (such as luminance, contrast, thickness, . . . ), fit within a
specified homogeneity tolerance. These GANs are used as adaptive windows for
image transformations or quantitative image analysis.

The space of image (resp. criterion) mappings, defined on the spatial support
D and valued in a real numbers interval Ẽ (resp. E), is represented in a GLIP
framework, denoted I (resp. C). The GLIP framework I (resp. C) is then supplied
with an ordered vectorial structure, using the formal vector addition +̃� (resp.
+�), the formal scalar multiplication ×̃� (resp. ×�) and the classical total order
relation ≥ defined directly from those of real numbers:

∀(f, g) ∈ I
2 or C

2 f ≥ g ⇔ (∀x ∈ D f(x) ≥ g(x)) (4)

There exists several GANs sets, whose each collection satisfies specific prop-
erties [1]. This paper presents the most elementary kind of these ones, denoted
V h

m�
(x). For each point x ∈ D and for an image f ∈ I, the GANs V h

m�
(x) are

included as subsets in D. They are built upon a criterion mapping h ∈ C (based
on a local measurement such as luminance, contrast, thickness, . . . related to f),
in relation with an homogeneity tolerance m� belonging to the positive inten-
sity value range E

+� . More precisely, V h
m�

(x) is a subset of D which fulfills two

conditions :

1. its points have a measurement value close to that of the point x : ∀y ∈
V h

m�
(x) |h(y) −�h(x)|

�
≤ m�, where −� and |.|� denote the considered

GLIP subtraction and GLIP modulus, respectively,
2. the set is path-connected (with the usual Euclidean topology on D ⊆ R

2).

Fig. 1. One-dimensional computation of an adaptive neighborhood set V h
m�

(x) in the
LIP framework. For a point x, a tube of tolerance m� is first computed around h(x).
Secondly, the inverse map of this interval gives a subset of the 1-D spatial support.
Finally, the path-connected component holding x provides the GAN V h

m�
(x).
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3 GAN Mean and Rank Filtering

Usual image to image transformations generally work on fixed-size and fixed-
shape operational windows, either they are convolution filters (mean, . . . ) or rank
operators (min, max, median, . . . ). This kind of operators removes thin details
and displaces contours. In the GANIP approach, adaptive filters are introduced
in substituting the usual disks Br(.) of radius r as isotropic operational windows
by the anisotropic GANs V h

m�
(.) (Fig. 2).

D

x1

Br(x1)

x2

Br(x2)

x3

V h
m�

(x3)

x4

V h
m�

(x4)r,m�

Fig. 2. Example of adaptive V h
m

�
(.) and non-adaptive Br(.) operational windows with

three values both for the homogeneity tolerance parameter m�, and for the disks radius
r. The shape of Br(x1) and Br(x2) are identical and {Br(x)}r is a family of homothetic
sets for each point x ∈ D. On the contrary, the shape of V h

m
�

(x3) and V h
m

�
(x4) are

dissimilar and {V h
m

�
(x)}m is not a family of homothetic sets.

The GANs are thus defined as following:

∀(m�, h, x) ∈ E+ × C × D V h
m�

(x) = Ch−1([h(x) −�m�,h(x) +�m�])(x) (5)

where CX(x) denotes the path-connected component (with the usual Euclidean
topology on D ⊆ R

2) of X ⊆ D containing x ∈ D.
Figure 1 gives a visual impression, on a 1-D example, of the computation of

a GAN in the LIP framework (i.e. with the +� vector addition (1) and the −�
vector subtraction (2)).

The resulting GANIP-based operators perform consistent image processing,
such as adaptive mean, median or morphological filters which are introduced in
the following. Mean and rank filtering are simple, intuitive and easy to implement
methods for smoothing images, i.e. reducing the amount of intensity variation
between one pixel and the next. They are often used to reduce noise effects in
images [14].

The idea of mean filtering consists in replacing the gray tone of every point in
an image with the mean (’average’) gray tone of its neighbors, including itself.
This has the effect of eliminating point values which are unrepresentative of their
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The idea of mean filtering consists in replacing the gray tone of every point in
an image with the mean (’average’) gray tone of its neighbors, including itself.
This has the effect of eliminating point values which are unrepresentative of their
surroundings. Mean filtering is usually thought of as a convolution filter. Like
other convolutions it is based around a kernel, which represents the shape and
size of the neighborhood to be sampled when calculating the mean. Often an
isotropic kernel is used, as a disk of radius 1, although larger kernels (e.g. disk
of radius 2) can be used for more severe smoothing. (Note that a small
kernel can be applied more than once in order to produce a similar - but not
identical - effect as a single pass with a large kernel).

Rank filters in image processing sort (rank) the gray tones in some neighborhood
of every point in ascending order, and replace the seed point by some value k in
the sorted list of gray tones. When performing the well-known median filtering
[14], each point to be processed is determined by the median value of all points
in the selected neighborhood. The median value k of a population (set of points
in a neighborhood) is that value for which half of the population has smaller
values than k, and the other half has larger values than k.

So, the GANs mean and rank filters are introduced by substituting the isotropic
neighborhoods, generally used for this kind of filtering, with the (anisotropic)
general adaptive neighborhoods (GANs).

4 GAN Mathematical Morphology

Mathematical Morphology (MM) [15] is an important and nowadays a traditional
theory in image processing. Its development leads to several image processing
tools that are extremely useful in image enhancement, image segmentation and
classification, pattern recognition, texture analysis and synthesis. The elemen-
tary morphological operators of dilation and erosion use an operational window
named Structuring Element (SE). Generally, the SEs are extrinsically defined
and have consequently fixed shape and size.

4.1 Adaptive Structuring Elements

The basic idea in the General Adaptive Neighborhood Mathematical Morphology
(GANMM) is to replace the usual SEs by GANs, providing adaptive operators
and filters. More precisely the Adaptive Structuring Elements (ASEs), denoted
Rh

m�
(x), are defined as following:

∀(m�, h, x) ∈ E
+� × C × D Rh

m�
(x) =

⋃
z∈D

{V h
m�

(z)|x ∈ V h
m�

(z)} (6)

surroundings. Mean filtering is usually thought of as a convolution filter. Like

The GANs V h
m�

(x) are not directly used as ASEs, because they do not satisfy

the symmetry property contrary to the Rh
m�

(x): x ∈ Rh
m�

(y) ⇔ y ∈ Rh
m�

(x).
This symmetry condition is relevant for visual, topological, morphological and
practical reasons as explained in [3].
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4.2 Adaptive Morphological Operators

The elementary dual operators of adaptive dilation and adaptive erosion are de-
fined accordingly to the ASEs:

∀(m�, h, f) ∈ E
+� × C × I

Dh
m�

(f) :

⎧⎨⎩D → Ẽ

x 
→ sup
w∈Rh

m
�

(x)
f(w) (7)

Eh
m�

(f) :

⎧⎨⎩D → Ẽ

x 
→ inf
w∈Rh

m
�

(x)
f(w) (8)

Then, several adaptive morphological filters can be defined by combination
of these two elementary adaptive morphological operators, in particular:

– adaptive closing: Ch
m�

(f) = Eh
m�

◦ Dh
m�

(f)
– adaptive opening: Oh

m�
(f) = Dh

m�
◦ Eh

m�
(f)

– adaptive closing-opening: COh
m�

(f) = Ch
m�

◦ Oh
m�

(f)

– adaptive opening-closing: COh
m�

(f) = Ch
m�

◦ Oh
m�

(f)

Those resulting GAN morphological operators perform a really spatially-
adaptive image processing and notably, in several and important practical cases,
are connected [3, 1], which is a great advantage compared to the usual ones that
fail to this property.

5 Practical Application Examples

Most of the time, image filtering is a necessary step in image pre-processing,
such as restoration, pre-segmentation, enhancement, sharpening, brightness cor-
rection, . . . The GAN-based filtering allows such transformations to be defined
[16, 2]. Three results are here exposed in image restoration, image enhancement
and image segmentation.

5.1 Image Restoration

This section addresses the image restoration area with a concrete application
example in visual image denoising. The aim is to suppress noise as much as
possible while preserving image features. Figure 3 exposes results of a denoising

process applied on the Edouard Manet’s painting ’Le Fifre’. It is realized both
with classical mean filters, denoted Meanr, using disks of radius r as classical
operational windows, and with GAN mean filters, denoted Meanf

m�
, using GANs

computed with the luminance criterion in the LIP framework.
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(a) original f image (b) Mean1(f) (c) Mean2(f) (d) Mean3(f)

(e) Meanf
10�

(f) (f) Meanf
30�

(f) (g) Meanf
50�

(f)

Fig. 3. Image restoration through usual (b-d) and adaptive (b-d) mean filtering ap-
plied on the original (a) image. The adaptive filters (connected) do not damage edges
contrary to the classical filters which blur the image.

Those adaptive filters using the elementary GANs work well if the processed
images are noise free or a bit corrupted .

In the presence of impulse noise, such as salt and pepper noise, the GANs need
to be combined so as to provide efficient filtering operators [2].Indeed, the elemen-
tary GAN of a corrupted point by such a noise is generally not representative of
the region of which it belongs, for any homogeneity tolerance value m�.

5.2 Image Enhancement

Image enhancement is the improvement of image quality [14], wanted e.g. for
visual inspection or for machine analysis. Physiological experiments have shown
that very small changes in luminance are recognized by the human visual sys-
tem in regions of continuous gray tones, and not at all seen in regions of some
discontinuities [17]. Therefore, a design goal for image enhancement is often to
smooth images into more uniform regions, while preserving edges. On the other
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hand, it has also been shown that somehow degraded images with enhancement
of certain features, e.g. edges, can simplify image interpretation both for a hu-
man observer and for machine recognition [17]. A second design goal, therefore,
is image sharpening [14].

In this paper, the considered image enhancement technique is an edge sharp-
ening process: the approach is similar with unsharp masking [18] type enhance-
ment where a high pass portion is added to the original image. The contrast
enhancement process is realized through the toggle contrast [19], whose operator
κr is defined in the following:

∀(f, x, r) ∈ I × D × R
+

κr(f)(x) =
{

Dr(f)(x) if Dr(f)(x) − f(x) < f(x) − Er(f)(x)
Er(f)(x) otherwise

(9)

where Dr and Er denote the classical dilation and erosion, respectively, using a
disk of radius r as structuring element.

This (non-adaptive) toggle contrast will be compared with the adaptive LIP
toggle contrast, using a ’contrast’ criterion. This transformation requires a ’con-
trast’ definition which is introduced in the digital setting of the LIP framework
[20]: The LIP contrast at a point x ∈ D of an image f ∈ I, denoted C(f)(x), is
defined with the help of the gray values of its neighbors included in a disk V (x)
of radius 1, centered in x:

C(f)(x) =
1

#V (x)
×�

+�∑
y∈V (x)

(max(f(x), f(y)) −� min(f(x), f(y))) (10)

where

+�∑
and # denote the sum in the LIP sense [20], and the cardinal symbol,

respectively.
Consequently, the so-called adaptive toggle LIP contrast is the transforma-

tion κ
C(f)
m�

, where C(f) and m� represent the criterion mapping and the homo-
geneity tolerance within the LIP framework (required for the GANs definition),
respectively. It is defined as following:

∀(f, x, m�) ∈ I × D × E +�

κC(f)
m�

(f)(x) =

{
D

C(f)
m�

(f)(x) if D
C(f)
m�

(f)(x) − f(x) < f(x) − E
C(f)
m�

(f)(x)
E

C(f)
m�

(f)(x) otherwise
(11)

where D
C(f)
m�

and E
C(f)
m�

denote the adaptive dilation and adaptive erosion, re-
spectively, using ASEs computed on the criterion mapping C(f) with the homo-
geneity tolerance m�.

Figure 4 illustrates an application example of image enhancement through
usual and adaptive toggle contrast, respectively. The process is applied on a real
image acquired on the retina of a human eye.
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Fig. 4. Image enhancement through the toggle contrast process. The operator is applied
on a real (a) image acquired on the retina of a human eye. The enhancement is achieved
with the usual toggle contrast (c-f) and the GANIP-based toggle LIP contrast (g-j).
Using the usual toggle contrast, the edges are disconnected as soon as the filtering
becomes too strong. On the contrary, such structures are preserved and sharpened
with the GAN filters.

This image enhancement application example confirms that the GANIP op-
erators are more effective than the corresponding classical ones. Indeed, the
adaptive toggle LIP contrast performs a locally accurate image enhancement,
taking into account the notion of contrast within spatial structures of the image.
Consequently, only the transitions are sharpened while preserving the homoge-
neous regions. On the contrary, the usual toggle contrast enhances the image in
a uniform way. Thus, the spatial zones around transitions are rapidly damaged
as soon as the filtering becomes too strong.
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5.3 Image Segmentation

The segmentation of an intensity image can be defined as its partition (in fact the
partition of the spatial support D) into different connected regions, relating to
an homogeneity condition [14]. In this paper, the segmentation process is based
on a morphological transformation called watershed [21] and a GANIP-based
decomposition process. It will be illustrated on a human corneal endothelial
image provided by the University Hospital Center of Saint-Etienne in France.

The cornea is the transparent surface in the front of the eye. It has a role
of protection of the eye, and with the lens, of focusing light into the retina.
It is constituted of several layers, such as the epithelium (at the front of the
cornea), the stroma and the endothelium (at the back of the cornea). The en-
dothelium contains non-regenerative cells tiled in a monolayer and hexagonal
mosaic. This layer pumps water from the cornea, keeping it clear. A high cell
density and a regular morphometry of this layer characterize the good quality of
a cornea before transplantation, the most common transplantation in the world.
Herein lays the importance of the endothelial control. Ex vivo controls are done
by optical microscopy on corneal button before grafting. That image acquisi-
tion equipment give gray tones images which are segmented, for example by the
SAMBA™ software [22], into regions representing cells. These ones are used to
compute statistics in order to quantify the corneal quality before transplanta-
tion.

The authors proposed a GANIP-based approach to segment the cornea cells.
The process is achieved by a closing-opening morphological filtering using the
GAN sets with the luminance criterion in the CLIP framework, followed by a
watershed transformation, denoted W . A comparison with the results provided
by the SAMBA™ software, whose process is achieved by thresholding, filtering
and skeletonization [22], is proposed (Fig. 5). The parameter m� of the adap-
tive morphological filter has been tuned to visually provide the best possible
segmentation.

(a) original image f (b) SAMBA™ result (c) W (COf
10(f))

Fig. 5. Segmentation of human endothelial cornea cells (a). The process achieved by
the GANIP-based morphological approach (c) provides better results (from the point
of view of ophthalmologists) than the SAMBA™ software [22] (b).
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6 Conclusion and Prospects

The General Adaptive Neighborhood Image Processing (GANIP) approach al-
lows efficient image processing operators to be built. The GAN-based represen-
tation of an image is simultaneously adaptive with its analyzing scales, its spatial
structures and its intensity values. In this way, the resulting adaptive operators
are spatially variant, relevant from a physical and/or psychophysical point of
view and are intrinsically multiscale in the sense where processing scales are
locally determined by the image context. These theoretical aspects have been
practically confirmed on real application examples in image restoration, enhance-
ment and segmentation. From a practical point of view, the computation of the
GANs sets increases the running time of the adaptive operators [3]. Currently,
the authors work on GANIP-based topological approaches.
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Abstract. There is growing demand for methods to synthesize large im-
ages of porous media. Binary porous media generally contain structures
with a wide range of scales. This poses difficulties for generating accu-
rate samples using statistical techniques such as simulated annealing.
Hierarchical methods have previously been found quite effective for such
problems. In this paper, a frozen-state approach to hierarchical anneal-
ing is presented that offers over an order of magnitude reduction in com-
putational complexity versus existing hierarchical techniques. Current
limitations to this approach and areas of further research are discussed.

1 Introduction

Scientific imaging plays a significant role in research advancement, especially
with the increasing availability of sophisticated imaging tools, including magnetic
resonance imaging, scanning electron microscopy, confocal microscopy, computer
aided X-ray tomography, and ultrasound, to name only a few. Because of the
significant research funding and public interest in medical imaging and remote
sensing, these aspects of scientific imaging have seen considerable attention and
success.

However there is an enormous variety of imaging problems outside of medicine
and remote sensing, where we would argue the current image processing practice
to be relatively rudimentary, and where substantial contributions remain to be
made. One such area is that of porous media — the science of water-porous
materials such as cement, concrete, cartilage, bone, wood, and soil, with corre-
sponding significance in the construction, medical, and environmental industries.

Because samples of porous media may, in some cases, be expensive to pro-
duce, handle, and measure, there is a growing literature [10,11,13] on the simu-
lation and synthesis of large-scale 2D and 3D binary random fields. Some past
approaches used a Markov-FFT approach, however the current state-of-the-art
focuses on methods of statistical sampling, especially simulated annealing. Al-
though annealing possesses attractive convergence properties in principle, in
practice the approach is computationally very slow, particularly for images con-
taining a mix of large-scale and small-scale structures — very common in porous
media.

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 41–52, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Sintered glass beads Carbonate rock

Fig. 1. Excerpts of two large images of physical porous media. The range of scales of
pore structure (black) is clearly evident and poses challenges for pixel-based synthesis.

Our long-term research objective is the development of accelerated, hierar-
chical approaches to annealing-based image synthesis. We have had past success
in such hierarchical synthesis, however even these approaches were hampered
by having to, eventually, perform some number of annealing passes on the very
finest scale. In this paper we propose a truly hierarchical method, in which large-
scale structures are synthesized and fixed in place at coarse scales, meaning that
only local, fine-resolution details remain to be refined at finer scales.

2 Motivation

Suppose we consider a two-dimensional domain of n = m×m pixels. Further sup-
pose that the domain contains regions (solids or pore voids) having a fractional
size of γ relative to the entire domain; that is, the regions have an approximate
diameter d = γm, such that γ is a fixed fraction, but that d increases as we seek
to synthesize finer and finer images (larger and larger m).

Very approximately, at least O(d2) passes of simulated annealing are required
for convergence, thus the total computational complexity is O(γ2m4). Therefore
to achieve one finer scale of resolution increases the computational time by a
factor of sixteen, very quickly limiting the size of image which can be considered,
and therefore also limiting the range of scales which can be produced — a key
consideration in porous media, many of which exhibit structure on scales many
orders of magnitude apart!

Existing approaches to hierarchical simulated annealing [1,2,3] seek to amelio-
rate the above condition by synthesizing large-scale structure at relatively coarse
scales, when the structures measure only a few pixels, allowing for much more
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rapid convergence at finer scales where only small-scale details remain to be de-
termined. Such an approach has led to two orders of magnitude improvement in
computational complexity [2], however two key problems remain:

1. Because each scale is treated as a separate annealing problem, great care
must be taken in selecting an annealing schedule to ensure that the structures
synthesized at coarser scales are not randomly eroded.

2. Because the method continues to visit every pixel at every scale, including
the finest scale, there remains a substantial computational burden of visiting
very large numbers of pixels at the finest scale.

Consider the porous media such as those in Fig. 1, and suppose we wish to
produce a very detailed synthesis, such as n = 8000 × 8000 pixels. Clearly the
overwhelming fraction of these 64-million pixels lie far within large regions, pixels
which are extremely unlikely to be changed at the finest scale. That is, the
overwhelming fraction of site visits at the finest scale are unnecessary. The crux
of our approach is to reduce computational complexity by allowing only certain
pixels to be sampled and changed at a given scale, giving rise to two benefits
paralleling the above problems:

1. Because the larger-scale structures are fixed at coarser scales, finer scales
cannot destroy or erode these structures, so our proposed method is not
sensitive to a choice of annealing schedule.

2. Because our proposed method visits only a small subset of pixels at a given
scale, much larger domains become computationally tractable.

3 Method

Let x(s) represent an image at scale s where increasing s denotes progressively
finer scales, and let x

(s)
i denote the value of x(s) at pixel i; x(s)

i ∈ {0, 1
2 , 1} (i.e.,

a ternary state: black, gray, or white). Let {i1, i2, i3, i4} be the indices of the
children of x(s−1)

i at scale s. Then given training image x(s), the coarser-scale
representation x(s−1) can be derived for modelling using

x
(s−1)
i =

⎧⎪⎨⎪⎩
0 if x(s)

ij
= 0 ∀j

1 if x(s)
ij

= 1 ∀j
1
2 otherwise

(1)

The repeated use of (1) allows a single sufficiently large binary image to provide
data for modelling at arbitrarily coarse scales, as demonstrated in Fig. 2.

In synthesis, a corresponding set of rules is asserted as constraints on the
annealing:

If x
(s−1)
i ∈ {0, 1}, then x

(s)
ij

= x
(s−1)
i (2a)

If x
(s−1)
i = 1

2 , then neither x
(s)
ij

= 0, ∀j
nor x

(s)
ij

= 1, ∀j (2b)
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Modelling

Training data
given at finest

scale

Synthesis

Initialized at
coarsest scale

Fig. 2. Example up-scaling and down-scaling behaviour. The heavier dividing lines
indicate groups of pixels that are expressed as a single pixel at the next coarser scale,
using the rule expressed in (1).

The consequence of (2) is that each state in the sample space visited by the
annealer must be consistent under (1) with the result at all coarser scales. Black
and white pixels represent frozen states in the image domain that are preserved
at all finer scales. If a coarse-scale pixel is gray, then the corresponding set of
pixels at finer scales cannot be either entirely black or entirely white. All pixels
subject to (2a) can be ignored in the annealing sampler, as their values have
been previously frozen.

Figure 2 demonstrates this coarsening method in practice. Progressively
coarser model information is extracted via (1) based on a large binary train-
ing image. Synthesis starts from some coarse initialization, and annealing is
performed at progressively finer scales (each until convergence), constrained by
the previous scale’s result according to (2). When annealing the final, finest scale
result, it is additionally asserted that all values must be 0 or 1.

Further constraints on x are made using some energy function E(x). Choices
of x leading to low energies are believed to be plausible rest states of the process.
Many such energy models have been proposed, however adapting existing energy
models used with binary images for use with the ternary frozen-state model is
a non-trivial task. The research presented here uses an extension of the local
neighbourhood model described in [1], where it was shown to be sufficient for
implicitly matching a number of properties from training images.

Consider a local neighbourhood around some pixel at position i. For conve-
nience, let us assume it is a 3 × 3 neighbourhood structure as in Fig. 3, with
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P1 P2 P3

P4 P0 P5

P6 P7 P8

Fig. 3. Indices for a second-order neighbourhood

position i in the central P0 location. (Other neighbourhood structures can be
used instead; this assumption is merely to simplify the explanation.)

Let c denote one of the 39 possible unique configurations of the neighbour-
hood given ternary values. The value for c, 0 ≤ c < 39 corresponding to the
neighbourhood about pixel x(s)

i can be evaluated using

c
(s)
i =

∑
k

(2 · x(s)
Pk

) · 3k (3)

Let H
(s)
c then express the probability of configuration c at scale s, calculated

by observation of its frequency in the training data. Figure 4 offers an example
of this distribution at one scale. Let Hc(x(s)) produce histogram entry c given
image x(s). Supposing the training data at scale s was expressed as image y(s),
then H

(s)
c = Hc(y(s)). Given these terms, the energy function is then

E(x(s)) =
∑

c

(Hc(x(s))−H(s)
c )2 (4)

This is a non-parametric, highly local model. To effectively capture the nature
of pore structures of the sort seen in Fig. 1, this model must be paired with a
hierarchical approach to image synthesis.

It was observed in early testing that at finer scales the energy function would
attempt to contradict the coarse-scale results, finding it more advantageous to
overfit some aspects of the training data (for instance, matching the precise
probability of homogenous black or white neighbourhoods) at the expense of
accurate pore shapes. For this reason, two modifications were made to the energy
function.

The first modification is to weight configuration c in the energy function by
its standard deviation. Let σ

(s)
c express the standard deviation of the value of

H
(s)
c . This is inferred by determining H

(s)
c for many subsections of the training

data at scale s with the same size as x(s) and evaluating the standard deviation
across this set of H(s)

c values. Using this weighting, with some small value ε, a
new energy function was proposed:

E(x(s)) =
∑

c

(Hc(x(s))−H
(s)
c )2

(σ(s)
c )2 + ε

(5)

This modification also expresses more specifically the purpose of what the
annealing is trying to accomplish: we are not trying to create an image simply
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Fig. 4. A target histogram model at 64 × 64. The horizontal axis indexes the 39 state
configurations possible using the neighbourhood structure of fig. 3. The peaks at the
first and last indices correspond respectively to the strong probability of homogenously
black and homogenously white neighbourhoods.

to match one specific distribution neighbourhood exactly; we are trying to sample
images from a distribution of plausible images. The nature of this distribution
is inferred from the training data. Weighting by σ

(s)
c is a means of using the

variations within the training data to infer how important the precision of each
value H

(s)
c is in that greater distribution.

A second modification was to restrict the scope of the histogram operator
to only those pixels whose neighbourhood configurations can be affected by the
annealing process. The annealer can only affect the image as much as the con-
straints on the current scale permit, so the energy function should be evaluating
the image given those constraints. Effectively, this means that Hc(x(s)) operates
only on those pixels in x(s) that lie within the radius of the neighbourhood struc-
ture of some ij for which x

(s−1)
i = 1

2 . This allows the energy function E(x(s)) to
evaluate the fitness of x(s) independently from E(x(s−1)).

For this paper, all results came from the use of a second-order 3×3 neighbour-
hood, although the use of a third-order 13-pixel neighbourhood with the ternary
model is also feasible. Future research may focus on adaptive methods for ex-
panding the neighbourhood structures in a manner that actively balances the
issues of memory requirements and data sparseness with increased descriptive
power.

4 Results

As an initial test for the proposed algorithm, a set of artificial test images were
created (Fig. 5). Each image in this set is entirely composed of a single geomet-
ric shape repeated across the image at random, non-overlapping locations with
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Model input images

Synthesized results based on model

Fig. 5. Multiple images composed of equally sized shapes, with random rotations and
random non-overlapping locations, were used to test the proposed algorithm’s perfor-
mance in shape discrimination

random orientation. Figure 5 contains excerpts and results for the ‘circles’ and
‘triangles’ members of this set. In both cases, the proposed method, despite be-
ing non-parametric, is able to recreate the pore size and density of the respective
training data. The disjointness of the pores is also preserved. The structures in
the ‘circles’ image clearly resemble the circular phenomena of the training data,
although the small 3× 3 local neighbourhood model was unable to recreate the
smooth contours at the finest scale. Similarly, for the ‘triangles’ image, the pore
structure exhibits peaked points, often three per pore, but the highly local na-
ture of the energy measurement was unable to discriminate the long, straight
edges of the original image.

In both results, there are also some very small structures present — so much
smaller than anything in the input images that their presence suggests an error.



48 W.R. Campaigne, P. Fieguth, and S.K. Alexander

1 2 3 4 5 6 7
0

2000

4000

6000

8000

10000

12000

14000

N
um

be
r 

of
 p

ix
el

s

Scale

Carbonate rock
Sintered glass beads

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

po
rt

io
n 

of
 p

ix
el

s

Scale

Carbonate rock
Sintered glass beads

Fig. 6. The number and proportion of pixels to be visited in a single pass of the
annealer, as the scale increases from 8 × 8 to 512 × 512. The number of pixels to visit
at a scale equals the number of pixels which are not fixed; that is, those having a grey-
valued pixel as a parent. As seen in the right plot, the pixels to visit are normally only a
small fraction of the total, especially at fine scales (where the bulk of the computational
effort appears) and particularly for sparsely detailed images.

They exist as a result of (2b): some mixture of black and white pixels must
be present there to satisfy the constraint posed by a gray element at a coarser
scale.

These two initial test images were designed to emulate the morphology of
two physical porous media. Figure 7 is an image of a surface of a medium cre-
ated using densely packed spherical glass beads. The appearance of these beads,
when imaged in cross-section, is approximated in the ‘circles’ image of Fig. 5. In
doing so, the ‘circles’ image tested the proposed method’s performance on this
morphological aspect independently from other features present in the physical
image. Similarly, the ‘triangles’ image resembles the angular, crystalline pore
structures of carbonate rock in Fig. 8.

The synthesis results of Figs. 7 and 8 exhibit the same properties observed
previously: the size, density, and general morphology of pore structure is
maintained although the pore edges do not match the precise nature seen in
the respective training images. The smaller, orphaned structures previously at-
tributed to ternary constraints are also present, however in this instance it is
not necessarily a fault: both sets of training data contain similar tiny struc-
tures. The non-ternary results, seen in Figs. 7(f) and 8(f), also exhibit such
structures.

In the intermediate scales in Figs. 7 and 8, gray pixels are present on the
interface between black and white regions. Gray pixels identify where structures
will exist at finer scales; they are those pixels whose values have not yet been
frozen. The progressive thinning of the gray mediation demonstrates the signif-
icance in the reduction in computational complexity, since the number of sites
sampled at scale s is directly limited by the number of gray pixels present in the
converged result at scale s− 1, plotted in Figure 6.
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(a) Excerpt of training data (b) Initial ternary constraint, 8 × 8

(c) Ternary result at 32 × 32 (d) Ternary result at 128 × 128

(e) Ternary result at 512 × 512
(full resolution)

(f) Non-ternary result

Fig. 7. Training data and synthesis results for an image of sintered glass beads surface
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(a) Excerpt of training data (b) Initial ternary constraint, 4 × 4

(c) Ternary result at 32 × 32 (d) Ternary result at 128 × 128

(e) Ternary result at 512 × 512
(full resolution)

(f) Non-ternary result

Fig. 8. Training data and synthesis results for an image of carbonate rock surface
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4.1 Advantages

The most significant advantage to the proposed model is the reduction in the
number of proposed changes faced by the annealer in a single pass across the
image at all but the coarsest scales. The reduction experienced for the results
presented is shown in Fig. 6. For the sintered glass beads results of Fig. 7, only
8.9% of the pixels in the overall hierarchy needed to be considered for chang-
ing by the annealer — an order of magnitude reduction in the computational
requirements. Using the sparser carbonate rock data of Fig. 8, only a meagre
0.68% of the total pixels were examined.

The hard assertion that black and white never change at finer scales prevents
large structures created at coarse scales from eroding when annealed at finer
scales at high temperatures. By enabling the possibility of annealing with arbi-
trarily high initial temperatures at each scale, the annealing process is able to
explore the sample space more thoroughly.

4.2 Limitations

The most immediate limitation of the frozen-state method is that other energy
functions which assume a binary field, such as correlation and chordlength dis-
tributions, cannot be directly used and it is not immediately obvious how to
extend such functions to work in a ternary domain.

Another consequence of using a frozen-state model is an increase in the mem-
ory needed to store the energy model. With the local neighbourhood model used
here, the memory requirement for using a neighbourhood of n pixels increases as
O(3n), whereas it was only O(2n) in the binary case. Increases to the neighbour-
hood size also pose the problem of increased sparseness: given limited training
data, particularly at coarse scales, what is the significance of a neighbourhood
configuration that shows up only once in the training set? Expanding the neigh-
bourhood size magnifies this issue.

The ternary method is also subject to unreliable behaviour at very coarse
scales. The amount of training data present at each scale is reduced by a factor of
four with each level of coarseness; concerns that the data are not able to express
the spatially stationary distribution of pore structures at that scale progressively
increase. Consider the example in Fig. 2: Would it be accurate to assert that
each sample from its distribution must have a single white pixel in the upper-
left corner at the coarsest scale, or is that scenario merely the result of the
positioning of the pore structure at the finest scale? When dealing with very
limited coarse-scale data, the latter case would be a sensible assumption. Since
the energy model complexity remains the same while the amount of training data
decreases exponentially, the annealer is increasingly likely to overfit the energy
model. This issue is amplified by the frozen-state nature of the coarse results:
the hierarchical constraints asserted by the ternary model force an initial coarse
overfitting to be maintained at all finer scales, reducing the diversity of synthesis
results.
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Although there are some limitations to the frozen-state approach, they are
minor. The resistance to erosion of large structures at fine scales and, more
importantly, the order-of-magnitude or greater reduction in computational com-
plexity are of great practical benefit.
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Abstract. Image magnification, or interpolation, produces a high resolution image 
from a low resolution, and perhaps noisy image. There have been proposed a vari-
ety of magnification algorithms. However, they are either sensitive to the noise, or 
non-robust to the blocking artifacts, or of high computational complexity, which 
hence limits their utility. In this paper, we propose an alternative magnification 
approach utilizing a filtering-based implementation scheme and novel regulariza-
tion through coupling bilateral filtering with the digital total variation model. The 
approach is simple, fast, and robust to both the noise and blocking artifacts. Ex-
periment results demonstrate the effectiveness of our approach.   

Keywords: Magnification, bilateral filtering, total variation, regularization. 

1   Introduction 

Image magnification, or interpolation, is desired and often required in many actual appli-
cations, such as medical imaging, astronomical imaging, law enforcement, and so on [1, 
2]. Briefly speaking, image magnification is to produce a high-resolution (HR) image 
from a low-resolution (LR), and perhaps noisy image. One goal in this paper is to esti-
mate a HR image of high visual quality, while with much low computational complexity.  

Image magnification can be formulated as the following degradation model [3] 

= + g Du η . (1) 

where g , u , and η  are respectively the lexicographically ordered vectors of the ob-
served N N×  LR image g , the unknown qN qN×  HR image u, and the additive sen-
sor noise η . The constant q  denotes the down-sampling factor. The 2 2 2N q N×  matrix 
D  represents the low-pass filtering and down-sampling process. The matrix can be 
decomposed as 1 1= ⊗D D D , where ⊗  denotes the Kronecker product, and 1D   repre-
sents 1-D filtering and down-sampling effect. Hence, (1) can be explicitly written as 

( )( )2 1 1 1 1

1
m ,n k ,l

qm qn

m,n

k q m  l q n

g u
q

η
= − + = − +

= + . (2) 
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There have been many solution methods for image magnification in literatures 
[1~11]. Standard approaches rely on direct interpolation, linear [4, 10, 11] or nonlin-
ear [6, 7]. Linear methods, such as the nearest-neighbor, bilinear and bicubic interpo-
lation, correspond to fitting the image in spline kernel spaces with low computational 
complexity, while apt to generate blocking artifacts and blurring. Nonlinear ones 
adapt the interpolation process according to the edges in the LR image, which are 
hence called edge-directed interpolation [7], while with high computational complex-
ity. Besides, both linear and nonlinear direct approaches completely fail when the LR 
image is degraded by noise. On the other hand, it is obvious that the direct inversion 
of the matrix D  in (1) is not feasible, because D  is not square and the noise η  is 
unknown either. Hence, image magnification is mathematically an ill-posed inverse 
problem in the sense of Hardmard [12]. The regularization theory is often exploited to 
solve such a problem, whose principle is to approximate the solution of an ill-posed 
problem using a well-posed problem obtained by imposing some kind of a-priori 
constraints [13]. In image processing, the a-priori constraints are essentially the im-
age models, i.e., the locations of sharp edges, fine textures, etc. 

Assume the noise η  is independently and identically Gaussian distributed, image 
magnification can be then formulated as the following minimization functional   

1 2min [ ] min [ ] [ ]
2

= arg , = arg ,
λλ ⋅ +

u u
u E u E g u E u . (3) 

where λ  is the regularization parameter controlling the tradeoff between 1[ ],E g u  and 

2[ ]E u , and 1[ ],E g u  is the data fidelity term penalizing the inconsistency between the 
estimated HR image and the observed LR image, represented as 

( )( )

2

2
1

21 1 1 1 1 1

1
[ ] = - k ,l

qm qn

m,n
m n k q m  l q n

, g u
q= = = − + = − +

= −
N N

E g u g Du . (4) 

As for 2[ ]E u , it is the regularization term imposing a-priori constraints on the HR image 
u, which determines the visual quality of the magnified HR image to a great degree. 
Many regularization terms have been proposed for magnification, such as the Tikohonov 
regularization [1, 7], the Huber-MRF regularization [3, 9], the digital total variation (TV) 
regularization [2, 14, 15], whose performance will be analyzed a little later in the paper. 
Except for the visual quality of the magnified HR image, the computational complexity 
of minimizing [ ],λE u  is another critical issue in image magnification. Currently, gradi-
ent descent [3, 9, 15] is one of the most popular methods to solve the minimization func-
tional (3), while involving a large memory of the matrix TD D , the high computational 
complexity of the adaptive time step, the issue of computational stability, and so on. 

Although there have been proposed many magnification algorithms, they are either 
sensitive to the noise, or non-robust to the blocking artifacts, or of high computational 
complexity, which hence limits their utility. In this paper, we propose an alternative 
approach utilizing a filtering-based implementation scheme and novel regularization 
through coupling bilateral filtering with the digital TV model. The method is simple, 
fast, and robust to both the noise and blocking artifacts. Experiment results demon-
strate the effectiveness of our approach. 
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The paper is organized as follows. Section 2 induces the origin of bilateral filtering. 
Section 3 proposes a digital bilateral TV model and a filtering-based magnification 
scheme. Experiments are shown in section 4, and concluding remarks are given in 
section 5. 

2   Origin of Bilateral Filtering 

Definition 2.1 (Neighborhood system)  

A neighborhood system on 2-D discrete grid Z is a family = { }α α∈ZN N   of subsets of 
Z such that for all , α β ∈ Z , 
i) αα ∈ N ; 
ii) α ββ α∈ ⇔ ∈N N ; 

 

The subset αN  is called the neighborhood of α . And if αβ ∈ N , we write ~β α  just 
for simplification.  

Definition 2.2 (Neighborhood order) 

The order of a neighborhood αN  is s (>1) if and only if the size of αN  is 
(1+ 2( 1)) (1+ 2( 1))s s− × − , and s = 1 corresponds to a 4-neighborhood.   

2.1   Bilateral Filtering and Its Origin 

Bilateral filtering, proposed by Tomasi and Manduchi [16], smoothes images while 
preserving the edges by means of a nonlinear combination of nearby image values in 
a large neighborhood, preferring near values to distant values in both domain and 
range. In fact, the same idea also can be found in the previous works [20]. A single 
iteration of bilateral filtering yields: 

1
( - ) ( )

( - ) ( )

t t t
x y yy~ xt

x t t
x yy~ x

g u u w x - y u
u

g u u w x - y
+

⋅ ⋅
=

⋅
. (5) 

where 1 2( , )x x x= , 1 2( , )y y y=  are the coordinates in the image domain Ω , the order of 
~y x  is s 2≥ . The function g measures the photometric similarity of gray levels, 

called range weight; and the function w measures the geometric closeness of space 
coordinates, called domain weight. Both functions are defined as (6) in [16]  

( ) { }2 2= 2f r exp | r | / σ− . (6) 

Several developments have been made on bilateral filtering in both theory and ac-
tual applications [17, 18, 15]. Based on the principle of bilateral filtering, Barash 
extended anisotropic diffusion and adaptive smoothing to an arbitrary neighborhood 
[17], showing their equivalence and stressing the importance of using large neighbor-
hoods for edge-preserving smoothing. Another interesting conclusion given by Elad 
[18] is that, bilateral filtering essentially emerges from the weighted least squares 
minimization functional, as a single iteration of the Jacobi algorithm. Quite recently, a 
new regularization term was proposed for super-resolution [15], through coupling 
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bilateral filtering with the 1l  norm. Here, we prove that bilateral filtering emerges 
from the Bayesian framework, but with a more concise penalty functional.  

The kernel of the domain weight is its measurement of the geometric closeness of 
space coordinates. Hence, the choice of the domain weight is much intuitionistic, such as 
(6) and other nonincreasing measurements on the half positive axis. In the paper, we 
choose (6) for the experiments. For gray images, the kernel of the range weight is its 
measurement of the photometric similarity of gray levels. Hence, the choice of the range 
weight is a critical issue for edge-preserving smoothing, as we will see, which is equiva-
lent to the designing of potential functions in the Markov Random Field (MRF). Assume 
the steady state of (5) is u, i.e., lim ( ) ( )t

t u x u x→∞ = for any x∈ Ω , then (5) is reduced to 

( - ) ( )

( - ) ( )

x y yy~ x
x

x yy~ x

g u u w x - y u
u

g u u w x - y

⋅ ⋅
=

⋅
. (7) 

where g needs not to be (6). Obviously, (7) can be rewritten as  

( ) ( - ) ( - ) 0x y x yy~ x
w x - y g u u u u⋅ ⋅ = . (8) 

If there exists some differentiable function ρ  such that ( ) ( )'g r r / rρ= , then 

min ( ) ( - )x y
u

x y~ x

u arg w x - y u uρ
∈Ω

= ⋅ . (9) 

As a matter of fact, the function ρ  can be chosen as the potential function in MRF. 
And several efforts have been made on the choice of edge-preserving potential func-
tions [12, 19]. Therefore, the steady state u of bilateral filtering is essentially a local 
or global minimum of (9) depending on the function ρ . On the other hand, bilateral 
filtering is reconfirmed to emerge from the Bayesian framework, but with a more 
concise penalty functional than that of Elad [18].  

3   Nonlinear Filtering-Based Image Magnification  

Bilateral filtering is capable of edge-preserving in image denoising, mainly consisting in 
two important factors, i.e., firstly its origin in the Bayesian framework with edge-
preserving potential functions, and secondly the large neighborhood exploited in the 
filtering process. In fact, the large neighborhood-based filtering has its close relationship 
with the human visual system and the human perception law, such as the Helmholtz 
hypothesis, the similarity law, the closeness law and the continuity law. Hence, the idea 
of bilateral filtering can be viewed as a basic principle in various image processing tasks, 
such as filtering, restoration, inpainting, magnification, super-resolution, and so on. 

3.1   Digital Bilateral Total Variation 

Recently, Chan et al. [14] proposed the so-called digital total-variation (TV) filter for 
noise removal, and applied it to image inpainting and magnification (The up-sampling 
factor is 2). However, unlike bilateral filtering, they restricted the filter to a small 
support (s = 1 or 2), thus losing its prime origin of strength. In this section, we 
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propose a novel regularization operator through coupling bilateral filtering with the 
digital TV model, denoted as  

2
2 ( ) ( ) ( - )x yx y~ x

u w x - y u u
∈Ω

= ⋅E . (10) 

Obviously, (10) reduces to the digital TV model when the domain weight w equals to 
1 and the order of y ~ x is equal to 1 or 2. Given the degradation model =  + g u η , 
consider the following minimization functional 

{ }2
2min ( ) ( )

2 x xx
u

u arg g u u
λ

∈Ω= − +E . (11) 

For any x ∈ Ω , the steady state of (11) yields  

( ) ( ) ( )
~

1/ 1/ ( ) 0x x x y x y
e e

y x

u g u u w x y u uλ ⋅ − + ∇ + ∇ ⋅ − ⋅ − = . (12) 

where  

2( ) ( - )x x ye y~ x
u w x - y u u e∇ = ⋅ + . (13) 

and e is any small positive constant. (12) can be further rewritten as  

x xy y xx xy~ x
u w u w g= ⋅ + ⋅ . (14) 

where  

~/( )xyxyxy y xw h hλ= + . (15) 

~/( )xyxx y xw hλ λ= + . (16) 

( )1/ 1/ ( )x yxy e e
h u u w x y= ∇ + ∇ ⋅ − . (17) 

We name (14) the digital bilateral TV filtering, which is obviously the generalization 
of digital TV filtering [14] and much more powerful because of the large neighbour-
hood exploited in the filtering process.  

3.2   Nonlinear Filtering-Based Image Magnification 

Based on the degradation model (2), as stated in section 1, image magnification can 
be formulated as the minimization functional (3). Particularly, when the digital bilat-
eral TV model is chosen as the regularization term in (3), we obtain 

( )( )

2

21 1 1 1 1 1

1
min

2
k ,l

qm qn

xm,n exu
m n k q m  l q n

u = arg g u u
q

λ
∈Ω

= = = − + = − +
⋅ − + ∇

N N

. (18) 

The estimated HR image is just the steady state of (18). That is, u satisfies  

1 2[ , ] = [ , ] + [ ] = 0
2x x x

λλ∇ ⋅ ∇ ∇E u E g u E u . (19) 

for any 1 2( )x x ,x= ∈ Ω . A simple calculation yields 
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( ) ( ) ( )2
~

[ ] 1/ 1/x x y x y
e e

y x

u u w x y u u∇ = ∇ + ∇ ⋅ − ⋅ −E u . (20) 

( )( )
,1

2 21 1  1 1

1 1
[ , ] 2

qm qn

x m,n k l

k q m l q n

g u
q q= − + = − +

∇ = ⋅ − ⋅ −E g u . (21) 

where 1m x / q= , and 2n x / q= . Therefore, (19) can be rewritten as 

x xy y xxy~ x
u u vϖ ϖ= ⋅ + ⋅ . (22) 

where xyϖ , xxϖ , and hxy is the same as (15) ~ (17) respectively when 22 / qλ  is denoted 

as λ , and  

2
, ,

( 1) 1  ( 1) 1

(( / ) )
qm qn

x k l m n
k q m l q n

v u q u g
= − + = − +

= − + . (23) 

Image magnification can be finally implemented by the filtering process (22), with an 
arbitrary initial guess 0u . Since the implementation scheme (22) is filtering-based, 
our magnification approach is of much low computational complexity. 

4   Experiment Results and Performance Analysis  

To achieve the “best” visual quality of the estimated HR image, image sharpening is 
added to the end of filtering-based magnification scheme. In the experiment, an origi-
nal HR image is locally averaged and under-sampled by the factor of 4 in each direc-
tion (see Fig. 1). Magnification results are shown in Fig. 2, utilizing bilinear interpola-
tion, bicubic interpolation, Tikohonov regularization, Huber-MRF regularization, 
digital TV regularization, and digital bilateral TV regularization. They are all imple-
mented by the filtering-based scheme, just similar to the process (22). The initial 
guess is chosen as the pixel replication of the LR image.  

  
(a)                                                (b) 

Fig. 1. Original image (256 256) and  LR image (64 64) 
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(a)                                                (b) 

  

(c)                                                (d) 

  

(e)                                                (f) 

Fig. 2. (a) Bilinear interpolation, (b) Bicubic interpolation, (c) Tikohonov regularization (the 
5th iteration, the neighborhood order s is 2, 0.0005λ = ), (d) Huber-MRF regularization (the 
10th iteration, the neighborhood order s is 2, the breakdown point is 10, 0.0005λ = ), (e) Digital 
TV regularization (the 10th iteration, the neighborhood order s is 2, 0.0005λ = ), (f) Digital 
bilateral TV regularization (the 3rd iteration, the neighborhood order s is 3, the variance σ  of 
the domain weight is 1.5, 0.0005λ = ). Each iteration costs about 2~3 seconds. 
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(a)                                          (b)                                           (c) 

   
(d)                                          (e)                                           (f) 

   
(g)                                          (h)                                           (i) 

Fig. 3. Magnification results ( q =3) (a) Bicubic interpolation, (b) Digital TV regularization 
(the 10th iteration, the neighborhood order s is 2, 0.0005λ = ), (c) Digital bilateral TV regulari-
zation (the 6th iteration, the neighborhood order s is 3, the variance σ  of the domain weight is 
1.5, 0.0005λ = ), (d) ~ (f) Edge detection of (a)~(c) using Canny operator, (g) ~ (i) Edge detec-
tion of (a)~(c) using Prewitt operator 
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Obviously, our magnification approach achieves much better visual quality than 
other methods. Specifically, bilinear and bicubic interpolation produces severe block-
ing artifacts. The Tikohonov regularization makes the estimated HR image much 
blurring. There exists the problem of tradeoff between blurring and edge-preservation 
as for the Huber-MRF regularization. The digital TV regularization completely fails 
when the down-sampling factor is 4, although it behaves well in the case of 2. The 
success of the digital bilateral TV regularization in image magnification demonstrates 
again the strength of large neighborhoods exploited in image processing. Besides, the 
proposed filtering-based scheme (22) is fast, in which each iteration costs about 2~3 
seconds. Fig. 3 shows the magnification results of a real scanned photo as q =3, utiliz-
ing bicubic interpolation, digital TV regularization and our proposed approach. Obvi-
ously, our proposed approach behaves more robust in enhancing the edges and sup-
pressing the random noises. 

5   Conclusions 

In this paper, we propose an alternative magnification approach utilizing a filtering-
based implementation scheme and novel regularization through coupling bilateral 
filtering with the digital TV model. The method is simple, fast, and robust to both 
noise and blocking artifacts. Experiment results demonstrate the effectiveness of our 
method. 
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Abstract. Post-processing methods using projections onto convex sets
(POCS) have shown good performance for blocking artifact reduction.
The iterative operations in POCS require infeasible amount of compu-
tations for practical real-time applications. In this paper, we propose an
efficient non-iterative post-processing method using DCT domain POCS,
namely DPOCS. In DPOCS, the inverse DCT and the forward DCT need
not be performed by performing the low-pass filtering (LPF) in the DCT
domain. Through the investigation of LPF at each iteration in the con-
ventional POCS, the k-th order LPF is defined that is equivalent to the
first order LPF with k iterations. By combining DCT domain filtering
and the k-th order LPF, we define k-th order DCT domain LPF. The k-
th order DCT domain LPF is performed only once to have the equivalent
performance to the conventional POCS method with k iterations. Simula-
tion results show that the proposed DPOCS without iteration gives very
close PSNR and subjective quality performance compared to the conven-
tional POCS with iterations, while it requires much less computational
complexity. If we take into account typical sparseness in DCT coefficients,
the DPOCS method gives tremendous complexity reduction compared
to the conventional POCS method. Hence the proposed DPOCS is an
attractive method for practical real-time post-processing applications.

1 Introduction

There have been considerable researches to reduce blocking artifacts in block
DCT coding methods, which can be classified into two catagories [1], [2]. One
is variation of transform structure such as interleaved block transform [3] and
lapped transform [4]. The other one is postprocessing techniques such as filtering
approaches [5] and iterative approaches based on the theory of projections onto
convex sets (POCS) [1], [2], [6], [7], [8], [9].

The post-processing techniques are attractive because these would keep the
encoder and decoder unchanged [1], [2]. The simplest approach among post-
processing techniques would be just low-pass filtering. The simple low-pass fil-
tering might result in over-loss of high frequency components, which would re-
sult in over-blurring. On the other hand, POCS approach adopts quantization
� This paper was supported by Konkuk University in 2006.

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 63–73, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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constraint set (QCS) to ensure the post-processed image located in the same
quantization set as the quantized image. The QCS can be simply obtained from
the quantized image and the quantization table. The projection onto QCS (sim-
ply projection) is performed as clipping operation. The projection operation is
effective to prevent post-processed images from diverging. In POCS, low-pass fil-
tering (LPF) is performed for smoothing. The projection and LPF is performed
iteratively in POCS. Note that the projection operation is performed in the DCT
domain and the LPF is performed in the spatial domain. The IDCT and DCT
would be required to go back and forth between the DCT domain and the spatial
domain. Hence the following operations would be required at each iteration in
POCS: IDCT, LPF, DCT, projection.

Recently, blocking artifact reduction techniques are demanded in practical
applications at low bit rates such as video over internet and wireless networks.
Even though POCS-based approaches have demonstrated good performance to
reduce blocking artifacts, it is infeasible to employ conventional POCS in prac-
tical applications, especially in real-time applications. It is essential for block-
ing artifact reduction method to be simple or reasonably complex for practical
applications.

In this paper, we propose an efficient post-processing using DCT domain
POCS, namely DPOCS. In conventional POCS, the LPF is performed in the
spatial domain. Hence IDCT and DCT would be required in this approach. In
DPOCS, the LPF is performed in the DCT domain. Hence IDCT and DCT would
not be required. We also investigate LPF at each iteration. For the equivalent
LPF without iteration, we define k-th order LPF. By combining DCT domain
filtering and k-th order LPF concept, we define k-th order DCT domain LPF
(DLPF). In the proposed DPOCS, the projection operation is performed only
once after the k-th order DLPF is performed only once.

The proposed DPOCS method gives very close PSNR and subjective quality
performance compared to the conventional spatial domain POCS method, while
it requires much less computational complexity. The proposed DPOCS method
would be an attractive scheme for blocking artifact reduction in practical real-
time post-processing applications.

The organization of this paper is as follows. Section 2 introduces conventional
spatial domain POCS as background. In Section 3, we investigate low-pass filter-
ing (LPF) in POCS and define k-th order LPF. Section 4 presents DCT domain
separable symmetric linear filtering. In Section 5, we propose the DCT domain
POCS. Section 6 presents simulation results. In Section 7, we discuss on com-
plexity comparison between the conventional POCS method and the proposed
DPOCS method. Finally, Section 8 provides brief conclusion.

2 Conventional Spatial Domain POCS

Fig. 1 represents the block diagram of conventional POCS [6], [7], [8] for one
iteration. First, IDCT is performed to obtain spatial domain images from DCT
coefficients. Second, spatial domain low-pass filtering (SLPF) is performed for
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smoothing images. Third, forward DCT operation need to be performed to ob-
tain DCT coefficients. Fourth, projection operation is performed to satisfy the
quantization constraint as clipping operation.

Fig. 1. Block diagram of conventional POCS for one iteration

In conventional spatial domain POCS algorithm, these four operations need
to be performed iteratively. In other words, these four operations in Fig. 1 need
to be performed k times for k iterations in conventional spatial domain POCS.

3 LPF in POCS

In POCS, low-pass filtering (LPF) is performed in the spatial domain for smooth-
ing. Let {x(m,n)} and {y(m,n)} be the input image and filtered image, respec-
tively. Let {f(m,n)} be the filter coefficients for 2-D LPF. The LPF by 2-D filter
coefficients {f(m,n)} can be represented as

y(m,n) = f(m,n) ∗ x(m,n) =
∑

k

∑
l

f(k, l)x(m− k, n− l) (1)

where ∗ represents the convolution operation and the range of summation over k
and l is given by the support of the filter coefficients {f(m,n)}. We assume that
the 2-D filter is separable, that is, {f(m,n)} can be factorized as {f(m,n)} =
vmhn for some 1-D filters {vm} and {hn}. Let the supports of {vm} and {hn}
be −M ≤ m ≤M and −N ≤ n ≤ N , respectively.

In POCS, the LPF is performed in each iteration. In k-th iteration, the filtering
operation is performed over the filtered output after the (k−1)-th iteration. Let
y(k)(m,n) be the filtered output after the k-th iteration. Then

y(k)(m,n) = f(m,n) ∗ y(k−1)(m,n). (2)

Let f (1)(m,n) ≡ f(m,n) and f (k)(m,n) ≡ f (1)(m,n) ∗ f (k−1)(m,n). Then it can
be shown that

y(k)(m,n) = f (k)(m,n) ∗ x(m,n). (3)

We call {f (k)(m,n)} the k-th order low-pass filter for smoothing. Note that the
k-th order low-pass filter {f (k)(m,n)} is the equivalent filter with the low-pass
filter at the k-th iteration in the conventional POCS method.

The k-th order low-pass filter kernel {f (k)(m,n)} is also separable and can
be obtained from the 1-D filter coefficients {vm} and {hn}. Let v

(1)
m ≡ vm,



66 C. Yim

v
(k)
m ≡ v

(1)
m ∗ v(k−1)

m , h(1)
n ≡ hn, and h

(k)
n ≡ h

(1)
n ∗ h(k−1)

n . Then it can be shown
that

f (k)(m,n) = v(k)
m h(k)

n . (4)

The 2-D filter kernel in [6], which is used in many POCS works [7], [9], is
3 × 3 with f(0, 0) = 0.2042, f(0, 1) = f(0,−1) = f(1, 0) = f(−1, 0) = 0.1259,
f(0, 2) = f(0,−2) = f(2, 0) = f(−2, 0) = 0.0751. This 2-D filter is separable
and symmetric, and the corresponding 1-D filter kernel is v0 = h0 = 0.4518,
v1 = v−1 = h1 = h−1 = 0.2741.

We can calculate the k-th order 1-D filter coefficients from the given first
order 1-D filter coefficients {v(1)

m }. Table 1 shows the filter coefficients of {v(2)
m },

{v(5)
m }, and {v(8)

m } from the given {v(1)
m }. Note that h

(k)
m = v

(k)
m and v

(k)
−m = v

(k)
m

for all k and m.

Table 1. 1-D filter kernels of k-th order filters {v(k)
m } for some k

v
(1)
m v

(2)
m v

(5)
m v

(8)
m

v0 0.4518 0.3514 0.2339 0.1870
v1 0.2741 0.2477 0.1987 0.1682
v2 0 0.0751 0.1203 0.1219
v3 0 0 0.0498 0.0705
v4 0 0 0.0128 0.0319
v5 0 0 0.0015 0.0109
v6 0 0 0 0.0027
v7 0 0 0 0.0004
v8 0 0 0 0.0000

Fig. 2 shows the frequency response of {v(1)
m }, {v(2)

m }, {v(5)
m }, and {v(8)

m }. In
Fig. 2, we can see that low-pass bandwidth becomes smaller as the order becomes
larger. This explains that the filtered image becomes smoother as the iteration
number increases in POCS.

4 DCT Domain Separable Symmetric Linear Filtering

We assume that the DCT block size is 8×8, which is common in DCT-based com-
pression standards. Let {x(m,n)} and {y(m,n)} be composed of non-overlapping
8 × 8 matrices Xi,j and Yi,j , respectively, for block-based matrix form. Let
V ≡ [V−1 V0 V1] and H ≡ [H−1 H0 H1], where

V−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v8 v7 · · · v2 v1

0 v8
. . . . . . v2

...
. . . . . . . . .

...

0
. . .

. . . v8 v7
0 0 · · · 0 v8

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (5)
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Fig. 2. Frequency response of {v(k)
m } for some k

V0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v0 v−1 · · · v−6 v−7

v1 v0
. . . . . . v−6

...
. . . . . . . . .

...

0
. . . . . . v0 v−1

v7 v6 · · · v1 v0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

V1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v−8 0 · · · 0 0

v−7 v−8
. . . . . . 0

...
. . . . . . . . .

...

v−2
. . . . . . v−8 0

v−1 v−2 · · · v−7 v−8

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

The H−1, H0, and H1 matrices are similarly defined as V−1, V0, and V1,
respectively, by replacing vk to hk for all k. In this paper, we assume that M
and N do not exceed 8 so that the filtering operation for Xi,j is only related to
the neighboring blocks. The 2-D separable linear filtering can be represented as

Yi,j =
1∑

m=−1

1∑
n=−1

VmXi+m,j+nH
t
n. (8)

Note that Yi,j , Xi+m,j+n, Vm, and Hn are all matrices of size 8× 8.
Let C be the DCT transform matrix. Since the DCT is unitary, C−1 = Ct.

Let Yi,j , Xi+m,j+n, Vm, and Hn be the DCT of Yi,j , Xi+m,j+n, Vm, and Hn,
respectively. Then Yi,j = CYi,jC

t, Xi+m,j+n = CXi+m,j+nC
t, Vm = CVmCt,
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and Hn = CHnC
t. It can be shown that Yi,j can be represented in terms of

Xi+m,j+n’s as [10], [14]

Yi,j =
1∑

m=−1

1∑
n=−1

VmXi+m,j+nHt
n. (9)

We call the matrices Vm’s and Hn’s, the DCT domain filtering matrices. Note
that the DCT domain filtering matrices Vm’s and Hn’s can be pre-calculated
given the filter coefficients {vk} and {hl}. Equation (9) represents the 2-D linear
filtering in the DCT domain.

The separable 2-D linear filtering in the DCT domain can be performed sep-
arately in the vertical and in the horizontal directions. The separable 2-D linear
filtering in the DCT domain in (9) can be decomposed as [14]

Zi,j = V−1Xi−1,j + V0Xi,j + V1Xi+1,j (10)

Yi,j = Zi,j−1Ht
−1 + Zi,jHt

0 + Zi,j+1Ht
1 (11)

where Zi,j represents the 1-D linear filtered matrix in the vertical direction for
the DCT domain input matrix. The separable 2-D linear filtering in the DCT
domain as in (10) and (11) would require 3072 multiplications for one 8×8 DCT
block.

The 2-D filter kernel in many POCS works [6], [7], [8], [9] is separable and
symmetric. For separable symmetric 2-D filter kernel, we can perform the DCT
domain 2-D linear filtering with 1536 multiplications for one DCT block [14].

5 Proposed DCT Domain POCS

In this section, we propose the DCT domain POCS (DPOCS). Fig. 3 shows the
block diagram of the proposed DPOCS. In Fig. 3, DLPF is the DCT domain
low-pass filtering. In Section 3, we define the k-th order LPF for POCS. The
k-th order low-pass filtering corresponds to the low-pass filtering at the k-th
iteration in POCS. If the k-th order low-pass filter kernel is selected for DLPF,
we call it the k-th order DLPF. Note that DCT domain filtering matrices can
be pre-calculated for any order. We define the k-th order DPOCS when DLPF
is k-th order. The projection operation in Fig. 3 is identical to the projection
operation in the conventional POCS. In DPOCS, the projection operation is
performed only once after the k-th order DLPF operation is performed only
once. The block diagram in Fig. 3 shows the whole operations for DPOCS, not
just for one iteration as in Fig. 1.

The proposed DPOCS method would require much less computations com-
pared to the conventional POCS due to the following reasons. First, the proposed
DPOCS method does not require any iteration. Second, the proposed DPOCS
method does not require IDCT and DCT operations. Third, DCT coefficients
are generally very sparse after the quantization, especially at low bit rates. More
detailed discussion on complexity comparison would be presented in Section 7.
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Fig. 3. Block diagram of the proposed DCT domain POCS

6 Simulation Results

In this section, simulation results are presented to evaluate the proposed DPOCS
method compared with the conventional spatial domain POCS method. Table 2
shows the quantization table that was used for simulations.

Table 2. Quantization table [6], [7]

50 60 70 70 90 120 255 255
60 60 70 96 130 255 255 255
70 70 80 120 200 255 255 255
70 96 120 145 255 255 255 255
90 130 200 255 255 255 255 255
120 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255

Fig. 4 shows the peak signal-to-noise (PSNR) ratio of the post-processed im-
ages for ‘Lena’, ‘Peppers’, ‘Barbara’, and ‘Baboon’ images. The horizontal axis
represents the number of iterations in the conventional spatial domain POCS
and the order DLPF in the proposed DPOCS. The dotted line with ‘+’ points
represents the PSNR of the conventional spatial domain POCS, and the solid
line with ‘o’ points represents the the PSNR of DPOCS. We compare the conven-
tional POCS and the proposed DPOCS up-to 8 iterations and the corresponding
8-th order DLPF. Simulation results on conventional POCS show that the PSNR
values are mostly converged with 8 iterations in previous works [6], [7], [8]. In
these results, we can see that the proposed DPOCS method yields very close
PSNR performance at each corresponding DLPF order compared to the conven-
tional POCS method at each iteration.

Fig. 5 represents the simulated images for ‘Barbara’ image. Fig. 5(a) represents
the original image and Fig. 5(b) represents the quantized image with blocking
artifacts. Fig. 5(c) represents the post-processed image using the conventional
spatial domain POCS method with 8 iterations. Fig. 5(d) represents the post-
processed image by the proposed DPOCS method with the corresponding 8-th
order DLPF. These results show that the DPOCS as well as the conventional
POCS remove most blocking artifacts successfully while preserving the edge com-
ponents. From these simulation results, we can see that the proposed DPOCS
method gives very close performance compared to the conventional spatial do-
main POCS method.



70 C. Yim

0 1 2 3 4 5 6 7 8
29

29.2

29.4

29.6

29.8

30

30.2

30.4

30.6

30.8

31

Iterations (conventional POCS), Order (DPOCS)

P
S

N
R

 (
d

B
)

0 1 2 3 4 5 6 7 8
30

30.2

30.4

30.6

30.8

31

31.2

31.4

31.6

31.8

32

Iterations (conventional POCS), Order (DPOCS)

P
S

N
R

 (
d

B
)

(a) (b)

0 1 2 3 4 5 6 7 8
26

26.1

26.2

26.3

26.4

26.5

26.6

26.7

26.8

26.9

27

Iterations (conventional POCS), Order (DPOCS)

P
S

N
R

 (
d

B
)

0 1 2 3 4 5 6 7 8
21.4

21.45

21.5

21.55

21.6

21.65

21.7

21.75

21.8

Iterations (conventional POCS), Order (DPOCS)

P
S

N
R

 (
d

B
)

(c) (d)

Fig. 4. PSNR of post-processed images versus the number of iterations in spatial do-
main POCS case and the order in DPOCS case (spatial domain POCS: ‘+’ dotted,
proposed DPOCS: ‘o’ solid). (a) Lena (b) Pepper (c) Barbara (d) Baboon.

7 Complexity Comparison

In this section, we discuss on complexity comparison between the conventional
POCS method and the proposed DPOCS method. As represented in Fig. 1, the
conventional POCS method need to go through 4 steps: IDCT, SLPF, DCT, and
projection. These 4 steps need to be performed in each iteration. Hence the com-
plexity of conventional POCS method depends on the number of iterations. First,
we consider about SLPF. We assume that 3×3 filter kernel is used as in [6], [7], [9].
If we calculate SLPF as separable 1-D filtering, then it would require 384 multipli-
cations for one 8×8 block. Second, we consider about DCT/IDCT computations.
There are many fast algorithms and VLSI architectures for 2-D DCT implemen-
tations. The most popular approach for 2-D DCT/IDCT VLSI implementation is
row-column method [11]. Typical 2-D DCT as row-column method would require
192 multiplications for one 8 × 8 block [12]. The same number of multiplications
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(a) (b)

(c) (d)

Fig. 5. Simulated images for ‘Barbara’ image. (a) Original image (b) Quantized image
(c) Post-processed image using the conventional spatial domain POCS with 8 iterations
(d) Post-processed image using the proposed DPOCS with the corresponding 8-th order
DLPF.

would be required for IDCT. Overall it would require 768 multiplications for one
iteration in conventional POCS method. Let m represent the number of multi-
plications for one 8 × 8 block. If we perform k iterations in conventional POCS
method, then m = 768k. Table 3 shows the number of operations in conventional
POCS method for 2, 4, 6, and 8 iterations. In conventional POCS, the number of
operations increases linearly as the number of iterations increases.

Now we consider about the complexity of the proposed DPOCS method. The
number of multiplications for DLPF depends on the sparseness of DCT coeffi-
cients. Actually high percentage of coefficients in a typical DCT block have zero
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Table 3. The number of multiplications in conventional POCS method for 2, 4, 6, and
8 iterations

Iterations Number of multiplications
2 1536
4 3072
6 4608
8 6144

Table 4. The number of multiplications in the proposed DPOCS method for 2, 4, 6,
and 8 orders

Orders Number of multiplications Number of multiplications
without sparseness with sparseness

2 1536 384
4 1536 384
6 1536 384
8 1536 384

values after the quantization, especially at low bit rate compression. Let α and
β denote the ratio of non-zero coefficients in input DCT matrices Xi,j and 1-D
filtered DCT matrices Zi,j , respectively. The number of multiplications m for
DCT domain linear filtering as in (10) and (11) would be

m = 768α + 768β. (12)

The sparseness of DCT blocks is obtained after the quantization. The amount
of sparseness is dependent on many factors such as image characteristics and
quantization operation. In [13], they define a DCT block as sparse if only its
4 × 4 upper left quadrant coefficients are nonzero. In this case, α = β = 0.25,
and the number of multiplications in (12) is 384. We call this case as typical
sparse case. Actually α and β values would be smaller than 0.25 in low bit
rate compression. Table 4 shows the number of multiplications in the proposed
DPOCS method for orders 2, 4, 6, and 8. The number of multiplications without
sparseness is 1536 for any order, which is the same as the 2 iteration case in the
conventional POCS. If we compare the number of multiplications between the
DPOCS without sparseness in order 8 and the conventional POCS in iteration 8,
it is reduced from 6144 to 1536, which is 25% of multiplications. If we take into
account the sparseness, the number of multiplications would be further reduced.
The number of multiplications for DPOCS with typical sparseness is 384 in
any order. If we compare the number of multiplications between the D-POCS
with typical sparseness in order 8 and the conventional POCS in iteration 8, it
is reduced from 6144 to 384, which is 6.3% of multiplications. Note that both
PSNR and subjective quality performance is almost the same at each iteration
in conventional POCS and the corresponding order in DPOCS.

8 Conclusion

We proposed the DCT domain POCS method (DPOCS) for post-processing
images with blocking artifacts. In DPOCS, the low-pass filtering (LPF) is per-
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formed in the DCT domain. In this way, we removed the IDCT and DCT from
POCS. We also investigated LPF at each iteration, and defined k-th order LPF
for the LPF to be equivalent without iteration. By combining DCT domain fil-
tering and k-th order LPF concept, we defined k-th order DCT domain LPF
(DLPF). In the proposed DPOCS, the projection operation is performed only
once after the k-th order DLPF.

Simulation results show that the proposed DPOCS method without iteration
give almost the same result as the conventional POCS method with iterations.
The proposed DPOCS method requires much less computational complexity
compared to the conventional POCS method. The proposed DPOCS method
would be an attractive scheme for blocking artifact reduction in practical post-
processing applications.
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Abstract. In this paper a new switching vector filter for impulsive noise re-
moval in color images is proposed. The new method is based on a recently intro-
duced impulse detector named Rank-Ordered Differences Statistic (ROD) which
is adapted to be used in color images. The switching scheme between the identity
operation and the Arithmetic Mean Filter is defined using the mentioned impulse
detector. Extensive experiments show that the proposed technique is simple, easy
to implement and significantly outperforms the classical vector filters presenting
a competitive performance respect to recent impulsive noise vector filters.

1 Introduction

During image formation, acquisition, storage and transmission many types of distor-
tions limit the quality of digital images. Transmission errors, periodic or random mo-
tion of the camera system during exposure, electronic instability of the image signal,
electromagnetic interferences, sensor malfunctions, optic imperfections or aging of the
storage material, all disturb the image quality by the introduction of noise and other
undesired effects. In particular, a kind of noise which is mainly introduced during the
transmission process is the so-called impulsive noise [9,13]. In this context, the filtering
process becomes an essential task to avoid possible drawbacks in the subsequent image
processing steps.

When the images are contaminated with impulsive noise the switching approaches
are widely used due to their sufficient performance and proven computational simplic-
ity. On the basis of the classical vector filters as the Arithmetic Mean Filter (AMF)
[13], the Vector Median Filter (VMF) [2] , the Basic Vector Directional Filter (BVDF)
[17,18], or the Distance Directional Filter (DDF) [5], the switching approaches aim
at selecting a set of pixels of the image to be filtered leaving the rest of the pixels
unchanged. A series of methods for selecting the noise-likely pixels have been pro-
posed to date [1,6,7,8,11,12,14,15,16]. For example, the Adaptative Vector Median Fil-
ter (AVMF) is proposed in [8], the Fast Impulsive Vector Filter (FIVF) in [12], and the
Peer Group Switching Arithmetic Mean Filter (PGSAMF) in [15]. In [1] the authors
propose to determine if the vector in consideration is likely to be noisy using cluster
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analysis. The standard deviation, the sample mean and various distance measures are
used in [6,10] to form the adaptive noise detection rule. [8] proposes to use an statistical
test and [3] uses statistical confidence limits. In [11,14,15] a neighborhood test is ap-
plied. Then, the filtering operation is performed only when it is necessary. In a similar
way, in [19] a genetic algorithm is used to decide in each image position to perform
the Vector Median Filter operation, the Basic Vector Directional Filter operation or
the identity operation. In [7,12,16], it is proposed to privilege the central pixel in each
filtering window to reduce the number of unnecessary substitutions.

In this paper, a novel approach to the detection of impulsive noise in color images is
presented. The detection of corrupted pixels is performed by calculating a generaliza-
tion to color images of the statistic developed in [4] which will be called Rank-Ordered
Differences Statistic (ROD). The function of this impulse detection mechanism is to
check each pixel in order to find out wether it is distorted or not. It will be seen that the
magnitude of the Rank-Ordered Differences Statistic serves as an indicator whether the
pixel is corrupted by impulsive noise or is undisturbed by the noise process. When the
ROD statistic indicates corruption, the switching filter performs the Arithmetic Mean
Filter on the corrupted pixels, while the noise-free pixels are left unaltered in order to
avoid excessive distortion.

In the following, Section 2 explains the Rank-Ordered Differences Statistic. The pro-
posed filtering scheme is described in Section 3. Experimental results, performance
comparison and discussion are included in Section 4. Finally, Section 5 presents the
conclusions.

2 Rank-Ordered Differences Statistic for Color Images

Attending to its location in the image, we can consider for each pixel x a n×n win-
dow Ωx centered at x, and we identify each pixel y ∈ Ωx with its RGB color vector
(y(1), y(2), y(3)) ∈ X3 where X = {0, 1, . . . , 255}. Denote by d1

x,y and d2
x,y the

city-block distance and the euclidean distance between the color vectors x and y in Ωx,
respectively.

Denote by Ω0
x the set of neighbors of x in the window Ωx, excepting x, i.e. Ω0

x =
Ωx − {x}. Fixed k ∈ {1, 2}, we compute the distances dk

x,y for all y ∈ Ω0
x, so we

obtain a collection of non-negative real values rj(x), not necessarily distinct, which we
order in an ascending sequence

r1(x) ≤ r2(x) ≤ . . . ≤ rn2−1(x) (1)

(Roughly speaking, ri(x) is the ith smallest dk
x,y for y ∈ Ω0

x).
Now, fixed a positive integer m ≤ n2 − 1, the m rank order difference statistic

(RODm) is defined as follows.

RODm(x) =
m∑

i=1

ri(x). (2)

The ROD statistic here defined is a generalization to RGB color images of the ROAD
presented in [4] for gray scale images. In this paper, we only consider m = 4, and for
simplicity we set ROD(x) = ROD4(x).
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The ROD statistic provides a measure of how close a pixel is to its four most similar
neighbors in Ω0

x attending to their RGB color vectors. The logic underlaying of the
statistic is that unwanted impulses will vary greatly in intensity in one ore more colors
from most of their neighboring pixels, whereas most pixels composing the actual image
should have at least some of their neighboring pixels of similar intensity in each color,
even pixels on an edge in the image. Thus, noise-free pixels has a significantly lower
ROD value than corrupted pixels.

3 Proposed Filtering Method

The proposed filtering scheme, which will be called from now on Rank-Ordered Dif-
ferences Switching Arithmetic Mean Filter (RODSAMF), performs in two steps. In the
first step, the detection process of corrupted pixels is performed and, in the second step,
each pixel detected as corrupted is replaced by the output of the Arithmetic Mean Filter
performing over its uncorrupted pixels neighbors.

The noise detection process is done as follows.

1. For each pixel x of the color image consider aΩ0
x window and compute the ROD(x)

statistic for Ω0
x with the chosen distance dk (k ∈ {1, 2}).

2. If ROD(x) is less than a fixed quantity dR, then mark the pixel x as uncorrupted.
3. Elsewhere, mark x as corrupted .

The filtering operation is done on the basis of the result of the detection process. If
yRODSAMF denotes the output of the filtering operation, x is the central pixel in Ωx

and AMFout is the output of the AMF performing (imitating Smolka [14]) over the
non-corrupted pixels in Ω0

x, then, we can design the following switching algorithm:

yRODSAMF =
{

x if x is uncorrupted
AMFout if x is corrupted

(3)

The Arithmetic Mean Filter is applied because of its computational simplicity, however
other filters as the Vector Median Filter could be applied in the above conditions, as
well.

4 Experimental Results

In this section, several images have been considered to evaluate the performance of
the proposed filter explained in the previous Section. The impulsive noise model for
the transmission noise, as defined in [13], has been used to add noise to the images
of Babbon, Lenna and Peppers. In the following we denote by p the noise intensity of
the image and it will be given as a probability of noise appearance in the image. We
have chosen in our experiences values p ∈ {0.05, 0.1, 0.2, 0.3}. In view of a better
visualization, a detail of the previous images is considered. As in [4], here we have
select n = 3 because the corresponding Ω0

x is the least window that contains the four
nearest neighbors of x.
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Table 1. Performance comparison in terms of NCD (10−2) using the Baboon detail image

Filter p = 0.05 p = 0.1 p = 0.2 p = 0.3
AMF [13] 8.5056 9.8406 12.7770 15.9292
VMF [2] 6.0155 6.1204 6.3798 6.7354

BVDF [18] 6.1232 6.5440 7.0415 7.4589
DDF [5] 5.3678 5.6541 6.0996 6.6314

FIVF [12] 1.6295 2.6733 4.0031 5.1747
AVMF [8] 1.9899 2.4758 4.0463 6.9469

PGSAMF [15] 1.2163 2.0720 3.6963 5.5190

RODSAMF-d1 1.3750 2.5933 4.1569 5.9039
RODSAMF-d2 1.0668 2.0082 3.4923 5.2020

Table 2. Performance comparison in terms of NCD (10−2) using the Lenna detail image

Filter p = 0.05 p = 0.1 p = 0.2 p = 0.3
AMF [13] 5.7908 7.7173 10.9955 13.4624
VMF [2] 2.7293 2.8567 3.0753 3.3286

BVDF [18] 2.6464 2.7837 3.2616 3.7658
DDF [5] 2.5758 2.7340 3.0946 3.5190

FIVF [12] 0.5260 0.8971 1.7809 2.4939
AVMF [8] 0.7056 0.9622 2.1853 3.7892

PGSAMF [15] 0.4278 0.8296 1.9300 3.0338

RODSAMF-d1 0.6771 1.1971 2.2614 3.3583
RODSAMF-d2 0.4444 0.8719 1.7566 2.7564

Table 3. Performance comparison in terms of NCD (10−2) using the Peppers detail image

Filter p = 0.05 p = 0.1 p = 0.2 p = 0.3
AMF [13] 5.5300 7.2128 9.2101 11.6675
VMF [2] 2.8054 2.9228 3.0679 3.3538

BVDF [18] 2.6198 2.7605 3.0748 3.9547
DDF [5] 2.5129 2.6486 2.8638 3.5977

FIVF [12] 0.6858 0.8401 1.2901 2.3454
AVMF [8] 0.6893 0.7670 1.9624 4.0513

PGSAMF [15] 0.5911 1.0097 1.5203 3.3459

RODSAMF-d1 0.8829 1.2568 2.0836 3.5640
RODSAMF-d2 0.6216 0.9844 1.5112 2.8268

In order to assess the performance of the proposed filters, the Normalized Color
Difference (NCD) [13] have been used due to it properly approaches human perception.
This objective quality measure is defined as follows

NCDLab =

∑N
i=1

∑M
j=1 ΔELab∑N

i=1
∑M

j=1 E
∗
Lab

(4)
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Fig. 1. Dependence of the NCD on the parameter dR for the Lenna detail image with d1 (left) and
d2 (right) distances. The different graphs correspond to p = 0.05, 0.1, 0.2 and 0.3 in ascending
order.

Fig. 2. Results for the Baboon detail image. From left to right and from top to bottom: orig-
inal image, image with impulsive noise with p = 0.2, images filtered with: RODSAMF-d1,
RODSAMF-d2, AMF, VMF, BVDF, DDF, FIVF, AVMF, and PGSAMF.

where M , N are the image dimensions and ΔELab = [(ΔL∗)2 + (Δa∗)2 + (Δb∗)2]
1
2

denotes the perceptual color error and E∗
Lab = [(L∗)2 + (a∗)2 + (b∗)2]

1
2 is the norm or

magnitude of the original image color vector in the L∗a∗b∗ color space.
Experiments varying the values of dR have been carried out to determine the best

filter performance. We have seen that the value of dR that minimizes the value of NCD
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Fig. 3. Results for the Lenna and Peppers detail images. From left to right and from top to bottom:
original image, image with impulsive noise with p = 0.2, images filtered with: RODSAMF-d1,
RODSAMF-d2, AMF, VMF, BVDF, DDF, FIVF, AVMF, and PGSAMF.
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lies in [220, 300] for the city-block distance, and a good selection of dR for different
values of p is dR = 260. For the euclidean distance the value of dR that minimizes the
value of NCD lies in the interval [160, 240], and a good selection of dR for different
values of p is dR = 200. We also have seen for this filter that the euclidean distance
performs better than the city-block. Figure 1 shows those results for the Lenna detail
image.

Experimental results are shown in Tables 1-3 for the different values of p and for the
filters considered in the comparisons. We also show for comparison reasons the results
with the well-known filters AMF, VMF, BVDF and DDF, and with the more recently
developed filters FIVF, AVMF, PGSAMF. Figures 2 and 3 show the filtering efficiency
for the images considered when p = 0.2.

It can be seen that the RODSAMF-d2 performs much better than AMF, VMF, BVDF
and DDF, and performs better than AVMF and PGSAMF when the noise increase. It
also performs better than FIVF for images presenting texture areas and fine details and
it is competitive in the rest of the cases.

5 Conclusions

In order to detect impulsive noise pixels in RGB color images, we introduce the ROD
statistic based in some neighborhood of a pixel. This statistic has a significantly lower
ROD value for noise-free pixels than for noise impulsive pixels.

The proposed filtering scheme of this paper, RODSAMF, performs in two steps.
First, the detection of corrupted pixels is performed in function of the ROD value, and
second, each pixel detected as corrupted is replaced by the output of the Arithmetic
Mean Filter performing over its uncorrupted pixels neighbors.

The RODSAMF with the euclidean distance in the RGB space performs better than
with the city-block distance, and much better than the well-known classic filters. It also
has a competitive performance in front of more recently developed filters.

The proposed technique is easy to implement and it preserves fine details.
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Abstract. Super-resolution image processing algorithms are based on
the principle that repeated imaging together with information about the
acquisition process may be used to enhance spatial resolution. In the
usual implementation, a series of low-resolution images shifted by typi-
cally subpixel distances are acquired. The pixels of these low-resolution
images are then interleaved and modeled as a blurred image of higher
resolution and the same field-of-view. A high-resolution image is then
obtained using a standard deconvolution algorithm. Although this ap-
proach has been applied in magnetic resonance imaging (MRI), some
controversy has surfaced regarding the validity and circumstances un-
der which super-resolution may be applicable. We investigate the factors
that limit the applicability of super-resolution MRI.

1 Introduction

Increasing the spatial resolution in magnetic resonance imaging (MRI) has most
frequently been performed by optimizing the capabilities of the imaging hard-
ware. However, any improvement in the resolving power of MRI would further
increase the efficacy of this versatile modality. Recently, new approaches to reso-
lution enhancement, based on the methodologies of super-resolution (SR) imag-
ing, have been proposed and show promise in increasing the spatial resolution
of MRI [5,6,13,19,21].

Super-resolution (SR) image processing is concerned with the enhancement
of spatial resolution of images. For example, one may wish to use a number of
low resolution images (of various positions and possibly differing resolutions) to
produce a higher resolution image of an object. In the classic SR procedure,
multiple realizations are collected with a moving field of view (FOV). These
multiple images are then used as input to a post-processing reconstruction algo-
rithm that enhances the resolution of the image, overcoming limitations in the
system hardware. Readers are referred to the following standard references on
the subject [1,3,11,28]. This paper deals with the super-resolution problem in
MRI.
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One of the first SRMRI papers [22] that was published was received with contro-
versy. On a qualitative level, results in this article, by Yeshurun and Peled, showed
that spatial resolution could be enhanced by acquiring multiple MR images and
using a SR technique. However, in [27] it was stated that these results were not
reliable. For frequency and phase encoded data, which Yeshurun and Peled im-
plemented (we will describe these encoding methods briefly in the next section),
it was noted in [27] that there could be no new information present in each ad-
ditional image acquired beyond the first image. Therefore, there was no justifica-
tion for acquiring multiple data sets, and the results obtained in [22] could have
been reproduced with a standard interpolation scheme. In response, Yeshurun and
Peled agreed with this argument [23]. As a result all subsequent SRMRI papers
have avoided using frequency and phase encoded data [5,6,13,19,21]. The purpose
of this paper is to revisit the arguments made in [27] and [23] in order to provide
a more detailed and mathematical analysis of the basis for super-resolution algo-
rithms when applied to these two encoding schemes, often used in MRI.

There exists an enormous amount of research on resolution enhancement meth-
ods in MRI that employ information from only a single acquisition (reviewed ex-
tensively in [14,15]). However, we would expect (or hope) that by using more data
in an SR approach, more information could be incorporated to increase the im-
age resolution. If this were always true, then SRMRI could have a significant edge
over single acquisition techniques. Otherwise, as pointed out in [27], there would
be an insufficient justification for the increased scan time needed to acquire more
data. It is therefore of great importance to determine any conditions under which
additional data sets can yield more information. To the best of our knowledge,
this paper represents a first step in this direction. We attempt to analyze mathe-
matically the validity of using multiple acquisitions to enhance spatial resolution
in magnetic resonance imaging. In particular, we investigate the possible role of
frequency shifting, or “phase ramping,” in performing super-resolution MRI. We
shall, in fact, show that the amount of independent information that each data set
holds is related to the spatial shift applied to the original data.

2 Basic Procedures and Equations in MRI

Let us first briefly outline some typical procedures of acquiring a signal in mag-
netic resonance imaging. Firstly, MRI data is produced in the form of a contin-
uous analog signal in frequency space. The region of frequency space often takes
the form of a rectangular domain, typically centered at the origin and bounded by
lines parallel to the coordinate axes.

One of the most common acquisition strategies in MRI is the so-called 2D spin-
echo sequence. In this method, the two image directions in k-space are referred
to as the readout and phase encode directions. The MRI data is usually acquired
along a set of trajectories in the readout direction, while assuming a set of discrete
values in the phase encode direction. In the readout direction, the signal briefly
exists as a continuous entity before it is discretized and used to produce the final
image.
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The slice-encoding scheme is another commonly used technique to spatially en-
code the measured raw data. SRMRI research has been applied almost exclusively
in the slice encoding direction [5,6,13,19,21]. However, in this paper, we shall dis-
cuss super-resolution as applied to the method of frequency encoding.

For simplicity of notation and presentation, we consider only one-dimensional
MRI procedures in this paper. We shall assume that the object of concern is lo-
cated within the interval [−R,R] on the x-axis. It is the proton density of the ob-
ject, to be denoted as ρ(x) for x ∈ [−R,R], to which the magnetic resonance spec-
trometer responds. The fundamental basis of MRI is that different portions of the
object, for example, different organs or tissues, possess different proton densities.
Visual representations of these differing densities then account for the magnetic
resonance “images” of an object.

The (spatially) linearly varying magnetic field in the magnetic resonance spec-
trometer produces a complex-valued signal s(k) of the real-valued frequency pa-
rameter k. The relation between s(k) and the proton density function ρ(x) may
be expressed as follows [10,15,9]:

s(k) =
∫ +∞

−∞
ρ(x)exp(−2πikx)dx. (1)

In other words, s(k) is the Fourier transform of ρ(x). If life were ideal, then ρ(x)
could be reconstructed from s(k) by simple inverse Fourier transformation. How-
ever, there are a number of complications. For example, since the object being im-
aged has a finite size, its Fourier transform would have to have an infinite support.
In practice, however, the frequency response s(k) is obtained for only a finite range
of k values. In what follows, we shall assume that the domain over which the signal
is measured is a symmetric interval, i.e., k ∈ [−kmax, kmax]. Following a series of
standard post-processing steps to be discussed below, a variety of reconstruction
algorithms allow us to estimate ρ(x).

There is also the problem that any practical algorithm must work with discrete
data. As such, the analog signal s(k) must be converted into a discrete series. This
discretization is accomplished in several steps. Firstly, the signal s(k) must be con-
volved with an anti-aliasing filter ψ(k) to reduce any aliasing that may occur from
sampling. An analog-to-digital converter extracts values of the (frequency) sig-
nal at integer multiples of the sampling period, to be denoted as Δk. The entire
process may be modelled as follows:

L1(k) = III
( k

Δk

) ∫ kmax

−kmax

s(κ)ψ
( 1
K

(k − κ)
)
dκ, k ∈ [−kmax, kmax], (2)

where K represents the (frequency) width of the low-pass filter ψ and III(x) de-
notes the so-called Shah function, defined as [2]

III(x) =
∞∑

n=−∞
δ(x− n), (3)

where δ(x) denotes the standard Dirac delta function.
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The above integration is performed electronically in a continuous manner on
the analog signal. The discrete series L1(k) represents the filtered and sampled
signal that is used in the subsequent digital imaging process. A standard inverse
discrete Fourier transform is then applied to L1(k) to produce a discrete data set
l1(nΔx), which is the digital MRI “image” that provides a visual representation
of the the proton density function ρ(x) throughout the object.

Finally, we mention that in normal medical imaging applications, e.g., commer-
cial MRI machines, one does not have the luxury of being able to alter the sampling
size Δk and anti-aliasing filter ψ(k). This is the assumption that we make in the
discussion below.

3 Super-Resolution MRI in the Spatial Domain

Currently, the standard approach to performing super-resolution in MRI is to
“fuse” two or more sets of lower resolution spatial data, i.e. magnetic resonance
“images” of the proton density function ρ(x), to produce a higher resolution im-
age. In this section, we describe a simple and idealized method of spatial MRI
super-resolution.

We assume that two low-resolution, one-dimensional discrete data sets have
been acquired from the MRI. For simplicity, we assume that each of these two
signals, or “channels”, has a uniform sample spacing of Δx and that the sampling
of one channel is performed at shifts of Δx from the other. We shall denote these
samples as

l1(nΔx) and l2(nΔx + Δx/2), nl = 0, 1, 2, · · · , Nl − 1. (4)

These two channels, which are vectors in RN1−1, represent spatially sampled data.
For simplicity, we may consider the discrete l1 series as a “reference” data set that
represents the object being imaged. The second set, l2, is then obtained by sam-
pling after the object has been shifted by Δx/2, or one-half the pixel size.

These low-resolution samples are then simply interleaved to produced a merged
data set of higher resolution. The discrete merged signal, m(nΔx/2) ∈ RNh , n =
0, 1, 2, · · · , Nh − 1, where Nh = 2Nl, is defined as follows:

m(nΔx/2) =
{
l1(nΔx/2) n even
l2(nΔx/2) n odd. (5)

A convolution is then used to model the relationship between m(nΔx) and the
desired high resolution data set, h(nΔx/2) ∈ RNh :

m(nΔx/2) =
Nh−1∑
n′=0

h(n′Δx/2)φ((n− n′)Δx/2), n = 0, 1, 2, · · · , Nh − 1. (6)

The vector φ(nΔx/2) is a point spread function that is estimated using informa-
tion about the acquisition sequence and/or the object being imaged. After
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φ(nΔx/2) has been estimated and m(nΔx) has been formed, h(nΔx) is found
using a chosen deconvolution algorithm.

This is the standard approach adopted for SRMRI [5,6,13,19,21]. However, the
“shifted” series l2 is rarely, if ever, obtained by physically shifting the object being
imaged. Normally, the shift is performed “electronically” using the Fourier shift
theorem, which will be discussed below.

Finally, the requirement that the two data sets l1 and l2 represent one-half pixel
shifts can be relaxed to fractional pixel shifts.

4 Super-Resolution MRI in the Frequency Domain

As stated earlier, in order to perform super-resolution, we need at least two data
sets that are shifted by fractional pixel lengths. In practice, however, it is difficult
to guarantee the accuracy of a spatial shift of the object being imaged (e.g., a
patient), especially at subpixel levels. Therefore most, if not all, SRMRI methods
simulate the spatial shift by means of the following standard Fourier shift theorem
[2]: If F (k) denotes the Fourier transform of a signal f(x), then

F [f(x−Δx)] = e−i2πkΔxF (k). (7)

The term e−i2πkΔx is known as a linear phase ramp – the linearity refers to the k
variable.

The main problem in magnetic resonance imaging is that one does not work
with the raw frequency signal s(k) but rather with a filtered and sampled version
of it, namely, the discrete series L1(k). It is necessary to compare the effects of (i)
phase ramping the filtered/sampled L1(k) series and (ii) phase ramping the raw
signal s(k) before filtering/sampling.

– Case I: Phase ramp applied after filtering/sampling of raw signal
s(k)
The process is illustrated schematically below.

Using Eq. (2), we have the following two series, defined for k ∈ [−kmax, kmax],

L1(k) = III
( k

Δk

)∫ kmax

−kmax

s(κ)ψ(k − κ)dκ, (8)
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L2(k) = e−i2πkΔxIII
( k

Δk

)∫ kmax

−kmax

s(κ)ψ(k − κ)dκ. (9)

Without loss of generality, we have used K = 1. Clearly, one can obtain L2(k)
from L1(k) by multiplying L1(k) with another phase ramp after III

(
k

Δk

)
is

applied. Therefore, no new information is obtained by constructing L2(k).
This point has been recognized in the literature [23,27].

– Case II: Phase ramp applied before filtering/samping of raw signal
s(k)
The process is illustrated schematically below.

In this case, we have the following two series, defined for k ∈ [−kmax, kmax],

L1(k) = III
( k

Δk

) ∫ kmax

−kmax

s(κ)ψ(k − κ)dκ, (10)

L2(k) = III
( k

Δk

) ∫ kmax

−kmax

s(κ)e−i2πκΔxψ(k − κ)dκ (11)

Note that the L2(k) series corresponds to the sampled and filtered data that
would be obtained if the object being imaged were physically shifted by Δx/2
[17].
Unlike Case I, we cannot, in general, obtain L2(k) from L1(k) because of the
noninvertibility of the operations behind the processing of the signal s(k),
namely, convolution and sampling, as well as the “degradation” that is pro-
duced by the limited range of integration. These operations are unavoidable
in the acquisition process. It would then seem that at least some new infor-
mation is present in L2(k), which is contrary to what has been claimed in the
literature [27]. Unfortunately, it is not clear how much more information is
added by the second acquisition. This is an open question that we explore in
the next section.

Before ending this section, however, we briefly describe how super-resolution
MRI can be performed using the L1 and L2 series of Case II above. There are at
least two avenues:
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1. Performing super-resolution in the spatial domain: Using the discrete
inverse Fourier transform, one can first convert each of the L1 and L2 series to
the spatial series l1 and l2 introduced in Section 2. One then performs super-
resolution using the interleaving approach described in that section. In other
words, we are performing a standard SR technique to enhance the image
quality.

2. Performing super-resolution in the frequency domain: In the fre-
quency domain, super-resolution may be accomplished by frequency extrapo-
lation, i.e., using low frequency information to estimate high frequency behav-
iour. There are some standard methods to accomplish such extrapolation, e.g.,
the Papoulis-Gerchberg algorithm [4,12,20,24,25,26] and projection methods
[7,8,14,15,18,29]. We are currently investigating the application of these meth-
ods to multiple data sets in the frequency domain, a subject that is beyond the
scope of this paper.

4.1 Further Analysis of Case II: Phase Ramping Before
Filtering/Sampling

To pursue the question of how much new information about ρ(x) is present in the
second acquisition, L2(k) of Case II above, let us generalize our model of the raw
MRI data (Eqs. (10) and (11)). We shall consider the spatial shift Δx as a variable
parameter which will be denoted as β. The shifted low-resolution signal L2 is now
a function of two variables, i.e.,

L2(k, β) = III
( k

Δk

)
I2(k, β), (12)

I2(k, β) =
∫ kmax

−kmax

s(κ)e−i2πκβψ(k − κ)dκ. (13)

Clearly, L2(k, 0) = L1(k). The β-dependence of L2 lies in the integral I2.
Assuming that the filter ψ(k) is continuous in k, the integral I2(k, β) is a con-

tinuous function of both k and β. However, due to the Shah sampling function,
L2(k, β) is nonzero for discrete values of k ∈ [−kmax, kmin], which we shall de-
note as kn = nΔk for appropriate integer values of n, say −N ≤ n ≤ N , where

N = int
[
kmax

Δk

]
. (14)

Note that the associated sample spacing in the (spatial) image domain is given by

Δx =
1

NΔk
. (15)

In what follows, we shall focus on the amplitudes I2(kn, β) of the delta func-
tion spikes produced by the Shah-function sampling. These amplitudes comprise
a 2N +1-dimensional vector that defines the filtered and sampled signal. For sim-
plicity of notation, we shall denote this vector as v(β), with components

vn(β) = I2(kn, β), n = −N,−N + 1, · · · , N − 1, N. (16)
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The fact that the sampled signal values vn(β) are continuous functions of the
spatial shift parameter β does not seem to have been mentioned in the literature.
In particular,

vn(β) → vn(0) = I1(kn) as β → 0, (17)

where

I1(k) =
∫ kmax

−kmax

s(κ)ψ(k − κ)dκ. (18)

In fact, it is rather straightforward to show that the function I2(k, β), hence each
component of the sampled signal, admits a Taylor series expansion in β which
can be generated by formal expansion of the exponential in Eq. (12) followed by
termwise integration. (The boundedness of the integration interval k ∈ [−kmax,
kmax] and the uniform convergence of the Taylor expansion of the exponential over
this interval guarantees the convergence of the Taylor expansion for I2(k, β).) The
resulting complex-valued series will be written as

I2(k, β) =
∞∑

m=0

cmβm , (19)

where

cm =
(−2iπ)m

m!

∫ kmax

−kmax

s(κ)(κ)mψ(k − κ)dκ, m = 0, 1, 2, · · · . (20)

This result would then imply that we could construct the phase ramped signal
vp(β) for nonzero values of β from the Taylor series to arbitrary accuracy. But
– and this is the important point – we would have to know the coefficients cm,
which means having access to the raw frequency signal s(k), which is not generally
possible. In fact, if we had access to s(k), we could computeL2(k, β) directly using
Eq.(12)!

We now return to the question of whether additional “information” is being
provided by phase ramping. The answer is in the affirmative: Some kind of ad-
ditional “information” is provided – at least for sufficiently small β values – be-
cause the signals v(β) and v(0) are generally linearly independent for β �= 0.
(We use the word “generally” because there are exceptional cases, e.g., s(k) =
0.) This follows from the definition of the integral I2(k, β) in Eq. (13). It is not
generally possible that for a β > 0, I2(k, β) = CI2(k, 0) for all values of k (or
even kn).

Unfortunately, at this time we have no method of characterizing this additional
“information” in terms of standard information theoretic concepts, e.g., entropy.
This implies, of course, that we have no way of quantifying it at present.

As β increases from zero to β = Δx/2, the spatial counterpart of the sampled
signal L2(k, β) is shifted from zero pixels to half a pixel. From a spatial resolution
viewpoint, with recourse to the equation for L2 in Case II, we expect that infor-
mation is added as β increases from zero. Indeed, we are led to conjecture, but
cannot prove at present, the following:
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Given the two discrete data sets v(0) and v(β) associated with, respec-
tively, signals L1(k) and L2(k, β) defined in Eqs. (10), the amount of in-
formation added by phase ramping is an increasing function of the shift β
over the interval β ∈ [0, Δx/2].

In an attempt to study this conjecture, we present a typical result from a se-
ries of numerical experiments over a range of β values. In particular, we consider
N = 50 and kmax = 1 so that the pixel width is given by Δx = 1/2. We have
chosen

s(k) = sinc2(10Δxk) = sinc2(5k), (21)

which is the Fourier transform of the triangular proton density function

ρ(x) =
{

x
5 , −5 ≤ x ≤ 0,

1− x
5 , 0 ≤ x ≤ 5. (22)

The anti-aliasing filter ψ(k/K) is simply a Gaussian function with width K =
Δk = 2kmax/(2N + 1). In order to compare v(β) and v(0), we simply compare
the “angle” between the two complex-valued vectors using their complex-valued
scalar product,

C(β) = cos θ(β) =
v(β) · v(0)
|v(β)||v(0)| , (23)

which can be viewed as a kind of “cross correlation” function between the two
vectors. In the figure below, we plot numerical values of C(β) for β ∈ [0, 2]. In
all cases, the imaginary parts of C(β) are negligible (i.e., zero to at least eight
decimal places). At β = 0, C(0) = 1, as expected. As β increases, C(β) de-
creases toward zero, showing that the “angle” between them is increasing toward
π/2.

Fig. 1. Plot of angle cos θ(β), defined in Eq. (23), between vectors v(β) and v(0) for
phase ramping values 0 ≤ β ≤ 2.0
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5 Discussion and Future Work

In this paper, we have investigated the role of multiple data sets in enhancing the
spatial resolution of magnetic resonance imaging, i.e. super-resolution MRI. We
agree with the conclusions of [27] and [23] that frequency shifting/phase ramping
of postprocessed data does not provide any new information. On the other hand,
we have shown that phase ramping of the raw or unprocessed frequency signal
s(k) can yield new information, thereby making it possible to perform SRMRI. Of
course, it remains to see how much super-resolution can actually be accomplished
in the presence of machine noise and other degradation factors. This is the sub-
ject of our current work. As well, we are interested in quantifying the additional
information provided by phase shifting of the raw frequency signal, so that our
conjecture could be stated more rigorously.

Another question concerns the role of the anti-aliasing filter ψ. In the numerical
experiments performed to date, a sample of which was presented above, we have
used a simple Gaussian filter. It remains to investigate the effects of using other
filters as well as their sampling widths. For example, consider the limit in which
ψ is a Dirac delta function. Then from Eq. (13), ramping of the frequency signal
vn = s(kn) produces the signal vn = s(kn)e−2πiβkn and the cross correlation
between signals is given by

C(β) =

∑N
n=−N s(kn)2e−2πiβkn∑N

n=−N s(kn)2
. (24)

We have observed that the values ofC(β) for this case differ from the experimental
results presented in the previous section. Clearly, further analysis is required if we
wish to understand and/or quantify the difference.
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Abstract. The quality of image restoration from degraded images is
highly dependent upon a reliable estimate of blur. This paper proposes a
blind blur estimation technique based on the low rank approximation of
cepstrum. The key idea that this paper presents is that the blur functions
usually have low ranks when compared with ranks of real images and can
be estimated from cepstrum of degraded images. We extend this idea and
propose a general framework for estimation of any type of blur. We show
that the proposed technique can correctly estimate commonly used blur
types both in noiseless and noisy cases. Experimental results for a wide
variety of conditions i.e., when images have low resolution, large blur
support, and low signal-to-noise ratio, have been presented to validate
our proposed method.

1 Introduction

The first and foremost step in any image restoration technique is blur estimation
which is referred to as blind blur estimation when partial or no information
about imaging system is known. Numerous techniques [1] have been proposed
over the years which try to estimate Point Spread Function (PSF) of blur either
separately from the image [2,3,4,5], or simultaneously with the image [6,7]. The
first set of these techniques, also known as Fourier-based techniques, normally
use the idea of finding zeros in the frequency domain. These techniques are
widely popular because these tend to be computationally simple and require
minimal assumptions on images. But these techniques require small blur support
or relatively high signal-to-noise ratio. A lot of past research has focused on
these requirements and how to relax them. One such technique [2] proposed
reducing the effect of noise by using an averaging scheme over smaller portions
of the image, thus requiring the original image to be of high resolution. Another
technique [8] suggested that the bispectrum of the ‘central slice’ should be used in
order to estimate the blur. In that work, only motion blur with small support was
estimated at low signal-to-noise ratios. Another related approach was proposed in
[9], where image restoration through operations on singular vectors and singular
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c© Springer-Verlag Berlin Heidelberg 2006



Blind Blur Estimation Using Low Rank Approximation of Cepstrum 95

values of degraded image was proposed. In their work several images were used
to remove the effect of noise. Thus far, no single Fourier-based technique has
been able to estimate common blur functions correctly from single degraded
image while ensuring that the technique works not only for various amounts of
blur support in low resolution images but also at low signal-to-noise ratios.

In this work, we address the blind blur estimation problem for images that
may not be of high resolution and may have noise present during the blurring
process. We estimate the blur parameters using low rank constraints on blur
functions without performing any operations on singular vectors directly. Our
technique assumes that the type of blur added is known but no other assumptions
on any prior knowledge about the original image is made. We observe that the
blurs are usually low rank functions and thus can be separated from images of
high ranks. Based on this observation, we quantify the exact rank approximation
for different blur types. These low rank constraints, when applied to log-power
spectrum (the power cepstrum) of degraded image, allow us to estimate the blur
functions. We also demonstrate that this technique works for a wide variety of
blur types (e.g., Gaussian, Motion and Out of focus blurs), when blur support is
not small and also when additive noise is present. Experimental results for real
images (both noiseless and noisy cases) are presented for various signal-to-noise
ratios.

The rest of the paper is organized as follows: Section 2 reviews general con-
cepts of low rank approximation and image degradation and also introduces
different blur models. Section 3 presents means to estimate blur parameters us-
ing low rank approximation of cepstrum whereas results for different blur types
in several scenarios are presented in Section 4. Section 5 presents conclusion of
this work.

2 Theory

2.1 Low Rank Approximation

Low rank approximation is a well known tool for dimension reduction and has
been widely used in many areas of research. For a given data A, its Singular
Value Decomposition (SVD) can be written as,

A = UΣV T

where U and V are orthogonal and Σ is diagonal. A can be approximated as,

A ≈ UkΣkVk
T (1)

where k is the rank that best approximates A; Uk and Vk are the matrices
formed by the first k columns of the matrices U and V respectively; and Σk

is the k-th principal submatrix of Σ. We use this formulation along with an
observation, that blurs are usually low rank functions, to quantify their exact
rank approximation in Section 3.
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2.2 Image Degradation and Blur Models

The goal in a general blind blur estimation problem is, to separate two convolved
signals, i and b, when both are either unknown or partially known. The image
degradation process is mathematically represented by convolution of image i
and blur b in time domain i.e., h(x, y) = i(x, y) ∗ b(x, y). The frequency domain
representation of this system is given by point-by-point multiplication of image
spectrum with blur spectrum.

H(m,n) = I(m,n)B(m,n) (2)

The system in (2) depicts a noiseless case when image degradation occurred
only due to the blur function. The noisy counterpart of such degradation can be
modelled as,

H(m,n) = I(m,n)B(m,n) + N(m,n) (3)

where N(m,n) denotes the spectrum of an additive noise.
A list of optical transfer functions (OTF) of frequently used blurs has been

given in Table 1. It should be noted that OTF is the Fourier transform version
of PSF. In the experiments presented in this paper, we have estimated OTFs of
blur functions.

Table 1. Frequently used blur models

Blur Model Rank of Blur Optical Transfer Function (OTF)

Linear Motion Blur 1 sin(πafx)
πafx

Gaussian Blur 1 1√
2πσ2

e
−(f−μ)2

2σ2

Out of focus Blur 10 J1(2Πrf)
Πrf

3 Blur Estimation Using Low Rank Approximation of
Cepstrum

The logarithm of the absolute spectra of degraded image (also known as power
cepstrum) can be written as the summation of logarithms of absolute spectra
of image and blur as in (4). We propose that these can be separated when low
rank constraints are applied. Table 1 summarizes ranks for commonly used blur
functions1.

Power-Cepstrum of (2), can be written as,

Hp = Ip + Bp (4)

1 Exact value of rank for out of focus blur depends on the value of blur parameter.
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where Hp is the log-power spectrum or power-cepstrum of h(x, y). It should be
noted that Hp is the summation of two matrices Ip and Bp where Bp has low
rank and Ip has high rank. Therefore, by performing low rank approximation
using SVD of (4), we can get a close approximation for the blur. This can be
written as,

LR[Hp] = LR[Ip + Bp] 
 Bp (5)

where LR represents low rank approximation using SVD. It should be empha-
sized that only the first few singular vectors will characterize blur functions
whereas remaining will represent image. For estimation of any blur, only a few
singular vectors are sufficient. Blur parameters can then be estimated from ex-
ponent of (5) by finding location of zeros (for uniform motion or out of focus
blur) or by fitting appropriate Gaussian (for Gaussian blur). In order to have
a more reliable estimate of the blur parameters, we use several (candidates of)
blur estimates obtained from single image. It should be noted that when the
degraded image has additive noise, the low rank approximation will characterize
blur as well as added noise.

3.1 Gaussian Blur

When an image is blurred using Gaussian blur, the parameters of Gaussian can
be estimated from low rank approximation as described above. These parameters
can be derived from a scaled 2D version of Gaussian blur (Bm,n) in Table 1 as
below:

Bm,n =
α

2πσ2 e
−(m2+n2)

2σ2 (6)

Where m and n are Fourier counter-parts of x and y.
If σ is defined as blur parameter and α as the scale factor, Blur parameters

(σ) can be calculated by

m2+n2

2

−1±
√

1− (m2+n2

2 )(−log(Bm,n)− log(α)− log(2π))
(7)

A complete proof of (7) is provided in Appendix. Once blur estimates are ob-
tained from (5), we can directly find the parameters using (7) for noiseless image
degradation. The mode of the distribution of candidate parameters is used to
calculate the final blur parameters.

When the blurred image has additive noise, it can be suppressed by integrating
the noisy blurred image in one direction. The parameters for blur (σ) in this case
can be estimated using (8). A complete proof of (8) is also provided in Appendix.
The parameters for blur in noisy case, are given by,

n2

1±
√

1 + (2n2)(−log(Bm)− log(α)− 1− log(2π)
2 )

(8)
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Fig. 1. Comparison of Blur Estimation using Cepstrum vs its Low Rank approximation
when input image (a) is degraded by blur type: (b) Gaussian, (c) Linear Motion, and
(d) Out of focus

For noisy Gaussian blur, low rank approximation characterizes both blur as well
as noise. Since the blurred image had additive noise, the parameters estimated
will be noisy. Therefore, it is reasonable to assume that the correct blur para-
meters can be estimated by fitting Gaussian mixture model [10].

3.2 Motion Blur

When an image is blurred with motion blur, blur parameters for motion blur
are calculated using (9). These parameters are derived by finding the location
of zeros of the blur estimates as below:

sin(πafx)
πafx

= sin(πk) = 0 = πafx = πk

=⇒ fxa = k (9)

where a is the parameter to be estimated, k is the number of zero crossings
whereas fx relates to the location of zero crossing. A reliable estimate of blur
parameter can be found using a system as given below:
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Fig. 2. Example of Gaussian Blur Estimation: (a) Distribution of all blur parameters,
and (b) Maximum-likelihood estimate of parameters by fitting Gaussian mixture model

Fx · a = K (10)

where Fx and K are matrices with several values of fx and k from (9) stacked
respectively together.

3.3 Out of Focus Blur

When an image is blurred with out of focus blur, blur parameters are calculated
in a manner similar to (9) where a least square system for out of focus blur can
be created as in (10). These parameters are derived by finding the location of
zeros of the blur estimates as below:

J1(2πaf)
πaf

= 0 =⇒ rf = k

where r is the parameter to be estimated, k is the number of zero crossings, and
f is related to the location of zero crossings. It should be mentioned that in our
results, we have used the value of f as provided in [3].

4 Results

The proposed method can be used to estimate any type of blur function but
results for Gaussian, uniform motion, and out of focus blurs have been pre-
sented here. Once low rank approximation of cepstrum is obtained, initial blur
parameters are estimated followed by their robust estimates (from several candi-
dates). We have presented the results both in the noiseless and noisy cases (with
different signal-to-noise ratios).

Figure 1(a) shows the original image before any degradation. Figure 1(b)
shows the comparison of Gaussian blur parameter estimation for cepstrum verses
the low rank approximation of cepstrum. It is clearly obvious that the low rank
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Fig. 3. Comparison of actual vs estimated blur parameters when blur type is: (a)
Noiseless Gaussian Blur, (b) Noisy Gaussian Blur, (c) Noiseless Motion Blur, (d) Noisy
Motion Blur, (e) Noiseless Out of Focus Blur, (f) Noisy Out of Focus Blur

(approximation) version is less erratic and easy to use . The observation holds
true for Linear Motion Figure 1(c) and Out of focus Figure 1(d) blurs. Using sev-
eral slices of our blur estimates, we can find the parameters using (7). The mode
of the distribution of these candidate parameters, shown in Figure 2(a), is used
to calculate the final blur parameter. The comparison of actual and estimated
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blur values has been shown in Figure 3(a). For noisy Gaussian blur, the low
rank approximations have both noise as well as blur parameters. In order to
estimate and subsequently separate both distributions, Gaussian curve fitting
is used. Figure 2(b) shows the fitting of Gaussian mixture model on the distri-
bution of noisy parameters. Since the noise usually has small mean value, the
mode of larger distribution gives us the correct estimate of blur parameters. The
comparison of actual and estimated blur values has been shown in Figure 3(b).
It should be noted that, for the noisy case, results for average values of Gaussian
blur estimates over 100 independent trials have been plotted against the actual
values under different noise levels.

Next, an image was blurred using uniform motion blur in one direction, as
proposed in [3], and blur parameters were estimated using low rank approxima-
tion of cepstrum. These motion blur parameters are calculated using (9) after
‘properly’ thresholding the low rank approximations. It should be emphasized
that motion blur is only in one direction therefore, several estimates of blur pa-
rameters are available along the direction orthogonal to the motion. To estimate
robust parameters having consensus over all available estimates, we build a over-
determined system of equations and find the least square solution as in (10). The
comparison of actual and estimated values of motion blur using our method is
shown in Figure 3(c) and (d) for noiseless and noisy cases respectively. It should
again be noted that in the noisy case, results for average values of motion blur
estimates over 100 independent trials have been plotted against actual values
under different noise levels. Similarly, blur parameters for images blurred by
out of focus blur are estimated and are shown in Figure 3(e) and (f) both for
noiseless and noisy cases respectively.

4.1 Discussion

Most Fourier transform based techniques require high resolution of input images
[8]. Their performance also reduces when the blur amount is too high or signal-
to-noise ratio is too low [1]. We have presented a technique which does not
require high resolution images. The images used in this paper were of smaller size
253x253 as compared to the resolution required by [8] i.e., 512x512. Moreover, we
are able to estimate the blur when the blur value is high and signal-to-noise ratio
is low. Figure 3 shows the results for a wide range of SNR ratios. It should also
be emphasized that our technique uses low rank approximation of cepstrum and
therefore requires only fewer singular vectors for blur estimation as compared
with any other known technique.

5 Conclusion

We have presented a novel technique for blind blur estimation using low rank
constraints on blur functions. The main idea this paper presents is that the blur
functions usually have low ranks when compared with images, allowing us to
estimate them robustly from a single image. We have also quantified the exact
rank that should be used for different blur types. One major strength of our
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approach is that it presents a general framework for low rank approximation since
rank constraints apply to all blur functions in practice. Results for Gaussian,
motion, and out of focus blurs are presented to show that the technique works
for most common blur types and at various noise levels. It has also been shown
that the technique does not require any assumptions on imaging system and
works well for low resolution images.
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Appendix

1: Proof of Equation (7)

Taking logarithm of (6) we get,

log(Bm,n) = log(α)− log(2πσ2) +
−m2

2σ2 +
−n2

2σ2 (11)

which can be written as,

log(Bm,n) =
1
σ2 (

−m2 − n2

2
) + log(2) + 2log(

1
σ

)− log(α)− log(2π)

or

log(Bm,n) =
1
σ2 (

−m2 − n2

2
) + 2log(1 +

1
σ

)− log(α)− log(2π)
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If σ and α are constants, the 1st order Taylor series approximation of above
equation gives,

1
σ2 (

−m2 − n2

2
) + 2(

1
σ

)− log(Bm,n)− log(α)− log(2π) = 0

hence,

1
σ

=
−1±

√
1− (m2+n2

2 )(−log(B)− log(α)− log(2π))
m2+n2

2

(12)

Therefore, (σ) for noiseless case is given by,

m2+n2

2

−1±
√

1− (m2+n2

2 )(−log(Bm,n)− log(α)− log(2π))
(13)

2: Proof of Equation (8)

Integrating (6) along the direction orthogonal to motion and taking logarithm
gives,

log(Bx) = log(α)− 1
2
log(2π) + log(

1
σ

)− y2

2σ2 (14)

If σ and α are constants, the 1st order Taylor series approximation of above
equation gives,

1
σ2 (

−y2

2
)− 1 +

1
σ
− log(Bm,n) + log(α)− 1

2
log(2π) = 0

hence,

1
σ

=
−1±

√
1− 2y2(−log(Bx) + log(α) + (1

2 )log(2π)− 1)

−y2 (15)

Therefore, (σ) for noisy case is given by,

−y2

−1±
√

1− 2y2(−log(Bx) + log(α) + (1
2 )log(2π)− 1)

(16)
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Abstract. In this paper we present a novel method for interpolating
images with repetitive structures. Unlike other conventional interpolation
methods, the unknown pixel value is not estimated based on its local
surrounding neighbourhood, but on the whole image. In particularly, we
exploit the repetitive character of the image. A great advantage of our
proposed approach is that we have more information at our disposal,
which leads to a better reconstruction of the interpolated image. Results
show the effectiveness of our proposed method and its superiority at very
large magnifications to other traditional interpolation methods.

1 Introduction

Many applications nowadays rely on digital image interpolation. Some examples
are simple spatial magnification of images or video sequences (e.g. printing low
resolution documents on high resolution (hr) printer devices, digital zoom in
digital cameras or displaying Standard Definition video material on High Defi-
nition television (hdtv)), geometric transformation and registration (e.g. affine
transformations or computer-assisted alignment in modern X-ray imaging sys-
tems), demosaicing (reconstruction of colour images from ccd samples), etc.

Many interpolation methods already have been proposed in the literature,
but all suffer from one or more artefacts. Linear or non-adaptive interpolation
methods deal with aliasing (e.g. jagged edges in the up scaling process), blurring
and/or ringing effects. Well-known and popular linear interpolation methods are
nearest neighbour, bilinear, bicubic and interpolation with higher order (piece-
wise) polynomials, b-splines, truncated or windowed sinc functions, etc. [7,10].

Non-linear or adaptive interpolation methods incorporate a priori knowledge
about images. Dependent on this knowledge, the interpolation methods could
be classified in different categories. The edge-directed based techniques follow
a philosophy that no interpolation across the edges in the image is allowed or
that interpolation has to be performed along the edges. This rule is employed
for instance in Allebach’s edi method, Li’s nedi method and Muresan’s aqua
method [1,8,12]. The restoration-based techniques tackle unwanted interpola-
tion artefacts like aliasing, blurring and ringing. Examples are methods based on
isophote smoothing, level curve mapping and mathematical morphology [11,9,6].
Some other adaptive techniques exploit the self-similarity property of an im-
age, e.g. iterated function systems [5,15]. Another class of adaptive interpolation
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methods is the training-based approach, which maps blocks of the low resolution
image into predefined high resolution blocks [4].

Adaptive methods still suffer from artefacts: their results often look seg-
mented, yield important visual degradation in fine textured areas or random
pixels are created in smooth areas [9]. When we use very big enlargements
(i.e. linear magnification factors of 8 and more), then all these artefacts become
more visible and hence more annoying.

In §2 we will motivate the exploitation of repetitive structures in image inter-
polation. In §3 we give an image interpolation scheme for repetitive structures
and in §4 we show some experiments and results of our proposed method com-
pared to other interpolation techniques.

2 Repetitive Structures

Fractal-based interpolation methods suppose that many things in nature possess
fractalness, i.e. scale invariance [5]. This means that parts of the image repeat
themselves on an ever-diminishing scale, hence the term self-similarity. This
self-similarity property is exploited for image compression and interpolation by
mapping the similar parts at different scales. Due to the recursive application
of these mappings at the decoder stage, the notion of iterated function systems
(ifs) is introduced.

Unlike ifs, we exploit the similarity of small patches in the same scale, i.e. spa-
tially. In order to avoid confusion, we will use the term repetitivity. Another class
of upscaling methods which also takes advantage of repetitivity, is called super
resolution (sr) reconstruction. sr is a signal processing technique that obtains
a hr image from multiple noisy and blurred low resolution images (e.g. from a
video sequence). Contrary to image interpolation, sr uses multiple source im-
ages instead of a single source image. It is well known that sr produces superior
results to conventional interpolation methods [3].

It is often assumed that true motion is needed for sr, however many reg-
istration methods do not yield true motion: their results are optimal to some
proposed cost criterion, which are not necessarily equal to true motion. With
this in mind, we can hypothetically assume that repetitive structures could serve
as multiple noisy observations of the same structure (after proper registration).
Results of our experiments in §4 will confirm that this hypothesis holds for real
situations. The concept of repetitive structures has already succesfully been used
for image denoising [2]. Besides repetitivity in texture, we can also find this re-
current property in other parts of the image, some examples are illustrated in
figure 1.

Our method is found perfectly suitable to some applications: some exam-
ples are interpolation of scanned text images (availability of multiple repeated
characters regardless of their font and the scan orientation) and gigantic satel-
lite images (long roads and a lot of texture provide a huge amount of training
data). A special application is sr in surveillance: when very few low resolution
images are available, missing data could be filled up with the use of repetitive
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structures. Because of the close relationship with sr, we can also denote our
method as an intra-frame sr technique. In that way, surveillance applications
could use a combination of inter- and intra-frame sr.

(a) Repetition in different objects.

(b) Repetition along edges.

(c) Repetition in uniform areas.

Fig. 1. Examples of repetitive structures in images

3 Proposed Reconstruction Scheme

We propose a simple interpolation method which exploits this repetitive be-
haviour. Our interpolation method is based on our camera model as shown in
figure 2. Our scheme is quite straightforward and consists of three consecutive
steps:

1. Matching repetitive structures and subpixel registration of these structures
on the hr grid.

2. Robust data fusion.
3. Restoration (i.e. denoising and deblurring).

In the rest of this paper we will simply treat each r,g,b-channel of colour im-
ages separately. For an enhanced colour treatment we refer to [14]. The following
sections will discuss each component carefully.



An Image Interpolation Scheme for Repetitive Structures 107

Fig. 2. Observation model of the image acquisition

3.1 Matching and Registration of Repetitive Structures

For the sake of simplicity, we define small rectangular windows B as basic struc-
ture elements. Two criterions are used in our algorithm to find matching win-
dows or blocks across the whole image, namely the zero-mean normalized cross
correlation (cc) and the mean absolute differences (mad):

Ecc =

∑
x∈Ω

(B(m(x)) −B)(Bref(x) −Bref)√∑
x∈Ω

(B(m(x)) −B)2
∑
x∈Ω

(Bref(x)−Bref)
2

(1)

Emad =
1

κ(Ω)

∑
x∈Ω

|B(m(x)) −Bref(x)| (2)

where Ω contains all the pixels of the reference window Bref and κ(Ω) is the
cardinality (i.e. the number of pixels) of Ω. B and Bref are denoted as the
mean values of respectively B and Bref. The transformation of the coordinates
is characterized by the mapping function m. To simplify the registration prob-
lem and in particularly to save computation time, we assume that we are only
dealing with pure translational motions of B. The main motive to use the cc and
mad criterions is because they are somewhat complementary: cc emphasizes the
similarity of the structural or geometrical content of the windows, while mad
underlines the similarity of the luminance and colour information. A matched
window is accepted if the two measures Ecc and Emad satisfy to the respective
thresholds τcc and τmad, more specifically: Ecc > τcc and Emad < τmad.
Since we only want to have positive correlation, Ecc must lay between 0.0 and
1.0 and τmad denotes the maximum mean absolute pixel difference between two
windows. The choice of Ecc and τmad depends heavily on the noise content of
the image (e.g. due to additive noise or due to quantization noise in dct-based
compressed images such as jpeg): the higher the noise variance, the lower Ecc
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and the higher τmad must be chosen in order to match the same repetitive struc-
tures. Our implementation uses an simple exhaustive search in order to find the
matching windows, but more intelligent (pattern-based) search algorithms could
reduce the computation time enormously.

Common ways to achieve subpixel registration in the spatial domain, is to
interpolate either the image data or the correlation data. In order to save com-
putation time we only resample the reference window Bref on a higher resolution.
In this way we represent the downsampling operator in the camera model in fig-
ure 2 as a simple decimation operator as illustrated in figure 3. We estimate the
subpixel shifts by minimizing the mad criterion in equation 2. As a simplifica-
tion of the optimization problem, we use the hr grid as the discrete search space
for the subpixel shifts. After the subpixel registration, the pixel values of B are
mapped onto the hr grid.

Most existing techniques use linear methods to resample Bref. However, these
interpolation methods typically suffer from blurring, staircasing and/or ringing.
These artefacts not only degrade the visual quality but also affect the regis-
tration accuracy. Therefore we adopt a fast non-linear restoration-based inter-
polation technique based on level curve mapping, which suffers less from these
artefacts [9].

Fig. 3. The 3 : 1 decimation operator maps a 3M × 3N image to an M × N image

3.2 Data Fusion

In this step we determine an initial pixel value for every pixel of the hr grid. In
the previous registration step we already obtained zero or more observations for
these pixels.

Several observations are available. Starting from the maximum likelihood
principle, it can be shown that minimizing the norm of the residuals is equiv-
alent to median estimation [3]. A residual is the difference between an ob-
served pixel value and the predicted pixel value. The median is very robust
to outliers, such as noise and errors due to misregistration. For this reason
we adopt the median estimate of all observations for every pixel in the hr
grid for which we have at least one observation.
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No observation is available. These unknown pixel values are initialised with
the values of the interpolated reference windows Bref. We do not need ad-
ditional computations since this image is already constructed for the regis-
tration step (see §3.1).

Restoring the original pixels. These original pixel values are simply mapped
back on the hr grid, because we know that these pixel values contain the
least noise.

In a nutshell, the hr grid consists of three classes: the original pixels (or),
the unknown pixels (un) and the fused pixels (fu). The last mentioned class
will provide the extra information which gives us better interpolation results
compared to conventional upscaling techniques.

3.3 Denoising and Deblurring

We assume that the blur in the camera model in figure 2 is characterized by a
shift-invariant point spread function (psf). The inverse problem becomes highly
unstable in the presence of noise. This can be solved by imposing some prior
knowledge about the image. Typically we will try to force spatial smoothness in
the desired hr solution. This is usually implemented as a penalty factor in the
generalized minimization cost function:

Î(x) = arg min
I(x)

[ρr(I(x)) + λρd(H ∗ I(x)− I(x, 0))] (3)

where H denotes the psf-kernel (typically Gaussian blur, which is characterized
by its standard deviation σblur) and λ is the regularization parameter between
the two terms, respectively called the regularization term ρr and the data fidelity
term ρd. Image I(x, 0) is the hr image obtained in §3.2.

The minimization problem of equation 3 could be transformed to the following
partial differential equation (pde) which produces iteratively diffused images
I(x, t) starting from the inialisation image I(x, 0):

∂I(x, t)
∂t

= ρ′r(I(x, t)) + λρ′d(H ∗ I(x, t) − I(x, 0)) (4)

where the chain rule is applied on both ρ-terms: ρ′(I(t)) = ∂ρ(I(t))
∂I(t) · ∂I(t)

∂t .
The use of the so-called edge-stopping functions in the regularization term

is very popular, because it suppresses the noise better while retaining impor-
tant edge information [13]. Therefore we apply one of the most successful edge-
preserving regularization terms proposed for image denoising, namely the total
variation (tv):

ρr(I(x, t)) = |∇I(x, t)| (5)

Since the interpolation of repetitive structures is closely related to super res-
olution problems, we could assume that the outliers (due to the inaccuracy of
the image registration, blur, additive noise and other kinds of error which are
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not explicitly modeled in the fused images) are better modeled by a Laplacian
probability density function (pdf) rather than a Gaussian pdf according to [3].
The maximum likelihood estimate of data in the presence of Laplacian noise
is obtained through the L1-norm minimization. That is why we will use the
L1-norm function for the data fidelity term:

ρd(H ∗ I(x, t) − I(x, 0)) = |H ∗ I(x, t)− I(x, 0)| (6)

These ρ-functions are very easy to implement and are very computationally
efficient. Other robust ρ-functions could also be employed [13]. We now adapt
the pde in equation 4 locally to the several classes of pixels on the hr grid:

– Class or: since these pixels contain the least noise as discussed in §3.2, very
little regularization has to be applied. This means that these pixels depend
mainly on the data fidelity term and thus λ is set to λmax.

– Class un: these pixels are most likely noise and depend only on the regular-
ization term (λ = 0).

– Class fu: these pixels contain noise and relevant information. The more ob-
servations we have, the more robust the initial estimation will be and hence
the lesser noise the pixel will contain. That is why we apply equation 4 with
λ proportional to the number of available observations α: in our implemen-
tation we use λ = min(λmax,

α
10λmax). Where 10 is the buffer length of the

observations.

Finally the pde of equation 4 is iteratively applied to update the blurred and
noisy image in the restoration process.

4 Experiments and Results

As a first realistic experiment we have both printed and scanned one A4 paper
containing the Lorem ipsum text with the hp psc 2175 machine at 75 dpi as
shown in figure 4. The Lorem ipsum text is very popular as default model text,
but additionally it has a more-or-less normal distribution of letters [16].

The basic structure element was chosen to be a 18× 12 rectangular window.
We have enlarged the region of interest (roi) with a linear magnification factor
of 8 and compared our result with the popular cubic b-spline interpolation tech-
nique in figure 4. The parameters for our method are σblur = 4.0, τcc = 0.6,
τmad = 40.0, λmax = 100 and 100 iterations for the restoration process. The
parameter selection was based on trial and error, i.e. to produce the visually
most appealing results. Also the detection rate of the word leo was perfectly,
this means a recall and a precision of both 100% (on 13 samples). We can clearly
see in figure 4 that our method outperforms traditional interpolation techniques:
the letters are much better readable and reconstructed, noise and jpeg-artefacts
are heavily reduced and much less blurring, staircasing and ringing artefacts are
created.
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(a)

(b) (c) (d)

Fig. 4. Interpolation of the Lorem ipsum text (8× enlargment): (a) a part of the
original scanned text image (at 75 dpi), (b) nearest neighbour interpolation of the roi
of (a), (c) cubic b-spline interpolation, (d) our proposed method (partition of the hr
grid: 1.5625% (or), 14.0625% (fu) and 84.375% (un))

(a) (b) (c)

Fig. 5. Experiment with the scanned Lorem ipsum text (2× enlargment): (a) original
scanned text at 150 dpi, (b) cubic b-spline interpolation of the roi of figure 4a at 75
dpi, (c) our proposed method applied on the roi of figure 4a at 75 dpi (partition of
the hr grid: 25% (or), 50% (fu) and 25% (un))

We have scanned the same text at 150 dpi as shown in figure 5. If we visually
inspect the 2× linear enlargment of our method and the cubic b-spline interpo-
lation to this ground truth data, we can conclude that our method manage to
reconstruct the characters much better. The images in figure 5 are 4× enlarged
with the nearest neighbour interpolation in order to achieve a better visibility.

As a second experiment we have interpolated a real image. In figure 6 we show
a part of the original image with a 8× nearest neighbour interpolation of the
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(a) A part of the original image.

(b) Nearest neighbour of the region of interest of (a).

Fig. 6. An example with a real image

region of interest. As basic structure elements we use 5×5 windows and we have
enlarged the image with a linear magnification factor of 8. For the matching step
we have used the following threshold parameters: τcc = 0.9 and τmad = 9.0.
For the denoising and deblurring we have applied the pde within 100 iterations
and with σblur = 4.0 and λmax = 10. With these parameters we obtained the
following partition of the different classes: 1.5625% (or), 30.9091% (fu) and
67.5284% (un).
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(a) Cubic b-spline.

(b) ifs [15].

(c) Our proposed method.

Fig. 7. Results of several interpolation methods for the roi of figure 6a
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Figure 7 shows our result compared to a linear interpolation (cubic b-spline)
and an ifs method (obtained from commercial software [15]). Significant im-
provements in visual quality can be noticed in our method: there is a very good
reconstruction of the edges and our result contains much less annoying artefacts.
The result produced with our method is also better denoised while important
edges are preserved.

5 Conclusion

In this paper we have presented a novel interpolation scheme based on the repet-
itive character of the image. Exploiting repetitivity brings more information at
our disposal, which leads to much better estimates of the unknown pixel values.
Results show the effectiveness of our proposed interpolation technique and its
superiority at very large magnifications to other interpolation methods: edges
are reconstructed well and artefacts are heavily reduced. In special applications
with text images, we can achieve excellent results: characters could be made
much better readable again. This could be very advantageous for optical char-
acter recognition (ocr) applications or when the image resolution can not be
improved at the sensor because of technological limitations or because of high
costs.
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Abstract. Discontinuous finite element methods are powerful mathe-
matical tools for solving partial differential equations with discontinuous
solutions. In this paper such a method is presented to denoise digital
images, while preserving discontinuous image patterns like edges and
corners. This method is theoretically superior to the commonly used
anisotropic diffusion approach in many aspects such as convergence and
robustness. Denoising experiments are provided to demonstrate the ef-
fectiveness of this method.

1 Introduction

Preserving sharp image patterns such as contours and corners is a major chal-
lenge in image denoising and other related processing issues. Partial differential
equations (PDEs) have raised a strong interest in the past decades because of
their ability to smooth data while preserving discontinuities of images. Many
PDE schemes have been presented so far in the literature [1,2,3,4]. It can be
found that almost all of them belong to the class of (isotropic and anisotropic)
diffusion differential equations.

Let u : Ω ⊂ IR2 → IR be a 2D scalar image defined on the image domain Ω.
The image denoising problem via a diffusion equation can be formulated as:

∂u

∂t
= ∇ · (c∇u), u0 = f, (1)

where u0 is the initial value of u at time t = 0, f the initial noisy image, and c
denotes the diffusion coefficient or diffusion tensor. If c is constant, the equation
is isotropic. Equations like (1) have been successfully used in many problems
including image denoising [3,4].

However, some inherent drawbacks of the anisotropic diffusion equation (1)
was discovered in the past. Mathematically speaking, Eq. (1) is a nonlinear
parabolic equation. To achieve the convergence of such an equation (i.e., to
achieve that ∂u

∂t = 0), it may need infinite steps of iteration in theory. But the
large number of iterations can blur image edges heavily, losing the property of
preserving sharp structures. So Eq. (1) generally does not converge towards an
interesting solution. On the other hand, less number of iterations may leave noise
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unremoved. Thus the performance of the anisotropic diffusion is very sensitive
to algorithm parameters like the number of iterations.

With the aim of avoiding the above drawbacks of the anisotropic diffusion
approaches, we solve the denoising problem by developing a completely new al-
gorithm based on discontinuous finite element methods (DFEMs). Discontinuous
finite element methods belong to a subclass of finite element methods (FEMs),
which are frequently used to solve PDEs. Solutions of common FEMs are con-
tinuous, and cannot preserve discontinuities like image edges. But DFEMs are
preferred over more standard continuous finite element methods because of their
capability in preserving discontinuous patterns in solutions.

DFEMs have become very widely used for solving a large range of computa-
tional fluid problems [5]. Here we shall use them in the filed of image processing.
Aided by this kind of methods, we can model the image denoising problem using
a linear elliptic equation, which is simpler and more effective than the anisotropic
diffusion (nonlinear parabolic) equations. In the following parts, we first give this
model in Section 2, then introduce the DFEM method in Section 3. Section 4
provides experiments and discussions, and the last section draws the conclusion.

2 Variational and PDE Formulations of Denoising

We still denote u as the solution image and f the input noisy image. Image
denoising can be formulated as the following variational problem:

min
u:Ω→IR

∫
Ω

[
(u − f)2 + λ‖∇u‖2] dx, (2)

where λ is a penalty parameter, which controls the strength of the smoothness
constraint term. A larger λ imposes stronger smoothness on the solution. Both
the two terms in Eq. (2) use the L2-like norms, which will result in a linear PDE.
Using other norms may reduce to a nonlinear anisotropic equation, e.g. using
the L1 norm generates a total variation formula [6].

Now we derive the PDE model based on Eq. (2). It is known that the Euler-
Lagrange equation

∂F

∂u
−∇ ·

[
∂F

∂ux

∂F

∂uy

]T

= 0, (3)

where F = (u− f)2 +λ‖∇u‖2, gives a necessary condition that must be verified
by u to reach a minimum of the above functional. Equation (3) reduces to the
following PDE

− λΔu + u = f, (4)

where Δ := ∇2 is the Laplace operator. Note that this equation does not declare
boundary conditions. We shall impose the Dirichlet boundary condition u = g
on ∂Ω, where g may take as the 1D limit of the original image on the boundary,
i.e. g = f |∂Ω, or take as a 1D smoothed version of f |∂Ω to reduce noise on
boundary. Thus we have the complete problem:

− λΔu + u = f in Ω, u = g on ∂Ω. (5)
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K1

K2

n1n2

e

∂Ω

Fig. 1. Illustration for the geometry of (discontinuous) finite element methods

This is the linear elliptic equation we need.
Most diffusion equations in the literature were derived from a similar way as

the above [3]. But after an elliptic equation like (4) hading been obtained, an
auxiliary time variable t was introduced and the gradient descent method was
used to achieve a parabolic equation like (1). In this paper, we do not need to
introduce the auxiliary time variable, and shall solve directly the elliptic equation
(5) using algorithms based on finite element.

3 Finite Element and Discontinuous Finite Element
Methods

In this section, we first review basic concepts of typical finite element methods,
then introduce the discontinuous finite element methods, which has a major
advantage of preserving discontinuities in solutions.

3.1 Review of Finite Element Methods

Finite element methods [7] are viewed as a procedure for obtaining numerical
approximations to the solution of continuous problems posed over a domain
Ω. This domain is replaced by the union of disjoint sub-domains called finite
elements. Such a subdivision operation of the domain is known as a triangulation.
The triangulation of the space results in a mesh and the vertices of the element
are nodes. See Fig. 1 for illustration.

The unknown function (or functions) is locally approximated over each el-
ement by an interpolation formula expressed in terms of values taken by the
function(s), and possibly their derivatives, at a set of nodes. The states of the
assumed unknown function(s) determined by unit nodal values are called shape
functions. A continuous physical problem is transformed into a discrete finite
element problem with unknown nodal values. For a linear problem a system of
linear algebraic equations should be solved. Then values inside finite elements
can be recovered using nodal values.
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A discrete finite element model may be generated from a variational or a weak
form of the continuous mathematical model. For example, the weak form for the
FEM of Eq. (4) can be obtained in the following way: We multiply Eq. (4) by
a test function v which vanishes on ∂Ω, and integrate over Ω, then apply the
Green’s formula on the first term of the left-hand side, to obtain∫

Ω

λ∇u · ∇v dx +
∫

Ω

u v dx =
∫

Ω

f v dx. (6)

Then in the FEM it needs to find an approximate solution uh on the mesh which
satisfy the above weak form for any test function v. The weak form can in turn
be reduced to a linear system of equations for solving. This way of defining an
approximate solution is referred to as the Galerkin finite element method.

3.2 Discontinuous Finite Element Methods

In 1973, Reed and Hill [8] introduced the first discontinuous Galerkin method
(DGM) for hyperbolic equations of neutron transport problems, and since that
time there has been an active development of DGMs for hyperbolic and nearly
hyperbolic problems. Recently, these methods also have been applied to purely
elliptic problems. Also in the 1970s, Galerkin methods for elliptic and parabolic
equations using discontinuous finite elements were independently proposed and
a number of variants were introduced and studied [9,10]. These discontinuous
methods were then usually called interior penalty (IP) methods, and their devel-
opment remained independent of the development of the DGMs for hyperbolic
equations.

For elliptic problems, it was then found that the DGMs and the IP methods
can be unified in the same framework [11]. They all belong to discontinuous finite
element methods (DFEMs). The difference between DFEMs and FEMs mainly
lies in that DFEMs allow function values to be discontinuous across adjoining
elements, but this is not allowed in FEMs. To describe this property of DFEMs,
some notations need to be introduced and described in more detail.

Denote by Th a triangulation of Ω in polygons K, and by P (K) a finite
dimensional space of smooth functions, typically polynomials, defined on the
polygon K. This space will be used to approximate the variable u. Specifically,
the space is given by

Vh := {v ∈ L2(Ω) : v|K ∈ P (K), ∀K ∈ Th},
where L2(Ω) denotes the space of squared integrable functions on Ω. Note that
L2(Ω) allows its functions to be discontinuous.

Referring to Fig. 1, let e be an interior edge shared by elements K1 and K2.
Define the unit normal vectors n1 and n2 on e pointing exterior to K1 and K2,
respectively. It is easy to known that n1 = −n2. If v is a scalar function on
K1 ∪K2, but possibly discontinuous across e, denoting vi := (v|Ki)|e, i = 1, 2,
then we can define

{{v}} :=
1
2
(v1 + v2), [[v]] := v1n1 + v2n2,
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where {{v}} and [[v]] are called the average and jump of the function v [11], re-
spectively. If q is a vector-valued function on K1 ∪K2, we then have

{{q}} :=
1
2
(q1 + q2), [[q]] := q1 · n1 + q2 · n2.

Note that the jump [[v]] of the scalar function v is a vector, and the jump [[q]] of
the vector function q is a scalar. The advantage of these definitions is that they
do not depend on assigning an ordering to the element Ki [11]. For an edge e on
the boundary, i.e., e ⊂ ∂Ω, we define

[[v]] := vn, {{q}} := q,

where n is the outward unit normal to the boundary edge. The quantities {{v}}
and [[q]] on boundary edges are undefined, since they are unnecessary in this
paper.

There are many formulations for the DFEMs. Here we shall use the nonsym-
metric interior penalty formulation [12]. The weak form of this DFEM for Eq.
(5) can be stated as: Find uh ∈ Vh such that

∑
K∈Th

∫
K

(λ∇uh · ∇vh + uhvh) dx

+ λ
∑
e∈Eh

∫
e

(μe[[uh]] · [[vh]]− {{∇uh}} · [[vh]] + [[uh]] · {{∇vh}}) ds

=
∫

Ω

f vh dx + λ

∫
∂Ω

(μe g vh + g∇vh · n) ds (7)

for all vh ∈ Vh, where Eh denotes the set of all edges. In this equation, the
penalty weighting parameter μe is given by η/he on each edge e ∈ Eh with η a
positive constant and he the edge size. The derivation of the above equation is
omitted here, see [12,11] for detail. It is proven that this formulation achieves
optimal rates of convergence by using large penalty terms [13].

Comparing Eq. (7) with (6), it can be found that the major change from
FEMs to DFEMs is the appearance of the integral terms on all edges. So the
discontinuities across edges are taken into consideration, and will be preserved
in the solving process. The last integral on the right-hand side of (7) imposes
the Dirichlet boundary condition.

For the solution is meaningful to the image denoising problem, we should pre-
serve image discontinuous features. Thus the finite element edges should coincide
with image object edges. This can be realized by a mesh refinement procedure,
which splits initial coarse meshes containing image edges to finer ones. The
Hessian of the solution [14] can be used as a criterion to split meshes.
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3.3 Solution from Linear System of Equations

Equation (7) can be reduced to a linear system of algebraic equations. First, we
have the finite element expression:

uh(x) =
Nh∑
i=1

αiφi(x), vh(x) =
Nh∑
j=1

βjφj(x), (8)

where αi and βj are unknown coefficients, Nh is equal to the degrees of freedom
of the problem, and φi(x) are basis functions (i.e. shape functions), which are
defined in terms of polynomials on IR2, such as the P1 polynomials (with degrees
≤ 1). For each element Kk, the P1 basis functions φi(x) are given by

φi(x) = φi(x, y) = ak
i + bk

i x + ck
i y, x ∈ Kk

φi(pi) = 1, φi(pj) = 0 if i �= j,

where ak
i , bk

i and ck
i are known coefficients, and pi the vertices of Kk.

Aided by (8), Eq. (7) can be written as the following matrix-vector notation:

vTBu = vT f , (9)

where the stiffness matrix B and the vector f are both derived from the integrals
with respect to the basis functions φi(x), and the vectors u and v are defined as

u := [α1 α2 · · ·αNh
]T , v := [β1 β2 · · ·βNh

]T .

Since Eq. (9) holds for any v, it can be reduced to the linear system of equations

Bu = f . (10)

Detailed discussions for this equation and the corresponding (7) on the existence
and uniqueness of solutions can be found in [12,11]. Since the matrix B in Eq.
(10) is sparse and nonsymmetric, we use a UMFPACK algorithm [15] to solve
the equations. Thus we obtain the coefficients αi, then using Eq. (8) we finally
get the solution uh(x).

4 Experiments and Discussions

We now test our algorithm using real image data. We set the parameters in Eq.
(7) as follows: λ = 0.1, and μe = 1.0 × 105/he with he the element edge size.
Fig. 2 is an example for Lena image, where we compare our algorithm with the
state of the art, e.g. the method of Tschumperle and Deriche [4]. Note that their
method is primarily designed for handling color images, but can also be used for
scalar images, and reports almost the best results at the present.

It can be seen that our algorithm obtains a denoising result similar to that
of [4], both of the two preserve the edge information of Lena. Fig. 2(d) shows
that our algorithm performs even better than [4] in the balance of smoothing
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(a) (b)

(c) (d)

Fig. 2. Denoising Lena image. (a) The original image disturbed by block effects in
decompressing. (b) The result of [4]. (c) The result of our algorithm. (d) The top is
the local enlargement of (b), and the bottom is that of (c).

noise and preserving discontinuities. The result of [4] still has some block effects;
smoothing them may cause the blur of edges. In Fig. 3, we depict the adaptively
refined mesh by our DFEM for denoising the Lena image. Near object edges,
the mesh elements are of small size, and the discontinuities of the solution are
maintained. Fig. 4 provides another example for denoising the car image. The
quality of our result is similar to the state of the art.

Based on the experiments, we now discuss and compare the DFEM with the
diffusion-based methods, such as those in [3,4].

First, the DFEM has the inherent feature of preserving solutions’ discontinu-
ities. However, anisotropic diffusion actually smoothes edges, though in a small
quantity. After a large number of iterations, the edges are blurred. An inverse
diffusion process may deblur and enhance edges, but it is unstable in theory.
Second, the DFEM has a good property of convergence, which is theoretically
guaranteed. But it is difficult to determine the convergence criteria for diffusion
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Fig. 3. The adaptively generated finite element mesh for denoising the Lena image

equations, and their solutions are sensitive to iteration steps. Third, the DFEM
(including FEM) is theoretically faster than the finite difference scheme used
in anisotropic diffusions, since it needs not to perform computations on every
pixels. Only values at element vertices are set as unknowns and to be solved, the
function values within elements can then be interpolated. In a flat image region,
only a few elements are sufficient to achieve an accurate solution. And last, the
DFEM uses integral formulations, rather than image derivative information, so
it is more robust to noise than diffusion equations based on image gradient. In
addition, there is no obvious boundary effects in the DFEM, but diffusion-based
methods suffer from gradient errors near image boundary.

5 Conclusion and Future Work

In this paper we propose a new denoising algorithm based on the discontinuous
finite element method. The denoising quality of our algorithm is similar to the
state of the art using anisotropic diffusions. But the convergence performance
of our algorithm is better, since it is not sensitive to algorithm parameters such
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(a) (b)

(c) (d)

Fig. 4. Denoising Car image. (a) The original noisy image. (b) The result of [4]. (c)
The mesh generated by the DFEM. (d) The result of the DFEM.

as the number of iterations. In addition, the algorithm is potentially faster and
more robust than the diffusion-based approaches.

Benefit from the DFEM, we use a linear elliptic PDE for the edge-preserved
denoising. But it should be emphasize that DFEMs are also applicable to non-
linear equations [12]. We shall study this situation, and generalize the algorithm
to color image denoising problems.
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Abstract. Techniques based on the Well-Balanced Flow Equation have
been employedas efficient tools for edgepreservingnoise removal.Although
effective, this technique demands high computational effort, rendering it
not practical in several applications. This work aims at proposing a multi-
grid like technique for speeding up the solution of the Well-Balanced Flow
equation. In fact, the diffusion equation is solved in a coarse grid and a
coarse-to-fine error correction is applied in order to generate the desired so-
lution.The transfer between coarser andfiner grids ismadeby theMitchell-
Filter, a well known interpolation scheme that is designed for preserving
edges. Numerical results are compared quantitative and qualitatively with
other approaches, showing that our method produces similar image quality
with much smaller computational time.

1 Introduction

Over the years the use of partial differential equations (PDE) in image denoising
has grown significantly. This research area started with the formulation proposed
by Marr and Hildreth [10] that introduced the concept of optimal filter smoo-
thing through Gaussian kernels and the heat equation. From this seminal work,
more sophisticated models have been derived, as the Perona-Malik model [13],
selective smooth by nonlinear diffusion model [2] and the Well-Balanced Flow
Equation model (WBFE) [4]. These models are able to process an image while
keeping edges and small features, a desirable property to many applications. An
important feature of all these models is that they consider image evolution as a
time parameter, representing the image at multiple scales [9].

Depending on the equation to be solved and the set of associated parameters,
the solution of the PDE involved in such modeling can demand high computa-
tional effort, imparing the application of such methods in problems that require
fast processing.

This work is concerned with the problem of reduction of the computational
time involved in solving PDE’s in image processing. In fact, we present a new
scheme that speeds up the solution of evolution equations in the image processing
context. Based on Multigrid techniques [5], our approach employ a hierarchical
structure so as to solve the equations in different image resolutions, using the
results in a resolution to solve the discrete equation in the next one. Besides
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improving the computational time, the proposed method reduces artifacts asso-
ciated with the iterations [1], eliminating high frequency errors (noise) and low
frequency errors such as blotches and false edges [11].

In order to illustrate the effectiveness of the proposed framework in practi-
cal applications, we have employed it in an edge preserving noise elimination
problem. The Well-Balanced Flow Equation, by Barcelos et al. [4], has been
chosen as the PDE model due to the good results obtained with this equation
in preserving edges and the high computational cost involved in its solutions.

Comparisons in terms of computational time as well as image quality be-
tween the conventional implementation and the proposed method for WBFE is
presented in section 4. Before presenting the results we discuss, in section 2, the
properties of WBFE. Section 3 is devoted to describing our approach. Conclusion
and future work are in section 5.

2 Well-Balanced Flow Equation (WBFE)

As mentioned before, we shall adopt the Well-Balanced Flow Equation as the
test model for validating our approach. The WBFE is based on the Perona-Malik
model [13], and considers an image as a function I(x) : Ω ⊂ R

2 → R, that can
be obtained from the solution of the following equation:

ut = div(C(|∇u|)∇u), in Ω ×R+ u(x, 0) = Ĩ(x) (1)

where C is a nonincreasing smooth function such that C(0) = 1, C(s) ≥ 0,
C(s) → 0 when s→∞, and Ĩ(x) is the original degraded image.

The function C aims at reducing the diffusion where |∇u| is large, thus pre-
serving edges. An example for the function C is

C(|∇u|) =
1

1 + |∇u|2
k2

where k is a constant intrinsically related to the amount of detail we want to
preserve.

The Perona-Malik model produces bad results when the image is very noisy,
as the function C will be close to zero in almost every point, keeping the noise
during the process.

In order to overcome this drawback, Barcelos et al. [4] proposed the Well-
Balanced Flow equation for image recovery, which can be written as:

ut = g|∇u|div( ∇u
|∇u| )− (1 − g)(u− Ĩ), x ∈ Ω, t > 0,
u(x, 0) = Ĩ(x), x ∈ Ω

∂u
∂n |∂Ω×R+

= 0, x ∈ ∂Ω, t > 0

where g = g(|Gσ ∗ ∇u|), Gσ is a Gaussian function and Gσ ∗ ∇u is the local
estimate of ∇u used for noise elimination.

The term |∇u|div(∇u/|∇u|) = �u − ∇2u(∇u,∇u)/|∇u|2 diffuses u in the
orthogonal direction to its gradient ∇u, preserving thus the edges. g(|Gσ ∗∇u|)
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is used for edge detection in order to control the diffusion behavior. In fact, a
small value of |Gσ ∗ ∇u| means that ∇u is also small in a neighborhood of a
point x, so x is not close to an edge. On the other hand, when |Gσ ∗∇u| is large,
i.e., the average of ∇u is large, the point x is close to an edge. As g(s) → 0,
s→∞, a “weak” diffusion is applied in regions close to edges.

The term (1−g)(u− Ĩ) intends to keep the smoothed image close to the initial
image Ĩ in the areas where g ∼ 0. On the other hand, in homogeneous areas,
where g ∼ 1, the forcing term will have an inexpressive effect, which allows for
a better suavization of the image.

3 Multigrid Based Approach

Multigrid methods refer to a family of iterative techniques for solving linear sys-
tems that are, in general, obtained from the discretization of partial differential
equations [5]. Multigrid methods are based on two main ideas: nested iteration
and coarse grid correction. Nested iteration means that an approximation to the
solution is computed in different grid resolution and coarse grid correction means
that the error in coarser grids is used to improve the solution in finer grids.

An important property of multigrid methods is that the exchanges between
fine-to-coarse and coarse-to-fine grids are made by smooth interpolation func-
tions, eliminating high-frequency components. Furthermore, coarse grid correc-
tion is expected to reduce the low-frequency components without introducing
new high-frenquency ones.

The above characteristics provides the motivation for adapting it to the image
processing context. How such adaption has been conducted is described below.

3.1 Overview of the Proposed Method

Before presenting the complete description of the method, we introduce some
notation that will be useful in the remaining text.

Let (.)↑ denote the interpolation operator from the coarse to the fine grid
and (.)↓ denote the restriction operator (fine-to-coarse). Let Gh, h = 0, . . . ,m
be a set of grids where G0 is the original grid (finest grid corresponding to the
original image) and Gm the coarsest grid employed. We denote by Eh = uh− Ih

the error estimate in Gh, where uh and Ih are the approximated and the exact
solutions in Gh.

Given uh in Gh, let uh+1 ← (uh)↓ be the restriction of uh in Gh+1 and uh+1
b

and uh+1
a be approximations of I before and after applying the diffusion process

in level h + 1.
From the above definitions we can state our multigrid based method as

follows:

1. u1
b ← (Ĩ0)↓

2. For h = 1 to m− 1
a) Compute uh

a (from eq. 2)
b) uh+1

b ← (uh
a)↓
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3. Em = um
b − um

a

4. For h = m to 2
a) Eh−1 ← (Eh)↑
b) uh−1

b ← uh−1
a + Eh−1

c) Compute uh−1
a (from eq. 2)

d) Eh−1 = uh−1
b − uh−1

a

5. u0 ← (u1
a)↑

The above algorithm deserves some comments. In steps 2a and 4c the diffusion
process governed by equation (2) is applied in a discretized form to produce
the approximation uh. The time derivative in equation 2 is discretized by the
explicit Euler’s method, and the second order spatial derivatives are discretized
by central differences. Other critical points of the algorithm are the interpolation
and restriction operators (steps 1, 2b, 4a, and 5), which will be discussed in the
next sub-section.

It is important to note that the computational cost of the diffusion process
is reduced because equation (2) is solved only in the coarse grid. Further-
more, the number of iterations employed to compute the approximation in each
level is usually much smaller than the number of iterations needed to solve
equation (2) directly on the original grid. For example, the number of ite-
rations employed by Barcelos [4] is about 200 (depending on the image). In
our implementation we have applied about 20 iteration per level, drastically
reducing the computational time. The time complexity for our algorithm is(
(K + nit)

(
2m−1−1
2m−1

)
+ nit

2m

)
O(N2), where N is the image size, K is the mask

size, nit is the number of iterations and m is the number of levels. We point out
that the complexity constant for our method is much smaller than that in the
conventional method (nitO(N2)).

3.2 Interpolation and Restriction Filters

The interpolation and restriction operations employed in steps 1, 2a, 4a and
5 of the above algorithm are of primordial importance in our context, as we
intend to preserve as much as possible, the original edges in the processed image.
Therefore, an appropriate interpolation function must be chosen so as to properly
perform the interpolation and restriction operations.

It is not difficult to see that interpolation and restriction operations are closely
related to image resampling. Therefore, the functions usually employed in resam-
pling are good candidates for interpolation, as for example cubic splines. Such
functions in the image resampling context [7,8], are defined as a weighted sum of
pixel values where the weights are derived from kernel functions, as for example:

k(t) =
1
6

(12−9B−6C)|t3|+(−18+12B+6C)|t2 |+(6−2B) if |t| < 1
(−B−6C)|t3|+(6B+30C)|t2|+(−12B−48C)|t|+(8B+24C) if 1 ≤ |t| < 2
0 otherwise

(2)
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Notice that by changing the values of B and C in (2) we obtain different cubic
filters. For example, B = 1 and C = 0 give rise to cubic B-splines [7], B = 0
generates an one-parameter family of cardinal cubics [8], and C = 0 generates
Duff’s tensioned B-Splines [6]. Michell and Netravali [12] investigated the design
of cubic filters in image synthesis, concluding that B = C = 1/3 yields the best
quality images.

In fact, the Michell filter turned out to be very robust in the tests we carried
out, showing its effectiveness in keeping egdes.

4 Results

This section is devoted to presenting the results obtained with the proposed
multigrid based method, comparing it with the conventional implementation
(see [4]) of equation (2). A comparison between the Michell filter [12] and other
interpolation kernels is also presented.

Our experiments make use of 256× 256 synthetic and MRI images. We limit
the number of grids in m = 5, thus the coarsest grid contains 16×16 pixels. This
limit was chosen in such way that the image do not lose resolution completely.

In equation 2 we take g(|Gσ ∗∇u|) = (1/(1 + k|Gσr ∗∇u|2)), where σr is the
standart deviation of Ĩ. The parameter k has been chosen as in [3], that is:

k(σ) =
{

1277.175e0.040104385σ if 0 ≤ σ ≤ 201
2429901.476e0.004721247σ if 0 < σ ≤ 305

The degraded images Ĩ has been obtained by adding noise to each pixel of the
original image I. The noise is computed so as to produce a desired SNR (Signal
to Noise Ratio), given by:

SNR = 10log10

(
Variance of the original image
Variance of the noisy image

)
dB

Our first experiment purportes showing the effectiveness of our approach in
keeping edges. Images of geometric objects (figure 1a) and text characters (fi-
gure 2a) have been choosen because edges can easily be recognized from these
pictures. Figures 1b) and 2b) are the degraded version of 1a) and 2a), where
a gaussian noise level of SNR=5.3727 db and SNR=2.2822 db have been ap-
plyed, respectively. Figures 1c) and 2c) show reconstructed images by the con-
ventional implementation of equation (2) and figures 1e) and 2e) present the
result of applying our multigrid based approach with the Mitchell-Filter to fig-
ures 1b) and 2b). Comparing figures 1c) and 2c) with figures 1e) and 2e) we
can see that the quality of the images produced by our method is similar to
the conventional approach. Furthermore, the edges are preserved very satis-
factorily, as can be observed from figures 1f) and 2f) (compare with figures
1d) and 2d). Computational times involved in both approaches can be seen in
table 1. The third and fifth columns in this table show the number of itera-
tions taken by the two methods. Iterations per level mean that in each level
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Fig. 1. (a) Original image; (b) Noisy image (SNR=5.3727 db); (c) Reconstructed image
using the Well-Balanced Flow Equation (traditional approach); (d) Its segmentation;
(e) Reconstructed image by the proposed method; (f) Its segmentation

of the multigrid method the indicated number of iteration is performed. Notice
that the multigrid based method is about 7 times faster than the conventional
implementation.

Figures 3 and 4 show the behavior of our method in MRI images. Figures
3a) and 4a) present MRI images of a papaia fruit and a knee, respectively. The
corresponding degraded images by added Gaussian noise are shown in figures
3b) (SNR=3.3236 db) and 4b) (SNR=4.0495 db). As in the previous exper-
iment, the images obtained by our method (figures 3e) and 4e)) and by the
conventional implementation (figures 3c) and 4c)) are quite similiar. The ef-
fectiveness of multigrid in preserving edges can be seen in figures 3f) and 4f).



132 C.T. Ferraz, L.G. Nonato, and J.A. Cuminato

Fig. 2. (a) Original image; (b) Noisy image (SNR=2.2822 db); (c) Reconstructed image
using the Well-Balanced Flow Equation (traditional approach); (d) Its segmentation;
(e) Reconstructed image by the proposed method; (f) Its segmentation

Computational times are presented in the third and fourth rows of table 1. Notice
that a six fold speed up has been obtained by the multigrid based method.

We also tested our multigrid based method adding other types of noise to the
image. In figures 5a) and 5d) multiplicative and salt & pepper noise were added
respectively. Figures 5b) and 5e) present the results of applying our approach
with the Mitchell-Filter. The preservation of edges are shown in figures 5c) and
5f). As can be noticed, with only 15 iterations starting from figure 5a) and 5d)
our method eliminated these types of noise from the image.
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Fig. 3. (a) Ultrasonagraphy of a papaia fruit original; (b) Noisy Image (SNR=3.3236
db); (c) Image reconstructed using the Well-Balanced Flow Equation (traditional ap-
proach); (d)Its segmentation; (e) Image reconstructed by the proposed method; (f)Its
segmentation

Table 1. Computation Times (in seconds) for the traditional and multigrid approaches

Figure Traditional Approach Iterations Multigrid Iterations per Level

1 173 200 22 20
2 60 50 10 5
3 169 100 22 20
4 110 100 15 10
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Fig. 4. (a)Ultrasonagraphy of knee original; (b)Noisy image; (c)Image reconstructed
using the Well-Balanced Flow Equation (traditional approach); (d)Its segmentation;
(e)Image reconstructed by the proposed method; (f)Its segmentation

Our last example shows the results of applying our multigrid based approach
with other kernels as interpolation and restriction operators. The SNR of the
noisy image is the same of image 4b). Figures 6a) and 6b) present the recons-
tructed image and edges obtained by a Box-Filter kernel, where 10 iterations
per level have been performed. Notice from figure 6a) that the Box-filter shifts
some edges (see figure 4d) and 4f)) while introducing non smooth curves. The
results obtained with a Lanczos-Filter are shown in figure 6c) and 6d). No-
tice the improvement in the preservation of the edges (figure 6d)) compared to
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Fig. 5. (a)Multiplicative noisy image (SNR=9.3261); (b)Reconstructed image by the
proposed method; (c) Its segmentation; (d)Salt & pepper noisy image (SNR=5.2731);
(e)Reconstructed image by the proposed method; (f)Its segmentation.

figure 6b), however the Mitchell-Filter continues giving the best results (figures
4d) and 4f)).

A objective measure to compare quality of filtering is the mean error:

em =

∑m
i=0

∑n
j=0 |un

i,j − Ii,j |
(m + 1)× (n + 1)

, (3)

where m and n are the dimensions of the image, un
i,j is the reconstructed image

and Ii,j is the original image. Table 2 shows this error for the two approachs
tested. In the majority of the images, the error is smaller for our method. Only
for figure 2 the error is larger for our method, but the processing time for this
image is 6 times faster than for the conventional method.

Table 2. Mean Error (in percentage) of the traditional and multigrid approach

Figure Traditional Approach Multigrid

1 12.0484% 8.1089%
2 7.9528% 13.8109%
3 6.8719% 6.4972%
4 9.4049% 8.1772%
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Fig. 6. (a)Image reconstructed using the Well-Balanced Flow Equation (multigrid
based approach using the Box-Filter); (b) Its segmentation (c)Image reconstructed
using the Well-Balanced Flow Equation (multigrid based approach using the Lanczos-
Filter); (d)Its segmentation

The results were obtained on a Pentium III processor with 1 GB Ram.

5 Conclusions and Future Work

Based on the results of section 4 we are fairly confident that the multigrid-
like approach is a competitive technique for image denoising while preserving
edges.

Using the appropriated interpolation method we have obtained similar image
quality compared to the traditional approach.

The use of a group of images including synthetic and medical images all with
different level of noise, brings out the robustness of the PDE approach for image
denoising and edge preservation. The multigrid approach inherits this robustness
adding speed to its computation.

As a future work, we intend to implement the transport equation for image
inpainting and denoising under the multigrid based approach.
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Fuzzy Bilateral Filtering for Color Images
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Abstract. Bilateral filtering is a well-known technique for smoothing gray-scale
and color images while preserving edges and image details by means of an ap-
propriate nonlinear combination of the color vectors in a neighborhood. The pixel
colors are combined based on their spatial closeness and photometric similarity.
In this paper, a particular class of fuzzy metrics is used to represent the spatial
and photometric relations between the color pixels adapting the classical bilateral
filtering. It is shown that the use of these fuzzy metrics is more appropriate than
the classical measures used.

1 Introduction

Any image is systematically affected by the introduction of noise during its acquisition
and transmission process. A fundamental problem in image processing is to effectively
suppress noise while keeping intact the features of the image. Fortunately, two noise
models can adequately represent most noise corrupting images: additive Gaussian noise
and impulsive noise [12].

Additive Gaussian noise, which is usually introduced during the acquisition process,
is characterized by adding to each image pixel channel a random value from a zero-
mean Gaussian distribution. The variance of this distribution determines the intensity
of the corrupting noise. The zero-mean property allows to remove such noise by locally
averaging pixel channel values.

Ideally, removing Gaussian noise would involve to smooth the different areas of an
image without degrading neither the sharpness of their edges nor their details. Classical
linear filters, such as the Arithmetic Mean Filter (AMF) or the Gaussian Filter, smooth
noise but blur edges significantly. Nonlinear methods have been used to approach this
problem. The aim of the methods proposed in the literature is to detect edges by means
of local measures and smooth them less than the rest of the image to better preserve
their sharpness. A well-known method is the anisotropic diffusion introduced in [11].
In this technique, local image variation is measured at every point and pixels from
neighborhoods whose size and shape depend on local variation are averaged. Diffusion
methods are inherently iterative since the use of differential equations is involved. On
the other hand, a non-iterative interesting method, which is the motivation of this work,
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is the bilateral filter (BF) studied in [15]. The output of the BF at a particular location is a
weighted mean of the pixels in its neighborhood where the weight of each pixel depends
on the spatial closeness and photometric similarity respect to the pixel in substitution.
The BF has been proved to perform effectively in Gaussian noise suppression and it has
been the object of further studies [2,3,14].

In this paper, a certain class of fuzzy metrics is used to model the relations of spatial
closeness and photometric similarity between image pixels used in the BF. Then, the
BF structure is adapted an the, from now on called, Fuzzy Bilateral Filter (FBF) is pro-
posed. The use of fuzzy metrics instead of the measures used in [15] makes the filter
easier to use since the number of adjusting parameters is lower. Moreover, the perfor-
mance of the proposed filter is improved respect to the other filters in the comparison
in the sense that will be shown.

The paper is arranged as follows. The classical BF is described in Section 2. The use
of fuzzy metrics to model the spatial and photometric relations is detailed in Section 3.
Section 4 defines the Fuzzy Bilateral Filter. Experimental results and discussions are
presented in Section 5 and conclusions are given in Section 6.

2 Bilateral Filtering

Let F represent a multichannel image and let W be a sliding window of finite size
n × n. Consider the pixels in W represented in Cartesian Coordinates and so, denote
by i = (i1, i2) ∈ Y 2 the position of a pixel Fi in W where Y = {0, 1, . . . , n − 1} is
endowed with the usual order. According to [15], the BF replaces the central pixel of
each filtering window by a weighted average of its neighbor color pixels. The weighting
function is designed to smooth in regions of similar colors while keeping edges intact by
heavily weighting those pixels that are both spatially close and photometrically similar
to the central pixel.

Denote by || · ||2 the Euclidean norm and by Fi the central pixel under consideration.
Then the weightW(Fi,Fj) corresponding to any pixel Fj respect to Fi is the product
of two components, one spatial and one photometrical

W(Fi,Fj) = Ws(Fi,Fj)Wp(Fi,Fj) (1)

where the spatial componentWs(Fi,Fj) is given by

Ws(Fi,Fj) = e
− ||i−j||2

2

2σ2
s (2)

and the photometrical componentWp(Fi,Fj) is given by

Wp(Fi,Fj) = e
−ΔELab(Fi,Fj)

2

2σ2
p (3)

where ΔELab = [(ΔL∗)2 + (Δa∗)2 + (Δb∗)2]
1
2 denotes the perceptual color error in

the L∗a∗b∗ color space, and σs, σp > 0
The color vector output F̃i of the filter is computed using the normalized weights

and so it is given by
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F̃i =

∑
Fj∈W W(Fi,Fj)Fj∑
Fj∈W W(Fi,Fj)

(4)

TheWs weighting function decreases as the spatial distance in the image between i
and j increases, and the Wp weighting function decreases as the perceptual color dif-
ference between the color vectors increases. The spatial component decreases the influ-
ence of the furthest pixels reducing blurring while the photometric component reduces
the influence of those pixels which are perceptually different respect to the one under
processing. In this way, only perceptually similar areas of pixels are averaged together
and the sharpness of edges is preserved.

The parameters σs and σp are used to adjust the influence of the spatial and the
photometric components, respectively. They can be considered as rough thresholds for
identifying pixels sufficiently close or similar to the central one. Note that when σp →
∞ the BF approaches a Gaussian filter and when σs →∞ the filter approaches a range
filter with no spatial notion. In the case when both σp → ∞ and σs → ∞ the BF
behaves as the AMF.

3 Fuzzy Metric Approach

According to [4], a fuzzy metric space is an ordered triple (X,M, ∗) such that X is
a (nonempty) set, ∗ is a continuous t-norm and M is a fuzzy set of X × X×]0,+∞[
satisfying the following conditions for all x, y, z ∈ X, s, t > 0:

(FM1) M(x, y, t) > 0
(FM2) M(x, y, t) = 1 if and only if x = y
(FM3) M(x, y, t) = M(y, x, t)
(FM4) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s)
(FM5) M(x, y, ·) :]0,+∞[−→ [0, 1] is continuous.

M(x, y, t) represents the degree of nearness of x and y with respect to t. If (X,M, ∗)
is a fuzzy metric space we will say that (M, ∗) is a fuzzy metric on X . According to
[5,6], the above definition can be considered an appropriate concept of fuzzy metric
space. In the following, by a fuzzy metric we mean a fuzzy metric in the George and
Veeramani’s sense (from now on we will omit the mention to the continuous t-norm ∗
since in all the cases it will be the usual product in [0, 1]).

A fuzzy metric M on X is said to be stationary if M does not depend on t, i.e. for
each x, y ∈ X the function Mx,y(t) = M(x, y, t) is constant [7]. In such case we write
M(x, y) instead of M(x, y, t).

In this paper two fuzzy metrics, in a first step, will be used. The first one to measure
the photometric fuzzy distance between color vectors and the second one to measure the
spatial fuzzy distance between the pixels under comparison. In order to appropriately
measure the photometric fuzzy distance between color vectors we will use the following
fuzzy metric M :

Take X = {0, 1, 2, . . . , 255} and let K > 0 fixed. Denote by (F 1
i , F

2
i , F

3
i ) ∈ X3

the color vector of a pixel Fi. The function M : X3 ×X3 → ]0, 1] defined by
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M(Fi,Fj) =
3∏

s=1

min{F s
i , F

s
j }+ K

max{F s
i , F

s
j }+ K

(5)

is, according to [9], a stationary fuzzy metric on X3. Previous works [9,10] have shown
that a suitable value of the K parameter for standard RGB images is K = 1024, so, this
value will be assumed from now on throughout the paper. Then, M(Fi,Fj) will denote
the photometric fuzzy distance between the color pixels Fi and Fj.

Now for the case of spatial fuzzy distance between pixels and using the terminology
in Section 2, denote by i = (i1, i2) ∈ Y 2 the position of the pixel Fi in the window W .
The function M||·||2 : Y 2×]0,+∞−→]0, 1] given by

M||·||2(i, j, t) =
t

t + ||i − j||2 (6)

is a fuzzy metric on Y 2 called the standard fuzzy metric deduced from the Euclidean
norm || · ||2 ([4] Example 2.9). Then, M||·||2(i, j, t) will denote the spatial fuzzy distance
between the color pixels Fi and Fj with respect to t. Notice that M||·||2 does not depend
on the length of Y but on the relative position in the image of the pixels Fi and Fj under
comparison. The t parameter may be interpreted as a parameter to adjust the importance
given to the spatial closeness criterion.

4 Fuzzy Bilateral Filtering

In order to define the Fuzzy Bilateral Filter (FBF) it is just necessary to determine how
the weight of each pixel in the filtering window is computed by using the fuzzy metrics
in Section 3.

Since each pixel Fi is characterized by its RGB color vector (F 1
i , F

2
i , F

3
i ) and by its

location (i1, i2) in the window, for our purpose, in a second step, it will be considered a
fuzzy metric combining M (5) with M||·||2 (6). So, to compute the weight of each pixel
Fj, j ∈W it will be considered the following function

CFM(Fi,Fj, t)=M(Fi,Fj)·M||·||2(i, j, t)=
3∏

s=1

min{F s
i , F

s
j }+ K

max{F s
i , F

s
j }+ K

· t

t + ||i− j||2
(7)

If we identify each pixel Fi with (F 1
i , F

2
i , F

3
i , i1, i2) then (from [13] Proposition 3.5)

the above functionCFM is a fuzzy metric onX3 × Y 2. In this way, the use of the above
fuzzy metric is enough to simultaneously model the spatial closeness and photometric
similaritycriteriacommented inSections1-2.TheFBFoutputwillbecalculatedasfollows

F̃i =

∑
Fj∈W CFM(Fi,Fj, t)Fj∑
Fj∈W CFM(Fi,Fj, t)

(8)

where the only t parameter is used to tune the importance of the spatial closeness crite-
rion respect to the photometric criterion. Notice that, in a similar way to the BF, when
t → ∞ the FBF approaches a range filter without spatial notion. The reduction of the
number of parameters respect to the BF makes the FBF easier to tune, however it can
not behave as the Gaussian filter nor the AMF as in the case of the BF. The study of the
t parameter is done in the following section.
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Table 1. Comparison of the performance in terms of NCD (10−2) using details of the Baboon,
Peppers and Lenna images contaminated with different intensities of additive gaussian noise

Filter Detail of Baboon Detail of Peppers Detail of Lenna
σ = 10 σ = 20 σ = 30 σ = 5 σ = 15 σ = 30 σ = 10 σ = 20 σ = 30

None 10.08 20.14 29.90 3.86 11.57 22.85 9.11 17.49 25.75
AMF 7.42 9.58 11.81 3.74 5.43 8.38 5.08 7.28 9.73

VMMF 8.49 11.56 14.89 3.74 6.19 10.06 5.67 8.73 11.75
VMF 9.93 14.37 18.99 4.36 7.90 13.31 6.97 11.36 15.24

EVMF 8.55 11.25 13.96 3.90 6.20 9.50 5.68 8.50 11.29
BVDF 10.34 13.91 17.98 4.14 7.53 12.37 6.56 10.48 14.14
DDF 9.01 12.81 17.22 3.98 7.10 12.07 6.34 10.30 13.94
BF 6.91 9.38 11.70 3.39 5.25 8.37 4.79 7.21 9.70

FBF 6.42 9.24 11.61 3.43 5.29 8.33 4.74 7.12 9.64

5 Experimental Results

In order to study the performance of the proposed filter, some details of the well-known
images Lenna, Peppers and Baboon have been contaminated with Gaussian noise fol-
lowing its classical model [12]. Performance comparison has been done using the Nor-
malized Color Difference (NCD) objective quality measure since it approaches human
perception and which is defined as

(a) (b) (c)

(d) (e) (f)

Fig. 1. Performance comparison: (a) Detail of Baboon image contaminated with Gaussian noise
σ = 10, (b) AMF output, (c) VMMF output, (d) EVMF output, (e) BF output, (f) FBF output
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Performance comparison: (a) Detail of Peppers image contaminated with Gaussian noise
σ = 15, (b) AMF output, (c) VMMF output, (d) EVMF output, (e) BF output, (f) FBF output

NCDLab =

∑N
i=1

∑M
j=1 ΔELab∑N

i=1
∑M

j=1 E
∗
Lab

(9)

where M , N are the image dimensions and ΔELab = [(ΔL∗)2 + (Δa∗)2 + (Δb∗)2]
1
2

denotes the perceptual color error and E∗
Lab = [(L∗)2 + (a∗)2 + (b∗)2]

1
2 is the norm or

magnitude of the original image color vector in the L∗a∗b∗ color space.
The proposed filter is assessed in front of the classical BF and other well-known

vector filters: the Arithmetic Mean Filter (AMF), the Vector Marginal Median Filter
(VMMF) [12], the Vector Median Filter (VMF) [1], the Extended Vector Median Filter
(EVMF), the Basic Vector Directional Filter (BVDF) [16] and the Distance-Directional
Filter (DDF) [8]. In all the cases it has been considered a 3× 3 window size.

For both the classical BF and the proposed FBF extensive experiments have been car-
ried out trying to find the optimal parameters that reach the best filter performance. The
proposed filter has been much easier to adjust since only one parameter (t) is involved
in the adjusting process in contrast to the BF where the presence of two parameters (σs

and σp) makes this process more complex. Appropriate values of the t parameter are in
the range [1, 10] for Gaussian noise densities (σ) in [0, 30]. For higher values of t the
smoothing performed is higher, as well, and the value of the t parameter in [1, 10] can
be easy set by simple proportionality respect to the noise density σ ∈ [0, 30].
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Performance comparison: (a) Detail of Lenna image contaminated with Gaussian noise
σ = 30, (b) AMF output, (c) VMMF output, (d) EVMF output, (e) BF output, (f) FBF output

From the results shown in Table 1 and Figures 1-3 it can be stated that the perfor-
mance presented by the proposed filter is competitive respect to the BF and outperforms
the rest of the techniques in comparison. The results seem to indicate that the FBF be-
haves better than the BF when dealing with highly textured images, as the Baboon
image, and slightly worse in images with many homogeneous areas, as the Peppers
image.

6 Conclusions

In this paper a certain class of fuzzy metrics has been used to simultaneously model
a double relation between color pixels: spatial closeness and photometric similarity,
using an only fuzzy metric. Notice that, as far as the authors know, this could not be
done using a classical metric.

The proposed fuzzy metric has been used to adapt the classical BF, then the FBF has
been proposed. The proposed filter is easier to use than its classical version since the
filter adjusting process becomes simpler. The performance presented by the proposed
filter is competitive respect to the BF outperforming it in many cases. These results
indicate that this fuzzy metric may be considered more appropriate than the measures
used in the classical BF.
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The experiences of this paper constitute another proof of the appropriateness of the
fuzzy metrics to model complex relations which motivates its further study.
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Abstract. We proposed the algorithm for the quantization noise reduction based 
on variable filter adaptive to edge signal in MPEG postprocessing system. In 
our algorithm, edge map and local modulus maxima in the decoded images are 
obtained by using 2D Mallat wavelet filter. And then, blocking artifacts in inter-
block are reduced by Gaussian LPF that is variable to filtering region according 
to edge map. Ringing artifacts in intra-block are reduced by 2D SAF according 
to local modulus maxima. Experimental results show that the proposed algo-
rithm was superior to the conventional algorithms as regards PSNR, which was 
improved by 0.04-0.20 dB, and the subjective image quality. 

Keywords: MPEG, Postprocessing, Edge Signal Variable Filter. 

1   Introduction 

Recently, MPEG-2 has been adopted as the video standards for satellite, terrestrial, 
cable digital broadcasting besides the transmission of ATSC and DVB. In internet 
surroundings, there have been many multimedia standards such as H.263, WMV, 
QuickTime, and MPEG-4. DMB (Digital Multimedia Broadcasting) that is a digital 
transmission system for sending data, radio, TV to mobile devices can service various 
digital multimedia while preserving quality of service in mobile. T(terrestrial)-DMB 
use MPEG-4 AVC (H.264) for the video and MPEG-4 BSAC for the audio. But the 
transmitted image has the artifact because of high compression for the limit band-
width. Especially, compression artifacts are often observed in block-based coding due 
to the quantization process that independently quantizes the DCT coefficients in each 
block. Among the artifacts caused by such quantization errors, there are blocking 
artifacts that are the most visible and ringing artifact. Blocking artifacts are divided 
into grid noise and staircase noise in general. Grid noise is easily noticeable as a slight 
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change of intensity along a 8x8 block boundary in a monotone area, like a grid shape. 
Staircase noise occurs when a continuous edge is included in an inter-block, and this 
edge becomes discontinuous in the block-coded image. Ringing noise is the result of 
the truncation of high-frequency coefficients in the quantization process, producing a 
pseudo-edge around the edge, such as Gibb’s phenomenon. JPEG-2000 that is a still 
image compression standard based on wavelet coding has not blocking artifacts but 
ringing artifact around edge. 

The algorithms to reduce the quantization noise are categorized into the preproc-
essing and the postprocessing process. The preprocessing algorithm is to design the 
encoder that don’t occur the quantization noise in compression process. But it has 
drawbacks that requires the additional information and is difficult to apply to the 
conventional standards. The postprocessing algorithm is to reduce the quantization 
noise after decoding the bit stream in the receiver. It can process real-time without the 
additional information considering HVS (Human visual system), which more sensi-
tive to noise in monotone area than in complex areas. The post-filtering in recom-
mended at MPEG-4 separates DC offset mode and default mode using the intensity 
difference of the neighborhood pixels. The first mode, corresponding to flat regions, 
involves the use of a strong filter inside the block as well as at the block boundaries. 
The second mode, corresponding to all other regions, then involves the use of a so-
phisticated smoothing filter, based on the frequency information around the block 
boundaries, to reduce blocking artifacts without introducing undesired blur. Although 
this algorithm is very simple and has a fast processing time, it cannot remove  
staircase.  

Our paper proposed the variable filter adaptive to edge signal in MPEG postproc-
essing system to remove the quantization noise. The Mallat wavelet representation 
characterizes the local variations of a signal for multiscale edges preserving the same 
resolution. Mallat analyzed the characteristics of edge signal and singularity in mul-
tiscale edges. Firstly, an edge map and local modulus maxima are detected by using 
Mallat wavelet. The variable filter that the filter coefficients and the tap number can 
be controlled by the blocking strength and quantization parameter is performed to 
remove the blocking artifacts in the horizontal and vertical block boundary. The filter-
ing region is determined by the edge map around the block boundary. 2D SAF (Signal 
Adaptive Filter) within intra-block is performed to remove ringing artifact using local 
modulus maxima. Experimental results confirmed that the proposed algorithm can 
reduce the presence of artifacts and preserve the edge details. 

2   Proposed MPEG Processing 

As shown in Fig. 1, the proposed algorithm detects the edge map and local modulus 
maxima using 2D Mallat wavelet filter in each frame in MPEG decoder system. And 
then, the filter with variable filtering region, tap coefficient, and tap number is per-
formed at inter-block to remove blocking artifacts using the edge map. Furthermore, 
2D SAF is performed within intra-block to remove ringing artifact using local 
modulus maxima. A brief description of Mallat wavelet is given in subsection 1, then 
the proposed post-filtering is presented closely in the following subsections.  
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Fig. 1. The block-diagram of the proposed MPEG post-processing system for quantization 
noise reduction 

2.1   Mallat Wavelet 
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with respect to the smoothing function ),( yxφ . The wavelet transform between the scales 

1 and J2  Jj
vh yxfWyxfW jj ≤≤122 )},(),,({  provides the details that are available in 

),(1 yxfS . 
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(a)                                  (b) 

Fig. 2. (a) Threshold T according to quantization parameter QP and blocking strength mmB /  

and (b) Gaussian filter according to blocking strength mmB /  

2.2   Edge Map Detection 

The magnitude ),(12 yxM  and the phase ),(12 yxA  of 2D wavelet modulus in the first 

scale are respectively 

 2
2

2
2

2
2

),(),(),( 111 yxfWyxfWyxfM vh +=                        (1) 

 )),(/),((tan),( 111 22
1

2 yxfWyxfWyxA hv−= .                       (2) 

Edge map ),( yxE  is IF TyxM >),(12 , ),( yxE =1, ELSE ),( yxE =0 where T   

 )1)1(( +×−×= A
m

m
QPT B             (3) 

is determined by blocking strength mmB /  )1(≥  and quantization parameter QP. T  is 

a threshold value that distinguish blocking artifacts and edge. Since blocking artifacts 
become visible differently according to compression ratio in block coded image, the 
post-filtering has to be performed adaptively to blocking strength and quantization 
parameter while preserving the edge. If QP and mmB / are low, a threshold T  has to 

be selected to low value because blocking artifacts become less visible than the edge. 
But if QP and mmB / are high, a threshold T  has to be selected to high value because 

blocking artifacts become visible remarkably. The parameter A  is determined as 1.3 
experimentally. The solid line in Fig. 2 (a) represents a threshold T  in this paper. Bm  

and m  are respectively. 
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which Bm  and m represent the average magnitude of ),(12 yxM  in block boundary 

and within block. NH and NV are the horizontal and vertical resolution.  

2.3   Inter-block Filtering  

In the proposed inter-block filtering, the variable filter that is adaptive to edge map 
around block boundary is performed to horizontal and vertical direction in inter-block 
to reduce blocking artifacts. The variable filter )(nh  is 
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 where 9.29.1 ≤≤ c , NnN ≤≤−  
 
that is a Gaussian filter in proportion to the inverse of the blocking strength mmB / . 

This filter is nearly mean filter if the mmB /  is low and also is nearly impulse filter if 

mmB /  is high as shown in Fig. 2 (b). The number of tap )12( +N  and the filtering 

region ]1,[ −− dd  are determined according to the edge map around block boundary. 

If edge map in 8 pixels around the block boundary are all 0, then 1=N  and 1=d . 
Otherwise, dN ,  are determined to the most near position in block boundary among 

the position in which edge map is 1. For example, in case of the pixels ),8( yiuf + , 

34 ≤≤− i  for horizontal inter-block, if the position i  is -4, 3 in which edge map 
),8( yiuE +  is 1, then 3=N  and 3=d . Or if 2,3−=i , then 2=N  and 2=d . If 

0,1−=i , the variable filter is not performed since 0=N . This designed variable 
filter is performed at the block boundary  
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by changing the weighting value )(nw according to edge map while preserving the 

edge aside of the filtering region. Thus, when the pixel at n position within the sup-
port region of variable filter belongs to edge map, all weighting values behind n are 0 
if 0<n , and also all weighing values beyond n are 0 if 0>n . 
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Fig. 3. (a) Filtering region and variable filter adaptive to edge map and (b) the filtering for 2th. 
line in (a) figure 

2.4   Intra-block Filtering  

The intensity difference of the neighborhood pixels and the angel with the intensity dif-
ference can be known from magnitude modulus ),(12 yxM  and phase modulus ),(12

yxA  

at the first scale. If ),(12 yxM  at position ),( yx  is higher than ),( 1121 yxM  and 

),( 2221 yxM , ),(12 yxM  is the local modulus maxima ),( yxL . ),( 11 yx  and ),( 22 yx  

are two positions that are adjacent to ),( yx  to direction of phase modulus ),(12
yxA . 

Ringing artifact appears as the pseudo-noise around the abrupt edge. This pseudo-noise is 
detected by using local modulus maxima within edge block that include the abrupt edge. 
Edge block is a block including pixel that edge map is 1. The abrupt edge appears not at 
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only a block but at a series of blocks in general. If the number of edge block among 8 
blocks )81(Bi ≤≤ i  near the current edge block is above 2, this current block is set as 

block that must be performed to remove ringing artifact. And if ),( yxL  within this cur-
rent block is above a threshold T, ),( yxL  is ringing artifact. 

 

Fig. 4. Reduction for ringing artifact in intra-block using 3×3 SAF 

Ringing artifact is reduced by using 3×3 SAF as shown in Fig. 4. Thus, the pixel 
detected as the pseudo-nose has to be filtered as follows; 
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 where 78 +≠ ux , 18/,,1,0 −= NVu , 78 +≠ vy , 18/,,1,0 −= NHv  

),( yxg  is ),(),( 22 yxwyxh D ×  where 2D filter mask ),(2 yxh D  is 

{{1,2,1},{2,4,2},{1,2,1}} and 2D weighting mask ),(2 yxw  is 0 if sTyxM >),(12  and 

1, otherwise. Since the weighting value of the abrupt edge within SAF support region 
is set to 0, ringing artifact can be reduced while preserving the edge. In case of the 
example in Fig. 4, weighting mask ),(2 yxw is {{1,0,1},{0,1,1},{0,1,1}} and ),( yxg is 

{{1,0,1},{0,4,2},{0,2,1}}/11. 

3   Experimental Results 

To demonstrate the performance of the proposed algorithm, a computer simulation 
was performed using MPEG-4 VM 18. DMB for mobile service provide generally the 
minimum quality of VCD degree in case of 5” LCD, which has 352×240 image size  
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and 15 frames per second. Therefore, the experiments used NEWS, MOTHER& 
DAUGHTER, FOREMAN, COAST GUARD, CONTAINER SHIP, and SILENT 
VOICE, which were CIF (352 288) and QCIF  (176 144) in size. These moving 
pictures include 300 frames coded by MPEG-4 at various bit rates, frame rate, and 
QP. Fig. 5 shows an edge map and local modulus maxima of 17-th frame in 
FOREMAN coded to QP=30, 112kbps, and 15Hz. The grid noise in monotone cannot 
be detected as the edge so that the grid noise has to be removed, as shown in Fig. 5 
(a). Furthermore, ringing artifact around cloth and building line can be detected as 
local modulus maxima as shown in Fig. 5 (b). 

(a)                                                               (b) 

Fig. 5. (a) Edge map and (b) local modulus maxima of 17-th. frame in Foreman coded to 
QP=30, 112 kbps, 15 Hz 

In the current study, the PSNR, one of the most popular criteria in image process-
ing, was used to objectively evaluate the performance results, even though it is not an 
optimum criteria from the perspective of the human visual system. Plus, the images 
resulting from processing using the proposed algorithm and a conventional algorithm 
were also compared subjectively. A comparison of the PSNR results is shown in  
Table 1, in which various moving pictures were decoded in MPEG-4 and processed 
using MPEG-4 VM filtering, Kim’s algorithm, and the proposed algorithm. This table 
shows that average PSNR of the proposed algorithm was higher 0.01dB – 0.20dB 
than that of the other conventional algorithms.  

Fig. 6 shows the 17th. frame in FOREMAN sequence decoded to QP=30, 112kbps, 
and 15Hz by MPEG-4 and the postprocessed frames. The frames postprocessed by 
VM-18 post-filter in Fig. 6 (b) shows the edge blurred by the excessive low pass fil-
tering and the staircase noise of the discontinuous edge. The frames postprocessed by 
Kim’s algorithm in Fig. 6 (c) show still visible blocking artifacts around eye and hat 
in FOREMAN and also ringing artifact. However, the frames postprocessed by the 
proposed algorithm in Fig. 6 (d) show obvious improvement in terms of the removal 
of grid noise in flat region and ringing noise in edge block without blurring the edge 
and also the continuous of the staircase noise. Consequently, the performance of the 
proposed algorithm was demonstrated as superior to that of the other conventional 
algorithms based on both the PSNR and the subjective image quality.  
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(a)                                                            (b) 

  
(c)                                                             (d) 

Fig. 6. (a) FOREMAN decoded with MPEG-4 by QP = 30, 112 kbps, and 15 Hz, and post-
processed sequences by (b) VM-18 post filter method, (c) Kim’s method, (d) proposed method 

Table 1. Experimental results for MPEG-4 decoded sequences 

Average PSNR [dB] Bit rate, 
size, and 

frame 
rate 

Sequences QP 
MPEG-4 VM-18 Kim Proposed 

CONTAINER SHIP  17 29.53 29.64 29.83 29.84 10 kbps, 
QCIF, 
7.5 Hz 

MOTHER& 
DAUGHTER  

15 32.28 32.40 32.48 32.52 

CONTAINER SHIP  10 32.78 32.96 32.95 32.96 24 kbps, 
QCIF, 
10 Hz 

MOTHER& 
DAUGHTER  

8 35.32 35.38 35.40 35.46 

FOREMAN 13 30.96 31.10 31.12 31.14 
COAST GUARD  14 29.08 29.11 29.11 29.13 

48 kbps, 
QCIF, 
10 Hz SILENT VOICE  7 34.42 34.59 34.60 34.62 

MOTHER& 
DAUGHTER  

10 36.01 36.10 36.17 36.21 

NEWS  18 31.26 31.37 31.31 31.42 

48 kbps, 
CIF, 
7.5 Hz 

HALL MONITOR  12 33.60 33.63 33.65 33.75 
FOREMAN 30 28.43 28.53 28.57 28.59 
COAST GUARD  29 26.37 26.53 26.57 26.57 

112 kbps, 
CIF, 
15 Hz CONTAINER SHIP  10 33.18 33.33 33.40 33.41 
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4   Conclusions 

This paper presented the MPEG psotprocessing system of quantization noise reduc-
tion based on the variable filter adaptive to edge. Firstly, the proposed algorithm ob-
tains the edge map by thresholding the wavelet coefficient in multiscale edge. The 
variable filter is performed by at inter-block to remove blocking artifacts while chang-
ing the tap number and the filtering region according to the edge map. The coefficient 
of variable filter is determined by the blocking strength and quantization parameter. 
2D SAF is performed within edge block to remove ringing artifact by using local 
modulus maxima. Experimental results confirmed that the proposed algorithm was 
superior to other conventional algorithms as regards the subjective image quality and 
PSNR, which was improved by 0.02 dB - 0.29 dB. 
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Abstract. Nonlinear digital filters based on the order statistic belong to the very 
powerful methods of image restoration. The well known is the median filter 
operating on scalar valued images. However, the operation of the median filter 
can be extended into multi-valued pixels, such as colour images. It appears that 
we can go even further and define such filters for tensor valued data. Such a 
median filter for tensor valued images was originally proposed by Welk et.al. 
[10]. In this paper we present a different approach to this concept: We propose 
the family of nonlinear order statistic filters operating on tensor valued data and 
provide the computational framework for their non-numerical implementation. 

Keywords: Order statistics, median filtering, weighted rank filters, tensor data. 

1   Introduction 

The order statistic based filtering of signals attracts much attention [2][7][8]. When 
applied to images this non-linear systems exhibit many desirable features that cannot 
be achieved with linear filters, such as edge preservation, removal of impulsive noise, 
etc. They operate on a fixed window of data for which the algebraic order of samples 
is used to find out the output value. However, there is a significant difference in 
finding order for scalar and non-scalar data, since for the latter there is no single way 
of ordering.  

The most popular example of the order statistic filters is a median filter. For the 
grey valued images its operations is very simple: image intensity values found in a 
window are sorted and the middle sample is taken as an output. For example 5 is the 
median from the set {5,0,7,13,1}. However, for colour images, where pixels are 
composed of three scalars, there is not a uniform way of data ordering. Thus many 
solutions are possible, for instance a separate filtering of each channel, filtering of 
assigned scalars to colour pixels, etc. [9]. 

The concept of median filtering of vector data was further extended to the matrix 
and tensor valued data by Welk et.al. [10]. Filtering of tensor data is important for 
processing of the diffusion tensors of the magnetic resonance images, structural 
tensors (ST) [1][3], etc. Welk et.al. proposed a median filter of tensor data with the 
Frobenius norm used to measure their distance. This norm has an advantage of being 
rotation invariant which is a desirable property in case of tensors. The minimization 
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problem was solved with a modified gradient descent method.  The median value in 
this case does not necessarily belong to the set of input data, however. 

In this paper we propose a computational framework for the non-numerical 
realization of the family of order statistic filters operating on tensor valued data. It 
provides a uniform way of data processing for different weighted order statistics (not 
only median), as well as for different norms on tensors. On the other hand it is much 
easier approach when porting to the hardware accelerated platforms. 

2   Order Statistic Filters on Tensor Data 

As alluded to previously, realization of the order statistic for scalars, vectors, and 
tensor data differ in ordering scheme. For non-scalar values (multi-channel images) it 
should provide an equal importance to all components and use them all in data 
ordering. The usual way is to define a dissimilarity measure between each pair of data 
xi and xj, as follows [2][7][8][9]:  

( ) ( ),i jd x x , (1) 

where it is assumed that d(.) fulfils the distance properties (the subscript (.) denotes a 
specific distance). Then, based on (1), an aggregated weighted distance D(.) (xi,{x}K, 
{c}K) of a sample xi (for i=1,2,...,K) with respect to the set {x}K of K other samples can 
be defined, as follows: 

( ) { } { }( ) ( ) ( )
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, , ,
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j

D x x c c d x x
=

= , (2) 

where {c}K is a set of K scalars (weights). Thus, choice of a distance d(.) determines 
properties of the aggregated distance D(.). The most popular metrics for vector data 
follow the Minkowski’s metric d(M), defined for the two vectors a and b from the S 
dimensional space, as follows: 

( ) ( )
1/
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α
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=

= −a b , (3) 

where ak and bk stand for the k-th component of the vectors a and b, respectively, and 
α is a parameter. To measure distance for the tensor valued data (or matrices) one of 
the matrix norms can be used. For completeness we remind the three most popular:    
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= =

= −A B , (6) 

where A and B are m×n tensors with scalar elements a and b, respectively. The last 
d(F) is the Frobenius norm which, due to its desirable rotation invariance property, was 
used by Welk et.al. [10]. In the special case of the 2D tensor U (such as the 2D 
structural tensors which are semi positive [3]) we have: 
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11 12

21 22

u u

u u
=U  where u21=u12, (7) 

and for two such tensors U and V, d(F) in (6) takes the following form: 

( ) ( ) ( ) ( ) ( )2 2 2

11 11 12 12 22 22, 2Fd u v u v u v= − + − + −U V . (8) 

 Just recently, for the segmentation of diffusion tensor images, Luis-García et.al. 
proposed to use the Riemannian distance which is intrinsic to the manifold of the 
symmetric positive definite (SPD) matrices. It takes the following form [6]: 

( ) ( ) ( )2

1

, ln
N

kR
k

d λ
=

=A B , (9) 

where A and B are two SPD matrices of rank N, λk are the positive eigenvalues of the 
A-1B. 
 The order statistic filters are defined as follows: given a set of data {x}K, for each 
xi∈{x}K the scalar D(.)(xi) is computed according to (2) and chosen d(.) in (1). Then 
these scalars are ranked in the order of their values, which process automatically 
orders their associated tensors xi as well. The procedure is as follows (omitting 
subscript for clarity) [2] [7][8][9]: 

( ) ( ) ( ) ( )1 2 p KD D D D≤ ≤ ≤ ≤ ≤ , 
( ) ( ) ( ) ( )1 2 p Kx x x x→ → → → → , 

(10) 

where D(p)∈{D(x1), D(x2),..., D(xK)} and x(p)∈{x1, x2,..., xK} for 1≤p≤K. Having ordered 
data, one data x(p) is chosen as an output of an order statistic filter, depending on the 
desired characteristics of that filter. The special and very important case is the 
weighted median filter, defined generally as follows: 

{ }
( ) { } { }( )arg min , ,

i K

m i K K
x x

x D x x c
∈

= , (11) 

where x are tensors (or matrices, vectors, scalars) from a set {x}K of data with a 
chosen aggregated distance measure D(.), {c}K is a set of scalar weights, and xm is the 
median. 
 If in (2) ∀i: ci=1, then (11) denotes the classical median filter. There are many 
mutations of (11) possible as well [2][7][8][9]. Welk et.al. [10] propose the numerical 
solution to (11) by a gradient descent method with a step size control to overcome the 
problem of missing information in the gradient of the sum on the distance to the 
minimum. However, such procedure leads to a solution which does not necessarily 
belong to the input set of data {x}K. This is the main difference to this paper. 

3   Algorithmic Considerations 

Formula (10) with a chosen aggregated distance (2) constitute the base for 
implementation of the order statistic filters for tensor data. In this section we focus on 
the algorithmic aspects of data ordering in (10) and choice of an output value of a filter. 
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Fig. 1 depicts data structures for computations of the partial aggregated distances 
D(.) among nine elements, i.e. the filtering window is 3×3 for simplicity. The main 
structure is a square matrix M that contains mutual distances d(.).  Due to their metric 
properties M is symmetrical with a zero diagonal. Thus, we need only to compute 
distances in an upper (or lower) triangle, since in general for K elements in the 
window we have 

2

K  different pairs of distances to be determined. The weights ci are 

stored in a separate matrix C. The aggregated distances D(.) are weighted sums of the 
consecutive rows, e.g. D(x7,{xi}1≤i≤9)= Σ1≤i≤9 cim[7,i]. D(.) need to be computed only 
once, then they are rank ordered or otherwise processed to find the output value. For 
example, for the median filter we look for the minimal value of D(.)(xp) and the 
corresponding xp is the sought median value.  

Fig. 1.  Data structures for computation of the aggregated distances D(.) 

Fig. 2 illustrates filtering in a square odd size window (3×3 for simplicity) created 
around a central pixel. We notice that when moving filter to a new position Wk+1 only 
one column (or a row for a vertical step) of the window is refilled with new data 
(pixels 1-3 in Fig. 2). This is a key observation leading to speed improvements of the 
algorithm. As a consequence in the matrix M it is necessary to exchange only the 
rows associated with the changed data (i.e. the rows 7-9 in this case – see Fig. 1 and 
Fig. 2). The other distances can be reused (the grey area in Fig. 1).  
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The remaining distances (grey area in Fig. 1) have to be copied from the lower-
right corner to the upper-left corner of M. The rows with new data (i.e. the rows 7-9) 
have to be filled with the computed d(.). 

For the non-weighted versions of (2) (i.e.∀i: ci=1), the partial sums Σ∗ of D(.) can 
be stored in the partial-sums-accumulator A in Fig. 1. It holds also that the partial 
column sums are the same as the corresponding partial row sums, i.e. Σc6 equals Σr6 in 
Fig. 1, so we don’t need to store anything in the lower triangle of M. This can speed 
computations and save memory especially for larger filtering windows. 

 

Fig. 2.  The filtering window: moving one pixel right - only its last column needs to be refilled 

We note also that the proposed data structures and algorithms are simpler for 
hardware implementation than e.g. direct numerical minimization of (11). 

4   Experimental Results 

The experimental results present rank filtering of the structural tensor U in a form (7), 
which is further processed to exhibit local structures in images. The extension consists 
in a mapping of (7) into the tensor s=[s1,s2,s3], where s1=u11+u22 represents a 
magnitude, s2=∠w an angle, and s3=ρ a coherence of local structures in images. The 
mapping is given as follows [4][1][3]: 
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(12) 

where λ1 and λ2 are eigenvalues of U.  
Fig. 3 depicts a grey test image “Street” (a) and the two colour representations of s 

(magnitude, angle, and coherence represented as HSI channels), where first one is 
original (b), the second was created from s filtered by the 7×7 non-weighted median 
filter (11). The latter shows more regular structures due to removal of the sparse data 
and noise. 
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Fig. 3.  The “Street” grey-valued image (a), the colour representation of the ST (b), the colour 
representation of the structural tensor prior filtered with the 5×5 non-weighted median 

Table 1. Speed of execution of the median filtering of the 512×512×3 tensor data (floating 
point data representation) 

Filt. window size (# of dists. di) 3×3 (36) 5×5 (300) 7×7 (1176) 9×9 (3240) 

Exec. time - Simple [s] 0.812 3.75 12.8 34.3 

Exec. time - Optimized [s] 0.44 1.51 4.72 12.29 

 

Fig. 4.  The “Airplane” grey-valued image (a), the colour representation of the ST prior filtered 
with the 7×7 central-pixel-weighted-median with cm=2.2 (b), and cm=10.0 (c). The 3×3 median 
filtered channels s of the ST: magnitude (d), angle (e), coherence (f). 

 

   
a b c 

 a  b  c 

 d  e  f 
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Fig. 4 presents the central-weighted-median-filter applied to the ST of the 
“Airplane” test image (a). The ST colour representation, filtered with the 7×7 central-
pixel-weighted-median, with ci=1.0 and the middle weight cm=2.2 presents Fig. 4b, 
and for cm=10.0 Fig. 4c; The mag-ang-coh of the ST 3×3 median filtered depict  
Fig. 4d-f. The Frobenius norm (8) was used in all experiments. Table 1 presents 
execution timings on Pentium 3.4 GHz with 2GB RAM. Software was implemented 
on the Microsoft Visual® C++ 6.0 platform. The speed-up factor for the optimized 
version (Sec.3) is about 2.5-2.9. 

5   Conclusions 

In this paper we propose the computational framework for the non-numerical 
realization of the family of the order statistic filters operating on tensor valued data. 
It is a different approach to the concept proposed by Welk et.al. [10]. The main 
novelty is a uniform treatment of the whole family of the rank ordered weighted 
filters, not only the median. The second difference from [10] is the non-numerical 
solution of the minimization problem for medians. Thanks to this feature the found 
median value always belong to the set of input data. Last but not least, the presented 
algorithms and data structures allow fast execution in software and simpler 
hardware implementation.  
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Abstract. This paper deals with the use of morphological filters by reconstruction 
of the mathematical morphology for Gaussian noise removal in color images. 
These new vector connected have the property of suppressing details preserving 
the contours of the objects. For the extension of the mathematical morphology to 
color images we chose a new polar color space, the l1-norme. This color model 
guarantees the formation of the complete lattice necessary in mathematical 
morphology avoiding the drawbacks of others polar spaces. Finally, after having 
defined the vectorial geodesic operators, the opening and closing by reconstruc-
tion are then employed for the Gaussian noise elimination. 

1   Introduction 

In image processing, one of the most important tasks is the improving of the visual 
presentation or the reduction of noise. The main problem in noise removal is to get a 
clean image, which is without noise, but keeping all attributes of the original image as 
could be the shape, size, color, disposition and edges, among others. Some methods 
have been proposed so far for the elimination of noise. In [1], a directional vectorial 
filter is defined, which minimises the angle between vectors to eliminate the noisy 
pixel. In [2], the so-called vectorial median filters are an extension of the scalar 
median filter. In such a case, the ordering of the vectors is done with a Euclidean 
distance value. In [3], a combination of morphological alternate filters is used with 
RGB to reduce the impulsive noise. 

In this paper, we show the utility of using the vectorial geodesic reconstruction in 
combination with a mean filter for eliminating Gaussian noise from the color images. 
Section 2 presents the color space chosen for mathematical processing, the l1-norme. 
In Section 3, we extend the geodesic operations to color images. In Section 4, we 
apply the vector-connected filters for eliminating the Gaussian noise in color images. 
Finally, our conclusions are outlined in the final section. 

2   Color Mathematical Morphology 

Mathematical morphology is a non-linear image processing approach which is based 
on the application of lattice theory to spatial structures [4]. The definition of 
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morphological operators needs a totally ordered complete lattice structure [5]. The 
application of mathematical morphology to color images is difficult, due to the 
vectorial nature of the color data (RGB, CMY, HLS, YIQ…). Many works have been 
carried out on the application of mathematical morphology to color images 
[6,7,8,9,10]. The most commonly adopted approach is based on the use of a 
lexicographical order which imposes a total order on the vectors. This way, we avoid 
the false colors in an individual filtering of signals. Let x=(x1, x2,…,xn) and y=(y1, 
y2,…, yn) be two arbitrary vectors (x,y ∈ Zn). An example of lexicographical order 
olex, will be: 

<<<
<<

<
<

nn yxandyxandyx

oryxandyx

oryx

if

......2211

2211

11

yx                          (1) 

On the other hand, it is important to define the color space in which operations are 
to be made. The intuitive systems (HSI, HLS, HSV,…) are used in color vision  
because they represent the information in a similar way to the human brain. The 
preference or disposition of the components of the HSI in the lexicographical ordering 
depends on the application and the properties of the image. Ordering with luminance 
(intensity) in the first position is the best way of preserving the contours of the objects 
in the image (lattice influenced by intensity). In situations in which the objects of 
interest are highly colored or in which only objects of a specific color are of interest, 
the operations with hue in the first position are the best (lattice influenced by hue). 

2.1   The New Color Space for Processing: L1-Norme 

There are a great number of variations for the transformation of RGB to polar color 
spaces (HSI, HLS HSV…). Some transformations cause that these spaces present in-
coherences that prevent the use of these color representations in some image 
processing. These chromatic models are inadequate for the quantitative treatment of 
the images. For example, some instability arises in saturation of these spaces for small 
variations of RGB values. In addition, the saturation of the primary colors is not 
visually agreeable. An advisable representation must be based in distances or norms 
for the vectors and to provide independence between the chromatic and achromatic 
signals. 

In order to avoid the inconveniences of HSI, HLS or HSV color models, we use, in 
our investigation, the new Serra’s L1-norme [11]. Figure 1 shows the MS diagram 
from Serra’s L1-norme as a positive projection of all the corners of the RGB cube in a 
normalization of the achromatic line to the m called signal.  

This new chromatic representation has been very useful in brightness elimination 
of color images [12,13]. The intensity (achromatic signal) m and saturation signal s in 
the l1-norme are calculated from r, g and b values of RGB, where the m signal 
calculated is a normalization (0 ≤ m ≤ 255) of the achromatic axes of the RGB cube, 
and the s values are visually more agreeable with respect to the saturation of HLS or 
HSV spaces: 
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Fig. 1.  RGB cube and its transformation in MS diagram. (a) 3D projection. (b) 2D opposite 
projections. (c) Shape and limits of MS diagram. 

3   Vector Connected Filters 

Morphological filters by reconstruction have the property of suppressing details, 
preserving the contours of the remaining objects [14,15]. The use of these filters in 
color images requires an ordering relationship among the pixels of the image. For the 
vectorial morphological processing the lexicographical ordering previously defined 
olex will be used. As such, the infimum ( v∧ ) and supremum ( v∨ ) will be vectorial 

operators, and they will select pixels according to their order olex in the l1-norme.  
Once the orders have been defined, the morphological operators of reconstruction 

for color images can be generated and applied. A elementary geodesic operation is the 
geodesic dilation. Let g denote a marker color image and f a mask color image (if 
olex(g)≤ olex(f), then g v∧ f  = g). The vectorial geodesic dilation of size 1 of the 

marker image g with respect to the mask f can be defined as:  
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fggf vvv ∧= )()1()()1( δδ                               (3) 

where it is very important that the infimum operation is done with the same 
lexicographical ordering as the vectorial dilation. This way, there are not false colors 
in the result.  

The vectorial geodesic dilation of size n of a marker color image g with respect to a 
mask color image f is obtained by performing n successive geodesic dilations of g 
with respect to f:   

= )()1()1()()( gffgf
n-

vv
n

v δδδ                             (4) 

with fgf =)()0(
vδ  

Geodesic transformations of bounded images always converge after a finite 
number of iterations [13]. The propagation of the marker image is impeded by the 
mask image. Morphological reconstruction of a mask image is based on this principle.  

The vectorial reconstruction by dilation of a mask color image f from a marker color 
image g, (both with the same dominion and )()( fg lexlex oo ≤ ) can be defined as: 

)()()( gfgf
n

vvR δ=                           (5) 

where n is such that )()1()()( gfgf
+= n

v
n

v δδ . 

The vectorial reconstruction is an algebraic opening only if all the operations 
between pixels respect the lexicographical order. 

4   Application: Gaussian Noise Removal 

Vector-connected filters will be used to eliminate Gaussian noise from color images. 
Chromatic Gaussian noise, in contrast to impulsive noise, it changes the entire 
definition of the image. Its effect is most obvious in the homogenous regions, which 
become spotty. With vector-connected filters we can reduce the Gaussian noise by 
merging the flat zones in the image. As such, the noisy image is simplified and the 
contours of the objects are preserved. 

The images of our study are the color images of “Parrots” (Fig. 2.a), “Vases” (Fig. 
2.c), “Lenna” (Fig. 2.e) and “Peppers” (Fig. 2.g) which has been corrupted by a 
Gaussian noise with a variance between 15 and 20.  

We apply a vectorial opening by reconstruction (VOR) in the noisy image. For the 
morphological processing, the lexicographical ordering olex=m→saturation→    hue, 
will be used. VOR is defined as follows: 

( ) ( ) ( )( ( ))n n s
v v vγ δ ε= ff f        (6) 
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(a) (b) 

     
(c)      (d) 

     
(e)      (f) 

     
(g)     (h) 

Fig. 2.  Original and noisy images. (a-b) “Parrots“ σ =20, (c-d) “Vases“σ =15, (e-f) “Lenna”    
σ =18 and (g-h) “Peppers” σ =17. 

The vectorial erosion of the opening by reconstruction is made with increasing 
sizes (s) of the structuring element, from 5x5 to 11x11. In Figure 3, the results of the 
connected filter for the “Parrots” image are observed. In accordance with the increase 
of the structuring element, the noise is reduced, but the image is darkened (VOR is an 
antie-extensive operation). 
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We now apply a vectorial closing by reconstruction (VCR) to the original image 
and we obtain the results which are presented in Figure 4. In this case, the image is 
clarified as the size of the structuring element of the vectorial dilation is increased. 
This is due to the extensive operation of the VCR. VCR is defined as: 

( ) ( ) ( )( ( ))n n s
v v vφ ε δ= ff f        (7) 

     
(a)    (b) 

     
(c)    (d) 

Fig. 3.  Vectorial openings by reconstruction (VOR) from: 5x5-eroded image (a), 7x7-eroded 
image (b), 9x9-eroded image (c), 11x11-eroded image (d) 

In Figure 5, the effect of reducing flat zones within the noisy image is shown. In 
particular, the upper left corner of the images is detailed. Figure 5.a shows the original 
noisy section. In Figures 5.b and 5.c, we can observe the progressive reduction of flat 
zones as the size of the structuring element (s) increases in the operation of erosion of 
the vectorial opening by reconstruction. For our purpose of noise removal we chose a 
structuring element of 7x7 as the best for preserving contours and details in the images. 

In order to attenuate the dark and light effects of the previous filters, we calculate 
the vectorial mean of both filters. In Figure 6 we can see the art flow of the algorithm 
for Gaussian noise removal. The visual result of our algorithm and the final images 
are shown in Figure 7. 

We use the normalised mean squared error (NMSE) to assess the performance of 
the different means of the filters. The NMSE test for color images is calculated from 
the RGB tri-stimulus values [3], where i is the original color image and f is the 
processed image: 
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(a)                                           (b) 

    
(c)                                  (d) 

Fig. 4.  Vectorial closings by reconstruction (VCR) from: 5x5-dilated image (a), 7x7-dilated 
image (b), 9x9-dilated image (c), 11x11-dilated image (d) 

       
 (a)                               (b)                              (c) 

Fig. 5.  Detail of simplification of the image. (a) noisy section. (b) VOR-7x7. (c) VOR-11x11. 
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Fig. 6. The Algorithm for Gaussian noise attenuation in color images by morphological 
reconstruction. Structuring element (s) 7x7. olex=m→saturation→ hue. 
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In addition to the NMSE test, three subjective criteria can be used:  

• Visual attenuation of noise.  
• Contour preservation. 
• Detail preservation. 

The evaluation of the quality with subjective criteria is divided into four categories: 
i.e., excellent (4), good (3), regular (2) and bad (1). The result of the filter on the 
noise-polluted images is illustrated in Table 1. The value of the NSME test for the 
original image and the noisy one are 0.0952 for “Parrots”, 0.0892 for “Vases”, 0.102 
for “Lenna” and 0.919 for “Peppers”. 

           
(a)                                          (b) 

           
(c)                                            (d) 

Fig. 7.  Final results. Vectorial Mean of VOR-VCR  in (a) “Parrots”, (b) “Vases”, (c) “Lenna” 
and (d) “Peppers”. 

Table 1. Color NSME and subjective criteria. The “NSME original/noisy“ is the normalised 
mean squared error calculated between the original image and the noisy image. The NSME “M-
(VOR,VCR) “ is the normalised mean squared error calculated between the original image and 
the filtered image. 

 
NMSE 
Original/ 

noisy 

NMSE 
Original/ 

M-(VORVCR) 

Visual 
attenuation of 

noise 

Contour 
preservation 

Detail  
preservation 

Parrots 0.0952 0.0775 3 4 3 
Vases 0.0892 0.0688 4 4 4 
Lenna 0.102 0.0717 3 3 3 

Peppers 0.0919 0.0597 4 4 4 

 



 Gaussian Noise Removal by Color Morphology and Polar Color Models 171 

Regarding the values from the NMSE test, we should emphasize that they are all 
located below the value of the noisy image. The most optimal result, according to the 
NSME test, is the presented in the image of “Vases”. Regarding the subjective 
evaluation of the quality of the filter, the best conservation of contours and details are 
already presented in the “Vases” image (noise σ =15). Nevertheless, visual 
attenuation of noise (subjective criteria) is achieved in all the images.  

5   Conclusions 

In this paper, we have presented an algorithm for eliminating Gaussian noise in color 
images. The geodesic method for reducing noise has been shown to be efficient for a 
Gaussian noise of a variance of 20. In the experiments carried out, better results 
where obtained for lower variances, specifically 15.   

A best elimination of noise can be obtained if the morphological elemental 
operations of the connected filters are made with a large structuring element, but the 
best conservation of structures and details in the image are achieved with a smaller 
structuring element. For this reason we have used a structuring element of maximum 
size of 7x7. 

Based on the success shown by these results, we are now working on an 
improvement of our method for noisy removal in color images. We work in multi-
processor configurations for color geodesic operations in order to reduce the 
processing time these operations. 
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A Shape-Based Approach to Robust Image
Segmentation

Samuel Dambreville, Yogesh Rathi, and Allen Tannenbaum

Georgia Institute of Technology, 30322 Atlanta Georgia USA

Abstract. We propose a novel segmentation approach for introducing
shape priors in the geometric active contour framework. Following the
work of Leventon, we propose to revisit the use of linear principal com-
ponent analysis (PCA) to introduce prior knowledge about shapes in a
more robust manner. Our contribution in this paper is twofold. First, we
demonstrate that building a space of familiar shapes by applying PCA
on binary images (instead of signed distance functions) enables one to
constrain the contour evolution in a way that is more faithful to the
elements of a training set. Secondly, we present a novel region-based
segmentation framework, able to separate regions of different intensities
in an image. Shape knowledge and image information are encoded into
two energy functionals entirely described in terms of shapes. This consis-
tent description allows for the simultaneous encoding of multiple types
of shapes and leads to promising segmentation results. In particular, our
shape-driven segmentation technique offers a convincing level of robust-
ness with respect to noise, clutter, partial occlusions, and blurring.

1 Introduction

Segmentation consists of extracting an object from an image, a ubiquitous task
in computer vision applications. Such applications range from finding special
features in medical images to tracking deformable objects; see [1,2,3,4,5] and
the references therein. The active contour framework [6], which utilizes image
information to evolve a segmenting curve, has proven to be quite valuable for
performing this task. However, the use of image information alone often leads
to poor segmentation results in the presence of noise, clutter or occlusion. The
introduction of shapes priors in the contour evolution process has proven to be
an effective way to circumvent this issue, leading to more robust segmentation
performances.

Many different algorithms have been proposed for incorporating shape priors
in the active contour framework. For example, various approaches for utiliz-
ing shape priors in parameterized representations of contours were proposed by
Cootes et al. [7], Wang and Staib [8], and Cremers et al. [9]. Moreover, Cremers
et al. [10], recently presented a statistical approach using kernel methods [11],
for building shape models. Using this method for parameterized contours, the
authors were able to construct shape priors involving various objects, and to
obtain convincing segmentation results.

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 173–183, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The geometric active contour framework (GAC) (see [12] and the references
therein) involves a parameter free representation of contours: contours are rep-
resented implicitly by level-set functions (such as signed distance function [13]).
Within this framework, Leventon et al. [1], proposed an algorithm in which
principal component analysis (PCA) was performed on a training set of signed
distance functions (SDFs) and the shape statistics thus obtained were used to
drive the segmentation process. This statistical approach was shown to be able
to convincingly capture the variability in shape of a particular object. This ap-
proach inspired other segmentation schemes described in [3,14], notably, where
SDFs were used to learn the shape of an object.

In this paper, we propose to revisit the use of linear PCA to introduce prior
knowledge about shapes into the geometric active contour framework. To this
end, we present a novel variational approach totally described in terms of shapes.
Experimental results are presented to illustrate the robustness of our method: We
first demonstrate the ability of our algorithm to constrain the contour evolution
in a way that is more faithful to the training sets of shapes than prior work
involving linear PCA. Then, we show the possibility, within our framework, to
simultaneously encode knowledge about the shape of different objects, while
capturing the variability in shape of each particular object.

2 Shape-Based Segmentation with Level-Sets

Level-set representations were introduced in [13] in the field of computational
physics and became a popular tool for image segmentation. The idea consists
of representing the segmenting contour by the zero level-set of a smooth and
continuous function. The standard choice is to use a signed distance function for
embedding the contour. During the segmentation process, the contour is prop-
agated implicitly by evolving the embedding function. Implicit representations
present the advantage of avoiding to deal with complex re-sampling schemes of
control points. Moreover, the contour represented implicitly can naturally un-
dergo topological changes such as splitting and merging.

In what follows, we consider the problem of segmenting a gray-level given
image I : Ω → R, where Ω is a subdomain of the plane. The term segmentation
in this context will be taken to refer to the process of extracting an object of
interest from the background and potential clutter in I. Let Φ denote the corre-
sponding signed distance function to be used for segmentation [12]. We denote
the curve corresponding to the zero level-set of Φ as γ. The curve γ separates
the image domain Ω into two disjoint regions, γ1 and γ2. We assume that for all
(x, y) ∈ γ1, we have that Φ(x, y) ≥ 0. We denote by HΦ the Heaviside function
defined such as, HΦ(x, y) = 1 if Φ(x, y) ≥ 0 and HΦ(x, y) = 0, otherwise. HΦ
is a binary map and will be interpreted as the shape associated to the signed
distance function Φ, in what follows.

Segmentation using shape priors can be carried using an energy of the form
(i.e.: [9])

E(Φ, I) = β1Eshape(Φ) + β2Eimage(Φ, I). (1)
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In this expression, Eshape is an energy functional embedding shape information,
and Eimage is an energy functional encoding image information available at time
t. The minimization of E(Φ, I) with respect to Φ can be accomplished via the
standard gradient descent approach:

dΦ

dt
= −∇ΦE(Φ, I) i.e., Φ(t + dt) = Φ(t) − dt · ∇ΦE(Φ, I) (2)

In the rest of this section, we present a method for the introduction of shape
priors into level-set framework for purpose of segmentation. We first discuss our
approach for building a space of shapes and compare our method with prior work.
We then introduce an energy function encoding our knowledge of the shape of
the object of interest. Finally, we propose an energy functional involving a shape
model that aims at exploiting intensity information in the image.

2.1 Space of Shapes

In what follows, we will assume that we have a training set τ of N binary images
{I1, I2, ..., IN} (the Ii’s are described by m×n matrices). The Ii’s represent the
possible shapes of objects of interest. Each Ii has values of 1 inside the object
and 0 outside. Such training sets are presented Figure 1. The shapes in τ are
supposed to be aligned using an appropriate registration scheme (see, e.g., [3])
in order to discard differences between them due to similarity transformations.

In this paper, we propose to perform PCA directly on the binary images
of the training set τ , instead of applying PCA on signed distance functions as
advocated in [3,1]. The method is succinctly presented in what follows. First,
the mean shape μ is computed by taking the mean of the training shapes, Ii’s,
μ = 1

N

∑N
i=1 Ii. Then, the covariance matrix C, representing the variations in

shapes, can be computed as follows. The mean shape μ is subtracted from each
Ii to create a mean-offset map Ĩi. Each such map, Ĩi is written as a column
vector Ĩc

i (The n columns of Ĩi are stacked on top of one another to form a large
mn-dimensional column vector). Each Ĩc

i is then placed as the ith column of a
matrix M, resulting in a (mn)×N -dimensional matrix M = [Ĩc

1, Ĩ
c
2, ..., Ĩ

c
N ]. The

covariance matrix is then C = 1
N MMT . Finally, using singular value decomposi-

tion C is decomposed as C = UΣUT where U is a matrix whose column vectors
represent the set of orthogonal modes of shape variation (principal components)
and Σ is a diagonal matrix of corresponding eigenvalues. Each column ui of U
can be rearranged as an m×n matrix by inverting the stacking process involved
in the construction of the Ĩc

i ’s. The rearranged column ui, forms the eigen-shape
modes Si (corresponding to the ith eigenvalue of Σ).

Let S be any binary map, representing an arbitrary shape. The coordinates
αk of the projection of S onto the first k components of the space of shapes can
be computed as

αk = UT
k (Sc − μc) (3)

where Uk is a matrix consisting of the first k columns of U, Sc and μc are the
column vectors obtained by stacking the columns of S and μ, respectively. Given
the coordinates αk = [αk

1 , α
k
2 , ..., α

k
k]T , the projection of S, denoted by P k(S),

can be obtained as P k(S) = Σk
i=1α

k
i .Si + μ.
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Fig. 1. Two Training sets (before alignment). First row, training set of objects of the
same type: human silhouettes. Second row, training set of objects of different aspects:
2 words ”ORANGE” and ”YELLOW” (3 of the 20 binary maps for each).

2.2 Shape Priors

Shape Energy: To include prior knowledge on the shape, we propose to use
P k(Hφ) as a model and to minimize the following energy:

Eshape(Φ) := ‖HΦ− P k(HΦ)‖2 =
∫

Ω

[HΦ− P k(HΦ)]2 dxdy. (4)

Note that Eshape(Φ) is the squared L2-distance between HΦ and the projection
of HΦ onto the shape space. Minimizing Eshape amounts to drive the shape HΦ
towards the space of learnt shapes represented by binary maps.

Comparison with Past Work: We believe that the main advantage of using
binary maps over SDFs resides in the fact that binary maps have limited sup-
port (0 everywhere but inside the object, where it is 1), whereas SDFs can take a
wide range of values on the whole domain Ω. As a consequence, linear combina-
tions of SDFs can lead to shapes that are very different from the learned shape.
This phenomenon is illustrated Figure 2. Familiar spaces of shapes were con-
structed for the training sets presented in Figure 1, using either SDFs or binary
maps. One of the shapes of the training set was slightly modified to form a new
shape S, see Figure 2(b). The projections of S on both spaces (SDFs and binary
maps) are presented in Figure 2(c) and (d). For each of the two cases presented,
the shape obtained from the projection on the space derived from the SDFs
(Figure 2(c)) bears little resemblance with the learnt shapes. In contrast, the
projection obtained from the space constructed from binary maps, Figure 2(d),
is clearly more faithful to the learned shapes. Hence, it can be expected that
shape spaces based on binary maps afford more robustness to clutter than shape
spaces built from SDFs. This point will be reinforced in the sequel.

2.3 Shape-Based Approach to Region-Based Segmentation

Different models [15,16], which incorporate geometric and/or photometric (color,
texture, intensity) information, have been proposed to perform region-based
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(a) (b) (c) (d)

Fig. 2. Comparison of shape priors built from SDFs and binary maps. (a): Original
training shape. (b): Slight modification of the training shape. (c): Projection on space
of Shape built from SDFs. (d): Projection on space of Shape built from binary maps.
Projections obtained using binary maps are more faithful to the learnt shapes.

segmentation using level-sets. In what follows, we present an region-based based
segmentation framework, with a strong shape interpretation. As in Section (2.2),
at each step t of the evolutionprocesswe build a model of shape to drive segmenting
contour towards it. Here, the model of shape is extracted from the image.

Following [16], we assume that the image I is formed by two regions of different
mean intensity. The first region can be interpreted as the background, whereas
the second region can be interpreted as the object of interest. As presented in
Section (2) the zero level-set of Φ separates Ω into two regions γ1 and γ2. We
compute the mean c1 and c2 of the intensity corresponding to pixels located in γ1

and γ2, respectively: c1 := I(x,y)H(Φ)dx dy

H(Φ) dxdy
and c2 := I(x,y)(1−H(Φ)) dxdy

(1−H(Φ)) dxdy
. In

these expressions, c1 can be interpreted as the best estimate of the mean intensity
of the object of interest, while c2 can be interpreted as the best estimate of the
intensity of the background, at time t. We now build the image shape model
G[I,Φ] by thresholding I in the following manner:

if c1 > c2; G[I,Φ](x, y) = 1 if I(x, y) ≥ c1+c2

2
= 0 otherwise;

if c1 ≤ c2; G[I,Φ](x, y) = 0 if I(x, y) ≥ c1+c2

2
= 1 otherwise.

(5)

This thresholding insures that G[I,Φ] is a binary map representing a certain
shape. The manner in which the cases are defined makes the pixels in the image
whose intensity is closer to c1 to be set to 1 in the model, while the pixels closer
to c2 are set to 0. G[I,Φ] can be interpreted as the most likely shape present in
the image, knowing Φ.
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We next minimize the following energy in order to drive the contour evolution
towards the model of shape obtained from thresholding the image I:

Eimage(Φ, I) := ‖Hφ−G[I,Φ]‖2 =
∫

Ω

(Hφ−G[I,Φ])2 dxdy. (6)

The energy functional amounts again to measuring the L2 distance between
two shapes, represented by HΦ and G[I,Φ]. Results of this image segmentation
approach are presented Figure 3(b) and Figure 5(b) (where contour was evolved
minimizing Eimage only). The consistent description of Eimage and Eshape in
terms of binary maps allows for efficient and intuitive equilibration between
image cues and shape knowledge.

2.4 Numerical Algorithm

Approximation of Functions: In our implementation of the above framework,
we used the following C∞(Ω̄) regularizations:

Hε1
Φ(x, y) :=

(
1
2

+
1
π

arctan
Φ(x, y)

ε1

)
and δε1

Φ(x, y) :=
1
π

(
ε1

Φ2(x, y) + ε2
1

)
(7)

where ε1, is a parameter such that Hε1
→ H and δε1

→ δ as ε1 → 0 (with
δ = H ′). The function G[I,Φ] in (5) is regularized as follows:

if c1 > c2; G[I,Φ,ε2](x, y) = 1
2 + 1

π arctan
(

I(x,y)− c1+c2
2

ε2

)
if c1 ≤ c2; G[I,Φ,ε2](x, y) = 1

2 − 1
π arctan

(
I(x,y)− c1+c2

2

ε2

)
,

(8)

where ε2, is a parameter such that G[I,Φ,ε2] → G[I,Φ] as ε2 → 0.

Invariance to Similarity Transformations: Let p=[a, b, θ, ρ]=[p1, p2, p3, p4]
be the vector of parameters corresponding to an affine transformation: a and b
correspond to translation according to x and y-axis, θ is the rotation angle and
ρ the scale parameter. Let us denote by Î(x̂, ŷ) the image of I by the affine
transformation of parameter p: Î(x̂, ŷ) = I(ρ(x cos θ − y sin θ + a), ρ(x sin θ +
y cos θ + b)). As mentioned above the elements of the training sets are aligned
prior to the construction of the space of shapes. Let us suppose that the object of
interest in I differs from the registered elements of the training set by an affine
transformation. This transformation can be recovered by minimizing E(Φ, Î)
with respect to the pi’s. During evolution, the following gradient descent scheme
can be performed:

dpi

dt
= −∇piE(Φ, Î) = −∇piEimage(Φ, Î) for i ∈ [1, 4].
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Level-set Evolution: Computing the gradients corresponding to Eshape (equa-
tion (4)) and Eimage (equation (6)) and accounting for possible affine transfor-
mations of the object of interest in I, equation (2) can be written as

dΦ

dt
= 2δε1

Φ[β1P
k(Hε1

Φ) + β2G[Î,Φ,ε2] − (β1 + β2)Hε1
Φ]. (9)

3 Segmentation Results

In this section we present experimental results aimed at testing the segmentation
performances of our framework on challenging images.

3.1 Shape Prior Involving Objects of the Same Type: “Swedish
Couple”

The Swedish Couple sequence was used as a base of test for many tracking
algorithms using active contours [6]. One of the difficulties of performing tracking
in this video resides in maintaining the identity of each person: Throughout the
sequence, the two people often touch each other and the segmenting contour can
leak from one person to the other, leading to a loss of track.

A training set of 7 silhouettes was obtained by manually selecting the con-
tour for the person on the right on 7 different images from the sequence (the
corresponding binary maps or SDFs were then completed).

Figure 3(c) presents a segmentation result obtained using shape priors built
from applying PCA to SDFs (e.g., [3]). In the image presented, the two persons
touch each other. The shape prior is not sufficiently constraining to prevent the
contour from leaking from the person on the right (man) to the person on the left
(woman). Hence, if no further control is applied to bound the coordinates of the
contour in (3), leakage can occur leading to a shape that is very different from
the ones in the training set. This phenomenon does not occur when using shape
priors built from applying PCA on binary maps as presented in Figure 3(d).
Here, the shape prior prevents leakage leading to a satisfying segmentation.

In fact, using shape priors built from the 7 binary maps obtained from the
man, we were able to track the entire sequence for both persons (while main-
taining their identity). Figure 4 presents the results obtained for a few images
from the video. Despite the small number of shapes used, the general posture
of each person was convincingly captured in each image. In addition, the final
contours are faithful to the training set: No leakage occurred from one person to
the other and the bag held by the woman is discarded. Tracking was performed
using a very simple scheme. The same initial contour (small square) was used
for each image and initially positioned wherever the final contour was in the pre-
ceding image. The parameters were set in the following manner: β1 = β2 in (1)
and ε1 = ε2 = .1 in (7) and (8), respectively. Convincing results were obtained
without involved considerations about the system dynamics.
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(a) (b) (c) (d)

Fig. 3. Comparison of results. (a): base image and initial contour. (b): Segmentation
result without shape prior. (c): Result with shape prior obtained from applying PCA
on SDFs. (d): Result with shape prior obtained from applying PCA on Binary Maps.

Fig. 4. Tracking results for the Swedish Couple Sequence, using a training set of 7
silhouettes of the man. First row: Tracking the man. Second row: Tracking the woman.

3.2 Shape Priors Involving Objects of Different Types: “Yellow”
and “Orange”

The goal of this section is to investigate the ability of our method to deal with
objects of different shapes. To this end, we built a training set consisting of two
words, “orange” and “yellow”, each written using twenty different fonts. The
size of the fonts was chosen to lead to words of roughly the same length. The
obtained words (binary maps, see Figure 1) were then registered according to
their centroid. No further effort such as matching the letters of the different
words was pursued. The method presented in Section (2.1) was used to build
the corresponding space of shapes for the registered binary maps.

We tested our framework on images where a corrupted version of either the
word “orange” or “yellow” was present (Figure 5(a)). Word recognition is a very
challenging task and using geometric active contours to address it may not be a
panacea. However, the ability of the level-set representation to naturally handle
topological changes was found to be useful for this purpose: In the experiments
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(1)

(2)

(3)
(a) (b) (c) (d)

Fig. 5. Each row presents the segmentation results obtained for experiment 1, 2 and 3
respectively. (a): Initial image. (b): Segmentation result using Eimage only (no shape
prior). (c): Typical segmentation result with shape prior built from SDFs. (d): Seg-
mentation result with shape prior built from binary map.

presented below, evolution led the contour to split and merge a certain number
of times to segment the disconnected letters of the different words.

In all the following experiments, we have chosen β1 = β2 in (1) and ε1 =
ε2 = .1 in (7) and (8), respectively. The same initial contour was used for all
the test images. Starting from the same initial contour our framework was able
to accurately detect which word was present in the image. This highlights the
ability of our method to gather image information throughout evolution and to
distinguish between objects of different classes (“yellow” and “orange”).

Experiment 1: In this experiment, one of the elements of the training set was
used (Figure 1(2b)). A thick line (occlusion) was drawn on the word and a fair
amount of gaussian noise was added to the resulting image (Figure 5(1a)). The
result of applying our method is presented Figure 5(1d). Despite the noise and
the occlusion, a reasonable segmentation is obtained. In particular, the correct
font is detected and the thick line almost completely removed. In addition, the
final result is smooth as compared to the result obtained without shape prior;
see Figure 5(1b). Hence, using binary maps to represent shape priors can have
valuable smoothing effects, when dealing with noisy images.
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Experiment 2: In this second test, the word “yellow” was written using a different
font from the ones used to build the training set (visual check was performed to
ensure that the length of the word was comparable to the length of the words in
the training set). In addition, a “linear shadowing” was used in the background,
making the first letter ”y” completely hidden. The letter ”w” was also replaced by
a grey square (Figure 5(2a)). The result of applying our framework is presented
in Figure 5(2d). The word “yellow” is correctly segmented. In particular, the
letters “y” and “w”, were completely reconstructed. Comparing to the results
obtained in Figure 5(2b) and (2c) obtained without prior knowledge of the shape
or with shape prior built from SDFs, one can notice the effect of our shape prior
model in constraining the contour evolution.

Experiment 3: In this experiment, the word “orange” was handwritten in capital
letters roughly matching the size of letters of the components of the training
set. The intensity of the letters was chosen to be rather close to some parts
of the background. In addition, the word was blurred and smeared in a way
that made its letters barely recognizable (Figure 5 (3a)). This type of blurring
effect is often observed in medical images due to patient motion. This image is
particularly difficult to segment, since the spacing between letters and the letters
themselves are very irregular due to the combined effects of handwriting and
blurring. Hence, mixing between classes (confusion between either “yellow” or
“orange”) can be expected in the final result. The final result of the segmentation
process is presented Figure 5(3d). The word “orange” is not only recognized (no
mixing) but satisfyingly recovered; in particular, a thick font was obtained to
model the thick letters of the word.

4 Conclusion

Our contributions in this paper are twofold. First, we demonstrate that building
a space of shapes by applying PCA to binary images (instead of signed distance
functions) enables one to constrain the contour evolution in a way that is more
faithful to the training set. Secondly, we present a novel region-based segmen-
tation framework, able to separate regions of different intensities in an image.
Shape knowledge and image information were encoded into two energies entirely
described in terms of shapes. This consistent description allows for intuitive and
simple equilibration between both image cues and shape prior.

The method presented allows for the simultaneous encoding of multiple types
of shapes and seems to lead to robust segmentation results. In particular, our
shape driven segmentation technique was able to cope with noise, clutter, partial
occlusion, change in aspect and blurring, in a convincing manner.

In our future work, we aim at comparing segmentation performances obtained
with shape priors built from linear and kernel PCA methods. Kernel PCA was
proven to be a powerful method to describe data sets. The consistent shape ap-
proach, characteristic of our framework, is envisioned to be particularly suitable
to deal with the “exotic” norms involved in kernel PCA methods.
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Abstract. This paper aims at describing a new framework which allows
for the quantitative combination of different edge detectors based on the
correspondence between the outcomes of a preselected set of operators.
This is inspired from the problem that despite the enormous amount of
literature on edge detection techniques, there is no single one that per-
forms well in every possible image context. The so called Kappa Statistics
are employed in a novel fashion to enable a sound performance evalua-
tion of the edge maps emerged from different parameter specifications.
The proposed method is unique in the sense that the balance between
the false detections (False Positives and False Negatives) is explicitly as-
sessed in advanced and incorporated in the estimation of the optimum
threshold. Results of this technique are demonstrated and compared to
individual edge detection methods.

1 Introduction

Edge detection is by far the most common and direct approach for detecting
discontinuities that could highlight the boundaries of an object captured in a
digital image. Despite our familiarity with the concept of an edge in an image,
there is no rigorous definition for it. Edges can be viewed as regions in an image
where the intensity values undergo a sharp variation. Furthermore, changes in
some physical and surface properties, such as illumination (e.g. shadows), geom-
etry (orientation or depth) and reflectance can also signal the existence of an
edge in the scene.

The ubiquitous interest in edge detection stems from the fact that not only
is it in the forefront of image processing for object detection, but it is a funda-
mental operation in computer vision too. Among the various applications that
can benefit from an edge image representation are object recognition, motion
analysis and image compression. Edge detection must be efficient and reliable
since it is crucial in determining how successful subsequent processing stages
will be.

Although the human visual system carries out the edge detection process ef-
fortlessly, it remains to be a complex task for a computer algorithm to achieve
the equivalent edge detection functions due to problems caused by noise, quan-
tization and blurring effects. In order to fulfill the reliability requirement of edge
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detection, a great diversity of operators have been devised with differences in
their mathematical and algorithmic properties. Some of the earliest methods such
as Sobel [14], are based on the ”Enhancement and Thresholding” approach [1].
According to that method, the image is convolved with small kernels and the
result is thresholded to identify the edge points.

Since then, more sophisticated operators have been developed. Marr and Hil-
dreth [13] were the first to introduce the Gaussian smoothing as a pre-processing
step in feature extraction. Their method detects edges by locating the zero-
crossings of the Laplacian (second derivative) of Gaussian of an image. Canny [3]
developed another Gaussian edge detector based on optimizing three criteria.
He employed Gaussian smoothing to reduce noise and the first derivative of the
Gaussian to detect edges. Deriche [4] extended Canny’s work to derive a recur-
sively implemented edge detector. Rothwell [17] designed an operator which is
able to recover reliable topological information.

A different approach to edge detection is the multiresolution one. In such a
representation framework, the image is convolved with Gaussian filters of dif-
ferent sizes to produce a set of images at different resolutions. These images
are integrated to produce a complete final edge map. Typical algorithms of this
approach have been produced by Bergholm [2], Lacroix [12] and Schunck [18].
Parametric fitting is another approach used in edge detection. This involves fit-
ting the image with a parametric edge model and then finding the parameters
that minimize the fitting error. A detector that belong to the above category is
proposed by Nalwa-Binford [15]. Furthermore, the idea of replicating the human
vision performance using mathematical models gave way to the development of
feature detection algorithms based on the human visual system. A typical ex-
ample is the edge detector developed by Peli [16]. Another interesting category
of edge detectors is the Logical/Linear operators [8] which combine aspects of
linear operators’ theory and Boolean algebra.

In spite of the aforementioned work, an ideal scheme able to detect and localize
with precision edges in many different contexts, has not yet been produced. This
is getting even more difficult because of the absence of an evident ground truth,
on which the performance of an edge detector is evaluated. Subjective evaluation
achieved by visual judgment, is inaccurate and it can not be used to measure
the performance of detectors but only to confirm their failure. Thus, objective
evaluation has been introduced based on quantitative measures [5].

The aim of this work is to describe a method for combining multiple edge
detectors. Our major goal is to produce a composite final edge image. This is
achieved by applying a correspondence test on the edge maps emerged by a
preselected set of detectors and seeking the optimum correspondence threshold.
The approach proposed for this purpose is the Kappa Statistics. In particular,
the Weighted Kappa Coefficient is employed assigning different costs to the false
positive and false negative detection qualities.

The paper is organized as follows. In the next section we present an approach
for automatic edge detection and discuss its scope. The results emerged by the
selected edge detectors using the proposed statistical technique are compared
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in Section 3. We discuss the performance of the method and conclude with
Section 4.

2 Automatic Edge Detection

In this paper, we intend to throw light on the uncertainty associated with the
parametric edge detection performance. The statistical approach described here
attempts to automatically form an optimum edge map, by combining edge im-
ages emerged from different detectors.

We begin with the assumption that N different edge detectors will be com-
bined. The first step of the algorithm comprises the correspondence test of the
edge images, Ei for i = 1 . . .N . A correspondence value is assigned to each pixel
and is then stored in a separate array, V , of the same size as the initial image.
The correspondence value is indicative of the frequency of identifying a pixel as
an edge by the set of detectors. Intuitively, the higher the correspondence asso-
ciated with a pixel, the greater the possibility for that pixel to be a true edge.
Hence, the above correspondence can be used as a reliable measure to distinguish
between true and false edges.

However, these data require specific statistical methods to assess accuracy of
the resulted edge images- accuracy here being the extent to which detected edges
agree with ’true’ edges. Correspondence values ranging from 0 to N produce N+1
thresholds which correspond to edge detections with different combinations of
true positive and false positive rates. The threshold that corresponds to corre-
spondence value 0 is ignored. So, the main goal of the method is to estimate the
correspondence threshold CT (from the set CTi where i = 1 . . .N) which results
in an accurate edge map that gives the finest fit to all edge images Ei.

2.1 Weighted Kappa Coefficient

In edge detection, it is prudent to consider the relative seriousness of each pos-
sible disagreement between true and detected edges when performing accuracy
evaluation. This section is confined to the examination of an accuracy measure
which is based on the acknowledgement that in detecting edges, the consequences
of a false positive may be quite different from the consequences of a false nega-
tive. For this purpose, the Weighted Kappa Coefficient [6], [11] is introduced for
the estimation of the correspondence threshold that results in an optimum final
edge map.

In our case, the classification task is a binary one including the actual classes
{e, ne}, which stand for the edge and non-edge event, respectively and the pre-
dictive classes, predicted edge and predicted non-edge, denoted by {E,NE}. Tra-
ditionally, the data obtained by an edge detector are displayed graphically in a
2× 2 matrix, the confusion matrix, with the notation indicated in Table 1.

For the accuracy assessment the metrics of sensitivity and specificity [9] have a
pivotal role. Both these measures describe the edge detector’s ability to correctly
identify true edges while it negates the false alarms. Sensitivity (SE) corresponds
to the probability of identifying a true edge as edge pixel. The term specificity
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Table 1. Confusion Matrix

e ne

E True Positives False Positives
NE False Negatives True Negatives

(SP ) refers to the probability of identifying an actual non-edge as non-edge
pixel. They are defined as:

SE = TP/(TP + FN) (1)
SP = TN/(TN + FP ) (2)

where the sum TP +FN indicates the prevalence, P , which refers to the occur-
rence of true edge pixels in the image, whereas the sum TP +FP represents the
level, Q, of the detection which corresponds to the occurrence of pixels detected
as edges.

Although there is a great variety of accuracy measures in edge detection [20],
few of them take into consideration the agreement between true and detected
edges expected merely by chance i.e when there is no correlation between the
probability of a pixel to be a true edge and the probability of a pixel to be de-
tected as edge. Therefore, in order to evaluate edge detection accuracy properly,
the kappa coefficient [19] is introduced. It is defined as the ratio of achieved
beyond-chance agreement to maximum possible beyond-chance agreement and
is mathematically defined as:

k =
A0 −Ac

Aa −Ac
(3)

where A0 and Ac are the observed and chance-expected proportions of agree-
ment, respectively, while Aa represents the proportion of complete agreement.

A generalization of the above coefficient can be made to incorporate the rel-
ative cost of false positives and false negatives into our accuracy measure. We
assume that weights wu,v, for u = 1, 2 and v = 1, 2, are assigned to the four pos-
sible outcomes of the edge detection process displayed in the confusion matrix.
The observed weighted proportion of agreement is given as:

D0w =
2∑

u=1

2∑
v=1

wu,vdu,v (4)

where du,v indicates the probabilities in the confusion matrix. Similarly, the
chance-expected weighted proportion of agreement has the form:

Dcw =
2∑

u=1

2∑
v=1

wu,vcu,v (5)

where cu,v refers to the above four probabilities but in the case of random edge
detection i.e, the edges are identified purely by chance. Both these proportions
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Table 2.

Legitimate Edge Detection Random Edge Detection

TP d1,1 = P · SE c1,1 = P · Q
FP d1,2 = P ′ · SP ′ c1,2 = P ′ · Q
FN d2,1 = P · SE′ c2,1 = P · Q′

TN d2,2 = P ′ · SP c2,2 = P ′ · Q′

are arrayed and calculated as shown in Table 2. Based on the definition of kappa
coefficient described previously, weighted kappa is then given by:

kw =
D0w −Dcw

max(D0w −Dcw)
(6)

Substituting (4)-(5) in (6) gives:

kw =
w1,1P · Q′ · k(1, 0) + w1,2P

′(SP ′ − Q) + w2,1P (SE′ − Q′) + w2,2P
′ · Q · k(0, 0)

max(D0w − Dcw )
(7)

where P ′, Q′ are the complements of P and Q, respectively. k(1, 0) and k(0, 0)
are the quality indices of sensitivity and specificity, respectively, defined as:

k(1, 0) =
SE −Q

Q′ and k(0, 0) =
SP −Q′

Q

The major source of confusion in statistical methods related to the Weighted
Kappa Coefficient is the assignment of weights. In the method analyzed here
the weights indicate gain or cost. The weights lie in the interval 0 ≤ |wu,v| ≤ 1.
From (7) it can be deduced that the total cost, W1, for true edges being properly
identified as edges or not, is equal to:

W1 = |w1,1|+ |w2,1|
Similarly, the total cost, W2, for the non-edge pixel is defined as:

W2 = |w1,2|+ |w2,2|
We propose that true detections should be assigned positive weights represent-

ing gain whereas, the weights for false detections should be negative, representing
loss. It can be proved that no matter how the split of these total costs is made
between true and false outcomes, the result of the method is not affected [10].
Hence, for the sake of convenience the total costs are split evenly. As a result,
we end up with two different weights instead of four:

kw =
W1
2

P · Q′ · k(1, 0) + (−W2
2

)P ′(SP ′ − Q) + (−W1
2

)P (SE′ − Q′) + W2
2

P ′ · Q · k(0, 0)

max(D0w − Dcw )

A further simplification leads to:

kw =
W1 · P ·Q′ · k(1, 0) + W2 · P ′ ·Q · k(0, 0)

max(D0w −Dcw)
(8)
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Taking into account the fact that the maximum value of the quality indices
k(1, 0) and k(0, 0) is equal to 1, the denominator in (8) takes the form: W1 ·
P · Q′ + W2 · P ′ · Q. Dividing both numerator and denominator by W1 + W2,
the final expression of the Weighted Kappa Coefficient, in accordance with the
quality indices of sensitivity and specificity, becomes:

k(r, 0) =
r · P ·Q′ · k(1, 0) + r′ · P ′ ·Q · k(0, 0)

r · P ·Q′ + r′ · P ′ ·Q (9)

where
r =

W1

W1 + W2
(10)

and r′ is the complement of r. The Weighted Kappa Coefficient k(r, 0) indicates
the quality of the detection as a function of r. It is unique in the sense that the
balance between the two types of errors (FP and FN) is determined in advance
and then is incorporated in the measure.

The index r is indicative of the relative importance of false negatives to false
positives. Its value is dictated by which error carries the greatest importance
and ranges from 0 to 1. If we focus on the elimination of false positives in edge
detection, W2 will predominate in (8) and consequently r will be close to 0 as it
can be seen from (10). On the other hand, a choice of r close to 1 signifies our
interest in avoiding false negatives since W1 will predominate in (8). A value of
r = 1/2 reflects the idea that both false positives and false negatives are equally
unwanted.

However, no standard choice of r can be regarded as optimum. The balance
between the two errors shifts according to the application. Thus, the estimation
of the optimum edge map emerged from different edge detectors is performed
by choosing the correspondence threshold that maximizes the weighted kappa
coefficient for a selected value of r.

In order to calculate the accuracy for each threshold value, we apply each cor-
respondence threshold CTi on the correspondence test outcome, i.e, the matrix
V mentioned above. This means the pixels are classified as edges and non-edges
according to whether their correspondence value exceeds a CTi or not. Thus, we
end up with a set of possible best edge maps Mj, for j = 1 . . .N , corresponding
to each CTi. Every Mj is compared to the set of the initial edge images, Ei,
with the aim of estimating the accuracy associated with each of them.

Initially, the sensitivity, SEj , and the specificity, SP j , measures are calculated
for each edge map Mj according to Equations (1)-(2) as:

SEj =
TP j

TP j + FN j

(11)

SP j =
TNj

FP j + TNj

(12)

where, TP j +FN j is the prevalence, P , representing the average number of true
edges in Mj. Similarly, the level, Q, is defined as: TP j + FP j . Averaging in
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Fig. 1. (a) Calculation of k(0.5, 0) using a graphical approach on the QROC plane (b)
Graphical estimation of the optimum CT for the Cameraman image

(11)-(12) refers to the joint use of multiple edge detectors. The corresponding
expressions for the average probabilities are given by the authors of this paper
in [7]. It is important to stress out that based on these expressions it is proved
that the value of the prevalence, P , is the same for every j, as expected.

Finally, for a selected value of r, the Weighted Kappa Coefficient kj(r, 0) is
calculated for each edge map as it is given in (9). The optimum CT is the one
that maximizes the Weighted Kappa Coefficient. The emerged value of the CT
determines how detailed the final edge image will be.

2.2 Geometric Approach

The estimation of the Weighted Kappa Coefficient kj(r, 0) can also be done
geometrically. Every edge map Mj, for j = 1 . . .N , can be located on a graph
by its quality indices kj(1, 0) versus kj(0, 0) constructing the Quality Receiver
Operating Characteristic curve (QROC). A great deal of information is available
from visual examination of such a geometric presentation.

The Weighted Kappa Coefficient kj(r, 0) that corresponds to each edge map
Mj can be estimated by means of the r-projection line.

The slope of the r-projection line is defined as [10]:

s =
kj(r, 0)− kj(1, 0)
kj(r, 0)− kj(0, 0)

= −P ′ ·Q · r′
P ·Q′ · r (13)

This means the Weighted Kappa Coefficient kj(r, 0) can be calculated graph-
ically by drawing a line, for any value r of interest, through the correspondence
threshold point (kj(0, 0), kj(1, 0)) with slope given by (13). The intersection
point, (kj(r, 0), kj(r, 0)), of this line with the major diagonal in the QROC plane
is clearly indicative of the kj(r, 0) value. Figure 1(a) presents an example for the
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calculation of the Weighted Kappa Coefficient for a test point for r = 0.5. The
procedure is repeated for every CTi to generate N different intersection points.
The closer the intersection point to the upper right corner (ideal point), the
higher the value of the Weighted Kappa Coefficient. Hence, the optimum corre-
spondence threshold is the one that produces an intersection point closer to the
point (1, 1) in the QROC plane.

3 Experimental Results and Conclusion

Using the framework developed, six edge detectors, proposed by Canny, Deriche,
Bergholm, Lacroix, Schunck and Rothwell were combined to produce the opti-
mum edge maps of a given image. The selection of the edge detectors relies on
the fact that they basically follow the same mathematical approach.

Specifying the value of the input parameters for the operators was a crucial
step. In fact, the parameter evaluation depends on the specific application and
intends to maximize the quality of the detection. In our work, we were consis-
tent with the parameters proposed by the authors of the selected detectors. The
Bergholm algorithm was slightly modified by adding hysteresis thresholding to
allow a more detailed result. In Lacroix technique we applied non-maximal sup-
pression by keeping the size, k × 1, of the window fixed at 3× 1. For simplicity,
in the case of Schunck edge detection the non-maximal suppression method we
used is the one proposed by Canny in [3] and hysteresis thresholding was applied
for a more efficient thresholding.

In the case of the ”Cameraman” image, the standard deviation of the Gaussian
(sigma) in Canny’s algorithm was set to sigma = 1, whereas, the low and high
thresholds were automatically calculated by the image histogram. In Deriche’s
technique, the parameters’ values were set to a = 2 and w = 1.5. The Bergholm
parameter set was a combination of starting sigma, ending sigma and low and
high threshold, where starting sigma = 3.5, ending sigma = 0.7 and the thresh-
olds were automatically determined as previously. For the Primary Raster in
Lacroix’s method, the coarsest resolution was set to σ2 = 2 and the finest one
to σ0 = 0.7. The intermediate scale σ1 was computed according to the expres-
sion proposed in [12]. The gradient and homogeneity thresholds were estimated
by the histogram of the gradient and homogeneity images, respectively. For the
Schunck edge detector, the number of resolution scales was arbitrary set to three
as: σ1 = 0.7, σ2 = 1.2, σ3 = 1.7. The difference between two consecutive scales
was selected not to be greater than 0.5 in order to avoid edge pixel displacement
in the resulted edge maps. The values for the low and high thresholds were calcu-
lated by the histogram of the gradient magnitude image. In the case of Rothwell
method, the alpha parameter was set to 0.9, the low threshold was estimated by
the image histogram again and the value of the smoothing parameter, sigma,
was equal to 1. The results of the above detection methods are presented in
Figure 2. It is important to stress out that the selected values for all of the
above parameters fall within ranges proposed in the literature by the authors of
the individual detectors.
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Canny Detection

(a)

Deriche Detection

(b)

Bergholm Detection

(c)

Lacroix Detection

(d)

Schunck Detection

(e)

Rothwell Detection

(f)

Fig. 2. (a) Canny detection (b) Deriche detection (c) Bergholm detection (d) Lacroix
detection (e) Schunck detection (f) Rothwell detection forming the sample set for the
Cameraman image
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(a) (b)

Fig. 3. (a) Original ”Cameraman” image and (b) Final edge map when applying the
”Weighted Kappa Coefficient” approach with r = 0.65

The approach described in this paper for the estimation of the optimum cor-
respondence threshold is based on the maximization of the Weighted Kappa
Coefficient. The cost, r, is initially determined according to the particular qual-
ity of the detection (FP or FN) that is chosen to be optimized. For example
as far as target object detection in military applications is concerned, missing
existing targets in the image (misdetections) is less desirable rather than falsely
detecting non-existing ones (false alarms). This is as well the scenario we assume
in this piece of work, namely, we are primarily concerned with the elimination
of FN at the expense of increasing the number of FP. Therefore, according to
the analysis in the previous section, the cost value should range from 0.5 to 1.
Moreover, a trade-off between the increase in information and the decrease in
noise in the final edge image is necessary when selecting the value of r.

The experimental results demonstrated in this paper correspond to a value of
r equal to 0.65. For this value of r, the calculation of the Weighted Kappa Co-
efficients yields kj(r, 0) = [0.64346, 0.65754, 0.60561, 0.53111, 0.42329, 0.27007].
Observing these results, it is clear that the Weighted Kappa Coefficient takes
its maximum value at k2(r, 0). Thus, the optimum CT for the ”Cameraman”
image is equal to 2. The selection of such an optimum correspondence threshold
indicates that the essential information is kept at the edge features that occur
at 33.34% of the initial sample set. The graphical estimation of kj(r, 0) for each
CT is illustrated in Figure 1(b).

The final edge map in Figure 3(b) verify the method’s success in combining
high accuracy with good noise reduction. The detected edges are well defined
regarding their shape and contour as it can be seen on the background buildings
in the image. A considerable amount of insignificant information is cleared, while
the one preserved allows for easy, quick and accurate object recognition. This is
mainly noticeable in the area of the cameraman’s face and on the ground, when
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comparing the final result with several edge maps of the sample set in Figure 2.
Furthermore, objects that some of the initial edge detectors failed to detect,
such as the cameraman’s hand and buildings on the background of the image,
are included in the final result. A different selection of the cost r would result
in a different trade-off between preserved information and reduced noise in the
final edge map.

The computational cost of the proposed method is higher compared to that
of applying each edge detector individually. However, this is acceptable since
the goal is to form a more complete final edge image by combining these edge
detectors in order to take advantage of their strengths while overcoming their
weaknesses.

The above conclusions arise after a large number of experimental results in-
volving different types of images.

4 Discussion

In this paper we proposed a technique for automatic statistical analysis of the
correspondence of edge images emerged from different operators. The Weighted
Kappa Coefficient was employed to calculate the CT which produces a composite
final edge map. This approach was proved to be a good choice as a performance
evaluation measure. As it was observed, applying the Weighted Kappa Coef-
ficient for r > 0.5 led to quite noisy results but with good detection quality,
regarding the number and the shape of detected objects. Hence, the selection of
the cost r should be done according to the trade-off between the information we
want to capture and the noise to suppress in a particular application. The ma-
jor benefit of using the Weighted Kappa Coefficient is that it explicitly requires
the relative importance of FP and FN to be specified and incorporated in the
performance evaluation measure a priori. A possible application of the above
scheme is to obtain clean edge images in which only the significant information
is preserved.
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Abstract. Although motion extraction requires high computational resources 
and normally produces very noisy patterns in real sequences, it provides useful 
cues to achieve an efficient segmentation of independent moving objects. Our 
goal is to employ basic knowledge about biological vision systems to address 
this problem. We use the Reichardt motion detectors as first extraction primi-
tive to characterize the motion in scene. The saliency map is noisy, therefore we 
use a neural structure that takes full advantage of the neural population coding, 
and extracts the structure of motion by means of local competition. This scheme 
is used to efficiently segment independent moving objects. In order to evaluate 
the model, we apply it to a real-life case of an automatic watch-up system for 
car-overtaking situations seen from the rear-view mirror. We describe how a 
simple, competitive, neural processing scheme can take full advantage of this 
motion structure for segmenting overtaking-cars. 

1   Introduction 

Alive beings have multimodal systems based on motion, colour, texture, size, shape, 
etc., which efficiently segment objects.  

Could a mono-modal system work as well as biological systems do? Motion, by it-
self, provides useful cues to achieve an efficient segmentation of independent moving 
objects. Machine vision systems are adapting strategies from biological systems that 
represent highly efficient computing schemes. These artificial vision systems still 
need deal with two main problems: current bio-inspired vision models (based on ver-
tebrates visual systems) are limited and require high computational cost therefore 
real-time applications are seldom addresed.  

On the other hand, simpler models based on insects’ motion detection are being 
developed as valid alternatives for specific tasks; and although they are much more 
limited require less computing resources. Insects process visual motion information in 
a local, hierarchical manner. Flies are capable of exploiting optical flow by calculat-
ing the local image motion through Elementary Motion Detectors (EMDs) described 
by Reichardt [1], that emulate the dynamics of early visual stages in insects.  
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This paper describes the software implementation of an algorithm, based on 
EMDs. The system proposed follows different stages [2, 3]. The original sequence is 
pre-processed. The algorithm extracts the edges in each frame. As a result, the num-
ber of pixels to be processed in successive stages becomes smaller and therefore the 
computing requirements of the system are reduced. The next stage uses the Reichardt 
motion detector to extract sideways moving features. The resulting saliency map is a 
noisy pattern and it is difficult to extract useful information to segment objects. We 
use a neural structure that further process the saliency map allowing the emergence 
rigid bodies characterized as the independent moving objects in the scene (Velocity 
Channel, VCh).  

 

Fig. 1. Structure of the model 

2   Functional Description of the Proposed Scheme 

2.1   Edges Extraction  

In flies, information from photoreceptors converges onto tangential cells. A subset of 
these neurons has been found to respond primarily to horizontal motion. While an-
other class of neurons respond to vertical motion [4].  

Hence, we start by obtaining spatial edges of the original image. We use a conven-
tional Sobel edge extraction procedure with a 3x3 mask [5]. This is easy to be imple-
mented through specific hardware [3], and this detector is able to provide acceptable 
real-time outputs to Reichardt detectors. A threshold allows us to select the main 
scene features among the whole extracted edges to be processed in the next stage. 
This resultant sparse map is composed of features whose strength depends on the 
local contrast (zero if the local contrast is under the threshold). In this way we dra-
matically reduce the number of points to be processed and also the computational 
requirements of the system. 

2.2   Velocity Tuning 

The system described is based on the Reichardt correlator model [1] and, in particular, 
on the fly motion detection model, that is based on a multiplicative correlation detec-
tor. Behavioural and electrophysiological data from many animals are consistent with 
a correlation-type mechanism for the detection of local motion. 
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When a motion pattern is detected, it is seen as a stimulus that reaches the two de-
tector inputs of the EMD with a certain delay. In this process, the output of the first 
cell precedes the output of the second one by t. An EMD is sensitive to a concrete 
direction movement, i.e. it compensates by an intrinsic delay d the temporal separa-
tion ( t) between the cell signals if an edge moves in the preferred detector direction. 
In this way the output of both channels will be simultaneous when the delay compen-
sates t, and the two stimuli will be perfectly correlated (the detector response will be 
maximum). Otherwise, the delay increases the temporal separation between the two 
channel outputs and the output signals are less correlated, therefore the detector re-
sponse will be weak. 

A single EMD gives us information about the motion direction of the detected fea-
tures, and a set of EMDs, each of them tuned to a different velocity, can also provide 
information about the velocity module. The EMD that maximizes the correlation  
is the one that detects the correct velocity (module and direction) of the covered area 
[6, 7]. 

The obtained saliency map is a cloud of points where each pixel is associated to a 
different velocity module and direction (rightward or leftward direction). The output 
is very noisy, mainly because the response of the EMDs is highly contrast-dependent 
and it can oscillate from frame to frame. In order to reduce the noise and effectively 
segment the independent moving object we can use some clustering criteria based on 
the responses of the specific “velocity channels”.  

2.3   Coherent Motion Based on “Velocity Channels” 

Many studies suggest that the integration of local information permits the discrimina-
tion of objects in a noisy background [8, 9, 10, 11]. The mechanism of this integration 
in biological systems is still an open topic.  

The neural structure presented here can take full advantage of population coding 
for a specific application such as the segmentation of independent moving objects. 
The main goal of the proposed scheme is the improvement of rigid-body motion 
(RBM) detection by the constructive integration of local information into global pat-
terns. If we detect a population of pixels labelled with the same speed, and all of them 
are in a limited area of the image, they are good candidates of a segmented rigid body.  

In applications where exists perspective distortion, points in the distant part of a 
rigid body seem to move more slowly than closer points. Because of this, it becomes 
necessary to consider different velocities to coherently match the whole rigid body. 
We need to cluster the velocities of the pixels into a range of velocities. Hence, we 
introduce a new concept, “velocity channels” (VCh in Fig. 1), this allows us to apply 
the RBM rule when perspective is a problem.  

In the proposed scheme, the neurons at this stage receive excitatory, convergent, 
many-to-one connections from the EMDs layer and integrate the local motion infor-
mation in a region. The layer has different integrative neurons in the same area. Each 
integrative neuron is sensitive to a set of velocities V ± V (“a velocity channel”) 
from EMDs outputs, where V represents slight variations in module from preferred 
values, i.e. each neuron integrates the activity of a number of EMDs into a spatial 
neighbourhood that tunes the characteristic velocity of this integrative neuron. Inte-
grative neuron produces an output if it gathers a high activity from its input EMDs. 
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The layer is configured as a self-competitive one: the neuron that receives the 
maximum contribution in its area of spatial influence inhibits the others (tuned to 
different velocity channels) and dominates (winner-takes-all). This function works as 
a filter that enhances the presence of rigid bodies and neglects noise patterns. 

The configuration of this layer can reduce the perspective deformations of motion 
patterns.  Particularly, the sensitivity of each neuron to a set of characteristic speeds (a 
velocity channel) rather than a single one reduces the effect of this perspective  
problem. 

 

 

Fig. 2. The top plot of the part of figure shows rightward motion features detected at the Reich-
ardt stage; the velocity channel Vi (in the middle plot of the figure) acts as a coherency filter to 
segment the overtaking vehicle. It maintains active only the filtered rightward motion features 
in the bottom plot of the figure. 

Fig. 2 illustrates the way the integration is done by the neural layer in a concrete 
example: the segmentation of a car approaching us. We divide the image into a grid 
that constitutes the receptive field of each integrative neuron. An integrative neuron 
that responds to a velocity channel Vi integrates the number of points tuned with  
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velocities around Vi for each square of the grid (receptive field). We will have as 
many velocity channels (or integrative neurons) as velocity sub-sets we consider.  

The top plot of the Fig. 2 represents rightward motion features detected at the 
Reichardt stage. The central plot of Fig. 2 represents the activity of a velocity channel 
Vi. This 3D figure shows the grid in x-y plane (receptive integration areas), and the 
vertical dimension represents the number of points that match this velocity Vi for all 
the receptive fields in the grid. These velocity channels work as band pass dynamic 
filters. Only the points of the saliency map tuned to the cluster velocities that produce 
the local maximum in each receptive field of the velocity channel are maintained 
active. The maximum corresponds to points were a rigid body motion induces coher-
ent feature motion. Hence, the points tuned to Vi in receptive field A reach the final 
output layer (the bottom plot of Fig. 2), while the receptive field B (in the top plot of 
the Fig. 2) does not produce any output, i.e., the points belonging to this receptive 
field are discarded because their contribution is poor and the integrative neuron has 
low activity.  

Finally, we obtain the results in Fig. 2 when the full set of velocity channels are 
applied to the input map (i.e. the EMDs output). 

 

 

Fig. 3. Saliency map of the Reichardt stage. (a) Original image; (b) Rightward motion features 
before the newer filtering process; (b) Rightward motion features after the newer filtering 
process. 

 
Figure 3 shows an example of the moving features extracted at Reichardt stage. 

The scene shows an overtaking vehicle approaching to the vehicle in which the cam-
era is placed on. This example is a complex scenario, due to the ego-motion of the 
camera all the points are moving through the scene, and the system task is to segment 
the overtaking vehicle. The output is very noisy (there are points labelled as moving 
to the left that belong to the overtaking car, and others are labelled as moving to the 
right and, in fact, they belong to the landscape) and it would be difficult to automati-
cally segment the overtaking vehicle, however after applying this neural layer seg-
mentation became easier.  

It is a difficult task to evaluate the segmentation quality of the algorithm using real 
images since pixels are not labeled according to the object they belong to. Therefore, 
we manually mark the goal objects labeling each pixel belonging to them, and then, 
we will compare the results of the automatic motion-driven segmentation with the 
marked labels.  

We define the segmentation rate as the ratio between the well classified features  
in an object and the total number of moving features segmented that belong to this 
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object. Figure 4 shows the results of segmentation rate in a few frames from a se-
quence. They are always above 85% when rigid body motion filtering is applied, 
these results improve the segmentation without filtering stage, which are below 85% 
when the rightward motion features are considered and below 80% when leftward 
motion features are taken into account. This difference between both directions of 
motion is due to the perspective distortion that produces a non-symmetrical image to 
motion concerns. Velocity channels allow us to minimize the noisy patterns and to 
segment the overtaking car in the sequence. 

 

 

Fig. 4. Segmentation rate 

3   Application to an Overtaking Warning System 

The next section evaluates the previous model in a concrete real-world application.  
Each year thousands of drivers are killed and millions injured in motor vehicle ac-

cidents around world. The accident rates associated with the different crash situations 
shall motivate the development of technologies towards the reduction of the number 
of accidents. Most deaths in two-car crashes occur in front-to-front crashes. However, 
side impacts have now become more important, probably reflecting improvements in 
protecting occupants in head-on collisions [12]. One of the most dangerous operations 
in driving is to overtake other vehicle. The driver’s attention is on his way, and some-
times does not use the rear-view mirror or it is unhelpful because of the blind spot.  

The automobile industry is very interested in introducing systems applied to drive 
assistance, [13, 14]. Radar detection devices warning of potential threats have long 
been employed in aircraft and ships. Their installation on the craft themselves as well 
as on land near areas of congestion, have allowed conflicts between ships to be de-
tected at distances that permit courses to be changed in time to avoid collisions. Due 
to the traffic, applying such collision avoidance technology to the highway [15, 16] is 
more challenging than in airways or waterways. Detecting relatively small position  
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changes that represent possible threats, against the background of other forms of  
absolute or relative motion, and doing it reliably enough to discriminate changes in 
speed or direction seem beyond today technology. However, it may be possible at 
least to provide a warning alert to a driver. In some recent works research is focussed 
on systems that use both jointly radar and vision approaches for this purpose [17, 18]. 

This section is concerned with the use of the previous model to watch up overtak-
ing scenarios: it detects and tracks the vehicle behind us, discriminates whether it is 
approaching or not and alerts us about its presence if necessary.  

We have used real overtaking sequences that have been taken with a camera placed 
onto the driver’s rear-view mirror. The sequences are composed by at least 50 frames 
with a resolution of 640x480 pixels per frame and 256 grey levels.  

In previous works [2, 3] we have described and tested the proposed algorithm un-
der different weather conditions. In this contribution, we present some key improve-
ments with respect to the previous works and we evaluate the algorithm under differ-
ent overtaking speeds, which is important to consider as well, since a useful system 
shall work for wide range of overtaking relative speeds.  

These sequences include different velocities of the overtaking processes that have 
been measured using an instrumented car with a laser-based system. This variety of 
speeds is difficult to process by other bio-inspired vision models that give good re-
sponses to slow or rapid motions but have difficulties to cover the different ranges.  

We have marked the overtaking car with a rectangle frame in each image. This 
process has been done manually, so we know the limits of the rectangle in each frame. 
We take this centre to plot the overtaking car speed in four sequences where the ap-
proaching speed is between 1-3 m/s, 5-10 m/s, 15-20 m/s and 25-30 m/s.  

In an overtaking scenario the motion structure of the approaching vehicle shows a 
high contrast respect to the landmarks moving in the opposite direction due to the 
ego-motion of the host car. Therefore, in each image, we will label the motion fea-
tures moving rightward as belonging to the overtaking vehicle and discard the rest. In 
a second stage we will calculate the performance of the segmentation (Ps) as the ratio 
between the features moving right inside the marked rectangle surrounding the car 
(Nmr(in) correctly labelled features) and all the features detected with rightward motion 
(Nmr(in)+Nmr(out)) according to Equation (1). The accuracy of the segmentation will 
depend on the relative speed and size of the overtaking car. We have distinguished 
different cases depending on the size of the car (due to the distance from the host 
vehicle). The considered car sizes, estimated in area (S) as the number of pixels con-
tained in the rectangle, are:  

A (315 < S  450), B (450 < S  875), C (875 < S  2220), D (2220 < S  6000) 
and E (S > 6000). 

( )

( ) ( )outmrinmr

inmr
s NN

N
P

+
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Fig. 5 summarizes the results. It can be seen that performance increases as the 
overtaking vehicle approaches. In other words, the nearer the overtaking car is, the 
better the segmentation and based on less noisy patters.  
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Fig. 5. Performance of different overtaking sequences: (A) 1-3 m/s, (B) 5-10 m/s, (C) 15-20 
m/s and (D) 25-30 m/s 

 
To track the overtaking vehicle we calculate the centre of mass of all the points that 

are moving rightward in the filtered output. Fig. 6 shows an example of the tracking 
process along a sequence. 

 

  
 

 

Fig. 6. Tracking results along a sequence 

4   Conclusions 

The present contribution describes a motion processing system able to segment inde-
pendent moving objects using spare saliency maps. We have evaluated the model as a 
warning device for overtaking scenarios. The front-end of the system are Reichardt 
motion detectors. We define dynamic filters based on motion patterns of the image 
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that seem to correspond to independent moving objects. These dynamic filters effec-
tively clean noisy patterns and help to segment independent moving objects. This 
filtering technique is a robust scheme because it is only based on a rigid body motion 
rule. It detects areas within a population of features moving coherently (with the same 
velocity and direction), being good candidates for a moving rigid body, and these 
motion patterns compete locally with opposite direction motion features. In this way, 
the moving features are processed in a competitive manner; only patterns that activate 
a whole population of detectors with a similar velocity become salient and remain 
active after the dynamic filter stage.  

A correlation based analysis and the rigid body motion filtering is enough to seg-
ment two objects moving with different velocities. Although such a monomodal sys-
tem based on velocity detection is not able to identify two vehicles with synchronized 
motion, for instance two cars running in parallel and at the same speed. Even so, the 
application (a real-life case of an automatic watch-up system for car overtaking situa-
tions seen from the rear-view mirror) is not limited by this because we only need to 
know the location of the dangerous agent, i.e. the nearest part of the nearest moving 
object, which is obtained by the system. 

The system has been tested on real overtaking sequences in a different speed 
ranges. A simple “centre of mass” calculation has been tested to validate the obtained 
features for the tracking application. 
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Abstract. In this paper, we propose an effective and fast scene change detection 
algorithm directly in MPEG compressed domain. The proposed scene change 
detection exploits the MPEG motion estimation and compensation scheme by 
examining the prediction status for each macro-block inside B frames and P 
frames. As a result, locating both abrupt and dissolved scene changes is oper-
ated by a sequence of comparison tests, and no feature extraction or histogram 
differentiation is needed. Therefore, the proposed algorithm can operate in 
compressed domain, and suitable for real-time implementations. Extensive ex-
periments illustrate that the proposed algorithm achieves up to 94% precision 
for abrupt scene change detection and 100% for gradual scene change detection. 
In comparison with similar existing techniques, the proposed algorithm 
achieves superiority measured by recall and precision rates. 

1   Introduction 

Detection of scene changes plays important roles in video processing with many ap-
plications ranging from video indexing and video summarization to object tracking 
and video content management. Over the last three decades, scene change detection 
has been widely studied and researched. As a result, many scene change detection 
techniques have been proposed and published in the literature. For our convenience of 
surveying existing research in this subject area, all these algorithms and techniques 
can be broadly classified as operating on decompressed data (pixel domain), or work-
ing directly on the compressed data (compressed domain). 

In pixel domain, the major techniques are based on pixels, histogram comparison 
and edge difference examinations [1],[2],[15],[16],[17],[18]. Seung Hoon Han [17] 
proposed an algorithm combining Bayesian and structural information to detect scene 
changes. JungHwan et. Al. [16] developed a content-based scene change detection 
algorithm, which computes background difference between frames, and use back-
ground tracking to handle various camera motions. 

Recent trends focus on developing scene change detection algorithms directly in 
compressed domain, especially corresponding to MPEG compressed videos[1, 3-14]. 
Scene change detection algorithms operating on compressed data may use MB and 
motion type information for detecting transitions. Smeaton et. Al [4] developed such a 
technique to support content-based navigation and browsing through digital video 
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archives.  To reduce the decoding operation to its minimum, Lelescu and Schonfeld 
[5] have proposed a real-time approach for detecting scene changes based on statisti-
cal sequential analysis directly on compressed video bitstreams. Dulaverakis et al [7] 
have proposed an approach for the segmentation of MPEG compressed video, which 
relies on the analysis and combination of various types of video features derived from 
motion information in compressed domain. Edmundo et al [9] have proposed an edges 
and luminance based algorithm to detect scene changes. At present, MPEG compres-
sion schemes have been widely studied, and its motion estimation and compensation 
has been exploited to detect scene changes by using MB type information and motion 
vectors [1,12~14]. Fernando et al [12] proposed that abrupt scene change could be 
detected by computing the number of interpolated macroblocks and the number of 
backward macroblocks inside B frames. In an approach that can detect both abrupt 
and gradual scene changes with MB type information[1], the authors explore the 
number of intra macroblocks and backward macroblocks to detect absurpt scene 
changes, and the number of  interpolated macroblocks to detect gradual scene 
changes. Johngho et al [14] explored each macroblock in a B-frame is compared with 
the type of corresponding macroblock (i.e. the macroblock in the same position) of 
the previous B-frame to detect abrupt scene changes. 

In this paper, via focusing on MB type information and coding modes, we propose 
a fast scene change detection method, which features that threshold selection and 
comparisons are made adaptive to the input video content. By using the number of 
intra-coded macroblocks inside P frame and the number of interpolated macroblocks 
inside B frames, the abrupt scene changes and gradual changes can be automatically 
detected. In addition, the number of backward-predicted macroblock and forward-
predicted macroblocks inside B frames are also used as an enhancement to improve 
the precision. 

The rest of the paper is structured as follows. While section 2 describes the algo-
rithm design, section 3 reports some experiments with real video films to derive em-
pirically decided parameters, and section 4 reports experimental results in comparison 
with the existing algorithms, and section V provides conclusions and discussion on 
possible future work. 

2   The Proposed Algorithm Design 

To achieve effective and efficient motion estimation and compensation inside the 
video compression scheme, MPEG arranged video sequences into group of pictures 
(GoP), for which the structure of such arrangement can be illustrated in Figure-1. As 
seen, the MPEG video structure has the feature that there exist two B-frames between 
every pair of I-P frames or P-P frames. To make it more convenient in describing the 
proposed algorithm, we follow the work reported in [1] to label the first B-frame as Bf 
(front-B), and the second B-frame as Br (rear-B). As a result, each GoP can be further 
divided into two sub-groups, which are IBfBr and PBfBr, and thus the proposed algo-
rithm can also be designed in terms of the two sub-groups. 

Essentially, the proposed algorithm follows the principle that the MPEG properties 
and its embedded motion estimation and compensation scheme should be further 
exploited for scene change detection[1,2], where the status of such motion estimation 
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and compensation for each macro-block can be recorded to design such scene change 
detection algorithm. To this end, Pei and Chou [1] proposed a simple MB-type based 
scene change detection algorithm for both abrupt scene changes and gradual scene 
changes. The principle they applied is to monitor the number of MBs in intra-coding 
mode inside P-frames. Whenever the number of intra-coded MBs is above a pre-
defined threshold, two separate operations for scene change detection are activated 
for abrupt changes and gradual changes respectively. For abrupt changes, their detec-
tion is based on one of the three motion estimation and compensation forms in 
MPEG videos as illustrated in Figure-2. For gradual changes, their detection is based 
on conditions. One is that a significant number of MBs inside P-frames are intra-
coded, indicating significant change of content, and the other is that a dominant 
number of MBs inside B-frames are interpolative motion compensated. Detailed 
analysis reveals that there exist a range of weaknesses in such an algorithm, which 
include: (i) the scene change detection is dependent on four fixed and pre-defined 
thresholds; (ii) abrupt change detection and gradual scene change detection are two 
separate operation procedures; and (iii) the performance is low in terms of precision 
in detecting scene changes. To this end, we propose to: (i) introduce an adaptive 
mechanism in selecting all the thresholds, and make them adaptive to the input video 
content; (ii) combine abrupt change detection and gradual change detection into an 
integrated algorithm; and (iii) add a consecutive detection window to improve the 
gradual change detection. 

Given the fact that specific motion estimation and compensation status for each 
macro-block is indicated by the number of bi-directionally predicted blocks for B-
frames, and intra-coded macroblocks for P-frames, we define a range of essential 
variables as follows: 

 

Ni: the number of intra-coded MBs inside P-frames 
N: the total number of macroblocks inside each video frame; 
Nfb: the number of both forward and backward predicted macroblocks inside each B-
frame; 
Nb: the number of backward predicted macroblocks inside each B-frame, indicating 
that this macroblock is only predicted in backward mode; 
Nf the number o forward predicted macroblocks inside each B-frame. 
 
 

 

I    Bf   Br   P   Bf   Br  P   Bf   Br   P I-frame inside the next GoP 

Fig. 1. Illustration of MPEG video structure for motion estimation & compensation 
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To decide whether the scene change detection should be activated or not, the fol-

lowing test is conducted for every P-frame, where the proportion of intra-coded MBs 
is examined with respect to a predefined threshold: 

 

1T
N

Ni >      (1) 

 

Where T1 stands for a threshold, which is to be determined empirically. 
From (1), a number of observations and hence analysis can be made. Firstly, the 

essence of the ratio between Ni and N reflect the proportion of predicted macroblocks 
inside this P-frame. When the ratio is smaller than the threshold, it indicates that most 
of the macroblocks can be motion compensated by its reference frame, and hence a 
significant extent of correlation between this P-frame and it reference frame can be 
established. Therefore, it is not likely that there exists any scene change around this P-
frame. As a result, we should carry on examining the next P-frame.  Secondly, if the 
condition represented by (1) is satisfied, it should indicate that most of the macrob-
locks are not well compensated by the reference frame. Therefore, it is likely that 
there may exist a scene change in the neighbourhood of this P-frame. As a result, 
further confirmation of such scene change needs to be confirmed by examining the  

P,I 

Fig. 2. Illustration of abrupt scene change detection 

Br P,I 

Scene change at Bf 

Bf 

P,I Bf Br P,I 

Scene change at P,I 

(a)

P,I Bf Br P,I 

Scene change at Br 

(b
)

(c)
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B-frames to find out: (i) whether such scene change is abrupt or gradual; (ii) its exact 
location of such scene changes. 

As illustrated in Figure-1, we have front-B and rear-B to be examined at this stage. 
For all B-frames, there are three possibilities for their specific process of motion esti-
mation and compensation, which include: forward prediction, backward prediction,  
and bi-directional prediction. To detect the situation given in Figure-2, we propose a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ni>T? 

Yes 

No 

Yes 

Exam P-frame 

Nb> λ Nf? 

No 

No No 

Yes 

Scene change 
at Bf

Yes 

No 

Yes 

Fig. 3. Overview of the proposed scene change detection algorithm 
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test, where its threshold is adaptive to the input video content and its motion estima-
tion and compensation process. Therefore, to examine the front-B frame, we have:  

 

fb NN λ>      (2) 
 

Where λ  is a parameter controlling the balance between the backward prediction and 
forward prediction. 

Satisfaction of (2) indicates that backward predicted MBs overwhelm the forward 
predicted MBs. As a result, the possible scene change can be further confirmed, and 
located at Bf as shown at the bottom of Figure-2. If the test is negative, we need to 
find out whether forward predicted MBs overwhelm the backward predicted MBs, in 
order to verify whether any of the two forms given in (a) and (b) of Figure-2 can be 
detected. Such condition can be tested by similar equation as illustrated below: 

 

bf NN λ>      (3) 
 

Satisfaction of the above test confirms either (a) or (b) in Figure-2 depending on 
the result of examining the rear-B frame. In this circumstance, we firstly repeat the 
test given in (3) on the rear-B frame. Satisfaction of such test will confirm the case of 
(a) in Figure-2 and hence a scene change can be detected at the next P or I frame. If 
the test is negative, we check if the backward predicted MBs overwhelm the forward 
predicted MBs inside the rear-B frame by (2). Positive test indicates that scene change 
is at the Br frame as given in (b) of Figure-2. If not, we need to check if Br frame is a 
candidate for dissolve frame (gradual change) by the following test: 
 

  )( bfbf NNN +> α     (4) 
 

Where α is another parameter indicating the dominance of bi-directional prediction 
of MBs inside B-frames. 

Similarly, negative test of (3) on the front-B frame will prompt the test (4) being 
applied to Bf to see if it is a candidate for a dissolve frame. 

In summary, the proposed algorithm can be overviewed in Figure-3. 

3   Algorithm Evaluations 

To evaluate the performance of the proposed scene change detection algorithm, a 
database of video sequences has been obtained from recording of TV programmes, 
including documents, news, sports, and films. The database represents a total of 114 
abrupt scene changes and 22 dissolves in 15 clips of videos. The selected sequences 
are complex with extensive graphical effects. Videos were captured at a rate of 30 
frames/s, 640×480 pixel resolution, and stored in PPM format. Details of the test 
video clips are described in Table-1.  

For benchmarking purposes, we selected the algorithm reported in [1] as a repre-
sentation of the existing techniques to provide a comparison for the evaluation of the 
proposed algorithm. Performance measurements are implemented with the well-
known recall and precision figures [16], which are defined as follows. 
 



212 Z. Li et al. 
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det

MDects
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                                        (5) 

Precision=
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+
                                            (6) 

 
Table 1. Description of video clip test set 

Video sequences Number of abrupt scene changes 
Clip-1 
Clip-2 
Clip-3 
Clip-4 
Clip-5 
Clip-6 
Clip-7  
Clip-8 
Clip-9 
Clip-10 
Clip-11 
Clip-12 
Clip-13 
Clip-14 
Clip-15 

24 
15 
13 
21 
19 
22 
86~107;160~179 
135~165;540~574 
80~115;230~258 
6~101,128~144;315~325 
5~16;209~248;358~365 
27~42;67~80;140~181 
70~88;115~130;190~289 
132~175;224~278 
23~44;158~189 

total Abrupt=136; dissolved=22 
 
 
Where detects stands for the correctly detected boundaries, while MD and FA denote 
missed detections and false alarms, respectively. In other terms, at fixed parameters, 
recall measures the ratio between right detected scene changes and total scene 
changes in a video, while precision measures the ratio between the right detected 
scene changes and the total scene changes detected by algorithm. 

The final results of the evaluations are given in Tables 2. 
From Table 2, it can be seen that the proposed method achieves on average a 

90.38% recall rate with a 75.49% precision rate for both abrupt and gradual scene 
changes. In comparison with the existing counterparts [1] given in Table-2 as the 
benchmark, the proposed  method achieves superior performances in terms of both 
recall and precision rates. Additional advantages with the proposed method can be 
highlighted as: (i) integrated algorithm for both abrupt scene change and dissolve 
detection; (ii) directly operates in compressed domain and thus suitable for real-time 
implementation; and (iii) only one threshold and two parameters are required for 
scene change detection and yet the detection mechanism is made adaptive to the input 
video content, or the performance of motion estimation and compensation embedded 
inside MPEG techniques. 
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Table 2. Summary of experimental results 

 The proposed algorithm The benchmark 
Clips Recall               Precision Recall               Precision 
1 87                       90 56                         85 
2 92                       92 72                         80 
3 96                       86 76                         78 
4 89                       85 65                         75 
5 90                       94 84                         81 
6 85                       92 80                         89 
7 100                    100 100                       66.7 
8 100                    66.7 100                       50 
9 50                        50 50                         33.3 
10 100                      75 66.7                       50 
11 100                      60 100                        43 
12 66.7                     75 100                        43 
13 100                      50 66.7                       50 
14 100                      66.7 100                        40 
15 100                      50 100                        50 
Average 90.38                   75.49  81.09                    60.93 

5   Conclusions  

In this paper, we described an integrated algorithm, which is capable of directly and 
effectively detect scene changes in MPEG compressed videos. The proposed algo-
rithm works in compressed domain exploiting existing MPEG motion estimation and 
compensation mechanisms. Therefore, it achieves significant advantages in terms of 
processing speed and algorithm complexity, and thus suitable for fast and real-time 
implementations. While the proposed algorithm can save a lot of computation cost, 
extensive experiments support that the proposed algorithm also achieves superior 
performances over the existing counterparts. 

Finally, the authors wish to acknowledge the financial support under EU IST FP-6 
Research Programme as funded for the integrated project: LIVE (Contract No. IST-4-
027312). 
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Abstract. An automatic segmentation algorithm based on AdaBoost learning 
and iterative Graph-Cuts are shown in this paper. In order to find the approxi-
mate location of the object, AdaBoost learning method is used to automatically 
find the object by the trained classifier. Some details on AdaBoost are de-
scribed. Then the nodes aggregation method and the iterative Graph-Cuts 
method are used to model the automatic segmentation problem. Compared to 
previous methods based on Graph-Cuts, our method is automatic. This is a main 
feature of the proposed algorithm. Experiments and comparisons show the effi-
ciency of the proposed method. 

1   Introduction 

Image segmentation is a process of grouping together neighboring pixel whose prop-
erties are coherent. It is an integral part of image processing applications such as acci-
dent disposal, medical images analysis and photo editing. Many researchers are focus 
on this subject. However, even to this day, many of the computational issues of per-
ceptual grouping have remained unresolved. In the analysis of the object in images it 
is essential that we can distinguish between the object of interest and the rest. This 
latter group is also referred to as the background. The techniques that are used to find 
the object of interest are usually referred to as segmentation techniques: segmenting 
the foreground from background. Semi-automatic segmentation techniques that allow 
solving moderate and hard segmentation tasks by modest effort on the part of the user 
are becoming more and more popular. However in some situation, we need automatic 
segmentation for certain object. Previous automatic segmentation methods have two 
major drawbacks:  

1. The final segmentation results are far from users’ expectations. 
2. The running time is so slow that it can’t meet the real-time demands. 

In order to overcome the disadvantages of automatic and semi-automatic segmen-
tation algorithms, an AdaBoost learning and iterative Graph-Cuts segmentation algo-
rithm is proposed. This paper’s contribution is twofold.  

First, we introduce the AdaBoost learning to the image segmentation. It is a power-
ful tool for detecting certain object. 
                                                           
∗ This work has been supported by NSFC Project 60573182, 69883004 and 50338030. 
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Second, we describe a novel automation segmentation scheme based on AdaBoost 
learning and iterative Graph-Cuts, which has several favorable properties: 

1. Capable of solving automation segmentation problem with high precision. 
2. Performs multi-label image segmentation (the computation time does not depend 

on the number of labels). 
3. Fast enough for practical application using multi-scale resolution decomposing. 

We have applied our method to region-based image retrieval system outputting a 
good performance. 

4. Is extensible, allows constructing new families of segmentation algorithms with 
specific properties. 

First we begin with a review of the related work. In section 3 we give the details of 
our algorithm. Experiences are given in section 4. In section 5 we give the conclu-
sions. 

2   Relative Work 

In this section we briefly outline the main features of current state-of-the-art segmen-
tation techniques. We loosely divide these methods into two families: semi-automatic 
image segmentation and automatic image segmentation. 

2.1   Semi-automatic Method  

1. Magic Wand is a common selection tool for almost any image editor nowadays. It 
gathers color statistics from the user specified image point (or region) and seg-
ments (connected) image region with pixels, which color properties fall within 
some given tolerance of the gathered statistics. 

2. Intelligent Paint is region-based interactive segmentation technique, based on hier-
archical image segmentation by tobogganing [1]. It uses a connect-and-collect 
strategy to define an object region. This strategy uses a hierarchical tobogganing 
algorithm to automatically connect image regions that naturally ordered expansion 
interface to interactively collect those regions which constitute the object of inter-
est. This strategy coordinates human-computer interaction to extract regions of in-
terest from complex backgrounds using paint strokes with a mouse. 

3. Intelligent Scissors is a boundary-based method, which computes minimum-cost 
path between user-specified boundary points [2]. It treats each pixel as a graph 
node and uses shortest-path graph algorithms for boundary calculation. A faster 
variant of region-based intelligent scissors uses tobogganing for image over-
segmentation and then treats homogenous regions as graph nodes. 

4. Graph-Cuts is a powerful semi-automatic image segmentation technique. In [3] a 
new technique is proposed for a general purpose interactive segmentation of N-
dimensional images. The users make certain pixels as foreground and background. 
Graph-Cuts is used to find the globally optimal segmentation. Given user-specified 
object and background seed pixels, the rest of the pixels are labelled automatically. 
Because this procedure is interactive, we call this technique as semi-automatic 
method. This method can exactly extract the object and has a good time saving 
property. However the segmentation result is influenced by the users. 
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5. GrabCuts [4] extends Graph-Cuts by introducing iterative segmentation scheme,  
that uses Graph-Cuts for intermediate steps. The user draws rectangle around the 
object of interest-this gives the first approximation of the final object/ background 
labelling. Then, each iteration step gathers color statistics according to current 
segmentation, re-weights the image graph and applies graph-cut to compute new 
re-fined segmentation. After the iterations stop the segmentation results can be re-
fined by specifying additional seeds, similar to original Graph-Cuts. 

2.2   Automatic Method 

1. Watershed transform treats the image as a surface with the relief specified by the 
pixel brightness, or by absolute value of the image gradient. The valleys of the re-
sulting “landscape” are filled with water, until it reaches the “mountains”. Markers 
placed flow together, and a user-guided, cumulative cost-in the image specify the 
initial labels that should be segmented from each other. 

2. Clustering methods such as K-mean and C-mean methods are always used. These 
methods often follow a region tracking and region merge procedure. Such methods 
are also called region-based segmentation. 

3. Mean Shift procedure-based image segmentation is a straightforward extension of 
the discontinuity preserving smoothing algorithm. Each pixel is associated with a 
significant mode of the joint domain density located in its neighborhood, after 
nearby modes were pruned as in the generic feature space analysis technique [5]. 
There are some parameters can be dynamic defined by users and can give different 
results. 

4. Normalized Cuts is a classical automatic image segmentation technique. It is first 
proposed by [6] and generalized in [7]. It optimizes a global measure, a normal-
ized-cut type function to evaluate the saliency of a segment. The minimization of 
this function can be formulated as a generalized eigenvalue problem. The results of 
this method are not good enough in practical applications. However it gives a  
direction for the future relative work from the point of graph based image  
segmentation. 

3   The Proposed Algorithm 

Our segmentation algorithm includes four stages: AdaBoost learning for determining 
object location; expanding location for segmentation; multi-scale nodes aggregation; 
iterative Graph-Cuts segmentation for final results. Below we will describe them in 
detail. 

3.1   Using AdaBoost Learning to the Segmentation Problem 

AdaBoost is a recently developed learning algorithm [8]. It boosts the classification 
performance by combining a collection of weak classifiers to form a stronger classi-
fier. In each step of AdaBoost, the classifier with the best performance is selected and 
a higher weight is put on the miss-classified training data. In this way, the classifier 
will gradually focus on the difficult examples to be classified correctly. The formal 
guarantees provided by the AdaBoost learning procedure are quite strong. In theory, it 



218 D. Han et al. 

is proved that AdaBoost could minimize the margin between positive and negative 
examples. The conventional AdaBoost procedure can be easily interpreted as a greedy 
feature selection process. Consider the general problem of boosting, in which a large 
set of classification functions are combined using a weighted majority vote. The chal-
lenge is to associate a large weight with each good classification function and a 
smaller weight with poor functions. AdaBoost is an aggressive mechanism for select-
ing a small set of good classification functions which nevertheless have significant 
variety. Drawing an analogy between weak classifiers and features, AdaBoost is an 
effective procedure for searching out a small number of good “features” which never-
theless have significant variety. 

A variant of AdaBoost algorithm for aggressive feature selection can be described 
as follows. 

• Given example images (x1,y1) , … , (xn,yn) where yi = 0, 1 for negative and posi-
tive examples respectively. 

• Initialize weights w1,i = 1/(2m), 1/(2l) for training example i, where m and l are 
the number of negatives and positives respectively. 

For t = 1 … T 
1) Normalize weights so that wt is a distribution 
2) For each feature j train a classifier hj and evaluate its error εj with respect 

to wt. 
3) Chose the classifier hj with lowest error. 
4) Update weights according to: 
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The overall form of the detection process is that of a degenerate decision tree, what 
we call a “cascade” which achieves increased detection performance while radically 
reducing computation time. The word "cascade" in the classifier name means that the 
resultant classifier consists of several simpler classifiers (stages) that are applied sub-
sequently to a region of interest until at some stage the candidate is rejected or all the 
stages are passed. A positive result from the first classifier triggers the evaluation of a 
second classifier which has also been adjusted to achieve very high detection rates. A 
positive result from the second classifier triggers a third classifier, and so on. A nega-
tive outcome at any point leads to the immediate rejection of the sub-window. As 
shown in Fig. 1, a series of classifiers are applied to every sub-window. The initial 
classifier eliminates a large number of negative examples with very little processing. 
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Subsequent layers eliminate additional negatives but require additional computation. 
After several stages of processing, the number of sub-windows has been reduced 
radically. Further processing can take any form such as additional stages of the cas-
cade or an alternative detection system. Stages in the cascade are constructed by train-
ing classifiers using AdaBoost and then adjusting the threshold to minimize false 
negatives. The whole procedure is similar with the face detection method. 

 

Fig. 1. The description of a detection cascade 

The cascade design process is driven from a set of detection and performance 
goals. Given a trained cascade of classifiers, the false positive rate of the cascade is 
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given false positive rate F and detection rate D we would like to minimize the ex-
pected number of features evaluated N: 
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Since this optimization is extremely difficult, the usual framework is to choose a 
minimal acceptable false positive and detection rate per layer. 

We can describe the algorithm for training a cascade of classifiers as follows: 

• User selects values for f, the maximum acceptable false positive rate per layer and 
d, the minimum acceptable detection rate per layer. 
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• User selects target overall false positive rate Ftarget. 
• P = set of positive examples 
• N = set of negative examples 
• F0 = 1.0; D0 = 1.0; i = 0 

While Fi > Ftarget 

i++; ni = 0; Fi = Fi-1 

While -1 i iF f F> ×  

ni ++ 
Use P and N to train a classifier with ni features using AdaBoost 
Evaluate current cascaded classifier on validation set to determine Fi and Di 
Decrease threshold for the ith classifier until the current cascaded classifier 
has a detection rate of at least dx Di-1 (this also affects Fi) 

N = ∅ 
If Fi  > Ftarget then evaluate the current cascaded detector on the set of non-object 
images and put any false detections into the set N. 

To search for the object in the whole image one can move the search window 
across the image and check every location using the cascade classifier. The classifier 
is designed so that it can be easily "resized" in order to be able to find the objects of 
interest at different sizes, which is more efficient than resizing the image itself. So, to 
find an object of an unknown size in the image the scan procedure should be done 
several times at different scales. 

3.2   Iterative Segmentation by Graph-Cuts 

Definition 1. S-T graph: A S-T graph is defined as ( ), ,G V E C= . It has such 

properties, 

(i) A source node and a sink node. 
(ii) Directed edge (Arc) <vi,vj> from node i to node j. 
(iii) Each arc< vi,vj > has a nonnegative capacity cap(vi,vj). 
(iv) cap(vi,vj)=0 for non-exist arcs. 

Definition 2. Flow in S-T graph: Flow is a real value function f that assign a real 
value f(vi,vj) to each arc < vi,vj > under, 

(i) Capacity constraint: f(vi,vj) ≤ cap(vi,vj). 
(ii)Mass balance constraint, 
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, ,

   0       ,

( , ) ( , )        

     
i j k i

i s t

i j k i i s
v v E v v E

i t

v V v v

f v v f v v f v v

f v v
< >∈ < >∈

∈ −

− = =

− =

 

Definition 3. S-T cut: A cut is a partition of node set V which has two subsets S and 
T. Additional, a cut is a S-T cut if and only if s∈S, t∈T. 
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Definition 4. Capacity of S-T cut (cost): The cost of S-T cut is defined as, 

, , ,

( [ , ] ) ( , )
i j i j

i j
v v E v S v T

c a p S T c a p v v
< > ∈ ∈ ∈

=  

Definition 5. Flow in S-T cut: Flow in S-T cut is defined as, 

, , , , , ,

([ , ]) ( , ) ( , )
i j i j j i i j

i j j i
v v E v S v T v v E v S v T

f S T f v v f v v
< >∈ ∈ ∈ < >∈ ∈ ∈

= −  

The minimum cut is the S-T cut whose capacity is minimum among all possible  
S-T cuts. 

For above definitions, there are some properties. 

Property 1. For any S-T cut and flow, the capacity of S-T cut is the upper-bound of 
the flow across the S-T cut. 

Proof 

, , , , , ,
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= ≥

≥ −

=

       

• End of proof 

Property 2. For any S-T cut, the value of flow across the cut equals the value of the 
flow. 

Proof 
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, , , , , , , ,
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 • End of proof 

Property 3. For any S-T cut and any flow, the capacity of S-T cut is the upper-bound 
of value of the flow. 

Proof 

( [ , ] ) ( [ , ] )f S T c a p S T≤  
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([ , ])f S T f=  

∴ ([ , ])f cap S T≤          

                                                                                                          • End of proof 
Then we can draw the following lemma. 

Lemma 1 ( Equivalence of  maximum flow and minimum cut). If f is a flow func-
tion of a S-T graph, then the follow statements are equivalent, 

A. f is a maximum flow. 
B. There is a S-T cut that it’s capacity equals to the value of f. 
C. The residual graph contains no directed path from source to sink.  

Proof 

• If B: there is a S-T cut that its capacity equals to the value of f. 
• Then A: f is a maximum flow. 

The capacity of any S-T cut is upper bound of the value of any flow. So if there is 
a S-T cut that its capacity equals to the value of flow f, then the value of f is also the 
upper bound of any flow. That means f is a maximum flow. 

• If A: f is a maximum flow. 
• Then C: The residual graph contains no directed path from source to sink. 

If has a path from source to sink, we augment the flow of this path by an amount 
equal to the minimum residual capacity of the edges along this path. So the original 
flow f is not a maximum flow. So if f is a maximum flow, then no augmenting path 
can exist. 

• If C: The residual graph contains no directed path from source to sink. 
• Then B: there is a S-T cut that its capacity equals to the value of f. 

From the source, the residual graph can be separate into reachable S and non-
reachable T, it must be a S-T cut. And there is no arc from S to T in the residual graph. 
So f(vi,vj)=cap(vi,vj) for any arc from S to T and f(vj,vi)=0 for arc from T to S. In this 
case, cap([S,T])=f([S,T]), as we know f([S,T])=|f|, so cap([S,T]) = |f|.                                               

• End of proof 

We briefly introduce some of the basic terminology used throughout the paper. An 
image that contains N n n= × pixels, we construct a graph ( ), ,G V E W= in which 
each node iv V∈ represents a pixel and every two nodes iv , jv representing neighbor-
ing pixels are connected by an edge ,i je E∈ . Each edge has a weight ,i jw W∈ re-
flecting the contrast in the corresponding location in the image. We can connect each 
node to the four or eight neighbors of the respective pixel, producing a graph. Because 
only background pixels can be determined by AdaBoost, the graph can be parti- 
tioned into three disjoint node sets, “U”, “B” and “O”, where U B O V= , 
U B O φ= . U means uncertain pixels and B and O mean background and object 
pixels. Also at first O φ= . Finding the most likely labeling translates to optimizing 
an energy function. In vision and image processing, these labels often tend to vary 
smoothly within the image, except at boundaries. Because a pixel always has the  
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similar value with its neighbors, we can model the optimization problem as a MRF. In 
[3], the authors find the most likely labeling for some given data is equivalent to seek-
ing the MAP (maximum a posteriori) estimate. A graph is constructed and the Potts 
Energy Model (2) is used as the minimization target. 

{ },

( ) ( ) ( , )
i i j

data i smooth i j
v V v v N

E G E v E v v
∈ ∈

= +  (2) 

The graph G contains two kinds of vertices: p-vertices (pixels which are the sites in 
the associated MRF) and l-vertices (which coincide with the labels and will be termi-
nals in the graph cut problem). All the edges present in the neighborhood system N 
are edges in G. These edges are called n-links. Edges between the p-vertices and the l-
vertices called t-links are added to the graph. t-links are assigned weights based on the 
data term (first term in Equations 1 reflecting individual label-preferences of pixels 
based on observed intensity and pre-specified likelihood function) while n-links are 
assigned weights based on the interaction term (second term in Equation 1 encourag-
ing spatial coherence by penalizing discontinuities between neighboring pixels). 
While n-links are bi-directional, t-links are un-directional, leaving the source and 
entering the sink. 

For a large image, it will be slow to segment the whole graph straightly. We use a 
multi-scale nodes aggregation method to construct a pyramid structure over the im-
age. Each procedure produces a coarser graph with about half size. 

Algorithm proposed in [3] uses a Graph-Cuts based optimization approach to ex-
tract foregrounds from images according to a small amount of user input, such as a 
few strokes. Previous natural image segmentation approaches heavily rely on the user 
specified trimap. In our situation, only background trimap can be initialized. We use 
an iterative Graph-Cuts procedure for image matting inspired by [4]. 

The object of segmentation is to minimize the energy function (2). The first term 
reflects individual label-preferences of pixels based on observed intensity and pre-
specified likelihood function. The second term encourages spatial coherence by penal-
izing discontinuities between neighboring pixels. So our goal is to minimize the  
energy function and make it adapt to human vision system. In [3] authors give  
the construction of the graph in detail. In order to finish the automatic segmentation, a 
different way is used to construct the graph in this paper. 

We use the pixels inside and outside the rectangle specified by AdaBoost to build 
two Gaussian mixture models (GMM), one for object and the other for background, 
which are similar with the method described in [3], [4] and [9]. Each GMM is taken to 
be a full-covariance Gaussian mixture with K=5 components. The Potts Energy Model 
(2) is equivalent with the Gibbs energy (3) 

{ },

( , , , ) ( , , )
i j

i i i i j
i v v N

E D v k V v vθ β β
∈

= +  
(3) 

( ) ( ) ( )

( ) ( ) ( )1

1, , , log , log d et ,2
1 , , ,2

i i i i i i i

i i i i i i i i

D v k k k

v k k v k

θ β π β β

μ β β μ βΤ −

= − + +

− −
 (4) 
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Where (.)π , (.)μ ,and (.) are the mixture weighting coefficients, means and co-
variance of the 2K Gaussian components for the object and background pixels distri-
butions. So the parameter θ  has the form as 

( ) ( ) ( ){ }, , , , ,    1... 5;  1  0k k k k K orθ π β μ β β β= = = =  (5) 

The second term of Gibbs energy is 

{ }
( )

,

2 2, 1 exp( ( ) )
i j

i j i j
v v N

V v v v v σ
∈

= − − −  (6) 

We set σ empirically to be 0.2 in our system. 
We use a similar way with [4] to minimize the Gibbs energy which can guarantee 

the convergence. A more detail can be found in [4]. 

4   Experiments 

The detection results and the iterative segmentation results are given in Fig. 2. In  
Fig .2 (a) is the car segmentation result. Fig .2 (b), (c) are the segmentation  

 

   

   

   

   
                  (a)                                               (b)                                             (c)  

Fig. 2. The detection results using AdaBoost and segmentation results by iterative Graph-Cuts 
respectively. (a) is the bus result. (b) is the elephant result. (c) is the flower result. 
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experiments for nature color object images. The segmentation results are good enough 
for some practical applications and the running time is fast enough to meet the real-
time demands because we use multi-scale method to reduce the number of nodes. 
There are some methods for nodes aggregation. We use a simply but efficient method. 
For more accurate result we can develop new methods for nodes aggregation. The 
average ratio of running time of node aggregation method is about 20 times faster 
than non-nodes aggregation. In addition, we also apply our segmentation method to 
interest region-based image retrieval system and get a satisfying performance. 

5   Conclusions 

This paper proposes a machine learning based image segmentation method. Com-
pared to previous methods, our scheme is automatic and accurate. Also the AdaBoost 
learning concept is introduced to segmentation problems. In the future, we plan to 
develop new method to reduce the training examples. 
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Abstract. In this paper we present a snake-based scheme for efficiently detect-
ing contours of objects with boundary concavities. The proposed method is 
composed of two steps. First, the object's boundary is detected using the pro-
posed snake model. Second, snake points are optimized by inserting new points 
and deleting unnecessary points to better describe the object's boundary. The 
proposed algorithm can successfully extract objects with boundary concavities. 
Experimental results have shown that our algorithm produces more accurate 
segmentation results than the conventional algorithm. 

1   Introduction 

Object segmentation is the basis for many important applications such as machine 
vision, video games, 3D interactive TV, interactive multimedia systems, and image 
and video coding [1]. In fact, the recently developed MPEG-4 standard [2] is an ob-
ject-based image and video coding algorithm that requires object segmentation in the 
first stage. 

Over the past two decades, various object segmentation schemes have been devel-
oped for extracting an object from an ordinary image. One of the approaches that 
received significant research attention, and has been extensively used is the active 
contour (snake) algorithm [3]-[6].  A snake is an energy-minimizing spline guided by 
internal forces that preserve its characteristics, and external forces that pull it toward 
image features such as lines and edges. The original snake model suffers from chal-
lenges such as the difficulty in progressing into boundary concavities. Xu et al. pro-
posed the GVF (gradient vector flow) snake [5] to handle the concavities problem. 
The GVF method uses a spatial diffusion of the gradient of the edge map of the image 
instead of using the edge map directly as an external force. Although the method has 
the advantages of insensitivity to initialization and the ability to move into boundary 
concavities, it can not handle gourd-shaped concavities.  This is due to the concentra-
tion of GVF energy in the neck of the gourd.  

In this paper we present a snake-based method for object segmentation addressing 
the above challenges through a modified snake model with optimized points.  We 
propose new modifications to the energy formulation of the snake model to handle the 
concavity problem.  Optimization of snake points is addressed by managing the inser-
tion of new points and deletion of unnecessary points to better describe the object's 
boundary.  
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This paper is organized as follows. Section 2 covers a background on the snake 
model. Our proposed method for extracting objects with boundary concavities using 
an optimized snake is presented in Section 3. In Section 4 we show results of the 
simulation for evaluating the performance of our method, and the conclusions are 
given in Section 5. 

2   The Snake Model 

The snake algorithm was first introduced by Kass et al. [3]. A snake is the energy-
minimizing spline guided by internal constraint forces and influenced by external 
image forces that pull it toward features such as lines and edges.   

In the discrete formulation of a snake, the contour is represented as a set of snake 
points ),( iii yxv =  for 1,...,0 −= Mi  where 

ix  and 
iy are the x  and y  coordinates of a 

snake point, respectively and M  is the total number of snake points. The total energy 
of each point is typically expressed as a sum of individual energy terms: 

)()()( iextintiisnake vEvEvE +=  (1) 

The function contains two energy components. The first component is called the 
internal energy and it concerns contour properties such as curvature and discontinu-
ity. The second component is the external energy which is typically defined by the 
gradient of the image at a snake point.  

3   Proposed Algorithm 

Our proposed algorithm modifies the conventional snake model, and introduces a new 
mechanism for the insertion and/or deletion of snake points as necessary. 

3.1   Proposed New Snake Energy Function  

In this section, we describe our special snake energy function defined for a 2D image.  
Internal energy is typically expressed in terms of two terms: continuity energy, and 
curvature energy. Our modifications to these two terms and to the external energy 
term will be explained in the following subsections 
 
Internal Energy Terms. The first internal energy term is the continuity energy term. 
The main role of the conventional continuity energy term is to make even spacing 
between the snake points by minimizing the difference between the average distance 
and the distance between neighboring snake points. In this arrangement point spacing 
is globally and uniformly constrained by the average distance. This is not suitable for 
objects with concavities because the distance between snake points should be relaxed 
in boundary concavities. Therefore, in our method, point spacing in boundary con-
cavities is allowed to differ from other parts of the snake. We define the normalized 
continuity energy as follows: 
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max

11
)(

con

vvvv
vE

iiii

icon

+− −−−
=  (2) 

where 
maxcon  is the maximum value in the search neighborhood. The proposed conti-

nuity energy can make even spacing between neighboring snake points in concave 
parts of the object’s boundary. 

For curvature energy, the goal is to control the smoothness of the contour between 
neighboring snake points. The way in which this term is formulated affects the ability 
of snake points to progress into boundary concavities, and conventional snake algo-
rithms show poor performance in this aspect.  In this paper we present a new curva-
ture energy solving the problem based on the Frenet formula.  As depicted in Fig. 

1(a), let 3: ℜ→Ψ I  be a unit-speed curve. Then, 'Ψ=T  is the unit tangent vector 

field on Ψ , and '' / TTN =  is the principal normal vector field of Ψ ; where 'T  is 

the length of the curvature. The vector field NTB ×=  on Ψ  is the binormal vector 
field of Ψ , and the sign of the z-dimension of B  is positive if B  is upward and is 
negative if it is downward. Therefore, we consider the sign of the binormal vector. In 
2D the sign of the binormal vector )( ivB  can be obtained using the cross product of 

the two vectors )( ivT  and  )( ivN  as follows: 

z
N
i

T
i

N
i

T
iN

i
N
i

T
i

T
i

iii exyyx
yx

yx
vNvTvB )()()()( −==×=  

(3) 

where ( T
ix , T

iy ) and ( N
ix , N

iy ) are the x  and y  coordinates of the tangent vector 

)( ivT  and normal vector )( ivN  at the current point iv , respectively. ze  is a unit 

vector of the z-component. In the discrete formulation of a snake point, )( ivT  and 

)( ivN  are defined as follows :  

iii vvvT −≈ +1)(  (4) 

11 2)( +− +−≈ iiii vvvvN  (5) 

In the case that a snake point is outside the object (as in Fig. 1(b, c, d)), the movement 
of a snake point can be described as follows:  
 

i) When )( ivB  is negative, as the case in Fig. 1(b), iv  moves in the opposite direction 

of )( ivN  seeking a location with maximum value of )( ivN . 

ii) When )( ivB  is positive, as the case in Fig. 1(c), the snake point iv  must take the 

direction of )( ivN  to minimize curvature and to converge on the boundary of the 

object.  
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(a) (b)
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1−iv
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1−iv

1+iv
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)( ivB)( ivN

)( ivT

)( ivB 0
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)( ivN

iW

•z
• )(+B

 

Fig. 1. Movement of snake points based on binormal vector 

iii) In the case of Fig. 1(d), the value of )( ivN  at iv  is zero because the point is on a 

straight line, and, therefore, )( ivB  has a zero vector at iv . In this case, we examine 

neighboring points located within the window iW . A candidate point with a negative 

)( ivB , such as the point to the left of iv , maximizes the )( ivN  and thus iv  must 

move to that location.  
The normalized curvature energy is defined as Eq. (6) [6].  It is further weighted by 

the constant λ , as given in Eq. (7). 

)(/)()(/)()( 11 −−−= iiiiic vTvTvTvTvE  (6) 

)()( icicur vEvE λ=  (7) 

The constant λ  can be set for different applications, relative to the sign of )( ivB  

on the contour. In our work, λ  is set to 1+  when the sign of )( ivB  is positive and 

1−  otherwise.  
 

External Energy Terms. The external energy is defined as [ ] max/)(*)( evfvG iiσ∇− , 

where )( ivGσ  is a two-dimensional Gaussian function with standard deviation σ  and ∇ 

is the gradient operator. )( ivf  is the image intensity function, and maxe  is the maxi-

mum value in the search neighborhood.  
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Total Snake Energy. The proposed snake energy function is defined as follows:  

( ))()()()(
1

0
iext

M

i
icuriconsnake vEvEvEvE γβα ++=

−

=

 (8) 

The parameters α , β and γ  are set to 1.0 ,1.0 and 1.2 respectively. 

3.2   Optimizing the Number of Snake Points  

Following the convergence of snake points in the first step to the boundary of the 
object, additional points are inserted and unnecessary points are deleted to better de-
scribe the boundary concavities. This step is explained as follows. 

 

Point Insertion and Deletion. The decision to insert a new point between two points 

iv  and 1+iv  depends on the )( ivN  and )( ivT  at iv . If )( ivN  is above a threshold 

Nth  and )( ivT  is above a threshold Tth , an additional point is inserted. This condi-

tion can be expressed by the Boolean expression: 

ANDthvN Ni ≥)(  
Ti thvT ≥)(  (9) 

and the newly inserted point is defined as 2/)( 1++= iii vvc . 

On the other hand, when the )( ivN  at a point iv  is small enough to fall below 

Nth , the point is likely to be on a straight line. In such case, iv  can be safely re-

moved because the boundary can be described well enough by the two snake points 
adjacent on each side.  
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Fig. 2. Movement of inserted points in convex/concave segments of the object’s boundary 



 Accurate Contour Detection Based on Snakes for Objects with Boundary Concavities 231 

Movement of Inserted Points. Fig. 2 illustrates the decision controlling the move-
ment of inserted points taking into consideration whether the inserted point is inside 
or outside the object. As shown in Fig. 2, the sign of )( icB  is negative in concave 

segments and positive in convex segments. To decide the movement of an inserted 
point, we first check the sign of its binormal vector )( icB  relative to previous and 

next inserted points. If )( icB  is negative, then the point is outside, and in that case 

we apply exactly the same scheme explained in section 3.1.1 above. On the other 
hand, if the inserted point turns out to be inside (i.e., )( icB  is positive), we apply the 

same scheme except that we reverse the signs for λ .  

4   Experimental Results 

To verify the performance of our algorithm a set of experiments has been performed. 
The algorithm was coded in Visual C++ 6.0, and the experiments were performed on 
a Pentium IV machine with 1GByte of memory running at 3GHz clock speed. We 
used binary and color real images with 320×240 image size. 

(a) (b)

(c) (d)  

Fig. 3. Results of conventional algorithm and the proposed algorithm. (a) Greedy snake [3]. (b)-
(d) Proposed algorithm. 

The criteria used to verify the accuracy of the estimated snake region estR , com-

pared with the original object region oriR  is Relative Shape Distortion, )(RRSD , 

which is defined as: 
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∈∈
⊕=

fyx
oriest

fyx
ori yxRyxRyxRRRSD

),(),(

),(),(),()(  (10) 

where the ⊕  sign is the binary XOR operation. The simulation process and its results 
are illustrated in Figs. 3 and 4, and the performance comparison in terms of RSD  is 
listed in Table 1.  

Fig. 3 shows results of an experiment on a binary image for an object with bound-
ary concavities. Points of the greedy snake failed to proceed into the concave parts of 
the object's contour, Fig. 3 (a), but in our proposed algorithm the snake points con-
verged better onto boundary concavities, Fig. 3 (b)-(d). Fig. 3(b) shows the result of 
the first iteration of point insertion and convergence. Results of the second and third 
iteration are shown in Fig. 3 (c) and (d), respectively. Convergence results improve as 
more points are inserted.    

Fig. 4 shows results of an experiment on a binary image for an object with a gourd-
shaped concavity. The greedy snake could not detect the boundary of the object, Fig. 4 
(a), and the GVF snake points failed to proceed beyond the neck of the gourd, Fig. 4 (b). 
With our proposed algorithm the snake points converged better onto the boundary con-
cavity in only four iterations, Fig. 4 (c). Fig. 4 (d) shows the results for our proposed 
algorithm on an ordinary image. We performed an additional test involving our algo-
rithm and the GVF snake on an MR image of the left ventricle of a human heart as 
shown in Fig. 5. Both snakes were initialized inside of the object (ventricle). Our algo-
rithm performed a complete segmentation, Fig. 5 (b), while the GVF segmented the left 
side only. The GVF snake can segment the whole ventricle only if it were initialized in 
the space between the papillary muscles (the bumps that protrude into the cavity).  

 

(a) (b)

(c) (d)  
Fig. 4. Results of experiment on the gourd-shaped object. (a) Greedy snake, (b) GVF snake, (c) 
and (d) Proposed algorithm. 
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(a) (b)  
Fig. 5. Results of experiment on the image of human heart ( 5.2=σ ) 

Fig. 6 shows the relationship between the number of initial snake points and the 
number of iterations. When the snake is initialized with a sufficient number of points, 
convergence is achieved with less iterations and point insertion.  However, a snake 
that is initialized with a few number of points, requires an increased number of itera-
tions with point insertions.  The conventional methods in [3] and [4] do not optimize 
the number of snake points, and thus can not handle boundary concavities which 
require more snake points. 

Performance comparison between the proposed algorithm and the conventional al-
gorithm in terms of RSD is summarized in Table 1. Table 2 summarizes the results 
shown in Fig. 6, and gives performance measures in terms of RSD. 

 

(a) (b)

(c) (d)  

Fig. 6. Results of experiment on the relations between the number of initial snake points and 
the number of iterations 
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Table 1. Performace comparison in terms of RSD 

Results of Fig. 4  

(a) Greedy 
snake 

(b) GVF snake 
(c) Proposed 
algorithm 

RSD 
(5839/15143) 

0.385 
(3880/15143) 

0.256 
(128/15143) 

0.008 

Table 2. Performance comparison in terms of RSD 

 
Number  

of initial  
snake points 

Number  
of iterations 
(insertion & 
deletion) 

Final  
number of  
snake points

RSD 

(a) 7 4 55 
(459/25907) 

0.017 

(b) 14 3 58 
(473/25907) 

0.018 

(c) 28 2 56 
(311/25907) 

0.012 

(d) 56 1 43 
(288/25907) 

0.011 

5   Conclusions 

In this paper, we have presented a new snake-based segmentation algorithm for ob-
jects with boundary concavities. Our algorithm extends and improves the conven-
tional snake model. The developed algorithm was tested and showed successful re-
sults in extracting objects with boundary concavities.  

In the proposed new snake algorithm, the movement of snake points is determined 
using the sign of the cross product of the tangent and normal vectors. In addition, we 
proposed a method for optimizing the number of snake points to better describe the 
object's boundary. In consequence, we can solve the problem which occurs with 
gourd-shaped boundary concavities. Performance has been evaluated by running a set 
of experiments using 2D image data having objects with varying degrees of boundary 
concavity. When compared with conventional snake algorithms, our method has 
shown a superior object segmentation capability in terms of accuracy. Further re-
search work is being considered to follow up from object segmentation to object 
tracking in video sequences.  
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Graph-Based Spatio-temporal Region Extraction
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Abstract. Motion-based segmentation is traditionally used for video
object extraction. Objects are detected as groups of significant mov-
ing regions and tracked through the sequence. However, this approach
presents difficulties for video shots that contain both static and dynamic
moments, and detection is prone to fail in absence of motion. In addition,
retrieval of static contents is needed for high-level descriptions.

In this paper, we present a new graph-based approach to extract
spatio-temporal regions. The method performs iteratively on pairs of
frames through a hierarchical merging process. Spatial merging is first
performed to build spatial atomic regions, based on color similarities.
Then, we propose a new matching procedure for the temporal grouping
of both static and moving regions. A feature point tracking stage allows
to create dynamic temporal edges between frames and group strongly
connected regions. Space-time constraints are then applied to merge the
main static regions and a region graph matching stage completes the pro-
cedure to reach high temporal coherence. Finally, we show the potential
of our method for the segmentation of real moving video sequences.

1 Introduction

Multimedia technologies are becoming important in many aspects of our nowa-
day lives. Processing of huge amount of raw data requires efficient methods to
extract video contents. Achieving content-based functionnalities, such as search
and manipulation of objects, semantic description of scenes, detection of un-
usual events, and recognition of objects has driven intensive research over the
past years. To exploit video contents, shots must be decomposed into meaningful
objects which are composed of space time regions. This process is called video
indexing.

Unsurpervised extraction of video objects is generally based intensively on mo-
tion information. Two strategies are generally adopted. The first one searches
for homogeneous colored or textured regions, and then groups the regions that
undergo similar motion [1]. The second strategy performs motion estimation to
yield coherent moving regions, then groups adjacent regions basing on color cues
[2]. Sophisticated methods use robust motion estimation to deal with multiple ob-
jects and motion. However, tracking becomes difficult in case of non-rigid or fast
motion, and the apparition and disappearance of new object models cannot be

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 236–247, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Spatial
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Feature Point
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RAG

Matching

t=0 t=1 t=Nt=2

t=1 t>1

Fig. 1. Scheme of the overall segmentation process

integrated easily. To overcome these problems, two alternative approaches have
been proposed, spatio-temporal segmentation and graph-based region merging.

The first category searches for meaningful volumes inside a block of frames to
improve temporal coherence. A feature clustering approach is described in [3].
Elementary objects are represented as color patches with linear motion, called
video strands. Space-time features describing color, position, and dynamics are
extracted for each pixel. Therefore, video shot can be mapped to a 7D feature
space representative of the strands. A hierarchical mean-shift technique is then
employed to cluster pixels and build object hierarchy jointly. A probabilistic
representation scheme is proposed in [4]. The video sequence is modeled by a
succession of spatial gaussian mixture models (GMM). GMMs are initialized
via EM algorithm in the first frame, then are updated on subsequent frames.
Appearance of new objects is handled by thresholding a likelihood map and
creating new models from unlabeled connected pixels. This allows the method
to track coherent regions with complex motion patterns.

These spatio-temporal approaches are robust at the expense of memory band-
with and computational cost when the shot duration becomes important. In re-
gion merging approaches, the segmentation is first initialized on each frame from
an image segmentation technique. Popular algorithms are derived from water-
sheds [5] or color quantization [6] and yield to segments with small color varia-
tions. Spatial and temporal merging are then achieved by labeling or matching.

Unlike pixel-based approaches, region-based graphs use more reliable region
information and allow to represent various relationships between regions. In [7],
a set of spatial region adjacency graphs (RAG) is built from a shot section, and
then the optimal partition of the whole graph is found according to a global
cut criterion. However, the method suffers from the instability of image segmen-
tation on different frames. To make matching easier, Gomila et al. [8] reduce
the difference between consecutive RAGs by a region splitting process. For each
frame, a hierarchy of segmentations is generated through a multiscale image seg-
mentation method. Closer RAGs are then built by checking if missing regions
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are edited in the decomposition. Then, the graphs are iteratively merged using
a relaxation technique.

The proposed approach is closely related to both space-time and graph-based
region-merging. It aims at decomposing video shots into spatio-temporal regions.
Unlike other methods, we give particular attention to the stability of the pro-
jected spatial segmentation for both static and moving regions, in prospect of
object detection and region-based shot representation. This paper is organized
as follows. Section 2 provides an overview of the proposed algorithm and moti-
vations for our approach. Section 3 introduces the efficient graph-based merging
algorithm used at different stages of the process. In section 4, we describe the
temporal merging procedure. Finally, experimental results illustrate the appli-
cation of our algorithm to real video sequences in section 5.

2 Overview of the Proposed Approach

Extraction of space-time regions can be difficult when video objects show strong
variations in color, texture or motion. Unfortunately, these features are common
in real video sequences. In this work, we design an incremental scheme to reduce
the complexity of region grouping and matching tasks.

A block diagram of our system is shown figure 1. The segmentation is ini-
tialized on the first frame of the shot from coherent spatial regions and defines
the spatial level of details of the segmentation. A graph-based segmentation al-
gorithm is used for this purpose. Then, the method iteratively processes frame
pairs. The regions are grouped temporally in three steps. The first stage builds
slightly oversegmented spatial regions in the new frame, so that these new regions
corresponds to a partition of the previous segmentation. Instead of using motion
compensation, we track a population of feature points to create dynamic tem-
poral edges between regions. This allows us to group with high confidence static
and moving regions that are strongly connected. We then complete the temporal
linkage of static regions using local edges, under space-time merging constraints.
At this stage, the segmentation maps become close and region neighborhoods can
be compared. Finally, we test the validity of new regions by comparing locally
RAGs between frame pairs.

With this design, we achieve incremental merging with strong rules, reaching
progressively temporal coherence for various region types.

3 Spatial Merging

In this section, we present the efficient graph segmentation algorithm introduced
in [9]. Then we describe how we apply it to initialize regions and how we adapt
it for partial segmentation of new frames.

3.1 Efficient Graph Based Segmentation

Let G = {V,E} be a weighted undirected graph. Each vertex is a pixel. The al-
gorithm aims to decompose G into a partition S = {C1, C2, . . . , Ck} of G, where
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each component is a minimum spanning tree (MST). The procedure is similar to
Kruskal’s algorithm, with addition to a merging criterion to limit the grouping
of components. At each step, two components are merged if the minimum edge
connecting them is weaker than the maximum edges of the components plus a
tolerance depending on the component size. Therefore, fewer merge are done
when the region size increases. Thanks to the adaptive rule, the algorithm is
sensitive in areas of low variability whereas it remains stable in areas of high
variability preserving both local and global properties.

We apply this algorithm to segment the first image by building the graph on
a pixel grid, so that the algorithm is fast and subgraphs correspond to spatially
connected regions. In the experiments, the weights are built using color distance.

3.2 Edge Constrained Segmentation

Using directly the procedure described in 3.1 to initialize regions in any frame
does not work, since the segmentation may differ substantially from one frame
to another. To avoid resegmentation, we adapt the method so that St is over-
segmented compared with St−1. To this aim, we use an edge detection map Ct

to discard possible region boundaries from the merge. Thus, the propagation is
done in areas of low-variability, resulting in more homogeneous components.

Edge-constrained segmentation and original image segmentation can be com-
pared in figure 2. We can see that the constrained method (c) results in a decom-
position, or oversegmentation of the unconstrained one (b). In addition, since
we use Canny detection, edges with local intensity variations are also pruned so
that the components are more homogeneous.

(a) (b) (c)

Fig. 2. (a) Input Image. (b) Unconstrained image segmentation used as initialisation.
(c) Edge-constrained initialisation of the new regions.

4 Temporal Grouping

In this section, we first describe the temporal grouping of regions based on
dense feature points and space-time constraints. Then, we show how RAGS are
employed to check efficiently the stability of the regions.

4.1 Feature Point Matching

The regions in the previous segmentation St−1 have various shape, size and
possibly non-rigid motion. In addition, regions might be partially occluded in
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the new frame, so that one region can have several matches in the next frame.
In this case, traditional motion compensation cannot be used. Our solution is
to group new oversegmented regions by spreading a population of feature point
trackers Pf . In this way, no hypothesis is made on motion models and we avoid
optical flow computation on full regions.

Feature point trackers have been proposed by Tomasi et al. [10]. Good feature
points are extracted from corners or textured regions. However, these points are
likely to correspond to region borders, thus hampering the matching between
regions. Therefore, we rather consider flat points that we can expect to lie reliably
inside regions, at the expense of motion precision. Feature points are then tracked
using a block matching algorithm. Figure 3 shows typical feature point detection
and tracking. We can see that feature points are concentrated in homogeneous
areas (fig. 3a). Even if some tracked points are inaccurate (fig. 3b), they can
be considered as outliers in the statistical distribution of the points. We explain
how we use these points for region grouping in the next section.

(a)

(b)

Fig. 3. (a) Distribution of feature point matches. (b) Feature points inside the racket.
Arrows represent the estimated displacement.

4.2 Region Grouping with Feature Points

Feature points matches described in the previous section can be viewed as po-
tential inter-frame edges between pair of regions. We construct a 3D graph
GT = {VT , ET } between two consecutive frames. The node set ET contains
two subsets of regions A and B generated from St−1 and St. The edge set con-
tains inter-frame arcs generated from feature point pairs. Due to possible high
variations (section 4.1), grouping based on single linkage will no be relevant. We
consider instead robust grouping analysing statistical properties of connections
between subsets A and B.

The procedure (fig.4) is based on a sequence of tests. We first simplify the
graph and prune weak connections between A and B with the Mstrong test.
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Fig. 4. The temporal region grouping scheme. Feature points are first detected and
matched. Then, the temporal merging of strongly connected regions is performed using
a hierarchy of tests.

Second and third tests (Mmov and Mcoh) verify if region couples undergo signifi-
cant and similar motion. This helps to detect potential splitting regions. Finally,
we further check the homogeneity of region couples (Mdense) for static regions.
Denote by a ∈ A and b ∈ B two candidate regions for grouping.

Mstrong: Two regions a and b are strongly connected if there is a significant
proportion of arcs linking a to b. Formally, we compare the cut between a and b
to the degrees of a and b. The test is accepted if :

cut(a, b) > αmin deg(a), deg(b) (1)

α is fixed to α = 0.5 in our experiments. In other words, if edges are given equal
weights, the test is verified when at least half edges of either a or b connects
a to b. Once all regions have been tested, weak edges that do not satisfy the
condition are pruned.

Mmov: From the displacement of feature points, we deduce information on region
motion. For this purpose, we map the points to a velocity space D = [dn, βdθ]
where dn is the displacement norm and dθ is the motion orientation. β controls
the influence of orientation information with respect to motion speed. In case
that there is substantial background or camera motion, the displacements are
compensated with the mean velocity of the complete set of points. The test
separates moving regions from static regions. The moving condition is given by

dn(a) > dmov (2)
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where dmov is a minimum substantial displacement. Default value is dmov = 3
in all our experiments.

Mcoh: If a and b are moving regions, they must undergo coherent motion to be
grouped. A simple measure is to compare the variance of the velocity distribu-
tions of a, b and a ∪ b. The test Mcoh(a, b) is given by

tr(Ca∪b) < γ(tr(Ca) + tr(Cb)) (3)

where Ca denotes the covariance matrix of the velocity points of a. The test
favors the creation of new moving regions in St when one region in St−1 is
matched to ones with different motions. In this way, we handle apparition of
new moving regions.

Mdense: When either region has no motion, we further check if they have compa-
rable homogeneity. We characterise this feature by the density of feature points
between regions, since each point corresponds to a local maximum of homogene-
ity. The density ηa of one region a is estimated by

fa =
card(a× VT )

size(a)
(4)

As the density is variable over the regions, we use a statistical proportion test
for that purpose. Let’s consider two parent populations Pa and Pb representing
space-time regions and their final proportion of points pa and pb. a and b are
samples drawn from Pi and Pj . fa and fb are estimations of pa and pb.

We consider the following hypotheses

H0 : pa = pb

H1 : pa �= pb (5)

Assuming normal laws for Pa and Pb , it is possible to check if we can accept
H0 with a significance level α [11].

At the end of the process, temporal grouping has been performed reliably on
homogeneous moving regions. To group more textured areas on the sequence,
the population of seed points will be increased inside regions finally created in
St, i.e. if they have not been matched in St−1. In this way, the tracked points
will focus progressively on the regions of interest.

4.3 Grid-Based Space-Time Merging

We complete the segmentation St by a space-time merging technique applied
on the unmatched regions. The method is an adaptation of the efficient graph
algorithm discussed in section 3.2 for grouping components spatially and tem-
porally. We construct a space-time pixel grid on a 3D volume bounded by two
successive frames. As in [9] each component Ci is characterized by its internal
variation, which represents a p-quantile of the weight distribution of the edges
inside Ci. However, this turns out to be too complex in practice and we use the
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mean weight μi of Ci as a measurement. When comparing two components Ci

and Cj , a new space-time merging rule is applied to examine both local and
global properties of the grouping:

‖μi − μj‖ < τG and max(WL) < τL (6)

where

τG = max(TG, pG min(μi, μj)) (7)
τL = min(TL, μi) (8)

τL and τG are local and global adaptive thresholds. Default parameters are TG =
10, pg = 0.3, TL = 5 in all experiments. For local properties, we define a four
edge neighborhood WL (fig. 5a). The neighborhood is considered as homogeneous
if the maximum weight is weak compared to the variability μi and TL. Small
values of TL limit grouping in inhomogeneous areas. In this way, we do not merge
component from edges with high variability. For global properties, we check if the
components have similar homogeneity. For regions with strong homogeneity, we
consider directly the distance between μi and μj . For more variable components,
a tolerance pg is accepted on the relative error between μi and μj . Small values
of TG and pg limit the temporal variation of the components.

Thus, by combining these two aspects, the merging occurs in space-time areas
of low local variability on globally coherent components.

w
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Fig. 5. Space-time grid based merging and local neighborhood WL

4.4 Subgraph Matching

The last step in the process is to confirm the creation of new regions by analysing
region neighborhoods at time t−1 and t. Thanks to the previous merging steps,
segmentations St and St−1 are sufficiently close to be compared. We consider, as
in section 4.2, a 3D graph on a volume bounded by two successive frames. The
graph contains region adjacency graphs (RAG) Rt−1 from St−1 and Rt from
St. It also includes inter-frame edges corresponding to the temporal grouping of
regions. For each node v in Rt, we define its neigborhood subgraph GN

t (v) as
the smallest subgraph containing all its adjacent nodes u ∈ Rt. Let vn be a node
from a new region in Rt and u ∈ GN

t (vn) connected to a node u′ ∈ Rt−1. Let
consider a distance measure d(u, v) between two nodes. We denote by u′′ a node
in GN

t (u′). u′′ and vn are matched temporally if

d(u′′, vn) < min
z∈GN

t−1
(u′′)

d(u′′, z) (9)
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Fig. 6. Neighborhood subgraphs for matching new nodes vn. For each node u ∈
GN

t (vn), the neigborhood of u in RAGt−1, GN
t−1(u′) is examined. Lost nodes u′′ are

then retrieved by comparing vn to adjacent nodes of u′′ in GN
t−1(u′′).

Equation 9 checks if an untracked node in Rt−1 can be matched with a new
node in Rt in the proximate neighborhood (fig. 6). In this way, lost objects can
be recovered in case of fast motion or homogeneity changes. For the distance
measure, the node attributes represent dominant color (c) and size (s) of the
regions. For two nodes u and v, the distance is given by

(a)

(b)

Fig. 7. Subgraph matching. Untracked nodes are shown as green (clear) rounds, tracked
nodes as dark (blue) rounds and new nodes as (red) squares. (a) RAGs before matching.
(b) RAGs after matching.
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d(u, v) = |cu − cv|2 susv

su + sv
(10)

Thus, we favor the grouping of smaller regions with similar attributes.
An example of matching is shown figure 7 on the tennis sequence. Before

matching (fig. 7a), untracked regions are located in the racket and the table left
corner. The new regions are located above the ball and inside the racket border.
After matching (fig. 7b), the nodes at the racket border have been grouped as
they have close similarity, whereas the table left corner is not linked to any new
node and thus cannot be reliably tracked.

5 Experimental Results

In this section, we test the proposed method on various real video sequences.
We analyse the segmentation results on the akiyo, tennis, and walking sequences
(CIF format). The processing time is about 1s per frame on a 2.8GHz PC with
unoptimized code.

Figure 8 shows the final spatio-temporal segmentation, i.e. when all the frames
have been processed. In figure 8a, the video is composed of stationary back-
ground and slow head motion. We see that the main regions are the woman

a)

#0 #25 #50 #75 #100

b)

#17 #23 #26 #31 #51 #60

c)

#0 #15 #30 #45 #60 #70

Fig. 8. Segmentation results. a) akiyo sequence. b) tennis sequence. c) walking se-
quence.
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and the TV screens which have smooth spatial variations whereas tiny varying
components such as face elements are not kept. In the next images, face moving
elements are detected, but they are too tiny to be extracted from the sequence.
In consequence, these elements are incorporated into the face.

In figure 8b, the video is composed of several motions. The ball and the racket
undergo rigid motion whereas the player undergoes non rigid-motion. Besides
theses motions, the camera is zooming out during the entire sequence. We see
that the ball region remains until it hits the racket in frame #26. As the ball was
speeding up in previous frames, the ball and its shadow were splitted into two
adjacent regions. The similarity between these regions is lower than their tem-
poral similarity with the new ball region, so that a new region is created for the
ball. The ball is tracked successfully until frame #31. From this moment on, the
camera quickly zooms out and the ball becomes smaller and less homogeneous.
As a result, the ball sometimes does not appear after the spatial merging stage.
However, the other regions, which are larger and more stable, such as the table,
the racket and the hand are correctly segmented during the whole sequence.
Finally, we can see that a strong scale change happens gradually between frame
#31 and frame #60. While the player is appearing progressively at the left of
the image, the corresponding regions are splitted until fitting the body of the
player. In this way, the segmentation follows the temporal changes of the video.

In the last sequence (8c), the camera is tracking the walking man so that
the walls surrounding him are moving towards the foreground and exiting the
frame progressively. In the first frame #0, the regions are composed of the man,
the tiled floor, the walls, the ceiling and the lamps. The man region remains
consistent along the sequence, just as the different parts of the walls and the
lights until they exit the frame. We can further notice that apparent static
regions such as the floor and the ceiling are coherent in the entire sequence.

These results illustrate the potential of the method to extract coherent vol-
umes from video shots. Given a level of details, both moving and static elements
can be tracked thanks to our hierarchical matching stage. Besides, we handle
dynamic temporal changes by favoring the creation of new regions when some
regions cannot be reliably matched between frame pairs. In this way, we achieve
good compromise between the span and the consistency of the regions. Therefore,
the method can help higher level grouping tasks considerably.

6 Conclusion

We have proposed a new method for extracting meaningful regions from videos.
Graphs appear as an efficient solution to build space-time relationships at dif-
ferent levels. We have used both pixel-based graphs to build low-level regions
and RAGs to enforce consistency of the regions. We have proposed a temporal
grouping method exploiting feature points to handle both static and dynamic
regions. Finally, encouraging results show that the method is promising as a
preliminary step for object-based video indexing and retrieval.
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Abstract. In spite of significant advances in image segmentation tech-
niques, evaluation of these methods thus far has been largely subjective.
Typically, the effectiveness of a new algorithm is demonstrated only by
the presentation of a few segmented images that are evaluated by some
method, or it is otherwise left to subjective evaluation by the reader. We
propose a new approach for evaluation of segmentation that takes into
account not only the accuracy of the boundary localization of the cre-
ated segments but also the under-segmentation and over-segmentation
effects, regardless to the number of regions in each partition. In addi-
tion, it takes into account the way humans perceive visual information.
This new metric can be applied both to automatically provide a ranking
among different segmentation algorithms and to find an optimal set of
input parameters of a given algorithm.

1 Introduction

In a conventional sense, image segmentation is the partitioning of an image into
regions, where parts within a region are similar according to some uniformity
predicate, and dissimilar between neighbouring regions. Due to its importance,
many segmentation algorithms have been proposed, and a number of evaluation
criteria have also been proposed. In spite of this, very few comparative studies
on the methods used for evaluation have been published [14].

Typically, researchers show their segmentation results on a few images and
point out why the results ’look good’. We never know from such studies if the
results are good or typical examples. Since none of the proposed segmentation
algorithms are generally applicable to all images, and different algorithms are not
equally suitable for a particular application, there needs to be a way of comparing
them, so that the better ones can be selected. The majority of studies proposing
and comparing segmentation methods evaluate the results only with one evalu-
ation method. However, results vary significantly between different evaluators,
because each evaluator may have distinct standards for measuring the quality of
the segmentation.

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 248–259, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Only a few evaluation methods actually explore the segments obtained from
the segmentation process. Most measures are best suited to evaluate edge de-
tection [12], working directly on the binary image of the regions’ boundaries [3].
Although we can always treat segmentation as a boundary map, the problem is
in the simplified use of the edge map, as simply counting the misclassified pixels,
on an edge/non-edge basis. Pixels on different sides of an edge are different in
the sense that they belong to different regions - that is why it may be more
reasonable to use the segmentation partition itself.

Evaluation of image segmentation differs considerably from the binary fore-
ground/background segmentation evaluation problem examined in [3,13], in that
the correctness of the two class boundary localization is not the only quantity to
be measured. This derives from the presence of an arbitrary number of regions
in both the reference segmentation and the segmentation to be evaluated.

An evaluation metric is desired to take into account the following effects:

– Over-segmentation. A region of the reference is represented by two or
more regions in the examined segmentation.

– Under-segmentation. Two or more regions of the reference are represented
by a single region in the examined segmentation.

– Inaccurate boundary localization. Ground truth is usually produced by
humans that segment at different granularities.

– Different number of segments. We need to be able to compare two
segmentations when they have different numbers of segments.

Under-segmentation is considered to be as a much more serious problem
as it is easier to recover true segments through a merging process after over-
segmentation rather than trying to split an heterogeneous region. One desirable
property of a good evaluation measure is to accommodate refinement only in
regions that human segmenters could find ambiguous and to penalize differences
in refinements elsewhere. In addition to being tolerant to refinement, any evalua-
tion measure should also be robust to noise along region boundaries and tolerant
to different number of segments in each partition.

This work will focus on discrepancy evaluation methods, that consist in com-
paring the results of a segmentation algorithm with a reference and measuring
the differences or discrepancy between them. We introduce a new approach for
segmentation evaluation that takes into account, using a single metric, not only
the accuracy of the boundary localization of the created segments but also the
under-segmentation and over-segmentation effects, regardless to the number of
regions in each partition. In addition, it takes into account the way humans
perceive visual information, given different weights to false positive and false
negative pixels. In order to test the accuracy of the proposed measure we com-
pared it with a set of key methods used for the evaluation of image segmentation
using real and synthetic images.

The remainder of this paper is organized as follows: in Section 2, previous
segmentation evaluation methods are presented. In Sections 3 and 4, we present
region-based and boundary-based evaluation methods currently in literature.
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The proposed metric for evaluation is presented in Section 5. In Section 6, ex-
perimental evaluation is analysed and discussed, and, finally, conclusions are
drawn in Section 7.

2 Previous Work

A review on evaluation of image segmentation is presented by Zhang in [14],
who classifies the methods into three categories: analytical, where performance
is judged not on the output of the segmentation method but on the basis of their
properties, principles, complexity, requirements and so forth, without reference
to a concrete implementation of the algorithm or test data. While in domains
such as edge detection this may be useful, in general the lack of a general theory
of image segmentation limits these methods; empirical goodness methods, which
compute some manner of ’goodness’ metric such as uniformity within regions [3],
contrast between regions [4], shape of segmented regions [12]; and finally, empir-
ical discrepancy methods, which evaluate segmentation algorithms by comparing
the segmented image against a manually-segmented reference image, which is
often referred to as ground truth, and computes error measures.

As stated by Zhang [14], the major difficulty in applying analytical methods
is the lack of general theory for image segmentation. The analytical methods
may only be useful for simple algorithms or straightforward segmentation prob-
lems, where the researchers have to be confident in the models on which these
algorithms are based.

Empirical goodness methods have the advantage that they do not require
manually segmented images to be supplied as ground truth data. The great
disadvantage is that the goodness metrics are at best heuristics, and may exhibit
strong bias towards a particular algorithm. For example the intra-region grey-
level uniformity metric will assume that a well-segmented image region should
have low variance of grey-level. This will cause that any segmentation algorithm
which forms regions of uniform texture to be evaluated poorly. Although these
evaluation methods can be very useful in some applications, their results do not
necessarily coincide with the human perception of the goodness of segmentation.
For this reason, when a reference image is available or can be generated, empirical
discrepancy methods are preferred.

Empirical discrepancy methods, which compare segmentation output with
ground truth segmentation of the test data and quantify the levels of agree-
ment and/or disagreement, have the benefit that the direct comparison between
a segmented image and a reference image is believed to provide a finer resolu-
tion of evaluation, and as such, they are the most commonly used methods of
segmentation evaluation.

Zhang [14] has proposed a discrepancy evaluation method based on misclas-
sified pixels. Yasnoff et al. [13], in one of the earliest attempts, have shown that
measuring the discrepancy based only on the number of misclassified pixels does
not consider the pixel position error. Their solution is based on the number of
misclassified pixels and their distance to the nearest correctly segmented pixels.
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They only applied it to foreground/background segmentation. Other discrep-
ancy measures calculate the distances between wrong segmented pixels and the
nearest correctly segmented pixels [8], thus introducing a spatial component to
the measure, or are based on differences between feature values measured from
regions of the correctly segmented and output images. Huang and Dom [3] in-
troduced the concept of distance distribution signatures.

3 Region-Based Evaluation

The region-based scheme evaluates the segmentation accuracy in the number
of regions, the locations and the sizes. A region-based evaluation between two
segmented images can be defined as the total amount of differences between
corresponding regions.

3.1 Hamming Distance

Huang and Dom [3] introduced the concept of directional Hamming distance
between two segmentations, denoted by DH (S1 ⇒ S2). Let S and R be two seg-
mentations. They began by establishing the correpondence between each region
of S with a region of R such that si∩rj is maximized. The directional Hamming
distance from S to R is defined as:

DH (S ⇒ R) =
∑

ri∈R

∑
sk �=sj ,sk∩ri �=0

|ri ∩ sk| , (1)

where |·| denote the size of a set. Therefore, DH (S ⇒ R) is the total area under
the intersections between all ri ∈ R and their non-maximal intersected regions
from S. A region-based evaluation measure based on normalized Hamming dis-
tance is defined as

p = 1− DH (S ⇒ R) + DH (R⇒ S)
2× |S| , (2)

where |S| is the image size and p ∈ [0, 1]. The smaller the degree of mismatch,
the closer the p is to one.

3.2 Local Consistency Error

To compensate for the difference in granularity while comparing segmentations,
many measures allow label refinement uniformly through the image. D. Martin’s
thesis [6] proposed an error measure to quantify the consistency between image
segmentations of differing granularities - Local Consistency Error (LCE) that
allows labelling refinement between segmentation and ground truth.

LCE (S,R, pi) =
1
N

∑
i

min {E (S,R, pi) , E (R,S, pi)} , (3)

where E (S,R, p) measures the degree to which two segmentations agree at pixel
p, and N is the size of region where pixel p belongs.
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Note that the LCE is an error measure, with a score 0 meaning no error and
a score 1 meaning maximum error. Since LCE is tolerant to refinement, it is
only meaningful if the two segmentations have similar number of segments. As
observed by Martin in [6], there are two segmentations that give zero error for
LCE - one pixel per segment, and one segment for the whole image.

3.3 Bidirectional Consistency Error

To overcome the problem of degenerate segmentations, Martin adapted the LCE
formula and proposed a measure that penalizes dissimilarity between segmen-
tations proportional to the degree of region overlap. If we replace the pixelwise
minimum with a maximum, we get a measure that does not tolerate refinement
at all. The Bidirectional Consistency Error (BCE) is defined as:

BCE (S,R, pi) =
1
N

∑
i

max {E (S,R, pi) , E (R,S, pi)} . (4)

3.4 Partition Distance Measure

Cardoso and Corte-Real [1] proposed a new discrepancy measure - partition
distance (dsym) defined as: ”given two partitions P and Q of S, the partition
distance is the minimum number of elements that must be deleted from S, so
that the two induced partitions (P and Q restricted to the remaining elements)
are identical”. dsym (Q,P ) = 0 means that no points need to be removed from
S to make the partitions equal, i.e., when Q = P .

4 Boundary-Based Evaluation

Boundary-based approach evaluates segmentation in terms of both localization
and shape accuracy of extracted regions boundaries.

4.1 Distance Distribution Signatures

Huang and Dom in [3] presented a boundary performance evaluation scheme
based on the distance between distribution signatures that represent boundary
points of two segmentation masks.

Let BS represent the boundary point set derived from the segmentation and
BR the boundary ground truth. A distance distribution signature from the set
BS to the set BR of boundary points, denoted DB (Bs, BR), is a discrete function
whose distribution characterizes the discrepancy, measure in distance, from BS

to BR. Define the distance from x in set BS to BR as the minimum absolute
distance from all the points in BR, d (x,BR) = min {dE (x, y)} , ∀y ∈ BR, where
dE denotes the Euclidean distance between points x and y.

The discrepancy between BS and BR is described by the shape of the signa-
ture, which is commonly measured by its mean and standard deviation. As a rule,
DB (Bs, BR) with a near-zero mean and a small standard deviation indicates
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high between segmentation masks. Since these measures are not normalized, we
cannot determine which segmentation is the most desirable.

We introduce a modification to the distance distribution signature of Huang
and Dom, in order to normalize the result between 0 and 1. Doing d (x,BR) =
min {dE (x, y) , c}, where the c value sets an upper limit for the error, the two
boundary distances could be combined in a framework similar to the one pre-
sented in Eq. (2):

b = 1− DB (BS , BR) + DB (BR, BS)
c× (|R|+ |S|) , (5)

where |R| and |S| are the number of boundary points in reference mask and
segmented mask, respectively.

4.2 Precision-Recall Measures

Martin in his thesis [6], propose the use of precision and recall values to char-
acterize the agreement between the oriented boundary edge elements (termed
edgels) of region boundaries of two segmentations. Given two segmentations, S
and R, where S is the result of segmentation and R is the ground truth, precision
is proportional to the fraction of edgels from S that matches with the ground
truth R, and recall is proportional to the fraction of edgels from R for which a
suitable match was found in S. Precision measure is defined as follows:

Precision =
Matched (S,R)

|S| Recall =
Matched (R,S)

|R| , (6)

where |S| and |R| are the total amount of boundary pixels. In probabilistic terms,
precision is the probability that the result is valid, and recall is the probability
that the ground truth data was detected.

A low recall value is typically the result of under-segmentation and indicates
failure to capture salient image structure. Precision is low when there is signifi-
cant over-segmentation, or when a large number of boundary pixels have greater
localization errors than some threshold δmax.

Precision and recall measures have been used in the information retrieval
systems for a long time [10]. However, the interpretation of the precision and
recall for evaluation of segmentation are a little different from the evaluation of
retrieval systems. In retrieval, the aim is to get a high precision for all values of
recall. However in image segmentation, the aim is to get both high precision and
high recall. The two statistics may be distilled into a single figure of merit:

F =
PR

αR + (1− α)P
, (7)

where α determines the relative importance of each term. Following [6], α is
selected as 0.5, expressing no preference for either.

The main advantage of using precision and recall for the evaluation of seg-
mentation results is that we can compare not only the segmentations produced
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by different algorithms, but also the results produced by the same algorithm
using different input parameters. However, since these measures are not toler-
ant to refinement, it is possible for two segmentations that are perfect mutual
refinements of each other to have very low precision and recall scores.

4.3 Earth Mover’s Distance

The concept of using the Earth Mover’s Distance (EMD) to measure perceptual
similarity between images was first explored by Peleg et al. in [9] for the purpose
of measuring distance between two grey-scale images. More recently EMD has
been used for image retrieval [11].

EMD evaluates dissimilarity between two distributions or signatures in some
feature space where a distance measure between single features is given. The
EMD between two distributions is given by the minimal sum of costs incurred
to move all the individual points between the signatures.

Let P = {(p1, wp1
) , ..., (pm, wpm)} be the first signature with m pixels, where

pi is the pixel representative and wpi is the weight of the pixel; the second
signature with n pixels is represented by Q = {(q1, wq1

) , ..., (qn, wqn)}; and D =
[dij ] the distance matrix where dij is the distance between two contour points’
image coordinates pi and qj . The flow fij is the amount of weight moved from
pi to qj . The EMD is defined as the work normalized by the total flow fij , that
minimizes the overall cost:

EMD (P,Q) =

∑
i

∑
j

fijdij∑
i

∑
j

fij
, (8)

As pointed by Rubner et al [11], if two weighted point sets have unequal total
weights, EMD is not a true metric. It is desirable for robust matching to allow
point sets with varying total weights and cardinalities. In order to embed two
sets of contour features with different total weights, we simulate equal weights
by adding the appropriate number of points, to the lower weight set, with a
penalty of maximal distance. Since normalizing signatures, with the same total
weight do not affect their EMD, we made

∑
i,j fij = 1. Equation (8) becomes,

EMD (P,Q) =
∑

i

∑
j

fijdij , (9)

subject to the following constraints: fij ≥ 0,
∑

j fij = wpi and
∑

i fij = wqj .
As a measure of distance for the EMD ground distance we use

dij = 1− e−
‖pi−qj‖

α , (10)

where ‖pi − qj‖ is the Euclidean distance between pi and qj and α is used in
order to accept some deformation resulted from manual segmentation of ground
truth. The exponential map limits the effect of large distances, which otherwise
dominate the result.
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5 New Discrepancy Measure

In the context of image segmentation, the reference mask is generally produced
by humans. There is an agreement that interpretations of images by human sub-
jects differ in granularity of label assignments, but they are consistent if refine-
ments of segments are admissible [6]. One desirable property of a good evaluation
measure is to accommodate refinement only in regions that human segmenters
could find ambiguous and to penalize differences in refinements elsewhere. In
addition to being tolerant to refinement, any evaluation measure should also be
robust to noise along region boundaries and tolerant to different number of seg-
ments in each partition. The section introduces a new evaluation measure that
addresses the above concerns.

For the purpose of evaluating image segmentation results, a correspondence
between the examined segmentation mask, S, and the reference mask, R, has
initially be established, indicating which region of S better represents each ref-
erence region. This is performed by associating each region ri of mask R with a
different region sj of mask S on the basis of region overlapping, i.e. sj is chosen
so that ri∩sj is maximized. The set of pixels assigned to sj but not belonging to
ri are false positives, Fp, that can be expressed as Fp = sj ∩ ri, where ri denotes
the complement of ri. The pixels belonging to ri but not assigned to sj are false
negatives, Fn, and can be expressed as Fn = sj ∩ ri.

The minimum required overlap between ri and sj is 50% of the reference
region. Pixels belonging to regions where this ratio is not achieved are consid-
ered as false pixels. These measure quantify the errors due to under and over
segmentation. Clearly, more visually significant regions that were missed in the
segmented mask are assigned a significantly higher error.

The normalized sum of false detections is an objective discrepancy measure
that quantifies the deviation of the results of segmentation from the ground truth
and can be expressed as:

εF =
Fp + Fn

2N
, (11)

where N is the set of all pixels in the image. The value of εF is proportional
to the total amount of errors and indicates the accuracy of region boundaries
localization. The quality of the segmentation is inversely proportional to the
amount of deviation between the two masks.

In applications where the final evaluator of quality is the human being, it is
fundamental to consider human perception to deal with the fact that different
kind of errors are not visually significant to the same degree. To accommodate
human perception, the different error contributions are weighted according to
their visual relevance. Gelasca el al. [2], present a psychophysical experiment to
assess the different perceptual importance of errors. They conclude that a false
positive pixel contributes differently to the quality than a false negative. False
negatives are more significant, and the larger the distance, the larger the error.

We use the weighted functions wp and wn to deal with that fact. They are
normalized by the diagonal distance, D. Let dp be the distance of a false positive
pixel from the boundary of the reference region, and dn be the distance of a false
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negative pixel. The weight function for each false pixel is defined by Eq. (12)
and represented in Fig. 1.

wp =
αp log (1 + dp)

D
wn =

αndp

D
. (12)

Distance

0 2 4 6 8 10

w
ei

gh
t

0,0

0,2

0,4

0,6

0,8
weight false positive
weight false negative

Fig. 1. Weight functions for false negative and false positive pixels

The weights for false negative pixels increase linearly and are larger than those
for false positive pixels at the same distance from border. As we move away
from the border of an object, missing parts are more important than added
background, e.g., in medical imaging, it may be enough that the segmented
region overlaps with the true region, so the tumour can be located. But if there
are missing parts of the tumour the segmentation results will be poor.

To obtain a measure between [0, 1], we normalize the total amount of weight
by the image size. The discrepancy measure of weighted distance, εw, becomes:

εw =
1
N

⎛⎝∑
fn

wn +
∑
fp

wp

⎞⎠ , (13)

where fn and fp represent the false pixels. We define a measure of similarity
as sw = 1 − εw. The value of sw = 1 indicates a perfect match between the
segmentation and the reference mask.

6 Analysis on Evaluation Methods

To achieve comparative results about different evaluation methods, two strate-
gies can be followed: the first one consists in applying the evaluation methods
to segmented images obtained from different segmentation approaches. The sec-
ond one consists in simulating results of segmentation processes. To exempt the
influence of segmentation algorithms, the latter has been adopted and a set of
images obtained from manual segmentation available in [5] was used (Fig. 2).

A good evaluation measure has to give large similarity values for images (b) to
(g) and has to strongly penalize other images. Figure 3.a) shows the comparative
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2. The image and its ground truth are shown in (a) and (b), respectively. From
(c) to (g) we have different segmentations of image (a). (h) is the reflected image of
ground truth. Images (i) to (l) are segmentations of other images.

study between the proposed method and the methods presented in Section 3,
expressed in terms of region-based evaluation.

Due to its tolerance to refinement, LCE gives low error (high similarity) scores,
even when the segmentation is very different from the ground truth. Measure p
has a similar behaviour. BCE and dsym give good results for images ((h)-(l)),
however, since they are not tolerant to refinement, the results are poor for other
images. Note that the proposed measure is tolerant to refinement and at the
same time strongly penalizes images ((h)-(l)).

Results of boundary-based evaluation on the same set of images of Fig. 2 are
reported in Fig. 3.b). On comparing the results of the boundary-based measures,
it is made evident that they are well correlated. EMD tolerates well some amount
of deformations that normally happens in the manual segmentation process.
However, when the number of pixels in ground truth differs a lot from the number
of pixels in the segmented image, EMD gives poor results. Despite its success, the
EMD method still needs to be refined to address the limitation in the complexity
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Fig. 3. Evaluation of segmentation, in terms of similarity, from Fig. 2

(a) (b) (c) (d)

Fig. 4. Synthetically generated set of segmentations, where (a) is the reference

Table 1. Numerical evaluation of segmentations from Fig. 4

images LCE BCE dsym p sw

(b) 0.99380 0.98088 0.99349 0.99349 0.99741

(c) 0.99380 0.98088 0.99349 0.99349 0.99612

(d) 0.99380 0.98088 0.99349 0.99349 0.99159

of algorithm that require to be further reduced. The b-measure gives results
similar with F-measure, but is even more intolerant to refinement.

Table 1 presents the evaluation results obtained from a set of trivial synthet-
ically generated segmentations presented in Fig. 4, where we make constant the
number of false detections in each segmentation.

Since LCE, BCE, dsym and p, are just proportional to the total amount of
false detections, different position of those pixels do not affect the similarity.
This makes those methods unreliable for applications where the results will be
presented to humans. Note that sw produces results that agree with the visual
relevance of errors.

7 Conclusion

In this paper, we introduce a new approach for segmentation evaluation that
takes into account, using a single metric, not only the accuracy of the bound-
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ary localization of the created segments but also the under-segmentation and
over-segmentation effects according to the ambiguity of the regions, regardless
to the number of segments in each partition. We experimentally demonstrated
the efficiency of this new measure against well known methods. This new metric
can be applied both to automatically provide a ranking among different seg-
mentation algorithms and to find an optimal set of input parameters of a given
algorithm according with their results of segmentation evaluation. Moreover, this
paper introduces a modification to the distance distribution signature of Huang
and Dom, b-measure; it applies the concept of Earth Mover’s Distance to the
evaluation of image segmentation.
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Abstract. This paper presents a method to improve the calculation of functions 
that demand a great amount of computing resources. The fundamentals argue 
for an increase of the computing power of the primitive level in order to de-
crease the number of computing levels required to carry out calculations. A 
weighted primitive substitutes the usual primitives sum and multiplication and 
calculates the function values by successive iterations. The parametric architec-
ture associated to the weighted primitive is particularly suitable in the case of 
combined trigonometric functions sine and cosine involved in the calculation of 
image transforms. The Hough Transform (HT) and the Fourier Transform (FT) 
are analyzed under this scope, obtaining a good performance and trade-off be-
tween speed and area requirements when comparing with other well-known 
proposals. 

1   Introduction 

The Hough Transform (HT) has become a widely used technique in image segmenta-
tion: plane curve detection [1], object recognition [2], air picture vectorization [3], 
etc. The HT is very suitable because of its robustness, although the great amount of 
temporary and spatial resources required has moved it away from real time applica-
tions. This way, the investigation efforts in HT have dealt with the design of fast algo-
rithms and parallel or ad-hoc architectures. There are also implementations of the 
CORDIC algorithm for applications that demand high speed and precision, such as 
digital signal and image processing and algebra [4], [5]. However, their drawback is 
the lower degree of regularity and parallelism capabilities when comparing with the 
traditional algorithm. 

The Fourier Transform (FT) is a reference tool in image filtering and reconstruc-
tion [6], [7]. A Fast Fourier Transform (FFT) scheme has been used in OFDM modu-
lation (Orthogonal Frequency Division Multiplexing) and has shown to be a valuable 
tool in the scope of communications [8], [9]. The most relevant algorithm for FFT 
calculation was developed by Cooley and Tukey in 1965 [10]. It is based on succes-
sive folding scheme and its main contribution is the computational complexity reduc-
tion that decreases from O(N2) to O(N•log2N). The variants of FFT algorithm follow 
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different ways to realize the calculations and to store the intervening results [11]. 
These differences give rise to different improvements such as memory saving, high 
speed or architecture regularity. The features of the different algorithms point to dif-
ferent hardware trends [12], [13]. 

This paper approaches the improvement of the calculation performance under an 
architectural scope. Usually, the CPUs implement the primitive operations sum and 
multiplication sequentially within the electronic circuits. This physical basis supports 
a hierarchical organization of computing. The choice of more powerful operations for 
the first level in the hierarchy, instead of sums and shifts, would contribute to avoid 
the scalability problem tied to the growing number of levels. As consequence, model-
ling, formalization and calculations are expected to become easier. The proposed 
primitive has the structure of a weighted sum and as an estimation of its computing 
power the calculation of the usual convolution is carried out at the primitive level. 
Digital image processing is an interesting application field because the calculation of 
the functions usually involve sine and cosine functions which can be improved by the 
new weighted primitive. 

The paper is structured in five parts: following the introduction, section 2 presents 
the formalization of the weighted primitive and an estimation of its computing capa-
bilities is provided by means of the calculation of the usual convolution. Section 3 
analyzes parametric architecture associated to the weighted primitive. Section 4 de-
velops the calculation of the HT and the FT and develops the comparison with other 
proposals with respect to area and delay time estimations. Section 5 summarizes re-
sults and presents concluding remarks. 

2   Recursive Operation Based on a Weighted Primitive 

This section introduces the formalization of a weighted primitive and defines a recur-
sive operation based on the successive iterations of the primitive. As a measure of its 
computing capabilities the convolution of two functions is carried out by means of 
successive iterations of the mentioned primitive. 

2.1   Formalization and Examples 

The proposed primitive combines the usual primitives sum and multiplication under 
the form of a weighted sum ⊕ (Equation (1)): 

BABARBA βα +=⊕∈∀ ,),( , (1) 

where α and β are real parameters that characterize the primitive. 
The defined weighted sum is equivalent to the usual sum when α=β=1. 
A recursive operation can be defined in the set of real numbers by an initial value 

and a recursive formula (see Equation (2)). 
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It can be noticed that the recursive operation is built by running successive itera-
tions of the weighted primitive, with no more than doing A and B equal to the oper-
ands Fi, Gi respectively. So, if F0 and {Gi} are given, {Fi} can be generated when 
(α,β) is known. {Gi} and {Fi} are sets of real values. 

When the Gi values in the set {Gi} and the parameters α and β are particularized, 
the recursive operation outputs particular behavioural results. As an example, the 
following cases have been considered in Fig.1a-e. In any case F0=1 and for any i, 
Gi=1. The horizontal axis represents i values, that is to say the number of the current 
iteration and the vertical axis represents the corresponding Fi values. 

 

a) b) 

 
c) 

 
d) 

 
e) 

 
f) 

  

Fig. 1. a) Oscillatory increasing pattern ] ], 1 ,α β∈ −∞ − ∀ ∈ ; b) Oscillatory decreasing pat-

tern ] ]1, 0 ,α β∈ − ∀ ∈ ; c) Increasing pattern with horizontal asymptote ] ]0,1 , 1α α β∈ + > ; 

d) Decreasing pattern with horizontal asymptote ] ]0,1 , 1α α β∈ + < ; e) Increasing pattern 

with vertical asymptote ] ]1, , 1α α β∈ +∞ + > ; f) Decreasing pattern with vertical asymp-

tote ] ]1, , 1α α β∈ +∞ + <  

Other values for the different parameters would carry out more different behav-
ioural patterns.  

An important feature of the primitive capabilities is that little changes in the pa-
rameters α, β and G trigger important changes in the results of the recursive opera-
tion. So, this primitive level seems to have the same features as a non trivial level of 
derivation in a current CPU. 
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2.2   Estimation of the Computing Power of the Weighted Primitive 

In order to have a more accurate estimation of the computing power of the weighted 
primitive level, an equivalence have been established between the recursive operation 
and the usual convolution in the sense that both are able to generate a set of real val-
ues. The equivalence is based on the conditions that have to be fulfilled in order to 
make equivalent the generated sets. 

The convolution is an operation between two functions that is relevant to many dif-
ferent applications as digital signal and image processing [14], control engineering 
[15], mathematical morphology [16] or pattern analysis [17]. All these applications 
must calculate spatial or temporal integral transforms that are carried out by means of 
convolution. Equation (3) shows the expression of convolution in the case of two 
discrete real-valued functions f and g in the interval [x, [, h is a real number which 
stands for the discretization step and k is a natural number which can reach any value 
0<k< . The calculation of the convolution has O(N2) computational complexity. 

( ) ( )
=

=

−++=+
kp

p

hpkxgphxfkhxgf
0

)()(* . (3) 

In order to establish the equivalence between the recursive operation and the con-
volution, equation (3) can be transformed into equation (4) considering that the dis-
crete convolution can achieve its own recursive formulation too. 

( ) ( ( 1) )
* ( ) * ( ( 1) ) ( )
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f g x kh f g x k h hg x

h
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h

+ − + −
+ = + − + +

+ −
+ + − + +

 (4) 

The equivalence between the sets of values generated by (4) and (2) can be under-
stood under the following normalization scheme: the initial point x has to be equalized 
to the first iteration number, that is to say x≡0; the discretization step h≡1, so the num-
ber of the successive iterations agrees with the number of points, k≡i. 

It can be highlight that this equivalence suits for any x and for any h, and enables to 
transform a convolution to a recursive operation. 

Reciprocally, it can be demonstrated that any discrete recursive operation repre-
sented by a weighted sum of two terms like those of equation (2) can be split up into 
two convolving discrete functions f and g. 

Let equation (5) be a discrete recursive operation, defined as follows: 
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If α≠0 and β≠0, f(k)=αi and g(k)=βZi. 
If α≠0 and β=0, f(k)=δ(i) and g(k)= αi g(0) (δ(i) is the Dirac impulse). 
If α=0 and β≠0, f(k)=δ(i) and g(k)=βZi. 
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The case α=0 and β=0 is trivial and does not lead to any solution. 
The normalization obtained outlines the fact that there is no need to discern be-

tween the sets {f*g(k)} and {Fk}. 
The computational complexity of the recursive calculation of the values in {Fk} is 

O(N) if the set {Gk} can be obtained with the same computational complexity or if 
these values are known. Compared with the O(N2) complexity of the usual calculation 
of convolution, based on the usual primitives sum and multiplication, the weighted 
primitive presents an attractive issue to improve the calculations involved in many 
engineering applications. 

3   Parametric Architecture 

The recursive operation (2) leads to the architecture shown in Fig. 2a, where the cal-
culation of each Fi value involves two multiplications and one sum. The implementa-
tion could be performed using two multipliers and one adder or, alternatively, avoid-
ing multiplications by substituting multipliers by look-up tables (LUTs) so that to 
access and capture partial products. On every cycle the LUT is addressed by two input 
operators A and B (A, B are few bits portions of F and G respectively) and the partial 
product αA+βB is taken out from the memory cell (the partial product αA+βB is 
conceptually a weighted primitive). A new Fi value is carried out by adding all the 
shifted partial products corresponding to all inputs A,B. In the next iteration, both, the 
new Fi value and a new Gi value access the LUT in order to repeat the extraction 
process. Figure 2b shows the extraction of the partial products which provide the 
pursued result. Table 1 shows the structure of the LUT when A,B are portions of 1 bit. 

Table 1. LUT Structure 

AB F>0 and G>0 F>0 and G<0 F<0 and G>0 F<0 and G<0 
00 0 0 0 0 
01 β −β β −β 
10 α α −α −α 
11 α+β α−β −α+β −α−β 
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Fig. 2. a) Parametric architecture; b) Addressed partial product (weighted primitive) 
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In order to have the capability to realize a comparison of computing resources, an 
estimation of the area and time delay of the proposed architecture is presented here. 
The model that we use for the estimations is taken from [18] and [19]. The unit τa 
represents the area of a complex gate, which is defined as the pair (AND, XOR) as a 
meaningful unit because these two gates implement the most basic computing device: 
the one bit full-adder; the unit τt is the delay of this complex gate. This model is very 
useful because it provides a direct way to compare different architectures, irrespec-
tively from their implementation. As an example the area cost and time delay for 16 
bits data are estimated as shown in Table 2. 

Table 2. Parametric architecture estimations of area cost and time delay for 16 bits data 

Parametric architecture Occupied area Time delay 
Multiplexer 0,25·2·16τa= 8τa 0,5τt 
Shift register  0,5·16τa = 8τa 15·0,5τt = 7,5τt 
LUT 40τa/Kbit·16 bits·16 cells = 10τa 3.5τt·16 accesses = 56τt 
Register 0,5·16τa = 8τa 1τt  
Reduction structure 
4:2+adder 

4τa + 16τa = 20τa 3 reductions · 3τt + lg16τt  
= 13τt 

Overall 54τa 78τt 

The proposed architecture has been tested in the XS4010XL-PC84 FPGA; τt ≈1 ns 
is assumed, so a time delay estimation in usual time units can also be provided. 

4   Applications 

In this section two digital image applications are presented: the calculation of the HT 
and the FT based on the recursive operation. These are then compared with the pro-
posals presented by Deng [20] and by Chien [21] in what concerns to the area cost 
and the time delay. 

4.1   The HT Calculation Under the Scope of the Recursive Operation 

In the case of a straight line as the geometric primitive to be detected, the HT trans-
forms each point P(x,y) in the Cartesian domain in a point ( , ) in the Hough domain. 
The parametric space is discretized in N  levels, from 0 to  and N  levels, from min 
to max. The HT calculates the  values for all the angles in [0, [ and for every pixel 
in the image. The direct calculation has O(N2) complexity and the global amount of 
operations is N2·N . If [0, [ is considered as [0, /2[∪[ /2, [, the HT for every pixel 
(xi, yj) in the image can be written as: 

( ) · · , / ,
( ) · · , / 2 .

I k i k j k k

II k j k i k k

x cos y sin 0 2
y cos x sin

ρ θ θ θ
ρ θ θ θ

= + ≤ < Π
= − Π ≤ < Π  (6) 

If Δ  is the discretization step, any angle can be obtained by adding the step to the 
former angle, that is, i+1=  i+Δ . If cos Δ  = α and sin Δ  = β, equation (6) leads to 
equation (7). 
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Comparing (7) and (2) it can be deduced that HT is performed by means of two 
crossed recursive operations that provide the  values for all the angles in [0, [ and 
for every pixel in the image under a restricting condition on the parameters α, β. The 
initial values (ρI)0 and  (ρII)0 are the values of the coordinates of each pixel in the 
image. 

Comparison 
This implementation has been compared to Deng’s proposal [20] which consists of a 
pipelined CORDIC algorithm application for the HT calculation. The CORDIC algo-
rithm (COordinate Rotation DIgital Computer) is an approximation method that per-
forms rotations in the plane in three coordinates systems: linear, circular and hyper-
bolic [22], [23]. The only operations needed to perform the calculations are additions, 
subtractions and shifts. The proposal calculates the HT using 16-bit fixed-point arith-
metic. The 12-iteration CORDIC is implemented using a Xilinx XS4010XL-PC84 
FPGA for fast prototyping. This device has medium capacity and speed; it consists on 
400 CLBs (Logic Block) arranged in a 20x20 matrix, which is approximately equiva-
lent to 10.000 gates. The present calculation uses 333 CLBs. For the Xilinx device it 
has been considered that a CLB consists of one LUT-3, two LUT-4 and two latches. 
The areas for the CORDIC implementation are estimated in τa and τt units (see Table 
3), as it was done for the parametric architecture, following [18] and [19] (see Table 2). 

This implementation can be clocked at more than 40 MHz with a computational 
complexity of O(N2) for NxN image. At this frequency, a 128x128 binary image with 
128 discrete angles (Δθ =1.40625º) takes 0.0262 seconds to be transformed. It can be 
assumed that τt ≈1 ns. 

Table 3. Parametric architecture estimations of area cost and time delay for 16 bits data 

Pipelined CORDIC CLBs=333 Area 
LUT-3 1·333=333 333·23·24·40τa / Kbit =1665τa 
LUT-4 2·333=666 2·333·24·24·40τa / Kbit = 6660τa 
Latches 2·333=666 2·333·0.5·24· τa = 5328τa  

Overall  13653τa 

 
According to the estimations shown in Table 2, the area occupied for HT calculation is 

2·54τa=108τa considering that the processing element (PE) needed consists of two mod-
ules to carry out the cross evaluation. The time delay is 78τt·64·128·128= 0,081788928 
seconds for calculating a number of points equal to the number of pixels (128x128) mul-
tiplied by the number of the angles (64), assuming τt ≈ 1 ns for the device.  

It can be highlighted that the amount of hardware resources needed by the pipe-
lined CORDIC is much more important than for the parametric architecture (13653τa 

versus 108τa). Nevertheless, its time delay is almost four times the CORDIC one 
(81,78 ms versus 26,2 ms). The HT evaluation by the parametric architecture may be 
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better balanced between the speed and the area cost by means of parallelization. The 
parallelization can be performed on the pixels by multiplying by a factor k the number 
of PEs involved in order to divide by k the time delay of the overall calculation. So, 
each PE calculates only the kth part of the overall points of the transform. A satisfying 
trade-off between area cost and time delay can easily be found for a large range of k 
values, 4<k<125. 

4.2   The Fourier Transform Calculation Under the Scope of the Recursive 
Operation 

Equation (8) is the expression of a discretized real function of one-dimensional dis-
crete Fourier Transform. Let’s have N=2M=2n. 
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Cooley and Tukey algorithm segregates the FT in even and odd fragments in order 
to perform the successive folding scheme, as shown in (9): 
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(9) 

The process starts for any u,u∈[0, M] by setting the M two-point initial transforms. 
In the second step M/2 four-point transforms are carried out by combining the former 
transforms and so on till to the nth step where one M-point transform is finally ob-
tained. For values of u,u∈]M, N], no more extra calculations are required considering 
that the corresponding transforms can be obtained by changing the sign, as shown in 
the second expression in Equation (9). Our method enhances this process by adding a 
new segregation held by both, real (cosine) and imaginary (sine), parts in order to run 
the crossed evaluation. Equations (10), (11) and (12) show the first, the second and 
the nth stages of this process, respectively. The u argument has been omitted in (11) 
and (12) in order to make clear the expansion. 
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It can be seen that after the second stage, any pair R,I is obtained using a recursive 
operation. Equations (11) and (12) show that each stage involves the results R and I 
obtained in the two previous stages. This way the number of operations is halved in 
each stage. 

Comparison 
The BDA proposal presented by Chien [21] carries out the Fourier transform of vari-
able length by controlling the architecture. The single processing element follows the 
Cooley and Tukey algorithm radix-4 and calculates 16/32/64 points transform. When 
the number of points N grows, it can be split out into a product of two factors N1·N2 in 
order to process the transform in a row-column structure. Formally, the four terms of 
the butterfly are set as a cyclic convolution that allows performing the calculations by 
means of distributed arithmetic based on blocks. The memory is partitioned in blocks 
that store the set of coefficients involved in the multiplications of the butterfly. A 
rotator is added to control the sequence of use of the blocks. The processing column 
consists on an input buffer, a CORDIC processor that runs the complex multiplica-
tions followed by a parallel-serial register and a rotator. Four RAM memories and 
sixteen accumulators implement the distributed arithmetic. At last, four buffers are 
needed to reorder the partial products that are involved in the basic four points opera-
tion. The algorithmic complexity is O(N1/4M·WL) where N1 is the length of the trans-
form, M=4 in the design and WL is the data length, when the transform is longer than 
64 points. Table 4 shows the results obtained by the Synopsis implementation of the 
circuit that has been described in Verilog HDL. 

In order to compare the performance of our proposal and that of BDA, estimations 
of the occupied area and time delay are provided. The devices for both implementa-
tions are listed in Table 5 and evaluated in terms of τa and τt in Table 6. For the  
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parametric architecture, two PEs are needed because of the two segregations 
(even/odd and real/imaginary); 64 cells LUTs are assumed, considering that the pa-
rameter set is (α,β,1). Data is 16 bits long for any proposal. In Table 5, neither the 
rotator nor the CORDIC processor has been considered in the BDA implementation 
considering that the reference does not facilitate any detail upon their structure. The 
estimations of the time delay are based on the author’s indications and presented in 
terms of τa and τt units. The average computation time is indicated as 
(N1/4·WL)(TROM+2·TADD+TLATCH). 

Table 4. Critical path of the basic calculation module in the BDA architecture 

 Preprocessor P/SRAM Adder+Acc Postprocessor 4-point DFT Overall 
Time per  
column 

13,71 ns 12,45 ns 14,06 ns 17,7 ns 10,35 ns 68,27 ns 

Critical  
path 

17,7 ns 17,7 ns 17,7 ns 17,7 ns 17,7 ns 88,5 ns 

Table 5. Hardware resource comparison between the BDA and the parametric architecture 
implementations 

N Devices for Implementing the DBA 
Architecture 

Devices for Implementing the 
Parametric Architecture 

16  5 buffers, 1 CORDIC processor, P/S-R,  
1 rotator, 4  (4x16) bits RAMs, 16 MAC 

64  5 buffers, 1 CORDIC processor, P/S-R,  
1 rotator, 4 (16x16) bits RAMs, 16 MAC  

512  9 buffers, 1 CORDIC processor, 2 P/S-R,  
1 rotator, 8  (8x16) bits RAMs, 32 MAC  
1 transposition memory 

4096  9 buffers, 1 CORDIC processor, 2 P/S-R, 1 
rotator, 8  (16x16) bits RAMs, 32 MAC  
1 transposition memory  

4 MUX, 
4 S-R, 
2 (64 x16) bits LUTs 
4 registers, 
4 reduction structures and 
4 adders 

Table 6. Comparison between the BDA and the parametric architecture implementations 

DBA Architecture     Parametric Architecture N 
Area Time delay Area Time delay 

16  314τa 3,3 103τt 1,248 103τt 
64  344τa 13,2 103τt   4,992 103τt 
512  632τa 105,6 103τt   39,936 103τt 
4096  672τa 844,8 103τt   

336τa 

119,808 103τt 

 
It can be seen that BDA architecture is much more expensive than the parametric 

one with respect to the occupied area because the hardware requiremets have neces-
sarily to be increased stepwise when the number of points of the transforms increases. 
The time delay is lower for the parametric architecture for the values of N that have 
been considered and will remain lower for any N, because it achieves linearly grow-
ing for both BDA and parametric architectures.  
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5   Conclusions 

This paper has presented an approach to contain the exploding needs of computing 
resources based on an increase of the computing power of the primitive level. The 
parametric architecture associated to the weighted primitive guarantees computing 
improvements for the HT and FT calculation because of the simplicity in hardware 
requirements due to the compactness of the primitive. When comparing with other 
well-known proposals, it has been confirmed that our approach provides memory and 
hardware resource saving as well as satisfying trade-off between area and speed. 
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Abstract. The Topological Active Net (TAN) model is a deformable
model used for image segmentation. It integrates features of region–based
and edge–based segmentation techniques. This way, the model is able to
fit the edges of the objects and model their inner topology. The model
consists of a two dimensional mesh controlled by energy functions. The
minimization of these energy functions leads to the TAN adjustment.

This paper presents a new approach to the energy minimization
process based on genetic algorithms (GA), that defines several suitable
genetic operators for the optimization task. The results of the new GA
approach are compared to the results of a greedy algorithm developed
for the same task.

Keywords: Active Nets, Topological Active Nets, Genetic Algorithms.

1 Introduction

Deformable models are well-known tools for image segmentation. They were
proposed by Kass et al. [1] in 1988 applied in several fields such as segmentation,
mapping or tracking and motion analysis. The active nets model was proposed
by Tsumiyama et al. [2] as a variant of the deformable models that integrates
features of region–based and boundary–based segmentation techniques. To this
end, active nets distinguish two kind of nodes: internal nodes, related to the
region–based information, and external nodes, related to the boundary–based
information. The former models the inner topology of the objects whereas the
latter fits the edges of the objects. The Topological Active Net (TAN) model was
developed as an extension of the original active net model [3,4]. It solves some
intrinsic problems to the deformable models such as the initialization problem.
It also has a dynamic behavior that allows topological local changes in order to
perform accurate adjustments and find all the objects of interest in the scene.
The model deformation is controlled by energy functions in such a way that the
mesh energy has a minimum when the model is over the objects of the scene.
This way, the segmentation process turns into a minimization task.

On one hand, it is known that the local search methods, and specially those
that use a greedy strategy, have a certain probability to fall in local minima or
maxima. On the other hand, it will be interesting to use global search methods
to minimize that probability. Evolutionary methods, with a parallel search based
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on the points defined by their populations of individuals, fall in this category,
and Genetic Algorithms (GA) [5,6] are the most used among the different evo-
lutionary methods. With little previous work of their use in the optimization of
deformable models, mainly in edge or surface extraction [7,8,9], we will use this
alternative in this work, with the attempt to overcome the difficulties found by a
local greedy algorithm. We must define and adapt the classical genetic operators
to deal with our problem, with emphasis in genetic operators that produce TANs
with no crossings in their definition nodes. Finally, the experiments must prove
the superiority of a GA in the minimization of the probability of getting stuck
in local minima.

This paper is organized as follows. Section 2 explains the basis of the Topo-
logical Active Nets model. Section 3 introduces the GA approach proposed in
this paper. Section 4 shows some results of the new model. Finally, section 5
expounds the conclusions and future work in this field.

2 Topological Active Nets

A Topological Active Net (TAN) is a discrete implementation of an elastic two
dimensional mesh with interrelated nodes [3]. The structure of a small TAN is
depicted in Fig. 1. As this figure shows, the model has two kinds of nodes: internal
and external. Each kind of node represents different features of the objects: the
external nodes fit the edges of the objects whereas the internal nodes model the
internal topology of the object. Therefore, this model allows the integration of
information based on discontinuities and information based on regions in the
segmentation process. The former is associated to external nodes and the latter
to internal nodes.

External nodes

Internal nodes

Fig. 1. A 5 × 5 mesh

A Topological Active Net is defined parametrically as v(r, s) = (x(r, s), y(r, s))
where (r, s) ∈ ([0, 1]× [0, 1]). The mesh deformations are controlled by an energy
function defined as follows:

E(v(r, s)) =
1

0

1

0

Eint(v(r, s)) + Eext(v(r, s))drds (1)

where Eint and Eext are the internal and the external energy of the TAN, re-
spectively. The internal energy controls the shape and the structure of the mesh
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whereas the external energy represents the external forces which govern the ad-
justment process.

The internal energy depends on first and second order derivatives which con-
trol contraction and bending, respectively. The internal energy term is defined
by the following equation:

Eint(v(r, s)) = α(|vr(r, s)|2 + |vs(r, s)|2) +
β(|vrr(r, s)|2 + |vrs(r, s)|2 + |vss(r, s)|2) (2)

where subscripts represents partial derivatives. α and β are coefficients that
control the first and second order smoothness of the net. In order to calculate
the energy, the parameter domain [0, 1] × [0, 1] is discretized as a regular grid
defined by the internode spacing (k, l) and the first and second derivatives are
estimated using the finite differences technique.

The external energy represents the features of the scene that guide the ad-
justment process. It is defined by the following equation:

Eext(v(r, s)) = ωf [I(v(r, s))] +
ρ

|ℵ(r, s)|
p∈ℵ(r,s)

1
||v(r, s) − v(p)||f [I(v(p))] (3)

where ω and ρ are weights, I(v(r, s)) is the intensity value of the original image
in the position v(r, s), ℵ(r, s) is the neighborhood of the node (r, s) and f is a
function, which is different for both types of nodes since the external nodes fit
the edges whereas the internal nodes model the inner features of the objects.

If the objects to detect are dark and the background is bright, the energy of
an internal node will be minimum when it is on a point with a low grey level. On
the other hand, the energy of an external node will be minimum when it is on a
discontinuity and on a light point outside the object. In this situation, function
f is defined as:

f [I(v(r, s))] =
h[I(v(r, s))n] for internal nodes

h[Imax − I(v(r, s))n + ξ(Gmax − G(v(r, s)))] for external nodes
(4)

where ξ and δ are weighting terms, Imax and Gmax are the maximum intensity
values of image I and the gradient image G, respectively, I(v(r, s)) and G(v(r, s))
are the intensity values of the original image and the gradient image in node
position v(r, s), I(v(r, s))n is the mean intensity in a n × n square and h is an
appropriate scaling function.

As a broad outline, the adjustment process consists in minimizing these energy
functions. First, the mesh is placed over the whole image and, then, the energy of
each node is minimized using a greedy algorithm. In each step of the algorithm,
the energy of each node is computed in its current position and in its nearest
neighborhood. The position with the lowest energy value is selected as the new
position of the node. The algorithm stops when there is no node in the mesh
that can move to a position with lower energy.

The greedy algorithm gets good results in most cases since it takes the best
local adjustment. Nevertheless, this local adjustment may not be the best global
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one. Moreover, the greedy algorithm does not consider any possible alternatives.
This way, if the model reaches a wrong segmentation, it gets stuck in it. These
are the main drawbacks of using a greedy algorithm to minimize the energy in
a deformable model.

3 Genetic Algorithms for TAN Optimization

In this paper, we have used a standard GA [6] with new defined operators. A
TAN chromosome has two genes for each TAN node, one for its x coordinate
and another for its y coordinate, both encoded as integer values. A tournament
selection was used as selection method, with different tournament window sizes
to control the selection pressure. But the key issues are the features of the genetic
operators developed.

3.1 Crossover Operator

The classical crossover operator, with one-point, n-point or uniform crossover,
is not very useful because a great number of genotypes, this is, the results of
an interchange of genes from two selected parent chromosomes, are not correct
TANs, as they present a high number of crossings in their definition nodes.
These incorrect chromosomes could be eliminated of the genetic population due
to their greater energy with respect to similar correct ones. Nevertheless, a great
number of incorrect TANs in the population can complicate and slow down the
evolutionary process. There are other alternatives that reduce the probability of
incorrect TANs, such as the one used by Sakaue in [10], with a crossover operator
that interchanges sub-rectangles of the two parents from an identical definition
of those sub-areas in both parents. This operator restricts the crossings, but does
not eliminate them completely. This way, our results with similar operators show
that a high number of incorrect genotypes are kept in the population and even
an incorrect TAN can be the best final genotype of the evolutionary process.

Due to this, we make emphasis in operators that take into account the crossing
restriction, this is, that produce correct TANs. One alternative is a crossover
operator that defines the new genes as a mean between the corresponding values
in the two parent chromosomes, this is, an arithmetical crossover that considers
a linear combination of the parents. So, with the arithmetical crossover the new
value for the x gene coordinate in the new chromosome will be:

xnew = αx1 + (1 − α)x2 (5)

where x1 and x2 are the values of the corresponding parent genes. If α is in the
interval [0, 1], the result TANs are correct, this is, with no crossings. The new
TANs can be more or less similar to the parents and the distances among the
nodes will be proportional to the distances of the correct parents.

3.2 Mutation Operator

As with the previous operator, the aim is to obtain TANs without crossings. We
have tested two alternatives to this end.
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Fig. 2. First mutation alternative. The shadowed area represents the mutation bound-
aries for node number 3.

The first one mutates the node coordinates with boundary restrictions that
limit the possible node positions. The mutation boundaries of a node are set
from the coordinates of its neighboring nodes. So, for a given node, if one of
its coordinates is chosen to mutate in a direction according to the mutation
probability, the new coordinate cannot exceed the nearest coordinate of its 3
neighboring nodes in that direction. For an external node, if it has not 3 neigh-
boring nodes, we consider some additional nodes. For example, if there are only
two nodes in the direction of movement, we consider another node, a “neighbor
of the neighbor” in that direction, as Fig. 2 shows. If node number 3 mutates
towards positive values in the x coordinate, nodes 10, 4, and 5 set the boundary.
If the node mutates towards positive values in the y coordinate, we impose a
predetermined limit.

A = 150A = 150 A = 175

Fig. 3. Second mutation alternative. It uses the area of the polygons formed by the 8
neighboring nodes and the central node that mutates. The left figure shows the area
of the 4 polygons before the mutation. The central figure shows a correct mutation. In
this case, the addition of the areas remains unchanged. The right figure is an example
of an incorrect mutation.

The second alternative allows that a node can mutate to all the possible
positions without any crossing in the TAN. The basic idea is to compute the
area of the 4 polygons formed by the 8 neighboring nodes and the central node
that mutates, as Fig. 3 shows. If the addition of the 4 sub–areas is the same
before and after the mutation, the mutation is correct as it will not produce
any crossing. Although this method has a higher computational cost than the
first one, its computational cost is lower than other methods, such as checking
if there are crossings after a mutation.
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3.3 Ad hoc Operators

We have introduced other operators, the spread operator and the group muta-
tion. These operators were specially designed in order to avoid the difficulties
found in the application of the GA to our problem and to improve the evolu-
tionary optimization process.

Spread Operator. One problem of the proposed crossover operator, that cal-
culates the mean value between the parent genes, is that the new TANs tend to
have less size than their parents. With the aim of maintaining the diversity of
sizes in the population, we have implemented the spread operator. The main idea
is to stretch the TAN in a given direction. For example, if we stretch the TAN
towards positive values of x, we maintain invariable the y positions of all the
nodes, but the distance between two neighboring nodes in the x direction is in-
creased with the same random factor since the nodes change their x coordinates,
except for the nodes in the first left column.

Fig. 4. Group mutation. The right figure shows the results of a group mutation of the
nodes in the white sub–area of the left figure. The left TAN is the best individual of the
80th generation whereas the right TAN is the best individual of the 100th generation
after the group mutation. This mutated individual is the best of its population since
the group mutation minimizes the total energy.

Group Mutation. In a great number of cases, the simple mutation of one node
coordinate can help the TAN to be closer to the ideal image segmentation. How-
ever, the minimization of the internal energy tends to search for the equidistance
among the nodes so that one mutation could not improve the TAN energy. Due
to this, it can be useful to mutate simultaneously a group of neighboring nodes,
in the same direction and with the same value. This group of nodes are delimited
by two rows and two columns randomly chosen.

This idea is depicted in Fig. 4, where the group of nodes in the white sub-area
is mutated in the same direction, producing a TAN with less total energy.

3.4 Additional Considerations

In addition to the energy terms used in the greedy algorithm (eq. 4), we include
a new term in the external energy of the external nodes, the gradient distance.
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The new equation is defined as follows:

f [I(v(r, s))] =

h[I(v(r, s))n] for internal nodes

h[Imax − I(v(r, s))n + ξ(Gmax − G(v(r, s)))] for external
+ δGD(v(r, s)) nodes

(6)

where GD(v(r, s)) is the distance from the position v(r, s) to the nearest edge
and δ is a coefficient that weights the gradient distance. This term introduces a
continuous range in the external energy since its value diminishes as the node
gets closer to an edge. This way, the gradient distance facilitates that the external
nodes fit the object edges.

With the intention that the population maps could cover the image in the
first generations, we have used two steps in the evolutionary process. In the first
step, the energy parameters allow the nodes to be outside the image without
a high penalization. Moreover, TANs initializated inside the object in the first
generation population cannot survive in next generations. In the second step,
the parameter values are changed in order to search for a more homogeneous
distribution of the internal nodes, reduce the size of the map, and adapt it to
the image.

4 Results

The genetic algorithm optimization has been tested with several 256 grey level
images and the results were compared to the results of the greedy minimization.
In all the examples, the same image was used as the external energy for the
internal and external nodes.

In the results shown in this section, the GA used a tournament selection with
a window size of 3% of the population. The probability of crossover was 0.5,
whereas the probability of mutation was 0.0005, using only the 2nd alternative of

Greedy Algorithm Genetic Algorithm

(a)

(b)

Fig. 5. Results obtained from simple objects



Topological Active Nets Optimization Using Genetic Algorithms 279

Table 1. TAN parameters used in the segmentation processes of Fig. 5. δ was used
only in the GA segmentation process.

Example Size α β ω ρ ξ δ

5(a) 12 × 12 2 0.0005 2 1.5 3.5 6
5(b) 15 × 6 2.5 0.0001 2 4 3 6

Greedy Algorithm Genetic Algorithm

(a)

(b)

(c)

Fig. 6. Results obtained with different mesh sizes and parameter sets. (a) Reference
segmentation. (b) Results after increasing the mesh size. (c) Results after changing the
parameter set. The genetic algorithm is less sensitive to changes in the mesh size or
parameter set.

Table 2. TAN parameter sets in the segmentation processes of Fig. 6. δ was used only
in the GA segmentation process.

Example Size α β ω ρ ξ δ

6(a) 14 × 6 1 0.00001 4 1 4 5
6(b) 17 × 6 1 0.00001 4 1 4 5
6(c) 14 × 6 2 0.00001 2 1.5 3.5 5

mutation which involves the calculation of areas. Regarding the ad hoc operators,
in the set of experiments carried out, we have experimentally set a good interval
for the probability of the spread operator as [0.001,0.0005] and [0.005,0.0001] for
the group mutation. The different examples in this section have used values in
that intervals for both operators. Finally, the number of generations of the first
evolutionary step is in the interval [150,200].

Figure 5 shows several examples of TAN segmentation using greedy and GA
approaches. The segmented objects are very simple so both methods produce
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Greedy Algorithm Genetic Algorithm

(a)

(b)

(c)

Fig. 7. Results obtained in noisy images. The genetic algorithm achieves the best
adjustment independently of the amount and kind of noise. Opposite to this, the greedy
algorithm is sensitive to noise and, so, it cannot segment the objects correctly.

a correct segmentation. Table 1 summarizes the TAN parameters used in the
second evolutionary step of the segmentation processes. Regarding the first evo-
lutionary step, the TAN parameters were β = 0.00001, ρ = 1, δ = 8 in all
the examples, whereas the remaining parameters were set to zero. Finally, in
the GA segmentation, populations of 350 and 500 individuals were used for the
segmentation of Fig. 5(a) and 5(b), respectively.
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Table 3. TAN parameter sets in the segmentation processes of Fig. 7. δ was used only
in the GA segmentation process.

Example Size α β ω ρ ξ δ

7(a) 18 × 6 0.5 0.1 1.5 1.5 4.5 6
7(b) 18 × 6 1.2 0.1 2 1.5 4.5 6
7(c) 12 × 12 1.5 0.00001 2 3 3 4

The mesh size and the parameter set of the TAN model are empirically se-
lected since there is no general rule to choose the appropriate values in every
image. In particular, the mesh size is based on the height and width of the object
to segment, and remains constant in the two evolutionary steps.

This fact implies that the final segmentation depends on the selected para-
meter set and mesh size. As Fig. 6 shows, the greedy algorithm is very sensitive
to the model variables. Opposite to this, the GA method gets good results inde-
pendently of the mesh size and the parameter set. This is due to the fact that
genetic algorithms usually find the best energy minimization since they take into
account more alternatives (searching areas) than the greedy approach. Table 2
summarizes the TAN parameters in the examples. In all these genetic examples,
we have used a population of 500 individuals.

The greedy method is also very sensitive to noise since the mesh can stop
its contraction in image areas with a low S/N ratio. Also, with the genetic
algorithm the mesh explores globally the search space and, then, it can avoid
the local minima due to noise. Figure 7 shows the segmentation of some images
with different kinds of noise. In these cases, the genetic algorithm produces a
correct segmentation whereas the greedy algorithm stops the mesh minimization
in local minima. Table 3 shows the parameters used in the segmentation of these
noisy images. In the genetic segmentation, a population of 850 individuals has
been used for the first example, 950 for the second one, and a population of 800
for the third example.

Regarding the computation times, the greedy method is faster than the GA. In
an AMD Athlon at 1’2 GHz, the average execution time of the greedy algorithm
is 5 seconds for a simple image and 30–60 seconds for a complex image whereas
the GA spends 5–10 minutes in simple images and 15–25 in complex ones. These
high execution times are mainly due to the large population sizes of the GA.

5 Conclusions

This paper presents a new approach to the energy minimization task in the
Topological Active Nets model. Genetic algorithms are used in conjunction with
the TAN model in order to find the lowest mesh energy, this is, the best fit to the
scene objects. To this end, the TAN mesh has been coded as chromosomes, the
crossover and the mutation operators have been implemented, and new operators
have been proposed.
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Table 4. Advantages and drawbacks of genetic and greedy algorithms

Issue Genetic Algorithm Greedy Algorithm

Sensitive to changes in parameters No Very sensitive
Edge adjustment Very good Very Good
Sensitive to Noise No Very sensitive
Execution time High Very low

The genetic algorithm developed was tested with several images. In all the ex-
amples, the new method achieved a good adjustment to the objects. The results
were even better than the results of the first approach to the minimization prob-
lem, this is, the greedy algorithm. Thus, the genetic algorithm is not sensitive to
noise and it does not depend on the parameter set or the mesh size. The execu-
tion time is the main drawback of the genetic algorithm approach since it takes
into account more alternatives than the greedy algorithm. Table 4 summarizes
the features of genetic and greedy algorithms in the TAN minimization problem.

Future work includes the combination of genetic and greedy methods in order
to take advantage of both methods and the parallelization of the genetic algo-
rithm with the aim of reducing the execution times. Additionally, we will consider
the energy components as independent objectives to optimize and, this way, we
will use multiobjective evolutionary optimization techniques for the search of
the optimal nets of the Pareto set.
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Abstract. Classification of organic materials obtained from rock and
drill cuttings involves finding multiple objects in the image. This task
is usually approached by segmentation. The quality of segmentation
is evaluated by matching the whole detected objects to a reference
segmentation. We are interested in representing each object by a single
reference point called the “centre”. This paper proposes an evaluation
measure of image segmentation for such representation. We argue that
measures based only on distance between obtained centres and a set of
predefined centres are insufficient. The proposed measure is based on a
list of desirable properties of the segmentation. The three components
of the measure evaluate the under/over segmentation of the objects, the
proportion of centres placed in the background rather than in objects,
and the distance between the guessed and the true centres. The ability
of the measure to distinguish between segmentation results of different
quality is illustrated on three sets of examples including an image
containing microfossils and pieces of inert material.

Keywords: Image segmentation, evaluation measures, discrepancy
methods, microfossils, palynomorphs.

1 Introduction

Image segmentation is a fundamental process within automatic image analysis.
The large variety of practical applications has resulted in a spectrum of generic
and specific segmentation algorithms being currently available. The choice of a
segmentation algorithm suitable for the problem at hand is not simple. To aid
this choice, here we propose a measure of quality of object segmentation using
“centres” of the objects.

A survey was conducted by Zhang [1] where evaluation methods for image
segmentation were categorised as analytical and empirical. Analytical methods
examine the principles and properties of the segmentation algorithms themselves.
Empirical methods evaluate the output of the segmentation algorithms on test
images. Of the two groups, Zhang recommends the empirical methods.

The quality of segmentation of an image is judged by the so called “goodness”
measure [1]. Examples of goodness measures are the entropy of the partitioned
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image, intraregion uniformity, region shape, colour uniformity etc. Goodness
measures are usually defined by human perception of the ideal segmentation.
They are evaluated on the segmented image alone without requiring a reference
segmentation, i.e. without a ground truth. Empirical methods that use goodness
measures are known as goodness methods. Alternatively, the performances of
segmentation algorithms can be evaluated relative to a ground truth; these types
of methods are called discrepancy methods. They measure the inconsistency or
some form of distance between the ground truth (ideal segmentation) and the
actual segmented image.

There are four types of low level discrepancy approaches presented by Beau-
chemin and Thompson [2]:- pixel, area, point-pair and boundary. The pixel-
based discrepancy approach is the most common one and consists of counting
the number of misclassified pixels in the segmentation output relative to a refer-
ence partition. Using a similar approach Cardoso and Corte-Real [3] formulate
a general measure, an important asset of which is that it is a metric. Area-based
methods evaluate area of overlap between corresponding segments [4,5,6] while
boundary-based schemes compare the perimeters of the segments. The point-pair
discrepancy approach measures the agreement between two segmented images
[7] without explicitly solving the correspondence problem between the regions.
Segmentation produces a partition of the pixels and hence can be thought of as
a clustering technique. Thus the discrepancy between the obtained segmentation
and a ground truth segmentation can be evaluated by any measure of agreement
or similarity between two partitions. Along with the Rand index, various other
measures of similarity have been proposed in the literature, the most widely used
being Jaccard index, adjusted Rand index, correlation, mutual information and
entropy [7,8,9].

In this paper we propose an evaluation measure that belongs to the point-pair
group within the discrepancy approach. The segmented image is represented as
a set of coordinates of object centres. A reference image is used whereby the
centres are marked by hand. The proposed measure consists of three indices
evaluating different aspects of the positioning of centres. The rest of the paper
is organised as follows. Section 2 describes the real-life problem which prompted
this study. The new measure is proposed in Section 3. Toy examples and real
images are used to demonstrate the insufficiency of simple distance metrics for
evaluating the match between manually placed centres and centres obtained from
automatic segmentation. Experiments with microscopy images of palynomorphs
are reported in Section 4. Section 5 concludes the study.

2 Segmentation of Microscopy Images of Palynofacies

Microfossil analysis is an essential task in micropaleontology, aiding the inter-
pretation of the history of regional and global climate and of the evolution of the
biosphere [10]. Figure 1 shows a typical image of a slide containing microfossils
and other organic debris. There are hundreds of types of microfossil and each
image may contain many of them. The end task is to locate and subsequently
classify the microfossils in the image.
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Fig. 1. Thin section of rock containing microfossils

Figure 1 demonstrates the difficulties in locating the objects. First, pieces of
inert material (darker objects of irregular shapes and sizes) have to be eliminated
so that the image contains only the microfossils. Second, the microfossils appear
in different orientation, partly or completely overlapping, clustered together,
overshadowed by inert material, distorted by pressure forces in the rock, etc.
Third, the colour of some of the microfossils is barely distinguishable from the
image background. Fourth, the background is not uniform across the image.
Pixel intensities which correspond to background at some places may well be
classed as object at a different place in the image.

Although the different types of fossils have different texture and structure,
they can be roughly perceived as round or elliptical objects. Hence we are in-
terested in finding “centres” so that we can crop sub-images of microfossils at a
later stage applying a higher resolution.

Before object segmentation is attempted, the background must be removed.
The difficulty in our case comes from the specific illumination of microscope
slides. Usually the centre of the slide is brighter and the intensity fades towards
the edges. Also, since the microscopic view is a circle, dark corners might appear.
The approach adopted here was to look for and eliminate dark corners, model the
background as a function of x and y and remove it from the image. A parabola
was fitted to model the intensity of the background for each x and then for
each y. The pixels whose true intensity was substantially lower than the scores
on both parabolas were marked as non-background (intensity margin of 20 was
empirically chosen here).
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The measure proposed in the next section is intended for any segmentation
method which produces a set of object centres. The standard watershed seg-
mentation was tried as well as a recently developed algorithm called floodfill
segmentation [11]. Here we look for a measure to compare object segmentation
methods on the basis of their output.

3 Evaluation Measure for Segmentation Methods

Here we construct an empirical discrepancy measure to determine how close two
segmented images are.

3.1 Definition of “Centre” of an Object

Suppose that a distance transform is applied to a black and white image so that
each pixel, p, is associated with a function D(p) [12]. The value of D(p) gives
the Euclidean distance from p to the nearest white pixel.

Definition 1. A centre of an object is the pixel p with the largest distance
D(p) within the object. If there is a tie, any of the tied pixels can be chosen to
be the centre.

Note that this definition does not imply that the centres will be positioned at
the centres of gravity of the objects. Also, one object may have infinite amount
of candidate centres with the same highest D(p). This will happen, for example,
in a ring-shaped object. The geometric position of points at equal highest D(p)
will be a circle with radius equal to the average of the inner and outer radii of
the ring. Any point on the circle will be a valid centre according to Definition 1.

The obtained centres are required for extracting the microfossils with a higher
resolution for the purposes of subsequent classification. However, more generally,
centres of objects may be required for other purposes such as setting the initial
position of an active contour [13] or object tracking within moving images [14].
The centres provide a handle for our evaluation method.

3.2 Comparison of Sets of Centres Based on Distances

Let C∗ = {c∗1, . . . , c∗n} be the true centres and C = {c1, . . . , cm} be the centres
obtained through automatic segmentation. The most intuitive matching measure
would be the sum of distances to the nearest centre. Let

R(C∗ → C) =
n∑

i=1

m
min
j=1
{dist(c∗i , cj)} (1)

be the representation of C∗ by C. In the ideal case where the two sets of centres
are identical, C∗ = C, we have

R(C∗ → C) = R(C → C∗) = 0.
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If C ⊂ C∗, we have under-segmentation. In this case R(C∗ → C) > 0 and
R(C → C∗) = 0. If C∗ ⊂ C, the image is oversegmented, R(C∗ → C) = 0 and
R(C → C∗) > 0. To account for both under- and over-segmentation, and also
for the discrepancies in the centre location, we can use the following measure

Md(C∗, C) = R(C∗ → C) + R(C → C∗) (2)

=
n∑

i=1

m
min
j=1
{dist(c∗i , cj)}+

m∑
j=1

n
min
i=1
{dist(cj , c

∗
i )} (3)

Here “dist” can be any distance. In the illustration below we use Euclidean
and City-block distances. The smaller the value of Md, the more similar the
two segmentations are. We note that Md is a metric on the space of sets of
centres because Md(C∗, C) ≥ 0 with Md(C∗, C) = 0 iff C∗ = C (nonnegativity);
Md(C∗, C) = Md(C,C∗) (symmetry) and it can be proved that Md(C1, C3) ≤
Md(C1, C2) + Md(C2, C3) (triangle inequality), where C1, C2 and C3 are sets of
centres.

The problem with the distance-based measures is that they do not take into
account the specific objectives of segmentation. An example is shown in Figure
2. The true centre of the grey object, according to Definition 1, is situated in the
point with the largest D(p) (marked with ‘x’). Two guessed centres are displayed
in the figure. Clearly Guess 1 is closer to the true centre and any distance measure
will favour it over Guess 2. However, Guess 2 sits on the next highest peak of
D(p) in the object and is a much better representation of the object than Guess
1. This deficiency of the distance-based measures is addressed by the measure
proposed below.

Guess 1

Guess 2

True centre

Fig. 2. Examples of a true and two guessed centres

3.3 Comparison of Sets of Centres Based on Segmentation
Heuristics

The three most desirable properties of a segmented image can be specified as
follows

– A perfectly segmented image exhibits no under- or over-segmentation.
– There are no centres of objects which lie outside objects boundaries.
– The centre of each segment should coincide with the relevant object centre.
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We shall assume that a reference segmentation is available to represent the
ground truth. We also assume that the segmentation process returns a set of m
centres, C. We propose to evaluate the quality of segmentation by the following
three measures.

Definition 2. Let ni be the number of centres placed by the automatic segmen-
tation within object i (the object is defined by the ground truth segmentation).
The measure of under- or over-segmentation of i is

ri =
{

1− 1/ni, if ni > 0
1, if ni = 0 (4)

If there is no centre in the object or if there are large number of centres there,
ri approaches 1. The most desirable value of ri is 0 which is achieved if there is
only one centre in the object.

Definition 3. The measure of background segmentation is

v = 1− 1
m

n∑
i=1

ni. (5)

Note that v is the proportion of automatic centres that are not contained within
the boundaries of any objects. Thus v = 0 corresponds to the ideal situation
where the background is free of centres placed by mistake by the segmentation
algorithm.

The values r and v completely represent the under and over-segmentation of
the image regardless of the location of the centres within the objects. Hence the
third measure evaluates how close the approximations are to the ideal centres
within the objects.

Definition 4. Let c∗i be the true centre of object i and let c′ ∈ C be the
nearest centre from the automatic segmentation which lies within object i, i.e.,

c′ = arg min
c ∈ object i

{dist(c∗i , c)} (6)

The centre discrepancy is defined as

qi = 1−D(c′)/D(c∗i ), (7)

where D(c) is the distance transform value for point c. By Definition 1, D(c∗i ) is
the maximum distance within object i therefore D(c′) ≤ D(c∗i ), and qi ∈ [0, 1].
Approximated centres near the boundaries of objects should be assigned high
discrepancy value, qi, while those in the middle of objects should be assigned a
low discrepancy value.

To illustrate the rationale for introducing the centre discrepancy, qi, consider
an elongated object as shown in Figure 3. There are infinitely many possible cen-
tres, according to Definition 1, situated along the ridge of the distance function
for this object.
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Thus any centre on the ridge should have a lower error value qi than centres on
the edge of the object. Figure 3 shows that Euclidean distance will be misleading
in this case as a centre at the periphery will be preferred to one of the true centres
with the largest D(p).

(a) Small qi, large Euclidean distance (b) Large qi, small Euclidean distance
(preferred)

Fig. 3. Illustration of the advantage of the centre discrepancy measure qi over Euclid-
ean distance in evaluating an approximated centre (circle) with respect to the true
centre (cross)

The three measures ri, v and qi can be combined so that the quality of the
segmentation is measured by a single value.

Definition 5. The measure of quality of segmentation represented by the set
of centres C with respect to a ground truth segmentation with a set of centres
C∗ is

S(C,C∗) =
1
3

(
v +

1
n

n∑
i=1

(ri + qi)

)
, (8)

where ri, v and qi are calculated as in Definitions 2-4, respectively.

4 Experimental Results

4.1 A Single-Object Illustration

We start with a simple example showing why distance-based measures Md(C,C∗)
are insufficient for the purposes of segmentation. Figure 4 displays seven copies
of an image containing a single elliptical object with different nonempty sets
of centres C. In all 7 cases the set C∗ consists of one element which is the
geometrical centre of the ellipse.

Three measures of quality of the segmentation represented by the centres C
(dots) are shown in the table:- Md(C,C∗) for Euclidean and City-block distance
and the quality of segmentation S(C,C∗) as in Definition 5. The rows in the table
are sorted with respect to S(C,C∗) starting with the best case (minimum, S = 0)
and ending with the worst case (maximum, S = 1). There are discrepancies in
the ranking of the 7 cases according to the three measures. While the trivial
case where the single guessed centre coincides with the true centre is the most
preferred case for all the measures, S(C,C∗) disagrees with both distance-based
measures Md about the least preferred case. Based on distances, case 4 is the
worst because the guessed centre is far from the true centre. However, it is
important for our segmentation purposes that the centres lie within the objects.
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No Image Md Md r v q S
(one object) Euclidean City-block

1 0.00 0.00 0.00 0.00 0.00 0.00

2 1.43 1.90 0.00 0.50 0.00 0.17

3 3.70 3.70 0.50 0.00 0.00 0.17

4 7.40 7.40 0.00 0.00 0.70 0.23

5 2.41 3.00 0.50 0.33 0.00 0.28

6 2.95 3.80 0.00 0.50 0.80 0.47

7 4.88 6.80 1.00 1.00 1.00 1.00

Fig. 4. Seven examples of segmentation of one object using centres and the values of
the measures of quality of the segmentation. The true centre is marked with ‘×’ and
the guessed centres are marked with ‘•’.

Thus case 7 should be the least preferable one because the object has not been
found as the single centre lies in the background. Also, the oversegmented case
5 will be preferred to case 3 by both distance measures. In both cases there
is a perfect centre within the set C. Note that there is an extra centre in the
background in case 5, while there is no such centre in case 3. The disagreement
between the two distance-based measures is minimal. They rank differently only
cases 3 and 6. The major flaw of the distance measures is that they do not
take into account any object boundaries. Hence the advantage of Md over S
would be speed of calculations. However, the better match with the desiderata
for segmentation quality leads us to choose S.

4.2 A Multiple-Object Illustration

An example involving multiple objects is considered next. Figure 5 (a) presents
the objects and the ideal segmentation. Three special cases are shown in plots
(b), (c) and (d). The centres are placed manually in all three images.

For the task of classifying fossils cropped around the centres, missing an object
should be penalised stronger than placing an extra centre in the background. In
the former case, an important piece of information may be overlooked. In the
latter case the analysis time will increase due to the extra centres of nonexistent
objects but all the microfossils will be detected in the image. For this reason,
the undersegmented image (c) should be ranked worse than (b) and (d) should
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(a) Segmented original (C∗) (b) Over-segmented background (C)

(c) Under-segmented objects (C) (d) Completely misplaced centres (C)

Fig. 5. The original segmentation of a multiple object image and three special cases of
segmentation (centres have been placed manually in (b), (c) and (d))

Table 1. Measures of segmentation quality for the images in Figure 5 (b), (c) and (d)
with respect to the ground truth (a)

Subplot Md Md r v q S
Euclidean City-block

(b) Over-segmented background 1180 1513 0.00 0.18 0.38 0.18
(c) Under-segmented objects 585 735 0.50 0.61 0.00 0.37
(d) Completely misplaced centres 1068 1327 1.00 1.00 1.00 1.00

be ranked worse than (c). Table 1 displays the three measures Md-Euclidean,
Md-City block and S for the images in plots (b), (c), and (d).

The table shows that the distance-based measures fail to produce the required
ranking while S clearly distinguishes between the three cases.

4.3 Results on Microfossil Images

The results from applying the watershed [15] and floodfill [11] segmentation
methods on the image shown in Figure 1 are displayed in Figures 6 and 7,
respectively. Table 2 compares the two segmentation approaches. The distance-
based measures Md-Euclidean and Md-City block agree with S that the floodfill
method performs better than the watershed algorithm. There is a considerable
difference in the score of the distance-based measures between the two types of
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Fig. 6. Manually segmented inert material from Figure 1 overlaid with centres found
through the watershed segmentation method

Fig. 7. Manually segmented inert material from Figure 1 overlaid with centres found
through the floodfill segmentation method

segmentations indicating that these two approaches are very different, whereas S
shows that floodfill method only slightly improves over the watershed method.
This corresponds precisely to how we would interpret the data by visual in-
spection. The watershed algorithm (Figure 6) has failed to capture 3% of the
objects, with most of the captured objects being oversegmented. The floodfill al-
gorithm (Figure 7) has failed to capture 13% of the objects but the detection was
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Table 2. Segmentation quality of watershed and floodfill segmentation of Figure 1

Method Md Md r v q S
Euclidean City-block

Watershed 35407 44784 0.56 0.45 0.45 0.49
Floodfill 13254 16783 0.28 0.53 0.39 0.40

completed with nearly no oversegmentation. The watershed method makes up
for its oversegmentation by achieving a high capture rate. The small difference
between the two values of measure S in Table 2 account for the fact that both
methods have assets and flaws and a choice between the two cannot be made
with high certainty.

5 Conclusions

This paper proposes a new measure of the quality of segmentation of images
containing objects. The measure operates on a set of ideal centres of the objects,
C∗, assumed to be the ground truth and a set of guessed centres, C, obtained
through a segmentation algorithm. Thus the proposed measure falls into the
discrepancy category of evaluation methods, as detailed by Zhang [1].

Based on a list of desired properties and examples with generated and real
images, we argue that the proposed measure of quality, S(C,C∗) is better than
measures based on the distances (Md) between the centres in sets C and C∗.
The three components of the proposed measure comply with the intuition for
evaluating segmentation results represented by centres. Another advantage of
S over Md is that S has practically useful lower and upper limits while the
distance-based measures have only a lower limit. A disadvantage of S is that
it is slower to calculate than Md because it requires knowledge of the objects
in the image. We are more concerned with locating the inert material through
segmentation rather than extracting the material, so even though two different
segmentations can result in the same set of centres the value S will still provide
an accurate comparison between segmentations.

The intended application of S is for choosing a segmentation method and
tuning it for the specific practical application. In our case, a small number of
images will be labelled manually by an expert palynologist, and used as the
ground truth. After tuning, the segmentation method will be applied as a stan-
dard routine to find the microfossils in other images coming from the same
domain.
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Abstract. An approach for segmenting and tracking a face in a sequence
of color images is presented. It enables reliable segmentation of facial
region despite variation of skin-color perceived by a camera. A second
order Markov model is utilized to forecast the skin distribution of facial
regions in the next frame. The histograms that are constructed from the
predicted distribution are backprojected to generate candidates of facial
regions. Afterwards, a connected component labeling takes place. Spatial
morphological operations, such as size and hole filtering are employed
next. The Active Shape Model seeks to match a set of model points to the
image. This statistical model of shape supports the segmentation of facial
region undergoing tracking. Histograms are accommodated over time
using feedback from shape, newly classified skin pixels and predictions
of the skin-color evolution. This evolution is described by translation,
rotation and scaling. In this context, the novelty of our approach lies in
the introduction of Active Shape Model dealing with translation, rotation
and scaling of the target to support face verification as well as to guide
the evolution of skin distribution. The kernel histograms characterize
the face during tracking in subsequent frames. The proposed algorithm
achieves reliable detection and tracking results. The resulting system
runs in real-time on standard PC computer.

1 Introduction

Skin-color has proven to be effective and robust cue for face detection, local-
ization and tracking. A large part of image processing techniques uses skin de-
tection as a first primitive for subsequent extraction of image features. Skin
pixel candidates can be further processed to extract shape or motion cues. Well-
known methods of color modeling, such as histograms and Gaussian mixture
models have enabled the creation of appropriately exact and fast detectors of
skin. Many available vision systems are now applying such techniques to extract
skin-color patches for face detection and tracking in video sequences. In partic-
ular, skin color based methods are robust to changes in scale, resolution and
partial occlusion. However, such techniques are not as good as can be for use
in real environments because skin-color perceived by a camera usually changes
when the lighting condition varies. Therefore, for reliable detection of skin pixels
a dynamic color model that can cope with nonstationary skin-color distribution
over time should be applied in vision systems.

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 295–306, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The task of finding a human face in an image is referred to as face localization
or face segmentation. The grouping of extracted facial features into face candi-
dates, the heuristic rules and knowledge about a typical face and the correlation
to statistical face template are examples of approaches commonly employed to
detect the face [22]. Two types of information are typically used to perform seg-
mentation during face tracking. The first is color information [4][7][10][14][19].
The second is the geometric configuration of the face shape and even a given set
of facial features, e.g. both eyes, the nose, mouth etc. [5]. It is often not easy to
separate skin colored objects from non-skin objects like wood, which can appear
to be skin colored. Therefore, both skin-color modeling and contours are used
to separate the facial region undergoing tracking [1]. The oval shape of the head
is often approximated by an ellipse [1][20]. To cope with varying illumination
conditions the color model is accommodated over time using the past color dis-
tribution and newly extracted distribution from the ellipse’s interior. The kernel
density based tracking has recently emerged as robust and accurate method due
to its robustness to appearance variations and its low computational complexity
[4][7][14].

Many color-based tracking approaches assume controlled lighting. In real sce-
narios an object undergoing tracking may be shadowed by other objects or even
by the object itself. Updating the color model is thus one of the crucial issues
in color-based tracking. A technique for color model adaptation was addressed
in [15]. A Gaussian mixture model was used to represent the color distribu-
tion and the linear extrapolation was utilized to adapt the model parameters
via a set of labeled training data from a subimage within the bounding box. A
non-parametric method that in histogram adaptation employs only pixels which
fall in the skin locus was proposed in work [16]. In work [18] the modeling of
the color distribution over time is realized through predictive histogram adapta-
tion. Histograms are dynamically updated using affine transformations, warping
and resampling. The pixel-wise skin color segmentation is often not sufficient
to provide the pixels for color model adaptation because pixels in the image
background may also have colors similar with skin colors and this can then lead
to over-segmentation. Another issue which should be taken into account is that
nearby pixel from skin-colored background may blend with the true skin regions
and this can have an adverse effect on subsequent processing of skin regions.
The adaptive skin-color filter [6] performs initial skin candidate detection at the
beginning and then more accurate tuning of skin model takes place. The adap-
tation takes into account the skin-like background colors. The method uses HSV
color space in which the H coordinates are additionally shifted by 0.5. A compar-
ative study of four state-of-the-art techniques of skin detection under changing
illumination conditions can be found in [17].

The proposed algorithm of face tracking under time-varying illumination be-
gins with separating skin and non-skin colors using a database of skin and non-
skin pixels. The statistical shape model is utilized in selection of face candidates,
yielding the best face candidate on the basis of shape and color criterions. The
facial regions are detected during tracking by looking for pixels that have skin
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colors. The presence of such pixels in the input image is detected using the skin
and non-skin histograms. A kernel color histogram is used in frame-to-frame
appearance matching. The detected skin-colored regions are then refined using
homogeneity property which exhibit skin regions. In particular, the connected
component analysis is applied to label separate regions. Spatial morphological
operations for hole and object size filtering are used afterwards. The statistical
shape model provides an effective method for fitting oval head shapes to detected
face candidates. The algorithm reviews the image focusing the action around the
position where the tracked face was detected in the previous frame. The outcome
of this stage is a shape fitted to the face candidate. It provides additional in-
formation about expected target location. Using outline determined in such a
way a local search is conducted to determine the pose of the face allowing for
both color and shape information. The key idea of the proposed approach is im-
proved selection of skin pixels to determine the parameters of models expressing
the skin evolution over time. Even when a background region situated close to
a face region has skin colored pixels, there always exists a boundary between
the true skin region and the background. Our aim is to detect such a boundary
using Active Shape Models. A second order Markov model is applied to predict
the evolution of colors of such skin pixels, gathered in certain number of the last
frames. The predicted skin distribution is quantized using a kernel to construct
the histogram.

The Active Shape Models, which were originally proposed by Cootes [8], have
been modified in work [13] to incorporate color cues. The cited approach does
not apply color segmentation to the images. It is based on the minimization of
energy functions in the color components. Therefore it admits of only a small
change in illumination between two successive frames.

The following section briefly outlines some topics related to statistical shape
models. The details of the shape alignment are given in Section 3. Section 4.
describes how the Active Shape Model is used to conduct tracking and to support
the skin segmentation in video under time-varying illumination conditions. The
model of skin colors and their evolution is described in Section 5. Experimental
results are shown in Section 6. We report some conclusions in the last section.

2 Facial Shape Constraints

The method of segmentation and tracking of facial regions proposed in this paper
utilizes the statistical shape models. A shape model is utilized to constrain the
configuration of a set of candidate skin pixels. An efficient algorithm allows the
facial pixels detections to be tested and verified. The method allows for skin
detector failures by predicting the locations of missing skin pixels using the
shape model. The non-skin pixels outside the shape are not considered in the
skin-color model as well.

During shape guided verification of the facial region a set of candidate skin
pixels is inspected using shape constraints in two ways. Firstly, a shape model
is fitted to the candidate facial region. Secondly, limits are prescribed on the
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position, orientation and scale of a set of candidate skin pixels relative to the
position, orientation and scale according to their values from the last frame. The
aim is to extract pixels belonging only to the tracked face, using the candidate
facial mask and the shape constraints. The facial mask is generated from a skin
probability image. The skin probability image is extracted on the basis of skin
histogram that is accommodated over time.

There are two broad approaches for representing a two-dimensional shape:
region-based and contour-based. The region-based methods encode the place
occupied by the object through a mask. The methods belonging to this group
are sensitive to noise and they cannot cope with partly obscured objects. In
contour-based approach the boundary of the object is modeled as an outline.
Therefore, such methods can deal better with partially obscured objects and
partial occlusions. A contour-based model can be built by placing landmark
markers on distinctive features and at some pixels in between. The contour-based
instances are usually normalized to canonical scale, translation and rotation in
order to make possible comparison among distinct shapes. A distance between
corresponding points from the two normalized shapes can be utilized to express
the similarity.

Active Shape Models (ASMs or smart snakes) were originally designed as
a method for locating given shapes or outlines within images [8]. An ASM-
based procedure starts with the mean shape, approximately aligned to the ob-
ject, iteratively distorts it and refines the pose to obtain a better fit. It seeks
to minimize the distance between model points and the corresponding pixels
found in the image. A shape consisting of n points can be considered as one
data point in 2n−dimensional space. A classical statistical method for deal-
ing with redundancy in multivariate data is the principal component analysis
(PCA). PCA determines the principal axes of a cloud of n points at loca-
tions xi. The principal axes, explaining the principal variation of the shapes,
compose an orthonormal basis Φ = {p1,p2, ...,pn} of the covariance matrix
Σ = 1

n−1

∑n
i=1 (xi − x̄)(xi − x̄)T . It can be shown that the variance across the

axis corresponding to the i-th eigenvalue λi equals the eigenvalue itself. An
instance of shape can be generated by deforming the mean shape x̄, using a
linear combination of eigenvectors Φ, weighted by so-called modal deformation
parameters b. Thus, the new shape can be expressed in the following manner:
x = x̄ + Φb. By varying the elements of b we can modify the shape. By ap-
plying constraints we ensure that the generated shape is similar to the mean
shape from the original training data. The deformation of shapes is limited to a
subspace spanned by a few eigenvectors corresponding to the largest eigenvalues.
We can achieve a trade-off between the constraints on the shape and the model
representation by varying the number of eigenvectors.

3 Shape Alignment

Given two 2D shapes, x2 and x1 our aim is to determine the parameters of
a transformation T , which, when applied to x2 can best align it with x1 with
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one-to-one point correspondence. During alignment we utilize an alignment met-
ric that is defined as the weighted sum of the squares of the distances between
corresponding points on the considered shapes. Thus we seek to choose the pa-
rameters t of the transformation T to minimize:

E =
n∑

i=1

(x1i − Tt(x2i))T Wi(x1i − Tt(x2i)), (1)

where W is a diagonal matrix of weights {w1, w2, ..., wn}. Expressing Tt in the
following form:

Tt ≡
⎡⎣s cos(θ) −s sin(θ) tx
s sin(θ) s cos(θ) ty

0 0 1

⎤⎦⎡⎣x2i

y2i

1

⎤⎦ (2)

and denoting ax = s cos(θ), ay = s sin(θ) we can rewrite (1) in the following
form: E =

∑n
i=1 wi((axx2i − ayy2i + tx − x1i)2 + (ayx2i + axy2i − ty − y2i)2).

The error E assumes a minimal value when all the partial derivatives are zero.
For example, differentiating the last equation with regard to ax we obtain:∑n

i=1 wi(ax(x2
2i + y2

2i) + txx2i + tyy2i(x1ix2i + y1iy2i)) = 0. Diferentiating w.r.t.
remaining parameters and equating to zero gives:⎡⎢⎢⎣

C1
C2
X1
Y1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
D 0 X2 Y2
0 D −Y2 X2
X2 −Y2 W 0
Y2 X2 0 W

⎤⎥⎥⎦
⎡⎢⎢⎣
tx
ty
ax

ay

⎤⎥⎥⎦ , (3)

where Xi =
∑n

k=1 wkxik, Yi =
∑n

k=1 wkyik, C1 =
∑n

k=1 wk(x1kx2k + y1ky2k),
C2 =

∑n
k=1 wk(y1kx2k + x1ky2k), D =

∑n
k=1 wk(x2

2k + y2
2k), W =

∑n
k=1 wk.

The parameters tx, ty, ax and ay constitute a solution which best aligns the
shapes. An iterative approach to find the minimum of square distances between
corresponding model and image points is as follows [8]:

1. Initialize b to zero.
2. Generate the model points using x = x̄ + Φb
3. Find the pose parameters using (3)
4. Project image pixels Y into the model co-ordinates using y = T−1

t (Y)
5. Scale y as follows y′ = y/(y.x̄)
6. Update b in the following manner b = ΦT (y′ − x̄)
7. If not converged, go to step 2.

4 Active Shape Model Based Tracking

Tracking can be perceived as a problem of assigning consistent labels to objects
being tracked. This is done through maintaining the observations of objects in
order to label these so that all observations of a given object in a sequence of
images are given the identical label. During shape aligning our algorithm reviews
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the binary image focusing the action around the pose that has been determined
in the previous frame. The algorithm requires that the new shape center remains
within the face mask centered on the previous location of the target. Such an
assumption is utilized in kernel based trackers [4][7]. Limits are prescribed on
the position, orientation and scale according to their values in the last frame.
The binary image is generated in advance on the basis of the skin histogram
that is accommodated over time.

The standard ASM aligns the shape model to outlines in an image using only
edges. To obtain a rough pose of the face we first utilize the edges of the mask
indicating the face area. The final pose of the shape is determined on the basis of
the intensity gradient near the edge of the outline, a matching score of colors from
the candidate outline and from the outline determined in the previous iteration
and the location of the mask. In work [12] a search for the edges in direction
perpendicular to the border has been shown optimal. Therefore, a search for the
points along profiles normal to the shape boundary has been implemented.

The shape model has been generated using 10 manually segmented images
with frontal faces, each represented by 30 characteristic points. The faces have
been normalized with regard to orientation and size in order to obtain a set of
points with similar physical correspondence across the training collection. All
training faces were manually aligned by eyes position.

The oval shape of the head can be reasonably well approximated by an ellipse.
Therefore, in this work the model shapes are normalized by aligning the average
shape to a fixed circle of landmark points. Such an approach has the advantage
that the model can be scaled to size needed be the application through setting
only the size of the circle.

Figure 1. demonstrates the performance of the ASM attempting to match the
head model to a given binary mask that has been extracted during tracking. To
demonstrate the usefulness of statistical shape models in tracking two artifacts
at the left and the right side of face border have been manually added. Despite
large deformation of shape outline we can observe how precisely the algorithm
can align the model shape to the face mask. The shape on the left represents the
initial pose that has been utilized in depicted shape alignment. This exemplifies
also how the statistical shape models can support the selection of pixels for color
model adaptation and thus the prediction of skin evolution over time. The next
section is devoted to description of skin-color based image segmentation under
time-varying illumination.

Fig. 1. Shape alignment in presence of artifacts
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5 Skin Color Segmentation Under Time-Varying
Illumination

The face detection scheme within tracking framework must operate flexibly and
reliably regardless of lighting conditions, background clutter in the image, as
well as variations in face position, scale, pose and expression. Some tracking ap-
plications, for example using a moving camera, do require good detection rates
even in case of abrupt changes of illumination. Fast and reliable face segmen-
tation techniques in image sequences are highly desirable capability for many
vision systems. Skin color based detection methods are independent to scale,
resolution and to some degree of face orientation in the image. A problem with
robust detection of skin pixels arises under varying lighting conditions. The same
skin patch can look like two different patches under two different conditions. An
important issue for any skin-color based tracking system is to provide an accom-
modation mechanism which could cope with varying illumination conditions that
may occur during tracking. In our approach, color distributions are estimated
over time and then are predicted under the assumption that lighting conditions
vary smoothly over time. The prediction is used to reflect the changing tendency
in appearance of the object being tracked. A ground-truth is an evident need
during adapting a color model over time to changing illumination conditions
[15]. In this approach the evolution of distribution is constrained via statistical
shape model and skin locus mechanism. In work [18] the current segmentation
and predictions of Markov model were applied to provide a feedback for ac-
commodation. In other work [15] the accommodation process is controlled via
mechanism for detecting errors accompanying tracking.

One significant element that should be considered while constructing a statis-
tical model of skin color is the choice of color space. One of the advantages of the
HSV color space is that it yields minimum overlap between skin and non-skin
distributions. Hue is invariant to certain types of highlights, shadows and shad-
ing. A shadow cast does not change significantly the hue color component. It
decreases mainly the illumination component and changes the saturation. This
color space was utilized in several face detection systems [15][18][19]. The only
disadvantage of the HSI color space is the costly conversion from the RGB color
space. We handled this problem by using lookup tables.

The histogram is the oldest and most broadly employed non-parametric den-
sity estimator. In the standard form it is computed by counting the number
of pixels that have given color in region of interest. This operation allows alike
colors to be clustered into the separate bin. The quantization into bins reduces
the memory and computational requirements. Due to their statistical nature the
color histograms can only reflect the content of images in a limited way [21].
Therefore, such representation of color densities is tolerant to noise. Histogram-
based techniques are effective only when the number of bins can be kept relatively
low and when sufficient data are in disposal [15]. One of the drawbacks of the
histogram based density estimation is the lack of convergence to the true density
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if the data set is small. In certain applications, the color histograms are invariant
to object translations and rotations. They vary slowly under change of angle of
view and with change in scale.

The target is represented by the set S = {ui}N
i=1, where N is the number of

pixels and ui denotes vector with HSV components of the i−th pixel. Given a
set of samples S we can obtain estimate of p(u) using multivariate kernel density
estimation [7][9]:

p(u) = p(u(1) = H,u(2) = S, u(3) = V ) =
1
N

N∑
i=1

3∏
l=1

Kh(u(l) − u
(l)
i ), (4)

where Kh(u) = 1
(
√

2πh)d
exp

(
− 1

2

(
‖u‖2

h2

))
is a Gaussian kernel of bandwidth h,

whereas d denotes the dimension. The quantizatin with 32x32x32 bins has been
used to represent both the target as well as the background.

An initial skin histogram, along with the model for non-skin background pix-
els, has been used in order to compute the probability of every pixel in the first
input color image and thus to give the skin likelihood. A model for human skin
color distribution was built using a repository of labeled skin pixels that has
been prepared in advance. Given the histograms φfg and φbg, the log-likelihood
ratio for a pixel with color u is given by [11]:

L(u) = max
(
−1,min

(
1, log

max(φfg(u), δ)
max(φbg(u), δ)

))
, (5)

where δ is a very small number, whereas φfg(u), φbg(u) denote the frequency of
pixels with color u in the foreground and background, respectively.

Given the probability image the thresholding takes place. After that, the
binary image is analyzed using a labeling procedure, which isolates connected
components in order to detect the presence of face candidates in the image. Next,
the candidate regions are subjected to morphological operations, such as size and
hole filtering, to clean up the mask and to generate the mask indicating which
pixels belong to the face. After alignment of the model shape with the current
mask, the refined face mask is utilized to select from the newly classified pixels
the representation of the skin distribution. Using such samples gathered over an
initial sequence of frames the sequence-specific motion patterns are learned. A
second-order Markov process has been chosen to model the evolution of the color
distribution over time [3][18].

Many studies have indicated that the skin tones differ mainly in their intensity
value while they form compact cluster in chrominance coordinates [23]. Hence,
the evolution of skin cluster can be parameterized at each time instant t by
translation, rotation and scaling. The translation parameters tp can be extracted
on the basis of means from samples constituting a learning distribution, whereas
the scaling parameters sp can be estimated from their standard deviations. The
eigenvectors of the covariance matrices of samples from two consecutive frames
define two coordinate frames, which can be then used to estimate the rotations
rp [18].
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The work [3] demonstrated that affine motion can be described via a second-
order auto-regressive Markov process:

X(tk+1)− X̄ = A2(X(tk−1)− X̄) + A1(X(tk
)− X̄) + B0wk, (6)

where X = {tT
p , sT

p , rT
p } is the vector parameterizing the skin evolution. The

parameters which should be learned are A0, A1, and C = BBT because B cannot
be observed directly. It was shown in [2] that the matrices A0 and A1 can be
estimated on the basis of the following equations:

S20 − Â0S00 − Â1S10 = 0 (7a)
S21 − Â0S01 − Â1S11 = 0, (7b)

where Sij =
∑m−2

k=1

(
X(t(k−1)+i)X

T (t(k−1)+j)
)
, i, j = 0, 1, 2, and m denotes

number of learning frames. Having A0 and A1 we can estimate C from the
following equation: Ĉ = 1

m−2Z(A0, A1), where Z(A0, A1) = S22 + A1S11A
T
1 +

A0S00A
T
0 − S21A1 − S20A

T
0 + A1S10A

T
0 −A1S12 −A0S02 + A0S01A

T
1 .

On the basis of predicted distribution the histogram φfg(p) of skin colors is
extracted. After normalization of the histogram we perform an adaptation which
combines the histogram that had been obtained from the predicted distribution
and the histogram from the last frame. Adaptation is made according to the
following equation:

φfg(u)(t) = (1 − α)φfg(t− 1) + αφfg(p) (t), (8)

where the adaptation coefficient α has been determined empirically. The his-
togram φfg(u)(t) has been subjected to segmentation procedure to produce the
face mask. The refined face mask by statistical shape model, as discussed in
Section 4., has been then used to collect the newly classified skin pixels in a list.

The refined face mask by statistical shape model can contain non-skin pixels.
Experiments demonstrated that the part of face below the hair was a source of
such inadequate pixels. To deal with this undesirable effect, the pixels collected
in the mentioned above list were additionally inspected if they fall within the
prepared in advance skin locus. A prepared off-line two-dimensional table defin-
ing possible skin chromaticities has been used at this stage. It has shown to be
useful especially in eliminating non-skin pixels from the representation of the
skin distribution in a sudden change of illumination.

The list prepared in such a way has been utilized to generate the histogram
φfg(n) . Finally, this histogram has been updated in the following manner:

φfg(t) = (1 − α)φfg(t− 1) + αφfg(n)(t). (9)

This histogram has been utilized to generate the skin image probability during
tracking.

6 Experiments

To test the proposed method of face tracking we performed various experiments
on real images. We utilized the Carphone sequence as our first test set. The
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a) b) c) d)

Fig. 2. Face tracking using the Carphone test sequence, frames #84, #125, #176, #200
(from top to bottom). Binary image (a). Hole and object size filtering (b). ASM-based
refinement of the face mask (c). Input image with the extracted face outline (d).

model of the face shape was prepared on images not containing the face from
the considered test sequence. Through this sequence we want to highlight the
behavior of the tracking algorithm in case of errors in target segmentation. We
can notice in Fig. 2. that even if the segmentation does not separate the object of
interest from the background, the contour generated from the active shape model
supports greatly the extraction of the object. For example, the images from the
second column demonstrate that without the ASM based shape refinement the
color model would be influenced by the hair colors as well as by the bow-tie
colors, see also frame #176.

To study the adaptation performance in time-varying illumination conditions
we conducted experiments with two configurations of the tracking algorithm. In
the first configuration we utilized the predictions of the skin evolution, whereas
in the second one only the newly classified pixels have been used to accommodate
the histogram. The number of learning images has been set to 20. Typically in
almost 90% images, the predictions lead to better fidelity in approximation of
the face, see also Fig. 3. In particular, the first configuration detected smaller
number of skin-pixels in the background in all images, compare Fig. 3a with
Fig. 3c. Other tracking results using this image sequence can be found in [1][5].
The presented system runs at 176x144 image resolution at frame rates of 12-
15 Hz on a 2.4 GHz PC. The algorithm has also been tested with Claire and
Foreman test sequences as well as PETS-03 meeting recordings. The superior
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a) b) c) d)

Fig. 3. Tracking in time-varying illumination, frames #301, #310, #319, #330 (from
top to bottom). Histogram update using: predictions (a,b), newly classified pixels (c,d).

tracking performance over face tracking algorithm using intensity gradients and
kernel histograms was observed in all above mentioned sequences. Particularly,
smaller ”jumps” of the shape indicating the face location from frame to frame
have been perceived. In varying illumination can arise the superiority over Mean-
Shift because of reduced adaptation capabilities of Mean-Shift methods.

7 Conclusion

A face detection and tracking strategy has been described. The accommodation
of the skin histograms over time takes place using feedback from shape, newly
classified skin pixels and predictions of the skin color evolution. Once a face is
being tracked, the color model adapts according to changes in appearance and
therefore improves tracking performance.
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Abstract. In this paper a novel method of impulsive noise suppres-
sion in color images is described. The new approach is based on a soft-
switching scheme, whose output is the weighted average of the central
pixel and the vector median of the local filtering window. The noise de-
tection component of the switching filtering framework is based on the
difference between accumulated distances assigned to the vector median
of the local data and the central pixel in the filtering mask. The results
of simulations performed on a set of test images show that the proposed
method is capable of reducing even strong impulsive noise while retaining
the image structures.

1 Introduction

During image acquisition, formation, storage and transmission many types of
distorsions limit the quality of digital images. Periodic or random motion of
the camera system during exposure, electronic instabilities of the image signal,
electromagnetic interferences from natural or man-made sources, sensor mal-
functions, optic imperfections, electronics interference or aging of the storage
material, all decrease the image quality. Very often, images are corrupted by the
so called impulsive noise and the removal of this type of noise in color images is
addressed in this paper.

Mathematically, a N1×N2 multichannel image is a mapping Z
l → Z

m rep-
resenting a two-dimensional matrix of three-component samples (pixels), xi =
(xi1, xi2, . . . , xim) ∈ Z

l, where l is the dimension of the image domain and m de-
notes the number of channels, (in the case of standard color images, parameters
l and m are equal to 2 and 3, respectively). Components xik, for k = 1, 2, . . . ,m
and i = 1, 2, . . . , N , N = N1 ·N2, represent the color channel values quantified
into the integer domain.

Let us assume that an image is represented in the RGB color space and let
{x1, x2, . . ., xn} be a set of n samples from the sliding filter window W , with x1
being the central pixel. The pixels from W can be ordered by assigning to each
vector a measure of its dissimilarity to other vectors in the filtering window. The
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vector with the lowest cumulated dissimilarity measure is most centrally located
and is the the output of the so called rank ordered filters, [1].

Mostly the ordering based on the cumulative distance function is utilized:
R(xi) =

∑n
j=1 ρ(xi,xj), where ρ(xi,xj) is the distance among xi and xj . The

increasing ordering of the scalar quantities {R1, . . . , Rn} generates the ordered
set of vectors {x(1),x(2), . . . ,x(n)} and the vector x(1) is called the vector median.

2 Proposed Filtering Design

Quite often filters based on local statistics are applied to suppress the noise
disturbing the images. These filters make use of the local mean and the variance
of the input set W and define the filter output as, [2]

y1 = x̂1 + α (x1 − x̂1) = αx1 + (1− α)x̂1 , (1)

where x̂1 is the arithmetic mean of the image pixels belonging to the filter win-
dow W , whose center is occupied by pixel x1 and α is a filter parameter, usually
estimated using the local statistical features. Such a filter smooths with the local
mean, when the noise is not very intensive and leaves the pixel value unchanged
when a strong signal activity is detected. Equation (1) can be rewritten as

y1 = (1 − α) (ψ1x1 + x2 + . . . + xn) /n, (2)

with ψ1 = (1 − α + nα)/(1 − α) and in this way the local statistic filter (1)
appears to take the form of the central weighted average filter, with a weighting
coefficient ψ1.

The structure of the new filter called Soft Switching VMF (SSVMF) is similar
to the presented above approach, [3,4]. However, as our aim is to construct a
filter capable of removing impulsive noise, instead of the mean value, the VMF
output is utilized and the output of the proposed filter is defined as

y1 =x(1) + α · (x1 − x(1)
)
=αx1 + (1 − α)x(1). (3)

In this way, the proposed technique is a compromise between the VMF and
identity operation. When an impulse is present, then it will be replaced with
the VMF, otherwise the central pixel should not be changed. Thus the efficiency
of the proposed filter is dependent on the coefficient α which should be able to
detect impulses in the center of the filtering window.

In this paper the difference between the cumulated distances R1 and R(1) serve
as an indicator of the presence of an impulsive distorsion. The local difference
defined as r = R1 − R(1) proves to detect quite well the impulses. This is is
shown in Fig. 1, which depicts the comparison between the difference r and
the distance between the original, undisturbed pixels oi and pixel xi of the
contaminated image.

As the α in (3) should be a decreasing function of the impulse magnitude,
various decreasing functions known from the theory of non-parametric estimation
have been used:
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LENA

R1 R(1) R1 − R(1) ‖x1 − o‖

GOLDHILL

R1 R(1) R1 − R(1) ‖x1 − o‖

Fig. 1. Illustration of the efficiency of the proposed impulse detector for the LENA and
GOLDHILL images. From the left: images depicting the R1, R(1) and r = R1 − R(1)

values compared with with ‖x1 − o‖. The bottom images depict the zoomed regions.
Note the similarity between the images of r = R1 − R(1) and ‖x1 − o‖, which proves
that the difference r between R1 and R(1) detects well the impulses introduced by the
noise process.
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f1 = e−
x
h , f2 = e−

x2

h2 , f3 =
1

1 + x2

h2

, f4 =
[
1− x

h

]+
, f5 =

[
1− x2

h2

]+

, (4)

where [f (x)]+ = f(x) if 0 < x < h and 0 otherwise.
Experiments revealed as expected, that the shape of the kernel function is not

of great importance for the noise reduction efficiency of the proposed filter as
quite different functions yield comparable results in terms of PSNR as shown in
Fig. 6. For the comparison with existing filters the Gaussian function f2 from
(4) has been adopted and the α in (3) is defined as α = exp

{−r2/h2
}
, where h

is a smoothing parameter.
If the central pixel is not disturbed by the noise process then the α coefficient

is close to 1 and the output is near to the original value x1, otherwise it is close
to 0 and its output is the vector median x(1).

It is interesting to observe that the filter output y1 lies on the line joining
the vectors x1 and x(1) and depending on the value of the α coefficient it slides
between the identity operation and the vector median, (Fig. 2).

Fig. 2. The filter output slides between central pixel x1 and vector median x(1)

The conducted experiments have revealed that the optimal h value depends
on the noise intensity p, which shows that an estimator of the contamination
level is needed, so that the smoothing parameter can adapt to the noise process.

It has been observed that for the functions in (4) the product of the opti-
mal value of the h parameter, denoted as h∗, which yields the best possible
PSNR value, and the noise intensity p is a constant, which means that 1/h∗ is
proportional to p, as depicted in Fig. 3 a) for the Gaussian function f2.

Another important observation is that the mean values m of the histograms
of the r = R1−R(1) values depicted in Fig. 4 are also proportional to p, which is
shown in Fig. 3 b). This observation shows that the contamination intensity can
be estimated from the information provided by the distribution of the r values.

Based on this observations, it can be concluded that there exists a simple
relation between the optimal bandwidth parameter h∗ and the mean value m of
the histogram of r values, namely m · p = β, where β = 110 is a constant, which
was found experimentally using a set of natural images. The mean value of the
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histogram H(r) can be easily measured using the whole image or randomly cho-
sen samples. This experimental observation is the most important contribution
of the paper, as it enables fast and robust estimation of the noise corruption
intensity.

3 Experimental Results

In this paper the noisy image is modelled as xi = {xi1, xi2, xi3}, where

xik =
{
vik with probability π ,
oik with probability 1− π ,

(5)

and the contamination component vik is a random variable. We will assume three
models, [18,19] which will be called random-valued or uniform noise (NM1),
when vik = [0, 255], impulsive fixed-valued noise (NM2), when vik ∈ {0, 255}
and extended noise model (NM3) defined as, [18,20]

xi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
oi, with probability 1− p,

{vi1, oi2 , oi3}, with probability p1 p,
{oi1 , vi2, oi3}, with probability p2 p,
{oi1 , oi2 , vi3}, with probability p3 p,
{vi4, vi4, vi4}, with probability p4 p,

(6)

where p is the sample corruption probability and p1, p2, p3 are corruption proba-
bilities of each color channel, so that

∑4
1 pk = 1. In this work, NM3 will generally

denote the case with pk = 0.25, k = 1, . . . , 4, and vij = 0 or 255 for j = 1, . . . , 4.
It can be noticed that the second model is a special case of the uniform noise,

as this noise can take on only two values 0 or 255 with the same probability,
assuming 8-Bit per channel color image representation. In noise models NM1
and NM2 the contamination of the color image components is uncorrelated, and
the overall contamination rate is p = 1− (1− π)3.

For the measurement of the restoration quality the commonly used Root
Mean Squared Error (RMSE) expressed through the Peak Signal to Noise Ratio
(PSNR) was used as the RMSE is a good measure of the efficiency of impulsive
noise suppression. The PSNR is defined as

PSNR = 20 log10

(
255√
MSE

)
, MSE =

N∑
i=1

m∑
k=1

(xik − oik)2

Nm
, (7)

where N is the total number of image pixels, and xik , oik denote the k-th
component of the noisy image pixel channel and its original, undisturbed value
at a pixel position i , respectively.

For the evaluation of the detail preservation capabilities of the proposed fil-
tering design the Mean Absolute Error (MAE) has been used

MAE =
N∑

i=1

m∑
k=1

|xik − oik|
/
Nm. (8)
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Fig. 3. Dependence of 1/h∗ and m on the noise intensity p for the random valued
impulsive noise and LENA image

Fig. 4. Histograms of r for the LENA and GOLDHILL images for increasing random
impulsive noise intensity

Fig. 5. Dependence of PSNR on parameter h for various noise intensity p. The results
obtained using the proposed estimator of the optimal h value are depicted by �

Fig. 6. Dependence of PSNR on the smoothing parameter h using various kernel
functions, (see Eq. 4) for the LENA and PEPPERS images contaminated by 10%
random valued impulsive noise NM1
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Table 1. Filters used for the comparisons with the proposed noise removal method

FILTERS USED FOR COMPARISONS
VMF [1] Vector Median Filter

VDOSF [5] Vector Directional Order-Statistics Filter
HDF [6] Hybrid Directional Filter
LIMF [7] Local Information Measure Filter

VLUMS [8] Vector LUM Smoother
AVLUMS [9] Adaptive Vector LUM Smoother
MICM [10] Modified ICM Method
AVFF [11] Adaptive Video Filtering Framework
AVMF [12] Adaptive Vector Median Filter
ACIF [13] Adaptive Color Image Filter

CWVMF [14] Central Weighted Vector Median Filter
MCWVMF [14] Modified Central Weighted Vector Median Filter
FANRF [15] Fast Adaptive Noise Reduction Filter
SANRF [16] Self-Adaptive Noise Reduction Filter
GAVSF [17] Generalized Adaptive Vector Sigma Filter

Table 2. Comparison of the new filtering design with the denoising techniques listed
in Tab. 1 using the LENA test image and three noise models for p = 10%

NOISE NM1 NM2 NM3
FILTER MAE PSNR NCD MAE PSNR NCD MAE PSNR NCD
NONE 7.70 18.65 86.73 4.42 19.75 85.94 6.41 18.15 83.23

SSVMF 0.64 38.84 7.03 0.62 39.2 7.54 0.63 38.96 7.39
FPGF 0.58 38.38 6.36 0.58 37.58 7.53 0.59 37.56 7.25
VMF 3.53 32.49 40.82 3.41 32.85 39.93 3.45 32.71 40.10

VDOSF 0.90 32.46 7.78 0.72 34.72 8.42 2.92 22.53 27.59
HDF 3.66 32.52 41.91 3.56 32.82 41.26 3.59 32.70 41.30
LIMF 2.07 34.03 24.66 2.32 34.38 28.50 2.14 34.55 25.91

VLUMS 0.57 37.97 6.44 0.54 38.41 7.32 0.55 38.28 7.09
AVLUMS 0.95 37.29 10.50 0.90 37.85 10.34 0.92 37.53 10.36
MICM 0.65 37.15 7.72 0.45 38.72 6.81 0.51 38.41 6.78
AVFF 0.56 38.33 6.67 0.42 40.29 5.71 0.45 39.64 5.84
AVMF 0.65 37.08 7.19 0.63 36.56 8.92 0.63 36.65 8.44
ACIF 0.72 34.79 6.70 0.61 37.45 6.60 3.37 22.61 31.94

CWVMF 1.60 35.18 18.18 1.44 35.95 16.84 1.49 35.56 16.98
MCWVMF 0.93 36.48 10.37 0.85 37.14 10.16 0.91 36.87 10.62

FANRF 0.54 38.73 6.08 0.55 38.49 6.95 0.54 38.39 6.98
SANRF 0.52 39.08 5.89 0.53 38.63 6.96 0.54 38.61 6.72
GAVSF 1.37 31.84 14.72 1.14 34.62 14.04 3.13 22.68 31.37

Since RGB is not a perceptually uniform space in the sense that differences
between colors in this space do not correspond to color differences perceived
by humans, the restoration errors are often analyzed using the perceptually
uniform color spaces. In this paper we will use the CIE LUV color space and the
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ORIGINAL NOISY VMF

SSVMF AVLUMS VLUMS

FPGF SANRF AVFF

Fig. 7. Illustrative comparison of the filtering efficiency with some other noise removal
algorithms from Tab. 1

Normalized Color Difference (NCD) defined as [18]

ΔE =
1
N

∑N

i=1

√(
L∗

oi
− L∗

xi

)2 +
(
u∗
oi
− u∗

xi

)2 +
(
v∗oi
− v∗xi

)2
, (9)

NCD =
N ΔE

N∑
i=1

√(
L∗

oi

)2 +
(
u∗
oi

)2 +
(
v∗oi

)2 , (10)
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a)

b)

c)

Fig. 8. Results of noise reduction in a cDNA image: a) noisy image and the zoom of its
down-right corner, b) the output of the proposed adaptive filter and c) the difference
between the original and restored images
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where L∗ represents lightness values and u∗, v∗ chrominance values correspond-
ing to original oi and noisy (filtered) xi samples expressed in the CIE LUV color
space.

The efficiency of the proposed noise cancellation algorithm has been verified
on a set of commonly used test images contaminated with the described noise
models. The comparison of the noise suppression efficiency with the algorithms
listed in Tab. 1 presented in Tab. 2 shows that the new technique is compara-
ble with the best available techniques of impulsive noise suppression. The plots
shown in Fig. 5 indicate that the new technique is significantly superior to the
VMF. Also the illustrative comparison provided in Fig. 7 shows that the pro-
posed filter efficiently removes the impulses and preserves edges and small image
details.

The efficiency of the proposed filtering framework has also been confirmed
by the filtering results obtained when denoising the cDNA microarray images
with unknown amount of noise, Fig. 8. It can be noticed that the proposed
filter adapts to the noise level and removes the spikes only, while preserving the
textural information.

4 Conclusion

In the paper a fully adaptive soft-switching scheme, based on the vector median
has been presented. The proposed filtering structure is comparable with the best
available filtering schemes and can be applied for the removal of impulsive noise
in natural images. It is relatively fast and the proposed adaptation scheme en-
ables automatic filtering independently of the noise intensity. It is worth noticing
that the proposed algorithm is also efficient in the case of gray scale images.
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Abstract. Two dimensional (2D) nonseparable filter banks with linear phase 
(LP) are desired for image sub-band coding and compression. In this paper, we 
propose a method for designing 2D nonseparable filter banks with the LP and 
near perfect reconstruction (near-PR) properties. By combining the unimodular 
transformation and a separable |M|-channel LP filter bank, the design problem 
is simplified to that of two one-dimensional (1D) LP filter banks. For 1D case, a 
novel method by employing partial cosine modulation is used to design near-PR 
filter banks with LP analysis and synthesis filters. For 2D case, we cascade two 
1D near-PR LP filter banks in the form of tree structure to design a separable 
LP filter bank. With the unimodular transformation, a nonseparable LP filter 
bank is obtained. In addition, the filter bank achieves the near-PR property 
without sophisticated nonlinear optimization procedures. Design example 
shows the efficiency and simplicity of the proposed method. 

1   Introduction 

Multidimensional (MD) filter banks have been studied extensively due to their wide 
range of applications in image, video and other fields. Among the various MD filter 
banks, separable filter banks in [1], [2] are easy to implement and design, simply by 
factoring the 1D-components. In contrast to separable systems, nonseparable filter 
banks in [3-9], [12] offer more flexibility and usually provide better performance, and 
thus, are more appropriate for dealing with MD signals. One key property of a filter 
bank is the perfect reconstruction (PR) measure, which guarantees that the original 
input can be perfectly reconstructed from the output. However, the design of PR non-
separable filter banks by nonlinear constrained optimization methods in [3-5] is very 
difficult because of the large numbers of variables and optimization constraints. The 
methods of constructing two-dimensional (2D) cosine modulated filter banks (CMFB) 
with the PR property are proposed in [6] and [7]. The design of the system involves 
only a general nonlinear constrained optimization with the objective function repre-
senting the stopband energy of the prototype filter. But in these systems, the analysis 
and synthesis filters do not possess the linear phase (LP) property, which is highly 
desired in image coding application. Motivated by the development of 1D LP CMFB, 
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the design of 2D PR CMFB with LP analysis and synthesis filters is studied in [8]. 
The design problem is reduced to the design of a LP prototype with a parallelogram 
support.  Since the configuration of the resulting LP CMFB lacks vertex permissibil-
ity, the resulting analysis and synthesis filters can not have good frequency selectiv-
ity. In [9], the authors proposed a two subsystem (one subsystem is a cosine  
modulated and the other is a sine modulated version of the prototype) decomposition 
scheme to construct CMFB with the LP and PR properties. However, the filter bank 
has special form where two filters occupy the same band in this case. 

In this paper, we propose a simple design method for 2D nonseparable near-PR 
filter banks with LP analysis and synthesis filters. We combine the unimodular 
transformation introduced in [10-13] and a separable LP filter bank, by which the 
design problem can be simplified to that of two 1D filter banks with LP analysis 
and synthesis filters. For 1D case, a novel method, namely partial cosine modula-
tion, is used to design LP near-PR filter banks. Constraints to eliminate the signifi-
cant aliasing and amplitude distortion are given. By employing the Parks-McClellan 
algorithm in constructing the prototype filter, the first and the last analysis filters, 
other analysis filters are cosine modulated versions of the prototype. Then we get 
the corresponding synthesis filters according to time-reverse property.  In this way, 
all filters achieve ideal magnitude responses. For 2D case, we concatenate two 1D 
LP filter banks in the form of tree structure to design a separable LP one. We show 
that with the unimodular transformation, the 2D filters in the designed nonseparable 
system are partially cosine modulated, possess the LP property along with good 
frequency selectivity. The resulting 2D system possesses the near-PR property as its 
1D counterpart. In addition, our method has no restriction to the number of channels 
and is of conceptual simplicity. 

Notations: In this paper, M denotes a 2×2 nonsingular integer matrix and the notation 
( )MΞ  represents the set of all integer vectors of the form =n Mx  for 2[0,1)∈x . The 

number of elements in ( )MΞ  is equal to the absolute value of determinant of M, 

which is denoted by |M|. The sampling lattice generated by M is denoted by 
( )LAT M . ( )SPD M  is the symmetric parallelepiped of M, defined as the set of vec-

tors of the form Mx, 2[ 1,1)∈ −x . An integer matrix U is a unimodular matrix if |U|=1. 

The inverse 1U  of a unimodular matrix U is also a unimodular matrix. 
The rest of this paper is organized as follows: in section 2, the principle of 2D 

maximally decimated filter banks will be introduced. Section 3 presents the method 
on designing 2D |M|-channel LP near-PR filter bank by combining the design method 
of 1D M-channel LP filter banks and the unimodular transformation, followed an 
example in section 4. Finally, some conclusions will be drawn in section 5. 

2   Principle of 2D Maximally Decimated Filter Banks 

A general structure of 2D |M|-channel maximally decimated filter banks with decima-
tion matrix M is depicted in Fig. 1.  
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Fig. 1. |M|-channel maximally decimated filter bank 

The input-output relationship of this system can be expressed as 
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It can be seen from Eq.(1) that the reconstructed signal ˆ ( )X  is a linear combination 

of the input signal ( )X  and its shifted versions ( 2 )T
iX M mπ −− . We refer to the 

terms, ( )T , ( 2 )T
iX M mπ −−  and ( )

i
Am , as the overall transfer function, alias 

components and alias transfer functions, respectively. 
Similar to the 2D case, in a 1D filter bank with sampling factor M, the z-domain 

input-output relationship can be expressed as 
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2 ,  1 1,  0 1j M
MW e l M k Mπ−= ≤ ≤ − ≤ ≤ − .  

Correspondingly, we respectively refer to the terms, ( )T z , ( )l
MX zW  and ( )lA z , as 

the overall transfer function, alias components and the alias transfer functions.  
Two quantities are defined to measure the reconstruction degree of the filter bank. 

One is denoted by 2pp DE  in 2D case or ppE  in 1D case, which measures the worst 

possible amplitude distortion (AMD), describing the maximum peak to peak ripple of 
| || ( ) |TM  or | ( ) |jM T e . The other 2a DE  in 2D case or aE in 1D case that is used 

to evaluate the worst possible peak ALD is the maximum value of 
2

( )

( )
i

T
i

i

Am
m M
m 0

∈Ξ
≠

 

or 
1 2

1

( )
M

j
l

l

A e ω
−

=

. As a general rule, under the condition that the filter bank is free 

from phase distortion (PHD), if the values of 2pp DE  and 2a DE  are in the order of 
310−  or below, we classify the filter bank as a near-PR one; on the other hand, if both 

values are in the order of 1210−  or below, we consider that the filter bank achieves the 
PR property. 

3   2D |M|-Channel Linear Phase Near-PR Filter Banks 

We introduce a novel method for designing 1D M-channel near-PR filter banks with 
LP analysis and synthesis filters in section 3.1. Section 3.2 gives a brief introduction 
of unimodular transformation. In section 3.3, we combine the methods shown in sec-
tion 3.1 and section 3.2 to obtain a 2D |M|-channel LP near-PR filter bank. 

3.1   1D LP Near-PR Filter Banks with Partial Cosine Modulation 

In a 1D M-channel CMFB, the analysis filters ( )kh n  and synthesis filters ( )kf n  are 

obtained by cosine modulation of a prototype ( )p n  with order N 

( ) 2 ( ) cos( (2 1)( ) )
2 2k k

N
h n p n k n

M

π θ= + − + , (5a) 

( ) 2 ( ) cos( (2 1)( ) )
2 2k k

N
f n p n k n

M

π θ= + − − , (5b) 

0 ,  0 1n N k M≤ ≤ ≤ ≤ − ,  

where ( 1) 4k
kθ π= − ; ( )kh n and ( )kf n  are related by 

1( ) ( ) or ( ) ( )N
k k k kf n h N n F z z H z− −= − = . (6) 
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In this case, the overall transfer function ( )T z in Eq.(4a) can be expressed in fre-

quency-domain as 

1 2

0

( ) ( )
jN M

j j
k

k

e
T e H e

M

ω
ω ω

− −

=

= , (7) 

which guarantees the elimination of PHD in the filter bank. 
It is obvious that the analysis and synthesis filters of the CMFB system in Eq.(5) 

do not have the LP property. To obtain LP filter banks using the cosine modulation 
theorem and make the aliasing error negligible, we design the first analysis filter 

0 ( )h n  to be symmetric, and the last one 1( )Mh n−  to be symmetric for odd M or anti-

symmetric for even M; ( ),  1 2,kh n k M≤ ≤ − is generated by Eq.(5a) where k  be-

comes 

4 ( 1) 4,  1 2k
k k Mθ π π= − − ≤ ≤ − . (8) 

Each synthesis filter ( ),  0 1,kf n k M≤ ≤ − is generated from Eq.(6). In this way, the 

analysis and synthesis filters ( )kH z  and ( ),  0 1kF z k M≤ ≤ − , are all linear phase 

and the system is approximately free of ALD. We call this method partial cosine 
modulation. It can be proved that the analysis filters ( ),  0 1,kh n k M≤ ≤ −  satisfy the 

alternative symmetric relation and the synthesis filters are given by 

( ) ( 1) ( ),  0 1k
k kf n h n k M . (9) 

Now we introduce a simple method for designing the prototype filter ( )P z , 0 ( )H z  

and 1( )MH z−  to eliminate the significant AMD in the system. With Eq.(7), we use the 

similar tricks in [15] by employing Parks-McClellan algorithm to impose approxi-
mately power complementary constraint on 0 ( )H z , ( )P z  and 1( )MH z− . For simplic-

ity, we only describe the following constraint between ( )P z  and 0 ( )H z : 

2 2( 3 2 )
0

3
( ) ( ) 1,   ( , )

2 2
j j MH e P e

M M
ω ω π π πω−+ = ∈ . (10) 

Thus, if we force the transition bands of 0 ( )jH e ω  and the frequency shifted prototype 

filter ( 3 2 )( )j MP e ω π−  to follow a cosine roll-off function such that 
2 2cos ( ) sin ( ) 1,θ ω θ ω+ = Eq. (10) is satisfied. If the similar constraint between ( )P z  

and 1( )MH z−  is met in the same way, | ( ) |jT e is approximately flat in π ω π− < < .  

Employing the Parks-McClellan algorithm with cosine roll-off characteristic in 
designing the prototype filter ( )P z , 0 ( )H z  and 1( )MH z−  , a LP near-PR filter bank 

can be obtained. This is performed by using remez (or firpm) function in 
MATLAB. 
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3.2   Unimodular Transformation 

The unimodular transformation proposed in [10-13] is an efficient method to convert 
a 2D separable filter bank to a nonseparable one. To begin with, let us consider a 
separable filter bank denoted by S  with diagonal decimation matrix  in Fig. 1. 

Fig. 2(a) shows the ith branch of this system. Since a unimodular decimator U or a 
unimodular expander U merely permutes the input signal, we carry out U-fold deci-
mation before the system S  and U-fold interpolation after S . Fig. 2(b) and 2(c) 

show the ith sub-band of the resulting system SM  with decimation matrix M U . 

This transformation of S  to SM  is called the unimodular transformation. 

Using noble identities in [14], each separable analysis filter ( )iG  and synthesis 

filter ( )iQ  in S  are converted to nonseparable filters ( )iH  and ( )iF  by 

( ) ( ), ( ) ( )T T
i i i iH G F Q= =U U .   (11) 

Note that the support of each filter is the union of four shifts of ( )
2

TSPD M . For M 

is not diagonal and =M , the system SM  is not separable and has  channels.  

 

 

Fig. 2. Unimodular transformation. (a) The ith branch of S . (b) The ith branch of SM . (c) The 
ith equivalent branch of SM . 

3.3   2D LP Near-PR Filter Banks with Partial Cosine Modulation 

We start from a 2D separable 0 1λ λ -channel filter bank S  with diagonal decimation 

matrix 0

1

 0

0    

λ
λ

= . This can be done by concatenating two 1D filter banks denoted 

by 
0

Sλ  and 
1

Sλ with 0λ  and 1λ  channels respectively, that is 

1 2 1 2
1 2 1 2 1 2 1 2( , ) ( ) ( ), ( , ) ( ) ( )ij i j ij i jg n n h n h n q n n f n f n= = , (12) 

0 1 1 1 2 20 1,  0 1;  0 ,  0i j n N n Nλ λ≤ ≤ − ≤ ≤ − ≤ ≤ ≤ ≤ .  

Here 1 2( , )ijg n n  and 1 2( , )ijq n n are the impulse responses of the analysis filter ( )ijG  

and synthesis filter ( )ijQ  in S ; 1
1( )ih n , 1

1( )if n , 2
2( )jh n  and 2

2( )jf n  are the impulse 
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responses of analysis and synthesis filters in 
0

Sλ  and 
1

Sλ  with order 1N  and 2N  

respectively. Using the method we described in 3.1, all filters in these two 1D systems 
can be designed to possess the LP property, which leads to 

1 2 1 1 2 2 1 2 1 1 2 2( , ) ( , );  ( , ) ( , )ij ij ij ijg n n g N n N n q n n q N n N n= − − = − − . (13) 

This means that the filters in S  are also LP. With Eq.(9) and (12), the overall trans-

fer function 0 1( , )j jT e e of S , 0

0
( )jT e ω

λ of
0

Sλ and 1

1
( )jT e ω

λ of
1

Sλ are related by 

0 01 1

0 1
( , ) ( ) ( )j jj jT e e T e T eω ωω ω

λ λ= , (14) 

which suggests that the maximum peak to peak ripple of 0 1| || ( ) |Tλ λ  equals nearly 

to the sum of that of two 1D systems. Eq.(14) also ensures the elimination of PHD in 
the filter bank S . Since two 1D systems designed using partial cosine modulation 

are approximately free of ALD, we can conclude that the system S is also approxi-

mately alias-free. Accordingly, the near-PR property is preserved in the designed 2D 
system. Furthermore, filters of S are partially cosine modulated by a 2D separable 

prototype filter 1 2
1 2 1 2( , ) ( ) ( )p n n p n p n=  

1
1 2 1 2 1

0

2
2

1

( , ) 4 ( , ) cos( (2 1)( ) )
2 2

                                   cos( (2 1)( ) ) ,
2 2

ij i

j

N
g n n p n n i n

N
j n

π θ
λ

π θ
λ

= ⋅ + − +

⋅ + − +
 (15a) 

1
1 2 1 2 1

0

2
2

1

( , ) 4 ( , ) cos( (2 1)( ) )
2 2

                                   cos( (2 1)( ) ) ,
2 2

ij i

j

N
q n n p n n i n

N
j n

π θ
λ
π θ
λ

= ⋅ + − −

⋅ + − −
 (15b) 

1 1 2 20 ,0n N n N≤ ≤ ≤ ≤ ,  

where 0 14 ( 1) 4,  1 2 and 4 ( 1) 4,  1 2;i j
i ji jθ π π λ θ π π λ= − − ≤ ≤ − = − − ≤ ≤ −  

1
1( )p n  and 2

2( )p n  are the prototype filters of 
0

Sλ  and 
1

Sλ  respectively. With the 

relationship given by Eq.(11), the nonseparable analysis filters 1 2( , )ijh n n  and synthe-

sis filters 1 2( , )ijf n n  can be obtained by 

1 1( )     ( ) ( )     ( )
( ) = ,  ( ) = 

                              
ij ij

ij ij

g if LAT q if LAT
h f

otherwise otherwise

U n n U U n n U
n n

0 0

− −∈ ∈
. (16) 
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Accordingly, 1 2( , )ijh n n  and 1 2( , )ijf n n  hold similarly the LP property after perform-

ing the unimodular transformation. The overall transfer function ( )T  of S  and  

( )TM  of SM  are related by 

( ) ( )TT T=M U , (17) 

which means ( )TM will be as flat as ( )T . It can be proved that if ( )T  has the 

LP property, then SM  is free of PHD. We can also conclude that the resulting 2D 

nonseparable filter bank SM  will be approximately free from ALD and partially co-

sine modulated. Thus, the system SM  possesses the same properties as S  does. 

4   Design Example 

In this section, we present an example to illustrate the proposed method on designing 
LP near-PR filter banks.  

To begin with, we should design two 1D M-channel LP filter banks. We set the 
numbers of the channels to be 4 and 3 respectively. 

In the 1D 4-channel LP filter bank, the length of each analysis filter is 100N . 
The stopband cutoff frequency of the prototype filter is 0.240 ( )s radω π= . The mag-

nitude responses of the analysis filters are shown in Fig. 3(a). The stopband attenua-
tion is about 97 dB. The amplitude distortion 3102.438ppE −= ×  and the aliasing error 

4103.239aE −= × .  

In the 1D 3-channel LP filter bank, the length of each analysis filter is 99N  and 
the stopband cutoff frequency of the prototype is 0.197 ( )s radω π= . Fig. 3(b) shows 

the magnitude responses of the analysis filters with the stopband attenuation being 97 
dB,  3102.036ppE −= ×  and 4106.766aE −= × . 

       

Fig. 3. (a) Magnitude responses of the analysis filters of the 4-channel case. (b) Magnitude 
responses of the analysis filters of the 3-channel case. 
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According to the proposed method, we can get a 2D filter bank based on the above 
two 1D filter banks. 

This example is to evaluate the performance of the designed 2D | |M -channel 

near-PR filter bank with LP filters. Let 
3  0

0  4
 and 

2  1

1  1
U , then a 12-channel 

nonseparable filter bank SM  with decimation matrix 
6  4

3  4
M U  is obtained. 

Spectral supports of the first four analysis filters, 30 ~ HH , in the desired filter bank 

are shown in Fig. 4(a) and the magnitude response of the designed lowpass analysis 
filter 0H  is shown in Fig. 4(b). Fig. 4(c) and (d) show respectively amplitude distor-

tion 2pp DE  and the aliasing error 2a DE  with 3

2 104.435pp DE −
− = × and 

4
2 2.004 10a DE −

− = × . The stopband attenuation is about 97.0 dB. It can be seen that 

the near-PR requirement is satisfied. 
We apply the filter bank designed above on the 512×512 picture “Lena”. The 

original image is shown in Fig. 5(a). The first four sub-band images, corresponding to 
 

 

Fig. 4. 2D 12-channel LP near-PR filter bank. (a) Spectral supports of the first four analysis 
filters in the desired filter bank. (b) Magnitude response of 0H . (c) Amplitude distortion. (d) 
Aliasing error. 
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                          (a)                                           (b)                                          (c) 

        
                          (d)                                           (e)                                          (f) 

Fig. 5. (a) Original image. (b)-(e) The first four reconstructed sub-band images. (f) Recon-
structed image (PSNR=40.25 dB). 

0 3~H H , are shown respectively in Fig. 5(b)-(e). Fig. 5(f) shows the reconstructed 

image with peak signal-to-noise ratio (PSNR) being 40.25 dB. We notice that the 
reconstruction quality is very good. 

5   Conclusions 

In this paper, we have proposed a simple method for designing 2D nonseparable  
|M|-channel near-PR filter banks with the LP property. The filter banks are obtained 
by combining the unimodular transformation and a separable LP filter bank (hence 
two 1D filter banks). With the method for designing 1D LP near-PR filter banks, 
namely partial cosine modulation, the filters in 2D system are partially cosine modu-
lated by a LP prototype filter, which can reduce the design and implementation costs. 
Moreover, all analysis and synthesis filters possess the linear phase property along 
with good frequency selectivity. We showed that the resulting system achieves the 
near-PR property as the 1D system. Simplicity and effectiveness of the proposed 
method have been testified through the design example. 
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Abstract. Fast Hermite projection scheme for image processing and analysis is 
introduced. It is based on an expansion of image intensity function into a  
Fourier series using full orthonormal system of Hermite functions instead of 
trigonometric basis. Hermite functions are the eigenfunctions of the Fourier 
transform and they are computationally localized both in frequency and spatial  
domains in the contrast to the trigonometric functions. The acceleration of this 
expansion procedure is based on Gauss-Hermite quadrature scheme simplified 
by the replacement of Hermite associated weights and Hermite polynomials by 
an array of associated constants. This array of associated constants depends on 
the values of Hermite functions. Image database retrieval and image foveation 
applications based on 2D fast Hermite projection method have been considered. 
The proposed acceleration algorithm can be also efficiently used in Hermite 
transform method. 

1   Introduction 

Trigonometric Fourier series expansion plays a very important role in image proc-
essing and image analysis. Nevertheless the trigonometric basis functions are not 
jointly localized in space and frequency domains of Fourier transform. At the same 
time, image parameterization with Fourier series enables to perform many of image 
processing procedures in a most effective way especially due to the existence of 
Fast Fourier Transform method. We propose to substitute trigonometric functions in 
Fourier series by Hermite functions basis (“Hermite projection method”) to obtain 
necessary computational localization. The aim of the work is to design fast Hermite 
projection method and to apply it to image database retrieval and image foveation 
problems. 

Digital image consists of 2D array of intensities. An expansion of signal informa-
tion into a series of Hermite functions enables us to perform information analysis of 
the signal and its Fourier transform at the same time, because the Hermite functions 
are the eigenfunctions of Fourier transform. These functions are widely used in pure 
mathematics, where the expansion into Hermite functions is also called as Gram-
Charlie series [1], image processing [2-5] and streaming waveform data processing 
[6]. Joint localization of Hermite functions in the both frequency and spatial domains 
make using these functions very stable to information errors. Each coefficient of  
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expansion of the proposed Hermite projection method contains information on the 
whole treated image and these coefficients can be analyzed progressively. This is the 
main difference of Hermite projection method with Hermite transform method [2] and 
basing on this feature we can effectively solve pattern recognition problems like im-
age database retrieval and image foveation. 

2   2D Hermite Functions 

2D Hermite functions form a full orthonormal in ),(),(2 ∞−∞×∞−∞L  system. 

The 2D Hermite functions are defined as: 
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They can be also determined as superposition of the 1D recurrent formulas [3]. 
Moreover the 2D Hermite functions are the eigenfunctions of the Fourier trans-

form: nm
mn

nm iF ψψ +=)( , where F  denotes Fourier transform operator.  

The graphs of the 2D Hermite functions are shown in figure 1. 

  

),(0,0 yxψ     ),(2,2 yxψ  

Fig. 1. 2D Hermite functions 

These functions are computationally localized both in space and frequency do-
mains. This localization of Hermite functions was first noted by Gabor [7]. The com-
parison of the localization of different sets of functions like Gabor functions, wave-
lets, Gaussian derivatives and Hermite functions is an open problem [8] and needs a 
formulation of an appropriate localization metrics. Nevertheless all sets of localized 
functions are widely used in image processing. 
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The set of Hermite functions has the following advantages:  

It is an orthonormal set; 
Even (odd) Hermite functions tends to cosine (sine) functions when ∞→n  and 

the coefficients of Hermite series expansion give the “frequencies” that are analogues 
to Fourier frequencies. 

The main disadvantage of Hermite projection method (expansion into series of 
Hermite functions) is its high computational complexity.  

The idea of fast expansion into series of Hermite functions was first proposed by 
Eberlein [9]. Nevertheless a successful algorithmic implementation was not devel-
oped. Our fast implementation of Hermite projection method is presented in the fol-
lowing section. 

3   Fast Hermite Projection Method 

In common case 2D Hermite projection method of ),( yxf  is defined as: 
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where ),( yxijψ  – 2D Hermite functions, ijc  – Hermite coefficients: 
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Each coefficient can be redefined through Hermite polynomials as following: 
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where nα  – Hermite normalization constant: πα  !  2 nn
n =  and )(xHn  is 

Hermite polynomial:  

n

xn
xn

n dx

ed
exH
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)1()(
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−=
, 

 
This integral can be approximated by Gauss-Hermite quadrature [10]: 
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where mx  are zeros of Hermite polynomials )(xH N , mA  are associated weights: 
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These associated weights are subjected to increase complication of calculation with 

the increase of N  [10]: 
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This problem can be solved by replacement of Hermite polynomials by Hermite 

functions in the formula for Hermite coefficients: 
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After its simplification we can receive the following formula:   
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where )(1 m
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N x−μ  is the array of associated constants: 

)()()( 2
11 mNmnm

n
N xxx −− = ψψμ . 

Error of Gauss-Hermite quadrature can be estimated as [10]: 
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For arrays’ coding ( )(xf – discrete function) by fast Hermite projection method 

we used averaged values in mesh points calculated by averaging values in mε -

vicinity of point mx  instead of )( mxf . A domain of array is also corresponding to 

the domain of Hermite function’s localization [ ]NN γγ ,− , where 

( )( ) 2 , )(maxarg ≥∀= NxN
x

N ψγ . 

Results of common/fast coding of 512 arrays 512 elements each on processor Pen-
tium-M 1500MHz by described algorithms using C++ Win32 program under Win-
dows XP are shown in the figure 3 (horizontal axis – number of functions, standing 
axis – time, relative units): 
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Fig. 3. Chart of coding time from number of functions 
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4   Applications 

The proposed fast Hermite projection method is applicable in signal processing and 
can be successfully used in the areas where Hermite projection method shows promis-
ing results like image filtration and deblocking [4], image foveation [5], waveform 
data processing and indexing [6], etc.  

In the following section we will consider its application for image database re-
trieval for the task of automatic paintings' identification using digital camera with 
following limitations: photo type - 1600x1200x24b or higher quality; there must be 
part of a painting in the center of a photo; there must be only one painting on a photo; 
a painting must be completely inside on a photo; maximal camera rotation from verti-
cal axis - 26o; a painting must be on monotone absorbent background with color for 
easy detecting border of a painting; a painting must be rectangular; a painting must 
have uniform illumination; camera flash must be off. 

5   Image Database Retrieval 

For image database retrieval two main steps were used: preprocessing algorithm (fig. 
4) and database query by fast Hermite coefficients to retrieve record with minimal 
quadratic discrepancy from the database. 

 
Incoming image 

Digital photo, properties: 
1600x1200x24bit 

(1200x1600x24bit) 
or higher. 

 
V 

Image normalization 
Resampling, corners detection, rotation elimination, perspective elimina-

tion, parallelogram elimination, painting cutting, ranging and color plane 
elimination. 

V 
Fast Hermite parameterization 

Decoded image by 32x32x3 fast Hermite co-
efficients. 

 

Fig. 4. Preprocessing algorithm 
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For acquiring statistics were used 4100 different photos for database training and 
12 photos for testing purpose. Fast Hermite projection method has been compared 
with Hermite projection method and discrete Fourier transform (DFT). Discrepancies, 
each averaged for 12 photos, are given in Table 1.  

Table 1. Discrepancy 

Number of func-
tions in the series 

Fast Hermite proj. 
method 

Hermite proj. 
method 

DFT 

1 0,00842 0.00859 0.00376 
2 0,02179 0.02193 0.00955 
5 0,12151 0.12583 0.05358 
10 0,13737 0.14170 0.06051 
100 0,17022 0.17400 0.07480 
1000 0,20081 0.20421 0.08804 
4100 0,38318 0.39052 0.16732 

A discrepancy mld ,  between coefficients’ sets lc  and mc  with average intensities 

γη ,l  and γη ,m  was calculated by formula (γ  numerates color planes in RGB space): 
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All calculations were performed in automatic mode on Pentium-M 1500 MHz un-

der OS MS Windows XP Professional. Searching time was on average 3-7 seconds 
(server), parameterization with preprocessing time was on average 4-6 seconds (cli-
ent, 2-3 Mp), but only 0.05 seconds were spent for fast Hermite parameterization. 

6   Foveation 

Foveation refers to the creation and display of the signal where the resolution varies 
across the signal. Foveation operator T  of a function )(xf  can be treated as an inte-

gral operator [11]: 
 

∞

∞−

= dttftxkxTf )(),())(( , 

 
where ),( txk  is the kernel of the operator. 

The kernel for Hermite foveation has been considered in detail in [5]: 
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where 2≥K  is a number of foveation steps (lays), 0.1>r  is decreasing coefficient 
for foveation area between lays, n  is a number of Hermite functions 
( KnK 750≤≤ ), [ ]1,0 −∈ wγ  is a fovea. 

By replacing Hermite projection method by fast Hermite projection method in 
Hermite foveation we can obtain fast Hermite foveation. The scheme of fast fovea-
tion-coding is depicted on fig. 5.  

 
Data 

Reduce high-frequency area r  times in each direction 

Fast low-frequency coding 

Reduce high-frequency area r  times in each direction 

Fast low-frequency coding 

… 

Coefficients 

… 

Fast low-frequency coding 

 
Fig. 5. Scheme of the fast foveation-coding 
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The acceleration of Hermite projection method by the proposed fast algorithm for 
2D image foveation is about 2 times. Practically all the computational time was spent 
at the foveation decoding steps. Fig. 6 shows the results of fast Hermite foveation of 
Lena image with the fovea at right Lena eye.  

  

Fig. 6. Fast Hermite foveation with image compression 6 (left) and 12 (right) times 

7   Conclusion 

In this paper we have designed the algorithm of fast Hermite projection method, 
which shows 11x acceleration comparing with Hermite projection method for the task 
of image database retrieval and 2x acceleration for image foveation. Here we used an 
expansion into series of eigenfunctions of the Fourier transform, which enabled us to 
use advantages of time-frequency analysis, and accelerated our method by Gauss-
Hermite quadrature. The proposed acceleration algorithm can be also efficiently used 
in Hermite transform method [2].  
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Abstract. Scientific image processing involves a variety of problems in-
cluding image modelling, reconstruction, and synthesis. We are collaborat-
ing on an imaging problem in porous media, studied in-situ in an
imaging MRI in which it is imperative to infer aspects of the porous sample
at scales unresolved by the MRI. In this paper we develop an MCMC ap-
proach to resolution enhancement, where a low-resolution measurement is
fused with a statistical model derived from a high-resolution
image. Our approach is different from registration/super-resolution meth-
ods, in that the high and low resolution images are treated only as being
governed by the same spatial statistics, rather than actually representing
the same identical sample.

1 Introduction

Scientific imaging plays a significant role in research, especially with the avail-
ability of sophisticated imaging tools, including magnetic resonance imaging,
scanning electron microscopy, confocal microscopy, computer aided X-ray to-
mography, and ultrasound, to name only a few. Because of the significant re-
search funding and public interest in medical imaging and remote sensing, these
aspects of scientific imaging have seen considerable attention and success.

However there is an enormous variety of imaging problems outside of medi-
cine and remote sensing, where we would argue the current image processing
practice to be relatively rudimentary, and where substantial contributions re-
main to be made. One such area is that of porous media [1] — the science of
water-porous materials such as cement, concrete, cartilage, bone, wood, and soil,
with corresponding significance in the construction, medical, and environmental
industries.

The research in this paper is predicated on the quandary of imaging such
porous media. High-resolution two-dimensional images of a porous surface can
be produced, however viewing the interior of a sample requires cutting, polishing,
and exposure to air, all of which may alter the sample. In-situ three-dimensional
images of a medium can be measured using an imaging MRI, however the spatial
resolution is very limited, such that only the largest pores are resolved.

Our long-term objective is the fusion of data from multiple imaging modali-
ties to produce high-resolution images of porous media; for example, the fusion
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(a) Sintered Glass Spheres (b) Berea Sandstone

Fig. 1. Two examples of high-resolution 2D slices of irregular porous media

of high-resolution 2D and low-resolution 3D measurements. As it will never be
feasible to acquire hundreds or thousands of 2D slices from a single sample, the
given 2D measurements will image only an infinitesimal fraction of the 3D sam-
ple, so we are not interested in a 2D-3D co-registration problem, as is common
in medical imaging and remote sensing. Instead, we view the 2D image as char-
acterizing the sample, such that we infer a statistical model from the image, and
fuse this model with the 3D data set to infer details at a higher resolution.

As an initial exploration of the above long-term research objective, this paper
explores the statistical fusion of low and high-resolution data sets, limiting our
attention here to two-dimensional random fields for simplicity.

2 Bayesian Image Analysis

Most porous media [1], such as those shown in Fig. 1, possess clear spatial pat-
terns and relationships which characterize the medium. While simple image prior
models can be obtained from image statistics such as spatial variances and corre-
lation functions, such models are particularly poor for discrete-state (pore/solid)
problems, in which case Gibbs random-field models are widely used [8],[5].

As the generation of a high resolution realization from a low resolution ob-
servation is highly ill-posed, some sort of regularization constraint is needed.
In a non-Bayesian case (Fig. 2 (I,II)), multiple input images can be combined
using methods of super resolution and data-fusion [4]. However, in our scien-
tific imaging application in porous media we do not have the luxury of multi-
ple images, although we may have available high-resolution measurements from
statistically-equivalent samples (Fig. 2 (III)). Therefore, we consider a Bayesian
approach in which the prior model can be characterized according to a high
resolution 2D image and a low resolution 2D image or 3D volume which is the
measurements characterizing a sample from which we wish to infer high resolu-
tion details.
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(I) Super-Resolution (III)Posterior Sampling

+

(II) Multi-Resolution
Image Fusion

Model

Fig. 2. Different prospectives in data fusion: We may be registering and fusing multiple
images (I), fusing data across resolution (II), or statistical fusion through a model (III),
as we propose in this paper. Although (II) and (III) appear superficially similar, in (II)
the two data sets correspond to the identical underlying image, whereas in (III) the
data are only assumed to obey the same statistics.

3 Posterior Sampling

There are two common objectives associated with Bayesian random-field mod-
els [9], [10]:

1. To generate random realizations consistent with the prior statistics of the
model, referred to as random synthesis or prior sampling.

2. To solve for the optimal image based on measurements and a prior model,
known as as estimation.

Prior sampling is not a function of measurements, and is therefore of limited
use in settings where we wish to enhance a low-resolution data set, whereas esti-
mation produce only those image features or structures which are inferable from
the measurements, and therefore of limited utility in porous media which exhibit
behavior over a wide range of scales. Instead, we propose to do posterior sam-
pling (Fig. 3) — the synthesis of random images simultaneously obeying both
the measurements and the prior models, producing results similar to estimates in
densely-measured area, and producing a random synthesis in those area not con-
strained by measured values, thereby creating a high resolution result containing
structure on a variety of scales.
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Fig. 3. Posterior Sampling. The sample image Zs is used for learning/estimating the
prior model. An irregular and incomplete measurement from the unknown image ZT is
available as M which is considered in the prior model. The posterior sample, unknown
image and the sample image obey the same statistics.

3.1 Problem Formulation

To formulate the problem, we have used Gibbs Random Fields (GRFs) theory.
GRFs are lattice models, used to quantify the spatial interactions of observed
values at the nodes of a grid and to compute a probability for any configuration
of that grid [12] [3]. GRFs were originally used in statistical physics to study the
thermodynamic characteristics of interacting neighboring particles in a system
[12]. Any Gibbs probability distribution takes the form

p(Z) =
e−βH(Z)

Z (1)

where H(·) is an energy function:

H(Z) =
∑
c∈C

Vc(Z) (2)

written as a function of interactions over a local clique C , where Z is a normal-
ization factor, the partition function, and β = 1/T is related to the temperature
T . As the joint prior probability p(Z) is strictly a function of H , the energy
H implicitly encodes all of the characteristics of the random field. In order to
solve the posterior sampling problem we will need to sample from the posterior
probability [10]:

p(Z|M) =
e−βH(Z|M)

Z (3)
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where
H(Z|M) = H(Z) + α||M − f(Z)|| (4)

for some norm || · ||, where f(·) is the forward model, describing how measure-
ments are derived from unknowns,

M = f(Z). (5)

Two questions remain: the selection of H , and the balancing of α and β in pro-
ducing a random sample. The selection of H entails identifying the prior model
and the measurement model, which are H(Z) and ||M − f(Z)|| respectively,
shown in Eq. (4).

3.2 Prior Models

We consider two types of prior model:

1. Ising model [12]: Each site can take two possible values and a first-order
neighborhood structure is considered for each site, i.e. for every site zi,j in
the field, sites zi,j+1, zi,j−1, zi+1,j , zi−1,j are defined as its neighbors. The
potential function for a this neighborhood is defined as:

H(Z) =
∑
i,j

− zi,j (zi,j+1 + zi,j−1 + zi+1,j + zi−1,j) (6)

We do not for a moment consider the Ising model a meaningful representation
of porous media. We include it only because it is simple, widely understood,
and therefore a convenient point of comparison.

2. Histogram model [2]: This model is non-parametric, keeping the entire joint
probability distribution of local set of pixels within a neighborhood. We
have chosen the neighborhood of a pixel to be the eight adjacent pixels,
leading to a non-parametric model containing of a histogram of 29 = 512
probabilities. For reasons of convenience we compute two histograms, one for
configurations with a black pixel at the center and another for white. Fig. 4
shows such histogram, learned from the image in Fig. 1(a).

3.3 Gibbs Sampling Subject to Constraint

It is hardly possible to sample directly from the posterior distribution since
the configuration space for an image with N sites has 2N2

elements. When
the random field is considered to be continuous, hierarchical and multi-scale
approaches [7] can be applied. However, for the discrete case Monte Carlo Markov
Chain (MCMC) methods [12] are most fitting.

The well known Gibbs sampler [10], based on an MCMC approach, generates
random samples from the Gibbs distribution by producing a Markov chain whose
elements are a sequence Z1, Z2, , ..., such that Zi−1 and Zi can differ in at most
one pixel [11].



344 A. Mohebi and P. Fieguth

50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

E
ve

nt
 p

to
ba

bi
lit

y
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Fig. 4. An example of probability distribution of all possible configurations with black
pixels at the center (a), with examples of two configurations and their probability (b).
The random field is modeled non-parametrically via the probability of every configu-
ration of the eight binary pixels surrounding a central pixel.

In principle, the posterior sampling appears straightforward: specify the en-
ergy function and run the Gibbs sampler. In practice the problem is not at all
straightforward.

The process of annealing involves generating a sequence of samples, applying
the Gibbs sampler while gradually increasing β (decreasing T ) in the energy
function. This annealing process is started at small β (high temperature), where
p(Z) is only a weak function of Z, thus Z is relatively unconstrained, and as
β increases the system is driven to lower energy until the minimum energy, the
most probable Z maximizing p(Z), is obtained.

But here lies the problem:

1. We are not seeking the most probable realization, rather we want a random
realization faithful to the prior model and measurements, that is, we wish
to draw a random sample from p(Z) at β =∞ (T �= 0).

2. However the energy function H(Z), empirically derived from porous media,
is really only valid at β = ∞ (T = 0). That is, Z is unlikely to look like a
porous medium unless the empirical constraints in H(Z) are rigidly asserted.

Astonishingly, almost all porous media MCMC papers ignore the above dis-
tinction and do simulated annealing to generate “random samples” from the
prior model, a procedure which succeed because the annealing process fails to
find the optimum Z maximizing p(Z), and finds a random, near-optimum Z
instead.

Therefore, we are left with three possible approaches:

1. Posterior sampling from the Gibbs distribution, problematic as described
above.

2. Maximizing the Gibbs posterior distribution [11], by simulated annealing.
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3. Constrained maximization of the posterior distribution [11], also by simu-
lated annealing.

The latter two cases are distinguished by the relative choices of weighting
factors α, β in( 3), (4). If α is fixed and β →∞ (the second approach) then we
have regular annealing on a fixed model. However if β is fixed, or slowly increasing
such that β/α→ 0 as α→∞ (the third approach), then we are annealing subject
to generating samples within the following constrained space [10], [11]

{Z | ‖M − f(Z)‖ = 0}. (7)

That is, this set contains Z which matches the low-resolution measurement
perfectly.

4 Results and Evaluation

To evaluate and test the proposed approach, we have applied Gibbs sampling
with hard constraint in the form of low-resolution measurement to a portion of
two images shown in Fig. 1. The results for those images are shown in Fig. 5,
Fig. 6 and Fig. 7 three different samples are generated for the two prior models
(Ising and Histogram).

If the original high-resolution image is n× n and the measurement is m×m,
the defined down-sampling parameter is d = n

m . For the result shown in Fig. 5,
Fig. 6 and Fig. 7, d = 8.

The results can be evaluated in terms of the goodness of fit to the prior and
measurement models. For the reconstructed image Z|M from true, underlying
sample Zs, we define J(Z|M |M) and J(Z|M |ZT ) to be the goodness of fit to the
prior and measurement, respectively

J(Z|M |M) = ‖M − f(Z|M )‖2 (8)

J(Z|M |ZT ) = ‖ZT − Z|M‖2. (9)

Satisfying the prior model perfectly implies finding Z such that H(Z) = 0.
However, a random sample found by suboptimal annealing, will be expected to
have H(Z) > 0. The actual numerical value of H(Z) is difficult to interpret,
therefore we will assess all generated samples on the basis of goodness of fit to
the measurement J(Z|M) and the Mean-Squared Error (MSE) J(Z|ZT ) to the
underlying, true high-resolution ground-truth ZT .

For the Ising model, parameter β in Eq. (3) is estimated using the method
in [6]. As a one-parameter model the Ising model is able to represent only a very
limited range of structures, so the reconstruction are relatively poor.

The histogram model, although with a structure nearly as local as Ising, has
many more degrees of freedom (512), and is able to give a much clearer, more
convincing reconstruction.
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(a) Original image (b) Measurement

(c) Reconstructed using Ising model (d) Reconstructed using Histogram model

Fig. 5. reconstructed original image (a), given measurement as (b) and using two
different models. The result using Ising and Histogram model is illustrated respectively
in (c) and (d). The resolution of original image is 8 times greater than the measurement,
i.e., d=8.

We can also study the MSE variations for different values of the down-
sampling parameter d, i.e. as a function of measurement resolution. Fig. 8 shows
this variation. Clearly, as expected, J(Z|ZT ) is monotonically increasing with
d, however the increase is relatively modest, implying that even for large d the
method is producing meaningful estimates. The MSE for teh proposed method
is also compared to the following reconstruction methods:

1. Random reconstruction, which assigns values {0, 1} to the sites in the image
with probability 0.5,

2. Constrained random reconstruction, which assigns values {0, 1} to the sites
in the image with probability 0.5 constrained by the measurement.

The correlation between the reconstructed and the original images is more
subtle to measure. A pixel in the middle of a large pore or solid is likely to be
the same in the original and reconstructed images, as opposed to a pixel on a
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(a) Original image (b) Measurement

(c) Reconstructed using Ising model (d) Reconstructed using Histogram model

Fig. 6. reconstructed original image in (a)which is a small portion of Berea image,
given measurement in (b) and using two different models. The result using Ising and
Histogram model is illustrated respectively in (c) and (d). The resolution of original
image is 8 times greater than the measurement, i.e. d=8.

pore/solid boundary. That is, the original-reconstructed correlation is likely a
function of structure size. If we measure structure size at a pixel as the number
of times a pixel value is unchanged by sampling, then we can compute correlation
as a function of size. The results of Fig. 9 confirm our expectations, and quan-
tify how many scales below the measurement resolution the posterior samples
accurately reflect the measured sample.

A final comparison examines pore statistics as a function of pore size. Given
an (n× n) image Z, we define Z(k), k = 1 , ... , n− 1, as

Z(k)(i, j) =
1
k2

h+k−1∑
h=i

g+k−1∑
g=j

Z(g, h). (10)
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(a) Original image (b) Measurement

(c) Reconstructed using Ising model (d) Reconstructed using Histogram model

Fig. 7. reconstruction of a portion of Berea image in (a), given measurement in (b) and
using two different models. The result using Ising and Histogram model is illustrated
respectively in (c) and (d). The resolution of original image is 8 times greater than
the measurement, i.e. d=8. Although the reconstructed image shown in (d) is more
consistent with the original image shown in (c), the prior model still needs to have
more contribution in the process to avoid artifacts caused by the measurement.

2 4 8 16
0.1

0.2

0.3

0.4

0.5

down−sampling parameter (d)

M
S

E MSE between the original and a random Z
MSE between the original and a random filed satisfying measr. constraint
MSE between the original and the posterior sample

Fig. 8. How the MSE J(Z|ZT ) of the reconstruction process for the image in Fig. 1(a)
changes as a function of measurement resolution. d = n/m is the down-sampling pa-
rameter for m × m measurement and n × n original image. The MSE J(Z|ZT ) of the
proposed method is also compared to two other methods: random reconstruction with
probability 0.5 and constrained random reconstruction also with probability 0.5 but
constrained by the measurement.
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finest scales are only weakly correlated with truth, but much more strongly for larger
structures.

1 11 21 31 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

log
e
 (k)

pr
ob

ab
ili

ty
 o

f a
 p

ix
el

 to
 b

e 
a 

po
re

 p
ix

el

d=2
d=4
d=8
Original

Fig. 10. Pore probability as a function of size k for the image in Fig. 1(a): By down-
sampling each image into overlapping blocks of size k = 2, 3, .., n − 1 and counting the
number of pore blocks, we have a sense of pore distribution vs. scale.

In other words, each element of Z(k) is the sum of a (k × k) block in Z.
Then we consider the probability of a pixel to be a pore pixel as the fraction
of pore pixels in Z(k). Therefore, for each k the probability of a pixel to be
a pore pixel is obtained. Fig. 10 plots the pore probability as a function of k,
shown for different values of the down-sampling parameter, d. The comparison
shows the effect of measurement resolution on the reconstruction process and
the remarkable consistency of the reconstructed image with the pore statistics
of the original.
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5 Conclusion

In this paper, a model-based approach for image sampling and reconstruction
of porous media is introduced. Separate from current approaches such as super-
resolution and multi-resolution image fusion, we have considered a statistical
model-based approach in which a given low-resolution measurement constrains
the model. The approach shows considerable promise on the basis of the preser-
vation of pore statistics and the production of meaningful structures at resolution
fewer than given measurements. Comparing the Ising and histogram model in
the reconstruction process shows that the later generates samples which are more
consistent with the measurement and the prior model. However, a proper prior
model needs to have more contribution in the process than the histogram model
to avoid artifacts generated by the measurement.
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Instituto Superior Técnico / Instituto de Sistemas e Robótica
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Abstract. This paper addresses two problems: an image denoising prob-
lem assuming dense observations and an image reconstruction problem
from sparse data. It shows that both problems can be solved by the
Sylvester/Lyapunov algebraic equation. The Sylvester/Lyapunov equa-
tion has been extensively studied in Control Theory and it can be effi-
ciently solved by well known numeric algorithms. This paper proposes
the use of these equations in image processing and describes simple and
fast algorithms for image denoising and reconstruction.

1 Introduction

Image reconstruction aims to recover images from a partial set of observations,
corrupted by noise. Several methods have been proposed to deal with this prob-
lem e.g., Bayesian methods [1], wavelets [2,3,4], anisotropic diffusion [5,6], level
sets [7,8]. Bayesian methods based on Markov random fields are among the most
popular. They require the specification of a prior model and a sensor model which
are chosen by the user or learned from the data. The image estimate is them
obtained by minimizing an energy function with a very high number of vari-
ables or by solving a huge set of linear equations. These operations are very
time consuming and they are carried out by suboptimal approaches (e.g., block
processing) or by iterative algorithms [1].

This paper proposes an alternative approach based on the Sylvester/Lyapunov
(SL) algebraic equation. We consider a denoising problem (all the pixels are
observed and corrupted by Gaussian noise) and an image reconstruction problem
(only sparse observations are available) and show that the original image can be
estimated in both cases using the SL equation, in a very simple way. In the first
case (denoising) the estimation requires the solution of a single SL equation. In
the second case (sparse data), this equation appears embedded in an iterative
scheme which updates its parameters. Convergence is obtained after a small
number of iterations. Both procedures are easy to implement since there are
efficient algorithms to solve the SL equation (e.g., in Matlab). Experimental tests
are presented in this paper showing that the proposed algorithms are efficient
and fast and lead to good reconstruction results.

The paper is organized as follows. In section 2 we address the image denois-
ing problem. Section 3 addresses the reconstruction problem from sparse and
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non uniform samples. This problem arises for instance in the case of freehand
3D ultrasound or confocal microscopy imaging. Section 4 shows examples using
synthetic data and section 5 concludes the paper.

2 Image Reconstruction and Denoising

This section addresses an image denoising problem with the SL equation. Let X
be a m× n matrix, representing an unknown image and let

Y = X + Γ (1)

be a noisy observation of X where Γ ∼ N(0, σ2I) is a random error with Gaussian
distribution. We wish to estimate X from the noisy image Y. The matrix X is
assumed to be a Markov Random Field (MRF) which means that it has a Gibbs
distribution, p(X) = 1

Z e−αU(X) where Z is a normalization constant, α is a
regularization parameter and U(X) is the internal energy. This energy has the
form U(X) =

∑
(p,q)∈V v(xp − xq) where V is the set of all pairs of neighbors

and v(τ) is a potential function.
In this paper we adopt a quadratic potential function, v(τ) = τ2 and a 4-

neighborhood system. Therefore, the internal energy is

U(X) = tr
[
(θvX)T (θvX) + (θhXT )T (θhXT )

]
= tr

[
XT (θT

v θv)X + X(θT
h θh)XT

]
where θv and θh are n × n and m × m difference operators. θvX is a n × m
matrix with all vertical differences of neighboring pixels and θhXT is a m ×
n-dimensional matrix with all the horizontal differences between neighboring
pixels. Both matrices, θv and θh, have the following structure

θ =

⎛⎜⎜⎜⎜⎝
1 −1 0 ... 0 0 0
−1 1 0 ... ... ... 0
0 −1 1 ... ... ... 0
... ... ... ... ... 1 0
0 0 0 ... ... −1 1

⎞⎟⎟⎟⎟⎠ . (2)

If we adopt the MAP criterion, the estimate of X is

X̂ = arg max
X

E(X) (3)

where the energy function E(X) = log [p(Y|X)p(X)] is

E(X) = tr

[
1
2
(X−Y)T (X−Y) + ασ2 (XT (θT

v θv)X + X(θT
h θh)XT

)]
(4)

The solution of (3) is obtained by finding a stationary point of E(X), which
obeys the equation

∂E(X)
∂xij

= 0 (5)
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for i = 1, ..., n and j = 1, ...,m. After straightforward manipulation (5) can be
written as

X−Y + 2ασ2(AX + XB) = 0 (6)

where A = θT
v θv and B = θT

h θh are n×n and m×m matrices respectively. This
equation can be easily written in the form of a Sylvester equation

AX + XB + Q = 0 (7)

where A = I+2ασ2A, B = I+2ασ2B and Q = −Y and I is the identity matrix.
The reconstructed image can be obtained by solving the Sylvester equation. In
the case of square images, n = m, A = B are square and symmetric matrices
and (7) becomes the well known Lyapunov equation.

The Lyapunov equation plays an important role in many branches of control
theory namely, in stability analysis, optimal control and stochastic control [9].
There are efficient algorithm to solve the SL equation, some are include in math-
ematical packages (e.g., in Matlab) [10,11,12]. Therefore, we can easily use one
of these algorithms to solve the image denoising problem.

It is important to stress that all the matrices used in (7) have low dimensions
(n ×m, n× n or m ×m) while a direct implementation of the MAP denoising
method involves the computation and inversion of a huge nm×nm matrix. This
is not possible in practice and has to be solved by iterative algorithms [1].

3 Image Reconstruction from Sparse Data

This section considers image reconstruction from sparse observations. It is as-
sumed that the observations are made at non-uniform positions in the image do-
main (see Fig. 1). We will address this problem assuming a continuous model for
the image. Let f : Ω → R, (Ω ⊂ R

2) be a continuous image to be estimated. We
will assume that f of obtained by interpolating a discrete image X = {xi} using
a set of interpolation functions. Therefore, f(z) belongs to finite dimension linear
space spanned by the set of interpolation functions: {φ1(z), φ2(z), ..., φnm(z)}

f(z) =
nm∑
i=1

xiφi(z) (8)

where xi are the coefficients to be estimated, associated with each basis function.
Herein, we assume that the basis functions, φi(z), are shifted versions of a known
function φ(z) with finite supported, centered at the nodes of n×m 2D regular
grid, i.e., φi(z) = φ(z − μi), where μi is the location of the i-th node (see
Fig. 1).

Consider now a L-dimensional column vector of noisy observations, y = {yi}
taken at non-uniform locations z = {zi} given by y = F (z) + n where F (z) =
{f(z1), f(z2), ..., f(zL)}T and n = {n1, n2, ..., nL}T are L-dimensional column
vectors with ni ∼ N (0, σ2) being a Gaussian random variable. As before, the
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μ

φ
node
observation

Fig. 1. 2D regular grid with a non-uniform sampling process

MAP estimate of X is given by the minimization of the energy function (2).
Assuming that the observations are conditionally independent, the data fidelity
term is

EY = − log(p(y|X)) = log

[
L∏

i=1

(p(yi|f(zi))

]
=

1
2

L∑
i=1

(f(zi)− yi)2. (9)

and the partial derivative of EY with respect to each unknown, xp, is

∂EY

∂xp
=

L∑
i=1

(f(zi)− yi)φp(zi) =
L∑

i=1

[
nm∑
k=1

xkφk(zi)− yi

]
φp(zi) (10)

=
nm∑
k=1

(xkhpk)− dp,

where f(z) was replaced by(8), hpk =
∑

i∈V (p,k) φk(zi)φp(zi), dp =∑
i∈V (p) yiφp(zi), V (p) is the neighborhood of xp and V (p, k) is the intersection

of V (p) with V (k). This derivative can be efficiently computed since the sum
has only 8 terms different from zero, corresponding to the 8 neighbors of pixel p.
Furthermore, it can be expressed as a 2D convolution, of xp with a space varying
impulse response, hp,k minus a difference term dp, ∂EY /∂xp = hp,k ∗ xp − dp.
This can be written in a compact way as,

∂EY

∂X
= H ∗X−D (11)

where ∗ denotes the convolution of the discrete image X with the space varying
impulse response H . In practice this amounts to convolving X with the following
space varying mask

H(i, j) =

⎛⎝hi,j,i−1,j−1 hi,j,i−1,j hi,j,i−1,j+1
hi,j,i,j−1 hi,j,i,j hi,j,i,j+1

hi,j,i+1,j−1 hi,j,i+1,j hi,j,i+1,j+1

⎞⎠ (12)

which can be computed at the beginning once we know the sampling points.
There are several equal coefficients among these masks due to symmetry.
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Approximately only half of the coefficients have to be computed. The derivative
of the energy is therefore,

dE

dX
= 0 ⇒ H ∗X−D + 2ασ2 [ΦV X + XΦH ] = 0 (13)

This equation can be written as a SL equation,

AX + XB + Q(X) = 0 (14)

where A = 0.5I+2ασ2ΦV , B = 0.5I+2ασ2ΦH , Q = H ∗X−X−D, ΦV = θT
V θV

and ΦH = θT
HθH .

In this case, Q(X) depends on X which means that the solution can not be
obtained in one iteration. Therefore, an iterative algorithm is proposed. In each
iteration a new estimate of X, Xt is obtained from the previous estimate of X,
Xt−1 by solving

AX + XB + Q(Xt−1) = 0 (15)

where Q = [H(p) − δ(p)] ∗ Xt−1 − D. Equation (15) is iteratively solved until
convergence is achieved. When there is no overlap of basis functions, which is

Fig. 2. Image denoising using a synthetic 64×64 pixel image. a)Original, b)noisy with
zero mean additive Gaussian noise (σ = 0.25), c)denoised image. Processing times
530.12 and 5.31 seconds using the VECT and the LYAP methods respectively.

usually the case in image processing (square pixels), all coefficients ϕkp = 0
for k �= p. In this case, the computation of the term H(p) ∗ X is replaced by
a simpler computation of H.X where ”.” denotes the Hadamard product and
Hp =

∑
i∈V (p) φ

2
p(zi). Therefore, in this case,

[Q]p =
∑

i∈V (p)

[
φ2

p(zi)
]− 1− dp (16)

where p is a bi-dimensional index. In image denoising problems with regular grids
and without interpolation, there is only one observation per unknown. In this
case, H(p) = δp, that is, Q = −Y . In this particular case the denoising operation
can be performed by solving only once the equation AX+XB−Y = 0. Finally, in
the general case, it is possible to ignore the cross terms by making ϕp(xi)hk(xi) ≈
0. In this case, the computation is strongly simplified with a minor degradation
of the results, where Q is computed using (16). The degradation resulting from
this simplification depends on the amount and spatial density of the data.
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Fig. 3. Image reconstruction from sparse observations. a)0.1L samples (28.34dB),
b)0.5L samples (46.36dB) and c)0.75L samples where L = 2562 is the number of
pixels of the original 256 × 256 underlying image. (48.73dB).

4 Experimental Results

In this section we present experimental results obtained with synthetic data in
a Pentium 4 PC running at 2.8GHz. Two methods are used and compared in
both methods. The first one, denoted VECT, vectorizes the images involved and
reconstructs the images accurately using direct or pseudo matrix inversion. In
the second method, denoted LYAP, we use the SL solver, without requiring the
matrix inversion.

Fig.2.a) shows the 64×64 noiseless image used in this experiment. It consists of
three constant regions and a smooth region where the intensity varies according
to a cosine function. Fig.2.b) shows the noisy image, with additive Gaussian
white noise with σ = 0.25 and Fig.2.c) shows the denoised image. The results
using both methods are equal but the processing time was 530.12 seconds for
the VECT algorithm and 5.31 seconds for the LYAP method.

The noiseless image was used to test the performance of both algorithms with
several image sizes and noise energy. Table 1 shows the simulation results for
several image dimensions, N×N , and for three values of noise: small (σ = 1e−4),
medium (σ = 0.15) and severe (σ = 0.5). Several figures of merit are shown to
assess the algorithm performance: the signal to noise ratio (SNR), the minimized
energy values, E, and the processing time for each experiment and for both
methods. Both algorithms produce the same result, same SNR and E (energy),
but the LYAP method clearly outperforms the VECT in terms of processing
time when N > 16. We note an unexpected jump in the processing time when
the image dimensions increase from N = 48 to N = 56. This results from the
fact that, for large enough images, the PC starts to use the HD virtual memory.
In addition the algorithm was also tested with non-uniform sampling with the
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Table 1. Simulation results for several image dimensions (N × N) and three different
noise energy values, σ = {10−4, 1.5, 0.5}

σ = 1e−4 σ = 0.15 σ = 0.5
N SNR E time(s) SNR E time(s) SNR E time(s)

(dB) VECT LYAP (dB) VECT LYAP VECT LYAP
8 12.5 2.1 0.00 0.04 12.4 2.2 0.04 0.49 5.9 4.0 0.03 0.78
16 22.5 5.5 0.08 0.06 22.3 5.8 0.09 0.32 17.9 10.4 0.09 0.17
24 28.1 8.5 0.68 0.06 27.1 9.6 0.72 0.76 23.6 20.2 0.72 0.54
32 30.4 11.9 3.91 0.07 29.1 13.8 3.94 0.06 23.2 33.2 3.93 0.08
40 33.4 14.7 14.46 0.07 31.5 17.7 14.36 0.10 23.5 48.7 14.35 0.07
48 35.7 17.4 43.85 0.08 33.9 21.6 43.63 0.08 24.8 65.9 43.65 0.43
56 36.8 20.8 133.27 4.50 34.9 26.5 120.26 2.65 25.5 82.8 120.31 2.13
64 38.4 23.5 516.88 7.85 36.3 31.1 381.87 4.89 25.1 110.9 432.32 5.80

LYAP method. Fig.3 shows the reconstruction results obtained with the LYAP
method for three different numbers of samples, a)0.1L, b)0.5L and c)0.75L,
where L = 2562 is the number of pixels of the original image. The SNR obtained
in these experiments was (28.34dB), (46.36dB) and (48.73dB) for 0.1L, 0.5L
and 0.75L samples respectively. The iterative LYAP method (see equation (15))
spent 24.3 seconds to generate the 256× 256 reconstructed images. The method
was also applied to real images with good results as well.

5 Conclusions

This paper shows that image reconstruction and denoising with Gaussian noise
can be performed using the SL equation. This equation can be efficiently solved
by numeric methods leading to fast reconstruction and denoising algorithm. This
method avoids the use of huge nm × nm matrices and their vectorization and
inversion.

Experimental results comparing the proposed algorithm with a direct im-
plementation of image denoising and reconstruction show that important com-
putational time savings are achieved. A comparizon with other state of the art
reconstruction algorithms in terms of computational efficientcy will be presented
in a future work.
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Appendix - Basic algorithm

An exact and non-iterative optimization algorithm may be derived by vector-
izing the matrices involved, that is, making x = vect(X). The corresponding
energy function is E(x) = 1

2 (F (z) − y)T (F (z) − y) + ασ2((ΔV x)T (ΔV x) +
(ΔHx)T (ΔHx)) where ΔV and ΔH are NM × NM difference matrices, F (z)
and y are L-dimensional column vectors, x is a NM -dimensional column vector
and F (z) = Ψ(z)x where Ψ is the following L×NM matrix

Ψ =

⎛⎝ φ1(z1) ... φnm(z1)
... ... ...

φ1(zL) ... φnm(zL)

⎞⎠ (17)

The minimizer of E(x) is x̂ = (ΨTΨ + 2ασ2(ΔT
V ΔV + ΔT

HΔH))−1ΨT y. This
computation of x̂ is difficult in practice because of the huge dimensions of the
matrices involved.
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Abstract. A novel approach to impulsive noise detection in color images is in-
troduced. The neighborhood of a central pixel using a fuzzy metric is considered
for the fast detection of noisy pixels using a peer group concept. Then, a filter
based on a switching scheme between the Arithmetic Mean Filter (AMF) and the
identity operation is proposed. The proposed filter reaches a very good balance
between noise suppression and detail-preserving outperforming significantly the
classical vector filters. The presented approach is faster than recently introduced
switching filters based on similar concepts showing a competitive performance.

1 Introduction

Several vector filters for color images taking advantage of both the existing correlation
amongst the color image channels and the theory of robust statistics have been proposed
to date. Well-known vector filters of this family are the vector median filter (VMF), [2],
the basic vector directional filter (BVDF), [25], or the distance directional filter (DDF),
[9]1.

The classical vector filters mentioned above present a robust performance but they
often tend to blur image edges and details. In order to approach this drawback the
switching schemes have been used to their appropriate performance and computational
simplicity. The switching approaches aims at selecting a set of pixels of the image to
be filtered leaving the rest of the pixels unchanged. A series of methods for selecting
the noise-likely pixels based on local statistical information or neighborhood tests have
been proposed to date [1,3,11,13,14,15,16,18,21,22,23,24].

A peer group concept using classical metrics is employed in [23,24] to detect im-
pulsive noisy pixels. In this paper, we consider the mentioned notion of peer group
using a certain fuzzy metric since it has provided better results than classical metrics in
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impulsive noise filtering [17,18]. The proposed fuzzy peer group concept is employed
to define a switching filter on the basis of the above mentioned works. This filter is
faster than those in [23,24] presenting a competitive performance respect to recently in-
troduced switching filters, outperforming them in some cases. Experimental results for
performance comparison are provided to show that the proposed approach outperforms
classical vector filters, as well.

The paper is organized as follows. In Section 2 the fuzzy metric used in this paper is
introduced. Section 3 details the proposed filtering algorithm. Experimental study and
some comparisons in front of recent and well-known vector filters are shown in Section
4. Finally, Section 5 presents the conclusions.

2 An Appropriate Fuzzy Metric

According to [5,8] a stationary fuzzy metric on a non-empty set X is a fuzzy set M on
X ×X satisfying the following conditions for all x, y, z ∈ X :

(FM1) M(x, y) > 0
(FM2) M(x, y) = 1 if and only if x = y
(FM3) M(x, y) = M(y, x)
(FM4) M(x, z) ≥M(x, y) ∗M(y, z)

where ∗ is a continuous t-norm.
M(x, y) represents the degree of nearness of x and y and according to (FM2)

M(x, y) is close to 0 when x is far from y. It was proved in [6,7], that the above
definition is an appropriate concept of fuzzy metric.

The next proposition will be established to be applied in next sections when working
with color pixels xi that are characterized by terns of values in the set {0, 1, . . . , 255}.
This proposition is a particular case of the one used in [18], inspired in [20], and its
proof is omitted.

Proposition 1. Let X be the set {0, 1, . . . , 255}. Denote by (xi(1), xi(2), xi(3)) an
element xi ∈ X3 and let K > 0. The function M : X3 ×X3 →]0, 1] given by

M(xi,xj) =
3∏

l=1

min{xi(l), xj(l)}+ K

max{xi(l), xj(l)}+ K
(1)

is a fuzzy metric on X3, where the t-norm ∗ is the usual product in [0, 1].

In this way, from now on M(xi,xj) will be the fuzzy distance between the color image
vectors xi and xj . According to [17,18], an appropriate value for K when comparing
RGB color vectors is K = 1024.

3 Proposed Detection and Removal of Corrupted Pixels

A color RGB image is commonly represented as a multidimensional array N1×N2×3,
where every pixel xi (i ∈ N1 × N2) is a three component vector of integer values in
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Table 1. Filters taken for performance comparison and notation

Notation Filter
VMF Vector Median Filter [2]
DDF Directional Distance Filter [9]

BVDF Basic Vector Directional Filter [25]
FIVF Fast Impulsive Vector Filter [18]
PGF Peer Group Filter [23,24]

FMNF Fuzzy Metric Neighborhood Filter

the interval [0,255]. Now, attending to the concept of nearness (see axiom FM2 in the
definition of fuzzy metric given in Section 2), for a central pixel xi in a n× n filtering
windowW and fixed d ∈]0, 1], we denote byP(xi, d) the neighborhood of xi contained
in W

{xj ∈W : M(xi,xj) ≥ d}
that is, P(xi, d) is the set of pixels of the filtering window W whose fuzzy distance to
xi is not less than d. Obviously,P(xi, d) is not empty for each xi, since xi ∈ P(xi, d).
Now, we denote byP(xi,m, d) a subset ofP(xi, d) with m+1 elements, and following
[23] it is a peer group of xi in W , for the fuzzy metric M and for a fixed d ∈]0, 1[. In
particular, if P(xi, d) has c + 1 elements then it can be denoted by P(xi, c, d).

The proposed impulsive noise detection and removal algorithm, called from now on
Fuzzy Metric Neighborhood Filter (FMNF), is a modification of the given in [23] and
is based on the peer group P(xi,m, d) defined above, which involves the fuzzy metric
defined in Section 2, and it performs in two steps as follows.

In the first step the pixels of the image are diagnosed. The algorithm takes a n × n
filtering window for a central pixel xi and, given d ∈]0, 1], it finds the set P(xi, d).
Now, for a given m ∈ {0, . . . , n2 − 1}, if we can find a peer group P(xi,m, d), then
all the pixels in P(xi, d) are declared as non-corrupted pixels. Notice that, in this case,
using the axiom FM4 in the definition of fuzzy metric in Section 2 we can guarantee that
the fuzzy distance between any two pixels of the set P(xi, d) will be greater or equal
to d2, thus, with an appropriate election of the d value, those pixels in the mentioned
set can be declared as non-corrupted with quite reliability. This fact reduces drastically
the number of calculations almost without decreasing the performance of the detection
process as it will be shown in Section 4. The rest of the pixels in the window which do
not belong to the set P(xi, d) are declared as non-diagnosed. If the found set P(xi, d)
for the pixel xi contains less than m + 1 elements, then xi is declared provisionally
corrupted and every pixel in the window is declared as non-diagnosed.

This process is repeated for all the pixels in the image but skipping the pixels al-
ready declared as non-corrupted. Notice that a provisionally corrupted pixel could be
diagnosed as non-corrupted later when taking another window. Finally, the rest of the
provisionally corrupted pixels are declared corrupted.

In the second step the corrupted pixels are substituted performing the filtering op-
eration. Each corrupted pixel is replaced by the output of the arithmetic mean filter
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(AMF) performing (mimicking [23]) over the non-corrupted neighbors of the pixel in
substitution in a n × n window. Notice that a corrupted pixel may not have any non-
corrupted neighbor in its n × n neighborhood. If it is the case, the window must be
enlarged in size until at least one non-corrupted neighbor is included. The AMF is
applied because of its computational simplicity, however other suitable filters as the
VMF could be applied in the above conditions, as well.

4 Experimental Study and Performance Comparison

In this section, several images have been considered to evaluate the performance of
the proposed filter FMNF explained in Section 3. The impulsive noise model for the
transmission noise, as defined in [19], has been used to add noise to the images of
Aerial1, Baboon and Lenna (see Fig. 1).

(a) (b) (c)

Fig. 1. Test Images: (a) Aerial1 image, (b) Baboon image, (c) Lenna image

The Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR) and Normal-
ized Color Difference (NCD) have been used to assess the performance of the proposed
filter. According to [19], these quality measures are defined as

MAE =

N∑
i=1

M∑
j=1

Q∑
q=1

∣∣∣F q (i, j)− F̂ q(i, j)
∣∣∣

N ·M ·Q (2)

and

PSNR = 20 log

⎛⎜⎜⎜⎜⎝ 255√
1

NMQ

N∑
i=1

M∑
j=1

Q∑
q=1

(
F q (i, j)− F̂ q(i, j)

)2

⎞⎟⎟⎟⎟⎠ (3)
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Table 2. Performance comparison for 150 × 200 Aerial1 image

p MAE PSNR NCD Computation Time reduction
(10−2) Time (sec) FMNF vs. best PGF

0.05 VMF 17.271 19.530 9.204 70.97
DDF 17.059 19.303 8.644 134.16

BVDF 21.842 16.884 10.401 78.03
FIVF 3.033 23.698 2.565 37.41

PGFm=2 7.507 21.237 3.334 4.75
PGFm=3 15.404 17.696 6.840 5.99

FMNF 3.343 23.852 2.475 2.83 40.4%

0.1 VMF 17.508 19.422 9.357 70.38
DDF 17.441 19.209 8.845 134.09

BVDF 22.739 16.612 10.770 77.53
FIVF 5.243 21.898 3.936 37.20

PGFm=2 9.198 20.392 4.249 4.95
PGFm=3 16.802 17.253 7.761 6.17

FMNF 5.210 22.260 3.841 3.11 37.2%

0.15 VMF 17.719 19.298 9.514 70.41
DDF 17.892 19.040 9.052 133.56

BVDF 23.324 16.400 11.010 77.61
FIVF 7.605 20.597 5.373 37.61

PGFm=2 11.019 19.611 5.318 5.33
PGFm=3 18.321 16.791 8.909 6.33

FMNF 7.753 20.713 5.366 3.52 33.9%

0.2 VMF 18.031 19.158 9.742 70.39
DDF 18.598 18.827 9.364 133.39

BVDF 24.343 16.197 11.435 77.61
FIVF 10.371 19.549 6.589 37.25

PGFm=2 13.087 18.774 6.617 5.42
PGFm=3 19.608 16.448 10.252 6.61

FMNF 10.374 19.393 6.957 3.81 29.7%

where M , N are the image dimensions, Q is the number of channels of the image
(Q = 3 for RGB images), and F q(i, j) and F̂ q(i, j) denote the qth component of the
original image vector and the filtered image, at pixel position (i, j) , respectively, and

NCDLab =

∑N
i=1

∑M
j=1 ΔELab∑N

i=1
∑M

j=1 E
∗
Lab

(4)

where ΔELab = [(ΔL∗)2 +(Δa∗)2 +(Δb∗)2]
1
2 denotes the perceptual color error and

E∗
Lab = [(L∗)2 + (a∗)2 + (b∗)2]

1
2 is the norm or magnitude of the original image color

vector in the L∗a∗b∗ color space.
The proposed filter is assessed in front of some classical and recent filters with good

detail preserving ability enumerated in Table 1.
Experimental results2 are shown in Tables 2-4. In the following, we will denote by p

the noise intensity of the image which will be given as a probability of noise appearance.
We have chosen in our experiences values p ∈ {0.05, 0.1, 0.15, 0.2}. Output detail

2 Results obtained in a Pentium IV, 3.4 GHz, 512 MB RAM.
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Table 3. Performance comparison for 256 × 256 Baboon image

p MAE PSNR NCD Computation Time reduction
(10−2) Time (sec) FMNF vs. best PGF

0.05 VMF 10.878 23.116 4.496 156.28
DDF 10.708 23.029 4.201 315.72

BVDF 11.891 22.065 4.548 171.38
FIVF 1.698 27.055 1.555 81.31

PGFm=2 2.678 26.931 1.062 7.72
PGFm=3 4.874 24.483 1.857 10.06

FMNF 2.140 27.328 1.180 5.80 24.9%

0.1 VMF 10.962 23.073 4.541 158.45
DDF 10.920 22.952 4.311 316.86

BVDF 12.147 21.930 4.661 173.02
FIVF 2.891 25.519 2.258 81.47

PGFm=2 3.543 26.007 1.439 8.24
PGFm=3 5.714 23.962 2.220 10.94

FMNF 3.562 25.656 1.763 6.59 20.0%

0.15 VMF 11.083 22.999 4.607 155.88
DDF 11.164 22.838 4.442 318.19

BVDF 12.585 21.723 4.853 173.92
FIVF 4.012 24.440 2.963 81.33

PGFm=2 4.386 25.275 1.867 8.97
PGFm=3 6.570 23.486 2.661 11.53

FMNF 4.882 24.589 2.331 7.42 17.3%

0.2 VMF 11.205 22.919 4.682 155.88
DDF 11.401 22.740 4.569 328.14

BVDF 12.903 21.511 5.001 171.23
FIVF 5.329 23.977 3.024 81.09

PGFm=2 5.512 24.239 2.525 9.63
PGFm=3 7.530 22.952 3.229 12.20

FMNF 6.306 23.553 3.032 8.14 15.5%

images of the filters in comparison for Aerial1 with p = 0.1 and Baboon and Lenna
with p = 0.2 are shown in Figures 3-5

We can conclude that the best results for our filter for 3 × 3 windows are achieved
for m = 3, 4 and d ∈ [0.88, 0.94] and, in particular, the value d = 0.92 can be taken
as a robust setting. It can be seen that the proposed filter outperforms significantly the
classical vector filters and its performance is competitive respect to the other considered
switching filters. Moreover, as it is shown in Tables 2-4, the proposed filter gives better
results for images presenting a lot of fine details and texture, as the Aerial1 or Baboon
images, in front of other types of images. Figure 2 shows the performance of the FMNF
in function of the d parameter in front of the VMF and the PGF (using the suggested
parameter setting d = 45, [23]).

The computational improvement of the PGF with respect to the VMF was shown
through the study of the computational complexity of the PGF. Now, recall that in [23]
the concept of peer group (involving classical metrics) is used to diagnose only the cen-
tral pixel in a sliding window, and this process is made on all the pixels in the image.
In our algorithm it is possible to diagnose several pixels as non-corrupted when the
central pixel is non-corrupted and so there are some pixels where the sliding window
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Table 4. Performance comparison for 256 × 256 Lenna image

p MAE PSNR NCD Computation Time reduction
(10−2) Time (sec) FMNF vs. best PGF

0.05 VMF 2.755 32.051 1.781 155.97
DDF 2.764 31.808 1.663 317.50

BVDF 2.985 31.382 1.720 173.34
FIVF 0.414 35.685 0.482 81.38

PGFm=2 0.4037 37.886 0.297 6.11
PGFm=3 0.7386 34.384 0.445 8.02

FMNF 0.699 34.483 0.471 5.52 9.7%

0.1 VMF 2.874 31.767 1.847 155.89
DDF 2.982 31.325 1.788 321.36

BVDF 3.248 30.773 1.869 174.73
FIVF 0.743 34.158 0.669 81.17

PGFm=2 0.696 35.257 0.553 6.78
PGFm=3 1.072 32.857 0.705 8.74

FMNF 1.067 32.580 0.786 6.02 11.2%

0.15 VMF 2.946 31.611 1.903 157.80
DDF 3.159 31.006 1.915 316.08

BVDF 3.513 30.112 2.035 172.22
FIVF 1.031 32.972 0.936 81.09

PGFm=2 1.081 32.397 0.915 7.36
PGFm=3 1.442 31.639 0.982 9.45

FMNF 1.458 31.343 1.084 6.59 10.5%

0.2 VMF 3.073 31.265 1.990 156.52
DDF 3.386 30.524 2.057 314.83

BVDF 3.788 29.540 2.196 172.67
FIVF 1.350 31.936 1.191 81.03

PGFm=2 1.527 30.515 1.334 8.06
PGFm=3 1.896 30.188 1.345 10.28

FMNF 1.941 29.965 1.456 7.14 11.4%

processing is no longer needed. Therefore, the main advantage of the proposed filter
technique is its great computational speed (see Tables 2-4 and Figure 2). In addition

Table 5 shows a comparative of the computational load between PGFm=2 (which
gives the best results) and FMNF deduced from our experiences with the previous im-
ages. In this table, the values ep and e∗p denote the mean number of distance computa-
tions needed to diagnose a pixel in the PGFm=2 and our FMNF, respectively.

Table 5. Comparative of the computational load between PGFm=2 and FMNF

p ep e∗p
0.05 3.52 2.51
0.10 3.82 2.72
0.15 4.15 2.94
0.20 4.46 3.21
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(a) (b)

(c) (d)

Fig. 2. Comparison of PSNR, NCD and computation time as a function of d in the following
cases: (a)-(b) Aerial 1 image contaminated with 10% of impulsive noise and (c)-(d) Baboon
image contaminated with 20% of impulsive noise

5 Conclusions

In this paper, we use a peer group concept based on a fuzzy metric to define a novel
impulsive noise filter which is a convenient variant of the peer group filter proposed
in [23].

The presented approach significantly outperforms classical vector filters and presents
a similar performance than recently introduced vector filters reaching an appropri-
ate balance between noise reduction and detail preserving, specially when the image
presents a lot of fine details and texture. The computational complexity of the proposed
filter is lower than the one of the peer group filter [23], which is based on a similar
concept.

Fuzzy metrics suitability for image processing tasks is demonstrated again. More-
over, the use of the proposed fuzzy metric in substitution of classical metrics has sup-
posed a gain in computational efficiency.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Output Images: (a) Aerial1 original detail image, (b) Aerial1 with 10% of impulsive noise
detail image, (c) VMF filtered detail image, (d) DDF filtered detail image, (e) BVFD filtered
detail image, (f) FIVF filtered detail image, (g) PGFm=2 filtered detail image, (h) FMNF filtered
detail image

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Output Images: (a) Baboon with 20% of impulsive noise detail image, (b) VMF filtered
detail image, (c) DDF filtered detail image, (d) BVFD filtered detail image, (e) FIVF filtered
detail image, (f) PGFm=2 filtered detail image, (g) PGFm=3 filtered detail image, (h) FMNF
filtered detail image
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Output Images: (a) Lenna with 20% of impulsive noise detail image, (b) VMF filtered
detail image, (c) DDF filtered detail image, (d) BVFD filtered detail image, (e) FIVF filtered
detail image, (f) PGFm=2 filtered detail image, (g) PGFm=3 filtered detail image, (h) FMNF
filtered detail image
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Abstract. Most statistical background subtraction techniques are based
on the analysis of temporal color/intensity distributions. However, learn-
ing statistics on a series of time frames can be problematic, especially when
no frames absent of moving objects are available or when the available
memory isn’t sufficient to store the series of frames needed for
learning. In this paper, we propose a framework that allows common sta-
tistical motion detection methods to use spatial statistics gathered on one
frame instead of a series of frames as is usually the case. This simple and
flexible framework is suitable for various applications including the ones
with a mobile background such as when a tree is shaken by wind or when
the camera jitters. Three statistical background subtraction methods have
been adapted to the proposed framework and tested on different synthetic
and real image sequences.

Keywords: Background subtraction, spatial distributions.

1 Introduction

Motion detection methods are generally used to evaluate and locate the pres-
ence (or absence) of motion in a given animated scene. To this end, one class
of solutions that enjoys tremendous popularity is the family of background sub-
traction methods [1]. These methods are based on the assumption that the scene
is made of a static background in front of which animated objects with different
visual characteristics are observed. Typical applications for background subtrac-
tion methods include camera surveillance [2], traffic monitoring [3,4] and various
commercial applications [5].

As the name suggests, the most intuitive background subtraction method
involves one background image and an animated sequence containing moving
objects. These moving objects are segmented by simply thresholding the differ-
ence between the background and each frame. The threshold can be a priori
known or estimated on the fly [6]. Unfortunately, such a simple solution is sen-
sitive to background variations and can only meet the requirements of simple
applications.

Background variations can be caused by all kinds of phenomena. For instance,
noise induced by a cheap low-quality camera or by motion jitter caused by an

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 370–380, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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unstable camera are typical situations that can’t be handled properly by sim-
plistic background subtraction methods. Also, there are many applications for
which some background objects aren’t perfectly static and induce local false
positives. It’s the case, for instance, when a tree is shaken by wind or when the
background includes animated texture such as wavy water. Another common
source of variation is when the global illumination isn’t constant in time and
alters the appearance of the background. Such variation can be gradual such
as when a cloud occludes the sun, or sudden such as when a light is turned on
or off.

For all these situations, a more elaborate background subtraction strategy is
required. In this perspective, many methods proposed in the literature, model
each pixel of the background with a statistical model learned over a series of
training frames. For these methods, the detection becomes a simple probability
density function (PDF) thresholding procedure. For instance, a single-Gaussian
distribution per pixel [7,8] can be used to compensate for uncorrelated noise.
However, this single-Gaussian approach is limited by the assumption that the
color distribution of each pixel is unimodal in time. Although this assumption
is true for some indoor environments, it isn’t true for outdoor scenes made up
of moving background objects or for sequences shot with an unstable camera.
Therefore, because the color distribution of moving background pixels can be
multimodal, many authors use a mixture of Gaussians (MoG) [9,3,10] to model
the color distribution of each pixel. The number of Gaussians can be automati-
cally adjusted [9] or predefined based on the nature of the application [3]. Non-
parametric modeling [2,11] based on a kernel density estimation has also been
studied. The main advantage of this approach is the absence of parameters to
learn and its ability to adapt to distributions with arbitrary shape. Let us also
mention that block-based methods [12], Markovian methods [13] and predictive
methods [14,15], to name a few, have been also proposed.

The main limitation with statistical solutions is their need for a series of
training frames absent of moving objects. Without these training frames, a non-
trivial outlier-detection method has to be implemented [9]. Another limitation
with these methods is the amount of memory some require. For example, in
[3], every training frame needs to be stored in memory to estimate the MoG
parameters. Also, for kernel-based methods [2,11], a number of N frames need to
be kept in memory during the entire detection process which, indeed, is costly
memory-wise when N is large. In this paper, we propose a novel framework
that allows training on only one frame and requires a small amount of memory
during runtime. Our framework considers two kinds of illumination variations
: a unimodal variation (caused by noise) and a multimodal variation (caused
by local movement). The methods we have adapted to our framework are thus
robust to noise and background motion.

The rest of the paper is organized as follows. In Section 2, we present our
framework before Section 3 explains how statistical background subtraction
methods can be adapted to it. Several results are then presented in Section
4 to illustrate how robust our framework is. Section 5 draws conclusions.
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2 Proposed Framework

As mentioned earlier, the choice for a pixel-based background model is closely
related to the nature of background variations. In this perspective, let us consider
two kinds of background variations. The first one concerns variations due to
noise. In this case, the background B is considered as being stationary and the
color of each pixel s at time t is defined as Bt(s) = B(s) + n where n is an
uncorrelated noise factor and B(s) is the ideal noise-free background color (or
intensity) of site s. In this case, the distribution of Bt(s) in time is considered
to be unimodal and centered on B(s). The second kind of variations we consider
is the one due to background movement caused by, say, an animated texture
or by camera jitter. Considering that variations are due to local movements, it
can be assumed that the distribution of Bt(s) in time is similar to the spatial
distribution of B(s), i.e., the spatial distribution {B(r), ∀r ∈ ηs} where ηs is
a M ×M neighborhood centered on s. As a matter of fact, as shown in Fig.1
(a)-(b), when a site s is locally animated, the color observed in time over s often
corresponds to the color observed locally around s. Therefore, since the spatial
distribution is often multimodal, the distribution of Bt(s) often turns out to be
multimodal too.

In this paper, we propose a novel framework which uses only one frame
for training. Unfortunately, with only one training frame, it isn’t possible to

0 255

0 255

Spatial HistogramSpatial Histogram

0 255

Temporal Histogram Temporal Histogram

s

s
s

s
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Shaking camera Animated texture (waves on sea)

h

Spatial Histogram

0 255

Temporal Histogram

s

s

0 255

Noise (rain)

h

h

(a) (b) (c)

Fig. 1. Three image sequences exhibiting local illumination variations. From left to
right: a sequence shot with an unstable camera, a sequence including animated texture
and a noisy sequence. The histograms show that the spatial intensity distributions
often resemble the temporal distribution.
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determine whether the distribution of a site s in time is unimodal or multimodal.
One can even think of applications where unimodal regions become multimodal
after a while. A good example is when the wind starts to blow and suddenly
animates a tree. In this way, since the modality of each pixel distribution isn’t
known a priori and can’t be estimated with the analysis of only one background
frame, we decided to use a decision fusion strategy. To this end, each pixel is
modeled with two PDFs: one unimodal PDF (that we call Pu) and one multi-
modal PDF (called Pm). Both these PDFs are trained on one single background
frame “B” (see Section 3 for more details on training). The goal of these two
PDFs is to estimate a motion label field Lt which contains the motion status of
each site s at time t (typically, LT (s) = 0 when s is motionless and LT (s) = 1
otherwise). The detection criterion can be formulated as follows

Lt(s) =
{

0 if Pu
s (It) > τ OR Pm

s (It) > τ
1 otherwise. (1)

where It is a frame observed at time t . Estimating the motion label field Lt with
this equation turns out to be the same as blending two label fields Lu

t and Lm
t

that would have been obtained after thresholding Pu
s (It) and Pm

s (It) separately.
Other configurations for blending Pu and Pm as well as other thresholding pro-
cedures have been investigated during this research. It turned out that a decision
criterion such as the one of Eq.1 is a good compromise between simplicity and
efficiency.

3 Spatial Training

In this section, we present how Pu and Pm can be trained on data gathered on
one background training frame B.

Single Gaussian
As mentioned earlier, Pu models variations due to uncorrelated noise and as-
sumes that the background is perfectly motionless. To this end, Pu is modeled
with a single Gaussian distribution

Pu
s (It) =

1
(2π)d/2|Σs|−1/2 exp(−1

2
(I t(s)− μs)TΣ-1

s (It(s)− μs) (2)

where d = 1 for grayscale sequences and d = 3 for color sequences. Notice that
for color sequences, Σs is a 3× 3 variance-covariance matrix that, as suggested
by Stauffer and Grimson [9], is assumed to be diagonal for efficiency purposes.
Since only one training frame is available in this framework, μs and Σs have
to be estimated with data gathered around s. Of course, by the very nature of
Pu, the spatial data should ideally have an unimodal distribution that resembles
the one observed temporally over site s. Although some spatial neighborhoods
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of a scene offer that kind of unimodal distribution (see neighborhood A in Fig. 2),
others are obviously multimodal (see neighborhood B in Fig. 2) and can’t be used
as is for training. In fact, using every pixels within a neighborhood ηs would often
lead to corrupted (and useless) parameters. Thus, to prevent μs and Σs from
being corrupted by outliers (the gray pixels of the street near B in Fig. 2 for
example), a robust function ρ is used to weight the importance of each sample
B(r) [16]. More specifically, the parameter estimation can be expressed as

μs =
1∑

r∈ηs
ρs,r

∑
r∈ηs

ρs,rB(r)

Σs(j) =
1∑

r∈ηs
ρs,r

∑
r∈ηs

ρs,r(B(r, j) − μs(j))2 ∀j ∈ [1, d] (3)

where Σs(j) is the variance of the jth color space dimension and ηs is a M ×M
neighborhood centered on s. As suggested by Huber [16], we defined ρ(s, r) as

ρ(s, r) =
{

1 if||B(s)−B(r)||2 ≤ c
c

||B(s)−B(r)||2 otherwise (4)

where c is a constant that we set to 5. This robust estimator leads to interesting
results as shown by the black dotted Gaussian of Fig. 2.

Notice that global lighting variations can be compensated by updating μs and
Σs at every frame [7,8] as follows

μs ← αI t(s) + (1− α)μs, ∀ Lt(s) = 0 (5)
Σs(j) ← α(It(s, j)− μs(j))2 + (1− α)Σs(j) ∀ Lt(s) = 0, ∀j ∈ [1, d]. (6)

where α ∈ [0, 1[ is the so-called learning rate [3].

A

B

0 255 0 255

Spatial Histogram (B) Temporal Histogram (B)

Fig. 2. A sequence shot with a perfectly static camera. While the temporal intensity
distribution of pixel B is unimodal and centered on intensity 254, the spatial intensity
distribution around B is bimodal. However, estimating the Gaussian parameters with
Eq. (3) leads to a distribution (in black) centered on the main mode, uncorrupted by
the graylevels of the street.
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Mixture of Gaussians
Multimodal histograms such as the ones in Fig. 1 (a)-(b) can’t be appropriately
modeled with one single Gaussian. However, a mixture of K Gaussians can be
a good choice to model such distributions:

Pm
s (It) =

K∑
i=1

ws,i N (It(s),μs,i, Σs,i) (7)

where N (.) is a Gaussian similar to the one of Eq.(2), ws,i is the weight of
the ith Gaussian and K is the total number of Gaussians (between 2 and 5
typically). In this context, a number of 3 × K parameters per pixel need to
be estimated during the training phase. To do so, the well known K-means
algorithm has been implemented. The objective of K-means is to iteratively
estimate the mean of K clusters by minimizing the total intra-cluster variance. In
our framework, K-means takes as input for each pixel s, the M ×M background
pixels {B(r), r ∈ ηs} contained withing the square neighborhood ηs. When the
algorithm converges and the mean μs,i of every cluster has been estimated, the
variance Σs,i and the weight ws,i are then estimated. In this paper, the number
of K-means iterations was set to 6. For further explanations on K-means, please
refer to [17].

As we mentioned for Pu
s , the MoG parameters can be updated at every frame

to account for illumination variations. As suggested by Stauffer and Grimson [9],
at every frame It, the parameters of the Gaussian that matches the observation
It(s) can be updated as follows

μs,i ← αI t(s) + (1− α)μs,i, ∀Lt(s) = 0 (8)
Σs,i(j) ← α(It(s, j)− μs,i)2 + (1− α)Σs,i(j) ∀Lt(s) = 0 (9)

ws,i ← (1 − α)ws,i + αMs,i (10)

where Ms,i is 1 for the Gaussian that matches and 0 for the other models. The
weights ws,i are then normalized.

Nonparametric Density Estimation
Since the color distribution of each pixel can’t always be assumed to follow a
parametric form, a multimodal density can be estimated with an unstructured
approach. One such nonparametric approach is the kernel-based density estima-
tion (also called Parzen density estimate [18]) which locally estimates density
from a small number of neighboring samples. The kernel method we have imple-
mented has been inspired by the work of Elgammal et al. [2].

Considering ηs as being a M×M neighborhood centered on site s, the density
at s is estimated with

Pm
s (It) =

1
M ×M

∑
r∈ηs

Kσ(It(s)−B(r)) (11)

for grayscale sequences and, for color sequences,
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Pm
s (It) =

1
M ×M

∑
r∈ηs

3∏
j=1

Kσj (It(s, j)−B(r, j)). (12)

where j is the color-space index (red, green or blue) and B is a background frame.
Here, K is a kernel function –i.e. some PDF– which, in practice, turns out to be
normal or uniform [18]. As suggested by Elgammal et al. [2], we implemented
Kσ as being a zero-mean Gaussian of the form

Kσ(x) =
1

σ
√

2π
exp

−x2

2σ2 . (13)

Although σ can be estimated on the fly for each pixel [2], we used a constant
value. In this way, a single global 256-float-long lookup table can be precalculated
to allow significant speedup during runtime. The table values are accessed with
the intensity value difference It(s, j)−B(r, j) as index.

Let us mention that the background frame B used to model Pm can be up-
dated at every frame to account for lighting variations. This can be easily done
with the following operation:

B(s) ← αB(s) + (1− α)I t(s). (14)

4 Experimental Results

To validate our framework, we have segmented sequences representing different
challenges. These tests aim at validating how stable and robust our framework
is with respect to traditional methods using a temporal-training approach. For
each example presented in this section, a neighborhood ηs of size between 11×11
and 15× 15 has been used.

The first sequence we segmented is the one presented in Fig.3 (a) which contains
strong noise caused by rain. The segmentation has been performed by thresholding
independently a single-GaussianPDF (see Eq. (2)) trained over each pixel. At first,
the Gaussian parameters have been computed with a 20-frame temporal training.
Then, the parameters have been trained spatially on one frame using Eq. (3). As
shown in Fig. 3, the label fields obtained with both approaches are, to all practical
ends, very much similar. They both exhibit some few isolated false positives (due
to rain) and some false negatives over the truck window.

The second sequence we have segmented (see Fig. 3 (b)) is one with no training
frame absent of moving objects. The background frame B needed to learn the
Gaussian parameters has been computed with a simple five-frame median filter
: B(s) = Med[I0(s), I40(s), I80(s), I120(s), I160(s)]. This median filter led to the
middle frame of Fig. 3 (b) which, after a spatial training, gave the result of
Fig. 3 (c).

The third sequence we have segmented is the one shown in Fig. 4. This
sequence has been shot with a perfectly static camera and contains a highly
animated background made of trees shaken by wind. The sequence has been
segmented with the MoG and the kernel-based background subtraction method
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Noisy sequence (Rain) 1Gaussian (spatial training) 1Gaussian (temporal training)

1Gaussian (spatial training)Sequence without training frames Background image "B" 

(obtained with a 5-frame median filtering)

(a)

(b)

Fig. 3. (a) A noisy sequence segmented with one Gaussian per pixel whose parameters
have been spatially and temporally trained. (b) From a sequence without training
frames absent of moving objects, a five-frame median filter has been used to produce
the background frame B.

Temporal

training

Spatial

training

Kernel-based background subtraction MoG background subtraction

Fig. 4. Two frames of a sequence exhibiting a multimodal background made of trees
shaken by wind. The MoG and the kernel-based method have been trained either
temporally on a series of frames or spatially, on single frame.
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(a)

Temporal

training

Spatial

training

Kernel-based 

background subtraction

MoG 

background subtraction (b)

Temporal

training

Spatial

training

Kernel-based 

background subtraction

MoG 

background subtraction

1.45% 1.51%

1.62% 1.71%

Fig. 5. (a) Sequence shot with an unstable camera and (b) a synthetic sequence made
of a boat sailing on a wavy sea. The numbers in the lower left corner of the boat label
fields, indicate the average percent of mis-matched pixels. In each case, the MoG and
the kernel-based method have been used. Both were trained either temporally on a
series of frames or spatially on one frame.

presented in Section 3. Both have been trained temporally on a series of 150
frames and spatially on one single frame. Since the sequence shows a great deal
of movement in the background, the parameters of each method have been up-
dated at every frame following Section 3’s explanations. In Fig.4, two frames
are presented. As can be seen, the spatial results are very much similar to the
temporal ones although the latter shows a bit more precision. In both cases, a
few isolated false positives due to wind are present at the top, and false negatives
due to camouflage can be seen on the walker. Notice that these isolated pixels
can be efficiently eliminated with a basic 3× 3 or 5× 5 median filter.

The third sequence we have segmented is the one presented in Fig. 5 (a) which
exhibits a moving truck. The sequence was shot with an unstable camera making
the background highly multimodal (notice that for the purposes of this paper,
additionnal carema jitter has been added to the original scene). Again, the MoG
and the Kernel-based approach have been used to segment the sequence. Here,
20 frames were used for temporal training. Again, the results obtained after
a temporal training are similar to the ones obtained after a spatial training.
However, the latter seems a bit more precise, mostly because only 20 frames
were available for temporal training. A larger number of training frames would
have had certainly a positive influence on the results’ sharpness (at the expense
of processing time of course).

The fourth sequence shows a boat sailing on a wavy sea. The sequence con-
sists of 200 frames from which the first 80 have been used for temporal training.
The sequence has been computer generated and has a ground-truth label field for



Background Subtraction Framework Based on Local Spatial Distributions 379

each frame. With these ground-truths, the average percentage of mis-matched
pixels has been computed to empirically compare the four methods. The aver-
age percentage presented in Fig.5 (b) shows, again, how small is the difference
between the spatially-trained and the temporally-trained methods.

5 Discussion

In this paper, a novel spatial framework for the background subtraction problem
has been presented.

Our framework is based on the idea that, for some applications, the tempo-
ral distribution observed over a pixel corresponds to the statistical distribution
observed spatially around that same pixel. We adapted three well known statis-
tical methods to our framework and showed how these methods can be trained
spatially instead of temporally.

Our framework offers three main advantages. First, the statistical parameters
can be learned over one single frame instead of a series of frames as is usually the
case for single-Gaussian or the MoG model. This has the advantage of requiering
much less memory and being more flexible in presence of sequences having no
training frames absent of moving objects. Second, as opposed to the kernel-
based method, only one frame (instead of N) is kept in memory during runtime.
This, again, is a major advantage memory-wise. Also, it makes our kernel-based
methods much easier to be implemented on programmable graphics hardware
[19] having a limited amount of memory. Last, but not least, our framework
maintains the conceptual simplicity and strength of the background subtraction
methods adapted to it. The segmentation function, the adaptation to global
illumination variations and the statistical learning phase are implemented in
a way that is very similar to the one originally proposed under a temporal
framework.

Finally, we have shown that the results obtained with our framework on se-
quences with high noise, camera jitter and animated background are, to all
practical ends, identical to the ones obtained with methods trained temporally.
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Abstract. In this paper we present an image interpolation method,
based on mathematical morphology, to magnify images with sharp edges.
Whereas a simple blow up of the image will introduce jagged edges, called
‘jaggies’, our method avoids these jaggies, by first detecting jagged edges
in the trivial nearest neighbour interpolated image, making use of the
hit-or-miss transformation, so that the edges become smoother. Experi-
ments have shown that our method performs very well for the interpola-
tion of ‘sharp’ images, like logos, cartoons and maps, for binary images
and colour images with a restricted number of colours.

1 Introduction

Image interpolation has many applications such as simple spatial magnifica-
tion of images (e.g. printing low-resolution documents on high-resolution printer
devices, digital zoom in digital cameras), geometrical transformation (e.g. rota-
tion), etc. Different image interpolation methods have already been proposed in
the literature, a.o. [[1] - [11]]. In this paper we will describe a new morphological
image interpolation technique, for binary images as well as for colour images
with a limited number of colours, with sharp edges. First we review some basic
definitions of mathematical morphology, including the hit-or-miss transforma-
tion. In section 3 we introduce our new interpolation approach. We explain the
pixel replication or nearest neighbour interpolation, used as the first ‘trivial’
interpolation step in our method. Thereafter we discuss our corner detection
method, using different kinds of structuring elements, and describe our corner
validation, first for magnification by a factor 2 and then for magnification by an
integer factor n > 2. Finally, in section 4 we have compared our interpolation
method experimentally to other well-known approaches. The results show that
our method provides a visual improvement in quality on existing techniques: all
jagged effects are removed so that the edges become smooth.
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2 Basic Notions

2.1 Modelling of Images

A digital image I is often represented by a two-dimensional array, where (i, j)
denotes the position of a pixel I(i, j) of the image I.

Binary images assume two possible pixel values, e.g. 0 and 1, corresponding to
black and white respectively. White represents the objects in an image, whereas
black represents the background. Mathematically, a 2-dimensional binary image
can be represented as a mapping f from a universe X of pixels (usually X is a
finite subset of the real plane R

2, in practice it will even be a subset of Z
2) into

{0, 1}, which is completely determined by f−1({1}), i.e. the set of white pixels,
so that f can be identified with the set f−1({1}), a subset of X , the so-called
domain of the image. A 2-dimensional grey-scale image can be represented as
a mapping from X to the universe of grey-values [0, 1], where 0 corresponds
to black, 1 to white and in between we have all shades of grey. Colour images
are then represented as mappings from X to a ‘colour interval’ that can be for
example the product interval [0, 255]× [0, 255]× [0, 255] (the colour space RGB).
Colour images can be represented using different colour spaces; more information
about colour spaces can be found in [13], [14].

2.2 Binary and Colour Morphology

Consider a binary image X and a binary structuring element A, which is also a
binary image but very small in comparison with X . The translation of X by a
vector y ∈ R

n is defined as Ty(X) = {x ∈ R
n | x − y ∈ X}; the reflection of X

is defined as −X = {−a | a ∈ X}.
Definition 1. The binary dilation D(X,A) of X by A is the binary image

D(X,A) = {y ∈ R
n | Ty(A) ∩X �= ∅}.

The binary erosion E(X,A) of X by A is defined as

E(X,A) = {y ∈ R
n | Ty(A) ⊆ X}.

The dilation enlarges the objects in an image, while the erosion reduces them.

Property 1. If A contains the origin (i.e. 0 ∈ A), then

E(X,A) ⊆ X ⊆ D(X,A).

With this property the binary image D(X,A)\E(X,A) can serve as an edge-
image of the image X , which we call the morphological gradient GA(X) of X .
Analogously we define the external morphological gradient GA,e and the internal
morphological gradient GA,i as

GA,e(X) = D(X,A)\X and GA,i(X) = X\E(X,A),
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which will give us the external and inner edge-image of X respectively. We will
use the internal morphological gradient to detect the positions of jaggies in an
image. More information about binary morphology can be found in [[15] - [17]].
In [18] we have extended the basic morphological operators dilation and erosion
to vector morphological operators for colour images by defining a new vector
ordering for colours in the RGB colour space. Therefore we will also use the
notations D(X,A) and E(X,A) for colour images.

2.3 The Hit-or-Miss Transformation

Consider again a binary image X and two binary structuring elements A and B.
The hit-or-miss operator is defined by

X ⊗ (A,B) = E(X,A) ∩ E(Xc, B),

where Xc is the complement of X w.r.t. R
n. The result is empty if A ∩B �= ∅.

The name hit-or-miss operator can be explained as follows: a pixel h belongs to
the hit-or-miss transformation X⊗ (A,B) iff Th(A) does not hit (intersect with)
Xc and Th(B) does not hit X . The hit-or-miss operator is very useful for the
detection of points inside an image with certain (local) geometric properties, e.g.
isolated points, edge points, corner points.

As an example we show the detection of the upper-left corner points of objects
in an image:

Fig. 1. From left to right: The structuring elements (A, B), where A contains the white
pixels (×) and B the black pixels (·), the original binary image X and the hit-or-miss
transformation X ⊗ (A, B) (only the white pixels)

3 New Morphological Image Interpolation Method

3.1 Pixel Replication or Nearest Neighbour Interpolation

The resolution of an image is the number of pixels per unit area, and is usually
measured in pixels per inch. When we magnify an image V times, the number
of pixels will increase (V 2 times). The easiest way to enlarge an image is to
copy the existing pixel values to the new neighbouring pixels. If we magnify
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an image V times, one pixel in the original image will be replaced by a square
of V × V pixels in the new image. This is called pixel replication or nearest
neighbour interpolation. The result is quite poor, but we can use it as a first
‘trivial’ interpolation step.

3.2 Corner Detection

To detect the unwanted jaggies in the nearest neighbour interpolated image,
we first determine the inner edge-image of the blown up image and then apply
the hit-or-miss operator to obtain the positions of the object corner edge pixels.
The advantage of the internal morphological gradient is that this gradient will
give the correct pixel positions of corners in an image. When our original image
is a binary image, the blown up image will also be a binary image, and so
will the inner edge-image. On the other hand, if our original image is a colour
image, the inner edge-image of the blown up image will be a colour image,
but we transform it into a binary image by giving all non-black pixels a white
value.

Let’s call O the nearest neighbour interpolated image of the original image
X , Oc the complement of O, Oedge the inner edge-image of O, and Oc

edge the
inner edge-image of the complement image Oc. With a given pair of structuring
elements (A,B) we first determine the hit-or-miss transformation Oedge⊗(A,B)
and secondly the hit-or-miss transformation Oc

edge ⊗ (A,B). This way we will
not only detect corners of objects in O, but also corners of objects in Oc.

Fig. 2. The used structuring elements (1) (A1, B1) ... (9) (A9, B9) (the underlined
element corresponds to the origin of coordinates) for magnification by a factor 2

(1) (2) (3) (4)

(5) (6) (7) (8) (9)
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Not all the corner pixels in the image should be changed, because some corners
are ‘real’ corners, which have to be preserved in the magnified image, whereas
others are part of jaggies and have to be removed. Therefore we will use different
kinds of structuring elements in the hit-or-miss transformation. The structuring
elements used for magnification by a factor 2 are shown in fig. 2, where Ai

contains the white pixels (×) and Bi the black pixels (·), i = 1 . . . 9. The other
structuring elements are rotated or reflected versions of these. For example, the
structuring elements (A1, B1) will allow us to detect all upper-left corner pixels,
while using structuring elements that are properly rotated versions of (A1, B1)
we will detect all upper-right, lower-left and lower-right corners. We not only look
for corners of the ‘foreground’ objects, but also for corners of the ‘background’
objects. Consequently we will have 8 different kinds of corner pixels (4 ‘object’
corner pixels and 4 ‘background’ corner pixels). In the example in section 2.3
(fig. 1), not only the white pixels (X ⊗ (A,B)) will be detected, but also the
black pixels with white ×-symbol (Xc ⊗ (A,B)).

3.3 Corner Validation

In this section we explain our method for magnification by a factor 2.

Step 1. We look for corners determined by the structuring elements (A1, B1)
and their rotations. For example, if we detect an upper-left object corner pixel
a or an upper-left background corner pixel a∗ at position (i, j) in the edge-
image Oedge (see figure 3). An upper-left object corner pixel will be determined
by the hit-or-miss transformation Oedge ⊗ (A1, B1), while an upper-left back-
ground corner pixel will be determined by the hit-or-miss transformation of
the complement of Oedge, i.e. Oc

edge ⊗ (A1, B1). Then we change the colour of
the pixel at position (i, j) in the blown up image O by a mixture of the ‘fore-
ground’ and ‘background’ colour of the surrounding pixels. We obtain this by
adding the pixel values of the erosions E(O,A1) and E(O,B1) at position (i, j),
that is, O(i, j) = E(O,A1)(i, j) + E(O,B1)(i, j). Let [rc, gc, bc] and [rc′ , gc′ , bc′ ]
be the RGB colour vector of the pixel E(O,A1)(i, j) and E(O,B1)(i, j) re-
spectively, we define the new colour value of O(i, j) with RGB components
(r, g, b) as

r
def
= (rc + rc′)/2, g

def
= (gc + gc′)/2, b

def
= (bc + bc′)/2.

Fig. 3. Step 1 worked out for the structuring elements (A1, B1)
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Step 2. We detect corners with the pair (A2, B2). If we detect such an object
corner a or a background corner a∗ at position (i, j) in Oedge (see figure 4), we
fill the corner pixels at position (i−1, j) and (i, j−1) or at positions (i−1, j−1)
and (i, j), in the blown up image O with the foreground colour. Note that the
foreground colour is defined by the minority colour in the image. Here, for the
foreground colour of the pixel O(i − 1, j) we determine which of the two colour
values O(i−1, j) and O(i, j) is less present in the image. The foreground colour of
the pixel O(i, j−1) is determined by the minority colour of the pixels O(i, j−1)
and O(i, j). Analogously for O(i− 1, j − 1) and O(i, j).

Fig. 4. Step 2 illustrated with structuring elements (A2, B2)

Step 3. We have added the structuring elements (A3, B3), (A4, B4), (A5, B5)
and rotated or reflected structuring elements because we experienced that they
are representative for the corner structures that should not be changed in an
image. When we find a corner determined by one of these structuring elements,
we leave the observed pixels unchanged in the interpolated image to avoid that
real corners will be removed in the magnified image.

Step 4. We look at structuring elements of the form (A6, B6), (A7, B7) and
rotated or reflected versions. See figure 5. In the first case (1), when an object
corner a or background corner a∗ is determined by (A6, B6) at position (i, j) in
Oedge, we replace the pixel value at position (i+ 1, j− 1) or position (i+ 1, j) in

the image O by the colour with RGB components r
def
= (1/4× rc + 3/4× rc′), g

and b defined analogously, where [rc, gc, bc] and [rc′ , gc′ , bc′ ] are the RGB colour
vectors of the pixels E(O,A1)(i, j) and E(O,B1)(i, j). In the second case (2),
if a corner a or a∗ is determined by the structuring elements (A7, B7) or by
the structuring elements (A6, B6) in the special composition as illustrated in
fig. 5(a) for a (for a∗ we get an analogous figure), at position (i, j) in Oedge,
we replace the original colour at position (i + 1, j) or position (i + 1, j − 1) in

O by the colour with RGB components r
def
= (3/4 × rc + 1/4 × rc′), g and b

analogous, where [rc, gc, bc] and [rc′ , gc′ , bc′ ] are the RGB colour vectors of the
pixels E(O,A1)(i, j) and E(O,B1)(i, j). The colour value of O(i, j) or O(i, j−1)

is changed to the RGB colour (r′, g′, b′) with r′
def
= (1/4× rc + 3/4× rc′), g′ and

b′ analogous.

Step 5. At last we consider the pairs of structuring elements (A8, B8), (A9, B9)
and their rotated or reflected structuring elements. When we find such an object
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Fig. 5. Step 4, at the top: case (1) and at the bottom: case (2)

corner a (or background corner a∗) at position (i, j), we move the colour of pixel
O(i + 1, j − 1) (O(i + 1, j)) to pixel O(i + 2, j − 1) (O(i + 2, j)) and give pixel
O(i+1, j− 1) (O(i+1, j)) an intermediate colour value between the foreground
and background colour of pixel O(i, j).

Fig. 6. Step 5, at the top: case (1) and at the bottom: case (2)

3.4 Magnification by an Integer Factor n > 2

Now, for magnification by an integer factor n > 2, we have to extend the struc-
turing elements to a larger size but a similar shape, and the way of filling up

(a)
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the edge pixels will change a bit, but is very analogous. In figure 7 we have
illustrated this process for magnification by a factor 3:

Fig. 7. The corner validation for magnification by a factor 3

4 Experimental Results

Fig. 8 and 9 show some results of our interpolation method.
Fig. 9 and 10 illustrate the result of several interpolation methods. We have

compared our technique with the following state-of-the-art methods: the high-
quality magnification filter Hq [10], which analyses the 3× 3 area of the source
pixel and makes use of lookup tables to get interpolated pixels of the filtered im-
age, the anti-alias filter [12], which detects aliasing and changes only aliased edges
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Fig. 8. At the top: the pixel replication ‘cartoon’ image for magnification by a factor
2, at the bottom: the result of our morphological interpolation method

and pixels, and some classical linear interpolation methods [1], in particular, bi-
linear and bicubic interpolation, which use the (weighted) mean of respectively
4 and 16 closest neighbours to calculate the new pixel value, and sinc interpo-
lation, which makes use of windowed sinc functions. The main advantages and
drawbacks of these linear interpolation filters are pointed out in [1].

We may conclude that our new method provides very beautiful results. Im-
provements in visual quality can be noticed: unwanted jaggies have been removed
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Fig. 9. Interpolation results for magnification by a factor 3

so that edges have become smoother. Good results are also obtained with the
hq interpolation method, but our method outperforms all the others.

Our method was implemented in Matlab, which makes it hard to compare
the computational complexity of this method with the others. As future work
we will reimplement all methods in the same program language, Java or C++,
to make them comparable with each other.

Remark: Sometimes it is desired that binary logos, cartoons and maps
remain binary, or that no new colours are introduced in a colour image after
magnification. Our method can also produce such a result: we only have to in-
sert a threshold in our method, that is, in section 3.3 all new coloured pixels
with RGB colour values greater than or equal to (1/2× [r, g, b]foreground colour

(Original image) (Our method)

(Pixel replication) (Hq)

(Anti-alias) (Bicubic)
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(Pixel replication) (Our method) (Hq)

(Anti-alias) (Bicubic) (Sinc) (Bilinear)

Fig. 10. Result of several interpolation methods for magnification by a factor 2

Fig. 11. Our new morphological interpolation method, giving as result a binary image
of the original binary image ‘cartoon’ (magnification by a factor 2)

+ 1/2× [r, g, b]background colour) are assigned to the foreground colour value,
while all other colour pixels are transformed to the background colour value.
The main visual improvements can be seen in fig. 11: the contours are smooth
and text is also interpolated very well.



392 V. De Witte et al.

For a binary image interpolation method making use of mathematical mor-
phology and giving a black-and-white result, we also refer to [19].

5 Conclusion

This paper presents a morphological method that improves the visual quality of
magnified binary images with sharp boundaries. The problem of interpolating an
image is the introduction of unwanted jagged edges in the blown up image. We
developed a new approach to avoid these jaggies, making use of mathematical
morphology. We also demonstrated that our method gives beautiful results for
the magnification of colour images with sharp edges with a limited number of
colours. As future work we will extend our approach towards all colour images
with sharp edges, therefore we will define a new vector ordering for colours in the
RGB colour space, and towards images with ‘vague’ edges, again using mathe-
matical morphology.
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Abstract. The mean shift algorithm is an kernel based way for efficient object 
tracking. However, there is presently no clean mechanism for selecting kernel 
bandwidth when the object size is changing. We present an adaptive kernel 
bandwidth selection method for rigid object tracking. The kernel bandwidth is 
updated by using the  object affine model that is estimated by using object 
corner correspondences between two consecutive frames. The centroid of object 
is registered by a special backward tracking method. M-estimate method is used  
to reject mismatched pairs (outliers) so as to get better regression results. We 
have applied the proposed method to track vehicles changing in size with 
encouraging results. 

1   Introduction 

The mean shift algorithm is an efficient way to do mode seeking by using kernel 
density estimation [4,5]. Recently, this nonparametric statistical method has been used 
into the visual tracking fields [1,2,3] where object is represented by kernel histogram 
and from the same location in the next frame, mean shift iterations based on 
maximizing the Bayes error associated with the model and candidate distributions 
continues until its convergence. However, the unchanged kernel bandwidth limits its 
performance in tracking object changing in size [7]. The problem we address in the 
paper is selecting the bandwidth of the mean shift kernel, which directly determines 
the size of the tracking window in which object is enclosed. Our method is proposed 
under the assumption that is the object we tracked is rigid and its motion satisfies 
affine model in two consecutive frames. The bandwidth of mean shift kernel is 
selected by discovering the scale parameters of object affine model described by 
corner correspondences. By applying a special backward tracking method to register 
object centroid in different frames, we can not only simplify the affine model but also 
provide an opportunity to use our simple local-matching method to find corner 
correspondences. Finally, in order to get better regression result, robust M-estimate is 
employed to reject outliers caused by mismatching pairs, noise and some other 
factors.  

The paper is organized as follows. In section 2 we review the mean shift theory and 
illuminate the limitation of using unchanged bandwidth in visual tracking. In section 3 
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the bandwidth selection method is developed. Experimental results are given in 
section 4, and the conclusion is in section 5. 

2   Mean Shift Object Tracking 

2.1   Mean Shift Theory 

The mean shift algorithm is a nonparametric method based on kernel density 
estimation (KDE) for mode seeking [4,5]. Let data be a finite set A  embedded in the 

−n dimensional Euclidean space X . The sample mean at Xx ∈  is  

Aa
awxaK

aawxaK
xmean

a

a ∈
−

−
=   ,

)()(

)()(
)(  (1) 

where K  is kernel function, and w  is weight function that can be negative value [7]. T
he difference xxmean −)(  is called mean shift vector. The repeated movement of data 

points to the sample means is called the mean shift algorithm. An important property of 
the mean shift algorithm is that the local mean shift vector computed at position x  usin
g kernel K  points opposite to the gradient direction of the convolution surface  

)()()( awxaGxJ
a

−=  (2) 

Here, kernel K  and G  must satisfy the relationship 

0, ),()(
2 >−=−=′ cxarrckrg  (3) 

where g  and k  are profile of kernel G  and K  respectively. A commonly used 

kernel is Gauss kernel function  
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2
xxk −=

π
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whose corresponding function g  is also a Gauss kernel function. 

In literature [1,2], )(xJ  is designed by using object kernel histogram, and tracking 

problem finally converts to mode seeking problem by using Bhattacharyya coefficient 
to measure similarity of two kernel histograms belonging to object image and image 
in the searching area respectively. 

2.2   Kernel Histogram and Kernel Bandwidth 

In the mean shift tracking algorithm [1,2], kernel histogram plays an important role in 
object representation. Let niiX 1}{ =  be the pixel locations of object image in a frame, 

centered at position Y . In the case of gray level image, the kernel histogram is 
defined as 
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where μ  is the bin index of kernel histogram and m  is the number of bins. )(Yhμ  is 

the entry of kernel histogram with the index μ . mYh 1)}({ =μμ  is the object kernel 

histogram. )( iXb  is the quantization value of the pixel intensity at iX .. },{ yx rrr =  is 

called kernel bandwidth which normalizes coordinates of image so as to make radius 
of the kernel profile to be one. Imposing the condition 1)(1 ==

m Yhμ μ  derives the 

constant C . The bandwidth },{ yx rrr =  is also the radius of the tracking window 

covering the object we want to track. If the object scale expands gradually, the 
unchanged bandwidth leads to poor localization because the kernel is so small as to 
find similar color distribution inside the expanded blob. On the contrary, if the object 
shrinks, tracking window will contain many background pixels, which makes kernel 
histogram diluted and multiple modes will be included.  

There is presently no clean mechanism for selecting bandwidth while object is 
changing in size. In literature [1,2], by using the Bhattacharyya coefficient, author 
expands or reduces the tracking widow size, i.e., bandwidth, by 10 percent of the 
current size to evaluate the best scale. This method has no ability to keep the 
window inflated because any location of a window that is too small will yield the 
similar value of the Bhattacharyya coefficient. Scale kernel is used to get best 

tracking window size [7] and the scale space is defined as 2,1,0,1,2}1.1{ −−=b
bδ  where 

δ  is the initial scale. By using Epanechnikov kernel, its mean shift iterations for 
finding best scale is equal to average all the scale in scale space under the 
condition that the spatial location has been matched. Therefore, this method has 
the same limitation analyzed above. 

3   Method Proposed 

In this section we consider a method for automatically selecting bandwidth for rigid 
object tracking. We consider only the two kinds of motions encountered most 
frequently in image sequences: translation and scaling.  Since translation motion 
doesn’t need bandwidth update, we should emphasize on scaling motion. Given two 
consecutive frames i  and 1+i , we define the affine model as [8]  
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where ),( yx  is the location of object feature point in frame i  and  ),( yx ′′  is the coun

terpart in frame 1+i .  },{ yx mmm =  specifies the translation parameter while

},{ yx sss =  denotes the scaling magnitude. If we know the scaling magnitude, the ker

nel bandwidth can be updated as follows. 

⋅=
⋅=

yyy

xxx

srr

srr
 (7) 

We use object corners as the feature points to estimate scaling magnitude for 
bandwidth selection. Our method first uses corner detector to extract the feature 
points from the tracking windows in both frame i  and 1+i .  Corner correspondences 
are then obtained by a local-matching method with the help of the object centroid 
registration that is implemented by a special backward tracking. Finally, robust 
regression, i.e., M-estimate is applied to estimate scaling magnitude by rejecting 
outliers. Fig. 1. illustrates the outline of our proposed method when object expands its 
size.  

Frame  i Frame  i+1

Object Image Mean Shift
Tracking

Partial Object
Image (POI)

Mean Shift
Tracking

Counterpart
of  POI

Registered
Object Image

Corner Extraction Corner ExtractionLocal-Matching for
Correspondence

M-estimate Regression for
Scale Parameter

New Bandwidth for
Frame i+2

Bandwidth Update:

Deviation
Compensation

1+′ic

io

d ′
1+ic

Forward Tracking

Backward Tracking

yyyxxx srrsrr ⋅=⋅=   , 

Object Expands Its Size

 

Fig. 1. Outline of proposed method 

3.1   Detection of Corner Correspondences 

We extract corners from object tracking window according to the operator [6] 

][][),( 2 BtracelBdetyxR ×−=  (8) 

where l  is a constant and the matrix B  is defined as 
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 xE  and yE are the spatial image gradients on the horizontal direction and vertical 

direction respectively. 
Given two corner sets from two tracking windows in consecutive frames, we use a 

simple local-matching method to find corner correspondences on condition that the 
object centroid is registered and used as original point, see also section 3.2. Let us 
suppose that the number of corners extracted from it , the tracking window in frame i  

are N  while corners in 1+it , the tracking window in frame 1+i are M . In the case 

of gray level image, given a corner point ic tp  in it , its correspondence point 1+ic tp  

in the 1+it  should satisfies 

 })()({)( 2,111 njijiic tpItpImintpI =++ −=  (10) 

where I  is pixel intensity and n ( Mn < ) is the number of candidate corners within a

small given window centered at the location of ic tp  in the 1+it . 0=n  means there is

 no correspondence for ic tp . For each ic tp  in the it , we use (10) to find its corresp

ondence in 1+it . Obviously, our local-matching method is simple and fast to impleme

nt comparing to the maximum-likelihood template matching method [8,9] whose com
putational complexity is )(NMO . 

3.2   Object Centroid Registration by Backward Tracking 

Using an unchanged bandwidth to track an object by mean shift algorithm often get 
poor localization when the object expands its scale [7]. On the contrary, when the 
object shrinks its scale, though tracking window will contain many background pixels 
as well as the foreground object pixels, the center of tracking window always 
indicates the object centroid [7], which gives us a cue to register the object centroid 
when object expands its scale. Le us suppose at frame i , the object with its centroid  
at io  is well enclosed by an initial tracking window it  centered at ii oc = . When the 

object expands its scale at frame 1+i , there should be a bit offset 11 ++ −= ii ocd  that 

is the tracking deviation caused by mean shift tacking algorithm, where 1+io  is the 

real centroid of the object in the current frame 1+i  and 1+ic  is the center of the 

current tracking window 1+it . Obviously, some parts of the object are in 1+it  because 

the current object scale is bigger than the size of 1+it . In order to register the two 

centroid of object which is changing in scale, first, we generate a new kernel 
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histogram representing the partial object enclosed by 1+it . Actually, 1+ic  indicates the 

centroid of this partial object.  Secondly, we seek 1+′ic , i.e., the correspondence of 

1+ic , backwards in frame i  also by mean shift tracking algorithm. Because from 

frame 1+i  to i , this partial object shrinks its scale, it is possible for us to find its 
accurate centroid 1+′ic  in frame i . Therefore, there should be another offset 

1+′−=′ ii ccd  between ic  and 1+′ic . Under the assumption that the object scale 

doesn’t change so much during the consecutive frames, we can compensate the 
deviation d  by d ′ . Finally, the object centroid in current frame 1+i  is evaluated by 

dco ii ′+≈ ++ 11  (11) 

Given the object image from initial tracking window it , we can use mean shift 

tracking algorithm and equation (11) to register object centroid at frame 1+i , which 
reduces the potential mismatching pairs remarkably. In addition, we can get 
translation parameter of object affine model by directly using 

ii oom −= +1  , (12) 

which simplifies the affine model (6) so as to reduce the computation of regression. 
When the object shrinks its scale from frame i  to 1+i , the method described above 
may suffer from incorrect registration result. However, since object at frame 1+i  is a
lmost within the tracking window 1+it , the registration error influences little on local-

matching results.  

3.3   Bandwidth Selection by Robust Regression  

Although centroid registration help us to reduce the mismatching correspondences, it 
is inevitable to reject all the outliers caused by noise, occlusions and fake similarities 
as well as our local-matching method (10). Therefore, we employ M-estimate to 
perform outlier rejection while modeling matching pairs with affine model. With 
corners set )},(,),,{( 11 NN yxyx  in the it , the modeling process can be defined as a 

search for },{ yx sss =  of the model ),,(ˆ
ii yxsf  that best fits the correspondence point 

set )},(,),,{( 11 NN yxyx ′′′′  in 1+it .  We define the residual errors as  

=),( ii yxe 22 )()( yiyixixi mysymxsx −⋅−′+−⋅−′  (13) 

where xm  and ym  are solved by (12). A robust M-estimate for },{ yx sss =  

minimizes function )(sε  of the deviations of the )},(,),,{( 11 NN yxyx ′′′′  from the 

estimate ),,(ˆ
ii yxsf : 
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Parameter α is previously computed and ρ is a robust loss function. Let 
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Introducing a set of weighting parameters 
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Equation (15) can be rewritten as follows. 
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which can be solved iteratively via iteratively re-weighted least squares (IRLS) [10]. 

4   Experimental Results 

In our experiments, object kernel histogram computed by Gauss kernel has been 
derived in the RGB  space with 323232 ××  bins. In Fig. 2., (a) and (b) are two 
consecutive frames named by i  and 1+i . The vehicle enclosed by green block with 
the size 3752 ×  in frame i  is the initial object that is tracked in frame 1+i where 
vehicle not only moves but also expands its size. By using mean shift tracking 
algorithm with an unchanged kernel bandwidth, see the tracking windows 
( 3752 × green block) in (b), localization is poor because the vehicle expands its size 
from frame i  to 1+i . The red block is the registered tracking window by backward 
tracking method in which new kernel histogram is created from the image in green 
block at frame 1+i . The corner operator [6] is initialized with the deviation of 
smoothing Gauss set by 1 and threshold by 2000 .  Fig. 2. (c) illustrates the corners 
extracted from initial tracking window, and (d) shows the  corners extracted from  the 
extended unregistered tracking windows. Corners from the extended registered 
tracking window are shown in (e). The two extended windows size are both 1.1 times 
of their previous size. To extend the windows size is for getting more candidate 
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correspondence. In Fig. 3., object corners (plus) in frame i  and their correspondences 
(dot) in frame 1+i  are shown in a same coordinates with origin point at tracking 
window center and lines represent the correspondent relationship. Fig. 3. (b) 
illustrates the results with the support of centroid registration in contrast to the results 
in (a). It is clear that the lines in (b) are almost with the same orderly and outstretched 
tide comparing to the lines in (a), which indicates outliers can be partly restrained by 
centroid registration method in terms of our special backward tracking.  

    
(a)                                                               (b) 

     
(c)                                      (d)                                       (e)  

Fig. 2.  Tracking windows and corners: (a) initial tracking window (green block) in frame i ; 
(b) mean shift tracking result (green block) and registered tracking window (red block) in frame 

1+i ; (c) corners in initial tracking window; (d) corners in expanded unregistered tracking 
window; (e) corners in expanded registered tracking window 
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(a)                                                                          (b) 

Fig. 3. Corners and correspondences: (a) result without centroid registration; (b) result with 
centroid registration 
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The weight function used in E-estimate regression is the Huber Minimax with the 
expression: 
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The regression comparison between M-estimate (black line) and Least-squares 
estimator (blue line) is shown in Fig. 4. Referenced by real scale magnitude 

2335.1=xs measured manually in horizontal direction, the M-estimate 

regression yield 2231.1=xs comparing to 1.167 by Least-squares estimator. 
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Fig. 4. M-estimate regression vs. Least-squares regression 

5   Conclusion 

In this paper, we proposed a novel kernel bandwidth selection method for mean shift 
based rigid object tracking. The method is mainly based on estimating scale 
magnitude which subjects to object affine transform. Corner correspondences are used 
for discovering affine model by M-estimate regression. To reduce computational 
complexity for finding corner correspondences, we apply a local-matching method in 
which object centroid registration plays an indispensable role. When object expands 
its size, by tracking backwards, the deviation caused by mean shift tracking algorithm 
is compensated so as to register object centroid in consecutive frames. However, 
mismatching pairs are inevitable due to noise, changeable scenes and some other 
factors. Robust regression technique, i.e. M-estimate is employed in our system to 
reject outliers so as to get better scaling magnitude for bandwidth selection. In 
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contrast to the empirical bandwidth selection method in literature [1,2], where 3 times 
mean shift tracking should be performed, our method is not only efficient but also 
robust to outliers. Experimental results show that our method provides a valid way to 
update kernel bandwidth and can be embedded into the mean shift based tracking 
system. 
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Abstract. Vision analysis with low or no illumination is gaining more and more 
attention recently, especially in the fields of security surveillance and medical 
diagnosis. In this paper, a real time sobel square edge detector is developed as a 
vision enhancer in order to render clear shapes of object in targeting scenes, al-
lowing further analysis such as object or human detection, object or human 
tracking, human behavior recognition, and identification on abnormal scenes or 
activities. The method is optimized for real time applications and compared 
with existing edge detectors. Program codes are illustrated in the content and 
the results show that the proposed algorithm is promising to generate clear vi-
sion data with low noise. 

1   Introduction 

Night vision analysis is increasingly seen as important both for academic research and 
industrial development. Applications involving surveillance system and medical diag-
nosis are obliged to perform video monitoring under circumstances of low illumina-
tion or a complete lack of visible light, in order to comply with security or medical 
requirements. Thermal imaging and infrared imaging techniques are generally utilized 
for assisting capture of video information for such applications. Due to the high price 
of thermal cameras and the limitation on the nature of targets, which are with or with-
out heat, infrared imaging is more popularly adopted.  

Although night vision devices improve vision capability, low illumination from 
limited infrared lighting is still a critical constraint for video monitoring and analysis.  
In addition, infrared content is constrained in grayscale format without color informa-
tion provided. Thus, analytical methods, such as skin color models, are not applicable 
for video analysis using night vision devices. As a result, edge information that may 
be used to recover shapes of objects is suggested in this work for further analysis, i.e. 
object detection, object tracking, human activity recognition, and scene identification. 

Fig. 1 presents three main functions of image processing, namely data cleaning, 
data transformation and data improvement, within the system flow in computer  
vision systems. As edge detector significantly reduces the amount of data and filt- 
ers out useless information while  preserving the  important structural properties in  an 
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Fig. 1. Main Functions of Image Processing 

image, it is thus broadly utilized for fast comparison, compression and speeding up 
analysis like pattern recognition. In this work, an improved edge detector is spe-
cifically developed for night vision analysis in order to extract important informa-
tion in targeting scenes. Four popular adopted edge detection algorithms [1], i.e. 
Sobel Kernels, Prewitt Kernels, Kirsch Compass Kernels, Laplacian, and one quick 
edge detector, which is constructed in this work for experiments, are compared 
with the proposed approach, and the evaluation results show that the proposed 
method greatly outperforms others from processing speed, data enhancement and 
data cleaning viewpoints. The infrared video frames were acquired with resolution 
of 320 * 240 and grayscale pixel format. The algorithm is optimized to process 
video in real time, i.e. 0.03 second per frame. The system is tested over a PC with 
CPU P4-2.4G and 256M Ram. The prototype is implemented in C#, a high level 
language for fast development. 

Furthermore, the improved edge detector is implemented and applied to an artifi-
cial intelligent vision analysis system [2], which monitors patients’ behavior during 
sleep. The diagnosis is generally performed without visible light, providing a com-
fortable environment for patients. It shows very positive results for human activity 
recognition. 

The paper is organized as follows. Related work and the technical challenges are 
presented in Section 2. After explaining the details of the existing edge detection 
algorithms in Section 3, the proposed edge detector algorithm, resulting images and 
program code are described in Section 4. Finally, future development follows in  
Section 5. 

2   Related Work 

Infrared imaging and thermal imaging play important roles for night vision analysis. 
Under relatively low illumination levels, night vision devices provide enormous bene-
fits for many operational environments. Security Surveillance detects intruders and 
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abnormal events in a 24 hours basis; car night vision assists human driving safety; 
military targeting acquires specific objects’ locations; medical diagnosis monitors 
patients’ behavior without visible lights.  

Plenty of research works have been devoted to human activity recognition, human 
detection, scene identification, object tracking and abnormal moving direction detec-
tion [3, 4, 5]. However, the performance of most methods is greatly influenced by the 
illumination level of the environment, contributing to unreliable and instable system 
performance. There is therefore a need for more robotic methods generating high-
quality night vision data for further analysis.  

2.1   Technical Challenges and Analysis 

The limitation of night vision using infrared cameras is that no color information is 
provided. Images are rendered in grayscale format. In addition, the length of the illu-
mination of the infrared lights is also constrained, contributing to low visibility in 
interested regions, which diminishes the data quality for further analysis. In other 
words, for general grayscale images in ordinary lighting status, the range of each pixel 
value is within 0 to 255. However, under low illumination, vision data is constrained 
into a small range, i.e. 0 to 30. Information in the targeting scenes is reduced and 
shrinks into a smaller scope. As a result, a sophisticated image processing technique is 
necessary here as a vision enhancer and further extract useful information from the 
reduced-quality data. Fig.2 illustrates that each pixel value of the infrared content 
shrinks into a smaller range, contributing to data in lower level contrast. Thus, to 
overcome poor visibility of infrared content, the main idea of this work is to exagger-
ate differences of each pixel.  

 

Fig. 3. General Lighting versus Low Illumination 
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3   Existing Edge Detectors 

In this work, several popular edge detectors [1] are built and compared, including 
first-derivative methods, such as Kirsch compass gradient kernels, Sobel kernels, 
Prewitt kernels, and a second derivative method, i.e. Laplacian.  In this section, exist-
ing edge detectors are firstly introduced and then a short discussion is presented on 
the shortages of these approaches for night vision data. 

Edge Detector. Let f(x,y) be the image intensity function. It has derivatives in all 
directions. The gradient is a vector pointing in the direction in which the first deriva-
tive is highest, and whose length is the magnitude of the first derivative in that direc-
tion. If f is continuous and differentiable, then its gradient can be determined from the 
directional derivatives in any two orthogonal directions - standard to use x and y. 

∂
∂
∂
∂

=

y

f
x

f

gradient
                                                            (1) 

2

1

2

2

2

2

)(
y

f

x

f
magnitude

∂
∂+

∂
∂=                                          (2) 

∂
∂
∂
∂

=

x

f
y

f

direction arctan
                                                (3) 

3.1   Kirsch Compass Kernels 

Given k operators, gk is the image obtained by convolving f(x,y) with the k-th  opera-
tor. The k defines the edge direction. The gradient is defined as: 

),(max),( yxgyxg k
k

=                                                (4) 

 

Fig. 4. Kirsch Compass Operators 
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3.2   Prewitt Kernels 

The Prewitt edge detection masks are one of the oldest and best understood methods 
of detecting edges in images. Basically, there are two masks, one for detecting image 
derivatives in X and one for detecting image derivatives in Y. To find edges, a user 
convolves an image with both masks, producing two derivative images (dx & dy). 
The strength of the edge at any given image location is then the square root of the sum 
of the squares of these two derivatives. The orientation of the edge is the arc tangent 
of dy/dx. 

3.3   Sobel Kernels 

Sobel detector is similar to the Prewitt detector. They both rely on central differences, 
but greater weights are given to the central pixels in Sobel Kernels. The Sobel kernels 
can also be thought of as 3 * 3 approximations to first-derivative-of-Gaussian kernels. 
The equations of sobel kernels are presented below. 
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Fig. 5. Templates to calculate the gradient value 

3.4   Laplacian 

The Laplacian L(x,y) of an image with pixel intensity values I(x,y) is given by: 
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The equation is derived from the following equations.  



 Real Time Sobel Square Edge Detector for Night Vision Analysis 409 

),1(),(2),1(

)],1(),([)],(),1([

),(),1(),(
),( ''''

2

2

yxfyxfyxf

yxfyxfyxfyxf

yxfyxfyxf
x

yxf

−+−+=
−−−−+=

−+==
∂

∂

                      (9) 

)1,(),(2)1,(

)]1,(),([)],()1,([

),()1,(),(
),( ''''

2

2

−+−+=
−−−−+=

−+==
∂

∂

yxfyxfyxf

yxfyxfyxfyxf

yxfyxfyxf
y

yxf

                   (10) 

2

2

2

2

),(
y

I

x

I
yxI

∂
∂+

∂
∂=                                                                   (11) 

Particularly, the higher the derivative, the more sensitivity the operator has.  

 

Fig. 6. Three commonly used discrete approximations in Laplacian 

3.5   Simple Edge Detect 

In order to develop a suitable edge detector, a simple edge detector is also produced 
for experiments. It uses a convolution filter with value below.  

 

Fig. 7. Convolution filter for simple edge detect 

3.6   Shortage on Existing Edge Detectors for Night Vision Analysis 

The main issue for night vision data is that vision information is constrained into a 
much smaller range as demonstrated in Fig 3. Therefore, existing approaches, which 
are suitable for general lighting condition, are not feasible to extract enough edge 
information due to low differential degree among pixel datum in each frame. Al-
though threshold mechanism is utilized as high and low pass filters to avoid noises or 
redundant data, the high / low pass filters cannot exaggerate the differential level 
among each pixel, and thus they cannot further extract important edges of objects in 
the targeting scenes.  
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4   Proposed Sobel Square Edge Detectors 

As data under low illumination is constrained into a smaller range, high pass filter 
may remove important information. In order to defeat the low data quality issue for 
night vision analysis, exaggeration on differential degree among data is proposed to 
obtain edge information from the original scenes. A simple illustration is given in Fig 
8, which shows that low pass filter is not useful whereas high pass filter removes 
precious data under low illumination. The proposed approach is to increasing differ-
ential degrees among data for recovering information under general lighting condi-
tion. The proposed edge detector is adapted from Sobel kernels. The original Gx and 
Gy are enlarged to Ax and By. In addition, f(x,y) is also magnified into F(x,y). Re-
sulting images with existing approaches and proposed method are presented in Fig. 9 
whereas the original image is shown in Fig. 9. It is found that the image processed 
from the proposed method obtains more highlighting on important edges with lowest 
production on redundant information. The algorithm is equipped with equation 12, 13 
and 14.  

 

Fig. 8. Thresholds versus Exaggeration on Differences 

4.1   Proposed Method 

)1,1(),1(*2)1,1(

)1,1(),1(*2)1,1(),(

+−−−−−−−
+++++−+=

yxfyxfyxf

yxfyxfyxfyxAx           (12) 

)1,1()1,(*2)1,1(

)1,1()1,(*2)1,1(),(

−+−−−−−−
++++++−=

yxfyxfyxf

yxfyxfyxfyxBy           (13) 

8
),(),(

),(
22 yxByyxAx

yxF
+=                                                    (14) 



 Real Time Sobel Square Edge Detector for Night Vision Analysis 411 

Original  
Image 

 

Sample Pixels:
Pixel(X,Y), 

where 
98< X < 109 

119 < Y < 132  

Fig. 9. Original Infrared Content 

Sobel  
Kernels 

 

Sample Pixels:
Pixel(X,Y), 

where 
98< X < 109 

119 < Y < 132 

Laplacian 

 

Sample Pixels:
Pixel(X,Y), 

where 
98< X < 109 

119 < Y < 132 

Prewitt  
Kernels 

 

Sample Pixels:
Pixel(X,Y), 

where 
98< X < 109 

119 < Y < 132 
 

Kirsch  
Compass  
Kernels 

 

Sample Pixels:
Pixel(X,Y), 

where 
98< X < 109 

119 < Y < 132  

Simple 
Edge 

 

Sample Pixels:
Pixel(X,Y), 

where 
98< X < 109 

119 < Y < 132 

New  
Edge  

Detector 

 

Sample Pixels:
Pixel(X,Y), 

where 
98< X < 109 

119 < Y < 132 
 

 
Fig. 10. Resulting Images from Different Edge Detectors 
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4.2   Resulting Images 

In this section, an original infrared image is displayed in Fig. 9 and a portion of the 
image is extracted and presented in a 3D chart, containing coordinates of X and Y and 
the pixel value of points. The image is in grayscale format, and hence the value of 
individual pixel is valid from 0 to 255. Moreover, the resulting images processed by 
different edge detectors are shown in Fig. 10. The experimental results demonstrate 
that the proposed new edge detector is able to effectively extract edges and reduce 
redundant information. 

4.3   System Performance 

Image processing is the preliminary step for computer vision analysis, which may 
include more heavy computation tasks such as pattern recognition. Therefore, the 
preliminary process should not become the burden of overall performance both for the 
concerns of computation speed and CPU consumption.  The system is tested over a pc 
with CPU P4-2.4G and 256M Ram. All algorithms are implemented in C#, a high 
level language for fast development. The proposed real time sobel square is able to 
process 30 frames per second for real time application. For a detailed examination, it 
costs 0.03 second to process a 320*240 frame. In comparison, existing approaches 
such as Sobel or Kirsch after optimization spend 0.3 second to process each frame. As 
a result, the proposed edge detector is suitable for applications, which take system 
performance as first priority. The reason why the proposed method is ten times faster 
than the conventional sobel detector is because the square root is removed and the 
number of division is reduced. 

5   Conclusion and Future Development 

The aim of this work is to provide a more robotic image processing technique in com-
puter vision, removing constraints on night vision analysis. The proposed new edge 
detector appears to improve video analysis result by assisting night vision capability 
for diagnosis in obstructive sleep apnoea [2]. In future development, we hope that the 
proposed method will be applied and examined in more wide usages like surveillance 
system. Also, more generic algorithms are expected to be built for obtaining stable 
performance invariant to changes on environmental variables.   
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Abstract. The amount of digital video data is increasing over the world. It high-
lights the need for efficient algorithms that can retrieve this data by content. 
The full use of this media is currently limited by the opaque nature of the video 
which prevents content-based access. To facilitate video indexing and brows-
ing, it is essential to allow non-linear access, especially for long programs. This 
can be achieved by identifying semantic description captured automatically 
from video story structure. Among these descriptions, text within video frames 
is considered as rich features that enable a good way for browsing video. In this 
paper we propose a fast Hough transformation based approach for automatic 
video frames text localization. Experimental results, that we drove on a large 
sample of video images issued from portions of news broadcasts, sports pro-
gram, advertisements and movies, shows that our method is very efficient, ca-
pable to locate text regions with different character sizes, directions and styles 
even in case of complex image background. 

1   Introduction    

Automatic text regions detection in digital images is an indispensable preprocessing 
step within the framework of multimedia indexing and video structuring. Content-
based video indexing aims at providing an environment both convenient and efficient 
for video storing and retrieving [2], especially for content-based searching as this 
exists in traditional text-based database systems. Most of research works have been 
focused on the extraction of the structure information or simple spatial-temporal 
based features within a video, such as the basic shot boundaries detection [3], color 
histogram [5], texture or movement, for indexing purpose. However, besides these 
basic features which are important to characterize the video content, one has also to 
segment or provide underlying semantic descriptors in order to fully enable intelligent 
video content access.  

In our last work, we have made use of the video syntax (special effect, rhythm, 
specific syntax for news) to drive some semantic hierarchical video structures embed-
ded within a video [6] [7]. Unfortunately, such a semantic hierarchical video struc-
ture, described as shots, scenes and sequences does not provide enough the semantic  



 A New Video Images Text Localization Approach Based on a Fast Hough Transform 415 

description of each segmented units. One automatic way, to reach more semantic 
description, is to segment texts which often occur in video images, especially for Film 
fictions, TV news, Sports or Advertisement. For instance, most of movies begin with 
credit titles, and when a jump occurs in the film narration, it is often  indicated  by 
textual terms, called ellipses,  such as “5 months before” or “3 years latter”. TV 
news makes an extensive use of textual information to indicate the subject of each 
topic, the name of interviewee, the place of report, etc. Thus textual information when 
embedded within a video are very high level clues for the content-based video index-
ing and it is generally associated to an important event. In this paper, we propose an 
efficient automatic text regions locating technique for video images. These text re-
gions resulted from our technique can be then passed to a standards OCR in order to 
obtain ASCII texts. The remainder of the paper is organized as follows. In section 2, 
we briefly review related works in the literature, emphasizing strengths and draw-
backs of each technique. In section 3, we summarize text regions features. Section 4 
details our proposed method to extract these text regions features (ie. directionality, 
regularity, alignment). In section 5, we describe the use of this method to locate text 
within video frames. In the last section we give exhaustive experimentations. 

2   Related Work 

Text detection in real-life videos and images is still an open problem. The first ap-
proach proposes a manual annotation [9]. Clearly manual-based solution is not scal-
able as compared to the amount of video programs to be indexed. Current automatic 
text detection methods can be classified into three categories. The first category is 
connected components-based methods [4] [10] [11], which can locate text quickly but 
have difficulties when text embedded in complex background or touches other 
graphical objects. For example, Zhong et al [10] extracted text as those connected 
components of monotonous color that follow certain size constraint and horizontal 
alignment constraint. The second category is texture based [12] [13] [14]. This cate-
gory is hard finding accurate boundaries of text areas and usually yields many false 
alarms in “text like” background texture areas. Indeed, texture analysis-based meth-
ods could be further divided into top-down approaches and bottom-up approaches. 
Classic top-down approaches are based on splitting images regions alternately in 
horizontal and vertical direction based on texture, color or edge. On the contrary, the 
bottom-up approach intends to find homogenous regions from some seed regions. The 
region growing technique is applied to merge pixels belonging to the same cluster 
[15] [16]. Some existing methods do solve the problem to a certain extent, but, not 
perfectly. The difficulty comes from the variation of font-size, font-color, spacing, 
contrast and text language, and mostly the background complexity. The third category 
is edge-based methods [8][17][18][19]. Generally, text regions can be decomposed by 
analyzing the projection profiles of edge intensity maps. However, this kind of ap-
proaches can hardly handle large-size text. As conclusion, the three categories meth-
ods presented above are limited to many special characters embedded in text of video 
frames, such as text size and the contrast between text and background in video im-
ages. To detect the text efficiently, all these methods usually define a lot of rules that 
are largely dependent of the content of video. Unlike other approaches, our approach 
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has nor a restriction on the type of characters neither on the place where text regions 
should appear within an image. Our text region detection technique is based on the 
basic features of texts appearing in digital videos such alignment and orientation.  

3   Text Region Characteristics 

Textual information in audiovisual program can be classified into two kinds: natural 
text which appears as a part of the scene (e.g. street names or shop names in the 
scene), and artificial text which is produced separately from the video shooting and 
inserted into the scene during the post-processing step by video title machines. Both 
of them, when they occur within a video program, are of capital importance and they 
are good clues for content-based indexing and retrieval. However, by the opposition 
to the natural text which accidentally appears in the scene, the inclusion of artificial 
text is carefully selected, and thus is subject to many constraints so that the video 
program is easily read by viewers. Below we summarize the main characteristics of 
these constraints by the following features: 
 
− Text characters are in the foreground. 
− Text characters contrast with background since artificial text is designed to be read 
easily. 
− Text characters can be monochrome or not. 
− Text characters are generally upright but it can appear in different direction. 
− Text character has size restrictions; character size should not be smaller than a cer-
tain number of pixels otherwise they are illegible to viewers. 
 

Our method makes use of these basic features to localize text regions in video im-
ages. It also takes into account the characteristics of video programs, such as the low 
resolution, presence of noises, and absence of control parameters in the cameras. In 
our approach we do not use a filtering method to reduce image noises because it may 
cause problems for the detection of the characters having a very small size. Actually, 
the majority of text region detection methods in the literature support the hallucina-
tion of some text regions which is more acceptable than the false detection. Making 
use of these basic features, the experimentation that we have conducted on various 
types of video programs shows that our technique is robust for contrast, font-size, 
font-color, background complexity and direction. Besides we also note in our experi-
mentation that our method decreases the number of false detections (false alarm). 

4   Proposed Approach 

To locate text within a video frame we propose a new method offering both accuracy 
and rapidity. This method is based on local application of Hough transform. Local 
application of Hough transform minimizes influence of noise provoked by isolated 
pixels. This influence is insignificant in segment detection context. 

Textual information embedded within an image present in general a regular signa-
ture. This signature can be described, on the one hand, by vertical line segment  
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separated by similar distance (directionality) and on the other hand, by the alignment 
of these segments (orientation)[1]. 

In the following we will detail our approach which is adapted to textual informa-
tion features extraction (ie. regularity and directionality). This approach presents four 
steps:  Sweeping the image, detecting segments, storing information about these seg-
ments and detecting regularity. 

4.1   Image Sweeping  

Initially we studied access manners to line segment pixels appearing in an edge im-
age. Let S be a set of collinear pixels forming a line segment within an image. A sim-
ple and rapid way to get extremities of a given segment is to sweep sequentially the 
image from top to bottom and from left to right. In this case, the angle θ formed by a 
given segment with the horizontal axis verify the inequalities, 0 < θ < . When a line 
segment is detected, stored and removed from the image, the sequential search con-
tinues until sweeping the whole image. 

4.2   Segment’s Detection 

When a line segment extremity is reached, we sweep all directions θ between 0 and  
to find direction where most connected pixels exists. In all cases, when the number of 
connected pixels is important or exceed a given threshold information concerning the 
segment (r,θ) are stored and the segment is removed from the image (figure 1). In 
other cases it’s considered as noise (isolated pixels, short segments) and it’s simply 
removed.  

 

 

Fig. 1. Features segment representation 

The detection of segment direction is the most costly step in line detection algorithm, 
so requires a particular attention.  

In the discrete image space, line segment pixels having a direction θ, length r and 
beginning coordinates (x0, y0) can be represented by: 
 

P(X0..r,0…θ,Y0..r,0…θ) = P(x0+E(m . cos (θ)),(y0+E(m . sin (θ)) . (1) 
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Where 1 ≤ m ≤ r, 0 < θ <  and E is the entire part of a number. 
In order to improve performances and avoid call of trigonometric functions inside 

our algorithm, we compute two transformation matrixes in the initialization step.  
TX 0...r,0…θ   (table 1) and  TY 0...r,0…θ    (table 2). 

Table 1. Transformation matrix TX 0...r,0…θ 

0 … 180 
E(r.cos(0)) … E(r.cos(180)) 
… … … 
E(2.cos(0)) … E(2.cos(180)) 
E(1.cos(0)) … E(1.cos(180)) 

Table 2. Transformation matrix TY 0...r,0…θ 

0 … 180 
E(r.sin(0)) … E(r. sin (180)) 
… … … 
E(2. sin (0)) … E(2. sin (180)) 
E(1. sin (0)) … E(1. sin (180)) 

We denote by r the maximal length of line segment that we should detect in a di-
rection between 0 and 180°.  

x0, y0 are the coordinates of line segment extremity identified when sweeping the 
image. So each element X=x0,+TX 0...r,0…θ   and Y = y0+TY0...r,0…θ    represents pixel 
coordinates in the image space. 

4.3   Segment’s Information Storing 

Let V0...r,0…θ be an accumulator, which values are initialized to zero in a new line seg-
ment extremity detection process, Its content  is updated as follows : 

    
 
V0...r,0…θ  =  
 
 

Where 1 ≤ m ≤ r, 0 < θ <   
 
The obtained matrix V0...r,0…θ represents neighborhood’s information of a detected 

extremity concerning connected pixels.   
Starting from the assumption that some images are imperfect we propose an im-

provement of our approach. So, in the one hand we introduce a tolerance pace ps that 
when exceeded we stop the computation in a given direction. In the other hand we 
introduce a neighborhood θv to a given direction. So an element of accumulator 
V0...r,0…θ   is set to 1 only if equation 2 is verified  : 

1  if(I(X(m, θ), Y(m, θ))==1 
 
0  if(I(X(m, θ), Y(m, θ))==0 
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Fig. 2. Space parameter (r, θ) of a detected line segment 

 (V r-ps, θ==1) or (V r, θ-θv ==1) or (V r, θ+θv ==1) . (2) 

 
This consideration of neighborhood makes our method able to detect imperfect 

segment as the case of an edge image.  

4.4   Segment’s Removing 

The last step of our method consists on removing segment’s pixels having length 
exceeding a threshold Sr. This threshold represents the minimal length of segment that 
we should detect. This step is fast because information about these segments were 
already stored in the accumulator V0...r,0…θ. Indeed an accumulator’s cell set to 1 
represents the transform of an edge pixel in parameter space.        

 

  
(a) initial image (b) Detected segment 

Fig. 3. Segment detection having direction =86° and length r > Sr 

4.5   Detecting Segment’s Regularity 

Let D’ be the line passing through the origin (x0,y0). This line is perpendicular to D 
which is the support line of the segment to be detected.  

r’ is the perpendicular distance from the origin to the line which supports the seg-
ment to be detected. 

' is the angle between the norm of the line and the x axis. 
So, for a given angle ' we can determinate, for a given direction , all segments 

perpendicular to D’ but having different values of r’ (figure 4). 
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Fig. 4. Segments having same direction and different distances from origin. 

The regularity can be detected if distance (Dps) between parallel segments is simi-
lar for a specified value of '. This representation is very important and makes possi-
ble responding for a query that must return regular texture with a given direction or 
with any direction. 

To quantify regularity, first we should express r’ and ' in step with r and  that we 
had stored in the accumulator. 

For  θ ∈ [0,  ]  two cases are presented: 

If  θ ∈ [0,  /2]   then θ’= θ + /2 

  If  θ ∈ [ /2, ]   then θ’= θ - /2 
 
As for r’ it can be written in all [0,  ] as : 

 )  ( cos y )  (sin x'r 00 −=  . (3) 

5   Video Text Localization 

Starting from hypothesis that a text is characterized by a regular texture and that char-
acters forming a text line are oriented and aligned [1][9][10], we propose a new tech-
nique to detect text within video image.  

The regularity can be described by a similar distance between edge segments hav-
ing the same orientation, as for alignment, it needs another feature to be determinate. 
(Fig. 5 shows different categories of segments that can be occurred in an edge video 
frame). 

Let dist be the distance between the extremity point of a segment and the intersec-
tion point between the support line of the same segment and the perpendicular line 
passing from the origin. Aligned segment are those which have similar values of dist 
where dist can be presented as follow: 

 )  ( cos x )  (sin ydist 00 +=  . (4) 
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Fig. 5. Three-dimensional representation of segments (r’, ' and dist) 

Having a three-dimensional representation of segments within a video frame (r’, ’ 
and dist), we proceed by grouping aligned segments with similar ’ and dist to obtain 
potential text regions. 

 

 
(a) original image (b) gradient south 

image 
(c) binary image  (d) Detected seg-

ments 

Fig. 6. Detection of segments within a video frame 

In order to localize effective text regions, these regions will be filtered according 
two criteria: 

- distance (Dps) between aligned segments and, 
- minimal number of segments (ns) forming a text line  

A result of such filtering process is shown by fig. 7. 
 

 

Fig. 7. Localization text regions after filtering process with 2 <Dps<6 and ns=6 
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Fig. 8. Illustration of the video frames experimentation database (movies, news, sports and 
advertisement)  
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6   Experimental Result 

Our test consists on ten video sequences totaling 13259 frames. The sequences 
were captured at 25 frames per second with a 352x240 frame size. The sequences 
are portions of news broadcasts, sports program, advertisements and movies. The 
test database is challenging due to the poor quality and low contrast of these 
broadcasts. Text appears in a variety of colors, sizes, fonts, orientation and back-
ground complexity. 

All regions distinguishable as text by humans were included in the experimentation 
process. Closely spaced words lying along the same horizontal were considered to 
belong to the same text instance. Test data contains a total of 280 temporally unique 
text instances of which 205 are artificial text instances and 75 are scene (or natural) 
text instances. 

During evaluation, each text region in the test database is placed into one of three 
categories:  

– Detection: regions identified as text by the localization algorithm. 
– False Alarm: regions identified by the detection algorithm but not belonging to text 
regions. 
– Missed Detection: Pixels belonging to the text regions and not identified by the 
algorithm. 

The performance of an algorithm is quantified by its recall and precision, given by 
equations 5 and 6. 
 

detectionmisseddetections

detections
Recall

+
=  .     (5)  

 

alarmsFalsedetections

detections
Precision

+
=  .    (6)  

To evaluate the performance of our algorithm, F1 measure given by Equation 7, 
was computed. 

F1 = 2 * precision * recall / (precision + recall) .     (7) 

Table 3. Text Localization Performance 
 

 Recall Precision F1 
Scene text 84,2% 85,71% 84,95% 
Artificial text 97,05% 93,83% 95,42% 

    
 

Table 3 shows that the overall results of our method were 97,05% Recall and 
93,83% Precision for artificial text and 84,2% Recall  and 85,71% Precision for scene 
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text. According to these results it is clear that more enhanced images processing tech-
niques can be applied based on the characteristics of scene text detection character-
ized by low contrast and poor quality of video. 

7   Conclusion 

For automatic video browsing purpose we have introduced a 
new text regions localization technique in digital video 
frames. This method, based on fast Hough transform, uses 
the basic features of text appearance. It provides both 
speed and effectiveness. 

The experimentation, that we have driven on a large set of video images selected 
from various kinds and genres, shows that our technique is very efficient, capable to 
locate text regions with different character sizes, styles and orientation, even in case 
of texts occurring within complex image background. 

Moreover, many applications can be derived from this automatic text locating 
technique. For instance, automatic extraction of credit titles, automatic generation of 
video content table and exploration of other spatial clues to define other techniques 
enabling further video browsing and retrieval. In this context we work on complete 
tools as a new prototype product for video structuring and indexing. 
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Abstract. This paper proposes a novel signature based on singular value de-
composition (SVD) for video sequence matching. By considering the input im-
age as a matrix, a partition procedure is first performed to separate the matrix 
into non-overlapping sub-images of a fixed size. The SVD process then indi-
vidually decomposes each partitioned sub-image into an singular value and the 
corresponding singular vector factorization. As a result, several dominant singu-
lar values are obtained for each sub-image, allowing the dissimilarity to be de-
termined between the reference video clip and the query one. Experimental re-
sults based on receiver operating characteristics (ROC) curves confirm the ef-
fective performance of the proposed video signature. 

1   Introduction 

Recently, the most widely used technique for content-based copy detection is a se-
quence matching approach, where multiple sequence frames are used as the basis for 
matching, as opposed to matching single video frames. Features like intensity rank-
ings and color histograms are extracted from the original video frames to create the 
reference signatures in a database. The same feature, extracted from the query video 
sequences, is then matched to the reference signatures to determine if the query video 
sequence is a copy of the original. Related work includes the following. 

Jain et al. [1] proposed a sequence matching method based on a set of key 
frames. Although motion information is included with the key frames, it is not yet 
clear. Meanwhile, Naphade et al. [2] proposed an algorithm for matching video 
clips that uses the histogram intersection of YUV histograms of the DC sequence 
of the MPEG video. However, this technique does not evaluate variations between 
copies, such as signal modifications or display format conversions. Mohan used 
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the ordinal measure originally proposed by Bhat et al. for video sequence matching 
[3,4], then Hampapur et al. compared the ordinal measure technique with tech-
niques using a motion signature and color signature [5], and showed that matching 
based on an ordinal signature produced the best performance. The ordinal measure 
is not sensitive to intensity value changes and also has a low memory requirement 
for storing/indexing the signature.  

Singular value decomposition (SVD) is already known for its ability to derive a 
low-dimensional refined feature space from a high-dimensional raw feature space, 
and capturing the essential structure of a data set within a feature set, and several 
studies have already focused on the use of SVD for texture analysis in image process-
ing. For example, Luo and Chen utilized SVD for texture discrimination [6], where 
the proportion of the two dominant singular values of an image matrix was used as the 
textural feature to discriminate texture images 

Accordingly, this paper proposes a novel signature based on SVD for video se-
quence matching. By considering the input image as matrix A, the SVD process de-
composes the image into an singular value and the corresponding singular vector 
factorization, where the singular values represent the energy of matrix A  projected on 
each subspace. The singular values and their distribution carry useful information 
about the contents of A, and can vary drastically from image to image, which makes 
the singular values suitable for discriminating image patterns or contents. For most 
images, only a very few number is enough as features because a few larger singular 
values dominate, and yet all others close to small values. The similarity between two 
video clips can be treated as the similarity between the shapes represented by singular 
values of two corresponding hyper-ellipses, if the orientation is not considered. There-
fore, the distance or dissimilarity metric between image frames can be represented by 
the Euclidian distance of the singular values. Experimental results demonstrate the 
matching performance in comparison with the ordinal measure.  

The rest of the paper is organized as follows. Section 2 describes the properties of 
the singular value as an image signature, then Section 3 provides a detailed explana-
tion of the video sequence matching algorithm using the proposed feature. Experi-
mental results are presented in Section 4, and some final conclusions given in  
Section 5. 

2   Signature Extraction 

2.1   Singular Value Decomposition (SVD) 

Let an image of size NM ×  be image matrix  A  of dimensions NM × , where 
NM ≥ . It is possible to represent this image in the r -dimensional subspace, where 

r  is the rank of A , and Nr ≤ . Singular value decomposition ( SVD ) is then a fac-
torization of matrix X  into orthogonal matrices. 

TUSVA =      (1) 
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where U is an rM × matrix and consists of the orthonomalized singularvectors of 

AAT , and S is an rr ×  diagonal matrix consisting of the ‘singular values’ of A , 

which are the non-negative square roots of the singular values of AAT . These 
singular values, denoted by iλ , i =1, 2, … , r , are sorted in a non-increasing  

order, i.e. 

021 ≥≥⋅⋅⋅≥≥ rλλλ      (2) 

An important property of U  and V is that they are mutually orthogonal. The sin-
gular values ( λ ) represent the importance of individual singular vectors in the com-
position of the matrix. In other words, the singular vectors corresponding to large 
singular values include more information about the matrix than the other singular 
vectors.  

2.2   Singular Value as Image Signature 

The singular values represent the energy of matrix A  projected on each subspace, 
where the singular values and their distribution carry useful information about the 
contents of V , and can vary drastically from image to image. For most images, only a 
very few larger singular values dominate, while all the other singular values are quite 
small. Figures 1 and 2 show some sample images and their corresponding 10-
dominant singular values, respectively. The distributions of the singular values for the 
images are quite different, even though they have similar content patterns.  

   
                            (a)                                        (b)                                       (c) 

Fig. 1. The example images: image taken from (a) movie, (b) TV drama, (c) golf 

One of the important characteristics for an image signature is robustness to media 
transform such as image size variation and compression format change. This is simply 
achieved by normalizing the singular value,  

rir

i
i

i
i ...,,2,1,

1

==

=

λ

λσ  
   (3) 

where iσ  is the i th normalized singular value and iλ is the i th singular value.  
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Fig. 2. The 10 largest singular values for sample images of  Fig. 1 

 

              

Fig. 3. The 10 largest normalized singular values for sample images of Fig. 1 
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As shown in Figure 3, the magnitude of the first singular value is 0.32, which 
means it includes 32% of the image information. These singular values are sorted in a 
non-increasing order using Eq.(2) so they can be used as a signature in order of im-
portance. In the proposed system, spatial information on an image frame is incorpo-
rated by dividing each frame into 3×3 blocks, and calculating the normalized singular 
values for each block.  

2.3   Distance Measure 

Assuming that iv  is one of the singular vectors V and 
iλ  is the corresponding singular 

value, then iv  determines the orientation of one semi-axis of the hyper-ellipse and 
iλ  

measures the length of the corresponding axis. As such, the shape and orientation of 
the hyper-ellipse is a description of the characteristics of the image. Figure 4 illus-
trates two different hyper-ellipses in a 2-dimensinal plane as an example As a result, 
the similarity between two video clips can be treated as the similarity between the 
shapes representing by singular values of two corresponding hyper-ellipses, if the 
orientation is not considered.  

 

Fig. 4. Illustrations of two 2-D hyper-ellipses with two dominant feature vectors 

Therefore, the above description leads to the following distance or dissimilarity 
metric between image frame A  and frame 'A .  

=

−=
r

i
iinor AADist

1

'' ),( σσ      (4) 

3   Video Sequence Matching 

3.1   Construction of the Proposed Signature and Distance Measure 

A video is composed of continuous image frames. Therefore, a video sequence clip 
with n  frames is denoted by { }][...,],2[],1[ nCCCC = , and the i th frame with 
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m partitions can be expressed as follows { }][...,],[],[][ 21 iCiCiCiC m= , where jC  

denotes the sequence of the j th partition. A sub-video of C  is also defined as 

]1:[ −+ NppC , where the number of frames is N  and the first frame is ][ pC , 

11 −−≤≤ Nnp . 

Let the normalized singular value matrix for the i th frame of the query video clip 
][iCq
 be  

)(,),(),( ,2,1, iii kqqq σσσ , rk ,,1=     (5) 

and if the frame has m  partitions, the normalized singular value matrix for the j th 

partition of the i th frame ][iC j
q

 can be defined as  

)(,),(),( ,2,1, iii j
kq

j
q

j
q σσσ , mj ,,1=     (6) 

The singular value distance between the i th frame of the reference video se-
quence ]:[ NppCr + , NiipCr ≤≤+ 1),( and the i th frame of the query video clip 

][iCq
 can then be defined as  

( ) ][][][],[ '
,

1 1

'
, ipiipCiCd j

kr

m

j

r

k

j
kqrq +−=+

= =

σσ      (7) 

As such, the dissimilarity between the two sequences ( )]1:[, −+ NppCCD rq
 is 

computed by averaging over N  dissimilarities, i.e. 

( )
( )

N

ipCiCd
NppCCD

N

i
rq

rq
=

+
=−+ 1

][],[
]1:[,  

   (8) 

3.2   Matching Algorithm 

To deal with an image size variation, the small sized image is used as the reference 
and the large sized image is adjusted by down-sampling. Given a query video clip 

qC  

with N frames, the reference video sequence rC ,
qC is compared to the sub se-

quence ]1:[ −+ NppCr . The detailed matching procedure is as follows. 

 
Step 1)  Set query clip length N  
Step 2)  Select query clip 

qV from random point in query video QC  with length N . 

Step 3)  Set p to be 1. 

Step 4) Compute the distance between two sequences, 
qC and ]1:[ −+ NppCr  

Step 5) Increase p by 1. Repeat step 4 until Nnp −= , where n is a number of  

   frames in the reference video. 
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Step 6) From the sequence of distances, find best match location. 
Step 7) Repeat steps 1-6, 100 times. 

4   Experimental Results  

This section first introduces ordinal measure which we want to compare with proposed 
signature, and then we address the matching performance of the proposed method. 

4.1   Comparisons with Ordinal Measure for Artificial Images 

The ordinal measure was originally proposed by Bhat et al. for computing image 
correspondence [3], then Mohan applied the ordinal measure to video sequence 
matching [4]. The ordinal feature is obtained as follows. The video frame is parti-
tioned into 

yx NNN ×=  equal-sized blocks (Mohan used 3== yx NN ) and the aver-

age gray level in each block for N  sub-image is computed. The set of average inten-
sities is then sorted in an ascending order and a rank assigned to each block using 
integer 1 to N . The main advantages of the ordinal measure are a short processing 
time, small memory space requirement, and robustness to intensity changes.  

         
(a)                             (b)                               (c) 

Fig. 5. Sample images for comparison of ordinal and singular values, (a) two horizontal lines 
image with gray level 200 and 50, (b) cross lines image with gray level 200 and background 
with gray level 50, (c) sub-block number of images  

However there exist many real video or movie scenes with same ordinal feature even 
though they have entirely different contents or structure of image.  Fig. 5(a) and (b) show 
examples that the ordinal feature fails in artificial images in which they have same aver-
age intensity value of block pixels irrespective of different structures or contents, while 
the proposed system has a good discrimination power due to the different singular values 
corresponding to different structural information as shown in Table 1.  

Table 1. Ordinal and the proposed features for differerent contents  

Ordinal Singular values 
 

Fig. 5(a) Fig. 5(b) Fig. 5(a) Fig. 5(b) 
#block mean rank mean rank 1σ  

2σ  
1σ  

2σ  

1 125 1 125 1 1 0 0.9325 0.0675 
2 125 2 125 2 1 0 0.9325 0.0675 
3 125 3 125 3 1 0 0.9325 0.0675 
4 125 4 125 4 1 0 0.9325 0.0675 
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4.2   The Performance Measure for Matching Results 

The performance of the proposed algorithm was plotted based its receiver operating 
characteristics (ROC) curve, which is a plot of the false positive rate (FNR) versus the 
false negative rate (FNR).  Let 

TN be the total number of match tests conducted, with 

FN the number of false negatives (clips that should have been matched, yet were not) 
and FP the number of false positives (clips that were matched that were not part of the 
reference set, as another video was used for the FNR).Thus, the FNR and FPR were 
as follows:  

TT N

FP
FPR

N

FN
FNR == )(,)( ττ

 
     (8) 

Where τ is the normalized threshold value varying from zero to one. The ROC 
curves were computed by varyingτ . A good ROC curve lies very close to the axes, 
while an ideal curve pass through (0,0), i.e. zero FNR and zero FPR. 

4.3   Matching Results for Real Video Sequence 

An MPEG-1(320×240) video reference sequence with 200,000 frames was used that 
included a variety of sub sequences: movie, football, golf, CF, and TV drama. The 
query video sequence was derived from MPEG-1(160×120) encodings of the refer-
ence video and a home video composed of 51,000 frames. To adjust the dimensions 
of the video clip, the reference clip was reduced to 160×120.  
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Fig. 6. ROC curve for ordinal signature: FPR vs. FNR 
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Fig. 7. ROC curve for singular value signature with r =1: FPR vs. FNR 
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Fig. 8. ROC curve for singular value signature with r =2: FPR vs. FNR 

For the test, 100 query clips with different clip lengths were sampled from the 
query video sequence. The ROC curves were then computed when varying τ  with an 
increment of 0.5%.  
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As shown in Fig. 6, 7 and 8, the proposed system using 2 singular values as signa-
ture has superior performance to the ordinal feature irrespective of clip length, and 
also better one even though when only one singular value is used. And it can reduce 
the process time by using iterative algorithm for getting singular values because we 
use only small number of largest value of singular values, even though it needs time-
consuming to calculate the SVD decomposition. 

4.4   Memory Requirement 

The proposed signature is composed of a decimal fraction from zero to one. Thus, 
when two dominant singular values are used for the video matching process, the 
memory requirement of the signature is 16 bytes/frame (4 bytes/block). Therefore, the 
signatures are converted to integers as follows  

)255(' σσ ×= offround    (9) 

where 10 ≤≤ σ and 2550 ' ≤≤ σ . 
From Eq. 9, the memory requirement is then reduced to 8 bytes/frame. 

5   Conclusions 

This paper proposed a new image signature using singular values for video sequence 
matching. When evaluating the proposed signature in comparison with ordinal meas-
ure, the proposed signature produced a better performance than the ordinal signature. 
One of the reasons is that this signature overcomes a weak point of ordinal signature 
in case that block mean are same but contents are different. If we use only one domi-
nant singular value for video matching process, the memory for storing/indexing 
signatures is same as ordinal signature with 9 bytes/frame. A selection method for the 
proper number of singular values is further needed to get higher matching perform-
ance in both accuracy and time efficiency. 
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Abstract. The Papoulis-Gerchberg algorithm has been extensively used
to solve the missing data problem in band-limited signals. The interpo-
lation of low-pass signals with this algorithm can be done if the signal
bandwidth is known. In practice, the signal bandwidth is unknown and
has to be estimated by the user, preventing an automatic application of
the Papoulis-Gerchberg algorithm. In this paper, we propose a method
to automatically find this parameter, avoiding the need of the user in-
tervention during the reconstruction process. Experimental results are
presented to illustrate the performance of the proposed algorithm.

1 Introduction

The reconstruction of signals after a non uniform sampling of the oriiginal sig-
nal is a key problem in many areas such as communications, medical imaging,
geophysics and astronomy. The reconstruction of a signal without a priori infor-
mation is an ill-posed problem because the observed signals are often incomplete
and only some samples are observed. For this reason, we require some informa-
tion about signal for a successful reconstruction. In this work, we assume that
signal is low-pass.

Several methods were proposed [4,5,6,7,8] to reconstruct low-pass signals from
a set of non-uniform samples e.g., using Fourier Analysis and Wavelets in order
to interpolate the signal. The Papoulis-Gerchberg algorithm (P-G) [1,2,3] is a
popular technique. It amounts to alternatively applying the space and frequency
information available about the signal until it converges. However, this algorithm
requires the knowledge of the signal bandwidth. This parameter must be deter-
mined by the user by a manual way. This paper tries to avoid this procedure and
provides an algorithm to automatically obtain the bandwidth estimate therefore
making the P-G fully automatic.

2 Formulation Problem and Notation

A discrete signal with N samples can be described by a N -dimensional complex
vector x. The elements of the vector are denoted by x[0], x[1], x[2], ..., x[N − 1]
and correspond to samples of the signal.

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 436–445, 2006.
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The Discrete Fourier Transform (DFT) of the signal x ∈ C
N is the vector

X ∈ C
N given by

X [k] =
N−1∑
n=0

x[n]e−j 2π
N nk. (1)

Because the DFT is a linear map in C
N , the expression (1) can be represented

in matrix form,

X = Fx, (2)

where F is a N ×N matrix and each element is given by

Fab = e−j 2π
N ab

In this work, we will only consider band-limited signals. The DFT of these
signals presents the following property [9]

X [i] = 0, i ∈ S (3)

where S is a proper and fixed nonempty subset of {0, 1, ..., N − 1}. The set of
band-limited signals that verify (3) is a linear subspace of C

N . The dimension
of this subspace is equal to the cardinal of the complement of S and it is often
denoted as the signals bandwidth. The signals are low-pass if the complement
of S can be written as follows

{0} ∪ {1, 2, ...,M} ∪ {N −M + 1, N −M + 2, ..., N − 1}
In this case, the signal is characterized by the DC coefficient and by the first

M harmonics. If the number of known samples L satisfies (4),

L ≥ 2M + 1 (4)

the signal’s reconstruction without error is possible.
The signals considered in this work are low-pass ones. Therefore, they can be

written as follows

x = Bx (5)

where B = F−1ΓF and Γ is a N ×N diagonal matrix defined by:

Γ = diag[1, 1, ..., 1︸ ︷︷ ︸
M1′s

, 0, ..., 0, 1, ..., 1︸ ︷︷ ︸
M1′s

]

The problem we intent to solve is to reconstruct the low-pass signal x[n]
knowing a subset of its samples given by

y = Dx (6)

where D is diagonal matrix with binary diagonal coefficients: dii = 1 if the i− th
sample is observed and dii = 0 otherwise. It is important to say that we assume
that M is unknown.
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3 The Papoulis-Gerchberg Algorithm

Let x[n] be a low-pass signal with M + 1 harmonics. The Papoulis-Gerchberg
algorithm reconstructs the signal if the condition (4) is satisfied and the M value
is known. The algorithm starts with an initial signal estimate x̂1 = y (6).

The iterative process consists of three steps.

1. Filter x̂i with a low-pass filter, eliminating the components with frequencies
higher than the frequency of the M − th harmonic.

zi+1 = BPGx̂i (7)

2. Insert known samples in the estimative.

x̂i+1 = Ds + (I −D)zi+1 (8)

3. Verify if the process converged or not. If not, return to the first step and
consider i = i + 1.

The matrix BPG performs the low-pass filtering operation and it is defined
by

BPG = F−1ΓPGF (9)

where

Γ = diag[1, 1, ..., 1︸ ︷︷ ︸
MPG1′s

, 0, ..., 0, 1, ..., 1︸ ︷︷ ︸
MPG1′s

]

is a N ×N diagonal matrix and MPG is the bandwith estimate.
When the signal bandwidth is known, MPG = M and BPG = B.
The algorithm convergence is proved in [1]. In this paper, the stop criterion

is based on the L1 norm between signals of two consecutive estimations.

1
N

N∑
n=1

|yi+1[n]− yi[n]| < δ (10)

where δ is a threshold specified by the user.

4 The Estimation of Signal Bandwidth

4.1 Motivation

As mentioned before, a perfect reconstruction of a non uniform sampled signal
can be obtained by the Papoulis-Gerchberg algorithm if the number of observed
samples is enough (satisfies (4)) and if the M value is known. However, in many
situations, this last condition is not true and it becomes important to use an
alternative way to solve the problem.



The Papoulis-Gerchberg Algorithm with Unknown Signal Bandwidth 439

50 100 150 200 250

−20

−10

0

10

20

30

40

(a)
50 100 150 200 250

−20

−10

0

10

20

30

40

(b)

−3 −2 −1 0 1 2 3

−140

−120

−100

−80

−60

−40

−20

0

20

Frequency

dB

(c)

Fig. 1. Synthetic example: 60% of all samples are known. (a) Original signal (b) Known
samples (c) DFT.

In order to motivate this problem we shown in Fig. 1(a) a discrete low-pass
signal with 256 samples and bandwidth M = 40. The Fourier spectrum of the
original signal is shown in figure 1(c). The signal was then randomly sampled:
60% of the samples are known and the others remain unknown (see Fig. 1(b)).

Before we describe the new method, it is relevant to discuss the importance
of the signal bandwidth M . Figure 2 presents the SNR results of the estimates
obtained by the P-G using MPG values ranging between 1 and the largest integer
satisfying (4). In this figure, we can see that a correct reconstruction (high SNR)
of the original signal is obtained for a small range of MPG values, close to the
true value of the bandwidth M . When MPG is lower or much higher than M ,
the P-G estimate does not converge to the original signal.

When the MPG value (9) is lower than M , the reconstructed signal x̂[n] has
a low-pass spectrum

X̂ [i] = 0, i ∈ T (11)
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where T ⊃ S. This means that we wish to find a signal that contains the known
samples and less harmonics than the original. Due to this last restriction, the
original signal is not in the complement of the subspace T and the mentioned
algorithm does not converge to this signal because the step 2 creates disconti-
nuities in the time domain.

When the MPG value is greater than M the reconstructed signal is low-pass
with

X̂[i] = 0, i ∈ V (12)

where V ⊂ S. In this case, the complement of the subspace V contains the
original signal x but the P-G will nor probably converge to the original signal x
since there is an infinite number of signals in the subspace V satisfying (12) for
the known samples.
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Fig. 2. Reconstruction performance SNR as function of the filter BPG cut frequency

The signal to noise ratio, presented in Fig. 2, provides a valuable information
about the signal bandwidth. However it cannot be used in practice because we
do not know the original signal. An alternative technique must be used instead
as discussed in section 4.2.

4.2 The Proposed Method

The main goal of the proposed method is to reconstruct the original signal from
a set of non uniform samples, without knowing the signal bandwidth.

The strategy followed in this paper consists of finding the lowest M that leads
to a low-pass signal estimate (12) with the known samples. In other words, we
wish to find a signal that contains known samples and is defined by the smallest
number of Fourier coefficients (2M + 1).
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This is performed by applying the P-G algorithm for all M values such that
inequality (4) holds. For each MPG value, the percentage of energy contained in
the signal’s high frequencies is calculated as well as the log energy ratio

g[k] = log10

(
Eh(k)
ET (k)

)
, k = 0, 1, . . . , �L/2� (13)

where Eh and ET are the high frequency and the total energies, respectively,
defined as follows

ET (k) =
N−1∑
m=0

|X̂k[m]|2 (14)

Eh(k) =
N−h+1∑
m=h+1

|X̂k[m]|2 (15)

where X̂k is Fourier transform of the signal x̂k. This signal is obtained by the
P-G algorithm with MPG = k. The log energy ratio function provides very useful
information about the signal bandwidth.

The bandwidth estimate proposed in this paper is the value of k which mini-
mizes the difference g[k]−g[k−1]. It has been experimentally found that the first
difference of the energy ratio g[k] has its largest fall for k = M . This estimate
is not the unique MPG that allows to obtain a low pass signal but it is the first
one. With this strategy, we find the smallest linear subspace (the complement
of V ) that contains the low pass signal verifying (6).

To illustrate the estimation of M , we show, in Fig. 3, the log energy ratio
function obtained for the sampled signal presented in the Fig. 1(b).
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Fig. 3. The log energy ratio function for the example in figure 1(b)
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The smallest difference between two consecutive values of g[k] is shown with a
bold line. In this case, the bandwidth estimate is equal to the true value M = 40.

This method can be extended to 2D low-pass signals in several ways e.g.,
considering a 2D signal as a set 1D low-pass signals. In the case of images we
can independently apply this method to columns or rows or use a joint estimation
procedure.

5 Results

To evaluate the proposed method, several experiments were performed with syn-
thetic signals and real signals. Two experiments will be shown in this section. In
the first experiment we have generated 2000 random signals with length N = 256
and bandwidth M = 40 and applied the algorithm to each of them.

The signals were generated as follows. First we split the time domain into a set
of intervals with random lengths. Then, for each interval we generated one of the
following signals: constant, linear or sinusoid with random parameters. Finally,
we eliminated the high frequency components to guarantee that the signal is low
pass with bandwidth M = 40.
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Fig. 4. Histogram of M values estimated with δ = 10−3 and 80% of known samples

Figures 4 and 5 display the histogram of the bandwidth estimates for several
values of δ (see (10)) and percentage of unknown samples. The performance of the
algorithm depends on both parameters. We observe a smooth degradation of the
performance when the number of observations decreases from 80% to 40% of N .

Evaluating results presented in these figures, we can say that the percentage
of known samples affects the method’s performance, but even when we have a
small set of known samples (40% when the lowest percentage to satisfy (4) is
31,6%) the method gives 60% of correct answers (Fig. 5(a)) and most of the
errors are small.
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Fig. 5. Histograms of M values estimated with δ = 10−6: (a) 40% of known samples
(b) 60% of known samples (c) 80% of known samples

Concerning the parameter δ, small values of δ lead to better estimates. How-
ever, the estimation method becomes slower because we have to perform L iter-
ations.

Table 1, shows the mean and standard deviation of SNR results of the esti-
mated signals obtained by the method for unknown M and the P-G algorithm
for known M . The two methods lead to indistinguishable results when the per-
centage of known samples is 50%, 60%, 70%, 80%. Only in the case 40% of known
samples we observe a difference of 3dB between the reconstructions performed
with known and unknown M .

The proposed method was used to reconstruct real signal and images from an
incomplete set of samples. To illustrate the method’s performance in the case
of images we applied the proposed algorithm to the Lena image with 15% of
unknown samples (see Fig. 6(a)).

We created an enlarged version of the Lena image with 512 × 512 pixels and
bandwidth M = 128. This was done by padding with zeros an initial version of the
Lena imagewith 256×256 and zeroing the high frequency coefficients of theFourier
spectrum. We then applied the proposed algorithm to each row independently.
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Table 1. Results of the P-G algorithm for the case of known bandwidth and unknown
bandwidth

Known Samples M known M unknown
(%) Mean(dB) STD(dB) Mean(dB) STD(dB)
40 24,2 15,3 21,5 16,3
50 56,9 21,7 56,0 22,9
60 82,9 14,7 82,9 14,9
70 97,3 10,3 97,3 10,3
80 108,0 7,7 108,0 7,8

(a) (b)

Fig. 6. Non uniform sampling: (a) Original image (b) Sampled image with 85% of
known samples
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Fig. 7. Method’s results: (a) Estimated image (b) Histogram of M values

In this case, the Fig. 6(a) has 512× 512 pixels and M = 128.
Figure 7(b) shows the histogram of the M estimates for the image’s rows. The

Fig. 7(a) displays the reconstructed image obtained with the proposed method
which is indistinguishable from the original. A SNR=30 dB was obtained.

For a better evaluation of the method’s performance, we show a detail of the
eye. The original image (Fig. 8(a)) and the reconstructed image (Fig. 8(c)) are
almost undistinguishable.
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(a) (b) (c)

Fig. 8. Eye Reconstruction: (a) Original image (b) Sampled image (c) Estimated image

6 Conclusions

This paper presents a method to estimate the signal bandwidth for non-uniform
sampled signal. This allows an automatic reconstruction of non-uniform sampled
signal using the Papoulis-Gerchberg algorithm, when the bandwidth is unknown.
Very good experimental results are obtained with synthetic and real signals.
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Abstract. Traditional fractal image coding seeks to approximate an im-
age function u as a union of spatially-contracted and greyscale-modified
copies of itself, i.e., u ≈ Tu, where T is a contractive fractal transform
operator on an appropriate space of functions. Consequently u is well
approximated by ū, the unique fixed point of T , which can then be con-
structed by the discrete iteration procedure un+1 = Tn.

In a previous work, we showed that the evolution equation yt = Oy−y
produces a continuous evolution y(x, t) to ȳ, the fixed point of a contrac-
tive operator O. This method was applied to the discrete fractal trans-
form operator, in which case the evolution equation takes the form of
a nonlocal differential equation under which regions of the image are
modified according to information from other regions.

In this paper we extend the scope of this evolution equation by intro-
ducing additional operators, e.g., diffusion or curvature operators, that
“compete” with the fractal transform operator. As a result, the asymp-
totic limiting function y∞ is a modification of the fixed point ū of the
original fractal transform. The modification can be viewed as a replace-
ment of traditional postprocessing methods that are employed to “touch
up” the attractor function ū.

1 Introduction

The well-known examples of fractal sets, e.g., ternary Cantor set, Sierpinski
gasket [8], demonstrate the property of self-similarity – each piece of the set can
be viewed as a geometrically contracted copy of the entire set. Indeed, such self-
similarity properties inspired the seminal paper of M. Barnsley and S. Demko
on “iterated function systems” and the inverse problem of fractal construction
[4] which, in turn, led to intensive investigations into fractal image coding and
compression [3,5,9].

It is, however, too much to expect that a general image, viewed as a function
or measure, would be well approximated by a union of geometrically contracted
and and greyscale modified copies of itself. Following the later idea of A. Jacquin
[13], however, images are generally well approximated by a union of spatially-
contracted and greyscale modified copies of subsets of themselves. This is the

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 446–457, 2006.
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basis of block-based fractal image coding [3,5,9] or “local IFS” methods. Indeed,
recent experiments by our group [2,1] confirm that images are generally quite
locally self-similar – subblocks of an image are typically well approximated by
many decimated subblocks from elsewhere in the image. In the next section,
some evidence to support this statement will be presented.

Mathematically, block-based fractal image coding seeks to approximate an
image function u by the unique fixed point ū of a contractive fractal transform
operator T . The action of T on an image function is to replace each subblock
Ri with a shrunken and greyscale modified copy of a subblock Dj of the image.
More details of this procedure will be given in the next section. The fixed point
approximation ū to u is generated by the iteration procedure un+1 = Tun,
where u0 can be any starting function or “seed.” Convergence of the un to ū is
guaranteed by Banach’s fixed point theorem.

In a previous work [6] we introduced the following class of evolution equations
associated with contraction mappings T on a Banach space of functions B(X):

∂u

∂t
= Tu− u. (1)

The result is that the function u(x, t) approaches the fixed point ū as t → ∞
– a continuous evolution toward the fixed point ū of the contraction map T , as
opposed to the usual discrete sequence of iterates un defined earlier.

We then applied this evolution method to some fractal transform operators on
measure and function spaces, in particular, the block-based fractal image coding
operator. The original motivation to devise such evolution equations arose from a
desire to perform continuous, yet fractal-like “touch-up” operations on images. A
fractal-based evolution method could conceivably be used to produce arbitarily
small alterations to an image u(x) in a neighbourhood of a point x0 ∈ X that
depend upon the behaviour of u at other regions of X . This is an example of a
nonlocal imaging operation.

In this paper, we show that one can accomodate additional operators into the
evolution operator in Eq. (1), for example, the simple diffusion operator,

∂u

∂t
= ε∇2u + Tu− u. (2)

where positive diffusion, i.e., ε > 0 corresponds to blurring and negative diffu-
sion ε < 0 produces sharpening. Other differential operators, e.g., anisotropic
diffusion [15,17] could also be considered. In all cases, we have a nonlocal partial
differential equation governing the evolution of an image function u(x, t).

As a consequence, there is a competition between the action of the differential
operator and the nonlocal fractal transform operator. For at least small pertur-
bations ε, the the asymptotic limit function u∞ is a kind of perturbation of the
fixed point ū of the contraction operator T .

At first, the idea of a nonlocal operator might seem to be counterproductive to
PDE imaging. In PDE-based enhancement methods such as denoising, the time
evolution of an image u at a point x is determined completely by its local proper-
ties, i.e. value and derivatives, e.g. Gaussian smoothing [17], anisotropic diffusion
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[15], total variation minimization [16]. Recently, however, nonlocal methods have
been shown to very effective in image enhancement, e.g. the method of “nonlo-
cal means” in image denoising [7]. It is conceivable that such nonlocal methods
could make more inroads into PDE imaging methods. Indeed, one purpose of
this paper is to show how the nonlocal fractal transform method can easily be
incorporated into a PDE-based approach.

The structure of this paper is as follows. In Section 2, we briefly review the
basics of block-based fractal image coding, followed by an application of the
continuous evolution method. In Section 3, we examine the effects of adding
other differential operators to the evolution equation, specifically on the limiting
functions. Some concluding statements are made in Section 4.

2 Block-Based Fractal Image Coding

For simplicity, the support X of an image function u will be considered as n×n
pixel array, i.e., a discrete support. Now consider a partition of X into nonover-
lapping subblocks Ri, 1 ≤ i ≤ N , so that X = ∪iRi. Associated with range
block Ri is a larger domain block Di ⊂ X so that Ri = wi(Di), where wi is a 1-1
contraction map. (In the pixel case, it will represent the decimation needed to ac-
complish the spatial contraction.) Assume that the image function u(Ri) = u|Ri

supported on each subblock Ri is well approximated by a spatially-contracted
and greyscale-modified copy of u(Di) = u|Di :

u(Ri) ≈ φi(u(w−1
i (Di)), (3)

where the φi : R→ R are greyscale maps that are usually affine in form:

φi(t) = αit + βi. (4)

Because the range blocks Ri are nonoverlapping, we can write Eq. (3) as

u(x) ≈ (Tu)(x) = αi(u(w−1
i (x))) + βi, x ∈ Ri, (5)

where T is the block fractal transform operator defined by the range-domain
assignments and the affine greyscale maps φi. Under suitable conditions on the
αi greyscale coefficients and the R2 contraction factors of the wi, the operator
T is contractive in an appropriate image function space F(X) (typically L2(X))
[10].

It is a well-known result that if the collage distance ‖ u− Tu ‖ is small, then
u is well approximated by the fixed point ū of T . This is stated more precisely
by the Collage Theorem [3],

‖ u− ū ‖≤ 1
1− cT

‖ u− Tu ‖, (6)

where cT is the contraction factor of T . In this way, the inverse problem of
fractal image coding can be reformulated into a more tractable problem. Instead
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of searching for an operator T whose fixed point ū is close to u, we search for a
T that maps u close to itself.

In Figure 1 is presented the fixed point approximation ū to the standard
512× 512 pixel Lena image (8 bits per pixel) using a partition of 8× 8 nonover-
lapping pixel blocks (642 = 4096 blocks). The “domain pool” for each range
block was the set of 322 = 1024 16 × 16 nonoverlapping pixel blocks. For each
8×8 pixel range block Ri, the 16×16 pixel block that provided the best approx-
imation in Eq. (3) was chosen as the domain block Di that eventually defined
the fractal transform operator T for this image. The fixed point approximation
ū was obtained by starting with the seed image u0(x) = 255 (plain white image)
and iterating un+1 = Tun to n = 15. The iterates u1, u2 and u3 are also shown
in this figure.

Fig. 1. Starting at upper left and moving clockwise: The iterates u1, u2 and u3 along
with the fixed point ū of the fractal transform operator T designed to approximate
the standard 512× 512 (8 bpp) Lena image. The “seed” image was u0(x) = 255 (plain
white).
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Finally, we return to the comments made in the introduction regarding the sta-
tistical local self-similarity property of images. A series of extensive experiments
by our group [2,1] has shown that images are generally quite locally self-similar:
Using the terminology of fractal block coding developed above, range blocks Ri

of an image are typically well approximated by a good number of domain blocks
Dj from the image. To illustrate, we return to the Lena image of Figure 1 and
the fractal coding procedure used to produce the fixed point ū in that figure.
Recall that 4096 8 × 8 nonoverlapping range blocks and 1024 nonoverlapping
16× 16 nonoverlapping domain blocks were used in the coding.
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Fig. 2. Histogram distribution of collage errors Δijk, cf. Eq. (7) for all domain-range
block pairings for Lena image

In Figure 2 is presented a histogram plot of the collage errors for all possible
range/domain block pairs Rj/Di, with all 8 square-to-square isometries being
considered:

Δijk = min
α,β

‖ Ri − αu(w(k)
j (Dj))− β ‖, (7)

1 ≤ i ≤ 1024, 1 ≤ j ≤ 4096, 1 ≤ k ≤ 8,

for a total of 33,554,432 collage errors. (Of course, for each range block Ri, the
domain block Dj(i) and mapping w

k(i)
i producing the lowest collage error was

chosen for the fractal code that produced Figure 1.) Although there are very few,
if any, exact matchings, a very pronounced peak is situated not far from zero
collage error. Of course, the histogram distributions vary from image to image.
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Images such as Mandrill, which is well known in presenting difficulties for any
kind of image coding, demonstrate more flattened histogram distributions. A
purely random image, i.e., Gaussian noise with variance σ will demonstrate a
Gaussian-like distribution of collage errors that peaks at σ.

3 Continuous Evolution of Fractal Transform Operators

We now employ the block-based fractal transform operator T , defined in Eq. (5),
in the continuous evolution Eq. (1). The result is a nonlocal partial differential
equation in the image function u(x, t):

∂u(x, t)
∂t

= αiu(w−1
i (x), t) + β − u(x, t), x ∈ Ri. (8)

In Figure 3 are shown some steps in the time evolution of images u(x, t) as
determined by the above evolution equation, where T is the fractal transform
operator used in the construction of Figure 1. In this case, the time evolution
proceeds at a slower pace than in Figure 1, starting at u0 = 255 (plain white
image) and proceeding in time steps of 0.2. A simple forward Euler scheme using
a step size of h = 0.1 was used.

3.1 Evolution in the Presence of Diffusion

In this section, we examine the effects of the isotropic diffusion term in Eq. (2)
for various values of the diffusion constant ε.

Case I: ε > 0
In Figure 4 are presented the limiting images for ε values of 0.5, 5.0, 10.0 and
20.0. Eq. (2) was integrated to t = 50 using a simple Euler scheme with time step
h = 0.01. As ε increases, the blurring effects of the diffusion operator become
more pronounced.

In standard, i.e., discrete, fractal image coding, there has always been a con-
cern about the blockiness exhibited by the fixed points of fractal transform
operators. This is mostly due to the partitions used to produce the range blocks
– most often, there is no attempt to perform any kind of “patching” of neigh-
bouring blocks over their common boundaries. Various methods have been used
to reduce such blockiness. One method, that of “postprocessing,” was to blur the
final fixed point image, either over its entirely or selectively across the bound-
aries of the range blocks. Another is to blur the image after each application
of the fractal transform operator T , a kind of intermediate processing. The dif-
fusion operator in Eq. (2) essentialy performs such an intermediate processing
in a continuous manner. The asymptotic images are no longer fixed points of
the fractal transform operator T but rather solutions to the partial differential
equation

ε∇2y + Ty − y = 0. (9)

For small values of ε, these asymptotic limiting functions could possibly be
viewed as perturbations of the fixed point function ū of T , a subject of current
investigation.
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Fig. 3. Starting at upper left and moving clockwise: The images u(x, t) at times 0.2,
0.4, 0.6, 0.8 produced from u(x, 0) = 255 (plain white) under evolution by ut = Tu−u
where T is the fractal transform whose discrete iteration was shown in Figure 1

Case 2: ε < 0
For this case of “negative diffusion,” we expect the limiting images u(x, t), t→∞
to be sharpened. In Figure 5 is presented the limiting image for ε = −0.1. This
image was obtained by integrating Eq. (2) t = 50 using the simple Euler forward
scheme with time step h = 0.001. Such a small value for the time step was used
because of the numerical instability involved with negative diffusion. The image
is a somewhat sharpened version of the fixed-point Lena image of Figure 1.
Unfortunately, the sharpening enhances not only the edges present in the image
but also those that lie along the boundaries of the 8× 8 range blocks.

Difficulties are encountered in the numerical computations when ε is chosen
to be lower than −0.1. For example, when ε = −0.2, a great deal of irregular-
ity develops in the image, erupting into virtual instability at t ≈ 7.5 and virtual
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Fig. 4. Starting at upper left and moving clockwise: The limiting images u(x, t), t → ∞
produced by integrating Eq. (2) for ε values of 0.5, 5.0, 10.0 and 20.0, respectively

randomness at t = 20. Such a negative diffusion scheme is known to be numeri-
cally unstable. At the time of writing, it is not clear whether the t = 20 result is
due to this instability or the actual lack of a nontrivial asymptotic limiting func-
tion because of the nonsmooth nature of the image function u(x, t). If the latter
applies, then there may be some some kind of critical value ε0 ∈ [−0.2,−0.1]
at which a limiting function ceases to exist. The negative diffusion term can be
viewed as a process that competes against the term Tu − u which is trying to
drive the evolution toward the fixed point ū of T .

3.2 Evolution for a Convex Combination of Contraction Mappings

Let us now suppose that we have a set of contraction maps driving the evolution
in Eq. (1) in parallel. It is natural to consider a convex combination. Let Ti,
i = 1, 2, · · · , n be a set of contraction maps with contraction factors ci ∈ [0, 1)
fixed points ȳi. Now let λi, i = 1, 2, · · · , n, be a partition of unity, i.e., λi ∈ (0, 1)
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Fig. 5. Left: The limiting image u(x,∞) produced by integrating Eq. (2) for ε = −0.1,
corresponding to negative diffusion. Euler method, step-size h = 0.001, integrated to
t = 50. Right: The limiting image for ε = 0, presented for comparison.

with
∑n

i λi = 1, and consider the evolution equation

∂y

∂t
=

n∑
i=1

λi(Tiy − y). (10)

This equation may be rewritten as

∂y

∂t
= Ty − y, (11)

where

T =
n∑

i=1

λiTi. (12)

Now, for any u, v ∈ F(X),

‖ Tu− Tv ‖ = ‖
n∑

i=1

λiTiu−
n∑

i=1

λiTiv ‖ (13)

≤
n∑

i=1

λi ‖ Tiu− Tiv ‖

≤
n∑

i=1

λici ‖ u− v ‖ .

Since c =
∑n

i=1 λici ∈ [0, 1), it follows that T is a contraction mapping with
a unique fixed point ȳ. From our earlier result associated with Eq. (1), it also
follows that ȳ is a globally asymptotically stable solution of Eq. (10).
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Numerical experiments, where the Ti are fractal transform operators corre-
sponding to different images, have demonstrated convergence to limiting as-
ymptotic functions u∞. These fixed points demonstrate characteristics of the
different images – a kind of interpolation. (However, the blockiness of the frac-
tal transform operators makes these interpolations rather unattractive.) In fact,
“interpolation” is not the most appropriate term. Eq. (10) actually represents
a continuous version of the iterative method of projections onto convex sets
(POCS) that has been used in a variety of applications including imaging [18].

It is interesting to consider the situation where the Ti are different fractal
transform operators for the same image. For example, for each range block Ri

we could consider a number of domain blocks, possibly weighting each block
inversely according to the collage error that it yields. The idea of using multi-
ple domain blocks in order to improve the accuracy of approximation has been
around for some time (see, for example, [9]). However, S. Alexander [1] has re-
cently shown that this idea can be used effectively for purposes other than simply
increasing the PSNR, for example, denoising, edge detection and block classifi-
cation. We simply outline here the idea of how denoising can be accomplished.

Fractal Image Denoising
Firstly, it is well known that lossy compression schemes can denoise an im-
age, which is also the case in fractal image coding. Assuming that the noise is
additive, stationary and of zero mean, the spatial contraction/decimation that
comprises the mapping of domain to range blocks contributes to the reduction of
the variance of the noise. (We have shown [11] that the degree of denoising can
be increased by improving the fractal code of the “denoised” attractor.) Alexan-
der’s scheme, however, capitalizes on the fact, mentioned earlier, that there are
generally several domain blocks that match a given range block almost as well as
the “optimal” block, i.e., the block yielding the lowest collage error. (Most often,
the difference is very small.) A number of these lowest-error blocks are then em-
ployed to produce the modified range block, a kind of weighted averaging which
reduces the noise. Several strategies were investigated and work very well [1].
These methods are easily incorporated into a continuous evolution formulation
but will not be discussed any further here.

Finally, we mention that an analogous “nonfractal” strategy has been adopted
for denoising, namely, the “patching” of a domain block with a number of blocks
of the same size from elsewhere in the image [7]. This method relies on trans-
lational similarity of an image as opposed to the scaling similarity inherent in
fractal coding approaches.

4 Concluding Remarks

In a previous work, we showed that the evolution equation yt = Oy−y produces
a continuous evolution y(x, t) to ȳ, the fixed point of a contractive operator O.
When applied to a fractal block coding operator T , the evolution equation takes
the form of a nonlocal differential equation so that a region (range block) of an
image is being continuously modified by another region (domain block).
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In this paper we have extended the scope of this evolution equation by in-
troducing additional operators, e.g., diffusion, that “compete” with the fractal
transform operator. As a result, the asymptotic limiting function y∞ is a mod-
ification of the fixed point ū of the original fractal transform. In the case of
diffusion, the modification can be viewed as a replacement of traditional post-
processing methods that are employed to “touch up” the attractor function ū.
Negative diffusion produces a sharpening of ū. It now remains to establish the-
oretically the existence of such limiting asymptotic functions.

This continuous evolution method will easily accomodate other operators, e.g.,
nonlinear anisotropic diffusion operators [15,17]. A possible concern, however, is
the artificial blockiness that is introduced by the fractal coding method from the
range block boundaries. There are a number of ways to reduce these problems,
including (i) overlapping range blocks and (ii) a kind of Gaussian window of the
domain-to-range block mapping that extends beyond the usual rigid range block
boundaries.

Finally, we mention that the continuous evolution formalism can actually help
to suggest other discrete iteration processes that can be employed with fractal
image coding. As was pointed out in our earlier work [6], when a simple forward
Euler scheme with time step h > 0 is employed for the integration of Eq. (1),
we obtain the discrete iteration process

yn+1 = yn + h(Tyn − yn) (14)
= (1− h)yn + hTyn.

For 0 < h < 1, the yn+1 produced by the Euler method is a linear interpolation
between yn and Tyn. In the case h = 1, we obtain the usual iteration procedure
yn+1 = Tyn. The discussion in Section 3.2 above suggests a discrete formulation
for a convex combination of “competing” contraction maps. Indeed, this formu-
lation is quite analogous to the method of projections onto convex sets (POCS)
[18]. One may also consider the use of penalty functions in the evolution equation
to “steer” the time evolution.
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Abstract. To improve coding efficiency, the H.264 video coding standard uses 
new coding tools, such as variable block size, quarter-pixel-accuracy motion 
estimation, multiple reference frames, intra prediction and a loop filter. Using 
these coding tools, H.264 achieves significant improvement in coding 
efficiency compared with existing standards. However, encoder complexity also 
increases tremendously. Among the tools, macroblock mode selection and 
motion estimation contribute most to total encoder complexity. This paper 
focuses on complexity reduction in macroblock mode selection. Of the 
macroblock modes which can be selected, inter8×8 and intra4×4 have the 
highest complexity. We propose two methods for complexity reduction of 
inter8×8 and intra4×4 by using the costs of the other macroblock modes. 
Simulation results show that the proposed methods save about 53% of total 
encoding time compared with the H.264 reference implementation, whereas the 
average PSNR decreases less than 0.05 dB. 

1   Introduction 

The H.264/AVC standard is a video compression standard that was jointly developed 
by the ITU-T Video Coding Experts Group and the ISO/IEC Motion Picture Experts 
Group [1]. To improve coding efficiency, H.264 adopts new coding tools, such as 
quarter-pixel-accuracy motion estimation (ME), multiple reference frames, a loop 
filter, variable block size (VBS), etc. [2], [3]. These tools have enabled the standard to 
achieve higher coding efficiency than prior video coding standards. The encoder 
complexity, however, increases tremendously. 

Several approaches have been proposed to reduce the complexity of the H.264 
encoder. Yin et al. proposed a method to alleviate encoder complexity caused by ME 
and macroblock mode selection [4]. Their low complexity ME algorithm consists of two 
steps. First, integer-pixel ME is carried out using enhanced prediction zonal search 
(EPZS). Then, depending on the result of the integer-pixel ME, sub-pixel ME is carried 
out within some limited areas. To achieve faster macroblock mode selection, their 
method simply examines limited modes based on the costs of inter16×16, inter8×8, and 
inter4×4. Huang et al. proposed an algorithm to reduce the time to search the reference 
frames for ME complexity reduction [5]. For each macroblock, they analyze the 
available information after intra prediction and ME from the previous frame to 
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determine whether it is necessary to search more frames. Their method can save about 
10-67% of ME computation. Ahmad et al. proposed a fast algorithm for macroblock 
mode selection based on a 3D recursive search algorithm that takes cost into account as 
well as the previous frame information [6]. This algorithm leads to a decrease of over 
30% in encoding time compared with the H.264 reference implementation. The 
bitstream length, however, increases by about 15%. 

To speed up the H.264 encoding time, we focus on complexity reduction of 
macroblock mode selection. When an 8×8 DCT is not used, the candidate macroblock 
modes are SKIP, inter16×16, inter16×8, inter8×16, inter8×8, intra16×16, and 
intra4×4. An inter8×8 mode can be further partitioned into four sub-macroblock 
modes: inter8×8, inter8×4, inter4×8, and inter4×4. Among these modes, inter8×8 and 
intra4×4 modes contribute most to the complexity, especially when rate-distortion 
optimization (RDO) is used.  

In this paper, we propose two algorithms. One is to alleviate inter8×8 complexity. 
It estimates four sub-macroblock modes within inter8×8 by using the costs of other 
inter modes with relatively low complexity. The other method reduces intra4×4 
complexity, using the similarity between RD costs of two intra modes. 

2   Mode Selection Algorithm in the H.264 Reference Software 

2.1   Macroblock and Sub-macroblock Modes 

The H.264 standard allows the following macroblock modes: SKIP, inter16×16, 
inter16×8, inter8×16, inter8×8, intra16×16, intra8×8, and intra4×4. Furthermore, each 
 

 

Fig. 1. Macroblock partitions of (a) inter and (b) intra modes 
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block within inter8x8 can be divided into four sub-macroblock modes. The allowed 
sub-macroblock modes are inter8×8, inter8×4, inter4×8, and inter4×4. Figure 1 
depicts the macroblock partitions of inter and intra macroblock modes, including the 
SKIP mode. 

An inter16×16 mode has only one motion vector, whereas inter16×8 and inter8×16 
have two motion vectors. An inter8×8 mode may have 4-16 motion vectors depending 
on the selected sub-macroblock modes. A SKIP mode refers to the mode where 
neither motion vector nor residual is encoded. Three intra modes have different 
prediction modes. Four prediction modes are available in intra 16x16, and nine 
prediction modes are available in intra8x8 and intra4x4. 

2.2   Macroblock Mode Selection in the Reference Software 

The reference software, JM9.3 [7], supports three cost calculation criteria: motion 
vector (MV) cost, reference frame (REF) cost, and rate distortion (RD) cost. The MV 
cost is calculated using a lambda factor and is defined as: 

MEforpositionyandxpredicted:pypx,

MEforpositionyandxcandidate:cycx,

factorlambda:f

where

py])s)mvbits[(cy

px]s)s[(cxst(f,mvbitWeightedCo

−<<+
−<<=MVcost

 

    (1) 

The REF cost is also calculated using a lambda factor and is defined as: 

factorlambda:fwhere

ts(ref))st(f,refbiWeightedCo=REFcost      (2) 

In (1) and (2), WeightedCost( ) returns the cost for the bits of motion vector and 
reference frame, respectively. Finally, the RD cost is defined as: 

multiplierLagrangewhere

RateDistortion

:

RDcost ⋅+=     (3) 

In (3), the distortion is computed by calculating the SNR of the block and the rate 
is calculated by taking into consideration the length of the stream after the last stage 
of encoding. 

When RDO and five reference frames are used, using these cost functions, the 
process of macroblock mode selection in the reference software is as follows: 
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Step 2. Calculate the sums of MV cost and REF cost in inter16×16, inter16×8, and 
inter8×16. 

.cost REF cost  MV 

)(REFcost)MVcost(

modeiinandthe sum of:J

16.8, inter8616, inter1inter16where i

J

i

iii

×××=
+= REFMV

 
    (5) 

Step 3. Find reference frames and motion vectors for the first sub-macroblock in 
inter8×8. 

4.8, inter44, inter48, inter8inter8where i

REFMV
REFMV

ii

××××=

+=  ))(REFcost)(MVcost(minarg][
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Step 4. Calculate the sums of MV cost and REF cost for the first sub-macroblock in 
inter8×8. 

4.8, inter44, inter48, inter8inter8where i

J iii
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Step 5. Select the mode for the first sub-macroblock in inter8×8. 
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Step 6. Repeat steps 3 to 5 for the other sub-macroblocks in inter8×8. 
Step 7. Select the macroblock mode 
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In steps 1 and 2, the reference software finds reference frames and motion vectors 
which minimize the sum of MV cost and REF cost in inter16×16, inter16×8, and 
inter8×16. Steps 3 to 6 are the process of selecting sub-macroblock modes in 
inter8×8. The final step decides the macroblock mode by comparing RD costs of all 
macroblock modes. 

3   Proposed Algorithm 

3.1   Complexity Reduction of Inter8×8 

Since each sub-macroblock within inter8×8 needs additional RD cost computations 
for the selection of sub-macroblock modes, inter8×8 has the highest complexity 
among all of the inter macroblock modes. For complexity reduction of inter8×8, we 
assume that the costs of inter macroblock modes monotonically increase or decrease 
according to their partitioned direction. Under this assumption, we restrict selectable 
sub-macroblock modes by using the MV costs and REF costs of inter16×16, 
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inter16×8, and inter8×16. For example, if the sum of MV and REF costs of 
inter16×16 is larger than that of inter16×8 and is smaller than that of inter8×16, we 
consider only inter8×8 and inter8×4 as sub-macroblock modes. Figure 2 depicts the 
proposed method for the complexity reduction of inter8×8. 

 

Fig. 2. Block diagram for the restriction of selectable sub-macroblock modes 

In case 1, since Jinter16×16 is smaller than both Jinter16×8 and Jinter8×16, neither additional 
block partition in the horizontal direction nor in the vertical direction is needed. In 
this case we do not consider any sub-macroblock mode, and step 3 to step 6 in the 
reference software are skipped. In case 2, since Jinter16×16 is smaller than Jinter8×16 and is 
larger than Jinter16×8, additional block partitioning is only considered in the vertical 
direction. In this case, either inter8×8 and inter8×4 is selected as a sub-macroblock 
mode, and the formulae of steps 3 to 6 in the reference software are modified as 
follows: 
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In case 3, since Jinter16×16 is smaller than Jinter16×8 and is larger than Jinter8×16, only 
additional block partition is considered, and only in the horizontal direction. In this 
case, either inter8×8 and inter4×8 is selected as a sub-macroblock mode, and the 
formulae of steps 3 to 6 in the reference software are modified as follows: 
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In case 4, since Jinter16×16 is larger than both Jinter16×8 and Jinter8×16, we consider all 
sub-macroblock modes, as in the reference software. 

3.2   Complexity Reduction of Intra4×4 

When 8×8 DCT is not used, the allowed intra modes are intra4×4 and intra16×16. Of 
the two intra modes, intra4×4 has the higher complexity because it has more 
prediction modes. Since intra16×16, as described in Section 2, has only four 
prediction modes and intra4×4 has nine prediction modes for finer granularity, 
intra4×4 generally yields a smaller prediction error than intra16×16. However, most 
of the macroblocks have only a small difference between the RD costs of intra16x16 
and intra4x4. This is because edges directed in vertical or horizontal directions are 
dominant in natural images, which are considered in intra16x16. 

Using this characteristic, we first find the inter mode with a minimum RD cost. 
Then we compare the RD cost of the selected inter mode with that of intra16×16. If 
the RD cost of intra16×16 is much larger, that is, if Eq. (16) is true, then the RD cost 
computation of intra4×4 is skipped: 

)RDcost(   ] )  RDcost( Min[ 16intra 16Kmodesinter ×<⋅    (16) 

In (16), K is a constant. Table 1 describes the missing rate of intra4×4. The missing 
rate indicates the probability that the skipped intra4×4 has the smallest RD cost. As 
shown in Table 1, the average missing rate is only about 0.7% for K =1.5. This means 
that the RD cost difference factor between intra4×4 and intra16×16 is less than 1.5 for 
99.3% of the macroblocks. 

Table 1. Missing rates of intra4x4 according to K 

Missing Rate (%) Sequences 
K=1.3 K=1.5 K=1.7 

Coastguard 2.0 0.4 0.2 
Container 2.7 1.0 0.9 

Mobile 0.4 0.0 0.0 
News 5.8 0.6 0.5 

Salesman 6.6 0.4 0.0 
Silent 4.7 1.7 0.4 
Stefan 2.8 0.2 0.0 
Trevor 9.0 0.9 0.1 
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4   Simulation Results 

Since the proposed methods for complexity reduction of inter8×8 and intra4×4 are 
uncorrelated, the two methods can be applied independently or simultaneously. We 
applied the two proposed algorithms simultaneously to encode test sequences. For the 
purpose of evaluation, the public reference encoder JVT Model (JM) v.9.3 was used. 
The software was tested on an Intel Pentium-IV based computer with 512 MB RAM 
under the Windows XP Professional operating system.  

We adopted full search for ME, used RDO, and set Quantization Parameter (QP) 
and K in (16) to 28 and 1.5, respectively. The simulation was performed on eight 
standard video sequences in QCIF (176x144) format. These included Coastguard, 
Container, Mobile, News, Salesman, Silent, Stefan, and Trevor. These sequences 
were selected on the basis of length of encoded streams and degree of motion. The 
first 100 frames of each of these sequences were used. 

For 99 P-frames, Tables 2 and 3 describe the reduction ratios of the number of RD 
cost computations in inter8x8 and intra4x4. As shown in these results, we can save 
about 72% and 90% of the RD cost computations, respectively.  

Table 2. The number of RD cost computation in inter8x8 

Sequences 
Reference 
Software 

Proposed 
Method 

Reduction 
Ratio (%) 

Coastguard 156,816 59,760 61.9 
Container 156,816 17,896 88.6 

Mobile 156,816 65,360 58.3 
News 156,816 30,256 80.7 

Salesman 156,816 28,224 82.0 
Silent 156,816 40,464 74.2 
Stefan 156,816 56,472 64.0 
Trevor 156,816 54,800 65.1 

Table 3. The number of RD cost computation in intra4x4 

Sequences 
Reference 
Software 

Proposed 
Method 

Reduction 
Ratio (%) 

Coastguard 35,343 10,838 69.3 
Container 35,343 6,566 81.4 

Mobile 35,343 400 98.9 
News 35,343 2,225 93.7 

Salesman 35,343 529 98.5 
Silent 35,343 2,388 93.2 
Stefan 35,343 3,038 91.4 
Trevor 35,343 3,463 90.2 
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Table 4. Comparison of bitrates (Kbits/sec) 

Sequences 
Reference 
Software 

Proposed 
Method 

Increase  
Ratio (%) 

Coastguard 249.00 251.28 0.9 
Container 40.16 40.74 1.4 

Mobile 496.49 497.24 0.2 
News 75.84 76.75 1.2 

Salesman 56.89 57.61 1.3 
Silent 82.69 83.71 0.2 
Stefan 379.26 380.86 0.4 
Trevor 132.49 133.58 0.8 

Table 5. Comparison of PSNRs (dB) 

Sequences 
Reference 
Software 

Proposed 
Method 

Increase  
Ratio (%) 

Coastguard 33.93 33.89 0.04 
Container 36.07 36.06 0.01 

Mobile 33.14 33.06 0.08 
News 36.65 36.64 0.01 

Salesman 35.57 35.54 0.03 
Silent 35.84 35.81 0.03 
Stefan 34.22 34.15 0.07 
Trevor 36.40 36.33 0.07 

 

 

Fig. 3. Comparison of total encoding time 
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(a)                                                           (b) 

   

(c)                                                           (d) 

   

(e)                                                           (f) 

Fig. 4. The 10th reconstructed frames of three sequences when using (a) JM (33.338dB) (b) the 
proposed method (33.304dB) (c) JM (34.778dB) (d) the proposed method (34.690dB) (e) JM 
(36.019dB) (f) the proposed method (35.946dB) 

 
Tables 4 and 5 compare the bitrates and PSNRs for each test sequence. Since the 

reference implementation is an exhaustive search for selecting the macroblock mode, 
the number of encoded bits is the least for each sequence. Tables 4 and 5 show the 
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average increase of the total bitrates is only about 0.9%, and the average PSNR drop 
is only about 0.043 dB when using the proposed method. 

Finally, Fig. 3 compares total encoding time from the proposed method with that 
from the reference software. This result shows a substantial decrease of about 53% in 
total encoding time compared with the reference implementation. 

Figure 4 compares subjective qualities of three sequences which have 
comparatively higher PSNR drop. Each frame in Fig. 4 is the 10th reconstructed 
frame, that is to say, the 9th P-frame. As shown in this figure, the difference between 
subjective qualities of each sequence is nearly unrecognizable.  

5   Conclusions 

We proposed two simple and effective schemes for the quick selection of macroblock 
modes in H.264 video coding. Using our methods, the RD cost computations of 
inter8×8 and intra4×4 were reduced by about 72% and 90%, respectively. Both 
schemes can be applied independently. When both methods are used simultaneously, 
simulation results show that our methods can save about 53% of total encoding time 
regardless of input sequences, yet the average increased rate of the total bits and 
average PSNR drop are only about 0.9% and 0.043 dB, respectively. This huge 
reduction of encoder complexity may be useful in real-time implementation of the 
H.264/AVC standard. 
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Abstract. Visual secret sharing (VSS) scheme is an image sharing scheme that 
divides a secret pixel into several sub pixels (the number of sub pixels is called 
the pixel expansion) and the secret image is visually revealed without additional 
computations. However the contrast of recovered image is poor and thus the 
VSS framework is always a research issue and not a practical scheme. In this 
paper, we introduce a new framework which prioritizes the pixels with different 
pixel expansions to reconstruct a high-quality image for practical use. Also, 
integrating the optical character recognition with the proposed VSS scheme we 
show a new automated visual authentication scheme. 

1   Introduction 

In the so-called (k, n) visual secret sharing (VSS) scheme, which was first proposed 
by Naor and Shamir [1], a secret image is divided into n shadow images (shadows). 
This (k, n)-threshold scheme satisfies the perfect secrecy that requires at least k 
shadows for the secret image reconstruction. VSS schemes decode the secret image 
by the visual sight directly and do not need any computation or cryptography 
background. VSS schemes share each secret pixel by m sub pixels and thus the 
shadow size is expanded, where the value m is called the pixel expansion. For 
example, the pixel expansions of the (2, 2), (2, n), (3, n) and the optimal (k, k) Naor-
Shamir VSS schemes are 2, n, 2n−2 and 2k−1, respectively [1]. Size-reduced VSS 
schemes were proposed [2-7]. Some of them even had the non-expansible shadow 
size (i.e., m=1). As proposed in [1-11], all previous VSS schemes used the same pixel 
expansion for each secret pixel. In this paper, we first introduce a new framework 
which uses the different number of sub pixels to represent the secret pixel according 
to its “importance”. The different pixel expansion performs the appropriate roles, i.e., 
the large pixel expansion improves the contrast and the small pixel expansion reduces 
the shadow size. Finally, we realize a VSS scheme with the high-contrast recovered 
image and the less shadow size. 

Additionally, for measuring the contrast of VSS schemes, some previous 
definitions of contrasts were defined by means of the whiteness of black and white 
secret pixels and the pixel expansion but there is no consistency among these 
definitions due to the bias of human visual system. With the help of machine to 
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recognize the printed text image, e.g., the optical character recognition (OCR) system, 
we design a simulated human visual system to measure the contras and avoid the 
personal bias. Extending this OCR-like human visual system, a new novel VSS-based 
visual authentication system is also proposed. In brief, there are two major advantages 
for our VSS scheme based on different pixel expansions: (1) any certain shadow size 
(2) the high-contrast recovered image. Both advantages imply the wide applicability 
of our proposed scheme. 

The rest of paper is organized as follows. In Section 2, the previous VSS schemes 
and the motivation of our work are described. In Section 3, our new framework is 
proposed. Also, a fairer measurement is defined to compare the recovered printed text 
image with the help of the OCR technique. Experiments for two types of secret 
images (the printed text image and binary halftone picture) are given in Section 4. 
Section 5 shows the practicability of our proposed scheme and describes a new VSS-
based authentication system. We draw the conclusions in Section 6. 

2   Preliminaries 

2.1   Previous VSS Schemes 

For the conventional (k, n) VSS scheme [1], the dealer uses two sets, C1 and C0, 
including matrices which are obtained from the column permutation of black and 
white n×m Boolean matrices B1 and B0, respectively. To share a black (resp. white) 
secret pixel, one matrix in C1 (resp. C0) is randomly chosen. Then a secret pixel is 
divided into m sub pixels according the chosen matrix S=[sij] where sij=1 is for the jth 
sub pixel in the ith shadow is black; otherwise white. VSS schemes need to satisfy the 
contrast condition and security condition. When stacking any k or more shadows, the 
gray level of the secret pixel can be visually decoded by OR-ing the corresponding 
rows in S. If the Hamming weight of the OR-ed m-tuple V, H(V), is greater or equal to 
(m–l), this gray level is interpreted as black and if less or equal to (m–h) the pixel is 
white, where h and l are the whiteness of white and black pixels. When stacking r 
(less than k) shadows, the two collections of r×m matrices obtained by restricting each 
n×m matrices in C1 and C0 to rows i1, i2, …, ir are not visual in the sense that they 
contain the same matrices with the same frequencies. Different h, l and m result in 
different resolutions of recovered images. 

Some modified VSS schemes were proposed to further reduce the pixel expansion 
and meantime hold the contrast and security conditions. Kuwakado and Tanaka [2] 
discovered that there exist the homogeneous columns in the chosen matrices which 
can be deleted to reduce the pixel expansion. Two VSS schemes based on 2-pixel and 
m-pixel encoding methods [3, 4] were proposed such that the pixel expansion is 
reduced to m/2 and 1, respectively. A completely different approach from the 
‘deterministic’ VSS scheme [1-4] was the ‘probabilistic’ method [5, 6]. The 
probabilistic schemes have no pixel expansion, i.e., the shadow size is the same to the 
secret image. The dealer randomly chooses the black or white pixel to represent the 
pixel in the secret image according to the probability matrices [6]. Finally, one can 
“view” the recovered image due to the appearance frequencies while the edge of 
recovered image is irregular. Cimato et al. [7] generalized the probabilistic VSS 
scheme in [6] to adjust the pixel expansion between 1 to m for trading the shadow size 
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with the contrast. From the above description, for a (k, n) Naor-Shamir VSS scheme 
with the pixel expansion mNS [1], the modified VSS schemes with m between 1 to mNS 
can be obtained [2-7].  

2.2   Motivation 

From the recovered image, it is observed that the large m achieves the high resolution 
of recovered image but causes the expansible shadows. For example, the Naor-Shamir 
optimal (8, 8) VSS scheme has an incredible pixel expansion m=2(8-1)=128 and this is 
not practicable for use. The small m results in the small shadow size but distorts the 
clearness of recovered image. However, no matter what pixel expansion was used all 
previous VSS schemes used the same expansion in one shadow image. To be 
possessed of the advantages of both large and small m and avoid their weakness, we 
use each in its proper purpose. The large m for the more “important” pixels is to keep 
the resolution of image and the small m for the less “important” pixels is to reduce the 
shadow size. By using the different pixel expansions for the pixels with the different 
importance levels, we finally get a VSS scheme with the high-contrast recovered 
image and the small shadows. 

What are the important pixels in a secret image? In general, we may use the pixels 
located at the edges as the more important pixels. This is due to the fact that the most 
important and meaningful information in an image is the edge. Figs. 1(a-1) and (b-1) 
are the black/white printed text image and gray Lena picture with size 300 300 
pixels. Figs. 1(a-2) and (b-2) are their edges obtained from the Sobel edge detector 
[8]. It is evident that the dots in Figs. 1(a-2) and (b-2) carry the important information 
of Figs. 1(a-1) and (b-1), respectively. By choosing these dots as the more important 
pixels and other remaining pixels as the less important pixels and assigning different 
pixel expansions for them, the quality of recovered image is assured and the shadow 
size is reduced simultaneously. 

 

    
(a-1) (a-2) (b-1) (b-2) 

Fig. 1. Results of edge detector for the printed text and Lena picture 

3   The Proposed VSS Scheme with Different Pixel Expansions  

3.1   Basic Concept 

In this new VSS framework, we do not design the new matrices but propose a 
methodology that uses the existing schemes with different pixel expansions 
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simultaneously to improve the contrast for a certain shadow size. Our approach is 
effective regardless of the black/white, gray or colored schemes. Thus, to clarify the 
concept of proposed framework, we herein only deal with the black/white secret 
images (the black/white printed text image and the binary halftone picture) for 
simplicity. 

An illustration of using the same and different pixel expansions in one shadow is 
shown in Fig. 2. A simple example, a secret image with two pixels 1 and 2 is 
shown in Fig. 2(a). When using the same pixel expansion like the conventional VSS 
scheme, Figs. 2(b-1) and (b-2) are the examples for m=2 and 4, respectively. 
Suppose the pixel 2 is more important than the pixel 1. We use two sub pixels and 
four sub pixels to represent pixels 1 and 2, respectively. Fig. 2(c) shows four 
possible patterns to arrange these six sub pixels with the corresponding positions of 
the associative secret pixels. It is evident that Fig. 2(c-1) is the best arrangement 
among these four patterns and Fig. 2(c-4) is a bad one because the co-locations 
between the original secret pixel and the corresponding sub pixels are not consistent 
and this will distort the clearness. 

There is no pixel arrangement problem for using the same pixel expansion while 
we should carefully arrange the co-locations of sub pixels for our methodology using 
the different pixel expansion. A measurement of co-location, i.e., the overlapping 
percentage between a sub pixel relative to its associative secret pixel in [9] can be 

adopted for our use. Let ( , )

( , )

u v

x y
W  be the overlapping percentage of a sub pixel located at 

the coordinate (u, v) relative to a secret pixel located at the coordinate (x, y).  
For example, to calculate the overlapping percentages for Fig. 2(c-1), we redraw  

Fig. 2(c-1) pattern in Fig. 3. The values of weighting ( , )

(1,1)

u vW  and ( , )

(1,2)

u vW , where u∈[1, 

2], v∈[1, 3], and (x, y) = (1, 1) and (1, 2) are pixels 1 and 2, are shown below: 

(1,1) (1,2) (1,3) ( 2 ,1) ( 2,2) ( 2 ,3)

(1,1) (1,1) (1,1) (1,1) (1,1) (1,1)
1.0;  0.0;  0.0;  1.0;  0.0;  0.0;W W W W W W= = = = = =  

(1,1) (1,2) (1,3) ( 2,1) ( 2,2 ) ( 2,3)

(1,2) (1,2 ) (1,2) (1,2 ) (1,2) (1,2 )
0.0;  0.5;  1.0;  0.0;  0.5;  1.0.W W W W W W= = = = = =  

For example, the sub pixel (u, v)=(1, 2) is not overlapped with the secret pixel (x, 

y)=(1, 1) but half overlapped with the secret pixel  (x, y)=(1, 2). So, (1,2 )

(1,1)
0W =  and 

(1,2)

(1,2)
0.5W = . The average overlapping percentage for Fig. 2(c-1) is then 

( , )

( , )

All ( , )

6u v

x y

u v

W W= = ( (1,1)

(1,1)
W + (1,2)

(1,2)
W + (1,3)

(1,2)
W + ( 2,1)

(1,1)
W + ( 2,2)

(1,2)
W + )( 2,3)

(1,2 )
6W =5/6. 

Using the same approach, the average overlapping percentages for Figs. 2(c-2),  
(c-3) and (c-4) are determined as 4/6, 4/6 and 3/6, respectively. The higher 
overlapping percentage implies the less geometrical distortion-like effects in the 

recovered image [9]. The results show that the W  can really be used to determine the 
suitable pattern for our proposed VSS scheme. It is consistent with the immediate 
observation that Fig. 2(c-1) is a reasonable choice for the less distortion. Meantime, 
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the important pixel 2 in Fig. 2(c-1) is represented by four sub pixels same as the  
Fig. 2(b-2) and the shadow size is less than Fig. 2(b-2). When compared to  
Fig. 2(b-1), we have the better resolution for pixel 2. The average pixel expansions of 
Fig. 2(b-1), Fig. 2(b-2) and Fig. 2(c) are 2, 4 and 3, respectively. Our new framework 
is provided with the advantages of large and small pixel expansions simultaneously. 

(a) A 2-pixel image (b-1) m=2    (b-2) m=4 
(b) Same pixel expansion 

(c-1)          (c-2)           (c-3)         (c-4) 
c) Different pixel expansions with m=2 and 4  

Fig. 2. A 2-pixel secret image and the co-locations of sub pixels in the shadow images using the 
same and different pixel expansions 

 

Fig. 3. The overlapping between sub pixels and secret pixels for Fig. 2(c-1) pattern 

From this 2-pixel example, using different pixel expansions in the shadow images 
to improve the contrast and reduce the shadow size is achieved. However, for a large-
sized secret image we need to take the following problems into account: 

(1) About “importance”, some concerns need to be considered: how many 
importance levels for the pixels we need and how to classify the pixels in a secret 
image? 

(2) How to assign different pixel expansions for the pixels with different importance? 
(3) What pixel expansions in the shadow images are used? 
(4) How to arrange the co-locations of sub pixels for achieving the high-contrast 

recovered image? 
(5) Because of using different pixel expansion, we should show how to fairly 

measure the contrast. 

3.2   The Proposed VSS Scheme 

Our aim in this paper is to solve the above problems. Considering problems (1) and 
(2), it is not appropriate to assign the same pixel expansion for the pixels with the 
same importance. When some important pixels are located around, if we assign them 
with the same pixel expansion then we may not find the sufficient sub pixels to 
represent the secret pixel in the overlapping areas. Therefore, our encoding algorithm 
prioritizes the pixels as the most pixel expansion as possible according to their 
importance, i.e., processes the most important pixels first and then the less important 
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pixels, and etc. About the importance of pixels, we can use the edge detectors to 
classify the pixels in the secret image into some categories by setting different 
thresholds. As the threshold increases the weak edges are removed and the strong 
edges are remained. For example, we may define a set of threshold levels (λ0, λ1, …, 
λL-1) in the Sobel edge detector to classify L-level importance. Because we do not 
assign the same pixel expansion for the pixels with the same importance level but 
prioritize the pixels according to their importance, so it is enough to divide the pixels 
into two categories (important and unimportant pixels). Consider two types of secret 
images experimented in this paper: the simple black/white printed text image and the 
binary halftone picture. Using any λ will detect the same edges for a simple 
black/white printed text image and the important pixels are simply the edges of texts 
(see Fig. 1(a-2)). For the binary halftone picture, we use a certain λ and the original 
gray picture to find the edges. The binary halftone picture obtained from the original 
gray picture is used as the secret image.  

Considering problem (3), we first choose a (k, n) VSS scheme with the minimum 
pixel expansion mC and the high contrast from the existing conventional VSS 
schemes, and then obtain other size-reduced VSS schemes with pixel expansions 
1~(mC−1) [2-7]. In the proposed VSS scheme, we may also choose m=0, i.e., discard a 
very unimportant secret pixel.  

Considering problem (4), we should find a high average overlapping percentage to 
recover a high-contrast image and this will be done in the following encoding 
algorithm. Some notations are defined first: 

I      The original gray secret picture with the size (Ix×Iy) used for finding the 
edges. 

I The binary halftone picture of I  by the halftoning technique which is a 
technology to transfer a gray level picture into a black/white picture. Image I 
is used as a secret image. 

( )E ⋅   The Sobel edge detector with a threshold λ. 

mC  The minimum pixel expansion for a VSS scheme with the high contrast 
chosen from the existing conventional (k, n) VSS schemes. 

O(i) The n output shadow images, i∈[1, n], with the size (Ou×Ov) where (Ou×Ov ) 
≤ (Ix×Iy×mC). 

M The mapping pattern, a (Ou×Ov) matrix which elements are the location 
coordinates (x, y) in I. 

 
Encoding algorithm: 
Input: I , I, λ, mC and (Ou×Ov).  

/*  Note: for the black/whit printed text image, I = I  and any λ results in the same 
edges */ 
Output: O(i), i∈[1, n]. 

Mapping: 
(M-1): Find the important pixels (1) (1)( , )x y  using ( )E I  and let the remaining pixels 

( 2) (2)( , )x y  be unimportant pixels. 
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(M-2): Find the set of location coordinates (u, v) which overlaps the important (resp. 

unimportant) pixels, i.e., ( 1 ) ( 1 )
( , )x y

S ={(u, v), which overlaps ( 1 ) ( 1 )( , )x y } (resp. 

( 2 ) ( 2 )
( , )x y

S ={(u, v), which overlaps ( 2 ) ( 2 )( , )x y }). 

(M-3): For l = 1 to 2 do 

{   For all ( ) ( )( , ) [ , ]l l

x y
x y I I∈  and ( , ) [  ],

u v
u v O O∈  do 

{    For m = mC to 0 do 

           { if no sufficient m (u, v) exist in ( ) ( )
( , )

l l
x y

S  break; 

choose m non-chosen (u, v) with large 
( ) ( )

( , )

( , )
l l

u v

x y
W  from ( ) ( )

( , )
l l

x y
S  

and let (u, v)= ( ) ( )( , )l lx y ;  };   };  };           

(M-5): Let the non-chosen (u, v)=* (dummy pixels); 
(M-6): Determine the mapping pattern M. 

Sharing: 
(S-1): For different m, use the corresponding VSS schemes to share the secret pixel in 
I by m sub pixels. 
(S-2): Generate n (Ou×Ov)-sized shadows according to the mapping pattern M. 

 
Suppose there are NI important pixels, NU unimportant pixels in a secret image and 

NS=(Ix×Iy) is the number of secret pixels, where (NI +NU )=NS. Let ( )m

I
N , ( )m

U
N  and 

( )m

S
N , 0≤m≤mC, be the number of pixels using the pixel expansion m in the important, 

unimportant pixels and the secret image where ( )m

I
N + ( )m

U
N = ( )m

S
N . Then, the average 

pixel expansions of important and unimportant pixels is mI =
( )

0

C
m

m

I I

m

m N N
=

× , mU 

= ( )

0

C
m

m

U U

m

m N N
=

× , and mA = ( )

0

C
m

m

S D S

m

m N N N
=

× + , where ND is the 

number of dummy pixels in the shadow image.  
An example in Fig.4 illustrates the operation of encoding algorithm for a (2, 3) 

VSS scheme. Fig. 4(a) is a black/white printed text image “T” with (Ix×Iy)= (8×8) 
pixels where there are 10 important pixels: 11~15, 21, 29, 37, 45, 53, and other 54 
pixels are unimportant pixels. We want to generate three shadows with the size 
(Ou×Ov)=(10×10) pixels. First, choose mC=3 and three (2, 3) VSS schemes with m=1, 
2 and 3: the Naor-Shamir scheme for m=3, the Kuwakado-Tanaka scheme for m=2 [2] 
and the Yang scheme for m=1 [6]. Fig. 4(b) is the mapping patterns and it is observed 

that ( 0 )

I
N =0, (1)

I
N =1, ( 2)

I
N =3, (3)

I
N =6 for these ten important pixels. For other 54 

unimportant pixels, ( 0 )

U
N =0, (1)

U
N =33, ( 2)

U
N =21, (3)

I
N =0. There is no dummy pixel in 

Fig. 4(b), i.e., ND =0. 
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(a) (b) 

Fig. 4. The mapping pattern M for the secret image “T” using the proposed encoding algorithm 
(a) the 8×8-pixel secret image with 10 important pixels (b) the 10×10-pixel mapping pattern 

3.3   The Contrast 

We had already solved problems (1)-(4) mentioned in Section 3.1. In this sub section, 
we address the last problem: how to fairly measure the contrast of recovered image? 

Previous theoretical definitions of contrasts were ( )h l m− , ( )( ) ( )h l m h l− +  and 

( ) ( )h l m l− + in [1], [10] and [11], respectively. However, the contrast measurement 

is based on the very subjective measurement of human visual sight. Thus the 
inconsistency among the previous definitions may happen due to the personal 
subjective opinion. 

In this paper, for the black/white printed text, we give a completely different 
measurement based on the “machine” such that the personal bias can be eliminated. 
Another care for the contrast measurement is that the more pixel expansion results in 
the high-contrast recovered image and the less pixel expansion causes the distortion. 
Therefore, just comparing the contrast but not caring the shadow size is not fair. From 
these two observations, by using the machine instead of human visual sight and 
considering the shadow size, the new measurement R (normalized recognition rate) is 
described as follows. 

With the help of machine to recognize the printed text image, e.g., the OCR 
system, we can avoid the personal bias. When employing OCR, the recovered image 
is adjusted to the input of the OCR. The adjusting process includes removing the 
noise-like random dots and rescaling the recovered image to keep the aspect ratio of a 
character invariant. This adjusting process operates like the human visual system that 
overlooks the noisy random dots and concatenates the meaningful pixels. At this time, 
the combination of adjusting process and OCR algorithm simulates the ability of 
human visual system and shown in Fig. 5. 

By using this OCR-like human visual system, a new contrast measurement is 
defined. Let the number of characters in a test image be N1, the number of recognized 
characters at OCR output be N2. Then the recognition rate is (N2/N1). For comparison 
with the same condition, the recognition rate is normalized by dividing the average 

pixel expansion as R= ( )
2 1 A

N N m . Detail experiments and comparison will show 

that the normalized recognition rate R is effective for measuring the contrast. 
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Fig. 5. Simulated human visual system 

4   Experiments 

4.1   Experimental Results for the Black/White Printed Text Image 

For a black/white printed text image, we use the proposed (2, 3) VSS scheme to test 
the new contrast measurement R. A 300 300-pixel printed text Fig. 1(a-1) is used as 
the secret image including 161 English characters. Fig. 1(a-2) shows that there are 
12,989 important pixels about 14.43%. Choose the following shadow sizes for test: 
(300 300), (600 300), (900 300), (425 425), (520 520), (240 375), 
(750 240), (750 360). All recovered images are shown in Fig. 6. (Note: the 
recovered images are adjusted and rescaled as the original image to keep the aspect 
ration invariant for OCR.) 

 

   
(a) 

 
(b) 

 
(c)  

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 6. (a)-(h) obtained from Figs. 7(a)-(h) by adjusting and rescaling 

Recognize Fig. 6 by OCR. The numbers of recognized characters are 35, 95, 146, 
145, 155, 53, 64 and 133, respectively, and their corresponding normalized 
recognition rates are 0.2174, 0.2950, 0.3022, 0.4503, 0.3209, 0.3292, 0.1988 and 
0.2754. For these eight shadow sizes, the maximum number of recognized characters 
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is N2=155 (the shadow size (Ou Ov)=(520 520)) and the maximum number of 
normalized recognition rate is R=0.4503 (the shadow size (Ou Ov)=(425 425)). The 
detail analysis for other shadow sizes can refer the full version. 

4.2   Experimental Results for the Binary Halftone Picture 

Also, we use a binary halftone picture, House, as a secret image, for testing the 
proposed (2, 3) VSS scheme. Suppose (Ix Iy)=(300 300) and (Ou Ov)= 
(400 400), i.e., mA=1.778. A suitable threshold λ in the Sobel edge detector is 
chosen to achieve the maximum average pixel expansion of important pixels mI. Fig. 
7 shows this optimal case ( λ=0.04 and the maximum mI=2.407). Fig. 7(a) is the 
original gray secret image used for finding the edges. Fig. 7(b) shows the edges in 
house obtained from the Sobel edge detector with λ=0.04 (important pixels: 14250; 
unimportant pixels: 75750). Fig. 7(c) is the binary halftone picture used as the secret 
image and Fig. 9(d) is the recovered image (The detail analysis can refer the full 
version). 

(a)                                 (b)                                   (c)                                         (d)  

Fig. 7. The proposed (2, 3) VSS scheme (a) the original gray secret picture used for finding the 
edges (b) the important pixels in House using the threshold λ=0.04 (NI=14250) (c) the binary 
halftone picture House used as the secret image (d) the recovered image 

5   Applications 

5.1   Wide Applicability of the Proposed VSS Scheme 

Two major advantages of our proposed VSS scheme are the availability for any 
certain shadow size and the improvement of contrast. Considering the availability for 
any certain shadow size (Ou×Ov ), for example a secret image in a VSS scheme with 
m=3 is 100×200 pixels and the recovered image needs to be 100×300 pixels for some 
certain application. As the conventional VSS scheme, we have to reduce the secret 
image half, i.e., 100×100 pixels, and then obtain the 100×300-pixel shadow images 
for the display need. However, the proposed scheme can be directly used to achieve 
the 100×300 size. The feature of any shadow size makes our scheme more practicable 
for applications. For example, our schemes can be applied in the VSS applications in 
[12, 13] where two shadow sizes are required: the monitor screen size and the cellule 
phone display size. The second advantage of our scheme is the improvement of 
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contrast with the less shadow size when compared to the conventional VSS scheme. 
This improvement can be applied in a digital image indexing scheme based on VSS 
technique [14]. We can use our scheme to share the binary metadata images used in a 
digital image indexing to reduce the shadow size but meantime have the high contrast. 
The less shadow size means the less modification of LSBs in a color filter array 
(CFA) image and results in the high-quality indexed demosaiced image. 

5.2   A New VSS-Based Visual Authentication System by Collaborating Our 
Scheme and OCR Technique 

OCR technique used in Section 3.3 for measuring the contrast can also be extended to 
come up a new VSS-based visual authentication system. In this section, by combining 
two techniques, VSS and OCR, we introduce a novel visual authentication scheme. 

Some practical authentication and identification schemes based on VSS were 
proposed in [12, 13, 15]. The concept of visual authentication and identification 
schemes using (2, 2) VSS scheme is described as the following. The client (C) wishes 
to communicate the server (S) with a message I (a black/white printed text image, 
e.g., alphanumerical message). First, C creates a random shadow T1 and gives it to S 
secretly. When starting the visual authentication protocol, S uses (2, 2) VSS scheme 
to create another shadow image T2 given to C like a ticket which the stacked result 
(T1+T2) shows the information I. On receiving T2, S stacks these two shadow images 
and decides whether accepts I or not. This authentication scheme provides a single 
authentication since (2, 2) VSS scheme is just a one-time pad. For a more practical 
use, we need a many-times authentication system which can be used for several 
authentications, i.e., C only sends one shadow and then S can authenticate n 
messages. Noar and Pinkas [15] used a trivial way to achieve authentications n times 
by directly using n different areas in the shadow image. However, there are two 
problems in this many-times authentication scheme for practical application. The first 
problem is the reduction of resolution due to the small areas used for one 
authentication. The second problem is that the message I is viewed by a person to 
determine whether accept or reject and this will induce the personal bias. 

Both problems can be solved by combining our VSS (the high-contrast recovered 
image) and OCR-like human visual system (automated recognition). We can try out 
the shadow size using our proposed scheme to achieve the 100% successful 
recognition rate. The “recovered secret printed text” could be a password or an 
authentication token and even can be divided into several areas for more 
authentications. Also, we can let the pixels in authentication areas be important pixels 
to enhance the recognition rate. Finally, we improve the previous authentication 
systems to retrieve the password automatically instead of viewing by the human 
visual system. The fusion of OCR and VSS makes the visual authentication system 
more practicable. 

6   Conclusion 

We take the lead to use different pixel expansions in a shadow image to achieve a 
high-contrast and any-size VSS scheme. Using the recognition capability of OCR, we 
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define a normalized recognition rate to fairly measure the contrast. The new 
measurement avoids the bias of human visual system and solves the problem that 
there is no consensus on previous definitions of contrast. In this paper, we also show 
the VSS scheme is not just an academic research issue but can be suitably modified 
for applications. For example, we introduce a new VSS-based automated visual 
authentication system based on OCR technique.  
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Abstract. Wavelet packet (WP) image coding algorithms have shown consis-
tent improvement over those based on wavelet transform. However, most of the 
current work cannot produce an embedded bit stream, since an embedded WP 
image coding method requires a valid and uniform decomposition for a given 
image. In this paper, based on the idea of maximizing variance of each subband, 
we propose two rate-unrelated basis selection criteria for embedded image cod-
ing. According to these criteria, efficient decompositions are found by growing 
the decomposition tree once or by pruning the full decomposition tree once. The 
experimental results show that, with the same subband coding scheme, the pro-
posed basis selection methods achieve better coding performance than that of 
previous selection criteria. Comparison with the rate-distortion optimized basis 
selection scheme shows that, the proposed methods have 0.33dB loss at most, 
with the advantages of an embedded coding fashion and lower computational 
complexity. 

1   Introduction 

Wavelet transform has been successfully adopted for still image coding in recent 
years for its nice localization properties in both time and frequency domain. On the 
other hand, for some kind of images (such as image with oscillatory patterns or local-
ized textures), the wavelet transform is not an effective tool, since its fixed space-
frequency tiling does not always match the spectrum of these images. To solve this 
problem, wavelet packet (WP) was developed [1] to adapt the underlying wavelet 
bases to the frequency content of a given signal. 

As a generalization of dyadic wavelet transform, wavelet packet offers a rich set of 
decomposition structures. To select a valid wavelet packet basis for a given image, i.e. 
find a WP decomposition structure which makes the input image amenable to subse-
quent coding, a basis selection criterion (cost function) should be given in advance. If 
the cost function is additive, then the optimal basis in the sense of this additive func-
tion can be found by pruning the full decomposition tree in a bottom-up fashion; oth-
erwise a greedy tree-growing strategy can be adopted to find a basis. In the latter case, 
the basis selection procedure is simpler than the tree pruning algorithm, yet the se-
lected basis is not optimal. 

                                                           
* Member, IEEE. 
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Since the best basis search procedure is equivalent to the procedure of minimizing 
a given cost function, a proper design of the cost function is essential to generating an 
effective basis. In the previous work [1, 2], many additive cost functions were pro-
posed, such as the entropy based and the L1-norm based cost functions. These cost 
functions have two advantages. The first one is that since these cost functions have no 
relation with rate and distortion, the full decomposition tree only needs be pruned 
once to form the optimal decomposition. The second virtue is that based on these cost 
functions, the wavelet packet decomposition structure is uniform at various bit rates, 
making these criteria feasible for embedded wavelet packet image coding. However, 
since these cost functions do not take into account subsequent subband coding meth-
ods, the coding results based on these criteria are not good. 

To improve the performance of wavelet packet image coding algorithm, Ram-
chandran and Vetterli [3] developed a rate-distortion (R-D) based cost function. Ac-
cording to this criterion, the quantization and the best basis choice are jointly opti-
mized in an operational rate-distortion sense. However, the best basis search method 
is extremely computationally intensive due to its three layer embedded search proce-
dures. Moreover, for a given image, this R-D optimized wavelet packet decomposi-
tion structure is variable with different target bit rate, making it difficult for embedded 
image coding. 

To achieve an embedded wavelet packet image coding algorithm with high coding 
performance and low computational complexity, in this paper, we propose two basis 
selection criteria based on the simple idea of maximizing the variance of each sub-
band. According to these criteria, efficient decompositions for embedded coding are 
found by growing the decomposition tree once or by pruning the full decomposition 
tree once. The first criterion is the variance function of each subband. A gain factor 
(GF) defined by the ratio of the variance function is used to find the final decomposi-
tion. The second criterion is deduced from variance. Though this criterion is exactly 
the already proposed L1-norm, a control factor (CF) defined by the ratio of the L1-
norm is introduced to improve its efficiency of wavelet packet basis choice. 

This paper is organized as follows. Section 2 presents a brief review of wavelet 
packet decomposition and some previously proposed cost functions. These cost func-
tions are used to assess our basis selection criteria under the circumstance of the same 
subband coding scheme. In Section 3, after a brief description of the underlying quan-
tization and entropy coding methods for each WP subband, the proposed basis selec-
tion criteria are detailed. In Section 4 some experimental results are given. Finally, 
conclusions are drawn in Section 5. 

2   Wavelet Packet 

2.1   Wavelet Packet Decomposition 

The basic idea of wavelet packet is to allow non-octave subband decomposition to 
adaptively select the best basis for a particular signal. Different from the wavelet 
transform, wavelet packet not only iterates a two-channel filterbank over the low 
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frequency band at each level, but also over the other high frequency bands. This op-
eration leads to a complete quaternary decomposition tree for a 2-D image with each 
node denoting a subband (the root node is the input image). To achieve the optimal 
WP decomposition, i.e. find the best subtree of the full tree, decisions should be made 
for each non-leaf node whether to keep its four sub-branches or not (corresponding to 
decomposing this node subband or not). 

As mentioned above, a basis selection criterion (i.e. cost function) should be given 
in advance for the purpose of finding the final wavelet packet decomposition. The 
objective is to select a subtree of the full tree so that the global cost function is mini-
mized. An additive cost function can achieve the optimal decomposition by pruning 
the full tree from bottom to the root node. During the tree-pruning procedure, the cost 
of a parent subband is compared with the sum of its four children’s costs. If the par-
ent’s cost is costly, the four sub-branches are retained, and the parent’s cost is updated 
to the sum of its children’s costs, otherwise the four sub-branches are pruned. When 
this tree-pruning procedure reaches the root node, the best subtree that minimizes the 
global cost function is found. For a non-additive cost function, the bottom-up tree-
pruning method is meaningless, because it’s not proper to compare or update the 
parent’s cost with the sum of its four children’s costs. In this case, a subband is 
probed to decide whether to decompose it or not according to the non-additive cost 
function. This operation leads to a top-down tree-growing procedure. 

2.2   Cost Functions 

In the previous work [1, 2], many rate-unrelated additive cost functions are proposed, 
while to our knowledge, none of these cost functions can generate a consistently effi-
cient WP decomposition for embedded image coding. Two noticeable cost functions 
are the Shannon entropy cost function and the L1-norm cost function, which are de-
fined as follows: 

Shannon entropy cost function: 

2 2

2 2

2 2

Cost ( ) exp lni i
shannon

i

x x
x

x x
= −                                                               (1) 

L1-norm cost function: 

1Cost ( )L Norm i
i

x x− =                                                                                       (2) 

where x  denotes the decomposed coefficients in a wavelet packet subband. In equal-

ity (1), 
2

2
x  denotes the energy of the signal x . 

Ramchandran and Vetterli proposed a rate-distortion based cost function [3], which 
is given by  

Cost ( )R D D Rλ λ− = + ⋅                                                                                     (3) 

where λ  is the quality factor, which controls the tradeoff between the distortion D  
and the budget bit rate R . The rate-distortion cost function not only solves the  
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problem of the best basis selection, but also allocates the target bit rate among the 
objective  subbands optimally, i.e., the given bit budget is distributed among different 
subbands so that the global distortion is minimized. The disadvantages of this cost 
function are that the computational complexity is quite high due to its three layer 
embedded basis searching procedure, and that the rate-distortion optimized WP de-
composition is inappropriate for embedded image coding. 

3   Embedded WP Image Coding Algorithm 

In this section, the subband coding algorithm is first described briefly. Then the pro-
posed basis criteria are detailed. A block-partitioning coding scheme [4] is used to 
quantize each WP subband in a bitplane-by-bitplane manner. The quantization sym-
bols are entropy encoded by an adaptive arithmetic coder [5] with the JPEG2000 
context modeling [6].  

After the wavelet packet decomposition, the transformed image is encoded sequen-
tially from its highest bitplane to the lower bitplanes. In each bitplane, the WP coeffi-
cients belonging to a subband are coded with the block-partitioning quantization algo-
rithm and the JPEG2000 context modeling entropy coding procedure. The coding 
process ceases till the budget bit rate exhausts, generating an embedded bit stream. 

3.1   Subband Coding Algorithm 

The block-partitioning coding algorithm adopts the bitplane coding fashion. In each 
bitplane, the coding algorithm finds and codes the significant coefficients of current 
bitplane. To achieve high coding efficiency, it tests the significance of a coefficient 
block first. If the block is significant, it is partitioned to locate the significant coeffi-
cients in it; otherwise it will be retained for the next bitplane revisit. In this way, 
groups of insignificant coefficients are represented with only one symbol, at the same 
time the significant coefficients can be located quickly (More details about this algo-
rithm are presented in [7]). 

One advantage of the block-partitioning algorithm is that it can achieve similar 
or better performance compared with the zerotree-based partitioning algorithm 
(SPIHT [8]) by exploiting the intraband dependencies only. Via coding each WP 
subband independently with the block-partitioning algorithm, the difficulty in defin-
ing hierarchical tree for WP subbands is naturally avoided. In our previous work 
[7], the block-partitioning coding algorithm is combined with the R-D optimized 
basis selection criterion [3]. Though this algorithm gives better objective results and 
visual quality, it is not an embedded coding scheme and the computational com-
plexity is quit high. In next section, the experimental results of [7] (WP-BPO) are 
also presented to compare our proposed basis selection criteria with the rate-
distortion optimized cost function. 

3.2   Variance Based Basis Selection Criterion 

The main principle of the block-partitioning algorithm is to exploit the energy  
compaction property of wavelet transform, which means that the major energy is 
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concentrated in the lowest frequency subband, and in higher frequency subbands, 
energy is mainly along the image’s edges. As shown in Fig. 1, after a level of wavelet 
transform, the major energy is converged in the LL subband, so we deem that the 
variance of signal | |y , which depicts the dispersion degree of a signal, should be 

larger than the variance of signal | |x . This observation motivates us to use the vari-

ance measure as a basis selection criterion. 

x yT
LL HL

LH HH

 

Fig. 1. Decomposition of an input signal x . The decomposition criterion is defined by the 

relation of the variance of | |x  between the variance of | |y . 

The variance of signal | |x  is defined as follows. 

2 22 21 1
2

( ) ( ) ( ( )) ( ( ) )in n i
D x E x E x x x= − = −                                               (4) 

where n  is the coefficient number of signal x . At the very start, the basis selection 
criterion can be given as follows: if ( )D y  is larger than ( )D x  (i.e. ( ) / ( ) 1.0D y D x > ), 

the decomposition condition is satisfied, else signal x  should not be decomposed to 
signal y . However, we find that this decomposition criterion is so loose that many 

subbands which should not be decomposed are further decomposed. 
To solve this problem, we define a gain factor (GF) as the ratio of ( )D y  to ( )D x , 

where ( )D y  and ( )D x  are the variance of signal | |y  and | |x  respectively. The gain 

factor depicts the variance variation between the input signal x  and the transformed 
signal y . 

( ) ( )GF D y D x=                                                                                              (5) 

The stricter basis selection criterion is brought forward by introducing a constant 

0 1.0GF > : if the inequality 0GF GF>  is satisfied, signal x  is decomposed to signal 

y ; else signal x  is retained. 

Table 1 presents the gain factor of wavelet transform at each level for four test im-
ages, from which we can obtain two facts. The first one is that for most of the test 
images (except the Fingerprint image), the lower the transform level is, the larger the 
gain factor is. This fact validates a principle that a larger gain factor corresponds to a 
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more desirable decomposition. The second fact is that though the gain factor becomes 
smaller as the transform level becomes higher, it is still much larger than 1.0. These 
observations justify the energy clustering property of wavelet transform from the view 
of variance. 

Table. 1. Gain factor for images at each level of wavelet transform, using Daubechies 9/7-tap 
filter for 5-level octave decomposition 

Image

Lena

Barbara

Fingerprint

Goldhill

Layer Level I Level II Level III Level IV Level V

2.429 2.377 2.272 2.169 1.902

2.595 2.500 2.408 2.237 1.860

2.559 2.362 1.989 2.483 3.055

2.413 2.356 2.299 2.217 2.124
 

(a) (b)  

Fig. 2. Decomposition structures for (a) Lena and (b) Barbara images with
0

1.0GF = and 

0
1.075GF = , using Daubechies 9/7-tap filter with maximum 5-level decomposition. (a) Lena: 

left for 1.0 and right for 1.075. (b) Barbara: left for 1.0 and right for 1.075. 

Since the variance based basis selection criterion is not additive, the basis search-
ing procedure should be executed in a top-down fashion. Now we can summarize the 
whole basis selection procedure as follows: 

 For a given input image, determine the maximum decomposition depth N . 
 For each subband x  (the initial subband is the input image), if the decompo-

sition depth does not reach, decompose it to signal y (Fig. 1), compare the 

gain factor ( ) / ( )D y D x  with 0GF . 

 If 0GF GF> , the subband x  is decomposed. Probe the decomposed 

four subbands of signal y  orderly with the same method of subband x . 

 Else, subband x  is retained. 

Though the given constant 0GF  is related to image and subband, we find that it is 

not sensitive to different images. The experimental results show that the coding per-
formance becomes better with the augment of 0GF  when it is smaller than 1.08; when 
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0 1.08GF > , the larger this constant is, the worse the coding performance is. When 

0GF  reaches 1.20, the WP decomposition is exactly the wavelet transform for all the 

test images. In our experiment, this constant is set to be 1.075, which gives a rela-
tively better coding result. Fig. 2 shows the WP decomposition structures with 

0 1.0GF =  and 0 1.075GF =  respectively for Lena and Barbara images. From this 

figure we can see that the decomposition structure with 0 1.0GF =  is very littery, 

which causes a worse coding performance. While for 0 1.075GF = , the WP decompo-

sition structure, which is the sub-decomposition of the former since the selection 
criterion is stricter, is terse and valid. For example, the WP decomposition for Lena 
image is similar to the optimal decomposition in the R-D sense, which is approxi-
mately the wavelet transform. 

3.3   L1-Norm Based Basis Selection Criterion 

The basis selection criterion proposed in last subsection is based on the idea of maxi-
mizing the variance of a signal | |x , i.e. if the inequality 0( ) / ( )D y D x GF>  is satis-

fied, then signal x  is decomposed to signal y . From equality (4) we can see that, if 

the transform T  is orthonormal, then ( ) ( )D y D x>  is equivalent to
i ii i

y x< , 

since the energy of a signal after an orthonormal transform is conservative, i.e. 
2 2

2 2
x y= . This discussion gives an explanation for the already proposed L1-norm 

cost function from the view of variance. Still, we find that the L1-norm based decom-
position condition (i.e. if 

i ii i
y x< , x  is decomposed to y .) is too loose, caus-

ing many  unnecessary decompositions. Similar to the variance based basis selection 
criterion, the decomposition condition can be restricted by introducing a control factor 
(CF), which is defined as the ratio of 

ii
y  to 

ii
x . 

i ii i
CF y x=                                                   (6) 

Thus the new basis selection criterion can be described as follows: if the inequality 

0CF CF<  (where 0 1.0CF <  is a given constant) is satisfied, then signal x  is decom-

posed to signal y ; else signal x  is retained. 

Table 2 presents the control factor of wavelet transform at each level for the same 
images as those in Table 1. From this table we can see that with the rise of the trans-
form level, the control factor becomes larger for most of the test images, furthermore, 
these control factors are much lesser than 1.0 and none of them is close to 1.0. This 
observation implies that the L1-norm basis selection criterion (i.e. 0 1.0CF = ) is too 

loose.  
Due to the additive property of the L1-norm, the basis searching procedure can be 

executed in a bottom-up fashion, leading to an optimal decomposition. The whole 
basis selection procedure based on the L1-norm cost function is summarized as  
follows:  
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 Grow a full decomposition tree to a predetermined decomposition depth N  
for the input image. 

 Prune the full tree recursively, starting from the leaf nodes to the root node. 
At each non-leaf node x , calculate 

ii
x  and 

ii
y , where signal y  is the 

four children subbands of the subband x  (Fig. 1) in the full decomposition 

tree. Compare the control factor 
i ii i

y x  with 0CF . 

 If 0CF CF< , the four children subbands (i.e. signal y ) is retained, and 

the L1-norm cost of subband x  is updated to 
ii

y . 

 Else, the four children subbands are pruned. 
 When this tree-pruning procedure reaches the root node, the final WP decom-

position based on the L1-norm selection criterion is found. 

Table. 2. Control factor for images at each level of wavelet transform, using Daubechies 9/7-
tap filter for 5-level octave decomposition 

Image

Lena

Barbara

Fingerprint

Goldhill

Layer Level I Level II Level III Level IV Level V

0.550 0.563 0.589 0.624 0.687

0.582 0.591 0.586 0.631 0.732

0.540 0.620 0.753 0.668 0.607

0.570 0.584 0.601 0.632 0.662
 

(a) (b)  

Fig. 3. Decomposition structures for (a) Lena and (b) Barbara images with
0

1.0CF = and 

0
0.935CF = , using Daubechies 9/7-tap filter with maximum 5-level decomposition. (a) Lena: 

left for 1.0 and right for 0.935. (b) Barbara: left for 1.0 and right for 0.935. 

Similar to the choosing method of constant 0GF , the constant 0CF  for all the test 

images is determined via plentiful experiments, though the optimal 0CF  for different 

image is dissimilar. The experimental results show that when 0CF  is near 0.88, the 

WP decomposition degenerates into the wavelet transform for all the test images. The 
relatively better coding results are achieved when 0CF  is between 0.93 and 0.94. For 
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0 0.93CF < , the smaller the constant is, the worse the coding performance is; while 

for 0 0.94CF > , a larger 0CF  often causes a worse coding result. In our experiment, 

0CF  is set to be 0.935. The WP decomposition structures with 0 1.0CF =  and 

0 0.935CF =  for Lena and Barbara images are illustrates in Fig. 3 respectively. It is 

easy to deduce that the decomposition structure with 0 0.935CF =  is the sub-

decomposition of the former, since a smaller  0CF  corresponds to a stricter decompo-

sition condition. Comparison of Fig. 3 and Fig. 2 shows that this L1-norm based basis 
selection criterion produces much succincter decomposition structures than the vari-
ance based selection criterion. 

4   Experimental Results 

In this section, some experimental results are presented to evaluate the proposed basis 
selection criteria for embedded wavelet packet image coding. The experiments are 
conducted on three 512 512∗  8-bit grayscale images: Lena, Barbara and Fingerprint, 
using the popular biorthogonal Daubechies 9/7-tap filter [9] with the maximum 5-
depth decomposition. The measure used to describe the coding performance of each 
basis selection criterion is the peak-signal-to-noise ratio (PSNR). 

Table 3 summarizes the coding results at various bit rates for the three test images. 
To compare with a state-of-the-art wavelet image coding algorithm, the coding result 
of the new still image compression standard JPEG2000 is given. In this table, the 
experimental result of the wavelet transform based embedded block-partitioning cod-
ing algorithm (denoted by “Wavelet”) is also listed for the purpose of assessing the 
performance difference between wavelet transform and the WP decomposition. Table 
3 also lists the coding results of the entropy cost function (denoted by “Entropy”) and 
rate-distortion optimized cost function (denoted by “WP-BPO” [7]). For the proposed 
variance based basis selection criterion, the coding results corresponding to  

0 1.0GF =  and 0 1.075GF =  are presented; while for the L1-norm based basis selec-

tion criterion, the coding results with 0 1.0CF =  and 0 0.935CF =  are given. When 

0CF  equals 1.0, it corresponds to the already proposed L1-norm cost function. 

For all the test images, WP-BPO achieves the best coding performance among all 
the basis selection criteria. However, it is not an embedded coding algorithm since it 
uses the R-D optimized cost function. For Lena image, WP-BPO outperforms 
“ 0 1.075GF = ” and “ 0 0.935CF = ” by about 0.07dB and 0.08dB averagely. These 

insignificant improvements can be explained by the fact that the optimal decomposi-
tion for Lena image is approximately the wavelet transform. The coding results of 
“ 0 1.0GF = ” and “ 0 1.0CF = ” is worse than the coding result of “Wavelet”, which 

reinforces the fact that these decomposition conditions are too loose. For Lena image, 
the coding result of “Entropy” is also inferior to that of “Wavelet”. 

For Barbara image, the coding results of “ 0 1.075GF = ” and “ 0 0.935CF = ” are 

worse than WP-BPO by about 0.31dB and 0.20dB respectively on the average, at the 
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Table. 3. Rate-distortion (PSNR) performance at various bit rates for different basis selection 
criterion, using maximum 5-depth  decomposition 

Lena
Rate(bpp)

Wavelet
WP-BPO

1.0 0.5 0.4 0.25 0.2 0.1250.8

Entropy

40.39 39.35 37.34 36.28 34.23 33.19 31.23

40.35 39.33 37.27 36.23 34.09 33.05 31.10
40.50 39.41 37.41 36.35 34.37 33.31 31.24

JPEG2000 40.33 39.24 37.28 36.13 34.14 33.01 31.00

GF0 = 1.0 39.62 38.75 36.53 35.72 33.43 32.55 30.39
40.37 39.36 37.36 36.33 34.25 33.20 31.22
40.24 39.30 37.22 36.25 34.20 33.16 31.11
40.39 39.35 37.34 36.28 34.23 33.19 31.23

GF0 = 1.075
CF0 = 1.0
CF0 = 0.935

Barbara
Rate(bpp)

Wavelet
WP-BPO

1.0 0.5 0.4 0.25 0.2 0.1250.8

Entropy

37.14 35.13 31.97 30.52 28.24 26.79 25.24 

37.42 35.55 32.65 31.35 29.19 28.02 26.34

JPEG2000

GF0 = 1.0 36.09 34.70 31.53 30.61 28.16 27.44 25.77
37.60 35.78 32.83 31.53 29.26 28.11 26.38
37.52 35.77 32.80 31.54 29.25 28.19 26.40
37.69 35.93 33.02 31.64 29.38 28.19 26.42

GF0 = 1.075
CF0 = 1.0
CF0 = 0.935

Fingerprint
Rate(bpp)

Wavelet
WP-BPO

1.0 0.5 0.4 0.25 0.2 0.1250.8

Entropy

37.07 34.93 31.95 30.48 27.64 26.34 24.39 

36.77 34.75 31.86 30.44 27.50 26.45 24.30

JPEG2000

GF0 = 1.0 36.40 34.75 31.29 30.09 27.37 26.29 23.97
37.25 35.22 31.87 30.54 27.84 26.77 24.56
37.10 35.14 31.84 30.48 27.71 26.62 24.44
37.40 35.37 32.12 30.59 27.90 26.67 24.69

GF0 = 1.075
CF0 = 1.0
CF0 = 0.935

37.52 35.62 32.30 30.83 28.22 27.06 25.05

37.87 36.22 33.24 31.86 29.53 28.37 26.60

37.18 35.29 32.30 30.86 28.36 27.33 25.42

36.77 34.72 31.76 30.23 27.55 26.19 24.22

 

(a) (b) (c)  

Fig. 4. Decoded images for Lena at 0.25bpp. (a) Variance criterion with 
0

1.075GF = , PSNR = 

34.25dB. (b) L1-norm criterion with 
0

0.935CF = , PSNR = 34.23dB. (c) R-D optimized cost 

function (WP-BPO), PSNR = 34.37dB. 
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(a) (b) (c)  

Fig. 5. Decoded images for Barbara at 0.25bpp. (a) Variance criterion with 
0

1.075GF = , PSNR 
= 29.26dB. (b) L1-norm criterion with 

0
0.935CF = , PSNR = 29.38dB. (c) R-D optimized cost 

function (WP-BPO), PSNR = 29.53dB. 

(a) (b) (c)  

Fig. 6. Decoded images for Fingerprint at 0.25bpp. (a) Variance criterion with 
0

1.075GF = , 

PSNR = 27.84dB. (b) L1-norm criterion with 
0

0.935CF = , PSNR = 27.90dB. (c) R-D opti-

mized cost function (WP-BPO), PSNR = 28.22dB. 

same time, “ 0 1.075GF = ” and “ 0 0.935CF = ” outperform JPEG2000 by 0.69dB and 

0.80dB on the average. Though the coding results of “Entropy” and “ 0 1.0CF = ” are 

better than JPEG2000, comparison of “ 0 0.935CF = ” and “ 0 1.0CF = ” shows that the 

coding performance of the latter criterion can still be improved by restricting its basis 
selection condition. 

For Fingerprint image, WP-BPO outperforms “ 0 1.075GF = ” and “ 0 0.935CF = ” 

by about 0.33dB and 0.26dB averagely. Similar to the Lena image, the coding result 
of “Entropy” is inferior to the result of “Wavelet”. 

From the PSNR results presented in Table 3, we can summarize the coding per-
formance of each basis selection criterion as follows. The variance criterion with 

0 1.075GF =  and the L1-norm criterion with 0 0.935CF =  are both efficient methods 

for embedded WP image coding. Although the variance criterion is inferior to the L1-
norm criterion in PSNR, however, the variance based basis selection procedure is 
executed in a top-down fashion, thus the computational complexity is lower than the 
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L1-norm criterion, which induces a bottom-up basis searching procedure. Comparison 
of both these methods with the rate-distortion optimized cost function shows that the 
performance decline is within 0.33dB on the average, with the advantage of an em-
bedded coding fashion. From the table we can also see that the basis selection condi-
tions with 0 1.0GF = and 0 1.0CF =  are both too loose, inducing a worse coding per-

formance. At last, the already proposed entropy based cost function does not always 
produce a valid basis (such as for the case of Lena and Fingerprint image).  

The decoded images at 0.25bpp for the three test images are shown in Fig. 4, Fig.5 
and Fig. 6 respectively. For Lena and Fingerprint image, the proposed basis selection 
criteria have no obvious visual difference with the rate-distortion optimized cost func-
tion. For Barbara image, we notice that the tablecloth of the WP-BPO decoded image 
is clearer than the other two decoded images, though the difference is not distinct.  

5   Conclusions 

In this paper, we propose two rate-unrelated basis selection criteria for embedded WP 
image coding. The first criterion is based on the idea of maximizing the variance of a 
subband, while the second is the L1-norm based basis selection criterion. By introduc-
ing two factors (i.e. gain factor and control factor), the efficiency of wavelet packet 
basis selection for embedded image coding is improved significantly. The experimen-
tal results show that the image coding algorithm based on the proposed basis criteria 
achieves similar objective result and visual quality to those of the R-D optimized 
selection criterion, while the bit stream is embedded and the computational complex-
ity is lower due to the simple searching procedure for a valid decomposition. In this 
work, the constants 0GF  and 0CF  are given in advance by plentiful experiments, an 

interesting future work is how to decide the constants 0GF  and 0CF  dynamically 

when determining whether to decompose a subband or not. 
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Abstract. We show how fractal image coding can be viewed and gen-
eralized in terms of the method of projections onto convex sets (POCS).
In this approach, the fractal code defines a set of spatial domain sim-
ilarity constraints. We also show how such a reformulation in terms of
POCS allows additional contraints to be imposed during fractal image
decoding. Two applications are presented: image construction with an
incomplete fractal code and image denoising.

1 Introduction

In this paper we show how fractal image coding can be formulated in terms of a
powerful method known as projections onto convex sets (POCS) [15].

In standard fractal image coding [1,3,7,11], images are normally considered
as elements of a complete function space F , e.g., Lp(X), for X ⊂ R2. Given
an image function u, we seek a contractive operator T : F → F such that its
fixed point ū is a good approximation to u. This comprises fractal coding. At the
decoding stage, the fractal transform T is applied iteratively to an initial “seed”
image u0. Banach’s contraction mapping theorem guarantees the convergence of
the iterates defined by un+1 = Tun to ū.

One may, however, consider this decoding process to be too restrictive since
any additional knowledge about the original image (e.g., bounding constraints on
the pixel values) cannot be applied simultaneously with the fractal transform. In
practice, therefore, additional constraints have usually been applied to the fixed
point of the contraction map T . Such post-processing is usually equivalent to
the application of projections on the fixed point. For example, thresholding the
data in order to enforce certain bounds is simply a projection of the the data
onto the space of images that lie within those bounds.

In our POCS approach, a fractal code is considered as a set of similarity
constraints in the spatial domain. Fortunately these constraints are convex and
closed, and therefore satisfy the requirements in setting up a POCS approach.

In what follows, we shall show how POCS can provide the opportunity to
apply the fractal code of an image simultaneously with additional constraints

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 493–506, 2006.
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during the decoding stage. These constraints may include other spatial, statisti-
cal, spectral and pattern properties of the unknown image, e.g., bounds on pixel
values, bounded energy, smoothness, similarity to the observed data, etc..

A most interesting consequence of such a POCS-type reformulation allows us
to bypass the traditional view of fractal coding as simply a mapping of domain
image subblocks onto range image subblocks. Instead, we consider the applica-
tion of the projections on a closed and convex set that is constructed using the
similarity constraint between the domain and range subblocks. This type of pro-
jection translates to a simultaneous alteration of domain-range block pairs. In
this paper, we introduce such projections explicitly and examine some interesting
implications and applications.

Let us qualify that we are not interested in the compression capabilities of
fractal image coding here. Our study picks up upon the thesis of H. Puh on set-
theoretic coding [13]. In that work, there were no explicit details on how the self-
similarity properties of an image can be translated into POCS-type inequality
constraints.

2 Some Basics of Fractal Image Coding

More details on fractal image coding can be found in many places [1,3,7,11],
including one of our recent papers on fractal-based denoising [9].

2.1 Fractal Image Encoding

Fractal image coding seeks to approximate an image by a union of spatially-
contracted and greyscale-modified copies of subblocks of itself. If we let the image
of interest I be represented by an image function u(x, y), then the result of the
coding procedure is a contractive mappping T , the so-called fractal transform
operator, the fixed point ū of which provides an approximation to u. In other
words,

u ∼= ū = T ū. (1)

To obtain T , the image I is first partitioned (e.g., uniform, quadtree) into a set
of nonoverlapping range blocks Ri. For each range block Ri, one searches for
a larger domain block Di (from an appropriate “domain pool” D that is often
common to all range blocks of the same size) such that u(Ri) is approximated
as well as possible by a modified copy of u(Di), i.e.,

u(Ri) ∼= φi(u(Di)) = φi(u(w−1
i (Ri))), (2)

where φi : R → R is a greyscale map that operates on pixel intensities and wi

denotes the 1-1 contraction/decimation that maps pixels of Di onto pixels of Ri.
The fractal code defining T consists of the maps φi as well as the domain-range
assignments determined during the coding procedure.

In the calculations reported below, we employ the simplest form of parti-
tioning, namely a uniform scheme. The range blocks Ri will be N × N square
nonoverlapping pixel blocks. They will share a common domain pool D that
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consists of all nonoverlapping 2N × 2N pixel blocks. This choice of domain pool
is, of course, nonoptimal. The set of all 2N × 2N pixel blocks obtained by single
pixel-shifts would be better but search times would be enormous. In any case,
the purpose of this paper is to show the basics of a method that can be adapted
to any paritioning scheme.

Finally, there are 8 ways – four rotations and four inversions – by which a
larger square domain block Dj can be contracted/decimated and then mapped
onto a smaller range block Ri. We shall index these possible transformations
by means of a k superscript in the spatial mapping, i.e., w(k)

i : Di → Ri, k =
1, 2, · · · , 8.

Let us now assume that we have fractally coded an image function u according
to Eq (2). Because of the nonoverlapping nature of the partition, we may write

u(x, y) ∼= (Tu)(x, y) =
∑

i

φi(u(w−1
i (x, y))). (3)

The image function u is thus approximated as a union of spatially-contracted
(wi) and greyscale-distorted (φi) copies of itself. This union of modified copies
(a trivial consequence since the copies do not overlap) defines a special kind of
fractal transform operator T . If the above approximation is a good one, then the
so-called collage distance ‖ u−Tu ‖ is small. ¿From the “Collage Theorem” [2],

‖ u− ū ‖ ≤ 1
1− cT

‖ u− Tu ‖, (4)

it then follows that if u is “close” to Tu, then u is also close to ū, the fixed point
of T . Here, cT ∈ [0, 1) denotes the contraction factor of T . The quantity ‖ u− ū ‖
is the error of approximation of u by ū.

In practice, one normally assumes the greyscale maps φi to be affine, i.e.,

φi(t) = αit + βi. (5)

For a given domain-range block pair Dj/Ri, the optimal value of the α and β
parameters is usually accomplished by means of least-squares fitting. If we let xm

and ym, m = 1, 2, · · · , N2 denote the pixel greyscale values of the w(k)-decimated
domain block Dj and range block Ri, respectively, then α and β are determined
so that that the squared L2 “collage distance” over Rj ,

Δ(k) =
N2∑

m=1

[ym − αxm − β]2, (6)

is minimized. In the construction of the fractal transform operator T , we choose,
for each range block Ri, the domain block Dj ∈ D and geometric transformation
w(k) which yield the minimum collage distance Δ(k). In this way, the total collage
distance ‖ u− Tu ‖ in Eq. (4) is minimized.
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2.2 Fractal Image Decoding

Given a contractive fractal transform T , we may generate its fixed point ū by
the iteration procedure un+1 = Tun, starting with an arbitrary “seed” image
u0.

Fig. 1. The fractal transform operator designed to approximate the 256× 256 (8 bpp)
“Lena” image (Left). The “seed” image was u0(x) = 255 (plain white). The fractal
transform T was obtained by “collage coding” 8×8 nonoverlapping pixel range blocks.
The domain pool was comprised of nonoverlapping 16 × 16 pixel blocks.

In the decoding prodedure, the image subblocks un(Ri) of un are replaced by
modified copies φi(un(Di)) according to Eq. (2). Banach’s contraction mapping
theorem guarantees that the sequence of images un converges to ū.

In this scheme, the range blocks Rn+1,i comprising image un+1 are sim-
ply modified versions of appropriate domain blocks Dn,i of un. More precisely,
un+1(Ri) = φi(w

(k)
i (un(Di))).

In Figure 1 is presented the fixed point approximation ū to the standard
256 × 256 Lena image (8 bits/pixel) using a partition of 8 × 8 nonoverlapping
pixel blocks (642 = 4096 in total). The domain pool for each range block was
the set of 322 = 1024, 16× 16 non-overlapping pixel blocks. (This is clearly not
optimal.) This image was obtained by starting with the seed image u0(x) = 255
(plain white image) and iterating un+1 = Tun to n = 15.

3 Set Theoretic Image Coding and Restoration

The method of projections onto convex sets (POCS) has attracted much atten-
tion in a multitude of image restoration and reconstruction applications. The
main reasons are the simplicity, flexibility, and powerful inclusion of a priori
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information. It is generally simple to define convex constraint sets which incor-
porate desired solution characteristics. These sets may impose restrictions such
as positivity or bounded energy which are difficult to represent in terms of cost
functionals. The only potential source of difficulty in applying POCS is to deter-
mine the projection operators. If the the convex and closed sets are constructed
and the projections are found, a point in the intersection these sets can be found
if the intersection is not empty.

Assume that x is known to lie in m given sets Ci, i = 1, 2, . . . ,m where each
of the sets represents a constraint on the image. If the sets Ci are closed and
convex, we associate projection operators Pi, i = 1, 2, . . . ,m, to each Ci. The
projection of h onto Ci is defined as g = Pih, with g ∈ Ci and

‖g − h‖ = inf
y∈Ci

‖y − h‖. (7)

Bregman [4] proved that if the sets Ci, i = 1, 2, . . . ,m are closed and convex and⋂
i Ci �= ∅, then the sequence {X(n)} defined recursively as

X(n+1) = Pm . . . P2P1X
(n), (8)

converges to a fixed point in the intersection of all Cis. In other words, X(n)

converges to a point X , where X ∈ ⋂
i Ci. This sequence of projections is applied

repeatedly to yield an updated estimate of the image. It is imperative to note
that the point X is, in general, nonunique. Its only distinguishing feature is that
it lies on the intersection of all constraint sets. In general, it will be dependent
on the initial guess X0). Detailed theoretical discussions of the POCS method
can be found in [4,10,15].

4 POCS and Fractal Image Coding

In this section we consider a number of self-similarity constraints along scales
which can then be used to reformulate fractal image coding as a POCS method.
It is assumed that an image has a continuous representation as a function in
Lp(X) where X ⊂ R2. The theoretical basis for this discussion (e.g., proofs of
propositions) has been presented elsewhere [6].

4.1 Self-similarity Constraints Using Collage Distances

The collage distance is an important measure of self-similarity. We shall consider
three different types of collage distances from which similarity constraints can
be built. These are (i) the total collage distance, (ii) the collage distance for a
fixed domain-range block pair and (iii) the pointwise collage distance.

Definition 1. For a given image u ∈ Lp(X), where 1 ≤ p ≤ ∞ we introduce
the following collage distance definitions.
a) The total collage distance is defined as

Δ(u) =
∥∥∥(Tu)− u

∥∥∥
p

(9)
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=
(∫

(x,y)∈X

∣∣∣∑
i

φi(u(w−1
i (x, y))) − u(x, y)

∣∣∣pdxdy) 1
p

,

when 1 < p <∞. Appropriate definitions are used for p = 1 and p =∞.
b) The collage distance for a fixed pair of domain and range blocks is

Δ
(k)
(i,j)(u) =

∥∥∥φi

(
u
(
w−1

i,j,(k)(Ri)
))− u(Ri)

∥∥∥
p

(10)

=
(∫

(x,y)∈Ri

∣∣∣φi(u(w−1
i (x, y)))− u(x, y)

∣∣∣pdxdy) 1
p

,

where 1 < p <∞. Again, appropriate definitions are used for p = 1 and p =∞.
As before Ri is a range block. w−1

i,j,(k), is the inverse of contraction from Dj to
Ri and (k) = K(i,j) ∈ {0, . . . , 7}.
c) The pointwise collage distance is defined as

Δ
(k)
(i,j)(x,y)(u) =

∣∣∣φ(u(w−1
i,j,(k)(x, y)

))− u(x, y)
∣∣∣, (11)

where (x, y) ∈ Ri.

By its nature, fractal image coding implies perfect self-similarity between
elements in the range and domain pool of an attractor image ū. In natural images,
however, perfect self-similarity generally does not hold. Therefore, a model that
is more consistent with the physical world would allow collage distances, as
measures of similarity, to deviate from zero but not beyond some threshold value,
say δ > 0. Such threshold values can be determined based on the application.
Such a framework provides more flexibility to incorporate additional knowledge
about the image and to relax the perfect self-similarity constraint in order to
obtain a better approximation of an image in the reconstruction process. In
the perfect self-similarity assumption case, this threshold may be set to zero,
representing perfect consistency with traditional fractal image coding.

Each of the three collage distances described above may be used in the pro-
cedure. Associated with each collage distance are the following self-similarity
constraints in Lp(X) for 1 ≤ p ≤ ∞. (i) Based on the total collage distance
define

Ψ =
{
u ∈ Lp(X) : Δ(u) ≤ δ

}
. (12)

(ii) Based on range based collage distance define

Ψ
(k)
(i,j) =

{
u ∈ Lp(X) : Δ(k)

(i,j)(u) ≤ δ
(k)
(i,j)

}
. (13)

(iii) Finally define the set Ψ
(k)
(i,j)(x,y) based on the pointwise collage distance as

Ψ
(k)
(i,j)(x,y) =

{
u ∈ Lp(X) : Δ(k)

(i,j)(x,y)(u) ≤ δ
(k)
(i,j)(x,y)

}
. (14)

Closedness and convexity of these sets can be verified easily under some triv-
ial assumptions [6]. In practice, when dealing with digital images we need to
construct new convex and closed sets based on the image greyvalues at discrete
points. In the following section, we study the discrete counterpart of Ψ (k)

(i,j)(x,y).
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4.2 Discrete Pointwise Collage Constraints and Associated
Projections

When we are working with discrete digital images, we may assume any digital
image U ∈ l2(X), where X is a bounded subset of Z2. Note that in the contin-
uous case, we considered the set Ψ

(k)
(i,j)(x,y) for (x, y) ∈ Ri. In the same fashion,

for the discrete case, we define Ψ
(k)
(i,j)(m,n), where (m,n) is a point with integer

coordinates over a fixed Ri.

Ψ
(k)
(i,j)(m,n) =

{
U ∈ l2(X) : Δ(k)

(i,j)(m,n)(U) ≤ δ
(k)
(i,j)(x,y)

}
(15)

=
{
U ∈ l2(X) :

∣∣∣φ(U(w−1
i,j,(k)(m,n)

))− U(m,n)
∣∣∣ ≤ δ

(k)
(i,j)(m,n)

}
In the discrete case (m,n) corresponds to four points (s, t), (s, t+1), (s+1, t),

and (s+1, t+1) under the inverse mapping w−1
i,j,(k)(m,n). Here U

(
w−1

i,j,(k)(m,n)
)

can be written as

U
(
w−1

i,j,(k)(m,n)
)

=
1
4

{
U(s, t)+U(s, t+1)+U(s+1, t)+U(s+1, t+1)

}
. (16)

Hence, replacing φ(t) = αt + β yields

Ψ
(k)
(i,j)(m,n) =

{
U ∈ l2(X) :

∣∣∣α
4
{
U(s, t) + U(s, t + 1) + U(s + 1, t) (17)

+ U(s + 1, t + 1)
}

+ β − U(m,n)
∣∣∣ ≤ δ

(k)
(i,j)(m,n)

}
.

Proposition 1. [6] Ψ
(k)
(i,j)(m,n) is a closed and convex set on the Hilbert space

l2(X) provided that φ(t) = αt + β.

Now that the convex and closed constraints are constructed we have to find the
projection operators on these sets.

Proposition 2. [6] Assume an element U is given in the Hilbert space l2(X),
where X is a bounded subset of Z2. Let V be the projection of U on Ψ

(k)
(i,j)(m,n).

This projection can be computed in the following manner. Assume that the four
points in the set

A =
{
(s, t), (s, t + 1), (s + 1, t), (s + 1, t + 1)

}
(18)

are those that are mapped to (m,n) under the contraction wi,j,(k). Set δ =
δ
(k)
(i,j)(m,n) ≥ 0 and

r =
α

4

[
U(s, t) +U(s, t+ 1) +U(s+ 1, t) +U(s+ 1, t+ 1)

]
+ β −U(m,n). (19)
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In the case that (m,n) /∈ A, the values V (p, q) for p, q ∈ Z can be computed as

U(p, q) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Case (p, q) ∈ A
−α/4

1+4(α/4)2 (r − δ), r > δ

0, |r| ≤ δ
−α/4

1+4(α/4)2 (r + δ), r < −δ

Case (p, q) = (m,n)
1

1+4(α/4)2 (r − δ), r > δ

0, |r| ≤ δ
1

1+4(α/4)2 (r + δ), r < −δ

Case (p, q) /∈ A ∪ {(m,n)}
0.

(20)

In the case that (m,n) ∈ A, the values V (p, q) for p, q ∈ Z can be computed as

U(p, q) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Case (p, q) ∈ A \ {(m,n)}
−α/4

(1−α/4)2+3(α/4)2 (r − δ), r > δ

0, |r| ≤ δ
−α/4

(1−α/4)2+3(α/4)2 (r + δ), r < −δ

Case (p, q) = (m,n)
1−α/4

(1−α/4)2+3(α/4)2 (r − δ), r > δ

0, |r| ≤ δ
1−α/4

(1−α/4)2+3(α/4)2 (r + δ), r < −δ

Case (p, q) /∈ A
0.

(21)

The above projection can be found using KKT conditions for solving con-
strained optimization problems. Another approach to prove this proposition is
to view the optimization problem as a deblurring of a signal in presence of
spatially-varying blur [14]. Now that the constraints Ψ

(k)
(i,j)(m,n) and its associ-

ated projections are in hand we may apply these constraints in a POCS sequence
along with other consistent constraints at the decoding stage.
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5 Applications

5.1 Restoration of an Image with an Incomplete Fractal Code

Assume that we are given an incomplete fractal code of an image, i.e., some
of the domain-range block assignments and corresponding greyscale map coeffi-
cients are missing. In such a case, the usual fractal decoding scheme, in which
an arbitrary “seed” image is employed, will collapse since the range blocks
of the image for which the fractal code is missing cannot be modified. These
blocks will simply remain identical to the corresponding subblocks of the seed
image.

To illustrate, let us consider the fractal code associated with the Lena image
in Figure 1. Suppose that the fractal code corresponding to all range blocks in
the bottom half of the image are missing. Using a random image as the seed, the
limiting image produced by the fractal decoding procedure is shown in Figure
2(b). Only the domain blocks in the top-half of the image have been modified
– those in the lower half are identical to their counterparts in the seed image.
Likewise, if the fractal code is missing for the range blocks depicted in black in
Figure 2(d), then fractal coding produces the limiting image in Figure 2(e). We
now show how these two situations can be improved using POCS.

The incomplete fractal code problem is an underdetermined, hence ill-posed,
inverse problem. There are many possible solutions. We now consider a POCS-
type method that will employ the pointwise collage constraints Ψ

(k)
(i,j)(m,n) with

δ = 0, associated with the partially known fractal code. For the problem as-
sociated with Figure 2(b), where the fractal code for the bottom half of image
is missing, we obtain Figure 2(c) with this POCS method, having once again
started with the random seed image. Figure 2(c) is seen to represent a signifi-
cant improvement over Figure 2(b).

Along with the collage constraints, however, we can impose additional con-
straints as desired. For example, consider the missing fractal code problem of
Figure 2(d). Standard fractal decoding yields Figure 2(e). The POCS method
with an additional smoothness constraint produces Figure 2(f), a significant im-
provement over Figure 2(e). The smoothness constraint was imposed by means
of a low-pass filtering operation in the frequency domain.

Let us now explain why the POCS method can yield better approximations to
the original image in the case of missing fractal codes, with particular reference to
Figures 2(b) and 2(c). As mentioned above, the usual fractal decoding iteration
scheme of mapping domain blocks to range blocks does not change the range
blocks for which the fractal code is missing, e.g., the bottom part of the image
in Figure 2(b). On the other hand, the POCS method alters domain and range
blocks simultaneously through projections. Because of these projections, it is
possible that portions of the lower part of the image are modified since some
domain blocks used in the fractal coding procedure come from that region. The
more domain blocks that lie in the region of missing fractal code (hence missing
range blocks), the “fuller” the attractor that is generated by the fractal coding
procedure, hence the better the approximation to the original image.
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(a) (d)

(b) (e)

(c) (f)

Fig. 2. (a) Lena original. (b) Decoded as bottom half of the fractal code is missing,
random seed. (c) Proposed using POCS. (d) A quarter of the code related to the range
blocks in black is missing. (e) Decoded image starting from black seed, a quarter of the
fractal code is randomly missing. (f) Proposed using POCS.
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Here we come to a very important point regarding the POCS formulation
of fractal coding. The usual fractal coding procedure involves mapping domain
blocks onto range blocks. The POCS method of projections actually translates
to a simultaneous alteration of domain-range block pairs. This accounts for the
superior results of the POCS method in the incomplete fractal code problem.

5.2 Fractal Image Denoising

It is well known that subjecting a noisy image to a lossy compression scheme,
e.g., JPEG, can produce some denoising of the image. This is also observed in
the case of fractal image coding. If a noisy image is fractally coded, with little or
no regard for compression, then the attractor produced by the fractal code often
represents a significantly denoised version of the original image. (In fact, one can
go some steps further and improve this procedure – see [9].) In such fractal image
denoising algorithms, however, one performs the usual iteration procedure after
the fractal code is obtained. Once again, regardless of the starting seed image,
the procedure converges to the attractor of the fractal transform defined by
the code. However, the POCS-based reconstruction algorithm explained in this
paper can provide added flexibility. For example, if we choose the input noisy
image as the starting point of the iteration, it is possible that the procedure
converges to a noise-free image that is closer to the original noisy image.

As discussed earlier, the solution of the POCS-based reconstruction method
– the point X of Section 3 – can also depend on the starting point of the itera-
tion if the solution space is non-unique. A larger solution space for POCS-based
fractal coding can be produced if the strict similarity constraints are relaxed to
inequality constraints. Furthermore, if the original noisy image is chosen as the
starting point of the POCS-based iteration, the information in this image is actu-
ally used in the reconstruction process, even after it has been used to determine
the fractal code which determines the similarity/inequality constraints. Based
on experiments, we believe that by choosing appropriate δ tolerance values in
the constraints, one may obtain denoised images that are visually more pleasing
because they are “closer” to the original image.

Figure 3 presents the result of an experiment that agrees with this claim.
The original and a noisy version of a 256 × 256 image of Lena are shown in
Figures 3(a) and 3(b). The fractal transform of the noisy image in Figure 3(b)
corresponding to 8× 8 pixel range blocks and 16 × 16 pixel domain blocks was
then computed. Traditional fractal decoding produces the attractor shown in
Figure 3(c). In spite of its blockiness, this image looks less noisy than the one
in Figure 3(b).

Using the same fractal code as above, we then applied the following POCS-
based reconstruction method. In order to enlarge the solution space we used
δ = |r|/3 at every point of the image in this experiment, where r is defined
in Eq. (19). Finally, the starting point of the POCS iterations was the original
noisy image shown in Figure 3(b). The result of this POCS-based procedure is
shwon in Figure 3(d). Although no postprocessing has been employed here, the
blockiness plaguing Figure 3(c) is not visible in Figure 3(d). As well, it seems
that more denoising has been achieved with Figure 3(d) than with Figure 3(c).
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(a) (b)

(c) (d)

Fig. 3. (a) Lena original. (b) The noisy Image. (c) The IFS attractor of the noisy
image, using 8 × 8 range blocks. (d) Proposed using POCS, the starting point is the
noisy image, and the same fractal transform with 8 × 8 range blocks is used, with
δ = |r|/3.

6 Conclusions

In this paper, we have described a reformulation of traditional fractal image
decoding in terms of the framework of projections onto convex subsets (POCS).
In the case that all the constraints defined by the fractal code are applied to the
problem then the solution, defined by the intersection of all constraints, is unique
and correponds to the fixed point of the contractive fractal transform. There is
a difference, however, between the POCS method and the fractal coding method
regarding the nature of the respective iteration procedures and the convergence
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toward the solution. In the POCS method, the convergence is accomplished in a
set-theoretic framework. The projections associated with POCS method involve
simultaneous alteration of domain-range block pairs, unlike the case of fractal
coding in which domain blocks are mapped onto range blocks, which may be
viewed as a “greedy process.”

The principal advantage of the POCS framework is that it provides the flex-
ibility to incorporate contraints and possibly additional knowledge about the
reconstructed image. In this framework, it is also possible to replace the strict
equality constraints associated with traditional fractal coding with inqualities
that allow similarities to within some designated threshold. The latter represent
more feasible and realistic conditions encountered in the real world. And, in this
way, the set of feasible solutions is extended.

A POCS-based approach also provides the opportunity of solving underdeter-
mined inverse problems in fractal coding as we have shown for the case of the
incomplete fractal code problem.

Since the POCS framework allows fractal coding to be employed along along
with additional knowledge about the image/signal, some potential applications
for future consideration include, but are not limited to, the elimination of post-
processing in fractal decoding using POCS-based reconstruction and fractal cod-
ing with overlapping domain and range pools.

Finally, recall that if all similarity constraints defined by the fractal code are
applied strictly, then the solution is unique, namely, the fixed point of the as-
sociated fractal transform operator. If additional constraints are applied in a
POCS-based framework, then then the entire set of constraints may be inconsis-
tent, i.e., there is no “solution” that satisfies all constraints. In this interesting
situation, one may need to employ the more recent POCS formulations for in-
consistent feasibility problems as studied by P. Combettes [5].
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Abstract. The H.263 Annex I method for the intraframe coding is based on the 
prediction in DCT domain, unlike JPEG, MPEG-1, and MPEG-2 where the in-
traframe coding uses block DCT, independent of the neighboring blocks. In this 
paper, we show the ineffectiveness of H.263 Annex I prediction method by 
mathematically deriving the spatial domain meaning of H.263 Annex I predic-
tion method. Based on the derivation, we propose a prediction method which is 
based on the spatial correlation property of image signals. From the experiment 
and derivation, we verified the proposed method. 

1   Introduction 

With the broad deployment of Internet and broadband mobile network, the industrial 
demand on the visual communication over such networks is highlighted nowadays. 
These visual communications are fairly different from the traditional one over ISDN 
(Integrated Service Digital Network), in which the QoS(Quality of Service) is guaran-
teed [1]. For the Internet, the network bandwidth has time-varying feature and the 
packet can be lost due to network congestion [1,2]. On the other hand, the bit and 
burst errors in the mobile network cause the undesirable corruption in the video bit-
stream [3]. In general, the video bitstream is coded based on the temporal prediction, 
called motion compensation, for the high coding efficiency. This excellent method for 
video compression poses the serious quality degradation in temporal direction, i.e., 
the corruption in one frame is propagated into subsequent frames, simply temporal 
error propagation [3]. The error recovery is inevitable process in the video transmis-
sion over Internet and mobile networks.  

The most effective method to cut off such temporal error propagation is very im-
portant thing for visual communication to have commercial competence, especially in 
the visual quality.  Two methodologies are reported in the literatures. In [3], the re-
synchronization codeword, which is unique codeword not occurring in the video bit-
stream, is inserted intermittently in the video bitstream. The correct decoding can be 
resumed after detecting the resynchronization codeword. The resynchronization 
method itself is not sufficient for temporal error propagation problem, since it can 
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remove the spatial error propagation only. So resynchronization method only reduces 
the temporal error propagation, but still errors are propagated in temporal direction. 
The intraframe coding, independent of the previous frames can completely refresh the 
temporal errors in video sequences [4,5]. The intraframe coding, however, produces 
too much bits compared with interframe coding, resulting in great burden in network 
[6]. Therefore, the efficient intraframe coding is very important thing in the visual 
communication over Internet and mobile network [7].  

For the standard codecs, such as JPEG, MPEG-1, and MPEG-2, the intraframe 
coding uses the block DCT, independent of neighboring blocks, followed by quantiza-
tion, zig-zag scanning, RLC (Run-Length Coding), and VLC coding [8,9,10]. The 
intraframe coding method in the recently standardized H.263++ Annex I uses the 
DPCM (Differential PCM), i.e., the coefficients of current block DCT are predicted 
from those in the neighboring blocks and the difference DCT coefficients are coded, 
providing the better coding efficiency over the conventional independent block DCT 
coding.  

In this paper, we mathematically analyzed the DCT-domain predictor of H.263++ 
Annex I to derive the physical meaning of the predictor. From the analysis, we show 
that the current DCT-domain predictor corresponds to the spatial prediction of a pixel 
from the pixel with 8 pixel distance. For the image signal, the spatial correlation dras-
tically decreases when the pixel distance increases. To improve this inefficiency in 
H.263 Annex I predictor, we modified the DCT-domain predictor whose spatial do-
main meaning is the prediction of the pixel using the nearest pixels. 

This paper is organized as follows: in Section 2, we briefly describe the H.263 An-
nex I intraframe coding method. The analysis of DCT-domain predictor in H.263 
Annex I is provided and the proposed method is derived from the analysis in Section 
3. The simulation results are given in Section 4 and our conclusion is drawn in  
Section 5. 

2   H.263 Annex I Intraframe Coding Method 

The Fig. 1 shows the overall block diagram of H.263 Annex I intraframe coding 
method. The input image is segmented into macroblocks as shown in Fig. 2-(a). Each 
macroblock consists of four luminance blocks and two chrominance blocks. Each 
block has 256 pixels, i.e., 8 pixels per line and 8 lines. Note that the basic unit of 
coding mode decision is macroblock. First, the pixels block is transformed into DCT 
coefficients using DCT as follows: 
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where ( )jic ,  and ( )vuC ,  represent the pixel value in the block coordinate [ ]Tji, , 

[ ]1,0, −∈ Nji  and DCT coefficient in the frequency [ ]Tvu,  [ ]1,0, −∈ Nvu , respec-

tively. u and v represent the horizontal and vertical frequencies in DCT domain, re-
spectively. Note that N is equal to eight since block consists of 8x8 pixels. 
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Fig. 1. H.263 Annex I encoder 

 

 

Fig. 2. MB-based image segmentation and MB configuration for QCIF image 

 

Fig. 3. The configuration of DCT block used in H.263 Annex I DCT coefficient prediction 
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Before coding of DCT coefficients, the DCT coefficients of current block are pre-
dicted using those of the neighboring blocks. Three prediction methods are used in 
H.263 Annex I. The configuration of blocks used in the prediction is shown in Fig. 3. 
The current block is denoted as c. The upper and left blocks to the current block are 
denoted as a and b, respectively. Also, the DCT coefficients of blocks, a, b and c are 
denoted as A, B, and C, respectively.  

The prediction methods of the modes are as follows: 

Mode 0: DC prediction only 
 

( ) ( ) ( )( ) 2/0,00,00,0ˆ BAC +=  (2) 

( ) 0,for       ,0,ˆ ≠= vuvuC                                           (3) 
 

where ( )vuC ,ˆ  is the predicted version of DCT coefficients of current block, ( )vuC , . 

Notice that all the coefficients except DC component are coded without using DCT 
coefficient prediction. 

Mode 1: DC and AC prediction using upper block 
 

( ) ( ) 1,...,0  ,0,0,ˆ −== NuuAuC                                     (4) 

( ) 0for    ,0,ˆ ≠= vvuC  (5) 
 

Mode 2: DC and AC prediction using left block 
 

( ) ( ) 1,...,0  ,,0,0ˆ −== NvvBvC  (6) 

( ) 0for    ,0,ˆ ≠= uvuC  (7) 
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where subscript i represents i-th block, and block with block index i is depicted in Fig. 
2-(b). SADM represents the SAD when using prediction mode M. For instance, when 
M is equal to 0, it represents the Mode 0, DC prediction only.  

 
1 2 3 4 11 12 13 14  1 5 7 21 23 37 39 53 
5 6 9 10 18 17 16 15  2 6 8 22 24 38 40 54 
7 8 20 19 27 28 29 30  3 9 20 25 35 41 51 55 
21 22 25 26 31 32 33 34  4 10 19 26 36 42 52 56 
23 24 35 36 43 44 45 46  11 18 27 31 43 47 57 61 
37 38 41 42 47 48 49 50  12 17 28 32 44 48 58 62 
39 40 51 52 57 58 59 60  13 16 29 33 45 49 59 63 
53 54 55 56 61 62 63 64  14 15 30 34 46 50 60 64 

(a) Mode 1                                                       (b) Mode 2 

Fig. 4. Alternative DCT scanning patterns for H.263 Annex I 

 

After mode decision, the predicted error coefficients are quantized and are scanned 
into one-dimensional coefficients sequence. The scanning pattern for Mode 0 is con-
ventional zig-zag scanning. The scanning patterns for Mode 1 and Mode 2 are de-
picted in Fig. 4-(a) and Fig.4-(b), respectively. 
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The scanned DCT coefficients are mapped into (RUN, LEVEL, EOB) by using 
RLC (Run Length Coding) where EOB represents End Of Block. These 3-D symbols 
are entropy coded by using VLC table. Note that the VLC table used in H.263 Annex 
I is different table used in H.263 codec not using Annex I coding mode, since the 
symbol statistics using Annex I coding mode is fairly different from the ones not 
using Annex I coding mode.  

3   Proposed DCT Coefficient Prediction Method 

To know the physical meaning of H.263 Annex I predictor in the spatial domain, we 
first investigate the Mode 1 predictor. By applying Eq. (1) into Eq. (4), we get the 
following equation: 
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where ( )0,uE  represent the prediction error DCT coefficients. If the position vector in 

the current block is transformed into the position vector in the current image, we can 
represent it as Eq. (11). Similarly we can transform the block position vector of the 
upper block into the image position vector of Eq. (12). 

 

( ) ( )jicyxI ,, =                                                     (11) 

( ) ( )jiaNyxI ,, =−                                                  (12) 
 

where the position vector, [ ]Tyx, in the current image corresponds to the position 

vector, [ ]Tji,  in the current block. By substituting Eqs. (11) and (12) into Eq. (10), we 

can represent as follows: 
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Eq. (13) represents that the predictor in the H.263 Annex I corresponds to the spa-
tial prediction of a pixel from the pixel with 8 pixels distance. Generally, the spatial 
correlation of image with respect to pixel distance is modeled as co-variance model of 
follows [12, 13]: 

 

( ) ddr ρ=                                                     (14) 
 

where ρ is a image dependent parameter and | d | is the pixel distance between two 
pixels to measure the correlation. The correlation to the pixel distance is depicted in 
Fig. 5. For the sample value of ρ = 0.95 presented in [14], the correlation using Mode 
1, i.e., d = 8 is 0.663, resulting in very low spatial correlation. From this fact, we can 
easily know that the current DCT coefficient predictor of H.263 Annex I is not effi-
cient predictor due to very low correlation.  
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Fig. 5. Correlation with respect to pixel distance and ρ value in covariance image model 

 
To increase the correlation between the pixels used in prediction, we propose to 

use the nearest pixel among the upper block to the current pixel, ( )jic , . In other 

words, the nearest pixel in the upper block, ( )jia , , [ ]1,0, −∈ Nji  is ( )1, −Nia  and we 

use this pixel, ( )1, −Nia  in the prediction of Eq. (10) instead of the pixel, ( )jia ,  as 

follows: 
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According to Eq. (15), the distances of pixels in the current are ranged 1 pixel to 8 
pixels. So the average correlation of proposed prediction method is as follows: 
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To know the difference in correlations of both methods, we compute the following: 
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For the magnitude comparison, we take the logarithm with base ρ into each term of 
summation, which is monotically increasing function as follows: 

 

( ) 0loglog ≥−=− dNdN ρρ ρρ                            (18) 
 

The above inequality and Eq. (17) shows that the proposed method gives always lar-
ger correlation than the H.263 Annex I prediction method. For the sampled value, ρ = 
0.95, the correlation for the proposed method is larger by 0.136 than the H.263 Annex 
I prediction method. 

Since the derivation of Mode 2 is the same with Mode 1, it is not described in  
this paper. For the DC component, we can easily know that the pixels line contin- 
gent current block has closer DC value of current block by considering the above 
derivation. 
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Based on the above derivation, we propose the following prediction method: 

Mode 0: DC prediction only 
 

( ) ( ) ( )( ) 2/0,00,00,0ˆ BAC +=                          (19) 

( ) 0,for       ,0,ˆ ≠= vuvuC                               (20) 

where 

( ) ( )
−

=

−=
1

0

1,
1

0,0
N

i

Nia
N

A                                    (21) 

( ) ( )
−

=
−=

1

0

,1
1

0,0
N

j

jNb
N

B                                     (22) 

Mode 1: DC and AC prediction using upper block 
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Mode 2: DC and AC prediction using left block 
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( ) 0for    ,0,ˆ ≠= uvuC                              (26) 

4   Simulation Results 

The evaluation of the proposed method is based on the common test condition used in 
the ITU-T SG16/Q.15 H.263++ standardization [15]. The test sequences used in 
simulation are described in Table 1.  

Table 1. Test sequence used in the simulation 

Sequence Spatial resolution Temporal resolution 
Foreman 
Container 
News 

QCIF (176x144) 

Paris CIF(352x288) 

10Hz 

 
The main investigating factor in this paper is the correlation between the pixel and 

its predicted version. We measure the correlations produced by the proposed method 
and H.263 Annex I prediction method for the test sequences of Table 1. Table 2 
shows that the proposed method improves correlation for all the test sequences, impli-
cating that the proposed method can give better prediction results and thereby, the 
proposed method has better coding efficiency. 

According to the common test condition, the fixed quantization step size, i.e., 
QP=4, 5, 7, 10, 15, 25, is used for all the sequences. To obtain the averaged perform-
ance, the coding method is confined to intraframe coding for all the pictures. Tables 2 



514 K.-y. Yoo 

and 3 show that the proposed method gives about 2-3% reduction in total bitrate with 
marginal improvement in average PSNR. The ‘News’ and ‘Paris’ sequences whose 
correlations are highly increased than other sequences in Table 1 reduce more bits as 
shown in Table 3. Notice that the gain in bitrate reduction is decreased as the quanti-
zation step size is increased. This is originated from it that the proposed method uses 
only one pixels line left or up to the current block, thereby it is more sensitive to the 
coding noises. Note that the conventional H.263 Annex I uses 8x8 block DCT coeffi-
cients of upper or left block for the coefficient prediction. 

The reason for the lower improvement, by the proposed method, compared with its 
increased correlation lies in VLC table. As we described in the Section II, the H.263 
uses dedicate VLC table for H.263 Annex I, which is statistically tuned to H.263 
 

Table 2. Comparison of correlation coefficients of the proposed and H.263 Annex I method  

H.263 Annex I Proposed Method Sequence 
Mode 1 Mode 2 Mode 1 Mode 2 

Foreman 0.940 0.800 0.951 0.924 
Container 0.754 0.786 0.793 0.797 

News 0.585 0.551 0.726 0.641 
Paris 0.620 0.596 0.735 0.651 
Mean 0.725 0.683 0.801 0.753 

Table 3. Average PSNR comparison 

Foreman Container News Paris QStep 
H.263 Prop H.263 Prop H.263 Prop H.263 Prop 

4 40.45 40.45 40.57 40.58 41.07 41.07 40.12 40.15 
5 38.39 38.40 38359 38.60 38.94 38.96 37.97 37.98 
7 36.36 36.37 36.56 36.57 36.82 36.85 35.76 35.78 

10 34.52 34.53 34.65 34.68 34.83 34.83 33.72 33.73 
15 31.95 31.97 32.07 32.10 32.02 32.07 30.89 30.91 
25 29.19 29.22 29.01 29.06 28.92 29.00 27.81 27.85 

Mean 35.14 35.16 35.24 35.27 35.43 35.46 34.38 34.40 

Table 4. Bit reduction in percentage (%); H.263 in kbits/frame, Prop in % bit reduction relative 
to H.263 

Foreman Container News Paris QStep 
H.263 Prop H.263 Prop H.263 Prop H.263 Prop 

4 51.0 2.38 47.5 2.19 50.7 3.20 255.8 2.94 
5 41.4 2.49 38.6 2.45 42.1 3.40 212.9 2.95 
7 31.6 2.36 29.5 2.60 32.9 3.21 167.0 2.88 

10 23.7 2.01 22.5 2.18 25.3 2.71 128.7 2.82 
15 15.8 1.70 15.6 1.37 17.6 2.52 89.5 2.74 
25 9.2 0.52 9.5 0.17 10.9 2.19 54.5 1.92 

Mean 28.8 1.91 27.2 1.83 29.9 2.87 151.4 2.83 
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Annex I prediction method. Since the statistics of symbol, (RUN, LEVEL, EOB) 
produced by proposed method is different from the that of H.263 Annex I, the VLC 
table used in comparison is not optimized to the proposed method. The further study 
in this work is, therefore, to design the VLC table suitable to the proposed method. 

5   Conclusion 

In this paper, we analytically showed that the DCT-domain predictor used in H.263 
Annex I is inefficient by investigating the spatial correlation. Based on the analysis, 
we proposed the modified prediction method, in which the pixel with highest correla-
tion to the predicted pixel is used in the prediction. From the simulation, we verified 
the proposed method and its improvements over the H.263 Annex I. For the further 
study, we leave the VLC table design suitable to proposed method. 
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Abstract. We propose a simple detection method and compensation filter in or-
der to remove corner outlier artifacts. The corner outlier artifacts are detected 
based on the directions of edges going through a block corner and the character-
istics of blocks around the edges. According to the detection results, we com-
pensate the stair-shaped discontinuities, the so-called corner outlier artifacts, us-
ing the neighboring pixels of the artifacts in spatial domain. Simulation results 
show that the proposed method improves, when combined with a deblocking 
filter in particular, both objective and subjective visual quality. 

Keywords: Corner outlier artifact, deblocking filter, MPEG-4 video, low bit-
rate video.1 

1   Introduction 

The block-based processing plays an essential role in most video coding standards 
that have a hybrid structure including the motion compensated prediction and the 
block-based transform. Consequently, it produces undesired artifacts such as blocking 
artifacts, ringing noise, and corner outlier artifacts, particularly when the video is very 
highly compressed. Blocking artifacts are the grid noise along block boundaries in 
relatively flat areas; ringing noise is the Gibb’s phenomenon owing to truncation of 
high-frequency coefficients by quantization; and corner outlier artifacts are a special 
case of blocking artifacts appearing at the cross-point of a block corner and a diagonal 
edge. To reduce blocking artifacts and ringing noise, a number of studies have been 
carried out in spatial [1, 2, 5] and transform domain [3, 4], respectively. 

However, the corner outlier artifacts are still visible in some video sequences, since 
a deblocking filter is not applied to areas that include a large difference at a block 
boundary in order to avoid undesired blurring [1]. The corner outlier artifacts degrade 
visual quality remarkably, since the Human Visual System (HVS) is sensitive to 
variations of apparent edges. Nevertheless, only a few studies have been carried out 
on removing the corner outlier artifacts because the corner outlier artifacts appear in 
limited areas and the peak signal-to-noise ratio (PSNR) improvement is somewhat 
small [1]. Therefore, we propose a simple and effective method, which contains  
                                                           
1  This work was supported by Seoul Future Contents Convergence (SFCC) Cluster established 

by Seoul Industry-Academy-Research Cooperation Project. 
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detection of the corner outlier artifacts and compensation filter to remove the artifacts, 
mainly in low bit-rate video. The proposed method can be used in combination with 
various deblocking [1-4] and deringing filters [5] for more improvement of visual 
quality. 

The remaining parts of the paper are as follows. We present the detection method 
of corner outlier artifacts based on the pre-defined patterns, i.e., the direction of an 
edge going through a block corner, in Section 2. Section 3 describes, in detail, the 
proposed compensation filter to remove the corner outlier artifacts. Simulation results 
and conclusions are given in Section 4 and Section 5, respectively. 

2   Detection of Corner Outlier Artifacts 

Consider the original and reconstructed frames as illustrated in Fig. 1, where a diago-
nal edge E goes through a block corner. In Fig. 1, the edge divides into two areas 
represented in dark-shaded areas and white areas. The edge occupies large areas in 
block B and C, whereas it occupies very small areas (d0 in Fig. 1) in block D. If block 
D is flat except d0, the AC coefficients of DCT of block D are mainly related to d0, 
and their values are small. Since most small AC coefficients are truncated by qualtiza-
tion in very low bit-rate coding, the area of d0, which represents the edge in block D, 
cannot be reconstructed shown as dashed line and area in Fig. 1(b). As a result, a 
visually annoying stair-shaped artifact is produced around the block corner. Such 
artifacts are called as corner outlier artifacts. 
 

block boundary

block 
boundary

block A

block Dblock C

block B

edge (E)

d0

     

block boundary

block 
boundary

block D'

block B'

block C'

block A'

edge (E’ )

d0'

 
(a)                                                                 (b) 

Fig. 1. Concept of a corner outlier artifact, (a) an edge going through a block corner in an origi-
nal frame, (b) a corner outlier artifact located in d0’ in a reconstructed frame 

Based on the two major observations, we propose a simple and effective detection 
method of the corner outlier artifacts. First, there is a large difference between bound-
ary values of the block including the corner outlier artifact and the other three blocks 
around the cross-point. For example, the difference between d0’ and its upper pixel or 
between d0’ and its left pixel is large as shown in Fig. 1(b). Second, corner outlier 
artifacts are more noticeable in homogeneous areas, that is, each block around the 
cross-point is relatively flat. We investigate the characteristics of the blocks in terms 
of these observations around every cross-point in order to detect corner outlier arti-
facts appropriately. In addition, since the corner outlier artifacts are prominent when a 
diagonal edge occupies block areas unequally around a cross-point, we deal with four 
types, as depicted in Fig. 2, based on the edge direction. The corner outlier artifact 
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satisfying the proposed detection conditions among each detection type is regarded as 
an actual corner outlier artifact. Dealing with the pre-defined detection types instead 
of detecting an edge accurately has an advantage in reduction of computational  
complexity. 

 

 

Fig. 2. Detection types based on the edge direction, (a) D vs. {A, B, C} with edge direction of 
lower 45°, (b) A vs. {B, C, D} with edge direction of upper 45°, (c) B vs. {A, C, D} with edge 
direction of upper 135°, (d) C vs. {A, B, D} with edge direction of lower 135° 

To detect the corner outlier artifacts based on the first observation, we obtain the 
average values of the four pixels around the cross-point, which are represented as the 
shaded areas in Fig. 3, using 
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where each capital and small letter denotes blocks and pixels, respectively, that is, 
Aavg is an average from a1 to a4 of block A, Bavg is an average from b1 to b4 of block B, 
and so on. Then, to select the detection type among the four pre-defined types, we 
examine the differences between the average values of the corner-outlier-artifact 
candidate block and its neighboring blocks, using the equations listed in Table 1. 

Table 1. Detection criterion according to the detection types 

Candidate block Detection type Detection criterion 
A A vs. {B, C, D} |Aavg − Bavg| > 2QP and |Aavg − Cavg| > 2QP 
B B vs. {A, C, D} |Bavg − Aavg| > 2QP and |Bavg − Davg| > 2QP 
C C vs. {A, B, D} |Cavg − Aavg| > 2QP and |Cavg − Davg| >2QP 
D D vs. {A, B, C} |Davg − Bavg| > 2QP and |Davg − Cavg| > 2QP 
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Fig. 3. Arrangement of pixels and their indices around the cross-point for detecting and filtering 
corner outlier artifacts. Shaded pixels are used for detection with the first observation and all 
pixels in this figure are used for detection with the second observation and filtering. 

By using the average values around the cross-point instead of each pixel value, we 
can reduce detection errors in relatively complex areas. In Table 1, QP denotes the 
quantization parameter used as a threshold for deciding the corner outlier artifact in 
terms of the first observation. When block A has a corner outlier artifact, the differ-
ence between Aavg and Bavg, and the difference between Aavg and Cavg are larger than a 
quality-dependent value, 2QP, thereby we consider the block A has a corner outlier 
artifact by the first observation. Practically, since we do not know the corner-outlier-
artifact candidate block, four detection criteria listed in Table 1 should be investi-
gated. If two corner outlier artifacts appear at one cross-point, the artifacts are ar-
ranged on diagonally opposite sides because the corner outlier artifacts cannot be 
placed vertically or horizontally. In this case, the proposed method can detect both 
artifacts without additional computations, since we examine the four detection types 
independently. 

To detect the corner outlier artifacts based on the second observation, we examine 
whether the block satisfying the condition in Table 1 is flat or not. That is, when the 
candidate block is block A, we examine flatness of block A with respect to the pixel 
including the corner outlier artifact using 
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where a1 represents the corner-outlier-artifact candidate pixel. In case where other 
block is determined as a candidate block, we examine the following conditions, re-
spectively. 
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where each capital and small letter denotes blocks and pixels, respectively, and QP  
is the quantization parameter. We regard the block that satisfies both conditions of 
Table 1 and (2) as a corner-outlier-artifact block, and then the proposed filter is ap-
plied to the block in order to remove the artifact. 
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3   Compensation Filter to Remove Corner Outlier Artifacts 

To remove the corner outlier artifacts, we propose a simple filter that compensates the 
stair-shaped discontinuity using its neighboring pixels. To reduce computational com-
plexity, we apply the proposed filter under the assumption that the edge has a diago-
nal direction instead of detecting the actual edge direction in neighboring blocks. This 
assumption is reasonable because: 

1. Corner outlier artifacts created by a diagonal edge are more noticeable than arti-
facts created by a horizontal or vertical edge at a cross-point. 

2. Various deblocking filters can remove corner outlier artifacts created by a horizon-
tal or vertical edge. 

According to this assumption and the detection results obtained in Section 2, when 
block A includes a corner outlier artifact as shown in Fig. 2(b), the pixels in block A 
are replaced by 
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where each index follows that of Fig. 3. This filter compensates the stair-shaped dis-
continuity using the average value of neighboring pixels along the diagonal edge. For 
block B, C, and D, the filtering methods are similar to (3) and actual equations are 
listed in Appendix. 

4   Simulation Results 

The proposed method is applied to ITU test sequences at various bit-rates. We use 
MPEG-4 verification model (VM) for low bit-rate DCT-based video compression [6]. 
Test sequences are coded with two coding structures: IPPP structure, in which all 
frames of a sequence are inter-frame coded except the first frame, and I-only struc-
ture, in which all frames are intra-frame coded. In IPPP structure, the H.263 quantiza-
tion method with fixed QP is adopted, and motion search range is [-16.0, 15.5]. All 
300 frames of each sequence are tested with given frame rates, bit-rates, and frame 
sizes. To arrive at a certain bit-rate, an appropriate quantization parameter is chosen 
and kept constant throughout the sequence. This can avoid possible side effects from 
typical rate control methods. The MPEG-4 decoded frames are obtained at the bit-
rates of 10, 24, 48, and 64kbps, respectively. Test sequences for the simulation are 
listed in Table 2. To evaluate the proposed method, we apply the proposed filter to the 
MPEG-4 decoded frames with two cases: a case where all coding options are 
switched off, and a case where the deblocking filter option is turned on. 
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The simulation results in terms of PSNR for IPPP coded sequences are summarized 
in Table 3. It can be seen that PSNR results for the luminance component are in-
creased by up to 0.02dB throughout the sequences. Just a slight improvement in 
PSNR is obtained due to limitation of the area satisfying the filtering conditions. 
However, the proposed filter improves subjective visual quality considerably, in par-
ticular for sequences with apparent diagonal edges such as Hall Monitor, Mother & 
Daughter, Foreman, etc. For emphasizing the effect of the proposed filter, partially 
enlarged frames for the first frame of Hall Monitor sequence under each method, i.e., 
the result of the proposed method without and with the deblocking filter, respectively, 
are shown in Fig. 4. Fig. 5 shows the result frames for the first frame of Foreman 
sequence with CIF size in order to observe the performance of the proposed filter in 
relatively large frame sizes. 

Table 2. Test sequences for IPPP structure in the simulation 

Sequence Bit-rate (kbps)
Frame rate 

(Hz) 
Frame Size 

10 7.5 QCIF 
24 10 QCIF Hall Monitor 
48 7.5 CIF 
10 7.5 QCIF 

Mother & Daughter 
24 10 QCIF 
10 7.5 QCIF Container Ship 
24 10 QCIF 
48 10 QCIF 

Foreman 
64 10 QCIF 
48 7.5 CIF 

News 
64 10 CIF 

Coastguard 48 10 QCIF 
 

Table 3. PSNR results for IPPP structure 

PSNR_Y (dB) 
Sequence QP 

Bit-rate 
(kbps) No filtering

No filtering +
proposed filter

Deblocking
Deblocking + 
proposed filter 

Hall Monitor 18 9.39 29.8728 29.8851 30.1957 30.2090 
Mother & Daughter 16 9.45 32.2256 32.2469 32.3684 32.3894 

Container Ship 17 9.8 29.5072 29.5082 29.7281 29.7291 
Hall Monitor 9 24.29 34.0276 34.0325 34.1726 34.1835 

Mother & Daughter 8 23.83 35.3303 35.3316 35.2686 35.2708 
Container Ship 10 21.61 32.5701 32.5711 32.6003 32.6013 

Foreman 14 46.44 30.6237 30.6252 31.0727 31.0739 
Coastguard 14 44.68 29.0698 29.0763 29.1562 29.1586 

Hall Monitor 12 47.82 33.8216 33.8236 34.0921 34.0948 
News 19 47.21 31.2192 31.2202 31.3516 31.3528 

Foreman 12 64.65 31.4786 31.4798 31.7587 31.7598 
News 16 63.14 32.0648 32.0658 32.1233 32.1243 
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(a) 
 

      
(b)                                                         (c) 

 

      
(d)                                                           (e) 

Fig. 4. Result images for Hall Monitor sequence, (a) Original sequence (QCIF, QP=17), (b) and 
(d) Partially enlarged images of MPEG-4 reconstructed images without and with the MPEG-4 
deblocking filter, respectively, (c) and (e) Partially enlarged images of the proposed method 
without and with the MPEG-4 deblocking filter, respectively 

The test conditions, coding options, and evaluation methods of I-only structure are 
similar to the case of IPPP structure. In this case, we pay attention to the filtering 
results along with variation of QP instead of bit-rates. Table 4 shows the results for I-
only coded sequences of Hall Monitor and Foreman. The results are similar to the 
IPPP coded case. The proposed filtering conditions are satisfied at low QP, since each 
frame is relatively flat originally for sequences with low spatial details such as Hall 
Monitor. On the other hand, the proposed filtering conditions are satisfied at relatively 
 



Simple Detection Method and Compensation Filter to Remove Corner Outlier Artifacts 523 

 
(a) 
 

    
(b)                                                           (c) 

 

     
(d)                                                           (e) 

Fig. 5. Result images for Foreman sequence (a) Original sequence (CIF, QP=22), (b) and (d) 
Partially enlarged images of MPEG-4 reconstructed images without and with the MPEG-4 
deblocking filter, respectively, (c) and (e) Partially enlarged images of the proposed method 
without and with the MPEG-4 deblocking filter, respectively 
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high QP, since each frame is flattened at high QP for sequences with medium or high 
spatial details such as Foreman. This tendency maintains in the sequences with or 
without the deblocking filter. 

Table 4. PSNR results for I-only structure 

PSNR_Y (dB) Sequence Method 
QP=12 QP=17 QP=22 QP=27 

No filtering 32.8170 30.5284 28.9326 27.6323 
No+proposed 32.8396 30.5381 28.9374 27.6344 
Deblocking 33.2223 30.9624 29.4025 28.1188 

Hall Monitor 

Deblocking+proposed 33.2422 30.9848 29.4052 28.1230 
No filtering 32.1830 30.0531 28.6406 27.5515 

No+proposed 32.1862 30.0606 28.6540 27.5684 
Deblocking 32.5741 30.5267 29.1635 28.1405 

Foreman 

Deblocking+proposed 32.5760 30.5316 29.1745 28.1526 

5   Conclusions 

The corner outlier artifacts are very annoying visually in low bit-rate video although 
they appear in limited areas. To remove the corner outlier artifacts, we have proposed 
a simple and effective post-processing method, which includes a detection method 
and a compensation filter. The proposed method, particularly in combination with 
deblocking and deringing filters, more improves both objective and subjective visual 
quality. 
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Appendix: Compensation Filters for Other Blocks that Include a 
Corner Outlier Artifact 

In case where block B includes a corner outlier artifact, as seen in Fig. 2(c), the pixels 
in block B are replaced by 
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in case where block C includes a corner outlier artifact, as seen in Fig. 2(d), the pixels 
in block C are replaced by 
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and in case where block D includes a corner outlier artifact, as seen in Fig. 2(a), the 
pixels in block D are replaced by 
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In each equation, the indices follow those of Fig. 3. 
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Abstract. In this paper, we propose a new algorithm for generating test bit-
stream in high quality to evaluate the static image quality of DTV receiver, 
based on a target bit allocation in the process of rate control. In order to allocate 
the number of target bits, we consider the normalized complexities, which are 
updated or maintained according to GOP picture qualities. The proposed rate 
control method is suitable for the compression of static test pattern while 
MPEG-2 Test Model 5 is suitable for moving picture. To evaluate the perform-
ance of proposed algorithm, the test bitstream are generated by a MPEG-2 
software encoder using the proposed algorithm. Experimental results show that 
average PSNR of the proposed method is higher than those of the conventional 
case. With experiment in DTV system, we have confirmed that the proposed al-
gorithm has a stable bit rate and good video quality and it is suitable for evalua-
tion of the DTV receiver. 

1   Introduction 

As the service using the digital TV (DTV) increases, how to measure a picture quality 
becomes the main issue in digital TV manufacturers. When an original image for a 
test has been encoded and decoded, there will be differences between the original and 
decoded images. So, generating the reference test stream to guarantee the high picture 
quality and stable bit rate is necessary for the test of DTV receiver [1]-[4]. Moreover, 
the test bitstream must satisfy MPEG-2 [5], DVB [6], and ATSC [7] standards.  

The MPEG-2 Test Model 5 (TM5) [8] algorithm is widely used for bit rate control. 
In TM5, however, the target number of bits and the number of actual coding bits do 
not match well at static video compression, such as test patterns. To perform the high 
quality video compression for static test patterns such as color bar, pulse & bar, and 
multi-burst, we propose a method to generate test pattern in high quality by consider-
ing the partition of DCT block. Specially, we propose a new target bit allocation method 
using normalized complexities in the process of rate control, which are updated or 



 Rate Control Algorithm for High Quality Compression of Static Test Image 527 

maintained by means of GOP picture qualities. The proposed method is using the fact 
that the generated bits and average quantization value have almost identical distribu-
tion per each GOP, and is suitable for compression of the static test pattern while the 
target bit allocation method in MPEG-2 TM5 is suitable for moving picture.  

To evaluate the proposed algorithm, we generate the test bitstream about three 
static test patterns by using the proposed algorithm and TM 5 respectively. Experi-
mental results showed that average PSNR of the proposed method is higher than those 
of the conventional case. And we have tested the generated test stream in experimen-
tal DTV broadcasting system, and confirmed that the proposed algorithm has a stable 
bit rate and good video quality. 

2   Rate Control Algorithm of MPEG-2 TM5 

The amount of bits being generated in MPEG-2 can be controlled by complexity of 
images and by some setting variables of an encoder. Therefore, the encoder can con-
trols the amount of bits after estimating bits generation with a virtual buffer. The 
MPEG-2 TM5 (test model 5) rate control scheme comprises of three steps, target bits 
allocation, bit rate control and adaptive quantization [8], [9]. 

After encoding each picture, a global complexity measure, iX , pX , or bX  is up-

dated as follows. 

],,[],,[],,[ bpibpibpi QSX ×= , (1) 

where iS , pS , and bS  are the number of bits generated by encoding a picture type I, 

P, and B respectively, and iQ , pQ , and bQ  are their average quantization parameters 

over all the macroblocks in the picture. A target number of bits, iT , pT , or bT  is then 

assigned for the next picture of the same type in the GOP as follows. 
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where pK  and bK  are constant parameters, R is the remaining number of bits  

assigned to the current GOP, pN  and bN  are the number of P and B pictures  
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remaining in the current GOP, respectively. bit_rate is the rate at which the coded 
bitstream is delivered from encoder to decoder, and picture_rate is the frame rate at 
which pictures are reconstructed from the decoding process.  

In the process of the bit rate control, reference quantization variables are computed 
for each macroblock based on the status of virtual buffer fullness. Finally, the adap-
tive quantization makes the buffer status be even by controlling the quantization steps 
of the pictures being encoded, based on both the current buffer status and spatial  
divergence. 

3   Generation of Test Pattern in High Quality 

As a quantization process in encoder is lossless transform, the image compression 
using this technique brings the quantization error inevitably. This quantization error 
results in degrading image quality, so that a special method to reduce it is necessary to 
implement video test pattern in high quality for DTV system. In order to reduce the 
quantization error, the coefficients generated by DCT transform should be minimized 
and grouped at the low frequency area of DCT block. In case of generating a static 
test pattern for DTV, what we should consider is that patches on test image are made 
by 8×8 block which is quantization process unit. It means that patches on the test 
image are divided at the boundary of blocks as possible as it can. Moreover, one more 
thing we have to take into account is a block size at color images. Macroblock (MB) 
in color image can be comprised at the format of 4:4:4, 4:2:2 or 4:2:0 according to the 
rate of between luminance and chrominance signal, where 4:2:0 format is widely used 
in case of DTV broadcasting. So, in order to consider 8×8 block size at even chromi-
nance images, Cb, Cr of 4:2:0 format, the patches on the test image should be made 
by 16×16 MB unit as much as possible. 

We performed the computer simulation as shown in Fig. 1 to investigate the 
amount of bit generation according to patch’s position on an image of one MB. Test 
MBs for this simulation is as shown in Fig. 2, where MB (a) is luminance level 128 
and chrominance level 64, MB (b) is composed of a patch that is 8×8 block size and 
its luminance level 255, (c) and (d) are MB whose patch moves to the right. As a 
result, in case any border of patch is not included in the MB as shown in (a), quantiza-
tion coefficients are generated to the least. On the other hand, in case the patch is 
included in the MB, quantization coefficients are generated more and more. Further, 
the more quantization coefficients are generated, the more quantization error which 
lead to degrade image quality, so that the compression ratio is decreased. 
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Fig. 1. Block diagram for measuring the generated bit at each MB patterns 



 Rate Control Algorithm for High Quality Compression of Static Test Image 529 

8

8

Y Cb, Cr

           

Y Cb, Cr

 

(a)                                          (b)  
 

Y Cb, Cr

         

Y Cb, Cr

 

(c)                                     (d)  

Fig. 2. MB patterns with variation of the patch position: (a) Patch 0, (b) Patch 1, (c) Patch 2 and 
(d) Patch 3 

The amount of bits generated at this simulation is shown in Table 1. From the re-
sult of this table, we can see that the amount of bit generation is the smallest in case 
there are no borders of patches in MB as shown in Fig.1 (a), being the secondary 
smallest in case of patches having border of 8×8 blocks as shown in Fig. 1(b). 

Table 1. Generated bits of MB patterns with variation of the patch position 

 Patch 0 Patch 1 Patch 2 Patch 3 

Generated Bits 34 148 272 453 

4   Proposed Rate Control Algorithm for Static Images 

In this paper, we propose new algorithm for target bit allocation during rate control to 
encode the static test images in high quality at MPEG-2 vide encoder. We could see 
that target bits in MPEG-2 TM 5 are allocated variably according to each I, P and B 
pictures in order to be suitable for compression of the moving picture, as shown in 
equation (2), (3), (4). On the other hand, our method for target bit allocation is suit-
able for static images like test images that can be used for the DTV receiver. 

When the images composed of little moving objects, like static test patterns, are 
encoded, the generated bits and average quantization variables are almost identical 
per each GOPs. In this condition, it is reasonable to allocate the target bits by GOP 
unit because information used at the previous GOP can be reference to the complexity 
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estimation of the current GOP. Therefore, we propose the algorithm to maintain the 
optimum picture quality by checking the picture quality per GOP, as shown in Fig. 3. 
The rate control at initial GOP of image sequences is performed by the same way as 
the TM 5. The proposed algorithm at first calculates an average picture quality per 
GOP, if it is bigger than the maximum picture quality that is also updated per each 
GOP, then distribution of bit allocation in GOP are updated, or it is maintained as 
previous one. 

 

 

Fig. 3. The proposed algorithm for allocating the target bits suitable for encoding of static 
image 

4.1   Target Bit Allocation by GOP Unit 

In our algorithm, the initial values for bit allocation are same with TM 5. From the 
second GOP, in order to use the normalized complexity of previous GOP and to esti-
mate that of current GOP, we define the normalized complexity of i-th GOP, 
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)(kX i  is k-th picture complexity of i-th GOP, and )(kα  is the ratio coefficient of 

picture type, I, P, and B. Therefore, the ratio of target number of bits, IT , PT , and BT  
can be expressed as 

norm
B
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P
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Finally, the number target of bits k-th picture of i-th GOP )(kTi
 is decided as 
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GOP, and picB  is uniformly allocated bits per each picture. Consequently, the number 

of target bits, )(kTi
, is rationally allocated by means of normalized complexities, 

)(kX norm
i . Besides the number of target bits, )(kTi

, is updated or maintained by 

means of GOP picture qualities. 

4.2   Update of Target Bits by GOP Unit 

In the proposed algorithm, in order to obtain the maximum image quality, we update 
or maintain the normalized complexities and the number of target bits for each GOP. 
The relationship between the GOP and proposed normalized complexity is shown in 
Fig. 4. In this paper, the target bits being calculated by equation (7) is updated or 
maintained according to average picture quality of GOP. At first, average picture 
quality of the present GOP, PiQ , is calculated as 
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Fig. 4. Relationship between the GOP and proposed normalized complexity 

where )(kQPi is picture quality of k-th picture in i-th GOP.  Then, PiQ is compared 

with max
GOPQ  which is maximum average picture quality up to the previous GOP. 
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If PiQ  is larger than max
GOPQ , then normalized complexity at the present GOP and 

the target bits using this are updated, or else the target bits at each picture inside GOP 
are maintained. As a result, the proposed algorithm makes sure the best picture quality 
by continuously updating the normalized complexity and target bits so that the aver-
age picture quality per GOP, PiQ , can be the maximum. 

5   Experiments and Results 

To evaluate the performance of proposed algorithm, the test bitstream are generated 
by an MPEG-2 software encoder using either the proposed algorithm or MPEG-2 
TM5 with three test patterns, multiburst, crosshatch, and KNU composite test pattern 
which is modified TCM test image [11], as shown in Fig. 5.  

 

              
(a)  (b) 

 
(c) 

Fig. 5. (a) Multiburst (1280x720), (b) crosshatch (1920x1080), and (c) KNU composite test 
pattern (1920x1080) 

The KNU composite test pattern is designed to be suitable by us for evaluating the 
static picture quality in DTV. The borders of patterns on these test images are aligned 
by 16 pixel macroblock or 8 pixel units to be encoded effectively. Further, the over-
flow problem at VBV buffer, which may cause in encoding process of the static im-
ages, was resolved by using a zero stuffing method [6]. In order to use the proposed 
method, we set )(kα  in equation (5) as 1, 0.4 and 0.4 for I, P and B pictures respec-

tively. In case )(kα  becomes lower, the quantization scale factor become the mini-
mum value, so that picture quality was no longer enhanced.  

Table 1 shows their corresponding PSNR values of the three test streams. From 
this table, the PSNR of the proposed algorithm is about 3 to 5dB more efficient than 
that of MPEG-2 TM5 for luminance signal and about 1 to 2dB for chrominance sig-
nal. Fig. 6 shows variation of PSNR values at the luminance signal and chrominance 
signal when KNU composite video test pattern is encoded by 12 Mbps. From these 
figures, we can see the variation of picture quality become stable less than 1dB in 
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case of luminance signal. Fig. 7 compares a part of the decoded KNU test images and 
we can confirm image enhancement at the proposed method as well.    

Table 1. The average PSNR of conventional and proposed method for static test patterns 

  PSNR  [dB] 

 Test images Conventional Proposed 

  

Video rate 
[Mbps] 

Y Cb Cr Y Cb Cr 

Multiburst 4 49.9 INF INF 52.2 INF INF 

Crosshatch 6 44.4 INF INF 59.6 INF INF 

KNU Composite 8 37.7 52.0 52.3 40.1 54.3 54.4 

KNU Composite 12 49.2 58.8 59.1 54.0 59.1 59.3 

INF : Infinity 
 
 

 
(a)                                                                   (b) 

Fig. 6. PSNR values of KNU composite video test pattern encoded by 12 Mbps: (a) Luminance 
signal and (b) chrominance signal 

        

(a)                                                                                          (b)  

Fig. 7. Picture quality comparison of KNU composite video test pattern encoded by 12 Mbps; 
(a) MPEG-2 and (b) proposed method 
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6   Conclusions 

This paper proposed a new algorithm for generating a high quality test bitstream to 
evaluate the static image quality of DTV receiver based on the rate control improve-
ment. To evaluate the performance of proposed algorithm, the test bitstreams were 
generated by the MPEG-2 software encoder using the proposed algorithm. We can see 
that the proposed algorithm is about 2 to 5dB more efficient than that of MPEG-2 
TM5. The result showed that the proposed bitstream has a good picture quality and 
stable bit rate, making it suitable to evaluate the picture quality of DTV. The proposed 
test bitstreams are currently being used in LG Electronics DTV production without 
any problems. 
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Abstract. This paper presents a novel JPEG2000-based algorithm for
realizing a layered image coding (LIC) system. In the algorithm, the res-
olution and rate associated with each layer of the LIC system can be
pre-specified. The algorithm encodes an image one layer at a time using
the modified JPEG2000 technique. The encoding process at each layer
only covers the subbands having resolution level lower than the desig-
nated resolution at that layer subject to the pre-specified incremental
rate budget. The encoding results at the previous layers will be used in
the current layer to accelerate the encoding process. Simulation results
show that the algorithm outperforms its counterparts for constructing
the rate- and resolution-constrained LIC systems.

1 Introduction

In many multimedia applications over networks, users may have different de-
mands on the quality of images. Therefore, it may be difficult for a server to
provide an encoded bit stream satisfying all the requirements. One solution
to this problem is to use the simulcast technique where an image is encoded
and stored independently for each specific request. This approach requires more
resources to be used in the encoder in terms of disk space and management
overhead.

To eliminate this drawback, a number of layered image coding (LIC) [1] de-
sign algorithms have been proposed. In the LIC scheme, an encoded bit stream
is delivered in more than one layer. By decoding bit streams accumulated up to
different upper layers from the base layer, we reconstruct the transmitted image
at different rates and/or resolutions. Users with various rate and resolution re-
quirements therefore share the same LIC system for efficient image transmission.
Many techniques such as embedded zerotree wavelet (EZW) [4], set partitioning
in hierarchical trees (SPIHT) [3], and JPEG2000 [5] can be employed for realiz-
ing LIC systems. The EZW and SPIHT are only SNR-scalable since they always
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A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 535–546, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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display reconstructed images in full resolution. The JPEG2000 supports both
the SNR and resolution scalabilities. However, in the algorithm, the rate asso-
ciated with each resolution level cannot be independently controlled. Therefore,
the JPEG2000 may not be effective for realizing the LIC systems where the rate
and resolution associated with each layer are desired to be pre-specified. In [2],
a modification of the SPIHT, termed layered SPIHT (LSPIHT), is proposed for
the realization of a resolution- and rate-constrained LIC. Nevertheless, since the
JPEG2000 has better rate-distortion performance as compared with the SPIHT,
it is expected that a modification of the JPEG2000 may outperform LSPIHT
for the implementation of LIC systems.

This paper employs a layered JPEG2000 (LJPEG2000) technique for LIC de-
sign. In the LJPEG2000, the rate and resolution associated with each layer can
be pre-specified before encoding. The transmitted images are reconstructed with
rate and resolution identical to those of the highest layer accumulated by the
decoder. Both the SNR and resolution scalabilities therefore can be achieved.
The LJPEG2000 adopts a bottom-up design approach to satisfy both rate and
resolution constraints at each layer. Starting from the base layer, the algorithm
encodes one layer at a time using JPEG2000 subject to the pre-specified incre-
mental rate budget at that layer until the design of the top layer is completed.
The encoding process at each layer covers only the subbands with resolution
lower than the resolution constraint at that layer. To enhance the performance
of JPEG2000 at each layer, the encoding results of the previous layers are used.
Simulation results show that the LJPEG2000 outperforms LSPIHT and simul-
cast systems subject to the same rate and resolution constraints at each layer.

2 Problem Formulation

Let x be an image to be transmitted over the LIC system. The dimension of x
is assumed to be 2p × 2p. Let X be the p-stage wavelet transform matrix of x.
Then, as shown in Figure 1, X is also a 2p× 2p matrix containing subbands xL0
and xV k,xHk,xDk, k = 0, .., p − 1, each with dimension 2k × 2k. Note that, in
the wavelet transform matrix, the subbands xLk (lowpass subbands at resolution
level k), and xV k,xHk,xDk (V, H and D orientation selective highpass subbands

0L
x

0H
x

0V
x

0D
x

...
......

1�pH
x

1�pD
x

1�pV
x

Fig. 1. The wavelet transform coefficients of an image x
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at resolution level k), k = 0, .., p− 1, are obtained recursively from xL(k+1) with
xLp = x, where the resolution level p is also referred to as the full resolution. The
decomposition of xL(k+1) into four subbands xLk,xV k,xHk,xDk can be carried
out using a simple quadrature mirror filter (QMF) scheme as shown in [6].

A typical implementation of LIC is shown in Figure 2, where the encoded bit
streams for reconstructing images in different resolutions and rates are trans-
mitted via more than one layer for decoding. Each layer is associated with a
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1r

rN
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r2

Fig. 2. Basic structure of a LIC

resolution level. The layers are arranged in such a way that layers having lower
resolution are placed in lower positions in the LIC. Starting from the base layer
(the layer in the lowest position, or the layer 1), the receivers can decode the bit
streams up to any layer depending on their requirements for the reconstructed
image. The resolution of the reconstructed image after decoding is the resolution
of the layer in the highest position among the layers decoded by the receiver.

Suppose there are N layers in the LIC system. Let Ii be the resolution level
associated with layer i. In addition, we assume Ij ≤ Ii for j ≤ i. Given an
image x for LIC, the objective of encoding in the layer i is to code the lowpass
subband xLIi with resolution level Ii and rate budget ri. To reconstruct xLIi

in the receiver, the bit streams from layer 1 (the base layer) up to layer i will
be decoded. Let ri be the accumulated rate up to layer i. The accumulated rate
for decoding at layer i, ri, is then related to the rate budget at layer i, ri, by
ri−1 + ri = ri, where we assume r0 = 0.
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Assume the image to be encoded is with dimension 2p×2p, then the bit budget
at layer i and accumulated bits up to stage i are 2p × 2p × ri and 2p × 2p × ri,
respectively. In the design of a LIC system, Ii and ri, i = 1, ..., N, in general are
desired to be pre-specified and controlled to achieve both resolution and SNR
scalabilities. We can determine the values of Ii and ri from the requirement of
codecs or from applications. The image encoding for the LIC system is then
executed subject to these constraints.

3 LJPEG2000 Algorithm

The basic JPEG2000 uses the post-compression rate-distortion optimization
(PCRD-opt) [5] algorithm for determining the rate allocated to each subband.
Therefore, the rate used for the encoding of the low-pass subband xLIi at each
resolution level i cannot be prespecified/controlled. Consequently, the implemen-
tation of the rate- and resolution-constrained LIC using the JPEG2000 may be
difficult. The LJPEG2000 technique can be used to solve this problem.

Starting from the base layer, the LJPEG2000 algorithm constructs one layer
at a time until the design of the top layer is completed. The LJPEG2000 for
the construction of each layer i is a JPEG2000 process covering the subbands
having resolution level lower than Ii with the rate budget ri. Since Ij ≤ Ii

for j ≤ i, the subbands encoded at each lower layer j are also encoded at
layer i. Therefore, the LJPEG2000 at layer i can use the results of LJPEG2000
at layer j, j = 1, ..., i − 1, to improve the coding efficiency. To see how the
encoding results at the lower layers can be exploited, we first provide a brief
overview of the JPEG2000. As shown in Figure 3, an image to be encoded
by JPEG2000 is transformed using a wavelet transform and quantized. The
quantization indices in each subband are divided into rectangular codeblocks.
The quantization indices within each codeblock are compressed using a bitplane
coder. The individual codeblock streams are then grouped together to form the
JPEG2000 codestream.

Since the LJPEG2000 is an extension of the basic JPEG2000, it encodes each
layer of the LIC on bitplane-by-bitplane basis. Suppose the encoding of layer
i− 1 is completed, and the encoding of layer i is to be done. Let Si be the set
of codeblocks in the subbands constituting the lowpass subband xLIi . Consider
a codeblock B ∈ Si. Suppose B also belongs to Si−1, and some most significant
bitplanes of B have already been encoded at layer i − 1 and/or below. The
encoding process at layer i does not have to encode these bitplanes because
their encoded bitstreams can be found from the bitstreams at the lower layers.
We call the removal of these bitplanes, the bitplane reduction of B at layer
i. In the LJPEG2000, the encoding process at each layer can use the bitplane
reduction technique for exploiting the encoding results at the lower layers.

To employ the bitplane reduction at each layer i, the bitplanes which have
been encoded at the previous layers should be identified. This can be accom-
plished by obtaining the reconstructed codeblocks B̂i−1 at layer i− 1. Note that



JPEG2000-Based Resolution- and Rate-Constrained Layered Image Coding 539

Tiling
Component

Transform
Wavelet

Transform

Quantization

Bitplane

Coder

11000101011001

0001001

. . .
101010111111

Codeblock Embedded Bitstreams

Generate

Codestream

110001000001011101000101011

Fig. 3. Overview of the JPEG2000 algorithm

B̂i−1 contains all the most significant bitplanes which have been encoded up to
the layer i− 1. Let

bi(B) = B − B̂i−1. (1)

Therefore, bi(B) contains the bitplanes which have not been encoded in B. The
bitplane encoder at layer i encodes the bi(B) for ∀B ∈ Si. The encoding of each
bitplane here follows the same procedure as that of the basic JPEG2000. Let
b̂i(B) be the reconstructed bi(B) obtained from the decoder of the LJPEG2000
at the layer i. The reconstructed codeblock B at layer i is then given by

B̂i = B̂i−1 + b̂i(B). (2)

The encoding process at layer i is subject to the rate budget ri. Therefore, an
optimal rate allocation is necessary for determining the rate allocated to each
codeblock B ∈ Si at layer i. Let d(B, B̂i) be the distortion of B at layer i, where
d(X,Y ) is the squared distance between vectors X and Y . Let ri(B) be the rate
allocated to B for the bitplane encoding of bi(B). The objective of the optimal
rate allocation at layer i is to find an optimal set of rates {r∗i (B), B ∈ Si} such
that

{r∗i (B), B ∈ Si} = argmin{ri(B),B∈Si}
∑

B∈Si

d(B, B̂i),

subject to
∑

B∈Si

ri(B) ≤ ri. (3)

The PCRD-opt technique in the basic JPEG2000 can be used to solve this
problem. The cost function for the PCRD-opt at layer i is given as

∑
B∈Si

d(B, B̂i).

After the optimal rate allocation, the bitstream for each codeblock B ∈ Si are
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grouped together to form the codestream of the LJPEG2000 at layer i. The
same procedure is repeated for each layer until the codestream of the highest
layer is formed. The complete flowchart of the LJPEG2000 algorithm is shown in
Figure 4.

N
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Set: 1�i

Based on ,1I identify all

codeblocks
i

SB �

Perform the bit plane reduction

by finding b(B) for
i
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Perform the JPEG 2000 over

all b(B), ,
i

SB � with the rate

budget 1r

?Ni � 1�� ii

No

Yes

Stop

Fig. 4. The flowchart of LJPEG 2000 algorithm

4 Simulation Results

This section presents some simulation results of the LJPEG2000 technique for
the applications of LIC systems. Table 1 shows the performance of the LIC
realized by LJPEG2000 and LSPIHT for various test images. The dimension
of the test images is 512 × 512. Therefore, the full resolution level is p = 9.
The wavelet transform matrices of the test images are obtained by the 9/7-
tap filter. The number of layers in the LIC is N = 3. The resolution level of
layers 1,2 and 3 of the LIC are I1 = 7, I2 = 8, and I3 = 9, respectively. The
accumulated rate up to layers 1,2 and 3 of the LIC are r1 = 0.015, r2 = 0.03
and r3 = 0.083, respectively. Therefore, the rate for the encoding of layers 1,2
and 3 are r1 = 0.015, r2 = 0.015 and r3 = 0.053, respectively. The performance
for each layer is measured with PSNR. Let x be the image to be encoded, then
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Table 1. Performance of the LIC system realized by LSPIHT and LJPEG2000 for
various test images

System LSPIHT-based LIC[2] LJPEG2000-base LIC

i 1 2 3 1 2 3
Ii 7 8 9 7 8 9
ri 0.015 0.015 0.053 0.015 0.015 0.053
ri 0.015 0.03 0.083 0.015 0.03 0.083

PSNRi Barbara 23.34 24.79 30.64 34.06 30.22 31.79
House 30.22 32.82 38.39 40.19 38.48 40.46
Pepper 27.12 30.37 34.42 35.24 34.25 34.42
Tree 24.99 27.54 30.81 31.56 29.48 31.91

the lowpass subband xLIi is the desired image to be reconstructed in the layer i.
Let x̂LIi be the reconstructed image in the layer i, and Di be the mean squared
distance between xLIi and x̂LIi . Then the PSNR in the layer i, denoted by
PSNRi, is defined as PSNRi = 10 log(2552/Di). In Table 1, we also note that
ri and ri indicates the required rates for encoding and reconstructing lowpass
subband xLIi in the layer i, respectively.

It is observed from Table 1 that LJPEG2000 outperforms LSPIHT at each
layer. This is because LJPEG2000 and LSPIHT are based on a sequence of
JPEG2000 and SPIHT operations, respectively. In addition, the JPEG2000 al-
gorithm has been found to be more effective for image coding over the SPIHT
algorithm. Figure 5 shows the original and reconstructed versions of the image
“Barbara” coded by LSPIHT and LJPEG2000 at each layer. Note that the im-
ages in the layers 1 and 2 are of lower resolution, and therefore are smaller in
size. However, in Figure 5, they are zoomed in/up to have same size image as in
layer 3 for easy comparison. From Table 1 and Figure 5, it is observed that the
LJPEG2000 technique provides high PSNR and excellent visual quality in each
layer.

For comparison purpose, we also implement a JPEG2000-based simulcast sys-
tem for the coding of xLIi , i = 1, ..., 3. In the system, the lowpass subimages
xLIi , i = 1, .., 3, are encoded independently using the basic JPEG2000 technique
with the rate ri shown in Table 1. Consequently, the rates for encoding each
xLIi in both Tables 1 and 2 are the same, and are equal to ri. Table 2 shows the
resulting PSNR of the reconstructed lowpass subbands xLIi , i = 1, ..., 3, for var-
ious images. From Tables 1 and 2, for the same test image, we observe that the
LJPEG2000-based LIC system has higher PSNR than that of the JPEG2000-
based simulcast system at each layer (except the lowest layer, where the PSNRs
for both systems are the same because identical procedure is used for the cod-
ing at that layer). The LJPEG2000-based LIC enjoys better performance be-
cause less coding redundancy is observed in the system. To illustrate this fact
in more detail, we first note that, the set of wavelet coefficients of image xLIj is
contained in that of xLIi for j < i. In addition, in the JPEG2000-based simul-
cast system, the lowpass subbands xLIi are independently encoded. Therefore,
the common coefficients are repeatedly encoded in the system, and the over-
head for the coding can be very high. By contrast, in the LIC system using our
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(a) (b)

Layer 1

Layer 2

Layer 3

Fig. 5. The reconstructed versions of the image “Barbara” at each layer of LIC systems
shown in Table1 : (a): LSPIHT-based LIC system, (b): LJPEG2000-based LIC system
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Table 2. Performance of the JPEG2000-based simulcast system for various test images.
The rate for encoding xLIi , i = 1, .., 3 is ri, where the value of ri is shown in Table 1.

i 1 2 3
Ii 7 8 9

PSNRi Barbara 34.06 26.26 29.81
House 40.19 35.32 38.69
Pepper 35.24 30.26 33.30
Tree 31.56 25.68 30.44

LJPEG2000 technique, the encoding of each layer effectively utilizes the results
of JPEG2000 in the previous layers via bitplane reduction to enhance the coding
efficiency. Hence, the redundancy for encoding the coefficients which are com-
mon to every layer in the LIC system can be effectively reduced. Figure 6 shows
the reconstructed “Barbara” at each layer of the LJPEG2000-based LIC system
and JPEG2000-based simulcast system subject to the same rate for encoding.
As compared with the JPEG2000-based simulcast, the LJPEG2000-based LIC
has better visual quality at layers 2 and 3. Consequently, based on the same rate
for encoding each lowpass subimage xLIi , our LJPEG2000 method outperforms
the original JPEG2000 method.

To further assess the performance of LJPEG2000 technique, we also compare
the LJPEG2000-based LIC system with the JPEG2000-based simulcast system
subject to the same rate for decoding each lowpass subband. In the LIC system,
the rates for the encoding and decoding in each layer i are different, and are given
as ri and ri, respectively. In the simulcast system, however, the rates for encoding
and decoding are the same. Now, based on the same rate ri shown in Table 1
for reconstructing xLIi , the rate required for encoding in the JPEG2000-based
simulcast systems is therefore also ri. Table 3 shows the resulting PSNR of the
reconstructed xLIi of various test images encoded with rate ri. Figure 7 shows

Table 3. Performance of the simulcast system for various test images. The rate for
encoding xLIi , i = 1, .., 3 is ri, where the value of ri is shown in Table 1.

i 1 2 3
Ii 7 8 9

PSNRi Barbara 34.06 30.43 32.48
House 40.19 39.00 40.95
Pepper 35.24 34.43 34.67
Tree 31.56 29.68 32.41

the reconstructed “Barbara” for this case. Since the rate for encoding of xLIi in
the simulcast system is ri; whereas, the rate for the encoding of xLIi is only ri in
the LIC system, from Tables 1 and 3, we find that the JPEG2000-based simulcast
system has slightly higher PSNR for each xLIi , i = 2, 3. Nevertheless, as shown in
Figure 7, the visual quality of both systems are similar. Although the simulcast
system based on the JPEG2000 technique performs better in this case, it requires
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(a) (b)

Layer 1

Layer 2

Layer 3

Fig. 6. Reconstructed “Barbara” at each layer i of the LJPEG2000-based LIC system
and JPEG2000-based simulcast system subject to the same rate for encoding xLIi :
(a) LJPEG 2000 , (b) JPEG 2000
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(a) (b)

Layer 1

Layer 2

Layer 3

Fig. 7. Reconstructed “Barbara” at each layer i of the LJPEG2000-based LIC system
and JPEG2000-based simulcast system subject to the same rate for decoding xLIi :
(a) LJPEG 2000 , (b) JPEG 2000
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much higher rate for encoding. In fact, the rate for encoding all the images
xLIi , i = 1, ..., N, in the system is

∑N
i=1 ri. However, the required rate in the

LIC is only rN . That is, as compared with JPEG2000-based simulcast system,
the LJPEG2000-based LIC system can achieve almost comparable performance
with much less rate for image encoding. These facts demonstrate the effectiveness
of the LJPEG2000 algorithm.

5 Conclusion

Our experiments have demonstrated that the LJPEG2000-based LIC system
outperforms both the LSPIHT-based LIC system and JPEG2000-based simul-
cast system subject to the same resolution and rate constraints at each layer.
In addition, subject to the same rate for decoding the lowpass subband at each
layer, the LJPEG2000-based LIC system attains comparable performance to
that of the JPEG2000-based simulcast system. In this case, the simulcast sys-
tem requires significantly higher rates for image encoding/transmission at each
layer. The LJPEG2000 algorithm therefore can be an effective alternative for
the design of LIC systems where the resolution and rate associated with each
layer are desired to be pre-specified.
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Abstract. In this work we present and analyze a conceptually novel
encryption method for digital videos. This type of encryption has sev-
eral advantages over currently available video encryption algorithms. We
analyze both security and performance aspects of our method, and show
that the method is efficient and secure from a cryptographic point of
view. Even though the approach is currently feasible only for a selected
class of video sequences and video codecs, the method is promising and
future investigations might reveal its broader applicability.

1 Introduction

In most digital video security architectures, video encryption plays a key role in
ensuring the confidentiality of the video transfer. However, conventional, general-
purpose encryption algorithms (such as AES) are not suitable for video encryp-
tion in many digital video applications [10,5,3,7], mainly because these algo-
rithms do not conform to various video application requirements that we discuss
next. In order to overcome this problem, a significant number of video encryp-
tion algorithms specifically designed for digital videos have been proposed (e.g.
[8,15,10,4,3]).

In general, applying a well-established, general-purpose, symmetric-key en-
cryption algorithm to a video sequence is a good idea from a security point of
view. However, there are applications with requirements that are not supported
with conventional encryption methods. Thus, encryption algorithms specifically
designed to support these requirements are desirable. These aspects include the
following: (1) level of security and perception, (2) format-compliance, (3) degree
of bitstream expansion, and (4) error-tolerance.

To identify an optimal level of security, we have to carefully compare the cost
of the multimedia information to be protected versus the cost of the protection
itself. Light-weight encryption, often called degradation, may be sufficient for
distributing multimedia content of low value. Often, degradation intentionally
preserves some perceptional information with visual quality that is unacceptable
for entertainment purposes. This type of encryption is referred to as perceptual
encryption. If the video contains sensitive industrial, governmental or military
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information, then the cryptographic strength must be substantial and no per-
ceptual information should be preserved after encryption.

In many applications it is desired that the encryption algorithm preserves the
video compression format. In other words, after encrypting the encoded video,
ordinary decoders should still be able to decode it without crashing. This is an
important feature in digital video broadcasting applications where an encrypted
video is broadcast to all system users. This property of an encryption algorithm
is often called format-compliance (also called transparency, transcodability or
syntax-awareness). When feeding the decoder with the format-compliant en-
crypted data the produced output appears either perceivable but distorted or
non-perceivable and random, depending on the type of encryption (see Fig. 1).

In many applications, it is required that the encryption transformation pre-
serves the size of a bitstream. This is known as the constant bitrate requirement.
However, more often than not, it is simply preferred that the output produced
by an encryption-equipped encoder and the output produced by an ordinary
encoder have similar sizes (a near-constant bitrate). A near-constant bitrate is
likely to occur when a block cipher is used for encryption, since in that case the
encrypted output is always a constant multiple of the blocksize.

Finally, for many multimedia systems error-tolerance, or error-resilience, is
usually of high importance. Advanced video coding systems (e.g. H.264) have
their own error correcting mechanisms. Hence, a video encryption algorithm that
preserves these mechanisms is favorable for video systems with noisy channels.

For the most part, modern cryptography is designed for a generic bitstream,
and as such, it disregards the aforementioned properties of a digital video and
the requirements of a typical digital video application. In the next section, we
present an overview of the video encryption algorithms proposed in the past
mainly to overcome some of these application-related problems.

The rest of this paper is organized as follows. Section 2 provides a brief
overview of existing video encryption algorithms, and Section 3 introduces our
proposed method. In Section 4 we present a security analysis of our method,
while in Section 5 we provide its performance analysis with some experimen-
tal results. Finally, Section 6 holds our conclusions and suggestions for further
research.

(a) (b) (c)

Fig. 1. Decoded video produced by an ordinary decoder for (a) video without encryp-
tion, (b) video encrypted with format-compliant perceptual encryption, and (c) video
encrypted with high-security format-compliant encryption
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2 Overview of Video Encryption Algorithms

In general, there are two basic research methodologies regarding the encryption
of digital videos: selective encryption approaches and full encryption approaches.
While full encryption approaches are designed to encrypt the entire video bit-
stream (raw or compressed), selective encryption approaches perform encryption
only on certain, carefully selected parts of the video bitstream. Most of the pro-
posed methods belong to the category of selective encryption approaches since,
in many instances, encrypting the entire bitstream introduces an expensive per-
formance overhead.

The idea of selective video encryption was introduced independently by Meyer
and Gadegast (SECMPEG) [8], and by Maples and Spanos (Aegis) [15]. Since
then, a significant number of selective encryption proposals appeared in the
scientific literature. A good reference for selective image and video encryption
methods along with some security analysis is given in [3,7].

As Fig. 2a depicts, a number of selective video encryption algorithms require
a modification of the codec, which is a drawback for systems with pre-installed
hardware codecs. Also, many selective approaches apply encryption after com-
pression in which case many application-related requirements are lost (Fig. 2b).
Another common problem with selective encryption approaches is the lack of
standard methods for proper security evaluation. Many selective encryption ap-
proaches were broken shortly after they were proposed because scientists found
ways to exploit the information from the remaining, unencrypted bits. For exam-
ple, Agi and Gong [1] showed weaknesses in SECMPEG [8] and Aegis [15] a year
later. Also, a year after Tang proposed an image/video encryption method [16]
based on permuting the zig-zag reordering after a DCT transformation, Qiao and
Nahrstedt [11] discovered serious weaknesses against attacks derived from statis-
tical analysis of the unencrypted DCT coefficients. Seidel at al. [12] show some
weaknesses in the video encryption algorithms by Shi et al. soon after the origi-
nal proposal [13]. The true correlation between encrypted and unencrypted bits
is often hard to properly estimate in terms of required security levels. Hence, the
selective encryption approaches are much easier to design and evaluate against
the performance aspects, than to properly evaluate in terms of security.

Full encryption approaches essentially encrypt the entire multimedia data.
The full encryption approach is not to be confused with the so-called näıve ap-
proach, which is itself in the category of full encryption. By a näıve approach
one understands a video encryption method that uses a conventional, general-
purpose modern cryptosystem to encrypt the entire video bitstream. By a “con-
ventional cryptosystem” we mean a modern symmetric-key cryptosystem that
is either one of the encryption standards, or a well-established general-purpose
cryptosystem that was designed and evaluated by reputable cryptographic ex-
perts, companies, or agencies. Full approaches that are not considered näıve are
mostly systems that are specifically designed to encrypt a specific multimedia
type of data. These approaches, which we refer to as alternative full approaches,
take into consideration the performance and security aspects needed for an ef-
fective multimedia encryption.
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Modified Encoder
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Modified Decoder

Last Stages of the Standard Decoder

Decryption

First Stages of the Standard Decoder

Encrypted Bits Unencrypted Bits

Distribution Channel

Original Video Decoded Video

Selective

Distribution Channel

Standard Encoder Standard Decoder

Original Raw Video Decoded Video

Selected Bits Unselected Bits

Encryption

Postprocessing Selective
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(a) (b)

Fig. 2. The usual architectures for selective video encryption: (a) both encoder and
decoder must be modified since the encryption/decryption is performed during the
compression/decompression stages, and (b) selected parts of the compressed video bit-
stream are encrypted where in most cases the resulting bitstream is not application-
friendly

Full Approach

Distribution Channel

Encoder Decoder

Decompression

Original Video Decoded Video

Full Approach

Decryption

Compression

Encryption

New Proposal

Distribution Channel

Standard Encoder

Compression

Standard Decoder

Decompression

Original Raw Video Decoded Video

New Proposal

DecryptionEncryption

(a) (b)

Fig. 3. The architecture for: (a) full (and näıve) video encryption where the entire
compressed video bitstream is encrypted using a standard cryptosystem (e.g. AES) or
an alternative fast cryptosystem (e.g. chaos-based), and (b) the proposed algorithm
where the encryption and decryption are performed outside the current video system
which results in no modification to the codec and fully compliant, application-friendly
video outputs

A notable path that the research community took for the full alternative video
encryption approaches was the use of fast chaotic maps to achieve encryption.
Chaos-based methods are apparently promising due to their fast performance.
Although many chaotic encryption approaches were shown to be insecure, there
are chaotic encryption algorithms that, up to date, remain unbroken (e.g. [4]).
An excellent overview of these approaches, along with their comparative secu-
rity analysis is presented in [5] and [3]. There are a few recently proposed fast,
hardware-friendly, full encryption methods that are based on a class of neural
networks [2]. However, these methods were later shown to be less secure than
originally anticipated [14]. Yi et al. proposed a new fast encryption algorithm
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for multimedia (FEA-M), which bases the security on the complexity of solving
nonlinear Boolean equations [17]. The scheme was shown insecure against several
different attacks [18,9].

In addition to questionable security, the full alternative encryption approaches
are not application-friendly when applied after compression, and application
requirements such as format-compliance or error-resilience are not supported.
Fig. 3a shows the typical structural design of full encryption approaches, where
encryption is performed after compression and where no modification to the
codec is needed.

3 Our Model

Strong encryption is a process that produces randomized data. On the other
hand, compression efficiency is directly dependent on the presence of source
data redundancy. The more the data is correlated, the better the compression,
and vice versa. One may ask the following important question: Is it possible
to design an encryption mechanism of reasonable security that preserves, or
perhaps even increases the compressibility of data? To our knowledge, no such
system has ever been proposed in the published scientific literature. Such system
is here referred to as the Correlation-Preserving Encryption (CPE). CPE for
digital videos encoded with spatial-only coding is indeed possible to achieve
with permutation-based transformations. In this section we present the details
of our CPE approach. The architecture of this approach is depicted in Fig. 3b.

Let V be a video sequence consisting of m frames denoted by I1, I2, . . . , Im.
For our model we assume that all frames in V are part of a single scene with a
relatively low movement, captured with a static camera, so that the differences
between adjacent frames are relatively small. Furthermore, we assume that each
frame has a dimension of w×h and up to 2n different pixel values (colors), such
that w × h is much larger than 2n . By the pigeonhole principle this condition
favors higher frequencies of the pixel values within a frame. Finally, let σi denote
a canonical sorting permutation of Ii, and σi(Ii) the image with sorted pixels
from Ii. For a given frame I there are a large number of sorting permutations for
I. By a canonical sorting permutation of I we mean a unique sorting permutation
σ that any two distant parties can compute solely by knowing I, which is the
case when the parties utilize the same computational method.

We describe two versions of our algorithm. The first one is designed for lossless
spatial-only codecs, such as Animated GIF (A-GIF), Motion PNG (M-PNG),
or Motion Lossless JPEG (M-JLS), while the second one is targeted for lossy
spatial-only codecs, such as Motion JPEG (M-JPEG).

Suppose Alice wishes to securely transmit a video sequence V = I1, I2, . . . , Im

to Bob. We assume that if Alice would like to transmit V to Bob non-securely,
she would normally use video compression algorithm C (the encoder) and de-
compression algorithm D (the decoder). She opens two channels with Bob, the
regular, non-secure multimedia distribution channel R, and a second, secure
channel S where transmission data is encrypted using some standard method
(e.g. AES-based protocol).
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Channel S Channel R

. . .

. . .I3I2I1 Im

C(I1) C(σ1(I2)) C(σ2(I3)) C(σm−1(Im))

σ1 σ2

Fig. 4. Diagram of our encryption algorithm for lossless spatial-only video codecs

D(C(σ2(I3))) =

= σ2(I3)

= Im
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m−1
(σm−1(Im))

C(I1)

D(C(I1)) = I1
D(C(σ1(I2))) =

= σ1(I2)

σ−1

1
(σ1(I2)) = I2 σ−1

2
(σ2(I3)) = I3

D(C(σm−1(Im))) =

= σm−1(Im)

. . .σ3σ2

σ1

C(σm−1(Im))C(σ2(I3))C(σ1(I2)) . . .

Fig. 5. Diagram of our decryption algorithm for lossless spatial-only video codecs

The Lossless Case. The following is the proposed algorithm for lossless codecs:

1. Given a video sequence V = I1, . . . , Im, Alice computes σ1.
2. Alice calculates C(I1) and transmits it through channel S. This is the secret

part (the key) of the algorithm.
3. For each subsequent frame Ii, i = 2, . . . ,m, Alice does the following:

(a) She computes the frame σi−1(Ii) and the permutation σi;
(b) Alice then applies the standard encoder to the frame σi−1(Ii) and trans-

mits the encoded frame C(σi−1(Ii)) to Bob via the regular, non-secure
multimedia channel R.

At the other end, Bob performs the following decryption algorithm in order to
recover the original video sequence V :

1. Bob decodes C(I1) into I1 and obtains a canonical sorting permutation σ1.
2. For each received frame C(σi−1(Ii)), i = 2, . . . ,m, Bob does the following:
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Fig. 6. Diagram of our encryption algorithm for lossy spatial-only video codecs

(a) Decodes C(σi−1(Ii)) into σi−1(Ii) and calculates Ii = σ−1
i−1(σi−1(Ii))

where σ−1
i−1 is the inverse permutation of σi−1;

(b) Calculates the canonical sorting permutation σi of Ii.

The Lossy Case. The proposed algorithm for lossy codecs is as follows:

1. Given a video sequence V = I1, . . . , Im, Alice first computes C(I1) and then
I ′1 = D(C(I1)) from which she obtains the canonical sorting permutation σ′

1.
2. Alice sends C(I1) via secure channel S to Bob.
3. She applies σ′

1 to I2, computes C(σ′
1(I2)), and sends it via R to Bob.

4. Next, she computes I ′2 = D(C(σ′
1(I2))) and then I ′′2 = (σ′

1)
−1(I ′2) from which

she calculates the canonical sorting permutation σ′′
2 .

5. For each subsequent frame Ii, i = 3, . . . ,m, Alice does the following:
(a) Applies σ′′

i−1 to Ii, computes C(σ′′
i−1(Ii)), and sends it to Bob via R;

(b) Computes I ′i = D(C(σ′′
i−1(Ii)));

(c) Applies (σ′′
i−1)

−1 to get I ′′i = (σ′′
i−1)

−1(I ′i);
(d) Calculates the canonical sorting permutation σ′′

i .

At the receiver’s side, Bob performs the following decryption algorithm to recover
the approximation of the original video sequence V :
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Fig. 7. Diagram of our decryption algorithm for lossy spatial-only video codecs

1. Bob calculates D(C(I1)) = I ′1 ≈ I1 calculates sorting permutation σ′
1.

2. From C(σ′
1(I2)) he computes I ′2 = D(C(σ′

1(I2))).
3. Bob approximates I2 ≈ I ′′2 = (σ′

1)−1(I ′2).
4. He then recovers the canonical sorting permutation σ′′

2 of I ′′2 .
5. For each received frame C(σ′′

i−1(Ii)), i = 3, . . . ,m, Bob does the following:
(a) Decodes C(σ′′

i−1(Ii)) into I ′i = D(C(σ′′
i−1(Ii)));

(b) Approximates Ii ≈ I ′′i = (σ′′
i−1)

−1(I ′i);
(c) If i < m he calculates a sorting permutation σ′′

i of I ′i .

4 Security Analysis of Our Model

Key Space. In order to grasp the true complexity of an exhaustive search of
the key space related to our method, one should answer the following question:
Given a color histogram of an w × h image I, how many different images can
be formed out of the histogram color values? Note that I is just one of these
images. We use some known group theoretic properties to provide the answer to
this question.

If T is a set, |T | denotes the size of T . Let Sn denote the symmetric group of
all permutations on X = {1, 2, . . . , n}. Then, any subgroup G of Sn, including
G = Sn, acts on X by permuting the elements of X .

If x ∈ X , and G a subgroup of Sn, then the G−orbit of x, is the subset of X
defined by:

G(x) = {π(x) : π ∈ G} ⊂ X.

Moreover, the stabilizer in G of x, denoted by Gx, is the subgroup of all elements
of G fixing x. That is, Gx is defined by:

Gx = {π ∈ G : π(x) = x} ≤ G.
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A proposition of elementary group theory states that |G(x)| = |G|/|Gx| , a
useful fact as we shall see below. In the spirit of our earlier notation, σI ∈ Sw×h.
Furthermore, if ZZm

n denotes the m-dimensional set of integers modulo n, then
I ∈ ZZw×h

2n . We note that if I is a w × h image with pixel values from ZZ2n ,
then the number of different images that can be formed by permuting the pixels
in I is exactly the size of the Sw×h-orbit of I, under the group action of Sw×h

on ZZw×h
2n . This will help us answer our previously posted question. In our case,

|G| = |Sw×h| = (w × h)!. Therefore, if we can determine |GI |, then we would
know |G(I)|. Let U(I) ⊂ ZZ2n denote the set of unique pixel values that appear
in I. Furthermore, if u ∈ U(I), let N(u) denote the number of times pixel value
u appears in I. Then, the following theorem holds:

Theorem 1. If G = Sw×h acts on ZZw×h
2n , I ∈ ZZw×h

2n , and U(I) = {u1, . . . , uk},
then the size of the stabilizer of GI is

|GI | =
k∏

i=1

N(ui)!.

Proof. Let u ∈ U(I). Then, there are N(u) pixels in image I that have the value
of u. Thus, there are N(u)! ways of permuting these values among themselves
without changing I. Doing this for all elements of U(I) results in a total number
of N(u1)!× . . .×N(uk)! ways of permuting the pixels of I without changing I.
This is exactly the size of the stabilizer of I.

Using the result of Theorem 1 we have that the number of different images that
can be formed out of pixels from I, where U(I) = {u1, . . . , uk}, is

|Sw×h(I)| = (w × h)!∏k
i=1 N(ui)!

.

Thus, there are exactly (w × h)!/
∏k

i=1 N(ui)! different images, with exactly
the same frequency distribution of {N(ui) : i = 1, . . . , k}. These distinct images
form the effective key space of our method. Therefore, the size of the key space
depends on the color histogram of the encrypted frame. As one can see, this
number is extremely large when considering natural images.

Known/Chosen-Plaintext and Chosen-Ciphertext Attacks. Permuta-
tion-only video encryption is considered weak against known/chosen-plaintext
attack, and a chosen-ciphertext attack [6]. However, all of the previously pro-
posed methods rely on generating the secret permutation using a secret key.
Under this scenario, all of the aforementioned attacks are trying to recover the
secret key (or a part of it) that was used for the current or future encryptions. Our
scheme does not rely on such a principle, and there is no secret key upon which
a permutation is generated. Our method relies on the sorting permutation of the
previous frame, and thus, a key is directly dependant of the plaintext. Under a
chosen-plaintext attack, the adversary can compute the sorting permutation for
the chosen frame, but this gives no information about the sorting permutations
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for the unknown frames. Under a chosen-ciphertext attack, the adversary can
recover the unsorting permutation for the chosen encrypted frame, but this gives
no information regarding other unknown ciphertexts. In fact, all frames with the
same histogram encrypt into the same ciphertext, so when the adversary encoun-
ters the same ciphertext again, the previous unsorting permutation may give a
completely inaccurate plaintext. A limited known-plaintext attack is applicable
to our method, because the adversary can recover all frames that follow the
known frame until the scene changes and key frame is updated. However, in our
system it is not possible to re-use the secret key for future scenes or sequences.

Known Weaknesses. If one frame of a video scene is known, all frames that
follow within that scene are computable by the adversary. In addition, if the
adversary has the information on the possible videos to be encrypted, he or she
may be able to recognize which video sequence is being transmitted from Alice
to Bob by observing the publicly given pixel value histograms of frames. These
two attacks are unavoidable in the proposed scheme, and the scheme should not
be used when conditions are such that these attacks are possible by an adversary.

5 Performance Analysis and Experimental Results

To evaluate the performance of our method in terms of compression, we run
experiments on several fairly static greyscale sequences in CIF/QCIF formats. As

Table 1. Performance of our method for lossless spatial-only codecs

Codec w/o Encryption Codec w/ Encryption
Sequence Codec Size[MB] Avg.Frm.[KB] Size[MB] Avg.Frm.[KB]
Akiyo A-GIF 21.53 73.51 9.24 31.54
CIF, 300 frms M-PNG 19.09 65.15 7.96 27.17

M-JLS 10.70 36.53 7.39 25.23
Mother and A-GIF 21.68 73.99 15.93 54.38
Daughter M-PNG 19.23 65.64 14.97 51.11
CIF, 300 frms M-JLS 11.31 38.62 12.63 43.12
Monitor Hall A-GIF 24.88 84.91 18.50 63.14
CIF, 300 frms M-PNG 21.67 73.97 17.55 59.91

M-JLS 13.13 44.83 14.62 49.89
Grandma A-GIF 2.14 21.91 1.45 14.84
QCIF, 100 frms M-PNG 1.90 19.46 1.30 13.34

M-JLS 1.18 12.13 0.89 9.09
Claire A-GIF 1.52 15.59 1.17 11.98
QCIF, 100 frms M-PNG 1.35 13.86 1.02 10.48

M-JLS 0.75 7.68 0.71 7.27
Miss A-GIF 1.54 15.80 1.33 13.57
America M-PNG 1.44 14.79 1.27 13.05
QCIF, 100 frms M-JLS 0.81 8.34 0.91 9.37

Tables 1 and 2 show, our method preserves, and in many instances even improves
the compression performance of the original codec without encryption. Table 2
also compares the loss of quality (in terms of PSNR) when our method is applied
to the lossy M-JPEG with quality parameter Q that controls the quantization
level in M-JPEG. Q ranges from 0 (the worst quality) to 100 (the best quality).
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Table 2. Performance of our method for lossy spatial-only codecs

M-JPEG w/o Encryption M-JPEG w/ Encryption
Sequence Q Size[MB] Avg.Frm.[KB] PSNR Size[MB] Avg.Frm.[KB] PSNR
Akiyo 90 3.96 15.93 45.29 3.71 12.72 41.63
CIF, 300 frms 70 2.05 8.24 40.39 1.92 6.59 36.13

50 1.55 6.24 38.20 1.37 4.70 33.93
Mother and 90 4.21 16.96 45.25 4.98 17.07 39.97
Daughter 70 2.24 9.04 40.91 2.48 8.48 34.68
CIF, 300 frms 50 1.70 6.84 38.88 1.72 5.91 32.70
Monitor Hall 90 5.55 22.35 43.21 6.05 20.71 38.89
CIF, 300 frms 70 3.02 12.15 38.12 2.93 10.03 33.49

50 2.25 9.05 35.95 2.01 6.89 31.40
Grandma 90 0.57 5.94 41.04 0.35 3.58 41.55
QCIF, 100 frms 70 0.32 3.28 36.47 0.19 1.93 36.35

50 0.24 2.48 34.81 0.14 1.44 34.06
Claire 90 0.41 4.22 45.19 0.31 3.19 42.23
QCIF, 100 frms 70 0.25 2.62 39.86 0.17 1.80 36.60

50 0.20 2.08 37.51 0.13 1.36 34.36
Miss 90 0.35 3.64 45.63 0.36 3.69 41.55
America 70 0.19 1.98 41.52 0.19 1.98 35.97
QCIF, 100 frms 50 0.15 1.56 39.71 0.14 1.46 33.83

A modest loss of quality occurs by performing the proposed encryption with
lossy codecs.

Finally, we note that the computational complexity of the proposed method is
very low at the decoder side for both lossless and lossy codecs, since the only addi-
tional computation that has to be performed involves the calculation of a sorting
permutation. A standard sorting algorithm with complexity of O(N logN) can
be used to calculate a sorting permutation of the given frame. Inverting and/or
applying a permutation is equivalent to a table lookup.

6 Conclusions and Future Research

In this work we proposed a novel video encryption algorithm designed for both
lossless and lossy low-motion spatial-only video codecs. The algorithm preserves
(or even improves) the spatial correlation of the source data, and can thus be
performed before compression at the encoder side, and after decompression at
the decoder side, a unique and desirable feature. In effect, the algorithm produces
fully application-friendly output, and requires no modification to the codec mod-
ules. We have presented both security and performance analysis of our method,
and have shown that the algorithm is computationally efficient and resistant to
typical cryptanalytic attacks.

Future directions should include an investigation of extending this principle to
achieve efficiency in exploiting temporal correlation as well, in order to achieve
applicability to more advanced video codecs such as H.26x and MPEG-x.
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9. M.J. Mihaljević and R. Kohno, ”Cryptanalysis of Fast Encryption Algorithm for
Multimedia FEA-M”, IEEE Trans. Comm. Letters, vol. 6, no. 9, pp. 382-384, 2002.

10. L. Qiao and K. Nahrstedt, ”A New Algorithm for MPEG Video Encryption”, in
Proc. First International Conference on Imaging Science, Systems and Technology
(CISST ’97), Las Vegas, NV, June 30-July 3, pp. 21–29, 1997.

11. L. Qiao, K. Nahrstedt, and M.-C. Tam, ”Is MPEG Encryption by Using Random
List Instead of Zigzag Order Secure?”, in Proc. IEEE Intl. Symposium on Consumer
Electronics, Singapore, Dec. 2-4, IEEE Comp. Soc., pp. 226–229, 1997.

12. T.E. Seidel, D. Socek, and M. Sramka, ”Cryptanalysis of Video Encryption Algo-
rithms”, Tatra Mountains Mathematical Publications, vol 29, pp. 1–9, 2004.

13. Bhargava, B., Shi, C., Wang, S.-Y.: MPEG Video Encryption Algorithms. Multi-
media Tools and Applications, Kluwer Academic Publishers, 24(1):57-79, 2004.

14. D. Socek and D. Culibrk, ”On the Security of a Clipped Hopfield Neural Network
Cryptosystem”, in Proc. of the ACM Multimedia and Security Workshop (ACM-
MM-Sec’05), New York City, NY, August 1-2, pp. 71–75, 2005.

15. G.A. Spanos and T.B. Maples, ”Security for Real-Time MPEG Compressed Video
in Distributed Multimedia Applications”, in Proc. IEEE 15th Intl. Phoenix Conf.
on Computers and Communications, Scottsdale, AZ, March 27-29, pp. 72–78, 1996.

16. L. Tang, ”Methods for Encrypting and Decrypting MPEG Video Data Efficiently”,
in Proc. Fourth ACM International Multimedia Conference, Boston, MA, Novem-
ber 18-22, pp. 219–230, 1996.

17. X. Yi, C.H. Tan, C.K. Siew, M.R. Syed, ”Fast Encryption for Multimedia”, IEEE
Trans. Consumer Eletronics 47 (1), pp. 101-107, 2001.

18. A.M. Youssef and S.E. Tavares, ”Comments on the Security of Fast Encryption
Algorithm for Multimedia (FEA-M)”, IEEE Trans. Consumer Eletronics 49 (1),
pp. 168-170, 2003.



A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 559 – 570, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Fast Scheme for Converting DCT Coefficients to 
H.264/AVC Integer Transform Coefficients 

Gao Chen, Shouxun Lin, and Yongdong Zhang 

Institute of Computing Technology, Chinese Academy of Sciences 
Beijing, 100080, P.R. China 

{chengao, sxlin, zhyd}@ict.ac.cn 

Abstract. Converting MPEG-2 8-tap discrete cosine transform (DCT) coeffi-
cients to H.264/AVC 4-tap integer transform (IT) coefficients is one of the in-
dispensable operations for MPEG-2 to H.264 transform domain transcoding. In 
this paper, we propose a novel transform kernel matrix based on the factoriza-
tion of DCT to perform this operation directly in transform domain. Further-
more, additional reduction in computation can be obtained by taking advantage 
of the fact that most of the 8×8 DCT blocks in real video sequences only have  
nonzero coefficients in the upper left 4×4 quadrant. Relative to Jun Xin’s 
method, the proposed method saves 16 operations in the worst case and 440 op-
erations in the best case for each 8×8 DCT block. Experimental results also 
show that the proposed method efficiently reduces the computational cost up to 
42.9% with negligible degradation in video quality. Hence, the proposed 
method can be efficiently used in the real-time and high capacity MPEG-2 to 
H.264 transform domain transcoding. 

1   Introduction 

The newest video-coding standard, known as H.264/AVC [1], jointly developed by 
the Joint Video Team of ISO/IEC MPEG and ITU-T VCEG, can offer perceptually 
equivalent quality video at about 1/3 to 1/2 of the bit-rates offered by the MPEG-2 
format [2]. Due to its superior compression efficiency, it is expected to replace 
MPEG-2 over the next several years, but the complete migration to H.264 will take 
several years given the fact that MPEG-2 has been widely used in many applications 
today, including DVD and digital TV. With the deployment of H.264, e.g., for mobile 
devices, there is a need to develop transcoding technologies to convert videos in the 
MPEG-2 format into the videos in the H.264 format and vice versa [3]. Furthermore, 
there is a clear industry interest in technologies facilitating the migration from 
MPEG-2 to H.264 [4]. 

In the implementing of MPEG-2 to H.264 transcoder, reducing the computational 
complexity is a major issue, especially for real-time implementing [3]. It is well 
known that transform domain transcoding techniques may be simpler than the con-
ventional pixel domain transcoding techniques, since the former avoid the complete 
decoding and re-encoding which are computationally expensive [3]. For this reason, 
there has been a great effort in recent time to develop fast algorithms that conduct 
MPEG-2 to H.264 transcoding in transform domain. Unlike previous transform  
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domain transcoding, such as H.263 to MPEG-2 transcoding, the decoded DCT coeffi-
cients in the MPEG-2 to H.264 transcoder can not be reused directly and have to be 
converted to IT coefficients. This is because that MPEG-2 uses 8-tap DCT to produce 
the transform coefficients, while H.264 uses a 4-tap IT to do so. So, one of the indis-
pensable steps in the transform domain MPEG-2 to H.264 transcoding is to convert 
MPEG-2 DCT coefficients to IT coefficients i.e., DCT-to-IT coefficients conversion.  

Based on the fact that the DCT transform matrix is orthonormal and separable, Jun 
Xin [5] and Bo Shen [6] have derived two different transform kernel matrices and 
have shown their transform domain conversion methods outperform the pixel domain 
approach. Although Jun Xin’s method needs less 64 shift operations and only two 
calculating stages compared with Bo Shen’s method, there are 19 non-trivial elements 
in Jun Xin’s transform kernel matrix, which cause one matrix multiplication (8×8 
with 8×8) to have a total of 352 operations. The computational complexity of Jun 
Xin’s method can be reduced through the factorization of the transform kernel matrix. 
Furthermore, both of the two existing methods do not utilize the property that a large 
percentage of 8×8 DCT blocks in real video sequences, we refer as low pass block 
thereinafter, only have nonzero DCT coefficients in the upper left 4×4 quadrant.  

The role of DCT-to-IT coefficients conversion in MPEG-2 to H.264 transcoder is 
equal to the transform, such as DCT, in one of video encoder. There are many fast 
DCT algorithms have been proposed to implement the video encoder efficiently. In 
order to implement the MPEG-2 to H.264 transcoder efficiently in the transform do-
main, we should try our best to speed up the operation of DCT-to-IT conversion. In 
this work, we propose a fast scheme to speed up this operation. The rest of the paper 
is organized as follows.  Section 2 describes our proposed fast scheme for DCT-to-IT 
coefficients conversion. A performance evaluation of the proposed algorithm in terms 
of computational complexity and distortion result is carried out in Section 3. Finally, 
Section 4 concludes this paper. 

2   Fast Scheme for DCT-to-IT Coefficients Conversion  

Since the DCT-to-IT coefficients conversion can be represented as multiplication by a 
fixed matrix, fast multiplication by this fixed matrix is possible if it can be factorized 
into a product of sparse matrices whose entries are mostly 0, 1 and –1. We will dem-
onstrate that this can be done efficiently by the factorizing of Jun Xin’s transform 
kernel matrix. Furthermore, since the energy distribution of DCT blocks obtains from 
the real MPEG-2 video sequences mainly concentrate on the low frequency region, it 
is beneficial to exploit this property to speed up the DCT-to-IT coefficients conver-
sion in the case of transcoding. The detail process of our proposed fast DCT-to-IT 
coefficients conversion scheme is described in the following.  

2.1   Factorization of the Transform Kernel Matrix 

Let T8 be the transform kernel matrix of DCT, H be the IT transform matrix: 
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(we refer as S or S-transform thereinafter), which is shown in (1) and (2), is first 
adopted as our initial transform kernel matrix, since it requires less 64 operations and 
only two calculating stages compared with Bo Shen’s one.  

TT TKT
H

H
S 880

0
×=×=

 
   (1) 

Where the superscript T denotes matrix transposition. 
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(2) 

Where the values a…s are (rounded off to four decimal places): a= 1.4142, b= 
1.2815, c=0.45, d= 0.3007, e= 0.2549, f= 0.9236, g= 2.2304, h=1.7799, i=0.8638, 
j=0.1585, k=0.4824, l=0.1056, m=0.7259, n=1.0864, o=0.5308, p=0.1169, q=0.0922, 
r=1.0379, s=1.975. For the proof and more details of the S, please refer to [5]. 

Then, we shall focus on efficient factorization of the S. A factorization of DCT that 
is the fastest existing algorithm for 8-point DCT due to Arai, Agui, and Nakajima [7] 
[8], is exploited to perform the factorizations of the transform kernel matrix S. Ac-
cording to this factorization, T8 is represented as T8 DPB1B2MA1A2A3, which we 
state without proof.  

Thus, we have 

TTTTTTTTT DPBBMAAAKTKS 121238 ×=×=  (3) 

Where D is a diagonal matrix and P is a permutation matrix. We observe that 
D DT, P PT. So 

DPBBMAAAKS TTTTT ××××= )( 21123
 (4) 

After calculating and comparing all possible combinations of this sequence of ma-
trix multiplications, we find that the product of the matrices within the over braces 

renders the sparest matrices. Then defining: TTTTd MAAAKS 123×= , we have 

DPBBSS Td ×××= )( 21
    (5) 

The DCT-to-IT coefficients conversion now can be carried out multiplication by 
(B1B2)

T and Sd in turn (for simplicity, we refer as Sd or Sd-transform thereinafter). The 
multiplication with D can be ignored since it can be absorbed in MPEG-2 inverse 
quantization matrix without any change in arithmetic complexity of the dequantizer. 
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The matrix P causes only changes in the order of the components it can be ignored as 
well. The matrix of (B1B2) only contains 0, 1, and 1 and only Sd contains non-trivial 
elements as shown in the following. 
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Where the values a … h are (rounded off to four decimal places): a= 1.0824, b= 
1.4142, c=2.6132, d= 4.2426, e= 3.9198, f= 1.6236, g= 1.3066, h= 0.5412. 

Let us count the number of operations that are required for performing the above 
calculating process. Just like the 2D S-transform, the 2D Sd-transform is also separa-
ble. For the sake of simplicity, let us confine attention first to the one-dimensional 
case. The two-dimensional case will be a repeated application for very row and then 
for very column of each 8×8 DCT block. Let z be an 8-dimensional column vector, 
and a vector Z be the 1D transform of z. The sparseness and symmetry of Sd can be 
exploited to perform fast computation of the Sd-transform. The following steps de-
scribe the calculating process, which is depicted in Fig. 1 as a flow-graph. 

First step, multiplication by (B1B2)
T: 

x[1]  z[1] 
x[2]  z[2] 
x[3]  z[3] z[4] 
x[4]  z[3] z[4] 
x[5]  z[5] z[8] 
x[6]  z[6] z[7] z[5] z[8] 
x[7]  z[6] z[7] 
x[8]  z[5] z[6] z[7] z[8] 

Second step, multiplication by Sd to get the transform results: 
m1  4×x[1] 
m2  a×x[5] b×x[6] c×x[7] x[8] 
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m3  f×x[7] 2×x[8] e×x[5] 
m4  d×x[3] 4×x[4] 
m5  4×x[2] 
m6  x[8] b×x[6] 
m7  g×x[5] h×x[7] x[8] 
m8  b×x[3] 2×x[4] 
 

Z[1]  m1 m2 

Z[2]  m3 m4 
Z[3]  m5 m6 
Z[4]  m7 m8 
Z[5]  m1 m2 
Z[6]  m3 m4 
Z[7]  m5 m6 
Z[8]  m7 m8 

 

 

Fig. 1.  Fast implementing for Sd-transform 

The overall computational requirement of the one dimension calculating process is 
15 multiplications and 28 additions. It follows that 2D (B1B2)

T needs 160 ( 16×10) 
additions and 2D Sd needs 240 ( 16×15) multiplications and 288 ( 16×18) addi-
tions, for total of 688 operations. Thus, when compared with the S-transform, the Sd-
transform saves 16 operations, where it saves 112 multiplications but increases 96 
additions. In addition, our proposed Sd-transform requires three calculating stages, 
where the (B1B2)

T needs one and the Sd needs two. Sd can be used as a novel trans-
form kernel matrix to perform DCT-to-IT coefficients conversion. 

2.2   Simplified S-Transform for the Low Pass Block  

The key to reducing the video transcoding complexity is to reuse the information 
gathered during MPEG-2 decoding stage [3]. Either the S-transform or the Sd-
transform can be explicitly used for a low pass block. However, this is not efficient 
since both of they do not utilize the coefficients distribution property of a low pass 
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block. In the following, we will demonstrate that a significant saving of computation 
can be got by taking advantage of the fact that only the low frequency coefficients are 
nonzero.  

We first select to adopt the S-transform as the foundations to simplify the calculat-
ing process. Note that one can argues that why not use the Sd-transform to replace the 
S-transform in processing the low pass block, since the former requires less opera-
tions in computation. The reason is that before multiplications by Sd, the input low 
pass block first needs to be multiplied by (B1B2)

T which resulting the intermediate 
resulting block is no longer a low pass block. So, adopting the Sd-transform cannot 
exploit the low pass assumption for the computation of the matrix multiplication. 

For the same reasons mentioned above, we still first discuss the one dimension 
case. Let z be an 8-dimensional column vector, and a vector Z be the 1D transform of 
z. Considering that elements z[5]–z[8] equal to zero for a low pass column vector, the 
calculating steps described in [5] can be simplified as:  

m1  a×z[1] 
m2  b×z[2] c×z[4] 
m3  g×z[3] 
m4  f×z[2] h×z[4] 
m6  m×z[4] l×z[2] 
m7  j×z[3] 
m8  p×z[2] q×z[4] 
 

Z[1]  m1 m2 

Z[5]  m1 m2 
Z[2]  m3 m4 
Z[6]  m4 m3 
Z[3]  m6 
Z[7]  m6 
Z[4]  m7 m8 
Z[8]  m7 m8 

 

Fig. 2.  Simplified S transform for low pass block 
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Where the const values a…. q have the same value in equation (2) and the zero vari-
ables are eliminated form the computing steps. The corresponding flow-chart is de-
picted in Fig. 2. This simplified calculating process is referred as the simplified S-
transform hereafter. 

The simplified S-transform totally needs only 11 multiplications and 11 additions. 
Furthermore, considering that the 2D transform of a low pass 8×8 DCT block needs 
only four 1D column transforms and eight 1D row transforms due to that the last 4 
column vectors in a low pass block are all zero vector. So, It follows that 2D trans-
form needs 132 ( 12×11) and 132 ( 12×11) additions, for total of 264 operations. 
Thus, the simplified S-transform saves 62.5% of operations (i.e., 440 operations) than 
the S-transform for a low pass 8×8 DCT block.  

2.3   Summary of the Proposed Scheme 

The operations and calculating stages needed in different approaches for DCT-to-IT 
coefficients conversion are tabulated in Table 1. Note that the simplified S-transform 
is only used for the low pass block.  

Table 1.  The number of operations and calculating stages for DCT-to-IT coefficients con-
version 

Method Pixel 
domain 

Bo 
Shen 

S-
transform 

Sd-
transform 

Simplified-
S 

Add 672 352 352 448 132 
Mul 256 352 352 240 132 
Shift 64 64 0 0 0 

Sum of 
operations 992 768 704 688 264 

Calculating 
Stages 

6 4 2 3 2 

In order to reduce the computation complexity as much as possible, we propose a 
fast scheme that operates in two steps.  

Step 1, the input MPEG-2 8×8 DCT blocks are classified as two types, that are the 
low pass blocks and the non-low pass blocks.  

Usually, the MPEG-2 to H.264 transcoder need to perform an entropy decoding to 
extract the motion vectors, quantized DCT coefficients form the input MPEG-2 video 
bit stream. At the same time, the raster scan order of each nonzero DCT coefficients 
within an 8×8 DCT block is also available to the transcoder. Exploiting such informa-
tion, if no one of the nonzero DCT coefficients of a 8×8 DCT block is located in the 
upper left 4×4 quadrant, this 8×8 DCT block is classified as a low pass block, other-
wise, it is classified as a non-low pass block. It is well known that only the nonzero 
coefficients are encoded in MPEG-2 bit-stream. The computation for judging the type 
of block is very little compared with the computation of DCT-to-IT coefficients con-
version and can be ignored. 

Step 2, We adopt the optimum algorithm to perform DCT-to-IT coefficients con-
version according to the type of DCT block, that is using the Sd-transform for the non-
low pass blocks and using the simplified S-transform for the low pass block to per-
form DCT-to-IT coefficients conversion respectively.  
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The block diagram of our proposed fast DCT-to-IT coefficients conversion scheme 
is depicted in Fig. 3. 

 

 

Fig. 3.  The proposed fast scheme for DCT-to-IT coefficients conversion 

In the worst case, where all input 8×8 DCT blocks are non-low pass blocks, our 
proposed scheme can save 16 operations for each 8×8 DCT block, and in the best 
case, where all input 8×8 DCT blocks are low pass blocks, our proposed scheme can 
save 440 operations for each 8×8 DCT block compared with Jun Xin’s method. The 
practical reduction of complexity depends on the percentage of low pass blocks in 
video sequences. The distortion and speed performance of the scheme are quantita-
tively evaluated in following section. 

3   Experimental Results 

In order to evaluate our proposed method, we adopt MPEG Software Simulation 
Group (MSSG) MPEG-2 software decoder [9] to decode the input MPEG-2 test vid-
eos. A flag, i.e., low pass block flag, which denote whether an 8×8 DCT block is a 
low pass block or not, is adopted in simulations. The decoded 8×8 DCT block (X) and 
the associated low pass block flag are sent to three processing systems, which adopt-
ing the pixel domain method, the Jun Xin’s method, and our proposed method respec-
tively. Each of the three processing systems converts X to the IT coefficients. In order 
to avoid the influences of other H.264 coding tools, such as intra prediction and vari-
able block size motion compensation, the IT coefficients are directly subjected to 
H.264 quantization, inverse quantization and inverse IT transform process, which are 
the same processes as in the reference software H.264/AVC JM8.2 [10], to get the 
reconstructed images. The H.264 re-quantization QP factors ranging from 0 to 51, 
corresponding to the full H.264 QP range. The block diagram of simulation setting is 
shown in Fig. 4. 

The first 90 frames of each of test sequences in CIF resolution (352×288) are pre-
coded to four different MPEG-2 test videos at 2.5Mbps/s, 3Mbps/s, 3.5Mbps/s and 
4Mbps/s respectively. These MPEG-2 test videos are all intra-coded at a frame rate of 
30 fps. All simulations are performed using Windows XP, Intel P4 2.8GHz CPU and 
1GB memories and Visual C++ 6.0 Compiler. The performance is measured using 
mean Peak Signal to Noise Ratio (PSNR) between the reconstructed frame sequence 
and the corresponding original uncompressed frame sequence. The computational 
complexity is measured using the mean runtime of the all DCT block in one frame 
needed to convert to IT coefficients. Furthermore, the mean runtime is obtained from 
the average value of three repeated simulations.  
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Fig. 4.  Simulation setting 

A series of experiments processing a great deal of video sequences containing dif-
ferent amounts of motion and spatial details have been made. The results of different 
sequences are similar except that the percentages of low pass block are different, but 
due to the limit of page, we only show the results of two sequences: STEFAN and 
TEMPLATE.  

3.1   Our Proposed Method vs. Pixel Domain Method 

Fig. 5 shows the PSNR difference between our proposed method and pixel domain 
method.  For all of the four bit-rate, the relative PSNR difference is very small, with 
the maximum gain around 14×10 3dB and maximum loss around 5×10 3dB. The on 
the whole superior quality of our proposed method is due to the rounding operation is 
taken place for the result IT coefficients. On the contrary, for pixel domain method, 
the saturation and mismatch control (the standard MPEG-2 decoding steps following 
inverse DCT to reconstruct pixel data), which act as the rounding operation, are taken 
place for the intermediate results.  
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Fig. 5.  Relative PSNR difference of our proposed method vs. pixel domain method for (a) 
TEMPLATE and (b) STEFAN 
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3.2   Our Proposed Method vs. Jun Xin’s Method 

Fig. 6 shows the PSNR difference between our proposed method and Jun Xin’s 
method. Though our proposed method is equivalent to Jun Xin’s method in terms of 
mathematics, we can see that our proposed approach produces a little quality degrada-
tion compared with Jun Xin’s method. The factor is that there exits the rounding error 
in the implementing of absorbing the diagonal matrix D to MPEG-2 de-quantization 
process. However, the minus PSNR gain is very small, with the maximum value 
lower than 6×10 3dB, which is negligible in practice, especially for practical 
transcoding application, where the bit-rate reduction and spatial/temporal resolution 
downscale transcoding are usually considered as the goal. So we can say that our 
method products almost identical results as Jun Xin’s. 
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Fig. 6.  Relative PSNR difference of our proposed method vs. Jun Xin’s method for (a) 
TEMPLATE and (b) STEFAN 

3.3   Complexity Comparison 

The overall percentages of low pass blocks for each sequence at different bit-rate are 
shown in Table 2. As expected, the lower the bit-rate is, the more of the low pass 
blocks are in video sequences. This is due to that in order to meet the requirement of 
target bit-rate, the video encoder has to adopt high quantization parameter, which may 
cause more DCT coefficients to be quantized to zero. The actual runtime requirements 
(in terms of microseconds used) for each method at different bit-rates are also shown 
in Table 2. The relative improvements of our proposed method compared with Jun 
Xin’s approach are shown inside the parenthesis. Our proposed method achieves the 
lowest runtime compared with the other methods and saves about 34.3%–42.9% com-
putation compared with Jun Xin’s method. The complexity reduction is proportional 
to the percentage of the low pass blocks in one real video sequence.  

It is interesting to note that the reduction of computational complexity of Jun Xin’s 
method compared with the pixel domain method is not obvious. This is because that 
Jun Xin’s method increases 96 multiplication operations compared with the pixel 
domain method as shown in Table 1 and the real-arithmetic multiplication operation 
is usually three to four times higher time consuming than the real-arithmetic addition 
operation in our simulation setting. 
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Table 2. Runtime for DCT-to-IT coefficients conversion 

Runtime for DCT-to-IT coefficients 
conversion (ms) Test Sequence 

Bit- 
Rate 

(Mb/s) 

Low pass 
block 

percentage Pixel 
Domain 

Jun Xin Proposed 

2.5 60.6% 12.82 12.25 7.29 (40.5%) 
3.5 44.2% 13.03 12.38 7.47 (39.7%) 
4.5 36.0% 12.86 12.22 7.60 (37.8%) 

TEMPLATE 

6 27.1% 13.05 12.12 7.84 (35.3%) 
2.5 59.7% 13.21 12.18 6.95 (42.9%) 
3.5 49.4% 13.20 12.39 7.16 (42.2%) 
4.5 41.6% 13.11 12.33 7.50 (39.2%) 

STEFAN 

6 28.2% 13.24 12.26 8.06 (34.3%) 

4   Conclusion 

In this paper, we derive a fast scheme to reduce the computational complexity of the 
DCT-to-IT coefficients conversion. We analyze the operations involved in our pro-
posed fast scheme. The efficiency of our proposed fast scheme is also quantitatively 
evaluated. Our simulation results show that the proposed method leads to about 
34.3%–42.9% saves in computational complexity, with negligible impact in PSNR of 
less 6×10 3dB. In our simulations, only the intra-coded MB is used to test. Consider-
ing that the DCT coefficients decoded from inter-coded MBs of MPEG-2 video are 
computed from the motion compensated residual, there is more low pass block in 
inter-coded frames than in intra-coded frames. Our proposed method can be more 
efficiently used in inter-coded frames transcoding. Due to its efficiency, the proposed 
approach has been applied to our on-going real-time MPEG-2 to H.264 transcoder. 
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Abstract. Full search motion estimation in real-time video coding requires 
large amount of computations. Reducing computational cost for full search mo-
tion estimation is critical research issue for enabling fast real-time video coding 
such as MPEG-4 advanced video coding. In this paper, we propose a novel fast 
full search block matching algorithm which significantly reduces unnecessary 
computations without affecting motion prediction quality. The proposed algo-
rithm identifies computational matching order from initial calculation of match-
ing differences. According to the computational order identified, matching er-
rors are calculated based on partial distortion elimination method. The proposed 
algorithm could reduce about 45% of computational cost for calculating block 
matching errors compared with the conventional algorithm without degrading 
any motion prediction quality. The proposed algorithm will be particularly use-
ful for realizing fast real-time video coding applications, such as MPEG-4  ad-
vanced video coding, that require large amount of computations.  

1   Introduction 

In video coding, full search (FS) algorithm based on block matching finds optimal 
motion vectors which minimize the matching differences between reference blocks 
and candidate blocks in search area. FS algorithm has been widely used in video cod-
ing applications because of its simple and easy hardware implementation. However, 
high computational cost of the FS algorithm with very large search area has been 
considered as a serious problem for realizing fast real-time video coding.  

Several fast motion estimation algorithms have been studied in recent years in or-
der to reduce the computational cost required. These algorithms can be classified into 
two main groups. One group of algorithms is based on lossy motion estimation tech-
nique with degradation of prediction quality compared with the conventional FS algo-
rithm. The other group of algorithms is based on lossless estimation technique that 
does not degrade the prediction quality. The lossy group of algorithms includes uni-
modal error surface assumption algorithm, multi-resolution algorithm, variable search 
range algorithm with spatial/temporal correlation of the motion vectors, half-stop 
algorithm using threshold of matching distortion, and others [1]. Lossless group of 
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algorithms includes successive elimination algorithm (SEA), modified SEAs [2]-[8], 
fast algorithm using a fast 2-D filtering method [9], massive projection algorithm, 
[10], partial distortion elimination (PDE) algorithm and modified PDE algorithms 
[11]-[13]. 

The PDE algorithm as a lossless motion estimation technique has been known as a 
very efficient algorithm in the sense that it could reduce unnecessary computations 
required for matching error calculations. To further reduce unnecessary computational 
cost in calculating matching errors, Kim et al. proposed fast PDE algorithms based on 
adaptive matching scan [11]-[12]. Obtaining adaptive matching scan order however 
requires additional computational overhead.  

In this paper, we propose a novel lossless fast full search motion estimation algo-
rithm by reducing unnecessary computations which do not affect prediction quality. 
To achieve this, we divide the matching blocks into sub-square blocks and determine 
the computational order for the sub-blocks from initial calculation of matching errors. 
Instead of using conventional top-to-bottom matching ordering, we calculate the 
matching errors adaptively according to the pre-determined computational order. The 
proposed algorithm requires very little additional computational overhead for identi-
fying computational order, which makes our algorithm efficient enough to be used 
with other fast algorithms such as SEA or Multilevel SEA (MSEA). The proposed 
novel algorithm reduces approximately 45% of computational cost for block matching 
error calculations compared with the known PDE algorithm without any loss of pre-
diction quality.  

This paper is organized as follows. In Section 2, conventional fast full search algo-
rithms are described. Section 3 presents the motivation and the description of the 
proposed algorithm. In Section 4, experimental results showing the performance of 
the proposed algorithm are presented. Section 5 concludes the paper.  

2   Conventional Fast Full Search Algorithms 

SEA algorithm is well known lossless FS motion estimation algorithm. It removes 
impossible candidate motion vectors by using the sum of the current block, the sum of 
the candidate blocks and the minimum sum of absolute difference (SAD) [2]. At first, 
the algorithm computes sum of the rows or the columns in the reference and candidate 
blocks. After calculating initial matching error of the search origin in the search area, 
the algorithm removes impossible candidate motion vectors by the Eq. (1). In the Eq. 
(1), R means the norm of the reference block in the current frame and C(x,y) repre-
sents the summation of the norms of the candidate blocks with the motion vector (x,y) 
in the previous frame. SADmin means the sum of absolute differences as a distortion 
measure at that checking time. By the Eq. (1), useless computations required for im-
possible candidates can be eliminated without any degradation of predicted images. If 
the summation of the candidate blocks is satisfied with the Eq. (1), the candidate 
blocks are calculated for matching errors with SAD, otherwise the candidate blocks 
are removed and next candidate blocks will be checked. 

minmin ),( SADRyxCSADR +≤≤−                           (1) 
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A few modified algorithms based on SEA have been reported. The performance of 
the various modified SEA algorithms depends on the way how to calculate the initial 
matching errors. Oliveira et al. [3] proposed the modified algorithm with less initial 
matching distortion from the adjacent motion vectors. Lu and others [4] could reduce 
impossible candidate vectors further by using hierarchical structure of Minkowski’s 
inequality with pyramid of 5 levels. Coban and others [5] used the concept of the Eq. 
(1) to determine motion vector with optimized rate-distortion. They extended the Eq. 
(1) by adding the weighted rate term to avoid unnecessary computations. Wang et al. 
[6] used the Eq. (1) by adding PDE, square root, and square term in order to reduce 
computational cost. Meanwhile, Gao et al. [7] proposed an algorithm for reducing 
impossible candidate vectors by using tight boundary levels shown in Eq. (2) and  
Eq. (3).  
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Another algorithm to reduce the computational cost is the PDE approach [11]-[13]. 
The algorithm uses the partial sum of matching distortion to eliminate impossible 
candidates before completing calculation of matching distortion in a matching block. 
That is, if an intermediate sum of matching error is larger than the minimum value of 
matching error at that time, the remaining computations for matching errors is aban-
doned. The kth partial SAD can be expressed by the Eq. (4), 
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where N represents matching block size. The term, ft+1 (i,j), means  image intensity at 
the position (i,j) of the (t+1)th frame. The variables x and y are the pixel coordinate of 
a candidate vector. If the partial sum of matching distortion exceeds the current mini-
mum matching error at k, then we can abandon the remaining calculation of matching 
error (k+1 to Nth rows) by assuring that the checking point is an impossible candidate 
for the optimal motion vector. Kim et al. [11] calculated block matching errors to 
reduce unnecessary calculations with the four-directional scan order based on the 
gradient magnitude of images instead of the conventional top-to-bottom matching 
scan order. Block matching errors are calculated to further reduce unnecessary com-
putations with adaptive matching scan [12].  While these approaches could reduce 
unnecessary computations for getting block matching errors, they need additional 
computations to determine the matching scan order. 

3   Proposed Algorithm 

Modified PDE algorithms, such as spiral search algorithm and cascaded algorithms, 
have used adjacent motion vectors [11]-[12]. Ability to reject impossible candidate 
vectors in the PDE algorithm depends on the search strategy, which makes minimum 
matching errors can be detected faster. Because PDE algorithm with spiral search 
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rejects impossible candidate vectors faster than simple PDE, we employ the spiral 
search in the proposed matching scan algorithm. The relationship between matching 
error and image gradient of the matching block can be summarized by Taylor series 
expansion [11]-[12]. Let the image intensity at the position (x,y) of the (t+1)th frame 
be {ft+1 (p), p=(x,y)}, and the motion vector of the position p be  mv=(mvx, mvy). We 
can describe the relationship between the reference frame and the candidate frame as 
shown in the Eq. (5). 

ft+1 (p)=ft(p+mv)                                  (5) 
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By using modified form of the Taylor series expansion, we can express the rela-
tionship between the matching distortion and the gradient magnitude of the reference 
block as shown in the Eq. (6). Here, cmv=(cmvx, cmvy) represents candidate motion 
vector corresponding to the matching distortion. From the Eq. (6), we can find out an 
important fact that the matching distortion at pixel p is proportional to the gradient 
magnitude of the reference block in the current frame, which corresponds to the com-
plexity of the image data. By localizing the image complexity well, we can further 
reduce unnecessary computations. In general, image complexity is well localized in a 
block rather than the whole span of an image. In this paper, we calculate the matching 
error using 4x4 square sub-blocks instead of the conventional 1x16 row vector to 
measure the complexity of the matching block.  

Efficiently identifying complex square sub-block needs to be performed at early 
stage of the algorithm. In the previous algorithms, a complex square sub-block was 
found by calculating gradient magnitude in the reference matching block, where the 
additional computation for calculating the gradient magnitude can be avoided with 
large candidates. The previous algorithms [11]-[12] can increase computational load 
more than the original PDE algorithm when both of them are cascaded to other fast 
algorithms such as SEA [2]. Instead of calculating the gradient magnitude of the 
matching blocks, we find complex sub-blocks from initial SAD computation at center 
point of search area. At first, we calculate block matching error by the unit of square 
sub-block, and then accumulate the sum of sub-blocks. According to the accumulated 
sum of sub-blocks, we determine the matching order for the following candidates. 
The idea further reduces unnecessary computations as explained below. Our proposed 
algorithm uses the matching order for sub-blocks in all candidates of the search range. 
The Eq. (7) shows our modified PDE algorithm which employs sub-blocks and the 
matching order of the sub-blocks from initial computation of SAD. 
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In the Eq. (7), matching_order[] is obtained from the initial partial SAD value for 
each block. We put the pixel number of N/s*N/s square sub-block as N. The matching 
order of N candidate sub-blocks is calculated for every reference block of the search 
range. Thus, we increase the probability of scan order that have larger matching ear-
lier. The computational cost required for sorting N/s*N/s sub-block is small and neg-
ligible compared to the overall computational cost of the block matching algorithm. 
Figure 1 shows the block diagram of the proposed algorithm with the adaptive match-
ing scan using the partial SAD. 
 

 

 
Fig. 1. Block diagram to determine the adaptive matching order 

 
If we cascade the SEA algorithm to our proposed algorithm, we can further remove 

unnecessary computation. In the MSEA algorithm, block size is 16x16 and sub-block 
size for adaptive matching scan is 4x4. If we employ the multilevel SEA instead of 
the original SEA, we can further reduce computations.   

4   Experimental Results 

To compare the performance of the proposed algorithm with the conventional algo-
rithms, we use 100 frames of 'foreman', 'car phone', 'trevor', 'clair', ‘akio’ and ‘grand 
mother’ image sequences. In these sequences, 'foreman', and 'car phone' have higher 
motion variance than the other image sequences. 'clair', ‘akio’ and ‘grand mother’ are 
rather inactive sequences compared with the first two sequences. 'trevor' sequence has 
intermediate level of motion variance. Matching block size is 16x16 pixels and the 
search window is ± 7 pixels. Image format is QCIF( 144176 × ) for each sequence 
and only forward prediction is used.  

The experimental results shown in Figures 2 and 3 and Tables 1 and 2 are pre-
sented in terms of average number of checking rows with reference to that of full 
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search without any fast operation. Table 3 shows the peak-to-peak-signal-to-noise 
ratio (PSNR) performance of the proposed algorithm. All the algorithms employed 
spiral search scheme to make use of the distribution of motion vectors.  

Figure 2 and Figure 3 show the reduced computation of average checking rows us-
ing 4x4 square sub-blocks based on PDE algorithm. The adaptive matching scan algo-
rithm significantly reduces unnecessary calculations compared with the conventional 
sequential scan algorithm. We apply the proposed algorithm to SEA [2] and MSEA 
[7] to further demonstrate the performance. From the experimental results, we can see 
that the proposed matching algorithm can reduce unnecessary computations effi-
ciently for PDE itself and cascaded algorithms with SEA and MSEA. Note that the 
computational reduction is different among three algorithms. In PDE, all candidates in 
search area are involved in calculating partial matching distortion. However  fewer 
candidates are involved in calculating distortion by SEA or MSEA because many 
candidates are filtered out by the Eq. (1) and the Eq. (3). MSEA has smaller candi-
dates in calculating partial matching distortion than SEA because of tighter boundary. 

Table 1 and Table 2 summarize average numbers of checking rows computed for 
various algorithms in all sequences of 30Hz and 10Hz, respectively. The average 
number of checking rows of the conventional full search algorithm without any fast 
operation is 16.  

The importance and efficiency of spiral scan in PDE algorithm was shown in [11]-
[12]. From the Table 1, we can see that the computational reduction ratios from the 
proposed adaptive matching scan combined with SEA and MSEA are 37% and 16% 
compared with the conventional sequential matching. The results of PSNR are all the 
same for all algorithms as shown in Table 3 because they are all lossless algorithms.  

 

 
Fig. 2. Average number of rows computed for “foreman” sequence of 10Hz 
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With the experimental results, we can conclude that our adaptive matching scan al-
gorithm can reduce computational cost significantly without any degradation of pre-
diction quality and any additional computational cost for obtaining matching order. 

 

 
Fig. 3. Average number of rows computed for “carphone” sequence of 10Hz 

Table 1. Average number of rows computed for all sequences of 30Hz 

Algorithms Fore-
man 

Car 
phone 

Trevor Claire Akio Grand 

Original FS 16.00 16.00 16.00 16.00 16.00 16.00 

PDE 
(sequential) 

4.05 4.23 3.18 3.94 1.71 4.18 

PDE 
(adaptive matching) 2.86 3.16 2.43 3.26 1.36 3.45 

SEA + 
PDE (sequential) 

1.90 2.03 1.29 1.31 0.62 1.99 

SEA + 
PDE(adaptive matching) 1.55 1.72 1.12 1.24 0.56 1.85 

MSEA + 
PDE(sequential) 

1.32 1.56 0.91 1.05 0.58 1.77 

MSEA + 
PDE(adaptive matching) 1.19 1.43 0.85 1.03 0.57 1.71 
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Table 2. Average number of rows for all sequences of 10Hz 

Algorithms 
Fore-
man 

Car 
phone 

Trevor Claire Akio Grand 

Original FS 16.00 16.00 16.00 16.00 16.00 16.00 

PDE 
(sequential) 4.81 4.87 4.51 4.45 2.09 4.66 

PDE 
(adaptive matching) 3.64 3.75 3.53 3.54 1.54 3.80 

SEA + 
PDE (sequential) 2.50 2.48 2.17 1.57 0.83 2.30 

SEA + 
PDE(adaptive matching) 2.10 2.12 1.84 1.44 0.69 2.10 

MSEA + 
PDE(sequential) 1.75 1.88 1.46 1.21 0.68 1.92 

MSEA + 
PDE(adaptive matching) 1.58 1.71 1.32 1.16 0.63 1.83 

 

Table 3. Average PSNR of all sequences for the frame rates 30Hz and 10 Hz 

Frame rate Foreman 
Car 

phone 
Trevor Claire Akio Grand 

30 Hz 32.85 34.04 34.05 42.97 44.14 43.44 

10 Hz 29.50 31.54 28.63 37.50 38.66 39.01 

5   Conclusions 

In this paper, we propose a new block matching algorithm by sorting square sub-
blocks according to the initial matching distortion. The proposed algorithm reduces 
unnecessary computations for motion estimation while keeping the same prediction 
quality compared with the conventional full search algorithm. Unlike the conventional 
fast PDE algorithms, the proposed algorithm does not require additional computations 
to identify matching order. The proposed algorithm can be efficiently cascaded to 
other fast algorithms such as MSEA or SEA. Experimental results show that the pro-
posed algorithm could reduce about 45% of computational cost compared with the 
conventional PDE algorithm without any degradation of prediction quality. The pro-
posed algorithm will be particularly useful for realizing fast real-time video coding 
applications, such as MPEG-4 advanced video coding, that require large amount of 
computations. 
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Abstract. In this paper, we propose a new scheme for watermarking color im-
ages. We use space-time coding for watermark data before embedding in the 
image. The information of the two generated bitstream of space-time coder are 
embedded in red and blue component of the image. At the receiver, the space-
time decoder combines the information of each bitstream to reconstruct the wa-
termark data. Furthermore, this scheme requires no knowledge of the original 
image for the recovery of the watermark data. We experiment the proposed 
scheme for embedding 128 bits in the spatial domain of a color host image of 
512×512 pixels. Simulation results show that watermarking scheme based on 
space-time coding has low visible distortions in the host image and robustness 
to various signal processing and geometrical attacks, such as addition of noise, 
compression, cropping and down-sampling. 

1   Introduction 

Various digital data hiding methods have been developed for multimedia services, 
where a significant amount of signature data is embedded in the host signal. The hid-
den data should be recoverable even after the host data has undergone some signal 
processing operations, such as image compression. It should also be retrieved only by 
those authorized [1, 2].  

Watermarking a multimedia signal can be modeled as transmission of a message 
(watermark signal) through a communication channel (the multimedia signal). With 
this view, many of the methods used in digital communication system can be ex-
tended for watermarking problem. 

Based on this analogy, we propose a space-time block coding system for data em-
bedding in a color image. Space-time coding is popularly used for communication 
system with deep fading. If we consider host image as the communication channel for 
the watermark data, fading could be happened due to cropping the image, or its filter-
ing and smoothing. Alamouti pioneered a remarkable space-time block coding 
scheme over two transmit antennas [3]. This scheme support simple decoding com-
plexity based on linear processing at the receiver. The code provides diversity with 
half of the maximum possible transmission rate. Fig.1 shows an overview of the 
space-time coder. In Alamouti's scheme the transmitter sends out data in groups of 2 
symbols. The scheme uses two transmit antennas and one receive antenna. At the 
receiver, we can decode only one channel, when data on the other channel is highly 
corrupted; otherwise we can combine the received information from both channels.  
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In the following sections at first we explain how we used space-time coding in the 
proposed watermarking system in Section 2. Section 3 explains the watermark inser-
tion, and the watermark extraction operations. Finally in Section 4 we present ex-
perimental results of the proposed scheme and make conclusions in Section 5.  

 
 
 
 
 
 
 
 
 

 
Fig. 1. Overview of the Proposed Scheme 

2   Data Embedding and Extraction 

The data embedding in the host image could be in the spatial or frequency domain [4, 
5, 6]. While data embedding in the spatial domain is more robust to geometrical at-
tacks, such as cropping and down-sampling, data embedding in the frequency domain 
usually has more robustness to signal processing attacks, such as addition of noise, 
compression and lowpass filtering.  

In this paper, we use data embedding in the spatial domain using the proposed al-
gorithm in [7]. In this method, the watermark data are embedded in one color compo-
nent of the image based on its luminance. Since human eye is less sensitive to change 
in blue color, the method suggests modification of the blue component [16]. However 
the method fails when the image has very low density of blue component. We use 
space-time coding and embed in both red and blue components, so that it can survive 
even for images with low density of blue component. We expect that high resilience 
of space-time coding of the watermark can help the data embedding scheme to sur-
vive various attacks. 

In order to embed the watermark into pixel values at point (x, y) of the host image, 
we scramble and arrange these indices as a binary sequence: ndddD ,,, 21= , 

where kd  is a binary variable.  

We calculate the luminance value of a pixel at (x,y) using its three color compo-
nents r(x,y), g(x,y) and b(x,y) as 

),(114.0),(587.0),(299.0),( yxbyxgyxryxl ++=  (1) 
We select a group of pixel with higher value of blue components, and change the 

blue color component using this equation: 

=−

=+
=′

1),(.),(

0),(.),(
),(

idifyxlyxb

idifyxlyxb
yxb

α

α
 (2) 

Where  is the embedding modulation factor. We do a similar process for embedding 
value in red component of the pixels in the red dominated area of the host image. 
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For data extraction, we do not need the original host image. At first we calculate an 
estimate of the blue component of the modified pixel using its neighboring pixels in a 
window size of 3 by 3 pixels (C=1). 

( )
+

−=

+

−=
+′′++′′+′′−=′′

C

Ci

C

Ci
iyxbyixbyxbCyxb ),(),(),(24

1
),(ˆ  (3) 

Here we use of 3 by 3 pixels (C=1) around each pixel. Now assuming that we em-
bed each bit M times, we can estimate the average of difference using 

)],(),
1

(ˆ[1
lylxbly

M

l lxbMk ′′−
=

′′=′′σ  (4) 

The bit value is determined by looking at the sign of the difference between the 
pixel under inspection and the estimated original. In order to increase robustness, each 
signature bit is embedded several times, and to extract the embedded bit the sign of 
the sum of all differences is used. 

 We do a similar process for extracting watermark data in the red component of the 
pixels in the red dominated area of the host image. 

4   Experimental Results and Analysis 

We use the two images “Birds” and “Boat” which are shown in Fig. 2 and Fig. 3 as 
host image. Both images are 512×512 pixels and we embed a watermark 128 bits in 
each one. We set the embedding factors such that their PSNR values stays above 37 
dB after data embedding.  
 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Host Image- Bird 

 
In order to evaluate the system robustness for copyright protection, we should make a 
binary decision for the presence or absence of the watermark data.  We define the 
similarity factor between the recovered watermark )(ˆ ms and the original watermark 

)(ms  by 
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Fig. 3. Host Image – Boat 

 

=

m

m

ms

msms

2))(ˆ(

)()(ˆ

ρ  

Based on the value of ρ , we make a decision on the presence ( 1=ρ ), or absence of 

the watermark signal ( 0=ρ ).  
 

Resistance to JPEG Compression: The JPEG lossy compression algorithm with 
different quality factors (Q) is tested. Fig. 4 shows the similarity factor variation for 
different Q factors. The similarity factor stays above 0.70 for Q larger than 40.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Similarity factor variation due to JPEG compression 
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Robustness to Gaussian Noise: We add a Gaussian noise with a different variance to 
the normalized host signal after embedding the watermark. Fig. 5 shows the variation 
of similarity factor for additive noise with different variances. From Fig. 5, we con-
clude that for certain range of noise, our strategy shows good performance in resisting 
Gaussian noise for data hiding applications.  
 

Resistance to Median and Gaussian Filtering: Median and Gaussian filters of 3×3 
mask size are implemented on the host image after embedding the watermark. Simi-
larity factors of the recovered watermark after filtering are listed in Table 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Similarity factor variation due to additive Gaussian noises 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Similarity factor variation due to JPEG2000 compression 
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Table 1. Similarity factor after implementing median and Gaussian filters on the host image 

 Median Filter Gaussian Filter 
Extracted from Bird Image 0.74 0.78 
Extracted from Boat Image 0.70 0.73 

 
Resistance to JPEG2000 Compression: The JPEG2000 lossy compression algo-
rithm with different output bit rates is tested on the host image. Fig. 6 shows the Simi-
larity factors variation of the recovered watermark. 
 

Resistance to Cropping: Table 2 shows similarity factor values when some parts of 
the host image corners are cropped. Fig. 7 shows the host image after 10% cropping. 
Considerably good resistance is due to the existence of two bitstreams in the image  
 

Table 2. Similarity factor for different percentage of cropping  the host image 

 5% 10% 15% 20% 
Extracted from Bird 

Image 
0.82 0.69 0.64 0.55 

Extracted from Boat 
Image 

0.76 0.67 0.58 0.51 

Table 3. Similarity factor after different amount of down-sampling the host image 

 1/2 1/4 1/8 
Extracted from Bird Image 0.68 0.55 0.46 
 Extracted from Boat Image 0.70 0.58 0.51 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7.  Sample of the host image after 10% cropping 
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and scrambling of embedded information, which makes it possible to recover the 
watermark information in the cropped area from the available bitsream in the non-
cropped area. 

Resistance to Down-sampling: Due to loss of information in the down-sampling 
process, the host image cannot be recovered perfectly after up-sampling. However, it 
is possible to recover the watermark data from those pixels available in the host im-
agee. Table 3 lists similarity factor values after several down-sampling processes.  

5   Conclusions 

We have presented a new scheme for embedding watermark data into a color host 
image. The watermark data are encoded using a space-time coder and the two gener-
ated bitstreams are embedded in red and blue components of the host image in the 
spatial domain. The proposed system does not need the original host image for recov-
ering the watermark data at the receiver. Since the system uses embedding in both red 
and blue components, it can works well for variety of images with different distribu-
tion of colors. We evaluate the system robustness when the host undergone various 
signal processing and geometrical attacks. The results show the system has good ro-
bustness. The developed system has low implementation complexity and can be ex-
tended for watermark embedding in video in real time.  
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Abstract. This paper describes a watermark-based technique that estimates the 
PSNR of encoded video without requiring the original media data. Watermark 
embedding is performed in the block-based DCT domain using a new non-
uniform quantization scheme that accounts for human vision characteristics. At 
the extraction, the square distances between received coefficients and nearest 
quantization points are computed, giving a frame-by-frame estimative for the 
mean square error (and consequently, the PSNR). Since these distances may be 
underestimated if distortion is greater than the quantization step used for wa-
termark embedding, it is also proposed the use of the watermark extraction bit 
error rate, together with image statistics, for PSNR estimation weighting. Re-
sults show that PSNR estimation closely follows the true PSNR for a set of 
video sequences subject to different encoding rates. 

1   Introduction 

Automated quality monitoring of multimedia data has become an important issue, es-
pecially due to the increasing transmission of multimedia contents over the internet 
and 3G mobile networks. This will allow content providers to track the quality of the 
received media content, in order to bill users according to their perceived quality of 
service and to optimize streaming services. 

The evaluation of the perceived quality of multimedia contents received by end-
users can be achieved by subjective metrics, whose scores result from an evaluation 
performed directly by human viewers. Although these are the most realistic measure-
ments, they require organized tests using a large number of viewers, invalidating its 
use in real-time applications. An alternative to subjective metrics is the use of objec-
tive metrics, which aim to automatically compute quality scores that correlate well 
with the human perception of quality. Ideally, an objective metric should give the 
same quality score as a human observer. According to the amount of information that 
is available at the receiver, objective metrics can be classified has [6,10]: 

• Full reference metrics (FR) – the original media is fully available. 
• Reduced reference metrics (RR) – side information related to the original media is 

available. 
• No-reference metrics (NR) – no information about the original media is available.  
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In the context of video distribution scenario, it is desirable to perform quality 
evaluation at the receiving side without accessing the original media data. Thus, most 
of the effort has been placed in the development of RR and NR metrics systems. Since 
the original data is not accessible, watermarking techniques can be potentially used in 
the development of new RR/NR algorithms. The idea consists of embedding an imper-
ceptible reference signal – the watermark – into the original media – the host. During 
transmission, both the watermark and the host will be subject to the same type of dis-
tortions. At the receiver, the watermark is extracted and a quality score is computed 
by comparing the reference (which is assumed to be known at the receiver) and ex-
tracted watermarks. 

Watermarking-based approaches have characteristics that resemble RR metrics, 
since additional information is transmitted, although usually independent of the host 
signal. On the other hand, no additional bandwidth is required to transmit the water-
mark information. In this sense, watermark-based techniques for quality evaluation 
can also be placed close to NR metrics. 

The main goal of the work described throughout this paper is to provide an accu-
rate estimation, for compressed video sequences, of a widely used objective metric, 
the peak signal-to-noise ratio (PSNR), based on the received watermarked media. 
Although research in the area is recent, some algorithms have already been pro-
posed: in [9], it is suggested to use watermark extraction error rate as means of 
scoring the quality of received images; other authors score quality by using the 
mean square error (MSE) [2,5,8], or the correlation between reference and extracted 
watermarks [1,6]; as for the embedding techniques, [8,9] use quantization-based 
approaches [3], while [1,2,5] use spread-spectrum like algorithms [4]; both strate-
gies are analyzed in [6]. 

In this paper, the watermark is embedded frame-by-frame in the 8×8 block-based 
DCT domain of the host video, using a quantization-based technique. In order to 
control watermark imperceptibility, it is proposed the use of non-uniform and fre-
quency adapted quantization functions that consider characteristics of the human 
visual system (HVS). PSNR estimation is attained through the measurement of the 
watermark MSE. When compared with previous proposals that also use this metric 
[2,5,8], in the proposed scheme the differences between extracted and reference wa-
termark signals directly give an estimation for the image MSE. Furthermore, it is 
proposed to weight these differences as a function of the extraction bit error rate 
and image statistics. This weighting strategy aims to compensate watermark MSE 
underestimation when image distortion is larger than the quantization step used for 
watermark embedding.  

Results shown in this paper are focused on frame-by-frame PSNR estimation for 
video sequences subject to H.264/AVC video encoding at different rates. The experi-
ments were performed by using a sequence set that consists of known video se-
quences. 

This paper is organized as follows: after the introduction, section 2 describes the 
watermark embedding and extraction schemes as well as the new non-uniform quanti-
zation scheme that considers HVS characteristics. Section 3 describes how PSNR  
estimation is computed from the watermark. Results are shown in section 4 and con-
clusions are given in section 5.  
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Fig. 1. Watermark embedding 

 

Fig. 2. Watermarking area of an 8×8 block of DCT coefficients 

2   Watermarking Scheme 

2.1   Watermark Embedding 

Consider that a binary watermark message w is to be embedded frame-by-frame into 
the luminance component Y of the host video. Watermark embedding and extraction 
are performed in the 8×8 block-based DCT domain of Y, using a quantization-based 
approach [3].  

Figure 1 depicts the embedding scheme. Let C(i, j, k) represent the DCT coefficient 
at position (i, j) of the k-th block and let Ql represent the quantizer’s output  value at 
level l = –L, …, L-1. Each coefficient used for embedding (fig. 2) is modified to the 
nearest quantization level whose least significant bit is equal to the watermark bit to 
be embedded. Formally, assuming that Qn is the nearest quantization value to  
C(i, j, k), the watermarked coefficient – Cw(I, j, k) – is obtained by: 

=
=

+ otherwise    

)()2 ( if 
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w , (1) 

where w(i, j, k) is the watermark bit to embed, mod(x, y) is the remainder of the inte-
ger division of x by y and r is defined as:  

( )nQk,j,iCsgnr −= )( , (2) 

with sgn(x) = -1 if x<0 and sgn(x) = 1, otherwise. 
To complete the embedding process, the inverse DCT transform is computed, re-

sulting in the watermarked frame Yw. 
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Fig. 3. Watermark extraction 

2.2   Watermark Extraction 

At the extraction (fig. 3), a watermarked and possibly distorted video frame Yd is sub-
ject to analysis. The estimated watermark, wd, is obtained by inspecting the LSB of 
the quantization levels. The extracted watermark bit at position (i, j) of the k-th block, 
can thus be defined as: 

)2()( l, modk,j,iwd = , (3) 

where l is computed after quantizing the received coefficients Cd(i, j, k) with the same 
quantization function used at the embedding process. 

2.3   Quantization Function 

It is important to guarantee that the same quantization function is used both at the em-
bedding and at the extraction phases. A simple solution is to use uniform quantization, 
as proposed in [8]. However, it presents a serious drawback: the quantization step 
must be too small in order to attain imperceptibility of the watermark signal. Since the 
watermark signal is lost if distortion is greater than the quantization step, this ap-
proach will only succeed in the presence of relatively small distortions. In order to 
minimize this problem, a non-uniform quantization scheme, that considers the main 
features of a perceptual model proposed by Watson [11], was derived. The goal is to 
assign larger quantization steps to coefficients that allow greater modifications, while 
keeping the imperceptibility of the watermark signal. Although Watson’s model has 
been extensively used in DCT-based watermarking schemes, its explicit use in the 
derivation of non-uniform and frequency-adapted quantization functions is, to our 
knowledge, new. 

Watson proposes to estimate the perceptibility of modifications in individual DCT 
coefficients in terms of just noticeable differences (JNDs), whose threshold values are 
called slacks. The model comprises two masking components accounting for lumi-
nance and contrast. The luminance masking threshold for a given coefficient,  
Tlum(i, j, k) is given by: 

T

lum C

k,,C
ji,Tkj,i,T =

00

) 0 0(
) ()  ( , (4) 

where T(i, j) is the frequency sensitivity of the coefficient at position (i, j) (given in 
[11]), C00 is the average of the DC coefficients in the image, and αT is a constant with 
a suggested value of 0.649. Slack values – s(i, j, k) – are computed by also consider-
ing the effect of contrast masking: 
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Fig. 4. Three consecutive quantization points 
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where β(i, j) is a constant value between 0 and 1. Watson suggests β(i, j)=0.7 for all 
(i, j)≠(0,0) and β(i, j)=0 for (i, j)=(0, 0). 

In order to control the watermark imperceptibility, the coefficient distortion caused 
by watermark embedding should be proportional to the slack values. By analysis of 
equation (5), it can be concluded that, for |C(i, j, k)|>Tlum(i, j), slack values increase 
with the absolute values of DCT coefficients. This suggests the use of non-uniform 
quantization functions with larger quantization steps for coefficients with larger abso-
lute values. 

Consider figure 4, which represents three consecutive quantization points. Suppose 
that the value of C(i, j, k) is the value marked with a cross, and that the watermark bit 
to be embedded is ‘0’. According to the proposed embedding scheme, the DCT coef-
ficient will be modified to match the value of Ql+1, thus the error introduced will be 
Ql+1 – C(i, j, k). Since the maximum distortion caused by the watermark for any coef-
ficient in the interval [Ql; Ql+1] is Ql+1 – Ql (which occurs if C(i, j, k)=Ql), we should 
have: 

Ql+1 – Ql = α ⋅ s(i, j, k), (6) 

where α regulates the embedding strength proportionally to the slack values, thus con-
trolling watermark imperceptibility. 

Let’s consider that C(i, j, k) = Ql > Tlum(i, j). Under this condition, (5) and (6) lead 
to: 

) (1) (
1 ),( j,i

lum
j,i

lll jiTQQQ ββα −
+ =− . (7) 

By relating Ql with Ql+1, the quantization functions can be defined recursively. The 
initial quantization value was chosen to be the value of α·Tlum(i, j)/2, which ensures 
model consistency for |C(i, j, k)|<Tlum(i, j). It comes, then: 
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ji,T

Q
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α
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Negative quantization values, for l = -L, …, -1, are computed by symmetry (e.g.: 
Q-1=-Q0, Q-2=-Q1, etc.). By analysis of (8), it can be seen that the quantization func-
tions depend on the coefficient position within the block. Considering (4), it can also 
be concluded that quantization functions depend on the DC coefficients values. At the 
extraction, these values may be different from the original (due to distortion), thus this 
dependency must be eliminated. This issue has been solved by neglecting luminance 
masking, setting Tlum(i, j) =T(i, j). 
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3   PSNR Estimation  

The PSNR of a distorted image – Id – can be defined as: 

)(
10)(

2

10
dref

dref I,IMSE

M
logI,IPSNR = , (9) 

where Iref  is a reference image (usually the original one), MSE(.,.) represents the 
mean square error and M is the maximum pixel value. Using the proposed watermark-
ing scheme, the PSNR is estimated by measuring the distortion of the watermark sig-
nal, i.e.: 

=
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 10 , 
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where Nw is the number of watermarked points, Mw is a normalization constant, and 
d(i, j, k) is the distance between the received DCT coefficient and the nearest quanti-
zation value correspondent to the bit value embedded in the coefficient (which is 
known by the receiver). Formally, d(i, j, k) can be defined as: 

  
otherwise    , 

)()(

)()(

)()(  if  ,  )()( 

)(

1

1

−
−

=−
=

+

−

k,j,iCj,iQ

,j,iQk,j,iC
min

k,j,iwk,j,iwj,iQk,j,iC

k,j,id

dn

nd

dnd
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where Qn now represents the quantization value nearest to Cd. Since the DCT is a uni-
tary transform, the value of PSNR can be indifferently measured in the pixel domain 
or in the transform domain. Assuming that the watermark distortion is equal to the 
image distortion, Mw was set to same value of M. 

The estimated PSNR should be close to the true PSNR if the image is subject to a 
distortion that is lower than the quantization step. However, as compression rate in-
creases, some coefficients become distorted in such a way that the extracted water-
mark bit may be the correct one, but with a quantization level different from the one 
assigned during embedding. In these situations, false positives occur.  

Figure 5 shows an example of such an event. Suppose that a watermark bit with 
value ‘1’ was embedded by quantizing the DCT coefficient value to Qn (represented 
with a cross). The image was then subject to distortion, which caused the value of the 
DCT coefficient to change to the value represented with a circle. In this situation, the 
correct bit is extracted, but instead of |Qn – C|, an underestimated distance |Qn-2 – C| is 
computed, resulting in overestimated PSNR values. Similarly, it is also possible the 
occurrence of false negative situations, i.e., watermark bits with extraction errors, 
whose corresponding distances are also underestimated. 

These situations may also involve quantization points separated by a larger number 
of quantization levels. Let D represent the difference, measured in number of quanti-
zation levels, between quantization values assigned during embedding and the ones 
retrieved during extraction. False positives occur when D is even and different from 0, 
while false negatives occur when D is odd and different from 1. 
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Fig. 5. A false positive 
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Fig. 6. False positive/negative rates for two test frames 

In order to improve the accuracy of PSNR estimation, distances are weighted at the 
extraction, by accounting for false negative/positive rates, Pf. Since these rates are not 
known a priori, statistics were obtained for several frames from several video se-
quences (fig. 7), by computing Pf as a function of the watermark extraction bit error 
rate – Peb – and the value of D. As an example, results for two test frames are depicted 
in figure 6, showing the evolution of a false positive rate (for D=2) and a false nega-
tive rate (for D=3). It can be observed that Pf increases with Peb and that the maximal 
amplitude of Pf decreases with increasing D. It has also been verified that exponential 
decay of these rates is less accentuated if the variance (and mean of absolute values) 
of DCT coefficients are larger, thus Pf also depends on image statistics. 

By looking into the evolution of the Pf curves, and accounting for the previous 
conclusions, one possible function type to approximate the rate – Pf(D) – of false 
positives (or negatives) for different values of D is: 

( ) )()( 2
  1 D,PfeDP eb
,D,Pf

f
eb σ−= , (12) 

where σ represents standard deviation for the DCT coefficients located in the water-
marking area. The function f1 regulates the slope of the exponential decay while f2 
regulates its maximal amplitude and the value of Pf for Peb=0. Through curve fitting, 
it was found that the following functions conduct to estimations of Pf(D) close to the 
measured ones: 

( ) ( ) c
eb

eb
.P

,D,Pf
λ

σ
σ −= 50
 1 ;    D

ebPf ρ=2 . (13) 
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Table 1. Values for ρ and λ used in the experiments 

Frame class ρ λ 
I 1.1 2.0 
P 1.0 1.6 
B 0.8 1.4 

 
where ρ and λ are constants that have been adjusted according to frame class (I, P or 
B) under analysis. The value of parameter c has been found assuming that the shape 
of the Pf curves is related with the distribution of the DCT coefficients in the water-
marking area, which has been experimentally verified. Admitting that those coeffi-
cients follow a generalized Gaussian pdf., the distribution’s shape parameter c can be 
estimated by [7]: 

( )[ ]
= −
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2

2
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, (14) 
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, (15) 

where Γ (.) is the gamma function. F(x) is also referred as generalized Gaussian ratio 
function. An approximate solution for (14) can be easily found by using a lookup ta-
ble with values of x and F(x).  

Figure 6 also shows plots for the estimated Pf(D) using (12) and (13) for D=2 and 
D=3, using the parameters ρ and λ specified in table 1. 

The estimated values for false positive/negative rates are used together with the 
reference watermark (which is known by the receiver) to compute a weighted distor-
tion – d’(i, j, k) – for the watermark: 
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The summation at the upper term accounts for the probability of false positives 
(even values of D), while the summation at the bottom term accounts for false nega-
tives (odd values of D). P0 and P1 are normalized values that equal 1-Σ Pf(D) for even 
D and odd D, respectively. DMAX is the maximum value for the quantization level dif-
ference to be accounted, and 

{ } )( )(  )( DndDndf Qk,j,iC,Qk,j,iCminDd −+ −−=  (17) 
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Fig. 7. Video sequences used in the experiments. From top left to bottom right: Stephan, Table-
Tennis, Foreman, Paris, Akiko, News. 

Table 2. Video sequences used in the experiments 

Sequence Short description 
Stephan Fast camera and content motion 
Table-Tennis Slow camera and slow moving objects 
Foreman Still camera over fast human motion; fast pan at the end 
Paris Still camera on human subjects; fast local motion 
Akiko Still camera on almost still human subject; 
News Still camera on human subjects; motion in the background 

represents the distance between the received DCT coefficient and the nearest 
quantization point at D levels distance. 

4   Results 

The effectiveness of the proposed algorithm has been evaluated using the sequences 
displayed in figure 7 in the presence of H.264 / AVC video coding standard. Table 2 
synthesizes the main features of the used sequences. 

The PSNR of the encoded sequences has been computed frame-by-frame (using 
the uncompressed watermarked frames as reference frames), and compared with the 
PSNR estimated from the extracted watermarks, using the proposed non-uniform 
quantization scheme with (DW) and without (NUQ) distance weighting, as described 
in sections 2 and 3. In order to increase watermark imperceptibility, only one half of 
the coefficients located in the watermarking area (fig. 2) were used. The embedding 
strength α was set to 1.0 for all the experiments. 

Sequences have been encoded at different rates (256kb/s@25Hz, 128kb/s@15Hz 
and 64kb/s@10Hz). It has been used a GOP-12 frame structure with a prediction step 
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Table 3. Mean error for PSNR estimation for sequences encoded at 256kbit/s @ 25Hz 

Global I-Frames  P-Frames  B-Frames 
Sequence 

DW NUQ DW NUQ  DW NUQ  DW NUQ 

Stephan 0.66 2.44  0.41 1.72  0.56 2.13  0.73 2.66 

Table 0.70 1.89  0.25 1.06  0.57 1.98  0.81 1.97 

Akiko 0.85 0.73  1.32 1.05  0.91 0.80  0.76 0.65 

News 0.92 0.56  1.41 0.85  0.91 0.54  0.85 0.54 

Foreman 1.04 0.35  0.54 0.26  1.07 0.31  1.10 0.37 

Paris 1.00 1.90  0.13 1.11  0.81 1.88  1.20 2.01 

Mean error [dB] 0.86 1.31  0.67 1.01  0.80 1.27  0.91 1.37 

Table 4. Mean error for PSNR estimation for sequences encoded at 128kbit/s @ 15Hz 

Global I-Frames  P-Frames  B-Frames 
Sequence 

DW NUQ DW NUQ  DW NUQ  DW NUQ 

Stephan 1.01 3.83  0.49 2.85  0.74 3.44  1.18 4.11 

Table 0.95 2.70  0.44 2.47  0.77 2.58  1.08 2.78 

Akiko 1.01 0.84  1.41 1.03  1.11 0.95  0.91 0.78 

News 0.90 0.43  1.38 0.48  1.01 0.44  0.79 0.42 

Foreman 0.78 1.20  0.44 1.05  0.80 1.08  0.82 1.26 

Paris 1.36 2.65  0.23 1.81  0.89 2.41  1.69 2.86 

Mean error [dB] 1.00 1.94  0.73 1.61  0.89 1.82  1.08 2.03 

Table 5. Mean error for PSNR estimation for sequences encoded at 64kbit/s @ 10Hz 

Global I-Frames  P-Frames  B-Frames 
Sequence1 

DW NUQ DW NUQ  DW NUQ  DW NUQ 

Table 1.25 3.31  0.49 2.66  0.96 3.20  1.47 3.44 

Akiko 1.09 0.86  1.40 1.11  1.20 0.92  1.01 0.80 

News 0.59 1.10  1.22 0.60  0.75 1.04  0.45 1.19 

Foreman 1.08 3.39  0.61 2.34  0.97 3.22  1.19 3.60 

Mean error [dB] 1.00 2.17  0.93 1.68  0.97 2.10  1.03 2.26 

 
of 3 frames, which means that each 12-frame group consists of one I-frame, three  
P-frames and 8 B-frames, in the order IBBPBBP… 

Tables 3 to 5 depict the mean PSNR estimation error that has result from the ex-
periments, discriminated for each frame class, for both DW and NUQ strategies. As 
can be observed from the tables, the proposed distance weighting strategy generally  
 

                                                           
1  The results for the sequences Stephan and Paris have not been considered, since the quality 

of the resulting encoded sequences (at 64kbit/s @ 10hz) is too low for any practical use. 
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Fig. 8. Results for 256Kbit/s QCIF 25Hz Left: Stephan; Right: Table-tennis 

Foreman (128Kbit/s @ 15 Hz)
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Paris (128Kbit/s @ 15 Hz)
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Fig. 9. Results for 128Kbit/s QCIF 15Hz Left: Foreman; Right: Paris 

Akiko (64bit/s @ 10 Hz)
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Fig. 10. Results for 64Kbit/s QCIF 10Hz: Left: Akiko; Right: News 

leads to better PSNR estimations, especially for the test sequences where motion is 
present. As the encoding rate decreases, it becomes more evident that the performance 
of the distance weighting strategy is better than using non-uniform quantization alone. 

Figures 8 to 10 illustrate the temporal evolution of both the true and the estimated 
PSNR during the first 97 frames of the video sequences. The frame-by-frame PSNR 
estimation closely follows the true PSNR in the generality of the experiments, a result 
that has not been shown in any of the related references [1,2,5,6,8,9]. For sequence 
Paris (fig. 9) PSNR estimation is generally overestimated, except for the I-frames 
(every 12th frame). For sequence Akiko (fig. 10), the estimated PSNR is 1 to 2 dB un-
derestimated, yet it still follows the true PSNR. The reason for this higher estimation 
error is probably related with lack of accuracy in the estimation of Pf; this can be due 
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to fast local motion in the sequence Paris, and to the absence of motion in the se-
quence Akiko (remember that the expression for Pf has been obtained empirically con-
sidering all the test sequences). 

Using the proposed algorithm, different strategies for PSNR estimation could also 
be considered. For instance, PSNR estimation could be performed over an entire 
group of pictures (GOP), or by considering I-frames alone (since results show that the 
estimation accuracy is better for this class of frames). 

5   Conclusions 

In this paper, a watermark-based algorithm that blindly estimates the PSNR for each 
frame of a video sequence was proposed. One of the main paper contributions, com-
pared with related work in the area, is the derivation of a non-uniform and frequency 
adapted quantization scheme for the DCT domain, which considers some of the hu-
man visual perception characteristics. The other key idea is the use of a weighting 
function which generally leads to more accurate distortion measurements in situations 
where the distortion is higher than the quantization step used during embedding. In 
the majority of the experiments, distance weighting as proven to be effective.  

Since the PSNR is a rough objective metric, a topic that deserves further investiga-
tion is to analyze new ways of using the proposed scheme to obtain other objective 
metrics that correlate better with the human perception of quality. 
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Abstract. We propose a new coding algorithm for binary images based
on neighborhood relations. The shape is transformed into a set of repre-
sentative vectors (position invariant) by coding each pixel according to
the number of neighbors in the four directions (north, east, south, west).
These neighborhood vectors are transformed into a set of codes satisfy-
ing the boundary condition imposed by the size of the image in which
the shape is imbedded. A label is attached to the codes to indicate a
sequential order of the pixels. The combined code and label characterize
an exact shape. Thus following the label ordering and performing simple
comparison of the codes an exact shape match is obtained. It is interest-
ing to note that each shape will represent a polyomino. Neighborhood
image operators are developed by applying mathematical and logical op-
erations on the code vectors. A code reduction scheme for the purpose of
information reduction and generalization of the shape image is proposed.
Using the digits 1 and 0 of the NIST handwritten segmented characters
set, we show a preliminary application for pattern recognition.

1 Introduction

The problem of shape recognition is fundamental in pattern recognition. Diverse
methods for the characterization and classification of shapes can be found in
the literature. In general, algorithms follows two criteria: whether they examine
only the shape boundary or the whole area, and whether they describe the
image in scalar measurements or through structural descriptions [1]. Recently,
different methods for shape similarity and recognition have been studied. Using
morphological function [2] a given shape is decomposed into primitive parts. The
properties and relationships among these primitives are then used to describe the
different objects. Another technique is the potential-based approach [3], which
identifies the best match from a selected group of shape templates by measuring
the repulsive force and torque when the template and sample are put to interact
through a potential field. A weighted graph that represents the structure and
the quantitative elements of a contour is used for estimation of shape similarity

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 600–611, 2006.
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in [4]. There are many other methods for shape matching and recognition using
a variety of different techniques like for instance Fourier descriptors, template
matching, stochastic models or moment invariant.

Many of the low-level image analysis operations can be performed using neigh-
borhood operator [4]. Since these operators act locally we have looked for meth-
ods that better describe the global structure in the image using neighborhood
relations. In this paper, we present a novel method of coding binary shapes.
Each pixel is coded according to the number of neighbors in the 4 directions
(north, east, south, west). In this way, information about the patterns structure
is maintained under translation invariance, while the shape is examined under
the whole area instead of just the borders. It is possible then to do different
image transformations according to each pixel code, so that global structural
of the original image is maintained. A pixel ordering label is used to reinforce
the structural information of the shape. Differently from all the other shape de-
scription techniques mentioned, we construct a description of the exact shape
rigorously to a point where the difference of a single pixel is detectable. Classi-
fication of similar shape patterns can be achieved more precisely with the exact
description of the shape. A preliminary application of this code scheme and a
simple technique for shape generalization and recognition are presented.

The structure of this paper is as follows: Section 2 describes the shape struc-
ture, the pixel to neighborhood vector representation and the invariance of this
representation. Section 3 presents an exact shape matching algorithm based
on the neighborhood coding. Section 4 the neighborhood image operator and
applications. Section 5 describes in details the neighborhood coding scheme,
a code reduction technique, experiments and results. Section 6 summary and
conclusions.

2 Shape Structure

A pattern can be composed of a single connected structure or of many different
structures, as for example letters “a” and “i”. The pattern is decomposed into
its components using the 4-connected neighborhood and each pixel is coded
according to the numbers of neighbors in the four directions. If a pixel is in the
inner part of the image the number of neighbors in one of the directions would
be the amount of pixel until the border of the image. The structural information
of the image is maintained on this set of codes in the same way that pieces of a
jigsaw puzzle put together form a distinct pattern. These codes are translation
invariant, and rotation can be accomplished in the code level, so no further
operation on the image is necessary.

2.1 Component Description

Using a connected component algorithm, we divide a binary image in different
clusters or components. Each pixel of the image is transformed into a vector
containing the number of neighbors in the four directions V = (n, e, s, w), in
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which each letter respectively represents the direction north, east, south and
west, see Fig. 1 A set of these neighborhood vectors describes a component and
all these sets describe the image, see Fig. 2.

V = (4,2,1,3)

V

Fig. 1. Neighborhood vector V = (n, e, s,w)

We used the Hoshen-Kopelman (HK) algorithm [6] in the implementation
of the proposed code scheme. Even though it is sequential, the algorithm is
very efficient for connected component analysis, since it just needs one pass
over the image to discriminate the different components. It is straightforward to
implement the necessary changes to obtain the neighborhood vectors for each
pixel of the image. These implementations do not affect greatly the general
performance of the HK algorithm.
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Fig. 2. Neighborhood code

2.2 Invariance

Three types of invariance are addressed here, translation, rotation and reflec-
tion invariance. Translation invariance comes as a natural consequence of this
representation scheme, which is an excellent property when shape analysis and
recognition is of concern. However, rotation and reflection invariance must be
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implemented. On one hand, this means additional computation effort. On the
other hand, certain applications do require a non-rotational invariance property,
like the distinction between characters 6 and 9. Here, only 90◦, 180◦ and 270◦

rotations are taken into consideration. The reflection invariance addressed are
in respect to the horizontal and vertical axes.

Table 1. Changes of coordinates due to clockwise rotations and reflections. The first
row shows the original coordinate.

Rotation north east south west
90◦ east south west north
180◦ south west north east
270◦ west north east south

Hor.Ref. south east north west
V er.Ref. north west south east

A 90◦, 180◦ or 270◦ rotation of the image means a shift of coordinates in
the neighborhood vectors. If we fix at a specific pixel and rotate the image,
it is quite intuitive that a rotation will mean a change of coordinate on the
neighborhood vector. Similarly, a horizontal and vertical reflection operation
respectively represents a swap between the codes north and south and between
codes east and west. As a result, no further manipulation on the original image
is necessary for these operations. It is just necessary to change the components
of the neighborhood vectors. Table 1 shows the changes of coordinates due to
clockwise rotations and to reflection operations.

3 Exact Shape Matching

In most of the shape analysis techniques an image is represented either by scalar
measurements or by structural description. Basically, the information of simi-
larity among different shapes is extracted with certain information loss. As a
result, a complete reconstruction of a shape to its last pixel is not possible.
Although some information reduction is necessary for most of the pattern recog-
nition encoding scheme, we concentrate our effort on an exact description of the
connected components of a binary image. Our objective is to retain the maxi-
mum amount of information on the description of the image. In this way, the
structural information of the shape will only be lost in a controlled and pre-
cise manner, according to a specific shape similarity purpose. It is interesting to
note that with such exact structural description each component will represent
a polyomino [7] or lattice animal.

3.1 Shape and Volume Identification

A label indicating an order sequence of the pixel is attached to the vector, which
complements the structural information of the shape. This ordering must follow
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a general rule. If a sequential algorithm is used for the connected components
analysis, a natural way of implementing it will be following the order in which
the image is scanned, i.e. top to down and left to right sequence, see Fig. 3.
Consequently, the components of an image are described by a set of neighborhood
vectors which follow a specific ordering.

1

9

2

7 10

12 1311

8

5 643

Fig. 3. Ordering label

To show that two shapes will not have the same set of neighborhood vectors
in the same ordering label, lets try to perform a structural change in a shape
without altering the order sequence and contents of the neighborhood vectors.
Here, two shapes will be comparable only if they have the same amount of pixels.
A change in the position of any pixel A will infer a change in its ordering label
and/or in its neighborhood vector content, moreover it also causes a change in
at least another pixel B neighbor to pixel A, since any pixel must be connected.
It will also cause a change in at least another neighborhood vector and/or in its
ordering label.

In this way, the exact shape match is done by comparison of the neighborhood
vectors in the proper ordering sequence. In section 5 we show how to transform
the neighborhood vector into a single code. So that, in practice the shape match
is done by simply comparing two series of numbers.

It is possible to extend such code scheme from shape to volume identification.
In this case, a three dimensional image will be coded according to 6 directions
(north, east, front, south, west, back) where the front and back directions ac-
count for the extra dimension. The ordering label is still necessary and a set
of neighborhood vectors following the ordering label will characterize an exact
volume.

3.2 Rotation and Reflection

A rotation and reflection operation on the shape represent a shift or swap of
codes in the neighborhood vectors, as already mentioned before. The change on
the ordering label will depend on the scanning sequence of the connected com-
ponents analysis. So, for a correct reordering of the pixel label due to rotation
or reflection, a second scan on the original image is necessary. If all the rota-
tions or reflections are of importance this can be done right after the connected
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components analysis. This will create an ordering vector associated with each
rotation or reflection. Unfortunately, in a sequential algorithm this cannot be
done without computational cost.

4 Neighborhood Operators

Image operators are a set of transformations that can simplify the image data,
preserving their essential shape characteristics and can eliminate irrelevancies.
Many applications in image processing require a preprocessing to normalize or to
reduce the amount of data in the image, so that a pattern recognition system is
feasible. The neighborhood coding vectors presented yields a practical procedure
to implement these image operators. Some transformation can be equivalent to
a thinning or skeleton algorithm. In contrast with the mathematical morphology
transformation, in which two sets of vectors are combined by using vector op-
erations on the set elements, a image operator is obtained by transforming the
image pixels according to the codes in the 4 neighborhood directions.

(a) (b)

(c) (d)

Fig. 4. Image 0 (a) Original, (b) Border Operator, (c) Growing Operator, (d) Thinning
Operator

The transformation can be obtained using mathematical and logical opera-
tions on the neighborhood codes. By choosing certain properties on the vector
codes of the image we can eliminate or add pixels that will fulfill desired charac-
teristics. This could be equivalent to an erosion and dilation transformation in
mathematical morphology. As an example, we applied three different operators
into the handwritten image of the number 0 and the letter A respectively shown
in Fig. 4 and Fig. 5. The first image Fig. 4(a) and 5(a) are the original ones.
In the vector code V = (n, e, s, w) the following criteria were applied to obtain
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the other images. In Fig. 4 (b) and 5(b) we maintained all the vectors that have
at least one of the (n, e, s, w) code equal to zero and we removed all the other
vectors from the image. So, just the border pixels are maintained. In Fig. 4 (c)
and 5(c) two pixels were added to the neighbor point in which any of the codes in
the vector (n, e, s, w) is equal to zero. That is if n = 0 then add in the direction
north 2 pixels neighbor to the pixel representing this vector. Thus generating a
growing operator. Fig. 4 (d) and 5(d) we eliminate the pixels which code vector
has an element (n, e, s, w) equal to zero and has n+ s �= 0 and e+w �= 0. So, we
reduce the shape of the images, but still maintain its characteristics, yielding an
operation similar to thinning. Other types of operations are possible and can be
designed for specific applications. This transformations show the robustness of
the neighborhood coding scheme, since it can be applied not only as a feature
extraction for the pattern recognition, as shown in the next section, but also as
a preprocessing operator.

(a) (b)

(c) (d)

Fig. 5. Image 0 (a) Original, (b) Border Operator, (c) Growing Operator, (d) Thinning
Operator

5 Neighborhood Coding

For the recognition of different shapes we transform the neighborhood vectors
V = (n, e, s, w) into a single code C. This transformation depends on the size
of the image and in practice can yield a large amount of codes. So, a code
reduction technique with the minimum amount of information loss is necessary. A
controllable scheme for information reduction and learning are very close related.
The success of any recognition system is dependent on the amount of information
gathered and processed by the learning algorithm.
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5.1 Coding According Neighborhood

The transformation function for the vector V = (n, e, s, w) into a code C =
F(n, e, s, w) depends on the size L of the image. We will assume a square image,
the equations for a rectangular image follow straightforward. Since the greatest
value that n, e, s, or w can assume is L− 1, the transformation function has the
following boundary conditions

n + s < L (1)

e + w < L (2)

Not taking into account the boundary conditions for the moment. The vari-
ables α and β generated by the related pairs (n, s) and (e, w) respectively is
given by

α = nL+ s (3)

β = eL+ w (4)

Considering the case where L = 2, see Table 2. One can verify that various
vectors do not obey properties (1) and (2). As a result, a significant amount of
code can be reduced. By induction we have that the numbers of vectors that
does not satisfy the boundary conditions follow an arithmetic series. So, when
the boundary conditions are obeyed equations (3) and (4) become

α = nL+ s− n(n− 1)
2

(5)

β = eL+ w − e(e− 1)
2

(6)

After coding for α and β, a unique representation for the vector V follows

C = αK + β (7)

To define K in this equation, we set β to its maximum value and α = 0. β is
maximum when e = L − 1 and w = 0, so we have

βmax =
L2

2
+
L
2
− 1 (8)

leading to

K = βmax + 1 =
L2 + L

2
(9)

substituting K in equation (7) we finally arrive to the transformation function
for the vector V to the code C

C = α
L2 + L

2
+ β (10)
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To calculate the total number of codes generated in equation (10) set α and
β to the maximum, yielding the inequality

0 ≤ C ≤ (L2 + L)2

4
− 1 (11)

since n, e, s and w are positive integer. The total number of codes is then given
by

ξ =
(L2 + L)2

4
(12)

According to equation (12), if a square image has the size L = 128, the amount
of possible codes are ξ = 68161536. For an image with size L = 1024 the number
of possible codes then is enormous. To deal with this problem a code reduction
technique is necessary.

Table 2. Example of all possible codes for L = 2. The empty space in C are the codes
that do not satisfy the boundary condition.

(nesw) α β C (nesw) α β C (nesw) α β C (nesw) α β C

0000 0 0 0 0010 1 0 3 1000 2 0 6 1010 3 0
0001 0 1 1 0011 1 1 4 1001 2 1 7 1011 3 1
0100 0 2 2 0110 1 2 5 1100 2 2 8 1110 3 2
0101 0 3 0111 1 3 1101 2 3 1111 3 3

5.2 Code Reduction

The objective of reducing the amount of codes is two-fold. Firstly, we reduce
the number of codes to be able to tackle the problem in a practical sense. As
the amount of codes increases, more computer resources are needed both in
memory and processing power. And secondly, information reduction is necessary
for generalization of the shape patterns.

To reduce the amount of possible codes we re-scale the components of the
vector V = (n, e, s, w) into V ′ = (n′, e′, s′, w′). This can be done in different
ways. Here we will approach a linear and logarithmic re-scaling. Suppose that
our image size is L and we want to re-scale so that L → L′, in this way the
maximum value that n′, e′, s′ or w′ can assume is L′−1. Choosing an L′ in which
will yield a reasonable amount of codes and a re-scaling function, which preserves
the interesting structural information of the image, is problem dependable. In
addition, we must not forget to fulfill the new boundary conditions:

n′ + s′ < L′ (13)

e′ + w′ < L′ (14)
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A linear re-scaling is straightforward. An interesting case for the linear re-
scaling will be when an a priori knowledge of the objects imbedded in the image
is available. As an example, the objects will not have a pixel vector component
greater then M. In this case a multiplication by (L′ − 1)/M and a division by a
normalization factor, so that the boundary conditions are satisfied, will do the
re-scaling. For the logarithmic re-scaling case, let v = n + s and h = e + w.
Taking into consideration (13) and (14), we have that:

n′ =
n logb v

v
, s′ =

s logb v

v
, e′ =

e logb h

h
, w′ =

w logb h

h
(15)

where b = L′√L. If an a priori knowledge of the objects is available one can
combine the re-scaling functions.

5.3 Experiment and Results

We used the NIST handwritten segmented characters database [8] to perform
preliminary experiment using this technique. The database consists of a square
binary images with L = 128. As a learning set we used 561 images of 0 and 597
images of 1. Using a logarithmic re-scaling and setting L′ = 8, so that the total
amount of codes is reduced to 1296, we obtained the probability distribution
function (pdf) of these codes shown in Fig. 6 and Fig. 7
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Fig. 6. Pdf of the codes in image 0

For the recognition task we used a simple chi-square analysis [9]. The recogni-
tion was done on a test set also taken from the same NIST database. Moreover
the learning set and the test set consist of different images. The recognition scores
are shown in Table 3. These results are promising, however further research on
systems with more objects and different shape patterns are under evaluation.
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Fig. 7. Pdf of the codes in image 1

6 Summary and Conclusions

We presented a novel method to code and characterize binary shapes. It is based
on the pixel neighborhood relation, thus it operates as a low-level image analy-
sis. This approach tries to maintain the maximum structure information of the
image, so that information loss for generalization of different shape images can
be made more accurate and in a problem dependent way.

Table 3. Recognition scores of experiment

Image Learning Set Test Set Correct %
0 561 554 537 96.93
1 597 615 588 95.61

Using the neighborhood coding scheme we described an exact shape and vol-
ume matching algorithm. We also showed that it is possible to use neighborhood
operator applying these ideas. A proper mathematical function to transform the
neighborhood vector to codes was introduced together with a code reduction
scheme. Applications of this technique for different image process problems as
well as the use of different pattern recognition techniques such as Bayesian learn-
ing, decision tree or neural network using the neighborhood codes are possible.
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Abstract. This paper presents a novel method for facilitating user-friendly im-
age retrieval by attaching names to image regions. We first detect only the most 
prominent regions in images when such entities exist, using our own nonlinear 
image segmentation technique. Besides their visual features, the layout and  
relations between selected regions are also emphasized. Next, we apply an 
adaptive and multi-modal classification and naming of image regions using 
subsequent clustering methods to the features of the regions and related words 
as well as relevancy information. For both the naming and the testing, we have 
added a set of illustrations acting as abstract prototypes of the regions to ran-
domly selected natural images. Experiments on 20,000 natural images show the 
efficacy of using this multilayer region naming model as well as of extensively 
interacting with users, enabling them to present their queries by a combination 
of region names, sketches and example images or regions. 

1   Introduction 

At present, the number of images put on various internet sites exceeds 40 trillion. 
There are also huge numbers of images in home photo and video collections, not to 
mention other image sets gathered for specific purposes. These large and unstructured 
image collections have given rise to the need for intelligent image retrieval tools to 
index or categorize these data. Several sophisticated systems including Netra, Blob-
world, SIMPLIcity etc., have been developed. A detailed analysis of these systems 
and of progress in the early years in this field can be found in [1]. Furthermore, sev-
eral new methods have emerged and earlier ones have been updated, and the focus has 
moved to capturing the user’s retrieval semantics in a given search context rather then 
finding images similar in color, texture or shape features. Thus, the so-called semantic 
gap has become a central problem in this research area. 

A number of multi-modal methods for combining textual and visual features have 
been developed to overcome this problem. These methods include relevance feed-
back-based methods [2], various approaches drawn from the field of information 
retrieval and document processing such as methods using latent semantic indexing 
[3], statistical learning techniques based on mixture models [4, 5], HMM-based meth-
ods [6], and several neural-network-based approaches [7]. In most of these methods, 
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low-level visual features like histogram-based color- and/or wavelet-based texture 
descriptions, etc. are extracted and then unified into composite feature vectors repre-
senting the whole image or evenly divided image blocks. These features are then 
utilized to directly connect words to images by using pre-annotated training data and 
various learning approaches. One of the most promising approaches, described in [4, 
5], uses image segmentation to capture visual semantics, and matches the detected 
regions with words by using a joint clustering approach on both feature spaces based 
on unsupervised learning using EM. 

There also exist new promising image annotation techniques that emphasize vari-
ous machine learning methods [8, 9, 10]. However, these vary greatly in their vocabu-
laries or are set up to specific image sets, and are also sometimes restricted to very 
simple visual features. 

This paper proposes a novel method that facilitates both region- or sketch-based 
visual and also textual queries in an interactive and iterative manner in order to bridge 
the semantic gap. First, prominent image regions are determined on the basis of a self-
developed nonlinear segmentation technique including the extraction of structural and 
visual features of the regions. Next, a classification of both regions and words is ac-
complished by using both psychophysical studies on low-level visual features and 
related words. Thirdly, simple clustering techniques are applied to determine region 
names with strong visual coherence using a sketch collection acting as abstract object 
prototypes. Finally, a tree of abstract concepts is assigned to the regions. Relevance 
feedback is utilized not only to refine retrieval results but also to create and adapt 
possible semantic relations among region parts, and also names or keyword catego-
ries. Results of experiments on a large domain of natural images show that higher 
retrieval precision can be achieved by applying keyword, region, or sketch-based and 
combined queries as well as higher-level user interaction. Our purpose here is thus not 
the direct automatic annotation of images or their regions, but provision of retrieval 
results for a given user in a given search context that approximate well enough their 
understanding of the image content. 

2   Detection of Prominent Regions 

With our method, an image is represented via its prominent regions, as well as by its 
visual features including its internal structure and layout. We also determine the size, 
the position, and also the spatial relations between these regions. This is one of the 

 

Table 1. Prominent region detection 

squirrel garden dish woman building 
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most important tasks in carrying out in this method as segmentation failures are  
the main reasons for retrieval errors. However, it would be very difficult, if not im-
possible, to carry out adequate image segmentation on images of a natural image 
domain. Consequently, a quasi-adequate or so-called weak [1] segmentation is util-
ized, that is, only the most prominent regions of an image are focused on. For this 
purpose, we proposed our nonlinear inhomogeneous diffusion model defined by both 
color and texture properties, as using single features of either color or texture would 
not provide enough information to semantically preserve the boundaries of the main 
regions. This model is expressed by the following partial differential equation and 
initial value problem: 

( ) ( ) ( ){ }( )
( ) ( )=

⋅=
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where div  and grad  express the divergence and ( IDG ∗σ ) indicates the Gaussian-
smoothed gradient ( IDG ∗σ ). Function ( )tyxd ,,  represents the diffusivity function or in 
other words expresses the inhomogeneity. This natural image segmentation model 
was defined in one of our previous works [11] and it has the advantage of using mul-
tiple image properties, or in other words considering both color and textured regions 
by applying an adaptive conductance parameter defined over either the color and/or 
the texture gradient accordingly and depending on the texturedness and its gradient. 
This latter can be given by: 

Table 2. Comparing our prominent region detection results to other methods’  
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where 
ijT  indicates a texture feature component ( )k  at a given image location (

ijC ). 

The model is capable of preserving the boundaries of even highly textured regions 
by adaptively adjusting the gradient threshold. Preserving region boundaries is very 
difficult and also very desirable for obtaining adequate prominent regions. In this 
work, we apply a further refinement on this model, such as using a combination of 
local edge histograms and Gabor features (three scales and four orientations) to tune 
the calculation of the diffusivity coefficient with a more adequately defined texture 
gradient to obtain accurate segment boundaries and thus more precisely detect  
regions. The reader is referred to [11] for a detailed explanation of the above inhomo-
geneous diffusion model and that of the image segmentation process. Table 1 illus-
trates some segmentation examples, while Table 2 compares our results to those  
obtained from two widely used segmentation methods: (a) Blobworld and (b) JSEG. 
A new online demonstration of the prominent region detection will soon be available 
on the URL: http://www.teu.ac.jp/akm. 

3   Classification and Naming of Image Regions 

3.1   Structure and Features of Regions 

In further processing steps, we select segments as image regions that are most rele-
vant to the retrieval: at most 4-5 regions per image including the background. These 
are determined on the basis of their size, position, and structural properties, or of the 
saliency of their features. Next, we create a visual description of each region by calcu-
lating MPEG-7 compliant features for color and texture, such as representative colors 
over the HSV space, scalable colors (SCD) and color layout, and also homogeneous 
texture features (Gabor features). Moment invariants and contour-based descriptors 
including contour shape and also region-based descriptors such as CSD and RSD are 
calculated to obtain a shape description. We also calculate the position of the regions 
inside the image via determining their center co-ordinates, lengths of their main axes 
and their projections. The tree-like structure of the main regions considering the entire 
image as root and the adjacency graph of the prominent regions are also determined in 
order to be able to handle composite regions when they are defined by the user. An 
example image and its region structure are illustrated in Fig. 1. 

Fig. 1. Structure of prominent image regions 
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Fig. 2. Regions versus Adjectives 

3.2   Regions Versus Adjectives 

In order to properly classify and attach names to regions, we first try to express visual 
features of image regions to related words like names expressing color, texture, shape 
and/or layout by transforming the primitive visual features of the regions to the tex-
tual domain. We utilize feature lexicons here that are built up using human percep-
tion-based clustering on the above mentioned low-level visual features, and on related 
adjectives and nouns expressing these features textually. That is, we carry out a clus-
tering of the regions using their color, texture, shape and layout features, and then 
map the resulting region clusters to psychophysically predetermined word clusters. 
This cluster mapping scheme is based on studies carried out by cognitive psycholo-
gists [12] and it is derived from experimental results, which suggests that the cluster-
ing of low-level region-based visual features and also of visual-related adjectives 
carried out by humans is nearly objective, such that there is no significant difference 
observable between the group of individuals in these experiments. 
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Color features are matched to words in three steps: (1) intra-region smoothing us-
ing an exponential diffusivity function is applied on the HSV channels, (2) color 
quantization is carried out and representative colors are defined for the regions over a 
quantized HSV space, and (3) these colors are then mapped to color names using the 
metric: 

( ) ( ) ( ) ( ) ( )( ) 21222
cos2, isisisisHSV HHSSSSVVisD −−++−=  . 

(3) 

to calculate the distance from color name prototypes [13]. 
Texture feature mappings are handled by first obtaining a hierarchy of texture fea-

ture clusters using self-organizing map and/or learning vector quantization and  
repeated vector quantizations on the texture features of the regions by selecting proto-
types from the Corel “Texture” categories utilized as training data. Next, these texture 
clusters are mapped to texture-related keyword clusters (11 main clusters) proposed as 
the texture lexicon in [14] and to several sub-clusters to obtain texture-related adjec-
tives. 

Shape clusters are determined by using thresholding and agglomerative clustering 
on contour- and region-based features and heuristically-determined shape-related 
words such as “ellipsoid”, “curvy”, “protruded”, etc. Calculation of this cluster 
matching process is illustrated in Fig. 2. 

At the end of these calculations, we attach a number of words, mainly adjectives 
and a few nouns, to each image region. It is emphasized that here we do not match 
visual and textual clusters uniquely (in a one-to-one manner), except for texture fea-
tures, as regions can possess multiple representative colors and shape properties. In 
order to obtain joint region-word clusters, a soft vector representation of visually-
related words is utilized. This can be defined by vectors ( )

STC rrr VVV ,, . An element of a 
vector, [ ]1,0∈rjv , defines the probability of which word ( j ) expresses image region ( r ). 
These visual word probabilities can be determined by calculating the weighted nor-
malized distance ( )

STC jSjTjC DDD γβα ,,  from the given visual cluster center. (The distances 
for texture and shape can be written by ( ) ( ) ( )( )−==
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maxmax,  respectively.) Here, weights ( )STC γβα ,,  are used to ex-

press the relations between the corresponding visual and textual clusters. 

3.3   Region Clusters Versus Region Names 

In the third step, we try to determine names for the real image regions as appropri-
ately and as objectively as possible. For this purpose, we utilize visually-related 
words that we assigned to the regions in the previous step, as well as both layout and 
structural properties of regions within the image. Here we use the position of each 
region inside the image, its size, structure and adjacency relations to the other promi-
nent regions or to the background. 

First we apply a so-called preprocessing step, in which we separate objectable im-
ages from non-objectable ones with the meaning of whether or not the given image 
contains prominent regions. This decision can be easily made by examining the size, 
the position and the structure of the detected prominent regions as written above. 



618 A. Kutics and A. Nakagawa 

Next we apply a simple k-NN clustering to obtain region clusters that are similar 
in their visual properties. Our purpose with this clustering is to possibly classify 
regions into top object categories, such as organism: person, animal and botanic, or 
object (artifact): indoor objects or outdoor objects. This is a very simplified set of 
the MUSCLE [15] vocabulary recommended for image annotation. We use here 
only this simply classified and nearly disjointed set as we focus on finding the most 
commonly used natural image objects, where using whole sets would be quite diffi-
cult and time-consuming to implement. As a training set, we use 200 pre-annotated 
images randomly selected from 10 categories of the Corel Collection and also 100 
annotated illustration images. We used 5 or 6 neighbors for the k parameter as this 
showed the best results (75-88% clustering ratio) in our experiments carried out for 
all categories. 

Next, we apply further vector quantizations to the regions to obtain more specific 
region clusters that have similar visual features. Our purpose here is to possibly 
cluster regions and names together, such as several organisms and artifacts with 
significant shape, texture, color or layout features, like four-legged animals (e.g. 
wolves), long or circular objects like tools or flowers, or objects with the same color 
or texture, like the sky, sea, rocks, etc. We also wanted to obtain region clusters 
with special combinations of some or all of these features, like dress, dish, jaguar, 
etc. We carry out this calculation on the basis of the statistical properties of the 
visual features or visually-related words of the regions, and adaptively select the 
most significant ones for the given clustering task. (For example, shape features are 
obviously the most important ones for clustering four-legged animals.) Here we 
emphasize again that our interest in this work is in how well this four-step region 
naming can help to find objects for a given user, and we do not try automatic anno-
tation of regions. 

In order to determine specific region clusters, we have to estimate the conditional 
probability that a region name ( iname ) belongs to a given region cluster ( jcluster ). These 
probabilities are obtained by calculating the frequencies of region names or their 
direct synonyms and their lexical abstractions (top categories or super-ordinates), over 
the predetermined region clusters obtained by vector quantization over the soft vec-
tors of visual related words. Here we utilize the well-known WordNet [16] lexicon, 
which is sometimes quite ambiguous and we must rely on polysemy counts and re-
strict the number of senses used. We also use a lexicon of words and pictures, as 
WordNet does not contain enough interpretations. Here we apply weighting ( ( )rpw , ) 
by the probability of which a region with visual features ( rf ) belongs to a top object 
category ( pcat ). This calculation can be expressed by the following equations: 
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(4) 

The illustration or sketch-based images are involved in the naming for two main 
reasons: (1) The annotations of these images are almost always restricted to words or 
names of regions with direct visual semantics. For example, for an illustration of a 
skirt, the appearance of more abstract words like fashion, model, etc. are very rare. 
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Fig. 3. Overview of the region naming process 
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This perfectly fits our purpose here, as in this stage of the clustering process we 
would like to assign names with strong visual coherence. (2) These images usually 
depict a given region, with its shape, simple color and sometimes simple texture prop-
erties, and these can act as abstract prototypes of real-life objects. Finally, we assign a 
maximum of 5 names or words with strong visual coherence to regions determined on 
the basis of their probabilities ranked over the clusters. 

3.4   Concept Trees for Browsing 

In order to support keyword-based browsing, we also determine a hierarchy of ab-
stract concepts. This is accomplished by assigning global sense hierarchies by using 
WordNet and our simple illustration dictionary. Here we select a concept tree on the 
basis of word frequency, co-occurrence and polysemy counts based on the words 
defined in the previous steps. It is also possible to determine concept or word hierar-
chies by applying a combination of asymmetric and symmetric clustering of words 
and regions on the second layer as proposed in [4, 5]. In this way, regions and words 
with higher probabilities are put on the higher levels. However, here we argue that 
global semantic concept hierarchies are more suitable for browsing in natural data 
sets, even if these are sometimes unbalanced. It is also possible to apply Expectation-
Maximization using mixtures of Gaussians over the features and various distributions 
of the textual properties, as well as SVM-based learning algorithms, to obtain esti-
mated categories or vocabularies. An overview of the region classification and nam-
ing process is illustrated in Fig. 3. 

4   Region and Image Retrieval 

The method can handle various types of query presentations and it is very useful for 
keyword or category-type browsing, as well as searches specified by sketch or exam-
ple images. The user can present a query by using keywords, example images or re-
gions. Except for a very specific query image of a user (e.g. an adult hippopotamus in 
full profile view; finding it by keywords can take hours on the Internet) he can start 
his search by keyword or category-based browsing. In this latter case, a concept hier-
archy and corresponding images are retrieved, enabling the user to interact with the 
system in several ways, such as freely browse in the concept tree, find example im-
ages and regions or sketch them and start a single or a composite search, etc. 

For queries ( Kqitem1 ) of both keywords and region or image examples, images 
( Iireg ) are retrieved by calculating query-item probabilities over each cluster ( jcluster ) 
weighted by the probability of the cluster with respect to the given region ( ireg ): 

( ) ( ) ( )( )∏ =
∗=

j

K

k jkijiK clusterqitemPregclusterPregqitemP
11 |||  . (5) 

The user can also refine the retrieval results by specifying relevant and/or irrele-
vant images among the retrieved images. Via this relevance feedback, not only are the 
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probabilities of both visual and conceptual words updated, but also user-specific 
query words are saved in a “user dictionary” to enable user subjectivity to be handled 
more effectively. Retrieval result examples are illustrated in Fig. 4. The selected re-
gions of “autumn leaves” are shown in Fig. 4(a). Fig. 4(b) illustrates the query and 
user interface as well as the determined concept tree. Results obtained by the pro-
posed method for “autumn leaf” keywords and regions are shown in Fig.4(c) and (d). 

5   Retrieval Results and Discussion 

Retrieval experiments were conducted on more then twenty thousand natural images 
obtained from various randomly selected categories of the Corel Gallery collection 
and also selected from home photo and video collections to evaluate the method for 
non-professional images. We did not use any specific keywords or annotations for 
training purposes, but only the most simple words, almost always the group titles  
(1 title/100 images) assigned by Corel, like “Churches”, “Tools”, etc. Home photos 
were set up with very few usable annotations. For the illustration or sketch database, 
we have one word/image usable for training. We randomly chose 100 test images 
from 10 additional categories to produce a query set, regardless of the existence of 
 
 

(a) Selecting prominent regions

(c) Retrieval result (direct search) (d) Retrieval result (fifth relevance cycle) 

(b) User-interface for querying and browsing 

Fig. 4. Retrieval result of a combined search using “autumn leaf” regions and keywords 
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well-defined relevant regions. The 5 persons participating in the experiments represented 
different genders, ages, occupations and cultural backgrounds. Each of them assigned 
various test query words to each test image according to his/her own background. The 
retrieval precision obtained for some test image categories is shown in Table 3. 

The highest retrieval precision was obtained for composite queries specified by 
both keyword(s)/categories and regions/images and/or sketches. About 65% of the 
most relevant regions or pictures were retrieved for each test person in the set of 20 
result images in the first retrieval cycle and about 90% of these regions or pictures 
were retrieved after five consecutive relevance feedback cycles. Obviously, especially 
good results could be obtained by iterative searches when the user first selected a 
category and continued the search inside that category. However, even for these 
searches, we can obtain lower (less then 70%) retrieval precision, because of category 
assignment errors. We also carried out traditional visual feature-based searches to 
measure the performance improvement of the method, using the same test images or 
image regions, and the retrieval precision dropped to an average of 58%. Retrieval 
failures occur for three main reasons: (1) segmentation errors, which have the most 
severe effect on shape features, and mostly occur with images containing areas of 
inhomogeneous texture or a large number of small regions that were aggregated by 
error (However, sketch images can be a great help, especially with their more precise 
shape features.), (2) region clustering and naming errors, when the method fails to 
select the relevant words with visual coherence or assigns mismatching ones, and (3) 
errors of failing to select proper abstract concept hierarchies and senses in WordNet. 
These errors can be avoided or at least significantly decreased in number by applying 
more user interaction, i.e., by incorporating more browsing and also relevance feed-
back into the retrieval, or applying a more precise statistical model for naming and 
concept matching, which is an ongoing research topic in our laboratory. 

6   Conclusions 

In this work, we proposed a new approach to classifying image regions and assigning 
names to them by trying to capture more semantics in image content for efficient 
image retrieval. In order to accomplish this, we first applied our self-developed 
nonlinear multi-scale segmentation algorithm for detecting quasi-appropriate promi-
nent image regions, which themselves carry important visual semantics for the user. 
In our method, we tried the naming of image regions in several consecutive steps. 
First we assigned visual adjectives and nouns to region clusters on a psychophysical 
basis. Next, as a preprocessing step, we classified the regions into five top semantic 
categories using the k-NN method. Then we assigned semi-abstract names using a soft 
vector representation defined in the previous step to create joint clusters of regions 

Table 3. Retrieval precision for composite (5 cycles) and visual-based searches 

Search [%] animal garden dish woman building Ave. 

composite 92.5 88.3 91.3 89.2 90.0 90.3 

visual 48.4 64.9 62.1 51.1 56.7 56.6 
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and names of direct visual coherence by applying a vector quantization using selec-
tive visual features. Finally, we also determined a hierarchy of higher-level concepts. 
The advantage of this method is that it supports various browsing and searching 
schemes by enabling the user to present textual, sketch and/or visually-based queries 
and several different combinations of them. A sketching tool can be an invaluable 
help for queries, especially those that are difficult to specify only by words or by 
image examples. By comparing the results of experiments over a large, natural image 
domain to reported results of traditional visual feature-based CBIR methods or other 
image-word matching approaches, it can be shown that the proposed method achieves 
higher retrieval accuracy. This is accomplished by using multiphase region–word 
clustering and naming and thus semantic inference in several consecutive steps, as 
well as incorporating user interaction rather than matching images and words directly. 
By taking greater account of spatial region-relations on a conceptual and semantic 
basis and applying high-level reasoning, the method can be further developed for 
image mining and generic image recognition purposes. 
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Abstract. Belongie et al. used sets of shape contexts for contours at cer-
tain landmarks and showed that they offer good results in shape match-
ing. We propose a better selection of landmark points based on a low-pass
filtering of the shape contour and consider that shape context at land-
marks along the contour form a cyclic sequence. These cyclic sequences
can be properly compared by means of Cyclic Dynamic Time Warping,
as shown in the paper. Experiments on the MPEG7 CE-Shape-1 and the
SQUID Demo databases show that our proposal outperforms the WARP
system and Belongie’s approach for shape retrieval.

1 Introduction

Content-based image retrieval is being increasingly demanded in many applica-
tions: digital libraries, broadcast media selection, multimedia editing, etc. [15].
The MPEG-7 standard, for instance, is a multimedia content description speci-
fication that defines visual feature descriptors in order to allow images retrieval
based on their own visual content rather than text [3]. The shape of 2D objects
(written characters, trademarks, pre-segmented object contours, 2D/3D object
boundaries, etc.) usually provides a more powerful semantical clue for similarity
matching than color or texture: humans can recognize characteristic objects from
their shape boundary. In order to be effective in classification and retrieval tasks,
shape descriptions, combined with (dis)similarity measures, must be robust to
noise and invariant to transformations such as translation, scaling, and rotation.

When an arbitrary starting point is chosen, the shape contour can be described
as a (counter-clockwise) sequence of Freeman chaincodes, 2D points, curvature
and/or distance to centroid values, etc. Another interesting shape descriptor
was introduced by Belongie et al. [2] and showed very discriminative results:
the shape is described as a set of shape contexts at specific landmarks. These
descriptions can be compared by means of bipartite matching.

Recently, Bartolini et al. [1] have proposed a new Discrete Fourier Transform
based approach to compactly represent contours with sequences of points which
are invariant to translation, scale, rotation and election of the starting point.
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and FEDER under grant TIC2002-02684 and the Conselleria d’Empresa, Universitat
i Ciència under grant GV06/302.
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In the WARP system, these sequences can be compared by means of Dynamic
Time Warping (DTW) [13]. This system presents two drawbacks: the technique
employed to reconstruct the shape produces contours with an ambiguity mod-
ulo a rotation of π radians [5] (which also affects the starting-point selection);
and perceptually similar shapes may have significantly different reconstructed
contours (in orientation and starting point selection). These problems affect the
performance of DTW-based comparisons.

In [2], the ordering information that a contour supplies is not taken into ac-
count by Belongie et al. When order is considered, DTW can be used to compare
shapes. Sequences of shape contexts are invariant to translation, scale and rota-
tion, but not to starting-point election. The WARP system can not help us at
this election, but the reconstructed shape seems appropriate for the election of
landmark points in order to obtain shape contexts sequences. To obtain starting-
point invariance, we propose to consider the problem under the framework of
cyclic sequences and to use Cyclic Dynamic Time Warping (CDTW) to compare
the outer contours of shapes.

The paper is organized as follows: In Sect. 2 and Sect. 3, shape contexts
and DTW are respectively reviewed. In Sect. 4 we critically study the WARP
system. A CDTW procedure that provides invariance to the starting point when
comparing sequences is presented in Sect. 5. In Sect. 6 the proposed method is
summarized. In Sect. 7, experimental results on image retrievals tasks for the
SQUID Demo and MPEG-7 CE-Shape-1 databases compare different methods.
Finally, some conclusions are presented in Sect. 8.

2 Comparison of Sets of Shape Contexts by Means of
Bipartite Matching

In [2], Belongie et al. introduced sets of shape contexts and obtained good
results in shape classification and retrieval. In their approach, the shape is
described as a spatial distribution of points from the contour. Given a set
A = {a0, a1, . . . , am−1} of landmark points from the contour of a shape, the
shape context at point ai is defined as a histogram hi of the relative coordi-
nates of the remaining m − 1 points: hi(s) = #{aj : j �= i, aj − ai ∈ bin(s)},
where bins are uniform divisions of the log-polar space centered at point ai (see
Fig. 1)). In this description of the contour as a set of histograms, there is an
intrinsic translation invariance. It is also possible to obtain scale invariance nor-
malizing all radial distances by the mean distance between all pairs of points in
the shape, and rotation invariance using a relative frame based on treating the
tangent vector at each point as the positive x-axis.

In order to compare two shapes A and B, Belongie et al. propose a measure
based on a weighted combination of three scores: (i) the appearance difference
(it uses colour information in the gray-scale image patches surrounding points);
(ii) the bending energy [4]; and (iii) the shape contexts distance.

We are specially interested in the shape contexts distance. Therefore, let us
study more in depth this score. Let A and B be two sets describing contours
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Fig. 1. Shape context computation. (a) Diagram of log-polar histogram bins using
in computing the shape contexts. Five bins for log r and 12 bins for θ. (b) It shows
the landmark points from a shape (using Fourier Descriptors) and the corresponding
histogram of the point marked by a black dot. (c) The same shape but using a different
point. (d) Another shape similar to (b). There is a visual similarity of the histograms
(b) and (d), since the situation of the points is alike.

of shapes with the same number of 2D points. Let γ(ai, bj) be a measure of
dissimilarity between ai and bj. The γ function is used to determine a matching
of two sets. Then, a matching between A and B is a permutation π : {0, . . . ,m−
1} → {0, . . . ,m − 1} where ai is matched to bj if π(i) = j. The permutation π

should minimize the total matching cost defined as
∑m−1

i=0 γ(ai, bπ(i)). The value
of γ(ai, bj) is the cost of matching ai to bj, and it is measured using the χ2

statistic,

γ(ai, bj) =
1
2

S−1∑
s=0

(hai(s)− hbj (s))2

hai(s) + hbj (s)
,

where hai and hbj are the shape context histograms at ai and bj, and S is the
number of histogram bins.

Since histograms computation for all points is a computationally expensive
procedure, it is only performed at some landmarks on the shape.

Belongie et al., in [2], deal with the permutation π as an instance of the
weighted bipartite matching problem, which can be solved in O(M3) time us-
ing the Hungarian method [12], where M is the number of landmark points.
Bipartite matching is a general solution for the optimal matching of two sets of
points, since it minimizes the total matching cost. However, contours are ordered
sequences of points and it is natural to match them by means of DTW.

3 Dynamic Time Warping

An alignment between two sequences A = a0a1 . . . am−1 and B = b0b1 . . . bn−1
is a sequence of pairs (i0, j0), (i1, j1), . . . , (ik−1, jk−1) such that (a) 0 ≤ i� <
m and 0 ≤ j� < n; (b) 0 ≤ i�+1 − i� ≤ 1 and 0 ≤ j�+1 − j� ≤ 1; and (c)
(i�, j�) �= (i�+1, j�+1). The pair (i�, j�) is said to align ai�

with bj�
. Each pair is

weighted by means of a local dissimilarity function γ : Σ × Σ → R
≥0 and the
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weight of an alignment is
∑

0≤�<k γ(ai�
, bj�

). An alignment between A and B
is optimal if its weight is minimum among that of all possible alignments. The
DTW dissimilarity measure between A and B will be denoted with DTW (A,B)
and is defined as the weight of the optimal alignment between both sequences.
The DTW dissimilarity can be computed as DTW (A,B) = d(m − 1, n − 1),
where d is this recurrence:

d(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ(a0, b0), if i = j = 0;
d(i− 1, j) + γ(ai, b0), if i > 0 and j = 0;
d(i, j − 1) + γ(a0, bj), if i = 0 and j > 0;

min

⎧⎪⎨⎪⎩
d(i− 1, j − 1),
d(i− 1, j),
d(i, j − 1)

⎫⎪⎬⎪⎭+ γ(ai, bj), if i > 0 and j > 0.

(1)

This equation formulates the DTW (A,B) computation problem as a shortest
path problem in the so-called warping graph, an array of nodes (i, j), where
0 ≤ i < m and 0 ≤ j < n, connected by horizontal, vertical and diagonal arcs
(see Fig. 2). All arcs incident on the same node (i, j) are weighted with γ(ai, bj).
Each path from (0, 0) to (m − 1, n − 1) defines an alignment between A and
B containing a pair (i, j) for each traversed node (i, j). The weight of a path
(and of its corresponding alignment) is the sum of the weights of its arcs. Since
the warping graph is acyclic, the optimal path can be computed by Dynamic
Programming in O(mn) time.

Sequences of shape contexts descriptions for contours provide invariance to
translation, scale and rotation. However, there is still a fundamental problem
when trying to compare sequences of shape contexts with DTW: these sequences
are cyclic sequences, i.e., they have no defined starting point. Invariance to trans-
lation, rotation, scale and starting point in order to be able to apply DTW
comparison has been tried to obtain with a different approach in the so-called
WARP system.

4 Comparison of Canonical Sequences of Points by
Means of DTW: The WARP System

DTW does not lead to good dissimilarity measures when the starting point of
a shape is undefined and, thus, arbitrarily chosen. The WARP images retrieval
system [1] is based on the DTW-based comparison of compact, normalized signa-
tures of shapes (using as a local dissimilarity function, γ, the Euclidean distance
between points). These signatures are obtained by applying the Inverse Dis-
crete Fourier Transform (IDFT) to the shape’s Fourier Descriptors (FDs) after
a normalization procedure.

Let A = a0a1 . . . am−1 be a sequence of complex numbers where each element
denotes a point in the complex plane (thus defining a 2D point). The Discrete
Fourier Transform (DFT) of A is an ordered set of complex values DFT (A) =
Â = (â−m/2, . . . , â−1, â0, â1, . . . , âm/2−1) where âi =

∑
0≤k<m ake

−j2πki/m and
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Fig. 2. (a) An optimal alignment between the sequences A = wwzz and B = zzzw,
The lines represent aligned pairs of values and are labeled with the local dissimilarity
between the aligned pairs (γ(w, z) = 1). (b) Warping graph underlying the solution
procedure of the recursive equation (1). The weight of all arcs arriving at node (i, j) is
γ(ai, bj). Each possible alignment corresponds to a path departing from the lower-left
node and arriving to the upper-right node. The thick line is the optimal alignment
associated to (a).

j =
√−1. These coefficients are the FDs and model the contour of a shape as a

composition of ellipses revolving at different frequencies [5]. The main ellipse is
centered at the contour centroid, â0, and translation of the contour only affects
this descriptor. Scaling by a factor α scales the FDs by α. Rotating the shape
by an angle θ yields a phase shift of θ in the FDs. A cyclic shift of k positions
in A produces a linear phase shift of 2πki/m in âi. Thus, the shape can be
reconstructed to a canonical form invariant to: (i) translation, setting the â0
descriptor to 0; (ii) scale, dividing all the descriptors by r1 (âi = rie

jθi); (iii)
rotation, subtracting (θ−1 − θ1)/2 (the orientation of the basic ellipse) to each
θi; and (iv) starting point, adding i(θ−1 − θ1)/2 to each θi.

Taking only M � m low frequency components before computing the IDFT
provides dimensionality and noise reduction. The WARP system only uses the
M = 32 lower frequency FDs before computing the IDFT. The DTW computa-
tion in the WARP system is O(M2), for M � m,n.

In Section 2, the election of the starting point was the only invariance related
problem that was still unsolved, since shape contexts provides invariance to
translation, scale and rotation. The basic idea of the WARP system is that, after
normalization, all shapes have a canonical version with a “standard” starting
point and thus, are amenable to be compared by means of the DTW dissimilarity
measure. But, on one hand, it should be noted that subtracting (θ−1 + θ1)/2 to
the orientation of all FDs only provides rotation invariance modulo π radians [5].
On the other hand, invariance is only achieved for different starting points of
the same shape. Different shapes (even similar ones) may differ substantially
in their normalized starting point. Fig. 3 shows three perceptually very similar
figures (in fact, the second and third ones have been obtained from the first
one by slightly compressing the horizontal axis) whose normalized version are
significantly different in terms of orientation and starting point. This problem
appears frequently in shapes whose basic ellipse is almost a circle. Invariance to
starting point election should be provided by a different method.
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(a) (b) (c)

Fig. 3. (a) Original shape and its normalized version. (b) The same shape compressed in
the X axis and its normalized version, which has a different rotation and starting point.
(c) A bit more compressed shape and its normalized version, which is also different.

5 Cyclic Dynamic Time Warping

It is useful to consider the problem under the framework of cyclic alignments,
i.e., alignments between cyclic sequences.

A cyclic sequence can be viewed as the set of sequences obtained by cyclically
shifting a representative sequence (i.e., by choosing different starting points). Let
A = a0a1 . . . am−1 be a sequence from an alphabet Σ and let Σ∗ be the closure
under concatenation of Σ. A cyclic shift σ of A is a mapping σ : Σ∗ → Σ∗

defined as σ(a0a1 . . . am−1) = a1a2 . . . am−1a0. Let σk denote the composition
of k cyclic shifts and let σ0 denote the identity. Two sequences A and A′ are
cyclically equivalent if A = σk(A′) for some k. A cyclic sequence is an equivalence
class [A] = {σk(A) : 0 ≤ k < m}.

Let [A] = [a0a1 . . . am−1] and [B] = [b0b1 . . . bn−1] be two cyclic sequences.
A cyclic alignment between [A] and [B] is a sequence of pairs (i0, j0), (i1, j1),
. . . , (ik−1, jk−1) such that, for 0 ≤ � < k, (a) 0 ≤ i� < m and 0 ≤ j� < n;
(b) 0 ≤ i(�+1) mod m − i� ≤ 1 and 0 ≤ j(�+1) mod n − j� ≤ 1; and (c) (i�, j�) �=
(i(�+1) mod m, j(�+1) mod n). The weight of a cyclic alignment (i0, j0), (i1, j1), . . . ,
(ik−1, jk−1) is defined as

∑
0≤�<k γ(ai�

, bj�
), where γ is the local dissimilarity

measure. An optimal cyclic alignment is a cyclic alignment of minimum weight.
The Cyclic Dynamic Time Warping (CDTW) measure CDTW ([A], [B]) is

defined as the weight of the optimal cyclic alignment between A and B. First,
we are going to show that the optimal cyclic alignment can be defined in terms
of alignments between non-cyclic sequences, i.e., in terms of DTW (·, ·); then, we
will present an efficient procedure to compute it1.

Lemma 1. If m,n > 1 and (i0, j0), (i1, j1), . . . , (ik−1, jk−1) is an optimal
alignment between two sequences a0a1 . . . am−1 and b0b1 . . . bn−1, there is at least
one � such that i� �= i(�+1) mod m and j� �= j(�+1) mod n.

Lemma 2. The CDTW dissimilarity between [A] = [a0a1 . . . am−1] and [B] =
[b0b1 . . . bn−1], CDTW ([A], [B]), can be computed as

min
0≤k<m

min
0≤�<n

DTW (σk(A), σ�(B)).

1 The reader is addressed to [9] to obtain proofs for the following lemmas and theorem.
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According to Lemma 2, the value of CDTW ([A], [B]) can be trivially computed
in O(m2n2) time by solving mn recurrences like equation 1. Maes showed in [8]
that the Cyclic Edit Distance (CED), a related dissimilarity measure, can be
computed in O(m2n) time by performing cyclic shifts only on one of the se-
quences. This observation finally led to a O(mn lgm) time algorithm.

Is it possible to perform cyclic shifts on only one of the sequences when
computing the CDTW? The answer is no: in general, CDTW ([A], [B]) is nei-
ther min0≤k<m DTW (σk(A), B) nor min0≤k<n DTW (A, σk(B)), as the follow-
ing counter-example shows: let z and w be two elements from Σ such that
γ(z, w) = 1; the value of CDTW ([zwz], [wzw]) is 0, since DTW (zzw, zww) =
0, but DTW (zwz, wzw) = 2 and DTW (wzz, wzw) = DTW (zzw,wzw) =
DTW (zwz, zww) = DTW (zwz, wwz) = 1. Therefore, an equivalent of Maes’
algorithm for the CED computation cannot be directly applied to CDTW dissim-
ilarity computation, contrarily to what is supposed in [14].

Theorem 1. The CDTW dissimilarity between cyclic sequences [A] and [B] can
be computed as

CDTW ([A], [B]) = min
0≤k<m

(
min(DTW (σk(A), B),DTW (σk(A)ak, B))

)
.

The value of DTW (σk(A), B) and DTW (σk(A)ak, B), for each k, can be ob-
tained by computing shortest paths in an extended warping graph similar to
the extended edit graph defined by Maes [8] (see Fig. 4 (a)). Since the non-
crossing property of edit paths also holds for alignment paths (see Fig. 4 (b)),
the Divide-and-Conquer approach proposed by Maes can be applied to CDTW.
The Divide-and-Conquer procedure is depicted in Fig. 5. It should be taken into
account that, unlike in Maes’ algorithm, the optimal path starting at (k, 0) can
finish either at node (k + m− 1, n− 1) or (k + m,n− 1).

6 The Proposed Method: CDTW of Shape Contexts
Cyclic Sequences

We propose to describe shapes as cyclic sequences of shape contexts at certain
landmarks and to compare them by means of CDTW.

Belongie et al., in [2], select landmark points ensuring that these points have
a certain minimum distance along the contour. It can be seen in Fig. 6 that the
result by uniform spacing is rather poor and noisy: in some cases the shape can
be totally deformed. The landmarks resulting from reconstructing the contour
from low frequency FDs seem more suitable and detailed: noise is filtered and the
original shape is better preserved. Although we do not need to take advantage
of the canonical forms that the WARP system provides, it seems appropriate to
use FDs to compute landmark points.

Finally, to summarize, in order to compare two shapes, the proposed method
has the following stages: (i) the election of landmark points using FDs (in
O(m logm + n logn) time, where m and n are the number of points of the
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Fig. 4. (a) Extended warping graph for A = wwzz and B = zzzw. γ(z, w) = 1.
Arcs ending at node (i, j) are weighted γ(ai, bj). The optimal alignment for [A] and
[B] is the minimum weight path starting from any colored node in the lower row and
ending at a node containing the same color in the upper row (all path candidates are
shown with thick lines). (b) Optimal crossing paths can be avoided: if the weight of the
subpath q is greater than the weight of the subpath q′, the black path can be improved
by traversing q′ instead of q.
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Fig. 5. Divide-and-Conquer procedure to compute the CDTW dissimilarity between
the sequences of Fig. 4. First, the optimal alignment (path) between A and B and
between σ0(A)a0 and B is computed. The first optimal path is used as a left and right
frontier in the extended graph: only the white region must be explored to compute the
optimal alignment between σ2(A) and B and between σ2(A)a2 and B. This idea is
applied recursively to the computation of the other optimal alignments, but using also
the optimal alignment between σ2(A) and B as a new left or right frontier.

original contours) for both shapes, (ii) the computation of the cyclic sequence of
shape contexts for these points (in O(M2) time, where M � m,n is the number
of landmark points) for both shapes, and (iii) to use CDTW to measure the
dissimilarity between these cyclic sequences (in O(M2 logM) time.
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(a) (b)

Fig. 6. Examples of the election of landmark points. For each example: the first shape
is the original one, the second shape is the election of landmark points by sampling
using uniform spacing (as in [2]) and the third one is the election of landmark points
by FDs. These examples show how noise can deform the original shape using uniform
spacing while the FDs reconstruction provides a better approximation of the shape.

7 Evaluation and Results

The proposed method was tested on the SQUID database [10] and the MPEG7
CE-Shape-1 database. For all the experiments we use shape contexts with 5
log-distance bins and 12 orientation bins (see Fig. 1 (a)).

7.1 SQUID Database

The SQUID Demo database consists of 1100 contours of marine species (see
Fig. 7) and is used as a demonstration application of the Shape Queries Using
Image Databases system see Fig.. The original database does not divide the
contours into classes. Bartolini et al., in [1], manually classified 252 images into
10 semantic categories: seahorses (5 images), seamoths (6), sharks (58), soles
(52), tonguefishes (19), crustaceans (4), eels (26), u-eels (25), pipefishes (16),
and rays (41). They conducted some precision (P) versus recall (R) experiments
with 30 query images from the 10 semantic categories. For each query, images in
the same category were considered relevant and all the others were considered
irrelevant. Since the set of query images is unknown, we have run queries on the
252 labeled shapes. We use 64 landmark points.

Fig. 8 depicts the precision/recall graph for 5 retrieval procedures (precision:
percentage of relevant shapes among the retrieved shapes; and recall: percentage
of relevant shapes retrieved w.r.t. the relevant shapes in the database):

– CDTW-SC-FD: CDTW comparing shape contexts and sampling landmark
points using low frequency FDs.

– CDTW-SC-US: comparison of shape contexts by means of the CDTW. Sam-
pling landmark points using uniform spacing.

– WARP-SC: the WARP system using shape contexts.
– WARP: the standard WARP system [1].
– DTW-SC-US: DTW comparing sequences of shape contexts with arbitrary

starting point and sampling landmark points using uniform spacing.

This graph shows how a better election of points affects the performance of
the used method. It can also be seen that the method proposed in this paper
(CDTW-SC-FD) significantly outperforms the other ones.
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Fig. 7. Some images in SQUID database
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Fig. 8. Results on the SQUID Demo database. Precision P (number of relevant shapes
among the retrieved ones, in %) as a function of recall R (% of relevant shapes recovered
w.r.t. all relevant shapes in the database).

7.2 MPEG7 Database

The MPEG7 CE-Shape-1 database consists of 1400 shapes (see Fig. 9 (a)) divided
in 70 categories, each category with 20 images [7]. Performance is measured by
the so-called “bulleye test”. This is a frequently used test in shape retrieval and

Fig. 9. (a) Some images in MPEG7 CE-Shape-1 database. (b) The three types with
the lowest performance in the “bulleye test”.
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Method Performance
WARP [1] 29.25%
CSS [11] 37.72%
Visual Parts [7] 38.22%
Shape Contexts [2] 38.25%
Curve Edit Distance [14] 39.05%
Distance Sets [6] 39.18%
CDTW-SC-FD (32 landmark points) 36.41%
CDTW-SC-FD (64 landmark points) 39.28%
CDTW-SC-FD (100 landmark points) 40.23%

Fig. 10. Best published retrieval rates for MPEG7 Database and our approach perfor-
mance (FDs, Shape Contexts and CDTW) with different number of landmark points

permits us to compare our algorithm against many of the best performing shape
retrieval methods. It consists in comparing each shape to every other shapes in
the database; the retrieval rate for the query object is measured by counting the
number of objects from the same category which are found in the first 40 most
similar shapes. The maximum number of objects from the same category is 20 (the
maximumprecision attainable in that experiment is 50%).The currentlypublished
best performing approaches are shown in Fig. 10. The best retrieval rate for our
approach is 40.23% for 100 landmark points. Even our second best retrieval rate
(with only 64 points) outperforms the best known results.

8 Discussion

We have presented a new approach to shape matching. Where contours are
described by cyclic sequences of shape contexts and landmark points to compute
these shape contexts are obtained from low-frequency FDs. The sequences are
compared by means of CDTW in O(M2 logM) time, where M � m,n. This
approach outperforms the obtained results in previous published methods as
shown in the experiments.
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Abstract. Extraction of relevant image objects and their matching for
retrieval applications is proposed in this paper. Objects are represented
by using a two dimensional deformable structure, referred to as active
net, capable to adapt to relevant image regions according to chromatic
and edge information. In particular, an extension of the active nets has
been defined which permits the nets to break themselves, thus increasing
their capability to adapt to objects with complex topological structure
(e.g., objects with holes). The resulting representation allows a joint de-
scription of color, shape and structural information of extracted objects.
A similarity measure between active nets is also defined and validated in
a set of retrieval experiments on the ETH-80 objects database.

1 Introduction

Effective access to modern archives of digital images requires that conventional
searching techniques based on textual keywords be extended by content-based
queries addressing visual features of searched data. To this end, a number of
models have been experimented which permit to represent and compare im-
ages in terms of quantitative indexes of visual features. In particular, different
techniques have been identified and experimented to represent content of single
images according to low-level features, such as color, texture, shape and struc-
ture, intermediate-level features of saliency and spatial relationships, or high-
level traits modeling the semantics of image content [1,2]. In so doing, extracted
features may either refer to the overall image (e.g., a color histogram), or to any
subset of pixels constituting a spatial entity with some visual cohesion in the
user perception (e.g., an object).

Among these approaches, image representations based on chromatic indexes
have been largely used for general purpose image retrieval systems [3,4], as well
as for object based search partially robust to changes in object shape and pose
[5]. This mainly depends on the capability of color-based models in combining
robustness of automatic construction with a relative perceptual significance of
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the models. However, such approaches are not appropriate for precise retrieval,
accounting for perceptual details in the image. More suited to this end are region
based solutions. In fact, recently much research has focused on region based
techniques that allow the user to specify a particular region of an image and
search for images containing similar regions [6]. However, most existing region
or object-based systems rely on color segmentation [7,8], causing these systems to
fail when accurate segmentation is not possible. As opposed to color information,
other retrieval schemes are entirely based on shape content. Most of the work
on region-shape recognition relies on matching sets of local image features (e.g.,
edges, lines and corners), usually through statistical analysis which disregard
relational information among extracted features. Most of these methods have
been proved to be adequate only for simple, flat and man-made objects, but
shape features alone are rarely adequate to discriminate objects for the purpose
of object based retrieval. Only few approaches have tried to conjugate color
and shape information to improve the significance of object representations. For
example, in [9], color and shape invariants are combined into a histogram based
representation which basically relies on the invariant properties of sets of points
in the image. However, many of the current solutions suffer from the difficulty
in extracting effective object representations capable to jointly capture color,
shape and structural information of image objects.

In this paper, we propose a descriptor modeled through a graph which ac-
counts for structural elements and color of regions (objects) of interest in an
image. This graph directly corresponds to an elastic structure (active net) which
through a deformation process is used to separate regions from the background.
In particular, due to their deformable structure, active nets can adapt to the
borders and internal part of a region encoding, at the same time, information
on color, shape and spatial structure of the region. The use of an illumination
invariant color space for the detection of region borders, makes the model par-
tially robust also to changes in illumination conditions. The basic structure and
the deformation process of active nets have been extended to make a net capable
to break the edges connecting its nodes. This permits the net to better adapt to
regions of complex shape or regions with complex topology (e.g., regions with
holes). Once the net is adapted to a region it is transformed to a graph accounting
for the region chromatic content of the nodes, and for their relative distance and
spatial position. Finally, based on a similarity measure defined between graph
representations, graph models are compared to support region-based retrieval.

The rest of the paper is organized in three Sections and a Conclusion. In
Sect.2, the active net model is defined. In particular, the dynamic adaptation of
active nets to relevant image objects based on color and edge image information
is discussed. An extension of the active nets model, which allows the net to
break itself, is also proposed in order to make the net able to adapt to objects
with complex topological structures. In Sect.3, the model is cast to a graph
representation in order to support effective and efficient comparison between
two nets. Retrieval experiments on the ETH-80 object database are reported in
Sect.4. Finally, conclusions and future research directions are outlined in Sect.5.
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2 Modeling Image Content by Active Nets

An active net is a discrete implementation of an elastic sheet [10]. In para-
metric form, it can be defined as u (r, s) = (x (r, s) , y (r, s)), where (r, s) ∈
([0, 1]× [0, 1]). The domains of parameters (r, s) are discretized to a regular grid
of nodes defined by the internode spacing (k, l). This parametrization defines a
two dimensional net that acts in the two-dimensional space of an image. The
net can deform under the control of the following energy function:

E (u) =
∑
(r,s)

(Eint (u (r, s)) + Eext (u (r, s))) (1)

The internal energy of the net Eint, controls the shape and structure of the net
and is defined as:

Eint (u (r, s)) = α
(
|ur (r, s)|2 + |us (r, s)|2

)
+

+ β
(
|urr (r, s)|2 + 2 |urs (r, s)|2 + |uss (r, s)|2

) (2)

where the subscripts indicate the orthogonal partial derivatives, and α and β
are coefficients controlling the first and second order smoothness of the net. In
particular, the first derivatives make the net contract and the second derivatives
enforce smoothness and rigidity of the net. In our specific setting, better results
have been obtained for α = 3.0 and β = 0.01 1.

The external energy of the net Eext, accounts for external forces acting on
the net, and is defined as:

Eext (u (r, s)) = f [I (u (r, s))] (3)

where f is a general function of the properties of the image I (u). The objective is
to find a function f that makes the nodes of the net to be attracted to significant
zones of an image according to an energy minimization process (fitting). To this
end a greedy algorithm is used that improves the convergence of the fitting
process and makes it more robust to image noise [10].

2.1 Image Attractors for the Active Net

Active nets are used to represent relevant zones of an image due to their ca-
pability to adapt to contour and capture internal information of image regions.

1 α and β have been selected by evaluating the fitting results of active nets on a set
of image objects. For α, we found that values between 1 and 2 make the net very
rigid. Values between 2 and 10 provide similar results, while values greater than 10
make the internal energy very high, so that the net collapses over itself. For β, values
between 0.01 and 0.5 give the net enough elasticity to get a good deformation over
an object. Values greater than 1, make the net more sensible to the presence of noise
thus causing possible undesired deformations.
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However, this requires that relevant image features be extracted and used as
attractors for the nodes of the net. To this end, nodes are divided into exter-
nal nodes (i.e., nodes belonging to the border of the net u(r, s) : r, s = 0, 1),
and internal nodes (i.e., nodes that do not belong to the border of the net
u(r, s) : r, s �= 0, 1) as shown in Fig.1.

Fig. 1. Basic structure of an active net. The grey area is the influence zone of an
internal node (the Voronoi region of its second level neighbor nodes).

In our approach, color information is used to drive the fitting process which
controls the deformation of a net. This is obtained by creating two external
energy images, one locating the borders of a relevant region, and the other de-
scribing its internal area. During the net fitting process, the external nodes are
guided to the borders of a region by the internal nodes, while the internal nodes
are attracted to the internal zones of a region.

The energy images attracting the internal nodes, are created by clustering the
image color content using a modified version of the clustering algorithm proposed
in [11]. This algorithm iteratively selects a pixel randomly from the image and
assigns it to a winner cluster by calculating the Euclidian distance between the
color of the pixel and the centroid of the cluster (both expressed in the L∗a∗b∗

color space). While in the original formulation the maximum number of clusters
is fixed a priori, and the creation of new clusters depends on the number of
elements in the existing clusters, here this number can adaptively change on the
basis of the cluster color variance and the median color of the image. Fig.2(b)
shows the two energy images identified for the image in Fig.2(a).

Positioning of external nodes is guided by energy images associated to the
border of an object. These energy images are based on the color edge detector
proposed in [5]. It uses a color space defined by the relation of the R, G, B
color components existing between two neighbor pixels of an image. This results
in a high robustness to illumination changes of image objects (Fig.2(c)). Unlike
internal nodes, external nodes are repelled by this energy. The motivation for
this, is that the external nodes have a low external energy where there is no
border, and a high energy value near to or in the border of an object. In this
way, external nodes can move in zones of low energy but cannot cross the border
of a region in that this would increase their energy. The result is that external
nodes anchor around the edges of the region, while internal nodes take position
inside of the region. In so doing, borders of an object act like a barrier for the
external nodes and anchor their position.
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Fig. 2. The fitting process of an active net. The clustering algorithm finds two color
clusters, one for the background (white areas upper image in (b)), and one for the apple
(white areas lower image in (b)). White pixels are associated with the lowest energy,
thus resulting the best attractors for the internal nodes of the net. In (c), the color
ratios algorithm provides the color edges of these two regions, and the black pixels
indicate energy barriers that the external nodes of an active net should not cross. An
active net is fitted to each cluster (d). As final result, the image is represented by two
nets modeling the background and the apple, respectively.

According to this modeling approach, the equation for the external energy is
given by:

Eext (v (r, s)) =
{
γf (Icluster (r, s)) Internal nodes
δf (Iborder (r, s)) External nodes (4)

where γ and δ are constants that ponderate the effect of each external energy
component. f (Icluster (r, s)) depends on the intensity of color cluster image,
while f (Iborder (r, s)) depends on the intensity of the color border image.

2.2 Topological Analysis

According to the active deformation process, a net can adaptively reshape to a
region of interest. However, due to the physical properties of a net, the precision
of the fitting process can be hampered by two main problems.

First, if an object has a complex shape (i.e., the legs of the horse in Fig.3(b)),
the net can have difficulties to adapt its borders to the shape of the object. To
make a perfect fit, the net needs to increase the distance between its nodes, but
this increases its internal energy value (in that the internal energy makes the
net contract over itself). To solve this problem, a rupture algorithm that breaks
links (edges) between external nodes has been developed.

The rupture algorithm only acts over the external nodes and is activated once
the net has finished its fitting process. At this point, the algorithm looks for
candidate external nodes for which an edge can be broken. When an edge is
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(a) Rupture of a net edge. (b) Rupture.

(c) Creation of a hole inside a net. (d) Creation of a hole.

Fig. 3. Typical problems in the adjusting process of an active net. The leftmost image
of Fig.3(b) shows the problem of adapting a net around the legs of a horse. If net
rupture is allowed (rightmost image), the net can adapt itself to the contour of the
legs and get a better result. The problem of creating a hole inside of a net is shown
in Fig.3(d). In this case, the active net is attracted to the blue background of the
image and, in the image on the left, a lot of nodes cannot move outside the apple
because an equilibrium between its internal an external nodes is reached. If a hole is
created, rightmost image, the net can avoid this problem getting a better fit to the
image background.

broken, two internal nodes are converted to external nodes (Fig.3(a)) and they
start to be under the influence of δf (Iborder (r, s)) instead of γf (Icluster (r, s)).
After an edge is broken, the net tries to reach a new stable position and the
cycle restarts until no more edges are broken. A particular case occurs for the
external nodes located at the corners of the net. In fact, a corner node is not
allowed to break one of its edges thus avoiding the creation of a thread in the
net structure.

The distance of an external node to the borders of a region of interest is con-
sidered to identify candidate external nodes. In particular, only external nodes
that are far from the borders of the object are taken into consideration. The
external node with the greatest distance from the object boundary is selected.
If its neighbors nodes are also candidates to rupture, the two neighbors with the
highest distance are selected and the edge between them is removed.

A second difficulty, can occur when an active net tries to fit to an object with
holes inside (Fig.3(d)). In order to manage such objects, the fitting process is
modified by searching for holes inside of objects. In particular, this is obtained by
considering the external energy of the internal nodes (γf (Icluster (r, s))). In fact,
internal nodes in the hole areas of a region, have a high energy value compared
with the energy of well positioned nodes (energy value near or equal to 0). This
selection is automatically done by constructing an external energy histogram for
the internal nodes. A histogram thresholding is used to select a value T , that
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distinguishes between nodes which are in a bad or in a good position (Fig.3(c)).
If all the nodes have a similar energy, they are all considered in good position.
Otherwise, the algorithm looks for the node with the highest energy value and
checks if this node has four neighbors inside the hole too. If this condition is not
fulfilled, the algorithm searches for the next node inside the hole with the highest
external energy value. Once four candidates internal nodes are found, these are
converted to external nodes. Combining the internal energy, which makes the
active net to contract over itself, and the rupture algorithm, all the nodes can
escape the hole area of the object (Fig.3(d)).

2.3 Fitting Process of an Active Net

In summary, the fitting process follows the following steps. First, the energy
images for a given picture are computed. For each color selected by the clustering
algorithm, an active net is created. Then, each net searches for the relevant
zones of an image (Fig.4(b)). The main orientation of each zone is evaluated by
computing its main geometric moment. In the second step, the region is rotated
according to the orientation angle and a second net is created and initialized
on the region minimum embedding rectangle (Fig.4(c)). This new net adapts
itself over this particular area of the image (Fig.4(d)). In this way, the final
configuration of the net is independent from the initial position and orientation
of the object in the image. At the end of the second training process, the rupture
and hole detection algorithms run modifying the topology of the net if necessary
(Fig.4(d)).

Fig. 4. The fitting process of an active net. (a) In the first step, the active net starts
with its nodes equally distributed over all the image. (b) Since the region of interest
is in one corner of the image, some nodes reach it before other nodes of the net. As
a consequence, some nodes take a good position over the object, while other nodes
remain out of it. (c) To solve the previous problem, a second net is initialized on the
minimum embedding rectangle of the region selected by the previous net. At the same
time, the image is rotated according to the principal moments of the object. In this
way, the net is more robust to rotations of the object. (d) In the second fitting process,
all the nodes find the object at the same time, allowing a better distribution of the
nodes according to the external energies.
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3 Similarity Model for Topological Active Nets

According to the modeling approach of Sect.2, an image is represented by a set
of active nets capturing the relevant objects in the image. In the perspective to
compare objects for retrieval purposes, a distance measure between two active
nets has been defined. To this end, an active net is regarded as an attributed
relational graph so that graph properties can be usefully exploited to enhance
the net representation. In this way, the comparison between two nets is reduced
to the problem of matching their corresponding graphs.

Given an active net u (r, s), it is cast to a graph G by mapping nodes of the
net to vertices of the graph, and links between nodes of the net to edges of the
graph:

G
def
= < V,E, Φ, Ψ >,

V = set of vertices
E ⊆ V × V = set of edges
Φ : V �→ LV , vertices labeling function
Ψ : E �→ LE, edge labeling function

(5)

where LV and LE are the sets of vertices and edge labels, respectively.
In our framework, active nets adapt to image regions according to the overall

energy function of Eq.(1) so that nodes are constrained to some relevant point
of the image (those providing the stable minimal configuration for the energy
of the net). In so doing, the average color (in the L∗a∗b∗ color space) of the
Voronoi regions surrounding the nodes in the image is used as the vertices la-
beling function Φ of the graph (an example is the grey region shown in Fig.1).
Vertex attributes are compared by exploiting the metric properties of the L∗a∗b∗

color space. In particular, given two vertices v1 and v2, their distance is evaluated
as: Dv(v1, v2) =

√
(L∗

v1
− L∗

v2
)2 + (a∗v1

− a∗v2
)2 + (b∗v1

− b∗v2
)2.

In order to account for the deformation of the net with respect to its initial
configuration, the normalized distance existing between two nodes n1 and n2
is used as edge labeling function Ψ of the edge ev1,v2

connecting the graph
vertices v1 and v2 to which n1 and n2 are mapped, respectively, in the graph
representation. The distance between edges ej and ek is defined as: De(ej, ek) =
|lej − lek

| being lej and lek
the labels associated to ej and ek, and measuring

their length.
Before to convert an active net to a graph, all the edges broken during the

fitting process are reconstructed to recover the original net topology (Fig.5).
In this way, edges of the net are removed during the net adaptation process
to increase its capability to deform according to the shape of complex objects;
then, the complete topological structure of the net is recovered by inserting the
missing edges so as to include this information in the graph representation.

The comparison of the graph models of a query net Q and an archive descrip-
tion net D involves the association of the vertices in the query with a subset
of the vertices in the description. Using an additive composition, and indicating
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Fig. 5. After an active net is stable, the rupture and hole detection algorithm enter in
action deleting edges. This allows a better fit of the active net to regions of complex
shape. When this process is completed, the edges are re-inserted into the net so as to
fully account for the deformation of the active net.

with Γ an injective function which associates vertices vk in the query graph with
a subset of the vertices in the description graph, this is expressed as follows:

μΓ (Q,D)
def
= λ

Nq∑
k=1

Dv(vk, Γ (vk))+

(1 − λ)
Nq∑
k=1

∑
h∈C(k)

De([vk, vh], [Γ (vk), Γ (vh)])

(6)

where Nq is the number of vertices in the query graph Q, C(k) is the set of
graph vertices directly connected to the vertex k (i.e., vh ∈ C(k) if an edge
eh,k = ek,h connecting the vertices vh and vk exists in the set of graph edges E),
and λ ∈ [0, 1] balances the mutual relevance of edge and vertex distance (e.g.,
for λ = 1, the distance only accounts for the chromatic distance).

In general, given Q and D, a combinatorial number of different interpreta-
tions Γ are possible each scoring a different value of distance. The distance
is thus defined as the minimum under any possible interpretation: μ(Q,D) =
minΓ μΓ (Q,D). In so doing, computation of the distance between two nets be-
comes an optimal error-correcting (sub)graph isomorphism problem, which is a
NP-complete problem with exponential time solution algorithms [12].

However, due to the particular structure of active nets, it is possible to find
the optimal match between their graph representations in polynomial time. In
fact, we assume that nets with the same number of nodes are used to describe
every object in the image database (i.e., Nq = Nd = n×m, being n and m the
number of rows and columns of a net, respectively). This is motivated by the fact
that nets with the same number of nodes represent image objects at the same
spatial resolution. A second basic assumption is that during comparison, only
homologous graph vertices can match (i.e., vertices having the same position
in the grid u(r, s)). This corresponds to assume that the injective function Γ of
Eq.(6) maps any vertex vk in the graph Q to the homologous vertex dk in D (i.e.,
Γ (vk) = dk). In so doing, indicating with Tv and Te the time spent in computing
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the vertex and the edge distance, respectively, the complexity in matching two
graphs is upper bounded by O(mn · Tv + 4mn · Te).

4 Experimental Results

The proposed approach for object representation and retrieval has been exper-
imented by deriving measures of precision and recall on the ETH-80 objects
database [13]. This includes biological and artificial (human-made) objects or-
ganized in eight basic-level categories from the following superordinate areas:
“fruits & vegetables” (apples, pears, tomatoes); “animals” (cows, dogs, horses);
“human-made, small” (cups); “human-made, big” (cars). For each category, 10
objects that span large in-class variations are provided. Each object is repre-
sented by 41 images taken from viewpoints spaced equally over the upper view-
ing hemisphere. The viewing positions are obtained by subdividing the faces of
an octahedron to the third recursion level. This results in a total of 3280 images.
For each object, a reference segmentation mask is provided in the ETH-80 data-
base, for comparison and evaluation purposes. Fig.6 shows some segmentation
results obtained by using the color clustering algorithm of Sect.2.1. In particu-
lar, we found that the algorithm gives perfect segmentation results in the 66%
of database images.

In Fig.7(a) average precision-recall (P-R) curves are reported for active nets
of different size (i.e., n × m nodes). Precision is defined for each query as the
number of correctly retrieved images relative to the number of images retrieved
from the database. Recall is the number of correctly retrieved images relative
to the overall number of relevant images in the database to a given query. The
ideal result is to get precision 1 to every value of recall.

In these experiments, a set of five queries for each of the 10 objects comprised
in the eight categories are used. Results show that nets of size 5×5 or 10×10 are
not able to capture enough details of the objects in comparison with net of size
15×15. In our experiments this size resulted as a reasonable tradeoff between the
effectiveness of retrieval and the efficiency of the match in that further increasing
the size of the nets has not provided significant improvements in the P-R curves.

Fig.7(b) compares the average P-R curves for active nets of size 15× 15, and
for three different object categories (namely, horses, cups and tomatoes). Five
different queries are used for each category. The better results which are attained

Fig. 6. Some results of the color clustering algorithm. These are compared against the
ideal segmentation masks provided in the ETH-80 object database.
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Fig. 7. Precision-Recall results for the ETH-80 image database

by the “horses” category are mainly motivated by the stronger shape character-
ization that can be captured by active nets for these objects thus improving the
discriminative information with respect to other object classes.

In all these experiments, relevant images to a query object have been deter-
mined through a user based evaluation where users have been asked to select
from the database the images containing the most similar objects to the query
according to the their visual perception.

5 Conclusions

In this paper, we have proposed an original approach for the extraction and
representation of significant perceptual regions (objects) of an image for object
based retrieval applications. This is obtained by first extracting relevant regions
and their borders on the basis of image chromatic content, then by using active
nets to identify and represent image regions. In particular, we extended the basic
structure and adaptation process of active nets in order to allow the rupture of
edges of the net and the creation of holes inside it. In this way, we found that
a better fit of the net to the shape of complex objects can be attained. Casting
an active net to a graph representation allows for the embedding of additional
information in the model and for an efficient matching algorithm. Experimental
results validated the proposed approach on a test database.

Future work will address the inclusion of texture information in the active net
model and investigate the combination of the model with indexing mechanisms
capable to speed up the retrieval process in very large databases.
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Iterative 3-D Pose Correction and
Content-Based Image Retrieval for Dorsal Fin

Recognition�
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Abstract. Contour or boundary descriptors may be used in content-
based image retrieval to effectively identify appropriate images when
image content consists primarily of a single object of interest. The regis-
tration of object contours for the purposes of comparison is complicated
when the objects of interest are characterized by open contours and when
reliable feature points for contour alignment are absent. We present an
application that employs an iterative approach to the alignment of open
contours for the purposes of image retrieval and demonstrate its success
in identifying individual bottlenose dolphins from the profiles of their
dorsal fins.

1 Introduction

Marine mammalogists study numerous characteristics of their target popula-
tions, estimate population size and longevity, identify range limitations and make
observations on behaviors and association patterns. Identification of individual
animals is essential to these studies. For decades the identification method of
choice has been photo-identification. This technique is far less invasive than tra-
ditional mark and recapture methods which used tagging or freeze branding, and
a wealth of additional information is captured in the identification photographs
acquired during field studies.

Bottlenose dolphins are very active, social, sometimes aggressive animals.
Their dorsal fins acquire damage over time, particularly in the form of nicks,
notches, scratches, and other markings. As Figure 1 shows, these features are
sufficient to identify individual adult dolphins. This is similar to the use of a bio-
metric identifier, such as a fingerprint, to recognize a person, as an alternative
to token-based identification requiring ID cards or PIN numbers.

This paper focuses on the application of image processing and analysis tech-
niques to semi-automate the process of photo-identification. The methods de-
scribed should apply equally to other species of marine mammals that have
dorsal fins of significant extent. The application described here has been specifi-
cally developed and tested using images of the dorsal fins of bottlenose dolphins
(Tursiops truncatus).
� The authors would like to thank the National Science Foundation for funding of this

research under grant number DBI-0445126 and the Eckerd College Dolphin Project
for use of their field photographs.
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Fig. 1. Dolphin Dorsal Fin with Distinctive Natural Markings

2 Background

Researchers photograph dolphins in their natural surroundings and compare new
photographs from each sighting against a catalog of reference images of known
dolphins in order to verify the identity of the recently sighted individual. The
catalogs, in either photo, slide or digital form, may be organized into categories
of distinct fin shapes and each of the shape categories may be further divided
into subcategories denoting regions where the predominant fin damage is present.
The manual photo-identification process, although effective, is extremely time
consuming and visually stressful, particularly when large collections of known
dolphins are involved. In some studies, the tentative identification, or the find-
ing of a truly new dolphin not in the catalog, must be confirmed by a second
researcher, replicating the same image search. The sheer quantity of image data
and the somewhat constrained properties of this class of images makes the au-
tomation of the photo-identification process an appealing and very feasible sub-
ject for content-based image retrieval. The complications associated with such
a project include the difficulty of creating a reliable and intuitive method for
database query and the inherent computational intensity associated with the
registration and comparison of image data.

Methods for the computer assisted identification of individual marine mam-
mals have been proposed for a variety of different species including gray seals[5],
sperm whales[15], [7], dolphins[4], [10], [1], humpback whales[12], [14] and right
whales[2], [6]. Identifying dolphins by the comparison of dorsal fins is similar to
whale identification based upon fluke characteristics such as highly visible pig-
mentation patterns. While more subtle pigmentation and injury patterns such
as rake marks may be used as secondary identifiers, it is the overall shape and
the specific details of the damage found along the fin profile that have become
the primary identifiers used within the cetacean research community to identify
individual bottlenose dolphins. Although methods have been developed which
use the profile of the trailing edge of whale flukes for individual indentification,
characterizing the outline of a dorsal fin has some unique challenges. Dolphin
dorsal fin outlines have no easily determined beginning and ending points. The
user must arbitrarily decide where the dorsal fin and the dolphin’s back meet.
Often the dorsal fin is partially obscured by waves or water if the dolphin is div-
ing or surfacing. This uncertainty leads to significant variation in the portions
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of the fin outline that are used to determine matches and creates complications
in scaling and alignment of outlines.

The Digital Analysis and Recognition of Whale Images on a Network (DAR-
WIN) system is in many aspects, a straightforward application of image process-
ing, computer vision, and content-based image retrieval. The novelty of the
DARWIN system, in its current form, is in the use of well known techniques
to provide an almost completely automatic process, from image load to display
of a rank ordered list of possible dolphin identities, while also providing nu-
merous user check points and correction tools, allowing the user to enhance or
even override the system’s automatic processes. This produces significant time
savings, and still leaves the human user in the position of final decision maker.

Fig. 2. Left: original image; Center left: image which results from unsupervised selec-
tion of threshold value; Center right: smoothing of the fin region and removal of small
regions with morphological processing; Right: the resulting outline

3 Sketch-Based Image Query

A researcher wishing to identify an unknown dolphin must open a digital image of
a dolphin dorsal fin and orient the image such that the leading edge of the dorsal
fin is at the left of the image. The software automatically generates an outline
of the dorsal fin. It uses an unsupervised minimum error threshold selection
[9] to select an intensity threshold that will effectively segment the image into
dorsal fin and background regions. It then uses morphological processing to
simplify the region of interest and generate its outline, as shown in Fig. 2. If the
software is unable to identify the dorsal fin region in the image, the user has an
opportunity to roughly trace a general outline of the leading and trailing edges of
the dorsal fin with the cursor. The trace of the outline, automatically generated
or hand-sketched, initializes the positions of a series of evenly spaced points
along the edge of the fin and provides a constraint space for their automated
repositioning. DARWIN uses active contours [8] to move the points from their
initial locations to the actual edge of the fin. The movement is controlled by
several energy measures. Large magnitude values in the image gradient attract
the points, while internal energy measures that maintain even point spacing and
curve smoothness restrict point movement. Figure 3 illustrates the movement
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Fig. 3. Left: Initial location of outline; Right: repositioned outline using active contours

of the chain of points. Once the points have been appropriately repositioned,
the user has the option to manually relocate individual points along the edge
of the fin. This opportunity for user interaction is necessary since photographic
artifacts such as glare spots are interpreted by the program as nicks and notches
and poor contrast or intensity variation on the surface of the dorsal fin may
necessitate manual positioning of the outline. In addition, parameters of the
active contour which encourage the convergence toward a smooth outline, may
cause the automatic repositioning to miss nicks or notches with extreme angles.

Several processes, including active contours, feature point location, and map-
ping of unknown to reference outline, have configurable constants that are set to
values based on an assumption of approximate overall fin size. The actual values
of these constants and the standard fin size have been determined empirically,
such that the best results are obtained in all processing of the fin outlines. All
fin outlines are scaled to an approximate height of 600 units. The height mea-
sure is computed and scaling is applied before the locations of feature points
are known. Therefore, the two points used to compute the height give only an
approximation of the vertical distance between the dolphin’s back and the tip
of the fin. As Figure 4 shows, Q is the midpoint of a line segment connecting
the first outline point and the last outline point, and R is the outline point with
the index n

2 , where n is the total number of points along the outline. Q is a
reasonable estimate of the midpoint along the dolphin’s back where the fin is
attached, and R is a point in the vicinity of the tip of the fin. A scale factor

Fig. 4. Scale factor computation for the standardization of outline size
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Fig. 5. Left: Dorsal fin outline with feature points; Right: Chain code of outline

s = 600.0
dist(Q,R) is multiplied times the image coordinates of each outline point in

order to standardize the outline size. After the outline size is standardized, the
outline (interpreted as a polyline) is traversed and a new sequence of outline
points is computed with an approximate, uniform point to point separation of
3.0 units. This typically produces an outline containing 400 to 600 points. The
reason the point spacing is approximate, is that the even spacing computations
are done while the outline is still in an integer coordinate form, so all point
coordinates are rounded to the nearest integer value.

4 Feature Point Identification

The DARWIN system represents each fin with an outline contour (a sequence of
evenly spaced points approximating the its 2-dimensional placement and shape),
a chain code (a one dimensional representation of the orientation of successive
outline edge segments), and a set of salient features (Tip, Notch, ... ). These
feature points are used to establish intial alignment of two fin outlines during
matching, and they are identified by an unsupervised process using the chain
codes extracted from the contour. A single process converts the initial outline
contour to even point spacing and creates the chain code.

Dorsal fin outlines contain only a few consistantly identifiable features suitable
for alignment. As illustrated in Figure 5, the DARWIN system automatically
locates 1) the start of the leading edge, 2) the end of the leading edge (where the
leading edge angle begins to bend toward the fin tip), 3) the tip of the dorsal fin,
4) the most prominent notch on the trailing edge, and 5) the end of the trailing
edge.

Figure 5 shows the general shape of the plot of a fin’s absolute chain code
as that of a step edge and the location of the tip corresponds to the point of
transition from low to high. DARWIN uses a quadratic spline wavelet [11] which
produces large coefficients for step edge type features in the transformed signal.
In order to identify the tip of the dorsal fin, a wavelet decomposition of the chain
code comprising the outline is computed. At the coarsest level of analysis, the
tip is identified by locating the maximum coefficient value. This initial positon
is tracked back through each of the finer levels of the decomposition, to more
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Fig. 6. Finding the dorsal fin tip from the wavelet transform of the outline. A plot of
the original chain code is shown on top, with increasingly coarse details below. The
position of the tip is found on the coarsest (bottom) level, and tracked back through
the finer levels to obtain a more accurate location.

precisely identify the position of the tip in the chain code [11], as illustrated in
Fig. 6.

Notches along the trailing edge of a dolphin dorsal fin are often the primary
features used in the manual photo-identification process. Prominent notches in
a fin outline appear as valleys in the plot of a fin’s absolute chain code and a
wavelet decomposition will produce local minima for features of this type. Since
it is the most prominent notch along the trailing edge of the dorsal fin that is
desired, only that portion of the outline following the fin tip is analyzed. Local
minima with the largest magnitudes are identified at an intermediate transform
level as candidate notches and are tracked to coarser levels. The minima that
decreases most slowly in magnitude across the coarser levels is selected as the
most prominent notch. As with the fin tip, the precise location of the notch is
determined by back-tracking through increasingly finer levels of the decomposed
signal.

To automatically identify the starting point of the dorsal fin outline at the
base of the leading edge, the absolute angles between successive points along the
outline are examined. A threshold angle is selected to maximize between class
variance of the angles which comprise the proper leading edge of the fin and the
angles which are associated with the body of the dolphin. This approach is based
on Otsu’s method for unsupervised threshold selection in image data [13]. Line
segments at the leftmost end of the outline are discarded if their angles diverge
significantly from the predominant orientation of the leading edge, accurately
identifying the point at which the dorsal fin meets the dolphin’s back. If this
junction is occluded or missing from the initial outline, the first point of the
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edge is stored as the start of the dorsal fin, indicating a truncated trace. The
ending point of the leading edge is similarly identified as the point at which the
angles of the line segments begin to significatly diverge from the predominant
orientation of the leading edge.

5 Mapping Unknown Fin Outline to Reference Fin
Outline

When photographing dolphins in the wild, there is little control over the orien-
tation (3-D pose) of the fin that appears in an image. Several constraints are
imposed, and must be assured by the user. The fin must be upright, and the
dolphin must be swimming to the left. Tools are provided in the software to
allow the user to flip the image as needed to assure this. Since the software is
only concerned with the outline or profile of the fin, it does not matter that an
image is inverted and processed as if an image of the right side of a dolphin’s
dorsal fin were an image of its left. These modest constraints simplify the process
used for feature point location, ensuring that the trailing edge of one dolphin
is compared to the trailing edge of the other. In order to correct for the differ-
ences in 3-D pose between two fin outlines (Fi and Fj), one is mapped to the
other using a three point affine transformation. The three points used are se-
lected from the previously described identifiable fin features and are guaranteed
to be non-colinear. The 2-D coordinates of the six feature points, taken from the
scaled, evenly-spaced fin outlines define two triangles (Ti and Tj) in the image
coordinate space. A transformation matrix is found that maps Ti to Tj . This
defines a skew transformation in the 2-D image plane, but it also corresponds
to many 3-D affine transformations that map Ti to a 3-D pose that projects
to Tj. Given several reasonable assumptions, this three point transformation
gives a close enough approximation in the image plane, to a complete 3-D pose
correction between the two fin outlines. These assumptions are :

– Actual 3-D pose is unimportant, only the corrected projection in the image
plane is needed.

– The three feature points are reliably detectible
– Foreshortening effects are negligible
– The more similar two fin outlines are, the more accurate will be the pose

correction/estimation

Once the affine transformation matrix is found, it is used to map all points on
the unknown fin outline Fi to the orientation of the known fin outline Fj .

The degree to which two fin outlines, or their open polyline approximations,
match is measured by a mean squared error computed using “corresponding
points” along some fixed extent of the two outlines. First, the error measure is
used in an iterative process to refine the alignments of the two outlines such that
a better fit is obtained. The better fit is defined simply as the fit that produces
the smaller mean squared error. Second, the ranking order of final match results
is established by using the mean squared error for the best alignment of each
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pair of reference and unknown outlines. The listing is in order of increasing mean
squared error. The mean squared error measure has been satisfactory for pur-
poses of alignment, but has been less than optimal for determination of the final
rankings. Future enhancements to the software will employ additional measures
of fit that allow more local, small scale analysis of particularly salient areas of
the outlines. The use of more localized error measures would more closely em-
ulate the discriminations made intuitively by biologists in their comparisons of
two dorsal fins.

The original three point mapping was done once per fin pair, using the begin-
ning of the leading edge, the tip and the position of the most significant notch
as the alignment points. This produced reasonable results as long as the entire
leading edge of the fin was visible in both images and was fully part of the out-
line, as long as the dorsal fin tip was well defined (not true if severely nicked or
missing), and as long as the most significant notch was well defined and posi-
tioned at a significant distance from the tip. Full fin outlines from two images
of the same dolphin, extending between correspondingly placed beginning and
ending points and having a clear most significant notch, always produced excel-
lent quality mappings. However, misplacement of the beginning of the leading
edge by even relatively small amounts (10% of leading edge length) produced
significant misalignments. Also, a significant notch close to the tip produced a
very skinny triangle, such that only a few pixels of misplacement caused signifi-
cant misalignment. Finally, it was found that the multiscale approach to notch
detection was sensitive to the overall length and curvature of the trailing edge.
Trailing edge traces that include part of the back could bias notch detection
creating a preference for notches closer to the end of the trailing edge. The un-
desirable effects of highly variable user input indicated a need to move away
from single applications of a pose correction mapping based upon these initial
feature points.

The first significant improvement to the alignment of fin outlines and rankings
of matches was through a “best of 13” approach. In this approach, the original
mapping based on the feature points is applied, and the mean squared error is
computed between the mapped unknown outline and the known outline. Then
twelve alternative mappings are performed and error measures computed. Six
of the alternatives test for shortened traces of the unknown fin outline and
represent shortening of the leading edge in increments of 5%. Similarly, the
other six alternatives test for shortened traces of the known fin outline. The
mapping that produces the smallest mean squared error is selected to correct for
orientation differences between the two fin outlines. In practice, this approach
produced significantly better mapping results. Overall performance is measured
by how close the correct “known” dolphin is to the top of the ranked listing of the
database when queried with an “unknown.” The median position of the correct
identity using the “best of 13” approach was 8/200 or 4% down from the top
of the list. The mean location of the correct identity was 22/200 or 11% down
from the top. However, sensitivity to misplacement of the feature points at the
notch and at the end of the trailing edge still produced numerous intuitively poor
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mappings. The desire has always been to produce correct rankings of candidate
identities, and to produce intuitively reasonable orientation corrections, even
when the fin being matched is not that of the same dolphin.

Several iterative optimization approaches have been implemented in the soft-
ware and tested. These all share a basic Newton-Raphson approach. Three point
correspondences are used to map the unknown fin outline to the known fin out-
line in all cases. Shortening of leading and trailing edges, and movement of the
tip, have all been done by testing feature point placement corrections of 1% of
the index range of the fin leading edges and then making jumps of up to 16%
based on the best correction indicated during each iteration. The maximum
feature movement amount begins at 16% and decreases by half under various
conditions, until either none of the 1% tests indicate improvement or the jump
interval decreases to 0%. The major difference between all of the variations de-
veloped and tested is in the choice of which points to move.

Our current optimized approach allows the feature points at the begining of
the leading edge and the end of the trailing edge to move, shortening the outline.
This repositioning is performed on both the unknown and reference outlines,
and continues as such until the jump interval decreases to 4%. At this point, the
feature point for the tip of the dorsal fin of the unknown dolphin may be shifted
as well, to further reduce mean squared error between the outlines.

Since the jump intervals begin at 16% of the index range of the fin leading
edges, and they monotonically decrease when a direction of improvement is found
but the jump in that direction is too far to improve (decrease) the error, the
optimization process is guaranteed to terminate. It is possible that the process
will settle into a local minimum of the error function. This has been observed in
practice. However, the use of the auto-trace feature to find the initial placement
of the fin outlines appears to minimize occurrences of non-optimal minima being
found.

6 Selection of Corresponding Points for Error Calculation

When comparing open curves (C1 and C2), or even their polyline approxima-
tions, it is difficult to calculate the location of the point on C2 that best corre-
sponds to a given point on C1. In general, the best corresponding point is the
point on C2 that is closest to the current point on C1, but located in the same di-
rection of travel along C2 as is the given point on C1 from the previously selected
pair of corresponding points. Essentially, this means that the entire sequence of
points traversed along C1 moving in the same direction has a single best set of
similarly ordered corresponding points on C2. For the purpose of calculating a
mean squared error between two mapped outlines, it is not essential that one
solves exactly for the best corresponding points along the pair of curves. When
alignments are near exact, error based on a reasonable point-to-point correspon-
dence should be zero or nearly so. When alignments are not close, the outline
curves are most likely from fins of different dolphins. In these cases it is accept-
able to have point correspondences that are not exactly ordered in sequence on
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Fig. 7. For each set of images above, Left: the reference image from the database,
Center: the unknown fin from a sighting, and Right: the registered outlines, unknown
mapped to database

both curves. Such situations can be expected to produce larger errors in many
cases, but this is quite acceptable since the outlines of different dolphins should
not be given a minimal mean squared error match in any case. If the error calcu-
lation is slightly less than actual, this is acceptable as well, since the overall error
magnitude of such grossly misaligned fin outlines will produce a large error and
be ranked low in the final listing regardless. The point here is that an acceptable
selection method should produce a sequence of corresponding points on the two
curves that is “good enough” to produce a mean squared error suitable for use in
fin outline registration and fin match ranking. The currently used method does
just that.

It is important to note that an outline curve which is evenly spaced and
similarly scaled to another outline before mapping (orientation correction) is
no longer evenly spaced after mapping. Thus, the outlines cannot simply be
traversed by using similar curve point indices to select individual points for
comparison. Mapping is based on a 2-D skew transform that only solves for the
approximate 2-D projection of a 3-D affine transformation of the mapped curve.
Therefore, the sequence of line segments connecting similarly indexed points on
the two curves, even after trimming extra points on curve ends, has the look
of the ribs of an accordion and the calculated error, even when curves are well
aligned, can be significantly higher than desired.

The current method of selecting corresponding point pairs uses an arc length
based approach. The total arc length of each curve is computed between its
repositioned endpoints. The ratio of the two arc lengths is used to determine
the distance to traverse on the unknown curve for each unit step on the known
curve. The known curve is then traversed using the indexed curve points. At
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each point P(i) at arc length L(i) from the beginning of the curve, a point Q(i) is
found on the mapped unknown curve at L(i)*ratio distance from the beginning
of the unknown curve. The midpoint of the segment connecting P(i) and Q(i)
is a point M(i) on a medial axis of the region in the image plane bounded by
the two outline curves. This sequence of medial axis points, M(i) for i = 0..m,
is then traversed. At each medial axis point, a perpendicular to the medial axis
is intersected with the two fin outline curves. The two points of intersection are
the ith pair of “corresponding” curve points used in the error computation. The
squared length of each segment between the m corresponding point pairs forms
the basis of the mean squared error. In practice this approach yields closely
corresponding point pairs. They are not the optimal pairs in all cases, but are
“close enough” to produce meaningful error measures. Alignments based on these
pairs are tight and intuitive as shown in Fig. 7.

7 Testing and Results

Preliminary testing of the software utilized a database of dorsal fin images for
200 individuals. Fifty additional images of individuals known to be contained
in the database were used as “unknown” fins to test the query mechanism.
Both the database images and the fifty previously identified dorsal fin images
represented a range of quality and resolution and depicted fins with damage
of varying location and degree. As shown in Figure 8, queries performed with
forty of the fifty “unknown” fins produced rankings of the corresponding correct
fin in the top 10% of the database. Of these, twenty three were ranked in the
first position. On average, the optimized alignment method placed the correct
fin in the top 9% of the ranked listing of database fins. The median ranking
was in the top 1%. The outlines of the “unknown” fins were well aligned with
the outlines of their counterparts in the database, thus the registration method

Fig. 8. Rankings of the correct fin in the database as a percentage of the total number
of database entries
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produced accurate alignments, even for images photographed from significantly
different camera angles, as shown in Fig. 7. Also, in most cases, the outlines of
the “unknown” fins were well aligned with outlines of dorsal fins of images of
different individuals. Intuitive alignment is important even for the non-matched
cases to give biologists the opportunity to visually compare pairs of dorsal fins
removing the distortions that arrise from difference in distance and camera angle.
Of the test set of 50 “unknown” fins, only one of the corresponding correct fins
from the database was ranked worse than 100 (random selection).

These results suggest that the registration methods presented herein show
significant promise in perspective correction of dolphin dorsal fin images. The
iterative nature of the alignment algorithm makes it less sensitive to the original
positioning of the outline or subsequent identification of feature points. In any
case, the process has the ability to improve the registration of outlines consid-
erably. The improved registration makes fin outline comparisons easier and aids
in the subsequent retrieval of appropriate images.
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Abstract. The quality of a retrieval system relies to major part on the
quality of the used features. The features have to be small and compact,
but also discriminative. Feature selection is one way to achieve both goals.
We present a new feature selection method with the focus on retrieval
purposes. The new method is based on the well known Relief algorithm.
The new algorithm is shown to be superior to state-of-the-art methods
both on toy problems and real-life 3D-Shape and image retrieval tasks.
The algorithm is based on the intuition that distances to false detection
has to be enlarged and distances to non-detected positives has to be
shortened.

1 Introduction

Feature Extraction and Feature Selection are important tasks in many fields of
computer vision. Given a retrieval or classification task, the goal is to find a
transform from a possible high dimensional feature space to a low dimensional
space, which is better suited for retrieval or learning purposes. While in Feature
Extraction the transform may be nearly arbitrarily chosen, in Feature Selection
one restricts to simply selecting a subset of features. In literature two types of
Feature Selection algorithms are distinguished, the so-called wrapper and filter
methods [1]. Wrapper methods estimate the usefulness of a subset of features by
a given predictor or learning machine. Filter or Variable Ranking methods com-
pute relevance scores for each single feature and choose the most relevant ones
according to those scores. A popular example is Pearson’s correlation coefficient
expressing the correlation of a certain feature with the corresponding class labels.
The main drawback of such simple filter methods is that they are not able to
detect inter-feature-dependencies, one important example is the XOR-problem.
Neither the first nor the second dimension alone helps to determine from which
class an example is stemming, only both dimensions together contain enough
information about the class membership. But there are methods, which may be
categorized as variable ranking methods and are also able to reveal such feature
dependencies, e.g. Relief [3] is one of those.

In this paper we present some fundamental modifications of the basic Relief
algorithm, which lead to nice performance improvements and show that also
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filter methods are able to cope with non-linear and multi-modal1 environments.
The paper is organized as follows: in Section 2 we uncover some drawbacks of
the original Relief algorithm and propose the modifications. In Section 3 we
examine various experiments on toy and real-world data, including image and
shape retrieval examples. And finally in Section 4 we give a conclusion and
outlook.

2 The Method

In this section we first give a introduction to Relief and then propose the modi-
fications. Finally we make some short complexity considerations.

2.1 Relief

Our proposed idea has similarity with a popular feature ranking algorithm called
Relief proposed in 1992 by Kira and Rendell [3]. The main idea of Relief is to
compute a ranking score for every feature indicating how well this feature sep-
arates neighboring samples. The algorithm seeks for every training sample its
nearest neighbor from the same class (nearest hit) and from the opposite class
(nearest miss). The Relief score for a single feature is then the difference (or
ratio) between the distance to the nearest miss and the distance to the nearest
hit, projected on the specific feature. Several variants have been proposed. We
give here a generalized and improved version of Relief which makes use of the
k-nearest hits/misses and is based on the ratio:

Start with zero scores h = (0, ..., 0) and m = (0, ..., 0)T .
For every training sample x ∈ X do

Find k-nearest hits H(x) and k-nearest misses M(x) of x.
Update h �→ h + d(y,x) for all y ∈ H(x).
Update m �→m + d(y,x) for all y ∈M(x).

Compute the ratios wi = mi

hi
.

Here d(·, ·) denotes the feature-wise distances, i.e. the i-th component of d(·, ·)
is the distance between xi and yi with an appropriate metric. The wi determines
the relevance of feature i. If we want to select j features, we take the j fea-
tures with the highest wi-scores. The algorithm has received a high popularity
in the past, in particular due to its easy implementation, its good performance
and the ability to also work in multi-modal environments, where simple rank-
ing criterias like Pearson’s correlation coefficients or Fisher’s criterion fail. But
for retrieval purposes Relief shows some drawbacks. In the following section we
want to reveal under what circumstances Relief has its problems and propose
modifications, which circumvent those problems.
1 In the following we call a single feature unimodal if its within-class-distribution is

nearly Gaussian and form a cluster. Otherwise, if the distribution consists of two or
more clusters the feature is called multi-modal.
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Fig. 1. a) Two class problem, where both dimensions are able to separate the classes,
but the x-axis is better suited for retrieval purposes. b) The XOR problem. Only both
dimensions together separate the classes.

2.2 The Method

To show this let us consider the two classes in figure 1a). Class A has two centers
located at (1, 2) and (1, 0) and class B is located at (0, 1) in the Euclidean plane.
Obviously, the first dimension (or feature) easily separates the two classes. And,
if we restrict to the first feature, a query for (1, 2) actually gives a result from
cluster (1, 2) or cluster (1, 0) of class A, this is the desired result. Though the
second feature is also able to separate A and B (of course not linearly), a query
for (1, 2) retrieves members of B much earlier than objects around the second
cluster (1, 0) of class A. Such a behavior is clearly not desired for retrieval pur-
poses. Although both features keep information about the class membership,
one would favor the first dimension. But which dimension does Relief predict as
more relevant? Since Relief only considers nearest hits, the algorithm is not able
to establish the connection between the two clusters of class A, because cluster
(1, 0) is farther to cluster (1, 2) than to the center of class B. In this case Relief
selects the second dimension as more relevant. Hence we have to modify the
algorithm such that also objects far away (in terms of the original distance mea-
sure) belonging to the query’s class are taken into account. Instead of taking the
nearest hits we should take the “farthest” hits, meaning those results belonging
to the same class as the query but not found by the search, i.e. the false negative
answers. We define N(x) by the set of all objects, which are in the same class
as x but are not found under the first c objects in the results list for query x,
where c denotes the number of class members in the queryclass. Similar we can
define the set of all false positives P (x) by all those objects, which do not belong
to the same class as x but are found under the first c search results. We modify
the original algorithm by using the sets M(x) by P (x) instead of H(x) by N(x):

Start with zero scores n = (0, ..., 0) and p = (0, ..., 0)T .
For every training sample x ∈ X do

Find false negatives N(x) and false positives P (x) for query x.
Update n �→ n + d(y,x)/||d(y,x)|| for all y ∈ N(x).
Update p �→ p + d(y,x)/||d(y,x)|| for all y ∈ P (x).

Compute the ratios wi = pi

α+ni
.
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In contrast to the original Relief algorithm we introduced a normalizing step
in order to not overweight the distances to the false negatives N(x), whose
distances are naturally larger than the distances to the false positives. We
also introduce a balancing parameter α to adapt the influence of the false neg-
atives N.

Considering the XOR problem from figure 1b, we have a closer look at the
interplay of the counterparts n and p. Suppose a feature vector with plenty of
dimensions where the information containing features are feature one and two
and the other features contain uncorrelated noise. One can imagine that both
score vectors are of the same form p ≈ (1, 1, ...) and n ≈ (1, 1, ...), where the
additional dimension contain mainly small noisy values. If we pay more attention
to the false positive vector p, i.e. we suppose large α, the relevance scores w1 and
w2 are lifted and one can determine the first two features as the relevant ones.
In the opposite case for small α we have a problem. Since n stands somehow
for the non-relevance of the particular feature, the first two weight scores are
damped and the algorithm has difficulties to determine the first two dimensions
as the most relevant. We have to make a tradeoff between two demands. The
false negatives scores n help us to merge different clusters like in the case in figure
1a. In other words, it detects the unimodal distributed features like Fisher’s or
Pearson’s ranking criterias. But it also hinders the algorithm to find the relevant
features in the XOR problem.

3 Experiments

In this section we present various experiments on toy and real-world data. For
comparison we use three other ranking methods. The most simple method is
Pearson’s correlation coefficient2, which is a very simple idea. We also used
Fisher’s coefficient, but due to the very similar behavior of both we restricted
to Pearson’s. As a second method we choose feature selection by Maximum
Marginal Diversity (MMD) introduced by Vasconcelos [9]. The MMD idea is
closely related to the infomax principle, which maximizes the mutual information
between features and class labels. It was shown by Vasconcelos that for a special
class of classification problems both principles are identical and in [10] he showed
that it seems that vision related problems are actually a instance of those. Since
the proposed feature selection method is based on Relief , of course, we also
compare our experimental results to that. We use the version of Relief proposed
above, where we adapted k, the number of neighbors, to the training set size.
As Relief is not straightforward adaptable to multi-class problems, we used a
version proposed by Kononenko. In [4] he compared two versions and showed
that the so called Relief-F algorithm is superior. Instead of finding the k-nearest
misses from the opposite classes, the algorithm finds the k-nearest misses for
each different class and averages their contribution.

2 Pearson’s correlation coefficient for a feature x is given by PCC =
(xi−x̄)(ci−c̄)√

(xi−x̄)2 (ci−c̄)2
, where the index i ranges over the whole training set and ci

are the class labels.
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Fig. 2. Evaluation Plots for 2-class problem from figure 1a and the XOR problem from
figure 1b. On the x-axis the number of training samples per class is given. The y-axis
gives the percentage of correct detected features.

3.1 Toy Data

For the following three experiments we always use the Euclidean distance as
the distance metric. First we consider the problem from figure 1a. Both classes
occur with same probability. The feature vectors have length 20, where the first
2 features contain the information and the other 18 features are Gaussian noise
with σ = 1.0. The clusters are also Gaussian distributed with the same standard
deviation. We did three runs. For increasing number of training samples, we
measured the percentage how often the algorithms detect the unimodal feature
(x-axis in figure 1a) as most important or the multimodal feature (y-axis in
figure 1a). Finally we measure how often both together are reported as the two
most relevant features. To estimate the percentage each experiment is performed
two hundred times. For the Relief algorithm and our new algorithm we choose
α = 0. But we also examined our algorithm with α = c2, where c is the number
of training samples per class. It is obvious that the scaling behavior of α with
respect to the number of training samples is quadratic. As already mentioned
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Fig. 3. Evaluation Plots for the problem introduced by Trunk. On the logarithmic x-
axis the number of training samples per class is given. The y-axis gives the quality of
the feature subset.

large α-values lead to a down weighting of false negatives. The results are given
in figure 2. Pearson’s correlation coefficient easily detects the unimodal feature
and outperforms all other methods in this case. MMD performs very similar to
the new method with α = 0. Like expected for α = c2 our method is not able to
detect the unimodal feature with the same reliability as for α = 0. But for α = 0
it slightly outperforms the Relief algorithm, which approves our modifications.
For the multimodal feature the situation is inverted. Pearson’s coefficient and
our method for α = 0 are totally unable to find the feature. Also MMD does not
perform very well. Our method for α = c2 beats Relief and all other methods. In
the last graph we see that its overall performance is also the best. Our method
actually finds both features most. Only MMD can compete a little bit, further
below Relief is still not too bad, but our method for α = 0 and Pearson’s totally
fail.

As a second experiment we consider the XOR problem. The training data is
created like above by a Gaussian distributed process with means (0,1), (1,0) for
class A and (1,1), (0,0) for class B and with standard deviation σ = 1. Again
we measure the percentage that both features are detected as most relevant. In
figure 2 the results are presented. Only Relief and our method can cope with
this difficult case, but our method is much more reliable in detecting the relevant
features. Only 50 training samples per class are enough to get 100% detection
ratio.

As a last experiment we adopt a evaluation method introduced by Trunk [8]
which was also used by Jain and Zonkger [2] and Vasconcelos [9]. To evaluate
the reliability of feature selection methods a 20 dimensional feature vector is
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created, every feature is Gaussian distributed with σ = 1 and means μi = 1√
i

for
class A and μi = − 1√

i
for class B, where the i stands for the i-th feature. The

optimal j-subset is obviously the set of the first j features. The quality of the
feature subset is computed by taking the number of commonalities in the optimal
feature subset with the subset generated by the feature selection algorithm. This
number is divided by the number of dimensions and averaged over the subset size
j from 1 to 19. In figure 3 the results are given. Pearson’s coefficient and MMD
outperform the three other methods, both methods have also the highest slope,
followed by our methods, which have both nearly the same slope. Relief seems to
have the lowest slope, but for very small training set sizes it can compete with
the others.

3.2 Image and Shape Retrieval

We consider three databases, two image databases and one 3D-Shape database.
All three are divided in a test and training set. For Relief and our method we
optimize the parameter K, and the parameter α by computing both, the ranking
criteria and the performance results, on the training set. The feature rankings
obtained with optimal parameters are then used for evaluation on the test set. As
a performance measure we mainly use the First-Tier (1T) measure introduced in
[7], since this measure focuses on the demands a user has on a retrieval system.
The 1T-rate measures the percentage of objects in the query’s class that appear
within the top C matches, where C is the number of members in the query’s
class minus one. These statistics is similar to the “Bulls Eye Percentage Score”.

ETH 80 database. The database was introduced by Leibe and Schiele in [5].
It consists of eight categories of high resolution color images. Each object is rep-
resented by 41 images from viewpoints spaced equally over the upper viewing
hemisphere. We decided to consider the four most difficult categories, namely
dogs, horses, cows and cars. The training set is of size 660, the test set is of size
1010. Sometimes it is even difficult for a human to discriminate if the viewpoint
is unfortunately chosen. Since we want to evaluate feature selection algorithms,
a large set of features is computed for each image. Each feature set is a four di-
mensional histogram of the distance between two randomly chosen points in the
image, the relative orientation of the gradients at those points (the normalized
dot-product, i.e. the cosine), the relative orientation between the gradient and
the vector connecting both points and the absolute difference of the intensity
values at the chosen points. The random points are chosen by the probability
proportional to the gradient magnitude. As we deal with color images we apply
this procedure for every color channel (RGB) and also crosswise, meaning that
one random point is chosen from e.g. the R-channel and one from the G-channel.
This results in 6 histograms for every combination (RR,GG,BB,RG,RB,GB).
The overall feature size is then #f = #bins ∗ 6, where in the experiments we
chose #bins = 8 ∗ 4 ∗ 4 ∗ 4 = 512, resulting in #f = 3072 features. The result-
ing histograms are all invariant to rotation and translation of the image plane
and illumination changes. Since rotation invariance is not really necessary, we
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Fig. 4. Parameter Dependency on the ETH80 database with invariant features. On the
x-axis the parameter α is drawn in logarithmic scale. On y-axis left the 1T-measure is
given and on the right the Nearest-Neighbor Classification Accuracy (NN). The plot is
evaluated for several fixed feature subset sizes given in percentage of the original size.

additionally computed two histograms, where the drawn samples are weighted
by the cosine/sine of the absolute angle of the vector connecting the randomly
chosen points, resulting in a feature size of 9216. We always compare the his-
tograms using the L1-norm. The L1-norm is closely related to the Histogram-
Intersection-Kernel which predestines it for our purposes. To gain an intuition
how the parameter α of our method has to be chosen, we recorded the 1T-rate for
different fixed feature sizes. Additionally we also consider the Nearest-Neighbor
Classification Accuracy (NN), meaning the rate that an object of the query’s
class appears as first. In figure 4 the corresponding plots are shown. The 1T-
and NN-measure evolve in a opposite manner. While 1T has a diffuse maximum
for small α and decrease with growing α, NN shows higher values for large α, i.e.
for large α the precision of detecting first an object from the same class rises, but
there are still lots of objects which cannot be found. We know that for large α
the algorithm only considers negative samples nearby the query, positive samples
far away are not considered which explains that in this case the algorithm is not
able to merge different clusters belonging to the same class and hence shows a
bad 1T-rate. We have to find a tradeoff between merging the intra-class clusters
and obtaining a high NN-rate.

In the experiments we focus on the 1T measure and tune α to get a high
1T-rate, but still keep α as large as possible to obtain a high NN-rate as well. In
other words we try to find the turning point of the 1T-rate for increasing α. All
the pre-tuning is done manually for a fixed feature size of 5% from the original
size.

In figure 5 the results for the invariant and variant features are shown. For the
NN-rate our new algorithm is able to beat all the other three methods. For the
1T-measure our method obtains the highest scores for very small feature sizes
(the first plot point is at 0.5%) and also the highest overall 1T-rates. But for
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Fig. 5. Results for the ETH80 database. On the x-axis the feature size is given (in
percentage of the original size). On the y-axis the 1T-rate and NN-rate respectively.

growing feature sizes the other methods, in particular MMD outperforms our
algorithm with respect to the 1T-rate. It is astonishing that very small feature
sizes (15 invariant features, 45 invariant features) lead to the highest 1T-rates. It
seems that there is only a very small set of features which show a low intra-class
variability. One can also notice that for both measures it is always worse to use
all features instead of a cleverly selected subset.

Caltech database. As a second problem we consider a 2-class problem. Caltech
(http://www.robots.ox.ac.uk/vgg/data3.html)provides several image databases.
In our experiments we tried to discriminate between a set of airplanes and back-
ground (training set 687, testing set 987), and secondly between a set motorbikes
and background (training set 750, testing set 1005). We used the same variant fea-
tures as above. One may argue that it is a little bit naive to use such global features
for a dataset with a complex background, but since we are interested in examina-
tion of feature selection algorithms the use of such ’dirty’ features is justified. Since
the provided background image set is only in gray-value format, we only used the
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Fig. 6. Results for the Caltech database. On the x-axis the feature size is given (in
percentage of the original size), on the y-axis the 1T-rate.

luminance information and neglected color. In figure 6 the results are presented.
This time we only present the results for the 1T-measure. For the airplanes our
method again outperforms the others. But for the motorbikes our method shows
a little strange behavior. For the very small sizes the performance is very bad, for
2% it shows a very high peak and then again falls down to very low performance.
Relief also performs very bad on this dataset.

Princeton Shape Benchmark (PSB). Finally we deal with the Princeton
Shape Benchmark provided in [7]. The PSB consists of 1814 triangulated 3D-
surface models. The database is divided into a test and training set, both of size
907. The authors also provide a hierarchical classification. We work with the
three finest granularities, level 0: about 90 classes, level 1: about 40 classes, level
2: 7 classes. The used features are proposed in [6]. This time three dimensional
histograms are used: the joint distribution of the distance between two equidis-
tributed random points on the surface of the object, the relative orientation of
the surface normals at those points and the relative orientation of one normal
with the vector connecting both points. To keep more information we compute
for each bin the angular distribution of the connecting vector falling into this bin.
Since invariance to 3D-rotation is necessary a Spherical Harmonic Transform of
the angular distribution is computed and the norms of the coefficient vectors are
stored, which are known to be invariant to rotation. The resulting feature (SD)
is of size 768. But it is also possible to preserve much more information. Instead
of taking the norm for each SH-coefficient vector alone, crosswise dot-products
of coefficient vectors from different bins are also invariant to rotation. Apply-
ing this procedure the feature size grows quadratically in the number of bins of
the underlying histogram. The examined features (SDF) are in this case of size
6240. Again the same optimization procedure was applied like in the image re-
trieval case. The results for the 1T-rate are given in figure 7. Again our proposed
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Fig. 7. Results for the Princeton Shape Benchmark. On the x-axis the feature size is
given (in percentage of the original size), on the y-axis the 1T-rate.

method shows very nice results and seems to be superior in nearly all situations.
Only for very small feature sizes the MMD method sometimes outperforms our
algorithm, but in all cases our method achieves the highest overall 1T-rate.
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4 Conclusion and Future Work

We have introduced a new feature selection algorithm, which is based on the well
known Relief algorithm and is very well suited for retrieval purposes. We well
motivated our modification and demonstrated that on both toy and real-world
data our algorithm shows a good performance in comparison to other methods.
It works quite well on a great diversity of databases.

A nice property of our algorithm is a parameter which helps us to find a
tradeoff between the accuracy finding nearest neighbors from the query’s class
and the amount of false negatives within the first few result objects. But this
parameter is also the main drawback of our algorithm, an automated estimation
of this parameter with respect to the user’s demands would be very helpful.
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Abstract. A new algorithm for compressed image retrieval is proposed in this 
paper based on DCT block edge patterns. This algorithm directly extract three 
edge patterns from compressed image data to construct an edge pattern histo-
gram as an indexing key to retrieve images based on their content features. 
Three feature-based indexing keys are described, which include: (i) the first two 
features are represented by 3-D and 4-D histograms respectively; and (ii) the 
third feature is constructed by following the spirit of run-length coding, which 
is performed on consecutive horizontal and vertical edges. To test and evaluate 
the proposed algorithms, we carried out two-stage experiments. The results 
show that our proposed methods are robust to color changes and varied noise. 
In comparison with existing representative techniques, the proposed algorithms 
achieves superior performances in terms of retrieval precision and processing 
speed. 

1   Introduction 

At present, many images and videos distributed on the Internet or stored inside a da-
tabase are represented in compressed formats, due to the limitation of space and band-
width. Joint Picture Expert Group (JPEG) is one of the most typical compressed stan-
dards widely used among industrial communities.  As a result, methods used for in-
dexing or retrieving images directly in compressed domain have become a recent 
focus of research and developments. To detect or extract the features from those com-
pressed images, traditional approaches need to decode the images first to provide 
pixel domain for content feature extraction [1]. To avoid such an overhead operation 
and computing cost, many research efforts are directed to feature extraction in com-
pressed domain [2-9], including texture, color, and shape etc. Representative work in 
such areas can be summarized as follows. 

Shneier and Abdel.Mottaleb [2] calculated average value of DCT coefficients com-
puted over a window to generate keys of JPEG images for retrieval. S. F. Chang [3] 
computed the statistical measures of DCT coefficients to form texture feature. Chong-
Wah Ngo, Ting-chuen Pong [4] described an image-indexing algorithm via reorgani-
zation of DCT coefficients in Mandala domain [5], and representation of color, shape 
and texture features in compressed domain. G.C. Feng and J. Jiang [6] extracted mean 
and standard deviation of statistical features directly from DCT coefficients to retrieve 
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JPEG compressed images. Sim, Kim [7] reported fast texture description and retrieval 
of DCT-based compressed images. Lay, Ling [8] proposed a method using energy 
histograms of the low frequency DCT coefficients for retrieving images. Jianghong 
Liu , Haiming Gu [9] developed a method, which can retrieve images from different 
kinds of domains by using the wavelet coefficients . Daidi Zhong, Irek Defee [10] 
described a method based on histograms of quantized DCT blocks. These histograms 
can be optimized in order to achieve best retrieval performance by optimizing the 
selection of quantization factor and the number of DCT blocks under normalization of 
luminance.  

Edge is a strong feature for characterizing an image, which can be used to construct 
an important clue to understand the content of images. While many methods as high-
lighted above extract features in DCT domain, most techniques reported in the litera-
ture extract edge features in pixel domain, including those widely reported for image 
segmentations, and thus existing efforts on edge-based image retrieval are limited in 
pixel domain. For example, Jun Weihan, Lei Guo[11] proposed an image retrieval 
method based on salient edges, in which Canny operator is applied to detect edge 
points followed by a Water-Filling technique to extract edge curves and shape fea-
tures for salient edge selection. Minakshi Banerjee and Malay K. Kundu [12] pre-
sented a technique for extracting edge map of an image and formed a global feature 
(like fuzzy compactness) to process image content. 

Recent trend on image processing is characterized by detecting edges and classify-
ing their patterns at a block level either in pixel domain or compressed domain [18]. 
Kim and Lee [13] found out that the edge location is well captured by the polarities of 
the projection of DCT coefficients. Soltane et al.[14] suggested an adaptive edge 
operator selection scheme for image segmentation based on the mean, variance, and 
entropy of DCT coefficients. Shen and Sethi [15] further proposed a method to de-
termine edge strength and orientation through pattern analysis of DCT coefficients. 
They examined the DCT coefficient patterns induced from an ideal edge model and 
show how the relative values or signs of different coefficients can be determined at 
block level. Lee et al. [16] has extracted and defined their scheme to detect scene 
change using direct feature extraction from MPEG compressed videos. Li et al [17] 
proposed an effective approach to edge classification from DCT domain. Chang et al 
[18] proposed a fast and systematic scheme to classify the edge orientation of each 
block in DCT domain. Five directional edge patterns (no edge, 0-directional edge, 

/4-directional edge, and 3 -directional edge) were proposed in their paper. 
Their algorithm is similar to the one proposed in [19]. 

Based on the analysis of the existing work as described above, we propose a new 
compressed image retrieval algorithm, in which three block-edge-patterns are ex-
tracted directly from DCT domain, which include no edge, horizontal edge, and verti-
cal edge. We then combine the three block edge patterns to form three block edge 
pattern histograms (3_D histograms, 4_D histograms, Run- length histograms) to 
characterize the compressed image content and use them as indexing keys for image 
retrieval. The rest of the paper is organized into four further sections, where Section 

 describes how the three block edge patterns can be extracted from DCT coeffi-
cients based on a brief review of an existing work, Section III describes our proposed 
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algorithm to form indexing keys, including 3_D histogram, 4_D histogram, and a so-
called run-length histogram. Finally, experimental results and their analysis are given 
in Section IV and conclusions are given in Section V. 

2   Block Edge Pattern Extraction in DCT Domain 

In reference [18], Chang et al proposed a technique to extract five edge patterns di-
rectly from DCT coefficients to characterize the distribution of edges inside an image. 
In practice, however, our observation and analysis reveal that image edge distribution 
can actually be characterized with three edge patterns, i.e. no edge, vertical edge and 
horizontal edge as shown in Figure-1. This is because that an arbitrary edge inside an 
image can always be approximated by many small vertical or horizontal edge ele-
ments. This is illustrated in Figure-2. As a matter of fact, if we zoom into any part of 
image to a certain extent, the arbitrary shaped image edge can be seen by artifacts 
consist of vertical and horizontal edges. As a result, such five edge patterns can be 
further reduced to three edge patterns, and thus further improvement can be achieved 
in terms of both processing speed and computing cost when the characterization of 
edge distribution inside an image is implemented by only three edge patterns. 

 

Fig. 1. Illustration of three edge patterns, where (a)=NE, (b)=HE, and (c)=VE 

 

Fig. 2. Zoom-in of an arbitrary shaped edge 
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To support our analysis, we further compare the five edge pattern representation of 
two standard images, Lena and pepper, with their three edge pattern representations as 
shown in Figure-3 and Figure-4. From the comparisons, it can be seen that the two 
representations present little difference in terms of their edge distribution and content 
characterization. Therefore, the three edge patterns given in Figure-1 can be used to 
construct image content features, leading to effective image retrieval based on its 
content. 

 

Fig. 3. Edge-pattern representation of image Lena, (b)=five pattern representation, and (c) = 
three pattern representation 

 

Fig. 4. Edge-pattern representation of image Pepper, (b)=five pattern representation, and (c) = 
three pattern representation 

In 2005, Chang et al proposed a technique of extracting edge patterns from DCT co-
efficients in terms of 8x8 block of pixels [18]. This technique operates in compressed 
domain by just analyzing the value of the first four DCT coefficients and thus only 
limited decoding operations are required without involving the full decompression. 

Given a block of 8x8 pixels, the technique divides the block into four regions, and 
the average pixel value for each region is represented as Sij, ]3,0[, ∈ji . In pixel 

domain, the edge pattern classification for the block can be conducted in terms of the 
four average pixel values by choosing the maximum measure out of all the measure 
values given in Table-1. 
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Table 1. Measure for Five Edge Patterns 

EdgeDirec-
tion  
(in radian) 

Measure values 

No edge 
(NE) NEδ  (set by user) 

0 

22
11100100

0

SSSS +−+=δ  

4/π  ++−++−=
3

,
3

max 100100
11

111001
004/

SSS
S

SSS
Sπδ  

2/π  

22
11011000

2/

SSSS +−+=πδ  

4/3π  ++−++−=
3

,
3

max 110100
10

111000
014/3

SSS
S

SSS
Sπδ  

The contribution of [18] is to calculate all the above measure values in DCT do-
main, leading to edge block pattern classification via DCT coefficients. Since we only 
need the horizontal edge and vertical edge pattern as analyzed earlier for compressed 
image content characterization, the measure values for these two patterns can be 
summarized as follows according to the work reported in [18]. 
 

)0,1(20 XV ==δ                             (1) 

)1,0(22/ XH ==πδ                             (2) 

 
Where X(1,0) and X(0,1) are the DCT coefficients decoded from JPEG compressed 
image data. 

From the (1) and (2), it can be seen that the two edge pattern can be implemented 
very fast since only two DCT coefficients are required. As a result, the three edge 
pattern classification can be implemented as summarized in Figure-5, where λ  is a 

threshold selected via empirical approaches. In our implementation, λ  is selected to 
be 50. 

3   Construction of Indexing Keys 

Following extraction of block edge patterns, the remaining issue is how to construct 
an effective indexing key to enable content-based search via these edge patterns. Stan-
dard techniques are represented by histogram approaches, due to the fact that histo-
grams are effective in representing random variable distributions such as colour,  
intensity and luminance etc. 
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Fig. 5. Flow-chart for block edge pattern classifications (NE=no-edge, VE=vertical edge, 
HE=horizontal edge 

Given a block of 8x8 DCT coefficients, its edge pattern is firstly transformed into a 

set of three elements, { }|,,# −=ψ , where # = no-edge, - = horizontal edge and | = 

vertical edge. When the histogram is constructed by calculating the number of occur-
rence for each edge pattern, the histogram will only have three elements, which is 
often referred to 1D edge-block-histogram (EBH). As such 1D edge-block-histogram 
has little information to reveal the image content, the occurrence of states can be im-
plemented by considering combination of edge patterns, leading to construction of 
high dimensional histograms. As an example, if we examine the status of two edge 
patterns together, the total number of elements inside the histogram can be increased 
to 9 (a 2D EBH). A summary of the histogram dimension with respect to the number 
of it states is given in Table-II. 

Table 2. Summary of histogram dimension with respect to its number of elements 

1D EBH 2D EBH 3D EBH 4D EBH 5D EBH 6D EBH 
3 9 27 81 243 729 

From Table-2, it can be seen that 1D EBH and 2D EBH not only have small num-
ber of elements, but also contain little information for the location of those classified 
edge patterns inside the image, which are often useful to reflect the visual content. On 
the other hand, 5D EBH and 6D EBH incurs large number of states, which illustrate 
potential for high computing cost when millions of compressed images need to be 
indexed and searched via such keys. To this end, we focus on 3D EBH and 4D EBH 
in order to derive effective and efficient indexing keys. 
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To construct an edge block histogram based on combination of three or four edge 
block patterns, we define each state as shown in Figure-6. 

 

Fig. 6. Definition of states for EBH, where (1) for 3D EBH and (2) for 4D EBH 

Consequently, the edge block histogram (EBH) can be constructed as follows. 
 

{ }
N

CCC
H N

rD

...,, 21=                  (3) 

 
Where ]4,3[∈r , Ci stands for the total number of occurrence of state-i, and N for 

the number of elements inside the histogram, which is 27 for 3D EBH and 81 for 4D 
EBH. 

To fully reflect the positional information of the edge patterns inside images, we 
need higher dimensional histograms, yet their negative side is that the size of the 
histograms would be increased to a non-manageable level. To achieve an appropriate 
balance, we propose a variable dimensional histogram following the spirit of run-
length coding in the area of lossless data compression. Specifically, we raft scan all 
block edge patterns and count the number of same patterns inside one single run. 
Every time a different edge block pattern is encountered, it is regarded a broken run 
and thus a new run will be started. The output code for each run can be represented as 
follows: 

 

 { }iiiR ηα ,=                   (4) 

 

Where [ ]|,,# −∈iα , and iη stands for the number of iα inside this single run. 

     As a result, the histogram can be represented as follows: 
 

{ }
M

CCC
H M

run

...,, 21=                 (5) 

 

Where iC counts the number of the state-i occurred inside the image after the run-

length coding is finished, and iR  is regarded the same state as jR  only when 

ji αα =  and ji ηη = . 
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4   Experimental Results and Analysis 

Extensive experiments are carried out to evaluate the proposed algorithm, where two 
important issues regarding the evaluation design are addressed. These include: (i) test 
data set is prepared by establishing a database of 10287 JPEG compressed images, 
which are classified into categories of car, people, flowers, outdoor-scenes, and ani-
mals; (ii) a benchmark is selected out of the existing technique reported in the pub-
lished literature [6], which presents a fair comparability since both algorithms search 
and retrieve images via DCT coefficients. To calculate the similarity between images, 
the same distance measurement as described in [6] is adopted, which is given below.  

 
=

−=
n

j
qx jkjkqxd

1

)()(),(                       (6  

Where n is the dimension of the key, )( jkx and )( jkq are the keys of image x and q 

respectively after normalization.  
Two phases of experiments were carried out for benchmarking purposes. In the 

first phase, we choose 100 images from a database, 20 out of each category, as the 
query images to search the database. The retrieval performance was measured in 
terms of precision, which is defined below. 

Let cn and fn  be the number of correctly retrieved images and wrongly retrieved 

ones respectively among the first M retrievals. The precision for the query image q is 
defined as:  

 

M

n

nn

n
ecision c

fc

c
q =

+
=Pr                                           (7) 

 
In our experiments, we designed M to be 12 in line with the benchmark [6]. All re-
sults of the first phase experiments are summarized in Table-3, from which it can be 
seen that the proposed RLEBH (run-length edge block histogram) achieves the best 
performance in terms of retrieval precision rate, and all the proposed block-edge-
pattern histograms outperform the benchmark. Figure 7 illustrates a sample compari-
son for visual inspections. 

Table 3. Experimental results summary for the first phase 

Average precision Benchmark 3DEBH 4DEBH RLEBH 
Cars 0.17 0.67 0.64 0.63 
Flowers 0.17 0.25 0.27 0.28 
People 0.74 0.74 0.76 0.83 
Outdoor-scene 0.38 0.33 0.39 0.43 
Animals 0.23 0.18 0.11 0.23 
Total-average 0.34 0.40 0.44 0.49 
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Fig. 7. Retrieval sample illustration, where (a) query image; (b) retrieved images by bench-
mark; (c) retrieved images by RLEBH 

The second phase of experiments aims at evaluating the robustness of the proposed 
algorithm in retrieving images with orientation changes, such as rotation, zoom in or 
out, and noise affected etc. In this experiment, fifty images were chosen at random 
from the database. Specifically, each of the chosen images was processed as follows: 
clockwise rotation by 5 degrees, anti-clockwise rotation by 5 degrees, zoom out by 
20%, zoom in by 20%, inverse color, horizontal reverse, vertical reverse, horizontal 
displacement by 10%, vertical displacement by 10%, adding Gaussian white noise 
(means equal to 0, variance equal to 0.04), adding salt & pepper noise (variance equal 
to 0.04) and adding speckle noise (variance equal to 0.04). Figure-8 illustrates an 
example of all the processes. Following that, all such processed images are added into 
the database. When one of them is taken as a query image, we would like to see how 
many of those processed images can be retrieved to test the robustness of indexing 
keys. To this end, we measure the retrieved results in terms of the recall and the aver-
age of the normalized modified retrieval rank over all queries (ANMRR) as described 
in [21]. 

Let cn  and mn  be the number of correct, and missed candidates, respectively, 

among the first M retrievals (M is 18 in our experiments). The recall for query image 
q is defined as: 

 

     
mc

c
q nn

n
call

+
=Re                                                     (8) 

 
To calculate ANMRR [22], we firstly produce an average rank for query image q as 
follows: 

     AVR(q)=
=

)(

1 )(
)(qNG

k qNG

kRank
.                                              (9) 

Where NG(q) is the number of relevant images for query q.  

(a)

(b)

(c)
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Secondly, the average rank is modified into: 

 
2

)(
5.0)()(

qNG
qAVRqMRR −−=      (10) 

and thirdly, the normalized modified retrieval rank is derived by: 

NMRR(q)=

)(*5.05.0))(max(),(4max

)(

qNGqNGqNG

qMRR

Qq
−+×

∈

 (11) .    

Where Q is the number of all queries. 
Finally, the ANMRR is calculated for all queries as given below: 
 

 ANMRR=
=

Q

q

qNMRR
Q 1

)(
1

.                                           (12) 

 
All the experimental results produced in the second phase are summarized in  

Table-4, which clearly indicates that the proposed algorithm is more robust than the 
benchmark in terms recall rates, and achieves superior performances measured by 
ANMRR values. 

Table 4. Summary of second phase experimental results 

Benchmark 3_D 
EBH 

4_D 
EBH 

RL 
EBH 

Average recall after clockwise rotate by 10o
0.78 0.52 0.50 0.50 

Average recall after anti-clockwise rotate 
by 10o

0.74 0.40 0.48 0.52 

Average recall after zoom out 20% 0.96 0.18 0.12 0.72 
Average recall after zoom in 20% 0.94 0.44 0.62 0.90 
Average recall after inverse color 0.02 0.98 1.00 1.00 

Average recall after horizontal upset 0.92 0.92 0.92 0.98 
Average recall after vertical upset  0.92 0.90 0.88 0.94 

Average recall after horizontal displace-
ment 10% 

0.82 0.44 0.44 0.50 

Average recall after vertical displacement 
10% 

0.86 0.44 0.40 0.52 

Average recall after adding gaussian white 
noise 

0.02 0.64 0.66 0.90 

Average recall after adding salt& pepper 
noise 

0.02 0.18 0.22 0.42 

Average recall after adding speckle noise 0.08 0.44 0.44 0.60 

Average recall 0.59 0.54 0.56 0.71 

ANMRR 0.1 0.12 0.14 0.08 
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5   Conclusions  

In this paper, we proposed an effective algorithm for content-based image retrieval. In 
comparison with existing techniques, the proposed algorithm illustrates the following 
advantages and features: (i) robust to a range of orientation changes which are fre-
quently encountered during transmission, processing and storages; (ii) directly operates 
in compressed domain, which are suitable for large compressed image databases; (iii) 
extremely low computing cost suitable for real-time implementation and fast image 
content management applications. As a matter of fact, the cost for classifying edge-
blocks only requires partial decoding of two DCT coefficients X(0,1) and X(1,0) from 
(1) and (2). After that, all needed is to construct a histogram by counting the number of 
occurrences for each edge block pattern state. Finally, extensive experiments also sup-
port that the proposed algorithm outperforms the similar counterpart in terms of retrieval 
precision rates. Therefore, the proposed algorithm would have significant potential for 
practical applications either as a stand-alone tool or as a component working with other 
tools towards efficient and effective visual content management. 

Finally, the authors wish to acknowledge the financial support under EU IST FP-6 
Research Programme as funded for the integrated project: LIVE (Contract No. IST-4-
027312). 
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Abstract. Thispaperpresents agenerativegraphicalmodel (VC-Aspect)
for filtering visual documents such as images. The proposed VC-Aspect ex-
tends the well-known Aspect model and combines both content based and
collaborative filtering approaches in aunified framework. Instead of consid-
ering item indices in the model such as model-based collaborative filtering
techniques, we use visual features in describing visual documents. This al-
lows the model to predict ratings for new visual documents with the same
set of parameters. Experimental results show the usefulness of such an ap-
proach in a real life application such as the content based image retrieval.

1 Introduction

The huge amount of information in current digital libraries motivates the use of
recommender systems since only few items are known to a particular user. The
main goal of a recommender system is to select only relevant information (Web
sites, scientific papers, movies, etc.) for a specific user according to her prefer-
ences represented by user models. Indeed, the task of user modelling consists
of using this small quantity of information about the user in order to elaborate
models able of predicting her long term interests. Most user modelling tasks are
made within the information filtering (IF) community in which the focus was
mainly made on textual information. As an example, we may cite ResearchIn-
dex recommenders which suggests scientific papers for specific users. Also, some
movie recommenders suggest relevant movies according the user model built
using his past history and also textual meta-data associated with movies (e.g.
actors, genre, etc.). Visual document (e.g. images) filtering are far from being
investigated by the IF research community even though the fact that images con-
stitute 30% of information present in the World Wide Web. Visual document
collections were studied mainly within information retrieval (IR) community and
the goal was to develop techniques for indexing, searching and browsing image
collections in order to respond to user ad hoc needs expressed as queries. How-
ever, user long term interests remain ignored in current image retrieval systems.
We propose a new system in which user preferences related to visual documents

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 685–696, 2006.
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are modelled using a probabilistic framework. This allows another kind of inter-
action scenarios in which visual documents are suggested in a proactive manner.

This paper is organized as follows. In section 2 we present current research
related to our work. In section 3 we elaborate our probabilistic model of user
preferences related to the visual content and we present our method for learning
this model. We detail our recommendation algorithm specific for visual document
filtering in section 4. Experimental results will be presented in section 5. We
conclude this paper by summary of the work and future directions.

2 Related Research Work

In literature, the task of user modelling [1] is addressed mainly within the in-
formation filtering (IF) [2] community, the technology used in recommender
systems. For example, Amazon [3] makes personalized recommendations based
on the books a user has bought and any explicit ratings (or votes) of books
expressed on a five star scale. There are two classes of information filtering sys-
tems namely content based filtering (CBF) and collaborative filtering (CF). In
CBF systems such as [4], user profiles are represented using the item’s content
and the relevance of items is computed using a similarity measure between the
user profile and the content that describe the item. Indeed, CBF systems are
useful in the case where user preferences may be expressed by content features
that describe her interest. For example, scientific papers are indexed by key-
words that may be used in user models. It has been noticed that CBF systems
suffer from overspecialization in the sense that suggested items are always close
to the content features of the user model. CF systems in other hand, alleviate
the overspecialization problem by predicting the relevance of items for an active
user on the basis of other like minded users. For example, memory-based CF sys-
tems identify user neighborhoods using correlation algorithms such as Pearson
Correlation Coefficients (PCC) [5] or cosine similarity [6] measure while model-
based CF systems construct first a probabilistic model of user preferences and
then predict item’s relevance using the constructed model. Examples include the
Aspect model [7] and the Flexible Mixture Model [8] and many others [9] [10].
To the best of our knowledge the unique attempt of visual document filtering
was the Viscors system [11] which build user neighborhoods using PCC mea-
sure in order to recommend cell-phone wallpapers (images) to the customers.
Since Viscors employs a memory-based technique it inherits from its limitations
mainly those related to the the poor prediction accuracy when user neighbor-
hoods are small and also its inefficiency when used online with a large number of
users and items. It is important to notice that in both CF techniques, users and
items are represented by their indices and a user history is made up of a set of
triplets (u, i, r) to denote a rating (or importance degree) r given by the user u
to the item i. Indeed, it is impossible to recommend items on whose there is no
associated ratings using these approaches. In our work, we consider that visual
documents especially images constitute a special kind of information that need to
filtered differently by taking into account their intrinsic characteristics. In fact,
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the visual features of images such as color histograms or texture co-occurrence
vectors may be modelled efficiently using probability distribution functions
(pdfs). In other words, we propose Visual Content Aspect model (or simply
VC-Aspect) a model-based hybrid filtering visual document recommender which
combines both CBF and CF in a unified probabilistic framework. Our VC-Aspect
model which we detail in the next section makes similar assumptions of the As-
pect model and constructs user communities according to similar tastes on visual
content instead of visual documents themselves (i.e. items indices are removed).
This allows the prediction of ratings for newer visual documents that arrive into
the collection even if there is no rating associated to them1.

3 The Proposed Model

The domains we consider are a set of users U = {u1, u2, . . . , u|U|} and a set of
visual documents I = {i1, i2, . . . , i|I|}, |.| used to denote the cardinality of a set.
Let us consider a utility function s in U × I where s(u, i) quantifies the rele-
vance of a visual document i for the user u. This function denotes a predicted
relevance degree (i.e. rating) to a particular visual document for a certain user.
We denote by R = {r1, . . . , r|R|} the rating scale where r1 (resp. r|R|) refers
to the lowest (resp. highest) relevance degree. We propose to predict s(u, i) on
the basis of probabilities p(u, i, r). More specifically, since we are interested by
the prediction of a rating for a given user, we will compute s(u, i) on the ba-
sis of probabilities p(i, r|u). One may think to use the mean prediction rule2

which computes a rating as s(u, i) =
∑

r rp(r|i, u). One can also use the max-
imum prediction rule which returns a rating with the highest probability (i.e.
s(u, i) = arg maxr p(r|u, i)). In this paper, we use the mean prediction rule for
s(u, i) and we focus hereafter on modelling p(i, r|u). In the Aspect Model[7] (see
Eq.(1)), a hidden variable z was introduced so that items and users are rendered
conditionally independent given the state of z. This variable was interpreted as
hidden preference patterns and also as user communities and their related items.

p(i, r|u) =
∑

z

p(z|u)p(i, r|z) (1)

Indeed, a user is considered as a distribution over hidden preference patterns
which are in turn considered as a distribution over items and ratings. The Aspect
model has proven to be efficient in CF tasks, however, it is inadequate for filtering
visual documents. Let us consider the scenario that of some images arrive in the
collection after the learning process. These images have similar images in the
collection but with no rating associated to them by any of the users of the
recommender system. The Aspect model as any other pure CF technique will
be unable to suggest these images to the users. We propose our VC-Aspect

1 We assume that the image collection is diversified enough so that we will not consider
the problem of novelty detection.

2 It is easy to show that p(r|u, i) = p(i, r|u)/ r p(i, r|u).
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model to deal with such situations by identifying user communities on the basis
of similar tastes on similar content. Let us consider the example (see Fig.1) of
two users u1 and u2 who preferred different images of a sunset. It is convenient
to assume that both users have similar tastes due to the similarity between the
preferred content. Current CF however, will assume these images as different and
hence will fail in assigning these users to the same community. In IF literature,
the techniques that identify user communities on the basis of similar tastes on
similar content, are referred to as hybrid filtering techniques.

Fig. 1. collaborative filtering of visual content

In the VC-Aspect model, we consider a user as a distribution over hidden
preferences patterns which are in turn considered as distributions over visual
document classes. These classes are identified on the basis of the visual content
(i.e. visual features) in the collection. We consider a visual document i as a vector
of visual features vi such as color histograms and texture co-occurrence vectors.
The image collection can be written as a finite mixture model in Eq.(2). The
variable c denotes the class of the feature vector.

p(vi) =
∑

c

p(c)p(vi|c) (2)

We assume a conditional independence between users u and visual content
classes c given the hidden preference pattern z (i.e. u ⊥⊥ c|z)3 and another
conditional independence between visual contents (i.e. visual features) and the
preference pattern z given the class c of visual content (i.e. vi ⊥⊥ z|c). This
assumption is natural and means simply that we consider each visual document
as generated by the class into which it belongs. To ensure a generative model,
we assume also that the rating is generated only by the preference pattern z.
We give the detailed formula of the model in Eq.(3). Experiments showed this
last assumption has not great effect on prediction accuracy.

3 Phil Dawid’s notation.
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p(vi, r|u) =
∑

z

p(z|u)p(r|z)
∑

c

p(c|z)p(vi|c)

=
∑
z,c

p(z|u)p(r|z)p(c|z)p(vi|c)

=
∑
z,c

p(z, c|u)p(r|z)p(vi|c)

(3)

3.1 Data Model

In Eq.(3), we consider the model as mixture model in which p(z|u)p(c|z) =
p(z, c|u) are considered as mixture weights which we denote by βu

zc. The probabil-
ity p(r|z) may be interpreted as the probability of a rating to be generated from
a hidden preference pattern z. Since the variable r has |R| states, then we model
p(r|z) as a multinomial distribution with parameter vector φz = (φz

r1
, . . . , φz

r|R|)
and we have thus to estimate |R| × |Z| values for φ = (φz1 , . . . , φz|Z|). In mod-
elling visual features such as the color histogram and the texture co-occurrence
vector, we use a probability distribution function (pdf) for p(vi|c). It has been
shown in a previous work [12] that the Dirichlet distribution (DD) is an efficient
tool for modelling visual features than the Gaussian. In fact, the DD is defined
in compact support and offers a higher flexibility due to the possibility to have
different shapes. Generally, colors are encoded within the interval [0, 255] which
makes color histograms compactly supported and may be represented efficiently
by a DD. A visual feature is represented by a vector vi = (vi

1, . . . , v
i
n) of dimen-

sion n where n denotes for example the number of color bins in a color histogram.
We say that vi such as vl

i ∈ [0, A] ∀l ∈ [1, n], follows a DD in the class c with pa-
rameters αc = (αc

1, . . . , α
c
n), αc

l > 0 when p(vi|c) has the form of the density given
in Eq.(4). This density is defined in the simplex {(vi

1, . . . , v
i
n),

∑n−1
l=1 vi

l < A} and
we have (vi

n = A −∑n−1
l=1 vi

l ). Notice that we have used a general form of the
DD since we have put

∑n
l=1 v

i
l = A.

p(vi|c) =
Γ (|αc|)

A|αc|−1
∏n

l=1 Γ (αc
l )

n∏
l=1

(vi
l )

αc
l −1

(4)

We notice that the feature vector vi is obtained using an auxiliary image
processing software which extracts the low level visual features of the visual
document i in only one vector.

3.2 Estimation of Model’s Parameters

We will now show how to estimate p(z, c|u) p(vi|c), p(r|z) presented in Eq.(3).
Their parameters are respectively β, αc and φ. For convenience we put Θ =
(β, αc, φ). We use the Expectation-Maximization (EM) algorithm [13] in com-
puting maximum likelihood estimates of the proposed model parameters since
it contains hidden variables namely preference patterns z and visual feature
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classes c. This algorithm alternates between two steps Expectation step (E-step)
in which the model estimates the expectation of hidden variables given the ob-
servations and in the Maximization step (M-step) the parameters are estimated
by considering complete data model. The algorithm stops when a convergence
criterion is reached. We assume a sample of independent and identically distrib-
uted (iid) observations < u, i, r >. To keep the derivatives clear, we write the
log-likelihood L as a function of Θ only as given in the following:

L(Θ) =
∑

<i,u,r>

ln[
∑
z,c

p(z, c|u)p(vi|c)p(r|z)] (5)

Since the states of the hidden variables c and z are not known, we introduce
a so called variational probability function Q(z, c|u, i, r, Θ) over hidden variables
z, c for every observation < u, i, r > to get a lower bound F(Q,Θ) to be maxi-
mized. During the E-step, the model maximizes this lower bound F(Q,Θ) with
respect to Q and during the M-step, maximization is made with respect to Θ.
We give the formula of EM steps in the following:

E-step:

Q∗(z, c|u, i, r, Θ̂) =
β̂u

zcφ̂
z
r p̂(v

i|c)∑
z,c β̂

u
zcφ̂

z
r p̂(vi|c) (6)

M-step:

βu
zc

(t+1) =

∑
<u′,i,r>:u′=u Q∗(t)(z, c|u, i, r, Θ̂)∑

<u′,i,r>:u′=u

∑
z,c Q

∗(t)(z, c|u, i, r, Θ̂)
(7a)

φz
r
(t+1) =

∑
<u,i,r′>:r′=r

∑
c Q

∗(t)(z, c|u, i, r, Θ̂)∑
<u,i,r>

∑
c Q

∗(t)(z, c|u, i, r, Θ̂)
(7b)

We use the Fisher scoring method in estimating the parameters αc of the
Dirichlet distributions p(vi|c). Its principle is to update the parameters at the
time t+1 using their value at the time t and based on the log-likelihood function
and the Fisher information matrix I. To ensure that Dirichlet parameters αc

l (lth

parameter of cth class) be always positive, we use transformation ρc
l = eαc

l .

4 Recommendation

The goal of a visual content recommender is the suggestion of relevant unseen
visual documents to an active user ua according to her profile. We define the
recommendation as the process of deciding which visual documents suggest and
their ordering for an active user after the prediction of a rating using s(u, i)
defined in section 3. Most recommendation systems [7] [8] use the predicted
rating as a criterion for suggestion and ranking. In other words, the content
is suggested when its predicted rating is above a certain threshold and relevant
items are sorted on the basis of their predicted rating. By this way, it is natural to
see that two documents with the same predicted rating will have the same chance
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to be suggested even if they are too similar. To avoid this problem and to improve
the user’s experience, we propose another ranking method for relevant visual
documents. Its principle consists of building a list of ranked visual documents.
We define a new score computed on the basis of the predicted rating and also
on the basis of the diversity constraint. To do that we first build a list Du of
relevant visual documents (i.e. s(u, i) > T for i ∈ Du) ordered decreasingly
based on s(u, i). We denote by Du[k] the visual document at the position k in
the list Du. Then, we associate to each visual document Du[k] a score sc[k] which
combines both similarity measure with the precedent visual documents in the
list and the predicted rating (see Eq.8). Du is finally reordered decreasingly on
the basis of this new score. We introduce another parameter γ in order to control
the importance of the predicted rating in the ranking process.

sc[k] =
s(u,Du[k])γ

(1 + maxk′<k sim(Du[k],Du[k′]))(1− γ)
(8)

According the Eq.(8), the system assumes that the visual document with the
highest rating is relevant. Then, the recommendation algorithm supports visual
documents with highest score. This score, in the case where γ = 0.5, will be
higher for documents that are relevant and at the same time not similar to
those already selected. We notice that, when γ = 1, the presented algorithm
will suggest visual documents according to their relevance only such as most
recommender systems.

5 Experimental Results

In this section we present our method for evaluating the VC-Aspect model. We
have made two kinds of evaluations. The first one focuses on measuring the
rating’s prediction accuracy while the second one is concerned by evaluating the
usefulness of visual content filtering in a concrete application that is Content
Based Image Retrieval (CBIR) for mobile environments.

5.1 The Data Set

We need a data set DS of observations < u, vi, r > for the learning and pre-
diction phases. It should be noticed that there is no ground truth for filtering
visual documents. To be able to conduct experiments, the data set needs to be
generated synthetically. The generation process of observations involves an im-
age collection, a set of users and the generation of associations (past histories
of users) between users and visual documents of the collection. We have consid-
ered 30 simulated users and the collection of visual documents we have used in
experiments contains 3227 images. represented by their color histogram in the
RGB (red, green, blue) space. We have chosen images that are discriminated by
the color feature so that the construction of image classes on the basis of the
color feature will be meaningful. We have set two states (i.e. R = {1, 2}) for
the the rating r to denote the ”likes” and ”dislikes” preferences. Three user
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classes are set according to the range of user indices while image classes are
obtained by summarizing the image collection using a finite mixture model i.e.
p(vi) =

∑
c p(c)p(v

i|c). The class of an image is identified using the Bayes’ deci-
sion rule. Finally, we generate associations between user classes and image classes
randomly where each user has at least 20 ratings.

5.2 Evaluating the Rating’s Prediction Accuracy

This evaluation tries to evaluate the accuracy of the rating’s prediction using
cross-validation. We use a small part DSL from the data set for learning the
model and the remaining part DSE for evaluation. Then, we measure the error
between the predicted and observed ratings in the evaluation data set DSE . The
method consists of computing the Mean Absolute Error (MAE) [14] between
the predicted rating s(u, i) and user’s true rating say rt(u, i) obtained from the
evaluation data set DSE . Notice that rt(u, i) ∈ {1, 2} while s(u, i) ∈ [1, 2] since
it returns an average predicted rating. We compare also our results with the
Aspect model [7]. Results are shown in Figures 2. where we can see that the
average absolute error for the VC-Aspect and the Aspect models are close each
to other (
 0.095). We notice that the small difference of error of both models
is explained by some weak memberships of images to the classes c.

Fig. 2. MAE curves for VC-Aspect and Aspect models

In order to evaluate the rating’s prediction accuracy for new images, we use
the previous data set by excluding some images from the learning data set. We
run the learning process in order to estimate the parameters of the model. Then,
we predict the average rating for those images for some users. MAE results are
shown in Fig.3. It is clear to see that VC-Aspect model, is able of generating
ratings for newer images with an acceptable error (
 0.125). We notice however,
that we have not considered the problem of novelty detection since we have
discarded from the learning data set some images from each class c and not a
complete class of images at whole.
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5.3 Evaluating the Recommendation Algorithm

In this experiment we want to measure the user’s satisfaction regarding the
recommendation of visual documents. We validate the usefulness of visual doc-
ument filtering in a concrete application namely CBIR. AtlasMobile is a mobile
version of a previously developed [15] CBIR system designed to run in a mobile
environment and we address the “cold-start” problem. In fact, current CBIR sys-
tems present an initial set (page zero) of randomly selected images to user from
which he may mark one or more as positive or negative examples to construct
a search query. In the case of mobile CBIR, the size of the page zero (i.e the
number of displayed images) will be very small and hence the number of relevant
images is reduced greatly. To alleviate this problem we propose to “recommend”
images in the page zero instead of selecting them randomly. Figure 4 presents
the page zero of two users with different preference patterns. We compare three
versions of AtlasMobile according to the value of the parameter γ (see sect. 4):
VC-Aspect Recommend (γ = 0.5), VC-Aspect (γ = 1) and Random (γ = 0.5).
We use the precision-scope curve and the number of refinement iterations as per-
formance metrics. A relevant visual document allows the user to find the sought
images in the collection in few iterations when he uses this visual document in
the query. The precision measure the portion of relevant representatives rather
than relevant visual documents themselves. The scope denotes the number of
“recommended” images. A human subject reports the number of relevant rep-
resentatives and also the number of refinement iterations. A fail state for the
number of iterations is generated when it exceeds 25.

Fig. 3. MAE curve for some new images using VC-Aspsect

We can see from Table 1 that the random selection of images in the page zero
is widely outperformed by the user specific visual document recommendation.
In some situations, the random selection fails to locate in the collection the
relevant images in a reasonable number of refinement iterations. A ”fail” state
in Table 1 informs mainly about the fact that images used in the page zero are
not relevant and very far from the ideal query a user should formulate. When the
number of refinement iterations increases, this may be explained by a quality4

4 The term quality refers to the degree of closeness of image representatives to the
sought images.
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Fig. 4. AtlasMobile page zero for two users

Fig. 5. Precision-scope curves

of image representatives that deteriorates. It should be noticed that VC-Aspect-
Recommend selects relevant images with a quality better than those selected by
the VC-Aspect system since the chance of obtaining relevant images increases
with a relevant and diversified initial selection.

From these results, it is obvious to confirm the usefulness of modelling the
users to improve their experience with the CBIR systems.

6 Conclusion

In this paper we have addressed a new problem of recommending visual doc-
uments using a hybrid filtering approach which combines content based and
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Table 1. Number of refinement iterations using the three versions of AtlasMobile

Iterations
Experiment 1

Random 20
VC-Aspect 8

VC-Aspect-Recommend 8
Experiment 2

Random Fail
VC-Aspect 13

VC-Aspect-Recommend 9

collaborative filtering. The proposed VC-Aspect model allowed the prediction of
accurate ratings as the pure collaborative filtering Aspect model. Under some
assumptions, the VC-Aspect model predicted also accurate ratings for visual
documents with no associated ratings. We have presented a new algorithm for
top-N visual document ranking which takes into the diversity of recommended
images into account. Experimental results showed the gain in efficiency of CBIR
systems designed for mobile environments when initial example images are rec-
ommended according to the preferences of each user.
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Abstract. IntelliSearch is a complete and fully automated information
retrieval system for the Web. It supports fast and accurate responses to
queries addressing text and images in Web pages by incorporating state-
of-the-art text and Web link information indexing and rertieval methods
in conjunction with efficient ranking of Web pages and images by im-
portance (authority). Searching by semantic similarity for discovering
information related to user’s requests (but not explicitly specified in the
queries) is a distinguishing feature of the system. IntelliSearch stores a
crawl of the Web with more than 1,5 million Web pages with images and
is accessible on the Internet1. It offers an ideal test-bed for experimen-
tation and training and serves as a framework for a realistic evaluation
of many Web image retrieval methods.

1 Introduction

Searching for effective methods to retrieve information from the Web has been
in the center of many research efforts during the last few years. The relevant
technology evolved rapidly thanks to advances in Web systems technology [1]
and information retrieval research [2]. Image retrieval on the Web, in particular,
is a very important problem in itself [3]. The relevant technology has also evolved
significantly propelled by advances in image database research [4].

Several approaches to the problem of content-based image retrieval on the Web
have been proposed and some have been implemented on research prototypes
(e.g., ImageRover [5],WebSEEK [6], Diogenis [7]) and commercial systems. The
last category of systems, includes general purpose image search engines (e.g.,
Google Image Search 2, Yahoo 3, Altavista 4 Ditto 5) as well as systems providing
1 http://www.intelligence.tuc.gr/intellisearch
2 http://www.google.com/imghp
3 http://images.search.yahoo.com
4 http://www.altavista.com/image
5 http://www.ditto.com

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 697–708, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



698 E. Voutsakis, E.G.M. Petrakis, and E. Milios

specific services to users such as detection of unauthorized use of images, Web
and e-mail content filters (e.g., Cobion 6), image authentication, licensing and
advertising (e.g., Corbis 7).

Image retrieval on the Web requires that content descriptions be extracted
from Web pages and used to determine which Web pages contain images that
satisfy the query selection criteria. The methods and systems referred to above
differ in the type of content descriptions used and in the search methods applied.
There are four main approaches to Web image search and retrieval.

Retrieval by text content: Typically images on the Web are described by
text or attributes associated with images in html tags (e.g., filename, caption,
alternate text etc.). These are automatically extracted from the Web pages
and are used in retrievals. Google, Yahoo, and AltaVista are example systems
of this category. The importance of the various text fields in retrieving images
by text content depends also on their relative location with regard to the
location of the images within the Web pages [8].

Retrieval by image annotations: The Web pages are indexed and retrieved
by keywords or text descriptions which are manually assigned to images by
human experts. This approach does not scale-up easily for the entire range
of image types and the huge volumes of images on the Web. Its effectiveness
for general purpose retrievals on the Web is questionable due to the speci-
ficity and subjectivity of image interpretations. This approach is typical to
corporate systems specializing in providing visual content to diverse range
of image consumers (e.g., authentication, licensing and advertising of logos,
trademarks, artistic photographs etc.).

Retrieval by image content: The emphasis is on extracting meaningful im-
age content from Web pages and in using this content in the retrieval process.
Image analysis techniques are applied to extract a variety of image features
such as histograms, color, texture measurements, shape properties. This ap-
proach has been adopted mainly by research prototypes (e.g., [5,6,9]).

Hybrid retrieval systems: Combining the above approaches such as systems
using image analysis features in conjunction with text and attributes (e.g.,
[7,10,11]).

The problem of how to select authority Web pages and images on the topic
of the query has not been addressed by any of the above methods, which focus
mainly on image and text content. In Web text retrieval, link analysis methods
such as HITS [12] and PageRank [13] have been applied to estimate the quality
of Web pages and the topic relevance between the Web pages and the query.
Incorporating page content within link analysis has also been proposed [14].
Extending these ideas to image retrieval on the Web is the natural next step.
Building upon HITS, PicASHOW [15] shows how to handle pages that link to
images and pages that contain images. WPicASHOW [11] shows how to handle
image content in conjunction with link information.

6 http://www.cobion.com
7 http://pro.corbis.com
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Queries on the Web are issued through the user interface by specifying key-
words or free text. The system returns Web pages with similar keywords or text.
The highest complexity of queries is encountered in the case of queries by ex-
ample: The user specifies an example image along with a set of keywords (or
annotation) expressing his or her information needs. Queries by example image
require that that appropriate content representations be extracted from images
in Web pages and matched with similar representations of the queries. However,
image analysis approaches for extracting meaningful and reliable descriptions
for all image types are not yet available. The adaptation of image descriptions
to the different image types coexisting on the Web or to the search criteria or
different interpretations of image content by different users is also very difficult.
Typically, images are retrieved by addressing text associated with them (e.g.,
captions) in Web pages [8]. This is the stat-of-the-art approach for achieving
consistency of representation and high accuracy results.

IntelliSearch is motivated by these ideas. The link analysis and text retrieval
methods referred to above are implemented and integrated into IntelliSearch.
The resulting system provides an ideal test-bed for experimentation and train-
ing and also a framework for a realistic evaluation of state-of-the-art Web im-
age retrieval methods. An analysis of the performance of all these methods is
presented in [11,16]. The main points of this analysis are also discussed in this
work. Furthermore, IntelliSearch supports fast and accurate responses to queries
addressing Web pages or images by incorporating efficient indexing of text infor-
mation extracted from Web pages. The system stores a crawl of the Web with
1,5 million Web pages with images.

2 Information Retrieval in IntelliSearch

IntelliSearch supports queries by free text and keywords (the most frequent type
of image queries in Web image retrieval systems) addressing text or images in
Web pages. Typically, images are described by text surrounding them in the
Web pages (e.g., caption, title) [8]. The following image descriptors are derived
from Web pages based on the analysis of html formatting instructions:

Image Filename: The URL entry (with leading directory names removed) in
the src field of the img formatting instruction.

Alternate Text: The text entry of the alt field in the img formatting instruc-
tion. This text is displayed on the browser (in place of the image), if the
image fails to load. This attribute is optional (i.e., is not always present).

Page Title: The title of the Web page in which the image is displayed. It is
contained between the TITLE formatting instructions in the beginning of the
document. It is optional.

Image Caption: A sentence that describes the image. It usually follows or
precedes the image when it is displayed on the browser. Because it does not
correspond to any html formatting instruction it is derived either as the
text within the same table cell as the image (i.e., between td formatting
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instructions) or within the same paragraph as the image (i.e., between p
formatting instructions). If neither case applies, the caption is considered to
be empty. In either case, the caption is limited to 30 words before or after
the reference to the image file.

The similarity between a query Q and an image I is computed as a summaiton
of similarities between the query and the above image descriptors:

Simage(Q, I) = Sfile name(Q, I)+ Salternate text(Q, I) + (1)
Spage title(Q, I)+ Simage caption(Q, I).

For queries addressing the text content of Web pages, the similarity between
a query Q and a Web page W is computed as the sum of the similarities of the
query with the text descriptions obtained from the the entire Web page and its
title (if exists):

Stext(Q,W ) = Spage title(Q,W ) + Spage text(Q,W ). (2)

IntelliSearch implements the following two methods for computing similarityS.

2.1 Vector Space Model (VSM) [17]

Queries and texts are syntactically analyzed and reduced into term (noun) vec-
tors. A term is usually defined as a stemmed non stop-word. Very infrequent
or very frequent terms are eliminated. Each term in this vector is represented
by its weight. The weight of a term is computed as a function of its frequency
of occurrence in the document collection and can be defined in many different
ways. The term frequency - inverse document frequency model [17] is used for
computing the weight. Typically, the weight di of a term i in a document is
computed as di = tfi · idfi, where tfi is the frequency of term i in the document
and idfi is the inverse frequency of i in the whole text collection. The formula is
modified for queries to give more emphasis to query terms.

Traditionally, the similarity between two documents (e.g., a query Q and a
document D) is computed according to the Vector Space Model (VSM) [17] as
the cosine of the inner product between their vector representations

S(Q,D) =
∑

i qidi√∑
i q

2
i

√∑
i d

2
i

, (3)

where qi and di are the weights in the two vector representations. Given a query,
all documents (Web pages or images in IntelliSearch) are ranked according to
their similarity with the query.

2.2 Semantic Similarity Retrieval Model (SSRM) [16]

The lack of common terms in two documents does not necessarily mean that
the documents are unrelated. Similarly, relevant text may not contain the same
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terms. Semantically similar concepts may be expressed in different words in the
documents and the queries, and direct comparison by word-based VSM is not
effective. For example, VSM will not recognize synonyms or semantically similar
terms (e.g., ”car”, ”automobile”).

SSRM works by discovering semantically similar terms using WordNet 8 to
estimate the similarity between different terms. The similarity between an ex-
panded and re-weighted query q and a text d is computed as

S(Q,D) =

∑
i

∑
j qidjsim(i, j)∑
i

∑
j qidj

, (4)

where i and j are terms in the query and the query Q and document D respec-
tively and sim(i, j) denotes the semantic similarity between terms i and j [18].
Query terms are expanded with synonyms and semantically similar terms (i.e.,
hyponyms and hypernyms) while document terms dj are computed as tf · idf
terms (they are neither expanded nor re-weighted).

The method, although slow (due to its quadratic time complexity and exten-
sive searches for terms over WordNet and computing their semantic similarity)
has been demonstrated to outperform VSM for text and image queries [16].

2.3 HITS [12]

Co-citation analysis is proposed as a tool for assigning importance to pages or
for estimating the similarity between a query and a Web page. A link from page
a to page b may be regarded as a reference from the author of a to b. The number
and quality of references to a page provide an estimate of the quality of the page
and also a suggestion of relevance of its contents with the contents of the pages
pointing to it.

HITS exploits co-citation information between pages to estimate the relevance
between a query and a Web page and ranking of this page among other relevant
pages. HITS computes authority and hub values by link analysis on the query
focused graph F (i.e., a set of pages formed by initial query results obtained by
VSM expanded by backward and forward links). The page-to-page adjacency
matrix W relates each page in F with the pages it points to. The rows and the
columns in W are indices to pages in F . Then, wij = 1 if page i points to page
j; 0 otherwise. The Authority and Hub values of pages are computed as the
principal eigenvectors of the page co-citation WT ·W and bibliographic matrices
W ·WT respectively. The higher the authority value of an image the higher its
likelihood of being relevant to the query.

2.4 PicASHOW [15]

Building upon HITS, PicASHOW shows how to handle pages that link to images
and to pages that contain images. PicASHOW [15] demonstrates how to retrieve
high quality Web images on the topic of a keyword-based query. It relies on the
8 http://wordnet.princeton.edu



702 E. Voutsakis, E.G.M. Petrakis, and E. Milios

idea that images co-contained or co-cited by Web pages are likely to be related to
the same topic. Fig. 1 illustrates examples of co-contained and co-cited images.
PicAHOW computes authority and hub values by link analysis on the query
focused graph F as in HITS. PicASHOW filters out from F non-informative
images such as banners, logo, trademarks and “stop images” (bars, buttons,
mail-boxes etc.) from the query focused graph utilizing simple heuristics such as
small file size.

pages

P4

P3

P1

P2
...........

..........

co−contained images

images in co−cited

P5

Fig. 1. The focused graph corresponding to query “Debian logo”

PicASHOW introduces the following adjacency matrices defined on the set of
pages in the query focused graph:

W: The page to page adjacency matrix (as in HITS) relating each page in F
with the pages it points to. The rows and the columns in W are indices to
pages in F . Then, wij = 1 if page i points to page j; 0 otherwise.

M: The page to image adjacency matrix relating each page in F with the images
it contains. The rows and the columns in M ar indices to pages and images
in F respectively. Then, mij = 1 if page i points to (or contains) image j.

(W + I)M: The page to image adjacency matrix (I is the identity matrix)
relating each page in F both, with the images it contains and with the
images contained in pages it points to.

Similarly to HITS, PicASHOW defined the so called image co-
citation and bibliographic matrices [(W + I)M]T · (M+ I)W and
(W + I)M · [(W + I)M]T respectively. The ij-th entry of the image co-
citation matric is the number of pages that jointly point to images with indices
i and j. The ij-th entry of the image bibliographic matric is the number of
images jointly referred to by pages i and j. Fig. 2 illustrates the adjacency and
bibliographic matrices for the the focused graph of Fig. 1.

Image Authority and Hub values of images are computed as the prin-
cipal eigenvectors of the image-co-citation [(W + I)M]T · (W + I)M and
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P1 P2 P3 P4 P5

P1 0 0 1 1 0
P2 0 0 0 1 1
P3 0 0 0 0 0
P4 0 0 0 0 0
P5 0 0 0 0 0

P1 0 0 1 1 0 0
P2 0 0 0 0 0 0
P3 1 1 0 0 0 0
P4 0 0 0 0 1 0
P5 0 0 0 0 0 1

P1 1 1 1 1 1 0
P2 0 0 0 0 1 1
P3 1 1 0 0 0 0
P4 0 0 0 0 1 0
P5 0 0 0 0 0 1

Fig. 2. W, M and (W + I)M matrices computed by PicASHOW for the focused graph
of Fig. 1

bibliographic matrices (W + I)M· [(W + I)M]T respectively. The higher the
authority value of an image the higher its likelihood of being relevant to the
query.

PicASHOW can answer queries on a given topic but, similarly to HITS, it
suffers from the following problems [14]:

Mutual reinforcement between hosts: Encountered when a single page on
a host points to multiple pages on another host or the reverse (when multiple
pages on a host point to a single page on another host).

Topic drift: Encountered when the query focused graph contains pages not
relevant to the query (due to the expansion with forward and backward
links). Then, the highest authority and hub pages tend not to be related to
the topic of the query.

2.5 Weighted PicASHOW (WPicASHOW) [11]

PicASHOW does not show how to handle image content or image text context.
This problem is addressed by WPicASHOW (or Weighted PicASHOW) [11], a
weighted scheme for co-citation analysis is proposed. WPicASHOW relies on the
combination of text and visual content and on its resemblance with the query for
regulating the influence of links between pages. Co-citation analysis then takes
this information into account. WPicASHOW has been shown to achieve better
quality answers and higher accuracy results (in terms of precision and recall)
than PicASHOW using co-citation information alone [11].

WPicASHOW handles topic drift and mutual reinforcement as follows:

Mutual reinforcement is handled by normalizing the weights of nodes point-
ing to k other nodes by 1/k. Similarly, the weights of all l pages pointing to
the same page are normalized by 1/l. An additional improvement is to purge
all intra-domain links except links from pages to their contained images.

Topic Drift is handled by regulating the influence of nodes by setting weights
on links between pages. The links of the page-to-page relationW are assigned
a relevance value computed by VSM and Eq. 2 as the similarity between the
term vector of the query and the term vector of the anchor text on the link
between the two pages. The weights of the page-to-image relation matrix M
are computed by VSM and Eq. 1 (as the similarity between the query and
the descriptive text of an image).
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WPicASHOW starts by formulating the query focused graph as follows:

– An initial set R of images is retrieved. These are images contained or pointed-
to by pages matching the query keywords according to Eq. 2.

– Stop images (banners, buttons, etc.) and images with logo-trademark prob-
ability less than 0.5 are ignored. At most T images are retained and this
limits the size of the query focused graph (T = 10, 000 in IntelliSearch).

– The set R is expanded to include pages pointing to images in R.
– The set R is further expanded to include pages and images that point to

pages or images already in R. To limit the influence of very popular sites,
for each page in R, at most t (t = 100 in this work) new pages are included.

– The last two steps are repeated until R contains T pages and images.

WPicASHOW then builds M,W and (W + I)M matrices for information in
R. Fig. 3 illustrates these matrices for the example set R of Fig. 1 with weights
corresponding to query “Debian logo”. Notice that, in PicASHOW all non-zero
values in M and W are 1 (non normalized weights).

P1 P2 P3 P4 P5

P1 0 0 .6 .1 0
P2 0 0 0 .1 .1
P3 0 0 0 0 0
P4 0 0 0 0 0
P5 0 0 0 0 0

P1 0 0 .1 .1 0 0
P2 0 0 0 0 0 0
P3 .8 .7 0 0 0 0
P4 0 0 0 0 .2 0
P5 0 0 0 0 0 .15

P1 .48 .42 .1 .1 .02 0
P2 0 0 0 0 .02 .015
P3 .8 .7 0 0 0 0
P4 0 0 0 0 .2 0
P5 0 0 0 0 0 .15

Fig. 3. W, M and (W + I)M matrices computed by WPicASHOW for the focused
graph of Fig. 1

Image
Authority Values .751 .657 .0418 .0418 .008 0

Page P1 P2 P3 P4 P5

Hub Values .519 .0001 .854 .001 0

Fig. 4. Image Authority (left) and Hub values (right) computed by WPicASHOW in
response to query “Debian logo”

Fig. 4 illustrates authority and hub values computed by WPicASHOW in re-
sponse to query “Debian logo”. The answers to the query are ranked by authority
values. Notice the high authority scores of pages showing logo or trademark im-
ages of “Debian Linux”.

2.6 Weighted HITS [14]

Similarly to WPicASHOW, WHITS (weighted HITS) a weighting link analysis
scheme for retrieval of Web pages is also implemented. HITS uses link informa-
tion between pages (does not consider links to images or to pages containing
images). Links are weighted by their text similarity (as computed by VSM).
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3 IntelliSearch Architecture

A complete prototype Web image retrieval system is developed and is acces-
sible on the Web 9. The system is implemented in Java. The architecture of
IntelliSearch is illustrated in Fig. 5. It consists of several modules, the most
important of them being the following:

Query
Answers

WordNet

Link Analysis

WWW

Query Method

Crawler
Text Analysis

Image Analysis

Query

Index
TextDocument

Database

Connectivity
Server

Hash
URL

Storage

Collection Analysis

Retrieval

Fig. 5. IntelliSearch Architecture

Crawler module: Implemented based upon Larbin 10, the crawler assembled
locally a collection of 1,5 million pages with images. The crawler started its
recursive visit of the Web from a set of 14,000 pages which is assembled from
the answers of Google image search to 20 queries on topics related to Linux
and Linux products. The crawler worked recursively in breadth-first order and
visited pages up to depth 5 links from each origin.

Collection analysis module: The content of crawled pages is analyzed. Text,
images, link information (forward links) and information for pages that belong
to the same site is extracted.

Storage module: Implements storage structures and indices providing fast ac-
cess to Web pages and information extracted from Web pages (i.e., text, image
descriptions and links). For each page, except from raw text and images, the
following information is stored and indexed: Page URLs, image descriptive text
(i.e., alternate text, caption, title, image file name), terms extracted from pages,
term inter document frequencies (i.e., term frequencies in the whole collection),
term intra document frequencies (i.e., term frequencies in image descriptive text
parts), link structure information (i.e., backward and forward links). Image de-
scriptions are also stored.

The Entity Relationship Diagram (ERD) of the database in Fig. 6 describes
entities (i.e., Web pages) and relationships between entities. There are many-
to-many (denoted as N : M) relationships between Web pages implied by the
Web link structure (by forward and backward links), one-to-many (denoted as

9 http://www.intelligence.tuc.gr/intellisearch
10 http://larbin.sourceforge.net
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term

(link information)
relationship

document to document

descriptive text
type of 

web page

title

document URL

frequency

inter document

intra document

stemmed term

frequency

image page text

specialization

image 
description

document to term relationship

N:M

1:N

N:M

Fig. 6. The Entity Relational Diagram (ERd) of the database

1 : N) relationships between Web pages and their constituent text and images
and N : M relationships between terms in image descriptive text parts and
documents and. The ERD also illustrates properties of entities and relationships
(i.e., page URLs for documents, titles for page text, image content descriptions
for images, stemmed terms, inter and intra document frequencies for terms in
image descriptive text parts.)

The database schema is implemented in BerkeleyDB11 Java Edition. Berke-
leyDB is an embedded database engine providing a simple Application Program-
ming Interface (API) supporting efficient storage and retrieval of Java objects.
The mapping of the ERD of Fig. 6 to database files (Java objects) was imple-
mented using the Java Collections-style interface. Apache Lucene 12 is providing
mechanisms (i.e., inverted files) for indexing text and link information. There
are Hash tables for URLs and inverted files for terms and link information. Two
inverted files implement the connectivity server [19] and provide fast access to
linkage information between pages (backward and forward links) and two in-
verted files associate terms with their intra and inter document frequencies and
allow for fast computation of term vectors.

Retrieval module: Queries are issued by keywords or free text. The user is
prompted at the user interface to select mode of operation (retrieval of text
pages or image retrieval). All methods in Sec. 2 are implemented.

4 Conclusions

IntelliSearch 13 is a complete and fully automated system for retrieving text
pages and images on the Web. It supports retrieval of important (authoritative)
11 http://www.sleepycat.com
12 http://lucene.apache.org
13 http://www.intelligence.tuc.gr/intellisearch
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Web pages and images (by incorporating link analysis into its search and retrieval
methods) as well as, searching by semantic similarity for discovering information
related to the needs of the users (even if it is not explicitly specified in the
queries). Retrievals are speeded-up by indexing text and link information specific
to Web pages and images.

The results in [11,16] indicate that text searching methods like VSM and
SSRM are far more effective than link analysis methods (text is a very effective
descriptor of Web content itself). However, text similarity methods tend to assign
higher ranking even to Web pages and images pointed to by very low quality
pages such as pages created by individuals or small companies. Between the two,
SSRM demonstrated promising performance improvements over VSM.

Link information alone (e.g., as in HITS and PicASHOW) is not an effective
descriptor for Web pages and images. Link analysis methods tend to assign higher
ranking to higher quality but not necessary relevant pages. High quality pages,
on the other hand, may be irrelevant to the content of the query. Weighted link
analysis methods (WHITS, WPicASHOW) attempted to compromise between
text and link analysis methods.

IntelliSearch is currently being expanded to support queries by image content
(e.g., queries by image example). This requires that image analysis methods be
applied and appropriate image content representations extracted from images
and used in retrievals. Future work includes also experimentation with larger
data sets and more image types (i.e., video and graphics).
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Abstract. To store and retrieve large-scale video data sets effectively, the proc-
ess of shot-change detection is an essential step. In this paper, we propose an 
automatic shot-change detection algorithm based on Visual Rhythm Spectrum. 
The Visual Rhythm Spectrum contains distinctive patterns or visual features for 
many different types of video effects. For the improvement of detection speed, 
the proposed algorithm is executed by using the partial data of digital com-
pressed video. The proposed detection algorithm can be universally applied to 
various kinds of shot-change categories such as scene-cuts and wipes. It is 
shown by simulations that the proposed detection algorithm outperforms other 
existing approaches.  

1   Introduction 

With the ever increasing digital video data and the advancement of digital video ap-
plications, video indexing is now becoming an integral part of multimedia services 
which include a wide variety of areas such as digital library, video editing, video 
summarization, and video database. Once the digital video is indexed, the storage and 
retrieval will be more manageable and efficient forms of presentation may be devel-
oped based on the index. Thus, the normal first step towards the development of a 
system to efficiently store and retrieve the digital video is the development of highly 
accurate automatic video parser. 

The automatic video parsing algorithms usually consist of several parts or sub-
algorithms. It must deal with abrupt, as well as gradual shot changes, which include 
wipes, fade-ins, fade-outs, etc. The algorithm must be able to detect sudden lighting 
changes (e.g., flashlights and lighting conditions), and camera related effects, such as 
zoom, pan, and track. This collection of shot-change scenarios must all be incorpo-
rated into the shot-change detection algorithm. The existing algorithms deal with one 
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or many of these scenarios with different parts of the algorithm dealing with different 
scenarios. The recent literature on video parsing may be divided into two broad 
groups. The first of which presents uncompressed domain processing and mainly 
deals with uncompressed video data and certain features of the video such as ob-
ject[1], histograms[2], and edges[4]. The second group presents compressed domain 
processing and considers the DC image [3], [5], [6], [8], the number of forward versus 
backward motion vectors, and the macroblock data rate [7].  

With such shot-change detection algorithms, abrupt changes called scene-cuts are 
detected fairly well. It is thus more challenging to detect gradual changes including 
wipes as these are often missed or falsely detected. In this paper, we focus on the 
detection of scene-cuts as well as wipes. The proposed algorithm begins by extracting 
Visual Rhythm to compose Visual Rhythm Spectrum (VRS). Visual Rhythm Spectrum 
(VRS) reflects different types of Visual Rhythms of various scene types in the time 
domain. The VRS contains distinctive patterns or visual features for many different 
types of video effects. The different video effects manifest themselves differently on 
the VRS. In particular, scene-cuts are presented as perpendicular line and wipes ap-
pear as curves that run from the top to the bottom of the VRS. Thus, using the VRS, it 
becomes possible to automatically detect scene-cuts and wipes simply by determining 
various lines and curves on the VRS. 

2   Visual Rhythm Extraction 

2.1   Visual Rhythm and Pixel Sampling 

For the design of an efficient real-time shot-change detector, we resort using a portion 
of the original video. This partial video must retain most, if not all, video edit effects. 
We claim that our Visual Rhythm, defined below, satisfies this requirement. Let 

),,( tyxfv
 be the pixel value at location (x, y) and time t of an arbitrary video V. Then, 

the video V may be represented as: 

}.,2,1,0{,,)},,,({ ∈= tyxtyxfV v  (1) 

Let ),,( tyxfT
 be the representation of a reduced frame of a spatially reduced video 

TV  

of the original video V. Each reduced frame, or thumbnails, is a (horizontally and 
vertically) reduced image of its corresponding frame in the video V by a factor r. 
Thus, the spatially reduced video or sequence of thumbnails may be expressed as: 

}.,2,1,0{,,)},,,({ ∈= tyxtyxfV TT  (2) 

The relationship between the video V and its spatially reduced video 
TV  can be repre-

sented using their pixel correspondences as follows: 

1,0},,2,1,0{,,),,,(),,( −≤≤∈++= rkktyxtkrykrxftyxf yxyxvT
. (3) 

where xk  and yk  are offsets in pixel units and r is a reduction factor. Using the spa-

tially reduced video, we define the Visual Rhythm of the video V as follows: 
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)}),(),(({)},({ tzyzxftzfVR TVR == . (4) 

where )(zx  and )(zy  are one-dimensional functions of the independent variable z. 

Thus, the Visual Rhythm is a two dimensional image consisting of pixels sampled 
from a three-dimensional data (video). That is, the Visual Rhythm is constructed by 
sampling a certain group of pixels in each thumbnail and by temporally accumulating 
the samples along time. Thus, the Visual Rhythm is a two-dimensional abstraction of 
the entire three-dimensional video content pertaining to a particular scene type.  

Depending on the mappings )(zx  and )(zy , we can obtain various types of Visual 

Rhythms such as horizontal, vertical, and diagonal Visual Rhythms. According to 
extensive scrutiny and simulations, we find that the diagonal sampling approach 
shows the best detection performance. For a constant α , diagonal pixel sampling is 
achieved by the application of ),())(),(( zzzyzx α= .  

Fig. 1 shows two types of shot-changes and Fig. 2 shows diagonal sampling strat-
egy for the two shot-change types. The Visual Rhythm for wipe results from a repeti-
tive diagonal sampling over many contiguous video frames during the wipe transition. 

 

     
                               (a)                                                                   (b)  

Fig. 1. Shot-change types: (a) scene-cut (b) wipe 

 

 

Fig. 2. Visual Rhythm composition from thumbnail sequence 

2.2   Characteristics of VRS for Automatic Shot-Change Detection 

The Visual Rhythm, an abstraction of a video, is itself a two-dimensional image. It is 
a depiction of the entire video, which retains visual features of shot changes. In a 
VRS, pixels along a vertical line are those pixels uniformly sampled along the  
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diagonal of a frame. The vertical lines on a VRS will have similar visual features if 
the lines are from the same shot. On the contrary, the lines will have different visual 
features if they belong to different shots. Thus, if there is a shot change, shot bounda-
ries will become apparent on the VRS, as visual features of the vertical lines will 
change.  

We will now discuss how different shot changes result in different visual features 
on VRS. Fig. 3 shows some typical Visual Rhythm patterns arising from different 
types of edit effects. Fig. 3(a) shows the expected pattern on the VRS for an abrupt 
change or a scene-cut corresponding to the case of Fig. 1(a). Note that a cut will ap-
pear as a vertical line on the VRS. If two adjacent vertical lines on a VRS belong to 
different shots, their visual difference leads to a vertical line right at the shot boundary 
as depicted in Fig. 3(a). Fig. 3(b) shows a left-to-right horizontal wipe. Note that this 
particular wipe appears as an oblique line. Top-to-bottom vertical wipe will also have 
the same pattern. Both right-to-left horizontal and bottom-to-top vertical wipes will 
also appear as an oblique line, but with an opposite slope. However, center-to-
outskirts expanding wipe will appear as a curved line, as shown in Fig. 3(c). If an 
incoming shot is uniformly expanded in time, the wipe will appear as two oblique 
lines which have opposite slopes and meet at the center. Outskirts-to-center absorbing 
wipe will similarly appear as a curved line, except in the opposite direction. The im-
portant point is that all wipes will generate lines from top to bottom. And if this line is 
over a range of frames, instead of a vertical line over a single frame, then the shot 
change is probably due to a wipe. Obviously, a straight vertical line over a single 
frame implies an abrupt shot-change.  

 

Fig. 3. Illustration of Edit Effects on Visual Rhythm 

There are hundreds if not thousands of wipes that modern digital video editors can 
produce, and a user of the editor may still create an entirely different wipe. However, 
most wipes can be categorized into horizontal, vertical, expanding, absorbing, and 
diagonal types. Table 1 summarizes different manifestations of the five wipes on the 
VRS for diagonal sampling strategy.   
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Table 1. Visual Rhythms of wipe types for diagonal pixel sampling 

 Horizontal 
wipe 

Vertical 
wipe 

Absorbing 
wipe 

Expanding 
wipe 

Diagonal 
 wipe 

Visual 
Rhythm 

Oblique line Oblique line Curved line Curved line Vertical line 
(cut) 

 
We will show that Visual Rhythm composed by projection diagonally in thumbnail 

sequence can reflect all the features of shot-change. Fig. 4 shows the thumbnail se-
quence generated from the parts of a 'France' video sequence including shot-change. 
We sampled thumbnail image in every 5 frame from the 250 thumbnail frames of the 
sequence, resulting in 50 thumbnail images in total. There are 5 scene-cuts in 75~80, 
145~150, 170~175, 180~185 and 230~235 frames, and 1 wipe in 35~50 frames. Fig. 5 
shows the corresponding VRS by projecting thumbnail sequence diagonally for the 
250 frames. As shown in Fig. 5, there are 5 perpendicular lines corresponding to the 
scene-cuts and an oblique line corresponding to the wipe. As expected, abrupt 
changes appear as a straight vertical line on the VRS. And the wipe change results in 
a visually distinguishable line on the VRS. The line begins slanted which then appears 
to become vertical towards the top. According to these results, it is possible to design 
a new shot-change detection algorithm based on Visual Rhythm extraction to detect 
wipe-like effects (as well as cuts), because those effects manifest themselves as visu-
ally distinguishable lines (or curves) on the VRS. 

   

Fig. 4. 'France' video sequence including 5 scene-cuts and 1 wipe 

   

Fig. 5. VRS for 'France' video sequence 

Fig. 6 shows another VRS extracted from a real video sequence including various 
wipe types and scene-cuts. As explained earlier, and indicated on the figure, edit ef-
fects such as scene-cuts and wipes can easily be identified from the VRS. Note that 
scene-cuts take only one frame time to be distinguished. 
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Fig. 6. Visual effects of cut and wipe on the VRS 

2.3   Fast Generation of Visual Rhythms 

The digital video is usually compressed due to its huge volume. But, because most 
compression schemes use the discrete cosine transform (DCT) for intra-frame encod-
ing, we can generate the thumbnail sequence only by extracting the DC coefficient in 
the DCT domain without performing inverse DCT. Since the DC coefficient is actu-
ally the average pixel value of the block, the collection of these DC coefficients over 
the frame can serve as the thumbnail images. Noting this fact, Yeo and Liu [8] intro-
duced the DC image which consists of the DC coefficients of the original frame, and a 
sequence of DC images called the DC sequence. By accepting the DC image as a 
thumbnail and the DC sequence as a spatially reduced video, the thumbnail and the 
original video are related as shown below: 

     }.,2,1,0{,,,),8,8(
8

1
),,(

7

0

7

0

∈++=
= =

tyxtkykxftyxf
x yk k

yxvT
 (5) 

As for the P- and B-frames of MPEG, algorithms for determining the DC images 
have already been developed [7], [9]. Therefore it is possible to generate Visual 
Rhythms fast for the DCT-based compression schemes, such as Motion JPEG, 
MPEG, H.261 and H.263 videos. 

3   Proposed Shot-Change Detection Algorithm 

3.1   Wipe Detection Algorithm 

The proposed wipe detection basically searches for lines in VRS. The previous dis-
cussion indicates that during a wipe intensity change between the incoming and the 
outgoing shots give rise to abrupt intensity discontinuities on the VRS. The algorithm 
is designed to detect such discontinuities. Noting that the discontinuity will occur 
along time (horizontal detection) on the VRS, we would expect that the time deriva-
tive to be large during wipes. For the detection of such discontinuities, the following 
absolute value of the time derivative is computed: 

)1,(),(),( −−= tzftzftzd VRVR . (6) 

Note that for the detection of abrupt changes, ),( tzd  may be summed vertically 

(along z) first which may then be used to detect peaks. The detection of peaks in 
),( tzd  is performed for one horizontal line at a time. For this purpose, the following 

statistics are computed: 
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where ),( tzμ  and ),(2 tzσ  are sampled mean and variance of the time derivative 

image at (z,t), respectively. The set B means the restrained interval, called sliding 
window. For instance, it may be {-16, -15,…, -2, -1, 1, 2,…, 15, 16}, in which case 
the sliding window size N(B)=32. 

For the detection of peaks in ),( tzd , the following adaptive thresholding scheme is 

used: 

      +>
=

else.      ,0

),(),(),( if      ,1
),(

tzKtztzd
tzb

σμ . (9) 

where K is a parameter that can be controlled by user. Note that a particular cell of the 
binary mask ),( tzb  will be set if the signal ),( tzd  is above its local mean by K stan-

dard deviations. We have experimentally observed that the choice of K is quite arbi-
trary and values from 3 to 8 works quite robustly. This binary mask is used for deter-
mining the lines and curves that divide the Visual Rhythm in half. This is done pure 
by checking the connectivity of the curve on the binary mask and can be implemented 
quite easily by a simple recursive calculation using the quadratic sliding window, as 
shown in Fig. 7. If we find a pixel with 1),( =tzb  at (z,t) point in the binary mask, we 

set a specific quadratic window whose top-left point is (z-n, t-n) and bottom-right 
point is (z+n, t+n), and accordingly with area of (2n+1)2. By sliding this quadratic 
window for the detection of peaks, we find another point whose ),( tzb  value is 1. We 

repeat this procedure until we cannot find any more pixel values with 1),( =tzb . If this 

window moves from top to bottom in the VRS, we might declare the corresponding 
frame duration to be the wipe. Fig. 8 shows a trace of the quadratic sliding window 
for the detection of a wipe. 

3.2   Scene-Cut Detection Algorithm 

Scene-cut detection is similar to the Wipe, because it also detects discontinuous lines. 
Note that for the detection of abrupt shot-change, ),( tzd  in Eq. (6) should be summed 

vertically (along z). Thus the peaks in ),( tzd  line-up vertically. The abrupt changes 

are detected by first summing the derivative image vertically and then by the adaptive 
thresholding scheme, similar to the one described in Section 3.1 (except in one di-
mension), to determine the peaks in the summed data. 

The required one dimensional statistics for detecting scene-cuts are as follows: 

∈
=

Bk

kd
BN

t )(
)(

1
)(μ . (10) 
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22 ))()((
1)(

1
)(

∈
−

−
=

Bk

tkd
BN

t μσ . (11) 

Finally, we decide scene-cut according to the following thresholding criterion: 

cut  sceneaisframeth- tthethen),()()(If tKttd σμ + . (12) 

 

Fig. 7. Quadratic sliding window for the detection of peaks 

 

       

Fig. 8. A trace of the quadratic sliding window for the detection of a wipe 

 

4   Experimental Results    

To show the efficiency of the proposed algorithm, we compare with Yeo’s method [5] 
which is one of the well-known scene-cut detection algorithms. The method is similar 
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to the proposed one in that both algorithms make use of time derivative function and 
sliding window to get better detection of shot-change. According to [5], they form the 
difference sequence 1,2,1, −= NtDt

 as follows: 

)1,,(),,(),( 1 +−== + tyxftyxfffdD ttt
. (13) 

where N,,tft 21, =  is a sequence of DC images, and (x,y) denotes pixel location of 

the DC image. They compare 
tD with other difference sequences within a symmetric 

sliding window of size 2m-1. They declare a shot-change from 
tf  to 

1+tf , if 
tD  is the 

maximum within the sliding window, i.e., 
jt DD ≥ , j=t-m+1,…, t 1, t+1, …, t+m 1. 

The effectiveness of information retrieval systems is usually given by the well-
known standard measures recall and precision [10]. The recall parameter defines the 
percentage of true detection (performed by the detection algorithm) with respect to 
the overall events (shot changes) in the video sequence. Similarly, the precision is the 
percentage of correct detection with respect to the overall declared event. The recall 
and precision are defined as  

mc

c

NN

N
Recall

+
= , 

fc

c

NN

N
Precision

+
= .                                                               (14)  

where 
cN , 

mN  and 
fN  indicate the number of correct detections, missed detections, 

and false detections, respectively. 
The first experiment assesses the recall and precision of the detected shot-

boundaries. Table 2 summarizes the contents of the test video sequences used in the 
experiments including total number of frames and scene-cuts. 

 
Table 2. Video sequences types used in the experiment 

Sequences Sequence type Number of frames Number of cuts 
Dr. Dollitle Movie 56968 588 

CNN News 6350 41 

M.J. History Music video 16313 141 

French Kiss Situation comedy 14259 105 

 
Fig. 9 shows the recall-precision plots for the proposed and Yeo’s methods using 

Dr. Dollitle sequence. Each result is obtained by changing the required parameters 
and threshold values of the methods, and the results are verified manually by human 
observation. The result closest to the upper right-hand corner of the graph indicates 
the best performance. According to Fig. 9, the proposed method produces perform-
ances with higher recall and precision values. A high recall indicates the capability of 
detecting correct shot-changes, while a high precision indicates the capability of 
avoiding false detections. 
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Fig. 9. Recall-precision curves for ‘Dr. Dollitle’ sequence 

We show the recall-precision statistics for various test sequences in Table 3. The 
results of the table represent the best recall-precision combinations obtained by the 
proposed and Yeo’s methods.  

Table 3. Comparison of recall-precision performances 

 Proposed method Yeo’s method 
Sequences recall precision recall precision 
Dr. Dollitle 0.93 0.92 0.84 0.94 

CNN 1.00 0.97 0.97 0.88 

M.J. History 0.98 0.96 0.92 0.85 

French Kiss 0.98 0.98 0.92 0.91 

 
As shown in Table 3, the proposed approach outperforms Yeo’s in terms of recall and 
precision performance. For abrupt shot-change detection using the proposed method, 
the reported recall ranges between 0.93~1.0 and precision between 0.92~0.98. 

The proposed method is demonstrated with a typical VRS containing wipes and 
cuts. Fig. 10 illustrates the typical scenario during the wipe and the scene-cut detec-
tion process. Fig. 10(a) shows the luminance of the Visual Rhythm. Note that there 
are seven scene-cuts (vertical lines) and five wipes. The absolute value of the time 
derivative of this Visual Rhythm is depicted in Fig. 10(b). Note that all shot-changes 
are clearly visible on the derivative image. Since it is easier to detect scene-cuts than 
wipes, we first detect and remove the abrupt changes. The detected abrupt changes are 
then used to nullify the derivative image. The resulting derivative image, without the 
abrupt changes (vertical lines), is depicted in Fig. 10(c). Successively, binary mask 
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),( tzb  is formed using the sample mean and variance as described in Section 3. Fig. 

10(d) shows the resulting binary mask, which is exactly the peaks of the image in Fig. 
10(c). The algorithm then finds connected lines/curves that extend from the top to the 
bottom of the VRS. In this particular case, the recursive connectivity algorithm 
looked up to five pixels away from the current pixel, which corresponds to the quad-
ratic window size of 10. Fig. 10(e) shows the connected lines that extend from the top 
to the bottom of the VRS. Fig. 10(f) shows the pixel count of the connected lines for 
each frame. The declaration of a wipe is based on this pixel count. Notice that all 
wipes are detected and that the duration of wipes is also determined using this ap-
proach. By following these procedures, we can finally obtain the exact wipe  
durations.  

 

       

Fig. 10.  Illustration of the wipe detector: (a) Visual Rhythm Spectrum, (b) absolute value of 
the time derivative image, (c) the derivative image without abrupt changes, (d) binary mask for 
wipe detection, (e) detected wipes, (f) connected pixel counts vs. frame number 

5   Conclusion 

In this paper, we proposed a new shot-change detection algorithm based on Visual 
Rhythm Spectrum (VRS) for database construction and systematic arrangement of 
multimedia data. The VRS contains distinctive patterns or visual features for various 
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types of shot changes. The different video effects manifest themselves differently on 
the VRS. In particular wipes appear as lines/curves that run from the top to the bottom 
of the VRS. Our proposed algorithm simply detects these curves. The proposed algo-
rithm can be applicable not only to raw image but also to various DCT-based digital 
video standards including Motion JPEG, MPEG-1, MPEG-2, MPEG-4, and H.263.  

The proposed algorithm can be extended to 3-D in a straightforward manner. In-
stead of processing the 2-D Visual Rhythm, which is a cut through a 3-D DC image 
sequence, the full 3-D DC image sequence may be processed. The wipes will then 
appear as surfaces of intensity discontinuity in the DC image sequence. However, the 
exact performance gain offered by 3-D processing is unclear at this point, especially 
considering the amount of additional processing required for the 3-D data sets. 
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Abstract. The approaches to global motion estimation have been nat-
urally classified into one of two main classes: feature-based methods and
direct (or featureless) methods. Feature-based methods compute a set of
point correspondences between the images and, from these, estimate the
parameters describing the global motion. Although the simplicity of the
second step has made this approach rather appealing, the correspondence
step is a quagmire and usually requires human supervision. In opposition,
featureless methods attempt to estimate the global motion parameters
directly from the image intensities, using complex nonlinear optimization
algorithms. In this paper, we propose an iterative scheme that combines
the feature-based simplicity with the featureless robustness. Our experi-
ments illustrate the behavior of the proposed scheme and demonstrate
its effectiveness by automatically building image mosaics.

1 Introduction

In this paper, we address the problem of estimating the global motion of the
brightness pattern between a pair of images.

1.1 Motivation and State of the Art

Efficient methods to estimate global motion find applications in diverse fields. For
example, in remote sensing and virtual reality, it is often necessary to build large
images from partial views, i.e., to register, or align, the input images. The key
step for the success of these tasks is the estimation of the global motion between
the images. In digital video, image alignment is also crucial, for stabilization and
compression [1,2] and content-based representations [3].

Under common assumptions about the camera motion or the scene geometry,
the motion of the image brightness pattern is described by a small set of para-
meters, see for example [4,5] for different parameterizations. In many situations
of interest, the scene is well approximated by a plane, e.g., when the relevant
objects are far from the camera. In this case, the image motion is described by an
8-parameter homographic mapping. The homography also describes the image
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motion when the scene is general, i.e., unrestricted, but the motion of the cam-
era is restricted to a (three-dimensional) rotation (an approximation is when
the camera is fixed to a tripod), see for example [6,7]. In this paper, we address
the estimation of the homographic mapping from a pair of uncalibrated input
images.

Two very distinct approaches to homography estimation are found in the liter-
ature: feature-based methods estimate the homography by first matching feature
points across the images; and featureless, direct, or image-based, methods esti-
mate the homography parameters directly from the image intensity values. Other
techniques include the use of integral projections [8] and Fourier transforms [9].

Feature-based methods, e.g., [6,7,10], became popular due to the simplicity of
the geometric problem of estimating the homography from the feature point cor-
respondences. In fact, the homography parameters are linearly related to simple
functions of the feature coordinates. Thus, given a set of point correspondences,
the Least-Squares (LS) estimate of the homography parameters is obtained in
closed-form by simply using a pseudo-inverse. The bottleneck of these methods
is the feature correspondence step, which is particularly hard in several practical
situations, e.g., when processing low textured images [11,12].

Featureless methods, e.g., [4,13,14], avoid pre-processing steps by attempting
to estimate the homography directly from the images. Naturally, these methods
lead to robust estimates. However, since the homography parameters are related
to the image intensities in an highly nonlinear way, featureless methods use com-
plex and time-consuming optimization algorithms, e.g., Gauss-Newton, gradient
descent. See [15,16] for a discussion on the feature-based/featureless dichotomy.

1.2 Proposed Approach

Our method splits the first image into four blocks (quadrants) and deals with
each one as if it was a pointwise feature, i.e., it determines the displacement of
each quadrant by using standard correlation techniques. Then, it computes the
homography described by these four displacements and registers the first image
according to this homography. The registered image is naturally closer to the
second image. The procedure is repeated (and the computed homographies are
successively composed) until the displacement of each quadrant is zero, i.e., until
the registered image coincides with the second image.

Our approach combines the simplicity of the feature-based methods with the
robustness of the featureless ones. It has the robustness of the image-based ap-
proaches because it matches the intensities in the entire image (rather than using
only a subset of pointwise features). Our method is however much simpler than
current featureless approaches because the nonlinear optimization is taken care
of by using an iterative scheme where each iteration is as trivial as estimating
the homography from feature point correspondences.

1.3 Paper Organization

In section 2, we introduce the notation needed to parameterize the image global
motion in terms of an homographic mapping. Section 3 details the method we
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propose in this paper to estimate the parameters of the homography describing
the global motion between a pair of images. In section 4, we present experimental
results that illustrate our approach and section 5 concludes the paper.

2 Global Motion Parameterization

An homography describing the global motion of the brightness pattern is char-
acterized by an 8-parameter vector

h =
[
a b c d e f g h

]T
. (1)

The homography parameter vector h relates the coordinates (x1, y1) of a point
in image I1, with the coordinates (x2, y2) of the corresponding point in image I2,
through {

x2 (h;x1, y1) = (ax1 + by1 + c) / (gx1 + hy1 + 1)
y2 (h;x1, y1) = (dx1 + ey1 + f) / (gx1 + hy1 + 1) .

(2)

For simplicity, in projective geometry, the vector h is often re-arranged into a
3×3 homography matrix H and the equalities in (2) are written in homogeneous
coordinates p = [x, y, 1]T :⎡⎣x2

y2
1

⎤⎦ ∝
⎡⎣a b c
d e f
g h 1

⎤⎦⎡⎣x1
y1
1

⎤⎦ ⇔ p2 ∝ Hp1 , (3)

where ∝ represents the projective space equality, i.e., it denotes equal up to a
scale factor [6,7].

Re-arranging (2,3), we see that the homography parameters in h, or in H, are
linearly related to simple functions of the image coordinates. In fact, (2,3) can
be written as

Ψh = ψ, (4)

where

ψ =
[
x2
y2

]
, (5)

and

Ψ =
[
x1 y1 1 0 0 0 −x2x1 −x2y1
0 0 0 x1 y1 1 −y2x1 −y2y1

]
. (6)

Given the correspondences of a set of N feature points, i.e., given the set
of pairs of coordinates

{
(x1, y1)i, (x2, y2)i, i = 1, . . . , N

}
, the LS estimate of the

homography parameter vector h is easily obtained by using the pseudo-inverse to
invert the set of 2N linear equations like (4). Since vector h is 8-dimensional (1),
at least 4 feature points are required to unambiguously determine the homogra-
phy between the images. In this case, which is the relevant one for the algorithm
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we propose in this paper, the homography describing the global motion of the 4
feature points, is simply obtained as

h =

⎡⎢⎢⎣
Ψ1

Ψ2

Ψ3

Ψ4

⎤⎥⎥⎦
−1

8×8

⎡⎢⎢⎣
ψ1
ψ2
ψ3
ψ4

⎤⎥⎥⎦
8×1

, (7)

where Ψ i and ψi denote matrices and vectors defined as in (4), now computed
with the coordinates of each feature point i.

A reader familiar with feature-based methods may note that usually the num-
ber of feature points is much larger than the minimum 4 required and the es-
timate of the homography is usually computed from the singular value decom-
position of a matrix that collects the observations, rather than from the gener-
alization of (7). In opposition, we use the simple closed-form solution in (7) for
4 features, because, as it will become clear in the sequel, the robustness of our
method comes from using the intensity values in the entire images, rather than
from using an huge number of pointwise features.

3 Global Motion Estimation

Although the homography describing the global motion is easily estimated from
point correspondences using (7), pointwise features are difficult to match from
image to image in an automatic way. This inspired us to develop an algorithm
that overcomes the difficulty without resorting to time-consuming nonlinear op-
timization, unlike current image-based, or featureless, methods. This section
describes our algorithm.

3.1 Feature-Based, Featureless, or Both ?!

Rather than attempting to match hundreds of pointwise features, we use the
minimum possible number, i.e., four, but with a much larger dimension—each
feature occupies one quadrant of the first image I1. This way we take into account
all the intensity levels of the entire images. Our method proceeds by matching
each of these four feature blocks to the second image I2, using standard corre-
lation techniques. Naturally, this results in a very rough matching, unless the
global motion between I1 and I2 is a pure translation. Then, using expression (7)
with the coordinates of the centers of the feature blocks1, we obtain a first es-
timate ĥ1 of the homography describing the global motion between images I1
and I2.

Now, apply the homographic mapping characterized by the estimate ĥ1, to
the first image I1. If ĥ1 was an accurate estimate, this would align I1 with I2.
1 Due to the chosen location for the feature blocks, the matrix inversion in (7) is well

conditioned. It is singular only in degenerate situations, e.g., when the centers of
three blocks become colinear or the centers of two blocks collapse into a point.
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Since in general ĥ1 will be a rough estimate, applying this homography to I1
will generate an image I′ that is just “closer” to being aligned with I2. This is
the fact exploited by our algorithm—we now use I′ as the first input image and
proceed again as just described, now to estimate h′, the homography describing
the motion between I′ and I2. The estimate ĥ′ will be more accurate than ĥ1
because the corresponding input images are closer to being aligned, thus the
block features (the image quadrants) will be better matched.

To obtain the second estimate ĥ2 of the homography between the original
image I1 and I2, we just need to combine the first estimate ĥ1 with the update ĥ′.
From (3), we see that this operation is easily expressed using the homogeneous
representation of the homographies in terms of the corresponding matrices Ĥ2,
Ĥ1, and Ĥ′:

Ĥi+1 ∝ ĤiĤ′ , (8)

where, at this point, i=1. The process is repeated until the displacements of the
block features is zero (in practice, until they are below a small threshold). The
update matrix Ĥ′ converges to the identity I3×3 and the sequence of estimates
Ĥi converges to the homography describing the global motion between images I1
and I2.

This paragraph summarizes our claims relative to the approach just described.
Like the feature-based methods, our approach exploits the fact that the homog-
raphy is easily estimated from a set of spacial correspondences but, unlike those,
it avoids matching hundreds of pointwise features. Like the image-based meth-
ods, we match the intensity levels in the entire images, but, unlike those, we
avoid complex and time-consuming optimization algorithms.

3.2 Multiresolution Processing

Naturally, attempting to match large regions, such as the image quadrants, with
a simple translational motion model may lead to a very poor match when the
global motion is far from a pure translation. As a consequence, in such situations,
the algorithm described above may exhibit slow convergence or even get stuck at
a point that does not correspond to the true solution. To speedup the convergence
and better cope with global motions far from pure translations, we use a coarse-
to-fine strategy.

We build a multiresolution pyramid [17] and start running the algorithm at its
coarsest level. The estimate of the homography at each level is used to initialize
the algorithm at the following (finer) level. The final estimate of the homography
is then obtained at the finest level of the pyramid, i.e., at the full resolution of
the input images. The loss of detail at the coarser levels of the pyramid is what
enables a fast convergence to the true solution, even with a model as simple as
the pure translation for the motion of each quadrant.

3.3 Summary of the Algorithm

In short, our method computes the homography describing the global motion
between images I1 and I2 through the following steps (image coordinates are
normalized such that x, y ∈ [0, 1]):
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1- Build multiresolution pyramids for I1 and I2. Initialize the resolution to its
coarsest level l = 0, the iteration number i = 0, and the estimate of the
homography Ĥ0 = I3×3.

2- Apply the current homography estimate Ĥi to image I1 at resolution l,
obtaining I′.

3- Split I′ into its four quadrants and compute their displacements that best
match image I2 at resolution l, using standard correlation techniques.

4- Compute the vector h′ that describes the motion of the centers of the image
quadrants, using (7).

5- Update the homography estimate Ĥi+1 by composing the previous esti-
mate Ĥi with Ĥ′ through (8).

6- If the displacements of the quadrants are below a small threshold, increase
the resolution level, l= l+1 (if it was already the full resolution of the input
images, then stop).

7- Increase the iteration number, i= i+1, and go to 2-.

4 Experiments

In this section, we describe experiments that illustrate the efficiency of the pro-
posed approach.

4.1 Chess Table Images

The first experiment illustrates the fast convergence of the algorithm by compar-
ing the images before and after the first iteration. We applied an homographic
mapping to an image of a chess table, obtaining an highly distorted version of
it, see the two images on the top of Fig. 1. These images were the input to our
algorithm. Superimposed with them, we represent the initial (very rough) cor-
respondences of the 4 quadrants of the image. Using these 4 correspondences,
our algorithm computes the corresponding homography and registers the first
input image according to it. This leads to the bottom left image. Note how closer
to the second input image is the bottom left one, when compared to the first
input image (top left one). The displacements of the new blocks are now much
smaller—see the rectangles superimposed to the bottom images of Fig. 1. Our
experience has shown that they converge to zero in a very fast way, which, in
turn, leads to a fast convergence of the estimated homography between the two
images.

In order to demonstrate the performance of the proposed algorithm with real
video, we built several mosaics from video sequences, in a fully automatic way.
Our system estimates the homographies between successive video frames and
composes them to align all the images. Then, the intensity of each pixel of the
mosaic is computed by averaging the intensities of the frame pixels that overlap
at the corresponding position. We now illustrate with two of these mosaics.
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Fig. 1. Behavior of the proposed algorithm. Top line: images to register, with corre-
spondences of the four quadrants superimposed. Bottom line: the same, after the first
iteration. Notice how the left image approximates the right one.

Fig. 2. Towel video sequence: three sample frames

4.2 Beach Towel Video Sequence

We used several 640×480 images showing partial views of a beach towel, see the
three sample images in Fig. 2. From our experience with images of this size, it
suffices to use a multiresolution pyramid with four resolution levels. The number
of iterations needed to estimate each homography was very small, typically less
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Fig. 3. Mosaic recovered from the towel video sequence in Fig. 2

Fig. 4. Carpet video sequence: eight sample frames

than 5. The recovered mosaic, shown in Fig. 3, illustrates that the homogra-
phies estimated by our algorithm are accurate and appropriate for this kind of
application.

4.3 Carpet Video Sequence

To demonstrate the performance of our method when dealing with long video
sequences, we used a 512×512 video stream with 26 frames of a carpet. Sample
images are shown in Fig. 4. Although these images, obtained with an ordinary
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Fig. 5. Mosaic recovered from the carpet video sequence in Fig. 4

camera, are rather noisy due to video compression and fast camera movement,
the recovered mosaic, shown in Fig. 5, confirms the good performance of our
method. Note that feature-based methods usually fail to automatically align low
contrast images, as the ones we use in this experiment, because it is very hard
to compute the correspondences of pointwise features in this scenario.

5 Conclusion

We proposed a new method to estimate the homography describing the global
motion between a pair of images. Our method combines the simplicity of the
feature-based approaches with the robustness of the featureless ones. We illus-
trate the efficiency of the proposed algorithm when building, in a fully automatic
way, image mosaics from uncalibrated video streams.
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Abstract. A primary tool to extract information about moving objects is back-
ground subtraction. In this technique, the difference between a model of what is
static, or background, and the current image of the scene gives information about
what is in the prime plane or foreground. This study focus on the pixelwise updat-
ing mechanism of the background model throughout the analysis of the images
provided by a fixed camera. The concept of intrinsic curves, early introduced in
the field of stereovision, is extrapolated to the problem of detecting the mov-
ing boundaries. We use a mixture of Gaussians to register information about the
recent history of the pixel dynamics. Our method improves this model in two
ways. Firstly, it reduces the chances of feeding the mixture of Gaussians with
foreground pixels. Secondly, it takes into account not just the scalar pixel value
but a richer description of the pixel’s dynamics that carries information about the
interpixel variation. Ample experimental results in a wide range of environments,
including indoors, outdoors, for a different set of illumination conditions both
natural and artificial are shown.

1 Introduction

Nowadays, there is an increasing demand for automatic monitoring systems based on
image analysis fueled by factors such as the increasing existence of imaging devices,
our own limitations to watch every available video source, an the development of im-
portant multimedia applications [18]. Motion is a basic capability of visual perception
systems. Many important higher perceptual tasks can be built on top of it, including
tracking, and recognition. A primary tool to extract information about moving objects is
background subtraction. In this technique, the difference between a background model
and the current image of the scene gives information about what is in the prime plane or
foreground. Depending on the definition of background, its general solution will involve
the distinction of foreground objects even when the background objects are moving[17],
and indeed, even when the camera itself is moving[1]. However, there is a fairly large
number of scenarios where the constraint of a static background imaged with static
cameras is rather useful and interesting applications can be developed.

Piccardi[16] proposes a classification of background construction methods based on
speed, memory requirements and accuracy. Functionally, the problem can be divided
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(a) A sample frame out of a test sequence.
The blue square is detailed in (b).

(b) Image patch intensity variations through-
out time.

105 110 115 120 125 130 135 140 145 150
40

50

60

70

80

90

100

110

120

frame

in
te

ns
ity

100 110 120 130 140 150
−15

−10

−5

0

5

10

15

frame

di
ffe

re
nc

es

50 55 60 65 70 75 80 85 90 95 100
−15

−10

−5

0

5

10

15

intensity

d
if
fe

re
n
c
e
s

(c) Intensity. (d) Differences. (e) Intensity versus Differences.

Fig. 1. A pixel is observed during 40 frames. The space-time representation of the image patch
in (a) is shown in (b). The patch central pixel intensity variations(c) and differences(d), generate
the intrinsic curve in (e).

into several interesting ones. Consider for instance, the initialization, or how to ar-
rive to the initial background model. Since it may be seen as a classification problem
some researchers have used optical flow to either formulate hypotesis[5], train Neural
Networks[4], or use Support-Vector Machines [12]. Another problem is to reduce the
time to figure out the background revealed by a moving foreground object. Kaup and
Aach[10] exploit spatiotemporal correlation, and motion information. The surrounding
known background area is analyzed and spatially extrapolated using an spectral do-
main extrapolation algorithm. These techniques are rather important for applications
such as videoconferencing[13] where background coding for efficient compression and
transmission is needed. The problem of updating the background model has many in-
teresting facets. Since deciding a pixel classification based solely on the base of a single
threshold may be too limiting, Kumar et al.[11] suggest the use of a hysteresis thresh-
old technique. After a decision has been taken about what is background and what is
foreground, there is still space for improving the results. Filling holes, dilating bor-
ders are among the usual strategies used. He et al.[7] present a background updating
algorithm which combines the variation of a neighboring area with the difference be-
tween the current and previous values in order to predict the new values of the pixels
on the background. Nowadays, it is widely accepted that color can be used to identify
the shadows casted by objects[2]. Horprasert[8] designs a color model that separates the
brightness from the chromaticity component. Their conclusion is similar to Han et al.[6]
whom propose an algorithm to deal with gradual illumination changes. To cope with
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Fig. 2. The different classes of intrinsic curves that can be observed. In (a)-(c) the stability zone
moves from one place to another. In (d)-(f) the curve comes back to the original stability zone
after the occluding object pass by. In (g)-(i) the stability zone extends smoothly on the intensity
axis. The first two sets of figures correspond to a few dozens of frames. The last set corresponds
to two days of observations of the same pixel.

the problem of shadows, they propose a color model where chromaticity distortion is
measured.

In this paper, we introduce a technique for background updating that uses intrin-
sic curves[21]. Intrinsic curves are N -values functions whose components are obtained
from applying operators Pn to the intensity variation over time. This technique works
at pixel level. It can be complemented with the knowledge generated at region level[25]
or scene level[22]. The advantage of treating each pixel independently is that this gives
a lot of flexibility at the expense of greater variability due to noise. For cases where
the illumination conditions are controlled and there is the opportunity for observing the
scene without foreground objects a simple median filter[24] could be used. However,
this is rarely the case. Most common is the fact that the background image has to be
adjusted as the time pass by. Huang et al.[9] address the problem of separating fore-
ground from background in color images. They assume that background regions are
relatively smooth but may have gradually varying colors or slightly textured. Voting
may be another strategy to define the background pixel value from a set of samples.
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Fig. 3. Convolution with a Half-Gaussian that takes into account only the values before the current
position (red-circled line) or the values after the current position (blue-starred line)

For a given pixel, Tai and Song [20] propose to accumulate the intensity value obser-
vations into a histogram. The most frequent value is used as an estimate of the back-
ground value. They apply the proposed method to a vision-based traffic monitoring
system to segment moving vehicles from traffic image sequences. In a seminal paper,
Stauffer and Grimson[19] proposed to model each pixel as a mixture of Gaussians.
The gaussian distributions of the adaptive mixture model are evaluated to determine
which are most likely to result from a background process. Each pixel is classified
based on whether the Gaussian distribution which represent it most effectively is con-
sidered part of the background model. This model has been adapted widely, and studied
extensively. For instance, Wayne and Schoonees[15] developed a tutorial paper to de-
scribe a practical implementation of the Stauffer-Grimson algorithm and provide values
for all model parameters. In their document, they show what approximations to the
theory were made and how to improve the standard algorithm by redefining those
approximations.

In the rest of the paper, we introduce a technique to detect moving objects in a scene
with static background imaged from a fixed camera. We focus on the background up-
date stage, assuming that initialization, shadows, uncovered background, and region and
frame level analysis can be deal with using some of the techniques mentioned before.
In §2, we review the intrinsic curve paradigm and illustrate how it is useful to detect
moving boundaries. Then, in §3, the background detection approach using mixture of
Gaussians is visited. There, we show how both ideas can be blended. Next, in §4, we
present experiments with several image sequences under an ample set of conditions.
Finally, we summarize our results and outline future research.

2 Detecting Moving Boundaries

In this section, it is introduced an algorithm to distinguish, at pixel level, moving from
static surfaces by analyzing a pixel dynamics in a particular intrinsic curve space.
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Fig. 4. State diagram for a pixel. The conditions to change state are commented within the text.

2.1 Intrinsic Curves

In the context of stereovision, Tomasi and Manduchi [21] proposed the description
of scanlines in terms of a set of operators Mn. Thus, a intrinsic curve is a curve
m(t) = {mn(t), t ∈ R} in RN parameterized by the real variable t such that m is
generated by applying N operators Mn to the original signal m0(t) to produce the new
signals mn(t). Tomasi and Manduchi were specially interested in diffeomorphisms,
i. e., mappings between manifolds which are differentiable and have a differentiable
inverse[23]. In particular, as Tomasi and Manduchi did in their paper, in this study is
interesting to apply operators of the form

mn(t) = [Mnm0](t) =
dn

dtn
m0(t). (1)

Let us focus on a single pixel intensity dynamics throughout time. Suppose that it has
a background intrinsic curve model α(t) while β(t) is the intrinsic curve for the values
being observed. Tomasi and Manduchi noted that in the intrinsic curve space, noise
apart, both curves will follow the same trajectory. However, during an occlusion, they
will experience a significant deviation of one respect to the other. When the occlusion
ends, both curves will meet again in a place that depends on whether the occluding
object became part of the background. This idea is illustrated in Fig. 1. In general, an
intrinsic curve that belongs to the background is defined within what we call a stability
zone. Here, stable corresponds to the notion that the observed curve values are drawn
from a stable distribution[14]. For simplicity, we assume that the stable distribution
follows a Gaussian model given by

h(x) =
1

(2π)N/2‖Σ‖1/2 exp
[
−1

2
(x− μ)T

Σ−1 (x− μ)
]
, (2)

with x = m(t), the observed intrinsic curve, and μ = [m0, . . . ,mN−1], the intrinsic
curve components mean value, and covariance matrix Σ. Background occlusions due
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to foreground objects are rather difficult to describe in terms of a parametric distribution.
Intrinsic curves help us to distinguish between both.

We have noted three kinds of intrinsic curves: leaving, returning, and steady. The
leaving case occurs when the foreground objects integrates into the background (illus-
trated in Fig 2(a)-(c)). This is the typical case, for instance, of a car parking. Imagine
that a intrinsic curve is in the stability zone. When the car occludes the background
the curve departs from it. Then, when the car finally parks, the curve finds, in general,
another stability zone and the parked car is integrated into the background model. In
the returning case (illustrated in Fig 2(d)-(f)), the curve remains stable until an object
occludes the background. At that moment, the curve leaves the stability zone. When
the object passes, the curve comes back to its original stability zone. The previous two
cases occur when the background is occluded. The steady case describes the long term
behavior of a pixel that belongs to the background. This event occurs, for instance, when
the illumination changes smoothly as the day passes by. Fig. 2(g)-(i) show two days of
observation of the same pixel location. As the day passes by the illumination increases
and decreases smoothly.

2.2 Detecting Motion

To detect moving boundaries using intrinsic curves, the prime problem is to distinguish
the stability zone. The pixel will be classified as being part of the background until it
leaves the stability zone, and during that time it will be part of the foreground class.
It will return to the background class once it stabilizes again. In practice, image noise
makes it hard to classify the state of a pixel. Let the pixel intensity m0(t) at time t
be described by m0(t) = n(t) + ξ(t), where n(t) is the true image intensity value
and ξ(t) is the image noise. Traditionally, one way to remove this noise has been by
using low pass filters. However, applying filters across region boundaries may result in
undesirable results because regions belong to different populations. To remove noise, a
zero-mean Gaussian filter is applied but with a twist. Half-Gaussian are used to remove
the noise, such that operators

gp(t) =
2

πσ2 exp t2

2σ2 −∞ < t ≤ 0
0 otherwise

, and gf (t) =
2

πσ2 exp t2

2σ2 0 ≤ t < ∞
0 otherwise

,

(3)
are applied simultaneously. The original signal m0(t) is thus filtered out resulting in
two estimates, p0(t) and f0(t), that take into account only frames before and after the
current one, respectively, such that

p0(t) = m0(t) ∗ gp(t), and f0(t) = m0(t) ∗ gf(t). (4)

Let m(k) correspond to the observation of a pixel in position x at time k. The se-
quence is smoothed using as many frames as required by the filter window width. Let us
call k the present time. Half of the filter’s window include values corresponding to the
previous frames and half of it values corresponding to the next frames. After smoothing,
there will be signals p0(k) and f0(k) corresponding to estimates of the true pixel in-
tensity. Intrinsic curve descriptors for the i-order difference can be computed using the
estimates of the (i− 1)-order. This way, there will be an intrinsic curve description that
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considers the previous frames, p(k) = {p0(k), p1(k), . . . , pN−1(k)}, and another con-
sidering the next ones, f(k) = {f0(k), f1(k), . . . , fN−1(k)}. As it is illustrated in Fig.
3, p and f are useful to detect respectively the beginning and ending of an occlusion.

3 Adding Memory

Stauffer and Grimson[19] proposed one of the most popular methods to estimate the
model of the intensity variations for an image sequence took from a fixed camera. Their
method is based on computing on-line the parameters of a mixture of Gaussians (MOG)
for each individual pixel. In this method, a given pixel intensity value is classified as
either part of the background or the foreground depending on whether the value is likely
to be interpreted by the respective statistical model. In practice, the method generates
between 3 and 5 Gaussians. Intrinsic curves aims to improve this model in two ways.
On the one hand, they do not feed the mixture of Gaussians with foreground pixels. On
the other hand, they take into account not just the scalar pixel value but a richer de-
scription of the pixel’s dynamics that carries information about the interpixel variation.
In this section, we complement the intrinsic curve model with the addition of memory
capabilities that could be used to describe what has been occurring in the past. First, the
MOG model is described. Then, MOG and intrinsic curves are combined into a single
paradigm.

3.1 Mixture of Gaussians

MOG aims to model the image of a dynamic scene as perceived from a fixed camera
by a set of Gaussians. Given a set of n points in one dimension, x1, . . . , xn ∈ R, and
a family F of probability density functions on R, the problem is to find the probability
density f(x) ∈ F that is most likely to have generated the given points. In this method,
each member of the family F has the same general Gaussian form. Each member is
distinguished by different values of a set of parameters θ. That is

f(x; θ) =
K

k=1

qkg(x;μk, σk), where g(x;μk, σk) =
1√

2πσk

exp −1
2

x − μk

σk

2

,

(5)
is a 1-dimensional Gaussian function and θ = (θ1, . . . , θK) = ((q1, μ1, σ1), . . . , (qK ,-
μK , σK)), is a 3K-dimensional vector containing the mixing probabilities qk as well
as the means μk and standard deviations σk of the K Gaussian functions in the mix-
ture. When a new observation xt is available, it is compared again the parameters of the
Gaussian models. If || x− μk ||≤ ασk, then it is assumed that the observation is likely
to be produced by a perturbation of the true value similar to the one expressed by the
k-model. Typically, α is chosen to be 3, meaning that x is within 99.73% of the cases
occurring under this model. If an observation occurs that can not be explained by the
current set of Gaussians, a new model with high variance and centered around the obser-
vation is initialized. This model becomes part of the mixture of Gaussians. Otherwise,
the new observations helps to learn the true value of the parameters. Most commonly
the learning process followed is called Estimation-Maximization (EM). In the first place
a lower bound function bi(θ) is claimed to approximate f . Then the parameters that
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maximize this function are found. Since not all the observations are available at once,
an on-line version of the EM algorithm uses the following set of equations.

μt+1 = ρμt + (1− ρ)xt, and σ2
t+1 = ρσ2

t + (1− ρ)(xt − μt+1)2 ,
(6)

where ρ ∈ [0, 1] is the learning rate.

3.2 Estimating the Background Model

In our model, a pixel can be in anyone of three states (see Fig. 4): stable, transition, and
foreground. To reduce the memory space and computing demands, let p(k) = (pk, ṗk)
and f(k) = (fk, ḟk) be respectively the estimate for the intrinsic curves for a particular
pixel at time k using the samples before and after the current frame. Initially, a pixel is
classified in the transition state. The change of state is governed by the following rules:

– A transition pixel will stay like that if || ṗk ||> ε, and || ṗk || is showing a decreasing
tendency. Otherwise, if || ṗk ||> ε but || ṗk || does not show a decreasing tendency
the pixel will change state to foreground. A transition pixel will change its state to
stable if || ṗk ||< ε.

– An stable pixel will remain in that state provided p is in the stability zone. Other-
wise, the state will change to foreground.

– A foreground pixel will stay like that if f is not in the stability zone. Otherwise, its
state will change to transition.

The decreasing tendency function D(xi) is used to solve the problems caused by
temporal aliasing. When an object has moving parts that occlude and accretes the back-
ground too fast, the noise filters receive samples from different distributions and the
result is not accurate. A similar situation occurs when objects move too close to each
other. The filter’s window spans both objects mixing up their respective populations.
However, in those cases f returns for a moment to a stability zone and then bounces out
in response to the following occluding object. If during this time p keeps approaching
the stability zone then it can be assumed that the pixel is a stable one.

A pixel classified as stable is not necessarily part of the background. That is, imagine
that a large, homogeneous object is moving on top of a static background. The frontal
part of the object will be detected as a moving region as well as the rear part. However,
once a pixel enters the stable state, it will start building a model for the variation of the
intensity of this pixel. What is being produced is a set of layers that model the pixel
dynamics. So the criteria that we have used is the following one. If there is a pixel
with more that one Gaussian description and one of the Gaussians has been used in the
current frame, i.e., the pixel is in the stable state, then that pixel is considered part of the
foreground. This strategy has proved to be useful for instance when detecting leftover
objects. Imagine for instance a parking lot. When a new car parks, its figure outstand
because although it stabilizes, a different background was there before. A consequence
of this is that when a parked car leaves, its silhouette will remain. So it really depends
on what was the previous state of the scene.

Aging can be applied for pixels that have been in the scene for a long time, but
whose Gaussian description has not been visited for some time, the application erases
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the Gaussian that models it. This allows to eliminate the cases described before where
parked objects leave the scene and left their ghost behind. Also, Gaussians with few
samples not used for some time are eliminated from the Gaussian mixture because it is
considered that they were the result of noise.

4 Experimental Results

The model just described was implemented on an Intel Pentium IV computer with 3GHz
clock frequency. It was programmed in MATLAB and tested with several sequences
that included indoors and outdoors scenarios, with natural and artificial light, imaged
during nighttime and daytime. For the experiments, color images were converted into
grayscale ones. The average processing speed was about 5,300 pixels per second. Due
to lack of space, we illustrate the results with a few frames out of a poll of sequences.
PETS stands for Performance Evaluation of Tracking and Surveillance Systems[3]

(first row in Fig. 5). The sequence has 2688 JPEG frames. The individual frame res-
olution is 768 × 576 color pixels. There are seven persons or groups of persons that
at different times cross the scene. There are also three vehicles that park or do some
kind of manoeuver, like moving back and forth. In general, when the objects move
their shape is well delineated. In this sequence, the moving objects either pass by or
arrive to the scene. There is one truck that enters the scene, parks, and afterwards leaves
the scene. In such cases, the foreground objects are correctly detected and when they
leave aging and small groups filtering can get ride of the traces left. However, see the
Laboratory sequence, which has 182 color frames with resolution 640 × 480 (sec-
ond row in Fig. 5). In this sequence a person walks around a computer laboratory. The
person dresses a shirt with a black squares drawing and black pants. The sequence starts
with the person standing at the door. As he leaves this position, his silhouette is left be-
hind. Whether to leave or remove one of such figures depends on a decision that cannot
be taken at pixel level and also on factors such as the initial state of the scene back-
ground and ultimate application of the surveillance system. Fig. 5(b.1) shows also the
trajectory followed by the person. This trajectory was computed using the blob centroid
in each frame of the sequence. Some problems related to shadows that appear in this
sequence are more evident in the sequence Soccer. The Soccer sequence has 9,744
frames with resolution 320× 240(third row in Fig. 5). It shows a nocturne soccer game
where 22 players, a referee, the ball and the public provide a quite dynamic scenario.
The camera was placed about 80 meters from middle field. The illumination conditions,
dominated by neon lamps, make the objects in the scene to cast multiple shadows. The
shadows is the regular price that has to be paid for processing is grayscale instead of
color. Still, in this scene moving objects are well detected even considering their size
and the type of illumination. Another experiment shows the Crossroads sequence,
which was took from a 28 meters high tower placed in one of the corners of a crossroads
(Fig. 5). From that viewpoint is possible to cover the whole intersection. The sequence
has 2000 frames, each one with resolution 320× 240. This sequence is very challeng-
ing because the vehicles become part of the background and then, after a while, they
suddenly start moving again, at high speed. So the background has to recover quickly
but there are other vehicles passing by. Also, long buses with homogeneous roofs are
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(a.1) Scene. (a.2) Frame 950. (a.3) Frame 2610.

(b.1) Scene. (b.2) Frame 058. (b.3) Frame 118.

(c.1) Scene. (c.2) Frame 4000. (c.3) Frame 8000.

(d.1) Scene. (d.2) Frame 72. (d.3) Frame 742.

Fig. 5. Experimental results

detected correctly. In general, depending on what is initially consider to be part of the
background, our method can be used to detect left over objects, which could leave the
scene at a later stage.

5 Conclusion

In this document, we have shown how an intrinsic curves could be used to detect accre-
tion and occlusion regions in a scene containing moving objects. Using, this technique
alone will produce fragmented segments for large objects with homogeneous texture.
Hence, Gaussian mixture models provide an ideal vehicle to preserve information about
the recent pixel intensity dynamics. Our algorithm shows good results for updating the
model of the background under a variety of scenarios that include indoors and outdoors
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environment in a number of different illumination conditions. It has been noted that de-
pending on the initial background state and ultimate application, the algorithm is able
to keep track of leftover objects. This is an important property that may be useful for
security applications. As stated, the algorithm is based on the grayscale processing of
individual pixels without regard of the behavior of the local neighborhood. Color in-
formation, and hierarchical analysis may be prove to be helpful to eliminate shadows,
detect camouflage and sudden global illumination changes.
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Abstract. A new multiscale paradigm is proposed for motion extrac-
tion. It exploits the fact that certain geometrically meaningful, isolated
points in scale space provide unambiguous motion evidence, and the
fact that such evidence narrows down the space of admissible motion
fields. The paradigm combines the strengths of multiscale and variational
frameworks.

Besides spatial velocity, two additional degrees of freedom are taken
into account, viz. a temporal and an isotropic spatial scale component.
The first one is conventionally set to unity (“temporal gauge”), but may
in general account for creation or annihilation of structures over time.
The second one pertains to changes in the image that can be attributed
to a sharpening or blurring of structures over time.

This paper serves to introduce the new generalized motion paradigm
de-emphasizing performance issues. We focus on the conceptual idea and
provide recommendations for future directions.

Keywords: Motion extraction, scale space, reconstruction, regulariza-
tion.

1 Introduction

In several recent papers algorithms have been proposed for reconstructing a static
image given a finite set of linear constraints, or “features”. The reconstructed
image can be said to be a representative of the metameric class of all images
that satisfy these constraints. Since this class is in general infinite-dimensional, a
so-called prior is needed in order to disambiguate a unique instance (unless the
set of constraints is sufficiently rich, as is the case in the application by Kybic et
al. [1]). Lillholm and Nielsen [2,3] have investigated the effect of several priors on
the reconstruction, with the aim to maximize visual similarity with the original
image from which the fiducial features had been extracted. In general this leads
to a nonlinear system. Kanters et al., Duits et al., and Janssen et al. [4,5,6,7]
show that one can potentially simplify the reconstruction scheme considerably
without much loss of visual quality by suitable choice of prior, so as to obtain a
linear system.

In any case, the possibility of approximate reconstruction from a sparse set of
linear features evaluated at certain scale space anchor points has led to a par-
adigmatic shift. The idea is that, by virtue of the possibility of reconstruction,
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a detour can be made via manipulation in the feature space of anchor points
and their differential attributes, instead of working directly on image pixels. For
instance, inspired by the pioneering work on SIFT features by Lowe et al. [8],
further pursued by Schmid, Mikolajczyk et al. [9,10], Platel et al. [11,12] have
shown that certain scale space anchor points endowed with suitable differential
features can be used for robust image matching and retrieval invariant under sim-
ilarities (scale-Euclidean transformations) and partial occlusion. In this paper we
wish to extend this paradigmatic shift to motion extraction and disambiguation.
We will de-emphasize performance issues (preliminary experiments are not yet
competitive with state-of-the-art motion extraction), but concentrate on the ba-
sic principles underlying the new paradigm. In addition we will provide concrete
recommendations that may lead to a significant improvement of performance.

The paper is organized as follows. In Appendix A we recapitulate the basic
paradigm of image reconstruction in the well-established static case. To keep
things as simple as possible we restrict ourselves to solutions that can be repre-
sented in analytically closed form. The appendix primarily serves to render this
paper more or less self-contained, and to explain the concept of reconstruction
in a simplified context. In Section 2 we generalize the theory so as to account for
dynamic image sequences, with the aim to reconstruct a dense motion field from
the dynamical properties of scale space anchor points. In Section 3 we summarize
results.

2 Theory of Reconstruction—The Dynamic Case

In Section 2.1 we list notational conventions for later reference. In Section 2.2 we
develop the theory in a rather general, yet fully operational form. In Section 2.3
concrete recommendations are given that will need to be taken into account in
order to achieve state-of-the-art performance.

2.1 Definitions and Notations

Table 1 lists the most important symbols used in this paper for future reference.
Furthermore we define the following functional dependencies for motion and

flux fields:

j
def= γ(f) v (1)

J
def= γ(F )V (2)

Js
def= γ(Fs)Vs , (3)

in which γ : IR+
0 → IR+

0 is a smooth monotonic function, γ′ ≥ 0. In the sequel
we shall only consider the cases γ(ξ) = ξα for α ≥ 0, and in particular the
cases with α= 0 and α= 1. In the former case there is no distinction between
motion and flux fields. In the latter case there is an explicit coupling between the
greyvalue image and its motion field. In the usual temporal gauge (vt = 1) the
temporal component of all flux quantities then equals the scalar greyvalue image
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Table 1. In all multiresolution expressions the symbol s denotes isotropic spatial scale.
Time scale is considered a fixed constant. All vector field expressions account for spatial,
temporal, and (spatial) scale components, yielding a total of n+2 vector components
per base point. In the sequel, v is the “hidden” or “ground truth” motion field we are
after, and w is a reconstruction, i.e. one preferred member of the equivalence class of
high resolution motion fields that are consistent with v with respect to actual evidence,
i.e. that share the same record of dynamical features at all anchor points.

symbol function prototype significance

f IRn+1→ IR:(x, t) �→ f(x, t) high resolution image sequence (“raw data”)
v IRn+1→ IRn+2 : (x, t) �→ v(x, t) high resolution motion field (“ground truth”)
j IRn+1→ IRn+2 : (x, t) �→ j(x, t) high resolution flux field
g IRn+1→ IR:(x, t) �→ g(x, t) high resolution reconstructed image sequence
w IRn+1→ IRn+2 : (x, t) �→ w(x, t) high resolution reconstructed motion field
k IRn+1→ IRn+2 : (x, t) �→ k(x, t) high resolution reconstructed flux field
F IRn+1×IR+→ IR:(s, x, t) �→ F (s, x, t) multiresolution image sequence
V IRn+1×IR+→ IRn+2 : (s, x, t) �→ V (s, x, t) multiresolution motion field
J IRn+1×IR+→ IRn+2 : (s, x, t) �→ J(s, x, t) multiresolution flux field
Fs IRn+1 → IR:(x, t) �→ Fs(x, t)=F (s, x, t) fixed resolution image sequence, scale s
Vs IRn+1 → IRn+2 : (x, t) �→ Vs(x, t)=V (s, x, t) fixed resolution motion field, scale s
Js IRn+1 → IRn+2 : (x, t) �→ Js(x, t)=J(s, x, t) fixed resolution flux field, scale s

(jt = f , J t = F , J t
s = Fs, et cetera), thus scalar image reconstruction reduces

to a subproblem of flux reconstruction. Since at this stage it is an essentially
unsolved question which definition is most appropriate, we adhere to a general
definition using the function γ; this raises no technical complications.

Moreover, we assume that the multiresolution fields are generated from the
high resolution fields in the following ways1:

Fs
def= esΔ f (4)

Js
def= esΔ j , (5)

and, as a result, for nonnegative nonzero f ,

Vs
def=

esΔ j

γ(esΔ f)
. (6)

In other words, F and J satisfy the heat equation, subject to initial conditions
f and j, respectively. In the spatiotemporal domain they are obtained through
convolution with a normalized Gaussian:

Fs = f ∗ φs (7)
Js = j ∗ φs , (8)

1 The linear operator esΔ is defined by virtue of its (multiplicative) Fourier represen-
tation, obtained by the formal identification Δ ∼ −‖ω‖2, in which ω ∈ IRn denotes
spatial frequency. In the spatial domain it corresponds to a convolution filter.
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with

φs(x, t)
def=

1√
4πs

n
1√
4πε

exp
[
−‖x‖

2

4s
− t2

4ε

]
, (9)

with fixed “infinitesimal” time scale ε > 0 (in practice in the order of frame
separation). We henceforth ignore time scale and identify F0 and J0 with f and
j, respectively.

Next, we define the anchor point set Pt as a collection of identifiable isolated
points in scale space at each moment t in time:

Pt = {pi(t)=(si(t), xi(t), t)}i=1,...,N . (10)

The points in Pt could be scale space singular points [13,14], scale space critical
points [15,16,17,18], and/or other types of anchor points in scale space.

Finally, we introduce the convenient shorthand

φi(x, t)
def= φsi(t)(x− xi(t), t) (i = 1, . . . , N) , (11)

recall Eq. (9).

2.2 Theory

Under mild transversality conditions2 the anchor points pi(t) ∈ Pt can be
tracked across time frames. In fact, the geometric properties of the anchor point
trajectories, such as scale space velocities, accelerations, et cetera, can be deter-
mined analytically in terms of partial spatiotemporal image derivatives evaluated
at the respective points [14].

The movement of an anchor point is not confined to a spatial plane at a
fixed level of resolution, because we have taken into account a scale component.
In the t-parametrization above, which requires that the trajectories transver-
sally intersect each time frame, the time component of an anchor point’s ve-
locity equals unity by assumption (“temporal gauge”, cf. [19]), but this re-
striction can be relaxed by switching to an arbitrary parametrization instead,
pi(λ) = (si(λ), xi(λ), ti(λ)), say. In that case one can account for annihilations
or creations of scale space anchor points over time, corresponding to a vanish-
ing derivative t′i(λ) = 0. By virtue of the incorporation of both scale as well as
temporal component into the motion field the proposed framework for motion
extraction is more general than conventional schemes, in which one accounts
only for spatial motion while relying on the validity of the temporal gauge. Note
also that the movement of anchor points does not require a constant brightness
assumption [20], and that, at least for the anchor points themselves, there is no
“aperture problem” to be resolved.

Let F (Pt)={Fi≡F (pi(t)∈Pt)}N
i=1 and V (Pt)={Vi≡V (pi(t)∈Pt)}N

i=1 de-
note the greyvalues and scale space velocities of the anchor points, respectively.
2 The transversality conditions are mild in the sense that locally in spacetime they

tend to be met almost everywhere. Globally, however, these conditions are rather
restrictive. Cf. [19] for a discussion.
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Then the flux vectors J(Pt)= {Ji≡J(pi(t)∈Pt)}N
i=1 are known as well, recall

Eq. (2). Besides greyvalues we may endow anchor points with other measurable
differential entities. Likewise, other dynamical properties than their velocities
may be associated with anchor points, such as accelerations, and higher order
geometric properties of their trajectories. Knowing all these intensive and geo-
metric properties of anchor points the question arises of how to obtain a dense
high resolution motion field consistent with all these constraints.

Consider the following Euler-Lagrange functional, analogous to Eq. (17) in
Appendix A, using summation convention for scale spatiotemporal indices here
and henceforth (μ in this case):

EQ(k, λ) = Q(k)−
N∑

i=1

λi
μ (〈kμ|φi〉 − Jμ

i ) , (12)

in which Q is some disambiguating prior, and k denotes the approximate recon-
struction of an unknown high resolution flux field j, the only certain knowledge
of which we have is in terms of an N -tuple of vector-valued scale space mea-
surements Ji = 〈j|φi〉 ≡ 〈k|φi〉, i = 1, . . . , N . The inner product used in the
constraint terms is the standard spatial inner product associated with a fixed
time frame t. (Time is implicit in the notation.)

The Euler-Lagrange equations for the high resolution flux field k are given
by:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂EQ(k, λ)
∂λi

μ

= Jμ
i − 〈kμ|φi〉 = 0 (i = 1, . . . , N , μ = 1, . . . , n+2)

δEQ(k, λ)
δkμ

=
δQ(k)
δkμ

−
N∑

i=1

λi
μφi = 0 on IRn (μ = 1, . . . , n + 2) .

(13)

The first part reproduces the desired constraints (assuming we have extracted
greyvalues and velocities of the scale space anchor points of interest and con-
structed the corresponding flux vectors Ji). If Q is a quadratic functional, say

Q(k) =
1
2
〈kμ|Qμν |kν〉 , (14)

in which all components Qμν = Qνμ are positive self-adjoint operators with
bounded inverse, then Eq. (13) yields

kμ =
N∑

i=1

N∑
j=1

Rμνφi Ψ
ij
νρJ

ρ
j , (15)

cf. Eq. (19) in Appendix A for the static case. Here we have defined the operators
Rμν = Rνμ as follows:

RμρQρν = δμ
ν I , (16)

in which I denotes the identity operator. The sources of motion evidence
are given by Jμ

i = 〈kμ|φi〉 = 〈jμ|φi〉. They are, by definition, equal for all
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Fig. 1. Diagrammatic representation of Eq. (15): Coupling of source data Jρ
j to sam-

pling filter φi via propagator RμνΨ ij
νρ

metamerical flux fields (members of the equivalence class consistent with data
evidence). Cf. Figure3 1.

We have established an operational scheme for motion extraction, condensely
summarized by Eq. (15) or, equivalently, Figure 1. The sources Ji are known by
definition. Recall that they capture motion and greyvalue evidence of isolated
scale space anchor points, which can either be obtained empirically by tracking
(seeking corresponding anchor points in successive time frames), or by theoretical
derivation (exploiting the scale space paradigm and the defining equation for the
specific anchor points). The latter typically requires the implicit function theo-
rem, as anchor points are usually defined implicitly in terms of zero-crossings.
The propagator Rμν Ψ ij

νρ expresses our choice of prior. It depends both on our
choice of measurement filters φi as well as on our choice of regularization func-
tional, Eq. (14). In some cases, such as exemplified in Appendix A for static
reconstruction, it may be computed in analytically closed form, but in gen-
eral cases one will need to resort to numerical integration and linear inversion
schemes. Finally, the filters φi define our measurement paradigm, and span the
projection space within which we seek for our high resolution reconstruction k.
Instead of Gaussian filters one may adopt any set of linear filters instead.

2.3 Recommendations

Although we have established a fully operational scheme, choices will have to
be made as described in the previous section, and some practical problems will
have to be coped with. It is evident that such choices will affect performance in
a critical way.

In their original article on static image reconstruction Lillholm and Nielsen
[2,3] account for a prior that is given in terms of a standard L2 inner product
norm. As this gives quite unsatisfactory reconstruction results in the static case
(unless one has a very rich set of anchor points), this is probably not a good choice
for the dynamic case either. To stay within the linear framework Kanters et al.,
Duits et al., and Janssen et al. [4,5,6,7] have considered more general Hilbert
spaces, notably Sobolev spaces of a certain type. These include L2(IRn) as a
limiting case of a vanishing coupling constant. Taking nonzero coupling constants
has turned out to improve the visual quality of reconstruction considerably, at
least in the static case. The example worked out in Appendix A is similar, but
hinges on a Sobolev space of infinite order. It has some theoretical advantage
3 If Q(k) contains higher order terms in k, with corresponding coupling constants, one

may generalize the above scheme, and Figure 1, using a perturbative expansion, in
terms of the coupling constants, akin to a Feynman diagrammatic expansion.
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Fig. 2. Result of the spatial component of the reconstructed optic flow field, (wx, wy),
deduced from Eq. (15), or Fig. 1, on Diverging Tree Sequence [21], using the same
prior and anchor points as in the static case, cf. Figure 4 in Appendix A. The time
component has been gauged to unity following common practice, wt = 1, whereas the
scale component ws (which has no counterpart in traditional optic flow models) has
been ignored altogether in this experiment. The linear features that form the data
evidence for reconstruction are the anchor point velocities V μ

i , obtained analytically
in terms of partial image derivatives evaluated at the anchor points, from which the
local flux values are constructed as follows: Jμ

i = Fi V μ
i ≡ 〈jμ|φi〉 = 〈kμ|φi〉 (recall

Eq. (2)). Note that no further differential image structure has been used to constrain
the solution, as opposed to the static reconstruction shown in Figure 4. Despite the
extreme sparseness of data evidence—roughly 1% of pixel data has actually been used—
and despite the genericity of the prior—no knowledge about camera/scene relation has
been accounted for—the result shows a qualitatively correct diverging motion field.
(Especially near the image boundary the solution is hampered by a boundary problem.)
This shows the feasibility of the new motion paradigm. Of course, quantitative results
can only be expected if further constraints are imposed, possibly accompanied by an
adaptation of anchor point set and model prior, as outlined in the recommendations.

that may be exploited in practice, such as closed form expressions for the Gram
matrix, but it’s regularizing effect is qualitatively similar in the static case. In
their application to generalized sampling Kybic et al. [1] considered a somewhat
similar semi-norm instead, albeit in a different context.

Still, it remains doubtful whether any of the abovementioned regularizing
priors will prove successful in the dynamic case. Preliminary studies indicate
that reconstruction quality, measured in terms of the angular error introduced
by Barron et al. [21], remains unsatisfactory compared to state-of-the-art on
standard benchmark sequences, at least if the anchor points are scale space
singularities, and endowed only with lowest order flux evidence (velocities and
greyvalues). This poor performance is not really unexpected, as in this specific
case the feature set is extremely sparse in practice (representing typically in the
order of one percent of image information).
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There are basically two ways to overcome the abovementioned shortcomings,
viz. by adding evidence, or by improving one’s prior. A straightforward way to
add evidence is by enriching the given anchor point set with any further intensive
and/or geometric evidence that can be extracted empirically, or computed an-
alytically, such as differential image structure, accelerations, et cetera. Another
way to do so is by extending the set of anchor points itself. Likely candidate
anchor points are scale space critical points [15], scale space singularities [13,14],
and similar points of higher order. Alternative anchor points, such as proposed
by Lindeberg [22,23], Lowe [8], Schmid et al. [10], and Mikolajczyk et al. [9] are
viable candidates as well. Both ways of adding evidence will improve perfor-
mance, for the simple reason that motion is further constrained to be consistent
with additional evidence. The extent of improvement remains, however, unclear,
as these recommendations have not yet been carried out.

Even if data evidence has been exploited fully the option to change one’s prior
remains. Instead of using sophisticated but in a way “uncommitted” priors, such
as those based on Sobolev inner product norms discussed above, it seems more
promising to follow the direction proposed by Brox et al. [24], viz. to relate the
prior to the constant brightness assumption. For although greyvalue attributes
of anchor points will, in general, not be conserved, overall motion appears to
be fairly consistent with greyvalue conservation. We refer to the literature for
details.

Finally, one will need to account for boundary conditions, which have been
ignored in our theoretical derivations.

3 Conclusion and Summary

We have proposed a new paradigm for generalized motion extraction, and pro-
vided an operational scheme for it. It combines the strengths of multiscale and
variational frameworks. It exploits unambiguous motion cues obtained by track-
ing isolated anchor points in scale space, and a complementary model (“prior”)
for disambiguation of the high resolution motion field. It moreover generalizes
the conventional concept of motion by accounting for two additional degrees of
freedom besides spatial velocity, viz. a temporal and a scale component. The
former is implicit in conventional schemes, where it is usually scaled to unity
(“temporal gauge”). The second captures a hitherto unexplored dynamical de-
gree of freedom, and can be related to a blurring or enhancement of structures
over time. For instance, a gradual blurring of an otherwise stationary image
over time is consistent with a generalized motion field in which the spatial part
vanishes identically, but in which the scale component is nontrivial.

The significance of the additional degrees of freedom of the generalized motion
field is subject to further study. Insight may lead to exploitation of these degrees
of freedom beyond the usual scope of motion extraction techniques, e.g. in the
case where annihilations, creations, sharpening, or blurring of structures over
time occur.

There is no decisive conclusion regarding optimality of model priors; this, too,
will require further investigation.
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A Theory of Reconstruction—The Static Case

A.1 Definitions and Notations

– i = 1, . . . , N : label for linear constraints, features, and corresponding filters;
– μ = 1, . . . , n: spatial index;
– (xi, ti): scale space interest points;
– φ(x): fiducial filter template of unit scale centred at the origin;
– φi(x): ith filter of scale σi =

√
2ti centred at xi.

– Fi: feature value at scale space anchor point (xi, ti), i.e. Fi = 〈f |φi〉, v.i.;
– f : arbitrary high resolution image;
– g: approximation of f obtained by linear reconstruction;
– 〈u|v〉: standard inner product of u and v, i.e. 〈u|v〉 =

∫
u(x) v(x) dx;

– 〈u|A|v〉: shorthand for 〈u|Av〉 = 〈Au|v〉 = 〈√Au|√Av〉 (A is positive self-
adjoint);

– Φ: Gram matrix, i.e. positive symmetric N ×N -matrix with components
Φij = 〈φi|φj〉.

– Φε: ε-regularized Gram matrix, i.e. positive symmetric N×N -matrix with
components Φε

ij = 〈φi| exp(2εΔ)|φj〉.
– Ψ, Ψε: inverse matrices of Φ, respectively Φε, i.e.

∑N
k=1 Ψ

ik
ε Φε

kj = δi
j (ε≥0).
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A.2 Theory

Let f be a raw image, and {φi}i=1,...,N a labelled set of linear filters. Each filter
is characterized by some base point xi ∈ IRn and some scale σi =

√
2ti, in other

words, it can be associated with a scale space interest point. We assume that all
filter outputs Fi = 〈f |φi〉 are known, but no further knowledge of f is available.
The aim is to construct a unique representative g of f that satisfies the same
constraints, i.e. 〈g|φi〉 = 〈f |φi〉 = Fi for all labels i = 1, . . . , N . The image g
will be referred to as the reconstructed image, or simply reconstruction. Recall
that in general there will be many reconstructions satisfying any finite set of
constraints, and that for this reason we need a prior for disambiguation.

In some sense we would like the reconstructed image g to be “as close as
possible” to the source image f from which the samples Fi have been obtained.
However, if, apart from these measurement samples, no further knowledge of f is
available, this constraint becomes operationally void. Instead, it makes sense to
insist on some kind of regularity in order to single out a unique reconstruction,
since in practice images are spatially coherent objects. The role of the prior is
precisely to achieve disambiguation through regularization.

Reconstruction can be achieved via a standard Euler-Lagrange minimization
technique. We consider the following Euler-Lagrange functional (for the sake of
simplicity we ignore boundary conditions due to finite domain restrictions):

Eε(g, λ) =
1
2
〈g| exp(−2εΔ)|g〉 −

N∑
i=1

λi (〈g|φi〉 − Fi) . (17)

The linear prior is reflected in the data independent quadratic term. For each
constraint we have introduced an auxiliary parameter λi ∈ IR. Variation with
respect to both g as well as λ yields the following Euler-Lagrange equations:⎧⎪⎪⎨⎪⎪⎩

∂E(g, λ)
∂λi

= Fi − 〈g|φi〉 = 0 (i = 1, . . . , N)

δE(g, λ)
δg

= exp(−2εΔ)g −
N∑

i=1

λiφi = 0 on IRn.
(18)

Indeed, stationarity with respect to λ ∈ IRN implies the desired constraints to
be satisfied. By substituting g from the second equation into the first equation
one readily solves for λ, after which one obtains the following solution for g:

g =
N∑

i=1

N∑
j=1

exp(2εΔ)φi Ψ
ij
ε Fj . (19)

Cf. Figure 3 for a diagrammatic representation, and Figure 4 for an experimental
verification.

Fig. 3. Coupling of source data Fj to sampling filter φi via propagator exp (2εΔ) Φij
ε
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Note that the functional Eq. (17) may also be written as

Eε(g, λ) =
1
2
〈exp(−εΔ)g|exp(−εΔ)g〉 −

N∑
i=1

λi (〈exp(−εΔ)g|exp(εΔ)φi〉 − Fi) ,

with
Fi = 〈exp(−εΔ)f |exp(εΔ)φi〉 .

The latter expression is intuitive: If, hypothetically speaking, you would ε-deblur
the raw image, i.e. f → fε ≡ exp(−εΔ)f , you would encounter the same fea-
tures Fi at anchor points that are shifted upward in scale space by an amount
ε relative to the original interest points, in other words, that would have been
obtained by using ε-blurred filters φ → φε ≡ exp(εΔ)φ instead of the original
ones. If we likewise consider the formal replacement g → gε ≡ exp(−εΔ)g we
observe that we could basically have started out from the well-established case of
standard reconstruction, i.e. the non-regularized case obtained by setting ε = 0,
cf. [2,3,4,5,6,7], and subsequently apply the above formal replacement rules for
f , g, φi, and Φij , so as to obtain the ε-regularized reconstruction of interest.
Since the Gram matrix Φij is known in closed form for the case of standard re-
construction and Gaussian derivative filters φi of scale si, say, the ε-regularized
reconstruction scheme is likewise in closed form, and boils down to scale replace-
ments si → si + ε in the unregularized Gram matrix, Φ0, and si + 2ε in the free
expansion filters, φi, recall Eq. (19). (Note that Eq. (19) does not correspond to a
mere ε-blurring of the standard reconstruction, for that would not be consistent
with the constraints.)

Fig. 4. Result of Eq. (19), or Fig. 3, on Lena image. From left to right: Original
image f , scale space critical paths showing the singular points used as anchor points in
the reconstruction, reconstruction g using standard L2-norm as disambiguating prior
(i.e. the case ε = 0), and reconstruction using a Sobolev-norm instead (i.e. O(ε)-
approximation exp(−2εΔ)≈ I − 2εΔ in Eq. (17)). The latter norm is not claimed to
be optimal, but it is apparent that the reconstruction paradigm works in the static
case provided care is taken with respect to the choice of prior. In this experiment the
attributes of the anchor points that define the constraints are spatial image derivatives
up to fourth order. Note that in a dynamic case this result will also be obtained as
the time component k0 = g of Eq. (15) if we use the definition jμ = f vμ, respectively
kμ = g wμ, and the usual temporal gauge v0 = w0 = 1, recall Eq. (1), given the same
prior and set of constraints.
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Abstract. In this paper a fast algorithm for motion estimation is pre-
sented. It models the temporal averaging of a group of frames as the
spatial filtering of the reference one with a suitable Dirac comb function.
This equality allows us to estimate a constant affine motion by compar-
ing the phases of the FFT. Experimental results show that the proposed
algorithm outperforms the available fast motion estimation techniques
in terms of both quality and computational effort.

1 Introduction

Video coding is a topic which has receiving a growing interest since it is fun-
damental in various multimedia applications [1]. One of the most important
steps during the encoding phase consists of an accurate estimate of the motion
of the objects inside the scene under study. Even though different approaches
such as pel recursive [2,3] and optical flow [4,5] have been proposed in literature,
presently the most effective seems to be the Block Matching Algorithm (BMA)
[6]. The main difference between this latter and the aforementioned approaches
stems from the fact that BMA tries to estimate the motion of a block of pixels
of the reference frame instead of one pixel at a time. The idea is to find the best
block J of size N ×N (belonging to the frame at time t− 1) that matches the
block under study I of size N × N (belonging to the frame at time t), among
all possible blocks inside a wider area of size M ×M around I in the frame at
time t− 1. As distance between blocks is usually selected MAD (Mean Absolute
Difference) or the classical MSE (Mean Square Error). Once found the best block
J , we are able to also know the displacement and then the motion of the pixels
inside I. Although this strategy may be not accurate whenever the block I con-
tains more than one dominant motion, it achieves good performances in terms of
simplicity and bits budget. Its main drawback is that it requires a huge compu-
tational effort in the previously mentioned search. That is why various attempts
oriented to reduce the search time have been proposed in literature — see for
instance [7,8,9]. Another interesting trend is represented by the transform based
approaches, in particular the FFT based one. They share the same philosophy
of the Block Matching based approaches, since they treat blocks of the image
instead of pixels. The underlining idea is to manage the phase of the Fourier
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Transform that intrinsically contains the shift of a block — whenever there is
motion [10,11,12,13,14]. Even in this case, the search is further reduced but not
eliminated.

In this paper we present a novel approach based on FFT. It has the following
advantages: i) an arbitrary number of frames can be simultaneously processed;
ii) the motion estimation is solved without search; iii) a drastic reduction of
the computational effort with respect to phase correlation methods is achieved,
since the inverse FFT is avoided. The trick is very simple. Suppose that we
use K frames for estimating the motion. Then, the average of K corresponding
blocks in K subsequent frames is equivalent to the convolution of the reference
block (i.e. in the reference frame) with a Dirac comb kernel — proof is in the
Appendix. Hence, if on one hand we have the temporal average of the blocks, on
the other we have the aforementioned convolution. In this latter the reference
block is known as well as the Dirac comb function, apart from its sampling
period that represents the motion d. Comparing the FFT phases in the first
non zero frequency of both the mean of the K blocks and the convolution, we
can determine the displacement d by a simple inversion formula. The method
is also robust in presence of noise if data are preprocessed by a moving average
operator. Moreover, it outperforms existing approaches in terms of speed and
accurateness.

The paper is organized as follows. Next section presents the proposed model
for both 1D and 2D cases, exploiting the result contained in Appendix. Section
III shows some experimental results and makes some comparisons with other
existing approaches. Finally, Section IV draws the conclusions.

2 The Proposed Model

For the sake of clarity, we first present a toy example: frames are replaced by 1D
signals and each signal is shifted with respect to the reference one by an unknown
motion d. The second part of the section will show the 2D generalization and
the corresponding algorithm.

Let {fk(x)}0≤k≤K−1 be a sequence composed of K successive signals fk(x)
such that

fk(x) = f0(x− kd), ∀ k = 0, . . . ,K − 1, 0 ≤ x ≤ 2M, (1)

where d is the unknown quantity, 2M + 1 is the signal length and f0(x) is the
reference signal.

Let now F (x) be the vector containing the temporal average of the K signals
in the adopted sequence, that is

F (x) =
1
K

K−1∑
k=0

fk(x). (2)
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In the Appendix it is shown that F (x) is equivalent to the spatial convolution
of the reference signal f0(x) with the following Dirac comb function

g(x) =
1
K

K−1∑
k=0

δ(x− kd), (3)

that is non zero whenever x is a multiple of the motion d. Therefore,

F (x) = (f0 ∗ g)(x). (4)

By computing the Fourier transform of both members of the previous equation
and exploiting the convolution property, it follows

F̂ (ω) = f̂0(ω)ĝ(ω). (5)

Both F̂ (ω) and f̂0(ω) are known, since they represent the data of our problem.
The unknown object is ĝ(ω). Nonetheless, g is known except for the correspond-
ing sampling period d, as arises from eq. (3).

In the following we will show that previous equation can be inverted with
respect to the motion d. In particular, d will be computed by comparing the
phases of both members of (5).

To invert (5) we have to explicitly write the dependence of g from the motion
d. For properly computing the discrete convolution, the unitary circle is divided
into 4M + 1 frequency components. Hence,

F̂ (ω) =
4M∑
x=0

F (x)e−i 2π
4M+1

ωx

f̂0(ω) =

(
2M∑
x=0

f0(x)e−i 2π
4M+1

ωx

)
and

ĝ(ω) =

⎛⎝(K−1)d∑
x=0

g(x)e−i 2π
4M+1

ωx

⎞⎠ =

= |ĝ(ω)|e−i 2π
4M+1

ω
2

d (K−1) (6)

(see Appendix for details).
Therefore, (5) can be rewritten as

F̂ (ω) = f̂0(ω)|ĝ(ω)|e−i 2π
4M+1

ω
2

d (K−1).

This equality holds for both the absolute values and the phases of the complex
numbers. Nonetheless, the absolute value of ĝ is a non linear function with
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respect to d while its phase is linear. Hence, it is simpler to compare the phases
of both members of the previous equation:

Arg(F̂ (ω)) = Arg(f̂0(ω)) + Arg
(
|ĝ(ω)|e−i 2π

4M+1
ω
2

d (K−1)
)
,

that is

Arg(F̂ (ω))−Arg(f̂0(ω)) = − (K − 1)π
4M + 1

d ω.

The equation can be inverted by fixing the frequency value ω. In particular,
for ω = 1 we have

Arg(F̂ (1))−Arg(f̂0(1)) = − (K − 1)π
4M + 1

d,

and then

d =
(4M + 1)
(K − 1)π

(
Arg(f̂0(1))−Arg(F̂ (1))

)
. (7)

It is worth noticing that d is completely determined by the previous equation
without any ambiguity on its sign. In fact, the model (1) includes the sign of
the motion. Moreover, ω = 1 is the more suitable choice among all the non zero
frequencies whenever frames are corrupted by noise.

2.1 2D Motion Estimation

For the two dimensional case, we can adopt the same above mentioned strategy
since the 2D motion can be split into its vertical (rows x axis) and horizontal
(columns y axis) components. Let d = (dx, dy) be the motion vector, dx and
dy respectively the vertical and horizontal motion and {fk(x, y)}0≤k≤K−1 be a
sequence composed of K frames of dimension (2M + 1)× (2M + 1) such that

fk(x, y) = f0(x− kdx, y − kdy), k = 0, . . . ,K − 1, 0 ≤ x ≤ 2M, 0 ≤ y ≤ 2M.

Hence, the 2D Dirac comb is

g(x, y) =
1
K

K−1∑
k=0

δ(x− kdx, y − kdy).

It is worth noticing that the first diagonal block of the matrix g is

– a K ×K identity matrix if dx = dy = 1;
– a ((K − 1)dx + 1)× ((K− 1)dy + 1) diagonal matrix whose diagonal is a one

dimensional Dirac comb having dx as sampling period, if dx = dy �= 1;
– a ((K − 1)dx + 1)× ((K − 1)dy + 1) sparse matrix, if dx �= dy.



Fast Motion Estimation Using Spatio Temporal Filtering 759

Therefore, as for the 1D case, the temporal average of K subsequent frames
is

F (x, y) =
(K−1)dx∑

h1=0

(K−1)dy∑
h2=0

f0(x− h1, y − h2)g(h1, h2) = (f0 ∗ g)(x, y),

that can be rewritten in the Fourier domain as follows

F̂ (ωx, ωy) = f̂0(ωx, ωy)ĝ(ωx, ωy), (8)

where the frequency domain is divided into (4M + 1)2 components.
Moreover,

ĝ(ωx, ωy) =
(K−1)dx∑

x=0

(K−1)dy∑
y=0

g(x, y)e−i 2π
4M+1

ωxxe−i 2π
4M+1

ωyy =

=
(K−1)∑
k=0

e−i 2π
4M+1

ωxkdxe−i 2π
4M+1

ωykdy =
(K−1)∑
k=0

e−i 2π
4M+1

k(ωxdx+ωydy) =

= |ĝ(ωx, ωy)|e−i π
4M+1

(dxωx+dyωy)(K−1).

The absolute value of ĝ is again a non linear function with respect to dx and
dy while its phase is linear.

Hence, we can compare the phases of both members of the equation (8), i.e.

Arg(F̂ (ωx, ωy)) = Arg(f̂0(ωx, ωy)) + Arg(ĝ(ωx, ωy))

and then

− π

4M + 1
(dxωx + dyωy)(K − 1) = Arg(F̂ (ωx, ωy))−Arg(f̂0(ωx, ωy)).

dx and dy can be finally computed choosing the couples of values (ωx, ωy) = (0, 1)
and (ωx, ωy) = (1, 0) and then

Arg(F̂ (0, 1))−Arg(f̂0(0, 1)) = − (K − 1)π
4M + 1

dy,

and

Arg(F̂ (1, 0))−Arg(f̂0(1, 0)) = − (K − 1)π
4M + 1

dx.

By inverting both equations we have

dx = − (Arg(F̂ (1, 0))−Arg(f̂0(1, 0)))(4M + 1)
(K − 1)π

(9)
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and

dy = − (Arg(F̂ (0, 1))−Arg(f̂0(0, 1)))(4M + 1)
(K − 1)π

. (10)

Also in this case, there is no ambiguity for the sign of both horizontal and
vertical motions.

It is worth outlining that the equivalence between the temporal averaging and
the convolution with a fixed kernel allow us to strengthen the correlation between
two or more subsequent frames. This corresponds to the search of equally spaced
high amplitude peaks in a classical phase correlation based approach.

2.2 The Algorithm

For a group of K frames, each of dimension ((2M + 1)× (2M + 1)) , the motion
of each frame with respect to the first one f0(x, y) (reference frame) is estimated
as follows:

– Split the frames into non overlapping blocks Bj,k of dimension ((2M +
1) × (2M + 1)). Bj,k is the jth block in the frame fk(x, y) and then j =

1, . . . ,
⌊

(2M+1)×(2M+1)
(2M+1)×(2M+1)

⌋
.

For each j:
1. Compute the average of the K corresponding blocks as in (2): Fj(x, y) =

1
K

∑K−1
k=0 Bj,k(x, y).

2. Evaluate the phase of the DFT of Fj at the frequency values ω = (1, 0)
and ω = (0, 1).

3. Compute the phase of the DFT of the reference block Bj,0 at the same
frequency values.

4. Compute the horizontal dy and vertical dx motion using (10) and (9),
where F is substituted for Fj and f0 is substituted for Bj,0.

5. At each block Bj,k, k = 1, . . . ,K, assign the motion vector whose
components are (kdx, kdy).

Table 1. Averages of PSNR results achieved by the proposed model on Mobile and
Coastguard sequences using both 16 × 16 blocks and 8 × 8 blocks. The results are
compared with the Two Bit Transform based algorithm in [15] and the full search
block matching algorithm (FS-BMA) [6].

Sequence Method PSNR (16 × 16) PSNR (8 × 8)
Mobile Proposed 26.72 db 28.52 db

2BT 22.72 db 22.99 db
FS-BMA 22.99 db 23.88 db

Coastguard Proposed 33.85 db 35.20 db
2BT 29.93 db 30.50 db

FS-BMA 30.47 db 31.58 db
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3 Experimental Results

The proposed model has been tested on various test video sequences. In partic-
ular, in this paper we give the results achieved on Mobile and Coastguard gray
scale sequences, whose first frames are shown in Figs. 1 and 2. The first one is
composed of 140 frames of size 240 × 352 while the second one is composed of
300 frames of size 352× 288. Even if the model assumes one constant dominant
motion for each successive block, results are very satisfying yielding better per-
formances that the classical block matching based approaches [6,15], as shown
in Table 1, and with a very low computational cost. Figs. 3 and 4 depict PSNR
results achieved for each frame of Mobile and Coastguard sequences. The first
sequence reveals a significant improvement of quality in its last part. It is due
to the fact that there are less blocks with multiple motion, for example there
are less blocks containing both the train and the calendar. With regard to the
second sequence, firstly a new object enters in the scene, then from frame 65 to
frame 74 there is a rough vertical change in the camera position along with a
loss of quality of the images. On the contrary, the second half of the sequence
presents an almost constant scene and then PSNR increases.

In the experiments presented in this section, we use blocks of dimension 16×16
and the motion is estimated using two frames (K = 2). Nonetheless, the model
allows to estimate the motion of more than one frame simultaneously by in-
creasing the number of frames K. We perform also some experiments using
K = 3. The PSNR results do not significantly change. There is a decreasing of
0.7 db on average while the computational effort greatly decreases. Also wider
or smaller blocks have been used. For 8 × 8 blocks there is an improvement
of 1.5 db on average for the analyzed sequences. For wider blocks the differ-
ence in PSNR grows as the assumption of one constant global motion is not
verified.

Further experiments have been also performed on the same sequences cor-
rupted by additive gaussian noise N (0, σ2). The algorithm is robust only under
very moderate noise since the phase may suffer from differences between frames.
We have found that for σ ≤ 7 there is a loss of quality of about 0.8 db while
for higher σ it is necessary to pre-process the data by a moving average filter
to preserve the goodness of the results. It is worth highlighting that for noisy
sequences PSNR results can be improved by estimating the motion estimation of
each single frame using more than two subsequent frames. In fact, the temporal
averaging allows a sort of de-noising of the analyzed frames.

The algorithm requires simple and fast operations and then it is suitable
for compression purposes and real time applications. In fact, its complexity is
O(4(2M+1)2+6)) for K = 2. Steps 1-3 of the algorithm depend on the size of the
selected blocks while the last one is shared by all the pixels composing the block.
For a 16×16 block, 4 operations per pixel are required. Therefore, the proposed
algorithm is faster than [15], which requires 7 operations per pixel, yielding
better quality sequences, as shown in Table 1. Compared to phase correlation
based models, the proposed approach avoids the inversion of the DFT and then
the search of the best peak in the time domain.
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Fig. 1. First frame of Mobile sequence

Fig. 2. First frame of Coastguard sequence
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Fig. 3. PSNR versus number of frames of Mobile sequence processed by the proposed
motion estimation algorithm using 16 × 16 blocks and 2 frames at a time
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Fig. 4. PSNR versus number of frames of Coastguard sequence processed by the pro-
posed motion estimation algorithm using 16 × 16 blocks and 2 frames at a time
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4 Conclusions

In this paper we have presented a novel approach for motion estimation. It is
based on the equivalence between the mean of corresponding blocks at different
frames and the convolution of the reference block with Dirac comb kernel. This
equivalence is then exploited in the Fourier domain and in particular looking
at the phase for determining the motion. Experimental results show that the
proposed model drastically reduces the computational effort and outperforms
available approaches. Even though the topic of this paper was motion estimation
for video coding, i.e. without noise, some experiments under moderate noise have
been performed and discussed. Future research will consist of a deep investigation
of the presented approach limits under severe noise conditions.

References

1. Y. Q. Shi, H. Sun, Image and Video Compression for Multimedia Engineering,
CRC Press, New York, 2000.

2. A. N. Netravali, J. D. Robbins, Motion-Compensated Television Coding: Part I,
Bell Syst. Tech. J., 58 (3), 631-670, 1979.

3. J. D. Robbins, A. N. Netravali, Recursive Motion Compensation: A Review, in
Image Sequence Processing and Dynamic Scene Analysis, T. S. Huang, Ed. Berlin,
Germany: Springer-Verlag, pp. 73-103, 1983

4. G. Le Besnerais, F. Champagnat, Dense Optical Flow by Iterative Local Window
Registration, Proc. of IEEE International Conference on Image Processing, pp.
137-140, 2005.

5. M. Ye, R.M. Haralick, L.G. Shapiro Estimating Piecewise - Smooth Optical Flow
with Global Matching and Graduated Optimization , IEEE PAMI, Vol. 25, No. 12,
pp. 1625-1630, December 2003.

6. J. M. Jou, P.-Y. Chen and J.-M. Sun, The Gray Prediction Search Algorithm for
Block Motion Estimation, IEEE Trans. Circuits Syst. Video Technol., vol 9, no. 6,
pp. 843-848, Sept. 1999.

7. K. N. Nam, J.-S. Kim, R.-H. Park and Y. S. Shim, A Fast Hierarchical Motion
Vector Estimation Algorithm using Mean Pyramid, IEEE Trans. Circuits Syst.
Video Technology, vol. 5, no. 4, pp. 344-351, Aug. 1995

8. S. Zhu and K.-K. Ma, A new Diamond Search Algorithm for Fast Block Matching
Estimation, IEEE Trans. Circuits Syst. Video Technology, vol. 9, no.2, pp. 287-290,
Feb. 2000.

9. C. J. Kuo, C. H. Yeh, and S. F. Odeh, Polynomial Search Algorithm for Motion
Estimation, IEEE Trans. Circuits Syst. Video Technology, vol. 10, no.5, pp. 813-
818, Aug. 2000.

10. U.-V. Koc, K. J. R. Liu, DCT-Based Motion Estimation, IEEE Trans on Image
Processing, vol. 7, no. 7, July 1998

11. C.D. Kughlin, D.C. Hines, The phase correlation image alignment method, Proceed-
ings of IEEE Int. Conf. Systems, Man. and Cybernetics, pp. 163-165, September
1975.

12. M.Li, M. Biswas, S. Kumar, T. Nguyen, DCT- based phase correlation motion
estimation, Proceedings of IEEE Int. Conf. on Image Processing, pp. 445-448, 2004.



Fast Motion Estimation Using Spatio Temporal Filtering 765

13. M. Biswas, S. Kumar, T. Nguyen, Efficient phase correlation motion estimation us-
ing approximate normalization, Proceedings of IEEE Int. Conf. on Signals, Systems
and Computers, Vol. 2, pp. 1727-1730, November 2004.

14. Y.M. Chou, H.M. Hang, A New Motion Estimation Method using Frequency Com-
ponents, Journal of Visual Communication and Image Representation, Vol. 8, No.
1, pp. 83-96, March 1997.

15. A. Erturk, S. Erturk, Two Bit Transform for Binary Block Estimations, Transac-
tions on Circuits and Systems for Video Technology, Vol. 15, No. 7, July 2005.

A Spatio-temporal Filtering

By putting eq. (1) into (2) we have

F (x) =
1
K

K−1∑
h=0

f0(x− hd). (11)

Each element of F (x) is then the sum of K elements of f0, suitably sampled.
Using the function defined in eq.(3), eq. (11) can be formally rewritten as the

convolution of the function f0(x) with g(x), i.e.

F (x) =
1
K

(K−1)d∑
h=0

f0(x− h)
K−1∑
k=0

δ(h− kd) =

(K−1)d∑
h=0

f0(x− h)g(h) = (f0 ∗ g)(x). (12)

It turns out that a temporal averaging of corresponding signals is equivalent
to a spatial convolution using Dirac comb, whose sampling period depends on
the motion d.

Moreover, the Discrete Fourier Transform of g(x) is

ĝ(ωs) =
4M∑
x=0

g(x)e−iωsx,

where ωs = 2π
4M+1ω.

By using (3), the compact support of g(x) and the shift property of the Fourier
transform , we have

ĝ(ωs) =
1
K

(K−1)d∑
x=0

⎛⎝(K−1)∑
k=0

δ(x − kd)

⎞⎠ e−iωsx =

1
K

(K−1)∑
k=0

(K−1)d∑
x=0

δ(x− kd)e−iωsx =
K−1∑
k=0

e−iωs k d.
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It is the partial sum of the geometric series and then it can be rewritten as

ĝ(ω) =
sin

(
ωs

2 K d
)

sin
(

ωs

2 d
) e−i ωs

2
d (K−1) =

= |ĝ(ωs)|e−i ωs
2

d (K−1). (13)
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Abstract. Optic flow describes the apparent motion that is present in an image
sequence. We show the feasibility of obtaining optic flow from dynamic prop-
erties of a sparse set of multi-scale anchor points. Singular points of a Gaussian
scale space image are identified as feasible anchor point candidates and analyt-
ical expressions describing their dynamic properties are presented. Advantages
of approaching the optic flow estimation problem using these anchor points are
that (i) in these points the notorious aperture problem does not manifest itself,
(ii) it combines the strengths of variational and multi-scale methods, (iii) optic
flow definition becomes independent of image resolution, (iv) computations of
the components of the optic flow field are decoupled and that (v) the feature set
inducing the optic flow field is very sparse (typically < 1

2
% of the number of

pixels in a frame). A dense optic flow vector field is obtained through projection
into a Sobolev space defined by and consistent with the dynamic constraints in
the anchor points. As opposed to classical optic flow estimation schemes the pro-
posed method accounts for an explicit scale component of the vector field, which
encodes some dynamic differential flow property.

1 Introduction

Typical optic flow estimation algorithms are based on the brightness constancy assump-
tion initially proposed by Horn & Schunck [1]. This constraint is insufficient to deter-
mine optic flow unambiguously since constant brightness occurs on surfaces of codi-
mension one (curves in 2D, surfaces in 3D, etc.). The intrinsic ambiguity has become
known as the aperture problem. The ambiguity is typically resolved by adding extra
constraints to the optic flow constraint equation, or similarly, through an appropriate
regularizer in a variational formulation. Horn & Schunck used a quadratic regularizer.
Ever since many alternative regularisation schemes have been proposed, essentially fol-
lowing the same rationale.

Apart from variational methods [2,3,4] that are similar to the method proposed by
Horn & Schunck, correlation-based [5,6], frequency-based [7] and phase-based meth-
ods [8] have been proposed. In order to cover large displacements several coarse-to-fine
strategies of these techniques have been devised [9,10]. Werkhoven et al., Florack et al.
and Suinesiaputra et al. [11,12,13] developed biologically inspired optic flow estima-
tion methods incorporating “optimal” local scale selection. The work by Florack et al.

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 767–779, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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shows that taking notion of scale may lead to superior performance compared to the op-
tic flow estimation algorithms evaluated by Barron et al. [14]. Recent work by Brox et
al. and Bruhn et al. [2,15] show impressive results of current state of the art variational
optic flow estimation techniques.

In this work we combine the strength of the variational rationale with the added value
of the multi-scale framework, by proposing a new paradigm for optic flow estimation.
To this end we investigate flow of so called anchor points in Gaussian scale space. These
anchor points could be any type of identifiable isolated points in Gaussian scale space.
In these points the aperture problem is nonexistent and therefore the flow can be unam-
biguously measured. If these points carry “sufficiently rich” dynamic information one
may hypothesise that any high resolution dense optic flow field that is consistent with
the constraints posed by the anchor points and their dynamic features will be a potential
representative of the “underlying” optic flow field one aims to extract. This has the ad-
ditional advantage that optic flow definition becomes independent of image resolution,
as opposed to “constant brightness” paradigms. Note that we completely abandon the
constant brightness ansatz, as the anchor points typically have non-conserved intensity
attributes. The proposed optic flow estimation method which is depicted in Figure 1 is
of a truly multi-scale nature since each anchor point lives at a certain scale. This leads
to a method in which automatic scale selection is manifest as opposed to the approach
by Florack et al. [11] which require an extrinsic criterion for scale selection. We apply
our method to a specific set of anchor points. One should however notice that any set of
intrinsic points can be used. Section 2 discusses the subject of anchor points.

Fig. 1. An overview of the proposed optic flow estimation algorithm. First anchor points are
selected. The second step is the flow estimation that is done on the sparse set of selected anchor
points that are present in the scale space of a single frame. Finally this sparse multi-scale vector
field is converted to a dense vector field at grid scale.

The sparse multi-scale vector field constructed by the motion of the anchor points has
to be converted to a dense high resolution vector field at scale s = s0, in which s0 > 0
is related to grid scale. To this extent we apply a reconstruction method similar to the
method proposed by Janssen et al. [16,17,18,19]. The case of stationary reconstruction
is discussed in Section 3. In Section 4 the extension of the reconstruction algorithm to
vector valued images and results of its application to flow reconstruction are discussed.

We stress that the emphasis in this article is not on performance (which, indeed, is not
quite state-of-the-art), but on a paradigm shift for optic flow extraction with great poten-
tial. Many improvements tot the ansatz proposed here are readily conceived of, such as
the extension of intrinsic anchor pointset, utilization of higher order dynamic attributes
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(e.g accelerations), modification of Sobolev inner product space, slick exploitation of
time scale, etc. . We believe that a thorough investigation of these suggestions will sig-
nificantly improve performance.

2 Anchor Points

A Gaussian scale space representation u(x; s) in n spatial dimensions is obtained by
convolution of a raw image f(x) with a normalized Gaussian:

u(x; s) = (f ∗ ϕs) (x) ,

ϕs(x) =
1√

4πs
n e−

||x||2
4s .

(1)

We aim to identify and determine the velocity of anchor points in the scale space of
an image sequence. The scale space of an image sequence is a concatenation of the
scale spaces of the images of the sequence. This means time scale is not taken as an
explicit dynamic parameter. The type of anchor point that is discussed in this paper
is the so called singular point. Apart from or in addition to these points any type of
generically isolated point that is intrinsic in the scale space of an image could have
been considered. An introduction to scale space theory can be found in a tutorial book
by ter Haar Romeny [20] and monographs by Lindeberg [21] and Florack [22].

2.1 Singular Points

A singular point is a non-Morse critical point of a Gaussian scale space image. Scale s
is taken as a control parameter. This type of point is also referred to in the literature as
a degenerate spatial critical point or as a toppoint or catastrophe.

Definition 1 (Singular Point). A singular point (x; s) ∈ R
n+1 is defined by the fol-

lowing equations. {
∇u(x; s) = 0 ,

det∇∇Tu(x; s) = 0 .
(2)

Here ∇ denotes the spatial gradient operator.

The behavior near singular points is the subject of catastrophe theory. Damon studied
the applicability of established catastrophe theory in a scale space context [23]. Florack
and Kuijper have given an overview of the established theory in their paper about the
topological structure of scale space images for the generic case of interest, and investi-
gated geometrical aspects of generic singularities [24]. More on catastrophe theory in
general can be found in a monograph by Gilmore [25].

Singular points can be found by following critical paths, which are curves of vanish-
ing gradient. A generic singular point manifests itself either as a creation or annihilation
event involving a pair of critical points.
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2.2 Flow

When tracking anchor points over time we have one extra state variable. Spatial non-
Morse critical points follow a path through scale spacetime in the scale space of an
image sequence. Such a path can be described by a parameterised curve p(t) as long
as it is transversal to time frames. Along this curve, of which a visualisation can be
found in Figure 2, the properties of the point as described in equation (2) – given that
the t-transversality critereon holds1 – do not change.

v
p(t) s

t
x

Fig. 2. The path p(t) that a singular point travels through time t. In the frames the zero crossings
of the image gradient are depicted as a function of scale s. These lines are called critical paths.

We are interested in finding a flow vector in each singular point that is present in the
scale space of an image.

Definition 2 (Flow Vector). The motion of a singular point is described by a flow vec-
tor v ∈ R

n+1 ,

v =

⎡⎣ ẋ

ṡ

⎤⎦ . (3)

Here ẋ ∈ R
n denotes a spatial vector describing the flow’s spatial components and

ṡ ∈ R describes the scale component. The (suppressed) time component2 of this vector
is implicit and taken as ṫ = 1. In other words it is assumed that time t is a valid
parameter of the flow vector’s integral curve. A dot is shorthand for ∂

∂t .

We ignore boundaries of the image sequence. By definition of scale space and the fact
that we are studying natural image sequences it can be assumed that the image sequence
of interest is at least piecewise continuously differentiable (even analytical with respect
to spatial variables). By definition the properties of the tracked point along the curve
p(t) (see Figure 2), [ ∇u(t;x, s)

detH(t;x, s)

]
= 0 , (4)

1 This transversality condition is implicitly required in the constant brightness based optic flow
rationale.

2 This assumption is called the “temporal gauge” and reflects the transversality assumption.
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do not change. H(t;x, s) is the n × n matrix with components ∂2u(t;x,s)
∂xa∂xb where a and

b index the spatial dimensions. If the Jacobian determinant does not degenerate,

det

⎡⎢⎣ H(t;x, s) ∇∂u(t;x,s)
∂s
...

∇T detH(t;x, s) . . . ∂ detH(t;x,s)
∂s

⎤⎥⎦ �= 0 , (5)

the implicit function theorem can be applied to obtain the flow along the parameterised
curve p(t) = (x(t), s(t)) trough time. Assuming that equation (5) holds, the movement
of the anchor point in a sufficiently small neighborhood of the initial position is given
by inversion of ⎡⎢⎣ H(t;x, s) ∇∂u(t;x,s)

∂s
...

∇T detH(t;x, s) . . . ∂ detH(t;x,s)
∂s

⎤⎥⎦
⎡⎣ ẋ

ṡ

⎤⎦ =

−
⎡⎣ ∇∂u(t;x,s)

∂t

∂ detH(t;x,s)
∂t

⎤⎦ .

(6)

This follows straight forward by setting

d

dt

[ ∇u(t;x, s)
detH(t;x, s)

]
= 0 , (7)

in which d
dt denotes the total time derivative along the flow.

Problems arise when the point that is followed disappears, i.e. if the t-transversality
condition fails: which may happen at isolated points in the image sequence (in-between
image frames). At such an event the point in scale spacetime changes to a non-Morse
critical point and the implicit function theorem does not hold anymore. This can be
detected by checking if the Jacobian determinant degenerates. As such this can be used
to evaluate the validity of the estimated flow vector.

2.3 Error Measure for Anchor Point Localisation and Tracking

Because of noise the resulting vector of equation (6) will not point to the exact position
of the anchor point in the next frame. A refinement of the solution can be made by
using a Taylor expansion around the estimated position of the anchor point as proposed
by Florack and Kuijper [24]. Evaluation of[

x′

s′

]
=
[
− detH(t;x, s) H−1(t;x, s)∂∇u(x;s)

∂s
detH(t;x, s)

]
(8)

near a singular point results in a vector pointing to the actual position of the singular
point. The prime in x′ and s′ denotes differentiation with respect to a path parameter p
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implicitly defined by ds
dp = detH(t;x, s). For a detailed derivation of equation (8) we

refer to the original article [24]. Notice that the so-called “cofactor matrix”

H̃(t;x, s) def= detH(t;x, s) H−1(t;x, s) (9)

is well defined even in the limit where detH(t;x, s) → 0. Equation (8) gives us an
error correction mechanism that can be incorporated in tracking. Note that one can
march this vector field in order to obtain a higher accuracy.

3 Stationary Reconstruction

In order to obtain a dense flow field from singular points endowed with their dynamic
attributes a so called dense flux field is generated that is consistent with these features.
In this section we will study the essence of this so-called “reconstruction” algorithm in
the simplified context of stationary scalar images. Optic flow will be discussed in the
next section.

Stationary reconstruction from differential attributes of singular points can be con-
nected to generalized sampling theory as proposed by Unser and Aldroubi [16]. They
find a consistent reconstruction of a signal from its integer shifted filter responses, i.e.
a reconstruction that is indistinguishable from its original when observed through the
filters the features were extracted with. The consistency requirement is adopted by Lill-
holm, Nielsen and Griffin [17,18] in pursue of stationary reconstruction from scale
space interest points. They describe a variational framework that finds a consistent re-
construction that minimizes a so called prior.

The reconstruction problem boils down to the selection of an instance of the
metameric class consisting of g ∈ L2

(
R

2
)

such that

(ψi, g)L2
= ci , (i = 1...N) (10)

with ψi denoting the distinct localized filters that generate the ith filter response ci =
(ψi, f)L2

.
In case the prior is formed by an inner product the reconstruction scheme aims to

establish a reconstruction g that satisfies equation (10) and minimizes

E(g) =
1
2
(g, g)H . (11)

Here (·, ·)H denotes an inner product on a Hilbert spaceH (to be specified later). Since
g satisfies equation (10) we may as well write

g = argmin E(g) =
1
2
(g, g)H − λi ((κi, g)H − ci) . (12)

Summation convention applies to upper and lower feature indices i = 1...N . The first
term in the Euler-Lagrange formulation, cf. equation (12), is referred to as the prior.
The remainder consists of a linear combination of constraints, recall equation (10),
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with Lagrange multipliers λi. κi are the filters in H that correspond to the filters ψi in
L2, i.e. by definition we have,

(κi, f)H = (ψi, f)L2
. (13)

The solution to equation (12) can be found by orthogonal projection in H of the
original image f on the linear space V spanned by the filters κi, i.e.

g = PVf = (κi, f)H κi . (14)

Here we have defined κi def= Gijκj with Gramm matrix

Gij = (κi, κj)H (15)

and GikGkj = δi
j .

We adopt the prior that is formed by the first order Sobolev inner product

(f, g)H = (f, g)L2
+ (γ∇f, γ∇g)L

2
. (16)

with γ ∈ R
+ a scalar that controls the smoothness of the reconstructed function. Be-

cause of this choice the explicit form of the filters κi is as follows,

κi = (I − γ2Δ)−1ψi

= F−1
(
ω �−→ 1

1 + γ2||ω||2F(ψi)(ω)
)

.
(17)

For two dimensions (n = 2) the convolution filter that represents the linear operator
(I − γ2Δ)−1 equals

φγ(x, y) =
1

2πγ2K0[

√
x2 + y2

γ
] (18)

with K0 representing the zeroth order modified Bessel function of the second kind [26].

4 Flow Reconstruction

The reconstruction algorithm that is described in the previous section will be used to ob-
tain a dense flux field that explicitly contains the desired flow information. The velocity
of the anchor points (recall equation (6)) is encoded in a multi-scale flux field J.

4.1 Proposed Vector Field Retrieval Method

Definition 3 (Dense Flux Field). The dense flux field j ∈ L
m
2 (Rn) at scale s = s0, in

which s0 > 0 is related to the grid scale, is defined by

j = f v (19)

with f ∈ L2 (Rn) the image intensity and v ∈ L
m
2 (Rn) the dense optic flow field

introduced in Definition 2.



774 B.J. Janssen et al.

In order to find a dense flux field from flux measurements in scale space the mini-
mization with respect to k ∈ L

m
2 (Rn) of the following Euler-Lagrange formalism is

proposed, in which P denotes the collection of anchor points,

E[k] =
m∑

a=1

⎡⎣1
2
(ka, ka)H +

∑
p∈P

ca
p

[
(ka, φp)H − Ja

p

]⎤⎦ def=
m∑

a=1

Ea[ka] . (20)

With k = (k1, . . . , km) denoting the estimated dense flux field (gray value times scale
space velocity) at scale s = s0. The filter responses for each point p ∈ P are

Jp =
∫

Rn

jφp dV . (21)

These measurements of the image flux in scale space can only be performed reliably
in well defined anchor points. We restrict ourselves to the anchor points introduced in
Section 2, namely singular points. The reader should note that there is no theoretical
objection against the use of any other point type.

Equation (20) is a sum of positive convex energies and can therefore be minimized
for each component of k separately. The fact that equation (20) is decoupled for each
spatial and scale component readily yields

k = PV j , (22)

with V denoting the span of the filters {φp}p∈P and PV the component-wise linear
projection onto V. Recall Section 3, notably equation (14).

5 Evaluation

The results of the optic flow estimation are evaluated quantitatively by means of the
angular error of the estimated vector field as proposed by Barron et al.[14]. The test se-
quence used for evaluation is the familiar Yosemity Sequence. Qualitative evaluation is
performed by analysis of the flow field of the Translating Tree Sequence and the Ham-
burg Taxi Sequence. These image sequences and their ground truths, if available, are
obtained from the University of Western Ontario (ftp://ftp.csd.uwo.ca in the directory
/pub/vision/) as mentioned in a paper by Barron et al. [14]. The algorithm is imple-
mented in Mathematica [27]. For the properties of the different sequences we refer to
the original article [14].

The anchor pointset P is obtained in two steps. Initial guesses of the positions of
the singular points are obtained using ScaleSpaceViz [28] which basically uses a zero-
crossings method for solving (2). The locations of the points returned by this program
are refined by iteration over equation (8) until the estimated error is below 10−3 pixels.
In case a singular point position cannot be refined, which can be caused by a poor
initial guess of its position, the point is discarded. The result of these two steps is a
highly accurate representation of P .

The dense flux field is estimated for each spatial component separately as described
in equation (22). The scale component is, for the sake of simplicity, ignored as it has no
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counterpart in the algorithms evaluated in the comparison paper by Barron et. al.[14] or
elsewhere. More on this new aspect will be discussed in section 6.

For each of the test sequences the velocities of the singular points are estimated by
inversion of equation 6. When the velocity of a singular point is unstable the point is
not taken into account in the algorithm. The velocity of a singular point is considered
stable as long as its stability measure (recall equation (5)) satisfies

det

⎡⎢⎣ H(t;x, s) ∇∂u(t;x,s)
∂s
...

∇T detH(t;x, s) . . . ∂ detH(t;x,s)
∂s

⎤⎥⎦ > ε . (23)

In the experiments ε is set to 10−5. This settings of ε is an educated guess and should be
subject of further research (it is likely to depend on the condition number of the linear
system).

The time derivatives in equation (6) are either taken as two-point central derivatives
or as Gaussian derivatives with fixed time scale τ . The Gaussian derivatives are com-
puted with a scale component in the time direction, notably τ . The performance of the
reconstruction depends on the setting of the parameter γ introduced in equation (16).
Since the goal of this section is to evaluate the feasibility of the proposed algorithm only
a fixed sensible setting of γ = 16 pixels, is taken into account. In theory one obtains
smoother reconstructions as γ tends to infinity, all consistent with the dynamic anchor
point constraints. Definition 3 is applied to resolve the desired dense optic flow field.

5.1 Qualitative Evaluation

A visualization of the angular component of the estimated flow vectors belonging to
the Translating Tree Sequence with time scale set to τ = 3 frames is presented in
Figure 3. In this case problems occur at the boundaries. However only those edges that
possess appearing and disappearing singular points show problems. The results could
be influenced negatively by the low number of features (95 singular points with an
image size of 150 × 150 pixels) that were used in the algorithm. It is remarkable that
the translating structure of the flow field is correctly detected by our algorithm without
explicitly accounting for this structure.

The optic flow field of the Hamburg Taxi Sequence superimposed on the image on
which the optic flow estimation is performed is shown in Figure 4. It shows all vectors
that possess a magnitude larger than 0.2 pixels/frame. Most notable is the fact that the
pedestrian, present in the upper left of the image sequence, is detected by our algorithm.
Also some false vectors are present in the scene. This could be caused by numerical
errors that occur when high order derivatives are taken at fine scales. A more restricting
setting of ε will remove these vectors but coarsens the set of anchor points too much.
Boundary problems are visible at the location where the van enters the sequence.

5.2 Quantitative Evaluation

A more objective approach to the evaluation of the quality of the estimated flow field is
the average angular error [14]. The results of the experiments conducted on the Yosemity
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Fig. 3. The estimated flow field of Translating Tree Sequence using time scale τ = 3 frames

Table 1. Summary of the performance of the proposed optic flow retrieval method applied to the
Yosemity Sequence

Time Average Standard Deviation # Singular
Scale Angular Error of Angular Error Points

1 24.93◦ 36.00◦ 352
2 19.19◦ 34.45◦ 303
3 19.97◦ 34.30◦ 271
4 22.94◦ 42.61◦ 251
5 25.00◦ 39.50◦ 226

Sequence are summarised in Table 1. It shows the angular error, standard deviation of
the angular error and the number of singular points used in the reconstruction step for
different time scales τ .

When the time scale is increased less singular points can be taken into account in the
reconstruction step of the algorithm. The setting of the time scale is a tradeoff between
the number of features that can be taken into account (which decreases with time scale)
and noise robustness (which increases with time scale).

A histogram of the angular errors of the estimated optic flow in the Yosemity Se-
quence using a time scale of τ = 2 frames is shown in Figure 5. The figure shows that
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Fig. 4. The estimated flow field of Hamburg
Taxi Sequence using time scale τ = 2 frames
superimposed on the image on which the cal-
culations were applied. Only vectors that de-
note a velocity larger than 0.2 pixels/frame are
displayed.
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Fig. 5. Histogram of the angular error of the
estimated flow field belonging to the Yosemity
Sequence

the number of erroneous vectors decreases rapidly with the magnitude of the angular
error, which is a promising result. Similar results are obtained for different time scales.
Still many vectors that point to the opposite direction are present. This increases the
standard deviation of the angular error that is presented in Table 1. Since we did not
develop a confidence measure it is unjustified to leave these incorrect vectors out.

6 Summary and Recommendations

We have proposed an inherent multi scale optic flow estimation method that finds a flow
field using the dynamic properties of so called anchor points. These anchor points can
by any type of point as long as it is isolated and geometrically identifiable. We selected
singular points of a Gaussian scale space image for the evaluation of our method. Gen-
eral reconstruction theory can be applied to optic flow retrieval from anchor points by
encoding the dynamic properties of these points in a so called flux field. In order to
obtain a dense flux field from the sparse set of flux vectors at multi scale anchor points,
which is related to the optic flow of an image sequence, general reconstruction theory
can be applied to each dimension independently.

The evaluation of zeroth order flow estimation, for which up to zeroth order dynamic
features are taken into account, shows reasonable results considering the sparseness of
features.

Problems that showed up are mainly caused by too sparse a set of features. Other
causes of error are instability of the anchor point flow estimation, which is in general
caused by occlusion and the image boundary, and numerical instability in the inversion
step that is present in the reconstruction algorithm.

One of the unique properties of the proposed algorithm is that the velocity vectors
possess a scale component. This can potentially be useful for segmentation and camera
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motion estimation. We neglected the presence of this scale component in the recon-
struction process. It does give more information about the local structure of the vector
field and can therefore be used as an extra constraint for the estimation of the spatial
components of the optic flow field. A “zoom”, for example, will cause singular points
to translate and move downwards in scale. A method to add this extra property in the
estimation of the optic flow field has yet to be proposed.

6.1 Recommendations

We suggest the following improvements to the algorithm which may lead to a significant
performance increase:

– Taking into account higher order features (accelerations etc.).
– Improved reconstruction, e.g. by choosing a more appropriate space for projection.
– Using more anchor points.

Possible anchor point candidates are singular points of the laplacian of an image, so
called blob points as proposed by Lindenberg [29], scale space saddles as proposed by
Koenderink [30] or other singular or critical points. One can use all these point types
simultaneously.
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The Effect of Presmoothing Image Sequences on
the Computation of Optical Flow
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Abstract. The computation of optical flow has been proposed as a pre-
processing step for many high-level vision algorithms. One of the main
approaches to the optical flow problem is the gradient-based approach
which differentiates the image intensity to compute the optical flow. Of-
ten motion vectors computed using various approaches are not reliable.
Spatial smoothing of the image sequence is advisable in order to im-
prove velocity estimates in the presence of noise. That is, the application
of some kind of linear operation to the images in the sequence before
solving for the flow. The pre-processing typically takes the form of some
type of spatial Gaussian smoothing or scale specific band-pass filtering
of the input images. The main objectives of such filtering have been to
lessen the effects of noise, to isolate image structure of interest and to
attenuate temporal aliasing and quantization effects in the input images.

This paper investigates the effect of presmoothing on this computa-
tion of optical flow. The well known method of Horn and Schunck as well
as our own finite element method are implemented and tested for im-
provements due to presmoothing. Discussions are provided on the effects
of presmoothing for a variety of image sequences. In our experiments,
smoothing is carried out on a selection of well known sequences in both
time and space. Improvements are shown using presmoothing.

Keywords: Finite Volume Methods, Inverse Finite Element Methods,
Motion Tracking, Optical Flow, Spatial Smoothing, Temporal Smooth-
ing.

1 Introduction

The estimation of grey-level derivatives is of great importance to the analysis of
image sequences for the computation of velocity. Many methods are available in
the literature for motion tracking, each with their own characteristics and limita-
tions [4], [9], [12]. One of the main approaches to the optical flow problem is the
gradient-based approach which differentiates the image intensity to compute the
optical flow. Horn and Schunck [9] presented a gradient-based approach in the
form of an iterative algorithm to find the optical flow pattern in which the deriv-
atives of image intensity are approximated using a finite volume approach. It is
one of the most powerful algorithms for optical flow computation, making the
simple assumption that image brightness itself does not change during motion.
By assuming that image intensity is conserved, a gradient constraint equation
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may be derived; approximation of the image intensity derivatives in this equa-
tion, together with smoothness constraints, forms the basis of algorithms for
the computation of the optical flow field describing the transformation of one
grey-level image in a sequence to the next.

The research in this paper is focused on the evaluation of the effect of pres-
moothing on optical flow estimation in image sequences. Here another gradient-
based approach is used where finite element methods (FETBI) approximate the
image intensity derivatives rather than finite volume methods. The method of
Horn and Schunck [9] which uses finite volume methods (HS) is also used to eval-
uate presmoothing. The finite element approach has many advantages which in-
clude a rigorous mathematical formulation, speed of reconstruction, conceptual
simplicity and ease of implementation via well-established finite element pro-
cedures in comparison to finite volume or finite difference techniques. A finite
element approach provides a facility for adaptive partitioning of images [6].

Motion vectors computed using various approaches are often not reliable.
Spatial smoothing of the image sequence is advisable in order to improve velocity
estimates in the presence of noise. That is, the application of some kind of linear
operation to the images in the sequence before solving for the flow. The objectives
of filtering may be to reduce the effects of noise, to isolate image structure of
interest and to attenuate temporal aliasing and quantization effects in the input
images. In our experiments, spatial smoothing was carried out on a selection of
five sequences in both time and space. The one-dimensional Gaussian function
was used to generate the masks for the smoothing in time. Images were smoothed
in time and then space and vice-versa to assess which approach performed better.

The finite element algorithm is described in Section 2. Section 3 discusses the
presmoothing of images with results shown in Section 4. Section 5 evaluates and
concludes the paper.

2 Finite Element Formulation

Implementations based on finite difference or finite volume methods become
complicated to generalise when the image intensity values are not uniformly
sampled because they are based on point differences along regular co-ordinate
directions. In contrast, finite element methods are ideally suited for use with
variable and adaptive grids, and hence provide a framework for developing algo-
rithms to work with non-uniformly sampled images. It has previously been shown
that the algorithm of Horn and Schunck (HS) for optical flow estimation may be
considered as one of a family of methods that may be derived using an inverse
finite element approach (FETBI) [5]. The two-dimensional Galerkin bilinear fi-
nite element technique (FETBI) has been developed [7]. This paper looks at the
issues of presmoothing images before computing optical flow. Comparisons will
be made with other methods available in the literature.

2.1 Two-Dimensional Formulation

We are concerned with the inverse problem in which the image intensity values
are known, and it is the velocity function b, or optical flow, that is unknown
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and is to be approximated. The image intensity at the point (x, y) in the image
plane at time t is denoted by u(x, y, t) which is considered to be a member of
the Hilbert image space H1at any time t > 0. The optical flow is denoted by
b ≡ (b1(x, y, t), b2(x, y, t)) where b1 and b2 denote the x and y components of
the flow b at time t > 0. In the inverse problem with which we are concerned,
the image intensity values are known and it is the velocity function b, or optical
flow, that is unknown and is to be approximated. The optical flow constraint
equation is

uxb1 + uyb2 + ut = 0, (1)

where ux, uy, ut are the partial derivatives of the image intensity with respect
to x, y and t respectively. Equation 1 cannot fully determine the flow but can
give the component of the flow in the direction of the intensity gradient. An
additional constraint must be imposed, to ensure a smooth variation in the flow
across the image, which is formed by minimising the (square of) the magnitude
of the gradient of the optical flow velocity components. It provides a smoothness
measure, and may be implemented by setting to zero the Laplacian of b1 and b2.
Our approximation is based on the weak form where Ω is the image domain.

The computation of optical flow may be treated as a minimisation problem
for the sum of the errors in the equation for the rate of change of image intensity
and the measure of the departure from smoothness in the velocity field. This
results in a pair of equations, which along with an approximation of laplacians
of the velocity components, allow the optical flow to be computed. A smoothing
parameter α2 is incorporated into the motion equations and an iteration proce-
dure with a tolerance value (toler) is used to ensure convergence to a solution
on termination of the iteration procedure [7].

2.2 Finite Element Bilinear Method (FETBI)

For the uniform bilinear technique, consider a finite element discretisation of
the image domain Ωi based on a rectangular array of pixels. Nodes are placed
at the pixel centres, and lines joining these form the edges of elements in the
domain discretisation. The infinite dimensional function space H1 cannot be used
directly to provide a tractable computational technique, however a function in
the image space H1 may be approximately represented by a function from a
finite dimensional subspace Sh ∈ H1. From Sh a finite basis {φj}N

j=0 is selected,
where the support of φi is restricted to a neighbourhood Ωi (the domain in which
its value is non-zero).

The approximation occurs within the finite dimensional subspace Sh ∈ H1.
The image u may thus be approximately represented at time tn by a function
Un ∈ Sh, where Un =

∑N
j=0 U

n
j φj and in which the parameters {Un

j }N
j=0 are

mapped from the sampled image intensity values at time t = tn. A basis for Sh

may be formed by associating with each node i, a trial function φi(x, y) such
that φi(x, y) = 1 at node i, φi(x, y) = 0 at node j, j �= i, and φi(x, y) is bilinear
and piecewise polynomial on each element. The basis function φi(x, y) is thus
a tent shaped function with support limited to those rectangular elements that
have node i as a vertex.
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If the components of the optical flow are considered to be piecewise constant
over each element, then a Galerkin finite element formulation will provide an ap-
proximation to the flow constraint Equation 1 in which each equation contains
unknown velocity component values b1 and b2. Of course, the image intensity
values do not vary smoothly with time, but discretely from one image in the
sequence to the next. The variables Un

j and Un+1
j are image intensity values

in the nth and (n + 1)th images respectively. A one-dimensional Euler Lagrange
forward finite difference approximates the partial derivative ∂Un

j

∂t . The finite el-
ement Galerkin formulation with θ time-stepping leads to the approximation

θ

N∑
j=0

Un
j

∫
Ω

b
¯
.%φjφi dΩ + (1 − θ)

N∑
j=0

Un+1
j

∫
Ω

b
¯
.%φjφi dΩ

+
N∑

j=0

[
Un+1

j − Un
j

Δt

]∫
Ω

φjφi dΩ = 0, (2)

where the image values are weighted by θ at the old time step and by (1− θ) at
the new time step. The forward difference Crank-Nicholson scheme is recovered
when θ = 1

2 . Approximations are necessary for the integrals involved in Equation
2 which may be computed via finite element integral approximations [5]. These
Equation 2, along with the smoothing constraint, may be rearranged to provide
an iteration scheme similar to the Horn and Schunck equations to approximate
the optical flow for each element [5]. A smoothing parameter α is incorporated
into the motion equations and an iteration procedure with a tolerance value
(toler) is used to ensure convergence to a solution.

3 Presmoothing Images

Often motion vectors computed using various approaches are not reliable. Spa-
tial smoothing of the image sequence is advisable in order to improve velocity
estimates in the presence of noise. That is, the application of some kind of linear
operation to the images in the sequence before solving for the flow. The pre-
processing typically takes the form of some type of spatial Gaussian smoothing
or scale specific band-pass filtering of the input images. The main objectives of
such filtering have been to lessen the effects of noise, to isolate image structure of
interest and to attenuate temporal aliasing and quantization effects in the input
images. When temporal aliasing cannot be avoided, hierarchical coarse-to-fine
methods provide better results [6].

Ong and Spann [12] carried out Gaussian smoothing in time if the sequence
had more than fifteen frames. If the sequence had less than fifteen frames they
used only two of these frames with Gaussian spatial smoothing. For larger mo-
tions Black and Anandan [2] used Gaussian pyramid levels of spatially filtered
images. Ju et al. [10] used a four level Gauss method for smoothing. Schunck
[13] claimed that averaging frames in a sequence in time could cause problems
with motion inconsistencies. Simoncelli et al. [14] presmoothed with Gaussian
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spatiotemporal smoothing as did many other authors [1]. Generally authors pres-
moothed in space and time with σ = 1.5 pix/fra for Gaussian smoothing. Barron
et al. [1] used a 5 × 5 neighbourhood for spatial presmoothing with 15 frames
in time and a standard deviation of 1.5 pixels in space and 1.5 frames in time
sampled out to 3 standard deviations. Similarly, Zhang et al. [16] carried out
Gaussian presmoothing for the Yosemite Valley sequence in space and time with
σxy = σt = 1.5 over 15 frames. In our experiments, spatial smoothing was carried
out on a selection of five sequences in both time and space: the Rotating Rubic,
the Hamburg Taxi, the Yosemite Valley and the Translating Square 1 sequence.
A parameter set for convergence tolerance and α which gave satisfactory results
for these sequences without spatio-temporal smoothing was chosen.

3.1 Spatial Smoothing

For smoothing in space the smoothed function Ûi is obtained as

Ûi =
∑

j

CjiUj, (3)

Cji =
∫

Ω

φjψidΩ, (4)

with φj the basis function at node j with corresponding image value Uj , and
Gaussian smoothing function

ψi =
1

2πσ2 e
− x2+y2

2σ2 . (5)

We have chosen σ = 1
1.96 so that 95% of the cross-section of the Gaussian

lies within one element-width of the node on which it is centred. Values of Cji

computed using the general bilinear φj function are calculated per local node
number of this element. The 3 × 3 masks of Cji coefficients are normalised so
that their sum equals 1.

3.2 Temporal Smoothing

The one-dimensional Gaussian function

ψ(t) =
1√

2πσ2
e
− t2

2σ2 (6)

was used to generate the masks for the smoothing in time.

3.3 Smoothing Implementation

Images were smoothed in time and then space and vice-versa to assess which
approach performed better. There were 21 images available for the Square1,
Rotating Rubic and Hamburg Taxi sequences. Only 15 image frames were avail-
able for the Yosemite Valley sequence. All of the images were initially smoothed
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spatially. Then the first half of the images were time smoothed to form a new
image 1 with the second half then time smoothed to form a new image 2. This
completed the space and time smoothing operations.

After some analysis, it was thought that some of the sequences used in
this analysis were suffering from time smoothing over too many images. The
Hamburg Taxi sequence seemed to lose the car and van flow during this analy-
sis which was not satisfactory and the Y osemite V alley did not improve but
rather became less satisfactory. So a rule was developed to calculate the number
of images to be included in time smoothing. Initial exploratory Rotating Ru-
bic sequence analysis showed that a formula could be developed which was a
function of the maximum velocity possible throughout the image based on prior
knowledge of the image sequences [7]. The general rule was that the faster the
flow, the fewer the frames that should be used in time averaging. A formula
for the number of frames (N) to be included in the smoothing calculations was
developed as N =

[
k

maxvel

]
where maxvel denotes the maximum velocity known

to occur in the image sequence in pixels per frame and k is a parameter which
was calculated on analysis of initial Rotating Rubic sequence results where 15
image frames smoothed in time from the sequence produced a satisfactory result
(N = 15 therefore k = 21 as the maximum velocity occurring during the Rotat-
ing Rubic sequence was 1.4 pixels/frame). The value for N must always be an
odd number as we require 95% of N−1

2 of the image sequence frames of the cross-
section of the Gaussian to lie within one element-width of the node on which it
is centred. Thus for a 95% confidence interval, the variable σ is calculated thus:

σ =
1

1.96

[
N − 1

2

]
. (7)

It was calculated (from N) that all sequences used in this part of the analy-
sis should have their number of images used in time smoothing adjusted. The
Y osemite V alley sequence was reduced to 3 from previously 15 images being
used. Similarly the Rotating Rubic sequence was reduced to 15 images from 21
previously, the Square1 sequence was reduced to 19 from 21 and the Hamburg
Taxi was reduced to 7 images from 21 images. This reduction in the number of
images used in the time smoothing process improved the Hamburg Taxi and
Y osemite sequence results significantly.

3.4 Errors for Performance Analysis

Synthetic image sequences are used for which the correct 2D motion fields are
known, with the angular and absolute errors measures used for quantitative com-
parisons. Real image sequences are also used for analysis where the displaced
frame difference error is calculated and discussed [1], [7], [12]. Velocity is written
as displacement per unit time; pixels/frame (pix/fr).

4 Experimental Results

For these sequence experiments the following representation is made: OR denotes
no time or space smoothing used (i.e. ORiginal results); SP denotes spatially
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Fig. 1. Translating Square1 FETBI and HS Spatially Smoothed Flow for Convergence
Tolerance 0.001 and Smoothing α = 75

Table 1. Performance of FETBI, HS and Other Algorithms with Angular Errors for
Smoothed and Unsmoothed: Translating Square 1, Yosemite Valley and Translating Tree
Image Sequences

Algorithm Angular Error Absolute Error Density

(Toler/α) Mean SD Mean SD %

Translating Square 1

FETBI (0.001/75) OR 16.261 11.579 1.047 0.464 100.00

HS (0.001/75) OR 17.494 10.885 1.076 0.370 100.00

FETBI (0.001/75) SP 14.610 10.627 0.980 0.387 100.00

HS (0.001/75) SP 17.083 10.735 1.065 0.375 100.00

Yosemite Valley

FETBI (0.001/75) OR 21.185 25.503 1.021 0.922 100.00

HS (0.001/75) OR 19.319 25.700 1.119 1.029 100.00

FETBI (0.001/75) TISP 18.800 22.915 0.978 0.936 100.00

HS (0.001/75) TISP 17.828 22.900 1.032 1.006 100.00

Aisbett [15] 22.78 20.04 100.00

Original Barron et al. [1] 31.69 31.18 100.00

Black and Anandan [15] 31.03 22.82 100.00

Nagel [15] 26.23 21.73 100.00

Heeger [12] 22.82 35.28 64.20

smoothed; TI denotes temporally smoothed; SPTI denotes spatial smoothing
followed by temporal smoothing; TISP denotes temporal smoothing followed by
spatial smoothing.

Error values results for the Translating Square1 sequence are shown for
comparison for the non-smoothed (OR) and spatially smoothed (SP) versions
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Fig. 2. Y osemite V alley FETBI and HS Temporal and Spatially Smoothed Flow for
Convergence Tolerance 0.001 and Smoothing α = 75
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Fig. 3. Y osemite V alley FETBI and HS Original Flow for Convergence Tolerance
0.001 and Smoothing α = 75
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Fig. 4. Rotating Rubic FETBI and HS Spatially Smoothed Flow for Convergence Tol-
erance 0.001 and Smoothing α = 400

for tolerance 0.001 and α = 75 (see Figure 1) in Table 1. These values show a
11% improvement for the spatially-smoothed flow over the original flow for the
FETBI algorithm.

Some results for Y osemite V alley are included which involve the computation
of optical flow from bilinear-Gaussian temporal and spatially smoothed images of
this sequence. Figure 2 shows the results of computing flow from these temporal
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Fig. 5. Rotating Rubic FETBI and HS Temporally Smoothed Flow for Convergence
Tolerance 0.001 and Smoothing α = 400

Table 2. Displaced Frame Difference Errors for Smoothed and Unsmoothed: Rotating
Rubic and Hamburg Taxi Image Sequences with FETBI, HS and Other Algorithms [12]

Algorithm Forward DFD Backward DFD Density

(Toler/α) Mean SD Mean SD %

Rotating Rubic

FETBI (0.001/400) OR 2.634 8.588 2.634 8.588 100.00

HS (0.001/400) OR 2.584 8.476 2.584 8.476 100.00

FETBI (0.001/400) SP 2.634 8.585 2.634 8.585 100.00

HS (0.001/400) SP 2.732 8.795 2.732 8.795 100.00

FETBI (0.001/400) TI 4.792 13.606 4.792 13.606 100.00

HS (0.001/400) TI 4.691 13.319 4.691 13.319 100.00

Anandan 5.31 4.99 100.00

Nagel 3.28 3.04 100.00

Fleet and Jepson 4.42 3.08 12.63

Hamburg Taxi

FETBI (0.001/75) OR 3.631 11.249 3.737 11.880 100.00

HS (0.001/75) OR 3.499 10.773 3.482 10.610 100.00

FETBI (0.001/75) TISP 3.308 10.136 3.329 10.286 100.00

HS (0.001/75) TISP 3.222 9.472 3.223 9.598 100.00

Anandan 4.35 3.60 100.00

Lucas and Kanade 3.99 3.23 100.00

Nagel 4.21 3.48 100.00

Fleet and Jepson 6.20 4.84 27.84

Odobez and Bouthemy 3.93 3.17 98.87

Ong and Spann 3.84 3.08 95.46
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Fig. 6. Hamburg Taxi FETBI and HS Original Flow for Convergence Tolerance 0.001
and Smoothing α = 75
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Fig. 7. Hamburg Taxi FETBI and HS Temporal and Spatially Smoothed Flow for
Convergence Tolerance 0.001 and Smoothing α = 75

and spatially smoothed images (TISP) with parameters of tolerance 0.001 and
α = 75 with error values included in Table 1. The original result (OR) for
this combination of parameters is shown in Figure 3. For this sequence, 13%
improvements are recorded for FETBI and HS algorithms using the temporal-
spatial smoothed images instead of the original images. Some other authors in
the literature have carried out spatial and temporal smoothing on this Y osemite
V alley sequence and reported that this smoothed out errors and lowered angular
and absolute error values: [3], [11]. This is consistent with the results presented
here. Heeger [8] claimed smoothing helped overcome problems on the horizon
boundary. A method by Zhang et al. [16] included presmoothing to overcome
the aperture problem in the mountains and thereby achieved better results.

Results are shown for the spatially smoothed (SP) and temporally smoothed
(TI) versions of the Rotating Rubic sequence for tolerance 0.001 and α = 400 in
Figure 4 and Figure 5 respectively. Table 2 shows the corresponding displaced
frame difference errors, where it can be seen that the spatially smoothed version
gives very similar FETBI results to the original results without any smoothing
(OR - see Table 2). The temporally smoothed results shown in Figure 5 are
quite interesting here. They show a generally less smooth flow result with more
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definition in individual flow vectors. However with these temporally smoothed
images the error increases.

Some results are included for the Hamburg Taxi sequence which involve
the computation of optical flow from temporal and bilinear-Gaussian spatially
smoothed images of this sequence. Figure 6 and Figure 7 respectively show the
results of computing original (OR) and temporal-spatially smoothed (TISP) flow
with parameters of tolerance 0.001 and α = 75, with error values included in
Table 2. Improvements are recorded for both FETBI and HS algorithms, with
10% and 9% improvements respectively.

5 Conclusion

This paper has provided a mathematical and experimental background for pres-
moothing images prior to optical flow computation. In the results presented,
when comparing the two dimensional Horn and Schunck method with the FETBI
technique, the FETBI technique performs well. The smoothing investigation
showed improvements for the FETBI algorithm for the Translating Square1,
Y osemite V alley and Hamburg Taxi sequences. Generally FETBI performed
as well as HS on most image sequences and in some cases showed improve-
ments over HS results. In particular, FETBI showed an 11% improvement when
the Translating Square 1 image sequence was spatially smoothed. The Yosemite
Valley sequence showed a 13% improvement with temporal-spatially smoothed
images for both the FETBI and HS algorithms. On the Hamburg Taxi image
sequence temporal-spatially smoothed images provided a 10% and 9% improve-
ment in errors for the FETBI and HS algorithms respectively. Generally 3 out
of the 4 image sequences shown in this paper show at least a 10% improvement
in error results with the FETBI algorithm. One of the image sequences did not
show an improvement but yet the errors did not always increase. These results
suggest the optimum amount of smoothing may depend on the particular image
sequence but generally where presmoothing is used (temporal or spatial) the
results do not deteriorate.
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Abstract. In this paper, we present an optical flow based frame rate up-
conversion method for ultrasound images. The conventional mechanical scan 
method for multi-planar images has a slow frame rate, thus frame interpolation 
is desirable for smooth display. In the proposed frame rate up-conversion 
method, several new interpolated frames are inserted between two input frames, 
giving smooth renditions to human eyes. We employ a window-based optical 
flow based method to find accurate motion estimates for frame interpolation. 
Consequently, the proposed method can provide detailed and improved 
interpolated images without block artifact. Experimental results with three sets 
of ultrasound image sequences show the effectiveness of the proposed 
interpolation method. 

Keywords: Optical flow, image enhancement, frame rate up-conversion, real-
time 3-D, ultrasound image. 

1   Introduction 

Medical visualization resources encompass a broad array of different modalities, 
including X-ray imaging, computed tomography (CT), magnetic resonance imaging 
(MRI), and ultrasound. The inherent flexibility of ultrasound imaging and its 
moderate cost without known bio-effects give it a vital role in the diagnostic process 
compared with CT and MRI. Ultrasound visualization has been in routine use in 
almost hospitals and clinics to diagnose widely different pathology [1]. 

General ultrasound diagnosis equipments take in one-dimensional (1-D) signals, 
from which two-dimensional (2-D) ultrasound images are generated as a collection of 
1-D signal information. Three-dimensional (3-D) ultrasound images are also 
generated as a collection of 2-D signal information. 3-D image conversion methods 
use a ray-casting rendering method that considers trace-light effects for image 
modeling, while requiring a high computational load [1][2]. 3-D ultrasound diagnosis 
equipments are classified into two types: those integrated in ultrasound equipments 
and those using external workstations. The former methods process signals using 
physical beam data directly in ultrasound diagnosis with fast and accurate 3-D data 
acquisition. The latter methods, integrated 3-D approaches, are classified into two 
methods: mechanical scan and hand-free scan. Mechanical scan using 1-D array 
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converters provides accurate and high-resolution 3-D data in real-time, thus this 
approach is a more promising method than the hand-free scan one that is difficult to 
implement in real-time. 

The present 3-D scan method using mechanical 1-D arrays shows a drawback 
that it has a relatively slow multi-planar image update rate at about 1.5–2 
volumes/sec over general regions of images. The image obtained by the 3-D scan 
method does not show an issue related to stationary objects. Nowadays, the image 
update rate has been increased much, however this speed is not still enough for 
smooth rendition to human eyes, in which abrupt changes are perceived due to fast 
motions. To increase the frame rate further, we use a frame rate up-conversion 
method [3] by which a number of interpolated frames are inserted between two 
input frames, providing more natural motions in real-time. To improve visual 
quality, accurate motion detection is required. 

The rest of the paper is structured as follows. Section 2 presents motion estima- 
tion methods: the block matching algorithm (BMA) and the optical flow method. 
Section 3 describes two optical flow based motion estimation methods: anisotropic 
method and Lucas and Kanade’s method. Section 4 proposes the temporal 
interpolation method using the employed optical flow method. Section 5 gives 
experimental results and discussions. Section 6 concludes the paper. 

2   Motion Estimation Methods 

We need the temporal relationship between two images (previous and current frames) 
for temporal frame interpolation. This information is obtained from the difference 
image or the intensity change caused by object motions. Accurate motion estimation 
is required for effective description of motion trajectory of objects in a frame. 
Generally, motion estimation methods can be classified into three categories: area-
based, feature-based, and gradient-based. The area-based approach has been widely 
used for image compression. However, it cannot estimate the real motion field. The 
feature-based motion estimation methods were proposed to find the correct motion 
vectors using feature points. Since only a small number of feature points are detected, 
interpolation of the dense motion field is required. Gradient-based approach uses 
intensity changes between two input images because motion produces intensity 
changes. 

In this paper, gradient-based approaches are appropriate for image sequence 
processing because dense optical flow can be obtained, under the assumption of 
conservation of intensity. They assume that at a point the intensity at the 
corresponding image point remains constant over time. If point at time t corresponds 
to point at time tt δ+ , we can obtain 

).,,(),,( ttyyxxItyxI δδδ +++=  (1) 

Using Taylor series expansion: 
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The motion constraint line of the optical flow equation is plotted in the space, 
from which the normal velocity can be directly obtained. The normal velocity is 
the same as the perpendicular distance of the line from the origin. The problem 
arises on the gradient-based formulation as an underconstrained system composed 
of a single equation with two components, which is called an aperture problem. 
This formulation is acceptable in the regions that do not suffer from the aperture 
problem, and the slope of the motion constraint line is related to the direction of 
intensity gradients [4][18]. 

3   Optical Flow Based Motion Estimation 

Various optical flow methods are classified into two types: global and local. Horn and 
Schunck’s method [5] and Nagel’s method [6] are global ones whereas Lucas and 
Kanade’s method [7] is a local one. In our previous work [8], local change detection is 
employed in frame interpolation using Lucas and Kanade’s method. Also we use MV 
information using an anisotropic diffusion method to obtain smooth MVs. It shows 
good interpolation results, however, has a drawback that it consists of two similar steps 
for consistent MV generation: anisotropic diffusion filtering and median filtering. 

We simulate two optical flow frame interpolation methods: 1) we utilize MV 
information of neighboring windows in the anisotropic diffusion method, 2) we 
use Lucas and Kanade’s method using median filtering which is faster than the 
former method. However the latter requires hole and overlap processing. 

3.1   Comparison of Pixel-Based and Window-Based Optical Flow Methods 

Optical flow methods find intensity changes pixel by pixel. They detect the correct 
motion field with noiseless images. 3-D ultrasound images are generated by rendering 
a number of 2-D ultrasound images using a ray-casting method, showing blurring. 

               
(a)                    (b) 

Fig. 1. Detected MVs by optical flow methods. (a) pixel-based. (b) window-based. 
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They are somewhat noisy due to the characteristic of ultrasound. The pixel-based 
optical flow method [5] does not give consistent MVs as shown in Fig. 1(a). It utilizes 
correlation of neighboring pixels with a high computational load. 

To obtain consistent motion vectors as shown in Fig. 1(b) with a reduced 
computational load, we propose a window-based optical flow method [7], in which 
the computation time of the optical flow method with 2×2 windows is reduced by a 
factor of three compared with the pixelwise optical flow method. Also the 2 × 2 
window-based method shows good results as the pixel based method because 2×2 
windows are small. 

3.2   Anisotropic Diffusion Method 

The optical flow based motion estimation method using regularization shows a 
difficulty in obtaining a physically reasonable solution in the sense that it cannot cope 
well with discontinuities. Conventional methods have not completely solved this 
problem. Anisotropic diffusion for the adaptive Gaussian smoothing in image 
reconstruction was proposed [9]. Gaussian filtering with varying scale can be 
transformed into a form of a diffusion equation, where diffusion coefficients are 
computed properly by adaptive estimation and edges can be successfully localized. 

The anisotropic diffusion equation is defined by 

)),,((div EtyxsEt ∇=  (4) 

where tE  represents a temporal derivative of an illumination image E , ),,( tyxs  

signifies a diffusion coefficient which need not be a constant, and div and ∇  denote 
divergence and gradient operators, respectively. This equation can be rewritten as 
[10] 

.),,(),,( EtyxsEtyxsEt ∇∇+∇=  (5) 

We implement a weighted least squares fit of local first-order constraints to a constant 
model for estimation of v  in each local region Ω  by minimizing 

Ω∈

+⋅∇
x

t tyxItyxIxw 22 )],,(v),,()[(
 

(6) 

where )(xw  denotes a window function that gives more influence at the center of the 

window. Note that the velocity field v  is calculated in the least squares sense [11]. 
The anisotropic optical flow method shows better results than the BMA with a 

higher computational load. Therefore we need to reduce the processing time. We 
simulate optical flow computation, in which the 2×2 measurement window is used 
for 4×4 pixels (detection window). This window-based optical flow method reduces 
the processing time, utilizing the relationship of neighboring pixels. But interpolated 
frames show block artifact that degrades image quality. 
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3.3   Lucas and Kanade’s Method 

Lucas and Kanade’s method uses a small window, if the intensity changes in a 
window between two consecutive frames are large. To detect intensity changes, the 
intensity gradient values are computed, in which intensities at the same pixel 
location in the previous and current frames are used. Lucas and Kanade’s method 
has an advantage in feature matching, and we use median filtering for correct MV 
detection. 

Astola et al. proposed vector median filters, by generalizing the definition with a 
suitable vector norm [12]. Let { }  1v NiV i ≤≤=  be a set of MVs in the window, with 

N  being the number of MVs in the window and with medv  included in V . The 

median of the MVs is defined as 

∈∈

−≤−
V

ir
V

imed

ii vv

vvvv  (7) 

where kv  denotes the vector field and R
r V v ∈ , with RV  representing the vector 

subspace containing R  MVs. The norm defines the distance metric [13][14]. The 
median filter performs a nonlinear filtering operation, where a window moves over an 
image and at each point the median value of the data within the window is taken as 
the output. So median filtering has some desirable properties that cannot be achieved 
with linear filters [12]. Fig. 2 shows an example of median filtering of MVs. 

4   Proposed Frame Interpolation 

The motion of an imaged object can be estimated using the differentials of luminance 
variations in time or space, in which we employ optical flow based motion estimation. 
In addition, a median filter can be used for noise reduction to decrease the number of 
incorrect MVs, because the incorrectly detected displacement yields distortion in 
interpolated frames. 

4.1   Frame Interpolation 

Motion compensated interpolation involves motion estimation at frames to be 
interpolated. The motion information as well as classification of the covered and 

                      
(a)                                           (b) 

Fig. 2. Median filtering of MVs. (a) before processing. (b) after processing. 
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uncovered regions of the decoded frames is readily available at the receiver. K frames 
interpolated between two given frames In and In+1 are called In:1, In:2, …, In:K, where 
K=3 is used in our experiments. The object label at the integer position is then taken 
to be the label of the closest trajectory within a radius of half-pixel width. If such a 
trajectory does not exist, that pixel is considered as a covered or uncovered pixel, 
depending on the label for that pixel location at frames In:1, In:2, and In:3. Thus we can 
find the covered region at frame In whereas uncovered region at frame In+1. 

The motion field at frame In:1 is found as follows. For pixels belonging to an 
object, the MV is taken to be one fourth of the projected MV (note that K=3). MVs 
are assigned to covered or uncovered pixels once the motion field is found. The 
motion compensated interpolation merely involves averaging of the corresponding 
pixels, the pixel values at frames In and In+1. For covered pixels, the pixel values from 
frame In:1 are copied since no motion information is defined. In the case when a new 
object appears at frame In:3, only the pixels from frame In:1 are used in interpolating 
the image at the previous frame [3][15]. 

Frame interpolation is described as follows. Let ),( yxIn
 be intensity values at 

),( yx  and )v,v(v yx=  denote the estimated MV. Interpolated frames are obtained 

as follows, depending on the region classification: 
Bi–directionally interpolated the frame: 
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Covered region:  

),(),(: yxIyxI nin =  (9) 

Uncovered region:  

).,(),( 1: yxIyxI nin +=  (10) 

Holes and overlapped regions are inevitable in blockwise interpolation that uses 
blockwise information of previous and current frames. Also they are produced in the 
window-based optical flow method. Because the block (window) grid is not matched 
well to that of interpolated frames in the reconstruction of interpolated frames, 
interpolated frames have covered and uncovered regions. The covered region is the 
region that disappears in the interpolated frame by a moving block (window). 
Similarly the uncovered region is the region that is created in the interpolated frame 

                               
(a)                                                (b) 

Fig. 3. Covered and uncovered regions. (a) covered region. (b) uncovered region. 



798 T.-J. Nam, R.-H. Park, and J.-H. Yun 

by the moving block. These covered and uncovered regions correspond to holes and 
overlapped regions, respectively, that are to be eliminated. Fig. 3 shows these regions. 
These regions are detected by pixelwise flags that are incremented by one when the 
pixel in the interpolated frame is covered by the block specified by the displacement 
in motion compensation (MC). The total number of occurrences covered by the 
motion compensated block in the interpolated frame is stored. Holes (overlapped 
regions) consist of pixels with the flag value equal to zero (larger than one). 

To process hole regions, we use causal edge-based line-average filtering. We 
consider the current hole pixel based on the relationship of neighboring pixels: edge 
directionality. In this filtering, types of neighboring pixels of a given hole pixel are 
defined depending on the directions of the line: row, column, diagonal, and anti-
diagonal. It calculates the difference along each line and finds the direction that yields 
the smallest difference. Then the average value of neighboring pixels along the 
selected line is used for interpolation of a hole pixel at the center [16]. We also 
consider pixels in both previous and current frames, and use a sum of absolute 
difference (SAD) as a matching function. As compared with the BMA, the window 
based optical flow method gives smaller numbers of holes and overlapped pixels in 
the interpolated frames that are unpleasant to human eyes. 

4.2   Image Enhancement 

Block artifact in the interpolated frame due to blockwise processing is severe near motion 
block boundaries. The BMA followed by lowpass filtering is used to reduce block 
artifact, however reducing high frequency details in a signal as well. A simple method 
uses a sharpening mask to solve the problem, however still producing block artifact. 

We simulate image enhancement filtering using the correlation of two input 
frames. We can formulate a function of intensity from histograms of two input 
frames. We implement a function of intensity on interpolated images using a 
sharpening mask. Interpolated images by the BMA show good results, whereas those 
by the optical flow method show overshoots. Note that the optical flow method does 
not require postprocessing for image enhancement [17]. 

5   Simulation Results and Discussions 

The proposed optical flow based interpolation method for 3-D ultrasound images 
consists of three steps: motion estimation (anisotropic method or Lucas and Kanade’s 
method with MV smoothing), temporal interpolation, and hole and overlap region 
processing. To detect MVs, we use a window-based optical flow (motion flow) 
method. To reduce the sensitivity of Lucas and Kanade’s method to noise, vector 
median filtering performs MV smoothing. Interpolated frames are reconstructed by 
motion compensation using MVs in the anisotropic method (MVs for motion 
compensation using smoothed MVs in Lucas and Kanade’s method). However hole 
and overlapped regions are generated in reconstructed (interpolated) frames, so they 
are to be removed. We simulate the proposed algorithm using the window-based 
optical flow method on a Pentium IV 3.0 GHz, 1 GByte RAM, and Windows OS 
systems. 
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Fig. 4. Interpolated images and zoomed regions by a factor of two (test sequence 1, frame I35:3, 
4× 4). (a) BMA (no deblocking filter). (b) anisotropic optical flow method. 

Fig. 4 shows comparison of 636 × 386 interpolated images (frame I35:3 of the test 
sequence 1), in which block size is 4×4 and 100×100 zoomed images are shown. 
Fig. 4(a) shows the interpolated image with block artifact, in which no deblocking 
filter is used, however degrading high frequency details. Fig. 4(b) shows the 
interpolated image by the proposed filter with less block artifact, providing improved 
high frequency details but showing overshoots. 

Fig. 5 shows comparison of interpolated images using the BMA (frames I25 and I26) 
of the test sequence 2. Fig. 5(a) shows the result without deblocking filtering, giving 
block artifact whereas Fig. 5(b) shows the result with deblocking filtering, yielding 
less block artifact but losing frequency details. 

Fig. 6(a) shows the frames I35 and I36 of the test sequence 1, in which fast and small 
motions are observed. Figs. 6(b) and 6(c) show interpolated images using the BMA 
(block size: 8 × 8) and the anisotropic optical flow method (window size: 2 × 2), 
respectively, in which zoomed images (290 × 220) by a factor of two along the 
horizontal and vertical directions are shown. In the BMA, we change block size: 4×4 
and 8×8. The processing time with 8×8 blocks is smaller than that with 4×4 blocks 
by 37%, with a little bit lower image quality. In the anisotropic optical flow method, 
 

 

Fig. 5. Comparison of interpolated images (150× 150) using the BMA (test sequence 2, frame 
I25:3, 8× 8). (a) without deblocking filtering. (b) with deblocking filtering. 

         

(a)                                                     (b) 

               

                      
  (a)                                         (b) 
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Fig. 6. Comparison of interpolated frames (test sequence 1). (a) input frames I35 and I36. (b) 
zoomed interpolated frames using the BMA (frames I35:1, I35:2, and I35:3, block size: 8× 8). (c) 
zoomed interpolated frames using the anisotropic optical flow method (frames I35:1, I35:2, and 
I35:3, window size: 2× 2). 

we change window size: 4×4 and 2×2. The processing time with 4×4 windows is 
smaller than that with 2×2 windows, in which 4×4 windows shows block artifact as 
the BMA in large motion areas. The anisotropic optical flow method with 2 × 2 
windows shows better image quality than that with 4×4 windows. 

Fig. 7(a) shows the frames t14 and t15 of the test sequence 2, in which fast motions 
are observed. Figs. 7(b) and 7(c) show interpolated images using the BMA (block 
size: 8×8) and the anisotropic optical flow method (window size: 2×2), respectively. 
In the BMA, we change block size: 4×4, 8×8, and 16×16. The block artifact with 
16×16 blocks is larger than that with 8×8 blocks, with a little bit smaller processing 
time. Also the processing time with 8×8 blocks is smaller than that with 4×4 blocks, 
with a little bit lower image quality. In the anisotropic optical flow method, we 
change window size: 4 × 4 and 2 × 2. The processing time of the window-based 
method with 4×4 windows is smaller than that with 2×2 windows. The anisotropic 
optical flow methods show some block artifact. The block artifact with 2×2 windows 
is smaller than that with 4×4 windows, with a little bit larger processing time. 
Fig. 8(a) shows the frames t14 and t15 of the test sequence 3, in which small motions 
are observed. Figs. 8(b) and 8(c) show interpolated images using the BMA (block 
size: 8×8) and the anisotropic optical flow method (window size: 2×2), respectively. 
In the BMA, we change block size: 4×4 and 8×8. The processing time with 8×8 
blocks is smaller than that with 4×4 blocks. The processing time with 8×8 blocks is 
smaller than that with 4×4 blocks by 8%, with a little bit lower image quality. Similar 
artifact in large-motion area. The method with 2 × 2 windows shows better image 
quality than that with 4×4 windows. 

  
(a) 

   
(b) 

   
(c)
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Fig. 7. Comparison of interpolated frames (test sequence 2). (a) input frames I14 and I15. (b) 
zoomed interpolated frames using the BMA (frames I14:1, I14:2, and I14:3,  block size: 8 × 8). (c) 
zoomed interpolated frames using the anisotropic optical flow method (frames I14:1, I14:2, and 
I14:3,  window size: 2× 2). 

Processing time of the simulated methods with selected window sizes is compared. 
Fig. 9(a) shows the comparison of the computation time as a function of the frame index 
(40 frames) on the test sequence 1 using the BMA (block size: 8×8) and the two optical 
flow methods (window size: 2×2). The BMA method takes 0.29 sec (block size 8×8) 
on the average. Lucas and Kanade’s optical flow method takes 2.64 sec and the 
anisotropic method 3.65 sec on the average. The average processing time with the BMA 
is smaller than that of the optical flow method (anisotropic optical flow method) by a 
factor of about 12.5. Also the anisotropic optical flow method is faster (0.6 sec) than the 
previous methods. Fig. 9(b) shows the comparison of the computation time as a function 
of the frame index (40 frames) on the test sequence 2 using the BMA (block size: 8×8) 
and two optical flow methods (window size: 2×2). The BMA method takes 0.27 sec 
(block size: 8 × 8). Lucas and Kanade’s optical flow method takes 2.57 sec and the 
anisotropic optical flow method takes 3.34 sec on the average. The average processing 
time with the BMA is smaller than that of the optical flow method by a factor of about 
12. Also the anisotropic optical flow method is faster (0.6 sec) than the previous method 
[8]. Fig. 9(c) shows the comparison of the computation time as a function of the frame 
index (40 frames) on the test sequence 3 using the BMA (block size: 8×8) and two 
optical flow methods (window size: 2×2). The BMA method takes 0.26 sec (block size: 
8×8). Lucas and Kanade’s optical flow method takes 2.8 sec and the anisotropic optical 
flow method takes 3.75 sec, on the average. The average processing time with the BMA 
is smaller than that of the optical flow method by a factor of about 14. Also the 
anisotropic optical flow method is faster (0.2sec) than the previous method [8]. The 
optical flow method uses spatial and temporal correlations. The window-based optical 
flow method reduces the processing time by 20% on the average compared with the 
previous work [8]. We present a fast optical flow method using a detection window, in 
which the measurement window is smaller than the detection window, utilizing the 
relationship of neighboring pixels. 

The proposed method may be thought to be a little bit slow to process images in 
real-time. Note that it is much faster than direct viewing of a large amount of 3-D data 
and the processing time of the proposed algorithm is reduced with a high-speed CPU. 

     
(a) 

         
(b)                                   (c) 
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Fig. 8. Comparison of interpolated frames (test sequence 3). (a) input frames I14 and I15. (b) 
zoomed interpolated frames using the BMA (frames I14:1, I14:2, and I14:3, block size: 8× 8). (c) 
zoomed interpolated frames using the anisotropic optical flow method (frames I14:1, I14:2, and 
I14:3, window size: 2× 2). 

 
(a)                                   (b) 

 
(c) 

Fig. 9. Comparison of the computation time as a function of the frame index (40 frames). (a) 
Test sequence 1. (b) Test sequence 2. (c) Test sequence 3. 

6   Conclusions 

This paper proposes a window-based optical flow based motion estimation method for 
ultrasound image frame interpolation and postprocessing for image enhancement. 
Computer simulation with several sets of real ultrasound image sequences shows that 
the results by the proposed optical flow based interpolation method are better than 
those by the BMA, reducing block artifacts. Further research will focus on the 
development of the fast frame interpolation methods for real-time implementation. 

     
(a) 

         
(b)                             (c)
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Abstract. Several factorization techniques have been proposed for tack-
ling the Structure from Motion problem. Most of them provide a good
solution, while the amount of missing and noisy data is within an accept-
able ratio. Focussing on this problem, we propose to use an incremenal
multiresolution scheme, with classical factorization techniques. Informa-
tion recovered following a coarse-to-fine strategy is used for both, filling
in the missing entries of the input matrix and denoising original data. An
evaluation study, by using two different factorization techniques–the Al-
ternation and the Damped Newton–is presented for both synthetic data
and real video sequences. 1

1 Introduction

Structure From Motion (SFM) consists in extracting the 3D shape of a scene as
well as the camera motion from trajectories of tracked features. Factorization is
a method addressing to this problem. The central idea is to express a matrix of
trajectories W as the product of two unknown matrices, namely, the 3D object’s
shape S and the relative camera pose at each frame M : W2f×p = M2f×rSr×p,
where f , p are the number of frames and feature points respectively and r the
rank of W . The goal is to find the factors M and S that minimize

‖W −MS‖2F (1)

where ‖ · ‖ is the Frobenius matrix norm [1].
The Singular Value Decomposition (SVD) gives the best solution for this

problem when there are not missing entries. Unfortunately, in most of the real
cases not all the data points are available, hence other methods need to be used.
With missing data, the expression to minimize is the following

‖W −MS‖2F =
∑
i,j

|Wij − (MS)ij |2 (2)

where i and j correspond to the index pairs where Wij is defined.

1 This work has been supported by the Government of Spain under the CICYT project
TRA2004-06702/AUT. The second author has been supported by The Ramón y
Cajal Program.
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In the seminal approach Tomasi and Kanade [2] propose an initialization
method in which they first decompose the largest full submatrix by the factor-
ization method and then the initial solution grows by one row or by one column
at a time, unveiling missing data. The problem is that finding the largest full
submatrix is a NP-hard problem. Jacobs [3] treats each column with missing en-
tries as an affine subspace and shows that for every r-tuple of columns the space
spanned by all possible completions of them must contain the column space of
the completely filled matrix. Unknown entries are recovered by finding the least
squares regression onto that subspace. However it is strongly affected by noise
on the data. An incremental SVD scheme of incomplete data is proposed by
Brand [4]. The main drawback of that technique is that the final result depends
on the order in which the data are given. Brandt [5] proposes a different tech-
nique based on the expectation maximization algorithm (EM) and although the
feature points do not have to be visible in all views, the affine projection ma-
trices in each image must be known. A method for recovering the most reliable
imputation, addressing the SFM problem, is provided by Suter and Chen [6].
They propose an iterative algorithm to employ this criterion to the problem of
missing data. Their aim to obtain the projection of W onto a low rank matrix
to reduce noise and to fill in missing data.

A different approach to address the factorization with missing data is the Al-
ternation technique [7]. One of the advantages of this method is that it converges
quickly. The algorithm starts with an initial random S0 or M0 and solves one
factor at each iteration k, until the product MkSk converges to W . The key point
of this 2-step algorithm is that, since the updates of S given M (analogously in
the case of M given S) can be independently done for each row of S, missing
entries in W correspond to omitted equations. Due to that fact, with a large
amount of missing data the method would fail to converge.

In [7], Buchanan and Fitzgibbon summarize factorization approaches with
missing data and proposes the Alternation/Damped Newton Hybrid, which com-
bines the Alternation strategy with the Damped Newton method. The latter is
fast in valleys, but not effective when far from the minima. The goal of intro-
ducing this hybrid scheme is to give a method that has fast initial convergence
and, at the same time, has the power of non-linear optimization.

One disadvantage of the above methods is that. They give a good factorization
while the amount of missing points is low, which is not common in real image
sequences, unfortunately. Addressing to this problem, we recently presented an
iterative multiresolution scheme [8], which incrementally fill in missing data.
At the same time noisy data are filtered. The key point of that approach is
to work with a reduced set of feature points along a few number of consecutive
frames. Thus, the 3D reconstruction corresponding to the selected feature points
and the camera motion of the used frames are obtained. The missing entries of
the trajectory matrix can be recovered just multiplying the shape and motion
matrices. The amount of missing data is reduced after each iteration; at the
same time it increases the chances of having a better result. In the current paper
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we propose improvements over the original approach, as well as the use of two
different techniques under this incremental multiresolution scheme.

This paper is organized as follows. Section 2 briefly introduces the incremental
multiresolution scheme. Improvements on the original version are emphasized.
Section 3 presents an evaluation study of the use of two factorization techniques
with the proposed scheme. Conclusions and future work are given in section 4.

2 Iterative Multiresolution Scheme

In this section the iterative multiresolution scheme, which incrementally fill in
missing data, is presented. Essentially, the basic idea is to generate sub-matrices
with a reduced density of missing points. Thus, any classical factorization tech-
nique could be used for factoring these sub-matrices, recovering their correspond-
ing 3D shape and motion; at the same time missed data on the original matrix
will be filled with their resulting product. Additionally, it is expected that noisy
data are filtered. The technique consists of two stages, which are briefly described
below. Improvements on the original version are highlighted, more details of the
original technique can be found in [8].

2.1 Observation Matrix Splitting

Let W2f×p be the observation matrix (also referred through the paper as input
matrix) of p feature points tracked over f frames containing missing entries; it
will be denoted as W . Let k be the index indicating the current iteration number.

In a first step, the input matrix W is split in a uniformly distributed set of
k × k non-overlapped sub-matrices, Wk, with a size of � 2f

k � × � p
k�.

Then, in a second step, a multiresolution approach is followed. It consists in
computing four W2k overlapped sub-matrices with twice the size of Wk (only
for k > 2). The idea of this enlargement process is to study the behavior of
feature points contained in Wk when a bigger region is considered (see Fig. 1).

Since generating four W2k, for every Wk, is a computationally expensive task,
a simple and more direct approach is followed. It consists in splitting the input
matrix W in four different ways, by shifting W2k half of its size (i.e., Wk) through
rows, columns or both at the same time. Fig. 2 illustrates the five partitions of
matrix W—i.e., Wk and W2k sub-matrices generated at the sixth iteration. When
all these matrices are considered together, the overlap between the different areas
is obtained, see textured cell in Fig. 1 and Fig. 2. As it can be appreciated
in Fig. 2, corners and border cells are considered only twice and three times,
respectively, at each iteration.

2.2 Sub-matrices Processing

At this stage, the objective is to recover missing data by applying a factorization
technique at every single sub-matrix. Independently of their size hereinafter sub-
matrices will be referred as Ws.
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Fig. 1. Wk and W2k overlapped matrices of the observation matrix W , computed
during the first stage (section 2.1), at iteration k = 6

W
2k

2f/k

p/k
W

k

Fig. 2. Five partitions of matrix W . Note the overlap between a Wk sub-matrix with
its corresponding four W2k sub-matrices, computed during the first stage (section 2.1)

Given a sub-matrix Ws, its factorization using a particular technique gives its
corresponding Ms and Ss matrices. Their product could be used for computing
an approximation error εs such as equation (2). Actually, in this paper we use
the root mean squared (rms) of this error per image point:

rmss =

√∑
i,j |(Ws)ij − (MsSs)ij |2

n
2

(3)

where i and j correspond to the index pairs where (Ws)ij is defined and n the
amount of those points in Ws.

The main advantage of using rms is that it does not depend on the number of
known entries. Therefore, it is a normalized measure that gives a better idea of
the goodness of the solution than the error defined at equation (2), which could
be confusing or provide erroneous results. For instance, by using the latter, a
big error value could be obtained only due to the fact of working with a great
amount of known entries. On the contrary, a small error value could correspond
to a case with a few known entries.

After processing the current Ws, its corresponding rmss is compared with a
user defined threshold σ. In case the resulting rmss is smaller than σ, every point
in Ws is kept in order to be merged with overlapped values after finishing the
current iteration. Additionally, every point of Ws is associated with a weighting
factor, defined as 1

rmss
, in order to measure the goodness of that value. These

weighting factors are later on used for merging data on overlapped areas. Oth-
erwise, the resulting rmss is higher than σ, computed data are discarded. With
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the rmss error measure, a unique threshold, valid for every matrix, is defined.
As mentioned above, this is the main advantage over the previous version.

Finally, when every sub-matrix Ws has been processed, recovered missing data
are used for filling in the input matrix W . In case a missing datum has been
recovered from more than one sub-matrix (overlapped regions), those recovered
data are merged by using their corresponding normalized weighting factors. On
the contrary, when a missing datum has been recovered from only one sub-
matrix, this value is directly used for filling in that position. Already known
entries in W could be also modified. In this case, instead of taking the new
computed data directly as in [8], the mean between the initial value and the new
one, obtained after the merging process, is assigned.

Once recovered missing data have been used for filling in the input matrix
W , the iterative process starts again (section 2.1) splitting the new matrix W
either by increasing k one unit or, in case the size of sub-matrices Wk at the
new iteration stage is quite small, by setting k = 2. This iterative process is
applied until one of the following conditions is true: a) the matrix of trajectories
is totally filled; b) at the current iteration no missing data were recovered; c) a
maximum number of iterations is reached.

3 Evaluation Study

Assuming both the filling missing entries and denoising capabilities, as it was
presented in [8], in this section a study of using the iterative multiresolution
scheme with different factorization techniques is presented. In particular, the
work is focussed on the use of: Alternation and Damped Newton [7]. Experi-
ments using both synthetic and real data are presented below. The methodology
proposed to evaluate the obtained results consists in applying:

– A factorization technique over the input matrix W .
– The same factorization technique with the proposed multiresolution scheme.

3.1 Synthetic Object

Synthetic data are randomly generated by distributing 35 3D feature points over
the whole surface of a cylinder, see Fig. 3 (left). The cylinder is defined by a
radius of 100 and a height of 400; it rotates over its principal axis; the camera
also moves. An input matrix W with 20% of known data, directly obtained
taking 35 frames, is used for the evaluation, see Fig. 3 (middle). Notice that W
has a banded structure; it is symmetric due to the way it has been generated.
Elements of the matrix W are represented by means of a grey level scale. Feature
point trajectories are plotted in Fig. 3 (right).

Factorization Using Alternation. Fig. 4 (left) shows the recovered trajecto-
ries obtained by applying the Alternation technique to the input matrix W for
this synthetic example. In this case, the resulting rms is 6.43.
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Fig. 3. (left) Synthetic cylinder. (middle) Input matrix of trajectories, with 20% of
known data. (right) The same feature point trajectories represented in the image plane.
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Fig. 4. (left) Recovered feature points trajectories applying Alternation to W .
(right) The same, but applying Alternation with the iterative mutiresolution scheme.

Fig. 5 shows intermediate results obtained after applying the Alternation tech-
nique with the multiresolution scheme to W . In order to illustrate the process,
the amount of recovered data at the third, fifth and last iterations of the mul-
tiresolution scheme are presented. While the input matrix has 20% of data, the
final one has 63% of data. The trajectories plotted in Fig. 4 (right) are obtained
after applying the Alternation technique to this final matrix (Fig. 5 (right)). The
rms value is 0.29. Notice that these trajectories do not form a cylinder, as one
might expected, due to the fact that the camera moves.

Fig. 6 (left) and (middle) shows the recovered x and y camera motion axes,
from both strategies and at each frame. The 3D plot corresponds to each compo-
nent of the vector axes: x(x, y, z), and y(x, y, z) at each frame. The obtained 3D
reconstructions of the cylinder are plotted in Fig. 6 (right). In order to show the
goodness of the reconstruction, the cylinder that best fits the final data is also
plotted. Fig. 6 (top) corresponds to results computed by applying Alterantion to
W , while Fig. 6 (bottom) presents the results obtained by applying Alternation
with the proposed multiresolution scheme.

It can be seen that the results are considerably improved with the proposed
multiresolution scheme, both for the recovered feature points trajectories and
for the obtained shape and motion.
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k=3, 30%data k=5, 46%data Wfinal, 63% data

Fig. 5. Third, fifth and last iterations of the multiresolution scheme when the Alter-
nation technique is used. A final matrix with 63% of data is obtained.
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Fig. 6. (left) and (middle) Plots of the recovered x and y camera motion axes, at each
frame. (right) 3D reconstructions of the cylinder. (top) Applying Alternation to W .
(bottom) Applying Alternation with the multiresolution scheme.

Factorization Using Damped Newton. The observation matrix W pre-
sented in Fig. 3 (middle) has been also used as input for the Damped Newton
factorization technique. Fig. 7 (left) plots the recovered trajectories applying the
Damped Newton to W . The rms is 0.76.

Fig. 7 (right) shows the obtained trajectories when Damped Newton is applied
with the proposed multiresolution scheme; in this case the rms is 22.22. As
pointed out in [6], the measure of error taking only the known entries of W
could be ambiguous. In this particular case, since this is a synthetic sequence, the
missing entries are available. Hence, the rms taking into account all those entries
has been computed for both results. Their values are 77.0 applying Damped
Newton to W and 69.1, with the multiresolution scheme. Again, better results,
not only visual but also numerical, are obtained with the multiresolution scheme.

The recovered x and y camera motion axes from both strategies are plotted
in Fig. 8 (left) and (middle) respectively. In Fig. 8 (right) the obtained 3D
reconstructions of the cylinder are shown.
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Fig. 7. (left) Recovered trajectories applying Damped Newton to W . (right) The same,
but applying Damped Newton with the proposed scheme.

−20

0

20

−20

−10

0

10
−20

−10

0

10

x

x motion

y

z

−5
0

5
10

−5

0

5

10
−5

0

5

10

x

y motion

y

z

−10 0 10

−10
0

10
20

−10

−5

0

5

10

15

20

y

3D shape

x

z

−10
0

10
20

−10

0

10
−20

−10

0

10

x

x motion

y

z

−5
0

5
10

−5

0

5

10
0

5

10

15

x

y motion

y

z

−10
0

10

−10
0

10

−20

−10

0

10

x

3D shape

y

z

Fig. 8. (left) and (middle) Plots of the recovered x and y camera motion axes, at each
frame. (right) 3D reconstructions of the cylinder. (top) Applying Damped Newton to
W . (bottom) Applying Damped Newton with the multiresolution scheme.

The results obtained with the Damped Newton are not as good as the ones
obtained with the Alternation, both applying it to W and with the proposed
multiresolution scheme. Notice that, inspite of that, results with the proposed
scheme are better than using Damped Newton directly over W .

3.2 Real Object

A real video sequence of 101 frames with a resolution of 640×480 pixels is used.
The studied object is shown in Fig. 9 (left). A single rotation around a vertical
axis was performed. Feature points are selected by means of a corner detector
algorithm and 87 points distributed over the squared-face-box are considered.
An iterative feature tracking algorithm has been used. More details about corner
detection and tracking algorithm can be found in [9]. Missing data are obtained
by removing data randomly. As in the previous case, an input matrix with 20%
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Fig. 9. (left) Object used for the real case. (middle) Input matrix of trajectories, with
20% of known data. (right) Feature point trajectories represented in the image plane.
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Fig. 10. (left) Recovered feature points trajectories applying Alternation to W ,
Fig. 9 (middle). (right) The same, but applying Alternation with the proposed scheme.

of data is considered, see Fig. 9 (middle). Notice that the input matrix W has
not a band structure like in the synthetic case, but a structure that unveil the
random nature of missing entries. The feature point trajectories are plotted in
Fig. 9 (right). The methodology applied over the previous W is presented below.

Factorization Using Alternation. The Alternation technique is applied to
the input matrix W and the obtained rms is 2.41. Fig. 10 (left) plots an enlarge-
ment of the recovered trajectories, in order to avoid a plot such as Fig. 11 (top-
right).

On the contrary, when Alternation is applied with the proposed multiresolu-
tion scheme, results improve considerably. For instance, about 95% of data are
contained in matrix W during last iteration (recall that the input matrix only
contains about 20%), and the final resulting rms is 0.69. Fig. 10 (right) shows
the trajectories recovered with the proposed scheme.

Fig. 11 (left) and (middle) show the recovered x and y camera motion axes,
from both strategies. The obtained 3D reconstructions of the input object are
presented in Fig. 11 (right). As in the synthetic experiment, results are improved
applying Alternation with the proposed iterative multiresolution scheme.
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Fig. 11. (left) and (middle) Plot of the recovered x and y camera motion axes, at each
frame. (right) 3D reconstruction of the input object. (top) Results obtained applying
Alternation to W . (bottom) Applying Alternation with the proposed scheme.
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Fig. 12. (left) Recovered trajectories applying Damped Newton to W , Fig. 9 (middle).
(right) The same, but applying Damped Newton with the proposed scheme.

Factorization Using Damped Newton. The recovered trajectories applying
Damped Newton are plotted in Fig. 12 (left) and the rms is 0.87. Again, an
enlargement has been performed in order to obtain a better visualization.

Fig. 12 (right) shows the obtained trajectories applying Damped Newton with
the proposed multiresolution scheme. In this case, the rms is 7.38. Since the
missing points have been obtained randomly from a full matrix, all the entries
are available. Therefore, as in the synthetic case, all the points have been taken
into account for computing the rms. The resulting rms errors are 29.54 applying
Damped Newton to W and 8.15 with the multiresolution scheme.

Finally, the recovered x and y camera motion axes, from both strategies, are
plotted in Fig. 13 (left) and (middle), respectively. The obtained 3D reconstruc-
tions of the input object are shown in Fig. 13 (right).
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Fig. 13. (left) and (middle) Plots of the recovered x and y camera motion axes, at
each frame. (right) 3D reconstructions of the input object. (top) Applying Damped
Newton to W . (bottom) Applying Damped Newton with the multiresolution scheme.

As in the synthetic case, the obtained results using Damped Newton are
worse than the ones obtained with Alternation. Again, results with the pro-
posed scheme are better than the ones obtained using Damped Newton directly
over W .

4 Conclusions and Future Work

This paper presents improvements on the original iterative multiresolution ap-
proach. The main contribution is the modified definition of the error. Here, the
root mean of the previous error per image point is considered. As mentioned
before, this is a normalized measure that gives a better idea of the goodness
of the result. A less important improvement is the way in which the recovered
missing data are merged in the case of data known a priori. The average between
the input entries and the new computed data obtained after the merging process
is assigned. Moreover, in the current paper, the attention is not only focused on
the error value, but also on the obtained M and S. However, we would like to
define a function to measure the goodness of these recovered factors.

Additionally, when the original multiresolution scheme was presented, its vali-
dation was done using only the Alternation technique. In this work, the Damped
Newton technique is also studied and compared with the Alternation. Although
any factorization technique can be applied with this multiresolution scheme, the
Damped Newton method seems to be more appropriated when the input matrix
contains only a few missing data. Otherwise it takes a lot of time and may be
wrong results are obtained. As a future work the use of an hybrid technique will
be considered.
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Abstract. We address the problem of segmenting out moving objects
from video. The majority of current approaches use only the image mo-
tion between two consecutive frames and fail to capture regions with
low spatial gradient, i.e., low textured regions. To overcome this limi-
tation, we model explicitly: i) the occlusion of the background by the
moving object and ii) the rigidity of the moving object across a set of
frames. The segmentation of the moving object is accomplished by com-
puting the Maximum Likelihood (ML) estimate of its silhouette from the
set of video frames. To minimize the ML cost function, we developed a
greedy algorithm that updates the object silhouette, converging in few
iterations. Our experiments with synthetic and real videos illustrate the
accuracy of our segmentation algorithm.

1 Introduction

Content-based representations for video enable efficient storage and transmis-
sion as well as powerful non-linear editing and manipulation [1]. The automatic
segmentation of an image into regions that undergo different motions is a key
step in the generation of content-based video representations. In this paper we
address the problem of segmenting objects that exhibit a rigid motion across a
set of frames.

A number of approaches to the segmentation of moving objects are found
in the video coding literature. In fact, efficient video coding reduces temporal
redundancy by predicting each frame from the previous one through motion
compensation. Regions undergoing different movements are then compensated in
different ways, according to their motion, see for example [2] for a review on very
low bit rate video coding. The majority of these approaches are based on a single
pair of consecutive frames and try to capture the moving object by detecting the
regions that changed between the two co-registered images, see for example [3].
Since these methods were developed for image coding rather than for inferring
high level representations, they often lead to inaccurate segmentation results. In
particular, they fail to segment moving objects containing low textured regions
because these regions are considered as unchanged, being then missclassified as
belonging to the background.

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 816–826, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The more recent interest on the so-called layered representations for video
[4,5,6,7,8] has motivated further work on motion-based segmentation. A number
of approaches in the computer vision literature uses other cues besides motion,
such as color and edges [9], or regularization priors [10]. In general, these methods
lead to complex and time consuming algorithms.

Few approaches to motion segmentation use temporal integration, see
[11,12,13,14] as examples. In [11,12], the images in the sequence are averaged
after appropriate registration according to motion of the object. The silhouette
of the moving object is estimated by detecting the regions of the current frame
that are similar to the integrated image. This method overestimates the object
silhouette unless the background is textures enough to blur completely the in-
tegrated image. The method in [13,14] exploits the occlusion of the background
by the moving object—it estimates the silhouette of the object by integrating
over time the intensity differences between the object and the background. This
method succeeds even in low textured / low contrast scenes but it requires that
the background is completely uncovered in the video clip.

We propose a new segmentation algorithm that exploits occlusion and rigid-
ity without the drawback of the one in [13,14]. As in [13,14], we formulate the
segmentation problem as the Maximum Likelihood (ML) estimation of the pa-
rameters involved in the video sequence model: the motions of the background,
the motions of the object, the silhouette of the object, the intensity levels of
the object (the object texture), and the intensity levels of the background (the
background texture). The algorithm of [13,14] minimizes the ML cost function
by computing, in two alternate steps, the estimates of: i) the object silhouette
and ii) the background texture. We avoid the need to compute the background
intensity levels at all pixels (and thus the requirement that the background is
completely uncovered) by using the closed-form expression for the ML estimate
of the background texture to derive the ML cost function as a function of the ob-
ject silhouette alone. We develop a greedy algorithm that updates the silhouette
converging in a small number of iterations.

Although our method is particularly tailored to the segmentation of rigid
objects, it turns out also very useful to handle non-rigid ones. In fact, when
processing videos showing non-rigid moving objects, the tracking procedures
that cope with flexible silhouettes need an adequate initialization. Our method
provides such an initialization because it will compute the best rigid interpreta-
tion of the scene, which suffices to segment out the moving objects. Finally, we
remark that although our derivations assume scalar-valued images, e.g., inten-
sity of grey-level images, they are straightforwardly extended to vector-valued
images, e.g., multispectral images.

1.1 Paper Organization

In section 2 we formulate the segmentation problem as ML inference. Section 3
describes the ML cost function minimization procedure. In section 4 we outline
how the algorithm is initialized. Section 5 contains experiments and section 6
concludes the paper.
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2 Problem Formulation: Segmentation as Maximum
Likelihood Inference

We consider 2D parallel motions, i.e., all motions (translations and rotations)
are parallel to the camera plane. We represent those motions by specifying
time varying position vectors. These position vectors code rotation-translation
pairs that take values in the group of rigid transformations of the plane, i.e.,
the special Euclidean group SE(2). The vector pf represents the position of
the background relative to the camera in frame f . The vector qf represents
the position of the moving object relative to the camera in frame f . The im-
age obtained by applying the rigid motion coded by the vector p to the im-
age I is denoted by M(p)I, i.e., pixel (x, y) of the image M(p)I is given by
M(p)I(x, y) = I(fx(p;x, y), fy(p;x, y)), where fx(p;x, y) and fy(p;x, y) repre-
sent the coordinate transformation imposed by the 2D rigid motion coded by p.
We denote the inverse of M(p) by M(p#) and the composition of M(a) with
M(b) by M(ab), i.e., we have M(pp#)I = I. For more details, see [13,14].

2.1 Observation Model

We consider a scene with a moving object in front of a moving camera. The
pixel (x, y) of the image If belongs either to the background B or to the object O.
The image If is then modelled as

If =
{
M(p#

f )B
[
1−M(q#

f )T
]

+M(q#
f )OM(q#

f )T + Wf

}
H, (1)

where we make If (x, y)=0 for (x, y) outside the region observed by the camera.
This is taken care of in (1) by the binary mask H whose (x, y) entry is such
that H(x, y) = 1 if pixel (x, y) is in the observed image If or H(x, y) = 0 if
otherwise. Naturally, H does not depend on the frame index f , since the mo-
tion of the camera is captured as background motion. In (1), T is the moving
object silhouette—T(x, y) = 1 if the pixel (x, y) belongs to the moving object
or T(x, y)=0 if otherwise—and Wf stands for the observation noise, assumed
Gaussian, zero mean, and white.

2.2 Maximum Likelihood Inference

Given a set of F video frames {If , 1 ≤ f ≤ F}, we want to estimate the back-
ground texture B, the object texture O, the object silhouette T, the camera
poses {pf , 1 ≤ f ≤ F}, and the object positions {qf , 1 ≤ f ≤ F}. Using the ob-
servation model in (1) and the Gaussian white noise assumption, ML estimation
leads to the minimization over all parameters of the functional

C (B,O,T {pf} , {qf}) =
∫ ∫ F∑

f=1

{
If (x, y)

−M(p#
f )B(x, y)

[
1−M(q#

f )T(x, y)
]

−M(q#
f )O(x, y)M(q#

f )T(x, y)
}2

H(x, y) dx dy, (2)
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where the inner sum is over the full set of F frames and the outer integral is
over all pixels. For details, see [13,14].

3 Maximum Likelihood Estimation: Greedy Algorithm

The minimization of the functional C in (2) with respect to (wrt) the set of con-
structs {B,O,T} and to the motions {{pf} , {qf} , 1 ≤ f ≤ F} is a highly com-
plex task. To obtain a computationally feasible algorithm, we decouple the esti-
mation of the motion vectors from the determination of the constructs {B,O,T}.
This is reasonable from a practical point of view and is well supported by exper-
imental results with real videos. We perform the estimation of the motions on
a frame by frame basis by using known motion estimation methods [15]. After
estimating the motions, we introduce the motion estimates into the ML cost C
and minimize wrt the remaining parameters, i.e., wrt the silhouette T of the
moving object, the texture O of the moving object, and the texture B of the
background.

We express the estimate Ô of the moving object texture and the estimate B̂
of the background texture in terms of the object silhouette T. By minimizing C
in (2) wrt the intensity value O(x, y), we obtain the average of the pixels that
correspond to the point (x, y) of the object. The estimate Ô of the moving object
texture is then

Ô = T
1
F

F∑
f=1

M(qf )If . (3)

Minimizing the ML cost (2) wrt the intensity value B(x, y), we get the es-
timate B̂(x, y) as the average of the observed pixels that correspond to the
pixel (x, y):

B̂ =

∑F
f=1

[
1−M(pfq

#
f )T

]
M(pf )If∑F

i=f

[
1−M(pfq

#
f )T

]
M(pf )H

. (4)

The estimate B̂ of the background texture in (4) is the average of the observa-
tions If registered according to the background motion pi, in the regions {(x, y)}
not occluded by the moving object, i.e., when M(pfq

#
f )T(x, y) = 0. The

term M(pf )H provides the correct averaging normalization in the denominator
by accounting only for the pixels seen in the corresponding image.

We now replace the estimates Ô and B̂, given by expressions (3,4), in the
cost function (2), obtaining an expression for the ML cost function C in terms
of a single unknown—the moving object silhouette T, C(T). This is an huge
difference from the approach in [13,14], where only the estimate Ô is replaced
in (2), leading to an expression for the ML cost function C in terms of B and T,
i.e., C(B,T). In [13,14], the ML cost is minimized by using a two-step iterative
algorithm that computes, in alternate steps, the minimum of C(B,T) wrt B
for fixed T, and the minimum of C(B,T) wrt T for fixed B. This last step
requires that (the previous estimate of) the background texture B is known at
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all pixels, in particular it imposes that all background pixels occluded by the
moving object are observed at least in one frame of the video sequence. Thus,
the method of [13,14] does not deal with videos where the moving object only
partially un-occludes the background, i.e. where some region of the background
is occluded at all frames. In contrast, we propose to replace the expression of the
background estimate B̂ in terms of the object silhouette T into the ML cost C
in (2), leading to an expression for C(T) that is suitable to minimize wrt to the
moving object silhouette T alone.

Replacing the estimates of O and B, given by expressions (3) and (4), into
the ML cost function (2), we get, after simple manipulations:

C (T) =
∫ ∫ F∑

f=1

{
If (x, y)

−
∑F

i=1

[
1−M(p#

f piq
#
i )T

]
M(p#

f pi)Ii∑F
i=f

[
1−M(p#

f piq
#
i )T

]
M(p#

f pi)H

[
1−M(q#

f )T(x, y)
]

−M(q#
f )T

1
F

F∑
i=1

M(q#
f qi)Ii

}2

H(x, y) dx dy . (5)

We minimize this resulting cost C(T) wrt its only argument T by using a greedy
approach, in the spirit of several schemes that were successfully used to segment
single images according to attributes like intensity, color, or texture, see the orig-
inal energy minimization formulation of [16] and approaches that use variational
methods [17], levels sets [18], partial differential equations [19], snakes [20,21], or
active contours [22]. In our approach, given a previous estimate T̂n of the mov-
ing object silhouette, the algorithm updates the estimate by including in T̂n+1

the neighboring pixels of T̂n that lead to a decrease of the cost C and excluding
the neighboring pixels that lead to an increase of C.

4 Initialization: Motion Detection

To initialize the segmentation algorithm, we need an initial guess of the sil-
houette of the object. Our experience has shown that the algorithm converges
to the correct solution even when the initial guess of the silhouette is very far
from the optimal estimate, for example when the initial guess is a single pixel
in the interior of the object. However, the impact of a computationally simple
initialization algorithm is high because, as it always happens with iterative al-
gorithms, the closer is the initial guess to the correct solution, the faster is the
convergence.

We compute the initial guess by using motion detection. To improve over
simply detecting the motion between two frames, we merge silhouettes computed
from several pairs of frames. The following example illustrates the procedure.
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4.1 Synthetic Sequence 1

We synthesize a video sequence using an object texture that contains regions of
almost constant intensity, i.e., regions with low texture. Fig. 1 represents three
frames of that synthetic video that shows a static background and a moving car.
Note that, due to the low textured regions of the car, motion segmentation is
not trivial for this video sequence, as referred in section 1.

Fig. 1. Synthetic video sequence 1

Fig. 2. Initial estimate of the silhouette of the moving car in the video in Fig. 1

In Fig. 2 we illustrate the initialization procedure for the first 20 frames of
the video of Fig. 1. The top row contains pairwise estimates of the silhouette.
These estimates are very incomplete due to the low texture of the car. The
bottom image represents the initial guess of the silhouette obtained by merging
the pairwise estimates. We see that this initial guess is more accurate than the
pairwise estimates but it still misses a considerable number of pixels. Note that
“filling-in” the regions that are missing in this initial guess by using spatial
rules, e.g., with morphological operations, is not trivial and requires the manual
adaptation of several parameters in general dependent of the video sequence
being processed.
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5 Experiments

We report the results of our algorithm when segmenting two synthetic image
sequences and one real video sequence.

In Fig. 3 we represent (left to right, top to bottom) the evolution of the
estimate of the moving object silhouette, superimposed with its texture, for the
synthetic video of Fig. 1. We see that, even for this low textured object, the
estimate converges to the correct silhouette of the car. To better illustrate the
behavior of the algorithm, we represent in Fig. 4, from left to right, the evolution
of the estimate of the background texture. The left image of Fig. 4 shows the
estimate at an early stage of the iterative process, i.e., it shows an estimate that
is blurred due to the still inaccurate estimate of the object silhouette. The right
image of Fig. 4 demonstrates how the final estimate of the background texture
is correct, i.e., it is not blurred by the object texture. Note that, since in this

Fig. 3. Evolution of the estimate of the silhouette of the moving car for the video
sequence in Fig. 1

Fig. 4. Evolution of the estimate of the background texture for the video sequence in
Fig. 1
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Fig. 5. Synthetic video sequence 2. Note that, since parts of the background are not
seen at any frame (they are occluded by the moving object at all frames), the method
of [13,14] can not be used to segment this video sequence.

Fig. 6. Background estimates for the video sequence in Fig. 5. The parts of the back-
ground that are not seen in any frame of the video sequence, are represented in black.

Fig. 7. Evolution of the estimate of the moving object silhouette for the video se-
quence in Fig. 5. In spite of the incomplete observation of the background, our method
succeeded in segmenting accurately the moving object.

video clip the background was completely uncovered, the final estimate in the
right image in Fig. 4 can be completely computed, i.e., computed at all pixels.
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Fig. 8. Real video sequence

Fig. 9. Evolution of the estimate of the background texture from the video in Fig 8

Fig. 10. Evolution of the estimate of the silhouette of the moving car from the video
in Fig 8
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5.1 Synthetic Sequence 2

We now synthesize a video sequence that shows a moving object with a more
challenging shape. It also exhibits low textured regions. Fig. 5 shows three frames
of this sequence. In this video the synthetic motion of the object is such that
the background is not completely uncovered. The algorithm proposed in [13,14]
to minimize the ML cost would then fail to segment this moving object. This
is because the algorithm of [13,14] requires building a complete estimate of the
background at intermediate steps, see discussion in section 1.

In Figs. 6 and 7 we represent the evolution of the estimates of the background
texture and the moving object silhouette, respectively. Note that the background
texture in the right image of Fig. 6 is not complete—we represent in black the
pixels that, due to the occlusion by the moving object, were not observed in the
video clip. As expected, our method is not affected by this covered background
areas—we see from the bottom right image of Fig. 7 that our algorithm succeeded
in accurately segmenting out the moving object in this video clip.

5.2 Real Video Sequence

We use a real video sequence that shows a moving car. Fig. 8 shows three frames
from this video clip. Figs. 9 and 10 represent the evolution of the algorithm,
demonstrating its good performance. See the evolution of the estimates of the
background texture, in Fig. 9, and of the moving object silhouette, in Fig. 10.

6 Conclusion

We proposed a new algorithm to segment moving objects in video sequences.
The algorithm exploits the rigidity of the object silhouette and the occlusion of
the background by the moving object. Our experimental results illustrate the
behavior of the algorithm and demonstrate its effectiveness.
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Abstract. In this paper, we present a method for optimal 3-dimensional track-
ing using interaction matrix. We developed two constraints to avoid the singu-
larity and local minima of the interaction matrix. These constraints were  
combined with the minimization of tracking errors to identify suitable system 
configuration for tracking. Experiments were conducted to validate the method. 

1   Introduction 

Visual tracking is essential for many applications and it has received considerable 
attention in recent research. Depending on whether the depth information is recovered 
or not, visual tracking can be divided into 3-dimensional (3D) tracking and 2-
dimensional (2D) tracking. In general, the objective of visual tracking is to continu-
ously estimate and update the positions and orientations of the target [1]. The posi-
tions and orientations here refer to the relative positions and orientations between the 
object and the vision system. The direct linkage between the variation of the relative 
position and orientation and the variation of feature on the image plane is governed by 
a so-called interaction matrix [2].  

The interaction matrix describes the projection of the 3D velocity field onto the 
image motion field. The interaction matrix has been extensively studied in visual 
servoing [3, 4]. However, as the interaction matrix suffers from singularity and local 
minimum, it has mostly been computed at the “equilibrium”, which is a possible solu-
tion to avoid singularities [5]. This calls for depth estimation. Recently, research on 
singularity of the interaction matrix has been conducted on singularity problems in 
visual servoing [6]. Michel and Rives [7] studied to find a particular visual feature set 
with 3 points where the interaction matrix had neither local minima nor singularities. 
Malis et al. [8] developed a triangular interaction matrix that had no singularity in the 
whole task space. Nevertheless, only little attention, if any, has been devoted to the 
singularity problem in visual tracking. Also, nonsingularity has rarely been explored 
in visual tracking as a constraint. 

Singularity problem in visual servoing has been studied, for example in an eye-in-
hand system [6]. The purpose is to ensure that the control law for the camera motion 
is implementable. Generally, for a monocular eye-in-hand system, at least 3 visual 
feature points are needed to obtain the interaction matrix. In this case, the points’ 
configuration is modified to avoid singularities [7]. This will be different in visual 
tracking where the problem is whether the object location can be reliable recovered by 
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the image features or not. Furthermore, instead of a set of feature points, we study the 
singularity of every feature point for 3D tracking.  

In this paper, nonsingular constraints of the interaction matrix are defined for 3D 
tracking, to improve tracking performance. Also, an adaptive search window and 
motion prediction scheme is implemented. 

2   3D Tracking Via Interaction Matrix 

2.1   Visual Feature and Relative Motion  

Let ( , )Tu v=p  be a vector describing the current visual feature, u  and v  the image 

coordinates of the feature. According to the definition of the interaction matrix, we 
have 

                                                   
s re

=p L T ,                                                               (1) 

where 
s

L  is the interaction matrix. 
( )

( )
re

t

t
=

V
T  is the relative motion between the 

object and the camera with ( , , )T

x y z
v v v=V , which is the translational velocity, and 

( , , )T

x y z
ω ω ω= , which is the angular velocity. p  is the time derivative of image 

feature due to the object relative motion 
re

T , ( , )Tu v=p . Therefore, the interaction 

matrix 
s

L  is a 2 6×  matrix.  

An object’s position can be obtained by calculating the relative motion. Equation 
(1) yields 

                                                   
re s

+=T L p ,                                                             (2) 

where 
s

+L  is the pseudo-inverse matrix of 
s

L . 
s

+L  can be obtained by the following 

calculation 

                                              1( )T T

s s s s

+ −=L L L L .                                                       (3) 

2.2   3D Tracking with Stereo Vision System 

From the elementary stereo geometry in a canonical configuration, in which two ste-
reo cameras have the same focal length and their optical axes are parallel with each 

other, assuming that a point ( , , )Tx y z=P  in the right camera frame is projected onto 

the right image plane as a point ( , )T

r r r
u v=p  and a point ( , )T

l l l
u v=p  on the left 

image plane, we have 

                                                       
r l

Bf
z

u u
=

−
,                                                       (4) 

where B  is the baseline of the stereo system, and f  represents the focal length. 
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According to [4], the interaction matrix can be written in the following form as a 
z ’s function 

                                

2 2

2 2

0

0

r r r r

r

r r r r

r

s

u u v f uf
v

z z f f

v f v u vf
u

z z f f

+

+
−

− −
=

− −
L .                         (5) 

3   Nonsingular Constraints in Interaction Matrix Using 

3.1   The Smallest Singular Value 

The singular value decomposition of an interaction matrix 
s

L  is expressed as  

                     1T T

(2 6) (2 2) (6 6)

2

0 0 0 0 0

0 0 0 0 0s

σ
σ× Σ Σ Σ × Σ ×= =L U V U V .                      (6) 

We always define that 1 2 0σ σ≥ ≥ . If the interaction matrix is singular, which 

means that at least one of its singular values ( 1σ  and 2σ ) is equal to zero, the vision 

system will lose the projection information in certain direction(s). This will then cause 
3D tracking failure. Therefore we impose a constraint on the smallest singular value 

( 2σ  here) on 3D tracking. The constraint is defined as 

                                           
1 2

: { | 0}G σ σ σ ξ∈ − > ,                                              (7) 

where ξ  is a positive lower bound. 

As the smallest singular value cannot have an analytic solution, we used simula-
tions to identify its property. Simulation results shown that focal length of the vision 
system, as well as image feature location on the scene can affect the smallest singular 

value ( 2σ ). As shown in Fig. 1(a), the mean values of 2σ  are plotted for different  

 

    
                                          (a)                                                     (b) 

Fig. 1. The smallest singular value as a function of f  (focal length), (b) r (image feature  
location) 
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values of focal length. According to the result, there is a global maximum in 2σ , 

which corresponds to the best nonsingular condition of interaction matrix. Then the 
nonsingular constraint on focal length is 

                                        
1 min max

: { | | }
f

G f f fξ ξ< < ,                                               (8) 

where 
min

f  and 
max

f  are the lower and upper bound of focal length value correspond-

ing to ξ . 

Simulation result in Fig. 1(b) shows that features located near to the image center 
provide larger singular values. Features located far away from the image center tend 
to give smaller singular values, which may cause singularity problem. Therefore, the 
nonsingular constraint on image feature location is introduced 

                                              
1 max

: { | }
r

G r r ξ< ,                                                          (9) 

where r  is the distance of the image feature point to the image centre, and maxr  is the 

maximum distance with respect to ξ . 

3.2   Condition Number 

The condition number ( )
s

κ L  is defined as a ratio of the largest to smallest singular 

value, 1 2( ) /sκ σ σ=L . A system is said to be singular if the condition number is 

infinite. ( )
s

κ L  can be calculated as follows 

                                            ( )
s s s

κ +=L L L .                                                     (10) 

Substituting (5) into (3), we can calculate the pseudo-inverse matrix of the interac-
tion matrix and then obtain 

                     

2 2

2 2

2 2

2 2 2 2

2 2 2 2

2 2 2 2 2 2 2 2

( )

( )

0 ( )

( ) 0

( ) ( )

r r r

r r r

r r
s

r r

r r

r r r r r r

fz v f fzv u

fzv u fz u f

f zu f zv

z f v u f

z f v u f

z v v u f z u v u f

η+

− +
− +

=
+ +

− + +
+ + − + +

L

,                           (11) 

where 2 2 2 2 2 2 2 2 2 21 [( )( )]r r r rv u f f z v f z u zη = + + + + + . 

Substituting (11) into (10), after reduction, we can obtain a very simple form of the 
condition number as follows 

                               
2 2 2 2 2

2 2
( ) r r

s

u v f r f

f f
κ

+ + +
= =L .                                           (12) 

Equation (12) indicates that the condition number of the interaction matrix is only 
affected by focal length and the location of the image feature point. 
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Consequently, the nonsingular constraint on the condition number can be defined 
as  

                               
2 2 2

2 02 2
: { 1 }

r f r
G

f f
κ

+
= + < ,                                            (13) 

where 0κ  is a threshold for the condition number. Further, 
2

G  can be decomposed 

into two constraints for f  and r  as  

                                        
0

2 min ,
: { | }

f r
G f f κ> ,                                                      (14) 

                                         
0

2 max ,
: { | }

r f
G r r κ< .                                                      (15) 

4   Error Analysis 

4.1   3D Tracking Error Modeling 

We denote the observed feature motion with errors as ′p . We have 

                                                ′ = + Δp p p ,                                                            (16) 

where Δp  is the feature motion error, ( , )Tu vΔ = Δ Δp . Without loss of generality, let 

Q  be a 2 2× scale matrix so that ( ) ( )T T
u v u vΔ Δ = Q . When Δp  is projected 

to the object motion field, from (2), we have the estimated object motion error as 
follows  

                             ( )re s s s s

+ + + +Δ = Δ + Δ = + ΔL p L p L Q L p ,                                 (17) 

where 
( )

( )
re

t

t

Δ
Δ =

Δ

V
T  and 

s

+ΔL  is the error of 
s

+L .  

If quantization error is considered, then we have 

                               s s s
s r r

s r r

z u v
z u v

+ + +
+ ∂ ∂ ∂

Δ = Δ + Δ + Δ
∂ ∂ ∂
L L L

L ,                                        (18) 

where zΔ  is the depth estimation error, ruΔ  and rvΔ  are the quantization errors 

along u  and v  image coordinates of the right camera respectively. We assume that 

ruΔ  and rvΔ  are independent of each other.  

According to the properties of error transition, (4) leads to 

                                       
2

( )
( )

r l

r l

Bf
z u u

u u

−
Δ = Δ −

−
,                                                   (19) 
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where ( )r lu uΔ −  is the disparity error. Because ruΔ  and luΔ are independent of 

each other, if we assume that the two cameras have the same quantization error, then 
according to the error transition rule we have ( ) 2r l ru u uΔ − = Δ .  Equation (19) yields  

2

2

2 2

( )
r r

r l

Bf z
z u u

u u Bf

− −
Δ = Δ = Δ

−
.                                         (20) 

Thus (18) becomes  

                               
22s s s

s r r r

r r

z
u u v

z Bf u v

+ + +
+ ∂ ∂ ∂−

Δ = Δ + Δ + Δ
∂ ∂ ∂
L L L

L .                              (21) 

We denote the two partial matrices of 
s

+L  as 
1s

+L  and
2s

+L , and those of 
s

+ΔL  as 

1s

+ΔL  and 
2s

+ΔL , namely 

                           
( 6 2)

1(3 2)

2(3 2)

s

s

s

+

×

+
×

+
×

=L
L

L
,  

( 6 2 )

1(3 2)

2(3 2)

s

s

s

+

×

+
×

+
×

Δ =
Δ

Δ
L

L

L
.                               (22) 

Following the denotation of (2) and (17), we have  

                               
1 1 1 1( )s s s s

+ + + +Δ = Δ + Δ = + ΔV L p L p L Q L p ,                                (23) 

                               
2 2 2 2( )s s s s

+ + + +Δ = Δ + Δ = + ΔL p L p L Q L p .                               (24) 

Then the estimated motion error in 3D object space is 

                                  ( , , ) [ ]T

x y z
P P P ×Δ = Δ Δ Δ = Δ + ΔP P V ,                                    (25) 

where [ ]×P  is a skew-symmetric matrix. 

Consequently, the positioning error of tracking is 

                         2 2 2

P x y z
t P P P tε δ δ= Δ Δ = Δ + Δ + ΔP P ,                               (26) 

where tδ  is the sampling period of tracking.  

4.2   Influence of System Configuration on Tracking Errors  

Tracking error Pε  can be used as a cost function of the tracking system so that the 

parameters for optimal tracking can be obtained by minimization of Pε . 

According to our simulation study, both the baseline value B  and focal length 
value f  can affect the tracking error. As shown in Fig. 2, the tracking error is ap-

proximately inversely proportional to B  and f . This result tallies with what is ob-

served in the real camera setup. According to the projection rule, a large focal length 
f  can provide better sensing in a wide range. As to the baseline value B , following 
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the triangulation rule, the larger the baseline, the more sensitive the depth estimation 
is. Thus a larger B  value results in smaller tracking errors.  

 

 

Fig. 2. Tracking error Pε  affected by B and f 

5   Combined Constraints for Image Feature Location 

When the vision system is reconfigurable, we can keep the tracking feature point 

targeted at a specific position * *( , )u v  on the image to minimize the tracking error 

and improve tracking performance.  

Assume that the image feature velocities at certain sampling instant are iu , iv . Let 

/i i iu vα = , where iα  is a scale factor. We have examined how different image fea-

ture locations affect the tracking error. As shown in Fig. 3, the distribution of tracking 
error on the image plane is central symmetric, and it converges to two global minima 

along a line iu vα=  on the edge of the image plane.  

 

 

Fig. 3. Tracking error converges on line u vα=  at different α  

 
Fig. 3 also shows how tracking errors change due to different values of iα . Ac-

cording to the discussion in Section 3, in order to satisfy nonsingular constraints, 
image feature points should be located close to the image centre. However, to mini-
mize tracking error, image feature points should be located away from the image 

centre on the line iu vα= . Therefore, an optimal targeting position can be achieved 

by making a compromise between the satisfaction of nonsingular constraints and the 
minimization of the tracking error. Fig. 4 shows the area of those positions.  
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Fig. 4. The optimal targeting area on the image screen 

6   Experimental Results 

6.1   System Set-Up 

The implementation of the proposed tracking method was conducted using our vision 
system, with a PC-based IM-PCI system and a variable scan frame grabber. Our algo-
rithms were developed in VC++ programming language and run as imported func-
tions by ITEX-CM. The system setup consists of two identical cameras (model TM-
765), with a resolution of 768×582 pixels.  

6.2   Tracking Implementation 

We defined the tracking error as the distance between the estimated object location 
and the true object location at each sampling instant. In our experiment, initial tests 
with traditional tracking method (the segmentation-based method) showed that track-
ing errors tended to increase when the object moved faster. Therefore, we have devel-
oped a tracking method based on the use of adaptive search windows whose sizes are 
in proportional to the object velocity. This method enables us to efficiently and relia-
bly search for a target with changing velocities within a small area of the predicted 

window. Assuming that the feature location 
t

p  at time t  on the right camera image 

plane, the relative motion ( )
re

tT , and the inter-frame time τ  are given, then predicted 

location (centre location) of the search window can then be estimated as  

                  ( ) ( ).
t

t t t t t t s ret
dt t t

τ

τ τ τ
+

+ = + + = +p p p p p p L T                       (27) 

The change of the window size is defined as proportional to the product of the im-
age velocity and the tracking error as follows 

                          
0

0

( )( )
( ) ( )

( )( )

u u

w P

v v

u tt
t t

v tt

δ δ
λ ε

δ δ
= = +s ,                                   (28) 

where λ  is a positive scale factor, ( ( ), ( ))T

u v
t tδ δ  are the window sizes along u  and 

v  image coordinates respectively, and 
0 0

( , )T

u v
δ δ  defines the minimum window size. 

Similarly, the adaptive search window for the left camera can be derived. 
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6.3   Tracking in 3D 

Firstly, we implemented our method to track a ball. The location of the search win-
dow for the next step was predicted using the position and velocity information cur-
rently available. The size of the search window was changed according to the pre-
dicted tracking error and the object velocity. Some examples of snap shots in the 
tracking are shown in Fig. 5(a).  In another experiment, we implemented our method 
in tracking a human hand as shown in Fig. 5(b). In this case, the 3D orientation as 
well as the 3D position of the target has to be considered in the tracking. A tracking 
rate of about 10fps was achieved in the implementation. 

 

    
                    (a) tracking a ball                                                (b) tracking a hand 

Fig. 5. Stereo tracking by our method 

6.4   Nonsingular Constraints for Tracking 

Two parameters can affect singularity: feature location and focal length. Since singu-
larity can further affect tracking performance, we examined the influence of those 
parameters on tracking errors and verified their effects on singularity.  

Image Feature Location. As discussed in Section 5, feature location itself can also 
affect tracking errors. Thus, a special motion pattern is adopted to eliminate such 
influence. We made the tracking object undergo uniform circular motion with differ-
ent diameters. Using this motion, at any tracking point of the circumference, the mag-
nitude of velocity is uniform and the direction of velocity is perpendicular to the line 
from the object to the centre. Thus, if the influence of singularity is not considered, 
then according to Fig. 3 the object on the same circumference will have the same 
effect on tracking errors. Furthermore, to eliminate the influence of velocity on track-
ing error the object was made to move along different circumferences at the same 
magnitude of velocity. This made it possible to extract the relatively “pure” influence 
of singularity on tracking errors.  

 
Fig. 6. The absolute tracking error as a function of image feature location 
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Then we analyzed the obtained result. The mean tracking errors on different con-
centric circles were calculated and they are shown in Fig. 6. The absolute tracking 
errors are affected by image feature location ( r ). Note that the errors caused by lens 
distortion may contribute to the tracking errors here. Therefore, we conducted sepa-
rate experimental examinations on the static errors which include the effect of the lens 
distortion in the vision system. With our camera calibration, the mean static errors 
were found to be within 1.0mm for the setup. Thus, the influence of the lens distortion 
on the tracking errors can be ignored. This experimental result is consistent with the 
simulation result shown in Fig. 1(b) and it verified the singularity effect on tracking 
error. When the image feature point is close to the image centre, the smallest singular 
value becomes large so that better tracking performance can be achieved.  

Focal Length. The mean tracking errors with their variances at different focal length 
values are plotted in Fig. 7. 

 

 

Fig. 7. Tracking error affected by f  

 
Fig. 7 shows that there is an optimal focal length value which minimizes the track-

ing error. This is consistent with the result of  Fig. 1(a) in Section 3, indicating that 
there is a global minimum in the smallest singular value at which its corresponding 

focal length best satisfied the nonsingular constraint 
1 f

G .  

However, the real situation is far more complicated. On one hand, according to 
(14) in Section 3, focal length affects the condition number so that a large focal length 
can provide small condition number and better nonsingularity. Thus, a large focal 
length is desired to reduce the tracking errors due to singularity. On the other hand, 
the focal length itself can directly affect tracking errors (see Fig. 2 in Section 4). 
When the focal length is too large or too small ( 10mmf <  or 35mmf >  in this case), 

the blurring effects of target will affect the precision of tracking adversely. The result 
in Fig. 7 therefore is considered as a combination of the above effects.  

6.5   Optimal Targeting Area 

We made a point object undergo a same uniform straight-line motion along different 

parallel lines i i iu v b= − + , with 1...9i =  and 5 0b =  (see Fig. 8(a)). The direction 

of velocity of the object was restricted in 1u v= − ⋅ . Then according to the simulation 
result of Fig. 3, the tracking error expected to converge on the line u v= −  (L5 in 
Fig. 8(a)).  
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       (a) object trajectory                      (b) tracking error              (c) optimal targeting area 

Fig. 8. Tracking error study on different parallel lines and optimal targeting area 
 

The object moved along each of the parallel lines repeatedly and the average track-
ing errors were obtained at each sampling. The mean tracking errors on different lines 
are shown in Fig. 8(b).  The smallest mean tracking error appears on L5. In other 
words, the tracking errors converge along the line u v= − . It should be noted that in 
Fig. 3, there is a global maximum in the tracking error at the image centre. However, 
in that simulation, the nonsingular constraint was not taken into account. In experi-
ments, the influence of singularity will play a more important role so that around the 
central area, better performance can be achieved for tracking (see Fig. 8(b)). Ulti-
mately, the optimal targeting area can be modified as shown in Fig. 8(c). 

7   Conclusion  

In this paper, we have developed an optimal 3D tracking method using nonsingular 
constraints from the interaction matrix. Influence of the system configuration on the 
interaction matrix has been studied and constraints have been designed to avoid sin-
gularities of the interaction matrix. Also, we have examined the system parameters to 
achieve better tracking performance. Experimental results verified the effectiveness of 
the proposed method.  
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A Generic Approach to Object Matching and Tracking 
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Abstract. In this paper, a generic approach to object matching and fast tracking in 
video and image sequence is presented. The approach first uses Gabor filters to 
extract flexible and reliable features as the basis of object matching and tracking. 
Then, a modified Elastic Graph Matching method is proposed for accurate object 
matching. A novel method based on posterior probability density estimation 
through sequential Monte Carlo method, called as Sequential Importance Sam-
pling (SIS) method, is also developed to track multiple objects simultaneously. 
Several applications of our proposed approach are given for performance evalua-
tion, which includes moving target tracking, stereo (3D) imaging, and camera sta-
bilization. The experimental results demonstrated the efficacy of the approach 
which can also be applied to many other military and civilian applications, such as 
moving target verification and tracking, visual surveillance of public transporta-
tion, country border control, battlefield inspection and analysis, etc. 

Keywords: Image analysis, feature extraction, object matching, real-time  
tracking. 

1   Introduction 

In image analysis and recognition, automatically recognizing objects of interest is al-
ways a challenging problem, and has been a research topic for many years. In recent 
years, detecting and tracking moving object in video is becoming a more interesting 
research topic and alluring more research efforts. In low level computer vision, one 
fundamental problem in object recognition and tracking is feature extraction as the 
result of extraction will directly affect the recognition performance. Another tough prob-
lem in object recognition is the matching between target and template. One reason for 
these difficulties is that, in real world, the object of interest always has some orientation 
difference and shape deformation as compared to its template in database. The goal of 
this paper is to develop an efficient method for object recognition and verification. The 
proposed method is based on Gabor filter-based Elastic Graph Matching (EGM) which 
has been successfully used in image texture analysis, face and fingerprint recognition 
[1-5]. But, by applying a new template-based matching method as the initialization of 
EGM, which is invariant to object rotation and size, we can overcome the limitations of 
conventional EGM and extend its applicability to more general cases such as stereo 
imaging, object tracking, and image sequence stabilization. 
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Another important issue discussed in this paper is object tracking. In video/image 
analysis, object tracking often becomes a more desirable problem after recognition. 
An automatic algorithm is needed to answer the questions: what is trace of the de-
tected object? Or, is the object in the current frame the one I am looking for? Once the 
object is detected, people usually want to know its status and position in the subse-
quent frames. In the real world, the object of interest is moving in 3D space, meaning 
the features of the object, which are projected onto 2D image, are also changing along 
the temporal axis. This makes object tracking a very challenging problem. Even with 
the difficulties mentioned above, many new methods and exciting results have been 
obtained in recent years, e.g. [6-12]. Unlike the current methods, we propose to use 
Sequential Importance Sampling (SIS) method to track moving object in real-time, 
which has several important advantages in object tracking. First, SIS is based on pos-
terior probability density estimation through sequential Monte Carlo (MC) method. 
The samples used for tracking are weighted properly via MC and updated with current 
observation while keeping track of a slowly varying change. Second, with SIS, tack-
ing can be completed simultaneously by using the estimated posterior density.  

In this paper, a generic approach for object matching and tracking is presented. The 
approach consists of three steps. The first step is Gabor filter-based feature extraction 
which provides an efficient way for selecting object features. The second step is an 
improved Elastic Graph Matching for object matching. The last step is a novel ap-
proach to simultaneously tracking multiple object in video/image sequence. Our 
method is based on posterior probability density estimation through sequential Monte 
Carlo methods.  

The paper is organized as follows. Section 2 gives out the technical details on how 
object feature extraction is formulated with Gabor filter. Section 3 describes our ap-
proach on using EGM for object matching. In Section 4, one efficient solution for fast 
tracking is presented. Section 5 provides some experimental results both in video and 
image sequence.  

2   Gabor Filter-Based Feature Extraction  

In human visual system (HSV), research has shown that people are sensitive to both 
specific orientation and spatial frequencies of object of interest. For feature represen-
tation and extraction, wavelets are good at representing orientation and frequency 
characteristic of object of interest. A Gabor filter bank can act as a simple form of 
wavelet filter bank. Because of its simplicity and optimum joint spatial/spatial-
frequency localization, Gabor filter has attracted many research efforts [4-5, 13-19] 
and has been applied in many image analysis and computer vision-based applications, 
e.g. face and fingerprint analysis and recognition [1-3].  

Gabor filter bank is a group of 2-D filters which record the optimal jointed local-
ization properties of region of interest in both spatial and spectral domain. Typically, 
an image is filtered with a set of Gabor filters which have different or preferred orien-
tations and spatial frequencies. To be specific, an image ( )I x  is filtered with a set of 

Gabor wavelets as follows, 
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                0 0
( )( , ) ( ) ( )

k
wI k x x x I x dxφ= −                                     (1) 

where k
φ  is the Gabor wavelet (filter) defined by  

         

2 2 2

2 2
( ) exp( )[exp( ) exp( )]

2 2
k

k k x
x ikx

σ
φ

σ σ
= − − −                       (2) 

with 
i

v
k k e μφ= controlling the orientation and the scale of the filters. By varying v 

and μ , we can get different Gabor filters with different orientations and scales. In 
our implementation, μ  controls the orientation and is assigned by any value of 0, 1, 
2, to 7 and v controls the spatial frequency and is assigned from 0, 1, and 2 with 

( ) v
vk 2/2/π=  and ( ) 8/μπφμ = . After filtering with a set of Gabor filters (24 filters 

from the above choice of v and μ ), the outputs on each pixel in the image form a 24-
dimensional vector called “jet”. The amplitude of the jet represents whether a pixel 
has significant gradient value in both orientation and frequency. Thus, it can be used 
to determine if this pixel is a good feature for object matching and tracking. 

3   Matching 

In order to correspond two images from two different sensors, called as image level 
matching, or find the correspondence from target to template of reference im-
age/database for object recognition and verification, called as object level matching, 
we have to solve the feature correspondence (matching) problem. With the feature 
points detected in the previous section, we propose to use an improved Elastic Graph 
Matching method to solve the matching by finding the corresponding features in the 
target frames. Some more detailed description of EGM can be found in [5, 20]. In 
most cases, due to the possible arbitrary relative positioning of the sensors with dif-
ferent field of view (FOV), conventional EGM method may never converge to the 
correct position because of the position, orientation, and scale difference between 
target and template, and thus we propose a coarse-to-fine strategy to perform robust 
matching. We first roughly match the two images (target image and template image) 
or find the object of interest in target image by searching with template, and then use 
EGM method to tune the matching result. The template matching with unknown rota-
tion and size can be formulated using a non-orthogonal image expansion approach 
[21]. In this method, image or object of interest will be recovered by a delta function 
at the template location. The convolution equation can be expressed as: 

                )()(*);()( 00 rnrrrfrg +−= δθ                                                          (3) 

where the position vector is ],[ yx
T rrr = , * is 2-D convolution, and f is the template 

(image or object of interest) at 0r . The orientation and size differences between tar-

get and template are represented by a vector θ  (where 0θ  is the true parameter set).  

                                   ],[ φθ sT =                                                                             (4) 
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where s  is the size and φ  is the rotation, a rotated and resized template can be given 

as  

                                    ))(
1

();( rM
s

frf φθ =                                                          (5) 

where 
−

=
φφ
φφ

φ
cossin

sincos
)(M . In this coarse step, maximum likelihood (ML) can be 

used to estimate the parameter set θ  and use delta restoration method [22] for loca-
tion estimation r̂ . The cost function of ML can be described as 

                          
2

)()(*);()|,( rgrrrfgrl −−= δθθ                                          (6) 

The maximum likelihood solution is then obtained by minimizing Eq. (6) as 

                                  )|,(minarg}ˆ,ˆ{ grlr θθ =                                                       (7) 

To solve the optimization problem, a Linear Least Square Estimate (LLSE) of the 
delta function can be considered to use. More details can be found in [22]. 

Even with the method mentioned above, two images or two objects may never be 
able to correlate with each other exactly due to local structural and depth variations. 
However, this is addressed naturally by the elasticity of the matching graph in the 
algorithm. In this paper, we present one improved EGM method which uses Gabor 
jets as inputs. Its main steps are given as follows: 

 
Algorithm:  Enhanced Elastic Graph Matching (EGM) 
Step 1: Find approximate position: We use the novel template matching with un-
known rotation and size parameter to identify the initial correspondence/matching 
between target and template of reference image/database. From the correspondences, 
some corresponding pairs of pixels from target and template are selected as features 
whose magnitudes of the jets are obviously larger than that of other pixels.  
 
Step 2: Verify position: We first average the magnitudes of the jets of each feature 
point. The jets to each pixel are termed as “bunch”.  Then, we assign the average 
value to the processed bunch and compute the similarity function aS  without phase 

comparison. 
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jj

j
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where ja is the average value of the jth bunch. Alternatively, we can compute the 
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If the similarity is larger than the predefined threshold, the result by template match-
ing is acceptable. Otherwise, error message will be generated and the EGM process is 
stopped. 

 
Step 3: Refine position and size: To the current bunch graph, we vary its position 
and size to tune the correspondence. For each bunch, check the four different pixels 
( 3± , 3± )displaced from its corresponded position in the target image. At each posi-
tion, we check two different sizes with a factor of 1.2 smaller or larger the bunch 
graph.    
 
Step 4: Refine aspect ratio: A similar relaxation process as described in Step 3 is 
performed. But at this time, we apply the operation only to x and y dimensions inde-
pendently.  

4   Tracking 

In the previous section, we discuss the feature correspondence between target and 
template, or two input images, or an image pair of two video sequences. When people 
want to know the status of object of interest in a single image/video sequence, target 
tracking becomes an interesting research topic. Since object is located in 3D space 
and projected onto 2D image, some features of the object will appear and some will 
disappear when target is moving or sensor is moving. This is an inevitable challenge 
facing any conventional method of feature tracking. 

Under a weak perspective camera model, the motion of a planar rigid object can be 
approximated by a 2D affine group. Although the set of jets is defined on an object of 
interest, e.g. human face, which is definitely not an ideal planar object. But, if defor-
mation of each feature point is allowed, one can still get a good approximation to the 
jet motions. Therefore, we model the jet motions as a 2D affine transformation plus a 
local deformation. We also assume the motion change between two subsequent 
frames is small. Unlike conventional methods, we propose to use Markov chain 
Monte Carlo techniques [23] for tacking. Specifically, the Sequential Importance 
Sampling (SIS) algorithm is used as motion predictor to find the correspondence 
features in two subsequent frames (t frame and t+1 frame) and on-line select features 
by updating new weights. In the SIS approach, object motion is formulated as the 
evaluation of the conditional probability density )|( tt ZXp . At time t, )|( tt ZXp  is 

approximated by a set of its samples, and each sample is associated with a weight 
reflecting its significance in representing the underlying density (importance sam-
pling). The basic steps of SIS are given as follows: 

 
SIS Algorithm 

Let { }},...,1,)( mjXS j
tt ==  denote a set of random draws that are properly weighted 

by the set of weights },...,1,{ )( mjwW j
tt ==  with respect to the distribution tπ . At 

each time step t, 
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In this algorithm, )(⋅g  is called the trial distribution or proposal distribution and com-

puted by 
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XXg . Thus, the SIS can be applied 

recursively for t=1,2, …, to accommodate an ever-changing dynamical system 
 

In our tracking algorithm, after obtaining a predicted )(
1
j

tx + , we check it with the 

measured value in t+1 frame. Based on the measured feature points from the frame at 
t+1, a matching error is computed for the mapped set and the measured set. Accord-

ing to the matching error, )(
1
j

tu +  is computed and )(
1
j

tw +  is then updated. Note that we do 

not specify any uncertainty model for individual feature points, which may be too 
complex to be modeled by a simple function, since it needs to account for inaccura-
cies in 2D approximation, uncertainty due to noise, non-rigidity of object of interest, 
etc. In our method, the local deformation at each jet is used to account for these  
factors.  

Another issue during our implementation is we reduce the motion parameter space 
from 2-dimension (x and y directions) to one-dimension (θ ). Here, we can consider a 
rigid object subject to motion which can be modeled by a transformation f parameter-
ized by a parameter vector θ . Let 0X  denote an original parameterization of the 

object. 0X  can be a set of jets. Let ),( 0XfX θ=  denote the transformation of 0X  

into X . Under a small and continuous motion assumption, X  would be similar to 

0X  and θ  would be very close to 0θ . 

               )()(),(),( 0000 ⋅+−+== oJXfXfX θθθθ θ                                        (8) 

                                  ))(( 000 θθθθ −+≈ JX  

where )(⋅o  denotes higher-order terms and )(0 ⋅J  is the Jacobian matrix with respect 

to θ . Consider the 2-D affine motion ),( ⋅θf  as 

+⋅=⋅
y

x

T

T

aa

aa
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Vector },...,{ 2211 aa  represents 2D affine rotation and },{ yx TT  represents translation. 
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We can compute the Jacobian matrix using 

         =
∂
∂=

1000
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00

00
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yx

yxX
J

θ
θ θ

θ                                              (9) 

In our tracking algorithm, we take θΔ  as X and use X to find the new position by 
computing the Jacobian matrix. 

 
Algorithm: SIS-based Tracking 

Initialization: The relative camera/sensor motion with a transformation group is 
modeled first. The motion parameters constitute a state vector distributed according to 
a density function (t). Then, we track the evolution of (t) over time t using the SIS 
algorithm, by which (t) is represented by a set of samples x(t,j) with proper weights 
w(t,j), j=1,2,… 

 

Step 1. Find a set of feature points of object of interest in the first frame (t=0).  
 

Step 2. For time t>0, track the set of (feature) points from t to t+1 by performing the 
following: 

 a) Each sample x(t+1,j) of (t+1) is used to map/predict the set of feature 
points to time t+1.   

            b) Based on the measured feature points from the frame at time t+1, a match-
ing error is computed from the mapped set.  

       c) The matching error is used to control the updating of w(t,j) to get w(t+1,j). 
 

Step 3. At time t+1, we compute the expectation (the weighted mean) of the samples 
x(t+1,j) to get the motion at that moment, and the points corresponding to the 
mean give the feature set at that time. 

 

Step 4. For the frame at time t+1, use the EGM algorithm with small elasticity to 
fine-tune the result. 

5   Experiments and Applications 

Many tests on image/video sequences have been performed with our proposed algo-
rithm. In this section, three tests are selected to illustrate the efficiency and possible 
applications of the algorithm. 

5.1   Dancer Matching and Tracking 

The test data sets were acquired from public domain (the website of Microsoft Re-
search Labs). The dynamic scenes were captured by eight cameras at different views 
with a common synchronization control. The data set from each camera consists of 
100 images (24-bits true color, 1024 x 768) at 3 frames per second. We performed 
two different tests on them. One is finding feature correspondence between two  
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images acquired from two different cameras. Another one is target tracking in a single 
video stream.  

Fig. 1 shows the feature correspondence results of two images captured from two 
cameras with different view points. The pixels are correctly corresponded. 

Fig. 2 shows the tracking of a dancer by using video sequence from a single cam-
era. Again our algorithm worked very well and we were able to track the dancer even 
though her movements were very drastic. 

 

• Matching 
 

 
Fig. 1. Finding feature correspondence from two different-view images. (a) and (b) are two 
different-view images captured at the same time. (c) and (d) show the extracted feature points. 
(e) is the result of feature correspondence of (c) and (d). 

 

• Tracking 

 

 
Fig. 2. Object tracking: (a) and (b) are two subsequent images acquired from same camera at 
different time instances. (c) shows the selected feature points from (a). The tracking result is 
given in (d). 
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5.2   Stereo (3D) Image Generation 

One important application of image matching is stereo imaging. After finding the fea-
ture correspondence between two different-view images, we can use the theories of 
multi-view geometry [24] to generate stereo image. The testing video sets for stereo 
imaging were collected by two video cameras with the resolution of 640 x 480 and the 
frame rate of 10 f/s. We first find the correspondence of the two first frames of the two 
input video to create a stereo image pair. Then, the features of next stereo pairs for cor-
respondence were tracked by using our proposed tracking method in each video stream 
independently. Fig. 3 shows the corresponded images and the stereo image. 

 

 
Fig. 3. Stereo imaging: (a) and (b) are two different-view images. (c) and (d) display the selected 
feature points for feature correspondence. (e) shows a red-cyan stereo image created from the 
feature correspondence (Reader can watch the 3D image with any red-cyan 3D glasses).  

5.3   Target Tracking and Stabilization 

One experiment was performed to show how the proposed algorithm can be applied to 
small target tracking and image sequence stabilization (also known as sensor motion  
 

 

Fig. 4. Target tracking 
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compensation). The testing data has the resolution of 336 x 244 and the frame rate of 
30 f/s. In the test, we first manually located a target of interest, e.g. a moving vehicle 
shown in Fig. 4 (a). Then, Gabor filter-based feature extraction and SIS-based track-
ing algorithms were performed to track the moving target in image sequence. The 
result is given in Fig. 4 (d). As we can see from the result, the small moving target can 
be successfully tracked in cluttered environment.  

For sensor motion compensation, we modeled the camera motion as a 2D affine trans-
formation. Stabilization is then achieved in the following steps. First, we extracted a set 
of feature points from the first frame. Next, we used the algorithm to track the feature set 
in the sequence. Stabilization was then done by warping the current frame with respect to 
the reference frame (the first frame) using the estimated motion parameter.  

6   Summary 

In this work, we have examined the problem of target matching and tracking in 
video/image sequence including the data acquired in noisy environment. We proposed 
a Gabor attribute matching and tracking algorithm based on an improved EMG and 
statistical sampling method. As described in the introduction section, there are many 
methods for object matching and tracking. Our algorithm differs from other matching 
methods in that we use Gabor attribute as features and extend the typical EMG 
method by introducing an efficient template matching method. . Consequently, our 
method is suitable for more applications with target rotation and size variations. Most 
importantly, we develop SIS-based method for real-time tracking. The advantage of 
our tracking algorithm is that we track target without requiring any assumptions to 
input data, such as Gaussian distribution, motion type and direction, rigid and non-
rigid target, and do not need to predict the motion speed and direction (even allow 
rotation in depth) as our approach continually select good feature for tracking by 
updating weight at each computation. Another advantage is our tracking is intended 
for verification – the model templates by Gabor filter can be easily incorporated into 
the tracker because of its formulation and parameterization. Low computational cost 
is also one advantage of the algorithm. In our experiments, the tracker processes input 
data in real-time on an ordinary PC (CPU: Intel P4 - 2GHz, and Memory: 1024 MB). 
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Abstract. This paper describes a innovative algorithm for the on-line estimation 
of the image jacobian based on previous movements. It has been utilized for the 
tracking of an uncalibrated 3 DOF joint system, using two weakly calibrated 
fixed cameras. The algorithm incorporates the epipolar restriction of the two 
cameras conveyed in the fundamental matrix, and a reliability factor has been 
defined for the previous movements. The tests carried out show that the pro-
posed algorithm is more robust in presence of noise than those obtained from 
already existing algorithms in specialized literature. 

Keywords: Visual servoing, Jacobian estimation, Fundamental matrix. 

1   Introduction 

Visual servoing consists in the use of visual information given by visual sensors (i.e. 
cameras) to control a robotic system. This kind of control turns out to be very useful 
in dynamic environments, as it allows us to know which objects are present in the 
scene with high accuracy, as well as their position, orientation and velocity.  It makes 
possible to use robots in new domains where the workspace is not known a priori. 
However it also proposes to solve new problems (in terms of accuracy and robust-
ness) currently unresolved [6]. The propose algorithm in this paper increases the accu-
racy and robustness without requiring a thorough knowledge of the involved systems: 
calibration of the joint system and kinematic calibration of the vision system, both 
common sources of accumulative errors. 

Visual servoing has been widely estudied in the lastest years, there are in the litera-
ture interesting surveys [5] and [7]. Among the existing clasiffications of visual ser-
voing, one of the most known is the way visual information is used to define the sig-
nal error to control the system: position based visual servoing (PBVS or 3D) and the 
image based visual servoing (IBVS or 2D). In position based visual servoing, features 
are extracted from the image and used to reconstruct the 3D position of the target, 
whereas in image based visual servoing the task is defined in the image plane directly 
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through image features. In the latter a matrix is defined called the Image Jacobian, 
which linearly relates changes in image features and changes in Cartesian coordinates 
or changes in joints (in this case, image jacobian is called visual-motor jacobian).  

This work, belongs to IBVS and contributes a new method based on the use of the 
epipolar restriction for the estimation of the Image Jacobian: this estimation can be 
carried out without the need for an accurate calibration, in these conditions the ana-
lytical calculation of the Jacobian is impossible. An uncalibrated 3 DOF joint system 
with two fixed cameras has been used. The tests carried out consisted of tracking  
curve trajectories in the 3D space and comparig them with other existing algorithms. 
In previous works, [11], tests of static positioning have been described with very posi-
tive results. In both cases a increase of robustness in presence of noise is achieved. 

This paper is organized as follows: after the present introduction, section two de-
tails the terminology and theoretical concepts used in the paper. Section three puts 
forward the innovative algorithm proposed, whilst section four describes the applied 
workspace and the results, and finally section five reflects our conclusions. 

2   Image Jacobian 

Assume that a robot or positioning system is observed from one or various fixed 

views. Let [ ]T
p21 rrr=r  be the p-dimensional vector that represents the posi-

tion of the end effector in a Cartesian coordinate system. Let [ ]T
n21 qqq=q  

be the n-dimensional vector that represents the joint position of the robot. Let 

[ ]T
m21 sss=s  be the m-dimensional vector that represents the image features 

(for example the coordinates of a point in one or both images). 

The relation between joint velocity of the robot [ ]T
nqqq 21=q  and its cor-

responding velocity in task space, [ ]T
p21 rrr=r , is captured in terms of the 

robot Jacobian, rqJ , as qJr rq= . The relation between feature velocities 

[ ]T
m21 sss=s  and task space velocities, is given by rJs sr= .  

The velocity of the image features can be directly related to joint velocities in 
terms of a composite Jacobian, also known as the full visual-motor Jacobian [2],  [12] 
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Determining this matrix analytically is not simple. It is necessary to remark that in 
its calculation there must be considered: the intrinsic parameters of the camera cali-
bration (focal distance, image center coordinates), the 3D reconstruction of the point 
or an approximation ( Z  coordinate), the kinematic calibration of the camera (relation 
between camera coordinates and joint space origin), and the kinematic calibration of 
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the robot. Most of the previous works on visual servoing assume that the system 
structure and the system parameters are known, or the parameters can be identified in 
an off-line process. A control scheme with off-line parameter identification is not ro-
bust for disturbance, change of parameters, and unknown environments. One ap-
proach to image-based visual servoing without calibration is to dynamically estimate 
the full visual-motor Jacobian during motion. 

2.1   Estimation of the Jacobian 

Specialized literature ([2], [12])gathers four methods for estimating the jacobian described in 
equation (1). In all cases an initial jacobian is obtained by making n linearly independent small 
movements. 

Estimation Based on the Last Moves. If the change in image features and the 
change in joint position at moment k are represented respectively by 1−−=Δ kkk sss  

and by 1kkk −−=Δ qqq , and the image jacobian is assumed to be constant for n 

movements, it can then be estimated as the matrix that simultaneously satisfies n or 
more movements: 

T T
k n 1 k n 1

T
k

T T
k k

− + − +Δ Δ
=

Δ Δ

s q

J

s q

 (2) 

where kJ  is the image jacobian at moment k. 

This method may not work well when several subsequent joint motions are gener-
ated in the same direction, a not unusual situation. In these cases a badly-behaved ma-
trix is obtained, and the consequent problems arise. Sutanto [12] solves the problem 
by detecting when this situation will occur and adding small exploratory motions. 

Broyden Method. In this method the jacobian is estimated recursively, combining the 
information supplied by the last movement with the previous jacobian. Regarding the 
former method, it has the advantage of gathering information from all the movements. 
The equation for the Broyden method [2], [9] is: 
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being kkk sse −= *  image features error, and *
ks the desired features 

Recursive Least Squares (RLS) Method. In this method the jacobian is estimated 
recursively by a least squares algorithm [9], [1], the equations of which, for a 
positioning task, are:  
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where 

T
k 1 k k k 1

k k 1 T
k k 1 k

P q q P1
P P

q P q
− −

−
−

Δ Δ
= −

λ λ + Δ Δ
 (5) 

The behaviour of this method depends on parameter λ , which varies in a range 
from 0 to 1, and ponders previous movements. λ  settles a compromise between the 
information provided by old data from previous movements and new data, possibly 
corrupted by noise. In the presence of moderate noise, values of λ  close to 0.9 are of-
ten used.  

Kalman Method.  Another way to estimate the jacobian recursively is by using the 
Kalman filter [10]: the system is modelled through its state variables as follows: 

υ
x x

y C x
 (6) 

where ,υ  are the state noise and observer noise respectively, x  is an ( )mn 1×  

vector formed by concatenations of the row elements of the jacobian: 
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where is
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∂

 is the i-th row of the jacobian kJ . The measurement vector is  

k1k1k ssy −= ++  (8) 

and ( )m mn×  matrix kC  is the measured joint increase matrix: 
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The Kalman equations are: 
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where kP  is the error covariance matrix at moment k, k 1P−
+  is the prediction of kP , 

R ,Rη υ  are the state and output covariance matrices respectively and k 1K +  is the 

Kalman gain. 
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2.2   Multiple-View Jacobian 

When several views are used, the full visual-motor Jacobian can be defined as the 
concatenation of the partial Jacobians of each view (more detailed in [8], [1]). All the 
Jacobians share the same joint increments, although visual features are managed in-
dependently. Here lies main contribution of this paper: if the features are points, the 
epipolar constraint is incorporated in the estimation of the Jacobian. The notation we 
used is detailed in section 3.2. 

In previous works [11], we carried out experiments comparing the results given us-
ing one of the cameras and those given using both cameras: our results showed that 
using two cameras instead of one improved the behaviour of all the methods we 
tested. In many applications, improvement in the performance more than justifies the 
possible disadvantages: increased equipment cost or calculation time. Therefore, the 
experiments described in this work have been performed using both cameras. 

2.3   Control Law 

A control law have been utilized for tracking a twisted quadratic trajectory. It adds to 
the proportional control law  [9] a predictive term from the last two references accord-
ing to the equation: 

( )*
1

**
1 −

+
+ −+−+= kkkkkk ssssJqq  (11) 

being  ( ) T1T JJJJ
−+ =  the pseudoinverse for the image jacobian. 

3   Proposed Algorithms 

The research line we have followed is the estimation of the jacobian based on already 
performed movements, not necessarily the n last ones. We use the visual information 
supplied by two cameras. We contribute two innovations: on one hand, each move-
ment has been endowed with a certain reliability, so that the most adequate or reliable 
movements can be used. On the other hand, the epipolar constraint has been taken 
into account in the calculation of the jacobian, which significantly increases the ro-
bustness of the method, as will be seen in section four. It must be remarked that al-
though we propose the joint application of both innovations, using them independ-
ently of each other also improves the results. 

The visual features we use are centroids of points. The proposed task consists in 
making these visual features follow a trajectory set in advance. 

3.1   Reliability Estimation 

The jacobian matrix, equation (1), strongly depends on the position of the point in the 
image (u,v), so the assumption that it is constant will only be valid in the surroundings 
of the point in the image. For this reason, a first possibility would be to promote the 
consideration of those already performed movements with a short path in image fea-
tures. However, these movements are too sensitive to noise, so an agreement must be 
reached between both effects. Movements performed in the joint surroundings of the 
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desired movement also seem more adequate. The proposed algorithms rank the al-
ready performed movements according to a reliability which depends on two factors 
that assemble these concepts: 

kiiki FactorFactoryreliabilit 2/1 =  (12) 

Where subindex k represents the last movement performed and subindex i will vary 
amongst those already performed movements which have been stored.  

Factor1i promotes movements in which features vary within a range: they are not 
too large so that the jacobian can be considered a constant, nor too small so they will 
not be too sensitive to noise. The formula we used is: 

( )
R

F

Fabs

1
1Factor

i
i

+
−Δ

=
s

 
(13) 

where R represents the estimated error in feature calculation (for example, for 5 points 
detected with subpixel precision, R would have a value close to 1.0 pixels), and F 
represents the most reliable feature increment (for example, 20 pixels). We must re-
mark that Factor1i does not depend on the last performed movement, so it will be cal-
culated and stored together with its corresponding movement. 

Factor2ki promotes those already stored movements produced in the joint sur-
roundings of the desired movement, comparing for this purpose the current joint posi-
tion with the mid point of already reached joint positions. Its expression is: 

+
−= −

2
2Factor 1ii

kki
qq

q  (14) 

Greater reliability will be given to those performed movements that have greater 
value for the expression (12). 

3.2   Adding the Epipolar Constraint 

A point in space [ ]1
T

X Y Z=S , where  represents homogeneous coordinates, 

is projected in the first image in point [ ]' ' ' 1 '
T

x y= =s P S , where 'P  represents 

the (3x4) projective matrix of the first camera. This point will likewise be projected in 

the second image in point [ ]'' '' '' 1 ''
T

x y= =s P S  where ''P  represents the (3x4) 

projective matrix of the second camera. Points are expressed in homogeneous coordi-
nates and an image acquisition model without distortion is assumed. The Euclidean 
calibration of both cameras implies the knowledge of matrices ', ''P P .   

The projection of the same point on both images must satisfy the equation: 

'' ' 0T =s F s  (15) 

where F is a (3x3) matrix known as the fundamental matrix or epipolar constraint. Its 
knowledge is known as weak or projective calibration, and its detection is much more 
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robust than Euclidean calibration. A more detailed description can be found in [3]  
and [4]. 

Our method considers the epipolar constraint, equations (15) in the calculation of 
the image jacobian, equation (1). If the considered visual features are centroids of 
points, and if we note a point in the first camera by ‘, and by “ in the second camera, 
we have the following model: 
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Substituting in (18) the values obtained in (17) and considering that equation (19) 
must be satisfied, we have the following non-linear equation for ( )JJ ′′′  , : 

[ ] 01
1 1

1 =Δ′′′+
′

′′Δ+Δ′′′Δ −
−

k
T

k
kTT

kk
TT

k qJFs
s

FJqqJFJq  (20) 

The linear equations in (2) and the non-linear equations in (20) have been jointly 
solved applying the Levenberg-Marquadt method. 

3.3   Glossary of Tested Algorithms 

In the implementation described in the present article, the following algorithms have 
been tested: 

• 3LAST: Last three movements performed. Since our joint system has three degrees 
of freedom, equation (2) can be solved using the information on joint and feature 
velocities provided by three movements. 

• 3+REL: Three most reliable movements amongst the last ten performed. 
• 10LASTW: Last ten movements performed, weighted by their reliability. Weight-

ing is introduced multiplying each row in equation (2) by its corresponding reli-
ability. 

• 10+REL: Ten most reliable movements performed. 
• FUNDMAT: Ten most reliable movements performed, adding the epipolar con-

straint. 
• BROYDEN: Broyden method. 
• RLS: Recursive least squares method. 
• KALMAN: Kalman filter estimation. 



 Image Based Visual Servoing 857 

Algorithms 3+REL, 10LASTW, 10+REL and FUNDMAT are original, innovative 
methods founded on the estimation of the jacobian based on the last moves. 

4   Experiments 

In this section we describe our experimental equipment and results. 

4.1   Experimental Setup 

The system used in the experiments consists of: 

• A joint system composed of a high precision positioning device and its controller, 
model Newport MM3000 (see Fig. 1). The system has 3 DOF with a prismatic and 
two revolute joints, and its theoretical precision is of a thousandth of a millimeter 
and a thousandth of a degree. The visual control object, made out of five black dots 
on a white background, the projection of which on the image will be the control 
features, has been attached to the last link of the joint system. 

 

Fig. 1. Experimental setup 

• An image acquisition and processing system composed by two CV-M50 analogic 
cameras and a Matrox Meteor II-MC image acquisition board, which allows simul-
taneous acquisition from both cameras. The cameras, fixed in the working envi-
ronment, are separated by about 300 millimeters, both their axes converge towards 
the joint system, and they are separated from it by about 700 millimeters. Visual 
features are detected with subpixel precision, and given the simplicity of the image, 
the error is estimated to be of less than 0.2 pixels. Communication with the joint 
system controller is established through a serial RS-232C cable. 

We must remark that the joint system is a closed system: once a position has been  
selected, control will not be handed over until it is reached. This course of action is unac-
ceptable for a visual control system that must use the information supplied by the cam-
eras as soon as possible. In order to simulate a more adequate behaviour, we have chosen 
to limit joint motion according to the estimated time it would take the vision system to 
acquire and process images. On the other hand, the high accuracy of the employed sys-
tem allows us to perform a thorough comparative analysis of the proposed algorithms. 



858 L. Pari et al. 

4.2   Control Objective 

The task entrusted to the system is to achieve the tracking of a trajectory set in ad-
vance (see Fig. 2) by using the information obtained on detection of certain image fea-
tures (centroids of projected dots). We intend to contrast the performance of the pro-
posed methods of estimation of the image jacobian using the control law (section 3.2.) 

Visual features must be reachable and the visual object must be visible from both 
points of view. To ensure coherence, we decided to obtain the desired visual features 
previously by acquiring images in reference joint positions, chosen randomly within 
the workspace (teach-by-showing). Due to the dependency of the jacobian on visual 
features and on the point in joint space, we have chosen to link a high number of tra-
jectories (50) in order to obtain more representative results for the comparative study 
of the proposed algorithm. 

4.3   Evaluation Indices  

To evaluate the effectiveness of each method, we consider three indices, defined as 
follows: 

• Index 0: Sum of Euclidean distances between desired and current visual features. 
Weighted by number of points, number of cameras and number of trajectories. 

• Index 1: Sum of Euclidean distances in joint space for all of the performed move-
ments, divided by one thousand. Weighted by number of trajectories. 

• Index 2: Sum of Euclidean distances between desired and current joint positions. 
Weighted by number of points. 

Table 1. Values for three indices, with and without added noise. Predictive law. 

WITHOUT NOISE WITH NOISE 
 

ALGO-
RITHM 2 

POINTS 
3 

POINTS 
4 

POINTS 
5 

POINTS 
2 

POINTS 
3 

POINTS 
4 

POINTS 
5 

POINTS 
3LAST 16.6 17.9 18.6 18.5 20.4 21.8 21.5 22.1 
3+REL 16.8 18.2 18.0 17.8 17.2 21.0 19.6 22.0 

10LASTW 16.5 17.5 17.9 17.7 18.4 17.8 20.7 19.9 
10+REL 16.5 17.7 17.9 17.7 18.5 20.9 19.4 21.4 

FUNDMAT 16.5 17.5 17.7 17.6 16.6 17.7 17.9 17.7 
BROYDEN 16.4 18.2 18.7 17.8 16.9 19.6 22.8 19.0 

RLS 16.5 17.7 18.1 17.7 16.7 18.8 18.4 18.4 

IN
D

E
X

 0
 

KALMAN 16.0 17.3 17.7 17.6 17.4 18.0 18.7 18.5 
3LAST 3.43 3.48 3.68 3.63 2.22 2.55 2.29 2.39 
3+REL 3.68 3.47 3.44 3.42 3.60 2.45 3.66 2.40 

10LASTW 3.40 3.37 3.37 3.37 3.39 3.57 2.92 3.40 
10+REL 3.37 3.32 3.34 3.35 3.18 2.42 3.44 2.49 

FUNDMAT 3.35 3.33 3.34 3.35 3.36 3.34 3.31 3.34 
BROYDEN 3.37 3.43 3.66 3.38 3.34 2.86 3.84 3.32 

RLS 3.34 3.31 3.38 3.34 3.44 3.59 3.49 3.44 

IN
D

E
X

 1
 

KALMAN 3.37 3.41 3.48 3.42 3.65 3.53 3.39 3.46 

3LAST 0.77 0.98 1.84 0.99 7.08 5.70 5.34 5.55 
3+REL 0.94 0.67 0.58 0.41 1.88 5.66 1.97 5.36 

10LASTW 0.59 0.33 0.39 0.34 4.11 0.78 4.99 3.65 
10+REL 0.46 0.69 0.53 0.37 4.14 6.01 2.97 5.14 

FUNDMAT 0.42 0.50 0.38 0.29 0.45 0.60 0.45 0.29 
BROYDEN 0.38 0.80 1.60 0.45 1.42 3.64 6.19 2.38 

RLS 0.50 0.43 0.58 0.34 1.17 2.81 1.06 1.17 

IN
D

E
X

 2
 

KALMAN 0.21 0.42 0.62 0.56 3.45 1.63 1.73 1.58 
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4.4   Results 

A comparative study was conducted on the proposed algorithms. The comparison 
covers visual features calculated with an estimated error of 0.2 pixels, therefore con-
sidered without noise, as well as visual features with artificially added Gaussian noise 
with a standard deviation of 0.5 pixels. Also, the effect of increasing the number of 
points considered as visual features from 2 to 5 is analyzed.  

Table 1 displays the results obtained with the control predictive law, with or with-
out added noise for all algorithms analyzed according to the three defined indexes and 
varying the number of points taken into account. The methods which give better re-
sults are KALMAN, RLS, FUNDMAT and 10LASTW. With added noise the most 
robust method is FUNDMAT, especially on index 2, although RLS and KALMAN 
methods also show a good behavior. Increasing the number of points has two opposite 
effects: we have more information to control the system, but also stricter requirements 
to fulfill, which causes variations in the indices. 

Fig. 2 ( FUNDMAT), Fig. 3 (RLS) and Fig. 4 (KALMAN) represent the evolution in 
joint space for each method of estimation of the jacobian. The red points represent 
points to be reached in the reference trajectory, and the blue line shows the evolution 
of the joint system. For the two laws considered, with and without added noise, the 
method that performs the best tracking is the one that considers the epipolar restric-
tion (FUNDMAT). 

 

  

Fig. 2. Evolution for five points, FUNMAT algorithm without and with noise 

  

Fig. 3. Evolution in joint space for five points, RLS algorithm without and with noise 
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Fig. 4. Evolution in joint space for five points, KALMAN algorithm without and with noise 

5   Conclusions 

The on-line estimation of the image jacobian is a flexible and versatile method for the 
visual control of a joint structure, since it isolates the obtained results from errors in 
the calibration of the camera and the joint system. This paper contributes the defini-
tion of a reliability to calculate the jacobian, and the inclusion of the epipolar con-
straint or fundamental matrix in its calculation. This aspect is not considered in spe-
cialized literature, and it improves the results significantly when the noise level in 
feature detection increases. The knowledge of the fundamental matrix is no objection, 
as its calculation has been proven to be much more simple, robust and reliable than 
that of the complete calibration of the cameras and joint system. 

Some aspects not dealt with in the present paper which are being currently studied 
are the analysis of the system stability with a control law generated from the jacobian 
estimation, and the analytic calculation of the image jacobian. Regarding the first as-
pect, we must remark that algorithm FUNDMAT has never made the system unstable 
throughout the many tests performed. 

This work was supported by the Comisión Interministerial de Ciencia y Tecnología 
of the Spanish Government under the Project DPI2004-07433-C02-02. 
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Scale-Space with Automatic Selection of Features 
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Abstract. A new approach of tracking objects in image sequences is proposed, 
in which the constant changes of the size and orientation of the target can be 
precisely described. For each incoming frame, a likelihood image of the target 
is created according to the automatically chosen best feature, where the target’s 
area turns into a blob. The scale of this blob can be determined based on the lo-
cal maxima of differential scale-space filters. We employ the QP_TR trust re-
gion algorithm to search for the local maxima of orientational multi-scale nor-
malized Laplacian filter of the likelihood image to locate the target as well as to 
determine its scale and orientation. Based on the tracking results of sequence 
examples, the novel method has been proven to be capable of describing the 
target more accurately and thus achieves much better tracking precision. 

1   Introduction 

Object tracking in image sequences is the key issue in many computer vision applica-
tions such as video surveillance, perceptual user interfaces, object-based video com-
pression and so on. Two major components can be distinguished in a typical visual 
tracker: target representation and target localization. Gray scale values, shape infor-
mation, colors, textures, velocity and acceleration are the commonly used object’s 
features. Target localization is the procedure to locate the area that matches the ob-
ject’s feature best, and it can be addressed by particular optimization methods. 

It is well known that the success or failure of object tracking is primarily dependent 
on how distinguishable the feature of an object is from its surroundings and back-
ground. In literatures, Shi and Tomasi [1] have pointed out that good features are as 
important as good tracking algorithms. The degree and discriminability to which a 
tracker can discriminate the object and background is directly related to the image 
features used. It is the ability to distinguish between object and background that is 
most important. In [2] a fixed set of candidate features are assessed in terms of the 
variance ratio and the best N  ones are chosen to produce the likelihood images for 
tracking. Bohyung Han[3] used PCA to extract the most discriminative feature from 
the feature set composed of every subset of the RGB and rgb color channels. Stern 
and Efros [4] chose the best features from 5 features spaces and switch amongst them 
to improve the tracking performance. All these methods focused on the determination 
of the best feature from a predefined feature set with finite number of features. 
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The tracking precision also has much to do with the description of the target’s scal-
ing and rotation. Most previous related work [5,6,7] addressed the rotation and scaling 
by working on some presumably possible discrete values of rotation angle and scale. 
However, discrete values cannot fit the complex movements of the target. Tyng-Luh 
and Hwann-Tzong[8] proposed to use a covariance ellipse to characterize an object 
and adopt a bivariate normal within the ellipse as the weighting function for the fea-
tures. They dealt with the issue in a continuous manner but the features they used are 
just predefined color probability and edge density information, which are not guaran-
teed to be the best one. 

In this paper we extend the discrete feature set to a continuous feature space. The 
best feature is chosen out of this space in terms of the target-background class vari-
ance ratio. We also adapt Lindeberg’s theory [9] of feature scale selection based on 
the local maxima of differential scale-space filters to deal with the description of the 
target and describe the rotation and scaling in the continuous space. 

Compared with the popular mean shift [6] method, trust region methods are more 
effective and can yield better performances [8]. Based on the traditional trust region 
method, QP_TR algorithm [10] improves the way to get the object function’s Hessian 
matrix and gradient, and achieves even better performance. In this paper, we combine 
the QP_TR method with the scale space theory and propose a new tracking algorithm 
in which tracking is implemented as searching for local maxima of the orientational 
multi-scale normalized Laplacian filter function with the QP_TR method. 

2   QP_TR Trust Region Algorithm 

Optimization methods based on iterative schemes can be divided into two classes: 
line-search methods and trust-region methods [8]. For a line-search one, the iterations 
are determined along some specific directions, e.g., steepest descent locates its itera-
tions by considering the gradient directions. However, a trust region method derives 
its iterations by solving the corresponding optimization problem in a bounded region 
iteratively (The optimization problem in the bounded region is called the trust region 
sub-problem). In fact, line search methods can be considered as special cases of trust-
region methods. 

2.1   The Basic Trust Region Algorithm 

Trust regions methods can be used to solve the unconstrained minimization problem 
min ( )
x

f
∈V

, where V  is a vector space and f  is the objective function to be mini-

mized. There are three key elements in any trust region method: 1) trust region radius, 
to determine the size of a trust region; 2) trust region sub-problem, to approximate the 
objective function in the region by a model and 3) trust region fidelity, to evaluate the 
accuracy of an approximating solution. 

Given the initial point 0
nR∈  and initial trust region radius 0Δ , the basic trust re-

gion method proceeds as following: 

1. Initialization: Initialize the constants 1η , 2η , 1γ , 2γ , satisfying 1 20 1η η< ≤ < , 

1 20 1γ γ< ≤ < . Compute 0( )f  and set 0k = ; 
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2. Trust region sub-problem: Choose the norm || ||k⋅ , determine the trust region 

{ }|| ||n
k k kR= ∈ − ≤ Δ  and define a model km  in k  which approximates 

( )f ; 

3. Step computation: Compute a step k  which sufficiently reduces km  and such that 

k k k+ ∈ ; 

4. Trust region fidelity: Compute ( )k kf +  and ( ) ( )

( ) ( )
k k k

k
k k k k k

f f
r

m m

− +
=

− +
. If 1η≥kr  

then the trial point is accepted and set 1k k k+ = + , otherwise set 1k k+ = . 

Since 1η  is a small positive number, the above run favors a trial point only when 

km  approximates f  well and yields a large kr ; 

5. Trust region radius update: Set [ )
2

1 2 1 2

1 2 1

[ , )

[ , ) ,

[ , )

k k

k k k k

k k k

if r

if r

if r

η
γ η η
γ γ η

+

Δ ∞ ≥
Δ ∈ Δ Δ ∈

Δ Δ <
. That is, when 

km  approximates f  well and yields a large kr , and if 2kr η≥  the trust region ra-

dius will be expanded for the next iteration. On the other hand if 1kr η<  or kr  is 

negative, it suggests that the objective function f  is not well approximated by the 

model km  within the current trust region k . So k  is not accepted, the trust re-

gion radius will be shrunk to derive more appropriate model and sub-problem for 
the next iteration. 

6. Exit conditions: If kΔ  is smaller than the predefined endΔ  or k  exceeds the prede-

fined iterMAX , terminate; otherwise set 1k k= +  and go to step 2 

2.2   QP_TR an Improved Trust Region Method 

Based on the basic trust region algorithm, the QP_TR method [10] improves the way 
to get the model km . In QP_TR the object function is approximated by an n  dimen-

sion quadratic polynomial km  in k : 

1
( ) ( ) , ,

2k k k k k km m+ = + + H   ( ) ( )k k km f=  (1) 

where km  is generated by Multivariate Lagrange Interpolation. The Hessian Matrix 

kH  at k�  is extracted from km  instead of using the “BFGS-update”. This avoids the 

poor approximation of kH  when the curvature of f  is changing fast. Furthermore, 

k  is also extracted from km , ( )k x k km= ∇ . That avoids the introduced error when 

using forward finite differences. Thus the trust region sub-problem is to compute an 

k k∈  such that 
|| ||

1
arg min ( ) , ,

2k k

k k k k
s

ψ
≤Δ

= ≡ + H . 

In our tracking context, we set 1 0.1η = , 2 0.7η = , 1 2 0.5γ γ= = . 
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3   Target Model 

Our goal in this section is to develop an efficient method that automatically chooses the 
best feature for tracking. Features used for tracking only need be locally discriminative, 
in that the object only needs to be clearly separable from its immediate surroundings. 
We represent target appearance using histograms of color filter bank responses applied 
to R, G, and B pixel values within local image windows. This representation is chosen 
since it is relatively insensitive to variation in target appearance due to viewpoint, occlu-
sion and non-rigidity. In [2] a fixed set of candidate features are evaluated and the best 
one is chosen to produce the likelihood image. Based upon [2] but different from it, we 
extend the candidate features in a continuous manner. 

In this paper, the candidate features are composed of linear combinations of R, G, 
B pixel values. Specifically, we have chosen the following candidate feature: 

1 2 3R G B iF ω ω ω ω= + + ∈ R  (2) 

where F  is the linear combination of R, G, and B with real coefficients except for 

1 2 3( , , ) (0,0,0)ω ω ω = . Many common features from the literatures are included in the 

candidate space, such as the raw values of R, G, and B, intensity R+G+B, approxi-
mate chrominance features such as R-B, and so-called excess color features such as 
2G-R-B. All features are normalized into the range 0 to 255 and discretized into his-
tograms of length 255.  

We follow [2] to use a “center-surround” approach to sampling pixels covering the 
object and background. A rectangular set of pixels covering the object is chosen to 
represent the object pixels, while a larger surrounding ring of pixels is chosen to rep-
resent the background. For an inner rectangle of dimensions t th w×  pixels, an outer 

margin of width ( , )t th wmax  pixels forms the background sample. We use the object 

pixels to get the target histogram objH  for a candidate feature and the background 

pixels to get the background histogram bgH . We form an empirical discrete probabil-

ity distribution ( ), 1...255p i i =  for the object, and ( )q i  for the background by nor-

malizing each histogram by the number of elements in it. 
From any candidate features, we can create a new feature that is “tuned” to dis-

criminate between object and background pixels. The tuned feature is formed as the 
log likelihood ratio of the class conditional candidate feature distributions. The log 
likelihood ratio [3] of a feature value i  is given by 

( ) ( )
( )

( ),
1, 1, log

( ),

p i
L i

q i

δ
δ

= −
max

max min
max

 (3) 

where δ  is a small value that prevents dividing by zero or taking the log of zero (we 
choose it to 0.001). The nonlinear log likelihood ratio maps object/background distri-
butions into positive values for colors distinctive to the object and negative for colors 
associated with the background. Colors shared by both object and background tend 
towards zero. Back-projecting these log likelihood ratio values into the image pro-
duces a likelihood image suitable for tracking, as shown in Fig 1. 
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Fig. 1. Likelihood images by three methods 

The separability that ( )L i  induces between object and background classes can be 

measured using the two-class variance ratio. The variance of ( )L i  with respect to ob-

ject class distribution ( )p i  is calculated as: 

( ) [ ]( ) ( )
2

22 2var ; ( ) ( ) ( ) ( ) ( )
i i

L p E L i E L i p i L i p i L i= − = −  (4) 

and similarly for background class distribution ( )q i [2]. Then the variance ratio can 

be defined as: 

( ) ( )
( ) ( )

var ;( ) / 2
; ,

var ; var ;

L p q
VR L p q

L p L q

+
≡

+
 (5) 

The higher the ratio is, the wider the object and background are separated [2]. This 
means the triple of 1 2 3( , , )ω ω ω  which produces the highest ( ; , )VR L p q , corresponds 

to the best feature. To get this best triple we can define an object function 

1 2 3( , , )ψ ω ω ω that takes a triple 1 2 3( , , )ω ω ω  as the parameter, calculates ( )p i , ( )q i , 

( )L i , and returns ( ; , )VR L p q− . Apply the QP_TR method on 1 2 3( , , )ψ ω ω ω  and we 

can get 1 2 3( , , )bestω ω ω . Introduce 1 2 3( , , )bestω ω ω  into (2) and we can get the best fea-

ture. Using the best feature we follow (3) to get the best “tuned” feature ( )bestL i  

which can be back-projected to produce the likelihood image. 
Figure 1 shows the weight images calculated with three methods. The upper right 

one is by our method, the lower left one is by the method in [2], while the lower right 
is by that in [11]. 

Different from [2], we use real iω instead of integer ones. And we choose the best 

iω  in the continuous space rather than from a finite set. This improvement enables us 

to get more approximate feature. For example, in Fig.1 the likelihood image using our 
method has a 1.89425VR = , which is larger than that of the likelihood image  
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produced by method in [2], which is 1.60777 . The corresponding triple 1 2 3( , , )ω ω ω  

is (-5.02673, 4.9104, 0.959966) . 

4   Scale-Space Blob 

During tracking, the size of the target will change with the distance to the camera. The 
target itself may rotate. Tracking algorithm should adapt to these kinds of change and 
describe them precisely. Most previous related work [5,6,7] addresses rotation and 
scaling by working on some presumably possible discrete values of rotation angle and 
scale. For example, for each frame the tracker in [6] tries two sizes of plus and minus 
ten percent of the previous size to guess the current size. However, it’s difficult to 
adapt to the changes in size by using only these discrete values (We will show this 
later). Aiming at this shortcoming, we propose to solve the problem in the continuous 
scale space and describe the scaling and rotation in a continuous manner. 

The work of Lindeberg [8] provided an elegant theory for selecting the best scale 
for describing features in an image. Given any continuous function : Df R R→  and a 

Gaussian kernel with scale t , : Dg R R R+× → , 
2 2
1( ... ) /(2 )

/ 2

1
( ; )

(2 )
Dx x t

N
g t e

tπ
− + += , the 

scale-space representation of f  is its convolution with g , i.e., : DL R R R+× → , 

( ; ) ( ; ) ( )L t g t f⋅ = ⋅ ∗ ⋅  with various scale t. The -normalized derivative operator is de-

fined as / 2
xtγ

ξ∂ = ∂ . A very good property of the -normalized derivative of L  is the 

perfect scale invariance as follows: 

Consider two functions f  and f  related by ( ) ( )f f=  and define the scale-

space representation of f  and f  in the two domains by 

( ; ) ( ; ) ( )

( ; ) ( ; ) ( )

L t g t f

L t g t f

⋅ = ⋅ ∗ ⋅

⋅ = ⋅ ∗ ⋅
 (6) 

where the spatial variables and the scale parameters are transformed according to  

2

s

t s t

=
=

 (7) 

Then L  and L  are related by ( ; ) ( ; )L t L t= ⋅  and the m-th order spatial deriva-

tives satisfy ( ; ) ( ; )m m

m

x x
L t s L t∂ = ∂ . For -normalized derivatives defined in the 

two domains by  
/ 2

/ 2
x

x

t

t

γ
ξ

γ
ξ

∂ = ∂
∂ = ∂

 (8) 

we have (1 )( ; ) ( ; )m m

mL t s L tγ
ξ ξ

−∂ = ∂ . From this relation it can be seen that,  

when 1γ = , ( ; ) ( ; )m mL t L tξ ξ∂ = ∂ . That is, if the -normalized derivative of f  
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assumes a local maximum at 0 0( ; )t  in the scale-space, the -normalized deriva-

tives of f  will also assume a local maximum at 2
0 0( ; )s s t . Based on this prop-

erty we can choose appropriate combination of the -normalized derivatives to 
determine the scale of some structure in the data. 

A gray image can be seen as a two dimensional function. That is, 2D = , and 
2:f R R→ . When 1γ = , ( ) ( ) ( )2 2 22 2 ( )xx yyt L t L t L Lγ ∇ = ∇ = +  reflects the details of 

blobs in an image. We call ( )2
( , , ) ( ( , ) ( , ))xx yyx y t t L x y L x yϕ = +  the multi-scale nor-

malized Laplacian filter function. With different scale values t, ( , , )x y tϕ  achieves lo-

cal maxima at blobs with different sizes. The gray image in Fig 2 contains two blobs. 
With 90t = , ( , , )x y tϕ  assumes the local maximum at the center of the smaller one, 

while with 391t = , ( , , )x y tϕ  assumes another local maximum at the center of the 

larger one. So the locations of the blobs as well as their scales can be determined by 
examining the local maxima of ( , , )x y tϕ  at various positions and scales. 

 

 

Fig. 2. For blobs with different sizes, ( , , , )x y tφ α  assumes local maxima at different positions 

with different scales, Left: Original image Middle: The response of ( , , , )x y tφ α  with 90t =  

Right: The response of ( , , , )x y tφ α  with 391t =  

When the blob’s orientation is under the consideration we define the orientational 
multi-scale normalized Laplacian filter function ( , , , )x y tφ α  as follows: 

( ) ( ) ( )( )( )2

, , , , ,

( )cos ( )sin

( )sin ( )sin

x x y yxc yc t t L xc yc L xc yc

x x xc y yc xc

y x xc y yc yc

φ α

α α
α α

′ ′ ′ ′= +

′ = − + − +
′ = − − + − +

 (9) 

0 x image width≤ ≤ , 0 y image height≤ ≤  (10) 

( , , , )x y tφ α  will assume a maximum only when α  reflects the correct orientation of 

the blob. As shown in Fig 3, for the blob in (a) only when 0α =  (which means no ro-
tation), does ( , , , )x y tφ α  assume the maximum. So we can use ( , , , )x y tφ α  to deter-

mine the positions, orientations of blobs as well as their scales. 
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Fig. 3. ( , , , )x y tφ α  with different α  

5   Algorithm Summary 

To summarize, we track targets by calculating the likelihood image of target for each 
incoming frame and search for the local maximum of ( , , , )x y tφ α  in the scale space 

of the likelihood image by QP_TR trust region method. The algorithm proceeds as 
follows: 

1. Target initialization: determine the width and height of the target, denoted as tw  

and th . The width and height of the frame are w  and h  respectively. Using the 

method in section 3 to determine the best feature to use, record the corresponding 
triple 1 2 3( , , )bestω ω ω  and ( )bestL i . 

2. Resize the frame so that the ratio of width to height will be / /t twh h wρ = . If we 

hold w  fixed the height of the frame will be /w ρ . 

3. Compute the likelihood image for the resized frame using 1 2 3( , , )bestω ω ω  and 

( )bestL i . 

4. Initialize a vector 0 ( , , , )T
prev prev prev prevx y tα= , where ( , )prev prevx y  is the center of the 

target in the previous frame, prevα  the previous orientation parameter and prevt  the 

scale parameter in the previous frame. Set the initial trust region radius 0 9Δ = , the 

minimum radius 0.1endΔ =  and the maximum iteration 1000iterMAX = . 

5. Run the QP_TR algorithm for ( ) ( , , , )f x y tφ α= −  and get ( , , , )T
opt opt opt prev optx y tα=  

which minimizes ( )f , where ( , )opt optx y  is the center of the target in the current 

frame with optα  the orientation parameter and optt  its scale parameter. Go to step 2) 

until the track is over. 

6   Examples 

To verify the efficiency of our method, we apply it to many sequences and compare 
with other tracking algorithms. At first, we evaluated the performance of feature se-
lection of our novel method with [10], as shown in Fig 4. The number of evaluated 
features by our method is reduced a lot whereas the number is a fixed one in ref [10]. 
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At the same time, the discriminability between the object and background has been 
increased compared with ref [10]. From the results, we find that our method is more 
effective and efficient than that of method in [10] in term of the computation of fea-
ture selection and discriminability of feature for object description, e.g., VR. 

 

  

Fig. 4. The curves of the number of evaluated features and VR of the “car” sequence (from 1 to 
142 frames) 

Besides the above-mentioned good performance of feature extraction for object, 
the proposed method is proven to be accurate to describe the object and can yield bet-
ter tracking result than those of refs [3, 5, 8, 12] by the following experimental results. 
Fig 5 shows the tracking result of the “pedestrian” sequence and performance com-
parison with the bandwidth mean shift tracker [3]. Since the target in this sequence 
does not rotate, we hold the orientation parameter α  fixed. In the bandwidth mean 
shift tracker, the scale parameter can take only three discrete values so that there is 

 

   

   

Fig. 5. Tracking results of a pedestrian. Upper row: Using the method presented in this paper. 
Lower row: Using the bandwidth mean shift tracker. Only the 3rd, 217th and 317th frame. 
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much error in describing the target’s size, which results in error of the target localiza-
tion (as shown in the lower row). The upper row shows our method’s result. It can be 
seen that the rectangle shrinks with the target and describes the target size accurately. 

In Fig 6 we verify our method’s ability to cope with the rotation of target. The car 
rotates throughout the sequence. With our method the car is consistently tracked, both 
in location and in angle. 

   

   

Fig. 6. Tracking results of the “car” sequence. Only the 3, 27, 52, 75, 99 and 124 frame are 
shown. 

In Fig 7 we verify our method’s ability to cope with the zoom of target. The cup 
rotates and zooms in throughout the “cup2” sequence. As can been seen, our method 
(upper row) of optimizing over a four dimensional continuous space to capture the 
changes in the cup’s scale and orientation is much more effective than the multi-
degree of freedom mean shift tracker [12] (in the lower row) which tries three discrete 
angles for each frame to deal with the rotation. Meanwhile the changing curves of the 
scale parameter and rotation angle during tracking are shown in Fig 8. 

 

    

    

Fig. 7. Tracking results of the “cup2” sequence. Upper row: Using the method presented in this 
paper. Lower row: Using the multi-degree of freedom mean shift tracker. Only the 172nd, 204th, 
317th and 364th frame are shown. 
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Fig. 8. The curves of the rotation angle and scale parameter of the“cup2” sequence 

7   Conclusion 

In this paper, we proposed a new target tracking algorithm to solve the problem of de-
termining the scale and orientation, by the combination of Lindeberg’s scale space 
theory with the QP_TR trust region method. First, the best feature that best discrimi-
nates the target and background is automatically determined out of the continuous 
candidate feature space. Each target corresponds to a specific blob in the likelihood 
image. Then we introduce the orientational multi-scale normalized Laplacian filter 
function to detect the blobs in gray images. Conceptually, the scale space is generated 
by convolving the likelihood image with a filter bank of spatial LOG filters. Explicit 
generation of these convolutions would be very expensive and only able to evaluate at 
finite discrete parameters. However, by using the QP_TR trust region method, we can 
search for the local maximum of the object function in the continuous scale space 
much more efficiently, where the local maximum corresponds to a blob, i.e. the tar-
get. In this way we fulfill the precise tracking of targets. Experimental results demon-
strate our new algorithm’s ability to adapt to objects’ complex movements with much 
better tracking precision. 
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Abstract. Accurate human posture estimation from single or multiple images is
essential in many applications. Two main causes of difficulty to solve the estima-
tion problem are large number of degrees of freedom and self-occlusion. Tree-
structured graphical models with efficient inference algorithms have been used to
solve the problem in a lower dimensional state space. However, such models are
not accurate enough to formulate the problem because it assumes that the image
of each body part can be independently observed. As a result, it is difficult to han-
dle partial self-occlusion. This paper presents a more accurate graphical model
which can implicitly model the possible self-occlusion between body parts. More
important, an efficiently approximate inference algorithm is provided to estimate
human posture in a low dimensional state space. It can deal with partial self-
occlusion in posture estimation and human tracking, which has been shown by
the experimental results on real data.

1 Introduction

Human posture estimation and human tracking try to accurately recover human posture
from single or multiple images [8][9][13]. Accurately recovering posture is essential in
many applications such as human-computer interaction, vision-based sport coaching,
and physical rehabilitation.

Top-down approach is often used to estimate human posture, in which a 3D or 2D
human body model is often required to generate a synthetic 2D image of the corre-
sponding human posture. By measuring the similarity between the synthetic 2D image
and the input image, the posture estimation can be updated iteratively. In general, there
are many local minima in such an optimization problem, such that continuous local
optimization methods are not effective [22]. To deal with the difficulty, prior motion
models are often used to constrain the search space during optimization [17], although
it is limited to estimating postures similar to those in the motion models. Another way is
to find multiple local minima and choose the best one from them [3][23], but it requires
more computation and also cannot guarantee to find the global minimum. In compar-
ison, sampling method [12] may find the global minimum in a low state space, but
directly sampling in the state space of body posture is infeasible because of the large
number of degrees of freedom (e.g., 30) of human body.

By observing that the human body is in fact tree-structured, researchers often formu-
late the estimation problem by a tree-structured graphical model [24][11][26][7][18].
In the model, every body part is encoded by one node in the graph, and every edge con-
necting two nodes indicates that there are relationships between the two parts. Efficient

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 874–885, 2006.
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inference algorithms exist (e.g., BP [28]) to recover the low dimensional (e.g., 6) pose
of every body part. More importantly, sampling methods [7][24][11][26] can be used in
the low dimensional pose space of each body part.

However, it is not accurate enough to formulate the problem by a tree-structured
graphical model. In this model, it assumes that the image of each body part can be inde-
pendently observed, while self-occlusion between body parts often happens in human
motion. In such case, the image of one body part can not be independently observed be-
cause it may be partially or fully occluded by other body parts. Sigal et al. [20] tried to
deal with partial self-occlusion by learning the likelihood of the observed image condi-
tioned on the pose state of each body part. But learning is often a complex process and
it is not easy to collect training images. What is more, such learned likelihood functions
are limited to approximately estimating a small set of postures. Lee et al. [14] and Hua
et al. [9] used detected part candidates to obtaine proposal distributions for some body
parts, which are then used to help approximately estimate postures even under partial
self-occlusion. Good proposal distributions are essentially important in their methods.
Sudderth et al. [25] explicitly modelled self-occlusion using factor graph in which one
binary hidden variable is required for each image pixel. However, the large number of
hidden variables inside the model make the inference algorithm more complicated.

In order to deal with partial self-occlusion in posture estimation, we use a more ac-
curate graphical model by explicitly inserting a set of hidden variables between the
state of human posture and the input image observation. Each hidden variable repre-
sents the 3D shape and the appearance of one body part, and the image observation of
every body part depends on all the hidden variables. The possible self-occlusion be-
tween body parts can be implicitly modelled by the relative position between the 3D
shapes of parts. In addition, the non-penetration between body parts can be explicitly
modelled in the middle level of the model. More important, based on the new model,
a novel and efficient approximate inference algorithm is developed to accurately esti-
mate each body part’s pose in a lower (i.e. 6) dimensional space. This algorithm is an
annealed iteration process. In each iteration, conditional marginal distribution of each
body part is estimated based on the estimation results of previous iteration. The rela-
tionships between body parts’ states and the relationships between parts’ states and the
image observation are updated by an annealing factor in each iteration. Such annealed
process can help to find the true posture with more probability even if the initial pos-
ture is far from the truth. This inference algorithm, without any learning process, can
deal with partial self-occlusion in 2D posture estimation and human tracking, which has
been shown by the experimental results on real data.

2 Related Work

In general there are two types of approaches to the related human posture estimation and
articulated human tracking problems: top-down and bottom-up. Compared with top-
down approach introduced above, bottom-up approach can avoid the need for explicit
initialization and 3D or 2D body modelling and rendering. It directly recovers human
posture from images by exemplar based method or non-linear mapping based method.
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The exemplar based method [16][2] searches for exemplar images similar to the input
image from a set of stored exemplars, and uses the known 3D posture of the exemplar as
the estimated posture. Since multiple body postures may have very similar correspond-
ing images, this method often outputs multiple 3D body posture estimations for the
input image. Much computation can be saved by constructing a distance-approximating
embedding [2], such that the similarity measurement between images can be efficiently
computed in the embedded low space. Because the exemplars record only a limited
number of body postures, this method may not obtain good posture estimations if the
body posture in the input image is different from those in the exemplars.

The non-linear mapping based method learns a nonlinear mapping function that rep-
resents the relationships between body image features and the corresponding 3D body
postures. During learning, a rich set of image features (e.g., silhouette [6], histogram
of shape context [1]) are extracted from each training image as the input, and the out-
put is the known 3D posture in the corresponding training image. Agarwal and Triggs
[1] used relevance vector machine to learn a nonlinear mapping function that consists
of a set of weighted basis functions. Rosales et al. [19] used a special combination of
sigmoidal and linear functions to learn a set of forward mapping functions by one EM
technique. In addition, by embedding the manifold of one type of human motion into
a lower dimensional space, and learning the two non-linear mappings between the em-
bedded manifold and both visual input (e.g., silhouette) space and 3D body pose space,
3D body pose can be estimated from each input image by the two mapping functions
[6]. The mapping based method can directly estimate body posture from a single input
image, but it is often limited to recovering the body postures which are similar to the
3D postures in the training images.

Recently, the combination of top-down and bottom-up approaches has also been used
to estimate postures [10][14][9][15]. In general it firstly applies low-level feature detec-
tors (e.g., rectangle detectors [10]) to generate a set of candidates of body parts, then
applies some prior knowledge or constraints (e.g., kinematic constraints) to search for
good candidates and find the best 2D posture. To list a few, Mori [15] used superpixels
as the element to represent the input image. Based on the boundaries of superpixels and
constraints (appearance and width consistency, kinematic constraints) between body
parts, a rough 2D posture configuration was obtained. Hua [9] used the detected candi-
dates of some body parts to form importance function for later belief propagation.

Note that both types of approaches can be used in human tracking problem. Com-
pared to CONDENSATION [12] which efficiently combines top-down approach into
a probabilistic framework for human tracking, Sminchisescu [21] recently proposed a
probabilistic framework in which conditional density can be propagated temporally in
discriminative (bottom-up), continuous chain models.

3 Problem Formulation

A human skeleton model (Figure 1(a)) is used to represent body joints and bones, and
a triangular mesh model (Figure 1(b)) is used to represent the body shape. Each vertex
in the mesh is attached to the related body part. The relative bone length and part width
to a standard human model are used to represent each body part’s shape size.
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Fig. 1. Human body model and graphical model. (a) Human skeleton model. (b) Each vertex in the
mesh model is assigned to one specific body part. (c) A tree-structured graph represents human
posture X . Each node represents one body part xi and the edge between two nodes represents
the potential relationship between them. (d) Each node in Y represents one 3D body part yi and
the edge between nodes represents the non-penetration relationship between them. (e) and (f)
represent the graphical model we used. (g) and (h) represent the tree-structured graphical model.

Human body posture X is represented by a set of body parts’ poses X = {xi|i ∈ V}
(Figure 1(c)), where V is the set of body parts. The pose xi = (pi,θi) represents the
ith body part’s 3D position pi and 3D orientation θi. Given the shape size of each body
part, a synthetic 3D body part yi = f(xi) (Figure 1(d)) is generated for each part’s pose
xi, where f represents (but is not limited to) a deterministic process. By projecting the
synthetic 3D body Y = {yi|i ∈ V}, a synthetic image observation can be generated.
During posture estimation, each synthetic image observation will be used to compare
with a real input image observationZ . The relationship betweenY andZ is represented
by the observation function φ(Y,Z). In addition due to the articulation, every pair of
adjacent body parts xi and xj must be connected. Such kind of kinematic constraint
is enforced by the potential function ψij(xi,xj). Denote E as the set of adjacent body
parts xi and xj , i.e., (i, j) ∈ E . Another kind of constraint is that body parts cannot
penetrate each other, which can be enforced by potential function ϕim(yi,ym). Denote
E ′ as the set of part pair yi and ym, i.e., (i,m) ∈ E ′.

A graphical model (Figure 1(e) and 1(f)) is used to represent all the relationships
introduced above. Note that this model is different from the tree-structured graphical
model that is generally used by other researchers [7][9]. In the tree-structured model
(Figure 1(g) and 1(h)), it assumes that the image zi of each body part i can be indepen-
dently observed such that the relationship between xi and zi can be easily evaluated
using local observation. However in general, self-occlusion between body parts often
happens in human motion. In such a case, local observation zi can not be observed inde-
pendently and only the whole body’s image observationZ can. In our graphical model,
a middle level (yi) is inserted between xi and Z in order to precisely model the image
generation process. Each hidden variable yi represents the 3D shape and appearance of
one body part, and the image observation of every body part depends on all the hidden
variables. This is different from tree-structured model in which every part’s observation
depends only on the part’s state. In our graphical model, the possible self-occlusion
between body parts can be implicitly modelled by the relative position between the 3D
shapes of parts. In addition, the non-penetration relationship between 3D body parts
can be enforced by potential function ϕim(yi,ym), while such relationship cannot be
modelled in tree-structured graphical model.
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The problem is to infer X and corresponding Y from Z . From the structure of the
graphical model (Figure 1(e) and 1(f)), the posterior distribution p(X ,Y|Z) can be
factorized as

p(X ,Y|Z) ∝ p(Z|Y)p(Y|X )p(X ) (1)

∝ φ(Y,Z)
∏

(i,m)∈ E′
ϕim(yi,ym)

∏
i∈V

δ(f(xi)− yi)
∏

(i,j)∈ E
ψij(xi,xj),

where δ(·) is the Dirac’s delta function because yi is a deterministic function of xi.
Now the objective is to find the maximum a posteriori estimationX ∗ and corresponding
Y∗ which make p(X ,Y|Z) maximum.

4 Inference Algorithm

Instead of directly inferring X and Y from (1), we calculate the conditional marginal
distribution p(xi,yi|Z). Unfortunately, due to the complex structure of the graphical
model, the generally used efficient belief propagation algorithm cannot be used to cal-
culate p(xi,yi|Z). Here we develop an approximate inference algorithm to calculate
the maximum p(xi,yi|Z) by introducing into it the idea of simulated annealing. This
algorithm is an annealed iteration process. In each iteration, every p(xi,yi|Z) is esti-
mated based on the estimation of the other body parts from the previous iteration and
the real input image Z . Since the estimation is not accurate in the first several itera-
tions, the relationships between different body parts are relaxed and loose at first, and
then become more and more restricted with respect to iteration. The update of relation-
ships is realized by an annealing factor. In the following, we first explain how annealing
factor is introduced to the iterations. After that, we will design the potential functions
and observation functions.

Denote p̃(n)(xi,yi|Z) as the estimation of the true p(n)(xi,yi|Z)={p(xi,yi|Z)}λn

at iteration n, where n = 0, ..., N − 1 and λN−1 > . . . > λ1 > λ0. When λn increases
(linearly or exponentially) with respect to iteration n, the MAP estimation x∗

i and y∗
i

will emerge more and more clearly, because {p(xi,yi|Z)}λn is much larger at x∗
i and

y∗
i than at other xi values. For two adjacent iterations, we have the following approxi-

mations:

p̃(n+1)(xi,yi|Z) ≈ {p(n)(xi,yi|Z)}λn+1/λn (2)

≈ {p̃(n)(xi,yi|X̂n
−i, Ŷn

−i,Z)}λn+1/λn ,

p(n)(xi,yi|Z) ≈
∫
X−i,Y−i

{p̃(n)(xi,yi,X−i,Y−i|Z)}

=
∫
X−i,Y−i

{p̃(n)(xi,yi|X−i,Y−i,Z)p(n)(X−i,Y−i|Z)}

≈
∫
X−i,Y−i

{p̃(n)(xi,yi|X̂n
−i, Ŷn

−i,Z)p̃(n)(X−i,Y−i|Z)}

= p̃(n)(xi,yi|X̂n
−i, Ŷn

−i,Z), (3)



Human Posture Analysis Under Partial Self-occlusion 879

where X−i is the set of body parts’ poses except xi, and Y−i is the set of 3D body
parts except yi. X̂n

−i and Ŷn
−i are the corresponding estimations at iteration n. In (2),

p(n)(xi,yi|Z) is approximated by p̃(n)(xi,yi|X̂n
−i, Ŷn

−i,Z). Although it needs to be
theoretically explored for such approximation, the approximation (3) may be reason-
able at least due to the following observations. During the first several iterations, the
relationship between part xi and the other parts X−i are so loose that they are indepen-
dent. The second observation is that when iteration n is large enough, p(n)(xi,yi|Z)
will become a Dirac’s delta like function. In both cases, the p̃(n)(xi,yi|X̂n

−i, Ŷn
−i,Z)

can be used to exactly represent p(n)(xi,yi|Z).
From (1) and (2), we can get

p̃(n+1)(xi,yi|Z) (4)

∝ αφ(n+1)(yi, Ŷn
−i,Z)

∏
m∈Γ ′(i)

ϕ
(n+1)
im (yi, ŷn

m)δ(f(xi)− yi)
∏

j∈ Γ (i)

ψ
(n+1)
ij (xi, x̂n

j )

∝ α{φ(n)(yi, Ŷn
−i,Z)

∏
m∈ Γ ′(i)

ϕ
(n)
im (yi, ŷn

m)δ(f(xi)− yi)
∏

j∈ Γ (i)

ψ
(n)
ij (xi, x̂n

j )}λn+1/λn ,

where Γ (i) = {k|(i, k) ∈ E} is the neighbor of body part i, and similarly for Γ ′(i).
α is a normalizing factor including potential functions related to the other body parts.
From (4), conditional marginal distribution can be updated iteratively. Also, we can get

φ(n+1)(yi, Ŷn
−i,Z) ∝ {φ(n)(yi, Ŷn

−i,Z)}λn+1/λn , (5)

ϕ
(n+1)
im (yi, ŷn

m) ∝ {ϕ(n)
im (yi, ŷn

m)}λn+1/λn , (6)

ψ
(n+1)
ij (xi, x̂n

j ) ∝ {ψ(n)
ij (xi, x̂n

j )}λn+1/λn . (7)

Observation functions φ(n+1)(yi, Ŷn
−i,Z) and potential functions ϕ(n+1)

im (yi, ŷn
m) and

ψ
(n+1)
ij (xi, x̂n

j ) will be updated based on (5) (6) and (7) in the (n + 1)th iteration.

4.1 Potential Functions

Potential function ψij(xi,xj) can be used to enforce relationships between body parts
i and j. In our work, ψij(xi,xj) is used to enforce kinematic constraints and angle con-
straints between two adjacent body parts. In this case, assuming part i is one neighbor
of part j, we can get

ψ
(n)
ij (xi,xj) ∝ ψ

(n)
ij1 (xi,xj)ψ

(n)
ij2 (xi,xj), (8)

ψ
(n)
ij1 (xi,xj) = N (T (xi)− pj ; 0, Λn

ij), (9)

ψ
(n)
ij2 (xi,xj) =

{
1 if θij ∈ Θij

an
ij otherwise

, (10)

where ψ
(n)
ij (xi,xj) represents the probability of xi given xj . ψ(n)

ij1 (xi,xj) is used to
enforce kinematic constraints, where T is a rigid transformation that is obtained from
position pi and orientation θi in the pose xi and the size information of the ith body
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part, and Λn
i,j is the variance matrix of the gaussian function N in the nth iteration.

ψ
(n)
ij2 (xi,xj) is used to enforce angle constraints, where θij is the angle between the

two body parts’ orientation θi and θj , Θij is the valid angle range between body part i
and j, and an

ij is a value between 0 and 1. Note that Λn
ij and an

ij are tuned based on (7).
Potential function ϕim(yi,ym) is used to enforce non-penetration constraints be-

tween two related body parts i and m where

ϕ
(n)
im (yi,ym) =

{
1 if dim > Dim

bn
im otherwise

, (11)

dim is the minimum distance between part yi and ym, and Dim is the allowable min-
imum distance between the two parts. bn

im is a value between 0 and 1. bn
im is tuned

according to (6) and becomes smaller with respect to the iteration, which means the
non-penetration constraints will be more and more enforced.

4.2 Observation Functions

Observation function φ(Y,Z) measures the likelihood of Z given Y . In order to mea-
sure the likelihood, the 3D body Y is projected, and then the similarity between the
projected image and the real input image observation Z is computed to estimate the
likelihood. Since φ(Y,Z) is estimated by the similarity of the two whole images, it can
deal with self-occlusion where one body part is partially occluded by others.

In our work, edge and silhouette were used as the features for the similarity mea-
surement. Chamfer distance was used to measure the edge similarity. For the silhouette
similarity, in addition to the overlapping area of the projected image and the human
body image region in the input image, the chamfer distance from the projected image
region to the body image region in the input image was also used. The relative weight
between edge and silhouette similarity is experimentally determined. Note that the edge
similarity was a value between 0 and 1 by normalizing the chamfer distance, such that
that the scaling problem between the edge similarity and the silhouette similarity was
avoided.

4.3 Nonparametric Implementation

Because of the non-Gaussian property of potential functions and observation functions,
analytic computation of the functions is intractable. We use Monte Carlo method to
search for each body part’s state by iteratively updating conditional marginal distribu-
tion p̃(n+1)(xi,yi|Z), called Annealed Marginal Distribution Monte Carlo (AMDMC).
In our algorithm, each distribution p̃(n+1)(xi,yi|Z) is represented by a set of K
weighted samples,

p̃(n+1)(xi,yi|Z) = {(s(n+1,k)
i , π

(n+1,k)
i )|1 ≤ k ≤ K} (12)

where s(n+1,k)
i is the kth sample of the ith body part state xi in the (n + 1)th iteration

and π
(n+1,k)
i is the weight of the sample. Note that yi = f(xi) is a deterministic

function and so it is not necessary in the nonparametric representation.
In each iteration, every p̃(n+1)(xi,yi|Z) is updated based on (4). The update process

based on the Monte Carlo method is described in the following:
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1. Update potential functions and observation functions based on (5)–(11).
2. Compute estimation X̂n

−i of the other body parts from initialization or previous

iteration result, and get Ŷn
−i = f(X̂n

−i).
3. Use importance sampling to generate new samples s(n+1,k)

i from related marginal
distributions of previous iteration. The related marginal distributions include the
neighbors’ and its own marginal distributions of previous iteration. The new sam-
ples are to be weighted in the following step to represent marginal distribution.

4. Update marginal distribution. For each new sample s(n+1,k)
i , compute y(n+1,k)

i =
f(s(n+1,k)

i ) and then calculate the weight π(n+1,k)
i , where

π
(n+1,k)
i = φ(n+1)(y(n+1,k)

i , Ŷn
−i,Z)

∏
m∈Γ ′(i)

ϕ
(n+1)
im (y(n+1,k)

i , ŷn
m)

×
∏

j∈Γ (i)

ψ
(n+1)
ij (s(n+1,k)

i , x̂n
j ). (13)

π
(n+1,k)
i is then re-weighted and normalized because we use importance sampling

to generate sample s(n+1,k)
i . The updated marginal distributions will be used to

update marginal distributions in the next iteration.

Human body posture can be estimated from the set of marginal distributions. The sam-
ple with the maximum weight in p̃(n+1)(xi,yi|Z) can be used to represent the estima-
tion x̂n+1

i of ith body part’s pose.
Our algorithm can be viewed as the generalization of annealed particle filtering [5].

When body posture X is a single high dimensional state rather than a set of body parts’
states, our AMDMC algorithm will become exactly the annealed particle filtering. An-
other related algorithm is the modified nonparametric belief propagation (mNBP) [27].
mNBP can also deal with partial self-occlusion, but it is based on the tree-structured
model and there is no theoretical foundation on the modification. While mNBP is tested
on synthetic image for posture estimation, our AMDMC is on real image sequences.

5 Experimental Results

Evaluation of our AMDMC algorithm and comparison with some related work were
performed using real image sequences. The first experiment evaluated the algorithm’s
ability to accurately estimating 2D human posture under partial self-occlusion from a
single image. The second experiment evaluated its ability to tracking 2D human body
from a monocular image sequence. Note that the algorithm can be applied to estimate
3D human postures when multiple images or image sequences are available.

5.1 Preprocess

In the real image sequences in which a TaiChi motion was recorded, the static back-
ground inside each image was removed by a statistical background model. And the
human model was modified to fit the human body size in every image sequence.

Note that the edge information plays an important role in posture estimation espe-
cially when limbs (e.g., arms) fall inside the torso image region. However, because of
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(a) (b) (c) (d) (e) (f)

Fig. 2. Removing noisy edges inside each body part. (a) Input image. (b) Input image after back-
ground removal. (c) The extracted edge without removing noisy edges. (d) Over-segmentation
result of (a) by mean shift. (e) Cluster every segment inside the body image region into one of the
two clusters. (f) The edge extracted from (e).

the variability in the appearance of human body, many noisy edges inside each body
part will probably happen (Figure 2(c)). Mean shift [4] was used here to remove the
noisy edges. Firstly from the first input image, the body image was manually divided
into several clusters according to their appearance, and the histogram of each cluster
was obtained. Then for subsequent input images, over-segmentation of the foreground
image region was obtained by mean shift (Figure 2(d)), and every segment was classi-
fied into one cluster by comparing the histogram similarity between the segment and
each cluster (Figure 2(e)). Of course because of similar appearance between symmetric
body limbs, several body parts are often clustered together. In our experiment, just two
clusters were used. One was for lower arms and the face, the other for the remained body
parts. The noisy edges can be effectively removed by the above process (Figure 2(f)).

5.2 Posture Estimation Under Partial Self-occlusion

Because of the depth ambiguity in a single image, 3D joint position cannot be estimated
correctly. Therefore not 3D but 2D joint position error E2D = 1

nh

∑n
i=1 ‖p̂2i − p2i‖

was computed to assess the performance of our algorithm, where p̂2i and p2i are the
estimated and true 2D image position of the ith body joint. p2i was obtained by manu-
ally setting the image position of each body joint. h is the articulated body height and
it is about 190 pixels in each 320× 240 image.

In this experiment, 150 weighted samples were used to represent each conditional
marginal distribution. The annealing related factor λn+1/λn was simply set to 0.9 in
every iteration, and the total iteration number is 50. For each iteration, around 12 sec-
onds was spent, most of which was used to generate synthetic image from mesh model
and compute observation functions.

The skeletons in Figures 3(b) and 3(c) illustrate the 2D true posture and initial pos-
ture respectively. The skeletons in Figures 3(d), 3(e) and 3(f) illustrate the estimated
posture using BPMC, mNBP, and our algorithm respectively. Both BPMC and mNBP
[9] are efficient inference algorithms based on tree-structured model, and they have the
same computation complexity as our AMDMC due to the similar structure of the graph-
ical models. Note that the annealing factor was also used in BPMC and mNBP such
that they can be compared with ours. Even the annealed BPMC was expected to obtain
better result than the original BPMC, the pose estimation of some body parts (i.e., arms
in Figure 3(d)) was not accurate when there was partial self-occlusion between body
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Fig. 3. Posture estimation from a single image. (a) Input image. (b) 2D true posture represented
by skeleton. (c) initial posture. Estimated posture by (d) BPMC, (e) mNBP and (f) our AMDMC.
(g) AMDMC is better than BPMC and comparable to mNBP in posture estimation.

parts because local body image observation was used in BPMC’s observation function.
In comparison, the posture estimation was very close to the truth when using the mNBP
and our AMDMC, in which the global body image observation was used in the obser-
vation function.

For this input image and the initial posture, Figure 3(g) represents the 2D joint po-
sition error E2D with respect to the iteration number when using different inference
algorithms. It shows that, after 10 to 15 iterations, the error has decreased to a relatively
small value (i.e., 2.5% of body height h, or 5 pixels when h is 190 pixels) for both
mNBP and AMDMC, but there was a higher error for BPMC.

Similar results have been reported on estimating body posture from a single image.
Lee and Cohen [14] reported a higher 2D joint error which was 12 pixels when h was
150 pixels. Hua et al. [9] also reported a similar higher joint error. Both algorithms
can deal with partial self-occlusion by detecting the possible positions of some body
parts before posture estimation, while our AMDMC does not require any part detection
in dealing with partial self-occlusion. In addition, Sigal et al. [20] provided an NBP
algorithm which requires a complex learning process. They tested their algorithm on
a simple walking posture using a multi-camera system. In comparison, our algorithm
does not require any learning process and can deal with more complex postures.

5.3 Articulated Human Tracking

In the second experiment, a sequence of 88 real images were used for human tracking.
The sequence was extracted from one original sequence of 350 images by sampling one
from every four consecutive images. This will make human tracking more challenging
because large posture difference between two adjacent frames will probably happen. In
the tracking process, the initial posture for each image came from the estimated posture
of previous frame image, while for the first frame image we manually set the initial
posture. The annealing factor λn+1/λn was set to 0.85 for all 30 iterations. Because of
the unknown true postures in the real images, the tracking result was visually compared
with related algorithms. From Figure 4, we can see that both AMDMC and mNBP can
accurately track human motion even under severe self-occlusion between two arms,
while BPMC failed to track some body parts after a short sequence. The reason is clear.
Because local image observation was used in BPMC to estimate each body part’s pose,
it is easy to fall into a local minimum in MAP estimation of the marginal distributions.
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frame 1 frame 11 frame 21 frame 31 frame 51 frame 71 frame 88

Fig. 4. Results of 2D articulated human tracking. The first row is the result by AMDMC; The
second row is by mNBP; The third row is by BPMC.

6 Conclusion

We presented a new graphical model and developed an efficient inference algorithm
(AMDMC) to accurately estimate human postures under partial self-occlusion. The
AMDMC algorithm can estimate human posture in a low dimensional state space by it-
eratively updating a set of body parts’ marginal distributions. Experiments showed that
the AMDMC algorithm can accurately estimate 2D human posture from a single image
even if the initial posture was far from the truth and if there was partial self-occlusion
between body parts. The AMDMC can be easily extended to articulated human track-
ing, which has been shown by the successful 2D articulated human tracking from a
monocular image sequence. Compared to the existing techniques for posture estimation
under self-occlusion, our AMDMC does not require any learning process or part detec-
tion beforehand. However in a monocular image sequence, it is difficult to discriminate
the left body limbs from the right ones when human body viewed from the side. In such
a case, prior motion knowledge or constraints must be explored in advance. Our future
work is to extend the AMDMC algorithm to deal with more general cases in human
posture and tracking by exploring motion models and human body constraints.
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Abstract. Tracking deforming objects involves estimating the global
motion of the object and its local deformations as functions of time.
Tracking algorithms using Kalman filters or particle filters have been
proposed for tracking such objects, but these have limitations due to the
lack of dynamic shape information. In this paper, we propose a novel
method based on employing a locally linear embedding in order to in-
corporate dynamic shape information into the particle filtering frame-
work for tracking highly deformable objects in the presence of noise and
clutter.

1 Introduction

The problem of tracking moving and deforming objects has been a topic of sub-
stantial research in the field of active vision; see [1,2] and the references therein.
There is also an extensive literature with various proposals for tracking objects
with static shape prior [3]. This paper proposes a novel method to incorporate
dynamic shape priors into the particle filtering framework for tracking highly
deformable objects in the presence of noise and clutter.

In order to appreciate this methodology, we briefly review some previous re-
lated work. The possible parameterizations of planar shapes described as closed
contours are of course very important. Various finite dimensional parameteriza-
tions of continuous curves have been proposed, perhaps most prominently the
B-spline representation used for a “snake model” as in [2]. Isard and Blake (see
[1] and the references therein) use the B-spline representation for contours of
objects and propose the CONDENSATION algorithm [1] which treats the affine
group parameters as the state vector, learns a prior dynamical model for them,
and uses a particle filter [4] to estimate them from the (possibly) noisy observa-
tions. Since this approach only tracks affine parameters, it cannot handle local
deformations of the deforming object.

Another approach for representing contours is via the level set method [5,6]
where the contour is represented as the zero level set of a higher dimensional
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function, usually the signed distance function [5]. For segmenting an object, an
initial guess of the contour (represented using the level set function) is deformed
until it minimizes an image-based energy functional. Some previous work on
tracking using level set methods is given in [3,7,8,9,10].

Shape information is quite useful when tracking in clutter, especially if the
object to be tracked gets occluded. Hence, a number of methods have been pro-
posed [3] which incorporate a static shape prior into the tracking framework. The
approach of these works is based on the idea that the object being tracked does
not undergo a deformation (modulo a rigid transformation). Another method
to obtain a shape prior is using PCA (principal component analysis) [11]. In
this case, it is assumed that the shape can undergo small variations which can
be captured by doing linear PCA. However, linear PCA is quite inadequate in
representing the shape variations if the object being tracked undergoes large
deformations (as will be explained in detail in the subsequent sections).

The authors in [12] use a particle filtering algorithm for geometric active con-
tours to track highly deformable objects. The tracker however fails to maintain
the shape of the object being tracked in case of occlusion. The present work
extends the method proposed in [12] by incorporating dynamic shape priors into
the particle filtering framework based on the use of a Locally Linear Embedding
(LLE). LLE [13,14] attempts to discover the nonlinear structure in high dimen-
sional data by exploiting the local symmetries of linear reconstructions. To the
best of our knowledge, this is the first time LLE has been used for shape analy-
sis and tracking. Another approach closely related to our work was proposed in
[15], wherein exemplars were used to learn the distribution of possible shapes.
A different method in [16] separates the space of possible shapes into different
clusters and learns a transition matrix to transition from one patch of shapes
to the next. Our approach is different from those in [15,16] in that we do not
learn the dynamics of shape variation apriori. The only knowledge required in
our method is a possible set of shapes of the deforming object.

The literature reviewed above is by no means exhaustive. Due to paucity of
space we have only quoted a few related works. The rest of the paper is organized
as follows: Section 2 gives the motivation and briefly describes the concepts of
LLE, shape similarity measures, and curve evolution. Section 3 develops the
state space model in detail and Section 4 describes the experiments conducted
to test the proposed method. Some conclusions and further research directions
are discussed in Section 5.

2 Preliminaries

Principal component analysis (PCA) is one of the most popular forms of dimen-
sionality reduction techniques. In PCA, one computes the linear projections of
greatest variance from the top eigenvectors of the data covariance matrix. Its first
application to shape analysis [11] in the level set framework was accomplished
by embedding a curve C as the zero level set of a signed distance function Φ. By
doing this, a small set of coefficients can be utilized for a shape prior in various
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segmentation tasks as shown in [11,17]. However, linear PCA assumes that any
required shape can be represented using a linear combination of eigen-shapes,
i.e., any new shape Φ̃ can be obtained by [17], Φ̃ = Φ̄+

∑N
i=1 wiΦi, where wi are

weights assigned to each eigenshape Φi and Φ̄ is the mean shape. Thus, PCA
assumes that the set of training shapes lie on a linear manifold.

More specifically, let us consider shapes of certain objects with large defor-
mations, for example, Figure 1 shows a set of few shapes of a man. PCA was
performed on 75 such shapes (embedded in a signed distance function). Figure 2
shows the original and the reconstructed shape. Thus, linear PCA cannot be
used to obtain a shape prior if the training set lies on a non-linear manifold.

Fig. 1. Few shapes of a man from a training set. Note the large deformation in shape.

Fig. 2. Left: Original shape, Middle: projection in the PCA basis, Right: LLE (2 nearest
neighbors)

In [18], the authors proposed an unsupervised Locally Linear Embedding
(LLE) algorithm that computes low dimensional, neighborhood preserving em-
beddings of high dimensional data. LLE attempts to discover nonlinear structure
in high dimensional data by exploiting the local symmetries of linear combina-
tions. It has been used in many pattern recognition problems for classification.
In this work, we use it in the particle filtering framework for providing dynamic
shape prior.

2.1 Locally Linear Embedding for Shape Analysis

The LLE algorithm [14] is based on certain simple geometric intuitions. Suppose
the data consists of N vectors Φi sampled from some smooth underlying mani-
fold. Provided there is sufficient data, we expect each data point and its neighbors
to lie on or close to a locally linear patch of the manifold. We can characterize
the local geometry of these patches by linear coefficients that reconstruct each
data point from its neighbors. In the simplest formulation of LLE, one identifies
k nearest neighbors for each data point. Reconstruction error is then measured

by the cost function: E(W ) =
(
Φ−∑

j wjΦj

)2
. We seek to minimize the re-

construction error E(W ), subject to the constraint that the weights wj that lie
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outside the neighborhood are zero and
∑

j wj = 1. With these constraints, the
weights for points in the neighborhood of Φ can obtained as [13]:

wj =
∑k

m=1 Rjm∑k
p=1

∑k
q=1 Rpq

,where Qjm = (Φ− Φj)T (Φ− Φm), R = Q−1 (1)

In this work, we assume that a closed curve Cj is represented as the zero level
set of a signed distance function Φj . Stacking all the columns of Φj one below the
other, one can obtain a vector of dimension D2, if Φi is of dimension D×D. (In
the rest of the paper, we use Φ interchangeably to represent a vector of dimension
D2 or a matrix of dimension D×D. The appropriate dimension can be inferred
from the context.) Figure 2 shows a particular shape being represented by 2 of
its nearest neighbors.

2.2 Finding the Nearest Neighbors

The previous section showed how to represent a shape Φi by a linear combination
of its k neighbors. Here we consider the key issue of how to find the nearest
neighbors. One might be tempted to use the Euclidean 2-norm to find distance
between shapes, i.e., if d2(Φi, Φj) is the (squared) distance between Φi and Φj ,
then d2(Φi, Φj) =‖ Φi − Φj ‖2. However, this norm does not represent distance
between shapes, but only distance between two vectors. Since we are looking for
the nearest neighbors of Ci in the shape space, a similarity measure between
shapes is a more appropriate choice. Many measures of similarity have been
reported; see [19,3,20]. In this paper, we have chosen the following distance
measure [21]:

d2(Φi, Φj) =
∫

p∈Z(Φi)
EDTΦj (p)dp +

∫
p∈Z(Φj)

EDTΦi(p)dp (2)

where, EDTΦi is the Euclidean distance function of the zero level set of Φi (one
can think of it as the absolute value of Φi), and Z(Φi) is the zero level set of
Φi. We chose this particular distance measure because it allows for partial shape
matching which is quite useful for occlusion handling. More details about this
measure may be found in [21]. We should note that the development of the
remaining algorithm does not depend on the choice of the distance measure.
Thus, once the distance measure between each Φi and the rest of the elements
in the training set is known, one can find the nearest neighbors of Φi.

2.3 Curve Evolution

There is a large literature concerning the problem of separating an object from
its background [3,9]. Level sets have been used quite successfully for this task.
In [22], the authors have proposed a variational framework for segmenting an
object using the first two moments (mean and variance) of image intensities. In
the present work, we have used the energy functional given in [22]
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Eimage =
∫

Ω

(
logσ2

u +
(I(x)− u)2

σ2
u

)
H(Φ)dx

+
∫

Ω

(
logσ2

v +
(I(x) − v)2

σ2
v

)
(1−H(Φ)) dx + ν

∫
Ω

‖ ∇H(Φ) ‖dx,
(3)

which upon minimization gives the following PDE:

∂Φ

∂t
= δε(Φ)

(
νdiv

∇Φ

‖ ∇Φ ‖ + log
σ2

v

σ2
u

− (I(x) − u)2

σ2
u

+
(I(x) − v)2

σ2
v

)
. (4)

Here I(x) is the image, u, v are the mean intensities inside and outside the
curve C (corresponding to Φ) respectively, σ2

u, σ
2
v are the respective variances

and δε(Φ) = dH
dΦ is the Dirac delta function and H is the Heaviside function as

defined in [22]. Note that, one could use any type of curve evolution equation in
the algorithm being proposed. We have made this particular choice because it is
simple yet powerful in segmenting cluttered images.

3 The State Space Model

This section describes the state space model, the prediction model, and the
importance sampling concept used within the particle filtering framework for
tracking deformable objects. We will employ the basic theory of particle filtering
here as described in [4].

Let St denote the state vector at time t. The state consists of parameters
T that models the rigid (or affine) motion of the object (e.g., T = [x y θ] for
Euclidean motion) and the curve C (embedded as the zero level set of Φ) which
models the shape of the object, i.e., St = [Tt Φt]. The observation is the image
at time t, i.e., Yt = Image(t). Our goal is to recursively estimate the posterior
distribution p(St|Y1:t) given the prior p(St−1|Y1:t−1). This involves a time update
step and a measurement update step as described in the next section.

In general, it is quite difficult to obtain a model for predicting the position
and shape of the deforming object. More specifically, in the current case, it is
very difficult to obtain samples from the infinite dimensional space of closed
curves (shapes). This problem can be solved using Bayesian importance sam-
pling [23], described briefly below: Suppose p(x) is a probability density from
which it is difficult to draw samples (but for which p(x) can be evaluated) and
q(x) is a density which is easy to sample from and has a heavier tail than
p(x) (i.e. there exists a bounded region R such that for all points outside R,
q(x) > p(x)). q(x) is known as the proposal density or the importance density.
Let xi ∼ q(x), i = 1, ..., N be samples generated from q(·). Then, an approx-
imation to p(·) is given by p(x) ≈ ∑N

i=1 ω
iδ(x − xi), where ωi ∝ p(xi)

q(xi) is the

normalized weight of the i-th particle. So, if the samples, S(i)
t , were drawn from

an importance density, q(St|S1:t−1, Y1:t), and weighted by ω
(i)
t ∝ p(S(i)

t |Y1:t)

q(S(i)
t |S(i)

1:t−1
,Y1:t)

,

then
∑N

i=1 ω
(i)
t δ(S(i)

t − St) approximates p(St|Y1:t). The choice of the importance
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density is a critical design issue for implementing a successful particle filter. As
described in [24], the proposal distribution q(·) should be such that particles
generated by it, lie in the regions of high observation likelihood. Another im-
portant requirement is that the variance of the weights ωi should not increase
over time. Various algorithms have been proposed [24] to achieve this objective.
One way of doing this is to use an importance density which depends on the
current observation. This idea has been used in many past works such as the
unscented particle filter [25] where the proposal density is a Gaussian density
with a mean that depends on the current observation. In this work, we propose
a possible importance density function q(St|St−1, Yt) and show how to obtain
samples from it. Note that, the space of closed curves from which we want to
obtain samples is infinite dimensional.

3.1 Time Update

The prediction Ŝt at time t is given by: Ŝt = ft(St−1, it, nt) where nt is random
noise vector, it is any user defined input data (in our case, it is the set of training
data) and ft is possibly a nonlinear function. The problem of tracking deforming
objects can be separated into two parts [8]:

1. Tracking the global rigid motion of the object;
2. Tracking local deformations in the shape of the object, which can be defined

as any departure from rigidity.

Accordingly, we assume that the parameters that represent rigid motion Tt and
the parameters that represent the shape Φt are independent. Thus, it is assumed
that the shape of an object does not depend on its location in the image, but only
on its previous shape and the location of an object in space does not depend on
the previous shape. Hence, the prediction step consists of predicting the spatial
position of the object using T̂t = Tt−1 + n

(T )
t where n

(T )
t is random Gaussian

noise vector with variance σ2
T . The prediction for shape Φ̂t is obtained as follows:

Φ̂t = p0Φt−1 + p1Φ
(N1)
t−1 + p2Φ

(N2)
t−1 + ... + pkΦ

(Nk)
t−1 (5)

where p0, p1, ...pk are user defined weights such that
∑

i pi = 1 and Φ
(Ni)
t−1 , i = 1..k

are the k nearest neighbors of Φt−1. The nearest neighbors are obtained as
described in Section 2.2. A more generalized formulation of the prediction step
above can be obtained by sampling the weights pi from a known distribution
(for example, an exponential distribution) to obtain a set of possible shapes and
then choosing the predicted shape from this set, based on certain criteria.

We should note that, one of the main contributions of this paper is the for-
mulation of a scheme that allows to dynamically predict the shape of the ob-
ject without learning the sequence in which they occur (unlike the methods in
[15,16]). Thus, the only knowledge required in this prediction step is a train-
ing set of shapes. In particular, one does not need to sample from an infinite-
dimensional space of shapes (curves) but only from a set containing the linear
combination of k nearest neighbors of Φt−1. This not only reduces the search
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space dramatically, but also allows to sample from a finite set of possible shapes.
Once the latest observation Yt is obtained, one can update the prediction based
on this information as explained in the following section.

3.2 Measurement Update

At time t, for each particle i, generate samples as described in the prediction
step in (5). Using the image at time t (Yt), a rigid transformation is applied
to each Φ̂

(i)
t (in particular Ĉ

(i)
t ) by doing Lr iterations of gradient descent on

the image energy Eimage with respect to the rigid transformation parameters T .
The curve is then deformed by doing a few (Ld) iterations of gradient descent
(“curve evolution”) on the energy, E, i.e., we generate

Φ̃
(i)
t = fLr

R (Φ̂(i)
t , Yt), Φ

(i)
t = fLd

CE(Φ̃(i)
t , Yt) (6)

where fLr

R (Φ, Y ) is given by (for j = 1, 2, ..., Lr)

r0 = r, rj = rj−1 − αj∇rEimage(rj−1, Φ, Y ), T = rLr , fLr

R (Φ, Y ) = TΦ (7)

and fLd

CE(μ, Y ) is given by (for j = 1, 2, ..., Ld)

μ0 = μ, μj = μj−1 − αj∇μE(μj−1, Y ), fLd

CE(μ, Y ) = μLd (8)

where E = Eimage + βEshape. The energy Eimage is as defined in equation (3)
and Eshape is defined by [3]: Eshape(Φ) =

∫
Ω Φ̄(x)dx, where Φ̄(x) is the contour

obtained from a linear combination of the nearest neighbors of Φ, with weights
obtained using LLE from equation (1). The corresponding curve evolution equa-
tion is given by

∂Φ

∂t
= Φ̄(x) ‖ ∇Φ ‖ . (9)

This PDE tries to drive the current contour shape Φ towards the space of possible
shapes and equation (8) tries to drive the current contour towards the minimizer
of energy E which depends on the image and shape information. The parameter
β is user defined and weights the shape information with the image information.
The use of LLE to provide shape information for contour evolution is another
main contribution of this paper.

Details about equation (7) can be obtained from [17]; and equation (8) may be
implemented by summing the PDE’s (4) and (9). We perform only L (Ld or Lr)
iterations of gradient descent since we do not want to evolve the curve until it
reaches a minimizer of the energy, Eimage (or E). Evolving to the local minimizer
is not desirable since the minimizer would be independent of all starting contours
in its domain of attraction and would only depend on the observation, Yt. Thus
the state at time t would loose its dependence on the state at time t − 1 and
this may cause loss of track in cases where the observation is bad. In effect,
choosing L to be too large can move all the samples too close to the current
observation, while a small L may not move the particles towards the desired
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region. The choice of L depends on how much one trusts the system model
versus the obtained measurements. Note that, L will of course also depend on
the step-size of the gradient descent algorithm as well as the type of PDE used
in the curve evolution equation.

For each i, the sample S(i)
t thus obtained is drawn from the importance density

q(S(i)
t |S(i)

t−1, Yt) = N (S(i)
t , Σ), where we assume a Gaussian fit for the density

q(.) centered at each S
(i)
t . We further assume that the variance Σ is very small

and constant for all particles, i.e., q(S(i)
t |S(i)

t−1, Yt) = constant. We should note
that, this methodology, even though sub-optimal (to the best of our knowledge,
an optimal method to sample from an infinite dimensional space of curves does
not exist) allows to obtain samples that lie in region of high likelihood. The
above mentioned step of doing gradient descent can also be interpreted as an
MCMC move step, where particles are “moved” to region of high likelihood by
any available means, as given in [24].

3.3 Setting the Importance Weights

In this paper, the state process is assumed to be Markov, and the observations are
conditionally independent given the current state i.e., p(Yt|S0:t) = p(Yt|St). This

gives the following recursion for the weights [23]: ω(i)
t ∝ ω

(i)
t−1

p(Yt|S(i)
t )p(S(i)

t |S(i)
t−1

)

q(S(i)
t |S(i)

t−1
,Yt)

.

The probability p(Yt|St) is defined as p(Yt|St) ∝ e
−E(St,Yt)

σ2
tot . We define p(St|St−1)

= p(Tt|Tt−1) p(Φt|Φt−1) with

p(Tt|Tt−1) ∝ e
−|Tt−Tt−1|

σ2
T , p(Φt|Φt−1) ∝ e

−d2(Φt,Φt−1)

σ2
d + a e

−d2(Φt,Φ̆t−1)

σ2
d (10)

where d2 is the (squared) distance measure defined above in (2), and Φ̆t−1 is the
MAP (maximum a-posteriori) estimate of the shape at time t−1. We should note
that, using the MAP shape information available from time t−1 is quite essential,
since it adds weights to particles which are closer to the previous best estimate
than particles that are far away. This is quite useful in case of occlusion wherein
particles which look like the previous best shape are given higher probability,
despite the occlusion. The parameter a is user defined.

Based on the discussion above, the particle filtering algorithm can be written
as follows:
• Use equation (5) to obtain T̂t, Φ̂t.
• Perform Lr steps of gradient descent on rigid parameters using (7) and Ld

iterations of curve evolution using (8).
• Calculate the importance weights, normalize and resample [4], i.e.,

ω̃
(i)
t ∝ p(Yt|S(i)

t )p(T (i)
t |T (i)

t−1)p(Φ
(i)
t |Φ(i)

t−1), ω
(i)
t =

ω̃
(i)
t∑N

j=1 ω̃
(j)
t

. (11)
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4 Experiments

The proposed algorithm was tested on 3 different sequences and the results are
presented in this section. We certainly do not claim that the method proposed in
this paper is the best one for every image sequence on which it was tested, but
it did give very good results with a small number of particles on all of the image
sequences. We should add that to the best of our knowledge this is the first time
dynamic shape prior in a level set framework has been used in conjunction with
the particle filter [4] for tracking such deforming objects.

In all of the test sequences, we have used the following parameters which gave
good results:

1. Choosing k, the number of nearest neighbors (for obtaining Φ̄(x) in eqn (9)):
k will depend on the number of similar shapes available in the training set
[18]. In our experiments, k = 2 gave acceptable results.

2. Choosing σ2
d: A classical choice [20] is σ2

d = c 1
N

∑N
i=1 minj �=id

2(Φi, Φj). For
all the test sequences, c = 1/20 was used.

3. σ2
T models the motion dynamics of the object being tracked. In all the test

sequences, since the spatial motion of the object was not large, we used
σ2

T = 1000. Also, only translational motion was assumed, i.e., T = [x y].

4.1 Shark Sequence

This sequence has very low contrast (object boundaries in some images are
barely visible even to human observers) with a shark moving amid a lot of other
fish which partially occlude it simultaneously in many places. This results in a
dramatic change in the image statistics of the shark if a fish from the background

Fig. 3. First row shows tracking results with no shape information. Next two rows
show results using the proposed algorithm.
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occludes the shark. The training set was obtained by hand segmenting 10% of
the images from the image sequence. Tracking results without shape information
using the algorithm in [12] is shown in Figure 3. As can be seen, even though
the algorithm tracks the shark, it is unable to maintain the shape. Results using
the proposed algorithm are shown in Figure 3. This sequence demonstrates the
robustness of the proposed algorithm in the presence of noise and clutter. The
following parameters were used in tracking this sequence: Lr = 1, Ld = 10,
particles = 40.

4.2 Octopus Sequence

As seen in Figure 4, the shape of the octopus undergoes large changes as it
moves in a cluttered environment. It gets occluded for several frames by a fish
having the same mean intensity. Tracking this sequence using equation (4) or
any other method without shape information may result in the curve leaking to
encompass the fish. Figure 4 shows tracking results using the proposed method.
The following set of parameters were used in tracking this sequence: Lr = 3,
Ld = 10, particles = 50, training set included 9% of possible shapes.

Fig. 4. Octopus Sequence: Results using the proposed algorithm. Notice that a fish
with the same mean intensity occludes the octopus.

4.3 Soccer Sequence

This sequence tracks a man playing soccer. There is large deformation in the
shape due to movement of the limbs (hands and legs) as the person tosses the
ball around. The deformation is also great from one frame to next when the
legs occlude each other and separate out. There is clutter in the background
which would cause leaks if geometric active contours or the particle filtering
algorithm given in [12] were used to track this sequence (see Figure 5). Results
of tracking using the proposed method are shown in Figure 5. The following set
of parameters were used to track this sequence: Lr = 5, Ld = 18, particles = 50,
and 20% of the possible shapes were included in the training set (see Figure 1).
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Fig. 5. Results of tracking using the proposed method. Last image at the bottom right
is the segmentation using equation (4) without any shape information.

5 Conclusions and Limitations

In this paper, we have presented a novel method which incorporates dynamic
shape prior information into a particle filtering algorithm for tracking highly
deformable objects in presence of noise and clutter. The shape prior information
is obtained using Locally Linear Embedding (LLE) for shapes. No motion or
shape dynamics are required to be known for tracking complex sequences, i.e.,
no learning is required. The only information needed is a set of shapes that can
appropriately represent the various deformations of the object being tracked.

Nevertheless, the current algorithm has certain limitations. First, it is compu-
tationally very expensive, as each particle has to be evolved for many iterations.
Second, the training set should contain sufficient number of possible shapes of
the object being tracked so that LLE can be used.
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Abstract. In this work we present a new approach to learn, detect and predict 
unusual and abnormal behaviors of people, groups and vehicles in real-time. 
The proposed OBSERVER video surveillance system acquires images from a 
stationary color video camera and applies state-of-the-art algorithms to segment 
and track moving objects. The segmentation is based in a background subtrac-
tion algorithm with cast shadows, highlights and ghost’s detection and removal. 
To robustly track objects in the scene, a technique based on appearance models 
was used. The OBSERVER is capable of identifying three types of behaviors 
(normal, unusual and abnormal actions). This achievement was possible due to 
the novel N-ary tree classifier, which was successfully tested on synthetic data. 

Keywords: Moving object detection, Tracking, Behavior detection. 

1   Introduction 

In the 70’s, Tickner and Poulton, two researchers from the psychology field published 
a study [1] about the efficacy of human surveillance when dealing with a large number 
of cameras. The study has demonstrated that the level of attention and the accuracy of 
abnormal event detection decreases along the time. The authors also verified that hu-
man factors, such age and sex, can influence the reliability of incident detection. 

A recent work [2] from the Department of Experimental Psychology, at the Uni-
versity of Bristol, was dedicated to study if potentially antisocial or criminal behavior 
could be predicted by humans when viewing real images recorded in CCTV. The 
outcome of a signal-detection analysis established that the estimates of the perceived 
magnitude of the evidence in favor of an incident were very similar for surveillance 
experts and novices, with an average true positive detection rate of 81%. The study 
suggests that prediction of future events is indeed possible, although it is imperfect. 
Moreover, the authors pointed out to the possibility of developing automatic units to 
detect abnormal events. 

Some attempts to automatically detect and predict abnormal behaviors have been 
already presented. The ADVISOR system [3], aiming to detect vandalism acts, 
crowding situations and street fights, was one of the most relevant works in this field. 
It made use of a 3D model of a monitored area, where abnormal actions were previ-
ously defined by security experts, who described those acts using a predefined de-
scription language. This sort of approach led to a context dependent detection system, 
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where all the objects from the scene and relations between those objects need to be 
defined. 

Alessandro Mecocci in [4] introduces an architecture for an automatic real-time 
video surveillance system, capable of autonomously detecting anomalous behavioral 
events. The proposed system automatically adapts to different scenarios without any 
human intervention, and uses self-learning techniques to learn the typical behavior of 
the targets in each specific environment. Anomalous behaviors are detected if the 
observed trajectories deviate from the typical learned prototypes. Despite the signifi-
cant contribution of Mecocci’s work, it does not accomplish the particular features of 
a surveillance system, where typically the monitored area comprises different levels 
of security, i.e. the existence of restricted and public areas. Also, Mecocci made use 
of only spatial information, which is a significant lack of attributes for describing 
actions. 

To overcome the identified problems, a project called OBSERVER, which is de-
scribed in this paper, was started in 2004, aiming to automatically learn, detect and 
predict abnormal behaviors in public areas. 

The paper is organized as follows. In section 2, the segmentation process, based on 
an adaptive background subtraction algorithm, which includes shadow, highlight and 
ghost detection techniques, is described. In section 3, we present the tracking algo-
rithm and describe the appearance model approach. Then, in section 4, the main fea-
tures of the automatic dataset generation are explained. The proposed method to  
predict abnormal behaviors and the creation of the N-ary tree classifier are also de-
scribed. Finally, experimental results are presented in section 5 and, in section 6, we 
draw some conclusions. 

2   The Segmentation Process 

Segmenting moving objects is the first process of a computer based video surveillance 
system. It should provide accurate segmentation results in real-time. A good segmen-
tation process should handle image source errors, such as white noise from the cam-
era, cast shadows and highlights. To accomplish that, the OBSERVER system uses an 
adaptive background subtraction algorithm, combined with shadow, highlight and 
ghost detection and removal methods. 

In the first step of the proposed segmentation process, given an image I and a back-
ground image B, both in the RGB color space, we select the moving pixels based on a 
fixed threshold. As outcome, a binary mask, called Primary Motion Mask (PMM) is 
generated. 

 ( ) ( ) ( ) >−
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This primary mask may be affected by error sources as we can see in Figure 1 (c). 
Therefore, the process continues with the detection of shadows and highlights from 
the PMM. This is achieved by a color space transformation of the acquired image 
from RGB to HSV, from which the shadows and highlight binary masks are pro-
duced, by the following operations: 
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The ( )yxI H
n , , ( )yxI S

n ,  and ( )yxIV
n ,  represent respectively the hue, saturation and value 

components of a pixel at coordinate (x,y) from the input image I at time n. The same 
notation was applied to the background image B. 

In the above expressions, 0.65    0.80, 0.90    0.95, S  15% of digitizer 
saturation range and H  60 degrees of color. This is explained in detail in previous 
work [5]. The PMM is then subtracted by SM and HM, generating a Motion Mask 
(MM). 

 nnnn HMSMPMMMM ¬∩¬∩=  (4) 

Concerning noise removal, the use of separated masks for shadow and highlight 
detection allows a better result than was obtained with a common mask. The noise is 
removed from each mask by a morphologic open operator followed by a close, using 
a 3x3 structuring element. 

The resulting foreground regions from the MM are then filled in, in order to elimi-
nate holes inside segmented blobs. The resulting blobs are therefore filtered by an 
area threshold, where small regions are considered as noise and removed from the 
MM. Using this mask, the blobs are labeled and grouped into objects to be tracked, as 
described in the next section. 

Some of the detected objects may be ghosts, i.e. false positives originated by dis-
placements of background objects. In those cases, ghosts regions need to be detected 
in the MM, in order to adapt the background model accordingly. 

As stated before, an object can be composed by several segmented blobs. 
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We identify a segmented object as a ghost, only if all the blobs that constitute the 
object are classified as ghosts. This classification is determined as follows: 
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where  denotes the edge detection operator. 
The choice of the technique to be applied in the edge detection is critical. It must 

present good results and low response times. For this purpose the Canny, Sobel and 
Perwitt algorithms were tested.  

Despite the result quality, the computational requirements for those algorithms ex-
ceeded significantly the time requirements for our application. To overcome this 
drawback, a faster and simple, yet efficient edge detection algorithm was used. It 
compares each pixel value with is four connected neighbor pixels. If the absolute 
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difference between a pixel and one of its neighbors is higher than a given threshold, 
that pixel is marked as an edge. Based on this description, the following operator will 
then produce a binary image with all the edges detected. 

 ( ) >++−∨>−+−
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Finally, the background image is updated in the RGB and HSV color spaces. Pixels 
belonging to shadows, highlights and objects remain unchanged. Background pixels 
of segmented regions classifieds as ghosts are set with the actual image value. The 
remaining pixels are updated by an infinite impulse response filter in order to adapt 
the reference image to slight luminosity changes. The background updating can there-
fore be expressed by: 
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where  controls how fast are the changes introduced. 

 

Fig. 1. (a) Background Image; (b) Current Image; (c) Primary Motion Mask; (d) Shadow Mask; 
(e) Highlight Mask; (f) Filtered Motion Mask 

3   Tracking of Moving Objects 

After segmenting moving objects, it is necessary to track them over the time, as long 
as they remain on the scene. For this task, a method based on appearance models was 
chosen. 

Appearance models can be seen as dynamic memory representations of objects that 
are updated, at each frame, during the track operation. They are composed by two 
masks: the Appearance Image (AI), which maintains a color model of the object; and 
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the Probability Mask (PM), that represents the most likely shape that the object can 
assume. An example of an appearance model can be seen in Figure 2. 

At each frame we will have a list of objects and, if in the presence of tracks, a list 
of tracks, respectively: 

{ }JOOOO ,...,, 21=  with, { }MBBO j ,=  

{ }KTTTT ,...,, 21=  with, { }PMAIBBTypeIDTk ,,,,=  

Where BB is the bounding box of the object, M is the object mask, ID is the track 
identifier, and Type indicates the object’s class, i.e. “person”, “group” or “vehicle”. 
The tracking algorithm is divided in four steps: track setup; track alignment; pixel 
assignment; and track update. 

3.1   Track Setup 

In the track setup, a correspondence matrix C, which associates each object Oj to a 
track Tk, is created. This matrix with JxK dimension, where J is the number of seg-
mented objects and K the number of detected tracks, is a binary matrix with value one 
in an element Ci,j, when the object Oj is associated with a track Tk. 

This association is established if the currently segmented object Oj is overlapped 
by a previous track Tk. An example of a correspondence matrix is: 

 =

0100

0010

0011

,kjC  

In this example, there are three objects and four tracks. The first segmented object 
(first line) is a merge of the first and second tracks, i.e. first and second columns, 
respectively. Also, the first and second objects derived from a split from the second 
track. The third object is single tracked by track three, and the track four was not 
found at the current frame. 

If an object can’t be assigned to at least one track, then a new track must be cre-
ated for that object. In that case, the AI of the track is initialized with the color im-
age of the segmented object, the PM is initialized with an intermediate value, and a 
new ID is assigned to the track. The correspondence matrix C is then processed, and 
objects that are associated to a same track are joined together, forming a macro-
object (MO). 

 

Fig. 2. Example of an Appearance Model. At left the appearance image, and at right the Prob-
ability Mask with scale. 
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3.2   Track Alignment 

After performing the track setup, a list of MO and a list of tracks (Tk) are presented. In 
order to align the tracks, for each observed MO we will try to find the track displace-
ment that best fits the appearance model of Tk with the MO. This is done for all the 
tracks assigned to a MO, and starting from those tracks whose objects are closest to 
the camera. The displacement ( ) is obtained by maximizing the fitting function PFIT: 

 ( ) ( )( )δδδδ
δ
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Considering that color components are uncorrelated and have equal variance, then: 
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The displacement is initialized with the values of the previous track and continues 
the search by a gradient descent approach. When the displacement that maximizes the 
fitting function is achieved, the pixels of the macro-object that match to the track are 
excluded for the following tracks fitting. 

3.3   Pixel Assignment 

The pixel assignment is used to decide when a track is finished or not. Once the tracks 
are aligned, each pixel of a MO with a PM value greater than zero is assigned to one 
of the tracks that compete for that pixel. If the ratio between the number of assigned 
pixels and the number of probability mask pixels with value different than zero is 
lower than a predefined threshold, the track is removed. 

The association of each pixel to a track is made based on the product of the pixel 
probability to belong to the appearance image by the pixel probability to belong to the 
track, which is (x,y)  Tk for: 

 ( ) ( )( ) ( )( )yyxxPMyyxxAIyxIP kk
BGR

APP
k

δδδδ −−⋅−− ,,,,maxarg ,,  (11) 

A MO pixel can be in one of three states. If it is assigned to the track Tk then we say it 
belongs to the set of the assigned pixels (APk). If the pixel doesn’t have a value in the 
probability mask, then it is labeled as new. Otherwise, it is classified as missed pixel. 

3.4   Track Update 

The final step in the tracking procedure is the track update. In this step, the appear-
ance image (AI) and the probability mask (PM) of single tracked objects are updated. 
Merged tracks will update only the position of the actual bounding box. 
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The appearance models are updated by the following rules: 
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where, 0    1. 
The appearance model of a tracked object remains in memory while the object is in 

the scene. After an object leaves the monitored area, the appearance model is deleted 
from the computer memory. As effect, if an object reenters in the scene, it will be 
detected as a new object, and not an extension of the previously observed movement. 
To overcome this issue, an approach that maintains, for a predefined period of time, 
the appearance models of departed objects, can be used. However, the RAM memory 
becomes a critical resource when dealing with a huge number of objects. 

4   Behavior Detection and Prediction 

The final goal of the OBSERVER system is to predict abnormal behaviors. For this 
propose the monitored temporal sequences of object attributes (object position, area, 
perimeter, velocity, etc) must be processed by a classifier in order to infer the type of 
action performed by an object. Such classifier will need to learn, from a dataset, the 
typical patterns of normal and abnormal events. 

4.1   Automatic Dataset Generation 

Typically, in an area under surveillance, the focus of attention falls into two types of 
events: unusual behaviors (e.g. a person running in a hotel lobby, or a car in wrong-
way driving in a motorway) and violation of a restricted area (for example with pe-
destrians crossing a highway). The OBSERVER system was developed to success-
fully handle both types of events. 

While the first type of events can be solved entirely by a classification algorithm, the 
violation of restricted areas requires human intervention in the system configuration 
stage. To accomplish that, the user only needs to mark the scene’s restricted areas. 

After the definition of the restricted areas, if there is any, the system starts to track 
objects moving in the scene. The observed tracks, along with the attributes of the 
objects, are recorded in real-time into a database. Tracks that overlap restricted areas 
are flagged as alarm events, the others are signaled as normal events. When the num-
ber of recorded tracks reaches to a predefined value, considered sufficient to the learn-
ing phase, then the classifier engine starts. 

4.2   Constructing the N-Ary Tree Classifier 

Before explaining the process of building the N-ary tree classifier, used to classify 
object behaviors, we will start by clarifying the idea behind the proposed classifica-
tion system and the architecture of the classifier. 
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The behavior of an object can be described by a set of actions that it performs in a cer-
tain environment. From the security point of view we could expect, at least, three kinds 
of observations: normal, unusual or abnormal actions. Normal actions are those which 
are frequently observed and do not origin the violation of any restricted area. Unusual 
actions are those that are not common or have never occurred. When an action leads to a 
violation of a restricted area, then it should be classified as an abnormal action. 

Besides this basic function, the OBSERVER will be able to predict those events 
from the registered object path. This takes us to a classifier that should respond to the 
following question: if an object, with specific properties, travels until a certain point, 
what is its probability to follow a path that will cause an abnormal event? 

We propose such a classifier, using an N-ary tree, whose nodes are multivariable 
Gaussian distributions N( , ) in the object attribute’s hyperplane, and have an ab-
normal probability (Pab). To simplify the computation, we assume that the variances, 
in the covariance matrix , are not correlated. 

Has we can see in Figure 3, the classifier’s tree is organized by layers. Each layer 
defines a period of time, so every track should be described by a sequence of nodes, 
each one from a different layer, starting in “layer 1”, when the observed object enters 
the scene. The nodes present clusters of related points, i.e. Gaussian distributions, and 
subsequent layers are separated by a fixed time slice. For example, we can define that 
each layer will have a time period of ten frames. 

 

Fig. 3. Example of an N-ary tree classifier 

 

To build the classifier, we use as input the set of prerecorded tracks. Each track is de-
fined by a sequence of attribute vectors, describing the properties of an object at each 
sample. The following object attributes are considered: the 2D coordinates center-of-
gravity; velocity; area; type descriptor (i.e. human, group or vehicle); and an alarm flag. 

The first step consists on the partitioning of the data into equal time slices, i.e. lay-
ers. Then, for each layer of a track and for each attribute, the sampled data is  
processed in order to compute the mean value of the attribute for that layer. When this 
process finishes, the clustering is performed. 

Since there is no information about the number of clusters in a layer, a clustering  
algorithm capable to infer the number of expected distributions should be used. For this 
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propose, an Expectation-Maximization algorithm with automatic cluster number detec-
tion based in k-fold cross-validation [6] was implemented, with k = 10, as described next. 

4.3   Clustering the Data 

Consider X a d-component column vector of object attributes,  the d-component 
mean vector,  the d-by-d covariance matrix, and | | and -1 its determinant and in-
verse, respectively. 

For each layer there are N track samples, and initially the number of classes (C) is 
set to one. The first step of the k-fold cross-validation is to divide the dataset into ten 
fractions. Next, nine fractions are selected to compute the expectation and maximiza-
tion steps. The remaining fraction is used to compute the log-likelihood. This proce-
dure is executed ten times, in order to compute the log-likelihoods of all the fractions. 

The final log-likelihood is calculated as the mean of the ten log-likelihoods. The 
value of classes (C) will be incremented while the log-likelihood (L) is not stabilized. 
After setting the number of clusters (C), the computation of the normal distributions is 
performed by the Expectation-Maximization algorithm, as described bellow. 
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Maximization step: 
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When the stopping condition is satisfied, the mean and variance values of the dis-
tributions of a layer are merged. After executing the clustering over the entire dataset, 
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a set of clusters for each layer is obtained. The next step consists on building the clas-
sification tree, defining links between clusters of different layers.  

4.4   Linking the N-Ary Tree Classifier  

To build the classification tree, it is necessary to go through all the track sequences of 
the dataset. For each track, we will try to find a path (sequences of clusters, each clus-
ter in a different layer) that represents it. When a dissimilar path is observed, a new 
branch is created. During this process of tree nodes linking, the information about the 
event type (i.e. normal or abnormal event) of each track and at each time slice is re-
corded within the clusters. At the end, all nodes of the tree will have the information 
about: mean and variance value of the multivariable normal distribution; and the num-
ber of normal and abnormal events observed by the cluster. In this way, it is possible 
to infer the probability of an object to exhibit an abnormal behavior, associated with a 
certain path. 

5   Experimental Results 

In this section we present the preliminary experiments to evaluate the proposed N-ary 
tree classifier. The dataset used to evaluate the classifier was artificially generated. 
For this propose, a semiautomatic track generator software, designated OBSERVER-
TG, was developed. This tool allows the user to generate tracks in a scene, with con-
figurable Gaussian noise over the object position, velocity, area and perimeter. 

A dataset of 180 tracks with different lengths was created, with a restricted area, 
as shown in Figure 4. The set of generated tracks represent six different paths. Ten 
of the tracks violated the restricted area, originating alarm events. All the abnormal 
tracks started at bottom left of the scene, cross the road and turn left into the pro-
tected area. 

 

Fig. 4. Background overlapped by 180 tracks from the dataset and a restricted area (red box) 
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To evaluate the accuracy of the proposed classifier, the dataset was randomly frac-
tioned in three parts. To access the system performance, a hold-out validation scheme 
[6] was adopted, where 2/3 of the simulated data was used for training (e.g. learning 
phase) and the remaining 1/3 for testing. Tracks that have probability of abnormal 
behavior greater than zero are classified as abnormal events, and sequences that have 
unobserved paths are classified as unusual events. The test results obtained in the 
three simulations (A, B, C) are presented in the table bellow. 

Table 1. Test results of the behavior classifier 

Test Set OBSERVER Test Results 
NºTracks Abnormal Unsusual Abnormal 

A 60 5.00% 1.66% 3.33% 
B 60 8.33% 5.00% 3.33% 
C 60 3.33% 1.66% 1.66% 

 
For instance, we can see a reasonable performance of the OBSERVER in the simu-

lation A, with a test set that has 5% of abnormal tracks. The system has successful 
detected 3.33% of tracks as abnormal events, and 1.66% as unusual events. Summat-
ing the abnormal with the unusual results, we obtain the total of 5%. 

When analyzing the results, we detected that all the normal tracks from the test 
dataset were correctly classified. This outcome is a consequence of the similarity of 
the generated tracks. In a real situation, when the type of observed paths is more 
chaotic, we can expect that a considerably amount of safety tracks will be classified 
as unusual events. In such situation, the system user should be prompted to classify 
unusual events as normal or abnormal behaviors, for use in future and refined clas-
sifiers. 

6   Conclusions 

In this work we presented a new approach to automatically detect and predict abnor-
mal behaviors. The proposed solution is based on an adaptive background subtraction 
algorithm, an appearance model tracking technique and an N-ary tree classifier which 
has performed well with artificial test data. Moreover, the N-ary tree classifier pos-
sesses complementary features that can be exploited to find the most used paths and 
to analyze the occupancy of the monitored areas. 

The classifier prototype was constructed as a stand alone application due to the ex-
pensive computation required by the clustering process and the necessary evaluation 
tasks. However, once finished, it seems to be sufficiently fast to meet the real-time 
constraints of a surveillance system. 

Despite the confidence level on the results obtained, the validation of this solution 
still lacks of an extensive test with real data. Therefore, our main concern in the near 
future is to extend the experiments of the proposed classifier to different scenarios, 
with a greater number of paths, both from simulated and real-world data. 
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Abstract. In Intelligent Transportation Systems (ITS’s), the process of vehicle
tracking is often needed to permit higher-level analysis. However, during oc-
clusions features could “jump” from an object to another one, thus resulting in
tracking errors. Our method exploits second order statistics to assess the correct
membership of features to respective objects, thus reducing false alarms due to
splitting. As a consequence, object’s properties like area and centroid can be ex-
tracted stemming from feature points with a higher precision. We firstly validated
our method on toy sequences built ad hoc to produce strong occlusions artificially
and subsequently on sequences taken from a traffic monitoring system. The ex-
perimental results we present prove the effectiveness of our approach even in the
presence of strong occlusions. At present, the algorithm is working in the daytime
in the Traffic Monitoring System of the city where we have been living.

1 Introduction

Nowadays many Traffic Monitoring Systems (TMS’s) rely on computer vision tech-
niques in order to analyze statistics on traffic flows or to detect traffic congestion. To
this purpose, these systems must be able to detect and track vehicles. Often, they rely
on a distributed network of monocular cameras and the presence of occlusions among
objects is one of the most challenging problems to deal with. As a matter of fact, when
one camera is used and two or more vehicles overlap in a 2-D view tracking them
separately is a daunting task because the 2-D scene viewpoint could not permit a cor-
rect separation between such moving objects. Some approaches coping with occlusion
handling include a priori knowledge by using 2-D or shape-based models. However,
when a car turns in depth, we can have self-occlusion: 2-D model-based trackers will
fail in this case, while shape-based methods are likely to lose track of the car because
of the fast shape changing speed. In fact, when vehicles are even partially occluded,
some of their feature points are still visible. Nevertheless, during occlusions feature
points may “jump” between vehicles and mislead a feature tracker. A probable solution
could be exploiting more information or employing higher level methods. As a matter
of fact, some other research works are based on 3-D models. However, they require
camera calibration and a priori knowledge about objects that will move on the scene.
Also, algorithms are often computationally expensive and they can cope with real-time
applications regarding urban traffic scenes with difficulty.

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 910–921, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The work we present has been developed within a feature-based algorithm that tracks
every object as a set of feature points. The system does not rely on any a priori knowl-
edge about the targets within the scene. The method we devised exploits second or-
der statistics to improve the reliability of objects tracking during occlusions by disam-
biguishing uncertain features. That is, we calculate the probability of features, whose
ownership is doubtful, to belong to each occluding object. Although our algorithm has
been developed to deal mainly with vehicles, it does not rely on rigid body constraints.
Rather, using second order statistics allows to relax these constraints. Each uncertain
feature is assigned to the vehicle which the feature has the maximum likelihood; this
happens for the vehicle which is the “most rigid” with respect to that feature. In fact,
during an occlusion between (one or more) vehicles, the more a vehicle follows rigid
body constraints, the stronger the relationship between its features. However, it is worth
remarking that, since this is a statistical approach, each feature has always a probability
to belong to a given object, although it does not follow the rigid body constraint. For
this reason the algorithm works well even in the presence of objects that do not fol-
low rigid body constraints. The probability is simply as high as the vehicle’s uncertain
features adhere to the rigid body constraint. This relaxation allows us to cope with ve-
hicles rotating in depth and, in general, with vehicles (cars, bicycles and motorcycles)
independently of either their trajectory or the angle of shooting, as shown in the experi-
ments. Practically speaking, our method is employed within a tracking algorithm to re-
duce the presence of non-existent objects (false alarms) derived from splitting and thus
improving the accuracy of object’s features (e.g.: centroid, area) needed for higher-level
analysis (e.g.: trajectory analysis, area based object classification). The experiments ac-
complished by using challenging sequences showing urban road intersections allow us
to assess the quality and the robustness of our method even in the presence of diffi-
cult occlusions. It is also worth remarking that this work represents the first research
exploiting second order statistics to disambiguish uncertain features.

As for the paper’ scheme, Section 2 analyses previous works regarding with object
tracking. Section 3 outlines the principles of the overall tracking algorithm. Section 4
constitutes the core of the work and explains how statistics are used during occlusions.
In Section 5 extensive experiments accomplished both on challenging sequences built
to stress algorithm and sequences taken from urban traffic scenes are discussed. Finally,
Section 6 draws conclusion and gives some lines for future work.

2 Previous Work

Many methods are known to track vehicles which use features and manage occlusions.
In [1] features are used to track vehicles in highways, by grouping sets of features
with the same motion. Homography combined with camera calibration is used in the
grouping process to take road perspective into consideration. Features are tracked in
consequent frames by a Kalman filter. This is feasible due to the roughly constant speed
of vehicles in a highway. Features are grouped if relative distances are under a given
threshold, or by speed similarity. Grouping thresholds could cause errors in object track-
ing due to over-grouping or unnecessary segmentations, which create tracking misses
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and non-existent objects respectively. Besides, the proposed method can work only with
highway traffic, so it would be applicable with great difficulties in urban intersections.

The authors in [2] propose a technique to remove outliers from the trajectories of
feature points fitting a subspace and removing those points that have large residuals.
They generate and track features through the entire video stream using the KLT[10]
algorithm, then apply the RANSAC method to detect trajectories that does not follow
the rigid movement constraint. This constraint is applicable when it is reasonable to as-
sume an orthographic view with a weak perspective. So this algorithm fails when move-
ments involve strong perspective changes, thus limiting its effectiveness only to short
sequences. However, short sequences could not permit to detect correct trajectories, pro-
viding too few data for the RANSAC algorithm to converge. Also, the computational
time needed to remove outliers is high and not compliant with real time processing.

In [3] tracking is performed by template matching, with a probabilistic model based
on a robust error norm. Matching is performed by finding the image region that yields
the maximum likelihood with respect to the calculated probability distribution. During
occlusions, a pixel is regarded as an outlier if the measurement error exceeds a pre-
defined threshold. Templates cannot be updated during occlusion, so it is necessary to
detect when overlapping ends. Although this algorithm can manage complete occlu-
sions, it cannot withstand severe occlusions lasting more than 25 frames, due to wrong
Kalman filter estimation.

In [5] a SOM neural network is exploited to remove feature tracking errors during
occlusions. The speeds of all the features belonging to an object are inspected by the
neural network searching for outliers that do not follow the rigid body assumption. The
algorithm can cope with scaling and rotations of objects in a perspective view because
using the neural network allows to relax the rigid body constraint. As a drawback, fea-
tures with similar speeds that jump from one object to another could not be detected as
outliers, because the two objects are interpreted as a single “relaxed” rigid body. The
method we propose in this paper can cope with those situations through performing
more precise feature labeling and object segmentation, accordingly.

A graph-cut based method is used in [8], where corner points are extracted by means of
the Harris algorithm to create an initial seed for the segmentation process. The KLT track-
ing algorithm is used to extract image regions presenting corners with the same affine
transformation. Seed regions are then expanded propagating the region’s front, identify-
ing pixels of the same layer by means of a bi-partitioning graph-cut method. Occlusions
are analyzed in a small temporal interval. Pixels are labeled as “occluded” if they obey
to some temporal constraint. This multi-frame motion segmentation problem can be for-
mulated as an energy minimization problem, introducing other links in the segmentation
graph. Computing the graph-cut on all the image pixels brings computation time up to
30 seconds per frame, preventing this method to be applied in real-time applications.

Finally, the problem of finding reliable feature clusters in tracking algorithms has
been faced by means of the eigenvector decomposition of the affinity matrix, based
on the distribution of the distance vectors between frames. An interesting overview
is reported in [4]. However, such approaches can be used just for clustering but can-
not be employed as methods to resolve uncertainty. In fact, the aim of the eigenvector
decomposition-based methods is that of extracting the most representative component
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of a class, after the outliers (that is, the uncertain values) have been removed. At the
opposite, our approach deals with sort of outliers aiming at disambiguishing them by
assigning a unique label instead of removing them.

3 The Tracking Algorithm

The method presented in this paper has not been conceived as being a tracking algo-
rithm. Rather, it works on features coming from a robust tracking algorithm we have
developed [5] and it must be seen just as a False Positive Reduction (FPR) step. That is,
our approach enforces the overall robustness of the existent tracking algorithm, summa-
rized in the present section, and aims at reducing tracking errors only during occlusions
by working just on a limited region near to the vehicle occlusion borders. At present,
the method we present is embedded in the tracking system working in an experimental
stage in the TMS of the city where we live.

Our tracker works on moving regions (“blobs”) previously extracted by a motion
detector [6] through a background difference approach [7]. Inside each blob we extract
corner points by applying the Shi-Tomasi method [9] and then we track those features
by using the pyramidal KLT approach [10]. We derived the Lucas-Kanade equation
as in [11], even though a more efficient method is proposed in [12]. In fact, it cannot
be applied to our case because we estimate only translation parameters to track corner
points, while optimizations presented in [12] focus on feature trackers dealing with
rotation and scaling as well. As a matter of fact, given sufficiently high a frame rate,
those transformations between consecutive frames are negligible for small features.

However, some features may be lost during tracking. Those features are replaced by
using a minimum density approach: that is, each blob is divided in small squares of the
same size and each square is tested to check whether the number of currently tracked
features is over a threshold. If not, we perform feature extraction in every square that
does not reach the threshold value.

3.1 From Features to Objects

To track objects starting from features, sets of corner points belonging to the same ob-
ject need to be grouped and labeled. Possible solutions include either grouping by speed
or by statistics given by spatial feature position. In the first case the grouping criterion is
based on speed vectors similarity, while in the second case features are grouped together
showing the same relative distances over a period of time. However, both methods suf-
fer from camera perspective: vehicles rotating in depth present features with different
motion, that depends from the shooting point of view. Also, thresholds used for group-
ing cannot be known a priori. Homography, as in [1], could be used to build a planar
view of the scene but only when object heights are negligible. To overcome the draw-
backs listed above, we perform a blob-based grouping on a spatio-temporal basis, that
is using second order statistics. We can now distinguish 3 different situations:

– a new object enters the scene: as soon as an object appears, we extract features fj

assigning a unique number L(fj) (the label) to all of them, that identifies the object
during the whole tracking process. If a new blob enters the camera field of view in
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consequent frames, new features are extracted just from the last entered part. Those
new features acquire the same label of the others already existent within the same
blob;

– two or more objects enter the scene sharing the same blob: initially they are
recognized as a single moving object and share the same label. But when they split,
thus resulting in two or more distinct blobs, the algorithm creates new labels and
renames all the blobs;

– occlusions: when two or more objects previously distinct merge in one blob, more
than one label can be found inside this new blob. To maintain minimum feature
density in the blob area (as explained in Section 3) new features have to be extracted
and labeled reliably during all the occlusion process.

Finally, to identify objects we group features having the same label. At visualization
level each group of features is delimited by a bounding box showing also the label of
the tracked object.

Among the different situations, after due consideration handling occlusions is the
hardest problem to face.

4 Occlusion Handling

During occlusions, we can distinguish mainly between two kinds of features, according
to their spatial position. Figure 1 shows such features regarding the simplest case of two

Fig. 1. The unreliable area during occlusions

tracked objects involved in the occlusion, without lacking in generality. We can have
features far from occlusion boundaries which can be labeled reliably (darker regions of
Figure 1). However, a region with unreliable features can be found near the occlusion
boundaries (lighter area of Figure 1), since here features with different labels are close
together, thus reducing labeling reliability. As a matter of fact, in the uncertainty region
where objects overlap, some features often jump on the “wrong” object. For instance,
this happens when the KLT algorithm finds the correspondence between features in
consecutive frames but it fails to track the right spot on the image. Features which were
assigned to the “right” object before occlusion are assigned to the “wrong” ones during
occlusion. Each of these objects owns (at least) two different labels and it is erroneously
split causing a false object when occlusion ends (see Figs. 2(b) and 3(a) in Section 5).
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Therefore, a feature tracking error becomes an object tracking error, thus resulting in
false alarms and unreliable estimation of geometric properties.

Due to the above reasons, the tracking algorithm assigns a label only to the fea-
tures far from the occlusion boundaries, in order to avoid wrong label assignments.
The uncertainty area in which labels are not assigned is defined by the centroids of
the tracked objects inside the blob, calculated by averaging the coordinates of all the
features sharing the same label. For each pair of objects involved in the occlusion the
segment joining the centroids is considered (see Figure 1). Two parallel lines which
are tangent and perpendicular with respect to this segment define the boundaries of the
area in which features are chosen to elaborate statistics. Our statistical approach deals
right with the features inside the uncertainty region. Practically speaking, feature labels
are re-assigned when necessary by using second order statistics, to provide a subse-
quent correct segmentation between tracked objects. Hereinafter, we refer to this step
as “relabeling”.

4.1 Second Order Statistics

Second order statistics is widely used in texture analysis to extract informations in still
images. To this purpose, co-occurrence matrices are built to test correlation between
couples of pixels at different distances. In order to better understand how our matrices
are used let us start by describing the well-known co-occurence matrices used in texture
analysis.

A gray level co-occurrence matrix is defined as a sample of the joint probability
density of the gray levels of two pixels separated by a given displacement. In Cartesian
coordinates the displacement of the co-occurrence can be chosen as a vector (Δx,Δy).
According to the notation given in [13] the gray level co-occurrence matrix N(Δx,Δy,
a, b) of an image I is defined as

N (Δx,Δy, a, b) = {# (a, b) | I (x, y) = a ∧ I (x + Δx, y + Δy) = b} (1)

where a and b are gray levels. In our implementation we evaluate x and y distances
for every pair of features fp, fq ∈ F where F is the entire set of features. We sample
feature coordinates in a sliding time window of size T thus obtaining:

C (fp, fq, x, y) = {# (x, y) | dx (fp, fq) = x ∧ dy (fp, fq) = y} (2)

where dx, dy are distances between features in Cartesian coordinates. We call each ma-
trix C the “Spatio Temporal Co-occurrence Matrix” (STCM). We have 1

2#F×(#F−1)
matrices, one STCM for each pair of tracked features. For each matrix C we have

N∑
y=1

M∑
x=1

C(fp, fq, x, y) = T (3)

where N and M are image width and height.
Most of the targets we cope with are vehicles. Although vehicles are rigid bodies,

the shooting angle of a monocular camera can yield 2-D views where the rigid body
constraints do not hold any more. For instance, this happens when objects rotate in
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depth or change their scale due to a movement perpendicular to the camera view plane.
Of course, reducing the sampling period (the time window T ) results in smaller object
changes. However, this yields fewer data to analyze that even cannot be enough. On
the contrary, enlarging the time window will improve data accuracy at the expense of
possible heavier changes of a vehicle appearance. We have seen experimentally that
choosing T = 1sec fits most of the traffic scenes at urban intersections while a longer
period could be chosen for highway traffic scenes, where vehicle’s trajectory is mostly
linear.

4.2 Application of Statistics

Statistics are built by evaluating the distances between every pair of features inside
each blob during the whole tracking process. As soon as a new feature f is extracted
by the KLT algorithm, STCM matrices are calculated. If for a pair of features (f, g)
the distance (dx, dy) kept constant we will find a high value of C(dx, dy, f, g), thus
meaning a high likelihood for the features f and g to be a rigid part of the same (rigid
or not rigid) object. On the contrary, a scattered matrix reveals changes in the distance
of the feature pair, thus pointing out a membership to quite a non rigid part of a body
or even to different bodies. As we stated before, our approach only serves to reduce
features unreliability. Only few corner points are included in the relabeling process.
Now, let us see which features are taken into consideration by the algorithm:

– features along the occlusion borders: experimentally we have seen that features
prone to tracking errors are mainly located in the overlapping zone along the occlu-
sion borders. This consideration has been used to apply statistics only to couples of
features (f, g) for which

L(f) �= L(g) ∧ Γ (f, g) < ε (4)

whereL(x) represents the label of a feature x and Γ (f, g)=
√

dx(f, g)2+dy(f, g)2.
The value of ε is chosen by taking into consideration the maximum translation of a
feature point;

– features extracted in the uncertainty zone: in this are it is possible to have fea-
tures tracked correctly which have not been provided with a label yet. In fact,
tracking points that are lost by the KLT algorithm are replaced with subsequent
extractions of new corners, whose assignment is delayed when they fall in the un-
certainty zone. Meanwhile those features are tracked, so that statistical data could
be acquired.

4.3 Probability Estimation

Camera vibrations and approximations inside the KLT algorithm (that result in small
fluctuations of feature placements) may generate noise in distance measurements.
Therefore, in order to reduce noise before using STCM matrices we perform a Gaussian
smoothing (with σ = 1.0) as a discrete convolution of STCM matrices with a square
mask M of size q = 5:
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G (f, fj, x, y) =

q∑
n=1

q∑
m=1

C
(
f, fj, x− q

2
, y − q

2

)
·M (m,n)

q∑
n=1

q∑
m=1

M (m,n)

(5)

then probability matrices can be computed as:

P (f, fj, x, y) =
G(f, fj , x, y)

N∑
n=1

M∑
m=1

G(f, fj , x, y)

(6)

where M and N are the width and the height of the image.
Let O be the set of objects Ok, k = 1...NO involved in an occlusion, with NO =

#O. Features are then fk
j ∈ Ok, j = 1...Nk where Nk is the number of features of Ok.

Therefore the probability for a feature f to belong to an object Ok is given by Eq (7):

P (f ∈ Ok) =

1
Nk

Nk∑
j=1

P (f, fk
j , dx, dy)

NO∑
k=1

1
Nk

Nk∑
j=1

P (f, fk
j , dx, dy)

(7)

where distances dx and dy are measured along the Cartesian axes between f and fk
j . We

provide f with the label of the object the feature most probably belongs to, according
to Eq (8):

L(f) = L(Ok̂) , Ok̂ | max
k

P (f ∈ Ok) (8)

Therefore, when the feature f has been tracked for one entire time-window T , then
statistical data is analyzed. As a result, f will get the label of the object Ok whose
features have changed least their distance from f . That is, f will get the label of the
object that better fits the rigid body constraint. Again, it is worth remarking that this
does not require for the body to be rigid or appear as being rigid (for example, a vehicle
rotating in depth). Simply, the label L(f) will be that of the mostrigid body, among
the ones involved, with respect to the feature f .

5 Experimental Results

Before testing our algorithm with real sequences, we validated our algorithm by acquir-
ing a sequence T0 by using RC-cars, to create a wide number of situations where sta-
tistics can be used. Besides, these cars appear as being real vehicles having yet stronger
interactions. After that, we tested the algorithm using some video sequences (T1 and
T2) from the TMS of our city, showing an urban environment. Sequences have been ac-
quired at 12.5 f/sec and are of 1514, 9245 and 37913 frames, respectively. All of them
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have been elaborated with the following parameters, which have been kept unchanged
also in the experimental stage of our system in the TMS:{

T = 9 frames
ε = 20 pixels

T0 contains 28 occlusion cases, for a total amount of 311 frames where cars overlap.
All figures show different cases of occlusion and the results referring same frames are
shown without (left) and with (right) the use of our method. Besides, hereinafter we
refer to frame i as the couple of frames starting from top.

In Figure 2(a) vehicle B is performing an in-depth turn while covered by vehicle
A (frame 1). One feature f ∈ B shifts onto A (frame 2), producing a dilation of the
bounding box (frame 3) and a consequent error in computing all the related features
(centroid, etc.). However, when using our method almost immediately P (f ∈ A) be-
comes higher than P (f ∈ B), so our algorithm asserts that L(f) = L(A). In the next
two figures we show an example of how a far heavier error can be avoided through using
our method. In Fig. 2(b) vehicle A occludes vehicle B and both are stopped (frame 1).

(a) Left, without statistics; right, with
statistics

(b) Left, without statistics; right, with
statistics

Fig. 2. Two occlusion examples in sequence T0

Then some features of B, in the overlapping area, remain attached to A while B moves
backward (frame 2). When blob splits (frame 3) those features appears as belonging to
a new objects and get a new. That is, a non-existent object (false alarm) is generated and
erroneously tracked for some frames, thus propagating the error until the false object
leaves the scene. With the application of our method, the features erroneously ended
up on B are correctly re-labeled as A thus preventing this problem to occur. As for
Fig. 3(a), here A cuts across B’s path and some features jump from A to B, as proved
by the large black bounding box of frame 1 and frame 2. However, in frame 2 you can
see that the bounding box of vehicle A better adheres when using statistics, since the
“jumping” features are correctly assigned to vehicle A. Also, at the end of the occlu-
sion after that A went in reverse, the wrong assignment of the uncertain features yields a



A Novel Spatio-temporal Approach to Handle Occlusions 919

(a) Left, without statistics; right, with
statistics

(b) Left, without statistics; right, with
statistics

Fig. 3. Occlusions in T0 and T1 sequences

split which produces a false new object (frame 3). At the opposite, our method prevent
the features to jump on vehicle A, thus handling correctly this occlusion. It is worth
noticing that splitting is one of the most common in the tracking systems and one of the
most difficult to cope with. Let us come to the sequence T1 extracted from the TMS.
In the traffic intersection of Fig. 3(b), vehicles move at slightly different speeds, thus
requiring a very precise estimate of the probability of the uncertain features, accord-
ing to Equation 7. Here, the two highlighted cars move in the same direction. For all
the occlusion period (70 frames) statistics is useful to both detect features jumped on
the wrong car and assign labels to features extracted in the uncertainty region. Often,
occlusions in sequences of real world can be simpler than those built artificially in se-
quence T0. As a matter of fact, in T1 tracking errors are less frequent than in T0, mainly
because vehicles are smaller. As a consequence, statistics is useful also to confirm the

Fig. 4. Left, without statistics; right, with statistics
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labels assigned to features. Finally, in Fig. 4 you can see a couple of occluding cars,
after having been tracked separately. You can see some features belonging to A near
the occlusion border which jump on the slower car (B, in frame 1 and 2, left) when no
statistics is used. Without using statistics, these features are erroneously given to A car
in all of the 4 frames. Even though cars are tracked correctly, this results in an unre-
liable separation which alters both blob’s properties. We would also like to stress how
such errors tend to propagate because once a feature has been erroneously assigned to
an object (frame 3, left), this assignment makes the erroneous bounding box, as well as
all the features included, reliable. Therefore, after being assigned to the A, the features
of B are tracked as really belonging to A (frame 4, left).

6 Conclusion and Future Work

In this paper we have proposed a method to improve the performance of a feature based
tracking algorithm during occlusion. Our approach exploits second order statistics to
detect and remove feature tracking errors occurred during occlusions. Each uncertain
feature is given the label of the object to which it has shown the maximum “attraction
power”, that is the maximum probability derived from second order statistic. This re-
sults in a better defined separating borders among occluding objects, thus improving
the outcome of the tracking system in terms of reliability of properties of the objects
being tracked. The algorithm has been tested on different sequences containing dif-
ferent cases of occlusion and always it has proved to disocclude vehicles with a high
accuracy. Future work could be focused on considering to extend our approach to some
more properties besides the feature position, such as to some values related to the tex-
ture analysis of a small region centered on the feature being tracked. It is worth noticing
that the overall tracking algorithm has been working in real time in the daytime at an
experimental stage in the TMS of the city where we have been living.
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Abstract. Particle filtering is one of the most successful approaches for
visual tracking. However, so far, most particle-filter trackers are limited
to a single cue. This can be a serious limitation, since it can reduce the
tracker’s robustness. In the current work, we present a multiple cue inte-
gration approach applied for face tracking, based on color and geometric
properties. We tested it over several video sequences and we show it is
very robust against changes in face appearance, scale and pose. More-
over, our technique is proposed as a contextual information for human
presence detection.

1 Introduction

Face tracking is required for a large number of computer applications: HCI, sur-
veillance, biometry, video compression, human-robot communication, etc. There
are many approaches proposed to solve this problem, but among them a very
common technique is represented by particle filter. Particle filter has been intro-
duced in [7] and its basic idea consists of propagating a probability distribution
through time, based on sample sets. Its powerfulness is represented by its abil-
ity to track simultaneously non-linear/non-gaussian multi-modal distributions,
solving in this way the limitations imposed by Kalman filter [24]. Since it was
introduced, it was used mainly for object-tracking purposes, but it also has been
proposed in robotics for the problem of self-localization for mobile robots [20].

Particle filtering has been mainly used to track objects based on their color
histograms [26], [12], [15], [13] or geometrical shape [7], [6]. The use of single
cue proved to offer good results, but since the most applications are intended
for dynamic environments, with continuous changes in illumination conditions,
shape, partial or total occlusion of the object being tracked, this could pose a
limitation in the robustness of these methods. The solution is represented by the
integration of several cues, like in [16], [21], [14].

In the current paper, we propose a novel method for face tracking based on
the fusion of color and geometrical structure of the face. In other words, the like-
lihood between the model and the hypotheses (”particles”) is expressed in terms

A. Campilho and M. Kamel (Eds.): ICIAR 2006, LNCS 4141, pp. 922–933, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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of a linear combination between color similarity, difference in size and euclidean
distance. The novelty is represented by the fact that in order to initialize the
tracker and to update the confidence, a model-based approach for face detection
is used. The face evidence is confirmed using Haar-like features trained with
the Ada-Boost algorithm. In case of self-occlusions (head is rotated), when the
detector fails despite a person continues to be present in front of the camera, a
”CamShift” algorithm is employed, in order to confirm the face presence based
on skin color. This could represent a great advantage, since some approaches
are using either manual initialization or a learned histogram of the object to be
tracked. We try to argument the relevance of our method and the improvement
it introduces, by comparing it with other recent publications:

- instead of working with the RGB color model (like in [12]), we prefer HSV,
since it is less sensitive to changes in illumination conditions

- the ”mean-shift” algorithm from [17] was replaced by the ”CamShift” algo-
rithm. ”Camshift” [3] stays for ”continuous adaptive mean-shift”, and unlike the
”mean-shift” , which is designed for static distributions, ”CamShift” can deal
with dynamically changing distributions.

The paper is structured as follows: section 2 contains a brief recall to particle
filter; section 3 focuses upon observation model; in section 4, the whole system
is presented and the integration of several cues is explained; some experimental
results are reported in section 5; finally, section 6 contains our conclusions and
the guiding lines for future work.

2 Particle Filtering

The tracking problem can be formulated in the framework of partially observable
Markov chains [5] that considers the evolution of a state vector sequence xk over
time. This implies the estimation of the a posteriori density over the state xk

from all available sensor measurements z0:k = z0...zk. A solution to this problem
is given by Bayes filters [8], which computes this a posteriori density recursively
(we make here a first-order Markov assumption, i.e. the state xk depends only
on xk−1):

p (xk|z0:k) = K · p (zk|xk) ·
∫

p (xk|xk−1) · p (xk−1|z0:k−1) dxk−1 (1)

If the a posteriori distribution at any moment is Gaussian and the distrib-
utions p (xk|xk−1) and p (zk|xk) are linear in its arguments, than the equation
(1) reduces to the Kalman filter. If one of these conditions cannot be met, than
a possible alternative is to use some approximation methods in order to lin-
earize the actuation and measurements models. There are two extensions of the
Kalman filter that can be used in these situations, known as Extended Kalman
Filter [10] and Unscented Kalman Filter [9]. However, most of the real-world
processes are non-linear and these approximations don’t hold. The solution to
the general case is given by Particle Filtering.
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The basic idea of a Particle Filter is to maintain a multiple hypothesis (parti-
cles) about the object being tracked. This means that the distribution p (xk|z0:k)
is represented using a set {sn

k , w
n
k }, where n = 1..N (N is the number of parti-

cles). The weights should be normalized such that
∑
n
wn = 1. In other words,

each particle has associated a weight that reflects its relevance in representing
the object. The initial set of particles can be randomly generated or using the
output of a detector. The a posteriori probability is updated in a recursive way,
according to the following steps:

- from the previous set of particles
{
sn

k−1, w
n
k−1

}
n=1..N

, draw one particle
through importance sampling, so sm

k will correspond to some sj
k−1:

sj
k ∼ wj

k−1 (2)

- the chosen particle is propagated according to the model’s dynamics:

sn
k ∼ p (xk|xk−1 = sm

k ) (3)

- assign a new weight to the recent generated particle equal to the likelihood
of the observation, i.e.:

wn
k ∼ p (zk|xk = sn

k ) (4)

then normalize again the resulting weights and store the new obtained set of
particles.

Once the N particles have been constructed, an estimate for the current object
state can be obtained from the following formula:

ξ [f (xk)] =
N∑

n=1

wn
k f (sn

k ) (5)

where f (x) = x.
From time to time, it is necessary to resample the particles, otherwise could

appear degeneracy problems, which is the concentration of the whole weight
on a single particle. The resampling procedure duplicates the particles with
higher weights, while discards those with lower weights. In consequence, without
resampling the performance of the algorithm will be considerably degraded. A
more complete discussion about the degeneracy problem can be found in [2].

In regard with the dynamical model, we chose a simple one, described by a
linear stochastic differential equation:

xk = Axk−1 + Buk (6)

where A is the state transition matrix, uk is a vector of standard normal random
variates and BBT is the process noise covariance.



A Robust Particle Filter-Based Face Tracker 925

3 Model-Based Approach

In order to estimate and improve the accuracy in the prediction of the particle
filter, two other independent methods have been used. The integration between
a motion-based approach and a model-based approach for tracking is not new
and was previously proposed in [11] and more recently in [25]. The purpose
of integrating these two approaches is twofold. First, the face detector is used
to initialize the face tracker. There are other methods to initialize the tracker
(either automatically, starting with a random position and expecting that after
a number of frames it will converge towards the solution, or manually). In our
case we opted for an automatic method which guarantees the best initialization
for the tracker. On the other hand, our system is aimed for long-term use (i.e.
hours, maybe even days). We plan later on to use it for automatic acquisition of
faces under different poses. In this situation, the reason for using a face detector
would be to reinforce and to help the tracker to recover from possible failures
when it gets distracted. Without this confirmation from the detector, the system
won’t run properly for more than a few hundred frames. The consequence will
be that the system will fail quite often and will require repetitive initialization.

As first method, we employed a face detector based on Haar-like features
trained with the Ada-Boost. This works very well for frontal faces. In case of
self-occlusion (head is rotated), which is the most common source of failures for
the face detector, we substitute this evidence with a, color-exclusive method,
represented by the ”CamShift” algorithm. The use of these two approaches is
complementary, since the use of a color-exclusive method (without having any
other independent information of facial features) could degrade the performance
of the tracker. Passing a hand in front of the face (which has the same color
distribution), could fool the tracker and thus loose the real target. We always
prefer the use of the first method, over the second.

3.1 Face Detection Using Haar-Like Features

Ideally, techniques for face detection are desired to show robustness against
changes in illumination, scale and head poses. They should be able to detect
faces despite variation in facial expression and the presence or absence of nat-
ural or artificial accessories like beards and glasses. The face detection techniques
can be divided in two main classes: holistic and local ones. The weakness of the
holistic approaches is that they represent the images as raster vectors without
any information about the 2D topology of facial features. On the other hand, face
detectors based on local information have the advantage of providing more accu-
rate information about the presence of face parts, by classifying image patches
in ‘face’ or ‘non-face’ vectors.

Following this second path, we implemented a boosted face detector similar to
those proposed in [22]. The idea is to use a cascade of weak classifiers in order to
produce a stronger one. Each classifier is trained with a few hundreds samples of
a particular object (a face), using Haar-like wavelet features, depicted in figure 1.

After each training epoch, the wrong classified features are retrained. Each
classifier outputs “1” if the corresponding sample corresponds to a face and “0”
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Fig. 1. Haar-like wavelet features used to train the weak classifiers

Fig. 2. The cascade representation of weak classifiers. The features that are wrong
classified are rejected through the ’F’ output.

Fig. 3. The Ada-Boost algoritm

otherwise. The final strong classifier is obtained as a linear combination of weak
classifiers, followed by a threshold. This is depicted in figure 2.

The classifier is designed in such a way that allows detection of faces at dif-
ferent scales. This is a more convenient technique than downsampling the image
itself. A very popular algorithm to train the weak classifiers in order to obtain
the strong one is represented by Ada-Boost. The algorithm is summarized in
figure 3.

3.2 ”CamShift” Algorithm

In this section we give a brief review of this algorithm. It has been proposed as
an extension of the mean-shift algorithm. Mean-shift works at one distribution
scale, but is not suitable for another scale as the object moves towards and away
from the camera. Small fixed-sized windows may get lost entirely for large object
translation in the scene. Large fixed-sized windows may include distractors (other
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people or hands) and too much noise. ”CamShift” uses continuously adaptive
probability distributions (that is, distributions that are updated for each frame)
while mean-shift is based on static distributions, which are not updated. Since
”CamShift” does not maintain static distributions, spatial moments are used to
iterate towards the mode of the distribution. This is in contrast to the conven-
tional implementation of the mean-shift algorithm where target and candidate
distributions are used to iterate towards the maximum increase in density using
the ratio of the current (candidate) distribution over the target.

The probability distribution image may be determined using any method that
associates a pixel value with a probability that the given pixel belongs to the
target. A common method is known as histogram back-projection [19] which
associates the pixel values in the image with the value of the corresponding
histogram bin. The back-projection of the target histogram with any consecutive
frame generates a probability image where the value of each pixel characterizes
probability that the input pixel belongs to the histogram that was used. Formally,
the method can be described as follows. The ratio histogram, for a given color c
is given by:

rc (I,Q) = min
{
H (Q)
H (I)

, 1
}

(7)

where H (Q) represents the histogram of the model and H (I) is the histogram
of the image. It also represents the likelihood of a pixel p ∈ I to belong to the
target. The contribution of a subimage Ip ⊂ I is given by:

Πp (I,Q) =
∑
q∈Ip

rI(q) (I,Q) (8)

Then the location of the target is given by:

argmax
p

Πp (I,Q) (9)

4 Face Tracking System

4.1 Dynamic Model

In our problem about face tracking, a particle is represented by a combination
of spatial and color information: sk = {px, py, pσ, H (pΦ)}. The first three para-
meters represent the state vector {xk = px, py, pσ} where (px, py) is the center
of the particle and pσ - the size of the particle. The last term H (pΦ) is the
color histogram of the area ’under’ the particle. We use the HSV color space,
because it is less sensitive to illumination conditions. It separates the original
RGB channels into H - hue (color), S - saturation and V - brightness. The color
histogram is created by taking 1D histograms from the H (hue) channel in HSV
space.

The tracker is initialized using the face detector based on Haar-like
features. The face measurement is represented also as a feature vector zk =
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{fx, fy, fσ, H (fΦ)}, where (fx, fy) is the center of the face, fσ - the size of the
face and H (pΦ) is the color histogram of the face. At each frame, we reaffirm the
confidence in our prediction, by invoking the feature-based face detector (in case
of failure, face evidence is searched using the color-based detector implement-
ing the ”CamShift” algorithm). For this reason, we have to define a likelihood
measure for our observations.

4.2 Observation Likelihood

In the particle filter, we have to update at each frame, the weight of the parti-
cles. This is achieved by computing the likelihood of the predicted parameters.
Our observation model consists of a combination between color and geometrical
information, thus we will use a scheme to fuse these cues into a global likelihood.

Color Cue. A common similarity measure between distributions is given by
the Bhattacharyya distance [1]. When representing a color object through its
histogram, we can express it as a discrete density, i.e H (Q) = {qu}u=1..n, where
qi represent the normalized bins of the histogram. Considering we have two
discrete densities, H (Q) = {qu}u=1..n and H (R) = {ru}u=1..n, we define the
following coefficient:

ρ[Q,R] =
m∑

u=1

√
quru (10)

The larger ρ is, the more similar the color distributions are. Finally, the Bhat-
tacharyya distance is defined as:

d =
√

1− ρ[Q,R] (11)

Based on this similarity measure, the likelihood between a candidate particle
and the actual face model is given by:

p
(
zc

k|xi
k

)
=

1
σ
√

2π
e−

d2

2σ2 (12)

where the c superscript designates the color cue. The interpretation of the above
equation is that large weights correspond to small Bhattacharyya values.

In our approach we don’t use a previously learned histogram for skin color
distribution. We prefer instead to use an adaptive strategy, extracting the initial
histogram from the very first instance of the detected face from the video stream.
The update of the target model is done with the following equation:

H (mu
t ) = (1− α)H

(
mu

t−1
)

+ αH (fΦu) (13)

for each histogram bin u of the model H (M) and α represents the ’forget-
ting’ term. As time passes, the relevance of the previously learned histograms
tend to decrease and they are substituted by the most recent instances of face
histograms.
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Geometric Cues. The color cue is only one element to be taken into consid-
eration when we appreciate the likelihood between the target and the model.
Sometimes, color only cannot be sufficient. For this reason, we also make use of
other elements, like size and position to the detected face. In other words, we
want to be sure that not only the particles which are similar in color terms, but
also has similar size and are situated in the neighborhood of the real face are
the most confident candidates. The likelihood in size is expressed like:

p
(
zs

k|xi
k

)
=

1
σ
√

2π
e−

d2

2σ2 (14)

where d = pσ − fσ. The s superscript designates the size cue.
Meanwhile, the likelihood for position is given by the euclidean distance be-

tween the center of the predicted face and the face center provided by face
detector in the previous frame. Thus,

p
(
zp

k|xi
k

)
=

1
σ
√

2π
e−

d2

2σ2 (15)

where d =
√

(px − fx)2 + (py − fy)
2. The p superscript stays for the position

cue.

Multiple Cue Integration. Several methods for multiple cue integration have
been proposed. In [21] they propose a novel architecture for adaptively integrat-
ing different cues in a self-organized manner. They argue that this approach is
sustained with results from psychophysical experiments. In Democratic Integra-
tion different cues agree on a result, and each cue adapts toward the result agreed
on. In particular, discordant cues are quickly suppressed and recalibrated, while
cues having been consistent with the result in the recent past are given a higher
weight in the future. The same idea is further developed in [18] in order to allow
the tracker to deal with multiple objects. Their idea exploits two methodolo-
gies for the adaptation to different conditions: in the first place, the integration
scheme can be changed and in the second place, the visual cues themselves can
be adapted. Adapting the visual cues allows to adapt to different environmen-
tal changes directly. Changing the integration scheme reflects the underlying
assumption that different cues are suitable for different conditions.

In our case, we propose a simpler solution, based on a linear combination of
the computed likelihoods for each cue. Thus, the global likelihood will be given
by:

p
(
zk|xi

k

)
= wi

k = β1p
(
zc

k|xi
k

)
+ β2p

(
zs

k|xi
k

)
+ β3p

(
zp

k|xi
k

)
(16)

where βj , j = 1, 2, 3 are some constants. The final estimation position of the face
is computed by maximizing the total likelihood:

xk max = argmax
i

wi
k (17)
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5 Experimental Results

The experimental results intend to show the improvements obtained by the intro-
duction of the ”CamShift” approach. In figure 4 we depict the results obtained
using the particle filter method only. When the face evidence from the face detec-
tor is missing, the predicted position remains the same as in the last frame (we
made the assumption that the proposed method is suitable for human-computer
interaction, so in this case, the only possible occlusions are the ones due to head
rotation - ”self-occlusions”). Thus, the tracker is unable to cope with small head
movements. On the other hand, when we introduced the ”CamShift” approach,
the tracker is able to robustly follow the face region, despite of the lack of face
evidence provided by the Viola-Jones detector. This case is illustrated in figure 5.

Fig. 4. Face tracking results obtained using only the particle filter. When the detector
misses the face, the predicted face is shown at the last detected position.

In order to confirm the robustness of our approach, we tested it on several
video sequences and compared the results with two others methods: particle filter
and ”CamShift” algorithm. For this purpose, we compared the results obtained
from each of these algorithms with ground-truth values. As ground-truth we
considered the hand-labelled position and size of the face in a video sequence
consisting of almost 700 frames (we marked the upper-left and bottom-right
corners of the face region). The video sequence considered for analysis was a
more complex one, in which the person was moving without restriction (in front
of a cluttered background) in the camera’s field of view. In figure 6 we plotted
the error both in terms of position (left graphic) and size (right graphic) between
the tracked face and the manual picked one. The error in position was expressed
as the euclidean distance between the center of the tracked-face and the center
of the manual-labelled one. From the left graphic, it can be appreciated that
when the person is moving in a transversal plane (the camera perceives the face
from profile) with respect to the camera’s optical axes (that corresponds to the
interval between the frames 100-300 and again between the frames 400-480), the
particle filter alone is getting stuck, because no evidence from the face detector
is provided. That’s the interpretation of the high peaks in the graph. However,
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Fig. 5. Face tracking results obtained through the combination of the particle filter
and the ”CamShift”. In this case, no face is missed. The improvements obtained by
the use of ”CamShift” are obvious.

Fig. 6. Comparison between our approach and two others: particle filter and
”CamShift”. The plots represent the error in distance (left) and size (right) between
the face reported by each of the three methods and ground truth. ’Condens’ label states
for particle filter.

”CamShift” and our approach perform well. Another situation can be found
when the person passes his hand in front of the face (between the frames 530-
580). This situation can be very well observed on the both graphs. Our system,
despite its brief distraction, its able to recover after this occlusion. The particle
filter is the most robust one in this case, because is tracking the real position of
the face. On the contrary, ”CamShift” has lost the track forever.

6 Conclusions and Future Work

In this paper we proposed a solution for multiple cue integration in the frame-
work of particle filters, with application to face tracking. We saw that the use of
a single cue (either color or shape) is not sufficient to cope with dynamic environ-
ments. Thus, our method will offer an increased robustness against changes in
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appearance, scale and pose. The successful framework of particle filter was com-
bined with evidence about face presence obtained from a model-based approach.
We tested our method on several video sequences and the results obtained are
highly encouraging. In the near future, we plan to adapt our solution and imple-
ment it on an AIBO robot. Its primary task will be thus to use facial information
as a contextual information for human-presence. For the beginning, the contex-
tual information will be limited only to assess the user presence and distance
to the robot. Later on, we will expand the contextual information, by including
information about person’s gender and identity. Regarding person identity, we
are currently investigating a novel technique known as ”unsupervised face recog-
nition”. That’s it, the robot starts with an empty database, and will gradually
’get to now’ new people.

Acknowledgements

This work is supported by MCYT Grant TIC2003-00654, Ministerio de Ciencia
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Bres, Stéphane II-776
Bruni, V. I-755
Burkhardt, Hans I-661, II-1
Busch, Andrew II-844

Cabello, Enrique II-305, II-317
Cai, Xiang II-660
Camarena, Joan-Gerard I-359
Campaigne, Wesley R. I-41
Campilho, Aurélio C. I-248, II-513,

II-612, II-624
Caridade, Cristina M.R. II-814
Carter, John N. II-262
Casado, Gregorio de Miguel I-260
Castelán, Mario II-134
Castilho, Hugo Peres II-790
Castro, A. II-491
Cernadas, E. II-853
Cerri, Andrea II-410
Chai, Yanmei I-862
Chamizo, Juan Manuel Garćıa I-260
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936 Author Index

De Canditiis, D. I-755
de Castro, Nuno I-816
de Toro, Francisco I-196
De Witte, Valérie I-381
Debayle, Johan I-29
Debure, Kelly I-648
Del Bimbo, Alberto I-636
Demir, Zafer II-35
Demirkol, Askin II-35
Denisov, Vitalij II-47
Dhome, Michel II-250
Dias, Jorge II-69
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Maŕın-Jiménez, Manuel J. II-13
Marques, Jorge S. I-351, I-436
Marques, Manuel I-436
Marques, Oge I-547
Mart́ın-Herrero, Julio II-730
Mart́ın, J.M. II-559
Mart́ınez, Pedro I-731
Marzal, Andrés I-624
Mayer, Gregory S. I-82
Mei, Gang I-839
Mendonça, Ana Maria II-513, II-612
Mignotte, Max I-370
Milgram, Maurice II-341
Milios, Evangelos I-697
Miranda, António R. I-816
Mohamed, S.S. II-589
Mohebi, Azadeh I-339
Molina, R. II-559
Monteiro, Fernando C. I-248
Mora, Higinio Mora I-260
Moreno, Plinio II-181
Morillas, Samuel I-138, I-359
Morrow, P.J. I-780
Moscato, Vincenzo II-274
Mosquera, Antonio I-636
Mota, Sonia I-196
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