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Preface

This volume contains the proceedings of the 4th International Conference on
Formal Modelling and Analysis of Timed Systems (FORMATS 2006), held in
Paris (France) on September 25-27, 2006. FORMATS aims to be a major an-
nual event dedicated to the study of timed systems, uniting three independently
started workshops: MTCS, RT-TOOLS, and TPTS. The first three FORMATS
conferences were held in Marseille (2003), Grenoble (2004), and Uppsala (2005).

Timing aspects of systems have been treated independently in separate sci-
entific disciplines, and there is a growing awareness of the difficult problems
common to all of them, suggesting the interdisciplinary study of timed systems.
The unifying theme underlying all these domains is that they concern systems
whose behavior depends upon combinations of logical and temporal constraints,
e.g., constraints on the distance between occurrences of events.

The aim of FORMATS is to promote the study of fundamental and practical
aspects of timed systems, and to bring together researchers from different dis-
ciplines that share interests in modelling and analysis of timed systems. In this
volume, there are articles on:

– Foundations and Semantics: contributions to the theoretical foundations of
timed systems and timed formal languages as well as comparison between
different models used by different communities (timed automata, timed Petri
nets, timed MSCs, hybrid automata, timed process algebra, timed temporal
logics, timed abstract state machines, as well as probabilistic models).

– Methods and Tools: techniques, algorithms, data structures, and software
tools for analyzing timed systems and resolving temporal constraints (model-
checking, simulation, robustness analysis, scheduling, etc).

– Applications: adaptation and specialization of timing technology to the mod-
elling and analysis of applications in certain types of domains in which timing
plays an important role (real-time software, hardware circuits, and network
protocols).

We received 50 submissions out of which 22 were selected for publication.
Each submission received 3 or 4 reviews. The conference program included four
invited talks, by Alan Burns (University of York, UK), Thomas A. Henzinger
(EPFL, Switzerland), Edward A. Lee (UC Berkeley, USA), and Alexander Ra-
binovitch (Tel Aviv University, Israel). We would like to thank all the program
committee members and their sub-reviewers for their effort during the reviewing
and selection process.

July 2006 Eugene Asarin and Patricia Bouyer
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Gerald Lüttgen (University of York, UK)
Nicolas Markey (LSV, CNRS and ENS Cachan, France)
Peter Niebert (LIF, University of Provence, France)
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Éric Tournier
Helen Treharne
Enrico Tronci
Robert Valette
Pavel Vasilyev
Serghei Verlan
François Vernadat
Jim Woodcock
James Worrell

Sponsors

We would like to thank our sponsors:

AutoMathA project

LIAFA



Table of Contents

Invited Talks

Timed Alternating-Time Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Thomas A. Henzinger, Vinayak S. Prabhu

Concurrent Semantics Without the Notions of State
or State Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Edward A. Lee

Decidability and Expressive Power of Real Time Logics . . . . . . . . . . . . . . . . 32
Alexander Rabinovich

Contributed Papers

Extended Directed Search for Probabilistic Timed Reachability . . . . . . . . . 33
Husain Aljazzar, Stefan Leue

Intersection of Regular Signal-Event (Timed) Languages . . . . . . . . . . . . . . . 52
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Timed Alternating-Time Temporal Logic�

Thomas A. Henzinger1 and Vinayak S. Prabhu2

1 Department of Computer and Communication Sciences, EPFL
tah@epfl.ch

2 Department of Electrical Engineering and Computer Sciences, UC Berkeley
vinayak@eecs.berkeley.edu

Abstract. We add freeze quantifiers to the game logic ATL in order to
specify real-time objectives for games played on timed structures. We
define the semantics of the resulting logic TATL by restricting the play-
ers to physically meaningful strategies, which do not prevent time from
diverging. We show that TATL can be model checked over timed automa-
ton games. We also specify timed optimization problems for physically
meaningful strategies, and we show that for timed automaton games, the
optimal answers can be approximated to within any degree of precision.

1 Introduction

Timed games are a formal model for the synthesis of real-time systems [22,20].
While much research effort has been directed at algorithms for solving timed
games [14,9,7,16,15,8,11], we find it useful to revisit the topic for two reasons.
First, we wish to study a perfectly symmetric setup of the model, where all
players (whether they represent a plant, a controller, a scheduler, etc.) are given
equally powerful options for updating the state of the game, advancing time, or
blocking time. Second, we wish to restrict all players to physically meaningful
strategies, which do not allow a player to prevent time from diverging in order to
achieve an objective. This restriction is often ensured by syntactic conditions on
the cycles of timed automaton games [7,16,8,21] or by semantic conditions that
discretize time; we find such conditions unsatisfactory and unnecessary: unsat-
isfactory, because they rule out perfectly meaningful strategies that suggest an
arbitrary but finite number of transitions in a finite interval of time; unnecessary,
because timed automaton games can be solved without such conditions.

We do not present a new model for timed games, but review the model of [13],
which is symmetric for all players and handles the divergence of dense time
without constraining the players. We consider the two-player case. Previous work
on the existence of controllers [14,9,20,11] has in general required that time
divergence be ensured by the controller — an unfair view in settings where
the player for the environment can also block time. In our model, both players
may block time, however, for a player to win for an objective, she must not be
responsible for preventing time from diverging. To achieve this, we distinguish
� This research was supported in part by the NSF grants CCR-0208875, CCR-0225610,

and CCR-0234690.

E. Asarin and P. Bouyer (Eds.): FORMATS 2006, LNCS 4202, pp. 1–17, 2006.
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2 T.A. Henzinger and V.S. Prabhu

between objectives and winning conditions. An objective for a player is a set Φ
of desired outcomes of the game. The winning condition WC maps the objective
to another set of outcomes so that the player wins for WC(Φ) using any strategy
if and only if she wins for the original objective Φ using a physically meaningful
strategy.

Let us be more precise. A timed game proceeds in an infinite sequence of
turns. At each turn, both players propose a move: each move specifies an amount
of time that the player is willing to let pass without action, possibly followed
by an action that causes a discontinuous jump to a different state. The move
with the shorter proposed time delay determines the next state of the game (if
both players propose the same delays, then one of the corresponding actions is
chosen nondeterministically). An outcome of the game is an infinite trajectory of
continuous state segments (during which time passes) and discontinuous jumps.
Let Timediv denote the outcomes for which time diverges (the other trajectories
are often called “zeno” behaviors). Let Blamelessi denote the outcomes in which
player i ∈ {1, 2} proposes the shorter delay only finitely often. Clearly, player i
is not responsible if time converges for an outcome in Blamelessi. We therefore
use the winning condition [13]

WCi(Φ) = (Timediv ∩Φ) ∪ (Blamelessi \Timediv).

Informally, this condition states that if an outcome is time divergent, then it is
a valid outcome, and hence must satisfy the objective Φ; and if it is not time
divergent, then player i must not be responsible for the zeno behaviour. The
winning conditions for both players are perfectly symmetric: since WC1(Φ) ∩
WC2(¬Φ) = ∅, at most one player can win.

In [6], several alternating-time temporal logics were introduced to specify
properties of game structures, including the CTL-like logic ATL, and the CTL∗-
like logic ATL∗. For example, the ATL formula

〈
〈i〉
〉
�p is true at a state s iff

player i can force the game from s into a state that satisfies the proposition p.
We interpret these logics over timed game structures, and enrich them by adding
freeze quantifiers [5] for specifying timing constraints. The resulting logics are
called TATL and TATL∗. The new logic TATL subsumes both the untimed
game logic ATL, and the timed non-game logic TCTL [3]. For example, the
TATL formula

〈
〈i〉
〉
�≤d p is true at a state s iff player i can force the game from

s into a p state in at most d time units. A version of TATL has recently been
studied on durational concurrent structures in [19] .

The model checking of these logics requires the solution of timed games. Timed
game structures are infinite-state. In order to consider algorithmic solutions, we
restrict our attention to timed game structures that are generated by a finite
syntax borrowed from timed automata [4]. By restricting the strategies of TATL
games to physically meaningful strategies using WC, we obtain TATL∗ games.
However, solving TATL∗ games is undecidable, because TATL∗ subsumes the
linear-time logic TPTL [5], whose dense-time satisfiability problem is undecid-
able. We nontheless establish the decidability of TATL model checking, by care-
fully analyzing the fragment of TATL∗ we obtain through the WC translation.
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We show that TATL model checking over timed automaton games is complete
for EXPTIME; that is, no harder than the solution of timed automaton games
with reachability objectives.

In timed games, as in optimal control, it is natural to study not only the
decision problem if a player can force the game into a target state within d time
units, but also the corresponding optimization problem: determine the minimal
time d so that a player can force the game into a target state. Again we insist on
the use of physically meaningful strategies. We show that for timed automaton
games, the optimal answer can be computed to within any desired degree of
precision. The exact optimization problem is still open; only special cases have
been solved, such as the special case where every cycle of the timed automaton
ensures syntactically that a positive amount of time passes [7], and the special
case where the game is restricted to a finite number of moves [2]. The general case
for weighted timed automaton games is known to be undecidable [10]. Average
reward games in the framework of [13] are considered in [1], but with the time
move durations restricted to either 0 or 1.

2 Timed Games

2.1 Timed Game Structures

We borrow our formalism from [13]. A timed game structure is a tuple G =
〈S,Σ, σ,A1,A2, Γ1, Γ2, δ〉 with the following components:

– S is a set of states.
– Σ is a finite set of propositions.
– σ : S �→ 2Σ is the observation map, which assigns to every state the set of

propositions that are true in that state.
– A1 and A2 are two disjoint sets of actions for players 1 and 2, respectively.

We assume that ⊥ 
∈ Ai, and write A⊥
i for Ai ∪{⊥}. The set of moves for

player i is Mi = IR≥0 ×A⊥
i . Intuitively, a move 〈∆, ai〉 by player i indicates

a waiting period of ∆ time units followed by a discrete transition labeled
with action ai.

– Γi : S �→ 2Mi \ ∅ are two move assignments. At every state s, the set Γi(s)
contains the moves that are available to player i. We require that 〈0,⊥〉 ∈
Γi(s) for all states s ∈ S and i ∈ {1, 2}. Intuitively, 〈0,⊥〉 is a time-blocking
stutter move.

– δ : S × (M1 ∪ M2) �→ S is the transition function. We require that for
all time delays ∆,∆′ ∈ IR≥0 with ∆′ ≤ ∆, and all actions ai ∈ A⊥

i ,
we have (1) 〈∆, ai〉 ∈ Γi(s) iff both 〈∆′,⊥〉 ∈ Γi(s) and 〈∆ − ∆′, ai〉 ∈
Γi(δ(s, 〈∆′,⊥〉)); and (2) if δ(s, 〈∆′,⊥〉) = s′ and δ(s′, 〈∆ − ∆′, ai〉) = s′′,
then δ(s, 〈∆, ai〉) = s′′.

The game proceeds as follows. If the current state of the game is s, then both
players simultaneously propose moves 〈∆1, a1〉 ∈ Γ1(s) and 〈∆2, a2〉 ∈ Γ2(s).
The move with the shorter duration “wins” in determining the next state of
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the game. If both moves have the same duration, then one of the two moves is
chosen nondeterministically. Formally, we define the joint destination function
δjd : S ×M1 ×M2 �→ 2S by

δjd(s, 〈∆1, a1〉, 〈∆2, a2〉) =

⎧⎨⎩
{δ(s, 〈∆1, a1〉)} if ∆1 < ∆2;
{δ(s, 〈∆2, a2〉)} if ∆2 < ∆1;
{δ(s, 〈∆1, a1〉), δ(s, 〈∆2, a2〉)} if ∆1 = ∆2.

The time elapsed when the moves m1 = 〈∆1, a1〉 and m2 = 〈∆2, a2〉 are proposed
is given by delay(m1,m2) = min(∆1, ∆2). The boolean predicate blamei(s,m1,
m2, s

′) indicates whether player i is “responsible” for the state change from
s to s′ when the moves m1 and m2 are proposed. Denoting the opponent of
player i ∈ {1, 2} by ∼i = 3 − i, we define

blamei(s, 〈∆1, a1〉, 〈∆2, a2〉, s′) =
(
∆i ≤ ∆∼i ∧ δ(s, 〈∆i, ai〉) = s′

)
.

A run of the timed game structure G is an infinite sequence r =
s0, 〈m0

1,m
0
2〉, s1, 〈m1

1,m
1
2〉, . . . such that sk ∈ S and mk

i ∈ Γi(sk) and sk+1 ∈
δjd(sk,m

k
1 ,m

k
2) for all k ≥ 0 and i ∈ 1, 2. For k ≥ 0, let time(r, k) denote the

“time” at position k of the run, namely, time(r, k) =
∑k−1

j=0 delay(mj
1,m

j
2) (we

let time(r, 0) = 0). By r[k] we denote the (k + 1)-th state sk of r. The run pre-
fix r[0..k] is the finite prefix of the run r that ends in the state sk; we write
last(r[0..k]) for the ending state sk of the run prefix. Let Runs be the set of all
runs of G, and let FinRuns be the set of run prefixes.

A strategy πi for player i ∈ {1, 2} is a function πi : FinRuns �→ Mi

that assigns to every run prefix r[0..k] a move to be proposed by player i
at the state last(r[0..k]) if the history of the game is r[0..k]. We require that
πi(r[0..k]) ∈ Γi(last(r[0..k])) for every run prefix r[0..k], so that strategies pro-
pose only available moves. The results of this paper are equally valid if strategies
do not depend on past moves chosen by the players, but only on the past se-
quence of states and time delays [13]. For i ∈ {1, 2}, let Πi be the set of player-i
strategies. Given two strategies π1 ∈ Π1 and π2 ∈ Π2, the set of possible out-
comes of the game starting from a state s ∈ S is denoted Outcomes(s, π1, π2): it
contains all runs r = s0, 〈m0

1,m
0
2〉, s1, 〈m1

1,m
1
2〉, . . . such that s0 = s and for all

k ≥ 0 and i ∈ {1, 2}, we have πi(r[0..k]) = mk
i .

2.2 Timed Winning Conditions

An objective for the timed game structure G is a set Φ ⊆ Runs of
runs. The objective Φ is untimed ω-regular if there exists an ω-regular
set Ψ ⊆ (2Σ)ω of infinite sequences of sets of propositions such that a
run r = s0, 〈m0

1,m
0
2〉, s1, 〈m1

1,m
1
2〉, . . . is in Φ iff the projection σ(r) =

σ(s0), σ(s1), σ(s2), . . . is in Ψ .
To win an objective Φ, a player must ensure that the possible outcomes of

the game satisfy the winning condition WC(Φ), a different subset of Runs. We
distinguish between objectives and winning conditions, because players must
win their objectives using only physically meaningful strategies; for example, a
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player should not satisfy the objective of staying in a safe set by blocking time
forever. Formally, player i ∈ {1, 2} wins for the objective Φ at a state s ∈ S if
there is a player-i strategy πi such that for all opposing strategies π∼i, we have
Outcomes(s, π1, π2) ⊆ WCi(Φ). In this case, we say that player i has the winning
strategy πi. The winning condition is formally defined as

WCi(Φ) = (Timediv ∩Φ) ∪ (Blamelessi \Timediv),

which uses the following two sets of runs:

– Timediv ⊆ Runs is the set of all time-divergent runs. A run r is time-divergent
if limk→∞ time(r, k) = ∞.

– Blamelessi ⊆ Runs is the set of runs in which player i is responsible only for
finitely many transitions. A run s0, 〈m0

1,m
0
2〉, s1, 〈m1

1,m
1
2〉, . . . belongs to the

set Blamelessi, for i = {1, 2}, if there exists a k ≥ 0 such that for all j ≥ k,
we have ¬ blamei(sj ,m

j
1,m

j
2, sj+1).

Thus a run r belongs to WCi(Φ) if and only if the following conditions hold:

– if r ∈ Timediv, then r ∈ Φ;
– if r 
∈ Timediv, then r ∈ Blamelessi.

Informally, if time diverges, then the outcome of the game is valid and the
objective must be met, and if time does not diverge, then only the opponent
should be responsible for preventing time from diverging.

A state s ∈ S in a timed game structure G is well-formed if both players
can win at s for the trivial objective Runs. The timed game structure G is well-
formed if all states of G are well-formed. Structures that are not well-formed are
not physically meaningful. We retrict out attention to well-formed timed game
structures.

A strategy πi for player i ∈ {1, 2} is reasonable if for all opposing strategies
π∼i, all states s ∈ S, and all runs r ∈ Outcomes(s, π1, π2), either r ∈ Timediv
or r ∈ Blamelessi. Thus, no what matter what the opponent does, a reasonable
player-i strategy should not be responsible for blocking time. Strategies that are
not reasonable are not physically meaningful. A timed game structure is thus
well-formed iff both players have reasonable strategies. We now show that we
can restrict our attention to games which allow only reasonable strategies.

Proposition 1. Let s ∈ S be a state of a well-formed time game structure G,
and let Φ ⊆ Runs be an objective.

1. Player 1 wins for the objective Φ at the state s iff there is a reasonable
player-1 winning strategy π∗

1 , that is, for all player-2 strategies π2, we have
Outcomes(s, π∗

1 , π2) ⊆ WC(Φ).
2. Player 1 does not win for the objective Φ at s using only reasonable strategies

iff there is a reasonable player-2 spoiling strategy π∗
2 . Formally, for every

reasonable player-1 strategy π∗
1 , there is a player-2 strategy π2 such that

Outcomes(s, π∗
1 , π2) 
⊆ WC(Φ) iff there is a reasonable player-2 strategy π∗

2
such that Outcomes(s, π∗

1 , π
∗
2) 
⊆ WC(Φ).

The symmetric claims with players 1 and 2 interchanged also hold.
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Proof. (1) Let π1 be the winning strategy for player 1 for objective Φ at state s.
Let π1 be not reasonable. Then, by definition, there exists an opposing strategy
π2 such that for some run r ∈ Outcomes(s, π1, π2), we have both r 
∈ Timediv
and r 
∈ Blameless1. This contradicts the fact that π1 was a winning strategy.
(2) Let π∗

1 be any player-1 reasonable strategy. Player 1 loses for the ob-
jective Φ from state s, thus there exists a player 2 spoiling strategy π2
such that Outcomes(s, π∗

1 , π2) 
⊆ WC(Φ) . This requires that for some run
r ∈ Outcomes(s, π∗

1 , π2), we have either 1) (r ∈ Timediv) ∧ (r 
∈ Φ) or 2)
(r 
∈ Timediv) ∧ (r 
∈ Blameless1). We cannot have the second case, for π∗

1 is
a reasonable strategy, thus, the first case must hold. By definition, for every
state s′ in a well-formed time game structure, there exists a player-2 reason-
able strategy πs′

2 . Now, let π∗
2 be such that its acts like π2 on the particu-

lar run r, and is like πs
2 otherwise, that is π∗

2(rf ) = π2(rf ), for all run pre-
fixes rf of r, and π∗

2(rf ) = πs
2(rf ) otherwise. The strategy π∗

2 is reasonable,
as for all strategies π′

1, and for every run r′ ∈ Outcomes(s, π′
1, π

∗
2), we have

(r′ ∈ Timediv) ∨ (r′ ∈ Blameless2). Since π∗
2 acts like π2 on the particular run r,

it is also spoiling for the player-1 strategy π∗
1 . ��

Corollary 1. For i = {1, 2}, let Wini(Φ) be the states of a well-formed timed
game structure G at which player i can win for the objective Φ. Let Win∗i (Φ) be
the states at which player i can win for the objective Φ when both players are
restricted to use reasonable strategies. Then, Wini(Φ) = Win∗i (Φ).

Note that if π∗
1 and π∗

2 are player-1 and player-2 reasonable strategies, then
for every state s and every run r ∈ Outcomes(s, π1, π2), we have r to be non-
zeno. Thus, if we restrict our attention to plays in which both players use only
reasonable strategies, then for any objective Φ, we have that player i wins for
the winning condition WC(Φ) if and only if he wins for the winning condition
Φ. We can hence talk semantically about games restricted to reasonable player
strategies in well-formed timed game structures, without differentiating between
objectives and winning conditions. From a computational perspective, we allow
all strategies, taking care to distinguish between objectives and winning condi-
tions. Proposition 1 indicates both approaches to be equivalent.

2.3 Timed Automaton Games

Timed automata [4] suggest a finite syntax for specifying infinite-state
timed game structures. A timed automaton game is a tuple T =
〈L,Σ, σ, C,A1,A2, E, γ〉 with the following components:

– L is a finite set of locations.
– Σ is a finite set of propositions.
– σ : L �→ 2Σ assigns to every location a set of propositions.
– C is a finite set of clocks. We assume that z ∈ C for the unresettable clock z,

which is used to measure the time elapsed since the start of the game.
– A1 and A2 are two disjoint sets of actions for players 1 and 2, respectively.
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– E ⊆ L× (A1 ∪A2)× Constr(C)× L× 2C\{z} is the edge relation, where the
set Constr(C) of clock constraints is generated by the grammar

θ ::= x ≤ d | d ≤ x | ¬θ | θ1 ∧ θ2

for clock variables x ∈ C and nonnegative integer constants d. For an edge
e = 〈l, ai, θ, l

′, λ〉, the clock constraint θ acts as a guard on the clock values
which specifies when the edge e can be taken, and by taking the edge e, the
clocks in the set λ ⊆ C\{z} are reset to 0. We require that for all edges
〈l, ai, θ

′, l′, λ′〉, 〈l, ai, θ
′′, l′′, λ′′〉 ∈ E with l′ 
= l′′, the conjunction θ′ ∧ θ′′ is

unsatisfiable. This requirement ensures that a state and a move together
uniquely determine a successor state.

– γ : L �→ Constr(C) is a function that assigns to every location an invariant
for both players. All clocks increase uniformly at the same rate. When at
location l, each player i must propose a move out of l before the invariant γ(l)
expires. Thus, the game can stay at a location only as long as the invariant
is satisfied by the clock values.

A clock valuation is a function κ : C �→ IR≥0 that maps every clock to a non-
negative real. The set of all clock valuations for C is denoted by K(C). Given a
clock valuation κ ∈ K(C) and a time delay ∆ ∈ IR≥0, we write κ + ∆ for the
clock valuation in K(C) defined by (κ + ∆)(x) = κ(x) + ∆ for all clocks x ∈ C.
For a subset λ ⊆ C of the clocks, we write κ[λ := 0] for the clock valuation in
K(C) defined by (κ[λ := 0])(x) = 0 if x ∈ λ, and (κ[λ := 0])(x) = κ(x) if x 
∈ λ.
A clock valuation κ ∈ K(C) satisfies the clock constraint θ ∈ Constr(C), written
κ |= θ, if the condition θ holds when all clocks in C take on the values specified
by κ.

A state s = 〈l, κ〉 of the timed automaton game T is a location l ∈ L together
with a clock valuation κ ∈ K(C) such that the invariant at the location is
satisfied, that is, κ |= γ(l). Let S be the set of all states of T. In a state, each
player i proposes a time delay allowed by the invariant map γ, together either
with the action ⊥, or with an action ai ∈ Ai such that an edge labeled ai is
enabled after the proposed time delay. We require that for i ∈ {1, 2} and for all
states s = 〈l, κ〉, if κ |= γ(l), either κ + ∆ |= γ(l) for all ∆ ∈ IR≥0, or there
exist a time delay ∆ ∈ IR≥0 and an edge 〈l, ai, θ, l

′, λ〉 ∈ E such that (1) ai ∈ Ai

and (2) κ + ∆ |= θ and for all 0 ≤ ∆′ ≤ ∆, we have κ + ∆′ |= γ(l), and
(3) (κ + ∆)[λ := 0] |= γ(l′). This requirement is necessary (but not sufficient)
for well-formedness of the game.

The timed automaton game T defines the following timed game structure
[[T]] = 〈S,Σ, σ∗,A1,A2, Γ1, Γ2, δ〉:

– S is defined above.
– σ∗(〈l, κ〉) = σ(l).
– For i ∈ {1, 2}, the set Γi(〈l, κ〉) contains the following elements:

1. 〈∆,⊥〉 if for all 0 ≤ ∆′ ≤ ∆, we have κ + ∆′ |= γ(l).
2. 〈∆, ai〉 if for all 0 ≤ ∆′ ≤ ∆, we have κ + ∆′ |= γ(l), ai ∈ Ai and there

exists an edge 〈l, ai, θ, l
′, λ〉 ∈ E such that κ + ∆ |= θ.
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– δ(〈l, κ〉, 〈∆,⊥〉) = 〈l, κ + ∆〉, and δ(〈l, κ〉, 〈∆, ai〉) = 〈l′, (κ + ∆)[λ := 0]〉 for
the unique edge 〈l, ai, θ, l

′, λ〉 ∈ E with κ + ∆ |= θ.

The timed game structure [[T]] is not necessarily well-formed, because it may
contain cycles along which time cannot diverge. We will see below how we can
check well-formedness for timed automaton games.

2.4 Clock Regions

Timed automaton games can be solved using a region construction from the
theory of timed automata [4]. For a real t ≥ 0, let frac(t) = t − �t� denote the
fractional part of t. Given a timed automaton game T, for each clock x ∈ C,
let cx denote the largest integer constant that appears in any clock constaint
involving x in T (let cx = 0 if there is no clock constraint invloving x). Two
clock valuations κ1, κ2 ∈ K(C) are clock-region equivalent, denoted κ1 ∼= κ2, if
the following three conditions hold:

1. For all x ∈ C, either �κ1(x)� = �κ2(x)�, or both �κ1(x)� > cx, �κ2(x)� > cx.
2. For all x, y ∈ C with κ1(x) ≤ cx and κ1(y) ≤ cy, we have frac(κ1(x)) ≤

frac(κ1(y)) iff frac(κ2(x)) ≤ frac(κ2(y)).
3. For all x ∈ C with κ1(x) ≤ cx, we have frac(κ1(x)) = 0 iff frac(κ2(x)) = 0.

Two states 〈l1, κ1〉, 〈l2, κ2〉 ∈ S are clock-region equivalent, denoted 〈l1, κ1〉 ∼=
〈l2, κ2〉, iff l1 = l2 and κ1 ∼= κ2. It is not difficult to see that ∼= is an equivalence
relation on S. A clock region is an equivalence class with respect to ∼=. There
are finitely many clock regions; more precisely, the number of clock regions is
bounded by |L| ·

∏
x∈C(cx + 1) · |C|! · 2|C|. For a state s ∈ S, we write [s] ⊆ S

for the clock region containing s.
Timed automaton games can be solved for untimed ω-regular objectives by

considering the finite quotient game structure obtained from the clock-region
equivalence [13]. There, also a variation of timed games is considered, where
each move is either a time delay or an action (rather than a pair of both). The
results of this paper carry over also to that model (which is strictly weaker, in
that a player may be able to achieve fewer objectives).

3 TATL

The alternating-time temporal logics ATL and ATL∗ were introduced in [6]
for specifying properties of untimed game structures. These logics are natural
specification languages for multi-component systems, where properties need to
be guarenteed by subsets of the components irrespective of the behavior of the
other components. Each component represents a player in the game, and sets of
players may form teams. We restrict our attention here to the two-player case
(e.g., system vs. environment; or plant vs. controller), but all results can be
extended to the multi-player case. For example, letting the system be player 1,
and the environment player 2, the ATL formula

〈
〈1〉
〉
�p specifies the property

that the system will always remain in a safe set of p states, no matter what the
environment does.
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For timed systems, we need the players to use only reasonable strategies when
achieving their objectives. We show that this requirement can be encoded within
ATL∗ (but not within ATL). We also permit timing constraints within objec-
tives. For example, the timed formula

〈
〈1〉
〉
�≤d p says that player 1 can reach

a target set of p states within d time units, no matter what player 2 does (and
again, player 1 must use only reasonable strategies to attain this goal). The re-
sulting timed logics are called TATL and TATL∗. While the model-checking
problem of TATL∗ is undecidable over timed automaton games, we show that
it is decidable for the fragment of TATL∗ that is obtained by adding to TATL
the restriction to reasonable strategies.

3.1 Syntax and Semantics

Consider a fixed timed game structure G = 〈S,Σ, σ,A1,A2, Γ1, Γ2, δ〉. The tem-
poral logic TATL (Timed Alternating-Time Temporal Logic) is interpreted over
the states of G. We use the syntax of freeze quantification [5] for specifying tim-
ing constraints within the logic. The freeze quantifier “x·” binds the value of
the clock variable x in a formula ϕ(x) to the current time t ∈ IR≥0; that is, the
constraint x·ϕ(x) holds at time t iff ϕ(t) does. For example, the property that
“every p state is followed by a q state within d time units” can be written as:
∀�x · (p → �y · (q ∧ y ≤ x + d)). This formula says that “in every state with
time x, if p holds, then there is a later state with time y such that both q and
y ≤ x + d hold.” Formally, given a set D of clock variables, a TATL formula is
one of the following:

– true | p | ¬ϕ | ϕ1 ∧ϕ2, where p ∈ Σ is a proposition, and ϕ1, ϕ2 are TATL
formulae.

– x + d1 ≤ y + d2 | x ·ϕ, where x, y ∈ D are clock variables and d1, d2 are
nonnegative integer constants, and ϕ is a TATL formula. We refer to the
clocks in D as formula clocks.

–
〈
〈P〉
〉
�ϕ |

〈
〈P〉
〉
ϕ1 Uϕ2, where P ⊆ {1, 2} is a set of players, and ϕ, ϕ1, ϕ2

are TATL formulae.

We omit the next operator of ATL, which has no meaning in timed systems.
The freeze quantifier x·ϕ binds all free occurrences of the formula clock variable
x in the formula ϕ. A TATL formula is closed if it contains no free occurrences
of formula clock variables. Without loss of generality, we assume that for every
quantified formula x·ϕ, if y ·ϕ′ is a subformula of ϕ, then x and y are different;
that is, there is no nested reuse of formula clocks. When interpreted over the
states of a timed automaton game T, a TATL formula may also contain free
(unquantified) occurrences of clock variables from T.

There are four possible sets of players (so-called teams), which may collaborate
to achieve a common goal: we write

〈
〈 〉
〉

for
〈
〈∅〉
〉
; we write

〈
〈i〉
〉

for
〈
〈{i}〉

〉
with

i ∈ {1, 2}; and we write
〈
〈1, 2〉

〉
for
〈
〈{1, 2}〉

〉
. Roughly speaking, a state s satisfies

the TATL formula
〈
〈i〉
〉
ϕ iff player i can win the game at s for an objective

derived from ϕ. The state s satisfies the formula
〈
〈 〉
〉
ϕ (resp.,

〈
〈1, 2〉

〉
ϕ) iff every

run (resp., some run) from s is contained in the objective derived from ϕ. Thus,
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the team ∅ corresponds to both players playing adversially, and the team {1, 2}
corresponds to both players collaborating to achieve a goal. We therefore write
∀ short for

〈
〈 〉
〉
, and ∃ short for

〈
〈1, 2〉

〉
, as in ATL.

We assign the responsibilities for time divergence to teams as follows: let
Blameless∅ = Runs, let Blameless{1,2} = ∅, and let Blameless{i} = Blamelessi

for i ∈ {1, 2}. A strategy πP for the team P consists of a strategy for each
player in P. We denote the “opposing” team by ∼P = {1, 2} \ P. Given a
state s ∈ S, a team-P strategy πP, and a team-∼P strategy π∼P, we de-
fine Outcomes(s, πP ∪ π∼P) = Outcomes(s, π1, π2) for the player-1 strategy
π1 and the player-2 strategy π2 in the set πP ∪ π∼P of strategies. Given a
team-P strategy πP, we define the set of possible outcomes from state s by
Outcomes(s, πP) = ∪π∼P

Outcomes(s, πP ∪ π∼P), where the union is taken over
all team-∼P strategies π∼P.

To define the semantics of TATL, we need to distinguish between physical
time and game time. We allow moves with zero time delay, thus a physical time
t ∈ IR≥0 may correspond to several linearly ordered states, to which we assign
the game times 〈t, 0〉, 〈t, 1〉, 〈t, 2〉, . . . For a run r ∈ Runs, we define the set of
game times as

GameTimes(r) =
{〈t, k〉 ∈ IR≥0 × IN | 0 ≤ k < |{j ≥ 0 | time(r, j) = t}|} ∪
{〈t, 0〉 | time(r, j) ≥ t for some j ≥ 0}.

The state of the run r at a game time 〈t, k〉 ∈ GameTimes(r) is defined as

state(r, 〈t, k〉) =
{
r[j + k] if time(r, j) = t and for all j′ < j, time(r, j′) < t;
δ(r[j], 〈t− time(r, j),⊥〉) if time(r, j) < t < time(r, j + 1).

Note that if r is a run of the timed game structure G, and time(r, j) < t <
time(r, j + 1), then δ(r[j], 〈t − time(r, j),⊥〉) is a state in S, namely, the state
that results from r[j] by letting time t − time(r, j) pass. We say that the
run r visits a proposition p ∈ Σ if there is a τ ∈ GameTimes(r) such that
p ∈ σ(state(r, τ)). We order the game times of a run lexicographically: for all
〈t, k〉, 〈t′, k′〉 ∈ GameTimes(r), we have 〈t, k〉 < 〈t′, k′〉 iff either t < t′, or t = t′

and k < k′. For two game times τ and τ ′, we write τ ≤ τ ′ iff either τ = τ ′ or
τ < τ ′.

An environment E : D �→ IR≥0 maps every formula clock in D to a nonnegative
real. Let E [x := t] be the environment such that (E [x := t])(y) = E(y) if y 
= x,
and (E [x := t])(y) = t if y = x. For a state s ∈ S, a time t ∈ IR≥0, an
environment E , and a TATL formula ϕ, the satisfaction relation (s, t, E) |=td ϕ
is defined inductively as follows (the subscript td indicates that players may win
in only a physically meaningful way):

– (s, t, E) |=td true; (s, t, E) |=td p, for a proposition p, iff p ∈ σ(s).
– (s, t, E) |=td ¬ϕ iff (s, t, E) 
|=td ϕ.
– (s, t, E) |=td ϕ1 ∧ ϕ2 iff (s, t, E) |=td ϕ1 and (s, t, E) |=td ϕ2.
– (s, t, E) |=td x + d1 ≤ y + d2 iff E(x) + d1 ≤ E(y) + d2.
– (s, t, E) |=td x·ϕ iff (s, t, E [x := t]) |=td ϕ.
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– (s, t, E) |=td
〈
〈P〉
〉
�ϕ iff there is a team-P strategy πP such that for all runs

r ∈ Outcomes(s, πP), the following conditions hold:
If r ∈ Timediv, then for all 〈u, k〉 ∈ GameTimes(r), we have
(state(r, 〈u, k〉), t+ u, E) |=td ϕ. If r 
∈ Timediv, then r ∈ BlamelessP.

– (s, t, E) |=td
〈
〈P〉
〉
ϕ1 Uϕ2 iff there is a team-P strategy πP such that for all

runs r ∈ Outcomes(s, πP), the following conditions hold:
If r ∈ Timediv, then there is a 〈u, k〉 ∈ GameTimes(r) such that
(state(r, 〈u, k〉), t + u, E) |=td ϕ2, and for all 〈u′, k′〉 ∈ GameTimes(r)
with 〈u′, k′〉 < 〈u, k〉, we have (state(r, 〈u′, k′〉), t + u′, E) |=td ϕ1. If
r 
∈ Timediv, then r ∈ BlamelessP.

Note that for an ∃ formula to hold, we require time divergence (as
Blameless{1,2} = ∅). Also note that for a closed formula, the value of the environ-
ment is irrelevant in the satisfaction relation. A state s of the timed game struc-
ture G satisfies a closed formula ϕ of TATL, denoted s |=td ϕ, if (s, 0, E) |=td ϕ
for any environment E .

We use the following abbreviations. We write
〈
〈P〉
〉
ϕ1 U∼d ϕ2 for

x·
〈
〈P〉
〉
ϕ1 U y ·(ϕ2 ∧ y ∼ x + d), where ∼ is one of <, ≤, =, ≥, or >. Interval

constraints can also be encoded in TATL; for example,
〈
〈P〉
〉
ϕ1 U (d1,d2] ϕ2 stands

for x·
〈
〈P〉
〉
ϕ1 U y ·(ϕ2 ∧ y > x + d1 ∧ y ≤ x + d2). We write �ϕ for trueUϕ as

usual, and therefore
〈
〈P〉
〉
�∼d ϕ stands for x·

〈
〈P〉
〉
�y ·(ϕ ∧ y ∼ x + d).

3.2 TATL∗

TATL is a fragment of the more expressive logic called TATL∗. There are two
types of formulae in TATL∗: state formulae, whose satisfaction is related to a
particular state, and path formulae, whose satisfaction is related to a specific
run. Formally, a TATL∗ state formula is one of the following:

(S1) true or p for propositions p ∈ Σ.
(S2) ¬ϕ or ϕ1 ∧ ϕ2 for TATL∗ state formulae ϕ, ϕ1, and ϕ2.
(S3) x+d1 ≤ y+d2 for clocks x, y ∈ D and nonnegative integer constants d1, d2.
(S4)

〈
〈P〉
〉
ψ for P ⊆ {1, 2} and TATL∗ path formulae ψ.

A TATL∗ path formula is one of the following:

(P1) A TATL∗ state formula.
(P2) ¬ψ or ψ1 ∧ ψ2 for TATL∗ path formulae ψ, ψ1, and ψ2.
(P3) x·ψ for formula clocks x ∈ D and TATL∗ path formulae ψ.
(P4) ψ1 Uψ2 for TATL∗ path formulae ψ1, ψ2.

The logic TATL∗ consists of the formulae generated by the rules S1–S4. As in
TATL, we assume that there is no nested reuse of formula clocks. Additional
temporal operators are defined as usual; for example, �ϕ stands for trueUϕ,
and �ϕ stands for ¬�¬ϕ. The logic TATL can be viewed as a fragment of
TATL∗ consisting of formuale in which every U operator is immediately pre-
ceeded by a

〈
〈P〉
〉

operator, possibly with an intermittent negation symbol [6].
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The semantics of TATL∗ formulae are defined with respect to an environment
E : D �→ IR≥0. We write (s, t, E) |= ϕ to indicate that the state s of the timed
game structure G satisfies the TATL∗ state formula ϕ at time t ∈ IR≥0; and
(r, τ, t, E) |= ψ to indicate that the suffix of the run r of G which starts from
game time τ ∈ GameTimes(r) satisfies the TATL∗ path formula ψ, provided the
time at the initial state of r is t. Unlike TATL, we allow all strategies for both
players (including unreasonable strategies), because we will see that the use of
reasonable strategies can be enforced within TATL∗ by certain path formulae.
Formally, the satisfaction relation |= is defined inductively as follows. For state
formulae ϕ,

– (s, t, E) |= true; (s, t, E) |= p, for a proposition p, iff p ∈ σ(s).
– (s, t, E) |= ¬ϕ iff (s, t, E) 
|= ϕ.
– (s, t, E) |= ϕ1 ∧ ϕ2 iff (s, t, E) |= ϕ1 and (s, t, E) |= ϕ2.
– (s, t, E) |= x + d1 ≤ y + d2 iff E(x) + d1 ≤ E(y) + d2.
– (s, t, E) |=

〈
〈P〉
〉
ψ iff there is a team-P strategy πP such that for all runs

r ∈ Outcomes(s, πP), we have (r, 〈0, 0〉, t, E) |= ψ.

For path formulae ψ,

– (r, 〈u, k〉, t, E) |= ϕ, for a state formula ϕ, iff (state(r, 〈u, k〉), t + u, E) |= ϕ.
– (r, τ, t, E) |= ¬ψ iff (r, τ, t, E) 
|= ψ.
– (r, τ, t, E) |= ψ1 ∧ ψ2 iff (r, τ, t, E) |= ψ1 and (r, τ, t, E) |= ψ2.
– (r, 〈u, k〉, t, E) |= x·ψ iff (r, 〈u, k〉, t, E [x := t + u]) |= ψ.
– (r, τ, t, E) |= ψ1 Uψ2 iff there is a τ ′ ∈ GameTimes(r) such that τ ≤ τ ′ and

(r, τ ′, t, E) |= ψ2, and for all τ ′′ ∈ GameTimes(r) with τ ≤ τ ′′ < τ ′, we have
(r, τ ′′, t, E) |= ψ1.

A state s of the timed game structure G satisfies a closed formula ϕ of TATL∗,
denoted s |= ϕ, if (s, 0, E) |= ϕ for any environment E .

3.3 Model Checking TATL

We restrict our attention to timed automaton games. Given a closed TATL
(resp. TATL∗) formula ϕ, a timed automaton game T, and a state s of the timed
game structure [[T]], the model-checking problem is to determine whether s |=td ϕ
(resp., s |= ϕ). The alternating-time logic TATL∗ subsumes the linear-time logic
TPTL [5]. Thus the model-checking problem for TATL∗ is undecidable. On the
other hand, we now solve the model-checking problem for TATL by reducing it
to a special kind of TATL∗ problem, which turns out to be decidable.

Given a TATL formula ϕ over the set D of formula clocks, and a timed
automaton game T, we look at the timed automaton game Tϕ with the set
Cϕ = C � D of clocks (we assume C ∩ D = ∅). Let cx be the largest con-
stant to which the formula variable x is compared in ϕ. We pick an invariant
γ(l) in T and modify it to γ(l)′ = γ(l) ∧ (x ≤ cx ∨ x ≥ cx) in Tϕ for ev-
ery formula clock x ∈ D (this is to inject the proper constants in the region
equivalence relation). Thus, Tϕ acts exactly like T except that it contains some
extra clocks which are never used. As in [13], we represent the sets Timediv
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and Blamelessi using ω-regular conditions. We look at the enlarged automa-
ton game structure ̂[[Tϕ]] with the state space Ŝ = Sϕ × {T, F}3, and an aug-
mented transition relation δ̂jd : Ŝ × M1 × M2 �→ 2Ŝ. In an augmented state
〈s, tick , bl1, bl2〉 ∈ Ŝ, the component s ∈ Sϕ is a state of the original game
structure [[Tϕ]], tick is true if the global clock z has crossed an integer boundary
in the last transition, and bl i is true if player i is to blame for the last tran-
sition. Formally, 〈〈l′, κ′〉, tick ′, bl ′1, bl

′
2〉 ∈ δ̂jd(〈〈l, κ〉, tick , bl1, bl2〉,m1,m2) iff (1)

〈l′, κ′〉 ∈ δjd(〈l, κ〉,m1,m2); (2) tick′ = true if κ′(z)− κ(z) ≥ 1, and false oth-
erwise; and (3) bl ′i = blamei(〈l, κ〉,m1,m2, 〈l′, κ′〉). It can be seen that a run is in
Timediv iff tick is true infinitely often, and that the set Blamelessi corresponds to
runs along which bl i is true only finitely often. We extend the clock equivalence
relation to these expanded states: 〈〈l, κ〉, tick , bl1, bl2〉 ∼= 〈〈l′, κ′〉, tick ′, bl ′1, bl

′
2〉

iff l = l′, tick = tick ′, bl1 = bl ′1, bl2 = bl ′2 and κ ∼= κ′. Finally, we extend bl to
teams: bl∅ = false, bl{1,2} = true, bl{i} = bl i.

We will use the algorithm of [13] which computes winning sets for timed
automaton games with untimed ω-regular objectives. The algorithm uses the
controllable predecessor operator, CPre1 : 2Ŝ �→ 2Ŝ in its fixpoint computation,
defined formally by CPre1(X̂) ≡ {ŝ | ∃m1 ∈ Γ1(ŝ) ∀m2 ∈ Γ2(ŝ)(δ̂jd(ŝ,m1,m2) ⊆
X̂}). Intuitively, ŝ ∈ CPre1(X̂) iff player 1 can force the augmented game into X̂
from ŝ in one move. The CPre1 operator is invariant over states of a region, that
is, for X̂ a union of regions, and ŝ ∼= ŝ′, we have ŝ ∈ CPre1(X̂) iff ŝ′ ∈ CPre1(X̂).
This invariance follows from the fact that if player 1 can force the game into
a region R̂ from ŝ, then he can do so from any other state ŝ′ ∼= ŝ. The region
invariance of CPre1 allows the us to work on the region game graph. So long as
we work with state sets that correspond to unions of regions, we get winning
sets that are also unions of regions. We show that we can maintain this invariant
when model checking TATL.

We first consider the subset of TATL in which formulae are clock variable
free. Using the encoding for time divergence and blame predicates, we can embed
the notion of reasonable winning strategies into TATL∗ formulae.

Lemma 1. A state s in a timed game structure [[Tϕ]] satisfies a formula clock
variable free TATL formula ϕ in a meaningful way, denoted s |=td ϕ, iff the
state ŝ = 〈s, false, false, false〉 in the expanded game structure ̂[[Tϕ]] satisfies
the TATL∗ formula atlstar(ϕ), that is, iff ŝ |= atlstar(ϕ) where atlstar is a partial
mapping from TATL to TATL∗, defined inductively as follows:

atlstar(true) = true; atlstar(p) = p
atlstar(¬ϕ) = ¬ atlstar(ϕ); atlstar(ϕ1∧ϕ2) = atlstar(ϕ1)∧atlstar(ϕ2)
atlstar(

〈
〈P〉
〉
�ϕ)=

〈
〈P〉
〉
((�� tick → � atlstar(ϕ)) ∧ (��¬ tick → ��¬ blP))

atlstar(
〈
〈P〉
〉
ϕ1 Uϕ2) =

〈
〈P〉
〉( (�� tick → atlstar(ϕ1)U atlstar(ϕ2)) ∧

(��¬ tick → ��¬ blP)

)
Now, for ϕ a clock variable free TATL formula, atlstar(ϕ) is actually an ATL∗

formula. Thus, the untimed ω-regular model checking algorithm of [13] can be
used to (recursively) model check atlstar(ϕ). As we are working in the continuous
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domain, we need to ensure that for an until formula
〈
〈P〉
〉
ϕ1 Uϕ2, team P does

not “jump” over a time at which ¬(ϕ1 ∨ ϕ2) holds. This can be handled by
introducing another player in the opposing team ∼P, the observer, who can
only take pure time moves. The observer entails the opposing team to observe
all time points. The observer is necessary only when P = {1, 2}. We omit the
details.

A naive extension of the above approach to full TATL does not immediately
work, for then we get TATL∗ formulae which are not in ATL∗ (model check-
ing for TATL∗ is undecidable). We do the following: for each formula clock
constraint x+d1 ≤ y+d2 appearing in the formula ϕ, let there be a new propo-
sition pα for α = x + d1 ≤ y + d2. We denote the set of all such formula clock
constraint propositions by Λ. A state 〈l, κ〉 in the timed automaton game Tϕ

satisfies pα for α = x + d1 ≤ y + d2 iff κ(x) + d1 ≤ κ(y) + d2. The propositions
pα are invariant over regions, maintaining the region-invariance of sets in the
fixpoint algorithm of [13], thus allowing us to work over the region game graph.

Lemma 2. For a TATL formula ϕ, let ϕΛ be obtained from ϕ by replacing all
formula variable constraints x+d1 ≤ y+d2 with equivalent propositions pα ∈ Λ.
Let [[Tϕ]]Λ denote the timed game structure [[Tϕ]] together with the propositions
from Λ. Then,

1. We have s |=td ϕ for a state s in the timed game structure [[Tϕ]] iff the state
s |=td ϕΛ in [[Tϕ]]Λ.

2. Let ϕΛ = w·ψΛ. Then, in the structure [[Tϕ]]Λ the state s |=td ϕΛ iff s[w :=
0] |=td ψΛ.

3. Let ϕ =
〈
〈P〉
〉
�p |

〈
〈P〉
〉
p1 Up2, where p, p1, p2 are propositions that are in-

variant over states of regions in Tϕ. Then for s ∼= s′ in Tϕ, we have s |=td ϕ
iff s′ |=td ϕ.

Lemmas 1 and 2 together with the EXPTIME algorithm for timed automa-
ton games with untimed ω-regular region objectives give us a recursive model-
checking algorithm for TATL.

Theorem 1. The model-checking problem for TATL (over timed automaton
games) is EXPTIME-complete.

EXPTIME-hardness follows from the EXPTIME-hardness of alternating
reachability on timed automata [17].

Model checking of TATL allows us to check the well-formedness of a timed
automaton game T: a state s of the timed game structure [[T]] is well-formed
iff s |=td (

〈
〈1〉
〉
�true) ∧ (

〈
〈2〉
〉
�true) This well-formedness check is the gen-

eralization to the game setting of the non-zenoness check for timed automata,
which computes the states s such that s |=td ∃�true [18]. If not all states of
[[T]] are well-formed, then the location invariants of T can be strengthened to
characterize well-formed states (note that the set of well-formed states consists
of a union of regions).
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x ≤ 100 → y := 0

¬p p

y ≥ 1 → x := 0
a

y ≤ 2 → y := 0
b2

b1

Fig. 1. A timed automaton game

4 The Minimum-Time Problem

The minimum-time problem is to determine the minimal time in which a player
can force the game into a set of target states, using only reasonable strategies.
This game problem is the generalisation of the non-game version of [12]. For-
mally, given a player i ∈ {1, 2}, a timed game structure G, a target proposition
p ∈ Σ, and a run r of G, let

T i
visit(r, p) =

⎧⎪⎪⎨⎪⎪⎩
∞ if r 
∈ Timediv and r 
∈ Blamelessi;
∞ if r ∈ Timediv and r does not visit p;
0 if r 
∈ Timediv and r ∈ Blamelessi;
inf {t ∈ IR≥0 | p ∈ σ(state(r, 〈t, k〉)) for some k} otherwise.

Then, the minimal time for player 1 to force the game from a start state s ∈ S
to a p state is defined as

T 1
min(s, p) = inf

π1∈Π1
sup

π2∈Π2

{T 1
visit(r, p) | r ∈ Outcomes(s, π1, π2)}.

The minimal time T 2
min(s, p) for player 2 is defined symmetrically. As in Corol-

lary 1, the minimal time remains the same when both players are restricted to
use reasonable strategies.

Proposition 2. Given a state s, a proposition p of a well-formed timed game
structure G, and i ∈ {1, 2}, let T i,∗

min(s, p) be the minimal time for player i to force
the game from s to a p state with both players restricted to use only reasonable
strategies. Then, T i,∗

min(s, p) = T i
min(s, p).

As an example consider the timed automaton game in Figure 1 with initial state
s0 = 〈¬p, (x = 0, y = 0)〉. The action a belongs to player 1 and bj, j ∈ {1, 2}
to player 2. Not all runs in the game graph are non-zeno, in particular player 2
can keep take b1 and keep player 1 from reaching p from s0. However, it can be
easily seen that physically, player 1 will be able to have p satisfied by time 101.

To solve the minimum-time problem, we consider a well-formed timed au-
tomaton game T = 〈L,Σ, σ, C,A1,A2, E, γ〉.

Lemma 3. For a state s and a target proposition p ∈ Σ of a well-formed timed
game automaton T,
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1. Let s |=td
〈
〈i〉
〉
� p. Then there exists d < ∞ such that s |=td

〈
〈i〉
〉
�≤d p.

2. Let s |=td
〈
〈i〉
〉
�≤d p. Then the minimal time for player i to reach p from

state s is less than or equal to d, that is, T i
min(s, p) ≤ d.

3. Let s 
|=td
〈
〈i〉
〉
�≤d p. Then the minimal time for player i to reach p from

state s is not less than d, that is, T i
min(s, p) ≥ d.

Proof. We prove the first claim for i = 1. We have that s |=
〈
〈1〉
〉
�p, thus there

is a player-1 strategy π1 such that for all opposing strategies π2 of player 2, and
for all runs r ∈ Outcomes(s, π1, π2) we have that, 1) if time diverges in run r
then r contains a state satisfying p, and 2) if time does not diverge in r, then
player 1 is blameless. Suppose that for all d > 0 we have s 
|=td

〈
〈1〉
〉
�≤d p. We

have that player 1 cannot win for his objective of �≤d p, in particular, π1 is not
a winning strategy for this new objective. Hence, there is a player-2 strategy πd

2
such that for some run rd ∈ Outcomes(s, π1, π

d
2) either 1) time converges and

player 1 is to blame or 2) time diverges in run rd and rd contains a location
satisfying p, but not before time d. Player 1 does not have anything to gain
by blocking time, so assume time diverges in run rd (or equivalently, assume
π1 to be a reasonable strategy by Proposition 1). The only way strategies πd

2
and runs rd can exist for every d > 0 is if player 2 can force the game (while
avoiding p) so that a portion of the run lies in a region cycle Rk1 , . . . Rkm , with
tick being true in one of the regions of the cycle (note that a system may stay
in a region for at most one time unit). Now, if a player can control the game
from state s so that the next state lies in region R, then he can do the same
from any state s′ such that s′ ∼= s. Thus, it must be that player 2 has a strategy
π∗

2 such that a run in Outcomes(s, π1, π
∗
2) corresponds to the region sequence

R0, . . . , Rk, (Rk1 , . . . Rkm)ω, with none of the regions satisfying p. Time diverges
in this run as tick is infinitely often true due to the repeating region cycle. This
contradicts the fact the π1 was a winning strategy for player 1 for

〈
〈1〉
〉
�p. ��

Lemma 3 suggests the following algorithm for computing the minimal time to
reach p to within a precision of one: first confirm that

〈
〈1〉
〉
�p holds, then itera-

tively check whether
〈
〈1〉
〉
�≤k p holds for k = 0, 1, 2, . . . . Any desired degree of

precision can be acheived by the standard trick of “blowing” up the timed au-
tomaton. The algorithm is exponential both in the size of the timed automaton
game and in the number of bits used to encode the desired precision.

Theorem 2. Given a timed automaton game T, a state s, and a target proposi-
tion p, the minimal time T i

min(s, p) for player i ∈ {1, 2} to force the game from
s to a p state can be computed to within any desired degree of precision.

The dual maximal time problem asks what is the maximal time for which player i
can ensure that the system stays within p states. Corresponding results hold for
the maximum time problem — it can be computed it to within any desired
degree of precision in timed automaton games in EXPTIME.

The problems of computing the exact minimal and maximal times for timed
automaton games are open.
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Abstract. This paper argues that basing the semantics of concurrent
systems on the notions of state and state transitions is neither advisable
nor necessary. The tendency to do this is deeply rooted in our notions
of computation, but these roots have proved problematic in concurrent
software in general, where they have led to such poor programming prac-
tice as threads. I review approaches (some of which have been around for
some time) to the semantics of concurrent programs that rely on neither
state nor state transitions. Specifically, these approaches rely on a broad-
ened notion of computation consisting of interacting components. The
semantics of a concurrent compositions of such components generally re-
duces to a fixed point problem. Two families of fixed point problems have
emerged, one based on metric spaces and their generalizations, and the
other based on domain theories. The purpose of this paper is to argue for
these approaches over those based on transition systems, which require
the notion of state.

1 Introduction

In this paper, I argue that basing the semantics of concurrent systems on the
notion of state and state transitions is problematic. The resulting models often
have unnecessary nondeterminism in the sense that the nondeterminism is an
accident of the choice of modeling technique, rather than an intrinsic or interest-
ing property of the system under study. This complicates analysis and impedes
understanding. Moreover, such models fail to be compositional, in the sense that
deterministic transition systems, when composed, often become nondeterminis-
tic, and that this nondeterminism reveals few if any insights about the system.
The result is poor descriptions of the composite behavior.

Introducing time into concurrent models can help, but it either reduces the
problem to sequential computation or it relies on a fictional abstraction, Newto-
nian universal time. In Newtonian universal time, every component in a
distributed system shares a common notion of time. Networked computational
systems have no mechanism for establishing this common notion of time. Consid-
erable effort is required to establish even an approximate common notion of time
[26], and since it is necessarily approximate, the resulting models will be either
inaccurate or unnecessarily nondeterministic. When a strongly common notion
of time is assumed in the semantics, as in for example discrete-event systems,
then distributed or parallel execution becomes a major challenge [19,57].
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There is a strong draw, however, towards using the notions of state and state
transitions in semantics. These notions are deeply rooted in our understanding
of computation. Programming languages are based on these concepts (and as a
consequence, adapt poorly to concurrent computation [32]). Even our founda-
tional notions of semantics are wedded to state. In [55], for example, Winskel
explains denotational semantics to be a description of commands as functions
mapping a syntax into a function that maps state into state. Winskel observes,
in fact, that this notation appears to not be powerful enough for parallelism
and fairness (presumably because of its focus on a single global state). When it
comes to modeling parallelism, in [55] Winskel focuses on Hoare’s CSP [25] and
Milner’s CCS [42]. He gives both in terms of labeled transition systems, where
the labels can include input/output operations. But labeled transition systems
are intrinsically based on the notion of state. Coupling two deterministic non-
interacting processes (a trivial composition) under either CSP or CCS semantics
will yield a nondeterministic semantic model. This nondeterminism contributes
nothing to the understanding of the system. It reflects the uninteresting and
inconsequential multiplicity of possible interleavings of independent actions.

The focus on transition systems follows naturally from our core imperative
notions of computation. There has been, of course, considerable exploration of
concurrent alternatives to imperative models of computation. For example, in
[20], Goldin et al. describe a persistent Turing machine (PTM), which has three
tapes: input, working, and output. It continually processes data from the in-
put, producing outputs. Networks of these can interact. A “universal PTM” can
simulate the actions of any PTM. Goldin et al. argue that any “sequential inter-
active computation” (which has only a causality restriction) can be represented
by a PTM. PTM’s have stream and actor semantics, and are intrinsically concur-
rent. But they are not compositional. Consider again two non-interacting PTSs.
Without synchronization between these, the resulting composition is not usefully
modeled as a PTM. Similarly, in [22], Gössler and Sifakis argue eloquently for a
separation of behavior models from interaction models. But “behavior” is again
given as transition systems. Once again, without imposing strong synchroniza-
tion, a composition of behaviors is not usefully modeled as a behavior.

Of course, one can introduce synchronization to alleviate these problems. The
synchronous languages [8] take a particularly strong stance on this, where con-
current computations are simultaneous and instantaneous, and at each “tick”
of a global “clock” variables have a value given denotationally as a fixed point.
This model is clean and compositional, but has proved notoriously difficult to
implement in parallel or distributed systems. This has led to a focus on “global
asynchronous, locally synchronous” (GALS) models [9]. These are, by definition,
not compositional, since compositions of asynchronously interacting components
cannot be again made synchronous without introducing unnecessary nondeter-
minism.

Even our notions of equivalence between systems are deeply connected to the
notion of state. In [43], Milner originated the idea of observational equivalence as
mutual simulation (and bisimulation). Simulation and bisimulation are relations
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on states, and hence become much less useful when system state is not a well-
defined concept. To be sure, the formalisms apply, but only at the expense of the
introduction of nondeterminism that is likely not intrinsic to the system being
modeled.

To get a sense of just how deeply rooted the concept of state and state tran-
sitions are, consider next the very notion of computation.

2 Computation as Transformation of State

Let N = {0, 1, 2, · · · } represent the natural numbers. Let B = {0, 1} be the set
of binary digits. Let B∗ be the set of all finite sequences of bits, and

Bω = (N → B)

be the set of all infinite sequences of bits (each of which is a function that maps
N into B). Following [15], let B∗∗ = B∗ ∪Bω. We will use B∗∗ to represent the
state of a computing machine, its (potentially infinite) inputs, and its (potentially
infinite) outputs. Let

Q = (B∗∗ ⇀ B∗∗)

denote the set of all partial functions with domain and codomain B∗∗.
An imperative machine (A, c) is a finite set A ⊂ Q of atomic actions and a

control function c : B∗∗ → N. The set A represents the atomic actions (typically
instructions) of the machine and the function c represents how instructions are
sequenced. We assume that A contains one halt instruction h ∈ A with the
property that

∀ b ∈ B∗∗, h(b) = b.

That is, the halt instruction leaves the state unchanged.
A sequential program of length m ∈ N is a function

p : N → A

where
∀ n ≥ m, p(n) = h.

That is, a sequential program is a finite sequence of instructions tailed by an
infinite sequence of halt instructions. Note that the set of all sequential programs,
which we denote P , is a countably infinite set.

An execution of this program is a thread. It begins with an initial b0 ∈ B∗∗,
which represents the initial state of the machine and the (potentially infinite)
input, and for all n ∈ N,

bn+1 = p(c(bn))(bn). (1)

Here, c(bn) provides the index into the program p for the next instruction
p(c(bn)). That instruction is applied to the state bn to get the next state bn+1.
If for any n ∈ N c(bn) ≥ m, then p(c(bn)) = h and the program halts in state
bn (that is, the state henceforth never changes). If for all initial states b0 ∈ B a
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program p halts, then p defines a total function in Q. If a program p halts for
some b0 ∈ B, then it defines a partial function in Q.1

We now get to the core appeal that sequential programs have. Given a pro-
gram and an initial state, the sequence given by (1) is defined. If the sequence
halts, then the function computed by the program is defined. Any two programs
p and p′ can be compared. They are equivalent if they compute the same partial
function. That is, they are equivalent if they halt for the same initial states, and
for such initial states, their final state is the same.2 Such a theory of equivalence
is essential for any useful formalism. But in extending this theory of equivalence
to concurrent systems, we are tempted to expose the internal sequence of state
transformations, which proves to be an enormous mistake. This mistake under-
lies the technology of multithreaded programming, on which most concurrent
software is built.

The essential and appealing properties of programs are lost when multiple
threads are composed. Consider two programs p1 and p2 that execute concur-
rently in a multithreaded fashion. What we mean by this is that (1) is replaced
by

bn+1 = pi(c(bn))(bn) i ∈ {1, 2}. (2)

At each step n, either program may provide the next (atomic) action. Consider
now whether we have a useful theory of equivalence. That is, given a pair of
multithreaded programs (p1, p2) and another pair (p′1, p

′
2), when are these two

pairs equivalent? A reasonable extension of the basic theory defines them to be
equivalent if all interleavings halt for the same initial state and yield the same
final state. The enormous number of possible interleavings makes it extremely
difficult to reason about such equivalence except in trivial cases (where, for
example, the state B∗∗ is partitioned so that the two programs are unaffected
by each others’ partition). Even in such trivial cases, we need to extend the
semantics in some way to explicitly talk about isolation of state.

Even worse, given two programs p and p′ that are equivalent when executed
according to (1), if they are executed in a multithreaded environment, we can
no longer conclude that they are equivalent. In fact, we have to know about all
other threads that might execute (something that may not itself be well defined),
and we would have to analyze all possible interleavings. We conclude that with
threads, there is no useful theory of equivalence.

1 Note that a classic result in computing is now evident. It is easy to show that Q is not
a countable set. (Even the subset of Q of constant functions is not countable, since
B∗∗ itself is not countable. This can be easily demonstrated using Cantor’s diagonal
argument.) Since the set of all finite programs P is countable, we can conclude
that not all functions in Q can be given by finite programs. That is, any sequential
machine has limited expressiveness. Turing and Church [54] demonstrated that many
choices of sequential machines (A, c) result in programs P that can give exactly the
same subset of Q. This subset is called the effectively computable functions.

2 In this classical theory, programs that do not halt are all equivalent. This creates
serious problems when applying the theory of computation to embedded software,
where useful programs do not halt [30].
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This problem shows up in practical situations. Building non-trivial multi-
threaded program with predictable behavior is notoriously difficult [32]. More-
over, implementing a multithreaded model of computation is extremely difficult.
Witness, for example, the deep subtleties with the Java memory model (see
for example [47] and [21]), where even astonishingly trivial programs produce
considerable debate about their possible behaviors.

The core abstraction of computation given by (1), on which all widely-used
programming languages are built, emphasizes deterministic composition of de-
terministic components. The actions are deterministic and their sequential com-
position is deterministic. Sequential execution is, semantically, function com-
position, a neat, simple model where deterministic components compose into
deterministic results.

Threads, on the other hand, are wildly nondeterministic. The job of the pro-
grammer is to prune away that nondeterminism. We have, of course, developed
tools to assist in the pruning. Semaphores, monitors, and more modern overlays
on threads (see [32] for a discussion of these) offer the programmer ever more
effective pruning.

A model based on nondeterministic interleavings of state transformations is
not a useful model. We should build neither programming techniques nor seman-
tics on it. In [32], I have discussed alternative programming techniques. Here I
discuss alternative approaches to semantics. As with with the programming tech-
niques, these alternative approaches are not new (mostly). The purpose of this
paper is to argue their superiority, not to introduce new techniques.

3 Tagged Signal Model

Instead of functions of the form

f : B∗∗ → B∗∗

concurrent computation can be given in terms of functions of the form

f : (T → B∗∗) → (T → B∗∗), (3)

where (T → B∗∗) is the set of functions with domain T and codomain B∗∗.
In the above, T is a partially or totally ordered set of tags, where the ordering
can represent time, causality, or more abstract dependency relations. A com-
putation viewed in this way maps an evolving bit pattern into an evolving bit
pattern. This formulation is based on the “tagged signal model” [35], and it
has been shown adaptable to many concurrent models of computation [9,12,37].
The mathematical structure of T can be highly variable, depending on the con-
currency model, and can model tight synchronization (as in the synchronous
languages) and loose synchronization (as in stream processing).

The tagged signal model is similar in objectives to the coalgebraic formalism
of abstract behavior types in [4], interaction categories [1], and interaction se-
mantics [51]. As with all three of these, the tagged signal model seeks to model
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a variety of interaction styles between concurrent components, without focus-
ing on their state. Components may have state, and may execute through state
transformations, but this is an irrelevant implementation detail. The notion of
state is not exposed at the interface, and consequently the same model can be
used for compositions of components where the state of the composition is not
well-defined.

When computational components are given in the form of (3), we call the
components actors [31]. Their environment (which can include other actors)
provides them with data, and they react and possibly provide the environment
with additional data. As suggested by the name, the classical “actor model”
[3,24] is actor-oriented in our sense. In the actor model, components have their
own thread of control and interact via message passing. We are using the term
“actors” more broadly, inspired the analogy with the physical world, where ac-
tors control their own actions. In this sense, the synchronous languages [8], for
example, are also actor-oriented. Asynchronous dataflow models are also actor-
oriented in our sense, including both Kahn-MacQueen process networks [28],
where each component has its own thread of control, and Dennis-style dataflow
[17], where components (also called “actors” in the original literature) “fire” in
response to the availability of input data. In our conception, however, composi-
tions of actors are also actors. It does not matter whether the composition has
a single thread of control or a well-defined “firing.”

A number of component architectures that are not commonly considered in
software engineering also have an actor-oriented nature and are starting to be
used as source languages for embedded software [33,30]. Discrete-event (DE)
systems, for example, are commonly used in circuit design and in modeling
and design of communication networks [13,5]. In DE, components interact via
events, which carry data and a time stamp, and reactions are chronologically
ordered by time stamp. In continuous-time (CT) models, such as those specified
in Simulink (from The MathWorks) and Modelica [53], components interact via
(semantically) continuous-time signals, and execution engines approximate the
continuous-time semantics with discrete traces.

When computational components are given in the form of (3), concurrent com-
position can take the form of ordinary function composition. By contrast, under
the imperative model, the clean and simple mechanism of function composition
is only applicable to sequential composition.

For components of form of (3), the domain and range of the function f are
themselves functions, with form x : T → B∗∗. We call these functions “signals.”
They represent a potentially infinite evolving bit pattern. To build a useful se-
mantic model for general concurrent systems, however, we need to broaden this
simplistic model. For one, the model is much more usable if components have
multiple inputs and outputs. This is easy to accomplish.

First, we generalize the notion of a signal. An event is a pair (t, v), where
t ∈ T and v ∈ V , a set of values. The set of events is E = T × V . A signal s is a
subset of E . So the set of all signals is P(E), the power set. A functional signal
s is a partial function from T to V , meaning that if (t, v1) ∈ s and (t, v2) ∈ s,



24 E.A. Lee

then v1 = v2. We denote the set of all functional signals by S = (T ⇀ V).
We will only consider functional signals here, so when we say “signal” we mean
“functional signal.”

Next we generalize the notion of an actor. An actor is associated with a set
of ports. Actors receive and produce events on ports. Thus, a port is associated
with a signal, which is a set of events. Given a set P of ports, a behavior is a
function

σ : P → S.

That is, a behavior for a set of ports assigns to each port p ∈ P a signal σ(p) ∈ S.

Fig. 1. A composition of three actors and its interpretation as a feedback system

Three actors with ports are depicted graphically in figure 1(a). The actors are
represented by rectangular boxes and the ports by small black triangles. At each
port, there is a signal. Note that nothing in our formalism so far constrains the
set V of values. In particular, there is nothing to keep us from including in V
representations of actors themselves, which would yield a higher-order formalism.
In particular, since a signal represents an evolving set of values, such a higher-
order formalism supports evolving actor composition structures.

An actor a with ports Pa is a set of behaviors,

a ⊂ (Pa → S).

That is, an actor can be viewed as constraints on the signals at its ports. A
signal s ∈ S at port p is said to satisfy an actor a if there is a behavior σ ∈ a
such that s = σ(p).

A connector c between ports Pc is also a set of behaviors,

c ⊂ (Pc → S),

but with the constraint that for each behavior σ ∈ c, there is a signal s ∈ S such
that

∀ p ∈ Pc, σ(p) = s.

That is, a connector asserts that the signals at a set of ports are identical. In
figure 1(a), the connectors are represented as wires between ports.
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Given two sets of behaviors, a with ports Pa and b with ports Pb, the compo-
sition behavior set is the intersection, defined as

a ∧ b ⊂ ((Pa ∪ Pb) → S),

where
a ∧ b = {σ | σ ↓Pa∈ a and σ ↓Pb

∈ b},

where σ ↓P denotes the restriction of σ to the subset P of ports.
A set A of actors (each of which is a set of behaviors) and a set C of connectors

(each of which is also a set of behaviors) defines a composite actor. The composite
actor is defined to be the composition behavior set of the actors A and connectors
C. Figure 1(a) is such a composite actor.

In many such concurrent formalisms, ports are either inputs or outputs to an
actor but not both. Consider an actor a with ports Pa = Pi ∪ Po, where Pi are
the input ports and Po are the output ports. In figure 1(a), triangles pointing
into the actor rectangles represent input ports, and triangles pointing out from
the rectangles represent output ports. The actor is said to be functional if

∀ σ1, σ2 ∈ a, (σ1 ↓Pi= σ2 ↓Pi) ⇒ (σ1 ↓Po= σ2 ↓Po).

Such an actor can be viewed as a function from input signals to output signals.
Specifically, given a functional actor a with input ports Pi and output ports Po,
we can define a function

Fa : (Pi → S) ⇀ (Po → S). (4)

This function is total if any signal at an input port satisfies the actor. Otherwise
it is partial. If the function is total, the actor is said to be receptive. A connector,
of course, is functional and receptive.

An actor with no input ports (only output ports) is functional if and only if
its behavior set is a singleton set. That is, it has only one behavior. An actor
with no output ports (only input ports) is always functional.

A composition of actors and connectors is itself an actor. The input ports
of such a composition can include any input port of a component actor that
does not share a connection with an output port of a component actor. If the
composition has no input ports, it is said to be closed. Figure 1(a) is a closed
composition.

A composition is determinate if it is functional. Note that now a composition
is determinate if and only if its observable behavior is determinate. There is no
accidental nondeterminism due to the choice of modeling technique.

A key question in many such concurrent formalisms is, given a set of total
functional actors and connectors, is the composition functional and total? This
translates into the question of existence and uniqueness of behaviors of compo-
sitions. It determines whether a composition is determinate and whether it is
receptive. This is a question of semantics.
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4 Semantics

First, we observe that the semantics of any network of functional actors is the
signal values. This reduces to a fixed point problem. In particular, any compo-
sition of functional actors can be restructured as a single actor with feedback
connections. The composition in figure 1(a) can be redrawn as shown in figure
1(b), which suggests the abstraction shown in figure 1(c). It is easy to see that
any diagram of this type can be redrawn in this way and abstracted to a single
actor with the same number of input and output ports, with each output port
connected back to a corresponding input port.

It is also easy to see that if actors a1, a2, and a3 in figure 1(b) are functional,
then the composite actor a in figure 1(c) is functional. Let Fa denote the function
of the form (4) giving the behaviors of a. Then the behavior of the feedback
composition in figure 1(c) is a function

f : {p1, p2, p3} → S

that is a fixed point of Fa. That is,

Fa(f) = f.

A key question, of course, is whether such a fixed point exists (does the compo-
sition have a behavior?) and whether it is unique (is the composition determi-
nate?).

For some models of computation, a unique semantics is assigned even when
there are multiple fixed points by associating a partial order with the set S
of signals and choosing the least or greatest fixed point. For dataflow models
[27,11,34], a prefix order on the signals turns the set of signals into a complete
partial order (CPO). Given such a CPO, we define the semantics of the diagram
to be the least fixed point. The least fixed point is assured of existing if a is
monotonic, and a constructive procedure exists for finding that least fixed point
if a is also continuous (in the prefix order) [27]. It is easy to show that if a1, a2,
and a3 in figure 1(b) are continuous, then so is a in figure 1(c). Hence, continuity
is a property that composes easily.

This approach builds on domain theory [2], developed for the denotational
semantics of programming languages [55,50]. But unlike many semantics efforts
that focus on system state and transformation of that state, it focuses on concur-
rent interactions, and does not even assume that there is a well-defined notion
of “system state.”

Note that even when a unique fixed point exists and can be found, the result
may not be desirable. Suppose for example that in figure 1(c) Fa is the identity
function. This function is continuous, so under the prefix order, the least fixed
point exists and can be found constructively. In fact, the least fixed point assigns
to each port the empty signal. We interpret this result as deadlock, because an
execution of the program cannot proceed beyond the empty signals. Whether
such a deadlock condition exists is much harder to determine than whether the
composition yields a continuous function. In fact, it can be shown that in general
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this question is undecidable for dataflow models [34]. An approach that analyzes
such networks for such difficulties is given in [36] and [58]. This approach defines
causality interfaces for actors and gives an algebra for composing these interfaces.

In synchronous languages, the problem of existence and uniqueness reduces
to determining existence and uniqueness at each tick of the global clock, rather
than over the entire execution. In this case, we can use a flat CPO (rather than
one based on a prefix order) and similarly assign a least fixed point seman-
tics [49,10,18]. In this CPO, all monotonic functions are continuous. As in the
dataflow case, continuity composes easily, but does not tell the whole story. In
particular, the least fixed point may include the bottom ⊥ of the CPO, which
represents an “unknown” value. When this occurs, the program is said to have
a causality loop. Whether a program has a causality loop can be difficult to de-
termine in general, but one can define a conservative “constructive semantics”
that enables a finite static analysis of programs to determine whether a program
has a causality loop [10]. One can further define a language that needs to know
very little about the actors to determine whether such a causality loop exists
[18]. The causality interfaces of [36] and [58] can again be used to analyze these
models for causality loops.

When T represents time, it is customary to define semantics using metric
space approaches [6,48,56,7,16,29]. In such formulations, causality plays a central
role. Causality intuitively defines the dependence that outputs from a concurrent
component have on inputs to that component. In metric-space formulations,
causal components are modeled as contracting functions in the metric space,
conveniently enabling us to leverage powerful fixed-point theorems.

In [39], Liu, Matsikoudis, and myself recently showed that the standard metric-
space formulation excessively restricts the models of time that can be used. In
particular, it cannot handle super-dense time [40,41], used in hardware descrip-
tion languages, hybrid systems modeling, and distributed discrete-event models.
Super-dense time is essential to cleanly model simultaneous events without un-
necessary nondeterminism. Moreover, the metric-space approaches do not handle
well finite time lines, and time with no origin. Moreover, if we admit continuous-
time and mixed signals (essential for hybrid systems modeling) or certain Zeno
signals, then causality is no longer equivalent to its formalization in terms of
contracting functions. In [39], Liu et al. give an alternative semantic framework
using a generalized ultrametric [45] that overcomes these limitations. The exis-
tence and uniqueness of behaviors for such systems comes from the fixed-point
theorem of [46], but this theorem gives no constructive method to compute
the fixed point. In [14] we go a step further, and for the particular case of
super-dense time, we define petrics, a generalization of metrics, which we use to
generalize the Banach fixed-point theorem to provide a constructive fixed-point
theorem.

Domain-theoretic approaches, it turns out, can also be applied to timed sys-
tems, obviating the need for a metric space. The following approach is described
in [38], which is based on [37]. This approach constrains the tagged signal model
described above in a subtle but important way. Specifically, it assumes that the



28 E.A. Lee

tag set is a poset (T ,≤), and that a signal is a partial function defined on a
down set of T (a similar restriction is made in [44]). A subset T ′ of T is a down
set if for all t′ ∈ T ′ and t ∈ T , t ≤ t′ implies t ∈ T ′. Down sets are also called
initial segments in the literature [23]. Under this approach, a signal s : T ⇀ V
is a partial function from T to V such that dom(s) is a down set of T , where
dom(s) is the subset of T on which s is defined.

This constraint leads to a natural prefix order on signals. For any s1, s2 ∈ S,
s1 is a prefix of s2, denoted by s1 � s2, if and only if dom(s1) ⊆ dom(s2), and
s1(t) = s2(t), ∀t ∈ dom(s1). That is, a signal s1 is a prefix of another signal s2
if the graph of the function s1 is a subset of the graph of the function s2. The
prefix order on signals is a natural generalization of the prefix order on strings
or sequences, and the extension order on partial functions [52]. It is shown in
[38] that existence and uniqueness of behaviors are ensured by continuity with
respect to this prefix order. Causality conditions are also defined that ensure
liveness and freedom from Zeno conditions. In this formulation, causality does
not require a metric and can embrace a wide variety of models of time in timed
concurrent systems.

In summary, approaches to semantics based on the tagged signal model, rather
than on the notion of state and state transitions, appear to accomplish the key
objectives of studies semantics. Since they do not explicitly depend on the notion
of state, they do not introduce unnecessary and uninteresting nondeterminism
due to irrelevant interleavings of state transitions.

5 Conclusion

I have argued that basing the semantics of concurrent systems on the notions of
state and state transitions is neither advisable nor necessary. The tendency to
do this is deeply rooted in our notions of computation, but these roots have also
proved problematic in concurrent programming, where they have led to such
poor programming foundations as threads. I have outlined some approaches
to the semantics of concurrent programs that rely on neither state nor state
transitions.
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Temporal Logic based on the two modalities “Since” and “Until” (TL) is pop-
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The goal of this talk is to survey expressiveness and decidability results for
temporal and predicate logics for the specification of metric properties of real
time.
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Abstract. Current numerical model checkers for stochastic systems can
efficiently analyse stochastic models. However, the fact that they are un-
able to provide debugging information constrains their practical use. In
precursory work we proposed a method to select diagnostic traces, in the
parlance of functional model checking commonly referred to as failure
traces or counterexamples, for probabilistic timed reachability properties
on discrete-time and continuous-time Markov chains. We applied directed
explicit-state search algorithms, like Z∗, to determine a diagnostic trace
which carries large amount of probability. In this paper we extend this
approach to determining sets of traces that carry large probability mass,
since properties of stochastic systems are typically not violated by single
traces, but by collections of those. To this end we extend existing heuris-
tics guided search algorithms so that they select sets of traces. The result
is provided in the form of a Markov chain. Such diagnostic Markov chains
are not just essential tools for diagnostics and debugging but, they also
allow the solution of timed reachability probability to be approximated
from below. In particular cases, they also provide real counterexamples
which can be used to show the violation of the given property. Our algo-
rithms have been implemented in the stochastic model checker PRISM.
We illustrate the applicability of our approach using a number of case
studies.

1 Introduction

Motivation. Software debugging is an important task in the design, implemen-
tation and integration of systems. In particular Model Checking techniques have
recently been used extensively to aid the developer in fixing errors. To this end it
is necessary that Model Checkers provide meaningful debugging information. In
Model Checking of functional properties such information can be made available
without additional computational cost. In the case of a safety property violation,
Model Checkers like SPIN [1] deliver a single linear failure trace from the initial
state to a property violating state that may later be used in locating the cause
of a property violation. In model checking parlance such a failure trace is called
a counterexample to the desired safety property. To obtain short and therefore
easy to comprehend counterexamples, search techniques such as Breadth-First

E. Asarin and P. Bouyer (Eds.): FORMATS 2006, LNCS 4202, pp. 33–51, 2006.
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Search (BFS) or Directed Model Checking (DMC) [2], which relies on heuristics
guided state space search, can be employed.

Performance and dependability models are usually represented as stochastic
models describing how the system changes from state to state as time passes.
In the presence of stochastic models we are not just interested in detecting
functional failure behavior of the system but in the quantitative analysis of its
dependability and performance. We use the terms target state for states which
we are interested in, i.e. states satisfying a given state proposition, and diagnos-
tic traces for traces leading to target states. As in the functional setting, DMC
algorithms can be employed in the Model Checking of safety properties to select
diagnostic traces that are meaningful in the fault localization process. However,
contrary to the functional setting, in the stochastic context we are faced with
two main challenges. First, indicative of the quality of a diagnostic trace is not
its length, but its probability mass. Hence, in order to use heuristics guided
search techniques it is necessary to find a new quality measure based on the
probability mass of traces as well as heuristics functions based on this measure
that steer the search along traces with high probability mass. We first addressed
this problem in [3]. Second, one diagnostic trace is in general not enough to pro-
vide meaningful error information for explaining why some probabilistic safety
property is satisfied or not since all diagnostic traces contribute jointly to the
probability of the property. Thus, the developer needs to consider a reasonably
large set of diagnostic traces in order to debug the model. Obviously, the more
probability this set carries, the more expressive it is. In this paper we address
this challenge using advanced heuristic guided algorithms which make it possible
to incrementally select a set of diagnostic traces with a high probability mass.
This set forms a Markov chain which emulates the original model with respect
to the given property.

In our approach, the set of diagnostic traces is incrementally selected. Its
probability mass gradually grows during the search process with every iteration.
However, it can always be ensured to be a lower bound of the total probability
of the given property. In other words, the total probability of the given property
to be satisfied is approximated from below. In particular cases, our method
can be used to generate a counterexample which shows the violation of the
given property. In this case a set of traces is computed whose probability is not
smaller than the given probability upper bound. In order to repair the model, the
developer has to consider the computed set. That is because, it is not possible
to decrease the total probability to be under the given upper bound without
applying changes to this part of the model.

Related Work and State of the Art. Many heuristic strategies and algorithms
have been introduced to solve problems of, amongst others, graph search and
optimization. In [4], Pearl has given a widespread overview of a set of general-
purpose problem solving strategies, e.g. Best First (BF) and Generalized Best
First (GBF). Also a variety of specialized directed search algorithms, e.g. A∗

and Z∗, have been proposed. An approach how to apply heuristics guided di-
rected search algorithms to functional explicit state Model Checking, especially



Extended Directed Search for Probabilistic Timed Reachability 35

for the generation of counterexamples, has been presented in [2]. Discrete- and
continuous-time Markovian models, e.g. Markov chains and Markov decision
processes, build a very important and widely used class of stochastic models
[5,6,7]. Prevalent stochastic Model Checkers, like PRISM [8], ETMCC [9] and
its successor MRMC [10], apply efficient numerical methods to analyze Marko-
vian models with respect to performance and dependability properties expressed
in a stochastic temporal logic, like the Probabilistic CTL (PCTL) [11] or the Con-
tinuous Stochastic Logic (CSL) introduced in [12] and extended in [13]. These
numerical approaches reach a high degree of numerical result accuracy. However,
they are memory intensive because they keep the whole state space of the model
in memory. Another disadvantage of these approaches is their inability to deliver
debugging information, in particular diagnostic traces. Some approaches attempt
to reduce the memory consumption of stochastic Model Checking using Monte-
Carlo sampling methods [14,15,16]. Our method and these approaches have the
generation of explicit paths through the stochastic model in common. However,
while the goal of these approaches is to perform the stochastic model check-
ing using Monte-Carlo sampling, ours is to dissect a meaningful portion of the
model. In our own precursory work we proposed an approach based on Directed
Model Checking to select a diagnostic trace which carries a high probability for
a given probabilistic safety property specified on a discrete-time Markov chain
[3]. We have also proposed an approximation based on uniformization to deal
with continuous-time Markov chains. Our approach is memory saving because
it is performed on the fly.

Structure of the Paper. In Section 2 we introduce the stochastic models which
we use as well as related notations and further preliminaries. Section 3 gives
an overview on directed stochastic algorithms. In Section 4 we introduce our
new algorithms and discuss their properties. Section 5 contains case studies and
experimental evaluation of the approach. We conclude the paper in Section 6.

2 Stochastic Systems

2.1 Markov Chains

A discrete-time Markov chains (DTMC) is a probabilistic transition system con-
sisting of states and transitions between them. Each transition is labeled with
a numerical value called transition probability. It indicates the probability for
firing this transition as the next step of the system if the system is in the origin
state of the transition. Formally, we define a DTMC as follows:

Definition 1. A labeled discrete-time Markov chain (DTMC) D is a quadruple
(S, sinit, P, L), where

– S is a finite set of states
– sinit ∈ S is an initial state
– P : S × S −→ [0, 1] is a probability matrix, satisfying that for each state s,∑

s′∈S

P (s, s′) = 1.
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– L : S −→ 2AP is a labeling function, which assigns each state a subset of the
set of atomic propositions AP . We interpret this to define the set of valid
propositions in the state.

For each pair of states s and s′, P (s, s′) gives the probability to move from s to
s′. For a pair of states s and s′, a transition from s to s′ is possible if and only if
P (s, s′) > 0 holds. A state s is called absorbing if P (s, s) = 1 and consequently,
P (s, s′) = 0 for all other states s′ 
= s.

Example 1. Figure 1 illustrates a simple DTMC D = (S, s0, P, L) with S =
{s0, s1, s2}. The probability matrix P is given on the left hand side of the figure.
On the right hand side of the figure, the DTMC is illustrated as a state transition
graph. The labeling function L can be, for example, defined as:

L = {(s0, {idle}), (s1, {active}), (s2, {broken})},

where AP = {idle, active, broken}. The state s2 is obviously absorbing.

P =

⎛⎝ 0.0 1.0 0.0
0.9 0.0 0.1
0.0 0.0 1.0

⎞⎠ 0.1

1.00.9

1.0

�� �� ��

Fig. 1. A simple DTMC

Because of their simplicity, DTMCs are widely used in the modeling and analysis
of stochastic systems. However, as the name already indicates, time is assumed to
be discrete. If a more realistic modeling is required, then continuous-time Markov
chains (CTMCs) are used. While each transition of a DTMC corresponds to a
discrete time-step, in a CTMC transitions occur in real time. Instead of transition
probability, each transition is labeled by a rate defining the delay which occurs
before it is taken. The probability of a transition from s to some state s′ being
taken within t time units is described by a random variable which follows a
negative exponential distribution with the transition rate as a parameter. To
simplify matters, we illustrate our approach on DTMCs. However, we note that
our approach can deal with CTMCs due to a uniformization based approximation
presented in [3].

2.2 Paths and Traces

We now define the notions of paths and traces frequently used in this paper
when talking about the probability mass of system execution. In this section, let
D = (S, sinit, P, L) be a DTMC.

Definition 2. An infinite path through D is a sequence s0 −→ s1 −→ s2 −→ . . .
with, for i ∈ N, si ∈ S and P (si, si+1) > 0. A finite path is a finite sequence
s0 −→ s1 −→ . . . sl−1 −→ sl with, for all i ∈ {0, . . . , l}, si ∈ S, P (si, si+1) > 0 for
all i < l and sl is absorbing.
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PathsD denotes the set of all (finite and infinite) paths throughD. For some state
s, PathsD(s) denotes the set of all paths starting in s. For some path σ, define
states(σ) as the set of all states and trans(σ) as the set of all transitions ap-
pearing in σ. length(σ) is the number of transitions, i.e. length(σ) = |trans(σ)|.
For a number i, with 0 ≤ i ≤ length(σ), σ[i] is the i-th state of σ and σ ↑ i refers
to the finite prefix of σ of the length i. The notations given in the paragraph are
defined on finite prefixes as on paths.

Example 2. For the path σ = s0 −→ s1 −→ s0 −→ s1 −→ s2 through the DTMC from
Example 1, we get states(σ) = {s0, s1, s2} and trans(σ) = {(s0, s1), (s1, s0),
(s1, s2))}. length(σ) is 4. σ[0], as well as σ[2], is s0, and σ[4] is s2. The 0th finite
prefix of σ is s0 and the 3rd is s0 −→ s1 −→ s0 −→ s1.

The probability measure Pr of paths is defined in a standard manner on the
smallest σ-algebra on PathsD(sinit) generated by sets of paths with a common
finite prefix as follows:

Pr({σ ∈ PathsD(sinit) | σ ↑ n=s0 −→ s1 −→ . . . −→ sn})=P (s0, s1)·...·P (sn−1, sn),

where s0 is just another reference to the initial state, i.e. s0 = sinit. Obvi-
ously, the set {σ ∈ PathsD(sinit) | σ ↑ n = s0 −→ s1 −→ . . . −→ sn} is com-
pletely characterized by the prefix s0 −→ s1 −→ . . . −→ sn. Thus, we rewrite the
equation above replacing the set by the prefix itself: Pr(s0 −→ s1 −→ . . . −→ sn) =
P (s0, s1) · ... · P (sn−1, sn).

Definition 3. A trace is a finite sequence of states < s0, s1, . . . , sn >, including
the self loops of all states s0, . . . , sn, where, for all i ∈ {0, . . . , n − 1}, it holds
that si 
= si+1 and P (si, si+1) > 0.

For a given trace R =< s0, s1, . . . , sn >, we define the following notation:
first(R) = s0, last(R) = sn, states(R) = {s0, s1, . . . , sn}, trans(R) = {(si, si+1)
| 0 ≤ i < n}∪{(si, si) | 0 ≤ i ≤ n ∧ P (si, si) > 0} and length(R) = |states(R)|−
1. We refer to the set of all traces through the DTMC D as TracesD. For a pair
of states s and s′, TracesD(s, s′) refers to the set containing all traces through D
from s to s′, i.e. TracesD(s, s′) = {R ∈ TracesD | first(R) = s ∧ last(R) = s′}.
If D is clear from the context we omit the respective superscript.

We point out that, using the notation of traces, we abstract from the number
of repetitions of a cycle. Repeating the cycles in a concrete way results in a
concrete finite prefix which induces a set of paths. Thus, each trace R can be
considered as a compact representation of a set of paths Paths(R) which we
formally define as follows:

Paths(R) := { σ ∈ Paths(first(R)) | ∃n ∈ N : last(σ ↑ n) = last(R)
∧ states(σ ↑ n) = states(R)
∧ trans(σ ↑ n) ⊆ trans(R) }.

(1)

This means that each path σ from Paths(R) starts with a finite prefix from
first(R) to last(R) which hits each state from R using exclusively transitions
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from R. Note that not all transitions of R have to appear in the path σ. Con-
sequently, σ does not have to contain all self loops of R. We are usually inter-
ested in paths from Paths(R) which reach last(R) before a given time bound
T . We call such paths time bounded and refer to this subset of Paths(R) as
Paths(R, T ). Formally, Paths(R, T ) is defined as follows: Paths(R, T ) := { σ ∈
Paths(R) | ∃n ≤ T : last(σ ↑ n) = last(R) }. Note that Paths(R) is equal to
Paths(R,∞).

Example 3. R1 =< s0, s1, s2 > and R2 =< s0, s1, s0, s1, s2 > are examples for
traces in the DTMC D described in Example 1. The sets of paths induced by
R1 and R2 for the time bound 4 are:

Paths(R1, 4) = {σ ∈ Paths(s0) | σ ↑ 2 = s0 −→ s1 −→ s2}
Paths(R2, 4) = {σ ∈ Paths(s0) | σ ↑ 2 = s0 −→ s1 −→ s2}

∪ {σ ∈ Paths(s0) | σ ↑ 4 = s0 −→ s1 −→ s0 −→ s1 −→ s2}

Note that, Paths(R1, 4) is a subset of Paths(R2, 4).

Traces are relevant because search algorithms act on the state transition graph
of the model and deliver, as will be shown later, traces as a result. Thus, it is
important to define a mass to measure the stochastic quality of traces. For this
purpose, we consider each trace as a set of paths. Accordingly, for a trace R and
time bound T , we define a function ψ as follows:

ψ(R, T ) = Pr(Paths(R, T )). (2)

This definition presumes that first(R) is a start state of the DTMC. Intuitively,
ψ is the probability mass of the set of time bounded paths induced by the trace
R.

Example 4. For the trace R1 and R2 from Example 3, we compute ψ(R1, 4) and
ψ(R2, 4) as follows:

ψ(R1, 4) = Pr(Paths(R1, 4)) = Pr(s0 −→ s1 −→ s2) = 1.0 · 0.1 = 0.1
ψ(R2, 4) = Pr(Paths(R2,4))=Pr(s0 −→ s1 −→ s2) + Pr(s0 −→ s1 −→ s0 −→ s1 −→ s2)

= 1.0 · 0.1 + 1.0 · 0.9 · 1.0 · 0.1 = 0.19

Using the function ψ, we are now able to compare traces with respect to their
stochastic quality. For two traces, the one with the higher ψ value is considered to
be superior to the one with the lower value. Accordingly, we define the optimality
of traces as follows.

Definition 4. Let M be a set of traces. We call a trace R ∈ M optimal over M ,
iff for any other trace R′ ∈ M the following inequality holds: ψ(R, T ) ≥ ψ(R′, T ).

We call traces, which do not contain cycles except for self loops, forward traces.
More precisely, a trace R =< s0, s1, . . . , sn > is a forward trace iff ∀i, j ∈
{0, 1, . . . , n} : si = sj ⇒ i = j.
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3 Directed Algorithms for Probabilistic Timed
Reachability

3.1 Probabilistic Timed Reachability Properties

In our approach we address an important class of properties for stochastic sys-
tems namely probabilistic timed reachability (PTR) properties. Such properties
express a constraint on the probability of reaching some state satisfying a given
state proposition ϕ within a given time period T . We restrict ourselves to ϕ
being state propositions and call states satisfying ϕ target states, and we write
s |= ϕ for any target state s. PTR properties are safety properties. They are
widely used in specifying dependability and performance properties of systems.
PTR properties can be cast as instances of the following pattern: ”What is the
probability to reach a state satisfying a state proposition ϕ within time period T?
In stochastic temporal logics like PCTL [11] or CSL [13], such properties are for-
mulated as follows: P(♦≤T ϕ). We note that after a slight technical modification
our method can easily be applied to time-bounded Until formulas of the form
P(ϕ1 U≤ T ϕ2).

For a given DTMC D = (S, sinit, P, L), P(♦≤T ϕ) computes the probability
mass of the set of all paths through D which lead to any target state within the
time period T . Technically, P(♦≤T ϕ) is determined based on the computation of
the corresponding transient probability. For a given state s ∈ S and a time point
t, the transient probability π(s, t) is the probability to be in s exactly at the time
point t. Formally, π(s, t) := Pr{σ ∈ PathsD(sinit) | σ@t = s}. The procedure
for the computation of P(♦≤T ϕ) consists of two steps. First, the stochastic
model checker renders all target states absorbing, i.e. for each target state s all
outgoing transitions are ignored and a self loop with transition probability 1 is
added to s. Second, the model checker computes the transient probability of all
target states at the time point T as follows:

Prob(♦≤T ϕ) :=
∑
s�ϕ

π(s, T ) (3)

Note that in the modified model the system can never leave a reached target
state because all target states have been made absorbing. We refer to the proba-
bility defined in Equation 3, i.e. the probability of satisfying the PTR property,
as the timed reachability probability. Occasionally it is required that the timed
reachability probability is bounded by an upper or a lower bound. In these cases
a bounded version of the operator P is used, e.g. P≤p or P≥p. We use the terms
upwards and downwards bounded PTR property to refer to a PTR property with
a bounded P operator.

Diagnostics for PTR Properties. The verification of a given PTR property relies
on the analysis of paths leading to target states within the given time period,
as Equation 3 and the definition of π given above highlight. Thus, the devel-
oper would surely be interested in such paths when she or he is debugging the
model with respect to a given PTR property. We call such paths diagnostic
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paths. However, a single path has a very low probability mass compared to the
whole probability of the property. In the case of a CTMC, the probability of a
single path is even zero. For this reason, we consider diagnostic traces instead of
diagnostic paths.

Definition 5. For a PTR property P(♦≤T ϕ) specified on a DTMC D =
(S, sinit, P, L), a diagnostic trace R is an element from the set ∪

s|=ϕ
{R ∈ TracesD

(sinit, s) | length(R) ≤ T }.

Intuitively, a diagnostic trace R is a trace from the initial state to any target
state with the length of at most T �. It can be easily shown that Paths(R, T )
contains only diagnostic paths.

3.2 Best-First Search (BF)

Most of the prevalent path directed search algorithms are based on a common
optimizing search strategy called Best-First (BF) [4]. This strategy uses a hash
table called CLOSED to collect information about all explored states which have
been expanded, i.e. their successors have been generated. We call such states
closed states. Additionally, it uses a priority queue called OPEN to store all ex-
plored states which have not been expanded yet. We call such states open states.
The queue OPEN is organized as a priority queue which is sorted according
the ”quality” of states. This quality is estimated numerically by an evaluation
function f . Amongst others, f usually depends on local state information, e.g.
values of the state variables, and information gathered by the search up to that
point. f may also depend on the specification of the target, in our case the given
PTR property, as well as further knowledge about the problem domain that may
be available, in which case we call the resulting algorithm informed or directed.
This knowledge is mostly encoded in a heuristic function h which is used by
the evaluation function f . In each iteration BF expands the optimal open state
s, i.e. the state from OPEN with the best f value, moves it from OPEN to
CLOSED. Each successor state s′ is checked on being a target state. If s′ is a
target state, the algorithm terminates with the solution. Otherwise, s is put into
OPEN. Once OPEN is empty, the algorithm terminates without a solution. The
strategy BF∗ is derived from BF strategy by a slight modification called termi-
nation delay. The termination delay means that the termination of the algorithm
is delayed until a target state is selected for expansion. In both strategies BF
and BF∗, the evaluation function f remains arbitrary. Both strategies do not
specify how f is computed. This is a major issue which has a significant impact
on the search effort and the solution’s nature. BF and BF∗ are instantiated to
concrete algorithms by specifying a concrete evaluation function f or requiring
f to satisfy particular conditions. For instance, the prominent A∗ algorithm is
obtained from BF∗ if an additive computation of the path length is used as an
evaluation function f [4]. If the evaluation function f is computed recursively,
� If length(R) is greater that T , then Paths(R,T ) is empty. Consequently, ψ(R, T ) is

equal to zero.
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then BF becomes Z and BF∗ becomes Z∗ [4]. More precisely, in Z or Z∗, when a
state s is expanded, for a successor state s′, f(s′) is computed by an arbitrary
combination of the form f(s′) = F [χ(s), f(s), h(s′)], where χ(s) is a set of local
parameters characterizing s, e.g. the weight of the transition (s, s′).

3.3 Stochastic Directed Search Algorithms

In [3] we have shown how to explore the state space of a given Markov chain
using (directed) search algorithms in order to generate a diagnostic trace for a
given PTR property. To this end, we proposed a stochastic evaluation function for
DTMCs based on the stochastic quality of traces. To be able to deal with CTMCs
we proposed an approximation based on uniformization (see Section 2.1). To
facilitate understanding the algorithms used in this approach we briefly recall,
in this section, the algorithms which we used in [3].

Stochastic Evaluation Function. The search algorithm spans a tree called search
tree. For each explored state s there exists exactly one trace R leading from the
initial state to s. We define a new function γ as follows:

γ(s) := ψ(R, T ), (4)

where T is the time bound in the considered PTR property and ψ is as defined
in Equation 2. Additionally, we expect a heuristic function h which estimates the
stochastic quality of the optimal diagnostic trace starting in the current state,
i.e. the sate we are computing the f value for. More precisely, for a given state
s, let R∗ be an optimal diagnostic trace starting in s, i.e. R∗ is optimal over
the set of all diagnostic traces starting in s (see Definition 4). h(s) estimates the
stochastic quality of R∗, i.e. the value ψ(R∗, T ), which means that we act as if
s were the initial state. Note that h(s) can only give a heuristic estimate based
on the description of s, information gathered by the prior search and general
knowledge about the problem. Although we can not give a general definition of
h because it is application dependent, we proposed in [3] a method to obtain
heuristic functions starting from given estimation for atomic state propositions.

The algorithms Z and Z∗ used in our approach use the product of γ and h as
an evaluation function f . Formally, f is defined as follows:

f(s) := γ(s) · h(s). (5)

Equation 4 might induce the impression that one has to traverse the trace from
a given state up to the initial state in order to compute γ for the given state.
This is surely not the case. The computation is performed using information
which we have gathered during the prior search and attached to the predecessor
of the state which we are computing the γ value for. More concretely, we mark
each open state s with a vector π′(s) which gives the transient probabilities of
s restricted on the trace from the initial state to s for the time from 0 to T .
When s is expanded, for any successor state s′, γ(s′) is computed according the
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following expression: γ(s′) = P (s, s′) ·
t−1∑
k=0

π′(s, k). Altogether, f is computed

recursively as follows (c.f. Section 3.2):

f(s′) = F [χ(s), f(s), h(s′)] = F [χ(s), h(s′)] = F [{π′(s), P (s, s′)}, h(s′)]
= γ(s′) · h(s′).

In order to illustrate during our later experimental evaluation the advantage of
using informed search approaches we introduce two auxiliary algorithms. They
are derived from Z and Z∗ by omitting heuristic estimate function h in the
evaluation function f , i.e. f := γ. As we can observe from Equation 4, γ depends
only on local state information and information gathered by the prior search.
We call the resulting algorithms undirected Z (UZ) and undirected Z∗ (UZ∗). If
we use BF with just h, as described above, as an evaluation function, we get a
greedy algorithm. The optimality of this algorithm is not guaranteed in general.
However, it has usually a very good performance in terms of runtime as well as
memory consumption. In the remainder of the paper, we refer to this algorithm
simply as Greedy.

4 Extended Directed Search Algorithms

In this section we present a search strategy which extends the algorithms pre-
sented in our precursory work [3] and and which we discussed in Section 3. For
a given PTR property, the new strategy makes it possible to generate not only
one diagnostic trace but a set of diagnostic traces.

4.1 Extended Best-First Search (XBF)

We extend the Best-First strategy (BF) to a new strategy which we call Extended
Best-First (XBF). The primary aim of this extension is to select a reasonable set
of diagnostic traces which approximates the relevant behavior of the model, with
respect to a given PTR property, from below. This set is helpful in diagnostics
and can be used as a counterexample in the case of upwards bounded PTR prop-
erties. Algorithms based on BF explore the state transition graph of the model
spanning a tree called traversal or search tree. Consequently, in the explored part
of the state space, each state has exactly one parent. This excludes the possibil-
ity to accommodate cycles in the solution. Hence, the solution space is restricted
to forward diagnostic traces. The idea is to develop a directed search strategy
which explores the state transition graph of the model using a subgraph. We
thus allow an explored state to have more than one parent. Additionally, XBF
is designed so that it is able to select more than one target state. XBF is mainly
obtained from BF by three modifications.

1. For each state we record all parent states which we find during the search.
Therefore, we replace the single parent reference used in BF by a list PAR-
ENTS containing all parents detected by the search.
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2. Additionally to OPEN and CLOSED, XBF maintains a list TARGETS which
contains a reference for each target state encountered during the search.

3. XBF does not terminate when it finds the first solution. It continues the
search for further solutions until the whole state space is processed or ter-
mination is explicitly requested.

The pseudo code of XBF is given in Algorithm 1. In the body of the while-loop
(starting at code lines 3), there is no statement which directly causes a termi-
nation of the loop. Thus, the loop will run until the condition ”OPEN is empty
or termination is requested” is fulfilled. OPEN becomes empty when the state
space is completely explored. The termination can also be explicitly requested
using an arbitrary external condition which we refer to as the external termina-
tion condition. An example for that is that the number of the found diagnostic
traces or the probability mass of the found solution exceeds a given bound. The
if-statement starting at line 7 is used to detect new diagnostic traces. If the con-
sidered state s′ is a target state or it is known, from prior search, that a target
state is reachable from s′, then we know that a new diagnostic trace is found. In
this case, all known ancestor states of s′ are marked as solution states. The code
line 10 is useful to gather any information needed for the external termination
condition, for example the number of found diagnostic traces is increased or/and
the probability mass of the solution can be updated. Additionally, if s′ is a target
state, then it is also added to the TARGETS list. For each explored state s, a
list PARENTS is used to keep pointers to all known parents of s (c.f. code lines
13, 14 and 16). Consequently, we are able to record all found traces leading to s
including cycles.

Note that the stochastic evaluation function f from Equation 5 is defined
based on the assumption that the explored part of the state transition graph is a
tree, c.f. the definition of γ in Equation 4. This is not the case for XBF. Strictly
speaking, we should redefine the function f taking into account that the explored
state space is not a tree but a subgraph of the whole state space. Consequently,
for a given state s, when a new trace leading to s is found, we should recompute
f(s) and correct the transient probability vector π′(s) taking this trace into
account. To do this, the old vector π′(s) is needed. Therefore, we would have to
store the vector π′ not only for open but also for closed states. Additionally, π′(s)
was used to compute the transient probabilities of the successors of s. Thus, the
whole explored part of the state space rooted at s would have to be re-explored in
order to recompute π′ for all states in that part. This would drastically decrease
the performance of the algorithm in terms of both memory consumption and
runtime. Therefore, we keep the definition of f based on the tree formed by
the optimal traces. For each explored state s, let Tracesexpl(sinit, s) be the
set of explored traces from sinit to s. We slightly modify the definition of γ
as γ(s) := ψ(R, T ), where R ∈ Tracesexpl(sinit, s) is an optimal trace over
Tracesexpl(sinit, s). Consequently, we reopen a state only if a better trace leading
to it is found.

When the search algorithm terminates the solution is constructed using the
if-statement at line 20. In our application, this step includes back tracking the
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Data: Safety property ϕ, the initial state sinit and a state transition relationship
Result: A solution if any target state is reachable
Initializations: OPEN ← an empty priority queue, CLOSED ← an empty hash1

table, TARGETS ← ∅ ;
Insert sinit into OPEN ;2

while OPEN is not empty and termination is not requested do3

Remove from OPEN and place on CLOSED the state s for which f is4

optimal ;
Expand s generating all its successors ;5

foreach s′ successor of s do6

if s′ is a target state or s′ is marked as a solution state then7

if s′ is a target state then Insert s′ into TARGETS ;8

Back track all pointers from s′ up to sinit marking each touched9

states as a solution state ;
Signal a new diagnostic trace ;10

end
Compute f(s′) ;11

if s′ is not already in OPEN or CLOSED then12

Attach to s′ a new list PARENTS ;13

Add a pointer to s into PARENTS of s′ ;14

Insert s′ into OPEN ;15

end
else

Add a pointer to s into PARENTS of s′ ;16

if the newly computed f(s′) is better than the old value then17

Replace the old value of f(s′) by the new one ;18

if s′ is in CLOSED then Reopen s′ (move it to OPEN) ;19

end
end

end
end
if TARGETS is not empty then20

Construct the solution21

end
Exit without a solution.22

Algorithm 1. Pseudo code of Extended Best First (XBF)

pointers from all target states up to the initial state. Additionally, an extra
absorbing state sink is added to substitute the remaining part of the model.
Furthermore, for each state s contained in the solution, all outgoing transitions
of s, which are not contained in the solution, are redirected to the sink. It is
easy to show that the final result is a Markov chain. We call it the diagnostic
Markov chain (DiagMC).

As mentioned before, the step of signaling a new trace at line 10 is used
to gather information which is needed for the external termination condition.
Hence, we can cause a termination delay, if this step is delayed until a target or
a solution state is chosen to be expanded. Similar to BF∗, we call the derived
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strategy XBF∗. Similar to Greedy, Z, Z∗, UZ and UZ∗, we obtain XGreedy,
XZ, XZ∗, XUZ, XUZ∗ by modifying the evalution function f as descriped in
Section 3.3. Note that XUZ and XUZ∗ are undirected algorithms. We consider
them in this paper only to illustrate the advantage of using a heuristic function.

Example 5. Figure 2 shows a simple transition system. We can view it as the
transition system of a DTMC. We assume that the model contains only one tar-
get state which we labeled by ×. The figure illustrates the incremental growth
of the selected solution. At some point of the search the algorithm will find a
diagnostic trace, for instance the one highlighted by bold lines in Figure 2 (a). If
the algorithm is not explicitly stopped, it will continue to find more diagnostic
traces. After some iterations the solution will grow into the subgraph highlighted
in Figure 2 (b). The largest solution which can be found is given in Figure 2 (c).
At the end of the algorithm, the solution is transformed into the diagnostic
Markov chain illustrated in Figure 3. We refer to the DiagMC obtained from the
largest solution as the complete DiagMC.

(c)(b)(a)

Fig. 2. Incrementally selected solution
Fig. 3. The Di-
agMC resulting from
Fig. 2 (c)

4.2 Impact of Cycles

To illustrate the effect of cycles on the timed reachability probability, we consider,
again, the traces R1 and R2 from Example 3. Obviously, R2, including the cycle
s0 −→ s1 −→ s0, has a higher probability mass than R1. Thus, we would expect our
algorithm to deliver R2 as a solution. However, this is very difficult to realize.
One reason for that is that prevalent search algorithms based on BF traverse
the graph in the form of a traversal tree, i.e., each state has exactly one parent.
As a consequence, cycles can not be included in the solution. If we enable the
algorithm to accommodate cycles we have to allow states to have more than
one parent. However, the more involved reason is the evolving complexity of the
computation of f , as mentioned in Section 4.1. We try to make this point clear
using the following example.

Example 6. Again, we consider the DTMC D given in Example 1. After the
expansion of s0, the following transient probability vectors are assigned to the
states s0 and s1: π′(s0) = (1, 0, 0, . . . , 0) and π′(s1) = (0, 1, 0, . . . , 0). By the
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expansion of s1, s0 and s2 are generated. On the one hand, π′(s1) is used to
compute π′(s2) = (0, 0, 0.1, . . . , 0) and the cycle s0 −→ s1 −→ s0 is detected. We
know now that a part of the probability is circulated back to s0. So, the vector
π′(s0) has to be corrected to (1, 0, 0.9, 0, . . . , 0). However, the vector π′(s0) was
used in the computation of π′(s1). Hence, we have to reopen the state s0 in
order to correct the vectors π′(s1). Then, s1 also has to be reopened in order to
correct π′(s2). We have to repeat this procedure until the vectors π′(s0), π′(s1)
and π′(s2) are not changed any more.

As Example 6 illustrates, we might have to repeat the search linearly in the
number of cycles and the time bound T . This would drastically decrease the per-
formance of the algorithm in terms of both memory consumption and runtime. In
order to accommodate cycles while avoiding these excessive computational costs,
XBF uses the following strategy. For a state s, if a new parent of s is detected,
XBF records this information adding a reference of the new parent into the PAR-
ENT list of s. However, s is only reopened, if the newly detected trace carries
a higher probability than the old one. In Example 6, f(s0) computed regarding
the newly detected trace < s0, s1, s0 > is ψ(< s0, s1, s0 >, 4) · h(s0) = 0.9 · h(s0)
is less than the old value ψ(< s0 >) = 1.0 · h(s0). Thus, the vector π′(s0) will
not be corrected and s0 will not be reopened, although the cycle s0 → s1 → s0
is included.

4.3 Under-Approximation of Timed Reachability Probability

An important contribution of this paper is that the timed reachability probability
is approximated from below when using our extended algorithms. As mentioned
in Section 4.1, the probability mass of the selected solution incrementally grows
during the search process (see Example 5). Certainly, the probability mass of the
solution highlighted in Figure 2 (c) is not smaller than that of the solution given
in Figure 2 (b). To show this fact we reason as follows: The probability mass of
the solution is the probability mass of the set of diagnostic paths induced by all
traces contained in the solution. All diagnostic paths which are possible in (b)
are also possible in (c). Hence, the set of diagnostic paths induced by the solution
from (b) is contained in the set of diagnostic paths induced by the solution from
(c). Similar reasoning can be used for the solution from (a) and (b).

The delivered DiagMC under-approximates the relevant behavior of the orig-
inal model. The complete DiagMC, i.e. the DiagMC obtained from the largest
solution, e.g. the DiagMC given in Figure 3, contains all diagnostic paths of
the original model. As a consequence, checking the property on the complete
DiagMC will deliver the same result as checking it on the original model. Nor-
mally the complete DiagMC consists of only a small portion of the complete
model. Thus, checking the property on the complete DiagMC can be performed
much faster than checking it on the original model. In many cases it is even not
required to determine the complete DiagMC for the purposes of debugging or
generating counterexamples.
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Counterexamples. If the PTR property which we are interested in is upwards
bounded, then our method can be used to generate a real counterexample. In
this case a DiagMC is computed whose probability is not smaller than the given
upper probability bound. For instance, in Example 5, if the probability mass of
the solution from Fig. 2(b) is higher than the bound given in the property, then
the computed DiagMC suffices to show the violation of the property. It can also
be used as a counterexample. Hence, the search algorithm can be stopped at this
point. In order to repair the model, the developer has to consider the computed
DiagMC. Note that it is not possible to decrease the total probability to be under
the given upper bound without applying changes to this part of the model. Note
that during the search we are unable to compute the accurate probability mass
of the currently selected DiagMC. We can only compute an approximated value
which is not higher than the accurate probability mass. The reason is that we
avoid refreshing the transient probability vectors when a cycle is detected (see
Section 4.2. In the case of a CTMC, the approximation using uniformization is
another reason which prevents us from computing the accurate probability mass
of the selected DiagMC. As a consequence, sometimes the algorithm runs longer
than required for under-approximating an upwards bounded PTR.

4.4 Diagnostics of PTR Properties

As we mentioned in Section 3.1, our main goal is to obtain diagnostic tracesin
order to facilitate diagnostics and debugging of PTR properties. Each diagnostic
trace represents a potentially large set of diagnostic paths and it has a meaningful
probability mass which is not equal to zero. A diagnostic trace with a higher
probability mass is more essential in the debugging process than the one with a
lower probability mass. In our precursory work we presented a method to select
one forward diagnostic trace R which carries a large amount of probability. We
suggested be used in debugging the system and called it a counterexample to
the considered PTR property. Obviously, one trace might be insufficient to be
a real counterexample to a PTR property. Even for diagnostics the developer
should consider more than one critical diagnostic trace. However, in [3] we have
developed the basic techniques for the exploration of state spaces of stochastic
models using directed search strategies. The advanced algorithms presented in
this paper make it possible to deliver more than one critical diagnostic trace
represented in form of a diagnostic Markov chain.

5 Case Studies and Experimental Results

We have implemented our algorithms in Java 5.0 based on the Data Structures
Library (JDSL) [17,18]. Our algorithms uses the PRISM Model Checker [8] which
is designed to analyze stochastic models. The DTMCs and CTMCs that we use
in our experiments are modeled in the PRISM modeling language. We use the
PRISM Simulation Engine in order to generate the model state spaces on-the-
fly. Our search algorithms work on the thus generated state spaces. Whenever
precise numerical stochastic model checking is required, for instance in order to
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compute total model probabilities, it is performed by the PRISM Model Checker.
We next present two case studies which we used to experimentally evaluate our
method. Space limitations do not permit us to present the experimental results
in full. More detail is included in [19].

Case Study 1: A Query Processing System. In this section we consider a very
simple model for a query processing system given as a CTMC in PRISM. The
system receives queries from clients and puts them into a queue with a maxi-
mal capacity C queries where they await processing. The system works in two
different modes. In the secure mode, the processing of the queries is safer but
much slower than it in the normal mode. Hence, the secure mode is switched
on only if it is necessary. The system is illustrated in Figure 4 in the form of a
stochastic Petri net. The initial marking of this Petri net is as follows: C tokens
in Free-Slots, one token in Intact and one token in Ready. For the maximal queue
capacity C = 500, the CTMC consists of about 2500 states and 5000 transitions.
We assume the following transition rates: λ = 0.1 is the rate to receive a new
query, µ1 = 3.0 and µ2 = 1.0 are the rates for processing a query in normal and
secure mode, respectively. κ = 1.0 · 10−5 is the rate for an attack to be success-
ful, and ν = 9.0 · 10−5 is the rate for an attack to be detected which causes the
secure mode to be enabled. ξ = 5.0 is the rate to pick a query from the queue
for processing.
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Fig. 4. SPN of the Query Processing
System
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Fig. 5. The complete DiagMC in the
Query Processing System

An example of an interesting PTR property is QPS-Attacked which expresses
the interest in the probability of the system to be conquered by an attack within
a particular time period. Figure 5 shows the complete DiagMC for this property
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in the case that C = 3. The numbers by which the states are labeled indicate
the number of requests in the queue.

Our experimental results showed that while Z∗ delivers only one diagnostic
trace < s0, s1, s2, s3 >, which is represented in the figure by the state labels s0
to s3, XZ∗ delivers a set of diagnostic traces. For instance, if we first restrict the
search to select only three diagnostic traces, XZ∗ delivers the DiagMC indicated
by bold lines in Figure 5. If we allow the algorithm to run to the end it will
select the complete DiagMC given in Figure 5 which reflects the complete failure
behavior of the model. It is easy to see from this DiagMC that we have to increase
the rate ν if we want to reduce the likelihood of an attack to be successful. This
means we have to speed up the activation of the security component. Another
approach is to perform a security check on the queue to detect attacks before
they reach the processor. This results in an extra transition leading from Ready
state to Readysec in Figure 4. It is mapped to a transition from Ready to Sink
in the DiagMC in Figure 5.

When comparing the different algorithms in terms of solution quality, we ob-
served that the solutions produced by the extended algorithms, especially XZ∗

and XUZ∗, have a very high probability mass compared to the solutions of the
basic algorithms. In some instances their probability masses were very close to
the total probability measured for the model by precise model checking. This
highlights the the effect of the guided under-approximation that we perform.
We also observed that the non-optimal (respectively non-admissible) greedy al-
gorithms Greedy and XGreedy delivered solutions with very low probabilities.
However, these algorithms had the best computational performance in terms
of both memory consumption and runtime measured in the number of search
iterations. Generally, we observed that the directed algorithms Greedy, Z, Z∗,
XGreedy, XZ and XZ∗ explored much less states and made much less search
iterations than the undirected ones UZ, UZ∗, XUZ and XUZ∗. In the case of un-
reachability of target states, the directed algorithms detected that much earlier
than the undirected ones.

Case Study 2: A Workstation Cluster. The second comprehensive case study
that we conducted was a dependable cluster of workstations as first presented
in [20]. It represents a system consisting of two sub-clusters connected via a
backbone. Each sub-cluster consists of N workstations with a central switch that
provides the interface to the backbone. Each of the components of the system
(workstations, switches, and backbone) can break down randomly. In order to
provide minimum quality of service (QoS), at least k (< N) workstations have
to be operational connected to each other via operational switches. The system
is modeled as a CTMC. For the maximal number of workstations per cluster
(=256) the CTMC consists of about 2.3 million states. We are interested in
the likelihood that the quality of service drops below the minimum within a
particular time period. We ran experiments on models for different N values
and restricted the search to arbitrarily chosen number of diagnostic traces.

The DiagMCs that our analysis computes indicate the most critical portion
of the failure behavior of the system. Their probability masses come very close
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to the full probability mass measured on the complete model. In most cases, the
directed search algorithms outperformed the undirected algorithms in terms of
computational cost and memory consumption. However, we observed that the
performance of the undirected algorithm XUZ is often similar to the performance
of XZ∗. Also, the quality of solution delivered by XUZ is in some cases higher
than that of the solutions delivered by XZ∗. The use of the greedy algorithms
further reduces the computational costs, at the expense of a loss of solution
quality in the order of multiple orders of magnitude.

6 Conclusion

In this paper we have presented a heuristics guided method to generate diagnostic
information for the debugging of probabilistic timed reachability properties on
stochastic models. For this purpose we have developed an advanced heuristic
search strategy called XBF which extends the framework presented in [3]. XBF
is instantiated to concrete algorithms, namely XGreedy, XZ and XZ∗ as well as
the undirected variants XUZ and XUZ∗. We have evaluated our method using
a number of experiments on two case studies. Overall, the experiments showed
that 1) the DiagMCs that have been computed are meaningful and useful as
diagnostic information in the analysis of the model, 2) the solution delivered by
the algorithms XUZ, XZ∗ and XUZ∗ have high stochastic quality, i.e. they have
high probability masses, and 3) in almost all situations the directed algorithms
outperformed the undirected ones in terms of computational cost.

Currently, we are investigating how the probability vectors can be interpo-
lated so that we can avoid to store the complete transient probability vectors
during the search in order to reduce overall memory consumption of the method.
We are also studying visualization techniques for state spaces in order to facil-
itate comprehension of the diagnostic Markov chains that are provided to the
user. As future work includes the application of our method to Markov deci-
sion processes which include the concept of non-determinism that is essential in
analyzing concurrent stochastic models.
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Abstract. We propose in this paper a construction for a “well known” result:
regular signal-event languages are closed by intersection. In fact, while this result
is indeed trivial for languages defined by Alur and Dill’s timed automata (the
proof is an immediate extension of the one in the untimed case), it turns out
that the construction is much more tricky when considering the most involved
model of signal-event automata. While several constructions have been proposed
in particular cases, it is the first time, up to our knowledge, that a construction
working on finite and infinite signal-event words and taking into account signal
stuttering, unobservability of zero-duration τ -signals and Zeno runs is proposed.

1 Introduction

In order to accept timed words, the model of timed automata was first proposed in [1,2].
It has been widely studied for the last fifteen years and successfully applied to indus-
trial cases. For this model, an observation, called a time-event word, may be viewed as
an alternating sequence of waiting times and instantaneous actions. A timed automa-
ton is a finite automaton extended with variables called clocks, designed to recognize
time-event words: time elapses while the control stays in a given node and an event is
observed when a discrete transition occurs.

Another model was introduced by [3], and further studied in [10,4,11] with the aim
of describing hardware systems. In this case, an observation is a signal word, i.e. a
sequence of factors ad, where a is a signal and d is its duration. The original model
of timed automata was then modified to fit this setting: a signal is emitted while the
automaton stays in some state and no event is produced when a discrete transition is
fired. In this framework, when a transition occurs between two states with the same
signal a, we obtain ad1 followed by ad2 , which are merged in ad1+d2 . This phenomenon
is called stuttering.

It was noticed in [4] that both approaches are complementary and can be combined
in an algebraic formalism to obtain the so-called signal-event monoid. Timed automata
can be easily adapted to take both signals and events into account, thus yielding signal-
event automata: states emit signals and transitions produce events.

We consider in this paper both finite and infinite behaviors of signal-event automata
and we also include unobservable events (ε-transitions) and hidden signals (τ -labeled
states). These features can be very useful and even necessary, for instance for handling
abstractions [6]. They also allow us to get as special cases the initial models of timed
automata and signal automata.

E. Asarin and P. Bouyer (Eds.): FORMATS 2006, LNCS 4202, pp. 52–66, 2006.
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We study in this paper a construction for the intersection of languages accepted by
signal-event automata. Surprisingly, it turns out that this closure property is rather dif-
ficult to obtain. Usually, the construction for intersection relies on a basic synchronized
product. In [1], which deals with infinite time-event words only (no signal is involved),
a Büchi-like product is performed. The situation is more complex for signal words due
to stuttering of signals and unobservability of zero-duration signals. In [3], a construc-
tion is given for the intersection of signal automata, but neither signal stuttering nor
unobservability of zero-duration signal is taken into account, and only finite runs are
considered. Note that the full version [4] of [3] deals with the intersection of usual
timed automata only. In [10], in order to obtain a determinization result, a construction
is proposed to remove stuttering and zero-duration signals on signal automata using a
single clock but intersection is not considered directly. In [11], stuttering is handled
but intersection is done for signal automata acting on finite sequences only and without
zero-duration signals. To cope with stuttering, intermediate states and ε-transitions are
added to the automaton, thus introducing all possible ways of splitting some signal ad

into a finite concatenation ad1 . . . adn . When dealing with ω-sequences, this approach
would produce additional Zeno runs leading to another difficulty arising with the pos-
sibility to accept a finite signal-event word of finite duration with either a finite run or
an infinite Zeno run.

We provide a general construction for the intersection of signal-event timed automata
working on finite and infinite signal-event words. We solve the main difficulties of sig-
nal stuttering, unobservability of zero-duration τ -signals and Zeno runs. Note that, al-
though Zeno behaviours have been studied (see for instance [12,9]), it has been some-
times argued that excluding Zeno runs directly from the semantics of timed automata
is a realistic assumption, since they do not appear in “real” systems. However, the se-
mantics of timed automata used by model-checking tools like UPPAAL do include Zeno
runs while performing forward reachability analysis (this can be easily checked with an
example). Hence, we think that the general theory should include Zeno runs as well.

We first give in Section 2 precise definitions of finite and infinite signal-event lan-
guages, with the corresponding notion of signal-event automata. Section 3 establishes a
normal form for signal-event automata so that no infinite run accepts a finite word with
finite duration and no finite run accepts a word with infinite duration. This normal form
is useful for the general construction of intersection of signal-event automata dealing
both with signal stuttering and with finite and infinite sequences proposed in Section 4.

For lack of space, this paper does not contain the proofs of the correctness of the
different automata constructions we propose. These proofs are available in the technical
report [7].

2 Signal-Event Words and Signal-Event Automata

Let Z be any set. We write Z∗ (respectively Zω) the set of finite (respectively infinite)
sequences of elements in Z , with ε for the empty sequence, and Z∞ = Z∗ ∪ Zω the
set of all sequences of elements in Z . The set Z∞ is equipped with the usual partial
concatenation defined from Z∗ × Z∞ to Z∞.
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Throughout this paper, we consider a time domain T which can be either the set
N of natural numbers, the set Q+ of non-negative rational numbers or the set R+ of
non-negative real numbers and we set T = T ∪ {∞}.

2.1 Signal-Event Words

We now describe the most general class of systems where both piecewise-constant sig-
nals and discrete events can occur, based on the signal-event monoid defined in [4]. We
consider two finite alphabets Σe and Σs, with Σ = Σe ∪ (Σs ×T): an element in Σe is
the label of an instantaneous event, while a pair (a, d) ∈ Σs ×T, written ad, associates
a duration d with a signal a. Moreover,Σs includes the special symbol τ for an internal
(or hidden) signal, the purpose of which is to represent a situation where no signal can
be observed.

Intuitively, signal-event words (SE-words for short and sometimes called timed
words) correspond to sequences obtained from Σ∞ by merging consecutive identical
signals and removing internal τ -signals with duration 0. But note that signals different
from τ may have a null duration.

Formally, the partial monoid of signal-event words is the quotient Σ∞/ ≈ where ≈
is the congruence (with respect to the partial concatenation on Σ∞) generated by{

τ0 ≈ ε and∏
i∈I a

di ≈
∏

j∈J ad′
j if

∑
i∈I di =

∑
j∈J d′j

where the index sets I and J above may be infinite. The partial monoid Σ∞/ ≈ will be
denoted SE (Σ,T) or simply SE (Σ) or SE when there is no ambiguity. We write a∞

for the equivalence class of any sequence of the form
∏

i≥1 a
di , where

∑
i≥1 di = ∞.

Note that for two words of the forms uad and ad′
v with d < ∞, the concatenation is

uad+d′
v.

A finite or infinite sequence in Σ∞ ∪ Σ∗ · (Σs × {∞}) which does not contain τ0

and such that two consecutive signals are distinct is said to be in normal form (NF).
SE-words are often identified with sequences in normal form. A SE -word is finite if its
normal form is a finite sequence (even if it ends with a∞).

A duration can be associated with each element of Σ by: ‖a‖ = 0 if a ∈ Σe and
‖ad‖ = d if a ∈ Σs and d ∈ T, so that the duration of a sequence w = s1s2 · · · in Σ∞

is ‖w‖ =
∑

i≥1 ‖si‖ ∈ T. Note that the duration restricted to finite SE -words with
finite durations is a morphism from Σ∗ into (T,+). A Zeno word is a SE -word with
finite duration and whose normal form is infinite. A signal-event language (or timed
language) is a set of SE -words.

Example 1. Let Σe = {f, g} and Σs = {a, b}. The SE -word w = a3ffgτ4.5a1b5

can be viewed as the following sequence of observations: first, the signal a during 3
time units, then a sequence of three instantaneous events ffg, then some unobservable
signal during 4.5 time units, again the signal a during 1 time unit and then the signal b
during 5 time units. The total duration of w is 13.5. For infinite SE -words, we have for
instance: a3gfa1∏

i≥1 a
2 ≈ a1a2gf

∏
i≥1 a

4 and the normal form is written a3gfa∞.
Note also that an infinite timed sequence in Σω may be a finite SE -word with finite
duration:

∏
i≥0 a

1/2i ≈ a2.
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2.2 Signal-Event (Timed) Automata

Our model of signal-event automata (also called timed automata in the sequel) is a
variant of the basic models proposed in the literature, integrating both instantaneous and
durational semantics: signals are associated with the control states, while instantaneous
events occur when the system switches between two states.

Clocks and guards. Let X be a set of variables with values in T, called clocks. The set
C(X) of guards or clock constraints over X consists of conjunctions of atomic formulas
x �� c, for a clock x, a constant c ∈ T and a binary operator �� in {<,≤,=,≥, >}.

A clock valuation v : X → T is a mapping that assigns to each clock x a time value
v(x). The set of all clock valuations is TX . We write v |= g when the clock valuation v
satisfies the clock constraint g. If t is an element of T and α a subset of X , the valuations
v + t and v[α] are defined respectively by (v + t)(x) = v(x) + t, for each clock x in X
and (v[α])(x) = 0 if x ∈ α, and (v[α])(x) = v(x) otherwise.

Signal-event (timed) automata. A Büchi signal-event automaton over the time domain
T is a tuple A = (Σe, Σs, X,Q,Q0, F,R, I, �,∆), where Σe and Σs are alphabets of
events and signals, X is a finite set of T-valued clocks, Q is a finite set of control states,
Q0 ⊆ Q is a subset of initial states, F ⊆ Q is a subset of final states and R ⊆ Q
corresponds to a Büchi acceptance condition. The mapping I : Q → C(X) associates
with a state q ∈ Q an invariant I(q) being a conjunction of constraints of the form
x �� c, with �� ∈ {<,≤}, and � : Q → Σs associates a signal with each state.

The set of transitions is ∆ ⊆ Q × C(X) × Σe ∪ {ε} × P(X) × Q. A transition,
also written q

g,a,α−−−→ q′, is labeled by a guard g, an instantaneous event in Σe or the
unobservable event ε, and the subset α of clocks to be reset. When a = ε, it is called an
ε-transition or a silent transition. Recall that, contrary to the untimed case, ε-transitions
increase the expressive power of timed automata [5].

First examples of signal-event automata are given in Figure 1 (where double-circled
nodes correspond to Büchi repeated states). The semantics of SE -automata will be
given below. But intuitively,

– A SE -word is accepted by A1 if it is of the form ad1bd2 with d1 ≥ 1.
– A SE -word is accepted by A2 if it is of the form ad1cad2c . . . with di < 1 for any

i.
– Since the concatenation merges consecutive identical signals (ad1ad2 = ad1+d2),

the language accepted by A3 consists of the signal a emitted for a duration d ≥ 1.
– A4 accepts the signal a emitted for a duration d ≤ 1 (note that a1 is accepted by an

infinite run with successive durations 1
2 , 1

4 , 1
8 , . . . for instance).

Semantics. In order to define the semantics of SE -automata, we recall the notions
of path and timed run through a path. A path in A is a finite or infinite sequence of
consecutive transitions:

P = q0
g1,a1,α1−−−−−→ q1

g2,a2,α2−−−−−→ q2 . . . , where (qi−1, gi, ai, αi, qi) ∈ ∆, ∀i > 0
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A1 : p1

a
p2

b

x ≥ 1, ε A2 : q1

a, y < 1 c, {y}

A3 : p1

a
p2

a

x ≥ 1, ε A4 : q1

a, y < 1
ε

Fig. 1. Some signal automata

The path is said to be accepting if it starts in an initial state (q0 ∈ Q0) and either it is
finite and ends in a final state, or it is infinite and visits infinitely often a repeated state
q ∈ R. A run of the automaton through the path P is a sequence of the form:

〈q0, v0〉
d0−→ 〈q0, v0 + d0〉

a1−→ 〈q1, v1〉
d1−→ 〈q1, v1 + d1〉

a2−→ 〈q2, v2〉 . . .

where

– di ∈ T for i ≥ 0 and if P is finite with n transitions then the last step of the run

must be 〈qn, vn〉
dn−→ 〈qn, vn + dn〉, with dn ∈ T,

– (vi)i≥0 are clock valuations such that v0(x) = 0 for all x ∈ X , and for each i ≥ 0,
we have ⎧⎨⎩

vi + d |= I(qi), ∀d ∈ [0, di]
vi + di |= gi+1
vi+1 = (vi + di)[αi+1]

Note that if di is finite, the condition about invariant I(qi) can be replaced simply
by vi + di |= I(qi).

The signal-event (timed) word generated by this run is simply (the equivalence class
of) �(q0)d0a1�(q1)d1a2�(q2)d2 . . . . The signal-event (timed) language accepted by A
over the time domain T and the alphabet Σ, written L(A), is the set of SE -words gen-
erated by (finite or infinite) accepting runs of A. Two automata A and B are equivalent
if L(A) = L(B).

The set of all signal-event (timed) automata is denoted by SEAε and the family of
signal-event (timed) languages generated by some automaton in SEAε is denoted by
SELε.

Remark 1. A Zeno run is an infinite run for which the time sequence defined by ti =∑
j≤i dj for i ≥ 0, is convergent (keeping the notations just above). We did not include

the non Zeno condition for runs, requiring that each infinite accepting run has an infinite
duration. Thus, Zeno runs accepting finite words with finite duration may occur. Note
that they also appear in the semantics of model-checking tools like UPPAAL, as can
easily be checked with an example.
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3 Normal Forms

We propose in this section two technical results on the existence of “normal forms” for
timed runs and signal-event automata. These existences will be crucial for the proof of
the main result in the next section.

Recall that the normal form, obtained by merging consecutive identical signals and
removing factors of the form τ0, contains only visible events b in Σe and visible blocks
ad with either d > 0 or a 
= τ . The alternating normal form (ANF) of a SE -word
insists on a strict alternation between events and signals at the expense of keeping some
invisible events (ε) and some invisible signals (τ0).

More precisely, a sequence w = ad0
0 b1a

d1
1 b2 · · · over Σ ∪ {ε} is in ANF if for all k

we have bk = ε implies ak−1 
= ak and a
dk−1
k−1 
= τ0 
= adk

k .

Example 2. Let Σe = {f, g} and Σs = {a, b}.

– a1fa3ga2.5 is both in ANF and in NF,
– fa3gfa2.5b4 is in NF but not in ANF. Its ANF is τ0fa3gτ0fa2.5εb4,
– τ0fτ0g(a2εb3ε)ω is in ANF but not in NF. Its NF is fg(a2b3)ω.

Note that the ANF of a SE -word is unique. Indeed, assume that w = ef0
0 c1e

f1
1 c2 · · · is

also in ANF. Assume that ad0
0 
= ef0

0 . Either a0 = e0 and d0 < f0 and we must have
b1 = ε. We deduce that a1 
= a0 and ad0

0 
= τ0 
= ad1
1 . A contradiction since in this case

w cannot start simultaneously by ef0
0 and by ad0

0 b1a
d1
1 . Or a0 
= e0 and for instance

a0 = τ 
= e0. Then we must have d0 = 0 and b1 = ε, a contradiction with the ANF.
Hence we have ad0

0 = ef0
0 . Assume now that b1 
= c1. Then for instance c1 
= ε and we

must have b1 = ε. Once again, this implies a1 
= a0 and ad0
0 
= τ0 
= ad1

1 leading to a
contradiction as above. By induction, this shows that the ANF is unique.

We extend the ANF to runs and paths of a SE -automaton B as follows. Let ρ =
〈p0, v0〉

d0−→ 〈p0, v0 + d0〉
b1−→ 〈p1, v1〉

d1−→ · · · be a run for a SE -word w through

some path P = p0
g1,b1,α1−−−−−→ p1

g2,b2,α2−−−−−→ · · · of B. For the sake of simplicity, we
assume that ρ and P are infinite. Our construction is similar when ρ and P are finite.
For 0 ≤ i < k ≤ ∞, we define �(i, k) = {�(pj) | i ≤ j < k and �(pj)dj 
= τ0}.

We build inductively the ANF of ρ and P and we simultaneously fix some notation.
We start with j0 = 0. Assume that jk < ∞ has been defined. Intuitively, from the state
pjk

, we look for the first state where either an event b 
= ε is performed or a different
signal is produced. Formally, we let jk+1 = inf{j > jk | bj 
= ε or |�(jk, j + 1)| =
2} with the convention inf(∅) = ∞. Let Pk be the subpath of P starting at pjk

and
ending at pn−1 if n = jk+1 < ∞ and similarly, let ρk be the subrun of ρ starting at
〈pjk

, vjk
〉 and ending at 〈pn−1, vn−1 + dn−1〉 if n = jk+1 < ∞. Let also ak = τ if

�(jk, jk+1) = ∅ and {ak} = �(jk, jk+1) otherwise. Finally, let Dk =
∑

jk≤j<jk+1
dj .

For jk < j < jk+1 we have bj = ε and for jk ≤ j < jk+1 we have either �(pj) = ak

or �(pj) = τ and dj = 0. Hence, ρk is a run for aDk

k through Pk.

By construction, we have P = P0
gj1 ,bj1 ,αj1−−−−−−−→ P1

gj2 ,bj2 ,αj2−−−−−−−→ P2 · · · , and ρ =

ρ0
bj1−−→ ρ1

bj2−−→ ρ2 · · · which are the ANF of P and ρ respectively. We also have w =
aD0
0 bj1a

D1
1 bj2a

D2
2 · · · and this is the ANF of w. Indeed, if bjk

= ε then |�(jk−1, jk +
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1)| = 2 hence a
Dk−1
k−1 
= τ0, �(pjk

)djk 
= τ0 and �(pjk
) 
= ak−1. We deduce that

ak = �(pjk
) 
= ak−1 and aDk

k 
= τ0.

A normal form for signal-event automata. We show how to transform a signal-event
automaton into an equivalent one, in which finite accepting runs correspond exactly to
finite words with finite duration. The result is interesting in itself for implementation
issues: when a finite word with finite duration is accepted by an infinite run, we build
instead a finite accepting run for this word. Furthermore, conditions (†) and (‡) below
will be used in the next section for the intersection construction.

Note that the transformation removes a particular type of Zeno runs, those which
contain ultimately only ε-transitions and a single signal. But it keeps Zeno runs corre-
sponding to infinite words of finite duration.

Theorem 1. Let A be a SE -automaton. We can effectively construct an equivalent SE -
automaton A′ such that:

(†) no infinite run of A′ accepts a finite word with finite duration, and
(‡) no finite run of A′ accepts a word with infinite duration.

We start from an automaton A = (Σe, Σs, X,Q,Q0, F,R, I, �,∆). We first construct
an automaton satisfying condition (†). We need to distinguish whether time progresses
infinitely often or not.

First step. We first suppress infinite runs where time does not progress infinitely often.
Such a run generates a word of the form wah with h < ∞ and loops eventually through
some repeated state r. The loop is constituted of ε-transitions and states of label a or τ ,
all crossed instantaneously. The intuitive idea is to detect such a loop and to replace it
by a single transition to a new final state. More formally, for any signal a, we build an
automaton A(a, 0) which contains the states and transitions of A together with some
new states and transitions described below (see Fig. 2 for an intuitive view).

Let z /∈ X be a new clock. The automaton A(a, 0) contains the states and transitions
of A. Moreover, for each (p, g, ε, α, q) ∈ ∆ with {�(p), �(q)} ⊆ {a, τ}, we add the
following states and transitions:

(1)
(p, g, ε, α ∪ {z}, q) if q is a repeated state of A
(p, g, ε, α, (q, p))
((p, r), g, ε, α, (q, r))

For the new states, we let �(r) = �(r), I(r) = I(r), �(p, r) = �(p), I(p, r) = I(p).
These new transitions simulate a loop around some repeated state r: just before reach-
ing r, we move into the copy and reach r instead. We remember r until reaching (r, r),

A r
ε, {z} r-copy

of A
ε f

z ≤ 0
ε

Fig. 2. The automaton A(a, 0)
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where we know that the loop has been successfully completed. Therefore, we also
add the transitions ((r, r), ε, f) where f is a new state which is the only final state
of A(a, 0), with �(f) = τ and I(f) = z ≤ 0. The invariant of f ensures that the states
of the form r or (p, q) have been crossed instantaneously.

The automaton A(a, 0) has no repeated states and its initial states are those of A.

Second step. We now treat the case of Zeno runs where time progresses infinitely often.
As in the first step, the idea is to introduce copies of A in which we unfold once a loop
around some repeated state to check if it can be taken infinitely often within finite time.
But the construction is much more tricky since timing constraints have to be verified.

Let wad be a finite word with finite duration accepted by A with some infinite
run ρ through some infinite path P and such that time progresses infinitely often in
ρ. We denote by Lf (A, a) the set of such words. Let Y be the set of clocks that are
not reset infinitely often in P . For each y ∈ Y , let my = sup{c | y > c or y ≥
c occurs infinitely often in the guards of P} with the convention sup ∅ = 0. Similarly,
for each y ∈ Y , let My = inf{c | y < c or y ≤ c occurs infinitely often in the guards
or invariants of P} with the convention inf ∅ = ∞. Finally, we let m = (my)y∈Y and
M = (My)y∈Y . Note that all transitions (p, g, b, α, q) used infinitely often in P satisfy

(2)

- �(p), �(q) ∈ {a, τ}, b = ε and α ∩ Y = ∅,
- ∀y ∈ Y , if y > c or y ≥ c is a constraint in g then my ≥ c,
- ∀y ∈ Y , if y < c or y ≤ c is a constraint in g, I(p) or I(q) then My ≤ c,
- ∀x ∈ X \ Y , if x > c or x ≥ c is a constraint in g then c = 0 .

The last condition holds since wad has a finite duration.
We build an automaton A(a, Y,m,M) depending only on (a, Y,m,M) which ac-

cepts wad with a finite run (note that the number of distinct tuples (a, Y,m,M) is
finite). Let z /∈ X be a new clock. The automaton A(a, Y,m,M) contains the states
and transitions of A together with some new states and transitions described below (see
Fig. 3 for an intuitive view). It has no repeated states and its initial states are those of A.
Let (p, g, ε, α, q) ∈ ∆ be a transition of A satisfying (2). We add the following states
and transitions:

(3)
(p, g ∧

∧
y∈Y y ≥ my, ε, α ∪ {z}, q) if �(q) = a,

(p, g ∧ z > 0, ε, α ∪ {z}, (q, p, α, (q ∈ R))) if �(p) = a,
((p, r, β, ϕ), g, ε, α ∪ {z}, (q, r, α ∪ β, ϕ ∨ (q ∈ R)))

For the new states, we let �(r) = a, I(r) = I(r), �(p, r, β, ϕ) = �(p), I(p, r, β, ϕ) =
I(p) if �(p) = a and I(p, r, β, ϕ) = I(p) ∧ z ≤ 0 otherwise. These new transitions

A r

∧
y ≥ my, ε, {z} r-copy

of A
z > 0, ε f∧

y ≤ My

ε, {z}

Fig. 3. The automaton A(a, Y, m, M)
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simulate a loop around some repeated state r: just before reaching r, we move into the
copy and reach r instead, while satisfying the lower constraints. We remember r until
reaching (r, r,X \ Y, true), where we know that the loop has successfully terminated
because we crossed some repeated state ((q ∈ R)). Therefore, we also add the tran-
sitions ((r, r,X \ Y, true), true, ε, {z}, f) where f is a new state which is the only
final state of A(a, Y,m,M) and with �(f) = a and I(f) =

∧
y∈Y y ≤ My (with the

convention that y ≤ ∞ is true).

Third step. The resulting automaton A1 is the disjoint union of all automata A(a, 0)
and A(a, Y,m,M). All finite words with finite duration accepted by A can be accepted
by finite runs of A1 and L(A1) ⊆ L(A). To obtain an equivalent SE -automaton A2
satisfying the condition (†), it remains to keep only the infinite runs of A which accept
words with either an infinite duration or an infinite length. For this, we define an au-
tomaton B which goes to a repeated state whenever at least one time unit has elapsed
or when a visible event is executed or when a new signal is emitted. The first two con-
ditions are trivial to deal with. For the last one we need to keep track of the last signal
that has been observed (ad with a 
= τ or d > 0) so that we can enter a repeated state
when a new signal is observed (bδ with b 
= a and b 
= τ or δ > 0). The automaton A2
is obtained as a cartesian product of A1 and B. Note that we cannot use an intersection
operation since Theorem 1 is used in the proof of Theorem 2.

Fourth step. Finally, it remains to transform A2 into an automaton A′ satisfying also
condition (‡). The only problem comes from final states whose invariant is true. Words
of the form wa∞ accepted by finite runs ending in such states must now be accepted
by infinite runs. The idea is to use again the new clock z to measure time intervals of
length one. For each signal a ∈ Σs, we add a new repeated state ra with label a and
invariant z ≤ 1. We also add loops (ra, z = 1, ε, {z}, ra) and for each final state p
with label a and invariant true we add the transition (p, true, ε, {z}, ra) and p is not
final anymore. This gives the automaton A′ satisfying both conditions (†) and (‡) and
concludes the construction. ��

Remark 2. If Zeno runs are not allowed (see Remark 1), condition (†) is true by defini-
tion of an accepted run. Hence the construction of an automaton satisfying Theorem 1
reduces to Fourth step above and is therefore much simpler.

In the same way, if ε-transitions are not allowed, an infinite run can accept only an
infinite word and Theorem 1 reduces to condition (‡).

4 Intersection

We present in this section the main construction of this paper.

Theorem 2. The class SELε is closed under intersection.

Note that one of the problems arising in the construction of the intersection comes from
the fact that a word can be accepted in two different automata by a finite and an infinite
run respectively. For instance, consider the two automata A3 and A4 in Figure 1. We
have L(A3) = {ad | d ≥ 1} and L(A4) = {ad | d ≤ 1}, so that L(A3) ∩ L(A4) =
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{a1}. And this word a1 is accepted in A3 by a finite run and in A4 by an infinite run.
We will then use in a crucial way the normal form proposed by Theorem 1.

Before giving the general construction, let us point out some other difficulties. The
treatment of visible events is easy and will be done like in the untimed case through
a synchronized product. The case of signals is more tricky and needs more attention.
Indeed, let us consider the following example:

B1: p1

a
p2

a
p3

τ
p4

b
ε ε ε

B2: q1

τ
q2

a
q3

b
ε ε

Fig. 4. Automata B1 and B2

If automaton B1 is in state p1 and automaton B2 in state q3, they can not compute
anymore a SE -word which would be in the intersection of their languages. Indeed this
word should have at the same time a factor ad with d ≥ 0 and a factor bδ with δ ≥ 0,
which is not possible since a and b are different from τ .

If automaton B1 is in state p1 and automaton B2 in state q2, they can both produce a
signal a.

Now if automaton B1 is in state p1 and automaton B2 in state q1, whereas the labels
of the two states are different, it is still possible to produce a word of the intersection.
Indeed, it is sufficient to force B2 to leave immediately q1 (i.e. to stay in q1 0 time unit),
B2 will thus produce a signal τ0 ≈ ε and thus not visible. This last case shows that we
should allow in the intersection asynchronous moves where only one of the automata
executes an ε-transition.

We now proceed to the construction of a SE -automaton accepting the intersection of
the languages recognized by two automata

Aj = (Σe, Σs, Xj, Qj , Q
0
j , Fj , Rj , Ij , �j , ∆j)

for j = 1, 2 on the same alphabet, satisfying the conditions (†) and (‡) of Theorem 1. We
assume that Q1 and Q2 (respectively X1 and X2) are disjoint and, when no confusion
can arise, we simply write � for both labelling functions �1 and �2. We also assume that
the automata A1 and A2 do not contain a trivial loop of the form (p, true, ε, ∅, p).

We define the automaton A = (Σe, Σs, X,Q,Q0, F,R, I, �,∆) designed to accept
L(A1) ∩ L(A2) as follows.

– We set X = X1 ∪ X2 ∪ {z}, where z is a new clock used to control if the time
elapsed in a state of A is zero or not.

– The set Q ⊆ Σs ×Q1 ×Q2 × {0, 1, 2} consists of all tuples (a, p, q, i) satisfying
• �1(p), �2(q) ∈ {a, τ} and
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• i = 1 if and only if �1(p) = �2(q) = a.
Note that, the conjunction of these two constraints implies that if the first compo-
nent is a = τ then the last component must be i = 1.

– For (a, p, q, i) ∈ Q, we set
• �(a, p, q, i) = a and I(a, p, q, i) = I1(p) ∧ I2(q) if i = 1 and
• �(a, p, q, i) = τ and I(a, p, q, i) = I1(p) ∧ I2(q) ∧ z ≤ 0 otherwise.

The intuitive idea behind the fourth component of the states of A is the following:

– Value 0 means that one of the automata is ready to perform some signal a 
= τ
and is waiting for the other to reach a state labelled a with ε-transitions and in-
stantaneously traversing τ -labelled states. If a synchronization is not possible on
signal a, then the whole computation will not produce any accepting SE -word of
the intersection,

– Value 1 means that the two automata emit the same signals,
– Value 2 means that the two automata were producing the same signals but have

“lost” their synchronisation (due an ε-transition performed by one of them). As in
the case of value 0, they will try to re-synchronize. But the whole computation can
still progress even if this synchronization is not possible anymore.

The transition relation ∆ consists of synchronous moves where both automata progress
simultaneously and of asynchronous moves where one automaton is idle while the sec-
ond one performs an ε-transition.

A synchronous move is not possible in a state of the form (a, p, q, 0) since a syn-
chronization is expected first. Consider two states (a, p, q, i) and (a′, p′, q′, i′) in Q
with i 
= 0 and i′ 
= 2. For any two transitions δ1 = (p, g, b, α, p′) ∈ ∆1 and
δ2 = (q, h, b, β, q′) ∈ ∆2 with b 
= ε if a = a′, we add in ∆ the synchronous transition

δ = (a, p, q, i)
g∧h,b,α∪β∪{z}−−−−−−−−−−→ (a′, p′, q′, i′)

and we set πj(δ) = δj for j = 1, 2.
Consider now a state (a, p, q, i) ∈ Q. For any transition δ1 = (p, g, ε, α, p′) ∈ ∆1

with �1(p′) ∈ {a, τ} we add in ∆ the asynchronous transition

δ = (a, p, q, i)
g,ε,α∪{z}−−−−−−→ (a, p′, q, i′)

where i′ is updated so that (a, p′, q, i′) is a legal state and the choice between values 0
and 2 is made according to the abstract description in Fig. 5. Formally, if a = τ then
i′ = 1 is the only possibility. Now, if a 
= τ we have the following cases:

– i′ = 1 if �1(p′) = �2(q) = a: synchronization on a is active,
– i′ = 0 if i = 0 and (�1(p′) = τ or �2(q) = τ ): synchronization on a has not yet

been achieved,
– i′ = 2 if i 
= 0 and (�1(p′) = τ or �2(q) = τ ): synchronization on a has been lost.

We set π1(δ) = δ1 and π2(δ) = ε. We proceed symmetrically for asynchronous transi-
tions of A2.
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In the construction above, the subset of states with first component a is designed to
handle maximal blocks of the form ad. This part of the intersection is represented for
a 
= τ by the abstract automaton in Figure 5. Note that all the transitions are asyn-
chronous ε-transitions which reset the clock z.

a,−, −, 1
a, true

a, −, −, 0
τ, z ≤ 0

a, −, −, 2
τ, z ≤ 0

Fig. 5. Handling blocks ad, for a �= τ

Since we have assumed that A1 and A2 do not contain a trivial loop of the form
(p, true, ε, ∅, p), the projections πj(δ) for j = 1, 2 are well-defined. Indeed, if δ =
((a, p1, p2, i), g, b, α ∪ {z}, (a′, q1, q2, i′)) ∈ ∆ then g is of the form g1 ∧ g2 where
gj involves clocks of Aj only. Hence, if we let αj = α ∩ Xj we get πj(δ) = ε if
(gj = true and b = ε and αj = ∅ and qj = pj) and πj(δ) = (pj , gj, b, αj , qj)
otherwise.

A path P of A can be seen as a sequence δ1δ2 · · · of transitions in ∆. Clearly, the
projection πj(P ) = πj(δ1)πj(δ2) · · · is a path of Aj .

The initial and final states are defined by Q0 = Q ∩ (Σ × Q0
1 × Q0

2 × {0, 1}) and
F = Q∩ (Σ ×F1 × F2 ×{1, 2}). We will not define the repeated states R explicitely.
Instead, an infinite run P of A will be accepting if and only if each projection πj(P )
is infinite and accepting in Aj . It is well-known how to turn this intersection of Büchi
conditions into a Büchi condition using some additional information [13]. For the sake
of simplicity, we skip this easy construction here.

Note that, since conditions (†) and (‡) hold for A1 and A2, they also hold for A.

Examples. The next easy examples illustrate the construction and the usefulness of
the additional components a and i. Consider the two automata B1 and B2 in Figure 4,
which have only finite runs and thus satisfy condition (†). We could easily ensure that
they also satisfy the condition (‡) by adding invariants in the final states, which is
omitted for simplicity. Recall that in our model, the signal τ0 is equivalent to the empty
word ε. Consequently, the language accepted by B1 is {ad1τd2bd3 | d1, d3 ≥ 0, d2 >
0} ∪ {ad1bd3 | d1, d3 ≥ 0} while B2 accepts {τd1ad2bd3 | d1 > 0, d2, d3 ≥ 0} ∪
{ad2bd3 | d2, d3 ≥ 0}. Hence L(B1) ∩ L(B2) = {ad1bd3 | d1, d3 ≥ 0}. A word is in
the intersection (if and) only if the states labeled by τ are crossed instantaneously by an
accepting run.

The automaton B constructed for the intersection is represented in Figure 6. All
transitions are ε-transitions which reset the clock z.

We now modify automata B1 and B2 into B′
1 and B′

2 by adding loops, as represented
in Figure 7. In this case, the words in the intersection may contain factors of the form
τd, as can be seen on the resulting automaton B′ in Figure 8.
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Handling signal a

a, p1, q1, 0
τ, z ≤ 0

a, p2, q1, 0
τ, z ≤ 0

a, p1, q2, 1
a

a, p2, q2, 1
a

a, p3, q1, 0
τ, z ≤ 0

a, p3, q2, 2
τ, z ≤ 0

a, p3, q2, 0
τ, z ≤ 0

Handling signal bb, p3, q3, 0
τ, z ≤ 0

b, p4, q3, 1
b

Fig. 6. Resulting automaton B

B′
1: p1

a
p2

a
p3

τ
p4

b
ε

ε

ε

ε

B′
2: q1

τ
q2

a
q3

b

ε

ε

ε

Fig. 7. Automata B′
1 and B′

2

a, p1, q1, 0
τ, z ≤ 0

a, p2, q1, 0
τ, z ≤ 0

a, p3, q1, 0
τ, z ≤ 0

a, p3, q2, 0
τ, z ≤ 0

a, p1, q2, 1
a

a, p2, q2, 1
a

a, p1, q1, 2
τ, z ≤ 0

a, p2, q1, 2
τ, z ≤ 0

a, p3, q1, 2
τ, z ≤ 0

a, p3, q2, 2
τ, z ≤ 0

b, p3, q3, 0
τ, z ≤ 0

b, p4, q3, 1
b

b, p4, q1, 0
τ, z ≤ 0

b, p3, q1, 0
τ, z ≤ 0

τ, p3, q1, 1
τ

Fig. 8. Resulting automaton B′
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A : a, p1, q1, 1
a, y < 1

a, p2, q1, 1
a, y < 1

x ≥ 1, ε, {z}
ε, {z} ε, {z}

Fig. 9. Resulting automaton A

We insist that the construction relies on condition (†). Consider again the two au-
tomata A3 and A4 in Figure 1. Condition (†) does not hold for A4, because a1 is ac-
cepted by an infinite run. We have L(A3) ∩ L(A4) = {a1}. Note that the construction
given in the proof of Theorem 2 would fail in this case since it would yield the automa-
ton A in Figure 9. We have L(A) = ∅ for two reasons. First A contains no final state
and it admits also no accepting infinite run since the first projection of the run cannot be
infinite. This is not actually the main problem. We could have defined A so that a path
P is accepting if and only if both projections π1(P ) and π2(P ) are accepting (finite or
not). Then the argument above does not apply anymore. Still we would have L(A) = ∅
due to the invariant y < 1 and the guard x ≥ 1.

Remark 3. If we consider signal-event automata where ε-transitions are not allowed,
the treament of the intersection becomes much simpler. Indeed, the intersection of two
SE -automata without ε-transitions can be done in a classical way, i.e., as a product of
automata and a suitable treatment of Büchi conditions.

5 Conclusion

We proposed in this paper a construction for the intersection of two signal-event au-
tomata in the most general framework, working on finite and infinite signal-event words
and taking into account signal stuttering, unobservability of zero-duration τ -signals and
Zeno runs.

While constructions were proposed in the literature for important particular cases, it
is the first time, up to our knowledge, that the general case is treated. There has been in
the area of timed automata some examples of subtly erroneous constructions (e.g. with
respect to forward analysis [8]) which should convince us of the importance to publish
complete and proved constructions.

Moreover, it turns out that the closure of signal-event automata under intersection,
and the normal form achieved in Theorem 1, are crucial to study the closure of SE -
languages recognized by such automata under timed substitutions [6].
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Abstract. In the classical framework of formal languages, a refinement opera-
tion is modeled by a substitution and an abstraction by an inverse substitution.
These mechanisms have been widely studied, because they describe a change in
the specification level, from an abstract view to a more concrete one, or con-
versely. For timed systems, there is up to now no uniform notion of substitutions.
In this paper, we study the timed substitutions in the general framework of signal-
event languages, where both signals and events are taken into account. We prove
that regular signal-event languages are closed under substitutions and inverse sub-
stitutions.

1 Introduction

Refinements and abstractions. Operations of refinements and abstractions are essential
tools for the design and the study of systems, real-time or not. They allow to consider a
given system at different levels of abstractions. For instance, some procedure or function
can simply be viewed at some abstract level as a single action, and can be later expanded
into all its possible behaviours at some more concrete level. Or conversely, a set of
behaviours are merged together and replaced by a single action, in order to obtain a
more abstract description.

These operations can be formally modeled by substitution and inverse substitution
respectively. Therefore, substitutions have been extensively studied in the untimed
framework, with the underlying idea that interesting classes of languages have to be
closed under these operations.

Timed languages. In order to accept timed words, the model of timed automata was first
proposed in [1,2]. It has been widely studied for the last fifteen years and successfully
applied to industrial cases. For this model, an observation, called a time-event word,
may be viewed as an alternating sequence of waiting times and instantaneous actions.
A timed automaton is a finite automaton extended with variables called clocks, designed
to recognize time-event words: time elapses while the control stays in a given node and
an event is observed when a discrete transition occurs.

Another model was introduced by [3], and further studied in [10,4,11] with the aim
of describing hardware systems. In this case, an observation is a signal word, i.e., a
sequence of factors ad, where a is a signal and d is its duration. The original model of
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timed automata was then modified to fit this setting: a signal is emitted while the au-
tomaton stays in some state and no event is produced when a discrete transition is fired.
In this framework, when a transition occurs between two states with the same signal
a, we obtain ad1 followed by ad2 , which are merged into ad1+d2 . This phenomenon is
called stuttering.

It was noticed in [4] that both approaches are complementary and can be combined
in an algebraic formalism to obtain the so-called signal-event monoid. Timed automata
can be easily adapted to take both signals and events into account, thus yielding signal-
event automata: states emit signals and transitions produce events.

We consider in this paper both finite and infinite behaviors of signal-event automata
and we also include unobservable events (ε-transitions) and hidden signals (τ -labeled
states). It turns our that these features are very useful, for instance for handling abstrac-
tions. They also allow us to get as special cases the initial models of timed automata
and signal automata.

Timed substitutions. Timed substitutions were studied in [8] for regular transfinite time-
event languages. In [8], although no signal appear explicitely, actions are handled in a
way similar (but not identical) to signals, without stuttering. Here we restrict the study
of substitutions to finite and ω-sequences but we do handle signal stuttering which is a
major difficulty.

Our contribution. The aim of this paper is to study the closure by substitutions and
inverse substitutions of the families SELε and SEL of languages accepted by signal-
event automata, with or without ε-transitions. We prove that the class SELε is closed
under arbitrary substitutions and under arbitrary inverse substitutions. These closure
properties are not verified by the class SEL in general. Nevertheless, we show that
SEL is closed under inverse substitutions acting on events only, i.e., leaving signals
unchanged, and we give a sufficient condition for its closure under substitutions. These
results again show the robustness of the class SELε, which is in favour of signal-event
automata including ε-transitions.

Outline of the paper. We first give in Section 2 precise definitions of finite and infinite
signal-event languages, with the corresponding notion of signal-event automata and we
recall some technical results on signal-event automata that will be crucial for further
proofs. In Section 3, we define timed substitutions which are duration preserving map-
pings. We then study in Section 4 the closures of the classes SEL and SELε under
reconizable substitutions and their inverses.

For lack of space, this paper does not contain the proofs of the correctness of the dif-
ferent automata constructions we proposed. These proofs are available in the technical
report [6].

2 Signal-Event Words and Signal-Event Automata

Let Z be any set. We write Z∗ (respectively Zω) the set of finite (respectively infinite)
sequences of elements in Z , with ε for the empty sequence, and Z∞ = Z∗ ∪ Zω the
set of all sequences of elements in Z . The set Z∞ is equipped with the usual partial
concatenation defined from Z∗ × Z∞ to Z∞.
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Throughout this paper, we consider a time domain T which can be either the set
N of natural numbers, the set Q+ of non-negative rational numbers or the set R+ of
non-negative real numbers and we set T = T ∪ {∞}.

2.1 Signal-Event Words

We now describe the most general class of systems where both piecewise-constant sig-
nals and discrete events can occur, based on the signal-event monoid defined in [4]. We
consider two finite alphabets Σe and Σs, with Σ = Σe ∪ (Σs ×T): an element in Σe is
the label of an instantaneous event, while a pair (a, d) ∈ Σs ×T, written ad, associates
a duration d with a signal a. Moreover, Σs includes the special symbol τ for an internal
(or hidden) signal, the purpose of which is to represent a situation where no signal can
be observed.

Intuitively, signal-event words (SE-words for short and sometimes called timed
words) correspond to sequences obtained from Σ∞ by merging consecutive identical
signals and removing internal τ -signals with duration 0. But note that signals different
from τ may have a null duration.

Formally, the partial monoid of signal-event words is the quotient Σ∞/ ≈ where ≈
is the congruence (with respect to the partial concatenation on Σ∞) generated by{

τ0 ≈ ε and∏
i∈I adi ≈

∏
j∈J ad′

j if
∑

i∈I di =
∑

j∈J d′j

where the index sets I and J above may be infinite. The partial monoid Σ∞/ ≈ will be
denoted SE (Σ, T) or simply SE (Σ) or SE when there is no ambiguity. We write a∞

for the equivalence class of any sequence of the form
∏

i≥1 adi , where
∑

i≥1 di = ∞.

Note that for two words of the forms uad and ad′
v with d < ∞, the concatenation is

uad+d′
v.

A finite or infinite sequence in Σ∞ ∪ Σ∗ · (Σs × {∞}) which does not contain τ0

and such that two consecutive signals are distinct is said to be in normal form (NF).
SE-words are often identified with sequences in normal form. A SE -word is finite if its
normal form is a finite sequence (even if it ends with a∞).

A duration can be associated with each element of Σ by: ‖a‖ = 0 if a ∈ Σe and
‖ad‖ = d if a ∈ Σs and d ∈ T, so that the duration of a sequence w = s1s2 · · · in Σ∞

is ‖w‖ =
∑

i≥1 ‖si‖ ∈ T. Note that the duration restricted to finite SE -words with
finite durations is a morphism from Σ∗ into (T, +). A Zeno word is a SE -word with
finite duration and whose normal form is infinite. A signal-event language (or timed
language) is a set of SE -words.

Example 1. Let Σe = {f, g} and Σs = {a, b}. The SE -word w = a3ffgτ4.5a1b5

can be viewed as the following sequence of observations: first, the signal a during 3
time units, then a sequence of three instantaneous events ffg, then some unobservable
signal during 4.5 time units, again the signal a during 1 time unit and then the signal b
during 5 time units. The total duration of w is 13.5. For infinite SE -words, we have for
instance: a3gfa1∏

i≥1 a2 ≈ a1a2gf
∏

i≥1 a4 and the normal form is written a3gfa∞.
Note also that an infinite timed sequence in Σω may be a finite SE -word with finite
duration:

∏
i≥0 a1/2i ≈ a2.
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2.2 Signal-Event (Timed) Automata

Our model of signal-event automata (also called timed automata in the sequel) is a
variant of the basic models proposed in the literature, integrating both instantaneous and
durational semantics: signals are associated with the control states, while instantaneous
events occur when the system switches between two states.

Clocks and guards. Let X be a set of variables with values in T, called clocks. The set
C(X) of guards or clock constraints over X consists of conjunctions of atomic formulas
x �� c, for a clock x, a constant c ∈ T and a binary operator �� in {<,≤, =,≥, >}.

A clock valuation v : X → T is a mapping that assigns to each clock x a time value
v(x). The set of all clock valuations is TX . We write v |= g when the clock valuation v
satisfies the clock constraint g. If t is an element of T and α a subset of X , the valuations
v + t and v[α] are defined respectively by (v + t)(x) = v(x) + t, for each clock x in X
and (v[α])(x) = 0 if x ∈ α, and (v[α])(x) = v(x) otherwise.

Signal-event (timed) automata. A Büchi signal-event automaton over the time domain
T is a tuple A = (Σe, Σs, X, Q, Q0, F, R, I, �, ∆), where Σe and Σs are alphabets of
events and signals, X is a finite set of T-valued clocks, Q is a finite set of control states,
Q0 ⊆ Q is a subset of initial states, F ⊆ Q is a subset of final states and R ⊆ Q
corresponds to a Büchi acceptance condition. The mapping I : Q → C(X) associates
with a state q ∈ Q an invariant I(q) being a conjunction of constraints of the form
x �� c, with �� ∈ {<,≤}, and � : Q → Σs associates a signal with each state.

The set of transitions is ∆ ⊆ Q × C(X) × Σe ∪ {ε} × P(X) × Q. A transition,
also written q

g,a,α−−−→ q′, is labeled by a guard g, an instantaneous event in Σe or the
unobservable event ε, and the subset α of clocks to be reset. When a = ε, it is called an
ε-transition or a silent transition.

First examples of signal-event automata are given in Figure 1 (where double-circled
nodes correspond to Büchi repeated states). The semantics of SE -automata will be
given below. But intuitively,

– A SE -word is accepted by A1 if it is of the form ad1bd2 with d1 ≥ 1.
– A SE -word is accepted by A2 if it is of the form ad1cad2c . . . with di < 1 for

any i.
– Since the concatenation merges consecutive identical signals (ad1ad2 = ad1+d2),

the language accepted by A3 consists of the signal a emitted for a duration d ≥ 1.
– A4 accepts the signal a emitted for a duration d ≤ 1 (note that a1 is accepted by an

infinite run with successive durations 1
2 , 1

4 , 1
8 , . . . for instance).

Semantics. In order to define the semantics of SE -automata, we recall the notions
of path and timed run through a path. A path in A is a finite or infinite sequence of
consecutive transitions:

P = q0
g1,a1,α1−−−−−→ q1

g2,a2,α2−−−−−→ q2 . . . , where (qi−1, gi, ai, αi, qi) ∈ ∆, ∀i > 0
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A1 : p1

a
p2

b

x ≥ 1, ε A2 : q1

a, y < 1 c, {y}

A3 : p1

a
p2

a

x ≥ 1, ε A4 : q1

a, y < 1
ε

Fig. 1. Some signal automata

The path is said to be accepting if it starts in an initial state (q0 ∈ Q0) and either it is
finite and ends in a final state, or it is infinite and visits infinitely often a repeated state
q ∈ R. A run of the automaton through the path P is a sequence of the form:

〈q0, v0〉
d0−→ 〈q0, v0 + d0〉

a1−→ 〈q1, v1〉
d1−→ 〈q1, v1 + d1〉

a2−→ 〈q2, v2〉 . . .

where

– di ∈ T for i ≥ 0 and if P is finite with n transitions then the last step of the run

must be 〈qn, vn〉
dn−→ 〈qn, vn + dn〉, with dn ∈ T,

– (vi)i≥0 are clock valuations such that v0(x) = 0 for all x ∈ X , and for each i ≥ 0,
we have ⎧⎨⎩

vi + d |= I(qi), ∀d ∈ [0, di]
vi + di |= gi+1
vi+1 = (vi + di)[αi+1]

Note that if di is finite, the condition about invariant I(qi) can be replaced simply
by vi + di |= I(qi).

The signal-event (timed) word generated by this run is simply (the equivalence class
of) �(q0)d0a1�(q1)d1a2�(q2)d2 . . . . The signal-event (timed) language accepted by A
over the time domain T and the alphabet Σ, written L(A), is the set of SE -words gen-
erated by (finite or infinite) accepting runs of A. Two automata A and B are equivalent
if L(A) = L(B).

The set of all signal-event (timed) automata is denoted by SEAε whereas SEA is
the set of all signal-event automata using transitions with observable events only (i.e.
with labels in Σe instead of Σe ∪ {ε}). The family of signal-event (timed) languages
generated by some signal-event automaton in SEAε (respectively SEA) is denoted by
SELε (respectively SEL).

Remark 1. A Zeno run is an infinite run for which the time sequence defined by ti =∑
j≤i dj for i ≥ 0, is convergent (keeping the notations just above).
We did not include the non Zeno condition for runs, requiring that each infinite

accepting run has an infinite duration. Thus, Zeno runs accepting finite words with
finite duration may occur. Although Zeno behaviours have been studied (see for in-
stance [12,9]), it has been argued that excluding Zeno runs directly from the semantics
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of timed automata is a realistic assumption, since they do not appear in “real” systems.
However, the semantics of timed automata used by model-checking tools like UPPAAL

do include Zeno runs while performing forward reachability analysis (this can be easily
checked with an example). Hence, we think that the theory should include Zeno runs as
well.

We state now two properties that will be used to prove the main results of this paper.
The constructions related to the following two propositions can be found in [7]. It turns
out that any SE -automaton can be transformed into an equivalent one, in which finite
accepting runs correspond exactly to finite words with finite duration. Note that the
transformation removes a particular type of Zeno runs, those which contain ultimately
only ε-transitions and a single signal. But it keeps Zeno runs corresponding to infinite
words of finite duration.

Proposition 1. Let A be a SE -automaton. We can effectively construct an equivalent
SE -automaton A′ such that:

(†) no infinite run of A′ accepts a finite word with finite duration, and
(‡) no finite run of A′ accepts a word with infinite duration.

The previous result is interesting in itself for implementation issues: when a finite word
with finite duration is accepted by an infinite run, we build instead a finite accepting
run for this word. Furthermore, conditions (†) and (‡) are crucial to prove the following
closure property and are also used in the proof of Theorem 2.

Proposition 2. The class SELε is closed under intersection.

If we consider signal-event automata where ε-transitions are not allowed, the treament
of the intersection becomes much simpler. Indeed, the intersection of two SE -automata
without ε-transitions can be done in a classical way, i.e. as a product of automata and a
suitable treatment of the Büchi conditions. But in the general case, the construction of
an automaton recognizing the intersection is much more tricky. It can be found in [7],
together with references on related works.

3 Signal-Event (Timed) Substitutions

Recall that substitutions are a suitable model for refinements. In the untimed framework,
the image of each letter a ∈ Σ is a given language La over another alphabet Σ′ and a
substitution is a morphism extending this mapping.

Dealing with timed words requires to preserve durations. Therefore, an instantaneous
event must be replaced by SE -words with null duration, while a signal a with duration
d must be replaced by SE -words of the same duration d. Formally, the new alphabet is
also of the form Σ′ = Σ′

e ∪ (Σ′
s × T) and a substitution σ is defined by a family of

SE -languages (La)a∈Σe∪Σs such that:

– La ⊆ (Σ′
e ∪ (Σ′

s × {0}))∗ if a ∈ Σe,
– if a ∈ Σs \ {τ}, then La is a SE -language of non Zeno SE -words over Σ′.
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Using Zeno-words in substitutions may give rise to transfinite sequences, therefore we
have excluded them from the languages La.

Moreover, we assume that the internal signal τ is never modified, so that we always
have Lτ = {τ} × T. Then for each a ∈ Σe, σ(a) = La and for each ad ∈ Σs × T,
σ(ad) = {w ∈ La | ‖w‖ = d}. A substitution is thus a duration preserving mapping.

For a SE -word v = v1v2 · · · in normal form over Σ, σ(v) is the set of SE -words
obtained from σ(v1)σ(v2) · · · by merging consecutive identical signals. Note that w ∈
σ(v) can be written w1w2 · · · with wi ∈ σ(vi) for each i ≥ 1. However this decompo-
sition of w may not be in normal form. Finally, for a timed language L over Σ, we set
σ(L) = ∪v∈Lσ(v).

Example 2

– Choosing Lf = {f} for f ∈ Σe and La = {τ0} ∪ {a} × (T \ {0}) for a ∈ Σs

leads to a substitution that cancel all signals with a null duration.
– Hiding some signal a is simulated by a substitution where La = {τ} × T.

Timed substitutions and morphisms. It should be noticed that, while substitutions are
morphisms in the untimed framework, this is not the case with our definition. For in-
stance, assume that a is a signal such that La = {b2}, then σ(a1) = ∅ and σ(a2) =
{b2} 
= σ(a1)σ(a1).

We call m-substitution a SE -substitution which is a morphism with respect to the
partial concatenation. We have the following characterization:

Proposition 3. Let σ be a SE -substitution, given by a family (La)a∈Σe∪Σs . Then, σ is
a morphism if and only if for each signal a ∈ Σs we have

1. La is closed under concatenation: for all u, v ∈ La with ‖u‖ < ∞, we have
uv ∈ La,

2. La is closed under decomposition: for each v ∈ La with ‖v‖ = d, for all d1 ∈ T,
d2 ∈ T such that d = d1 + d2, there exist vi ∈ La with ‖vi‖ = di such that
v = v1v2.

This proposition is easy to prove and shows that rather restrictive conditions should be
added on the languages La to obtain morphisms.

The notion of abstraction is fundamental in the study of systems, and in particular
in their verification. It consists in replacing a set of behaviors with a single action in
order to obtain a smaller system, simpler to study and to understand. The abstraction
operation is thus the inverse of refinement. As in the untimed case, inverse substitutions
provide a suitable model for abstractions in our framework.

For a substitution σ, the inverse substitution σ−1 is the operation defined for a lan-
guage L′ ⊆ SE (Σ′) by σ−1(L′) = {v ∈ SE (Σ) | σ(v) ∩ L′ 
= ∅}.

4 Recognizable Substitutions

We now focus on recognizable substitutions, whose associated languages are defined by
SE -automata. Formally, a substitution σ defined by a family of languages (La)a∈Σe∪Σs
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is a SELε-substitution (a SEL-substitution resp.) if La ∈ SELε (resp. La ∈ SEL) for
each a ∈ Σe ∪ Σs.

The aim of this paper is precisely to investigate the closure of the two classes of
SE -languages SEL and SELε under recognizable substitutions and their inverse.

We first consider the special cases of renaming and event-hiding. Formally, a renam-
ing is simply a substitution such that, for each f ∈ Σe, Lf = {g} for some g ∈ Σ′

e, and
for each a ∈ Σs\{τ}, La = {b}×T for some b ∈ Σ′

s. An event-hiding is a substitution
such that Lf = {f} or Lf = {ε} for f ∈ Σe and La = {a} × T for a ∈ Σs. We have:

Proposition 4

1. The classes SEL and SELε are closed under renaming,
2. The class SELε is closed under event-hiding whereas SEL is not,

Proof Point 1 is straightforward. For the second point, the closure of SELε under event-
hiding was already noticed in [1] and the result easily extends to our framework: in order
to hide the event a, one replaces a-labelled transitions by ε-transitions.

τ

x = 0, a

x = 2, b, {x}

τ

x = 0, a

x = 2, ε, {x}

Fig. 2. Timed automata for L1 and h(L1)

For the class SEL, recall from [5] that the language Even = ((τ2)∗a)∞ cannot
be accepted by a timed automaton without ε-transitions. Consider the language L1 =
((τ2b)∗a)ω ∪ ((τ2b)∗a)∗(τ2b)ω accepted by the automaton on the left of Figure 2, with
no final state, where the unique state is labeled τ and is both initial and repeated. Hiding
the b’s in L1 yields the language h(L1) accepted by the automaton in SEAε on the right
of Figure 2. Since h(L1) is the analogous of Even in our framework, it is not in the
class SEL. ��

The class SEL is not closed under SEL-substitution. Indeed, take Lf = {b0f} and
Lc = {c0} which are accepted by the automata below and are therefore both in SEL.
Consider also L = {c0f} ∈ SEL. Then σ(L) = {c0b0f} is not in SEL since it con-
tains a SE -word with two consecutive distinct signals. The next result gives a sufficient
condition on a substitution for the closure property of SEL to hold.

Lf : b
τ

x ≤ 0
f Lc : c

x ≤ 0
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Theorem 1. Let L be a language in SEL and σ a SEL-substitution such that for each
f ∈ Σe the language Lf contains only SE -words starting and ending with (instanta-
neous) events from Σ′

e. Then σ(L) belongs to SEL.

Proof. We prove the theorem for a substitution acting only on events or acting only on
signals. The general case is obtained using compositions of such elementary substitu-
tions and of renaming.

We first show how to handle substitution of events. So let σ be a SEL-substitution
satisfying the condition of the theorem and which is defined by a family (La)a∈Σe∪Σs

of SEL-languages. Since σ acts only on events, we have La = {a} × T for all a ∈ Σs.
For f ∈ Σe, the language Lf is accepted by some SEA-automaton Af with only one
clock xf which is never tested or reset, with no repeated states, where all the guards
are true and where all final states carry the invariant xf ≤ 0 in order to ensure that
each accepted SE -word has a null duration. Moreover, from the hypothesis on σ, we
can assume that all initial and final states are labelled τ .

Now, let L ⊆ SE (Σ) be accepted by a SEA-automaton A. We build from A a SEA-
automaton A′ accepting σ(L) as follows. For each state q, we consider a new copy Aq

f

of Af and we replace any transition (p, g, f, α, q) by the following set of transitions:

– for each transition (q0, true, b, ∅, q1) in Aq
f with q0 initial, we add the transition

(p, g, b, α ∪ {xf}, q1) to A′,
– for each transition (q1, true, b, ∅, q2) in Aq

f with q2 final, we add the transition
(q1, xf = 0, b, ∅, q) to A′,

– for each transition (q0, true, b, ∅, q2) in Aq
f with q0 initial and q2 final, we add the

transition (p, g, b, α, q) to A′,
– all states and transitions of Aq

f are kept unchanged in A′.

Again, the clock operations on xf ensure an instantaneous traversal of Aq
f . The initial,

final and repeated states remain those of A. Clearly A′ is a SEA-automaton and we can
show that it accepts σ(L).

We now handle substitution of signals. Let σ be a SEL-substitution defined by a
family (La)a∈Σe∪Σs of SEL-languages. We assume that σ acts only on signals, i.e.,
Lf = {f} for each f ∈ Σe. For a ∈ Σs, the language La is accepted by some
SEA-automaton Aa = (Σ′

e, Σ
′
s, Xa, Qa, Q0

a, Fa, Ra, Ia, �a, ∆a). We assume that all
the Xa’s are pairwise disjoints.

Let A = (Σe, Σs, X, Q, Q0, F, R, I, �, ∆) be a SEA-automaton accepting a lan-
guage L ⊆ SE (Σ). We assume that X is disjoint from the Xa’s. We build from A
a SEA-automaton A′ accepting σ(L) as follows. For each state p of A with label a,
we consider a new copy Ap of Aa in which the invariant I(p) is added to all states:
Ip(rp) = Ia(r) ∧ I(p) if rp is the copy of state r ∈ Qa. To build A′, we start with the
disjoint union of all the Ap’s and we add switching transitions:

If (p, g, f, α, q) is a transition of A then for each final state rp of Ap and each
initial state sq of Aq we add the transition (rp, g, f, α ∪ X(q), sq) to A′.

The initial states of A′ are the initial states of all Ap such that p ∈ Q0. The final states
of A′ are the final states of all Ap such that p ∈ F . An infinite path of A′ is accepting if
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– either it uses infinitely many switching transitions (rp, g, f, α ∪ X(q), sq) with
p ∈ R,

– or else, it stays ultimately in some Ap with p ∈ F and it visits Rp infinitely often.

We can easily transform the automaton A′ in order to get a classical Büchi condition if
needed. We can check that A′ accepts σ(L). ��

We will now show that the class SELε is closed under SELε-substitutions. The
construction for the substitution of signals given in the previous proof does not work.
Indeed, by definition, a substitution must be applied to a word in normal form. The dif-
ficulty comes from the fact that in the automaton for L, a factor ad of some normal form
may be generated by a path with several a-labelled states and even τ -labelled states that
are crossed instantaneously if all these states are linked by ε-transitions. So we cannot
simply replace each a-labelled state by a copy of Aa.

To circumvent this difficulty, we use a proof technique inspired from rational trans-
ductions and that can be applied to establish the closure of the class SELε both under
SELε-substitutions and their inverse. Hence, we state and prove both results simultane-
ously. It should be noted that these closure properties hold for arbitrary substitutions,
showing once again the robustness of the class SELε.

Theorem 2. The class SELε is closed under SELε-substitution and inverse SELε-
substitution.

Proof. Let σ be a SELε-substitution from SE (Σ) to SE (Σ′) given by a family of au-
tomata (Aa)a∈Σe∪Σs , with Aa = (Σ′

e, Σ
′
s, Xa, Qa, Q

0
a, Fa, Ra, Ia, �a, ∆a) ∈ SEAε.

We assume that these automata satisfy condition (†) of Proposition 1.
We use the same technique to prove both closure properties. We show that σ(L) and

σ−1(L) can both be expressed as a projection of the intersection of a SELε-language
with an inverse projection of L. This is in the spirit of rational transductions for classical
word languages.

Consider a new alphabet Σ̂ = Σ̂e ∪ Σ̂s × T with Σ̂e = Σe � Σ′
e (� is the disjoint

union) and Σ̂s = Σs × Σ′
s (we identify (τ, τ) with the unobservable signal τ ). The

projections π1 and π2 are the morphisms defined by:

π1(f) = f and π2(f) = ε if f ∈ Σe,
π1(f) = ε and π2(f) = f if f ∈ Σ′

e,
π1((a, b)d) = ad and π2((a, b)d) = bd if (a, b)d ∈ Σs × Σ′

s × T.

With this definition we have πi((a, b)d1+d2) = πi((a, b)d1)πi((a, b)d2). Note that pro-
jection πi is a composition of an event-hiding and a signal-renaming. By Proposition 4
we deduce that the projection by πi of a SELε language is again in the class SELε.

For L ⊆ SE (Σ), we let π−1
1 (L) = {w ∈ SE (Σ̂) | π1(w) ∈ L}. We define similarly

π−1
2 (L) for L ⊆ SE (Σ′). We will show later that if L is recognizable then so is π−1

i (L).
We will also define a recognizable language M ⊆ SE (Σ̂) with the following properties:

1. for each w ∈ M , we have π2(w) ∈ σ(π1(w)),
2. for each u ∈ SE (Σ) and v ∈ σ(u), there exists w ∈ M such that u = π1(w) and

v = π2(w).



Refinements and Abstractions of Signal-Event (Timed) Languages 77

Then, for L ⊆ SE (Σ), we have σ(L) = π2(π−1
1 (L) ∩ M). Indeed, Let v ∈ σ(L) and

let u ∈ L with v ∈ σ(u). Using property 2 of M we find w ∈ M with π1(w) = u
and π2(w) = v. Then, w ∈ π−1

1 (L) ∩ M and v ∈ π2(π−1
1 (L) ∩ M). Conversely, let

v ∈ π2(π−1
1 (L) ∩ M) and let w ∈ π−1

1 (L) ∩ M with π2(w) = v. By definition, we
have u = π1(w) ∈ L and using property 1 of M , we get v ∈ σ(u) ⊆ σ(L).

Similarly, for L ⊆ SE (Σ′), we have σ−1(L) = π1(π−1
2 (L) ∩ M). Indeed, Let

u ∈ σ−1(L) and let v ∈ σ(u) ∩ L. Using property 2 of M we find w ∈ M with
π1(w) = u and π2(w) = v. Then, w ∈ π−1

2 (L) ∩ M and u ∈ π1(π−1
2 (L) ∩ M).

Conversely, let u ∈ π1(π−1
2 (L) ∩ M) and let w ∈ π−1

2 (L) ∩ M with π1(w) = u. By
definition, we have v = π2(w) ∈ L and using property 1 of M , we get v ∈ σ(u).
Hence, σ(u) ∩ L 
= ∅ and u ∈ σ−1(L).

We already know that SELε-languages are closed under intersection (Proposition 2)
and projections πi. To conclude the proof of Theorem 2, it remains to show that they
are also closed under inverse projections π−1

i and to define the SELε-language M with
the properties above.

We show first that SELε-langagues are closed under inverse projections π−1
i . Let L

be recognized by some automaton A = (Σe, Σs, X, Q, Q0, F, R, I, �, ∆) ∈ SEAε. We
build an automaton Â accepting π−1

1 (L). The set of states is Q̂ = Q � Q × Σ′
s, with

Q̂0 = Q0 for initial states and F̂ = F for final states. The set of clocks is X �{z}. The
labels and invariants are defined by �̂(q) = τ and Î(q) = I(q)∧ (z ≤ 0) for q ∈ Q, and
�̂((q, b)) = (�(q), b) and Î((q, b)) = I(q) for (q, b) ∈ Q × Σ′

s. The set of transitions ∆̂
is defined by:

1. All transitions (p, g, f, α, q) ∈ ∆ are kept in ∆̂.
2. For all f ′ ∈ Σ′

e and q ∈ Q, we put (q, true, f ′, ∅, q) in ∆̂.
3. For all (q, b) ∈ Q×Σ′

s, we put (q, true, ε, ∅, (q, b)), ((q, b), true, ε, {z}, q) in ∆̂.

We use a generalized acceptance condition for infinite paths. By transforming the au-
tomaton we can get a classical Büchi condition if needed. An infinite path is accepting
if it uses

– either infinitely many transitions (p, g, f, α, q) of type 1 with q ∈ R,
– or ultimately transitions of type 2 and 3 only around some state q ∈ F .

We show that L(Â) = π−1
1 (L). Let w be a word over Σ̂ accepted by Â. We consider

a run of Â for w through an accepting path P̂ . Erasing from this path all transitions of
type 2 and 3 above, we obtain a path P of A. If P̂ is finite then it ends in a final state
q ∈ F̂ = F and P is also accepting since it ends in state q. If P̂ uses infinitely many
transitions (p, g, f, α, q) of type 1 with q ∈ R, then P is infinite and visits R infinitely
often, hence it is also accepting. Finally, if P̂ is infinite and uses ultimately transitions
of type 2 and 3 only around some state q ∈ F , then P is finite and accepting since it
ends in state q. In all cases, P is an accepting path of A. We can show that π1(w) admits
a run through P . Therefore, π1(w) ∈ L.

Conversely, let w ∈ SE (Σ̂) and assume that π1(w) ∈ L is accepted by a run

〈q0, v0〉
d0−→ 〈q0, v0 + d0〉

f1−→ 〈q1, v1〉
d1−→ 〈q1, v1 + d1〉

f2−→ 〈q2, v2〉 · · · through

an accepting path P = q0
g1,f1,α1−−−−−→ q1

g2,f2,α2−−−−−→ q2 · · · of A. Then, we have π1(w) ≈
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ad0
0 f1a

d1
1 f2 · · · with ai = �(qi) for i ≥ 0. We deduce that w ≈ w0f1w1f1w2 · · · with

π1(wi) = adi

i . Now, if wi is finite with finite duration then we find a path P̂i following
the normal form of wi, starting and ending in qi, and using transitions of type 2 and 3
only. If wi is infinite or with infinite duration then the path P must be finite ending in
state qi ∈ F since P is accepting. Then, we find an infinite path P̂i for wi using only
transitions of type 2 and 3 around qi. Note that if wi is finite with infinite duration, then
it ends with b∞ for some b ∈ Σ′

s and we still need an infinite path ultimately alternating

between states qi and (qi, b). Finally, P̂ = P̂0
g1,f1,α1−−−−−→ P̂1

g2,f2,α2−−−−−→ P̂2 · · · is a path in
Â and it is easy to see that P̂ is accepting. Moreover, we can show that w admits a run
through P̂ and therefore, w is accepted by Â.

We turn now to the definition of M . For f ∈ Σe and a ∈ Σs \ {τ}, we define

Mf = {w ∈ SE (Σ̂) | w = (τ, b0)0f1(τ, b1)0f2 · · · (τ, bn)0

with b0
0f1b

0
1f2 · · · b0

n ∈ σ(f)} · f
Ma = {w ∈ SE (Σ̂) | w = (a, b0)d0f1(a, b1)d1f2 · · ·

with bd0
0 f1b

d1
1 f2 · · · ∈ σ(ad0+d1+···)}

We also let Mτ = {(τ, τ)d | d ∈ T \ {0}}. Note that for w ∈ Ma with a ∈ Σe ∪ Σs

we have π2(w) ∈ σ(π1(w)) as required by property 1 of M . Moreover, if f ∈ Σe and
v ∈ σ(f) then there exists w ∈ Mf such that π1(w) = f and π2(w) = v. Similarly, if
ad ∈ Σs × T (with d > 0 if a = τ ) and v ∈ σ(ad) then there exists w ∈ Ma such that
π1(w) = ad and π2(w) = v.

Intuitively, M consists of finite or infinite products of words in
⋃

a∈Σe∪Σs
Ma except

that, in order to ensure that the first projection is in normal form, we should not allow
consecutive factors associated with the same signal. Formally, we define

M = {w1w2 · · · | ∃a1, a2, . . . ∈ Σe ∪ Σs with wi ∈ Mai and ai ∈ Σs ⇒ ai+1 
= ai}.

We show that M satisfies property 1. Let w = w1w2 · · · ∈ M and let a1, a2, . . . ∈
Σe ∪ Σs be such that wi ∈ Mai and ai ∈ Σs ⇒ ai+1 
= ai. Then, π1(w) =
π1(w1)π1(w2) · · · is in normal form and we have seen above that π2(wi) ∈ σ(π1(wi)).
Therefore, π2(w) ∈ σ(π1(w)) and property 1 is proved.

We show that M satisfies property 2. Let u ∈ SE (Σ) and v ∈ σ(u). Write u =
u1u2 · · · in normal form and v = v1v2 · · · with vi ∈ σ(ui). Let ai = ui if ui ∈ Σe

and ai = a if ui = ad ∈ Σs × T. Since the product u = u1u2 · · · is in normal form,
we have ai ∈ Σs ⇒ ai+1 
= ai and ui = τd ⇒ d > 0. Since vi ∈ σ(ui), we have
seen above that there exists wi ∈ Mai such that π1(wi) = ui and π2(wi) = vi. Then,
w = w1w2 · · · ∈ M and π1(w) = u and π2(w) = v as required by property 2.

It remains to show that M is recognizable by some SEAε-automaton. For each a ∈
Σe ∪ Σs we first show that Ma is accepted by some automaton Âa ∈ SEAε derived
from Aa. This is clear for a = τ . Note that Âτ needs two states to ensure the positive
duration required by Mτ . For a ∈ Σs \ {τ}, the automaton Âa is simply a copy of Aa,
with new label (a, �a(q)) for q ∈ Qa. For f ∈ Σe, the set of states is Q̂f = Qf � {qf},
where qf is a new state, which is also the only final state. The label of q ∈ Qf is
(τ, �f (q)), the label of qf is (τ, τ) and its invariant is xf ≤ 0 where xf is the clock
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ensuring instantaneous traversal of Af . The transitions are those in Af , to which we
add (q, f, qf ) for any state q which was final in Af . Note that, since Aa satisfies (†) for
a ∈ Σe ∪ Σs, then so does Âa.

Since M is essentially the iteration of the languages Ma, it should be clear that M ∈
SELε. The SEAε-automaton B recognizing M is the disjoint union of the automata
Âa to which we add ε-transitions allowing to switch between automata: if p is a final
state of Âa and q is an initial state of Âb and a ∈ Σs ⇒ b 
= a then we add the
transition (p, true, ε, Xb, q). All initial (resp. final, repeated) states of the Âa’s are
initial (resp. final, repeated) in B. But we also need to accept runs that switch infinitely
often between the Âa’s, i.e., taking infinitely many switching ε-transitions. If needed,
it is easy to transform the automaton so that it uses classical Büchi condition to accept
also these runs.

We can show that any SE -word accepted by B is in M . Condition (†) is needed to
prove the converse. Indeed, a finite SE -word v ∈ Ma with ‖v‖ < ∞ could appear as
an internal factor of some SE -word uvw ∈ M with w 
= ε. If v could only be accepted
by an infinite run in Âa, then we would not be able to build a (non transfinite) run for
uvw in B. ��

The class SEL is not closed under inverse SEL-substitutions. Indeed, assume Σs =
Σ′

s = {a, b}, Σe = Σ′
e = {f} and let σ be the SEL-substitution defined by La =

{a1f}, Lb = {b0} and Lf = {f}. Then the inverse image by σ of the SEL-language
{a1fb0} is the language {a1b0} which is not in the class SEL. Nevertheless sufficient
conditions on the substitutions can be proposed to ensure the closure of the class SEL
under inverse substitutions.

Theorem 3. The class SEL is closed under inverse SEL-substitutions acting on events
only.

Proof. Let σ be a substitution defined by a family (La)a∈Σe∪Σs of SEL-languages.
We assume that σ acts only on events, i.e., La = {a} × T for all a ∈ Σs. Let
Af = (Σ′

e, Σ
′
s, {xf}, Qf , Q0

f , Ff , ∅, If , �f , ∆f ) for f ∈ Σe be an automaton with-
out ε-transitions accepting Lf . Since the guards and resets on the transitions of Af are
always true and ∅ respectively, we write a transition of Af simply (r, f ′, s) to simplify
the notation. We consider now a language L ∈ SEL, recognized by some automaton
without ε-transition A2 = (Σ′

e, Σs, X, Q, Q0, F, R, I, �, ∆) ∈ SEA.
We build an automaton A1 in SEA accepting σ−1(L) essentially by changing the

transitions of A2. If there is a path P in A2 from p to q having some instantaneous run
for some word in σ(f) then we add to A1 a transition (p, g, f, α, q) with a suitable guard
g and reset α. The difficulty is to compute a suitable pair (g, α) for each triple (p, q, f).

Given a guard g and a subset of clocks α, we define the restriction of g by α, written
g[α], as the guard g where all clocks from α have been replaced by 0. For instance, if g
is (x < 3) ∧ (y > 2) and α = {x, z} then g[α] is (equivalent to) (y > 2). We let G be
the smallest set of guards including all guards of A2 and closed under conjunctions and
restrictions. Formally G is not a finite set, but it can be identified with its finite quotient
under equivalence of formulae: two formulae ϕ and ψ are equivalent if v |= ϕ iff v |= ψ
for all valuations v. The set Γ = G × P(X) is thus a finite monoid, with (True, ∅) as
neutral element, for the associative composition:
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(g1, α1) · (g2, α2) = (g1 ∧ g2[α1], α1 ∪ α2).

Finally, we define a morphism γ : ∆∗ �→ Γ by γ((p, g, f, α, q)) = (g, α).

Let P = q0
g1,b1,α1−−−−−→ q1

g2,b2,α2−−−−−→ · · · gn,bn,αn−−−−−−→ qn be a path in A2. We define
W(P ) = �(q0)0b1�(q1)0b2 · · · bn�(qn)0. Now, given a triple (p, q, f) where p, q ∈ Q
and f ∈ Σe, we denote by Lf

p,q the set of paths P from p to q in A2 with W(P ) ∈ σ(f).
We can build an automaton Bf

p,q recognizing the language Lf
p,q ⊆ ∆∗. This is not

difficult since we are dealing with automata without ε-transitions, hence we can perform
a simple synchronized product as follows. The set of states is Q′ = {(r, s) ∈ Qf ×Q |
�f(r) = �(s)}, the set of initial states is Q′ ∩ Q0

f × {p}, the set of final states is
Q′∩Ff ×{q}. The transitions of Bf

p,q are the triples ((r1, s1), (s1, g, b, α, s2), (r2, s2))
with (r1, b, r2) ∈ ∆f and (s1, g, b, α, s2) ∈ ∆.

We let ∆R ⊆ ∆∗ be the set of sequences containing at least a transition ending
in some repeated state of R. From the automaton Bf

p,q, we can effectively compute
a rational expression for the language Lf

p,q ∩ ∆R. We deduce that we can effectively
compute the finite set γ(Lf

p,q ∩ ∆R). Similarly, we can effectively compute the finite
set γ(Lf

p,q \ ∆R). These two sets are used to define the transitions of a new automaton
A1 = (Σe, Σs, X, Q � Q, Q0, F, Q, I, �, ∆1) in SEA:

∆1 = {(p, g, f, α, q), (p, g, f, α, q) | (g, α) ∈ γ(Lf
p,q \ ∆R)}

∪ {(p, g, f, α, q), (p, g, f, α, q) | (g, α) ∈ γ(Lf
p,q ∩ ∆R)}.

The automaton A1 can therefore be effectively computed from the automata A2 and
(Af )f∈Σe . We can show that L(A1) = σ−1(L). Therefore, the language σ−1(L) ∈
SEL and Theorem 3 is proved. ��

5 Conclusion

We have shown in this paper that the class SEL of signal-event languages is not closed
under arbitrary SEL-substitutions and inverse SEL-substitutions but that natural suffi-
cient conditions ensure closure properties for this class.

But our main contribution is to propose effective constructions to prove the clo-
sure of the larger class SELε under arbitrary SELε-substitutions and inverse SELε-
substitutions. We give these constructions in the general framework of signal-event au-
tomata and languages. The usual cases of event languages [1,2] or signal languages
[3,10,4,11] are particular cases for which the interested reader will check that simpli-
fied constructions can be given.
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Abstract. Several recent papers investigate the relative expressiveness
of Timed Automata and Time Petri Nets, two widespread models for
realtime systems. It has been shown notably that Timed Automata and
Bounded Time Petri Nets are equally expressive in terms of timed lan-
guage acceptance, but that Timed Automata are strictly more expressive
in terms of weak timed bisimilarity. This paper compares Timed Au-
tomata with Bounded Time Petri Nets extended with static Priorities,
and shows that two large subsets of these models are equally expressive
in terms of weak timed bisimilarity.

Keywords: Time Petri nets, priorities, Timed Automata, weak timed
bisimilarity, real-time systems modeling and verification.

1 Introduction

Among the many models proposed for the specification and verification of real
time systems, two are prominent: Time Petri nets and Timed Automata.

Time Petri nets (TPN) [15] extend Petri nets with temporal intervals associ-
ated with transitions, specifying firing delay ranges for the transitions. Assuming
transition t became last enabled at time θ, and the end-points of its time inter-
val are α and β, then t cannot fire earlier than time θ + α and must fire no
later than θ + β, unless disabled by firing some other transition. Firing a tran-
sition takes no time. Many other Petri net based models with time extensions
have been proposed, but none reaches the acceptance of Time Petri nets. Avail-
ability of effective analysis methods, prompted by [5], certainly contributed to
their widespread use, together with their ability to cope with a wide variety of
modeling problems for realtime systems.

Timed Automata (TA) [2] extend finite automata with clocks, guards, resets
and a product operation. Transitions are guarded by boolean conditions on clock
values. When taken, they may emit a label and perform resets of some clocks. All
clocks progress synchronously as time elapses. Some versions of timed automata
support progress annotations as location invariants limiting elapsing of time
when at that location, urgency requirements, or transition deadlines. Timed
automata are convenient for modeling a large class of realtime problems. They
prompted a considerable amount of research work and benefit from a rich theory.

E. Asarin and P. Bouyer (Eds.): FORMATS 2006, LNCS 4202, pp. 82–97, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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These two models, as well as their analysis techniques, were developed in-
dependently for years, though they bear strong relationships. State space ab-
stractions for TPN ’s preserving various classes of properties can be computed
in terms of so-called state classes [5] [4] [6]. State classes represent sets of states
by a marking and a polyhedron capturing temporal information. State space ab-
stractions for (Networks of) Timed Automata are based upon geometric regions
characterizing sets of states by a location of the underlying automaton and a
convex set capturing temporal information. In both cases, the convex sets can
be represented by difference systems, or DBM’s.

In spite of many technical resemblances and their overlapping application
domains, few material was available until recently comparing expressiveness of
these two models. A number of recent works finally addressed the issue. [11]
translated a subclass of TA’s into TPN ’s, preserving timed language acceptance.
Later, [9] proposed a structural encoding of TPN ’s into TA’s, improving an
earlier semantics based encoding in [14]. [3] proves than TPN ’s and TA’s are
equivalent w.r.t. timed language acceptance, but that TA’s are strictly more
expressive in terms of timed bisimilarity, they also discuss the subclass of TA’s
weakly timed bisimilar with some TPN .

In this article, we first extend Time Petri nets with static priorities. In TPN ’s
with Priorities (PrTPN ’s for short), a transition is not allowed to fire if some
transition with higher priority is firable at the same instant. Such priorities have
many applications in realtime systems, in scheduling, arbitration, synchroniza-
tion, and others problems. We then develop an encoding of Timed Automata
(without progress requirements) into PrTPN ’s, preserving weak timed bisimi-
larity. Next, we extend TA’s with invariants and show that TA’s with invariants
built from {≤,∧} can be encoded into PrTPN ’s. Finally, extending the encoding
of [9] of TPN ’s into TA’s, we show that TA’s with invariants built from {≤,∧}
are equally expressive than PrTPN ’s with unbounded or right-closed intervals.
Some corollaries follow that extend available equivalence results between TA’s
and TPN ’s (without priorities).

The paper is organized as follows. Section 2 recalls the essentials about timed
transition systems (TTS), the common semantic domain for TA’s and PrTPN ’s.
Section 3 reviews the terminology of Timed automata and their semantics. Sec-
tion 4 introduces Time Petri nets with Priorities, and compares their expressive-
ness with that of TPN ’s. Section 5 explains how to encode Timed Automata
(without invariants) into weakly timed bisimilar PrTPN ’s. Section 6 discusses
progress requirements, extends the encoding to TA’s with invariants built from
{≤,∧}, and derives a number of ordering or equivalence results. Finally, Section
7 discusses some consequences, side issues, and prospective work.

2 Timed Transition Systems

The semantics of Timed Automata (TA) and Time Petri Nets (PrTPN) will be
given in terms of Timed Transition Systems (TTS), as described in e.g. [13]. We
review here their terminology and some key concepts used in the next sections.
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Timed Transition Systems: R+ is the set of nonnegative reals. A Timed
Transition System is a structure 〈Q, q0, Σ ∪ {ε},→〉 where:

– Q is a set of states
– q0 ∈ Q is the initial state
– Σ is a finite set of actions not containing the silent action ε
– → ⊆ Q× (Σ ∪ {ε} ∪R+) ×Q is the transition relation.

(q, a, q′) ∈ → is also written q
a−→ q′. Σε abbreviates Σ∪{ε}. The transitions

belonging to Q×Σε ×Q are called discrete transitions, those from Q×R+ ×Q
are the continuous transitions. Continuous transitions are typically required to
obey the following properties (∀d, d′, d′′ ∈ R+):

– 0-delay: q 0−→ q′ ⇔ q = q′

– additivity: q d−→ q′ ∧ q′
d′
−→ q′′ ⇒ q

d+d′
−→ q′′

– continuity: q d+d′
−→ q′ ⇒ (∃q′′)(q d−→ q′′ ∧ q′′

d′
−→ q′)

– time-determinism: q d−→ q′ ∧ q
d−→ q′′ ⇒ q′ = q′′

Product of TTS: Let S1 = 〈Q1, q
0
1 , Σ

ε
1,→1〉 and S2 = 〈Q2, q

0
2 , Σ

ε
2,→2〉 be

two TTS. We assume that every action of Σi labels some transition of Si. The
product of S1 by S2 is the TTS S1 || S2 = 〈Q1 ×Q2, q

0
1 || q0

2 , Σ
ε
1 ∪Σε

2,→〉 where
→ is the smallest relation obeying the following rules (a ∈ Σ1 ∪Σ2 ∪ {ε}∪R+):

q1
a−→1 q′1

q1 || q2 a−→ q′1 || q2
(a ∈ Σε

1\Σ2)
q2

a−→2 q′2
q1 || q2 a−→ q1 || q′2

(a ∈ Σε
2\Σ1)

q1
a−→1 q′1 q2

a−→2 q′2
q1 || q2 a−→ q′1 || q′2

(a 
= ε)

Timed Bisimilarity: Let S1 = 〈Q1, q
0
1 , Σ

ε
1,→1〉 and S2 = 〈Q2, q

0
2 , Σ

ε
2,→2〉 be

two TTS and ∼ ⊆ Q1 × Q2. Then S1 and S2 are strongly timed bisimilar iff
q0
1 ∼ q0

2 and, whenever q1 ∼ q2 and a ∈ Σε
1 ∪Σε

2 ∪ R+:

(1) q1
a−→1 q′1 ⇒ (∃q′2)(q2

a−→2 q′2 ∧ q′1 ∼ q′2)
(2) q2

a−→2 q′2 ⇒ (∃q′1)(q1
a−→1 q′1 ∧ q′1 ∼ q′2)

Strong timed bisimilarity is often too strong a requirement. A coarser equiv-
alence relation, hiding silent transitions, is obtained from relation a=⇒, defined
from a−→ as follows (a ∈ Σ ∪R+, d ∈ R+):

q
a−→ q′

q
a=⇒ q′

q
a=⇒ q′ q′

ε−→ q′′

q
a=⇒ q′′

q
ε−→ q′ q′

a=⇒ q′′

q
a=⇒ q′′

q
d=⇒ q′ q′

d′
=⇒ q′′

q
d+d′
=⇒ q′′

Two timed transition systems are weakly timed bisimilar when conditions (1)
and (2) above hold, with relations a−→i replaced by a=⇒i (i ∈ {1, 2}).
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3 Timed Automata

Q+ is the set of nonnegative rationals. Given a finite set of clocks X , the set
C(X) of clock constraints over X is defined by the grammar:

g ::= x#c | g ∧ g | true where x ∈ X , c ∈ Q+ and # ∈ {≤, <,≥, >}

Definition 1. A Timed Automaton (TA), is a tuple 〈Q, q0, X,Σε, T 〉 in which:

– Q is a finite set of locations
– q0 ∈ Q is the initial location
– X is a finite set of clocks
– Σ is a finite set of actions, assumed not to contain the silent action ε
– T ⊆ Q× (C(X) ×Σε × 2X) ×Q is a finite set of transitions, or edges.

(q, g, a, R, q′) ∈ T may be written q
g,a,R

−−−−→ q′. A configuration of a Timed
Automata is a pair (q, v), where q ∈ Q and v is a vector of clock values (one
for each clock in X). v[R := 0] denotes the vector in which the components
corresponding to clocks in R are 0 and the others are as in v. |E| is card(E).

Definition 2. The semantics of a Timed Automaton 〈Q, q0, X,Σε, T 〉 is the
TTS 〈S, s0, Σε,→〉 where S=Q× (R+)|X|, s0 =(q0, 0), and → is defined by:

– (q, v) a−→ (q′, v′) iff (∃(q, g, a, R, q′) ∈ T )(g(v) ∧ v′ = v[R := 0])
– (q, v) d−→ (q, v + d) iff d ∈ R+

Product of timed automata: A product construction || is defined for timed
automata, allowing one to express complex realtime systems as synchronized
components. A definition of this product can be found in e.g. [1]. That product
construction is compositional in that the TTS denoted by a product of timed
automata is the product of the TTS’s respectively denoted by the components.

Progress requirements: Our definition of TA, taken from [2], does not include
any means of enforcing progress. The need for enforcing progress has been rec-
ognized early and several solutions have been proposed to extend TA with such
requirements, including location invariants, urgency and transition deadlines.
Progress enforcement will be added to TA’s and discussed in Section 6.

Priorities: We only consider here static priorities. The definition of TA’s is
extended with a partial irreflexive, asymmetric and transitive priority relation
among transitions. The semantics is updated accordingly: a transition can only
be taken when no transition with higher priority can be taken at the same
instant.

Static priorities do not add expressiveness to TA’s. If t1, with guard g1, has
lower priority than t2, with guard g2, then it suffices to replace g1 by g1 ∧ ¬g2.
Negating a guard may introduce disjunctions, but these can be removed by
distributing the components of the disjunction among several transitions, the
transformation preserves strong timed bisimilarity. Composition and analysis of
TA with priorities raise specific issues out of the scope of this paper.
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4 Time Petri Nets with Priorities

PrTPN ’s extend TPN ’s with a priority relation on transitions. Since we want to
discuss bisimulations, we also add an alphabet of actions and a labeling function
for transitions. I+ is the set of nonempty real intervals with nonnegative rational
end-points. For i ∈ I+, ↓ i denotes its left end-point, and ↑ i its right end-point (if
i bounded) or ∞. For any θ ∈ R+, i −. θ denotes the interval {x−θ|x ∈ i∧x ≥ θ}.

Definition 3. A Time Petri Net with Priorities (or PrTPN for short) is a
tuple 〈P, T,Pre,Post,m0, Is, Pr,Σε, L〉 in which:

– 〈P, T,Pre,Post,m0〉 is a Petri net, with places P , transitions T , initial
marking m0 : P → N+ and Pre,Post : T → P → N+,

– Is : T → I+ is a function called the Static Interval function,
– Pr ⊆ T × T is the Priority relation, irreflexive, asymmetric and transitive,
– Σ is a finite set of Actions, or Labels, not containing the Silent action ε,
– L : T → Σε is a function called the Labeling function.

For f, g : P → N+, f ≥ g means (∀p ∈ P )(f(p) ≥ g(p)) and f{+|−}g maps
f(p){+|−}g(p) with every p. A marking is a function m : P → N+, t ∈ T is
enabled at m iff m ≥ Pre(t), EN(m) denotes the set of transitions enabled at m
in net N . (t1, t2) ∈ Pr is written t1 " t2 or t2 ≺ t1 (t1 has priority over t2).

Definition 4. The semantics of PrTPN 〈P, T,Pre,Post,m0, Is, Pr,Σ, L〉 is
the timed transition system 〈S, (m0, Is0), Σ,→〉 where:

– Is0 is function Is restricted to the transitions enabled at m0

– the states of S are pairs (m, I) in which m is a marking and I : T → I+

associates a time interval with every transition enabled at m,
– (m, I)

L(t)−→ (m′, I ′) iff t ∈ T and
1. m ≥ Pre(t)
2. 0 ∈ I(t)
3. (∀k ∈ T )(m ≥ Pre(k) ∧ 0 ∈ I(k) ⇒ ¬(k " t))
4. m′ = m− Pre(t) + Post(t)
5. (∀k ∈ T )(m′ ≥ Pre(k) ⇒

I ′(k) = if k 
= t ∧ m− Pre(t) ≥ Pre(k) then I(k) else Is(k))

– (m, I) d−→ (m, I ′) iff (∀k ∈ T )(m ≥ Pre(k) ⇒ d ≤↑I(k)∧ I ′(k) = I(k) −. d)

Transition t may fire from (m, I) if t is enabled at m, firable instantly, and no
transition with higher priority satisfies these conditions. In the target state, the
transitions that remained enabled while t fired (t excluded) retain their intervals,
the others are associated with their static intervals. A continuous transition by
d is possible iff d is not larger than any ↑I(t).

Boundedness: A PN is bounded if the marking of each place is bounded,
boundedness implies finiteness of the set of reachable markings. Boundedness
is undecidable for TPN ’s, and thus for PrTPN ’s, but there are a number of
decidable sufficient conditions for this property [5]. All nets considered in this
paper are assumed bounded.
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Product of PN , TPN , PrTPN : A product construction for labeled Petri
nets has been used in many works, a definition appeared e.g. in [12]. It can be
seen as a generalization to concurrent systems of the product of automata.

Definition 5. Given a PN 〈P, T,Pre,Post,m0〉 and E ⊆ T , the product of
the transitions in E is the transition t such that, for any p ∈ P :

Pre(t)(p) =
∑
k∈E

Pre(k)(p) and Post(t)(p) =
∑
k∈E

Post(k)(p)

Definition 6. Consider two labeled PN ’s not sharing any place or transition
N1 = 〈P1, T1,Pre1,Post1,m

0
1, Σ

ε
1, L1〉, N2 = 〈P2, T2,Pre2,Post2,m

0
2, Σ

ε
2, L2〉.

The product N = N1||N2 of N1 and N2 can be built as follows:

– Start with N made of the union of nets N1 and N2, after having removed
from each the transitions labeled on Σ1 ∩Σ2,

– Then, for each pair (t1, t2) ∈ T1 × T2 such that L1(t1) = L2(t2) 
= ε, add to
N a transition defined as the product of t1 and t2, inheriting their label.

Product || can be extended to PrTPN ’s by specifying the static interval of a
synchronized pair of transitions (t1, t2) as Is1(t1)∩Is2(t2), assuming it nonempty,
and defining Pr from the local priority relations as follows:

– Let R = {(x, y) ∈ T × T |(∃(t, t′) ∈ Pr1 ∪ Pr2)(x ∈ S(t) ∧ y ∈ S(t′)} where,
for any t ∈ T1 ∪ T2, S(t) is either {t} if t is not synchronized, or the set of
transitions of T obtained as a product involving t otherwise (see Def. 6),

– Pr is the transitive closure of R, assuming it asymmetric.

Product || is commutative and associative. For Petri nets, it is compositional:
the transition system denoted by N1||N2 is the product of those denoted by N1
and N2. For TPN ’s or PrTPN ’s, compositionality does not hold in general,
but it holds when all synchronized transitions have interval [0,∞[ and no pair
of non-synchronized transitions is in the priority relation. The latter condition
implies that Pr exactly coincides with relation R above. Compositionality in
this special case is expressed by Theorem 1, its proof is given in the Appendix.

Theorem 1 (Restricted compositionality of product || for PrTPN ’s)

Let $n% be the TTS associated with PrTPN n,
N1 = 〈P1, T1,Pre1,Post1,m

0
1, Is1, P r1, Σ

ε
1, L1〉

N2 = 〈P2, T2,Pre2,Post2,m
0
2, Is2, P r2, Σ

ε
2, L2〉

be two labeled PrTPN ’s with disjoint sets of places and transitions,
N = 〈P, T,Pre,Post,m0, Is, Pr,Σε, L〉 be their product by ||,
Ti\j be the subset of transitions of Ti labeled over Σε

i \Σj

T1×2 = T \(T1\2 ∪ T2\1)
Then (∀t ∈ T1\2)(Is1(t) = [0,∞[) ∧ (∀t ∈ T2\1)(Is2(t) = [0,∞[)

∧ Pr ∩ (T1\2 × T2\1) = Pr ∩ (T2\1 × T1\2) = ∅
⇒ $N1 || N2% = $N1% || $N2%



88 B. Berthomieu, F. Peres, and F. Vernadat

The following Theorem will be needed in Section 5, it follows from Def. 4:

Theorem 2. Assume PrTPN N has two transitions t1 and t2 unrelated by the
priority relation, both with interval [0,∞[, and not sharing any input place. Then
adding to N the transition t defined as the product of t1 and t2 does not change
its state space and t can fire exactly at the times at which both t1 and t2 can.

The power of priorities: Contrarily to TA’s, priorities add expressiveness to
bounded TPN ’s. To illustrate this, consider the TA and nets in Figure 1.

0
�

q0
�

1�q1

a, k <= 1�

� � �

p0
�

t
�[0,1]� a�

p1

� � �

p0�

p1

t'

]1,ω[ p2

< t'ta�

� � �

Fig. 1. Expressiveness of priorities in TPN ’s

As mentioned in [3], no TPN is, even weakly, timed bisimilar with TA 1(a). In
particular, the TPN 1(b) is not: when at location q0 in the TA, time can elapse
of an arbitrary amount, while time cannot progress beyond 1 in TPN 1(b).
Consider now the PrTPN 1(c). Priorities are specified by transition annotations,
we have here t ≺ t′. Transition t′ is silent and firable at any time greater than 1,
transition t bears label a and interval [0,∞[. Transition t may fire at any time
less than or equal to 1, but not later, since t′ is then firable and it has priority
over t. Indeed, PrTPN 1(c) is weakly timed bisimilar with TA 1(a).

Priorities do not forbid time to elapse, but enrich firing constraints for tran-
sitions. It is shown in the next Section that the above trick generalizes to any
TA. Addition of progress requirements will be addressed in Section 6.

5 Encoding Guards

5.1 Notations

Let A = 〈Q, q0, X,Σε, T 〉 be some TA. Without loss of generality, it is assumed
that every clock in X is involved in some guard, that every clock which is reset in
some transition is used in some guard, and that A is not expressed as a product.

– For each transition t ∈ T , let:
• σt be the action of Σ ∪ {ε} associated with t,
• Xt be the set of clocks involved in transition t (in its guard or reset),
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• Ek
t , for k ∈ Xt, be the set of atomic guards in the guard of t involving

clock k, augmented with (k := 0) if t resets k,
• Et = σt ∪

⋃
k∈Xt

{Ek
t }, Et holds action σt and all sets Ek

t for k ∈ Xt.

– For each clock k ∈ X , let Gk be the set of atomic guards in A involving k.

5.2 Encoding Atomic Clock Guards and Resets

Each atomic guard will be modeled by a PrTPN , Figure 2 shows the four
required models for clock k and constant c = 5. The upper-left (resp. lower-left)
net models k ≤ 5 (resp. k < 5), the upper-right (resp. lower-right) net models
k ≥ 5 (resp. k > 5). Priorities are specified by transition annotations, e.g. in the
upper-left net, we have C ≺ B, A ≺ B and A ≺ Z. The transitions are either
unlabeled (implicitly labeled with silent action ε), or carry a label made of a
clock constraint and/or a reset.
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Fig. 2. PrTPN ’s encoding atomic guards and resets for clock k and constant c = 5

Theorem 3. Let k be the time elapsed since the initial markings of the nets in
Figure 2 were last established, then, for each of these nets:

– the transitions whose label includes a condition on k are firable exactly at
the times at which that condition holds,

– all transitions whose label includes k := 0 restore the initial state of the net,
– from any state a sequence of duration 0 firing a transition whose label in-

cludes k := 0 is firable

Proof. For net k ≤ 5: If k ≤ 5, C and A may fire, firing C restores the initial
state, firing A preserves the current state. At any k > 5, B has priority over A
and C, B may be arbitrarily delayed. After B fired, A and Z are enabled but Z
has higher priority, and time cannot elapse since Z carries [0, 0]. After Z fired,
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only R may fire, restoring the initial state. The proof is similar for net k < 5.
The nets for k ≥ 5 and k > 5 are self-explanatory, they do not use priorities.

5.3 Encoding a Clock

For each k ∈ X , let Nk be the net built as follows:

1. Assume {c1, . . . , cn} is the set of nets encoding the guards in Gk. Let K be
the product (c1\F || . . . || cn\F )\H , with relabelings F and H as follows:
– F relabels any transition whose label includes k := 0 with ρ (ρ new),
– H relabels any t obtained from a product of transitions by the union of

their labels in nets ci.
2. Next, starting with Nk = K, add to Nk, for each E ⊆ Gk with card(E) > 1,

a transition labeled E defined as the product (Def. 6) of all transitions of K
with their label intersecting E.

The first step synchronizes resets among all the nets encoding atomic guards
for clock k. Step 2 adds transitions checking all possible conjunctions of atomic
guards for k (without reset). Net Nk has as transitions:

– The transitions not labeled (internal) in the component nets,
– For each nonempty E ⊆ Gk, a transition labeled with set E,
– For each (possibly empty) E ⊆ Gk, a transition labeled E ∪ {k := 0}.

Theorem 4. Let k be the time elapsed since the initial marking of net Nk was
last established, then:

– the transitions whose label includes a condition (atomic or compound) are
firable exactly at the times at which that condition holds,

– all transitions whose label includes k := 0 restore the initial state of the net,
– from any state a sequence of duration 0 firing a transition whose label in-

cludes k := 0 is firable

Proof. Follows from Theorems 1, 2 and 3, and definitions of relabelings F and
H . Note that all assumptions required by Theorem 1 hold.

5.4 Encoding the Timed Automaton A

The PrTPN N encoding A = 〈Q, q0, X,Σε, T 〉 is obtained as follows.

1. Let NA be the net built as follows:
– For each q ∈ Q add a new place to NA, and mark the place encoding q0,
– For each transition q

t→ q′ of A, add to NA a transition between the
places encoding q and q′, labeled by Et (as computed in Section 5.1).

2. Next, let NK be the net built as follows:
– Start with NK = ||k∈X Nk where Nk encodes clock k (see Section 5.3),
– Then, for each Et, add to NK a transition labeled Et defined as the

product of all transitions of NK with their label belonging to Et,
– Remove all labeled transitions of NK whose label is not in any Et,
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3. Finally, let N = NA || NK and relabel each labeled transition by the action
from Σε belonging to its label.

Intuitively, NA after step 1 is a copy of the underlying automaton of A,
with each transition labeled by the set of atomic guards of the corresponding
transition of A, augmented with resets, and partitioned per clock. NK at step 2
is the product of the nets encoding clocks, augmented with transitions checking
all guards of A and performing resets if needed. The transitions removed at step
2 correspond to combinations of atomic guards not used in A or to transitions
resetting clocks which are never reset in A. Step 3 restores the labeling of A.

Theorem 5. The above TA A and PrTPN N are weakly timed bisimilar.

Proof. Follows again from the properties of the operations used to built the net
and of those the nets being composed. The nets Nk encoding clocks do not share
any label. After step 2, and from Theorems 2 and 4, the labeled transitions of
NK are firable exactly when the conjunction of the constraints they are labeled
with hold. At step 3, guard checks and resets are ordered like in A.

Theorem 6. Any TA can be encoded into a PrTPN without right-open inter-
vals, preserving weak timed bisimilarity, or:

TA �W PrTPN with unbounded or right-closed intervals.

Proof. The encoding applied to A is applicable to any TA (without progress
requirements). Further, it produces PrTPN ’s without right-open intervals.

6 Encoding Time Automata Invariants

6.1 Expressing Progress Requirements

Enforcing progress conditions in Timed Automata is undoubtedly necessary for
modeling systems with hard time constraints, but there is no consensus yet
about how to express them. Progress requirements are most often expressed using
location invariants or transition deadlines. Location invariants (as e.g. in [1]) are
compositional but may introduce timelocks (sink states resulting from elapsing
of time), transition deadlines [7] avoid timelocks but break compositionality [10].
We will concentrate here on invariants, leaving alternatives for further work.

Definition 7. A TA with Invariants is a tuple 〈Q, q0, X,Σε, T, I〉 in which:

– 〈Q, q0, X,Σε〉 is a TA, as in Definition 1,
– I : Q → C(X) maps a clock constraint with every location. These constraints

are typically restricted to conjunctions of constraints of form k ≤ c or k < c.

Definition 8. The semantics of TA with invariants only differs by the rule
concerning continuous transitions (see Definition 2), which is replaced by:

– (q, v) d−→ (q, v + d) iff d ∈ R+ ∧ (∀d′)(0 ≤ d′ ≤ d ⇒ I(q))
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Time may elapse at some location as long as the invariant at that location
holds. Some variations of this rule are found in the literature, as well as further
conditions related to progress and not addressed here, such as non-Zenoeness.

The class of TA with invariants as above will be noted TA + {≤, <,∧},
TA + {≤,∧} is its subclass in which no invariant constraint is strict, TA is
the class with no invariants.

6.2 Encoding TA+{≤, ∧}

Adapting the translation of invariants in [3], our encoding of TA in Section 5
can be extended to handle invariants with non strict constraints.

For encoding the effects of invariant k1 ≤ c1 ∧ . . . ∧ kn ≤ cn at location qi we
will monitor property k1 ≥ c1 ∨ . . . ∨ kn ≥ cn when the place pi materializing
location qi in net NA (see Section 5.4) is marked, and prevent time to progress
as soon as the property holds.

As for guards, a PrTPN will be associated with each atomic constraint to
be monitored. Because of the above “no-delay” requirement, we cannot use for
this the nets implementing guard check k ≥ c (Figure 2), we will use instead
nets like the one in Figure 3 (this net could be used to check k ≥ 5 guards as
well, though). Note that the transition that checks k ≥ 5 in that net carries a
label distinguishing it from the transition realizing guard check k ≥ 5. Of course,
these monitoring PrTPN ’s, for each clock k, must have their reset transitions
synchronized with those of net Nk implementing clock k (see Section 5.3).
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C
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p0
�
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Fig. 3. PrTPN encoding monitor for constraint k ≥ 5

The encoding of invariants is sketched in Figure 4. For checking an atomic
invariant, say k ≤ 5, at location qi, a loop will be added to place pi in net NA. The
transition in this loop will be synchronized with the transition labeled k ≥i 5 in
the net monitoring k ≥ 5, shown Figure 3. After synchronization, the transition
will be made “urgent” by assigning it firing interval [0, 0]. Consequently, when pi

is marked, time elapsing is prevented as soon as k = 5.
For checking compound invariants, one such loop is added for each constraint

to be monitored, as shown in Figure 4. The process is repeated for each location
carrying an invariant. The constructions of Sections 5 are easily extended to
encode invariants that way, details are omitted.

The above encoding does not extend to invariants with strict constraints,
unfortunately (other solutions might possibly work, though). At that time, with
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Fig. 4. Checking conjunctions of k ≤ c invariants

the above encoding of invariants, we have TA+{≤,∧} �W PrTPN . Observing
that encoding such extended TA’s yields PrTPN ’s without right-open intervals,
this result can be strengthened to:

Theorem 7. TA+{≤,∧} �W PrTPN with unbounded or right-closed intervals

6.3 From PrTPN to TA

Some equivalences, rather than orderings, can be obtained by adapting the trans-
lation of [9] of bounded TPN ’s (without priorities) into TA’s.

[9] formalizes the idea that (bounded) TPN ’s can be encoded into TA’s with
invariants using one clock per transition of the TPN . Each transition is en-
coded into a timed automaton mimicking its “behavior”: check for enabledness,
removal of input tokens and addition of output tokens. The TPN is encoded
as a composition of the automata modeling its transitions and of a supervisor
TA sequencing the above operations for all transitions simultaneously. “earliest
firing time” constraints of the TPN are encoded into guard constraints of form
k ≥ c and “latest firing time” constraints into invariants of form k ≤ c1. Though
the method is defined for TPN ’s with closed or left-closed unbounded intervals,
it is applicable unchanged to arbitrary TPN ’s.

The method can be adapted to encode PrTPN ’s into TA’s with priorities: It
suffices to assign to the transitions labeled ?pre in their encoding the priorities
assigned to the corresponding transitions of the net. Now, as noted in Section 3,
PrTA ≈W TA, hence, for Bounded PrTPN ’s:

Theorem 8. PrTPN �W TA + {≤, <,∧}.

Theorem 9. TA+{≤,∧} ≈W PrTPN with right-closed or unbounded intervals

Proof. From such restricted PrTPN ’s, [9] (adapted for PrTPN ’s) would yield
TA’s with invariants built from {≤,∧}. From such TA’s, our encoding yields
PrTPN ’s in which all transitions have unbounded or right-closed firing intervals.

As corollaries concerning Bounded TPN ’s, we obtain (proofs omitted):
1 [9] adds these constraints to guards too, but this is not necessary.
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Corollary 1. TA with guards built from {≥, >,∧} ≈W TPN with unbounded
intervals

Corollary 2. TA+{≤,∧} with guards built from {≥, >,∧} ≈W TPN with
right-closed or unbounded intervals.

7 Conclusion

Summary: The now available comparison results are shown in the Table below,
for Bounded PrTPN ’s and TPN ’s. These results hold for safe (1-bounded) nets
too. They cannot be strengthened to strong bisimulation or preorders results,
due to the necessary internal transitions in the TA translations of Section 5 and
the TPN translations of [9]. No previous work compared TA’s with PrTPN ’s.
For TPN ’s, Corollary 2 strengthens Corollaries 5 and 6 in [3].

TA guards invariants TPN intervals priorities
Theorem 7 ≤ < ≥ > ∧ ≤ ∧ �W (]a|[a),(b]|∞[) Y
Theorem 8 ≤ < ≥ > ∧ ≤ < ∧ �W (]a|[a),(b]|b[|∞[) Y
Theorem 9 ≤ < ≥ > ∧ ≤ ∧ ≈W (]a|[a), (b]|∞[) Y

[9] ≥ > ∧ ≤ < ∧ �W (]a|[a),(b]|b[|∞[) N
Corollary 2 ≥ > ∧ ≤ ∧ ≈W (]a|[a), (b]|∞[) N
Corollary 1 ≥ > ∧ ∅ ≈W (]a|[a), ∞[ N

These results improve understanding of the differences between two of the
most widely used models of realtime systems. Theorem 9 suggests that, aug-
menting TPN ’s with priorities, these differences are small, if any.

They also promise sharing of analysis methods for these two models, at the
time rather complementary: Analysis methods for TPN ’s mostly focused on
time abstracting representations, preserving markings and LTL properties [5],
states and LTL [6], or states and CTL (time abstracting bisimulations) [6] .
Analysis methods for TA’s focused more on model-checking of “timed” temporal
properties such as those expressible in TCTL. Theorem 8 and [9] allow to use
for PrTPN ’s or TPN ’s analysis methods developed for TA’s. Theorem 7 allows
the converse for a large subclass of TA’s, provided analysis methods for TPN ’s
can be extended to PrTPN ’s.

Further work: For easing proofs, the encoding of guards presented in Section 5
is rather brute force. It should be convenient in a number of cases, but it yields
PrTPN ’s with many more transitions than the TA, in general. For practical
purposes, clock models could be made smaller. Also, read-arcs, a well known
extension of Petri nets consisting of special arcs that test boolean conditions
on markings but do not transfer tokens, would significantly compact encodings.
Development of such improved encodings is left as further work.

To apply TPN -style analysis methods to TA’s through the encodings ex-
plained, these methods should be extended to cope with priorities. Extending to
PrTPN ’s the methods building state space abstractions preserving LTL prop-
erties in [5,6] should be straightforward, it resumes to take into account the extra
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constraints brought by priorities when developing the state class graph, these
constraints are linear. Extending the methods building time abstracting bisim-
ulations [6] is more subtle as continuous transitions cannot all be merged with
discrete transitions anymore, but we are confident that they can be adapted.

Finally, encoding of timed automata with alternative proposals for progress
requirements needs be investigated.
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A Proof of Theorem 1

Let f [E] be the restriction of function f to its domain intersected with E, f ⊕ g
be the function that behaves like f on the domain of f or like g otherwise, I∞
be the function that associates interval [0,∞[ with any transition.

It directly follows from Definition 4 that if some transition has static firing
interval [0,∞[, then its interval in any state of the net is [0,∞[. Hence we have:

Lemma 1. (i) (∀(m, I) ∈ $N1 || N2%)(∀t ∈ T1×2)(I(t) = [0,∞[)
(ii) (∀(mi, Ii) ∈ $Ni%)(∀t ∈ EN (mi)\Ti\j)(Ii(t) = [0,∞[)

Next, consider the mapping φ : $N1 || N2% → $N1% || $N2% defined by:

φ(m, I) = (m1, I[T1\2] ⊕ I∞[EN1(m1)\T1\2])) where m1 = m[P1]
|| (m2, I[T2\1] ⊕ I∞[EN2(m2)\T2\1])) where m2 = m[P2]

By Lemma 1 and because N1 and N2 are disjoint, φ is injective. We have:

φ−1((m1, I1) || (m2, I2)) = (m, I1[T1\2] ⊕ I∞[EN (m) ∩ T1×2] ⊕ I2[T2\1])
where m = m1[P1] ⊕m2[P2]

We show by induction that the pair (φ, id), where id is the identity mapping over
Σ1∪Σ2∪{ε}∪R+, is a graph isomorphism between $N1 || N2% and $N1% || $N2%:

(i) s0
1 || s0

2 = φ(s0), where s0 and the s0
i are the initial states of $N% and $Ni%:

By definition, s0 = (m0, Is[EN (m0)) and s0
i = (m0

i , Isi[ENi(m0
i )]). From the

assumptions, m0
i = m0[Pi] and I0

i = I0[Ti\j ] ⊕ I∞[ENi(m0
i )\Ti\j ]‘ <, hence

s0
1 || s0

2 = φ(s0).

(ii) (∀a)(∀s, s′ ∈ $N%)(s a→ s′ ⇔ φ(s) a→ φ(s′)): Four cases must be considered:
1. a ∈ R+: Let (m, I) = s and (m1, I1) || (m2, I2) = φ(s).

From Definition 4, we have (m, I) a→ (m, I ′) iff:
(a) (∀t ∈ EN (m))(a ≤ ↑I(t) ∧ I ′(t) = I(t) −. a)

From the definition of the TTS product, we have (m1, I1) || (m2, I2)
a→

(m1, I
′
1) || (m2, I

′
2) iff (m1, I1)

a→ (m1, I
′
1) and (m2, I2)

a→ (m2, I
′
2), or:

(b1) (∀t ∈ EN1(m1))(a ≤ ↑I1(t) ∧ I ′1(t) = I1(t) −. a) ∧
(b2) (∀t ∈ EN2(m2))(a ≤ ↑I2(t) ∧ I ′2(t) = I2(t) −. a)

By Lemma 1, (a) (resp. bi) is trivially satisfied for the transitions in T1×2
(resp. ENi(mi)\Ti\j). Further, from φ, mi = m[Pi] and I agrees with I1
(resp. I2) on the transitions of T1\2 (resp. T2\1), hence (a) ⇔ (b1) ∧ (b2)
and (m1, I

′
1) || (m2, I

′
2) = φ(m, I ′).

2. a ∈ Σ1 ∩Σ2: Let (m, I) = s and (m1, I1) || (m2, I2) = φ(s).

We have (m, I)
L(t)→ (m′, I ′) iff c1N ∧ . . . ∧ c5N , where conditions ci

N are those
in Definition 4 for discrete transitions, specialized for N . On the other hand,
from the definition of the TTS product, we have (m1, I1) || (m2, I2)

a→
(m′

1, I
′
1) || (m′

2, I
′
2) iff (m1, I1)

a→ (m′
1, I

′
1) by some t1 and (m2, I2)

a→ (m′
2, I

′
2)

by some t2, that is if (c1N1
∧ . . . ∧ c5N1

) ∧ (c1N2
∧ . . . ∧ c5N2

). As a ∈ Σ1 ∩ Σ2,
there must be t, t1 and t2 such that t is the product of t1 and t2.
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Then, we have c1N ⇔ c1N1
∧ c1N2

from φ and the definitions of products,
c2N ⇔ c2N1

∧ c2N2
by Lemma 1, and c3N ⇔ c3N1

∧ c3N2
by the properties of Pr: t

is preempted in N iff either t1 is preempted in N1 or t2 in N2. Finally, it is
easily shown that (mi, Ii)

a→ (m′[Pi], I ′[Ti\j ] ⊕ I∞[ENi(m′
i[Pi])\Ti\j], hence

(m′
1, I

′
1) || (m′

2, I
′
2) = φ(s′).

3. a ∈ Σε
1 \Σ2: Let (m, I) = s and (m1, I1) || (m2, I2) = φ(s).

We have (m, I) a→ (m′, I ′) by t iff c1N ∧ . . .∧ c5N . From the definition of prod-
ucts, we have (m1, I1) || (m2, I2)

a→ (m′
1, I

′
1) || (m2, I2) iff, by the previous t,

(m1, I1)
a→ (m′

1, I
′
1), or c1N1

∧ . . .∧ c5N1
. Then, as for case 2, we have that the

preconditions for both transitions are equivalent and that the target states
obey (m′

1, I
′
1) || (m′

2, I
′
2) = φ(s′).

4. for a ∈ Σε
2 \Σ1: like case 3, symmetrically.
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Abstract. Networks of communicating finite-state machines equipped
with local clocks generate timed MSCs. We consider the problem of
checking whether these timed MSCs are “consistent” with those pro-
vided in a timed MSC specification. In general, the specification may be
both positive and negative. The system should execute all positive sce-
narios “sensibly”. On the other hand, negative scenarios rule out some
behaviours as illegal. This is more complicated than the corresponding
problem in the untimed case because even a single timed MSC specifica-
tion implicitly describes an infinite family of timed scenarios. We outline
an approach to solve this problem that can be automated using Uppaal.

1 Introduction

In a distributed system, several agents interact with each other to generate a
global behaviour. The interaction between these agents is usually described in
terms of scenarios, using mechanisms such as use-cases and message sequence
charts (MSCs) [8].

In general, scenarios could be of two types, positive and negative. Positive sce-
narios are those that the system is designed to execute—for instance, these may
describe a handshaking protocol to set up a reliable communication channel
between two hosts on a network. Negative scenarios indicate undesirable be-
haviours, such as a situation when both hosts independently initiate the activity
of setting up a channel, leading to a collision.

This leads to a natural verification problem: given a distributed system and
a scenario, does the system exhibit the scenario? In the context of message
sequence charts, this is referred to as the scenario matching problem, for which
efficient algorithms have been identified [10]. An approach to solve this problem
using the modelchecker Spin was proposed in [4].

In this paper, we extend the study of scenario matching to timed systems. We
consider communicating finite-state machines equipped with local clocks. Clock
constraints are used to guard transitions and specify location invariants, as in
other models of timed automata [3]. Just as the runs of timed automata can be
described in terms of timed words, the interactions exhibited by communicating
finite-state machines with clocks can be described using timed MSCs.
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We define a version of scenarios with timing constraints that we call timed
MSC templates. These templates are built from fixed underlying MSCs by as-
sociating a lower and upper bound on the time interval between certain pairs of
events. Timed MSC templates are a natural and useful extension of the untimed
notation for scenarios, because protocol specifications typically include timing
requirements for message exchanges, as well as descriptions of how to recover
from timeouts.

In general, a timed MSC template is compatible with infinitely many timed
MSCs. Thus, the scenario matching problem is already more complicated than
in the untimed case, where a single scenario describes exactly one pattern of
interaction. In our setting, the scenario matching problem can be reformulated
in terms of checking whether the intersection of two collections of timed MSCs
is nonempty.

We propose an approach to tackle this problem using the modelchecking tool
Uppaal, which is designed to verify properties of timed systems. Unfortunately,
the basic system model of Uppaal consists of a network of timed automata
that communicate via synchronous handshakes, rather than message-passing. We
thus need to code up message-passing channels by creating special processes to
model buffers. However, we can exploit the handshake mechanism to synchronize
the system with the template to be verified. This automatically reduces the
behaviours of the system to those that are consistent with the template. The
scenario matching problem can then be easily transformed into a modelchecking
question for Uppaal to verify on the composite system.

The paper is organized as follows. In the next two sections, we formally define
timed MSCs and timed message-passing automata. This enables us to precisely
define the scenario matching problem for timed systems in Section 4. In Section 5,
we describe our approach to address the scenario matching problem in Uppaal.
Next, we look at issues related to the expressiveness of our timed message-
passing automaton model. In Section 7, we examine some optimizations that
can be introduced when translating the scenario matching problem to Uppaal,
to improve the efficiency of verification. We conclude with a brief discussion.

2 Timed MSCs

2.1 Message Sequence Charts

Let P = {p, q, r, . . .} be a finite set of processes (agents) that communicate with
each other through messages via reliable FIFO channels using a finite set of
message types M. For p ∈ P , let Σp = {p!q(m), p?q(m) | p 
= q ∈ P , m ∈ M} be
the set of communication actions in which p participates. The action p!q(m) is
read as p sends the message m to q and the action p?q(m) is read as p receives
the message m from q. We set Σ =

⋃
p∈P Σp. We also denote the set of channels

by Ch = {(p, q) | p 
= q}.

Labelled posets. A Σ-labelled poset is a structure M = (E,≤, λ) where (E,≤)
is a poset and λ : E → Σ is a labelling function. For e ∈ E, let ↓e = {e′ | e′ ≤ e}.
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Fig. 1. An MSC over {p, q, r}

For p ∈ P and a ∈ Σ, we set Ep = {e | λ(e) ∈ Σp} and Ea = {e | λ(e) = a},
respectively. For each (p, q) ∈ Ch, we define the relation <pq as follows:

e <pq e′ ⇐⇒ λ(e) = p!q(m), λ(e′)=q?p(m) and |↓e∩Ep!q(m)| = |↓e′∩Eq?p(m)|

The relation e <pq e′ says that channels are FIFO with respect to each message—
if e <pq e′, the message m read by q at e′ is the one sent by p at e.

Finally, for each p ∈ P , we define the relation ≤pp= (Ep ×Ep) ∩≤, with <pp

standing for the largest irreflexive subset of ≤pp.

Definition 1. An MSC (over P) is a finite Σ-labelled poset M = (E,≤, λ) that
satisfies the following conditions.

1. Each relation ≤pp is a linear order.
2. If p 
= q then for each m ∈ M, |Ep!q(m)| = |Eq?p(m)|.
3. If e <pq e′, then |↓e ∩

(⋃
m∈M Ep!q(m)

)
| = |↓e′ ∩

(⋃
m∈M Eq?p(m)

)
|.

4. The partial order ≤ is the reflexive, transitive closure of the relation
⋃

p,q∈P
<pq.

The second condition ensures that every message sent along a channel is received.
The third condition says that every channel is FIFO across all messages.

In diagrams, the events of an MSC are presented in visual order. The events
of each process are arranged in a vertical line and messages are displayed as
horizontal or downward-sloping directed edges. Figure 1 shows an example with
three processes {p, q, r} and six events {e1, e

′
1, e2, e

′
2, e3, e

′
3} corresponding to

three messages—m1 from p to q, m2 from q to r and m3 from p to r.
For an MSC M = (E,≤, λ), we let lin(M) = {λ(π) | π is a linearization of

(E,≤)}. For instance, p!q(m1) q?p(m1) q!r(m2) p!r(m3) r?q(m2) r?p(m3) is one
linearization of the MSC in Figure 1.

2.2 Timed MSC Templates

A timed MSC template is an MSC annotated with time intervals between pairs
of events along a process line. For instance, consider the interaction between a
user, an ATM and a server depicted in Figure 2. This MSC has sixteen events
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verify-pin

pin-OK

menu

Fig. 2. A timed MSC template describing interaction with an ATM

generated by eight messages. The events u2 and u3 are linked by a time interval
(0, 2), as are the events s2 and s3. These time intervals represent constraints on
the delay between the occurrences of the events. Thus, this template specifies
that the server is expected to respond to a request to authenticate an ATM card
within 2 units of time. Similarly, a user has to type in his PIN within 3 units of
time of the ATM requesting the PIN.

For simplicity, we assume that time intervals are bounded by natural numbers.
A pair of time points (m, n), m, n ∈ N, m ≤ n, denotes the time interval {x ∈
R≥0 | m ≤ x ≤ n}.

Definition 2. Let M = (E,≤, λ) be an MSC. An interval constraint is a tuple
〈(e1, e2), (t1, t2)〉, where:

– e1, e2 ∈ E with e1 ≤pp e2 for some p ∈ P.
– t1, t2 ∈ N with t1 ≤ t2.

The restriction on the relationship between e1 and e2 ensures that an interval
constraint is local to a process.

Definition 3. A timed MSC template is pair T = (M, I) where M = (E,≤, λ)
is an MSC and I ⊆ (E × E) × (N × N) is a set of interval constraints.

2.3 Timed MSCs

In a timed MSC, events are explicitly time-stamped so that the ordering on the
time-stamps respects the partial order on the events.

Definition 4. A timed MSC is pair (M, τ) where M = (E,≤, λ) is an MSC
and τ : E → R≥0 assigns a nonnegative time-stamp to each event, such that for
all e1, e2 ∈ E, if e1 ≤ e2 then τ(e1) ≤ τ(e2).

A timed MSC satisfies a timed MSC template if the time-stamps assigned to
events respect the interval constraints specified in the template.
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Fig. 3. A timed MSC instance describing interaction with an ATM

Definition 5. Let M = (E,≤, λ) be an MSC, T = (M, I) a timed template and
Mτ = (M, τ) a timed MSC. Mτ is said to satisfy T if the following holds

For each 〈(e1, e2), (t1, t2)〉 ∈ I, t1 ≤ τ(e2) − τ(e1) ≤ t2.

Definition 6. Let T be a timed MSC template. We denote by L(T ) the set of
timed MSCs that satisfy T .

Figure 3 shows a timed MSC that satisfies the template in Figure 2.
Let Mτ = (M, τ) be a timed MSC, where M = (E,≤, λ), and let π =

e0e1 . . . em be a linearization of (E,≤). By labelling each event with its times-
tamp, this linearization gives rise to a timed linearization (e0, τ(e0))(e1, τ(e1))
· · · (en, τ(en)). As is the case with untimed MSCs, under the FIFO assumption
for channels, a timed MSC can be faithfully reconstructed from any one of its
timed linearizations.

3 Timed Message-Passing Automata

Message-passing automata are a natural machine model for generating MSCs.
We extend the definition used in [6] to include clocks.

Definition 7. Let C denote a finite-set of real-valued variables called clocks.
A clock constraint is a conjunctive formula of the form x ∼ n or x − y ∼ n
for x, y ∈ C, n ∈ N and ∼ ∈ {≤, <, =, >,≥}. Let Φ(C) denote the set of clock
constraints over the set of clocks C.

Clock constraints will be used as guards and location invariants in timed message-
passing automata.

Definition 8. A clock assignment for a set of clocks C is a function v : C → R≥0
that assigns a nonnegative real value to each clock in C.

A clock assignment v is said to satisfy a clock constraint ϕ if ϕ evaluates to true
when we substitute for each clock c mentioned in ϕ the corresponding value v(c).
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Let v : C → R≥0 be a clock assignment. For d ∈ R≥0, we write v + d to denote
the clock assignment that maps each x ∈ C to v(x) + d. For X ⊆ C, we write
v[X ← 0] to denote the clock assignment that agrees with v for all clocks in
C \ X and maps all clocks in X to 0.

Definition 9. A timed message-passing automaton (timed MPA) over Σ with
a set of clocks C is a structure A = ({Ap}p∈P , Σ, C). Each component Ap is of
the form (Sp, S

p
in,→p, Ip), where:

– Sp is a finite set of p-local states.
– Sp

in ⊆ Sp, is a set of initial states for p.
– →p ⊆ Sp × Φ(C) × Σp × 2C × Sp is the p-local transition relation.
– Ip : S → Φ(C) assigns an invariant to each state.

The local transition relation →p specifies how the process p sends and receives
messages.

The transition (s, ϕ, p!q(m), X, s′) says that in state s, p can send the message
m to q and move to state s′. This transition is guarded by the clock constraint
ϕ—the transition is enabled only when the current values of all the clocks satisfy
ϕ. The set X specfies the clocks whose values are reset to 0 when this transition
is taken.

Similarly, the transition (s, ϕ, p?q(m), X, s′) signifies that at state s, p can
receive the message m from q and move to state s′ provided the current clock
values satisfy ϕ. Once again, all clocks in X are reset to 0.

A process can remain in a state s only if the current values of all the clocks sat-
isfy the invariant I(s). To make our model amenable for automated verification,
we restrict location invariants to constraints that are downward closed—that is,
constraints of the form x ≤ n or x < n, where x is a clock and n is a natural
number.

As is customary with timed automata, we allow timed MPA to perform two
types of moves: moves where the automaton does not change state and time
elapses, and moves where some local component p changes state instantaneously
as permitted by →p.

A global state of A is an element of
∏

p∈P Sp. For a global state s, sp denotes
the pth component of s. A configuration is a triple (s, χ, v) where s is a global
state, χ : Ch → M∗ is the channel state describing the message queue in each
channel c and v : C → R≥0 is a clock assignment. An initial configuration of A
is of the form (sin, χε, v0) where sin ∈

∏
p∈P Sp

in, χε(c) is the empty string ε for
every channel c and v0(x) = 0 for every x ∈ C.

The set of reachable configurations of A, ConfA, is defined inductively, to-
gether with a transition relation =⇒ ⊆ ConfA × (Σ ∪ R≥0) × ConfA.

– Every initial configuration (sin, χε, v0) is in ConfA.
– If (s, χ, v) ∈ ConfA and d ∈ R≥0 such that v and v + d satisfy the invari-

ants {Ip(sp)}p∈P , then there is a global move (s, χ, v) d=⇒ (s, χ, v + d) and
(s, χ, v + d) ∈ ConfA.
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Producer
c ≤ 2

c ≥ 1 ⇒ p!q(m), {c}

Consumer

q?p(m)

Fig. 4. A timed MPA: producer-consumer

– If (s, χ, v) ∈ ConfA and (sp, ϕ, p!q(m), X, s′p) ∈ →p such that v satsfies ϕ,

there is a global move (s, χ, v)
p!q(m)
=⇒ (s′, χ′, v[X ← 0]) with (s′, χ′, v[X ←

0]) ∈ ConfA, where, for r 
= p, sr = s′r, χ′((p, q)) = χ((p, q)) · m, and for
c 
= (p, q), χ′(c) = χ(c).

– Similarly, if (s, χ, v) ∈ ConfA and (sp, ϕ, p?q(m), X, s′p) ∈ →p such that v

satisfies ϕ, there is a global move (s, χ, v)
p?q(m)
=⇒ (s′, χ′, v[X ← 0]) with

(s′, χ′, v[X ← 0]) ∈ ConfA, where, for r 
= p, sr = s′r, χ((q, p)) = m ·
χ′((q, p)), and for c 
= (q, p), χ′(c) = χ(c).

Let prf(σ) denote the set of prefixes of a timed word σ = (a1, t1)(a2, t2) . . .
(ak, tk) ∈ (Σ ×R≥0)∗. A run of A over σ is a map ρ : prf(σ) → ConfA such that
ρ(ε) is assigned an initial configuration (sin, χε, v0) and for each σ′ · (ai, ti) ∈
prf(σ), ρ(σ′) di=⇒ ai=⇒ ρ(σ′ · (ai, ti)) with ti = ti−1 + di and t0 implicitly set to 0.

The run ρ is complete if ρ(σ) = (s, χε, v) is a configuration in which all
channels are empty. When a run on σ is complete, σ is a timed linearization of a
timed MSC. We define L(A) = {σ | A has a complete run over σ}. Thus, L(A)
corresponds to the set of timed linearizations of a collection of timed MSCs.

Figure 4 is a simple example of a timed MPA. Here, the traditional producer-
consumer system is augmented with a clock c in the producer process. The
constraint c ≥ 1 on the transition ensures that each new message is generated
by the producer at least one unit of time after the previous one. The location
invariant c ≤ 2 forces the producer to generate a new message no later than
two units of time after the previous one. The consumer process has no timing
constraints. Figure 5 shows a typical timed MSC generated by the timed MPA
in Figure 4.

4 Verifying Timed Scenarios

Given a timed MSC template T and a timed MPA A, the verification question
that we address is whether A exhibits any timed scenario that is consistent with
T . In other words, we would like to check that L(T ) ∩ L(A) is nonempty.

More generally, we identify a state property α that we would like the system
to satisfy at the end of the template. We would then like to check that every
timed MSC Mτ ∈ L(T ) ∩ L(A) satisfies α.

For instance, in the ATM example, suppose the template to be verified is the
one in Figure 2. We could associate with this template the condition that the
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Fig. 5. A timed MSC generated by the producer-consumer system

User is in a state where it can select an item from the menu. We would then
insist that every timed MSC that satisfies this template leaves the User in the
appropriate state.

Sometimes, it is fruitful to describe forbidden scenarios as timed templates.
Let T be such a negative template. We then want to check that a timed MPA A
does not exhibit a timed scenario consistent with T . In other words, we would
like L(T ) ∩ L(A) to be empty.

Instead of looking for exact matches, we can also consider the scenario verifi-
cation problem modulo embedding. The notion of one MSC being embedded in
another is the usual one—there is an injective function mapping the messages
in the first MSC into the messages in the second MSC that preserves the par-
tial order between the events of the first MSC. Checking for patterns modulo
embedding is useful, for instance, when a system introduces auxiliary messages
to implement a protocol. For instance, most implementations of the standard
telnet protocol exchange additional messages to verify operating system details,
even though this is not part of the telnet protocol specification.

When checking for scenarios modulo embedding, we could constrain the nature
of the embedding. A strict embedding is one in which all additional messages
in the target MSC carry labels that are disjoint from those in the source. In
other words, if we restrict the target MSC to the message alphabet of the source
MSC, we obtain an exact match. In a weak embedding, we do not impose this
restriction.

For timed MSCs, it seems important to work with weak embeddings. Consider
the example in Figure 6. The template we are looking for is a simple message
followed by an acknowledgment within 2 units of time, shown on the left. The
implementation is designed to resend the message if the acknowledgment does
not arrive within the specified time of 2 units. Thus, the implementation may
generate a timed MSC such as the one on the right, where the message is sent
twice. Nevertheless, it seems reasonable to argue that this system does exhibit
a scenario consistent with the timed template.

In the untimed setting, the problem of matching MSCs upto embedding was
considered in [10], where it was shown that a straightforward greedy algorithm
works under an interpretation in which MSCs are closed with respect to race
conditions [1], which permits the reordering along a process line of some pairs
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Fig. 6. Weak embedding is required for timed MSCs

of events that are not explicitly causally ordered. If one does not assume closure
with respect to race conditions, backtracking seems unavoidable in solving the
problem [4].

The scenario matching problem for timed MSCs is more complicated than
the same problem for untimed MSCs in one obvious way. Even though a timed
template is defined with respect to a single underlying MSC, the set of timed
MSCs that satisfy a given template is in general infinite. Thus, even with a
single template, the matching problem comes down to one of comparing infinite
collections of (timed) MSCs.

5 Using Uppaal for Scenario Verification

In [4], an approach is presented for solving the embedding problem for untimed
MSCs using the modelchecker Spin [7]. Message-passing automata are naturally
represented in Spin. The strategy suggested by [4] is to augment the underlying
system with an auxiliary monitor process. Each send and receive action in the
system is accompanied by a synchronization action with the monitor process.
In this way, the monitor process builds up a global picture of the MSC being
generated by the system. When the monitor detects that the given scenario
has been embedded, it enters a good state. The scenario embedding problem
can then be translated into a standard LTL model-checking problem for the
composite system, where the property to be checked includes the condition that
the monitor enters a good state.

This approach is not suitable in our setting for two reasons. The first is that
Spin has no way of dealing with time. Another complication is that timed MSC
templates generate infinite families of timed MSCs. This makes the design of a
monitor process more complicated.

Instead, we move over to Uppaal, a modelchecker for timed systems [2].
Uppaal supports the analysis of networks of timed automata for timing prop-
erties. Unfortunately, unlike Spin, Uppaal does not have a direct way of mod-
elling asynchronous communication. However, we can simulate asynchronous
communication by creating explicit buffer processes. Moreover, we can exploit
the synchronous communication paradigm built-in to Uppaal to get around the
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problem of having a separate process to monitor the communication patterns of
the system. Instead, we synchronize the system with the template at each com-
munication action. This allows the system to evolve only along trajectories that
are consistent with the template, thus automatically restricting the behaviours
of the composite system to those that are of interest.

5.1 Modelling Channels in Uppaal

Since Uppaal has no notion of buffered communication, we construct an explicit
buffer process for each channel between processes. Message passing is simulated
by a combination of shared memory and binary synchronization. Let p and q be
processes and let c be the channel between p and q. We create a separate process
c which maintains, internally, an array of messages Mpq whose size corresponds
to the capacity of c. This array is used by c as a circular buffer to store the state
of the channel. The process c maintains two pointers into the array: the next
free slot into which p can write and the slot at the head of the queue from which
q will next read a message.

The channel c shares two variables spc and rcq with p and q, respectively.
These are used to transfer information about the actual message between the
processes and the channel. The channel c also uses two special actions apc and
acq to synchronize with p and q, respectively. These synchronizations represent
the actual insertions and deletions of messages into and from the channel.

When p sends a message m to q, it sets the shared variable spc to m and
synchronizes with c on apc. When c synchronizes with p, it copies the message
from spc into the array slot that currently corresponds to the end of the queue
and then increments the free slot pointer to point to the next position in the
array.

Symmetrically, when q wants to read a message m from p, it sets the shared
variable rcq to m and then synchronizes with c on action acq. In c, this synchro-
nization is guarded by conditions that check that there is at least one message
in the queue and that the message at the head of the queue matches the one q
is looking for, as recorded in the shared variable rcq.

5.2 Handling Timed MSC Templates

To verify timed MSC templates, the first step is to convert such a template into a
timed MPA whose language of timed MSCs corresponds to that of the template.
Since the template is built from a single MSC, the communication structure of
the MPA is fixed and can be computed easily, as explained in [4]. Each time
constraint in an MSC template is local to a process. We introduce a new clock
for each constraint and add clock constraints using these clocks to guard the
actions of the MPA so that it respects the timed template.

5.3 Computing L(T ) ∩ L(A)

We can now augment the system description in Uppaal so that the evolution
of the system to be verified is controlled by the external template specification.
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Recall that each action corresponding to sending or receiving a message by a local
process is broken up into two steps in the Uppaal implementation, one which
sets the value of a shared variable spc and another which communicates with
the buffer process via a shared action apc. We extend this sequence to a third
action, bpc, by which the system synchronizes with the specification. A move of

the form s
p!q(m)
=⇒ s′ in the original timed MPA now breaks up, in the Uppaal

implementation, into a sequence of three moves s
spc=m
=⇒ s1

apc=⇒ s2
bpc=⇒ s′. The

third action, bpc synchronizes with the corresponding process p in the timed
MPA derived from the timed template that is being verified. Thus, the system
can progress via this action only if it is consistent with the constraints specified
by the template.

Symmetrically, for a receive action of the form s
p?q(m)
=⇒ s′, the Uppaal imple-

mentation would execute a sequence of the form s
rpc=m
=⇒ s1

ācp=⇒ s2
b̄cp=⇒ s′, where

we use the convention that an action a synchronizes with a matching action ā.
By construction, it now follows that the timed MSCs executed by the compos-

ite system are those which are consistent with both the timed template and with
the underlying timed MPA being modelled in Uppaal. Thus, we have restricted
the behaviour of the system to L(T ) ∩ L(A), for a given timed template T and
a given timed MPA A. From this, it is a simple matter of invoking the Uppaal
modelchecker to verify whether this set of behaviours is empty and whether all
behaviours in this set satify a given property. Hence, we get a direct answer to
the scenario verification problems posed in the previous section.

5.4 Matching Modulo Weak Embedding

To match scenarios modulo weak embedding, the template has to be relaxed to
permit the system to exchange additional messages that are not present in the
scenario being verified. This is easily done by introducing a self loop at each
state of the template automaton. These self loops are labelled with additional
actions and have no timing constraint. For arbitrary weak embeddings, all pos-
sible actions are enabled at each self loop. For strict embeddings, only actions
that are not mentioned in the template are enabled. We can further tune the
nature of the embedding we are looking for by varying the choice of additional
actions from one self loop to the next.

6 Expressiveness Issues

6.1 Bounded Channels

Our implementation implicitly assumes that, in any run of the system, chan-
nels are uniformly bounded by the size of the queue that is maintained by the
channel process. Recent work on timed message-passing automata [9] shows that
checking whether channels are universally bounded is undecidable for in general
(in particular, it is undecidable with three components and two channels).
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Fig. 7. The difficulty with existentially bounded channels

On the other hand, we can examine the structure of the underlying untimed
system, without timing constraints. It is clear that if the underlying untimed
automaton has universally bounded channels, then so will the corresponding
automaton with timing constraints. Message-passing automata with universally
bounded channels have a well understood theory [6], so this is a natural class of
systems to which we can restrict our attention.

In the untimed case, many of the characterizations and decidability results
for systems with universally bounded channels also go through for systems with
existentially bounded channels [5]. A collection of MSCs is said to be existentially
bounded if there is a bound B such that, for every MSC in the collection, there is
at least one interleaving in which no channel’s capacity exceeds B. Since, with the
FIFO assumption, we can reconstruct an MSC from even a single interleaving, an
existentially bounded collection of MSCs has a faithful sequential represention
as a regular language, which allows us to perform operations analogous to those
defined for systems with universally bounded channels.

Unfortunately, the existentially bounded linearization that one requires for
an MSC may be disallowed by timing constraints. Consider again the example
of a producer-consumer system, this time with local timing constraints on both
send and receive actions, as shown in Figure 7. The underlying untimed system
is 1-bounded and the corresponding linearization is p1 c1 p2 c2 · · · , where each
message is consumed as soon as it is sent. However, in the timed version shown
in the figure, receive events are forced to lag behind send events, so the only
timed linearizations are those in which the channel is unbounded.

6.2 Imposing Bounds on Channels

We have assumed that all clocks used in constraints are local to a process.
Notice, however, that time itself is global, so all clocks proceed at a uniform
rate. This is more a simplifying assumption than a technical necessity, because
no comparisons are made across clocks.

One reason to introduce global clocks would be to specify bounds on chan-
nel delays. For instance, we could associate a clock with a channel that is set



110 P. Chandrasekaran and M. Mukund

Producer
s ≤ 2

s ≥ 1 ⇒ p!q(m), {s, r}

Consumer

r < 1 ⇒ q?p(m)

Producer Consumer

(p1, 0)

(p2, 1.5)

(p3, 3.4)

(p4, 4.4)

(c1, 2.5)

(c2, 3.5)

(c3, 3.6)

(c4, 5.0)

m

m

m

m

Fig. 8. Modelling channel delays

when a message is sent and use a constraint on this clock’s value to impose a
bound on the delay before it is received. However, a näıve implementation of
this idea fails, as shown in Figure 8. Here, though the clock r seems to bound
the channel delay by 1, it is possible for the first message to be received after
more than 1 unit (2.5 units, in the example) because the clock r is reset by the
next send event. To faithfully model channel delays, we would have to associate
an array of clocks with each channel, one for each position in the queue. Even
with universally bounded channels, it is not clear how to use such an array of
clocks when specifying a timed MPA, because the transition associated with a
send action may generate messages at different depths in the queue, depending
on the history. We can unfold the MPA, keeping channel information as part of
the state, but this leads to a very verbose and cumbersome specification.

7 Optimizing the Translation into Uppaal

We describe some optimizations that can be incorporated when translating the
scenario matching problem into Uppaal to enable more efficient modelchecking.

7.1 Controlling Interleavings with Committed Locations

Our implementation of buffered channels adds one new state to the Uppaal
system for each send or receive action in the original timed MPA. The intro-
duction of an extra synchronize action with the corresponding process in the
specification adds one new state to the system for each communication in the
intersection of L(T ) ∩ L(A). These extra states introduce extra interleavings in
the execution of the system. In the worst case, when all the actions in the system
are communication events from the intersection, the total number of locations
in the system gets tripled.

Consider the three moves s
spc=m
=⇒ s1

apc=⇒ s2
bpc=⇒ s′. Here, the first transition

is always enabled, and can be taken at the earliest possible instant. We would
like the system to follow the specification, and hence the third transition should
ideally be enabled when we reach the state s2.
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Uppaal allows locations be labelled committed. If any process is in a commit-
ted location, the next transition must involve an edge from one of the committed
locations, and time cannot progress while in that location.

Marking the location s as committed forces the system to move to s1 as soon
as it enters location s. The system waits in state s2 only if the corresponding
process in the specification is not ready to synchronize. This would mean that
the behaviour of the system is already deviating from the template. Since, we are
only interested in computing L(T )∩L(A), we mark location s2 as committed as
well. These committed locations remove the extra interleavings introduced into
the system by splitting up a single message send/receive action into a sequence
of actions and increases the efficiency of the model checker.

7.2 Guiding Uppaal Using Priorities

Uppaal also permits the allocation of priorities to channels and processes. A
higher priority transitions always blocks the lower priority one. Process priorities
can be used to guide the model checker, and get quicker results.

In the ATM example, the User process chooses from one of the many options
in the menu. The ATM process accepts the choice made by the User process.
In the Uppaal model, both the processes have choices regarding sending or
receiving the menu options. However, in reality, the choices of the ATM are
decided by the User process. We can inform Uppaal about this by declaring
the User process to be of higher priority than the ATM process. Similarly, since
the Server process needs to only service requests made by the ATM process, it
has a lower priority. In Uppaal, these priorities are specified by the directive
“system server < atm < user ;”.

7.3 Meta Variables

The Uppaal system allows some variables to be declared as meta variables.
Meta variables do not contribute to the state space. By declaring the global
arrays within the buffers as meta variables, we can cut down on significantly on
the overall set of configurations that the modelchecker has to explore.

8 Discussion

We have considered a useful extension of the scenario matching problem to timed
systems. This allows us to specify and verify, more accurately, the interactions
associated with typical protocol specifications.

To the best of our knowledge, ours is the first attempt to connect message-
passing automata with timing constraints to timed MSCs. The problem of check-
ing whether an MSC with interval timing constraints admits a feasible schedule
has been discussed in [1], but this work studies MSCs in isolation, without ref-
erence to a system model. On the other hand, timed message-passing automata
very similar those defined in this paper have been very recently considered in
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[9]. In this work, the emphasis is on proving (un)decidability results for simple
verification criteria such as reachability and channel boundedness. This paper
does not address the semantics of such automata in terms of (timed) MSCs.

Preliminary results show that our approach to solve the problem of scenario
matching in timed systems can be effectively automated using a tool like Up-
paal. We are working on more detailed examples to understand better the
practical issues involved with timed scenario verification. Another issue to be
explored is the extent to which we can enhance the expressive power of timed
MSC templates.

Acknowledgments. We thank Benedikt Bollig, Paul Gastin, K. Narayan Ku-
mar, Akshay Sunderaraman and the anonymous referees for helpful comments
and suggestions on the preliminary version of this paper.
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Abstract. Using a variant of Clariso-Cortadella’s parametric method
for verifying asynchronous circuits, we formally derive a set of linear
constraints that ensure the correctness of some crucial timing behaviours
of the architecture of SPSMALL memory. This allows us to check two
different implementations of this architecture.

1 Introduction

In [10,9], Clariso and Cortadella propose a technique for verifying the timings of
asynchronous circuits. The approach infers a set of sufficient linear constraints
relating the delays of the internal gates of the circuit to the external delays of
the circuit specification that guarantee the correct behavior of the circuit. The
method is based on the reachability analysis of a timed model of the circuit (with
additional abstract interpretation techniques [11]). As pointed out in [10], such
parametric constraint sets are very informative for the designer, as they identify
sensitive parts of the circuits (e.g., “critical paths”) and interrelations between
various data of the specification. Moreover, many technology mappings can be
tested immediately (by mere instantiation of the parameters).

We follow here a similar approach for formally verifying some generic proper-
ties of a commercial memory designed by STMicroelectronics, called SPSMALL.
Such a memory can either read or write a data (depending on the value of an in-
put signal WEN). For the sake of brievity, we focus here on the write operation
(WEN = 0). In this case, the memory stores the value of the input signal D
into an internal memory point (located at address A), and propagates it to the
output port Q. The circuit is made of a dozen of elementary components. Each
component ci is associated with an interval [l↑i , u

↑
i ] (resp. [l↓i , u

↓
i ]), which gives

lower and upper bounds of the component traversal delay when the input is ris-
ing (resp. falling)1. Such a circuit is specified by the manufacturer according to
several “external” parameters (such as periods of a cyclic clock CK, time of sta-
bilization of signal D, ...). Our timing analysis method derives a set of sufficient
� Partially supported by project MEDEA+ Blueberries.
1 This is a straightforward generalization of “bi-bounded delay” model (see [6]), taking

into account the rising or falling nature of input signal.
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linear constraints relating the external parameters to the internal gate delays
that guarantee the correctness of the circuit’s behavior. In particular, these con-
straints can be seen as sufficient conditions for certain paths of the circuit to be
“critical” (i.e. those along which the propagation delay is the longest).

Using the model of parametric timed automata (see [3]) and tool HYTECH
[14] for reachability analysis, we are able to generate a set of linear constraints
that ensures that the correctness of some crucial timing behaviors of the mem-
ory: e.g., the result of a write or read command, transmits the value of input
signal D to output port Q within one clock cycle. This method is applicable to
several instances of SPSMALL memories implemented with different transistor
technologies (corresponding to different sets of parameter values).

Comparison with Related Work. As pointed out above, our work is adapted
from Clariso-Cortadella’s method [10,9]. However, [10,9] focus on a particular
form of linear constraints (linear inequalities with coefficients always equal to ±1)
and represent them as a particular form of convex polyhedra, called “octahedra”
[9]. In contrast, we use here linear constraints and their classical form of convex
polyhedra in their full generality [13]. Other differences with [10,9] are:

- a different level of modelling: the components of the memory are represented
here at the “latch” level instead of gate level. At this level of representation, the
flow of input signals traverses the circuit in a linear manner (without loops),
while the flow is cyclic at the gate level (the ouput of one gate can be an input
of another gate and the converse can be simultaneously true),

- the use of mere forward reachability analysis rather than techniques of fix-
point computation of abstract interpretation (using, e.g., widening operators),

- the use of a decompositional approach, which splits the global system into
three smaller parts,

- the use of a step-by-step refinement of the reachability analysis process: we
start with the most general form of constraints on parameters; we then refine
them progressively, via iterative reachability analysis, detecting, at each run,
some erroneous generated states until complete elimination.

Besides [10,9], our work is along the lines of [16,5,17] where timed automata
have been used extensively to model and check timing properties of asynchronous
circuits (cf. [12]). Reachability analysis is there performed via tool KRONOS [18].
Our work is also a continuation of [4,7] where the SPSMALL memory is modelled
as a timed automaton and some of its timing properties are proven by reachabil-
ity analysis (using tool UPPAAL [15]). The crucial difference here, with respect
to these previous works, is that we use the model of parametric timed automata
(performing reachability analysis with HYTECH [14]).

Plan of the paper. In Sect. 2, we present the general objectives of our verifica-
tion process. In Sect. 3, we give a general description of our method. In Sect. 4,
we explain how we apply it on SPSMALL memory after having split the model
into 3 parts. Final remarks are given in Sect. 5.
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2 Objectives of Verification

2.1 Timings of a Memory Circuit

A memory circuit aims at storing data at some addressed locations. It is asso-
ciated with two operations: ‘write’ and ‘read’. The memory circuit has several
input ports and one output port (see Fig. 1). The signals driven by input ports
are:

- CK, the signal of the periodic clock;
- D, the data to be stored;
- A, the address of the internal memory location;
- WEN , the nature (write/read) of the operation.

The signal driven by the output port is Q. The memory circuit makes use of
some internal devices, called ‘memory points’, to store data. This is depicted on
Fig. 1. The write operation (WEN = 0 when CK is rising) writes the value of
D in the internal memory point selected by A, and propagates D on output port
Q. The read operation (WEN = 1 when CK is rising) outputs on port Q a copy
of the data stored in the memory point selected by A.

CK

D

A

WEN

Q

Memory

Fig. 1. Simplified interface of a memory

A memory is embedded into a synchronous environment scheduled by a peri-
odic signal, named ‘clock’ (CK). The period of a cycle, tcycle, decomposes itself
into a high period (tHI ) and a low period (tLO). In order to be taken into ac-
count, each input signal I has to remain stable for a given amount of time, before
the rising edge of the clock. This delay is called setup time for I, and denoted
by tsetupI

2. A write operation requires a delay, denoted by tD,WEN
CK→Q

3 due to the
time of traversal of the elementary components of the memory (See Fig. 2).

The specification states the maximum delay, denoted by tmax, needed by a
write operation.

These values of the parameters of the specification (tHI , tLO, tsetupD ,
tsetupW EN , tmax) form the “external specification” or datasheet of the circuit pro-
vided by the manufacturer to the customer. They are determined by electrical
2 There exists also a required delay of stability, called “hold” time, required after the

rising edge of the signal, but we will not consider it in this paper.
3 A similar delay exists for a read operation, but we will not consider it in this paper.
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WEN

Q

D

CK

tcycle

tsetupW EN

tHI tLO

tsetupD

tD,WEN
CK→Q

Fig. 2. A write operation corresponding to a rising edge of D (D ↑)

simulation. In order to perform such a simulation, each component of the mem-
ory is modelled at the transistor level as a set of differential equations, which
represent the Kirshoff laws associated with the electric current traversing the
component. These differential equations depend on the physical characteristics
of the transistors and wires (capacitors, resistors, ...). The full memory is thus
represented as a big system of differential equations. The values of the datasheet
are computed by resolution of these differential equations, using, e.g., tool HSIM
[1]. Actually, such a simulation process is much too long to be performed in a
complete manner. Sensitive portions of the circuit, which are supposed to con-
tain the longest paths of traversal, are therefore identified by hand. Electrical
simulations are performed only for such limited portions of circuit, which are as-
sumed to contain the critical paths. Such an assumption of ‘criticality’ is risky:
it is very difficult to identify by hand relevant sensitive portions of the circuit
(especially when the complexity of the circuit increases). The need for formal
methods to verify the timings of the datasheet is therefore widely recognized.

2.2 Verified Property

We will focus in this paper on the following “response time” property, expressing
an important aspect of the timing correctness of the memory’s behavior.

The result of a write command is produced on output port Q within tmax.
This will be expressed as: tD,WEN

CK→Q ≤ tmax, where tD,WEN
CK→Q represents the time

(with respect to the beginning of clock cycle CK) after which signal Q reproduces
the rising edge of D. Besides, our analysis will allow us to infer an optimal value
for parameter tsetupD .
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Other properties regarding the writing into the internal memory point and
read operation have been proven similarly, but will not be presented here, due
to the lack of space.

Note that, as we focus here on the propagation of D through the whole mem-
ory (and disregard the writing in the internal memory point), the circuit parts
involving the memory point and the address decoder are omitted here.

3 Method

Roughly speaking, the process consists to:

– construct a model of the memory under the form of a timed automaton,
– generate the set of reachable states (within two cycles),
– infer (by stepwise refinement) a set of timing constraints ensuring the re-

sponse time property,
– verify that, for a given implementation, the response time property holds by

checking the instantiated constraints.

3.1 General Scheme for Modelling a Circuit with Timed Automata

In contrast with electrical simulation, the verification process requires the mod-
elling of the internal components of the memory, not from an electrical point
of view (using differential equations), but at a symbolic abstract level. A circuit
component is characterized by a Boolean function f (mapping its inputs to its
outputs) and a propagation delay, given under the form of two intervals [l↓, u↓]
and [l↑, u↑] (model of bi-bounded inertial delays distinguishing the propagation
times of rising and falling edges [6]). The model of timed automata [3] is espe-
cially well-suited to represent asynchronous circuits (see, e.g., [5,17]); however,
these models use a bi-bounded delay model without distinguishing the propaga-
tion delays of rising and falling edges. This unique propagation delay interval is
too coarse for our circuit, thus we introduce two interval delays, [l↑, u↑] for the
propagation of a rising edge, and [l↓, u↓] for the propagation of a falling edge.

Roughly speaking, a timed automaton is a finite state automata enriched
with (symbolic) clocks that evolve at the same uniform rate, and can be reset
to zero. A state is a pair (�, v) where � is a location (or “control state”), and
v a clock valuation. Each location is associated with a conjunction of linear
constraints over clocks, called invariant. A state (�, v) has a discrete transition,
labelled e, to (�′, v′) if v satisfies a constraint, called guard, associated to e, and
v′ is obtained from v by resetting certain clocks to 0. The state (�, v) has a
time transition of duration t to (�, v′) if v′ = v + t and for all t′ (0 ≤ t′ ≤ t),
v + t′ satisfies the invariant associated to �. States can be expressed under the
symbolic form of conjunctions of linear constraints. Such states are classically
represented as convex polyhedra (see, e.g., [14]). Sets of states correspond to
union of polyhedra. The (forward) reachability analysis consists in generating
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iteratively the “successors” of sets of states via the system transitions, using
elementary manipulation of polyhedra.

In order to model the circuit, each component is represented as a timed au-
tomaton combining its functionality f and delay intervals [l↓, u↓] and [l↑, u↑]
(see [16,17] for a model with a unique interval). Input signals CK,D and WEN
are themselves represented as timed automata. The global circuit is modelled as
a composition of timed automata where synchronization is used to model the
transmission of an internal signal between two components. A central clock s
is used to measure the evolution of time. The states generated by reachability
analysis correspond to linear constraints which relate the values of input and
output signals, depending on timing values of the datasheet, the values of the
internal delays, as time s evolves.

Let us note incidentally that our verification process still relies on results
obtained by simulation, as it makes use of values of [l↓, u↓] and [l↑, u↑] for internal
delays. However simulation is performed here at a lower scale (component), and
is hopefully more reliable than for giving end-to-end values.

3.2 Modelling SPSMALL

Level of Modelling. A memory can be modelled at many different levels of
complexity, e.g., in a increasing order: at the functional block level, at the “latch”
level, at the gate level, or at the transistor level.

For the SPSMALL memory, the model can thus be implemented using: 3
main components, at the block level (cf [4]), 30 components at the latch level,
70 components at the gate level, or 200 components at the transistor level.

There is a tradeoff in finding the appropriate level of modelling. The lower
the level of modelling is, the more faithful to the reality the model is, but the
more difficult the verification process is. In particular, the task of finding by
simulation the delays of each component becomes impracticable at the lowest
levels (gate, transistors).

In this work, we chose to represent the memory at the latch level. The ad-
vantage is to limit the number of components (around 30) at a reasonable size,
and to have a “schematics” describing the architecture of the memory at this
level, which closely corresponds to (VHDL) code automatically produced with
commercial tool TLL [2]. The interesting portion of this schematics for the prop-
erty on which we focus here, is described in Fig. 3. It contains 12 components:
7 “wire” components, which transmits an input; one “not” component, which
transmits the negation of its input ; one “or” component which computes the
logical “or” of its two inputs4; and two “latches”, latchD and latchWEN . Two
timing intervals are associated to each component, one representing the propa-
gation delay of a rising edge (e.g. [l↑0, u

↑
0] for component wire0), and the other

representing the propagation of a falling edge (e.g. [l↓0, u
↓
0] for component wire0).

The precise behavior of these components is explained below.
4 The associated delay has been actually incorporated into the input wires, and will

not appear in the following.
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wire15
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output buffer7

Fig. 3. Schematics’excerpt of SPSMALL

Modelling SPSMALL as a timed automaton. The SPSMALL memory
is modelled as a timed automaton, resulting from the composition of all the
timed automata corresponding to the input signals and the components. More
precisely:

– Each input signal of the memory (synchronous signal CK, input signal D,
read/write command WEN) is represented as a timed automaton.

– Each component of the memory (latch, wire, ...) is also represented as a
timed automaton,

– The transmission of an internal signal between two components is modelled
by synchronizing the two corresponding timed automata via a shared discrete
transition.

– The emission of a signal at the output port Q of the memory corresponds to
the updating of an internal variable, denoted by q, of the model.

We will focus on two main kinds of components: wires and latches (the
“not”,“or” or “output buffer” components are similar). The simplest kind of
component is a “wire” component, which transmits an input signal after a cer-
tain delay: the wire component is enabled l↑ (pico)secs after the rising edge of
the input signal, and the output signal is fired after a delay lying in [l↑, u↑] (pa-
rameters l↑ and u↑ are used to propagate a falling edge). We adopt the “inertial
delay” interpretation (see [6]): changes that do not persist for l time are filtered
out. Such a wire component is naturally modelled as the timed automaton de-
picted in Fig. 4. It makes use of 1 internal clock c and 5 locations. The symbol
d ↑ (resp. d ↓) corresponds to a rising edge (resp. falling edge) of input internal
signal d, and similarly for symbol o ↑ (resp. o ↓) with output signal o. Each edge
corresponds to a discrete transition labelled with the name of input signals (d ↑
or d ↓) or output signals (o ↑ or o ↓). The medium-level locations are associated
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o ↓

c := 0

c := 0

d ↓

d ↓

c := 0

c := 0
d ↓

d ↑
d ↑

c := 0

c := 0
d ↑

o ↑

c ≤ u↓c ≤ u↑

c ≥ l↑ c ≥ l↓

Fig. 4. Timed automaton of a wire component with delays [l↑, u↑] and [l↓, u↓] to prop-
agate an edge from d to o

with invariants c ≤ u↑ or c ≤ u↓. The guard associated with edges outgoing
downwards from these locations is c ≥ l↑ or c ≥ l↓.

A latch is a component that can store one bit of data. It has two inputs d
(data to be latched) and e (enable), and one ouput q. It propagates the input
data d to its output o (with a delay in [l↑, u↑] or [l↓, u↓]) as long as e is high.
While e is low, q keeps its value (even if d changes). A latch corresponds to the
timed automaton depicted on Fig. 5 (using the same conventions as for the wire
automaton). There are 6 locations and 1 clock c. The name of the locations eidj

reflects the values i and j of e and d respectively; besides e1djB indicates that
an output q ↑ (resp. q ↓) has already been output if j = 1 (resp. j = 0).

3.3 Reachability Analysis

In order to verify property: tD,WEN
CK→Q ≤ tmax, we model the behavior of the

memory along two cycles:

– a 1st cycle where the values of D and WEN are set tsetupD and tsetupW EN

time before the 2nd rising edge of CK (corresponding to the write operation);
input signal WEN is modelled as a falling edge, followed by a low level
(selection of a write command), and input signal D is modelled as a rising
edge, followed by a high level (in keeping with the stabilization requirement
setupD).

– a 2nd cycle where the write operation is performed (the D value is propa-
gated on Q port).

Accordingly, the observation of the generated states is done along two cycles
(see Fig. 6).
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c := 0
e ↑

e ↓

d ↓

d ↑ d ↑

d ↓

c := 0

c := 0

d ↑

d ↓

c := 0

c := 0

e ↓

e ↓

e1d1

e1d0
e0d0

e0d1

e1d0B

e1d1B
c := 0
e ↑

e ↓

q ↓

q ↑

c ≥ l↓

c ≥ l↑c ≤ u↑

c ≤ u↓

Fig. 5. Timed automaton of a latch component with delays [l↑, u↑] and [l↓, u↓] to
propagate an edge from d to q

WEN

D

CK

Q

tcycle

tHI tLO

tsetupD

s = 0

q := 0 q := 1

t
D,WEN
CK→Q

s = tcycle + t
D,WEN
CK→Q

tsetupW EN

Fig. 6. The write operation used in our experiment

In the next subsection, we will explain how the verification method applies
without instantiation of the parameters. Let us first explain how the method
works given a specific implementation of the memory: in the rest of this section,
we assume all the parameters to be instantiated with the values of the datasheet
and those given by simulation.
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A central clock s (initialized to 0, and never reset) is used to measure the
evolution of time, during 2 cycles. We also use a flag q (initialized to 0), which
stores the fact that the rising edge of input signal D has reached Q port. The
value of s when flag q is set to 1, corresponds to the sought value tD,WEN

CK→Q .
Starting from s = 0 ∧ q = 0, the set of reachable states is iteratively computed
until, either:

– the switch of flag q occurs before 2 cycles, or
– 2 cycles are run out without any switch of q.

This yields a set of final states, denoted by Post2tcycle , which can be decomposed
into:

– good states, i.e, states, for which the switch of q has occurred (q = 1 ∧ s =
tcycle + tD,WEN

CK→Q ≤ 2tcycle).
– bad states, i.e., states, for which 2 cycles has run out without any switch of q

(q = 0 ∧ s = 2tcycle).

The property holds iff:

– all the final states of Post2tcycle are good (no bad state), and
– for each final state, the value tD,WEN

CK→Q of s is at most equal to tcycle (i.e.:
tD,WEN
CK→Q ≤ tcycle).

3.4 Timing Constraints Extraction by Stepwise Refinement

Let us now explain how to perform the reachability analysis at a generic level,
without setting the parameters to some specific values of a given implementa-
tion. We denote by Assumption, the set of symbolic constraints, relating the
parameters tHI , tLO, tsetupD and {[li, ui]} together. At the beginning of the
process, Assumption is True, which means that we start with the most general
parameters (li is just assumed to be less than or equal to ui). Given an initial set
of states characterized by Assumption, we perform reachability analysis on 2 cy-
cles. We thus generate a set of constraints, denoted by Post2tcycle(Assumption).
The first run of Post2tcycle(Assumption), with Assumption = True, usually
contains bad (final) states. The refinement process consists to eliminate such
bad states, by restricting the possible values of the parameters, as follows:

1. select a bad state of Post2tcycle(Assumption);
2. detect a “suspect” constraint;5

3. add the negation of this subconstraint to Assumption.
4. Recompute Post2tcycle (Assumption) after having reset s and q to 0.

And so on, perform iteratively 1-2-3-4 until no bad state is generated.

At each run, Assumption is a conjunction of linear constraints with an in-
creasing number of conjuncts. Accordingly, Post2tcycle (Assumption) decreases at

5 In our context, a suspect constraint is a constraint violated by the values of the
parameters of an SPSMALL available instance, viz. SP1 (see Sect. 4.3).
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each run. At the end, the refinement process outcomes two formulas, Assumption
and Final ≡ Post2tcycle(Assumption):

– Assumption is a conjunctive constraint binding parameters tHI , tLO, tsetupD ,
tsetupW EN , {[li, ui]}.

– Final is a set of conjunctive constraints relating tD,WEN
CK→Q to tHI , tLO, tsetupD ,

tsetupW EN , {[li, ui]}.
Moreover, by construction, we have:

– Final is the set of states reachable from Assumption for which signal D has
reached Q before 2 cycles (i.e., such that q = 1 ∧ s = tcycle + tD,WEN

CK→Q ≤
2tcycle).

– the propagation of D on Q always occurs before 2 cycles. (Final contains all
the states reachable from Assumption such that q = 1).6

This set of constraints can be used for different purposes:

1. The validation of a specific implementation of SPSMALL. It consists in
checking that:
(a) the specific values of the datasheet (tHI , tLO, tsetupD , tsetupW EN ) and

those of the internal delays {[li, ui]} are compatible, i.e: they satisfy
Assumption all together;

(b) ensure that tD,WEN
CK→Q ≤ tmax.

2. The optimisation of some parameters of the memory: it can be an external
parameter (such as tsetup of an input signal) or an internal timing (such
as [li, ui] of an internal component). For instance, we can find the minimal
value of tsetupD such that all constraints remain satisfiable.

4 Verification of SPSMALL

We now apply the above method for deriving the set Assumption ∪ Final of
constraints associated with memory SPSMALL, and checking the correctness
of two of its instances SP1, a “high-speed” implementation, and SP2, a “low-
power” implementation.

4.1 Decomposition

In practice, we cannot apply directly the method described above, because we
cannot perform reachability analysis with HYTECH due to the high number
(34) of parameters. The model is therefore decomposed into three parts (see the
dashed lines on Fig. 3):

– The 1st part represents the D’s edge propagation through latchD: The input
signals are D and CK. The output is the output of latchD, denoted by
q1. The goal is to compute the constraints on lower and upper bounds on
tDCK→q1

.

6 This comes from the fact that all the bad states have been eliminated.
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– The 2nd part represents the propagation of the WEN edge through
latchWEN (among other components). The input signals are WEN and
CK. The output is denoted by wel. The goal is to compute the constraints
on the lower and upper bounds of tWEN

CK→wel.
– The 3rd part represents the propagation of q1’s edge through Q. The input

signals are q1 and wel. The output is Q. The goal is to compute the con-
straints on the lower and upper bounds of tq1,wel

CK→Q. Using the bounds tWEN
CK→wel

and tDCK→q1
found for q1 and wel respectively in the two first parts, this will

allow us finally to determine the constraints on tD,WEN
CK→Q .

4.2 Generic Constraints

We analyze separately each part, thus obtaining constraints binding intermedi-
ate input and output parameters (see [8]). The “suspect” constraints discarded
during the refinement process (see Sect. 3.4) are those incompatible with the
values of the delay intervals [l↑, u↑] and [l↓, u↓] of instance SP1 (see Sect. 4.3).
By recombination of these separate sets of constraints, we obtain constraints
relating the inputs and outputs of the whole memory, that are given below. For
conciseness, we consider only the case of a rising edge of D (D ↑):

Assumption:
tsetupD +u↓

2+u↓
3 < l↑0+tLO ∧ tHI +tLO < l↓2 +l↓3+tsetupD ∧ u↓

2+u↓
3+u↑

1 < tLO

∧ u↓
3 + tsetupW EN < tLO + u↓

13 ∧ u↓
13 + u↓

14 < tsetupW EN + l↓3 ∧ u↓
14 < tHI

∧ u↓
13 + u↓

14 + u↓
16 < tsetupW EN + l↓3 + u↓

15 ∧ tsetupD + u↓
3 + u↓

15 ≤ l↑5 + l↑0 + l↑1
∧ u↑

5 + u↑
0 + u↑

1 ≤ l↓8 + l↓3 + l↓15 + tsetupD

Final:
l↓3 + l↓15 + l↓8 + l↑7 ≤ tD,WEN

CK→Q ≤ u↓
3 + u↓

15 + u↓
8 + u↑

7

The constraints are symmetrical in the case of a falling edge of D (D ↓): more
precisely, each l↑i (resp. u↑

i ) should be changed into l↓i (resp. u↓
i ).

From Final (and its symmetrical counterpart for D↓), we infer the following
constraint, guaranteeing property tD,WEN

CK→Q ≤ tmax:

u↓
3 + u↓

15 + u↓
8 + max{u↑

7, u
↓
7} ≤ tmax. (∗)

Constraints of Assumption (and its symmetrical counterpart for D↓) can be
used to determine lower and upper bounds for tsetupD :

max{u↑
0+u↑

1+u↑
5−l↓8−l↓3−l↓15, u

↓
0+u↓

1+u↓
5−l↓8−l↓3−l↓15, tHI+tLO−l↓2−l↓3} ≤ tsetupD

∧ tsetupD ≤ min{l↑0 + l↑1 + l↑5 −u↓
3−u↓

15, l
↓
0 + l↓1 + l↓5 −u↓

3−u↓
15, tLO + l↑0 −u↓

2 −u↓
3}
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We thus infer an optimal value of tsetupD , denoted by topt
setupD

, which corre-
sponds to its lower bound7:

t
opt
setupD

= max{u↑

0 + u
↑

1 + u
↑

5 − l
↓

8 − l
↓

3 − l
↓

15, u
↓

0 + u
↓

1 + u
↓

5 − l
↓

8 − l
↓

3 − l
↓

15, tHI + tLO − l
↓

2 − l
↓

3}

A similar expression can be obtained for the optimal value of tsetupW EN .

4.3 Application to Instance SP1

The above sets of constraints now allow us to give a formal justification of the
correctness of the instance SP1. The values of the datasheet are (in tens of
picoseconds):

tHI = 36, tLO = 74, tsetupD = 108, tsetupWEN = 48, tmax = 56.
The internal delays are (in tens of picoseconds):

[l↑i , u
↑
i ] [l↓i , u

↓
i ]

(l0, u0) (95, 95) (66, 66)
(l1, u1) (14, 14) (18, 18)
(l2, u2) (23, 30) (23, 30)
(l3, u3) (5, 5) (2, 2)
(l5, u5) (22, 22) (45, 45)
(l7, u7) (21, 21) (20, 20)
(l8, u8) (0, 0) (22, 22)
(l13, u13) (11, 11) (8, 8)
(l14, u14) (21, 22) (21, 22)
(l15, u15) (14, 14) (11, 11)
(l16, u16) (24, 24) (0, 0)

We check that all the constraints of Assumption (and those of the symmetrical
counterpart for D ↓) are satisfied. We also check constraint (∗). This shows that
SP1 satisfies tD,WEN

CK→Q ≤ tmax. Furthermore, we find the value 96 for topt
setupD

,
which matches with the optimal value found by simulation by the designer.

4.4 Application to Instance SP2

As mentioned above, the values of the datasheet and internal delays of SP1
have been used in the refinement process in order to derive the appropriate set of
generic constraints. Therefore, the derived set of constraints Assumption∪Final
of Sect. 4.2 has not been produced independently from SP1, and the correctness
of SP1 has been checked a posteriori. The constraints are however available
now once for all, and can be reused to check immediately any other instance of
SPSMALL. This is what has been done with instance SP2. The values of the
datasheet are (in tens of picoseconds):

tHI = 72, tLO = 170, tsetupD = 241, tsetupWEN = 109, tmax = 142.
The internal delays are (in tens of picoseconds):
7 Actually, we checked that topt

setupD
also satisfies constraints, coming from other parts

of the circuit, which are not limitative in the case of instances SP1 and SP2.
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[l↑i , u
↑
i ] [l↓i , u

↓
i ]

(l0, u0) (197, 197) (140, 140)
(l1, u1) (60, 60) (58, 58)
(l2, u2) (66, 66) (43, 43)
(l3, u3) (8, 8) (4, 4)
(l5, u5) (61, 61) (63, 63)
(l7, u7) (47, 47) (52, 52)
(l8, u8) (0, 0) (42, 42)
(l13, u13) (23, 23) (23, 23)
(l14, u14) (35, 35) (36, 36)
(l15, u15) (56, 56) (43, 43)
(l16, u16) (24, 24) (0, 0)

As in the case of SP1, we check that SP2 satisfies tD,WEN
CK→Q ≤ tmax. Besides, we

find the value 229 for topt
setupD

, which matches with the optimal value found by
electrical simulation by the designer.

5 Final Remarks

We have shown in this paper how to apply parametrized methods to verify timed
properties of the generic architecture of a memory. We have thus found certain
sufficient conditions (under the form of linear inequalities between parameters)
that ensure that the response time lies between certain bounds, and check this
property on an instance SP1 of the memory. These linear inequalities have been
also used to derive the optimal values of setup timings of input signals (viz., setup
timing for D). This analysis can be immediately applied to the verification of
other instances of the SPSMALL memory, as examplified here on instance SP2.

Our method requires from the user a certain knowledge of the circuit, espe-
cially in the stepwise refinement process when taking the refutation of a suspect
constraint. By negating such constraints, we focus on a certain class of the cir-
cuit, disregarding other possible circuit implementations. In the future, we plan
to improve this phase of constraint selection, in order to make the method more
complete and more automatic.
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Abstract. In this paper we describe an extension of timed automata
with priorities, and efficient algorithms to compute subtraction on DBMs
(difference bounded matrices), needed in symbolic model-checking of
timed automata with priorities. The subtraction is one of the few op-
erations on DBMs that result in a non-convex set needing sets of DBMs
for representation. Our subtraction algorithms are efficient in the sense
that the number of generated DBMs is significantly reduced compared
to a naive algorithm. The overhead in time is compensated by the gain
from reducing the number of resulting DBMs since this number affects
the performance of symbolic model-checking. The uses of the DBM sub-
traction operation extend beyond timed automata with priorities. It is
also useful for allowing guards on transitions with urgent actions, dead-
lock checking, and timed games.

1 Introduction

Since the introduction of timed automata [2] in 1990, the theory has proven its
capability of specifying and analysing timed systems in many case studies, e.g.,
[4,23]. To support such studies, tools as Kronos [7], Uppaal [18], and RED [24]
have been developed to offer means for modelling, simulation, model-checking,
and also testing, of real-time systems specified as timed automata.

In the implementation of real-time systems, the concept of priorities is often
used as a way to structure and control the usage of shared resources. Priorities
are often associated with processes (or tasks) to control their usage of shared
resources such as CPU or shared memory areas. As a consequence, program-
ming languages such as Ada [3,12], and scheduling policies used in real-time
operating system, such as rate-monotonic scheduling [9], are often based on a
notion of priorities on tasks. In lower levels, closer to the hardware, priorities are
often associated with interrupts to hardware devices and access to e.g., shared
communication buses.

Priorities have been studied in process algebras, e.g., [11,8], and can be mod-
elled using timed automata [12,14]. However, it can be cumbersome and error-
prone to do so. Consider the simple example shown in Figure 1 and assume that
the location l can be reached with any time assignment satisfying the constraint

E. Asarin and P. Bouyer (Eds.): FORMATS 2006, LNCS 4202, pp. 128–142, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. A timed automaton with priorities on actions

l1
x ≤ 2 ∧ y ≤ 2

a

l2

y ≥ 1 ∧ x > 2

y > 2
b

b

l

Fig. 2. Encoding of the priorities in Fig. 1

x ≤ 4 ∧ y ≤ 4. Further assume that the edge labelled with a has priority over
the edge labelled b. We see that l1 can be reached with any time assignment
satisfying the constraint x ≤ 2 ∧ y ≤ 2. The location l2 is reachable under the
constraint (y ≥ 1 ∧ x ≤ 4 ∧ y ≤ 4) ∧ ¬(x ≤ 2 ∧ y ≤ 2), which is a non-convex
set of clock valuations and thus not representable as a conjunction of simple
constraints. This fact will make (symbolic) state-space exploration potentially
costly, since the set of clock valuations reachable in one step over a low priority
transition, such as transitions derived from the b-edge, generally will have to be
represented by a set of convex constraint systems. In Figure 2 we show a timed
automaton in which the priorities of the automaton in Figure 1 have been en-
coded. Note that the b-edge has been split to two edges to encode the disjunctive
constraints on the clock valuations reaching l2.

Model-checking tools for timed automata typically uses DBMs (difference
bound matrices) [13,22] to represent convex constraints on clock variables. How-
ever, as illustrated above, analysis of timed automata with priorities will require
the model-checking engine to efficiently handle disjunctive constraints. As a sec-
ond contribution of this paper, we present a variety of techniques for performing
subtractions on DBMs. That is, how to compute D−D′ defined as D∧¬D′, for
two DBMs D and D′. Guided by the goal to minimise the set of DBMs resulting
from subtraction, and to keep them disjoint, we give a heuristic algorithm with
good performance. To back up this statement, we present experimental evidence
from applying a version of the Uppaal tool extended with priorities, on a set
of examples. We note that DBM subtraction is already needed for backward
model-checking of full TCTL or scheduler synthesis [23], controller synthesis [10],
and to support urgent guards.

The rest of this paper is organised as follow: Timed automata with priori-
ties are described in Section 3, and the required DBM subtraction operation in
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Section 4. In Section 5 we present subtraction algorithms that reduce the set
of resulting DBMs. We show with experiments in Section 6 that our algorithm
improves DBM subtractions significantly.

Related work: Priorities in process algebras are described in [11], where pri-
orities on actions are defined in two levels. A process algebra of communicating
shared processes is described in [8], where priorities are described as real num-
bers on events and timed actions. Preservation of congruence is a major concern
in these papers.

In [6] priorities are introduced for live systems (time-lock and deadlock free
with no indefinite waiting), with the purpose to preserve liveness in the compo-
sition of such systems. In our work we have focused on introducing priorities for
existing timed automata models, and developing efficient algorithms for DBM
subtraction.

In [16] a notion of priorities for timed automata based on total orderings and
an algorithm for computing DBM subtractions have been proposed. In this pa-
per, we introduce a more general notion of priorities for timed automata where
the priority ordering is allowed to be partial, and allowing the priority ordering
to be defined both on the level of synchronisation actions as well as the individ-
ual automata. We believe that both these two suggestions will be useful when
modelling real-time systems with priorities. The subtraction of [16] is claimed
to be optimal, i.e., it generates the fewest possible number of DBMs as a result.
However, the ordering of constraining operations needed for subtraction is not
mentioned. We argue in this paper that ordering is important and optimality
of subtraction w.r.t. reachability is more difficult than just having the minimal
number of DBMs from subtractions.

2 Preliminaries

2.1 Clock Constraints

Model-checking of timed automata involves exploring a state-space of symbolic
states, where each symbolic state represents a set of clock valuations. For a set
C of n clocks, a clock valuation is a map v : C �→ R≥0. We denote by B(C) the
set of conjunctions of atomic constraints in the form xi ∼ m or xi − xj ∼ m,
where m is a natural number, xi and xj are clock valuations of clocks i and
j, and ∼∈ {<,≤, =,≥, >}. Although it is possible to represent sets of clock
valuations as regions [2], using zones is much more efficient in practice [5]. A
zone corresponds to the set of clock valuations that satisfies a conjunction of
constraints in B(C). A zone is convex by definition, and we represent it as a
difference bound matrix (DBM).

2.2 Difference Bound Matrices

A DBM is a conjunction D =
∧

1≤i,j≤n(xi − xj ∼ bij) for ∼∈ {<,≤}, written
as D =

∧
dij . We use dij (or eij) to denote the constraints of a DBM D (or E).
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The bound of a constraint dij is denoted |dij |. We define a complement operation
over ∼ so that ≤̄ =< and <̄ =≤.

A DBM is canonical if it is closed under entailment, e.g. by Floyd’s shortest
path algorithm [15]. We consider all DBMs to be canonical.

Definition 1 (Operations on constraints). For constraints dij and eij:

– dij ≤ eij ⇔ dij ⇒ eij

– dij < eij ⇔ dij 
= eij ∧ dij ≤ eij

– ¬dij = ¬(xi − xj ∼ bij) = xj − xi∼̄ − bij. Note that ¬dij is a new d′ji

comparable with other constraints eji.
– dik + dkj = (xi − xk ∼ bik) + (xk − xj ∼′ bkj) = xi − xj ∼′′ bik + bkj where

∼′′=< if ∼=< or ∼′=<, otherwise ∼′′=≤.
– dik − djk = dik + ¬djk

We write v |= g to denote that a constraint g ∈ B(C) is satisfied by a clock
valuation v. The notation v ⊕ d represents a valuation where all clocks have
advanced by the real valued delay d from their value in v. For a set of clocks r
we denote by [r �→ 0]v the valuation that maps clocks in r to zero, and agrees
with v for all other clocks. We write D = {v | v |= xi − xj ∼ bij} for the set of
clock valuations that satisfy the constraints of D.

Definition 2 (Operations on zones). For a zone D and a clock constraint g:

– conjunction: D ∧ g = {v | v ∈ D, v |= g},
– delay: D↑ = {v ⊕ t | v ∈ D, t ∈ R≥0},
– reset: r(D) = {[r �→ 0]v | v ∈ D},
– free: free(D, r) = {[r �→ t]v | v ∈ D, t ∈ R≥0}, and
– negation: ¬D = {v | v 
∈ D}.

Subtraction. Given two DBMs D and E, we want to subtract E from D. The
resulting set S is defined as the set satisfying the constraints of D and ¬E. The
set is not necessarily a zone. The result S = D ∧¬E, denoted D −E, is written
as:

S = D ∧ ¬(
∧

1≤i,j≤n

eij) =
∨

1≤i,j≤n

(D ∧ ¬eij), (De Morgan law),

which is a union of D constrained by each of the negated constraints of E.
This gives us a straight-forward basic algorithm to compute subtractions. Fig-
ure 3 illustrates this basic algorithm with two clocks. The result S = D − E
is represented by the union of the six smaller zones on the right in the figure.
The number of zones in S is bounded by n2, and creating each of these zones
is O(n2), so the complexity of the operation is O(n4) (in both time and space),
with n being the number of clocks (we assume this every time we discuss com-
plexity).



132 A. David et al.

D

E

Fig. 3. Basic subtraction algorithm. The result of D − E is the union of all the six
zones on the right.

3 Timed Automata with Priorities

We denote by Act a set of actions, including the internal action τ and synchro-
nising actions a. A synchronising action a has a complement ā ∈ Act such that
¯̄a = a. A timed automaton Ai = 〈N i, li0, E

i, Ii〉 is a finite state automaton with
a set N i of locations li, a set Ei of edges, and an initial location li0. The func-
tion Ii : N i �→ B(C) maps to each location an invariant condition. An edge of
automata Ai from location li to li

′ is denoted li
g,a,r−→ li

′. The edges are labelled
with clock guards g ∈ B(C), actions a ∈ Act, and a set of clocks r ⊆ C.

We define a network of timed automata as the parallel composition of timed
automata A1| · · · |An communicating on a set of actions Act, and extend these
with priority orders on actions or automata. A priority order on actions is a
partial order ≺a. We write a ≺a a′ to denote that a′ has higher priority than a.
Similarly for automata we write Ai ≺A Aj to denote that an automaton Aj has
higher priority than Ai.

3.1 Semantics

A state of a network of timed automata is a pair 〈l, v〉, where l is a vector of
locations li for each automaton, and v is a clock valuation. The initial state
〈l0, v0〉 puts all automata in their initial locations li0, and maps all clocks to
zero.

The invariant I(l) is defined as the conjunction of terms Ii(li) for each au-
tomaton Ai. An update of the location for automata Ai is denoted by l[li′/li] as
the location vector originating from l where li is replaced by li

′. For a transition
t we denote by gt the conjunction of the guards on the edges participating in
that transition. Similarly we denote by rt the union of clock sets r on the edges,
and by lt the location vector of the state generated by t.
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Using a priority order ≺ on transitions, a transition can block another if it has
a higher priority. From a state 〈l, v〉 a transition t is blocked according to the
predicate block(t) = ∃t′.t ≺ t′ ∧ v |= gt′ ∧ [rt′ �→ 0]v |= I(lt

′
).

The transitions between states can be either delay transitions, internal tran-
sitions, or synchronising transitions. The following rules define all possible tran-
sitions t:

– Delay transition: 〈l, v〉 d−→ 〈l, v ⊕ d〉 if v ⊕ d′ |= I(l) for 0 ≤ d′ ≤ d.
– Internal transition: 〈l, v〉 a−→ 〈l[li′/li], v′〉 if there is an edge li

g,a,r−→ li
′ with

a local action a such that v′ = [r �→ 0]v, v |= g, v′ |= Ii(li′), and ¬block(t).
– Synchronising transition: 〈l, v〉 a−→ 〈l[li′/li, lj

′
/lj], v′〉 if there are two edges

li
gi,a,ri

−→ li
′ and lj

gj ,ā,rj

−→ lj
′ such that i 
= j, v′ = [ri �→ 0, rj �→ 0]v, v |= gi,

v |= gj , v′ |= Ii(li′), v′ |= Ij(lj ′), and ¬block(t).

With these semantics, a delay transitions can never be blocked, and no transi-
tion can be blocked by a delay transition. In Section 3.3 we show how a priority
order ≺ over internal and synchronising transitions can be derived from the
orders ≺a or ≺A.

3.2 Symbolic Semantics

We use zones to define a symbolic, finite semantics for networks of timed au-
tomata with priorities. A symbolic state is a pair 〈l, D〉 with a location vector l
and a zone D. A symbolic transition is denoted 〈l, D〉 =⇒ 〈l′, D̂′〉, where D̂′ is a
disjunction of a set of zones and 〈l′, D̂′〉 are all symbolic states 〈l′, D′〉 such that
D′ ∈ D̂′. The set of zones that block a transition t are describe by the predicate
Block(t) =

∨
t≺t′ free(I(lt

′
), rt′

) ∧ gt′
. The rules for symbolic transitions t are:

– Symbolic delay transition: 〈l, D〉 δ=⇒ 〈l, D↑ ∧ I(l)〉.
– Symbolic internal transition: 〈l, D〉 a=⇒ 〈l[li′/li], D̂′〉 if there is an edge

li
g,a,r−→ li

′ with a local action a, and D̂′ = r(D ∧ g − Block(t)) ∧ Ii(li′).
– Symbolic synchronising transition: 〈l, D〉 a=⇒ 〈l[li′/li, lj

′
/lj], D̂′〉 if there are

two edges li
gi,a,ri

−→ li
′ and lj

gj ,ā,rj

−→ lj
′ such that i 
= j, and:

D̂′ = (ri ∪ rj)(D ∧ gi ∧ gj − Block(t)) ∧ Ii(li′) ∧ Ij(lj ′).

Theorem 1 (Correctness of Symbolic Semantics). Assume location vec-
tors l0, lf , clock assignments u0, uf , and a set of zones D̂f . Let {u0} denote the
clock constraint with a single solution u0.

– (Soundness) whenever 〈l0, {u0}〉 =⇒∗ 〈lf , D̂f 〉 then 〈l0, u0〉 −→∗ 〈lf , uf 〉 for
all uf ∈ D̂f .

– (Completeness) whenever 〈l0, u0〉 −→∗ 〈lf , uf 〉 then 〈l0, {u0}〉 =⇒∗ 〈lf , D̂f〉
for some D̂f such that uf ∈ D̂f .

Proof: By induction on the length of transition sequences. Using the zone oper-
ations of Definition 2 it can be shown that block(t) and Block(t) characterizes
the same sets of clock valuations. ��
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3.3 Priorities in UPPAAL

The priority order ≺ over transitions can be derived from the priority orders ≺a

on actions and ≺A on automata. We describe here the order used in the Uppaal
tool [18]. For transitions t and t′ with actions a and a′ we derive a priority order
from ≺a by defining t ≺ t′ as a ≺a a′.

Deriving a priority order on transitions from ≺A is less straightforward, as two
automata with different priorities may be involved in a synchronising transition.
For two transitions t and t′, where t is a synchronisation between Ai and Aj

such that ¬(Aj≺AAi), and t′ is a synchronisation between Ai′
and Aj′

such that
¬(Aj′≺AAi′

), we define t ≺ t′ to hold when:

(Aj ≺A Aj′
) ∨ ((Ai ≺A Ai′

) ∧ ¬(Aj ≺A Aj′
) ∧ ¬(Aj "A Aj′

))

Intuitively the (weakly) higher priority processes Aj and Aj′
are compared first.

If they are related they define the relation between t and t′, otherwise the relation
is defined by the relation between Ai and Ai′

.
In a model with priorities on both actions and automata, priorities are resolved

by comparing priorities on actions first. Only if they are the same, the priority
order on automata is used.

4 DBM Subtraction

4.1 Improved Subtraction

The first observation from the basic algorithm given in Section 2.2 is that some
splits may be avoided by taking into account only the constraints that are not
redundant in the DBM. It is possible to compute the set of minimal constraints
of a DBM [19] in O(n3) (the set being unique w.r.t. a given clock ordering). As
this minimal set is semantically equivalent to the original set E, we use this set
Em instead: D − E = D − Em. In the experiments this algorithm is the base
for comparing with our other improvements since it obviously reduces splitting.
Figure 4 shows the reduced subtraction by using the minimal set of constraints.
We show it is worth spending this extra time because it is more important to
reduce the number of DBMs in the result. The global complexity is still O(n4).

4.2 Disjoint Subtraction

The improved algorithm gives D − E as a union of DBMs that overlap each
other, which means there are redundant points. These points will duplicate later
operations needlessly, so a second improvement is to ensure that the result is
a union of disjoint DBMs. The downside of it is that inclusion checking may
become worse for later generated DBMs. The problem exists even without sub-
traction and it is not obvious to conclude if we are improving or not on this
point. The ordering of the splits affects the result but it is still guaranteed to be
disjoint. The complexity is still O(n4).
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D

E

Fig. 4. Subtraction using the minimal set of constraints

D

E

(a)

D

E

(b)

Fig. 5. Subtraction with disjoint result with two orderings (a) and (b) for splitting

Disjoint Subtraction Algorithm. We compute the subtraction D − E with the
minimal set of constraints Em ⊆ E as follows:

1. Compute Em.
2. S = false, R = D
3. ∀eij ∈ Em, i 
= j :
4. S = S ∨ (R ∧ ¬eij)
5. R = R ∧ eij .
6. Return S.

R is the remainder of the subtraction and serves to compute consecutive splits.
The ordering of the splits has an impact on the resulting number of DBMs as
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shown in Figure 5. The resulting DBMs are disjoint and the result is correct in
both cases but in (a) we have 4 splits and a remainder that we will discard and
in (b) we have 3 splits and no remainder (the last case discards the remainder
trivially and is not a real split).

Lemma 1 (Soundness and completeness of disjoint subtraction). The
algorithm still computes the same subtraction D−E and S is a union of disjoint
DBMs: ∀s1, s2 ∈ S. s1 
= s2 ⇒ s1 ∩ s2 = ∅.

4.3 Simple Improvements

There are two obvious cases illustrated in Figure 6 that we can detect before
starting to compute D − E:

1. The negated constraint ¬eij reduces D to an empty zone, which corresponds
to a disjunct with false: we ignore the constraint eij .

2. The negated constraint ¬eij has no effect on D, which means that E ∧D =
false because DBMs are convex, therefor we stop and the result is D. We
ignore the whole subtraction.

eij

eij
D D

E

(2)(1)

E

Fig. 6. Particular cases to consider to simplify subtractions: (1) ignore eij and (2)
D − E = D

5 Reducing DBM Subtractions

Reducing subtractions means to reduce the number of splits of the operation
but it is not obvious to define what an optimal split is. For a subtraction D−E,
there may be different combinations that give the same minimal number of splits
but the resulting DBMs will be used in further computations and the different
combinations will give varying future splits. The problem of computing the min-
imal split is interesting but it is not obvious if it is possible to do it without
worsening the original complexity O(n4) of the subtraction. In this section we
propose a heuristic that tackles both problems: It tries to choose a good ordering
to reduce the number of splits overall.

5.1 Efficient Heuristic

The idea is to use a good ordering of the constraints of E to compute the
splits such that the first splits will cut the original DBM D into as large as
possible DBMs to cancel the upcoming splits as soon as possible (when there is
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nothing left to do). We use the values |eij | − |dij | to order the constraints eij ,
taking the smallest values first. This measures on one dimension how much the
corresponding facet of E is “inside” D. The important trick of the algorithm is
to always take the constraint with the smallest value after every split because
the DBM changes after every split. Complexity-wise, this is equivalent to sorting
in O(n4) (n2 constraints) instead of O(n2logn2) but it gives better results and it
makes more sense since at every iteration the previous values lose their meaning.

Algorithm. The algorithm splits D by choosing the current best eij as having
the smallest HE,R(i, j) = |eij | − |rij |.

1. If ∃i, j. i 
= j, dij ≤ ¬eji then return D.
2. Compute the minimal set of constraints Em.
3. Initialise R = D and S = false.
4. While R 
= false do
5. Choose eij ∈ Em, i 
= j with min(HE,R(i, j)).
6. if rij ≤ ¬eji return S ∨ R
7. else if eij ≥ rij skip
8. else S = S ∨ (R ∧ ¬eij)
9. R = R ∧ eij .

10. Return S.

Step 1 corresponds to case 2 in the preliminaries. It may seem redundant with
step 6 but it is to avoid computing the minimal set of constraints in step 2.

Lemma 2 (Soundness of heuristic subtraction). The algorithm computes
the subtraction D − E correctly.

Proof: The algorithm is equivalent to the disjoint subtraction in Section 4.2
except for the ordering of the constraints and two improvements to detect the
trivial cases mentioned in Section 4.3. ��

5.2 Expensive Heuristic

The idea is to ignore (in addition to the previous heuristic) facets of E that
do not intersect D. A facet of E corresponding to a constraint eij (of the form
xi − xj ∼ bij) is the hyper-plane xi − xj = bij bounded by the other constraints
of E. The intuition is to use the convexity of our DBMs and the fact D − E =
D − (D ∩ E): If D ∩ E 
= ∅ and a facet of E is not in D ∩ E, i.e., it does not
intersect D, then we can ignore it.

In practice, there are different cases to consider: If the constraints are strict or
not and different configurations of the intersections on the corner. In addition,
the exact detection of the intersection is O(n3) and it is not obvious for us if
this idea is compatible with the minimal set of constraints, which is, the simple
idea poses problems in practice.

To simplify, we define a new heuristic function HE,R that returns ∞ if Ē ∧
(xi − xj = bij)∩D = ∅ or the previous value |eij − rij | otherwise. The condition
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means that we make the constraints of E non strict (Ē) and we constrain it
to be a facet that we use for testing intersection. The intersection detection is
partial and is based on case 2 of Section 4.3. The new heuristic function is:

function H ′
E,R(i, j):

1. ∀k. k 
= i, k 
= j :
2. if |eij − ekj − rik| ≥ 0 or |eij − eik − rkj | ≥ 0
3. then return +∞
4. return |eij | − |rij |
end

We use two tricks: First we tighten eji with ¬eij to compute the facet as a
DBM. A specialisation of Floyd’s shortest path [15] can do this in O(n2) [22].
The second trick is that we do not need all constraints but only the eki and ejk,
which is what the expression in the condition is doing. If the function returns
∞ then there is not intersection with the facet corresponding to the constraint
eij , otherwise we do not know and we use the former heuristic value.

The function has complexity O(n) which is worse than before, but it may
reduce splitting further, which we investigate. The global complexity is unfortu-
nately O(n5). We can get the detection out of the loop and get back to O(n4)
but this is more complex than it seems in practice and the point is to see if it is
worth the effort.

6 Experiments

We experiment1 first with the impact of priorities in our model-checker. In prac-
tice, moderate splitting occurs so we focus on subtractions separately to answer
the question of what happens on applications that cause much more splitting.

6.1 Experimenting with Priorities

We describe an experiment where we compare and evaluate models using priori-
ties and models where priorities are manually encoded using guards and possibly
extra edges. For every edge of the original automaton, the encoding is done by
restricting the existing guards by removing all parts overlapping with higher
priority transitions.

Experiment 1. We introduce priorities on actions in a model of the Fischer
protocol [17] for mutual exclusion (Figure 7). The action ai of the model is used
to introduce priorities so that ai ≺ aj when i < j, and ai ≺ τ for all processes
P1 · · ·PN . Since we give τ -actions the highest priority all N processes will enter
location Bi, in contrast to the original model where at most N are in location Bi

simultaneously. Also, the same process P1 will always enter the critical section
because it will be the last process to reach location Ci. The Encoded model is
1 All experiments are carried on a dual-Xeon 2.8GHz with 4GB of RAM running Linux

2.6.9.
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Ai Bi : xi ≤ m

CiCSi

v = 0 xi := 0

xi ≤ m
ai

v := i v = 0

xi := 0

v = i ∧ xi > m

v := 0

Fig. 7. A process Pi in Fischer’s mutual exclusion protocol

Table 1. Measurements when model-checking N processes of the Fischer protocol

Original Priority Encoded
N (s) (Mb) (s) (Mb) (s) (Mb)

5 0.85 6.9 0.21 6.6 0.21 6.6
6 17.90 10.2 3.02 6.8 3.46 7.0
7 780.60 40.6 131.57 9.1 144.90 9.8

created by adding guards to edges from Bi to Ci that evaluate to false when a
higher priority transition τ or aj " ai is enabled.

Table 1 shows measurements of model-checking various models of the Fischer
protocol, to verify that there are no deadlocks and that mutual exclusion holds.
The column N is the number of processes, Original are the time and memory
requirements for model-checking the original model without priorities, Priority
are the corresponding numbers for the model with priorities, and Encoded are
the numbers for a model encoding the same behaviour as the model with prior-
ities. The results for the Priority and Encoded models are comparable, and the
overhead of the priority extension is small at worst. This is encouraging since
tool support for priorities makes modelling easier.

6.2 Experimenting with DBM Subtractions

Experiment 2. We have implemented a timed game reachability engine whose
purpose is to find winning strategies [10] and we made a variant of it to solve
jobhsop scheduling problems states as games. The timed game test example
(“tgame”) is the production cell [20,21] with 12 plates. The jobshop example
(“jobshop”) is modelled from [1] where we find a schedule for 4 jobs using 6
resources. We run variants of the prototype where we store (+strategy) and
we do not store the strategy. In addition, for both experiments the main loop
can reduce (+reduce) or not federations based on an inclusion checking using
subtractions. Table 2 shows the results of these experiments. We give the total
number of split operations (first number) as in the previous experiments with
time (in seconds) and memory consumption (in megabytes).

Comparing “basic” and “reorder” shows that it is not easy to find a good
ordering. Results from “disjoint” show as we claimed that reducing the size of the
symbolic states may actually interfere with inclusion checking. The “expensive”
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Table 2. Results of the timed game experiments (tgame) with 12 plates with and with-
out expensiveReduce (reduce), and the jobshop experiments (jobshop) with or without
strategy, with or without expensiveReduce

Algorithms tgame12 tgame12 jobshop jobshop jobshop jobshop
reduce reduce reduce

strategy strategy

basic 343314 283334 55514 91849 45970 73018
124s 10.9s 9.9s 10.8s 3.0s 3.6s
319M 39.6M 35.2M 38.8M 18.7M 22.6M

reorder 351615 291627 54996 89763 47073 73730
165s 10.9s 12.3s 13.4s 3.0s 3.5s
320M 39.7M 31.9M 35.6M 18.7M 22.6M

disjoint 396053 356322 39776 64195 31592 51531
120s 12.0s 11.7s 12.8s 3.2s 3.7s
320M 40.6M 37.1M 40.8M 18.6M 22.6M

efficient 323097 275991 24105 47705 20360 37854
121s 10.7s 5.3s 6.8s 2.2s 2.5s
319M 39.7M 45.1M 48.6M 18.5M 22.0M

expensive 320668 272788 23905 45428 20248 37653
121s 11.0s 7.5s 8.9s 2.1s 2.6s
319M 39.7M 45.4M 48.8M 18.5M 22.0M

heuristic gives a marginal gain considering its cost. The “efficient” heuristic is
the best choice. The reduction of federations gives significant gains both in time
and memory, which means it is possible to contain the splits to some extent.
Still this reduction operation needs a good subtraction. Indeed, experiment 2
shows how bad it may go. Concerning memory consumption it is difficult to
draw conclusions. The behaviour of the “efficient” implementation may seem an
anomaly but it is explained by the fact that the prototype is using sharing of
DBMs between states. The effect here is that DBMs are less shared since we
know we have fewer of them.

These experiments confirm that our heuristic has an overhead but it is com-
pensated by the reduction in splits, in particular for our “efficient” heuristic. We
speculate that our priority implementation will behave reasonably well with mod-
els that generate more splitting thanks to our subtraction algorithm. Further-
more, we have implemented different reduction algorithms to merge DBMs based
on subtraction. Our implementation scales well with good merging algorithms
thanks to efficient subtractions. However, this is out of scope of this paper.

7 Conclusion

We have shown that our priority extension is useful for modelling and can also be
used to reduce the search state-space. Furthermore, its overhead in our model-
checker is reasonable. We have also shown that it is worth the extra effort for
a DBM subtraction algorithm to produce fewer zones and to avoid redundancy
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by making the zones disjoint. The priority extension opens the door to more
compact models and the support for subtraction allows us to add support for
wanted features in Uppaal such as urgent transitions with clock guards. In
addition, we are improving on reduction techniques to make our model-checker
more robust against splitting of DBMs.
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Abstract. We propose a symbolic algorithm for the analysis of the robustness of
timed automata, that is the correctness of the model in presence of small drifts on
the clocks or imprecision in testing guards. This problem is known to be decid-
able with an algorithm based on detecting strongly connected components on the
region graph, which, for complexity reasons, is not effective in practice.

Our symbolic algorithm is based on the standard algorithm for symbolic reach-
ability analysis using zones to represent symbolic states and can then be easily
integrated within tools for the verification of timed automata models. It relies on
the computation of the stable zone of each cycle in a timed automaton. The stable
zone is the largest set of states that can reach and be reached from itself through
the cycle. To compute the robust reachable set, each stable zone that intersects
the set of explored states has to be added to the set of states to be explored.

1 Introduction

Timed automata [2] are an important formal model for the specification and analysis of
real-time systems. They are a simple extension of automata with real-valued variables,
called clocks, whose values increase at the same rate in the control locations, and can
be reset to 0 when a discrete transition is taken. By adding a certain type of constraint
on clocks to the locations and edges of the automaton, one can respectively specify the
time a system is allowed to remain in a control location, and when a discrete transition
can be taken. Many real-time systems have been modeled using timed automata and
analyzed automatically with tools like UPPAAL [10] and KRONOS [6].

A fundamental form of system analysis is the verification of safety properties, which
consists in checking whether any unsafe state is reachable. This kind of analysis is per-
formed efficiently by the tools mentioned above with well known algorithms manip-
ulating timed constraints, called zones, that can be represented as a square matrix of
difference bounds (DBM). The reachability analysis is based on the idealized semantic
assumption that all clocks advance with the same speed. However, in a real implementa-
tion of a system, clocks will be likely to drift and measure time only up to some precision.

Puri first addressed this concern in [12] where he considered drifting clocks and
showed that timed automata models are not robust with respect to safety properties,
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meaning that a model proven to be safe under the standard ideal semantics might not
be safe even if clocks drift by an arbitrarily small amount. De Wulf et al. consider
a semantics, called the almost ASAP semantics [8], capturing certain notion of clock
imprecision that can be translated into a syntactical enlargement of the guards. They
later showed in [7] that the implementability of a model under their semantics can be
decided with Puri’s algorithm for robustness analysis.

Both results rely on an enlarged semantics of timed automata with either drift or
imprecision of clocks. They consider the set of states that are reachable for any drift
or imprecision. If this set contains some unsafe state, then the model is considered not
to be robust or implementable. The robust reachability set can be computed with the
algorithm from [12] in both cases, which are thus equivalent. The algorithm is based
on the structure of the limit cycles of a timed automaton, i.e. the cyclic trajectories in
the underlying timed transition system. The algorithm considers the strongly connected
components of the region graph because they contain the limit cycles of the timed au-
tomaton. It adds every strongly connected component that intersects the reachability
set, and its successors, to the reachability set. However, because the size of the region
graph is exponential in the number of clock variables and the largest constant in the
constraints, the algorithm is not effective in practice.

We propose a symbolic algorithm for computing the enlarged reachability set of a
timed automaton based on the standard algorithm for symbolic reachability analysis
using zones to represent symbolic states. Our algorithm relies on the computation of
a stable zone Wσ of every progress cycle σ in the timed automaton, defined as the
maximal set of clock values that have successors and predecessors through any num-
ber of iterations of σ in the timed automaton. That is, Wσ =

⋂
i≥0 posti

σ(True) ∩⋂
i≥0 prei

σ(True). The stable zone has the property of reaching and being reached from
any cycle in the region graph, and hence any states in a limit cycle. We modify the stan-
dard reachability algorithm such that whenever the stable zone of a cycle intersects the
standard reachable set, the whole stable zone is added to the set of states to be explored.

Related work. The robustness analysis has been extended to more general type of prop-
erties, like Büchi and LTL in [4]. Other notions of robustness have been considered in
the literature, like [9,11] which impose a restriction to the type of accepted traces, as
opposed to the enlargement we consider here. A different modelling based approach to
implementability can be found in [1].

The remaining of the paper is organized as follows. Section 2 recalls the basic stan-
dard definitions of timed automata. The robustness problem arising from an enlarged
semantics is presented in Section 3. Our contribution is the subject of Section 4, where
we define the stable zone of a cycle and study its main properties, which we then use
in our symbolic algorithm for robustness analysis. Finally, Section 5 concludes our pre-
sentation with a summary of the main results and a discussion on future work.

2 Timed Automata

This section briefly recalls the definitions of timed automata, their semantics, reacha-
bility analysis, and region graph.
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2.1 Definitions

Definition 1 (Closed Zones). A closed zone over the set of clocks C is a conjunction of
simple constraints giving a positive lower and upper bound to the value of each clock,
and a lower and upper bound to the difference between any pair of clocks. Formally,

Z(C) =
∧
x∈C

lx ≤ x ≤ ux ∧
∧

x,y∈C
x − y ≤ dxy

with lx, ux ∈ N ∪ {∞} and dxy ∈ Z ∪ {−∞,∞}.

Zones without bounds for clock differences are called rectangular and denoted ZR(C).
Rectangular zones without lower bounds are called upper zones, and denotedZU (C). A
clock valuation is a function v mapping C to non-negative real numbers. True denotes
the zone

∧
x∈C 0 ≤ x satisfied by any valuation of the clocks. By v |= z we will

understand that if v is a clock valuation and z is a zone, then the clock values denoted
by v satisfy the constraints of z.

Definition 2 (Timed Automaton). A timed automaton is a tuple A = 〈L, C, I, T 〉
where

1. L is a finite set of locations representing the discrete control structure of the system
2. C is a finite set of nonnegative real-valued variables called clocks
3. I : L → ZU (C) are the location invariants
4. T ⊆ L × ZR(C) × 2C × L is a sef of edges. An edge (l, g, R, l′) represents a

transition from l to l′ with a guard g and a set R of clocks to reset.

2.2 Semantics

Definition 3 (Standard semantics). Given a timed automaton A = 〈L, C, I, T 〉 its
semantics is defined as the timed transition system [[A]] = (Q,→t ∪→e) such that:

– Q ⊆ L× Rn
+: (l, v) ∈ Q iff v |= I(l)

– (l, v)→t(l, v + t) if t ∈ R≥0 and v + t |= I(l)
– (l, v)→e(l′, v′) if e = (l, g, R, l′) ∈ T such that:

• v |= g and v′ |= I (l′)
• v′(x) = 0 if x ∈ R, v′(x) = v(x) otherwise.

In the remaining of the paper we will use the following notations. Let e ∈ T be an
edge of A, then x

e=⇒ y if and only if there exists z, z′ ∈ Q such that x→tz→ez
′→ty.

Let π = e1e2 . . . en be a sequence of edges, then x
π=⇒ y, meaning that there is a

trajectory from x to y through π, if and only if there exist z1 . . . zn−1 ∈ Q such that
x

e1=⇒ z1 . . . zn−1
en=⇒ y.

The following lemma states that if we follow the same sequence of edges reaching
two states then any linear combination of the states is also reachable. Lemma 1 follows
from the convexity of the guards.

Lemma 1. Let π = e1e2 . . . en be be a sequence of edges. If x
π=⇒ x′ and y

π=⇒ y′,
then for all λ ∈ [0, 1], λx + (1 − λ)y π=⇒ λx′ + (1 − λ)y′.
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2.3 Reachability Analysis

The most fundamental form of analysis of a timed automaton is the computation of its
reachable state space from an initial state. The reachable state space of A from q0 ∈
Q under semantics[[A]], denoted Reach([[A]], q0), is the set of states q ∈ Q such that
(q0, q) ∈ (→t ∪→e)�. We denote y ∈ Reach([[A]], x) by x =⇒ y.

Safety properties can then be verified by checking if an undesired set of states Bad
is reachable, i.e. if Reach([[A]], q0) ∩ Bad = ∅, which can be decided even when it
is not possible to compute the reachable state space exactly. An interesting question
first tackled by Puri in [12] is how robust a timed automaton model is if we relax the
assumption that all clocks advance at the same speed. He showed that in some cases the
verification results do not hold even for small drifts.

2.4 Region Graph

Given a timed automaton A, let k be a function, called a clock ceiling, mapping each
clock x ∈ C to k(x) - the largest integer c such that (x ≤ c) or (c ≤ x) is a subformula
for some clock constraint appearing in A. We assume that every clock x ∈ C appears
in some constraint. For a real number d, let 〈d〉 denote the fractional part of d, and �d�
denote its integral part. So d = �d� + 〈d〉.

Definition 4 (Clock regions). A clock region is an equivalence class of the relation
∼k. The equivalence relation ∼k is defined over the set of clock valuations. Two clock
valuations are region equivalent denoted v ∼k v′ iff all following conditions hold:

1. for all x ∈ C either �v(x)� = �v′(x)� or v(x) > k(x) and v′(x) > k(x).
2. for all x, y ∈ C if v(x) ≤ k(x) and v(y) ≤ k(y) then 〈v(x)〉 ≤ 〈v(y)〉 iff 〈v′(x)〉 ≤

〈v′(y)〉.
3. for all x ∈ C if v(x) ≤ k(x) then 〈v(x)〉 = 0 iff 〈v′(x)〉 = 0.

We denote [v] the smallest closure of the set of clock assignments region-equivalent to
v. Such set is called a closed region.

Definition 5 (Region graph). Given the timed transition system [[A]] = (Q,→) of a
timed automaton A we define the corresponding (closed) region graph G = (R,→G) of
A:

– R = {(l, [v]) | (l, v) ∈ Q} is a set of closed regions.
– →G⊆ R × R: ((l, [v]), (l′, [v′])) ∈→G if (l, [v]) 
= (l′, [v′]) and either (l, v)→t

(l′, v′) or (l, v)→e(l′, v′) .

If q = (l, v) then by [q] we understand closed region containing q, i.e. [q] = (l, [v])

3 Robustness Problem

In this section we consider the robustness or implementability of timed automata as
studied in [12] and [7]. We first define a family of enlarged semantics parameterized by
the drift in clocks ε and the imprecision in guards ∆. Following [12] we require that
every cycle is a progress cycle, i.e. a cycle where each clock is reset at least once.
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3.1 Enlarged Semantics

Given a timed automaton A = 〈L, C, I, T 〉 its enlarged semantics parameterized by
ε, ∆ ∈ [0, 1) is defined as the timed transition system [[A]]ε∆ = (Q,→t ∪→e) such that:

Definition 6 (Enlarged semantics)

– Q ⊆ L× Rn
+: (l, v) ∈ Q iff v |= I(l)

– (l, v)→t(l, v′) if v′ |= I(l′) and v′(xi)−v(xi) ∈ [(1−ε)t, (1+ε)t] for i = 1, . . . , n
– (l, v)→e(l′, v′) if e = (l, g, R, l′) ∈ T such that:

• v |= g∆
1 and v′ |= I(l′)

• v′(x) = 0 if x ∈ R, otherwise v(x)

Clearly, the enlarged semantics [[A]]ε∆ has more reachable states than the standard se-
mantics [[A]] = [[A]]00. We are not interested in the reachable states for some particular ε
or ∆, but in those states that are reachable for any ε or any ∆ but are not reachable in
the standard semantics.

Definition 7 (Robust reachability)
The robust set of states reachable from q0 ∈ Q with some clock drift R∗

ε or guard
imprecision R∗

∆ are given by

R∗
ε (A, q0) =

⋂
ε>0

Reach([[A]]ε0, q0) R∗
∆(A, q0) =

⋂
∆>0

Reach([[A]]0∆, q0).

The question is whether unsafe states Bad can be unreachable under the standard se-
mantics but reachable under the robust semantics, i.e. Reach([[A]], q0) ∩ Bad = ∅ and
R∗

ε (A, q0) ∩ Bad 
= ∅. The following example, from [12], shows that this is indeed
possible.

3.2 Example

We consider the timed automaton in Figure 1 and the initial state (L1, a = 1 ∧ b = 0).
The parameter K is an integer taking the value 2 or 3. We want to check if the model is
not safe, i.e. if location Err is reachable, which is only possible if the value of b can be
larger or equal than K when entering location L2.

L1
L2 Err

a <= 2 a := 0

b >= 2b:=0

a == 0 &&
b >= K

Fig. 1. A (robust?) timed automaton

Clearly, this is not possible under the standard semantics, regardless of the value of
K . As can be seen from the reachable state space depicted in dark gray in Figure 2,

1 g∆ is the rectangular guard g extended by ∆, i.e. replacing a ≤ x ≤ b by a−∆ ≤ x ≤ b+∆.
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upon entering location L2 we must have a = 0 and b ≤ 1. However, lets consider the
case of clock b advancing at speed 1 + ε in location L1, and 1 in location L2, whilst
a advances with speed 1 in both locations. Then there is a trajectory such that upon
entering location L2 for the k-th time, a = 0 and b = (1 + ε)k. Moreover, because
a ≥ 0 in L1, we have that b ≤ 2(1 + ε)/(1 − ε) when entering L2. So for any ε and
sufficiently many iterations, location Err becomes reachable if K = 2, but not if K = 3
and ε < 1/5.

So, although the model for K = 2 is considered safe under the standard ideal-
ized semantics, it is not under the robust semantics because the unsafe location will be
reachable for any drift or imprecision in the measurement of clocks. In other words, the
model is not robust or implementable. On the other hand, the same model is robust or
implementable for K = 3 provided that ε is small enough.

Fig. 2. Reachable state space from (L1, a = 1 ∧ b = 0) with the standard (dark) and enlarged
(light) semantics

3.3 Algorithm

Algorithm 1 is a slightly modified version of the algorithm in [12] to compute iteratively
the set J∗ on the region graph of a timed automaton A. We first compute the reachable
regions from a given initial state [q0]. Then, for every region s in the strongly connected
components of the region graph that intersects the current J∗, the regions reachable
from s are added to J∗.

Theorem 1 (from [12] and [7]). Algorithm 1 computes the robust reachable state
space of A from r0 under the enlarged semantics, with either drifting clocks [12] or
enlarged guards [7].

J∗ = R∗
ε (A, r0) = R∗

∆(A, r0)

The proof of this theorem (shown in [12] and [7]) relies on the structure of the limit
cycles of the timed automaton.

4 Symbolic Robustness Analysis

The robust semantics of a timed automaton depends on the structure of its limit cycles.
Algorithm 1 computes the robust reachable state space by adding the reachable cycles
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Algorithm 1. Algorithm computing R∗
ε (A, r0)

Input: A timed automaton A and initial region r0

Output: The set J∗ = R∗
ε (A, r0)

ENLARGEDREACH(A,r0)
(1) Construct the region graph G of timed automaton A
(2) S ← STRONGLYCONNECTEDCOMPONENTS(G)
(3) J∗ ← REACH(G,r0)
(4) while there exists s ∈ S such that s �⊆ J∗ and s ∩ J∗ �= ∅
(5) J∗ ← J∗∪ REACH(G,s)
(6) S ← S \ s
(7) return J∗

in the region graph (which contain the limit cycles). But this algorithm is not effective
in practice because of the size of the region graph.

We propose a symbolic algorithm to compute the enlarged reachable state space
using zones to represent symbolic states. For that, we consider in this section a cycle
σ = e1 . . . en of a timed automaton, with ei = (li, gi, ri, l

′
i), as a sequence of edges

such that l′i = li+1 for i = 1 . . .n − 1 and l1 = l′n. We assume that the cycle is a
progress cycle, meaning that each clock is reset at least once.

4.1 Limit Cycles

Limit cycles are cyclic trajectories in the underlying timed transition system of a timed
automaton, without superfluous 0-time self loops. A state in a limit cycle can return to
itself after one or more iterations of a cycle in the timed automaton.

Definition 8 (Return Map). Let σ be a cycle in timed automaton A. The return map of
a state q is the set of states reachable from q after one cycle σ

Rσ(q) = {q′ | q σ=⇒ q′}.

Definition 9 (Limit Cycles). The set of states which can return back to themselves
after i > 0 iterations of the cycle σ is Li

σ = {q | q ∈ Ri
σ(q)}, and the set of states with

limit cycles through σ is Lσ =
⋃

i>0 Li
σ.

Lemma 2 shows that the set of states in limit cycles is convex because the convex

combination of two limit cycles is also a limit cycle. Let
σ+

=⇒ be the transitive closure
of

σ=⇒.

Lemma 2. Let σ be a cycle in A. If x
σ+

=⇒ x and y
σ+

=⇒ y, then for all λ ∈ [0, 1],

λx + (1 − λ)y σ+

=⇒ λx + (1 − λ)y.

Proof. If x
σ+

=⇒ x then there exists m ≥ 1 such that x
σm

=⇒ x. Similarly, there exists

n ≥ 1 such that y
σn

=⇒ y. So x
σmn

=⇒ x and y
σmn

=⇒ y. Therefore, from Lemma 1, for all

λ ∈ [0, 1] λx + (1 − λ)y σmn

=⇒ λx + (1 − λ)y.
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Several properties of limit cycles of timed automata are given in [12]. For instance, the
set of states with limit cycles in a cycle of the region automaton is a non-empty region.
It follows, by convexity of the limit cycles, that Lσ is a zone. An important property of
limit cycles is that for any state in a cycle of the region graph, there is a state in the limit
cycles of its region that can reach it, and a state that can be reached from it.

Lemma 3 (Lemma 11 in [12]). Consider a cycle c = c0c1 . . . cN in the region graph.
Then, for any x ∈ c0, there exist u, v ∈ Lc such that x =⇒ u and v =⇒ x.

4.2 Region Graph Cycles

Definition 10 (Regions with Cycles). Let σ be a cycle in timed automaton A. We de-
fine the set of regions with cycles through σ in the region graph of A as Cσ = {r ∈
R | ∃q, q′. r = [q] = [q′] and q

σ+

=⇒ q′}.

Lemma 4 says that for any two cycles in the region graph following a cycle in the timed
automaton, we can find a sequence of regions touching each other and each of these
regions is in a cycle of the region graph.

Lemma 4. Given a cycle σ in the timed automaton, for any two regions c, c′ ∈ Cσ

there exists a finite sequence of regions c0 . . . cn ∈ Cσ such that for all 0 ≤ i < n,
ci ∩ ci+1 
= ∅, c0 ∩ c 
= ∅ and cn ∩ c′ 
= ∅.

Proof. We know that each region in a cycle of the region graph contains a state with a
limit cycle. Let x ∈ c and y ∈ c′ have limit cycles. Thus, state λx+(1−λ)y is in a limit
cycle and its region in a cycle in the region graph, for any λ ∈ [0, 1], which implies the
existence of regions with the required property.

Remark 1. The set of states in Cσ is not necessarily convex, as illustrated in the example
in Section 4.5.

4.3 Stable Zone

Let X ⊆ Q be a set of states and σ a cycle of A. We denote preσ(X) = {q | ∃q′ ∈
X.q

σ=⇒ q′} the set of predecessors of X through σ, and postσ(X) = {q | ∃q′ ∈
X.q′

σ=⇒ q}) the set of successors of X through σ.

Definition 11 (Stable Zone). The stable zone of a cycle σ in a timed automaton is the
zone

Wσ = νX. postσ(X) ∩ νX. preσ(X)

The stable zone characterizes those states that have a predecessor and a successor after
any number of σ iterations. In the finite lattice of zones defined using constants smaller
than the largest constant appearing in the timed automaton, the greatest fixed points can
be computed by iteration from True. Hence the σ-stable zone can be computed as

Wσ =
⋂
i≥0

posti
σ(True) ∩

⋂
i≥0

prei
σ(True)
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Example 1. The stable zone of the cycle σ =L1-L2-L1 in the timed automaton in
Figure 1 is:

Wσ = (0 ≤ a ≤ 2 ∧ 0 ≤ b ≤ 3 ∧ −2 ≤ b − a ≤ 3) ∩
(0 ≤ a ≤ 3 ∧ 0 ≤ b ≤ 3 ∧ −3 ≤ b − a ≤ 0)

= (0 ≤ a ≤ 2 ∧ 0 ≤ b ≤ 2 ∧ −2 ≤ b − a ≤ 0)

where the fixpoints are computed in 2 iterations. It can be checked that those are also
the states with a limit cycle through σ. However this is not always the case.

Moreover, for any state in Wσ there exist a successor and a predecessor through any
number of iterations of σ that also belong to Wσ . This property follows from the fol-
lowing lemma that characterizes the stable zone as the maximal set of states that can
reach and be reached from itself.

Lemma 5. Wσ = νX.(postσ(X) ∩ preσ(X))

Proof. Let Y1 = νX. postσ(X), Y2 = νX. preσ(X) and Z = νX.(postσ(X) ∩
preσ(X)). Z ⊆ postσ(Z), therefore Z ⊆ Y1. Similarly, Z ⊆ Y2. Hence Z ⊆ Wσ .
On the other hand, for all y ∈ Y1 ∩ Y2, there exist y1 ∈ Y1 and y2 ∈ Y2 such that
y1

σ=⇒ y
σ=⇒ y2. Since y ∈ Y2, y has suctcessors through any number of σ itera-

tions, and so does y1, hence y1 ∈ Y2 and y ∈ postσ(Y1 ∩ Y2). Similarly, y2 ∈ Y1 and
y ∈ preσ(Y1 ∩ Y2). So Y1 ∩ Y2 ⊆ postσ(Y1 ∩ Y2) ∩ preσ(Y1 ∩ Y2), hence Wσ ⊆ Z .

The following lemma states that the stable zone of a cycle σ of a timed automaton
contains the cycles in the region graph through σ, which we know from [12] contain
the limit cycles in σ. Moreover, the inclusions can be strict. An example where the first
inclusion is strict is given in [13], and an example showing that both inclusions can be
strict can be found in Section 4.5. We will abuse notation and consider Cσ as the set of
states in the regions of Cσ .

Lemma 6. Lσ ⊆ Cσ ⊆ Wσ

Proof. Let c ∈ Cσ be a region.Then, for any q ∈ c there exist q1, q2 ∈ c such that

q1
σ+

=⇒ q
σ+

=⇒ q2 so q has successors and predecessors through any number of σ itera-
tions. Hence, q ∈ Wσ and c ⊆ Wσ .

An important property in Puri’s theory is that even though not every state in a cycle in
the region graph is itself in a limit cycle, it can always reach a state in a limit cycle, and
be reached by a state in a limit cycle. In a similar way, not every state in the stable zone
is in a cycle in the region graph, but it can always reach a state in a cycle in the regiont
graph, and be reached by a state in a cycle in the region graph. Lemma 7 formalizes this
property.

Lemma 7. For all q ∈ Wσ , there exist q1, q2 such that q1
σ+

=⇒ q
σ+

=⇒ q2 and [q1], [q2] ∈
Cσ .
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Proof. Let q ∈ Wσ be a state in the stable zone of σ. From Lemma 5 there exist
x1 . . .xn ∈ Wσ such that xn

σ=⇒ . . .x1
σ=⇒ q for any n ≥ 1. Since q can be reached in

any number of iterations of σ, and the number of regions is finite, then, for n sufficiently
large, there exist xi, xj such that [xi] = [xj ] and then we take q1 = xi. A similar
reasoning shows the existence of q2.

4.4 Symbolic Robustness Algorithm

Algorithm 1 computes the robust reachability set by adding iteratively to the rea-
chable state space all regions reachable from a strongly connected component of
the region graph, when some region in the SCC intersects the current reachable state
space.

We propose an algorithm to compute symbolically the robust set of reachable states
of a timed automaton. Algorithm 2 is based on the standard symbolic algorithm [5,3] to
compute the reachable state space of a timed automaton as implemented in the real-time
model checkers KRONOS and UPPAAL. A symbolic state is a pair 〈l, z〉 of a location l
and a zone z. First the algorithm computes the stable zone of each cycle of the timed
automaton. Each time a new symbolic state representing states not visited yet is chosen,
its successors are added to the waiting list, until the latter is empty. The difference with
the standard algorithm resides in lines 9–11 where we check if the zone of the currently
visited symbolic state intersects any of the stable zones of a cycle starting in its location,
in which case we add the stable zone and its time-successors to the waiting list.

Algorithm 2. Symbolic algorithm computing R∗
ε (A, r0)

Input: A timed automaton A and initial region r0 ∈ RA

Output: The symbolic state set Passed = R∗
ε (A, r0)

SYMBENLARGEDREACH(A)
(1) Compute Wσ for every cycle σ in A
(2) Wait = {r0}
(3) Passed = ∅
(4) while Wait �= ∅
(5) pop 〈l, D〉 from Wait
(6) if D �⊆ D′ for all 〈l′, D′〉 ∈ Passed
(7) Passed ← Passed ∪ {〈l, D〉}
(8) foreach 〈l′, D′〉 ∈ SUCC(〈l, D〉)
(9) Wait ← Wait ∪ {〈l′, D′〉}
(10) foreach Wσ with σ starting in l
(11) if D ∩ Wσ �= ∅
(12) Wait ← Wait ∪ {TIMESUCC(〈l, Wσ〉)}
(13) return Passed

Theorem 2 states that Algorithm 2 computes the set R∗
ε . We prove this result by

showing that this algorithm computes the same set of states J∗ as Algorithm 1 from
Puri.

Theorem 2. Let A be a timed automaton, r0 ∈ RA an initial region, and W ∗ the set of
states returned by Algorithm 2. Then W ∗ = R∗

ε (A, r0).
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Proof. Algorithm 1 adds cycles in the region graph to the reachable state space. From
Lemma 6 we know that all cycles in the region graph are included in the stable zone
and hence will also be added by Algorithm 2, so J∗ ⊆ W ∗.

On the other hand, if some Wσ is added in Algorithm 2, then Wσ ∩ D 
= ∅ for
some reachable 〈l, D〉. From Lemma 7 we know that there exists some c ∈ Cσ that
is reachable from Wσ ∩ D. So [c] will be added by Algorithm 1. From Lemma 4, the
whole Cσ must be added. Finally, Wσ is also added because it is reachable from Cσ by
Lemma 7. Hence, W ∗ ⊆ J∗.

4.5 Example with Strict Inclusions

The timed automaton in Figure 3 (left) shows that the inclusions Lσ ⊆ Cσ ⊆ Wσ can
be strict, and that the set Cσ is not necessarily convex (right).

A

B C
c>=2 && c<=4 && a>=2

c:=0

c<=2 && b<=2

a:=0b==2
b:=0

Fig. 3. Timed automaton (left) showing that Lσ � Cσ � Wσ (right)

Strict inclusions and non convexity of Cσ. We only consider set of states when en-
tering location A, that is, with a = 0 (the remaining reachable states can be reached
from these states). The reader can check that the states with limit cycles Lσ, the states
in cycles in the region graph Cσ , and the stable zone Wσ are given by the following
equations, represented in Fig.3 (right):

Lσ = (A, a = 0 ∧ 0 ≤ b ≤ 2 ∧ c = 0)
C1 = (A, a = 0 ∧ 0 ≤ b ≤ 1 ∧ 0 ≤ c ≤ 1 ∧ 0 ≤ b − c ≤ 1)
C2 = (A, a = 0 ∧ 1 ≤ b ≤ 2 ∧ 0 ≤ c ≤ 1 ∧ 1 ≤ b − c ≤ 2)
Cσ = C1 ∪ C2

Wσ = (A, a = 0 ∧ 0 ≤ b ≤ 2 ∧ 0 ≤ c ≤ 2 ∧ 0 ≤ b − c ≤ 2)

The fact that a set of states belongs or not to a cycle in the region graph can be
observed computing the corresponding reachability set. In this case we have:

Reach(Lσ) = Wσ Reach(C1) = Wσ

Reach(Wσ) = Wσ Reach(C2) = C2

Reach(Cσ) = Wσ Reach(Wσ \ Cσ) = C2



154 C. Daws and P. Kordy

Comparing both algorithms. Theorem 2 shows that both the original algorithm on the
region graph, and our symbolic algorithm using the stable zone are equivalent. It is easy
to see that any region added to the reachability set by Algorithm 1 will be also added
by our algorithm because the stable zone contains all the cycles in the region graph. We
illustrate with this example why the converse is also true.

Let’s assume state (A, (0, 2, 2)) is reachable. Since it belongs to the stable zone, the
whole stable zone will be added by our algorithm. Algorithm 1 will first only add the
states reachable from (A, (0, 2, 2)), that is (A, (0, 2, 0)) ∈ C2. So C2 will be added
next, then also C1 because C1 ∩ C2 
= ∅ (a particular case of Lemma 4). Finally,
Reach(C1) = Wσ , so the whole Wσ will be added.

5 Conclusions

We proposed a symbolic algorithm for computing the robust reachability set of a timed
automaton based on the standard algorithm for symbolic reachability analysis of timed
automata, using zones to represent symbolic states. Although the worst case complexity
of symbolic algorithms is the same as for the region graph, symbolic algorithms are
known to be more efficient in practice. Moreover, our symbolic algorithm is easy to
implement and integrate within existing formal frameworks for the validation of real-
time systems.

Our algorithm relies on the computation of the stable zone of each progress cycle
in the timed automaton. The stable zone of a cycle is the maximal set of clock values
that have a successor and a predecessor through any number of iterations of the cycle.
All cycles in the region graph following the same cycle in the timed automaton are
connected to each other through the limit cycles. Moreover, every point in the stable
zone can reach a cycle in the region graph, and be reached from a cycle in the region
graph. Based on these facts, we modified the standard reachability algorithm such that
whenever the stable zone of a cycle intersects the set of computed reachable states, the
stable zone is added to the set of states to be explored. We showed that our zone based
algorithm is equivalent to the one from Puri operating on the region graph to compute
the robust reachabilty set.

We implemented the computation of the stable zone of a cycle and applied it to the
simple examples in [12] to validate our results. However, we need to implement the
robust reachability algorithm in order to assess its effectiveness in handling complex
timed automata models. The modifications to the standard reachability algorithm are
quite straightforward to implement in tools like UPPAAL or KRONOS.

In the future we are interested in the study of sufficient conditions for a timed au-
tomaton model to be robust which can be checked more efficiently, as well as in devising
meaningful model transformation techniques to make a model robust.
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Abstract. The Performance Evaluation Process Algebra (PEPA) lan-
guage is a stochastic process algebra, generating Continuous Time
Markov Chains (CTMC) to allow quantitative analysis. Protocols such
as BitTorrent are highly parallel in nature, and represent one area where
CTMC analysis is limited by the well-known state space problem. The
number of unique states each client can exist in, and the number of clients
required to accurately model a typical BitTorrent network preclude the
use of CTMCs. Recent work has shown that PEPA models also allow
the derivation of an activity matrix, from which ODE and stochastic
simulation models, as alternative forms of analysis, are possible. Using
this technique, a BitTorrent network is created, analysed, and the results
compared against previous BitTorrent models.

1 Introduction

The PEPA[1] language originated, in part, from Calculus of Communicating
Systems (CCS), allowing the generation of a labelled transition graph with rates
based on the exponential distribution. From this graph a CTMC can be obtained
and the steady state gained through standard numerical techniques. CTMCs
produce exact results, in the sense that every possible state of the system is
accounted for and that all probabilities are correct for the given rates. The use of
CTMCs assumes that the subsystems behaviour can, to some degree of accuracy,
be described with exponential distributions and behaviour is independent of
time.

One particular weakness of CTMCs is the size of the model which can be
efficiently analysed while still remaining tractable. As the number of components
increases, especially components that act independently from one another, the
size of the state space can rapidly expand beyond tractable limits. Techniques
such as model simplification and state aggregation can allow the analysis of
larger models to some extent but the limitations still remain.

Recent work has introduced process algebra (in this instance π calculus) to
the area of systems biology[2,3], a field interested in the dynamic pathways of
biological systems. However, with the desire to model large numbers of proteins
or receptors, the dominant approach within systems biology has been to use
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Ordinary Differential Equations (ODEs). ODEs are continuous-time, continuous-
state and deterministic in nature. In addition, the area of ODEs is well researched
and so supported by a range of solvers. The modelling of biological systems can
also be conducted through stochastic simulation such as Gillespie’s Stochastic
Simulation Algorithm (SSA)[4]. Gillespie’s argument for the use of a continuous-
time, discrete-state stochastic simulation centres on physical accuracy with the
real system, in this case chemical reactions. Both approaches scale differently to
CTMCs, where the numbers of each component do not affect the complexity of
the model in the same way.

This has led to work mapping PEPA to ODEs[5,6] to model the Extracel-
lular signal Regulated Kinase (ERK) signalling pathway from within a pro-
cess algebra. Two structures were defined, reagent-centric and pathway-centric,
offering different views of the system. Both structures allow the derivation of
ODEs from the underlying PEPA model, offering an alternative style of analy-
sis from CTMCs. This same derivation process can be used to allow the use of
SSA.

The PEPA language will be briefly covered, followed by a more complete
description of the mapping from PEPA to ODEs. The salient parts of the Bit-
Torrent protocol will be detailed, and a PEPA model constructed using the
reagent-centric approach. The BitTorrent protocol is used due to its parallel
nature of communication between entities, which resists analysis with CTMCs.
Attempting to model even 20 peers can easily lead to a state space as large
as 10020 with CTMCs while remaining tractable when using ODEs or SSAs.
Finally, these results will be compared against an existing model of
BitTorrent.

2 PEPA

A model defined in the PEPA language consists of a number of components
representing different agents or entities in the real system. The components
interact with each other through a small set of combinators as shown below.

P ::= (α, r).P | P + Q | P ��
L

Q | P/L | A

Prefix (α, r).P represents a component that can perform an activity α at rate
r (sampled from the negative exponential distribution) before it transitions
to a component of type P .

Choice P + Q represents a component which is either of type P or Q. Which is
chosen is based on a race condition on the first activity of each component.

Co-operation P ��
L

Q requires that if components P and Q can both perform
an activity α (where α ∈ L), then for either component to perform α, they
must both perform it together. Where P or Q are capable of an activity not
in the set L then these can occur independently.
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S1
def= (u, α).S2 + (v, β).S3

S2
def= (w, γ).S1

S3
def= (x, δ).S1

T1
def= (v, β).T2

T2
def= (x, δ).T1

S1 ��
{v,x} T1

S2 ��
{v,x} T1

S1 ��
{v,x} T1

S3 ��
{v,x} T2

�

�

�

�(v, β)

(w, γ)

(x, δ)

(u, α)

Fig. 1. Toy example highlighting the PEPA language

Hide P/L alters component P such that any activity in the set L is hidden
from the rest of the model and cannot be synchronised on.

Constant A
def= P assigns names to components.

Figure 1 shows an example in the PEPA language with the choice and co-
operation in use. In this example, the component S1 can freely change into S2
via the activity u. Activity w can also occur independently. The co-operation
over activities v and x mean that both the Si and Ti components must be in the

correct state and both must transition together i.e. S1 ��
{v,x} T1

(v,β)
−−→ S3 ��

{v,x}T2

is the only transition possible with activity v. A more complete description of
the language can be found in [1], but for the purposes of describing the reagent-
centric approach, understanding of the prefix and choice combinators is enough.

2.1 The Reagent-Centric Approach

The reagent-centric approach in its coarsest form defines two states for each com-
ponent, those being high and low. Through activities that consume the resource
or component, the component transitions from a high to low state. Conversely,
activities that replenish move a component from a low to high state. This ap-
proach is in keeping with the component view of PEPA, where the focus is on
the component and the activities possible in that state. The Prefix combinator
records the reaction that causes this change, and the rate that the reaction oc-
curs. The Choice combinator allows any one component to be associated with
any number of reactions.

Figure 2 shows a small network, and the PEPA reagent-centric model that
describes the graphical representation. In this example the PEPA components
are A,B and C, and are tagged with H and L to designate the high and low
concentrations. By stipulating unique activity names for each reaction, the di-
rection of change (high to low or vice versa) can be used to create a list of
reactions with components either being consumed or created through an activ-
ity. The PEPA definitions in Fig. 2 give rise to four reactions shown here in the
Chemical Model Definition Language (CMDL) W,X → Y, Z. W is the name
for the reaction, X = {x1 + ... + xn} lists all the components that are con-
sumed in this reaction. Y is a list in the same format as X representing those
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AH
def= (ab c, α).AL

AL
def= (c ab, β).AH+(c ad, γ).AH

BH
def= (ab c, α).BL

BL
def= (c ab, β).BH+(d b, δ).BH

CH
def= (c ab, β).CL+(c ad,γ).CL

CL
def= (ab c, α).CH

DH
def= (d b, δ).DL

DL
def= (c ad, γ).DH

((AH ��
{ab c,c ab} BH) ��

{ab c,c ab,c ad} CL) ��
{c ad,d b} DL

Fig. 2. PEPA reagent-centric example

components increased by this reaction. The last part of the reaction, Z, defines
the rate constant from which the reaction rate is derived.

ab c, A + B → C , α c ab, C → A + B , β
c ad, C → A + D , γ d b, D → B , δ

The reaction ab c consists of two reactants and one product. From the PEPA
definition in Fig. 2, it can be seen that both the components A and B can
transition from a high to low state via the activity/reaction ab c, thus placing
them as the two reactants of reaction ab c. Similarly, component C can transition
from a low to high state by reaction ab c placing it as a product of this particular
reaction. By iterating through all of the prefixes for each definition, the reactions
can be constructed.

The rate at which any one reaction can happen is not simply the defined
constant. Where previously the reaction ab c was defined as A + B → C, α, we
take the constant α and multiply it by the number of molecules in both the
A and B components (to allow for permutations of all A molecules interacting
with all B molecules) to give a reaction rate of αAB which is known as the mass
action rate. The reactions can also take the form of ODEs (as seen below) by a
linear transform on the reaction definitions.

dA
dt

= −αA(t)B(t) + (β + γ)C(t)

dB
dt

= −αA(t)B(t) + βC(t) + δD(t)

dC
dt

= αA(t)B(t) − (β + γ)C(t)

dD
dt

= γC(t) − δD(t)

Through these two formats, both stochastic simulation and ODE analysis
are available. ODEs derived from PEPA in this manner will always respect the
rules of conservation, as PEPA works on a static number of components. The
inclusion of stoichiometric information (the quantitative relationship between
reactants and products) outside of the PEPA model does however allow for a
more powerful representation. Now the numbers of each components required
in each reaction are any valid integer i.e. ab c requires 3 units of component A
instead of 1.



160 A. Duguid

3 Modelling a BitTorrent Network

Before a BitTorrent network can be modelled, the salient parts of the protocol
must be covered. Prior work by Qui and Srikant shall be examined and contrasted
against the intended model before a more in-depth description of the PEPA
model.

3.1 The BitTorrent Protocol

Developed in 2001 by Bram Cohen, BitTorrent was designed as a way of dis-
tributing the load of hosting a resource, making use of the bandwidth of the users.
The BitTorrent protocol encodes information regarding the resource within a tor-
rent file, including SHA-1 hashing of the files and the location of the tracker,
where peer discovery occurs. When starting a torrent, the client (at this ini-
tial point known as a downloader) must contact the tracker in order to join
the ‘swarm’ of active peers. Each contact with the tracker will typically return
a randomised peer list of size fifty (where swarm size > 50) and so over time
(contact occurring every three to thirty minutes) will represent a well-connected
graph.

Once knowledge of other peers is obtained, connections can be made and
transfer started. The entire content is split into a number of pieces (one Linux
distribution supplies a 2.83GB DVD over 2906 pieces) and the parallelism is in
the ability to download these pieces in any order. Using a combination of tit-for-
tat, and a set of behaviours for dealing with previously snubbed peers (peers you
are currently ignoring), each client attempts to maximise its own downloading
speed by uploading to those peers that offer the highest transfer speeds. After
each piece is downloaded, it can be offered to other peers instantly.

The splitting of the content into multiple pieces also allows the downloading
to happen over greater periods of time. Izal et al. had to account for multi-session
downloading (where peers disconnect from the swarm and reconnect at a later
point, ready to continue where they left off), a feature that is advantageous when
dealing with large downloads i.e. 2.83GB operating systems.

The protocol does not enforce a system for peers that are only uploading
(known as seeds). The current implementation of BitTorrent by Bram Cohen
[7] uses a seeding policy based on uploading to those peers that can download
the fastest, the motivation being to create another seed as quickly as possible.
As has been noted, this current policy means there is little incentive [8,9] for a
client to upload once the entire content has been downloaded.

Lastly, while not part of the protocol, the recommended strategy for piece se-
lection is rarest-first. With the exception of the initial piece, rarest-first strategy
is used to ensure an even availability of all pieces. Although this only applies
within the local group (each peer cannot see availability of pieces beyond those
it is connected to) the well-connected property of random graphs will help create
an even spread of pieces over time.
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3.2 Simple Fluid Model

The fluid model by Qiu and Srikant [10] adopts a high level view of a BitTor-
rent network, representing peers in one of two states, downloaders or seeders.
Consisting of two differential equations (downloaders (1) and seeders (2)), six
parameters are used to define the behaviour.

dx
dt

= λ− θx(t) −min{cx(t), µ(ηx(t) + y(t))} . (1)

dy
dt

= min{cx(t), µ(ηx(t) + y(t))} − γy(t) . (2)

The main fragment (3), present in both reactions, defines the rate of completion
where variable c is the downloading bandwidth, x(t) the number of downloaders
at time t, µ the uploading bandwidth, η ∈ [0, 1] the effectiveness of file-sharing
and y(t) the number of seeds at time t. This fragment simply states that the rate
peers can complete the download is defined by either the speed the peers can
download at or the speed at which all peers are uploading, whichever is smaller.
The other variables are γ for seed disconnect rate, λ for peer arrival rate and θ
for termination of downloading.

min{cx(t), µ(ηx(t) + y(t))} . (3)

In the paper, η is defined as η ≈ 1−
(

log N
N

)k

where N is the number of pieces and
k is the number of other downloaders currently connected to. If we let N = 2906,
as seen for the DVD example, even where k = 1 η ≈ 0.9988. Additionally, the
upload capacity of the typical consumer is smaller than the download capac-
ity available, thus c

µ ≥ 1 and with typical asynchronous connections (2Mbps
download, 512Kbps upload) c

µ ≥ 4. This can be used to approximate (3) to
µ(x(t) + y(t)) when x(t)( c

µ − 1) > y(t), a condition satisfied for the majority of
the time in Qui and Srikant’s own results. Unsurprisingly it can be seen from
this approximation that the rate of change from downloader to seeder within the
model will follow the exponential distribution with rate µ but more importantly,
with σ2 = 1

µ2 .
Instead, the PEPA model will compartmentalise the downloading action over

one hundred steps, acting as a percentage complete indicator. To accurately
model a BitTorrent network all permutations of the pieces should be recorded.
As this would require 2N states (and so intractable for any but the most trivial
values of N) the approximation to one hundred states for percentage complete
is deemed adequate. This action can be represented by the Erlang distribution
(Erlang CDF Fe shown in (4)) and the effect of splitting the download into k
compartments seen in Fig. 3.

Fe = 1 − e−λx
k−1∑
n=0

(λx)n

n!
where k = number of compartments,
and λ = rate for each compartment .

(4)
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Fig. 3. CDF for the Erlang distribution. The effect of splitting a single state change
(λ = 0.0013) to k compartments.

With the Erlang distribution, x̄ = k
λ and σ2 = k

λ2 , so if we define λ′ = kλ the
means of the original distribution and the Erlang distribution are identical ( 1

λ =
k
λ′ ) but the variance is reduced by a factor of k ( 1

λ2 compared to k
(λ′)2 = 1

kλ2 ),
an important consideration when dealing with events with such large delays.

While the fluid model defined by Qui and Srikant could undoubtedly be mod-
ified to follow the Erlang distribution, the advantage of explicitly defining the
one hundred steps is to accommodate other observable peer behaviour. Besides
allowing a peer to disconnect, the PEPA model will incorporate the concept of
multi-session downloads [8], where a peer can temporarily disconnect from the
network, before rejoining and continuing from where it left off.

3.3 The PEPA Model

For the PEPA reagent-centric model, the following assumptions are made:

1. The network shall consist of only homogeneous, asynchronous connections.
2. The source for the content (original seeder) will have a persistent online

presence. The torrent in this instance cannot die (less than 100% of the
content being available).

3. Through the use of randomised peer lists and tit-for-tat the upload of the
peer can be fully utilised if there is demand.

4. Through the use of randomised peer lists, rarest first piece selection and
assumption 2, all pieces are available to all peers.

5. Peer behaviour is independent of time.

Assumptions 1 and 5 are gross simplifications of the real system but allow for
a tractable model. Modelling different types of connections can have a multi-
plicative effect on the number of states, as every action may be influenced by
different types of peer. Peer behaviour is unlikely to be independent of time or
even consistent across peers. Pouwelse et al. [9] found that new torrents were
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often accompanied by a huge surge of downloaders very early on, labelling this
the flashcrowd effect.

Assumption 2 is justified by the expected use of the BitTorrent protocol.
Where content providers previously relied on HTTP or FTP, the content was
required to be permanently accessible. This would not change with the use of the
BitTorrent protocol. The content owners may optimise such that with enough
seeds the original is not active, but to maintain availability it would be required
to seed again if the number of seeds dropped below some threshold.

Assumptions 3 and 4 are outwith the scope of this paper. They rely on the
properties of random graphs, the small world assumption and epidemiology.
Without these assumptions, modelling the BitTorrent protocol becomes increas-
ingly more complex. Of these assumptions, only 2 is not also made by Qui and
Srikant.

Using these assumptions, the model will incorporate certain behaviours, these
being:

1. Each peer within the swarm shall be either a downloader or a seed.
2. A downloader will be split into one hundred states, to record the level of

completion.
3. Both downloaders and seeds can quit or go offline at any stage, returning

online will return them to their previous state.

These properties can be translated into four groups of definitions within the
PEPA reagent-centric approach, with one group for each of the peer states (on-
line, offline, downloading and seeding). Two additional components, upload pool
and peer deac, are used to control behaviour of the model. The existence of the
downloading state is to enforce correct behaviour regarding use of the available
upload bandwidth.

Online Peer-0H
def= (connect0, connect rate).Online Peer-0L +

(offline0, offline rate).Online Peer-0L +
(quit0, quit rate).Online Peer-0L

Online Peer-0L
def= (torrent, torrent rate).Online Peer-0H +

(online0, online rate).Online Peer-0H

Online Peer-nH
def= (connectn, connect rate).Online Peer-nL +

(offlinen, offline rate).Online Peer-nL +
(quitn, quit rate).Online Peer-nL

Online Peer-nL
def= (downloadedn, d rate).Online Peer-nH +

(onlinen, online rate).Online Peer-nH

n ∈ {1 . . . 99}

Here we have the online peer PEPA definitions. The activities quitn and offlinen

cause the levels of an online peer to decrease, seen as activities that change a
resource from high to low. Conversely the activity onlinen increases the numbers
of that particular peer. New peers enter the system at Online Peer-0, through
the torrent activity and enter the ready state for downloading via the connectn

activity. As entering the downloading state is a change of state, the connectn
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activity reduces the number of online peers for that given state. Lastly, the act of
completing another part of the download via the downloadedn activity increases
the number of online peers for that percentage.

Downloading Peer-nH
def= (downloadedn+1, d rate).Downloading Peer-nL +

(downloading offlinen, offline rate).Downloading Peer-nL +
(downloading quitn, quit rate).Downloading Peer-nL

Downloading Peer-nL
def= (connectn, connect rate).Downloading Peer-nH

Offline Peer-nH
def= (onlinen, online rate).Offline Peer-nL

Offline Peer-nL
def= (offlinen, offline rate).Offline Peer-nH +

(downloading offlinen, offline rate).Offline Peer-nH

n ∈ {0 . . . 99}

Next are the PEPA definitions for the downloading and offline states. The first
defined activity for a Downloading Peern is downloadedn+1. Here we can see how
progression through the states happens. The number of downloading peers with
x% complete decreases when they manage to complete another percent, taking
them to x+1%. As already seen in the online peer definition, the number of peers
with x% complete increases through the downloadedx activity, and so already
some of the behaviour of the model can be seen.

The downloading peer state like the online peer can quit or go offline. The
d rate represents the length of time to download 1% of the torrent and can easily
be several minutes in duration, and so this is the state where peers will spend the
most time. Without the ability to terminate in this state the rates for quitting
and going offline are skewed as x(t) =

∑
iOnline Peeri + Downloading Peeri.

SeedH
def= (seed quit, seed quit rate).SeedL+(seed offline, seed offline rate).SeedL

SeedL
def= (downloaded100, downloaded rate).SeedH +

(seed online, seed online rate).SeedH

Offline SeedH
def= (seed online, seed online rate).Offline SeedL

Offline SeedH
def= (seed offline, seed offline rate).Offline SeedH

As can be seen, the seed plays a passive role, where simply their presence (or
lack of) is the only information required.

The control states Upload Pool and Peer deac are designed to maintain the
upload capacity within the network. Upload Pool acts as a counter for unused
upload bandwidth while Peer deac was created to prevent skew to the rates at
which seeds and peers would quit or go offline. For each seed or online peer
that disconnects from the swarm, the upload pool will be decremented. The rate
at which seeds and peers disconnect though should not depend on the current
level of the upload pool while conservation tells us we can not have populations
of negative values. Instead the Peer deac acts as a reservoir, holding all the
disconnect requests and reducing the upload pool as and when possible. This
will become clearer when the PEPA is converted.
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Upload PoolH
def= (connectn, connect rate).Upload PoolL +

(deallocation, deallocation rate).Upload PoolL
Upload PoolL

def= (downloadedp, d rate).Uploaded PoolH +
(onlinen, online rate).Upload PoolH +
(downloading offlinen, offline rate).Uploaded PoolH
(downloading quitn, quit rate).Uploaded PoolH
(seed online, seed online rate).Upload PoolH

n ∈ {0 . . . 99}, p ∈ {1 . . . 100}
Peer deacH

def= (deallocation, deallocation rate).Peer deacL

Peer deacL
def= (offlinen, offline rate).Peer deacH +

(quitn, quit rate).Peer deacH +
(seed offline, seed offline rate).Peer deacH +
(seed quit, seed quit rate).Peer deacH

n ∈ {0 . . . 99}
The PEPA model defined allows the following behaviour. Peers join the swarm

with 0% of the content complete and without the ability to upload. They can
enter a state ready to download (resources committed) and increase the percent-
age complete at which point the allocated resources are released. Peers with 1 to
100% complete contribute to the upload capacity. All peers (online, downloading
and seeds) can enter an offline state or quit where those that had contributed
to the upload (1 to 100%) reduce the upload capacity.

3.4 Reaction Based System

With BitTorrent modelled in the reagent-centric style, it can be translated into
a set of reactions suitable for either stochastic simulation or analysis through
ODEs. Based on the PEPA definitions, the connectn activity allocates the re-
quired upload bandwidth and changes a online peer to a downloading peer. As
previously stated, the use of stoichiometric information is external to the PEPA
model, but can be clearly seen here.

connectn, Online Peern+Upload Pool×4 →Downloading Peern, connect rate
n ∈ {0 . . . 99}

Here the use of the Upload Pool can be clearly seen. Once a peer has part of
the content, they return the previously allocated resources, plus an additional
unit that they now contribute to the swarm. Once the last part of the content
is downloaded a downloading peer can be seen to transition to a seed

downloaded1, Downloading Peer0→Online Peer1 +
Upload Pool×5, downloaded rate

downloadedn, Downloading Peern-1→Online Peern +
Upload Pool×4, downloaded rate

downloaded100, Downloading Peer99→Seed+Upload Pool×4, download rate
n ∈ {2 . . . 99}

Within the offline activity, the influence of the Peer deac is evident. Here, and
in the definitions for seeds going offline, the delay in updating the upload pool
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allows the activity to happen at the correct rate. At a later point the deallocation
activity will decrement the upload pool as required.

offline0, Online Peer0→Offline Peer0+Peer deac, offline rate
offlinen, Online Peern→Offline Peern+Peer deac, offline rate

n ∈ {1 . . . 99}
deallocation, Upload Pool+Peer deac→ , deallocation rate

The behaviour of a downloading peer that goes offline or quits is different to
that of an online peer. The reason is the use of Peer deac is not required. The
previous securing of resources accounts for more than any one peer contributes
to the system. Thus a downloading peer only has to relinquish one unit less than
it reserved. This allows the model to behave correctly without additional use
(and minor delays) of the deallocation counter.

downloading offline0, Downloading Peer0→Offline Peer0+Upload Pool×4,offline rate
downloading offlinen,Downloading Peern→Offline Peer0+Upload Pool×3,offline rate

n ∈ {1 . . . 99}

The onlinen definitions allow peers that went offline to return to the swarm.
As can be seen, if returning from a partial download state their return increments
the upload capacity within the network.

online0, Offline Peer0→Online Peer0, online rate
onlinen, Offline Peern→Online Peern+Upload Pool, online rate

n ∈ {1 . . . 99}

Similar rules exist for the seeds. The only difference lies within the rate
at which seeds can leave the system. To enforce the second assumption of
the BitTorrent network, the rate is changed from seed online rate×Seed to
seed online rate×(Seed-1) and so enforces the continued existence of one seed
at all times.

4 Analysis

Of the three experiments perform by Qui and Srikant, the third compared the
fluid model against log files from a real torrent file (the file in question was
530MB in size). Using these logs, they derived values for the six parameters
with λ and γ found to vary with time. Simplified slightly, the parameters used
in the comparison were η = 1, θ = 0.001, µ = 0.0013 and c = 1. As already
stated λ and γ varied with time and so were set at λ = 0.06 and γ = 0.001 for
t ≤ 800, and λ = 0.03 and γ = 0.0044 for t > 800.

For the PEPA model to mirror the fluid model, the ability of the downloaders
and seeds to switch between online and offline was turned off. To approximate
the time dependent arrival rate, a linear function was fitted to the data and
calculated with torrent rate = 0.0368577. As the dynamic seed quit rate (γ) is
connected to seed population it can not be fitted in the same way and hence
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fixed at 0.0044. Lastly, the download rate was normalised to account for the
content being downloaded in 1% chunks and that enough upload capacity was
allocated to maximise each peer, leaving the downloaded rate = 0.52.

The results for these two models can be seen in Fig. 4. The peaks connected
to the fluid model are the effect of the dynamic parameters. The effect of cascade
of exponential distributions can be easily seen in the delay before a new seed
can appear within the PEPA model. Whilst the steady state value for the seeds
is similar between the two models, the value for the downloaders is noticeably
different, a potential cause for concern given the low values encountered. Figure
5 compares the same PEPA model against a fluid model with non dynamical
parameters, λ and γ being fixed to those values used within the PEPA model.
From Fig. 4 a difference in the number of downloaders within the model still
exists but is now reduced, which can be explained by fixing the rate at which
new peers enter the system. When using fixed parameters, the steady state values
for downloaders and seeds are reasonably close between the two models.
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Fig. 4. Comparison of fluid and PEPA model (fluid model using time varying
parameters)

To further contrast the two models, a second experiment was run, where
the size of the file was increased. The size of the file was set to 2.83GB (the
DVD previously mentioned) and the peers assumed to have a 2Mbps down-
load capacity and 256Kbps upload. This capacity equates to µ = 1

1648 and
downloaded rate = 1

4 , while leaving c alone does not affect the model. All other
parameters were left at their original (fixed)values. Figure 6 shows the results
for this. This experiment accentuates the differences seen within the first experi-
ment. While the number of seeds in both models is approximately the same, the
difference in the number of downloaders has increased.

The final graph, Fig. 7 highlights the flexibility built into both the use of PEPA
as the modelling language and of this particular model. Gillespie’s Stochastic



168 A. Duguid

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  1000  2000  3000  4000  5000

nu
m

be
r 

of
 p

ee
rs

time (min)

#downloaders - Qui and Srikant
#seeds - Qui and Srikant

#downloaders - PEPA model
#seeds - PEPA model

Fig. 5. Comparison of fluid and PEPA model (fluid model using fixed parameters)
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Fig. 6. PEPA and fluid model with larger files

Simulation Algorithm (SSA) was run over five independent replications as an
alternative to use of ODEs. Where stochastic noise may be of interest, or the
population sizes of the components are low, the use of stochastic simulations may
prove advantageous. For the comparisons against the fluid model, the ability to
change from online to offline was inhibited. Here, with exaggerated parameters,
the effects of the offline state can be seen (more so with the downloaders). By
shifting a certain percentage of the downloaders from the active state, the avail-
able bandwidth is reduced causing a more shallow gradient towards the steady
state level.
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5 Conclusions

The ability to convert PEPA models to a reaction based system, allowing the use
of ODE analysis or stochastic simulation now allows models previously too large
for more traditional forms of analysis. Using the BitTorrent protocol to highlight
this fact, a model where a peer can exist in any one of three hundred states was
created and compared against a simple two state fluid model. Under CTMCs
this would have created a potential state space of 300x where x is the number of
peers. The PEPA reagent-centric approach also affords a cleaner representation
whilst providing access to both deterministic and stochastic solutions. As the size
of the model increases, the complexity of the ODEs can hinder understanding
of the system or alteration if required.

Whilst the translation process is now well defined, the mapping of CTMC
analysis to time-series analysis is still work in progress. Regardless, the ability
to convert to a reaction based system is a useful tool.

The BitTorrent model itself has shown that not only can a large system be
defined within the PEPA language, but also offered a more detailed view of a
BitTorrent network. It expanded on the simple fluid model, detailing many of the
extra states. Many of the parameters require assigning based on real world data,
the next step being to obtain records from a tracker. It should also be noted
that the full flexibility of the model has not been covered. While one of the
assumptions was that peer behaviour was independent of time, the alteration of
rates for different levels of completion would allow a certain level of controllable
behaviour, i.e. a peer is more likely to disconnect in the first five percent and
extremely unlikely in the last ten percent. Again, this data can be gathered by
obtaining records from a tracker.
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Abstract. In this paper, we consider a novel approach to the temporal
logic verification problem of continuous dynamical systems. Our method-
ology has the distinctive feature that enables the verification of the tem-
poral properties of a continuous system by verifying only a finite number
of its (simulated) trajectories. The proposed framework comprises two
main ideas. First, we take advantage of the fact that in metric spaces we
can quantify how close are two different states. Based on that, we de-
fine robust, multi-valued semantics for MTL (and LTL) formulas. These
capture not only the usual Boolean satisfiability of the formula, but also
topological information regarding the distance from unsatisfiability. Sec-
ond, we use the recently developed notion of bisimulation functions to
infer the behavior of a set of trajectories that lie in the neighborhood of
the simulated one. If the latter set of trajectories is bounded by the tube
of robustness, then we can infer that all the trajectories in the neigh-
borhood of the simulated one satisfy the same temporal specification as
the simulated trajectory. The interesting and promising feature of our
approach is that the more robust the system is with respect to the tem-
poral logic specification, the less is the number of simulations that are
required in order to verify the system.

1 Introduction

Software and hardware design has tremendously benefited from advances in al-
gorithmic verification. Model checking [1] is now a widely used technology in
various industrial settings. Thanks to the rapidly growing area of embedded sys-
tems with real-time specifications, a similar growth is also being experienced
in the area of real-time systems [2]. As the complexity of the physical systems
increases and captures continuous or hybrid systems, the verification problems
quickly become hard, if not undecidable.

For the verification of hybrid systems, a variety of methods have been pro-
posed [3,4,5,6,7,8] (not an inclusive list). The common characteristic of all these
approaches is that they apply to either continuous systems with simple dynam-
ics, or they are computationally expensive and, thus, they can only be used for
low dimensional systems (for promising high-dimensional results see [9,10]). Be-
yond the scope of these techniques, the analysis of complex systems still relies

E. Asarin and P. Bouyer (Eds.): FORMATS 2006, LNCS 4202, pp. 171–186, 2006.
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heavily on simulation-based methods for monitoring [11]. Along these lines sev-
eral authors have proposed simulation techniques that can provide guarantees
for uniform coverage [12,13] or even completeness results [14].

This paper develops a simulation-based method for verifying temporal proper-
ties of complex continuous systems. In particular, given a continuous dynamical
system, a set of initial conditions, a bounded time horizon, and a temporal logic
specification expressed in Metric or Linear Temporal Logic [15], we develop a
simulation-based algorithm that verifies whether all the system trajectories sat-
isfy the desired temporal property. To achieve this, we build upon two recent
notions : a definition of robust satisfaction for Metric Temporal Logic (MTL)
specifications [16] and the notion of bisimulation functions [17]. The definition
of robust satisfaction of an MTL specification is meaningful only when state
sequences evolve in metric spaces, a very natural assumption for continuous sys-
tems. Our proposed robust semantics capture bounds on the magnitude of the
state perturbations that can be tolerated without altering the Boolean truth
value of the MTL or LTL property. Bisimulation functions, on the other hand,
quantify the distance between two approximately bisimilar states and the tra-
jectories initiating from them. Using a bisimulation function we can define a
neighborhood of trajectories around a nominal one which have approximately
the same behavior as the nominal trajectory. If this neighborhood of the simu-
lated trajectory is contained in the tube of trajectories, which robustly satisfy
the specification, then we can safely infer that the neighborhood of trajectories
also satisfies the specification.

Based on this observation, we develop an algorithm that, first, samples points
in the set of initial conditions of the system using guidance from the bisimulation
function. Starting from this set of points, we simulate the system for a bounded
horizon. For each of these trajectories we compute an under-approximation of its
robustness degree. If the robustness degree bounds the distance computed by the
bisimulation function then we are done, otherwise we repeat the procedure. The
novelty in our framework is that the number of simulations, which are required
for the verification of the system, decreases inversely to the robustness of the
system with respect to the temporal property.

Finally, we would like to point out that in the past several authors have also
studied the robustness of real time specifications with respect to timed or dense
time traces of real time systems [18,19,20], but the robustness is considered with
respect to the timing constraints, not state perturbations. The work which is the
closest in spirit to this paper appears in [21] where the authors give quantitative
semantics to the branching-time logic CTL (called Discounted CTL) in order to
achieve robustness with respect to model perturbations.

2 Problem Formulation

Let R be the set of the real numbers, Q the set of the rational numbers and
N the set of the natural numbers. We denote the extended real number line by
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R = R∪{±∞}. In addition, R≥0 denotes the subset of the reals whose elements
are greater or equal to zero. Finally, P(C) denotes the powerset of a set C.

2.1 Continuous Time Dynamical Systems as Timed State Sequences

In this paper, we focus on the verification of temporal properties of continuous
time dynamical systems.

Definition 1 (Continuous Time Dynamical System). A continuous-time
dynamical system is defined by a tuple Σ = (N, P, f, g, I, AP,O) where: N and
P are positive integers which respectively denote the dimension of the state-space
and of the observation-space, f : RN → RN and g : RN → RP are continuous
maps, I is a compact subset of RN which denotes the set of initial states, AP is
a set of atomic propositions and O : AP → P(RP ) is a predicate mapping.

A trajectory of the continuous-time dynamical system Σ is a pair of functions
(x(t), y(t)) such that x : R≥0 → RN and y : R≥0 → RP satisfy x(0) ∈ I and
∀t ∈ R≥0

ẋ(t) = f(x(t)) and y(t) = g(x(t)) (1)

Here, ẋ denotes the first order derivative of the function x. We make the standard
assumption on f so that for a given initial state x0 ∈ I, the system Σ has a
unique trajectory. Hence, given x(0) the system is deterministic. In order to
specify the properties of interest for the system Σ in any temporal logic, we
must define a set of regions in its observation space. If AP is a finite set of
atomic propositions, then the predicate mapping O : AP → P(RP ) is a set
valued function that assigns to each atomic proposition π ∈ AP a set of states
O(π) ⊆ RP .

Beyond certain classes of continuous dynamical systems such as linear sys-
tems, system Σ does not always have an analytical solution. Typically, the be-
havior of such systems can be explored using numerical simulation [22]. Numer-
ical simulation methods approximate the differential equations of the system Σ
by algebraic equations which depend on the size of the integration (time) step.
Furthermore, such simulations can only be of finite duration. Therefore, we can
model such computations by finite timed state sequences.

Definition 2 (TSS). A timed state sequence T in a space Q is a tuple (σ, τ,O)
where for some n ∈ N: σ = σ0, σ1, . . . , σn is a sequence of states, τ = τ0, τ1, . . . , τn

is a sequence of time stamps and O : AP → P(Q) is a predicate mapping. The
following conditions must be satisfied by T : (i) for all i ∈ {0, 1, . . . , n} we have
σi ∈ Q and τi ∈ R≥0 and (ii) τ is a strictly monotonically increasing sequence.

By convention, we set τ0 = 0 (in the Metric Temporal Logic we care only
about relative time). We define σ ↑i to be the suffix of a sequence, i.e. σ ↑i=
σi, σi+1, . . . , σn. When the same operator ↑i is applied to the sequence τ , it is
defined as τ↑i= 0, τi+1−τi, . . . , τn−τi. The length of σ = σ0, σ1, . . . , σn is defined
to be |σ| = n+1. For convenience, we let |T | = |τ | = |σ| and T ↑i= (σ↑i, τ↑i,O).



174 G.E. Fainekos, A. Girard, and G.J. Pappas

We define TS to be the set of all possible finite timed state sequences in the
space RP , that is TS = {(σ, τ,O) | n ∈ N>0, σ ∈ (RP )n, τ ∈ Rn

≥0 such that τi <

τi+1 for i < n and O : AP → P(RP )}. Note that by definition we do not con-
sider empty timed state sequences and that essentially the sequence σ is isomor-
phic to a point in the product space (RP )|σ|. In addition, given a timed state
sequence T = (σ, τ,O), then TST is the set of all timed state sequences with the
same predicate mapping O and the same sequence of time stamps τ as T , i.e.
TST = {(σ′, τ ′,O′) ∈ TS | τ ′ = τ,O′ = O}.

Now, given a sequence of integration steps (which is equivalent to a sequence
of time stamps τ) for the numerical simulation of the system Σ, we can model
the resulting discrete trajectory as a timed state sequence, which we refer to as
a trace.

Definition 3 (Trace). Given a sequence of time stamps τ , a trace of a con-
tinuous dynamical system Σ is a timed state sequence T = (σ, τ,O) such that
there exists a trajectory (x, y) of Σ satisfying σi = y(τi) = g(x(τi)) for all
i = 0, 1, . . . , |τ | − 1. The set of traces of Σ associated with the sequence of time
stamps τ is denoted by Lτ (Σ).

We should point out that in this paper, we essentially consider the trace to be
sampled from the continuous solution of the system Σ. In numerical methods
for the integration of differential equations, though, there exists a quantifiable
and bounded error between the continuous solution of the equations (1) and the
result of the numerical simulation, which can be driven arbitrarily close to zero
[22]. Therefore, we can safely ignore this issue for now in order to facilitate the
presentation of the contributions in the current paper.

2.2 Metric Temporal Logic over Finite Timed State Sequences

We employ the Metric Temporal Logic (MTL) [15] in order to formally charac-
terize the desired behavior of the system Σ. In MTL, the syntax of the logic is
extended to include timing constraints on the usual temporal operators of the
Linear Temporal Logic (LTL). Using LTL specifications we can check qualitative
timing properties, while with MTL specifications quantitative timing properties.
Recently, it was shown by Ouaknine and Worrell [23] that MTL is decidable over
finite timed state sequences. In this section, we review the basics of MTL with
point-based semantics over finite timed state sequences.

Definition 4 (Syntax of MTL). An MTL formula φ is inductively defined
according to the grammar

φ ::= * | π | ¬φ1 | φ1 ∨ φ2 | φ1 UIφ2

where π ∈ AP , * is the symbol for the boolean constant true and I is an interval
of R≥0 with rational endpoints.
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The set of all well formed MTL formulas is denoted by ΦMTL. Even though we
can derive the constant true (*) from the law of excluded middle (* = π ∨¬π),
we chose to add it in the syntax of MTL for reasons that will be clear in Sect. 3.
The constant false is denoted by ⊥ = ¬*. We can also derive additional temporal
operators such as release φ1 RIφ2 = ¬((¬φ1)UI¬φ2) (which is the dual of the
until operator), eventually �Iφ = *UIφ and always �Iφ = ⊥RIφ.

The subscript I imposes timing constraints on the temporal operators. The
interval I can be open, half-open or closed, bounded or unbounded, or even a
singleton. For any t ∈ Q, we define I + t = {t′ + t | t′ ∈ I}. In the case where
I = [0, +∞), we remove the subscript I from the temporal operators, i.e. we
just write U , R, � and �. When all the subscripts of the temporal operators
are of the form [0, +∞), then the MTL formula φ reduces to an LTL formula
and we can ignore the time stamps.

Metric Temporal Logic (MTL) formulas are interpreted over timed state se-
quences T with |T | > 0. In this paper, we denote formula satisfiability using a
membership function 〈〈φ〉〉 : TS → {⊥,*} instead of the usual notation T |= φ.
We say that a timed state sequence T satisfies the formula φ when 〈〈φ〉〉(T ) = *.
In this case, T is a model of φ. The set of all models of φ is denoted by L(φ),
i.e. L(φ) = {T ∈ TS | 〈〈φ〉〉(T ) = *}.

Definition 5 (Semantics of MTL). Let T = (σ, τ,O) ∈ TS, π ∈ AP , i, j ∈ N
and ψ, φ1, φ2 ∈ ΦMTL, then the semantics of any MTL formula φ are defined
recursively as

〈〈*〉〉(T ) := *
〈〈π〉〉(T ) := σ0 ∈ O(π)

〈〈¬ψ〉〉(T ) := ¬〈〈ψ〉〉(T )
〈〈φ1 ∨ φ2〉〉(T ) := 〈〈φ1〉〉(T ) ∨ 〈〈φ2〉〉(T )

〈〈φ1 UIφ2〉〉(T ) :=
∨ |T |−1

i=0

(
(τi ∈ I) ∧ 〈〈φ2〉〉(T ↑i) ∧

∧
i−1
j=0〈〈φ1〉〉(T ↑j)

)
2.3 Problem Statement

Now that we have presented all the necessary mathematical objects we can
formally state the verification problem that we answer in this paper.

Problem 6. Given an MTL formula φ, a continuous dynamical system Σ and a
sequence of time stamps τ , verify that Lτ (Σ) ⊆ L(φ). In other words, verify
that all the traces T of Σ satisfy the specification φ.

The difficulty in solving Problem 6 is that in metric spaces there exists an infinite
number of traces T = (σ, τ,O) of Σ. Thus, the verification of Σ cannot be
done by exhaustive simulation. In the following, we show that using the robust
semantics of MTL (Sect. 3) and the notion of bisimulation function [17], the
verification of Σ is possible by using only a finite number of simulations.
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Example 7. In order to motivate the rest of the discussion, we present as an
example the verification problem of a transmission line [10]. The goal is to check
that the transient behavior of a long transmission line is acceptable both in terms
of overshoot and of response time. Figure 1 shows a model of the transmission
line, which consists of a number of RLC components (R: resistor, L: inductor
and C: capacitor) modeling segments of the line. The left side is the sending end
and the right side is the receiving end of the transmission line.

Fig. 1. RLC model of a transmission line

The dynamics of the system are given by the linear dynamical system

ẋ(t) = Ax(t) + bUin(t) and Uout(t) = Cx(t)

where x(t) ∈ RN is the state vector containing the voltage of the capacitors and
the current of the inductors and Uin(t) ∈ R is the voltage at the sending end.
The output of the system is the voltage Uout(t) ∈ R at the receiving end. Here,
A, b and c are matrices of appropriate dimensions. Initially, Uin(0) ∈ [−0.2, 0.2]
and the system is at its steady state x(0) = −A−1bUin(0). Then, at time t = 0
the input is set to the value Uin(t) = 1. We use an 81st order RLC model of the
transmission line (i.e. N = 81). An example of a trace is shown in Fig. 2.
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Fig. 2. An example trace of the RLC model of the transmission line
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The goal of the verification is double. We want to check that the voltage
at the receiving end stabilizes between 0.8 and 1.2 Volts within T nano-seconds
(response time) and that its amplitude always remains bounded by θ Volts (over-
shoot) where T ∈ [0, 2] and θ ≥ 0 are design parameters. The specification is
expressed as the MTL property:

φ = �π1 ∧ �[0,T ]�π2

where the predicates are mapped as follows: O(π1) = [−θ, θ] and O(π2) =
[0.8, 1.2]. We consider a time frame of 2 nanoseconds. The sequence of time
stamps τ is uniformly generated with a time step of ∆t = 0.02 nanoseconds.

3 Robust Satisfaction of MTL Specifications

In this section, we define what it means for a timed state sequence to satisfy
a Metric Temporal Logic specification robustly. Our definition of robustness is
built upon the fact that in metric spaces we can quantify how far apart are two
points of the space.

3.1 Distance in Metric Spaces

Let (Q, d) be a metric space, that is a set Q with a metric d which gives the
topology of Q. Given two points q1, q2 of Q, the number d(q1, q2) is called the
distance between q1 and q2 in the metric d. Using the metric d, we can define
the distance of a point q ∈ Q from a subset of R ⊆ Q.

Definition 8 (Distance, Signed Distance). Let q ∈ Q be a point, R ⊆ Q be
a set and d be a metric. Then we define the

– distance from q to R to be distd(q, R) := inf{d(q, q′) | q′ ∈ R}
– signed distance from q to R to be

Distd(q, R) :=
{
−distd(q, R) if q 
∈ R
distd(q, Q\R) if q ∈ R

We should point out that we use the extended definition of supremum and infi-
mum, where sup ∅ = −∞ and inf ∅ = +∞. Also of importance is the notion of
an open ball of radius ε centered at a point q ∈ Q.

Definition 9 (ε-Ball). Given a metric d, a radius ε ∈ R>0 and a point q ∈ Q,
the open ε-ball centered at q is defined as Bd(q, ε) = {q′ ∈ Q | d(q, q′) < ε}.

If the distance (distd) of a point q from a set R is ε > 0, then Bd(q, ε) ∩R = ∅.
And similarly, if distd(q, Q\R) = ε > 0, then Bd(q, ε) ⊆ R.
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3.2 Defining Robust Semantics for the Metric Temporal Logic

In RP , we can quantify how close are two different observations y1, y2 ∈ RP by
using the metric d(y1, y2) = ‖y1−y2‖ =

√
(y1 − y2)T (y1 − y2). Let T = (σ, τ,O)

be a timed state sequence and (σ′, τ,O) ∈ TST , then

ρ(σ, σ′) = max{‖σ0 − σ′
0‖, ‖σ1 − σ′

1‖, . . . , ‖σ|τ |−1 − σ′
|τ |−1‖} (2)

is a metric on the set (RP )|T |, which is well defined since |T | is finite. Now that
the space of state sequences is equipped with a metric, we can define a tube
around a timed state sequence T . Given an ε > 0, then

TSε
T = {(σ′, τ,O) ∈ TST | σ′ ∈ Bρ(σ, ε)}

is the set of all timed state sequences that remain ε-close to T .
Informally, we define the degree of robustness that a timed state sequence T

satisfies an MTL formula φ to be a number ε ∈ R. Intuitively, a positive ε means
that the formula φ is satisfiable and, moreover, that all the other timed state
sequences that remain ε-close to the nominal one also satisfy φ. Accordingly, if
ε is negative, then T does not satisfy φ and all the other timed state sequences
that remain within the open tube of radius |ε| also do not satisfy φ.

Definition 10 (Degree of Robustness). Let φ ∈ ΦMTL, T = (σ, τ,O) ∈ TS
and ρ be the metric (2). Define Pφ

T := {σ′ | (σ′, τ,O) ∈ TST ∩ L(φ)}, then the
robustness degree ε ∈ R of T with respect to φ is defined as ε := Distρ(σ, P φ

T ).

The following proposition is derived directly from the definitions. It states that
all the timed state sequences S, which have distance from T less than robustness
degree of T , satisfy the same specification φ as T .

Proposition 11. Let φ ∈ ΦMTL, T = (σ, τ,O) ∈ TS and ε = Distρ(σ, P φ
T ). If

|ε| > 0, then 〈〈φ〉〉(S) = 〈〈φ〉〉(T ) for all S ∈ TS|ε|
T .

Remark 12. If ε = 0, then the truth value of φ with respect to T is not robust,
i.e. any small perturbation of a critical state in the timed state sequence can
change the satisfiability of the formula with respect to T .

Theoretically, the set Pφ
T can be computed since we have a finite number of

atomic propositions, a finite trace and a known in advance sequence of time
stamps. Implementation wise, though, the construction of the set Pφ

T and the
computation of the distance Distρ(σ, P φ

T ) are computationally expensive, if not
infeasible (for a discussion see [16]). Therefore in this section, we develop an
algorithm that computes a conservative approximation of the robustness degree
ε by directly operating on the timed state sequence while avoiding set operations.
As is usually the case in trade-offs, we gain computational efficiency at the
expense of accuracy.

Similar to [21], we propose multi-valued semantics for the Metric Temporal
Logic where the valuation function on the atomic propositions takes values over
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the totally ordered set R = (R,≤) according to the metric d operating on the
state space RP of the timed state sequence T . For this purpose, we let the
valuation function be the signed distance from the current point in the trace
y to a set O(π). Intuitively, this distance represents how robustly is a point y
within the set O(π). If this metric is zero, then even the smallest perturbation
of the point can drive it inside or outside the set O(π), dramatically affecting
membership.

We define the binary operators � : R × R → R and � : R × R → R using the
maximum and minimum functions as α�β := max{α, β} and α�β := min{α, β}.
Also, for some R ⊆ R we extend the above definitions as follows:

⊔
R := sup R

and
�

R := inf R. Recall that
⊔

R = +∞ and
�

R = −∞ and that any subset
of R has a supremum and infimum. Finally, because R is a totally ordered set,
it is distributive, i.e. for all α, β, γ ∈ R it is α � (β � γ) = (α � β) � (α � γ).

For the purposes of the following discussion, we use the notation [[φ]](T ) to
denote the approximation to the degree of robustness with which the structure
T satisfies the specification φ (formally [[φ]] : TS → R).

Definition 13 (Robust Semantics of MTL). For φ ∈ ΦMTL and T =
(σ, τ,O) ∈ TS, the robust semantics of φ with respect to T are defined as (let
π ∈ AP and ψ, φ1, φ2 ∈ ΦMTL)

[[*]](T ) := +∞
[[π]](T ) := Distd(σ0,O(π))

[[¬ψ]](T ) := −[[ψ]](T )
[[φ1 ∨ φ2]](T ) := [[φ1]](T ) � [[φ2]](T )

[[φ1 UIφ2]](T ) :=
⊔ |T |−1

i=0

(
[[τi ∈ I]](T ) � [[φ2]](T ↑i) �

�
i−1
j=0[[φ1]](T ↑j)

)
where the unary operator (−) is defined to be the negation over the reals.

Remark 14. It is easy to verify that the semantics of the negation operator give
us all the usual nice properties such as the De Morgan laws: a� b = −(−a�−b)
and a � b = −(−a � −b), involution: −(−a) = a and antisymmetry: a ≤ b iff
−a ≥ −b for a, b ∈ R.

The following theorem states that robustness parameter that we compute using
the robust semantics of MTL is an under-approximation of the actual degree of
robustness (for the proof see the technical report [16]).

Theorem 15. Let φ ∈ ΦMTL and T ∈ TS, then |[[φ]](T )| ≤ |Distρ(σ, P φ
T )|.

Moreover, if [[φ]](T ) = ε 
= 0, then for all S ∈ TS |ε|
T it is 〈〈φ〉〉(S) = 〈〈φ〉〉(T ).

Based on the robust semantics of MTL, we can derive a tableau formulation
of the until temporal operator which is the basis for an on-the-fly monitoring
algorithm. For the state of art monitoring algorithms for MTL using point-based
semantics see [24] and the references therein. Using similar procedures, it is easy
to derive an algorithm that returns the Boolean truth value of the formula and
its robustness degree. Further details can be found in the technical report [16].
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Remark 16. Consider the MTL fragment ΦMTL(∧, �) where the only allowed
operators are the conjunction and always. In this fragment, the negation (¬) can
appear only in front of atomic propositions. If φ ∈ ΦMTL(∧, �) and 〈〈φ〉〉(T ) = *,
then [[φ]](T ) = Distρ(σ, P φ

T ). For a discussion see [16].

4 Verification Using Robust Simulation

In this section, we show that Problem 6 can be solved in the framework of
continuous-time dynamical systems. Our approach comprises three basic steps.
First, we define a notion of neighborhood on the set of trajectories of the system
Σ. This enables us to determine the sets of trajectories with approximately
equivalent behaviors. Then, it is possible to verify that a property φ holds for
all the traces of the dynamical system by simulating only a finite number of
traces of the system Σ and evaluating their coefficients of robustness. A similar
approach was proposed for the verification of safety properties in [14].

4.1 Bisimulation Function

The notion of bisimulation function has been introduced in [17] in the context
of general non-deterministic metric transition systems. Intuitively, a bisimula-
tion function evaluates how far are two states from being bisimilar: a bisimu-
lation function bounds the distance between the observations associated with
the states and is non-increasing during the evolution of the system. In the con-
text of continuous-time dynamical systems considered in this paper, the formal
definition of a bisimulation function is the following.

Definition 17. A continuous function V : RN × RN → R≥0 is a bisimulation
function for the dynamical system Σ if it satisfies the following properties

1. For all x ∈ RN , V (x, x) = 0
2. For all x1 ∈ RN , x2 ∈ RN , V (x1, x2) ≥ ‖g(x1) − g(x2)‖
3. For all x1 ∈ RN , x2 ∈ RN ,

∂V

∂x1
(x1, x2) · f(x1) +

∂V

∂x2
(x1, x2) · f(x2) ≤ 0.

Remark 18. Effective characterizations of bisimulation functions have been pro-
posed for linear dynamical systems based on a set of linear matrix inequalities
[25] and for nonlinear dynamical systems based on sum of squares programs
[26]. Both characterizations can be interpreted in terms of convex optimization
leading to efficient algorithms for the computation of bisimulation functions.

Theorem 19. Let V be a bisimulation function, (x1, y1) and (x2, y2) be trajec-
tories of Σ and T1 = (σ1, τ,O) ∈ Lτ (Σ) and T2 = (σ2, τ,O) ∈ Lτ (Σ) be the
associated traces, then

(∃i ∈ {1, 2}.V (x1(0), x2(0)) < |[[φ]](Ti)|) =⇒ (〈〈φ〉〉(T1) = 〈〈φ〉〉(T2)) (3)
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Proof. From the third property of Definition 17, it follows that for all t ∈ R≥0,

dV (x1(t), x2(t))
dt

=
∂V

∂x1
(x1(t), x2(t)) · f(x1(t))+

∂V

∂x2
(x1(t), x2(t)) · f(x2(t)) ≤ 0.

Then, from the second property of Definition 17, for all t ∈ R≥0,

‖y1(t) − y2(t)‖ = ‖g(x1(t)) − g(x2(t))‖ ≤ V (x1(t), x2(t)) ≤ V (x1(0), x2(0)).

Therefore, ∀i ∈ {0, 1, . . . , |τ | − 1}, it is ‖y1(τi) − y2(τi)‖ ≤ V (x1(0), x2(0)) or

ρ(σ1, σ2) ≤ V (x1(0), x2(0)) (4)

Without loss of generality assume that V (x1(0), x2(0)) < |[[φ]](T1)| and let ε′ =
V (x1(0), x2(0)) and ε = |[[φ]](T1)|. Equation (4) implies that T2 belongs in the
closure of TSε′

T1
. But TSε′

T1
⊂ TSε

T1
since ε′ < ε. Therefore, T2 ∈ TSε

T1
and by

applying Theorem 15 we can conclude that 〈〈φ〉〉(T1) = 〈〈φ〉〉(T2). ��

The previous result means that using the robust semantics of MTL and a bisim-
ulation function, it is possible to infer the Boolean truth value of the MTL
specification for an infinite number of traces. This property is exploited in the
following section to verify all the traces of a system Σ using only a finite number
of traces.

4.2 Sampling the Initial States

The challenge in developing a simulation-based verification algorithm is to sam-
ple the set of initial conditions in a way that ensures coverage. For this purpose,
we define a discretization operator based on the bisimulation function.

Proposition 20. Let V be a bisimulation function. For any compact set of
initial conditions I ⊆ RN , for all δ > 0, there exists a finite set of points
{x1, . . . , xr} ⊆ I such that

for all x ∈ I, there exists xi, such that V (x, xi) ≤ δ. (5)

Proof. V is continuous on I × I which is compact, therefore V is uniformly
continuous on I × I. Hence, for all δ, there exists ν such that

∀x, x′, z, z′ ∈ I, ‖x − x′‖ ≤ ν and ‖z − z′‖ ≤ ν =⇒ |V (x, z) − V (x′, z′)| ≤ δ.

Particularly, by setting x′ = z = z′ and remarking that V (x′, x′) = 0, we have

∀x, x′ ∈ I, ‖x − x′‖ ≤ ν =⇒ V (x, x′) ≤ δ.

Now, let us assume that for all finite set of points {x1, . . . , xr} ⊆ I, there exists
xr+1 ∈ I, such that for all xi, ‖x− xi‖ ≥ ν. Then, starting from a point x1 ∈ I,
we can construct a sequence {xi}i∈N such that for all i, j ∈ N, i 
= j, we have
‖xi−xj‖ ≥ ν. Therefore, we cannot extract a converging subsequence of {xi}i∈N

and I cannot be compact. Hence, we have proved by contradiction that there
exists a finite set of points {x1, . . . , xr} ⊆ I such that for all x ∈ I, there exists
xi, such that ‖x − xi‖ ≤ ν which allows us to conclude (5). ��
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Let Disc be the discretization operator which maps the compact set I ⊆ RN

and a strictly positive number δ to a list of points Disc(I, δ) = {x1, . . . , xr}
satisfying equation (5).

Theorem 21. Let (x1, y1), . . . , (xr , yr) be trajectories of Σ such that Disc(I, δ)
= {x1(0), . . . , xr(0)}. Let T1, . . . , Tr ∈ Lτ (Σ) be the associated traces. Then,

(∀i = 1, . . . , r. [[φ]](Ti) > δ) =⇒ (∀T ∈ Lτ (Σ). 〈〈φ〉〉(T ) = *)

Proof. Let T ∈ Lτ (Σ), let (x, y) be the associated trajectory of Σ. From Propo-
sition 20, there exists xi(0) such that V (x(0), xi(0)) ≤ δ. Then, from Theorem
19 and Proposition 2 from [16], it follows that 〈〈φ〉〉(T ) = 〈〈φ〉〉(Ti) = *. ��

Thus, it possible to verify that the MTL property φ holds for all the traces of the
dynamical system Σ by evaluating the robustness degree of only a finite number
of simulated trajectories.

Remark 22. Similar to Theorem 21, we can prove the following statement: if for
all i = 1, . . . , r it is −[[φ]](Ti) > δ, then for all T ∈ Lτ (Σ) it is 〈〈φ〉〉(T ) = ⊥.
Therefore in this case, we can conclude that all the trajectories of Σ starting in
I do not satisfy the MTL specification.

4.3 Verification Algorithm

Algorithm 1 verifies that the property φ holds for all the traces in Lτ (Σ). The
main idea is the following. We start with a rough discretization (using a pa-
rameter δ > 0) of the set of initial states – typically we pick just one point.
Then, we try to verify the property using the traces associated with these ini-
tial states. When the result of the verification is inconclusive (for example when
[[φ]](Ti) < δ), the discretization of the initial states is refined locally (using a re-
finement parameter r ∈ (0, 1)) around the initial states for which we were unable
to conclude the property. This algorithm, therefore, allows the fast verification of
robust properties, whereas more computational effort is required for non-robust
properties. The refinement operation is repeated at most K times (a user de-
fined parameter). The algorithm can terminate in one of three possible states:
(i) the property has been verified for all the initial states of the system Σ, (ii)
the property has been falsified (we have found a trace that does not satisfy the
specification) or (iii) we have computed a subset I ′ of the initial states I such
that all the traces initiating from I ′ satisfy the MTL property. In the last case,
we also get a degree of coverage of the initial states that have been verified. The
proof of the correctness of the algorithm is not stated here but is very similar to
that of Theorem 21.

Remark 23. Let us define ε∗ := infT ∈Lτ (Σ) |Distρ(σ, P φ
T )| to be the robustness

degree of the system Σ with respect to the specification φ. Furthermore, consider
replacing [[φ]](T ) in Algorithm 1 by the theoretical quantity ε = Distρ(σ, P φ

T ).
In this case, it can be shown that whenever ε∗ > 0, the algorithm is complete
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Algorithm 1. Temporal Logic Verification Using Simulation
Input: A dynamical system Σ = (N, P, f, g, I,AP, O), an MTL formula φ, a sequence

of time stamps τ and numbers δ > 0, r ∈ (0, 1) and K ∈ N.
1: procedure Verify(Σ, φ, τ, δ, r,K)
2: P ← Disc(I, δ), C ← ∅, k ← 0
3: while k ≤ K and P �= ∅ do
4: P ′ ← ∅
5: for x ∈ P do
6: Pick T ∈ Lτ (Σ) with σ0 = x � Simulate Σ for initial state x
7: if [[φ]](T ) < 0 then return “Lτ (Σ) �⊆ L(φ)” � φ does not hold on Σ
8: else if [[φ]](T ) > rkδ then C ← C ∪ NV (x, rkδ)
9: else P ′ ← P ′ ∪ Disc(I ∩ NV (x, rkδ), rk+1δ)

10: end if � In lines 8,9: NV (x, δ) = {x′ ∈ RN |V (x, x′) ≤ δ}
11: end for
12: k ← k + 1, P ← P ′

13: end while
14: if P = ∅ then return “Lτ (Σ) ⊆ L(φ) ” � φ holds on Σ
15: else return “Lτ (Σ′) ⊆ L(φ)” � φ holds on Σ′ = (N, P, f, g, I ∩ C, AP, O)
16: end if
17: end procedure

and can verify the system using only a finite number of simulations. The current
algorithm may fail to be complete since we are using an under-approximation of
the robustness degree (note also that [[φ]](T ) = 0 
⇒ Distρ(σ, P φ

T ) = 0).

5 Experimental Results

In this section, we demonstrate the applicability of our framework through some
experimental results. We have implemented Algorithm 1 in MATLAB for linear
dynamical systems and applied it to the problem presented in Example 7. A
bisimulation function of the form V (x1, x2) =

√
(x1 − x2)T M(x1 − x2), where

M is a positive definite symmetric matrix, has been computed following the tech-
nique described in [25]. We run the verification algorithm for T ∈ {0.8, 1.2, 1.6}
and θ ∈ {1.4, 1.5, 1.6}. The results are summarized in Table 1.

Table 1. Experimental results of the verification algorithm for the transmission line
example. For each value of (T, θ) the table gives whether the property φ holds on Σ
and how many simulations of the system were necessary to conclude.

T = 0.8 T = 1.2 T = 1.6
θ = 1.4 False / 1 False / 7 False / 7
θ = 1.5 False / 1 True / 15 True / 9
θ = 1.6 False / 1 True / 15 True / 7
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We can see that even though our algorithm does not have a completeness
result, we were able in all the cases we considered to verify or falsify the property.
The number of simulations needed for the verification depends on the value of
the parameters T and θ. For instance, for the value T = 0.8, we were able
to falsify the property using only one simulation, independently of the value
of θ. For θ = 1.4, the property is also false independently of the value of T .
However, for T = 1.2 and T = 1.6, we needed 7 simulations of the system
to falsify the property. Essentially, this means that the properties �π1 with
O(π1) = [−1.4, 1.4] and �[0,0.8]�π2 are both false on Σ but the former much
less robustly than the latter. For the cases where the property φ holds on Σ, we
can see that the number of simulations needed for the verification is also related
to the robustness of the system with respect to the property. Indeed, the larger
the T and θ are, the more robust the Σ is with respect to the property φ and, in
turn, the less is the number of the simulations that are required for verification.
This is one interesting feature of our approach which relates robustness to the
computational complexity of the verification.

6 Conclusions and Future Work

We have presented a novel approach to the verification problem of temporal
properties of continuous time dynamical systems. Our framework reinforces a
very intuitive observation: robustly (safe or unsafe) systems are easier to verify.
We believe that light weight verification methods, such as the one presented
here, can offer valuable assistance to the practitioner. This line of work can be
extended to multiple fronts. One important direction, as advocated in [18,19,20],
is to relax the requirement that all the traces should have the same sequence of
time stamps. Another direction is to move toward the simulation based verifica-
tion of hybrid and stochastic systems.
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Abstract. We solve some decision problems for timed automata which
were raised by S. Tripakis in [Tri04] and by E. Asarin in [Asa04]. In
particular, we show that one cannot decide whether a given timed au-
tomaton is determinizable or whether the complement of a timed regular
language is timed regular. We show that the problem of the minimization
of the number of clocks of a timed automaton is undecidable. It is also
undecidable whether the shuffle of two timed regular languages is timed
regular. We show that in the case of timed Büchi automata accepting
infinite timed words some of these problems are Π1

1 -hard, hence highly
undecidable (located beyond the arithmetical hierarchy).1

Keywords: Timed automata; timed Büchi automata; timed regular
(ω)-languages; decision problems; universality problem; determinizabil-
ity; complementability; shuffle operation; minimization of the number of
clocks.

1 Introduction

R. Alur and D. Dill introduced in [AD94] the notion of timed automata reading
timed words. Since then the theory of timed automata has been much studied
and used for specification and verification of timed systems.

In a recent paper, E. Asarin raised a series of questions about the theoretical
foundations of timed automata and timed languages which were still open and
wrote: “I believe that getting answers to them would substantially improve our
understanding of the area” of timed systems, [Asa04].

Some of these questions concern decision problems “à la [Tri04]”. For instance :
“Is it possible, given a timed automaton A, to decide whether it is equivalent to
a deterministic one ?”.

S. tripakis showed in [Tri04] that there is no algorithm which, given a timed
automaton A, decides whether it is equivalent to a deterministic one, and if
this is the case gives an equivalent deterministic automaton B. But the above

1 Part of the results stated in this paper were presented very recently in the Bulletin
of the EATCS [Fin05, Fin06].

E. Asarin and P. Bouyer (Eds.): FORMATS 2006, LNCS 4202, pp. 187–199, 2006.
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question of the decidability of the determinizability alone (where we do not
require the construction of the witness B) was still open.

We give in this paper the answer to this question and to several other ones of
[Tri04, Asa04]. In particular, we show that one cannot decide whether a given
timed automaton is determinizable or whether the complement of a timed regular
language is timed regular. We study also the corresponding problems but with
“bounded resources” stated in [Tri04].

For that purpose we use a method which is very similar to that one used
in [Fin03b] to prove undecidability results about infinitary rational relations,
reducing the universality problem, which is undecidable, to some other decision
problems.

We study also the problem of the minimization of the number of clocks of a
timed automaton, showing that one cannot decide, for a given timed automaton
A with n clocks, n ≥ 2, whether there is an equivalent timed automaton B with
at most n− 1 clocks.

The question of the closure of the class of timed regular languages under
shuffle was also raised by E. Asarin in [Asa04]. C. Dima proved in [Dim05] that
timed regular expressions with shuffle characterize timed languages accepted by
stopwatch automata. This implies that the class of timed regular languages is
not closed under shuffle. We proved this result independently in [Fin06]. We
recall the proof here, giving a simple example of two timed regular languages
whose shuffle is not timed regular. Next we use this example to prove that one
can not decide whether the shuffle of two given timed regular languages is timed
regular.

We extend also the previous undecidability results to the case of timed Büchi
automata accepting infinite timed words. In this case many problems are Π1

1 -
hard, hence highly undecidable (located beyond the arithmetical hierarchy), be-
cause the universality problem for timed Büchi automata, which is itself Π1

1 -
hard, [AD94], can be reduced to these other decision problems.

We mention that part of the results stated in this paper were presented very
recently in the Bulletin of the EATCS [Fin05, Fin06].

The paper is organized as follows. We recall usual notations in Section 2.
The undecidability of determinizability or regular complementability for timed
regular languages is proved in Section 3. The problem of minimization of the
number of clocks is studied in Section 4. Results about the shuffle operation are
stated in Section 5. Finally we extend in Section 6 some undecidability results
to the case of timed Büchi automata.

2 Notations

We assume the reader to be familiar with the basic theory of timed languages
and timed automata (TA) [AD94].

The set of positive reals will be denoted R. A (finite length) timed word over
a finite alphabet Σ is of the form t1.a1.t2.a2 . . . tn.an, where, for all integers
i ∈ [1, n], ti ∈ R and ai ∈ Σ. It may be seen as a time-event sequence, where
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the ti ∈ R represent time lapses between events and the letters ai ∈ Σ represent
events. The set of all (finite length) timed words over a finite alphabet Σ is the
set (R× Σ)�. A timed language is a subset of (R×Σ)�. The complement ( in
(R×Σ)� ) of a timed language L ⊆ (R×Σ)� is (R×Σ)� − L denoted Lc.

We consider a basic model of timed automaton, as introduced in [AD94]. A
timed automaton A has a finite set of states and a finite set of transitions. Each
transition is labelled with a letter of a finite input alphabet Σ. We assume that
each transition of A has a set of clocks to reset to zero and only diagonal-free
clock guard [AD94].

A timed automaton A is said to be deterministic iff it satisfies the two follow-
ing requirements:

(a) A has only one start state, and
(b) if there are multiple transitions starting at the same state with the same
label, then their clock constraints are mutually exclusive.
Then a deterministic timed automaton A has at most one run on a given timed
word [AD94].

As usual, we denote by L(A) the timed language accepted (by final states)
by the timed automaton A. A timed language L ⊆ (R×Σ)� is said to be timed
regular iff there is a timed automaton A such that L = L(A).

An infinite timed word over a finite alphabet Σ is of the form t1.a1.t2.a2.t3.a3
. . ., where, for all integers i ≥ 1, ti ∈ R and ai ∈ Σ. It may be seen as an
infinite time-event sequence. The set of all infinite timed words over Σ is the set
(R × Σ)ω. A timed ω-language is a subset of (R × Σ)ω. The complement ( in
(R×Σ)ω ) of a timed ω-language L ⊆ (R×Σ)ω is (R×Σ)ω − L denoted Lc.

We consider a basic model of timed Büchi automaton, (TBA), as introduced in
[AD94]. We assume, as in the case of TA accepting finite timed words, that each
transition of A has a set of clocks to reset to zero and only diagonal-free clock
guard [AD94]. The timed ω-language accepted by the timed Büchi automaton A
is denoted Lω(A). A timed language L ⊆ (R×Σ)ω is said to be timed ω-regular
iff there is a timed Büchi automaton A such that L = Lω(A).

3 Complementability and Determinizability

We first state the undecidability of determinizability or regular complementabil-
ity for timed regular languages.

Theorem 1. It is undecidable to determine, for a given TA A, whether

1. L(A) is accepted by a deterministic TA.
2. L(A)c is accepted by a TA.

Proof. It is well known that the class of timed regular languages is not closed
under complementation. Let Σ be a finite alphabet and let a ∈ Σ. Let A be the
set of timed words of the form t1.a.t2.a . . . tn.a, where, for all integers i ∈ [1, n],
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ti ∈ R and there is a pair of integers (i, j) such that i, j ∈ [1, n], i < j, and
ti+1 + ti+2 + . . . + tj = 1. The timed language A is formed by timed words
containing only letters a and such that there is a pair of a’s which are separated
by a time distance 1. The timed language A is regular but its complement can
not be accepted by any timed automaton because such an automaton should
have an unbounded number of clocks to check that no pair of a’s is separated
by a time distance 1, [AD94].

We shall use the undecidability of the universality problem for timed regular
languages: one cannot decide, for a given timed automatonA with input alphabet
Σ, whether L(A) = (R×Σ)�, [AD94].

Let c be an additional letter not in Σ. For a given timed regular language
L ⊆ (R × Σ)�, we are going to construct another timed language L over the
alphabet Γ = Σ ∪ {c} defined as the union of the following three languages.

– L1 = L.(R× {c}).(R×Σ)�

– L2 is the set of timed words over Γ having no c’s or having at least two c’s.
– L3 = (R × Σ)�.(R × {c}).A, where A is the above defined timed regular

language over the alphabet Σ.

The timed language L is regular because L and A are regular timed languages.
There are now two cases.

(1) First case. L = (R × Σ)�. Then L = (R × (Σ ∪ {c}))�. Therefore L has
the minimum possible complexity. L is of course accepted by a deterministic
timed automaton (without any clock). Moreover its complement Lc is empty
thus it is also accepted by a deterministic timed automaton (without any
clock).

(2) Second case. L is strictly included into (R×Σ)�. Then there is a timed word
u = t1.a1.t2.a2 . . . tn.an ∈ (R × Σ)� which does not belong to L. Consider
now a timed word x ∈ (R× Σ)�. It holds that u.1.c.x ∈ L iff x ∈ A. Then
we have also : u.1.c.x ∈ Lc iff x ∈ Ac.

We are going to show that Lc is not timed regular. Assume on the contrary
that there is a timed automaton A such that Lc = L(A). There are only
finitely many possible global states (including the clock values) of A after
the reading of the initial segment u.1.c. It is clearly not possible that the
timed automaton A, from these global states, accept all timed words in Ac

and only these ones, for the same reasons which imply that Ac is not timed
regular. Thus Lc is not timed regular. This implies that L is not accepted by
any deterministic timed automaton because the class of deterministic regular
timed languages is closed under complement.

In the first case L is accepted by a deterministic timed automaton and Lc is timed
regular. In the second case L is not accepted by any deterministic timed automa-
ton and Lc is not timed regular. But one cannot decide which case holds because
of the undecidability of the universality problem for timed regular languages. �
Below TA(n,K) denotes the class of timed automata having at most n clocks
and where constants are at most K. In [Tri04], Tripakis stated the following
problems which are similar to the above ones but with “bounded resources”.
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Problem 10 of [Tri04]. Given a TA A and non-negative integers n,K, does there
exist a TA B ∈ TA(n,K) such that L(B)c = L(A) ? If so, construct such a B.

Problem 11 of [Tri04]. Given a TA A and non-negative integers n,K, does there
exist a deterministic TA B ∈ TA(n,K) such that L(B) = L(A) ? If so, construct
such a B.

Tripakis showed that these problems are not algorithmically solvable. He asked
also whether these bounded-resource versions of previous problems remain un-
decidable if we do not require the construction of the witness B, i.e. if we omit
the sentence “If so construct such a B” in the statement of Problems 10 and 11.
It is easy to see, from the proof of preceding Theorem, that this is actually the
case because we have seen that, in the first case, L and Lc are accepted by
deterministic timed automata without any clock.

4 Minimization of the Number of Clocks

The following problem was shown to be undecidable by S. Tripakis in [Tri04].

Problem 5 of [Tri04]. Given a TA A with n clocks, does there exists a TA B with
n− 1 clocks, such that L(B) = L(A) ? If so, construct such a B.

The corresponding decision problem, where we require only a Yes / No answer
but no witness in the case of a positive answer, was left open in [Tri04].
Using a very similar reasoning as in the preceding section, we can prove that
this problem is also undecidable.

Theorem 2. Let n ≥ 2 be a positive integer. It is undecidable to determine, for
a given TA A with n clocks, whether there exists a TA B with n− 1 clocks, such
that L(B) = L(A).

Proof. Let Σ be a finite alphabet and let a ∈ Σ. Let n ≥ 2 be a positive
integer, and An be the set of timed words of the form t1.a.t2.a . . . tk.a, where,
for all integers i ∈ [1, k], ti ∈ R and there are n pairs of integers (i, j) such that
i, j ∈ [1, k], i < j, and ti+1 + ti+2 + . . . + tj = 1. The timed language An is
formed by timed words containing only letters a and such that there are n pairs
of a’s which are separated by a time distance 1. An is a timed regular language
but it can not be accepted by any timed automaton with less than n clocks, see
[HKW95].

Let c be an additional letter not in Σ. For a given timed regular language
L ⊆ (R × Σ)� accepted by a TA with at most n clocks, we construct another
timed language Vn over the alphabet Γ = Σ ∪ {c} defined as the union of the
following three languages.

– Vn,1 = L.(R× {c}).(R×Σ)�

– Vn,2 is the set of timed words over Γ having no c’s or having at least two
c’s.

– Vn,3 = (R×Σ)�.(R× {c}).An.
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The timed language Vn is regular because L and An are regular timed languages.
Moreover it is easy to see that Vn is accepted by a TA with at most n clocks,
because L and An are accepted by timed automata with at most n clocks. There
are now two cases.

(1) First case. L = (R×Σ)�. Then Vn = (R× (Σ∪{c}))�, thus Vn is accepted
by a (deterministic) timed automaton without any clock.

(2) Second case. L is strictly included into (R×Σ)�. Then there is a timed word
u = t1.a1.t2.a2 . . . tk.ak ∈ (R × Σ)� which does not belong to L. Consider
now a timed word x ∈ (R×Σ)�. It holds that u.1.c.x ∈ Vn iff x ∈ An.

Towards a contradiction, assume that Vn is accepted by a timed automa-
ton B with at most n−1 clocks. There are only finitely many possible global
states (including the clock values) of B after the reading of the initial seg-
ment u.1.c. It is clearly not possible that the timed automaton B, from these
global states, accept all timed words in An and only these ones, because it
has less than n clocks.

But one cannot decide which case holds because of the undecidability of the
universality problem for timed regular languages accepted by timed automata
with n clocks, where n ≥ 2. �

Remark 3. For timed automata with only one clock, the inclusion problem,
hence also the universality problem, have recently been shown to be decidable by
J. Ouaknine and J. Worrell [OW04]. Then the above method can not be applied.
It is easy to see that it is decidable whether a timed regular language accepted
by a timed automaton with only one clock is also accepted by a timed automaton
without any clock.

5 Shuffle Operation

It is well known that the class of timed regular languages is closed under union,
intersection, but not under complementation. Another usual operation is the
shuffle operation. Recall that the shuffle x �� y of two elements x and y of a
monoid M is the set of all products of the form x1 · y1 · x2 · y2 · · ·xn · yn where
x = x1 · x2 · · ·xn and y = y1 · y2 · · · yn.

This operation can naturally be extended to subsets of M by setting, for
R1, R2 ⊆ M , R1 �� R2 = {x �� y | x ∈ R1 and y ∈ R2}.

We know that the class of regular (untimed) languages is closed under shuffle.
The question of the closure of the class of timed regular languages under shuffle
was raised by E. Asarin in [Asa04]. C. Dima proved in [Dim05] that timed regular
expressions with shuffle characterize timed languages accepted by stopwatch
automata. This implies that the class of timed regular languages is not closed
under shuffle. We proved this result independently in [Fin06].

We are going to reprove this here, giving a simple example of two timed regular
languages whose shuffle is not timed regular. Next we shall use this example to
prove that one cannot decide whether the shuffle of two given timed regular
languages is timed regular.
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Theorem 4. The shuffle of timed regular languages is not always timed regular.

Proof. Let a, b be two different letters and Σ = {a, b}.
Let R1 be the language of timed words over Σ of the form

t1 · a · 1 · a · t2 · a

for some positive reals t1 and t2 such that t1 + 1 + t2 = 2, i.e. t1 + t2 = 1.
It is clear that R1 is a timed regular language of finite timed words.

Remark. As remarked in [AD94, page 217], a timed automaton can compare
delays with constants, but it cannot remember delays. If we would like a timed
automaton to be able to compare delays, we should add clock constraints of the
form x + y ≤ x′ + y′ for some clock values x, y, x′, y′. But this would greatly
increase the expressive power of automata: the languages accepted by such au-
tomata are not always timed regular, and if we allow the addition primitive in
the syntax of clock constraints, then the emptiness problem for timed automata
would be undecidable [AD94, page 217].

Notice that the above language R1 is timed regular because a timed automaton
B reading a word of the form t1 · a · 1 · a · t2 · a, for some positive reals t1 and
t2, can compare the delays t1 and t2 in order to check that t1 + t2 = 1. This is
due to the fact that the delay between the two first occurrences of the event a
is constant equal to 1.

Using the shuffle operation we shall construct a language R1 �� R2, for a
regular timed language R2. Informally speaking, this will “insert a variable de-
lay” between the two first occurrences of the event a and the resulting language
R1 �� R2 will not be timed regular.

We now give the details of this construction.
Let R2 be the language of timed words over Σ of the form

1 · b · s · b

for some positive real s.
The language R2 is of course also a timed regular language.
We are going to prove that R1 �� R2 is not timed regular.
Towards a contradiction, assume that R1 �� R2 is timed regular. Let R3 be

the set of timed words over Σ of the form

t1 · a · 1 · b · s · b · 1 · a · t2 · a

for some positive reals t1, s, t2. It is clear that R3 is timed regular. On the other
hand the class of timed regular languages is closed under intersection thus the
timed language (R1 �� R2) ∩R3 would be also timed regular. But this language
is simply the set of timed words of the form t1 · a · 1 · b · s · b · 1 · a · t2 · a, for some
positive reals t1, s, t2 such that t1 + t2 = 1.

Assume that this timed language is accepted by a timed automaton A.
Consider now the reading by A of a word of the form t1 ·a ·1 ·b ·s ·b ·1 ·a · t2 ·a,

for some positive reals t1, s, t2.
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After reading the initial segment t1 · a · 1 · b · s · b · 1 · a the value of any clock
of A can only be t1 + s + 2, 2 + s, 1 + s, or 1.

If the clock value of a clock C has been at some time reset to zero, its value
may be 2+ s, 1+ s, or 1. So the value t1 is not stored in the clock value and this
clock can not be used to compare t1 and t2 in order to check that t1 + t2 = 1.

On the other hand if the clock value of a clock C has not been at some time
reset to zero, then, after reading t1 · a · 1 · b · s · b · 1 · a, its value will be t1 + s+ 2.
This must hold for uncountably many values of the real s, and again the value
t1 + s+2 can not be used to accept, from the global state of A after reading the
initial segment t1 · a · 1 · b · s · b · 1 · a, only the word t2 · a for t2 = 1 − t1.

This implies that (R1 �� R2)∩R3 hence also (R1 �� R2) are not timed regular.
��

We can now state the following result:

Theorem 5. It is undecidable to determine whether the shuffle of two given
timed regular languages is timed regular.

Proof. We shall use again the undecidability of the universality problem for
timed regular languages: one cannot decide, for a given timed automaton A
with input alphabet Σ, whether L(A) = (R×Σ)�.

Let Σ = {a, b}, and c be an additional letter not in Σ. For a given timed
regular language L ⊆ (R×Σ)�, we are going firstly to construct another timed
language L over the alphabet Γ = Σ ∪ {c}.

The language L is defined as the union of the following three languages.

– L1 = L.(R× {c}).(R×Σ)�

– L2 is the set of timed words over Γ having no c’s or having at least two c’s.
– L3 = (R×Σ)�.1.c.R1, where R1 is the above defined timed regular language

over the alphabet Σ.

The timed language L is regular because L and R1 are regular timed
languages.

Consider now the language L �� R2, where R2 is the above defined regular
timed language.

There are now two cases.

(1) First case. L = (R × Σ)�. Then L = (R × (Σ ∪ {c}))� and L �� R2 =
(R× (Σ ∪ {c}))�. Thus L �� R2 is timed regular.

(2) Second case. L is strictly included into (R×Σ)�.
Towards a contradiction, assume that L �� R2 is timed regular. Then the
timed language L4 = (L �� R2) ∩ [(R ×Σ)�.1.c.R3], where R3 is the above
defined timed regular language, would be also timed regular because it would
be the intersection of two timed regular languages.

On the other hand L is strictly included into (R × Σ)� thus there is a
timed word u = t1.a1.t2.a2 . . . tn.an ∈ (R×Σ)� which does not belong to L.

Consider now a timed word x ∈ (R ×Σ)�. It holds that u.1.c.x ∈ L4 iff
x ∈ (R1 �� R2) ∩R3.
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We are going to show now that L4 is not timed regular. Assume on the
contrary that there is a timed automaton A such that L4 = L(A). There
are only finitely many possible global states (including the clock values) of
A after the reading of the initial segment u.1.c. It is clearly not possible that
the timed automaton A, from these global states, accept all timed words in
(R1 �� R2) ∩R3 and only these ones, for the same reasons which imply that
(R1 �� R2) ∩R3 is not timed regular. Thus L4 is not timed regular and this
implies that L �� R2 is not timed regular.

In the first case L �� R2 is timed regular. In the second case L �� R2 is not timed
regular. But one cannot decide which case holds because of the undecidability
of the universality problem for timed regular languages. ��

We can also study the corresponding problems with “bounded resources”:

Problem 1. Given two timed automata A and B and non-negative integers n,K,
does there exist a TA C ∈ TA(n,K) such that L(C) = L(A) �� L(B) ?

Problem 2. Given two timed automata A and B and an integer n ≥ 1, does there
exist a TA C with less than n clocks such that L(C) = L(A) �� L(B) ?

Problem 3. Given two timed automata A and B, does there exist a deterministic
TA C such that L(C) = L(A) �� L(B) ?

From the proof of above Theorem 5, it is easy to see that these problems are also
undecidable. Indeed in the first case L �� R2 was accepted by a deterministic
timed automaton without any clocks. And in the second case L �� R2 was not
accepted by any timed automaton.

E. Asarin, P. Carpi, and O. Maler have proved in [ACM02] that the formal-
ism of timed regular expressions (with intersection and renaming) has the same
expressive power than timed automata. C. Dima proved in [Dim05] that timed
regular expressions with shuffle characterize timed languages accepted by stop-
watch automata. We refer the reader to [Dim05] for the definition of stopwatch
automata.

Dima showed that, from two timed automata A and B, one can construct a
stopwatch automaton C such that L(C) = L(A) �� L(B). Thus we can infer the
following corollaries from the above results.

Notice that in [ACM02, Dim05] the authors consider automata with epsilon-
transitions while in this paper we have only considered timed automata without
epsilon-transitions, although we think that many results could be extended to the
case of automata with epsilon-transitions. So in the statement of the following
corollaries we consider stopwatch automata with epsilon-transitions but only
timed automata without epsilon-transitions.

Corollary 6. One cannot decide, for a given stopwatch automaton A, whether
there exists a timed automaton B (respectively, a deterministic timed automaton
B) such that L(A) = L(B).
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Corollary 7. One cannot decide, for a given stopwatch automaton A and non-
negative integers n,K, whether there exists a timed automaton B ∈ TA(n,K)
such that L(A) = L(B).

Corollary 8. One cannot decide, for a given stopwatch automaton A and an
integer n ≥ 1, whether there exists a timed automaton B with less than n clocks
such that L(A) = L(B).

6 Timed Büchi Automata

The previous undecidability results can be extended to the case of timed Büchi
automata accepting infinite timed words. Moreover in this case many prob-
lems are highly undecidable (Π1

1 -hard) because the universality problem for
timed Büchi automata, which is itself Π1

1 -hard, [AD94], can be reduced to these
problems.

For more information about the analytical hierarchy (containing in particular
the class Π1

1 ) see the textbook [Rog67].

We now consider first the problem of determinizability or regular complemen-
tability for timed regular ω-languages.

Theorem 9. The following problems are Π1
1 -hard.

For a given TBA A, determine whether :

1. Lω(A) is accepted by a deterministic TBA.
2. Lω(A)c is accepted by a TBA.

Proof. Let Σ be a finite alphabet and let a ∈ Σ. Let, as in Section 3, A be the
set of timed words containing only letters a and such that there is a pair of a’s
which are separated by a time distance 1. The timed language A is regular but
its complement is not timed regular [AD94].

We shall use the Π1
1 -hardness of the universality problem for timed regular

ω-languages:
Let c be an additional letter not in Σ. For a given timed regular ω-language

L ⊆ (R × Σ)ω, we can construct another timed language L over the alphabet
Γ = Σ ∪ {c} defined as the union of the following three languages.

– L1 = A.(R × {c}).(R × Σ)ω, where A is the above defined timed regular
language over the alphabet Σ.

– L2 is the set of infinite timed words over Γ having no c’s or having at least
two c’s.

– L3 = (R×Σ)�.(R× {c}).L.

The timed ω-language L is regular because L is a regular timed ω-language
and A is a regular timed language. There are now two cases.

(1) First case. L = (R × Σ)ω. Then L = (R × (Σ ∪ {c}))ω. Therefore L has
the minimum possible complexity and it is accepted by a deterministic TBA
(without any clock). Moreover its complement Lc is empty thus it is also
accepted by a deterministic TBA (without any clock).
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(2) Second case. L is strictly included into (R×Σ)ω, i.e. Lc is non-empty. It
is then easy to see that :

Lc = Ac.(R× {c}).Lc

where Lc = (R× Γ )ω − L, Ac = (R×Σ)� −A, and Lc = (R×Σ)ω − L.
We are going to show that Lc is not timed ω-regular. Assume on the

contrary that there is a TBA A such that Lc = Lω(A). Consider the reading
of a timed ω-word of the form x.1.c.u, where x ∈ (R×Σ)� and u ∈ (R×Σ)ω,
by the TBA A. When reading the initial segment x.1.c, the TBA A has to
check that x ∈ Ac, i.e. that no pair of a’s in x is separated by a time distance
1; this is clearly not possible for the same reasons which imply that Ac is
not timed regular (see above Section 3). Thus Lc is not timed ω-regular.
This implies that L is not accepted by any deterministic TBA because the
class of deterministic regular timed ω-languages is closed under complement,
[AD94].

In the first case L is accepted by a deterministic TBA and Lc is timed ω-
regular. In the second case L is not accepted by any deterministic TBA and Lc

is not timed ω-regular.
This ends the proof because the universality problem for timed Büchi au-

tomata is Π1
1 -hard, [AD94]. �

As in the case of TA reading finite length timed words, we can consider the
corresponding problems with “bounded resources”.

Below TBA(n,K) denotes the class of timed Büchi automata having at most
n clocks, where constants are at most K.

Problem A. Given a TBA A and non-negative integers n,K, does there exist a
TBA B ∈ TBA(n,K) such that Lω(B)c = Lω(A) ?

Problem B. Given a TBA A and non-negative integers n,K, does there exist a
deterministic TBA B ∈ TBA(n,K) such that Lω(B) = Lω(A) ?

We can infer from the proof of preceding Theorem, that these problems are also
Π1

1 -hard, because we have seen that, in the first case, L and Lc are accepted by
deterministic timed Büchi automata without any clock.

In a very similar manner, using the same ideas as in the proof of Theorems 2
and 9, we can study the problem of minimization of the number of clocks for
timed Büchi automata. We can then show that it is Π1

1 -hard, by reducing to it
the universality problem for timed Büchi automata with n clocks, where n ≥ 2,
which is Π1

1 -hard. So we get the following result.

Theorem 10. Let n ≥ 2 be a positive integer. It is Π1
1 -hard to determine, for

a given TBA A with n clocks, whether there exists a TBA B with n− 1 clocks,
such that Lω(B) = Lω(A).
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Remark 11. We have already mentioned that, for timed automata with only
one clock, the universality problem is decidable [OW04]. On the other hand, for
timed Büchi automata with only one clock, the universality problem has been
recently shown to be undecidable by P. A. Abdulla, J. Deneux, J. Ouaknine, and
J. Worrell in [ADOW05]. However it seems to us that, in the paper [ADOW05],
this problem is just proved to be undecidable and not Π1

1 -hard. Then we can just
infer that the above theorem is still true for n = 1 if we replace “Π1

1 -hard” by
“undecidable”.
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Abstract. Timed and weak timed simulation relations are often used to
show that operations on hybrid systems result in equivalent behavior or
in conservative overapproximations. Given that systems are frequently
designed and verified in a modular approach, it is desirable that this
relationship is compositional, which is not the case for hybrid systems
in general. We identify subclasses of linear hybrid automata that are
compositional with respect to timed, respectively weak timed simulation.

1 Introduction

Hybrid automata are notoriously hard to analyze, so they are often overapprox-
imated with hybrid automata of simpler dynamics, see [1,2,3] and references
therein. The proofs used to show that the constructed automata are indeed
conservative frequently involve timed simulation, or a weak variant that allows
unobservable transitions as long as they don’t change the variables. The analysis
is usually challenging even for the abstracted system, and increases exponentially
with the number of components and variables. Compositional reasoning is known
as a valuable tool to counter this problem. However, timed and weak timed simu-
lation are not compositional for hybrid automata with arbitrary dynamics. Con-
sequently, a successful compositional analysis of the abstracted system does not
imply safety of the original system when timed simulation was used in proving
conservativeness.

In this paper we identify classes of hybrid automata that are compositional
with respect to timed, respectively weak timed simulation. If such a class is used
to overapproximate a system, conservativeness is consequently guaranteed and
compositional reasoning valid. These results are directly applicable to strengthen
the overapproximation operators in [1,2,3] with respect to compositionality.

Related Work. We use the hybrid automata in [4] with minor modifications.
We define a subset of the controlled variables as output variables, specify the
activities via their derivatives, include a set of initial states, and consider the
same controlled variables in all locations. The hybrid automata in [4] are known
to be compositional for trace inclusion [4], see [5] for applications. The controlled
variables are needed to prove compositionality. We add output variables to hide
internal (non-output) behavior, i.e., so we can compare automata whose output
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variables behave identically while the internal workings may be different. More
sophisticated hybrid input/output-automata (HIOA) are proposed and studied
in detail in [6]. HIOA impose input-enabledness that we do not require, so the
hybrid automata in this paper are equivalent to the pre-HIOA of [6]. The stricter
I/O-distinction in [6] may be used to ensure some liveness properties; we only
consider safety. We use a compositional type of simulation from [6], which we
call trace simulation to set it apart from timed simulation.

Timed simulation is usually defined using labeled transition system (LTS) se-
mantics [7]. Our definition is directly based on runs of hybrid automata, but is
otherwise equivalent. In earlier work, we proposed semantic criteria for compo-
sitionality of timed simulation without giving an interpretation on the hybrid
automaton level, and not for weak timed simulation [8]. The framework used in
this paper presents a substantial improvement and simplification, and our previ-
ous results on compositionality and assume/guarantee-reasoning from [9,10] can
be transferred to it. For the sake of brevity, we provide mostly proof sketches.
Detailed proofs for most of the results (except those involving overlap-closure)
can be found in [10].

In the following section, we present our hybrid automata and their semantics.
In Sect. 3 we define trace and timed simulation, as well as their weak counter-
parts. In Sect. 4 we identify compositional subclasses for these types of simula-
tion. Finally, we draw some conclusions in Sect. 5.

2 Hybrid Automata

We use a standard hybrid automaton model and parallel composition operator
from [4], to which we add a subset of output variables. A variable is either an
uncontrolled variable (also called input), and can therefore change arbitrarily at
any time, or controlled. In parallel composition, controlled variables can not be
changed independently by other automata in the composition. These elements
are essential to compositionality [11]. A subset of the controlled variables are
output variables, which, together with the uncontrolled variables, define the ex-
ternally visible behavior of the automaton. Note that the uncontrolled variables
may be restricted in their derivatives, and can only change arbitrarily inside
the invariant. This allows us to model causal and noncausal coupling between
variables, which is useful, e.g., to model conservation laws.

Preliminaries. Given a set X = {x1, . . . , xn} of variables, a valuation is a func-
tion v : X → R. We use Ẋ to denote the set {ẋ1, . . . , ẋn} of dotted vari-
ables, and X ′ to denote the set {x′

1, . . . , x
′
n} of primed variables. Let V (X )

denote the set of valuations over X . The projection of v to variables X̄ ⊆ X
is v↓X̄= {x → v(x)|x ∈ X̄}. The embedding of a set U ⊆ V (X) into variables
X̄ ⊇ X is the largest subset of V (X̄) whose projection is in U , written as U |X̄ .
When a valuation u over X and a valuation v over X̄ agree, i.e., u↓X∩X̄= v↓X∩X̄ ,
we use u � v to denote the valuation w defined by w↓X= u and w↓X̄= v. Arith-
metic operations on valuations are defined in the straightforward way. An activity
over X is a function f : R≥0 → V (X ). Let Acts(X ) denote the set of activities
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over X . The derivative ḟ of an activity f is an activity over Ẋ , defined anal-
ogously to the derivative in Rn. The extension of operators from valuations to
activities is done pointwise. Let constX(Y ) = {(v, v′)|v, v′ ∈ V (X), v↓Y = v′↓Y }.
The convex hull of a set of valuations S written as chull(S).

Definition 1 (Hybrid Automaton). (modified from [4]) A hybrid automaton
(HA) A = (Loc, (X,O, C),Lab,Edg ,Flow , Inv , Init) consists of:

– A finite set Loc called locations.
– A finite set called variables X , a subset C of X called controlled variables

and a subset O ⊆ C called output variables. Let I = X \ C be the input
variables and E = I∪O the external variables. A pair p = (l, v) of a location
and a valuation over X is a state of the automaton and the state space is
SH = Loc×V (X ). For a state p = (l, v) we define loc(p) := l and val(p) := v.
For a set of variables Y , let valY (p) := v↓Y .

– A finite set Lab of synchronization labels including the stutter label τ .
– A finite set Edg of edges called transitions. Each transition e = (l, a, µ, l′)

consists of a source, respectively target locations l, l′ ∈ Loc, a synchroniza-
tion label a ∈ Lab, and a jump relation µ ⊆ V (X)2. We require that for
every location l ∈ Loc there is a stutter transition (l, τ, constX(C), l) ∈ Edg.

– A set Flow ⊆ Loc × V (X ∪ Ẋ) called flows.
– A set Inv ⊆ Loc × V (X) called invariant.
– A set Init ⊆ Inv called initial states.

A class of hybrid automata of particular interest are linear hybrid automata
(LHA), since they can be analyzed using simple polyhedral computations [7].
LHA are defined as follows. A linear constraint over a set of variables X =
{x1, . . . , xn} is of the form

∑
i aixi �� b, where �� ∈ {<,≤}. A (convex) linear

predicate is a (conjunctive) boolean combination of linear constraints. A linear
hybrid automaton has invariants and initial states defined in each location by a
linear predicate over the variables, jump relations defined by a linear predicate
over X ∪ X ′, and flow valuations defined by convex linear predicates over Ẋ.

Definition 2 (Parallel Composition). [4] Hybrid automata H1, H2 are com-
patible if C1∩C2 = ∅, X1∩C2 ⊆ O2 and X2∩C1 ⊆ O1. The parallel composition
of compatible hybrid automata H1, H2 is the hybrid automaton H with

– Loc = Loc1 × Loc2,
– X = X1 ∪ X2, C = C1 ∪ C2, O = O1 ∪O2, Lab = Lab1 ∪ Lab2
– ((l1, l2), a, µ, (l′2, l′2)) ∈ Edg iff

• (l1, a1, µ1, l
′
1) ∈ Edg1 and (l2, a2, µ2, l

′
2) ∈ Edg2

• either a = a1 = a2, or a = a1 /∈ Lab2 and a2 = τ , or a1 = τ and
a = a2 /∈ Lab1,

• µ = {(v, v′)|(v↓Xi , v
′↓Xi) ∈ µi};

– Flow (l1, l2) = Flow1(l1)|X∪Ẋ ∩ Flow2(l2)|X∪Ẋ ;
– Inv(l1, l2) = Inv1(l1)|X ∩ Inv2(l2)|X ;
– Init(l1, l2) = Init1(l1)|X ∩ Init2(l2)|X .
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idle wait
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ci ≤ ẋi ≤ di
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.
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.
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τ
k′ = k

(b) Shared variable S

Fig. 1. Compositional model of timing based mutual-exclusion protocol in [12]

Example 1. Consider the model of a timing based mutual-exclusion protocol
shown in Fig. 1. In every location l of Pi, there is a transition (l, τ, µ, l) with
µ = {(v, v′)|v(xi) = v′(xi), v(k), v′(k) ∈ R} (omitted from the figure). The
system is considered safe if there are never two or more processes in the critical
section at the same time. It is a compositional adaptation of the model given
in [12], and parameterized to n processes with time constants ci and di that
represent the minimal, respectively maximal, skew of their clocks. The processes
Pi have a controlled variable xi to model their local clock and an input variable k
that models a semaphore. Because none of the processes controls k, it is modeled
separately in an automaton S we call a shared variable model. S has k as a
controlled variable and fixes its derivative to zero. It gives the processes access
to k by synchronizing on transitions that wish to change the value of k. Note
that it does not restrict the change of k in these transitions.

Semantics. We define the semantics of hybrid automata with runs, which we
construct from atomic runs that represent a period of elapsing time followed
by a (discrete) transition. The change of variables over time is described by
an admissible activity. An activity f(t) ∈ Acts(X) is called admissible over an
interval [0, δ] in a location l if δ = 0, or ∀t, 0 ≤ t ≤ δ : f(t) ∈ Inv(l), f(t)� ḟ (t) ∈
Flow (l). In weak runs, we consider τ -transitions that do not change the variables
as unobservable.

Definition 3 (Run). An atomic run σ = p
δ,f,a−−−→ p′ consists of source and

target states p, p′, a duration δ ∈ R≥0, an activity f over X called witness and
a label a ∈ Lab such that
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– p, p′ ∈ Inv,
– f is differentiable and admissible over [0, δ] in loc(p) and f(0) = val(p),
– there is a transition (loc(p), a, µ, loc(p′)) ∈ Edg with (f(δ), val (p′)) ∈ µ.

A run of a hybrid automaton H is a finite or infinite sequence

σ = p0
δ0,f0,a0−−−−−→ p1

δ1,f1,a1−−−−−→ p2 . . .

such that σi = pi
δi,fi,ai−−−−−→ pi+1 is an atomic run for all i ≥ 0. For a finite run,

its length is the number of atomic runs in the sequence. A weak atomic run
σw = p

δ,f,a−−−→→ p′ exists iff there is a finite run σ

σ = p0
δ0,f0,τ−−−−→ p1

δ1,f1,τ−−−−→ . . .
δn−2,fn−2,τ−−−−−−−−→ pn−1

δn−1,fn−1,a−−−−−−−−→ pn

such that
∑n−1

k=0 δk = δ and for all i,t, 0 ≤ i < n − 1, ti−1 ≤ t ≤ ti, holds
f(t) = fi(t − ti−1), with t−1 = 0 and ti =

∑i
k=0 δk for 0 ≤ i. A weak run is

defined analogously to a run as a sequence of weak atomic runs. A weak atomic
run with all states in the same location l is called unilocational, and denoted by
p

δ,f,a−−−→→ l p′.

Remark 1. Due to the stutter transitions, there exists a run p
0,f,τ−−−→ p in every

state p ∈ Inv and for every activity f with f(0) = val(p). To underline that the
activity is of no relevance, we may write p

0,·,τ−−−→ p instead.

Remark 2. All except the last transition of a weak atomic run leave the variables
unchanged, since fi(ti − ti−1) = f(ti) = fi+1(ti − ti) for 0 ≤ i < n − 2.

3 Simulation Relations

To express that a hybrid automaton G is a valid abstraction of a hybrid automa-
ton H (or equivalently that H refines G) one can establish a simulation relation
over the product of their states. It relates a state in H to those in G that have
the same, or more, behavior. Two types of simulation are predominant in lit-
erature: trace simulation compares the exact trace between source and target
states, while timed simulation only considers how much time passed to get from
one to the other. Weak versions of simulation are defined over weak traces. They
are often used to show that a location with complex dynamics can be overap-
proximated by several locations with simpler dynamics that are connected with
τ -transitions, e.g., in [13]. To be consistent with compositionality, two hybrid
automata can only be compared if they have comparable inputs and outputs.

Definition 4. H is comparable with G if XH = XG, LabH = LabG, CH ⊆ CG

and OH = OG.

Note that according to this definition G may use less inputs than H , but not
more.
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Fig. 2. H is not trace simulated by G, but timed simulated

Definition 5 (Trace Simulation). A relation R ⊆ SH × SG is a trace simu-
lation relation between comparable H and G iff for all (p, q) ∈ R, δ, f, a, p′,

p
δ,f,a−−−→H p′ ⇒ ∃g, q′ : q

δ,g,a−−−→G q′ ∧ (p′, q′) ∈ R ∧ ∀t : f(t)↓EG= g(t)↓EG .

We write H ,t G iff there exists a trace simulation relation R such that InitH ⊆
R−1(InitG). R is called the witness to the simulation.

Definition 6 (Timed Simulation). A relation R ⊆ SH × SG is a timed sim-
ulation relation between comparable H and G iff for all (p, q) ∈ R, δ, f, a, p′,

p
δ,f,a−−−→H p′ ⇒ ∃g, q′ : q

δ,g,a−−−→G q′ ∧ (p′, q′) ∈ R ∧ f(0)↓EG= g(0)↓EG .

We write H ,0 G iff there exists a timed simulation relation R such that InitH ⊆
R−1(InitG). R is called the witness to the simulation.

Timed simulation forces G to have an activity that matches in the source and
target states of an atomic run. It is, however, not guaranteed that H and G take
the same path in between, as the following example demonstrates.

Example 2 (Trace vs. timed simulation). Consider H and G shown in Fig. 2
with XH = XG = {x, y}, OH = OG = {x} (τ -transitions not shown). Recall
that restrictions on the activities of input y are allowed. H has only trajectories
in the form of straight lines, while G can nondeterministically chose any parabola
with nonzero curvature. Consequently, G can not exactly match the atomic runs
of H and the conditions for trace simulation are violated, i.e., H �t G. However,
for any given atomic run in H , G has an atomic run that, while not being
identical over all points in time, matches in the timed sense, i.e., source and
target states are equal and takes the same time to get from source to target.
In any atomic run that might follow, G can chose a new parabola with a new
curvature that matches in the timed sense. As result, H ,0 G.

Often it is useful to consider τ -transitions unobservable in the comparison. This
is achieved by looking at weak atomic runs instead of atomic runs:

Definition 7 (Weak Simulation). Weak trace (timed) simulation is defined
analogously to trace (timed) simulation over weak atomic runs, and denoted by
H ,w

t G (H ,w
0 G).
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Fig. 3. H is not trace simulated by G, but weakly trace simulated
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ẏ = −1

τ

τ

(b) G

p p’
δ

x

y

0

(c) Run in H

p p

0

0 1 2

1
2

1
2

x

y

0

(d) Run in G

Fig. 4. H is not timed simulated by G, but weakly timed simulated

Weak atomic runs differ from atomic runs in two ways: The witnessing activity
only has to be piecewise differentiable instead of differentiable, and the location
can change during the period of time elapse. The following examples illustrate
how this reflects in the automata that match in weak simulation, but not in
simulation.

Example 3 (Weak trace simulation). Consider the LHA H and G shown in Fig. 3
with XH = CH = {x, y}, XG = CG = {x, z}, OH = OG = {x}. Consider the
run of H shown in Fig. 3(c). Since y is not an external variable, both can take
different activities with respect to y. G does not have any differentiable activity
that matches because the only ones that do, e.g., a parabola from p to p′, violate
the flow constraint |ż| ≤ 1. Consequently, H �t G. However, G does have a
two-piece activity that can be represented by a weak atomic run, see Fig. 4(d),
and H ,w

t G.

Example 4 (Weak timed simulation). Consider the LHA H and G shown in
Fig. 4 with XH = XG = {x, y}, CH = CG = OH = OG = {x}. Without taking
τ -transitions, G can not match the activities in H , so H �0 G. However, H ,w

0 G
because every transition in H can be matched by a concatenation of transitions
in G in which positive and negative change of y cancel each other out, as shown
in Fig. 4(d).

We define the following equivalence relation based on simulation:

Definition 8 (Bisimulation). A simulation relation R is a bisimulation re-
lation between H and G iff R is simulation relation for H ∼ G and R−1 is
a simulation relation for G ∼ H, where ∼∈ {,t,,0,,w

t ,,w
0 }. Bisimulation is

denoted with ∼=t,∼=0,∼=w
t ,∼=w

0 depending on what relation was chosen for ∼.
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The different types of simulation introduced in this section are ordered with
respect to how closely they distinguish behaviors of hybrid automata.

Proposition 1. Simulation relations satisfy the following partial order:

H ,t G ⇒ H ,0 G
⇓ ⇓

H ,w
t G ⇒ H ,w

0 G

It will become apparent in the next section that the closer a simulation relation
distinguishes behaviors, the larger is the class of hybrid automata for which it
is compositional.

4 Compositionality

We identify subclasses of hybrid automata for which simulation is compositional.
To do so we must show that the behavior of composed automata implies matching
behavior of their composed specifications. Zero-duration atomic runs match for
all the above types of simulation [8], so we can focus on continuous activities.

Definition 9. A relation ∼ over hybrid automata is compositional iff

H1 ∼ G1 ∧ H2 ∼ G2 ⇒ H1||H2 ∼ G1||G2.

We will also use the following equivalent formulation of compositionality:

Lemma 1. A preorder ∼ is compositional iff H ∼ G ⇒ H ||M ∼ G||M .

Compositionality is enforced by the fact that variables are controlled by at most
one automaton.

Example 5. Consider the mutual-exclusion protocol of Ex. 1. In a noncompo-
sitional model, such as the one in [12], the analysis of n processes yields that
P1|| . . . ||Pn is safe. However, this does not imply that P1|| . . . ||Pn||M is safe. M
could reset k at the wrong time and cause more than one process to enter the
critical section. In contrast, the compositional model does not allow M to change
k in any way that is not already contained in S. Any transitions that attempt this
will be blocked by the composition operator since it imposes that transitions of
M either synchronize with existing transitions or with τ -transitions, which have
the jump relation constX(C) and therefore leave k constant.

The simulation relations in this paper are preorders, which is easy to show using
proofs similar to those in [10]. Consequently, we can use Lemma 1 to show
compositionality.

Proposition 2. Trace and timed simulation, as well as their weak variants, are
preorders for comparable hybrid automata.

If H is trace simulated by G, the external part of any activity in H must be
matched exactly by an activity in G. Because M can inhibit only those same
external variables, any activity in H ||M entails a matching activity in G. Com-
positionality is a direct consequence.
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Proposition 3. Trace and weak trace simulation are compositional.

Proof. (Sketch) The compositionality of trace simulation was already shown in
[6], but not that of weak trace simulation. We extend this result to weak trace
simulation by showing that a weak atomic run in H ||M implies a weak atomic
run in G||M such that its target state is in the simulation relation. Our proof
follows the structure of the one in [6] and relies strongly on the presence of
stuttering steps. Let R0 be the witnessing simulation relation for H ,w

t G. We
show that

R = {(((l, m), x), ((k, m), y)) | ((l, x↓XH ), (k, y↓XG)) ∈ R0, x↓XM = y↓XM}

is a witness to H ||M ,w
t G||M . A weak atomic run σH||M in H ||M can be

projected to weak atomic runs σH and σM in H , respectively M . Because G
weakly trace simulates H , σH implies that there exists a weak atomic run σG

in G with a matching activity and a matching jump at the end. Now σG and
σM can be padded to have τ -transitions at identical intervals. Since G and H
show the same external behavior in σG and σH , σG can be composed with the
run σM to yield a weak atomic run in G||M . Since the external variables in the
target states of σH||M and σG||M have the same values, the target states are
in R. This shows that R is a simulation relation. It is straightfoward to show
InitH||M ⊆ R−1(InitG||M ), which concludes the proof. ��

Timed simulation only forces G to have an activity that matches in the source
and target states of an atomic run. It is not guaranteed that H and G take the
same path in between, as the following example demonstrates.

Example 6 (Timed simulation and compositionality). Consider H and G shown
in Fig. 2. In Ex. 2 we showed that H ,0 G. If timed simulation were compo-
sitional, Lemma 1 says that simulation should still hold if we compose both
sides with any K. Consider K from Fig. 5(a), with XK = CK = {y}. In G||K
the invariant y = 0 does not allow any timed transitions of nonzero duration,
while in H ||K time can elapse forever, as illustrated in Fig. 5. Consequently,
H ||K �0 G||K.

Since timed simulation abstracts the exact activites away it is, in general, not
compositional. We now show that it is, however, compositional for LHA with
convex invariants. In the proof we use a lemma from [12], which states that if
there is any admissible activity, there is also a linear one:

Lemma 2. (adapted from [12]) Let l be a location of any linear hybrid automa-
ton with a convex invariant Inv(l), and v, v′ ∈ Inv(l) be any valuations inside
it. If there exists an activity f that is admissible in l over some interval [0, δ]
and f(0) = v, f(δ) = v′ then f ′(t) = v + t/δ(v′ − v) is an equally admissible
activity.

As a consequence of this lemma, whenever there are activities with identical
source and target states in LHA with convex invariants H and G, there is also
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Fig. 5. Timed simulation for H,G from Fig. 2 is not compositional with K

a linear activity that is admissible in both automata. From the existence of two
different activities we can thus infer the existence of a common activity, which
immediately leads to compositionality:

Proposition 4. Timed simulation is compositional for LHA with convex invari-
ants.

Proof. Timed simulation is compositional for compatible automata H, M if for
any atomic runs (k, u)

δ,f,τ−−−→H (k′, u′) and (l, v)
δ,g,τ−−−→M (l′, v′) with u↓XH∩XM =

v↓XH∩XM and u′↓XH∩XM = v′↓XH∩XM there is an admissible differentiable activ-
ity h in location (k, l) of H ||M with h(0)↓XH = u, h(0)↓XM = v and h(δ)↓XH = u′,
h(δ)↓XM = v′ [8]. If H, M are LHA with convex invariants, there exist, according

to Lemma 2, linear activities f ′ and g′ that witness (k, u)
δ,f ′,τ−−−→H (k′, u′) and

(l, v)
δ,g′,τ−−−→M (l′, v′). Since f ′↓XH∩XM = g′↓XH∩XM , the activity h defined by

h↓XH = f ′, h↓XM = g′ is differentiable and admissible in H ||M . ��

We will later discuss compositionality of LHA with nonconvex invariants using
weak simulation.

If one admits weak atomic runs in timed simulation, i.e., regards τ -transitions
as unobservable, compositionality is lost even for LHA. We show this with the
following counterexample.

Example 7 (Non-compositional LHA for weak timed simulation). Consider the
LHA H and G from Ex. 4, shown in Fig. 4. H ,w

0 G because every atomic run
in H can be matched by a concatenation of atomic runs in G in which positive
and negative change of y cancel each other out. Now consider the composition
of H and G with K shown in Fig. 6(a), with XK = CK = {y}. For H ||K time
can elapse forever, while for G||K the invariant y = 0 does not allow any atomic
runs of nonzero duration, as illustrated in Fig. 6. Consequently, H ||K �w

0 G||K.

We now identify a class of hybrid automata for which weak timed simulation
is compositional. The alternation of τ -transitions with passing time allows an
automaton to asymptotically mimic any activity that is a convex piecewise com-
bination of admissible activities. Our compositional class is simply one for which
we know that all the activities that the automaton can mimic are actually admis-
sible, possibly in another location. The relevant τ -transitions in a weak atomic
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y = 0
−2 ≤ ẏ ≤ 2

(a) K

��x

y

0
p pp p

(b) Run in H ||K
��x

y

0
p pp p

(c) No run in G||K

Fig. 6. Weak timed simulation for H, G from Fig. 4 is not compositional with K

run do not change the variables, see Remark 2. The mimicking must therefore
take place in the vicinity of the intersection of two invariants that are connected
with τ -transitions. We demand that any such mimicking can take place entirely
within one location, formally as follows:

Definition 10. A hybrid automaton H is overlap-closed if for any (l, u) there

is a δmax(l, u) such that (l, u)
δ,f,τ−−−→→ (l′, u′) with δ ≤ δmax(l, u) implies

(i) a run (l, u)
δ,f,τ−−−→→ l (l, u′)

0,·,τ−−−→→ (l′, u′), or

(ii) a location k such that (l, u)
0,·,τ−−−→→ (k, u)

δ,f,τ−−−→→ k (k, u′)
0,·,τ−−−→→ (l′, u′).

H is strongly overlap-closed if inf l,u δmax(l, u) > 0.

Remark 3. Note that any hybrid automaton is overlap-closed if it does not have
different locations connected by τ -transitions.

According to Lemma 2, LHA with convex invariants always have a linear ac-
tivity between two points of the same location. Combining this fact with the
assumption of overlap-closedness, we can conclude that if H ,w

0 G, a weak run
in H is matched in G with a weak run witnessed by the same external activity.
From there it is straightforward to show compositionality as follows:

Proposition 5. Let H1, H2 be LHA and G1, G2 be strongly overlap-closed LHA
with convex invariants and bounded derivatives. If H1 ,w

0 G1 and H2 ,w
0 G2,

then H1||H2 ,w
0 G1||G2.

Proof. (Sketch) Let R1, R2 be witnessing weak simulation relations for H1 ,w
0

G1 and H2 ,w
0 G2, respectively. We show that

R = {(((k1, k2), x), ((l1, l2), y)) | ((ki, x↓Hi), (li, y↓Gi)) ∈ Ri for i = 1, 2}

is a witnessing simulation relation for H1||H2 ,w
0 G1||G2. The containment of

initial states in R follows straightforwardly from the containment in R1 and R2.
It remains to demonstrate that for any pair of states in R, a weak atomic run in
H1||H2 implies a matching weak atomic run in G1||G2 such that the target states

are again in R. A weak atomic run p
δ,f,α−−−→→ p′ can be split in two: a run p

δ,f,τ−−−→→ p′′

containing only τ -transitions that leave the variables unchanged (see Remark 2)
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and a run p′′
0,f,α−−−→→ p′ of zero duration. The definition of weak simulation for a

run of zero duration is the same as that of timed simulation, so with Prop. 4
we can deduce that the latter part satisfies compositionality. The rest of the
proof is therefore concerned with the former part of the run, which only includes
τ -transitions that do not change the variables.

Because the Hi and H are LHA, a weak atomic run in H1||H2 has a witnessing
run whose activity is piecewise linear [12]. We pad it with τ -transitions to obtain
a run

σH = r0
δ0,f0,τ−−−−→ r1

δ1,f1,τ−−−−→ . . .
δn−2,fn−2,τ−−−−−−−−→ rn−1

δn−1,fn−1,τ−−−−−−−−→ rn

with durations δj ≤ δmin for some arbitrarily small δmin > 0, and linear activities

f1. Every one of the atomic runs σj,H = rj
δj ,fj ,τ−−−−→ rj+1 in σH projects in the

Hi onto corresponding runs σj,Hi . Since Hi is weakly simulated by Gi, there
must be matching weak runs σw

j,Gi
, i.e., with the same valuations of the external

variables in the source and target state. Let δmin = inf l,u δmax(l, u) from Def. 10.
According to Def. 10, this implies that there is also matching weak run σ̄w

j,Gi
with

all time-elapse inside a single location. Because the Gi are LHA with convex
invariants, it follows from Lemma 2 that the linear activity between source and
target state is also admissible in that location, thus matching the one in Hi.

It remains to show that the runs in G1 and G2 compose to a run in G1||G2,
and that the target state of this run lies in R. Recall that the source and target
states of σj,Hi and σ̄w

j,Gi
lie in Ri, which means they have the same values in the

shared external variables. The shared variables of H1 and H2 also have the same
values in the respective states, and due to comparability the same holds for the
shared variables of G1 and G2. By padding with τ -transitions, we can obtain
witnessing nonatomic runs for σ̄w

j,G1
and σ̄w

j,G2
that have the same length and

whose atomic runs have the same duration. Because all the nonzero activities
are linear, the source and target states still match. Consequently, the runs in G1
and G2 compose to a run in G1||G2. Because the target states of the runs in Hi

and Gi lie in Ri, the target states of the runs in H1||H2 and G1||G2 lie in R. ��

Example 8 (Compositional LHA for weak timed simulation). 1 Consider the
LHA H from Ex. 4, shown in Fig. 4, and G′ from Fig. 7, with XG′ = {x, y},
CG′ = OG′ = {x}. G′ is overlap-closed for the sign �� = ≥, and not overlap-
closed if �� = >. In both cases H ,w

0 G′ because every atomic run in H can be
matched by a concatenation of atomic runs in G in which positive and negative
change of y cancel each other out. Now consider the composition of H and G′

with K shown in Fig. 6(a), with XK = CK = {y}. In G′||K with �� = ≥, there
are silent transitions to location c, where time can elapse forever, and conse-
quently H ||K ,w

0 G′||K. If �� = >, there is no run from the initial location a to
location c in G′||K, because the invariant of location b is empty. Consequently,
H ||K �w

0 G′||K.

1 Thanks to the anynomous reviewer who inspired the example.
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a
ẋ = 1
ẏ = 1
y ≥ 0

c
ẋ = 1

−1 ≤ ẏ ≤ 1
y ≥ 0

b
ẋ = 1

−1 ≤ ẏ ≤ 1
y �� 0

τ

τ

τ

Fig. 7. LHA G′, overlap-closed if �� = ≥

For weak runs, trace simulation has the advantage over timed simulation because
it is compositional for any hybrid automata. In [1], timed simulation was used to
show that the invariant of a hybrid automaton can be partitioned into arbitrarily
small parts with a splitting operation that does not modify the behavior. This is
useful in many applications, e.g., to transform nonconvex into convex invariants,
or to overapproximate the automaton with one of simpler dynamics [1]. The
splitting operation is defined as follows:

Definition 11 (Invariant split). (modified from [1]) An (open) split S for a
hybrid automaton H maps each location l to a finite set {S l

1, . . . ,S
l
k} of sets of

valuations over X such that there exists a finite (open) cover Ol = {Ol
1, . . . ,O

l
k}

of Inv(l) with S l
i = Inv(l) ∩ Ol

i for i = 1, . . . , k. The split of H along S is the
hybrid automaton split(H,S) = (LocS , (X, C,O),Lab,→S , FlowS , InvS , InitS)
with

– LocS = {(l, S) | l ∈ Loc, S ∈ S(l)},
– →S= {((l, S), a, µ, (l′, S′)) | (l, a, µ, l′) ∈→},
– FlowS((l, S)) = Flow (l), InvS((l, S)) = Inv(l)∩S, InitS((l, S)) = Init(l)∩S.

We rephrase the following results of [1] and [3] using weak trace simulation, thus
expanding their applicability to the context of compositional reasoning.

Proposition 6. For any H, H ∼=w
t split(H,S) if S is an open split or the

admissible activities of H are analytic functions.

Proof. In [1], it is shown that H ∼=w
0 split(H,S) if S is an open split. While timed

simulation is used formally, the corresponding proof shows that the activities
match identically over time. It is therefore straightforward to strengthen the
result to weak trace bisimulation. In [3] it is shown, based on the results of [1],
that the split does not have to be open if the admissible activities of H are
analytic functions. ��

The condition of analytic activities applies, e.g., to LHA, or hybrid automata
with affine dynamics [3], whose flows are defined by conjunctions of linear con-
straints over X ∪ Ẋ.
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5 Conclusions

Timed and weak timed simulation are often used to show equivalence and ab-
straction between hybrid automata. We identify the following subclasses of lin-
ear hybrid automata (LHA) for which these relations are compositional: LHA
with convex invariants for timed simulation, and strongly overlap-closed LHA
with convex invariants and bounded derivatives for weak timed simulation. An
advantage of timed simulation relations is that for many LHA they can be com-
puted, e.g., with PHAVer [9,8,2]. In addition, LHA can overapproximate any
hybrid automata arbitrarily close [1]. Using the above results we can overap-
proximate with a compositional subclass of LHA, and thus apply compositional
and assume/guarantee-reasoning to arbitrary hybrid automata.

On the downside, timed simulation is not compositional in general. Weak
trace simulation, which is compositional for hybrid automata with arbitrary
dynamics, can sometimes be used instead. E.g., one may substitute it for weak
timed simulation in the proofs of [3,1] without having to change any essential
parts of the proofs. The result is a notion of equivalence that is stronger per se
and compositional. In future work we will identify subclasses for which timed
simulation implies trace simulation.
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Abstract. Real-time systems usually encompass parts that are best de-
scribed by a continuous-time model, such as physical processes under
control, together with other components that are more naturally for-
malized by a discrete-time model, such as digital computing modules.
Describing such systems in a unified framework based on metric tempo-
ral logic requires to integrate formulas which are interpreted over discrete
and continuous time.

In this paper, we tackle this problem with reference to the metric tem-
poral logic TRIO, that admits both a discrete-time and a continuous-time
semantics. We identify sufficient conditions under which TRIO formu-
las have a consistent truth value when moving from continuous-time to
discrete-time interpretations, or vice versa. These conditions basically
involve the restriction to a proper subset of the TRIO language and a
requirement on the finite variability over time of the basic items in the
specification formulas. We demonstrate the approach with an example
of specification and verification.

Keywords: formal methods, real-time, integration, discretization, met-
ric temporal logic, discrete time, continuous time, dense time.

1 Introduction and Motivation

The application of formal methods to the description and analysis of large and
heterogenous systems inevitably requires being able to model different parts
of the system using disparate notations and languages. In fact, it is usually
the case that different modules are naturally described using diverse formal
techniques, each one tailored to the specific nature of that component. Indeed,
the past decades have seen the birth and proliferation of a plethora of different
formal languages and techniques, each one usually focused on the description of
a certain kind of systems and hinged on a specific approach. On the one hand,
this proliferation is a good thing, as it allows the user to choose the notation and
methodology that is best suited for her needs and that matches her intuition.
However, this is also inevitably a hurdle to the true scalability in the application
of formal techniques, since we end up having heterogeneous descriptions of large
systems, where different modules, described using distinct notations, have no
definite global semantics when put together. Therefore, we need to find ways to
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integrate dissimilar models into a global description which can then be analyzed,
so that heterogeneity of notation.

A particularly relevant instance of the above general problem is encountered
when describing real-time systems, which require a quantitative modeling of
time. Commonly, such systems are composed of some parts representing physical
environmental processes and some others being digital computing modules. The
former ones have to model physical quantities that vary continuously over time,
whereas the latter ones are digital components that are updated periodically at
every (discrete) clock tick. Hence, a natural way to model the physical processes
is by assuming a continuous-time model, and using a formalism with a compliant
semantics, whereas digital components would be best described using a discrete-
time model, and by adopting a formalism in accordance. Thus, the need to
integrate continuous-time formalisms with discrete-time formalisms, which is
the object of the present paper.

In particular, let us consider the framework of descriptive specifications based
on (metric) temporal logic. Some temporal logic languages have semantics for
both a continuous-time model and a discrete-time one: each formula of the lan-
guage can be interpreted in one of the two classes of models. TRIO is an example
of these logics [5], the one we are considering in this paper; MTL [14] is an-
other well-known instance.1 The discrete-time semantics and the continuous-time
one, however, are unrelated in general, in that the same formula unpredictably
changes its models when passing from one semantics to another. On the contrary,
integration requires different formulas to describe parts of the same system, thus
referring to unique underlying models.

To this end, we introduce the notion of sampling invariance of a specification
formula. Informally, we say that a temporal logic formula is sampling invariant
when its discrete-time models coincide with the samplings of all its continuous-
time models (modulo some additional technical requirements). The sampling
of a continuous-time model is a discrete-time model obtained by observing the
continuous-time model at periodic instants of time. The justification for the
notion of sampling invariance stems from how real systems are made. In fact,
in a typical system the discrete-time part (e.g., a controller) is connected to
the (probed) environment by a sampler, which communicates measurements of
some physical quantities to the controller at some periodic time rate (see Fig-
ure 1). The discrete-time behaviors that the controller sees are samplings of the
continuous-time behaviors that occur in the system under control. Our notion of
sampling invariance captures abstractly this fact in relating a continuous-time
formula to a discrete-time one, thus mirroring what happens in a real system.

Once we have a sampling invariant specification, we can integrate discrete-
time and continuous-time parts, thus being able, among other things, to resort to
verification in a discrete-time model, which often benefits from more automated
approaches, while still being able to describe naturally physical processes in a
continuous-time model.

1 We note that all the results drawn in this paper about TRIO can be applied to MTL
with little effort.
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SAMPLER

CONTINUOUS
TIME

DISCRETE
TIME

Fig. 1. A system with a sampler

Another interesting approach that could be achieved with a sampling-invariant
language which is the subset of a more expressive one (TRIO, in our case) is one
based on refinement. In the process of formal modeling of a digital component
— and of a computer program in particular — one would start with a very high-
level description that would refer actions and events to the “real, ideal, physical”
time. The final implementation, however, will have to refer to a more concrete,
measured view of time, such as the one achievable through periodic readings
of an imperfect clock. The refinement of the specification from the ideal to the
concrete could then move from full TRIO to the sampling-invariant subset of it;
this latter description would be closer to the “implemented” view of time, and
would therefore facilitate its realization.

Section 2 introduces R
ZTRIO, a subset of TRIO for which sampling invariance

can be achieved. Then, Section 3 defines the sampling invariance requirement
and demonstrates that R

ZTRIO formulas are invariant under sampling. Section
4 demonstrates the use of the notion of sampling invariance for integration by
developing a simple example of specification and verification. Finally, Section 5
compares our approach with related works, and Section 6 draws conclusions and
outlines future (and current) work. For the lack of space, we have omitted some
technical details and proofs; they can be found in [9].

2 The R
ZTRIO Metric Temporal Logic

Let us start by presenting our reference metric temporal logic, namely TRIO
[10,15,5]. More precisely, this section introduces a fragment of full TRIO that
we shall call R

ZTRIO2; it is a syntactic and expressive subset of the former, robust
with respect to our notion of sampling invariance (as it will be defined in the
following Section 3). The presentation of R

ZTRIO will be aided by an example
consisting in the formal description of a simple controlled reservoir system, which
will be further analyzed in Section 4.

2.1 Syntax

Whereas TRIO is based on a single modal operator named Dist [5], R
ZTRIO

adopts the bounded Until and Since as primitive operators, because this permits
a simpler statement of the sampling invariance results. More precisely, let Ξ be
a set of time-dependent conditions. These are basically Boolean expressions ob-
tained by functional combination of basic time-dependent items with constants.
2 You can read it as “ar-zee-TRIO”.
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We are going to define them precisely later on (in Section 3), for now let us just
assume that they are time-dependent formulas whose truth value is defined at
any given time. Let us consider a set S of symbols representing constants. We
denote intervals by expressions of the form 〈l, u〉, with l, u constants from S, 〈
a left parenthesis from {(, [}, and 〉 a right parenthesis from {), ]}; let I be the
set of all such intervals. Then, if ξ, ξ1, ξ2 ∈ Ξ, I ∈ I, 〈∈ {(, [}, and 〉 ∈ {), ]},
well-formed formulas φ are defined recursively as follows.

φ ::= ξ | UntilI〉(φ1, φ2) | SinceI〈(φ1, φ2) | ¬φ | φ1 ∧ φ2

From these basic operators, it is customary to define a number of derived oper-
ators: Table 1 lists those used in this paper.3

Table 1. Some R
ZTRIO derived temporal operators

Operator ≡ Definition
ReleasesI〉(φ1, φ2) ≡ ¬UntilI〉(¬φ1, ¬φ2)
ReleasedI〈(φ1, φ2) ≡ ¬SinceI〈(¬φ1, ¬φ2)

∃t ∈ I = 〈l, u〉 : Dist(φ, t) ≡
{

Until〈l,u〉〉(true, φ) if u ≥ l ≥ 0
Since〈−l,−u〉〉(true, φ) if u ≤ l ≤ 0

∀t ∈ I = 〈l, u〉 : Dist(φ, t) ≡
{

Releases〈l,u〉〉(false, φ) if u ≥ l ≥ 0
Released〈−l,−u〉〉(false, φ) if u ≤ l ≤ 0

Dist(φ, d) ≡ ∀t ∈ [d, d] : Dist(φ, t)
Futr(φ, d) ≡ d ≥ 0 ∧ Dist(φ, d)
Som(φ) ≡ ∃t ∈ (−∞, 0] : Dist(φ, t) ∨ ∃t ∈ [0, +∞) : Dist(φ, t)
Alw(φ) ≡ ∀t ∈ (−∞, 0] : Dist(φ, t) ∧ ∀t ∈ [0, +∞) : Dist(φ, t)

AlwP(φ) ≡ ∀t ∈ (−∞, 0) : Dist(φ, t)
AlwPi(φ) ≡ ∀t ∈ (−∞, 0] : Dist(φ, t)

WithinP(φ, τ ) ≡ ∃t ∈ (−τ, 0) : Dist(φ, t)
WithinPii(φ, τ) ≡ ∃t ∈ [−τ, 0] : Dist(φ, t)

Lasts(φ, τ ) ≡ ∀t ∈ (0, τ ) : Dist(φ, t)
Lastsii(φ, τ) ≡ ∀t ∈ [0, τ ] : Dist(φ, t)

2.2 Semantics

In defining R
ZTRIO semantics we assume that constants in S are interpreted

naturally as numbers from the time domain T plus the symbols ±∞, which
are treated as usual. Correspondingly, intervals I are interpreted as intervals of
T which are closed/open to the left/right (as usual square brackets denote an
included endpoint, and round brackets denote an excluded one).

Then, we define the semantics of an R
ZTRIO formula using as interpretations

mappings from the time domain T to the domain D the basic items map their
values to. Let BT be the set of all such mappings, which we call behaviors, and
let b ∈ BT be any element from that set. If we denote by ξ|b(t) the truth value
of the condition ξ at time t ∈ T according to behavior b, we can define the
3 Disjunction ∨ is defined as usual. For simplicity we assume that I = 〈l, u〉 is such

that l, u ≥ 0 or l, u ≤ 0 in the definition of the ∃t ∈ I and ∀t ∈ I operators.
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semantics of R
ZTRIO formulas as follows. We write b |=T φ to indicate that the

behavior b is a model for formula φ under the time model T. Thus, let us define
the semantics for the generic time model T; in practice this will be either the
reals R or the integers Z.

b(t) |=T ξ iff ξ|b(t)
b(t) |=T UntilI〉(φ1, φ2) iff there exists d ∈ I such that b(t + d) |=T φ2

and, for all u ∈ [0, d〉 it is b(t + u) |=T φ1
b(t) |=T SinceI〈(φ1, φ2) iff there exists d ∈ I such that b(t− d) |=T φ2

and, for all u ∈ 〈−d, 0] it is b(t + u) |=T φ1
b(t) |=T ¬φ iff b(t) �T φ
b(t) |=T φ1 ∧ φ2 iff b(t) |=T φ1 and b(t) |=T φ2
b |=T φ iff for all t ∈ T: b(t) |=T φ

Thus, an R
ZTRIO formula φ constitutes the specification of a system, representing

exactly all behaviors that are models of the formula. We denote by [[φ]]T the set
of all models of formula φ with time domain T, i.e., [[φ]]T ≡ {b ∈ BT | b |=T φ}.
In the remainder we will sometime use the expression “behaviors of a formula
φ” to mean the set [[φ]]T.

2.3 The Controlled Reservoir

Let us briefly illustrate the practical use of the R
ZTRIO language by building a

descriptive specification (i.e., consisting of a set of logic axioms) for a controlled
reservoir.

The reservoir is filled with some liquid; at any time, the (measured) level of
the liquid is represented by a time-dependent item l that takes value in the set
R≥0. Furthermore, the reservoir can leak and/or be filled with new liquid. This
is modeled through two Boolean-valued time-dependent items L and F indicating
the reservoir leaking and being filled, respectively. Therefore, the behaviors (i.e.,
the logical models) of our reservoir will be functions mapping the time domain
T to the domain Dres = R≥0 × {0, 1} × {0, 1}.

Let us start the formal specification by writing some TRIO (not R
ZTRIO) ax-

ioms that define how the level varies over time according to whether the reservoir
is leaking and/or being filled. Thus, let us introduce two positive real constants
rf , rl that denote the rate at which the level increases, and at which it decreases,
when the reservoir is filling and leaking, respectively. Then, we state that: when-
ever the reservoir is being filled (i.e., F) and is not leaking (i.e., ¬L) for a (generic)
time interval of length t (i.e., Lasts(F ∧ ¬L, t), and the level is some l at the be-
ginning of the interval (i.e., l = l), then at the end of the interval the level will
have grown to l+rft (i.e., Futr(l = l + rft, t)). Let us define similarly three other
axioms to describe all the possible combinations of filling and leaking.

Lasts(F ∧ L, t) ∧ l = l ⇒ Futr(l = l + (rf − rl)t, t) (1)
Lasts(F ∧ ¬L, t) ∧ l = l ⇒ Futr(l = l + rft, t) (2)

Lasts(¬F ∧ L, t) ∧ l = l ⇒ Futr(l = max(l − rlt, 0), t) (3)
Lasted(¬F ∧ ¬L, t) ∧ l = l ⇒ Futr(l = l, t) (4)
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In order to define the control action, let us introduce two more constants.
The overall goal of the control action is to keep the level above a minimum
level l, whatever the leaking behavior is, by filling it whenever needed. To this
end, we define a threshold level denoted by tl: whenever the level goes below tl,
the controller activates the filling, as indicated by Axiom 5 below. Obviously,
we assume tl > l. Finally, let us also state that the level is initially above the
threshold tl (Formula 6).

l < tl ⇒ F (5)
Som(AlwP(l ≥ tl)) (6)

Let us close this section with two remarks. First, we assume that formulas (1–
4) and (6) are interpreted over R as time domain, since they model the behavior
of a physical system; conversely, formula (5) is implicitly interpreted over Z as
time domain, since it describes the behavior of a digital device that “watches”
the physical system through a sampler. Second, while Formulas 5 and 6 qualify as
R
ZTRIO formulas, the other Formulas (1–4) involve free (time) variables (namely,
t), so they are full-TRIO formulas, not R

ZTRIO.

3 Sampling Invariance and Integration

The overall goal of integrating formulas that are interpreted over different time
domains basically requires to define a suitable notion of invariance. Whenever
a formula achieves this invariance it means that its “intended meaning” is pre-
served by changes of the temporal domain. Thus, the formula can be equivalently
interpreted under any of the time domains, putting it on a common ground with
the other formulas, effectively integrating it with them.

Our notion of invariance is named sampling invariance, and relates continuous-
and discrete-time behaviors of a formula through what we call the sampling of a
behavior. Precisely, given a continuous-time behavior b ∈ BR, we define its sam-
pling as the discrete-time behavior σδ,z [b] ∈ BZ that agrees with b at all integer
time instants corresponding to multiples of a constant δ ∈ R>0 from a basic
offset z ∈ R. We call δ the sampling period and z the origin of the sampling. In
formulas, we have the following definition:

∀k ∈ Z : σδ,z [b] (k) ≡ b(z + kδ)

3.1 Sampling Invariance

Let us now give a sensible definition of sampling invariance. Ideally, we would
like to be able to say that, for a given formula φ, sampling period δ, and origin
z: the sampling of any of its continuous-time behaviors is one of its discrete-time
behaviors (i.e., b ∈ [[φ]]R ⇒ σδ,z [b] ∈ [[φ]]Z); and, conversely, any continuous-
time behavior whose sampling is a discrete-time behavior of φ is also a valid
continuous-time behavior of φ (i.e., b ∈ [[φ]]Z ⇒ ∀b′ : (σδ,z [b′] = b ⇒ b′ ∈ [[φ]]R)).
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This ideal notion of sampling invariance is not achievable, as it is, by any non-
trivial temporal logic language (and R

ZTRIO in particular), as the continuous-
time and the discrete-time behaviors of a formula are in general only loosely
related. In particular, let us point out two basic reasons why the above definitions
must be relaxed to be pursuable.

Regularity of behaviors. The first and most relevant issue concerns the fact that
the density of the time domain R allows for behaviors that may change an un-
bounded number of times between any two sampling instants; therefore, the
information about these “intermediate changes” is completely lost by sampling
the behavior. Consider, for instance, Figure 2(a). There, a Boolean-valued item

z + kδ z + (k + 1)δ

1

0

k k + 1

1

0

(a)

k − 1 t

(b)

δ

Fig. 2. (a) Change detection failure; (b) Moving interval

changes its values twice (from true to false and then back to true) within the
interval, of length δ, between two adjacent sampling instants. Therefore, any
continuous-time formula predicating about the value of the item within those
instants may be true in continuous time and false for the sampling of the be-
havior, which only “detects” two consecutive true values. Instead, we would like
that the “rate of change” of the items is slow-paced enough that every change
is detected at some sampling instant, before it changes again.

To this end, let us introduce a constraint on the continuous-time behaviors of
a formula: only behaviors conformant to the constraint can be invariant under
sampling. The precise form of the constraint to be introduced depends on the
kind of items we are dealing with in our specification (namely, whether they take
values to discrete or continuous domains); we will define it precisely in the next
Section 3.2. In practice, however, the constraint is expressed by an additional
R
ZTRIO formula χ, which depends, in general, on the particular specification we
have written; we call χ the behavior constraint.

Discrete steps and continuous units. The second obstacle to achieving sampling
invariance is instead a technical issue concerning measurement units. Let us
illustrate it with the R

ZTRIO formula Lasts(F, 1/2). In a discrete-time setting,
we would like the formula to mean: for all (integer) time distances that fall
in an interval between the two time instants corresponding to the sampling
instants closest to 0 and 1/2, etc. Hence, we should actually adopt the formula
Lasts(F, 1/2δ) as discrete-time counterpart, dividing every time constant by the
sampling period.
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Conversely, there is another change in the time constants — probably less
manifest — that must be introduced when interpreting a discrete-time formula
in continuous time. To give the intuition, consider the formula Lastsii(F, 1) in
discrete time: F holds for two consecutive time steps (including the current one).
In continuous time, when evaluating the corresponding Lastsii(F, δ) between two
consecutive sampling instants (cf. instant t in Figure 2(b)), we can only state
a weaker property about F holding, namely that F holds in a subset of the δ-
wide interval in the future. On basic formulas, this requirement is rendered as a
shrinking (or stretching, for existential formulas) of the intervals bounds by one
discrete time unit.

In Section 3.2 we will define how to modify the time constants in any R
ZTRIO

formula when passing from continuous to discrete time and vice versa. Let us
name adaptation function this simple translation rule, as it just adapts the time
bounds in our formulas, without changing its structure. We denote the adaptation
function from continuous to discrete time as ηRδ {·}, and the converse function
from discrete to continuous time as ηZδ {·}.

Definition of Sampling Invariance. We are finally able to give a formal definition
of sampling invariance which, by employing the above outlined ingredients, is
achievable for R

ZTRIO formulas (as it will be shown in Section 3.3).

Definition 1 (Sampling Invariance). Given a formula φ, a behavior con-
straint formula χ, two adaptation functions ηRδ {·} and ηZδ {·}, a sampling period
δ, and an origin z, we say that:

– φ is closed under sampling iff for any continuous-time behavior b ∈ BR:

b ∈ [[φ ∧ χ]]R ⇒ σδ,z [b] ∈ [[ηRδ {φ}]]Z

– φ is closed under inverse sampling iff for any discrete-time behavior b ∈ BZ:

b ∈ [[φ]]Z ⇒ ∀b′ ∈ [[χ]]R :
(
σδ,z [b′] = b ⇒ b′ ∈ [[ηZδ {φ} ∧ χ]]R

)
– φ is sampling invariant iff it is closed under sampling (when interpreted

in the continuous-time domain) and closed under inverse sampling (when
interpreted in the discrete-time domain).

3.2 Adaptation, Conditions, and Behavior Constraints

The proof that R
ZTRIO is sampling invariant is given for formulas of the language

that are in a normal form, where there is no nesting of temporal operators, and
all negations are pushed inside. Consequently, negations on Since and Until are
replaceable by the Releases and Released operators. As it is fully shown in [9],
any R

ZTRIO can be put in normal form, possibly introducing auxiliary time-
dependent items. Therefore, in the remainder of this section we will assume to
deal with formulas in normal form.
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Adaptation Function. Let us define the adaptation function ηRδ {·} from con-
tinuous to discrete time as follows, where l′ is �l/δ� if 〈 is (, and $l/δ% if 〈 is [,
and u′ is $u/δ% if 〉 is ), and �u/δ� if 〉 is ].4

ηRδ {ξ} ≡ ξ
ηRδ
{
Until〈l,u〉〉(ξ1, ξ2)

}
≡ Until[�l/δ�,�u/δ�])(ξ1, ξ2)

ηRδ
{
Since〈l,u〉〈(ξ1, ξ2)

}
≡ Since[�l/δ�,�u/δ�]((ξ1, ξ2)

ηRδ
{
Releases〈l,u〉〉(ξ1, ξ2)

}
≡ Releases〈l′,u′〉](ξ1, ξ2)

ηRδ
{
Released〈l,u〉〈(ξ1, ξ2)

}
≡ Released〈l′,u′〉[(ξ1, ξ2)

ηRδ {φ1 ∧ φ2} ≡ ηRδ {φ1} ∧ ηRδ {φ2}
ηRδ {φ1 ∨ φ2} ≡ ηRδ {φ1} ∨ ηRδ {φ2}

The adaptation function ηZδ {·} from discrete to continuous time is instead
defined as follows, where the adapted interval 〈(l−1)δ, (u−1)δ〉 for the Until and
Since operators can indifferently be taken to include or exclude their endpoints.5

ηZδ {ξ} ≡ ξ
ηZδ
{
Until[l,u]](ξ1, ξ2)

}
≡ Until〈(l−1)δ,(u+1)δ〉](ξ1, ξ2)

ηZδ
{
Since[l,u][(ξ1, ξ2)

}
≡ Since〈(l−1)δ,(u+1)δ〉[(ξ1, ξ2)

ηZδ
{
Releases[l,u])(ξ1, ξ2)

}
≡ Releases[(l+1)δ,(u−1)δ])(ξ1, ξ2)

ηZδ
{
Released[l,u]((ξ1, ξ2)

}
≡ Released[(l+1)δ,(u−1)δ]((ξ1, ξ2)

ηZδ {φ1 ∧ φ2} ≡ ηZδ {φ1} ∧ ηZδ {φ2}
ηZδ {φ1 ∨ φ2} ≡ ηZδ {φ1} ∨ ηZδ {φ2}

Conditions. The definitions of the primitive conditions ξ appearing in R
ZTRIO

formulas depend on whether we deal with primitive time-dependent items take
values to discrete or dense domains. This should not be confused with the density
of the time domain: for behaviors mapping T to a generic domain D, we now
distinguish whether D is a discrete or a dense set. Note that when discrete- and
dense-valued items coexist in the same specification, we just have to consider
them separately.

Discrete-valued items. If all primitive time-dependent items in Ψ = {ψ1, . . . ψn}
have discrete codomains, then D ≡ D1 × · · · × Dn where each Di is a discrete
set. Let Λ be a set of constants from the sets Di’s, and Γ be a set of functions
having domains in subsets of D and codomains in some Di’s. Then, if λ ∈ Λ,
f, f1, f2 ∈ Γ , and �� ∈ {=, <,≤, >,≥}, conditions ξ can be defined recursively
as follows, assuming type compatibility is respected:

ξ ::= f(ψ1, . . . , ψn) �� λ | f1(ψ1, . . . , ψn) �� f2(ψ1, . . . , ψn) | ¬ξ | ξ1 ∧ ξ2

Dense-valued items. If all time-dependent items in Ψ have dense codomains,
then D ≡ D1 × · · ·×Dn where each Di is a dense set. Let Λ be a set of n-tuples
of the form 〈〈1l1, u1〉1, . . . , 〈nln, un〉n〉, with li, ui ∈ Di, li ≤ ui, 〈i∈ {(, [}, and
4 As it is customary, the brackets �·� and �·� denote the floor and ceiling functions

[11].
5 Note that in discrete time we need only consider closed intervals.
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〉i ∈ {), ]}, for all i = 1, . . . , n. Then, if λ ∈ Λ, conditions ξ are defined simply as
follows:

ξ ::= 〈ψ1, . . . , ψn〉 ∈ λ | ¬ξ | ξ1 ∧ ξ2

Then, for a behavior b : T → D, the evaluation of conditions on b at t ∈ T

is defined as obvious; in particular — for discrete-valued items — a function
application f(ψ1, . . . , ψn) is interpreted by taking f(ψ1|b(t), . . . , ψn|b(t)), and —
for dense-valued items — 〈ψ1, . . . , ψn〉|b(t) ∈ λ is interpreted as ∀i = 1, . . . , n :
ψi(t) ∈ 〈ili, ui〉i (i.e., all items are in their respective ranges at time t).

Behavior Constraints. According to whether we are considering discrete- or
dense-valued items in our specification, we have two different definitions for the
behavior constraint χ. Again, if discrete and dense items coexist in the same
specification, we just consider both conditions for their respective items.

Discrete-valued items. The constraint on behaviors for discrete-valued items is
given in Formula χ◦ and basically requires that the value of each item in Ψ is
held for δ time units, at least.6

χ◦ � ∀v ∈ D : (〈ψ1, . . . , ψn〉 = v ⇒ WithinPii(Lastsii(〈ψ1, . . . , ψn〉 = v, δ) , δ))

Dense-valued items. The constraint on behaviors for dense-valued items is ex-
pressed by Formula χφ

• depends on the actual conditions ξ that we introduced
in the formula φ. Let Ξ̃ be the set of conditions that appear in φ; χφ

• requires
that the value of every item in Ψ is such that its changes with respect to the
conditions in Ξ̃ occur at most once every δ time units. This is expressed by
the following “pseudo”-RZTRIO formula, where the higher-order quantification
∀ξ̃ ∈ Ξ̃ is just a shorthand for the explicit enumeration of all the conditions in
(the finite set) Ξ̃.

χφ
• � ∀ξ̃ ∈ Ξ̃ : WithinPii

(
Lastsii

(
ξ̃, δ
)
, δ
)
∨ WithinPii

(
Lastsii

(
¬ξ̃, δ

)
, δ
)

3.3 Sampling Invariance of R
ZTRIO

We finally state the sampling invariance of R
ZTRIO formulas.

Theorem 1 (Sampling Invariance). R
ZTRIO is sampling invariant with re-

spect to the behavior constraints χ◦ and χφ
• , the adaptation functions ηRδ {·} and

ηZδ {·}, for any sampling period δ and origin z.

Proof (sketch). For the sake of space we just sketch the outline of the proof and
refer to [9] for the details.

6 Actually, while R
ZTRIO, as we defined it above, is purely propositional, χ◦ uses a

universal quantification on non-temporal variables. However, it is not difficult to
understand that this generalization does not impact on sampling-invariance.
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First of all, let us notice that the proof for both dense- and discrete-valued
items is the same, and it relies on the basic fact that the truth value of any
condition ξ cannot change more than once between any two consecutive sampling
instants, because of the behavior constraints χ◦ and χφ

• . Then, let φ be any
R
ZTRIO formula.

To prove closure under sampling, let b be a continuous-time behavior in [[χ◦]]R,
φ′ = ηRδ {φ}, and b′ be the sampling σδ,z [b] of behavior b with the given origin
and sampling period. For a generic sampling instant t = z + kδ, one can show
that b(t) |=R φ implies b′(k) |=Z φ′, by induction on the structure of φ. Even if
all the details are quite convoluted, the overall idea is fairly terse: assuming φ
holds we infer that some condition ξ holds at some instant u that depends on the
bounds of the time intervals involved in φ; then, condition χ◦ (or χφ

• ) ensures
that the truth of ξ is held at least until the previous or the next sampling instant
(w.r.t. u); therefore, the discrete-time formula φ′, whose time bounds have been
relaxed by the adaptation function ηRδ {·}, matches this sampling instant and is
thus shown to hold at k.

To prove closure under inverse sampling let b be a discrete-time behavior,
φ′ = ηZδ {φ}, and b′ be a continuous-time behavior such that b′ ∈ [[χ◦]]R and
b = σδ,z [b′] for the given origin and sampling period. The proof is now split into
two parts. The former shows that, for a generic sampling instant t = z + kδ, if
b(k) |=Z φ then b′(t) |=R φ′, that is φ′ holds in continuous-time at all sampling
instants. Again, this involves reasoning on the intervals involved in the operators
and the condition χ◦ (or χφ

• ). Afterwards, we show that φ′ holds in between
sampling instants: if it holds at some sampling instant t, then it is either always
true in the future and past, or there exist definite “changing points” in the
future and past where φ′ changes its truth value to false. These changing points,
however, can be shown to correspond to changes in the truth value of some
condition ξ (because in normal form we have no nesting), and thus there can
be at most one of them between any two consecutive sampling instants. A final
analysis shows that indeed if any φ′ holds at all sampling instants, then it also
holds in between them, since it should otherwise change its value twice between
two of them. ��

4 Example

Let us now develop controlled reservoir whose specification was introduced in
Section 2.3. Let us consider the following invariance formula, asserting that the
level of liquid never goes below l.

Alw(l ≥ l) (7)

We would like to prove that 7 follows from the axioms, that is (1–6)⇒(7).
Notice, however, that the axioms do not refer to a uniform time domain, and
thus they need to be integrated first.

A first possible strategy would first notice that Formula 5 does not use tem-
poral operators at all and so it could be easily interpreted over the reals. Then,
one would proceed to prove (1–6)⇒(7) assuming continuous time. Such a proof
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is possible although not very simple — at least with respect to the simplicity
of the involved formulas — as it requires to deal with regularity properties of
functions with real domain (such as continuity and non-Zenoness); the reader
can check out [8], where a similar proof was carried out in continuous time with
the aid of a compositional inference rule.

An alternative approach to achieve the verification goal is therefore to exploit
the results about integration. First of all we need to identify some simpler for-
mulas, expressible in R

ZTRIO, which can be easily derived from the TRIO axioms
(1–4) assuming R as time domain. Thus, let us pick a sufficiently small sampling
period δ, i.e., one such that rlδ < tl − l. Then, we derive three formulas from the
axioms (1–4) that state basic properties about the invariance of the reservoir
level over a time interval of length δ. We omit their simple proofs.

Lasts(F, δ) ∧ l ≥ l ⇒ Futr(l ≥ l, δ) (8)
l ≥ tl ⇒ Futr(l ≥ l, δ) (9)

Lasts(¬F ∧ ¬L, δ) ∧ l ≥ l ⇒ Futr(l ≥ l, δ) (10)

Now, Formulas (8–10,5,6,7) are all well-formed R
ZTRIO formulas, and are

therefore invariant under sampling and inverse sampling. Therefore, let us in-
terpret all of them in discrete time. While Formulas (5) and (7) do not require
any adaptation, the other formulas (8–10,6) must be adapted. After translating
them in normal form, applying the adaptation function ηRδ {·}, and writing them
back with derived operators, one gets the following formulas.

Lastsii(F, 1) ∧ l ≥ l ⇒ Futr(l ≥ l, 1) (11)
l ≥ tl ⇒ Futr(l ≥ l, 1) (12)

Lastsii(¬F ∧ ¬L, 1) ∧ l ≥ l ⇒ Futr(l ≥ l, 1) (13)
Som(AlwPi(l ≥ tl)) (14)

All in all, we have reduced the verification goal to proving that (11–13,5,14)⇒(7),
in discrete time. This is a sufficiently simple task to be totally automated; for
instance, we proved it using model-checking techniques for TRIO and the SPIN
model checker [16]. Finally, the invariance property (7) that has been proved in
discrete time, holds in continuous time as well, for all behaviors satisfying the
constraint χ. A further, complementary, analysis could then consider behaviors
violating the constraints χ, if they are deemed physically meaningful; we leave
this (interesting) problem to future work.

5 Related Works

The problem of formally describing in a uniform manner systems that encompass
both discrete-time and continuous-time modules is particularly motivated by the
recently growing interest in hybrid systems [3]. Although this paper does not
deal with hybrid systems in the sense of hybrid automata [2], we also allow one
to describe systems where both discrete- and continuous-time dynamics occur.
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However, with respect to the hybrid automata work, our approach considers
descriptive models, i.e., entirely based on temporal logic formulas, which are
well suited for very high-level descriptions of a system. Moreover, our idea of
integration stresses separation of concerns in the development of a specification,
as the modules describing different parts of the systems, that obey different
models, can be developed independently and then joined together to have a
global description of the system. Thus, no ad hoc formalism has to be introduced,
since the analysis can exploit the ideas and formalisms of temporal logics.

A straightforward way to compose continuous-time and discrete-time mod-
els is to integrate discrete models into continuous ones, by introducing some
suitable conventions. This is the approach followed by Fidge in [7], with ref-
erence to timed refinement calculus. The overall simplicity of the approach is
probably its main strength; nonetheless we notice that integrating everything
into a continuous-time setting has some disadvantages in terms of complexity,
as continuous time often introduces some peculiar difficulties that render rea-
soning more difficult. On the contrary, our approach aims at achieving a notion
of equivalence between discrete-time and continuous-time descriptions, so that
one can resort to discrete time when verifying properties, while still being able
to describe naturally physical processes using a full continuous-time model.

Another approach to the definition of an equivalence between continuous- and
discrete-time behaviors of a specification formula is that based on the notion of
digitization. Henzinger et al. [12] were the first to introduce and study this notion
in the context of temporal logic. Digitizability is similar to our sampling invari-
ance in that they both define a notion of invariance between discrete- and dense-
time interpretations of the same formula. However, they differ in other major
aspects. First, [12] compares analog- and digital-clock models, that is behaviors
consisting of a discrete sequences of events, each carrying a timestamp: in analog-
clock behaviors the timestamp is a real value, whereas in digital-clock ones it
is an integer value. On the contrary, our work considers truly continuous-time
behaviors and encompasses the description of dense-valued items; these features
are both needed to faithfully model continuous physical quantities. Clearly, the
introduction of the behavior constraint χ does limit in practice the dynamics of
the items, in order to render them ultimately discretizable and thus equivalent to
a discrete sequence; nonetheless, the possibility of modeling dense-valued items
is unaffected, and we believe that the explicit (syntactic) introduction of the
constraint χ — required to achieve invariance — permits a clearer understand-
ing of what we “lose” exactly by discretization, and makes it possible, whenever
needed, a comparison with the unconstrained continuous-time model. The other
major difference between our approach and the one presented in [12] concerns
the physical motivation for the notion of invariance. In fact, sampling invariance
models — albeit in an abstract and idealized way — the sampling process which
really occurs in systems composed by a digital controller interacting with a phys-
ical environment. On the contrary, digitization is based on the idea of “shifting”
the timestamps of the analog model to make them coincide with integer values;
informally, we may say that behaviors are “stretched”, without changing the
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relative order of the events. This weaker notion allows for a neater statement of
the results about digitization; however it is more oriented towards mathematical
and verification results, and less to physical reasons. A formal comparison of the
two notions of discretization belongs to future work (see also [4]).

We end the presentation of related works by mentioning that several different
papers on discretization and continuous/discrete equivalence have exploited sim-
ilar notions of invariance as that in [12]. For the sake of space we limit ourselves
to citing the work by Hung and Giang [13], where a sampling semantics for Du-
ration Calculus (DC) is defined; the paper by Ouaknine [17], where digitization
for CSP is discussed; and the paper by Ouaknine and Worrell [18], which dis-
cusses the problem of digitization for timed automata, and offers several other
references to related works.

6 Conclusions

This paper introduced the notion of sampling invariance, which is a physically
motivated way to relate the continuous-time and discrete-time behaviors of a
system. Sampling invariance means that a temporal logic formula can be inter-
preted with a continuous-time or discrete-time model consistently and in a uni-
form manner. Therefore, writing sampling invariant formulas permits to achieve
integration of discrete-time and continuous-time formalisms in the same speci-
fication, thus being able to verify the system in the discrete-time models, while
still describing naturally physical processes with the true continuity permitted
by continuous-time models.

We demonstrated how to achieve sampling invariance with R
ZTRIO, a subset

of the TRIO language. The approach involved the introduction of some suit-
able constraints on the possible behaviors of a system, which limit the dynam-
ics in an appropriate way, as well as simple translation rules that adapt the
meaning of time units in the two time models. We are confident that the ap-
proach can be applied to other metric temporal logics as well (and MTL in
particular).

Future work will follow three main directions. Firstly, we will compare the ex-
pressiveness of R

ZTRIO with that of other formalisms for the description of real-
time and hybrid systems that admit discretization under certain constraints; in
particular, we will consider timed and hybrid automata [2], logics such as MITL
[1], and the AASAP semantics [6]. Secondly, we will study how to possibly ex-
tend and generalize our approach, both in terms of enriching the expressiveness
of the logic language, and by attempting variants of the notion of sampling in-
variance. Thirdly, we will try to apply our results about sampling invariance to a
refinement approach, as we hinted at in the Introduction. This effort should be
methodological as well as technical, and it will aim at tackling, from a new per-
spective, the important problem of refining an abstract high-level specification
to an implementable low-level one.
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Abstract. Well-known hierarchies discriminate between the computa-
tional power of discrete time and space dynamical systems. A contrario
the situation is more confused for dynamical systems when time and
space are continuous. A possible way to discriminate between these mod-
els is to state whether they can simulate Turing machine. For instance, it
is known that continuous systems described by an ordinary differential
equation (ODE) have this power. However, since the involved ODE is
defined by overlapping local ODEs inside an infinite number of regions,
this result has no significant application for differentiable models whose
ODE is defined by an explicit representation. In this work, we consid-
erably strengthen this result by showing that Time Differentiable Petri
Nets (TDPN) can simulate Turing machines. Indeed the ODE ruling
this model is expressed by an explicit linear expression enlarged with
the “minimum” operator. More precisely, we present two simulations of
a two counter machine by a TDPN in order to fulfill opposite require-
ments: robustness and boundedness. These simulations are performed by
nets whose dimension of associated ODEs is constant. At last, we prove
that marking coverability, submarking reachability and the existence of
a steady-state are undecidable for TDPNs.

1 Introduction

Hybrid systems. Dynamic systems can be classified depending on the way
time is represented. Generally, trajectories of discrete-time systems are obtained
by iterating a transition function whereas the ones of continuous-time systems
are often solutions of a differential equation. When a system includes both con-
tinuous and discrete transitions it is called an hybrid system. On the one hand,
the expressive power of hybrid systems can be strictly greater than the one of
Turing machines (see for instance [12]). On the other hand, in restricted models
like timed automata [1], several problems including reachability can be checked
in a relatively efficient way (i.e. they are PSPACE-complete). The frontier be-
tween decidability and undecidability in hybrid systems is still an active research
topic [8,10,4,11].

Continuous systems. A special kind of hybrid systems where the trajectories
are continuous (w.r.t. standard topology) and right-differentiable functions of
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time have been intensively studied. They are defined by a finite number regions
and associated ordinary differential equations ODEs such that inside a region
r, a trajectory fulfills the equation ẋd = fr(x) where x is the trajectory and ẋd

its right derivative. These additional requirements are not enough to limit their
expressiveness. For instance, the model of [2] has piecewise constant derivatives
inside regions which are polyhedra and it is Turing equivalent if its space dimen-
sion is at least 3 (see also [3,5] for additional expressiveness results).

Differentiable systems. A more stringent requirement consists in describing
the dynamics of the system by a single ODE ẋ = f(x) where f is continu-
ous, thus yielding continuously differentiable trajectories. We call such models,
differentiable systems. In [6], the author shows that differentiable systems in
R3 can simulate Turing machine. The corresponding ODE is obtained by ex-
trapolation of the transition function of the Turing machine over every possible
configuration. Indeed such a configuration is represented as a point in the first
dimension of the ODE (and also in the second one for technical reasons) and
the third dimension corresponds to the time evolution. The explicit local ODE
around every representation of a configuration is computed from this configu-
ration and its successor by the Turing machine. Thus the explicit equations of
the ODE are piecewise defined inside an infinite number regions which is far
beyond the expressiveness of standard ODE formalisms used for the design and
analysis of dynamical systems. So the question to determine which (minimal) set
of operators in an explicit expression of f is required to obtain Turing machine
equivalence, is still open.

Our contribution. In this work, we (partially) answer this question by showing
that Time Differentiable Petri Nets (a model close to Time Continuous Petri
Nets [7,13]) can simulate Turing machines. Indeed the ODE ruling this model
is particularly simple. First its expression is a linear expression enlarged with
the “minimum” operator. Second, it can be decomposed into a finite number of
linear ODEs ẋ = M · x (with M a matrix) inside polyhedra.

More precisely, we present two simulations of two counter machines in order
to fulfill opposite requirements: robustness (allowing some perturbation of the
simulation) and boundedness of the simulating net system. Our simulation is
performed by a net with a constant number of places, i.e. whose dimension of its
associated ODE is constant (in (R≥0)6 for robust simulation and in [0,K]14 for
bounded simulation). Afterwards, by modifying the simulation, we prove that
marking coverability, submarking reachability and the existence of a steady-state
are undecidable for (bounded) TDPNs.

Outline of the paper. In section 2, we recall notions of dynamical systems
and simulations. In section 3, we introduce TDPNs. Then we design a robust
simulation of counter machines in section 4 and a bounded one in section 5.
Afterwards, we establish undecidability results in section 6. At last, we conclude
and give some perspectives to this work.
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2 Dynamical Systems and Simulation

Notations. N (resp. R≥0,R>0) is the set of non negative integers (resp. non
negative, positive reals).

Definition 1. A deterministic dynamical system (X, T , f) is defined by:
− a state space X, a time space T (T is either N or R≥0),
− a transition function f from X × T to X fulfilling:

∀x ∈ X, ∀τ1, τ2 ∈ T , f(x, 0) = x ∧ f(x, τ1 + τ2) = f(f(x, τ1), τ2)

In the sequel, we will only deal with deterministic systems. In a discrete (resp.
continous) system X ⊆ Nd for some d (resp. X ⊆ (R≥0)d) and T = N (resp.
T = R≥0). The simulation of a discrete system by a continuous one involves a
mapping from the set of states of the discrete system to the powerset of states
of the continuous systems and an observation epoch. A simulation ensures that,
starting from some state in the image of an initial state of the discrete system
and observing the state reached after some multiple n of the epoch, one can
recover the state of the discrete system after n steps. If the continuous system
evolves in some bounded subset of (R≥0)d, the simulation is said bounded.

Definition 2. A continuous dynamical system (Y,R≥0, g) simulates a discrete
dynamical system (X,N, f) if there is a mapping φ from X to 2Y and τ0 ∈ R>0
such that:
− ∀x 
= x′ ∈ X,φ(x) ∩ φ(x′) = ∅
− ∀x ∈ X, ∀y ∈ φ(x), g(y, τ0) ∈ φ(f(x, 1))
The simulation is said bounded if Y ⊂ [0,K]d for some K ∈ R≥0.

Roughly speaking, a robust simulation is insensitive to small perturbations of
the simulation mapping and the observation instants. In order to define robust
simulation, we refine the notion of simulation. First, a two-level dynamical sys-
tem (Y = Y1 × Y2,R≥0, g) is such that g is defined by g1 from Y1 × R≥0 to Y1
and by g2 from Y × R≥0 to Y2 as: g((y1, y2), τ) = (g1(y1, τ), g2((y1, y2), τ)). In
words, the behaviour of the first component depends only on its local state.

Definition 3. A two-level continuous dynamical system (Y,R≥0, g) consistently
simulates a discrete dynamical system (X,N, f) if there is y0 ∈ Y1, a mapping φ
from X to 2Y2 and τ0 ∈ R>0 such that:
− ∀x 
= x′ ∈ X,φ(x) ∩ φ(x′) = ∅,
− g1(y0, τ0) = y0,
− ∀x ∈ X, ∀y ∈ φ(x), g2((y0, y), τ0) ∈ φ(f(x, 1)).

Note that the first part of component is a “fixed” part of the system since its
whole trajectory does not depend on the input of the simulated system.

Definition 4. A simulation (by a two-level system) is robust iff there exists
δ, ε ∈ R>0 such that:
− ∀x 
= x′ ∈ X, dist(φ(x), φ(x′)) > 2ε
− ∀x ∈ X, ∀y2 ∈ Y2, ∀n ∈ N, ∀τ ∈ R≥0,

max(dist(y2, φ(x)), dist(τ, nτ0)) ≤ δ ⇒ dist(g2((y0, y2), τ), φ(f(y, n))) ≤ ε
where dist(Y, Y ′) = inf(|y − y′|∞ | y ∈ Y, y′ ∈ Y ′)
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Thus, if the simulation is robust, starting with an initial state no more pertubated
than δ and delaying or anticipating the observation of the system by no more
than δ, the state of the simulated system can be recovered. For obvious reasons,
the simulation of an infinite-state system cannot be simultaneously robust and
bounded.

3 Timed Differentiable Petri Nets

Notations. Let f be a partial mapping then f(x) =⊥ means that f(x) is un-
defined. Let M be a matrix whose domain is A×B, with A ∩B = ∅ and a ∈ A
(resp. b ∈ B) then M(a) (resp. M(b)) denotes the vector corresponding to the
row a (resp. the column b) of M.

Definition 5 (Timed Differentiable Petri Nets). A Timed Differentiable
Petri Net D = 〈P, T,C,W〉 is defined by:
− P , a finite set of places,
− T , a finite set of transitions with P ∩ T = ∅,
− C, the incidence matrix from P × T to Z, we denote by •t (resp. t•)

the set of input places (resp. output places) of t, {p | C(p, t) < 0}
(resp. {p | C(p, t) > 0}). C(t) is called the incidence of t.

− W, the speed control matrix a partial mapping from P ×T to R>0 such that:
· ∀t ∈ T, ∃p ∈ P,W(p, t) 
=⊥
· ∀t ∈ T, ∀p ∈ P,C(p, t) < 0 ⇒ W(p, t) 
=⊥

A time differentiable Petri net is a Petri net enlarged with a speed control matrix.
In a Petri net, a state m, called a marking, is a positive integer vector over the
set of places (i.e. an item of NP ) where an unit is called a token. The state
change is triggered by transition firings. In m, the firing of a transition t with
multiplicity k ∈ N yielding marking m′ = m + kC(t) is only possible if m′ is
positive. Note that in Petri nets, both the choice of the transition firing and the
number of simultaneous firings are non deterministic.

In a TDPN, a marking m, is a positive real vector over the set of places (i.e. an
item of (R≥0)P ). The non determinism of Petri nets is solved by computing at any
instant the instantaneous firing rate of every transition and then applying the in-
cidence matrix in order to deduce the infinitesimal variation of the marking. The
instantaneous firing rate of transitions f(m)(t) depends on the current marking
via the speed control matrix W: f(m)(t) = min(W(p, t) ·m(p) | W(p, t) 
=⊥).

The first requirement about W ensures that the firing rate of any transition
may be determined whereas the second one ensures that the marking remains
non negative since any input place p of a transition t controls its firing rate.

Definition 6 (Trajectory). Let D be a TDPN, then a trajectory is a contin-
uously differentiable mapping m from time (i.e. R≥0) to the set of markings
(i.e. (R≥0)P ) which satisfies the following differential equation system:

ṁ = C · f(m) (1)
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If m(0) is non negative, the requirement of non negativity is a consequence of the
definition of TDPNs and one can also prove (by a reduction to the linear equation
case) that given an initial marking there is always a single trajectory. Equation 1
is particularly simple since it is expressed as a linear equation enlarged with the
min operator. We introduce the concept of configurations : a configuration assigns
to a transition, the place that controls its firing rate.

Definition 7 (Configuration). Let D be a TDPN, then a configuration cf of
D is a mapping from T to P such that ∀t ∈ T,W(cf(t), t) 
=⊥. Let cf be a
configuration, then [cf ] denotes the following polyhedron:

[cf ] = {m ∈ (R≥0)P | ∀t ∈ T,∀p ∈ P, W(p, t) �=⊥⇒ W(p, t) · m(p) ≥ W(cf(t), t) · m(cf(t))}

By definition, there are
∏

t∈T |{p | W(p, t) 
=⊥}| ≤ |P ||T | configurations. In the
sequel, we use indifferently the word configuration to denote both the mapping
cf and the polyhedron [cf ]. Inside the polyhedron [cf ], the differential equation
ruling D becomes linear:

∀p ∈ P, ṁ(p) =
∑

t∈T C(p, t) ·W(cf(t), t) · m(cf(t))

Graphical notations. We extend the graphical notations of Petri nets in or-
der to take into account matrix W. A Petri net is a bipartite graph where
places are represented by circles (sometimes with their initial marking inside)
and transitions by rectangles. An arc denotes a relation between a place and a
transition. Note that arcs corresponding to matrix C are oriented whereas arcs
corresponding to matrix W are not oriented. There are four possible patterns
illustrated in figure 1. When W(p, t) =⊥ ∧C(p, t) > 0, place p receives to-
kens from t and does not control its firing rate. There is an oriented arc from
t to p labelled by C(p, t). When W(p, t) 
=⊥ ∧C(p, t) < 0, place p provides
tokens to t. So it must control its firing rate. The non oriented arc between
p and t is redundant, so we will not draw it and represent only an oriented
arc from p to t both labelled by −C(p, t) and W(p, t). In order to distinguish
between these two labels, W(p, t) will always be drawn inside a box. When
W(p, t) 
=⊥ ∧C(p, t) > 0, place p receives tokens from t and controls its firing
rate. There is both an oriented arc from t to p and a non oriented arc between
p and t with their corresponding labels. When W(p, t) 
=⊥ ∧C(p, t) = 0, place
p controls the firing rate of t and t does not modify the marking of p, so there
is a non oriented arc between p and t. We omit labels C(p, t), −C(p, t) and
W(p, t) when they are equal to 1.

Fig. 1. Graphical notations
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The net of Figure 2 illustrates TDPNs. In order to simplify the notations,
when writing the differential equations, we use p as a notation for m(p) (the
trajectory projected on p). The ODE corresponding to this net is (note that
place pk holds a constant number of tokens):

ẋ1 = f(t2) − f(t4) = min{ω · x2, 2aω · y1} − min{aω · x1, aω}
ẋ2 = f(t1) − f(t3) = min{aω · y2, aω} − min{2aω · x2, ω · x1}
ẏ1 = f(t4) − f(t2) = min{aω · x1, aω} − min{ω · x2, 2aω · y1}
ẏ2 = f(t3) − f(t1) = min{2aω · x2, ω · x1} − min{aω · y2, aω}

Fig. 2. A periodic TDPN

However, it can be observed that y1 + x1 and y2 + x2 are constant. Hence
the system (with the initial condition described by the marking in the figure) is
equivalent to:

ẋ1 = min{ω · x2, 2aω · y1} − min{aω · x1, ω · a}, y1 = 2a− x1
ẋ2 = min{aω · y2, ω · a} − min{2aω · x2, ω · x1}, y2 = 2a− x2

This corresponds to a set of sixteen configurations. Let us solve the differential
system with 1 ≤ a ≤ b ≤ 2a− 1. The linear system that applies initially is:

ẋ1 = ω · x2 − ω · a, y1 = 2a− x1, ẋ2 = ω · a− ω · x1, y2 = 2a− x2
In figure 2, we have represented the “inactive” items of matrix W in a shad-

owed box. In the sequel, we use this convention when it will be relevant. The
solution of this system is:

x1(τ) = a + (b− a) sin(ω · τ), x2(τ) = a + (b− a) cos(ω · τ)
y1(τ) = a− (b− a) sin(ω · τ), y2(τ) = a− (b− a) cos(ω · τ)

This trajectory stays infinitely in the initial configuration and consequently it
is the behaviour of the net. Note that the dimension of the ODE may be strictly
smaller than the number of places. Indeed, the existence of a linear invariant
such like

∑
p∈P m(p) = cst decreases by one unit the number of dimensions.

Otherwise stated, the dimension of the ODE is not |P | but rank(C). Here,
|P | = 5 and rank(C) = 2.

4 A Robust Simulation

4.1 Two Counter Machines

We will simulate two (non negative integer) counter machines (equivalent to
Turing machines [9]). Their behaviour is described by a set of instructions. An
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instruction I may be one of the following kind with an obvious meaning (cptu
is a counter with u ∈ {1, 2}):
− I : goto I′;
− I : increment(cptu); goto I′;
− I : decrement(cptu); goto I′;
− I : if cptu = 0 then goto I′ else goto I”;
− I : STOP;
W.l.o.g. a decrementation must be preceded by a test on the counter and the

(possible) successor(s) of an instruction is (are) always different from it.

4.2 Basic Principles of the Simulation

Transition pairs. In a TDPN, when a transition begins to fire, it will never
stop. Thus we use transition pairs in order to temporarily either move tokens
from one place to another one, or produce/consume tokens in a place.

Fig. 3. A transition pair

Let us examine transitions thigh and tlow of figure 3. Their incidence is oppo-
site. So if their firing rate is equal no marking change will occur. Let us examine
W, all the items of W(thigh) and W(tlow) are equal except W(pk, tlow) = k
and W(pk, thigh) =⊥. Thus, if any other place controls the firing rate of tlow it
will be equal to the one of thigh. Place pk is a constant place meaning that its
marking will always be k. Summarizing:
− if winm(in) > k ∧ woutm(out) > k ∧ w1m(test1) > k ∧ w2m(test2) > k

then this pair transfers some amount of tokens from in to out,
− otherwise, there will be no marking change.

The clock subnet. The net that we build consists in two subnets: an instance of
the subnet of figure 2, called in the sequel the clock subnet, and another subnet
depending on the counter machine called the operating subnet. The clock subnet
has k as average value, 1 as amplitude and π as period (i.e. ω = 2). We recall the
behavioural equations of the place markings that will be used by the operating
subnet: m(x1)(τ) = k + sin(2τ),m(y1)(τ) = k − sin(2τ).

Figure 4 represents the evolution of markings for x1, y1 and x2 (the marking
of place y2 is symmetrical to x2 w.r.t. the axis m = k). Note that the mottled
area is equal to 1.
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Fig. 4. The behaviour of the clock subnet

The marking changes of the operating subnet will be ruled by the places x1
and y1. An execution cycle of the net will last π. The first part of the cycle (i.e.
[hπ, hπ + π/2] for some h ∈ N) corresponds to m(x1) ≥ k and the second part
of the cycle (i.e. [hπ + π/2, (h+ 1)π]) corresponds to m(y1) ≥ k. So, the period
of observation τ0 is equal to π.

Specialisation of the transition pairs pattern
Using place x1 (or y1), we specialise transition pairs as illustrated in figure 5 (pk
is the constant place of the clock subnet). In this subnet, one of the test place
is x1 and the control weights of the two test places (x1 and test) are 1. First
due to the periodical behaviour of m(x1), no tokens transfer will occur during
the second part of the cycle. Let us examine the different cases during a time
interval [hπ, hπ + π/2]. We assume that within this interval m(test),m(in) and
m(out) are not modified by the other transitions.
− If m(test)(hπ) ≤ k then there will be no transfer of tokens.
− If m(test)(hπ) ≥ k+1∧win(m(in)(hπ)−n) ≥ k+1∧woutm(out)(hπ) ≥ k+1

then thigh will be controlled by x1 and tlow will be controlled by pk. Hence
(see the integral of figure 4) exactly n tokens will be transfered from in to
out.

− Otherwise, some amount of tokens in [0, n] will be transfered from in to out.
From a simulation point of view, one wants to avoid the last case. For the

same reason, when possible, we choose win and wout enough large so that it
ensures that in and out will never control thigh and tlow.

Fig. 5. A specialised transition pair
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4.3 The Operating Subnet

Places of the operating subnet and the simulation mapping. Let us sup-
pose that the counter machine has l instructions {I1, . . . , Il} and two counters
{cpt1, cpt2}. The operating subnet has the following places: pc, qc, pn, qn, c1, c2.
The forth first places simulate the program counter whereas the last ones simu-
late the counters. Furthermore by construction, the following invariants will hold
for every reachable marking m: m(pc)+m(qc) = l+1 and m(pn)+m(qn) = l+1.
We now define the simulation mapping φ. Assume that, in a state s of the counter
machine, Ii is the next instruction and the value of the counter cptu is vu. Then
a marking m ∈ φ(s) iff:
− The submarking corresponding to the clock subnet is its initial marking.
− m(pn) = i, m(qn) = l + 1 − i,

if 1 < i < l then
m(pc) ∈ [i− l/k, i + l/k] and m(qc) ∈ [l + 1 − i− l/k, l + 1 − i + l/k]

else if i = 1
m(pc) ∈ [1, 1 + l/k] and m(qc) ∈ [l − l/k, l]

else if i = l
m(pc) ∈ [l − l/k, l] and m(qc) ∈ [1, 1 + l/k]

− m(c1) = k − 1 + 3v1,m(c2) = k − 1 + 3v2.
Moreover, we choose k ≥ 6l2 for technical reasons.

Principle of the instruction simulation. The simulation of an instruction
Ii takes exactly the time of the cycle of the clock subnet and is decomposed in
two parts (m(x1) ≥ k followed by m(y1) ≥ k).

The first stage is triggered by ((k + 3l)/i)m(pc) ≥ k + 1 ∧ ((k + 3l)/(l + 1 −
i)m(qc) ≥ k + 1 and performs the following tasks:
− updating m(pn) by producing (resp. consuming) j − i tokens if j > i

(resp. j < i) where Ij is the next instruction; simultaneously updating m(qn)
accordingly. If Ii is a conditional jump, this involves to find the appropriate
j. The marking of pn will vary from i to j and the one of qn from l + 1 − i
to l + 1 − j,

− updating the counters depending on the instruction.
The second stage is triggered by ((k+3l)/j)m(pn) ≥ k+1∧ ((k+3l)/(l+1−

j)m(qn) ≥ k + 1 and performs the following task: updating m(pc) and m(qc)
by a variable value in such a way that their marking still belong to the intervals
associated with the simulation mapping.

First stage: simulation of an unconditional jump. This part of the sim-
ulation applies to both an unconditional jump, an incrementation and a decre-
mentation. The simulation of the counter updates is straightforward once this
pattern is presented. For this kind of instructions, the next instruction say Ij is
a priori known.

The subnet we build depends on the relative values of i (the index of the
current instruction) and j (the index of the next instruction). Here, we assume
that i < j, the other case is similar. The transition pair of figure 6 is both
triggered by pc and qc.
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Fig. 6. First stage: simulation of an unconditional jump

− Assume that the current instruction is Ii′ with i′ 
= i. If i′ < i then pc
disables the transition pair whereas if i′ > i then qc disables the transition
pair. We explain the first case. m(pc) ≤ i′ + l/k ≤ i− 1 + l/k; thus
((k + 3l)/i)m(pc) ≤ ((k + 3l)/i)(i− 1 + l/k) ≤ k − 1
(due to our hypothesis on k).

− Assume that the current instruction is Ii. Then both
((k + 3l)/i)m(pc) ≥ ((k + 3l)/i)(i− l/k) ≥ k + 2 and
((k + 3l)/(l+ 1− i))m(qc) ≥ ((k + 3l)/(l+ 1− i))((l + 1− i)− l/k) ≥ k + 2.

Thus in the second case, the pair is activated and transfers j − i tokens from
qn to pn during the first part of the cycle as required.

Note that W(pn, tci,1) = W(pn, tci,2) = W(qn, tci,1) = W(qn, tci,2) = 2k
ensures that places pn and qn do not control these transitions (since 2k ≥ k + 2
for k enough large).

First stage: simulation of a conditional jump. The first stage for simulat-
ing the instruction Ii : if cptu = 0 then goto Ij else goto Ij′ ; is illustrated in
figure 7 in case i < j < j′ (the other cases are similar).

It consists in two transition pairs. Pair tci,1, tci,2 mimics the first stage of an
unconditional jump from Ii to Ij. It will transfer during the first part of the
cycle j − i tokens from qn to pn. Pair tci,3, tci,4 is triggered if cu ≥ k + 1 (i.e.
the counter cptu is non null). If it is the case it will transfer j′ − j tokens from
qn to pn. Thus:
− If m(cu) = k− 1 then only the first pair is triggered and j − i tokens will be

transfered from qn to pn.
− otherwise m(cu) ≥ k + 2, the two pairs are simultaneously triggered and

j − i tokens will be transfered from qn to pn and j′ − j from qn to pn.
Summing, j′ − i tokens will be transfered from qn to pn as required.

The second stage. This stage is the difficult part of this simulation. Due to
the fact that the ODE ruling a TDPN is a linear equation inside a configuration,
we cannot obtain a precise updating of m(pc) and m(qc). Roughly speaking it
would require to reach a steady state in finite time which is impossible with
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Fig. 7. The first stage of a conditional jump (places are duplicated for readability)

linear ODEs. Thus the second stage consists in trying to make the marking of
pc as close as possible to j and the one of qc as close as possible to l + 1 − j.

It consists in two transition pairs depending whether the index i of the current
instruction is greater or smaller than j. The first case is illustrated in figure 8
(the other case is similar).

Fig. 8. The second stage

The transition pair tnj,1, tnj,2 is activated if both m(pn) = j, m(qn) = l+1−j
and m(pc) > j. If the rate of transition tnj,1 was controlled during the whole
stage by y1, pc would loose l tokens. But this means that at the beginning of the
stage m(pc) > j and at the end m(pc) ≤ j which is impossible since m(pc) must
be greater than j in order to trigger the transition pair and thus cannot reach the
value j (see our previous remark on linear differential equations). Thus during the
second stage pn must control the rate of this transition. Since m(y1) ≤ k + 1,
this means that, at the end of the stage, (k/j)m(pc) ≤ k + 1 which implies
j ≤ m(pc) ≤ j+j/k ≤ j+l/k and consequently l+1−j−l/k ≤ m(qc) ≤ l+1−j
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as required by the simulation. The case i < j leads, at the end of the second
stage, to j− l/k ≤ m(pc) ≤ j and consequently l+1−j ≤ m(qc) ≤ l+1−j− l/k.

Theorem 1 is a consequence of our different constructions. The dimension of
the associated of ODE is obtained by recalling that the ODE of the clock subnet
is 2 and that the following invariants hold in the operating subnet: m(pn) +
m(qn) = m(pc) + m(qc) = l + 1. The proof of robustness is omitted.

Theorem 1. Given a two counter machine M, one can build a TDPN D, with
a constant number of places, whose size is linear w.r.t. the machine, whose as-
sociated ODE has dimension 6 and such that D robustly simulates M.

5 A Bounded Simulation

In this paragraph, we modify our simulation in order to obtain a bounded net.
The previous net is unbounded due to the way we model the counters. So we
change their management. First we will build a new lazy machine M′ from the
original one M. We multiply by 4 the number of intructions, i.e. we create three
instructions Ai : goto Bi;, Bi : goto Ci; and Ai : goto Ii; per instruction Ii.
Then we modify every label in the original instructions by substituting Ai to Ii.
M and M′ are equivalent from a simulation point of view since they perform
the same computation except that four instructions of M′ do what does a single
of instruction of M. We then duplicate the operating subnet (D′(1) and D′(2))
to simulate M via M′. The only difference between the subnets is that D′(1)

simulates Ii of M by simulating Ii of M′ whereas N ′(2) simulates Ii of M by
simulating Bi of M′. This yields a scheduling where one simulation preceedes
the other one by two instructions. Superscripts (1) and (2) distinguish between
places of the two subnets.

In each subnet, we add three places pinc
(s)
u , pdec

(s)
u , d

(s)
u (s = 1, 2) in addition

to c
(s)
u , to manage the counter cptu. The marking of pinc

(s)
u (resp. pdec(s)u ) is

equal to k + 2 when the current instruction is an incrementation (resp. decre-
mentation) of cptu and k − 1 otherwise. The transition pairs managing the
marking of these places are straightforward to design. Then we change our
counter updates in such a way that when a counter cptu is equal to v then
m(c(s)u ) = (k + 2)− 2(1/2)v and m(d(s)

u ) = (k − 1) + 2(1/2)v. Hence if cptu = 0

then m(c(s)u ) = k and if cptu ≥ 1 then m(c(s)u ) ≥ k + 1 as required for the
correctness of the simulation of the conditional jump.

It remains to describe the handling of incrementations and decrementations.
Note that the main difficulty is that the decrement (or increment) depends on
the current value of the simulated counter. If cptu = v and we increment the
counter, then we must produce (resp. consume) (1/2)v tokens in c

(s)
u (resp. in

d
(s)
u ). If cptu = v and we decrement the counter, then we must consume (resp.

produce) (1/2)v+1 tokens in c
(s)
u (resp. in d

(s)
u ). Let us observe the evolution of

marking pinc
(s)
u in the simulation (see figure 9) when one simulates the execution

of instruction Ii, an incrementation of cptu. In the first part of the cycle related
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to Ci it raises from k − 1 to k + 2, then holds this value during the second part
and decreases in the first part of the next cycle to k − 1. The increasing and
the decreasing are not linear but they are symmetrical. Thus the mottled area
of figure 9 is proportional to the difference between cu and k + 2 (equal to the
difference between du and k− 1). We emphasize the fact that neither the upper
part of this area nor its lower part are proportional to the difference.

Fig. 9. A way to obtain a “proportional” increment

The subnet of figure 10 exploits this feature to simulate an incrementation
of the counter. Let us detail the behaviour of this subnet. This subnet has
two transition pairs incu,1, incu,2 and incu,3, incu,4. The firing rate of incu,1

is (1/(4π))min(m(c(2)u ),m(pinc(1)u )) (note again that due to their speed control
equal to 1, places c

(1)
u and c

(1)
u do not determine this rate). The rate of incu,2

is (1/(4π))m(pinc(1)u ). Thus they have different speed as long as m(pinc(1)u ) >

m(c(2)u ). So their effect corresponds to the upper part of the mottled area of
figure 9. The rate of incu,3 is (1/(4π))min(m(d(2)

u ),m(pinc(1)u )). The rate of
incu,4 is (k − 1)/(4π). So their effect corresponds to the lower part of the mot-
tled area of figure 9. The scaling factor 1/4π ensures that 1/2(m(d(2)

u )− (k−1))
have been transfered from m(d(1)

u ) to m(c(1)u ). The subnet managing m(d(2)
u ) and

m(c(2)u ) behaves similarly except that since m(c(1)u ) and m(d(1)
u ) have their new

value the scaling factor must be doubled in order to transfer the same amount of
tokens from m(d(2)

u ) to m(c(2)u ). The decrementation simulation follows a similar
pattern.

Fig. 10. Incrementing a counter (first stage)
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Due to the scheduling, the places of D′(2) modelling the counter cptu are
not modified during the simulation of an instruction in D′(1) and vice versa.
Indeed the instruction simulations are translated and surrounded by “no-op”
instructions which do not modify the counters. The correctness of this simulation
yields the following theorem. The dimension of the ODE is obtained by observing
that m(c(s)u ) + m(d(s)

u ) = cst.

Theorem 2. Given a two counter machine M, one can build a bounded TDPN
D with a constant number of places, whose size is linear w.r.t. the machine and
whose associated ODE has dimension 14 such that D simulates M.

6 Undecidability Results

In this section, we apply the simulation results in order to obtain undecidability
results. Proofs are omitted. Note that we cannot state the undecidability of the
marking reachability problem since in the simulation, places pc and qc are not
required to take precise values. However the steady-state analysis, a kind of
ultimate reachability, is undecidable.

Proposition 1 (Coverability and reachability). Let D be a (resp. bounded)
TDPN whose associated ODE has dimension at least 6 (resp. 14), m0,m1 be
markings, p be a place and k ∈ N then:
− the problem whether there is a τ such that the trajectory starting at m0 fulfills

m(τ)(p) = k is undecidable.
− The problem whether there is a τ such that the trajectory starting at m0

fulfills m(τ)(p) ≥ k is undecidable.
− The problem whether there is a τ such that the trajectory starting at m0

fulfills m(τ) ≥ m1 is undecidable.

Proposition 2 (Steady-state analysis). Let D be a (resp. bounded) TDPN
whose associated ODE has dimension at least 8 (resp. 16), m0 be a mark-
ing. Then the problem whether the trajectory m starting at m0 is such that
limτ→∞ m(τ) exists, is undecidable.

7 Conclusion

In this work, we have introduced TDPNs, and we have designed two simulations
of counter machines in order to fulfill robustness and boundedness requirements.
These simulations are performed by a net with a constant number of places,
i.e. whose dimension of associated ODE is constant. We have also proved that
marking coverability, submarking reachability and the existence of a steady-state
are undecidable. We conjecture that the marking reachability is undecidable and
we will try to prove it. In order to obtain decidability results, we also plane to
introduce subclasses of TDPNs where the restrictions will be related to both the
structure of the net and the associated ODE.
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Abstract. We extend the framework of ATL model-checking to “simply
timed” concurrent game structures, i.e., multi-agent structures where
each transition carry an integral duration (or interval thereof). While
the case of single durations is easily handled from the semantics point of
view, intervals of durations raise several interesting questions. Moreover
subtle algorithmic problems have to be handled when dealing with model
checking. We propose a semantics for which we develop efficient (PTIME)
algorithms for timed ATL without equality constraints, while the general
case is shown to be EXPTIME-complete.

1 Introduction

Verification and model-checking. The development of embedded reactive systems
is impressive (both in terms of their number and of their complexity), and their
formal verification can’t be ignored. Model-checking [12,7] is a well-established
technique for verifying that (an automaton representing) such a system satisfies
a given property. Following [21,11,22], temporal logics have been used for specify-
ing those properties: Linear time temporal logics (e.g. LTL) expresses properties
on each single execution of the model, while branching time temporal logics (e.g.
CTL) deal with the computation tree of the model.

The model-checking technique has been extended to also handle quantitative
measurement of time. In that framework, automata are equipped with real-
valued clocks [2], and temporal logics are extended to also express quantitative
constraints on the flow of time [1]. Again, this framework is now well understood,
but the algorithms are noticeably more complex.

In order to lower the complexity of those algorithms, less expressive mod-
els and logics have been developed [14,9,17]. Those models are less expressive,
but can be handled very efficiently, especially through symbolic model-checking
algorithms using BDD techniques [8,20,9,19].
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Verification and control. In the late 80’s, a new framework has been developed
in the field of verification: control (and controller synthesis) [23]. The goal is now
to build a controller that should prevent the (model of the) system from having
unwanted behaviors.

This problem is closely related to (multi-player) games: solving such a game
amounts to compute a strategy (if it exists) for a player so that he surely reaches
a state where he is declared the winner. In that case, the underlying model is
not a simple automaton, but rather a “concurrent game structure” (CGSs) [5],
in which several agents concurrently decide on the behavior of the system. In
order to reason with strategies, a new flavor of temporal logics has been defined:
alternating time temporal logics (ATL) [4,5]. This logic allows to express, for
instance, that a coalition of agents has a strategy in order to always reach a win-
ning location, or to always avoid reaching a bad locations. When the concurrent
game structure is defined explicitly, ATL enjoys polynomial-time model-checking
algorithms.

Our contribution. The goal of this paper is to extend the framework of ATL to
(simply) timed systems. To that aim, we introduce durational CGSs (DCGSs), in
which each transition is labeled with an interval of possible (integer) durations.
Those durations are assumed to be atomic, i.e., there are no intermediate state,
and the complete duration elapses in one step.

We propose a semantics for DCGSs where we assume that each transition is
associated with an extra agent, who is in charge of selecting the duration of that
transition within the interval it is labeled with. We believe that this semantics is
really interesting, as it allows to finely select which durations can be controlled by
a coalition. Moreover, we show that it still enjoys polynomial-time quantitative
model-checking algorithms in the case when no equality constraint is involved.

Related work. Our discrete-time extension of CGSs to DCGSs is inspired by
that of [17], where efficient quantitative model-checking algorithms are proposed.
Several other extensions of games with time have been proposed in the recent
literature, e.g. [18,3,6,10]. The semantics assumed there uses dense-time where
players choose either to wait for a delay or to fire an action-transition. In [13],
another dense-time semantics is proposed, working (roughly) as follows: each
player chooses a (strictly positive) delay and a transition, and the game follows
the player with the shortest delay. With this semantics, each player can take the
others by surprise.

Those papers only deal with qualitative control objectives. In [24], Schobbens
proposes a quantitative extension of ATL over timed CGSs (with a semantics
of time similar to that of [13]). The resulting logic, ARTL∗, a mixture of ATL
and MITL, is shown decidable.

2 Definitions

2.1 Tight Durational CGS (TDCGS)

We extend the model of CGSs, see [5,16].
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Definition 1. A TDCGS is a 6-tuple A = 〈Loc, Agt, AP, Lab, Mv, Edg〉 where:

• Loc is the (finite) set of locations;
• Agt = {a1, . . . , ak} is a (finite) set of agents (or players);
• AP the set of atomic propositions;
• Lab : Loc → 2AP the labelling function;
• Mv : Loc × Agt → P(N) � {∅} gives the set of possible moves at a given

location for a given agent;
• Edg : Loc×Nk → Loc×N>0 is the transition table, that is a partial function

assigning a successor location and a duration for a move of all agents.

The difference with classical CGSs is that each transition of a TDCGS car-
ries a positive1 integer, representing the duration (or cost) of that transition.
Given a transition Edg(q, c1, . . . , ck) = (q′, t), we use Edg�(q, c1, . . . , ck) (resp.
Edgτ (q, c1, . . . , ck)) to denote the location q′ (resp. the duration t).

The semantics of a TDCGS is similar to that of classical CGSs: a move of
agent a in location q is an integer c such that c ∈ Mv(q, a). Once each agent
ai has selected a move ci ∈ Mv(q, ai), the transition table Edg indicates the
transition to be fired, namely Edg(q, c1, . . . , ck).

Definition 2. An execution of a TDCGS A = 〈Loc, Agt, AP, Lab, Mv, Edg〉 from
a location q0 ∈ Loc is an infinite sequence ρ = (q0, d0) . . . (qi, di) . . . such that:

• d0 = 0;
• for each i, there exists a set of moves ci

1, . . . , c
i
k such that

(qi+1, di+1 − di) = Edg(qi, c
i
1, . . . , c

i
k).

For an execution ρ = (q0, d0) . . . (qi, di) . . ., the integer di is the date when arriv-
ing in qi.

The interesting point with ATL, compared to standard temporal logics, is
that it allows quantifications on strategies of (coalitions of) agents. A coalition
is a subset of the set of agents. Now we introduce the notions of strategy and
outcome:

Definition 3. Let A = 〈Loc, Agt, AP, Lab, Mv, Edg〉 be a TDCGS.

• Let a ∈ Agt. A strategy σa for a is a mapping that associates, with any finite
prefix (q0, d0) . . . (qi, di) of any execution, a possible move for agent a in qi,
i.e. σa((q0, d0) . . . (qi, di)) ∈ Mv(qi, a).

• Let A ⊆ Agt be a coalition. A move for A from a location q is a family
(ca)a∈A : one move for each agent in A. We write Mv(q, A) to represent the
set of all possible moves for A from q. Moreover a strategy σA for A is a
family (σa)a∈A.
We write A for Agt � A. Given a move c ∈ Mv(q, A) and c ∈ Mv(q, A), we
write Edg(q, c · c) for the transition corresponding to these choices.

1 We require in this paper that the durations be non-zero. The case of zero-durations
makes some of our algorithms slightly more difficult, and will be handled in a long
version of this paper.



248 F. Laroussinie, N. Markey, and G. Oreiby

• Let A ⊆ Agt be a coalition and σA be a strategy for A. An execution ρ =
(q0, d0) . . . (qi, di) . . . is an outcome of σA from q0 if, for any i, writing ci =
σA((q0, d0) . . . (qi, di)), there exists ci ∈ Mv(qi, A) s.t.

(qi+1, di+1 − di) = Edg(qi, c · c).

We denote by OutA(q, σA) the set of all outcomes of σA from q (we omit the
superscript A when it is clear from the context).

Size of a TDCGS. The size |A| of A is the sum of the sizes of Loc and Edg. The size
of Edg is defined as follows: |Edg| =

∑
q∈Loc

∑
c∈Mv(q,Agt)(1 + �log(Edgτ (q, c)�).

2.2 Timed ATL (TATL)

Definition 4. The syntax of TATL is defined by the following grammar:

TATL . ϕs, ψs ::= * | P | ¬ϕs | ϕs ∨ ψs | 〈〈A〉〉ϕp

ϕp ::= Xϕs | ϕs U∼ζ ψs | ϕs R∼ζ ψs

with P ∈ AP, A ⊆ Agt, ∼ ∈ {<,≤, =,≥, >}, and ζ ∈ N.

We also define the usual shorthands, such as ⊥ def≡ ¬*, 〈〈A〉〉F∼ζ ϕs
def≡ 〈〈A〉〉*

U∼ζ ϕs, and 〈〈A〉〉G∼ζ ϕs
def≡ 〈〈A〉〉⊥R∼ζ ϕs.

TATL formulae are interpreted over states of TDCGSs. Intuitively, the state-
formula 〈〈A〉〉ϕp holds in q iff there exists a strategy for coalition A in order to
enforce the path-formula ϕp along all the outcomes. Formally:

Definition 5. The following clauses define when a location q (resp. an execu-
tion ρ = (q0, d0)(q1, d1) . . .) of a TDCGS A satisfies a TATL formula ϕs (resp. a
path-formula ϕp), written q |=A ϕs (resp. ρ |=A ϕp), by induction over the
formula (semantics of boolean operators and atomic propositions are omitted):

q |=A 〈〈A〉〉ϕp ⇔ ∃σA. ∀ρ ∈ Out(q, σA). ρ |=A ϕp

ρ |=A X ϕs ⇔ q1 |=A ϕs

ρ |=A ϕs U∼ζ ψs ⇔ ∃i ∈ N. qi |=A ψs, di ∼ ζ

and qj |=A ϕs for any 0 ≤ j < i

ρ |=A ϕs R∼ζ ψs ⇔ ρ |=A ¬(¬ϕs U∼ζ ¬ψs)

When A is clear from the context, we just write q |= ϕ. Note that, contrary to
usual definitions of ATL [4,5], we include the “release” modality R, as we proved
in [16] that modality 〈〈A〉〉R cannot be expressed using only 〈〈A〉〉U and 〈〈A〉〉G.
Intuitively, ϕs R∼ζ ψs requires that ψs must hold when the condition “∼ ζ” is
fulfilled, but this global requirement is released as soon as ϕs holds. Formally:

ρ |=A ϕs R∼ζ ψs ⇔ ∀i ∈ N. (di ∼ ζ ⇒ qi |=A ψs)
or ∃j < i. qj |=A ϕs.

We use TATL≤,≥ to denote the fragment of TATL where subscripts “= ζ” are
not allowed in timing constraints for U and R.
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3 Model Checking TATL

The complexity of model-checking an ATL formula over a CGS has been shown
to be linear in both the size of the structure and the size of the formula [5]. On
the other hand, TCTL model checking on DKSs is PTIME-complete when timing
constraints contain no equality, while it is ∆P

2 -complete otherwise [17].
We present in this section our model-checking algorithm for TATL over TD-

CGSs. We explain how to handle modalities U∼ζ and R∼ζ . We then gather up
those algorithms in a global labeling algorithm, which is PTIME-complete when
no equality constraint is involved, and EXPTIME-complete otherwise.

3.1 Modalities U≤ζ and R≤ζ

First we consider the case of formula 〈〈A〉〉ϕ1 U≤ζ ϕ2, that is, when the coali-
tion A aims at reaching ϕ2 within ζ time units (and verifying ϕ1 in the interme-
diate states). We assume that states have already been labeled with ϕ1 and ϕ2,
which can therefore be seen as atomic propositions. We have:

Lemma 6. Let A be a TDCGS, and ϕ = 〈〈A〉〉P1 U≤ζ P2 be a TATL formula
(with P1, P2 ∈ AP). Then we can compute in time O(|Loc| · |Edg|) the set of
locations of A where ϕ holds.

Proof. For this proof, we define the extra modality U≤i

≤n, with the following
semantics:

ρ |=A P1 U≤i

≤n P2 ⇔ ∃j ≤ i. qj |=A P1, dj ≤ n,

and qk |=A P2 for any 0 ≤ k < j

This modality requires that the right-hand side formula be satisfied within at
most i steps. It is clear that, for any n ∈ N,

q |= 〈〈A〉〉P1 U≤n P2 ⇔ q |= 〈〈A〉〉P1 U≤|Loc|
≤n P2. (1)

Indeed, if all the outcomes of a strategy satisfy P1 U≤n P2, it is possible to adapt
that strategy so that each location is visited at most once along each outcome.

We now define functions vi(q), for i ∈ N and q ∈ Loc, by the following recursive
rules:{

if q |= P2 : v0(q) = 0
if q |= ¬P2 : v0(q) = +∞⎧⎪⎨⎪⎩
if q |= P2 : vi+1(q) = 0
if q |= ¬P1 ∧ ¬P2 : vi+1(q) = +∞
otherwise : vi+1(q) = min

c∈Mv(q,A)
max

c∈Mv(q,A)

(
Edgτ (q, c · c) + vi(Edg�(q, c · c))

)
Our proof now amounts to showing the following lemma:

Lemma 7. For any i ∈ N, for any n ∈ N and any q ∈ Loc, we have:

n ≥ vi(q) ⇔ q |= 〈〈A〉〉P1 U≤i

≤n P2.
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The proof is by induction on i: The base case is straightforward, as well as the
induction step when q |= P2 and when q |= ¬P1 ∧ ¬P2. We thus only focus on
the last case, when q |= P1 ∧ ¬P2: Assume the induction hypothesis holds up
to level i. If n ≥ vi+1(q), then (by definition of vi+1(q)) there exists a move
c ∈ Mv(q, A) such that, for any move c ∈ Mv(q, A), we have

n ≥ Edgτ (q, c · c) + vi(Edg�(q, c · c)).

By i.h., for any c ∈ Mv(q, A), we have

Edg�(q, c · c) |= 〈〈A〉〉P1 U≤i

≤n−Edgτ (q,c·c) P2.

The strategy σA witnessing that property, combined with the move c ∈ Mv(q, A),
yields a strategy for enforcing P1 U≤i+1

≤n P2 from q, as required.
The converse implication follows the same lines: given a strategy σA enforcing

P1 U≤i+1
≤n P2 from q, we let c = σA(q), and deduce that n satisfies the same

inequalities as above.
From Equation (1), it suffices to compute v|Loc|(q), for each q ∈ Loc, to deduce

the set of locations where ϕ holds. This algorithm thus runs in time O(|Loc| ·
|Edg|). ��

The release modality is handled similarly: we define v′i(q) as follows:{
if q |= ¬P2 : v′0(q) = 0
if q |= P2 : v′0(q) = +∞⎧⎪⎨⎪⎩
if q |= ¬P2 : v′i+1(q) = 0
if q |= P1 ∧ P2 : v′i+1(q) = +∞
otherwise : v′i+1(q) = max

c∈Mv(q,A)
min

c∈Mv(q,A)

(
Edgτ (q, c · c) + v′i(Edg�(q, c · c))

)
and R≤i

≤n as the dual of U≤i

≤n. Then an equivalence similar to Equation (1) holds,
and we have the following lemma (proof omitted):

Lemma 8. For any i ∈ N, for any n ∈ N and any q ∈ Loc, we have:

n < v′i(q) ⇔ q |= 〈〈A〉〉P1 R≤i

≤n P2.

Example 1. Consider the example depicted on Figure 1. On that TDCGS, the
duration is the integer written in the middle of each transition. The tuples that
are written close to the source location indicates the choices of the agents for
firing that transition (for instance, 〈2, 1〉 means that player a1 chooses move 2
and player a2 chooses move 1). They are omitted when each agent has a single
choice.

The valuations of atomic propositions are given in the table on the right of
the figure. This table shows the computation of vi(q), for each location. This
computation converges in three steps. For instance, that v3(A) = 21 indicates
that A |= 〈〈a1〉〉P1 U≤21 P2 holds, but A 
|= 〈〈a1〉〉P1 U≤20 P2.
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A B

C DE

1

1

1〈1,1〉

101

〈1,2〉

1

〈2,1〉
1

〈2,2〉

1〈1,1〉

20
〈1,2〉

vi(q) 0 1 2 3

A (P1, ¬P2) +∞ +∞ 21 21

B (P1, P2) 0 0 0 0

C (P1, ¬P2) +∞ 20 20 20

D (¬P1, P2) 0 0 0 0

E (P1, ¬P2) +∞ +∞ +∞ +∞

Fig. 1. The algorithm for U≤ζ

3.2 Modalities U≥ζ and R≥ζ

We now consider formula 〈〈A〉〉ϕ1 U≥ζ ϕ2 expressing that coalition A has a strat-
egy for staying at least ζ time units in ϕ1-states before reaching ϕ2. We have:

Lemma 9. Let A be a TDCGS, and ϕ = 〈〈A〉〉P1 U≥ζ P2 be a TATL formula
(with P1, P2 ∈ AP). Then we can compute in time O(|Loc| · |Edg|) the set of
locations of A where ϕ holds.

Proof. The idea is similar to that of the proof of Lemma 6. We introduce the
following modality:

ρ |=A pU≥i q ⇔ ∃j ≥ i. qj |=A q

and qk |=A p for any 0 ≤ k < j

We then compute a sequence of values, defined by the following recursive
rules:⎧⎨⎩

if q |= ¬ 〈〈A〉〉P1 UP2 : v0(q) = −∞
if q |= 〈〈A〉〉P1 UP2 ∧ ¬ 〈〈A〉〉P1 U≥1 P2 : v0(q) = 0
if q |= 〈〈A〉〉P1 U≥1 P2 : v0(q) = +∞⎧⎪⎪⎪⎨⎪⎪⎪⎩
if q |= ¬ 〈〈A〉〉P1 UP2 : vi+1(q) = −∞
if q |= 〈〈A〉〉P1 UP2 ∧ ¬ 〈〈A〉〉P1 U≥1 P2 : vi+1(q) = 0
if q |= 〈〈A〉〉P1 U≥1 P2 :

vi+1(q) = max
c∈Mv(q,A)

min
c∈Mv(q,A)

(
Edgτ (q, c · c) + vi(Edg�(q, c · c))

)
This computation requires that we first compute the set of locations satisfy-

ing 〈〈A〉〉P1 UP2 and those satisfying 〈〈A〉〉P1 U≥1 P2. This can be done in time
O(|Edg|) using standard ATL model-checking algorithms. Thus, computing vi(q)
for each q ∈ Loc and each i ≤ |Loc| can be achieved in time O(|Loc| · |Edg|).

Those values satisfy the following lemma:

Lemma 10. For any i ∈ N, for any n ∈ N and q ∈ Loc, we have

n ≤ vi(q) ⇔ q |= 〈〈A〉〉
[
(P1 U≥n P2) ∨ (P1 U≥i+1 P2)

]
.
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This will conclude the proof of Lemma 9, thanks to the following equivalence:

q |= 〈〈A〉〉P1 U≥n P2 ⇔ q |= 〈〈A〉〉
[
(P1 U≥n P2) ∨ (P1 U≥|Loc|+1 P2)

]
.

This equivalence relies on the fact that all durations are strictly positive: if some
outcome of the strategy satisfies P1 U≥|Loc|+1 P2, then one location is visited twice,
and it is possible to adapt the strategy so that it is visited n times (thus with
total duration larger than n) before visiting P2.

We now prove Lemma 10: we omit the easy cases, and only focus on the
inductive step in the case when q |= 〈〈A〉〉P1 U≥1 P2. In particular, we have
q |= P1. First, pick some n ≤ vi+1(q), assuming the result holds up to step i. By
definition of vi+1(q), there exists c ∈ Mv(q, A) such that, for any c ∈ Mv(q, A),
we have

n ≤ Edgτ (q, c · c) + vi(Edg�(q, c · c)).

From the induction hypothesis, this means that

Edg�(q, c · c) |= 〈〈A〉〉
[
(P1 U≥n−Edgτ (q,c·c) P2) ∨ (P1 U≥i+1 P2)

]
.

The strategy witnessing that property, combined with move c ∈ Mv(q, A), yields
a strategy witnessing that

q |= 〈〈A〉〉
[
(P1 U≥n P2) ∨ (P1 U≥i+2 P2)

]
.

The converse implication follows the same (reversed) steps. ��

We omit the case of the release modality, which is very similar.

Example 2. In Figure 2, we apply that algorithm to the same TDCGS as be-
fore. This table shows the computation of vi(q), for each location. This com-

A B

C DE

1

1

1〈1,1〉

101

〈1,2〉

1

〈2,1〉
1

〈2,2〉

1〈1,1〉

20
〈1,2〉

vi(q) 0 1 2 3

A (P1, ¬P2) +∞ +∞ 2 2

B (P1, P2) +∞ 10 10 10

C (P1, ¬P2) +∞ 1 1 1

D (¬P1, P2) 0 0 0 0

E (P1, ¬P2) −∞ −∞ −∞ −∞

Fig. 2. The algorithm for U≥ζ

putation converges in three steps. For instance, that v3(A) = 2 indicates that
A |= 〈〈a1〉〉P1 U≥2 P2 holds, but A 
|= 〈〈a1〉〉P1 U≥3 P2.
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3.3 Modalities U=ζ and R=ζ

Lemma 11. Let A be a TDCGS, and ϕ = 〈〈A〉〉P1 U=ζ P2 be a TATL formula.
We can compute in time O(ζ · |Edg|) the set of locations of A where ϕ holds.

Since ζ is encoded in binary, this algorithm runs in time exponential in the size
of the formula.

Proof. We use dynamical programming, and recursively build a table T : Loc ×
{0, . . . , ζ} → {*,⊥} such that

T (q, i) = * ⇔ q |=A 〈〈A〉〉ϕ1 U=i ϕ2. (2)

When i = 0, letting T (q, 0) = * if, and only if, q |= P2 clearly fulfills equa-
tion (2) (since all durations are non-zero). Now, pick i < ζ, and assume all the
T (q, j) have been computed for j ≤ i. Then

T (q, i + 1) = * ⇔ q |= P1 and ∃c ∈ Mv(q, A). ∀c ∈ Mv(q, A).
Edg(q, c · c) = (q′, t) with T (q′, i − t) = *.

This computation can be done since all durations are non-zero. It is achieved
by running through the transition table, and is thus in time linear in the size
of Edg. It is clear that equation (2) is preserved by this construction, so that in
the end, q |= ϕ iff T (q, ζ) = *. This algorithm runs in time O(ζ × |Edg|). ��

A similar algorithm can be defined for handling 〈〈A〉〉ϕ1 R=ζ ϕ2: the table T ′(q, i)
is initialized in the same way (i.e., T ′(q, 0) = * ⇔ q |= P2), and each step is
computed according to the following rule:

T ′(q, i) = * ⇔ q |= P1 ∨ ∃c ∈ Mv(q, A). ∀c ∈ Mv(q, A).
Edg(q, c · c) = (q′, t) with T ′(q′, i − t) = *.

3.4 Results for TATL and TATL≤,≥

From Lemmas 6, 9 and 11, we can deduce procedures to handle all modalities
and this gives the following result:

Theorem 12. Model checking a TATL formula ϕ over a TDCGS A can be
achieved in time O(|A|2 · |ϕ| · ζmax), where ζmax is the maximal constant ap-
pearing in ϕ. It is thus in EXPTIME.

Note that this algorithm is polynomial in the size of the TDCGS, and is expo-
nential only because of the binary encoding of the constants that appear in the
formula. This complexity blow-up cannot be avoided:

Theorem 13. Model-checking TATL over TDCGSs is EXPTIME-complete.



254 F. Laroussinie, N. Markey, and G. Oreiby

Proof. This result is based on the fact that deciding the countdown games is
EXPTIME-hard [15]. A countdown game is a two-player game. It consists of a
weighted graph (V, E) where V is the set of vertices and E ⊆ V × N × V is the
weighted transition relation. A configuration of a countdown game (V, E) is a
pair (v, C) ∈ V × N. At every turn, Player 1 chooses, from the current config-
uration (v, C), a duration 1 ≤ d ≤ C s.t. (1) 0 < d ≤ C and (2) there exist
at least one transition (v, d, v′) ∈ E. Then Player 2 chooses one of these tran-
sitions (issued from v and whose duration is d) and then the new configuration
is (v′, C−d). Any configuration (v, 0) is terminal and it is a winning configuration
for Player 1. Any configuration (v, C) s.t. (1) C > 0 and (2) there is no transition
(v, d,−) with d ≤ C is terminal and it is a winning configuration for Player 2.
Deciding whether Player 1 has a wining strategy for a configuration (v, C) is an
EXPTIME-hard problem [15].

We can easily build a TDCGS A = 〈Loc, Agt, AP, Lab, Mv, Edg〉 correspond-
ing to the countdown game (V, E). We let Agt = {a1, a2}. The set of locations
Loc ⊆ V ∪ V × N is defined as follows: v ∈ Loc if v ∈ V , and (v, t) ∈ Loc
if there exists a transition (v, t,−) in E. This is a turn-based game: agent a1
plays (i.e., has several possible moves) in locations v, and agent a2 plays in
locations (v, t). From v, the moves of agent a1 are the weights t s.t. there
exist some transitions (v, t,−) in E, and the moves of agent a2 from (v, t)
are the possible successors v′ s.t. (v, t, v′) ∈ E. The transition table is de-
fined in a natural way and the duration associated with transitions leading
from v to (v, t) or from (v, t) to v′ is t. Then deciding whether the configu-
ration (v, C) with C ∈ N is winning for Player 1 reduces to a model checking
problem: v |=A 〈〈a1〉〉F=2C *. ��

Still, we can have efficient algorithm if we restrict to the fragment TATL≤,≥:

Theorem 14. Model-checking a TATL≤,≥ formula ϕ over a TDCGS A can be
achieved in time O(|A|2 · |ϕ|), and is thus in PTIME.

This is an immediate consequence of Lemmas 6 and 9. PTIME-hardness follows
from that of CTL model-checking over Kripke structures. Thus:

Corollary 15. Model checking TATL≤,≥ over TDCGSs is PTIME-complete.

3.5 Unitary TDCGSs

Unitary TDCGSs are TDCGSs where all durations equal 1. Intuitively, unitary
TDCGSs are easier to handle because it is possible to verify ϕ = 〈〈A〉〉ϕ1 U=c ϕ2
by dichotomy, i.e., by verifying 〈〈A〉〉ϕ1 U=�c/2� ( 〈〈A〉〉ϕ1 U=c−�c/2� ϕ2), and so
on [14]. That way, model-checking an U=ζ formula can be achieved in time
O(log(ζ) · |A|). In the end:

Theorem 16. Model checking a TATL formula ϕ over a unitary TDCGS A can
be achieved in time O(|A|2 · |ϕ|), and is thus PTIME-complete.



Model-Checking Timed ATL 255

4 Durational CGSs

We now propose an extension of the models above that now allows transitions
labeled with intervals (instead of a single integer). That way, agents don’t know in
advance the duration of the transitions. Special agents, one per transition, decide
for the durations. This gives a very expressive framework, in which coalitions
can mix “classical” agents with “time” agents.

4.1 Definition

We write I for the set of intervals with bounds in N>0 ∪ {+∞}.
Definition 17. A durational CGS (DCGS) is a 6-tuple S = 〈Loc, Agt, AP, Lab,
Mv, Edg〉 such that:

• Loc, Agt, AP, Lab and Mv have the same characteristics as in Definition 1;
• Edg : Loc× Nk → Loc×I is the transition table, associating with each tran-

sition an interval containing its possible durations.

The size of the transition table is again the space needed to write it in binary
notation, and the size of a DCGS is |Loc| + |Edg|. Again, we use Edgτ (q, c) to
denote the interval of durations of the transition Edg(q, c), and Edg�(q, c) to
denote its location.

While the syntax is not very different to that of TDCGSs, the semantics
is rather more involved: the crucial point is that the agents must select the
transition the system will fire, but they must also choose the duration of that
transition within the interval it’s labeled with. This last part is achieved by
special “time-agents”: we consider one time-agent taq,c per location q and move
c in Mv(q, Agt). Formally the semantics of S is defined as a TDCGS A[S] =
〈Loc, Agt′, AP, Lab, Mv′, Edg′〉 with:

• Agt′ = Agt ∪ {taq,c | q ∈ Loc and c ∈ Mv(q, Agt)},
• Mv′(q, a) = Mv(q, a) for any a ∈ Agt; Mv′(q, taq,c) = Edgτ (q, c) for any

taq,c ∈ Agt′, and Mv′(q, taq′,c) = {0} for any taq,c ∈ Agt′ with q′ 
= q,
• Edg′(q, c, tq0,c0 , . . . , tqn,cm) = (q′, t) iff c ∈ Mv′(q, Agt) for any i, t = tq,c and

tq,c ∈ Mv′(q, taq,c), and tq′,c′ = 0 when q′ 
= q or c 
= c′.

As for TDCGSs, we use the notions of coalition of agents (including the time-
agents), strategy and outcome.

Note that the transition table of the corresponding TDCGS A[S] is infinite
when there exist infinite intervals in the definition of S. And when it is finite,
|Edg′| is bounded by |Edg| · bM where bM is the maximal constant occurring in
the intervals of durations in S: in Edg′, we replace each entry (q, c) of Edg by
(b − a) + 1 entries when Edgτ (q, c) = [a; b]. Thus the size of A[S] is potentially
exponential in |S| (due to the binary encoding). Note that in every entry of Edg′,
only one time-agent may have more than one possible move.

Moreover time agents can be used in TATL modalities in order to express the
existence of strategies for coalitions that may control the duration of a subset
of transitions. Given a DCGS S, a location q, and a TATL formula ϕ, we write
q |=S ϕ when q |=A[S] ϕ. We might omit the subscript if it raises no ambiguity.
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S: A

B

[1, 3]

〈1,1〉

[1, 3]
〈1,1〉

A[S]: A B

1
〈1,1,1,0〉

2
〈1,1,2,0〉

3〈1,1,3,0〉

1 〈1,1,0,1〉2 〈1,1,0,2〉3 〈1,1,0,3〉

Fig. 3. A DCGS for the simplified Nim game, and its associated TDCGS

Example 3. We illustrate our models by a simple example: the simplified Nim
game. In that game, a set of N matches are aligned on a table, and each player,
in turn, picks between 1 and 3 matches. The players who takes the last match
is declared the winner. This game can easily be encoded as the DCGS (where
“durations” are in fact the number of matches taken by the players) depicted on
the left of Figure 3. Player A wins iff formula 〈〈A, tA〉〉F=N B holds.

Time agents. The motivation for using time-agents is that the time elapsing
should not be controlled by the same player along an execution. Depending on
the state or the transition, it is convenient to be able to specify who decides
the duration of an event. Note that assigning one time-agent per transition is
more general than assigning one time-agent per location: indeed, in the former
approach, a time-agent taq (for controlling the duration of all the transitions
issued from q) can be easily simulated by the coalition {taq,c1 , . . . , taq,cm} con-
taining all the time-agents of the transitions leaving q.

4.2 Model Checking TATL≤,≥

When verifying TATL formulae containing modalities with timing constraints of
the form “≤ c” or “≥ c”, we do not need to consider all the transitions of A[S].
We can restrict the analysis to an abstraction of A[S]:

Definition 18. Let S = 〈Loc, Agt, AP, Lab, Mv, Edg〉 be a DCGS and let A[S] =
〈Loc, Agt′, AP, Lab, Mv′, Edg′〉 be the TDCGS corresponding to the semantics of
S. Given an integer C, we define the C-abstraction of S as the TDCGS A[S]C =
〈Loc, Agt′, AP, Lab, Mv′′, Edg′′〉 with:

• Mv′′(q, taq,c) is {a, b} (resp. {a; C + 1}) if Edgτ (q, c)
= [a, b] (resp. Edgτ (q, c) = [a, +∞)); and Mv′′ coincides with Mv′ for other
cases (a ∈ Agt or taq′,c with q′ 
= q).

• Edg′′ is defined as Edg′ but with Mv′′ instead of Mv′.

In the TDCGS A[S]C , we replace the set of transitions corresponding to all
durations in an interval λ by two transitions: a short one —the left-end value
of λ— and a long one: either the right-end value of λ if λ is finite, or C + 1 (or
the left-end of λ if C + 1 /∈ λ). Indeed, an open interval is interesting for the
truth value of some properties because it may allow arbitrary long durations.
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But delaying for C+1 t.u. is always enough when considering TATL≤,≥ formulae
with constants less than C:

Lemma 19. Let S be the DCGS and C be an integer. For any ζ ≤ C and
q ∈ Loc, we have:

q |=A[S] 〈〈A〉〉P1 U≤ζ P2 ⇔ q |=A[S]C 〈〈A〉〉P1 U≤ζ P2 (3)
q |=A[S] 〈〈A〉〉P1 U≥ζ P2 ⇔ q |=A[S]C 〈〈A〉〉P1 U≥ζ P2 (4)
q |=A[S] 〈〈A〉〉P1 R≤ζ P2 ⇔ q |=A[S]C 〈〈A〉〉P1 R≤ζ P2 (5)
q |=A[S] 〈〈A〉〉P1 R≥ζ P2 ⇔ q |=A[S]C 〈〈A〉〉P1 R≥ζ P2 (6)

Proof (sketch). There are more behaviors in A[S] than in A[S]C , but these
additional executions do not change the truth value of TATL≤,≥ formulae.

Indeed let ρ = (q0, d0) . . . (qi, di) . . . be an execution in A[S] and let ca
i (resp. ct

i)
be the i + 1-st move of the agents Agt (resp. the time-agents) along ρ 2. We can
change the move of the agent taqi,ci and obtain another run ρ′ with the same
prefix and the same suffix as ρ: the duration spent in qi has changed (and thus
the global dates of actions) but not the time spent in other locations. This prop-
erty allows to make local changes on delays without changing the sequence of
visited states.

Consider a strategy σA for the coalition A in A[S] to ensure ψ = P1 U≤ζ P2.
From σA, we can build a strategy σ′

A ensuring ψ in A[S]C . Indeed the only
changes we have to make are for the moves of time-agents when, in q with a
move c for Agt, σA requires to wait for tq,c while tq,c is not in the restricted
set of moves of A[S]C (i.e. tq,c 
∈ Mv′′(q, taq,c)). In that case, the strategy σ′

A

can propose the minimal duration in Mv′′(q, taq,c): the ending state satisfying ψ
will be reached sooner than along ρ and then ψ will be true. If the formula to
be verified was U≥c then the maximal duration will be enough to ensure the
formula. The same holds for the release operators.

Now consider a strategy σ′
A for the coalition A in A[S]C to ensure ψ =

P1 U≤ζ P2. This strategy can be completed for ensuring ψ in the full TDCGS.
Consider a finite execution ρ in A[S], we can define a corresponding execution ρ̄
in A[S]C where any move of time-agent taq,c from the location q is either left un-
changed if taq,c ∈ A —this is an “A-controllable” time-agent and having applied
σA from the beginning of the execution ensures that its move is in A[S]C—, or
replaced by the maximal duration in Mv′′(q, taq,c) if taq,c is not an A-controllable
time-agent. Then it is sufficient to define σA(ρ) as σ′

A(ρ̄).
Of course, if we consider ψ = P1 U≤ζ P2, we build ρ̄ differently and consider

minimal durations. ��

Note that the size of A[S]C is bounded by 2 · |S|. Thus:

Theorem 20. Model checking TATL≤,≥ over DCGSs is PTIME-complete.

2 i.e. (qi+1, ti+1 − ti) = Edg′(qi, c
a
i · ct

i) with ca
i · ct

i ∈ Mv(qi, Agt′).
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4.3 Model Checking TATL

For full TATL, we also reduce the problem to that of finite TDCGSs. Given a
DCGS S and a formula ϕ = 〈〈A〉〉P1 U=ζ P2, we explicitly add one extra agent
per transition, with moves in [a, b] if the corresponding transition is labeled
with [a, b], and moves in [a, max(a, ζ + 1)] if it is labeled with [a, +∞). This
restriction makes the corresponding TDCGS to be finite, its size is in O(|S| ·
max(bM , ζ)) where bM is the maximal integer appearing as a bound of an interval
in S. And applying the algorithm of Theorem 12 to that TDCGS, we get an
EXPTIME algorithm for model-checking ϕ on our DCGS S. The algorithm is
similar for the release modality. This must be repeated a polynomial number of
times for verifying a TATL formula, yielding an algorithm in time O(|S|2 · bM ·
ζmax · |ϕ|) (where ζmax is the largest constant in the formula ϕ), that is, in time
exponential in both the structure and the formula. Note that the blow-up is only
due to the binary notation for the integers. Combined to Theorem 13, this gives:

Theorem 21. Model-checking TATL over DCGSs is EXPTIME-complete.

5 Conclusion

We have introduced a new family of models of concurrent game structures, in
which transitions carry a (set of) durations. The semantics of those models
involve “time-agents”, i.e., agents that decide the duration of the transition that
will be fired. This allows to break the symmetry in time games, allowing some
coalition to decide the duration of some of the transitions.

We proved that those models enjoy efficient quantitative model-checking al-
gorithms, as soon as no timing constraint = ζ is involved. Equality constraints
yield an exponential blow-up, which we saw cannot be avoided.

As future work, we plan to extend this “time agent”-semantics to concurrent
game structures with clocks, similar to timed automata [2]. As a first step, it
would be nice if we could extend the algorithms presented here to the “contin-
uous” semantics (as defined in [17]) of DCGSs.
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Abstract. We consider interval measurement logic IML, a sublogic of
Zhou and Hansen’s interval logic, with measurement functions which
provide real-valued measurement of some aspect of system behaviour in
a given time interval. We interpret IML over a variety of time domains
(continuous, sampled, integer) and show that it can provide a unified
treatment of many diverse temporal logics including duration calculus
(DC), interval duration logic (IDL) and metric temporal logic (MTL).
We introduce a fragment GIML with restricted measurement modalities
which subsumes most of the decidable timed logics considered in the
literature.

Next, we introduce a guarded first-order logic with measurements
MGF . As a generalisation of Kamp’s theorem, we show that over ar-
bitrary time domains, the measurement logic GIML is expressively com-
plete for it. We also show that MGF has the 3-variable property.

In addition, we have a preliminary result showing the decidability of
a subset of GIML when interpreted over timed words.

The importance of reasoning about timed systems has led to considerable re-
search on models and logics for timed behaviours. We consider a slightly more
general situation where, in addition to time, we can use other measurement
functions as well. For instance, instead of saying “during the last 24 hours, the
rainfall was 100 mm,” we can say that “the time elapsed for the last 100 mm of
rainfall was over 4 months.” We can also have measurements of quantities like
“mean value” of a proposition within a time interval. Guelev has shown how
probabilities might be incorporated into such a framework [Gue00].

Unlike data languages [BPT03], there is no finite state mechanism associated
with the measurement functions. Thus we are in the setting of the interval logic
with measurements defined by Zhou and Hansen [ZH04].

There exists quite a menagerie of timed and duration logics. In Section 1
below, we review the literature and define our logic χIML[Σ] over a signature Σ
of measurement functions, and parameterised by a set of primitive comparisons
χ dependent on Σ. We show that it can provide a unified treatment of many
diverse temporal logics including duration calculus (DC), interval duration logic
(IDL) and metric temporal logic (MTL).

In Section 2, we consider an enrichment of Kamp’s FO[<] with measurements.
The undecidability of this logic motivates us to formulate and investigate a
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fragment χMGF [<, Σ] with χ-guarded measurement quantifiers. The next two
sections show that χGIML is expressively complete for χMGF . Kamp’s syntactic
techniques were used by Venema [Ven91], and we extend these as well as the
pebble games of Immerman and Kozen [IK87] in our proofs. As in Kamp’s result,
we show along the way that χMGF has the three-variable property.

Thus the expressiveness of our logic is reasonably delineated. We would have
liked to have established a connection to aperiodic languages [Bac03] but this
must remain future work.

We now turn to decidability. We find that IML and GIML are in general
undecidable, but for a set of weak comparisons (which disallow equality tests
between measurements and constants), we use a result by Hirshfeld and Ra-
binovich [HR99] and our expressive completeness to show that Weak -GIML[�]
is decidable for continous time. We also prove by translation into one-clock
alternating timed automata [LW05, OW05], decidability over timed words of
a sublogic Punct-FgIML[�] of GIML[�], which only has nesting-free forward
guarding.

1 A Classification of Timed Behaviours and Logics

Timed logics describe the evolution of system behaviour in time. For us, time is
a linear order (T, <), and we will further assume that T is a subset of the non-
negative reals (which we designate /) with < the usual ordering. Intv(T ), the set
of (closed) intervals of T , is {[b, e] ∈ T ×T | b ≤ e}. A time frame TF = (T, <, d)
is a subset of the real order (/, <) with d giving the absolute value of the distance
on the real line between two real numbers, i.e. d[b, e] = |b − e|.

Zhou and Hansen have proposed an interesting interval logic [ZH04] where
the variables (measurement functions) denote real-valued measurements of sys-
tem behaviour in a given time interval. Formally we have a signature Σ =
{m1, . . . , mn} of measurement function symbols (of arity 2), and we assume
that it contains the distinguished function � which measures the length of the
interval. We will often abbreviate the signature {�} to �.

Zhou and Hansen’s logic allows first order real arithmetic over such measure-
ments. In this section, we introduce a restricted version of this logic where a
measurement may only be compared with an integer constant. We call this logic
interval measurement logic, IML.

Let Pvar be a finite set of propositional variables. A behaviour of a system
over TF is a pair of maps θ : (Pvar → T → {0, 1})× (Σ → Intv → /), where Σ
might depend on Pvar. For convenience we write θ(p) as a boolean function of
time and θ(m)[b, e], for m ∈ Σ, as giving the value of the measurement function
m on the interval [b, e]. Moreover, we require that the measurement � is always
interpreted as length of the interval, i.e. θ(�)[b, e] = d[b, e] = |b − e|. An interval
model is a pair θ, [b, e].

It is useful to consider several classes of time frames TF = (T, <, d) where
T ⊆ /. In the literature, we find a variety of timed logics which use these different
classes as time frames. Some such logics are listed in the next section.
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Continuous infinite time. T = /.
Continuous time finitely variable behaviours. We call a continuous time

behaviour θ finitely variable if for any p in Pvar, θ(p) changes only finitely
often within a finite interval.

Continuous time prefix behaviours. T = [0, r] for some r ∈ / where [0, r]
denotes the set of reals between 0 and r. Let max(T ) = r give the maximum
time-point upto which the behaviour is captured.

Sampled time infinite behaviours. T has the form {r0, r1, . . .}, the count-
ably infinite set of sampling points where r0 = 0 and r0, r1, . . . forms an
unbounded increasing sequence within /. These behaviours are also called
timed ω-words.

Sampled time prefix behaviours. T has the form {r0, r1, . . . , rk}, the finite
set of sampling points where r0 = 0 and ri ∈ /. Also ri < ri+1. Let
max(T ) = rk. These behaviours are also called finite timed words.

Discrete time. This is a subclass of sampled time behaviour (infinite or prefix)
where all sampling points have integer values.

1.1 Interval Measurement Logic

The formulae of interval measurement logic χIML[Σ] are parameterised by a set
χ of atomic measurement comparisons. For concreteness, let us fix Punct(Σ) to
be the countable set of comparisons m ∼ c, for all m ∈ Σ, ∼ in {<, =, >} and c
in Z, the set of integers. Since punctuality is a strong requirement [AFH96], we
also define Weak(Σ) to be the subset of weak comparisons made only using the
< symbol, and Test(Σ) to be the set of comparisons of the form m = 0.

Boolean combinations of the propositional variables Pvar and 0, 1 (denoting
false and true respectively) are called propositions, Prop. Let P, Q range over
propositions, m ∼ c over comparisons from a set χ and D1, D2 over formulae.
The formulae of χIML[Σ] have the syntax

$P %0 | $P % | m ∼ c | D1
�D2 | D1

�
+D2 | D1

�
−D2 | D1 ∧ D2 | ¬D

When we write IML[Σ] we mean that χ is the full set of comparisons Punct(Σ).

Semantics of IML. For a proposition P and time point t, θ, t |= P is defined
inductively as usual. Let θ, [b, e] |= D denote that the formula D ∈ IML evaluates
to true in the behaviour θ at interval [b, e] ∈ Intv(θ). Omitting the boolean cases,
this is defined as follows.

θ, [b, e] |= $P %0 iff b = e and θ, b |= P
θ, [b, e] |= $P % iff b < e and for all t : b < t < e. θ, t |= P
θ, [b, e] |= m ∼ c iff θ(m)[b, e] ∼ c
θ, [b, e] |= D1

�D2 iff for some z : b ≤ z ≤ e. θ, [b, z] |= D1 and θ, [z, e] |= D2

θ, [b, e] |= D1

�
+D2 iff for some z : e ≤ z. θ, [b, z] |= D1 and θ, [e, z] |= D2

θ, [b, e] |= D1

�
−D2 iff for some z : z ≤ b. θ, [z, e] |= D1 and θ, [z, b] |= D2
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Derived operators. Note that $1%0 holds for all point intervals whereas $1% holds
for all extended intervals. The formula $$P % def= $P %0 �$P % states that P must
hold invariantly over the interval, except possibly at the last point.

– �D
def= true �D �true holds provided D holds for some subinterval.

– �D
def= ¬�¬D holds provided D holds for all subintervals.

–
→
� D

def= D
�
+true holds provided some forward extension of the interval

satisfies D. Symmetrically
←
� D

def= true
�
−D.

Validity. As usual D is valid iff for all behaviours θ, θ |= D, where

– For prefix behaviours, θ |= D iff θ, [0, max(θ)] |= D
– For infinite behaviours, θ |= D iff θ, [0, e] |= D for all e ∈ dom(θ).

Example 1. The formula �($$P % ⇒ � ≤ c) states that P can be continuously
true for at most c time units.

Various sublogics of IML have appeared in the literature. We use different signa-
tures to relate our work to a few of these. (The original versions of some of these

logics do not include the modalities D1

�
+D2 and D1

�
−D2 which were introduced

by Venema [Ven90].)

Duration calculi. Let the signature Duration(Pvar) = {�}∪{
∫
P | P ∈ Prop}.

The term
∫
P is interpreted to measure the accumulated amount of time for

which proposition P is true in an interval. Thus, we obtain the logic Punct-
IML[Duration(Pvar)]. This logic is called duration calculus, DC, when inter-
preted over continuous time finitely variable models [ZH04]; interval duration
logic, IDL, when interpreted over sampled time prefix models [Pan02]; and
DDC when interpreted over integer time prefix models.

Mean value calculus. Let the signature Mean(Pvar) = {�}∪{P | P ∈ Prop}.
The term P is interpreted to measure the mean value of proposition P in an
interval [b, e]. The logic Punct-IML[Mean(Pvar)] is the mean value calculus,
MVC, interpreted over continuous time finitely variable models [ZL94].

CDT. Consider a signature Σ of measurement functions without �. If we only al-
low comparisons with zero—that is, χ is Test(Σ)—effectively we are restrict-
ing from real-valued measurements to boolean-valued ones. Such a measure-
ment function is nothing but an atomic proposition (such as “did it rain?”)
evaluated at every interval. This is an idea which has been long studied by
philosophers of time. The corresponding logic Test -IML[Σ] was called CDT

[Ven91], as the modalities �,
�
−,

�
+ are named C, D and T respectively.

Interval length logic. On the other hand, we can consider the signature {�}
without any other measurement functions. The logic Punct-IML[�] is called
interval length logic. As in most real-time logics, it only includes the mea-
surement of time distance using the distinguished function �.

Interval temporal logic. Finally, the trivial logic IML[∅] with the empty sig-
nature is called interval temporal logic, ITL. This logic has been studied over
all the classes of models discussed above.
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The discrete time logic DDC has been shown to be decidable using an auto-
mata-theoretic decision procedure [Pan02]. The general situation is bleaker.

Proposition 1. The logic Punct-IML[�] is undecidable for continuous, finitely
variable and sampled behaviours whether infinite or prefix. Test-IML[Σ] is un-
decidable for infinite time.

Proof. As in the undecidability proof for DC [ZH04], for each 2-counter machine
M we can define a formula D(M) of Punct-IML[�] which is satisfiable iff M has
a halting run. The nonhalting problem is encoded using a very narrow subset of
CDT, with unary modalities definable from �, in [Lod00].

1.2 Guarded Measurement

Faced with the strong undecidability results described above, we restrict the
logic by permitting only guarded use of measurement formulae. A χ-guarded
modality has the syntax

G → D | G ← D,

where the guard G is a boolean formula over the set of comparisons χ. The
meaning of guarded modalities is as follows:

θ, [b, e] |= G → D iff b = e and for some z : b ≤ z. θ, [b, z] |= G ∧ D

θ, [b, e] |= G ← D iff b = e and for some z : z ≤ b. θ, [z, b] |= G ∧ D

Formally, G → D
def= $1%0∧ →

� (G ∧ D) and G ← D
def= $1%0∧ ←

� (G ∧ D).

Example 2. The formula �(¬(� ≤ c) → ¬$$P %) is Weak -guarded and states that
P can be continuously true only for at most c time units.

χGIML[Σ] is the sublogic of IML[Σ] where measurements only appear in χ-
guards. Thus, Punct-GIML[Σ] guards use boolean combinations of comparisons
from Punct(Σ). If only forward (resp. backward) measurement guards are used,
we call the logic FGIML (resp. BGIML). If in the modality G → D of FGIML,
we do not allow guarded modalities in D, we get a logic with nesting-free for-
ward guarding, which we denote Punct -FgIML. Guarded modalities exist in the
literature, though not in direct fashion.

Relative distance. A subset of interval duration logic IML[Duration(Pvar)]
where measurements only occur within the guard G of a modality P � G
(originally due to [Wil94]) has been called LIDL [Pan02]. This logic can be
encoded in the backwards guarded logic BGIML[Duration(Pvar)] by encod-
ing the LIDL formula P � G as the BGIML formula G ← $P %0 �$¬P %. All
the other constructs of LIDL are already available in BGIML.

Metric temporal logic. The logic MTL [Koy90] can be encoded in Punct-
FGIML[�] as follows (see [Pan96] for details). For every MTL formula φ

we define a translation α(φ): Let α(p) = $p%0 �true. Let BP (D) def=
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($1%0∧ →
� D) �true. Then, the constrained until modality of MTL is encoded

as follows.

α(φ UI ψ) = (I(�) → ¬(true �BP (α(φ) �true)) �BP (α(ψ))) �true

Here I(�) is the constraint corresponding to the interval I, e.g. for [3, 5) we
get � ≥ 3 ∧ � < 5. It can be shown that for all θ, b, e, φ we have θ, b |=mtl

φ iff θ, [b, e] |=iml α(φ). By a variation of this construction, we can model
MTL with both past and future modalities in Punct-GIML[�].

Guarding in first order logic has been an important tool for obtaining decidabil-
ity. Unfortunately, we can show that in the presence of punctual measurements
guarding does not guarantee decidability. MTL with future operators is unde-
cidable over continuous infinite time and MTL with past and future operators is
undecidable over sampled prefix time [OW05] and the second author and Vijay
Suman have recently shown that LIDL is undecidable over sampled time, prefix
or infinite. (However, LIDL with only length measurements is decidable over
sampled prefix time [Pan02].) All these logics can be encoded within fragments
of GIML giving the following results.

Proposition 2. 1. The logic Punct-FGIML[�] is undecidable for continuous
infinite time.

2. The logic Punct-GIML[�] is undecidable for sampled time.
3. The logic Punct-BGIML[Duration(Pvar)] is undecidable for sampled time.

2 First Order Logics with Measurement

In place of interval measurement logic, we can specify a behaviour θ using the
first order logic with measurement MFO [Σ̂]. This is the first order logic with
equality over the signature Σ̂ = (Pvar, {<}, Σ) where each p ∈ Pvar denotes a
monadic predicate.

Example 3. The formula ∀x, y. x < y ∧ (∀z. x < z < y ⇒ P (z)) ⇒ �(x, y) ≤ c
states that P cannot be true continuously for more than c time units.

We can associate a classical first order structure θ interpreting Σ̂ with a given
behaviour θ. The domain of θ is T with linear order <. For each p ∈ Pvar there
is a monadic predicate p(x) which is interpreted as the set θ(p). The functions
m ∈ Σ are interpreted as θ(m). The semantics of MFO [Σ̂] is given as usual and
omitted here.

Proposition 3. There is a bijection (θ, θ) between the IML[Σ] behaviours and
the first-order structures interpreting Σ̂.

While the monadic theory of linear order MonFO[<] is decidable [LL66], in-
troduction of even the basic measurement Σ = {�} makes the logic MFO [Σ̂]
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undecidable [ZH04]. Hence we resort to a notion of guarded use of measure-
ments. Let χMGF [Σ] be the measurement-guarded fragment of MFO [Σ̂] which
extends MonFO[<] by the χ-guarded quantifier φ(t0) = ∃t(G(t0, t)∧ψ(t0, t)),
where ψ is a formula with at most two free variables t0 and t, and the guard G
is a boolean combination of comparisons from the set χ over the signature Σ.
Thus the measurement terms appear in a very restricted context.

We now translate our interval measurement logics into measurement guarded
first order logics.

The notation φ(x, y) indicates a formula with at most two free variables x and
y. We will use notation such as FO(x, y) to indicate a logic with formulas with
at most two free variables x and y. Superscripts as in FOk designate k-variable
fragments of a logic (now including bound as well as free variables).

STz($P %0)(x, y) def= x = y ∧ P (x)
STz($P %)(x, y) def= x < y ∧ ∀z(x < z < y ⇒ P (z))
STz(G → D)(x, y) def= x = y ∧ ∃z(ST (G)(y, z) ∧ y ≤ z ∧ STx(D)(y, z))
STz(G ← D)(x, y) def= x = y ∧ ∃z(ST (G)(z, x) ∧ z ≤ x ∧ STy(D)(z, x))
STz(D1

�D2)(x, y) def= ∃z(x ≤ z ≤ y ∧ STy(D1)(x, z) ∧ STx(D2)(z, y))

STz(D1

�
−D2)(x, y) def= ∃z(z ≤ x ∧ STy(D1)(z, x) ∧ STx(D2)(z, y))

STz(D1

�
+D2)(x, y) def= ∃z(y ≤ z ∧ STy(D1)(x, z) ∧ STx(D2)(y, z))

The translation of guards is obvious: ST (m ∼ c)(x, y) = m(x, y) ∼ c. The trans-
lation uses the standard trick of reusing variables. Thus STz(D)(x, y) produces
a MGF 3(x, y) formula using at most the variables {x, y, z}.

Proposition 4. There is a standard translation from χGIML[Σ] to χMGF 3[Σ]
which has the property that θ, [b, e] |= D iff θ |= STz(D)[b/x, e/y].

3 Expressive Completeness of GIML for MGF 3

Without loss of generality we assume the logic χMGF 3 consists of formulae
with variables x1, x2, x3. In this section, following the proof of Kamp’s theorem
[Kamp68] as used by Venema [Ven91], we show that the measurement logic
χGIML has the same expressive power as χMGF 3.

The first lemma is routine [GO]. Let Li,j , i 
= j, i, j ∈ {1, 2, 3}, be the subset
of χMGF 3(xi, xj) consisting of boolean combinations of quantifier-free formulas
of MGF 3 and quantified MGF 3 formulas with one free variable in {xi, xj}. Li,j

is the same as Lj,i.

Lemma 1. Any MGF 3 formula is equivalent to a boolean combination of for-
mulae from L1,2 ∪ L2,3 ∪ L3,1.

Now we translate Li,j to GIML. Following [Ven91], we use a forward translation
α+ : Li,j → GIML and a backward translation α− : Li,j → GIML. The boolean
cases are routine. We assume the measurement functions are symmetric.
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α+(x = x) = true α−(x = x) = true
α+(xi = xj) = $1%0 α−(xi = xj) = $1%0
α+(xi < xj) = ¬$1%0 α−(xi < xj) = false
α+(xj < xi) = false α−(xj < xi) = ¬$1%0
α+(x < x) = false α−(x < x) = false
α+(P (xi)) = $P %0 �true α−(P (xi)) = true �$P %0
α+(P (xj)) = true �$P %0 α−(P (xj)) = $P %0 �true
α+(m(x, y) ∼ c) = m ∼ c α−(m(x, y) ∼ c) = m ∼ c
α+(φ1(xi, xj) ∧ φ2(xi, xj)) α−(φ1(xi, xj) ∧ φ2(xi, xj))

= α+(φ1(xi, xj) ∧ α+(φ2(xi, xj)) = α−(φ1(xi, xj)) ∧ α−(φ2(xi, xj))
α+(¬φ(xi, xj)) = ¬α+(φ(xi, xj)) α−(¬φ(xi, xj)) = ¬α−(φ(xi, xj))

The translation of a quantifier uses the fact that the �,
�
− ,

�
+ modalities cover

all cases in which a third time point can be oriented with respect to two points.

α+(∃xk. φ1(xi, xk) ∧ φ2(xk, xj)) = α+(φ1(xi, xk)) �α+(φ2(xk, xj)) ∨
α+(φ1(xi, xk))

�
+α−(φ2(xk, xj)) ∨ α−(φ1(xi, xk))

�
−α+(φ2(xk, xj))

α−(∃xk. φ1(xi, xk) ∧ φ2(xk, xj)) = α−(φ2(xk, xj)) �α−(φ1(xi, xk)) ∨
α−(φ2(xk, xj))

�
+α+(φ1(xi, xk)) ∨ α+(φ2(xk, xj))

�
−α−(φ1(xi, xk))

The translation of a measurement guarded formula uses the forward and back-
ward guarded modalities to cover the way the quantified variable is oriented with
respect to the free variable of the formula.

α+(∃xk. G(xi, xk) ∧ ζ(xi, xk)) =
[α+(G(xi, xk)) → α+(ζ(xi, xk)) ∨ α−(G(xi, xk)) ← α−(ζ(xi, xk))] �true

α−(∃xk. G(xi, xk) ∧ ζ(xi, xk)) =
true �[α+(G(xi, xk)) → α+(ζ(xi, xk)) ∨ α−(G(xi, xk)) ← α−(ζ(xi, xk))]

α+(∃xk. G(xj , xk) ∧ ζ(xj , xk)) =
true �[α+(G(xj , xk)) → α+(ζ(xj , xk)) ∨ α−(G(xj , xk)) ← α−(ζ(xj , xk))]

α−(∃xk. G(xj , xk) ∧ ζ(xj , xk)) =
[α+(G(xj , xk)) → α+(ζ(xj , xk)) ∨ α−(G(xj , xk)) ← α−(ζ(xj , xk))] �true

By a careful case analysis over the syntax of Li,j , we can show that the transla-
tions α+ and α− preserve the semantics in the expected way.

Lemma 2. For all θ and all [b, e] ∈ Intv(θ),
θ, [b, e] |= α+(ζ(xi, xj)) iff θ |= ζ[b/xi, e/xj ] and
θ, [b, e] |= α−(ζ(xi, xj)) iff θ |= ζ[e/xi, b/xj ].

By combining Lemmas 1 and 2, and observing that the translation above can
be parameterised by the set of guards χ, we get the following theorem.

Theorem 1. The logic χGIML[Σ] is expressively complete for the three-variable
measurement guarded fragment with two free variables χMGF 3[Σ](x, y).

A referee reminded us that our proof works for an even larger family of logics:
χIML[Σ] is expressively complete for χFO3[Σ](x, y).
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4 Games and the 3-Variable Property

Next we would like to show that the full logic χMGF has the three-variable
property, that is, χMGF 3 is expressively equivalent to it. To do this, we set up
Ehrenfeucht-Fräıssé games for the k-variable guarded fragments, which are an
extension of the k-pebble games for FOk [IK87].

Our game is played for n rounds by two players, Spoiler and Duplicator, on a
board consisting of a pair of structures A and B. Spoiler is trying to distinguish
the two structures, Duplicator to hide the distinctions. Each player uses k pebbles
for the syntactic restriction to k variables and a measuring tape and meters to
check lengths and measurement values. These devices work in integer units.

A k-configuration of consists of the positions of the k pebbles on each structure,
which we represent by a pair of partial functions (which are defined where the
corresponding pebbles are on the board) α : {1..k} → A and β : {1..k} → B. The
k-pebble n-round game on structures A,B with k-configurations α, β is denoted
Gk

n(A, α,B, β).
Two configurations are said to be order isomorphic if the sequence of pebble

positions, seen as linear orders, are order isomorphic. More precisely, Spoiler’s
pebble i is on the board on one structure if and only if Duplicator’s pebble i is
present on the other structure, and for each pair of pebbles i, j on the board,
both structures satisfy the same formulas from the set {i < j, i = j, i > j}. By
linearity, they will satisfy exactly one formula from this set. Two configurations
are said to be χ-measurement isomorphic if they are order isomorphic and for each
pair of pebbles i, j on the board, both structures satisfy the same measurement
formulas from the set χ.

If α, β are not order isomorphic, Spoiler wins Gk
n(A, α,B, β) immediately (af-

ter 0 rounds). Each round has one of two kinds of moves.
In a pebble move, Spoiler can place his pebble i on an element of one of the

structures. Duplicator responds by placing her pebble i on an element of the
other structure. After the move, if the resulting configurations α′, β′ are not
order isomorphic, Spoiler wins the game.

In a measuring move, Spoiler removes all pebbles but one, say pebble i (we
call this the free pebble of this move), then places another pebble j, using the
measuring tape and meters to set its length and other measurement functions
to some desired value. Duplicator has to follow suit on the other structure: she
removes all pebbles except pebble i, then places her pebble j using the measuring
tape and meters. After the move, if the resulting configurations α′, β′ are not
measurement isomorphic, Spoiler wins the game.

If Spoiler has not won the game after any of the n rounds, Duplicator wins
Gk

n(A, α,B, β).
Following [Imm98], we now relate our games to logical types. The proof relies

on the fact that the set of measurement formulas {m(i, j) ∼ c | c ∈ Z} satisfied
by a configuration is logically equivalent to a finite conjunction of such formulas,
since each value is either the point c or inside an open interval (c, c + 1).
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Theorem 2 (E-F characterization). Given two time frames A,B and a k-
configuration α0, β0 over them, Duplicator wins an n-move game Gk

n(A, α0,B, β0)
if and only if the configurations (A, α0) and (B, β0) are indistinguishable by a
χMGF k formula of quantifier depth n.

We now show that for time domains, three variables suffice to express all MGF
properties. The proof closely follows the (admittedly tricky) one of [Imm98, The-
orem 6.32], which combines winning strategies from simpler games. The mea-
suring move does not yield any difficulty since it always reduces the board to
2-configurations for which a winning strategy exists by supposition.

Theorem 3 (3-variable property). Every χMGF formula is equivalent to an
χMGF 3 formula over time domains.

Putting together the 3-variable property with the expressive completeness result
of the previous section, we get a proper generalization of Kamp’s theorem. Ven-
ema has shown that χFO [Σ] does not have the 3-variable property [Ven90], so
the result cannot be extended to full first order logic with measurements.

Corollary 1. The logic χGIML[Σ] is expressively complete for χMGF [Σ].

Hirshfeld and Rabinovich conjectured that there is no finite expressively com-
plete temporal logic for a logic L2 which subsumes Weak -MGF [�] by having a
more generous set of comparisons [HR99]. We observe that since our logic uses
countably many constants c, it is not finite according to their definition.

5 Decidability

One of the main motivations for considering the sublogic GIML of IML is the
hope of getting reasonable decidability properties. In this section we restrict our
attention to only the measurement of length, that is, the signature Σ = {�}.

Theorem 4. Over sampled as well as continuous time infinite models, the logic
Punct-MGF [�] is undecidable and the logics Weak-MGF [�] and Weak-GIML[�]
are decidable.

Proof. It is shown in the previous section that Punct-GIML[�] and Weak -GIML[�]
are expressively equivalent to Punct-MGF [�] and Weak -MGF [�] and can be
translated to these logics. The undecidability of Punct -MGF [�] for sampled
and continuous time infinite models follows from that of FGIML[�] (Proposi-
tion 2).Weak -GIML[�] is decidable since Weak -MGF [�] is subsumed by the logic
L2, which was shown decidable over continuous time infinite models [HR99].

The exact decidability border between Punct-GIML[�] and Weak -GIML[�] is not
clear. As a preliminary result, we show that for sampled time prefix models (i.e.
timed words), the logic Punct-FgIML[�], the nesting-free subset of FGIML[�], is
decidable by reduction to alternating timed automata.
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5.1 Alternating Timed Automata

Let C be a finite set of clock variables (more briefly, clocks). A clock valuation
v is a function C → /. The clock valuation v + t is defined by adding t to each
clock value, and the valuation v[r := 0], for r ⊆ C, is defined by resetting all the
clocks in r to zero. The initial valuation v0 has all clocks set to zero.

A clock constraint is a boolean combination of conditions x ∼ c where x is a
clock. Let Cons(C) be the constraints over clocks in C.

Definition 1 (Lasota and Walukiewicz, Ouaknine and Worrell). An al-
ternating timed automaton over the alphabet A and clocks C is a tuple
M = (Q, δ, I, F ), where Q is a finite set of states, I, F ⊆ Q are the initial
and final states respectively, and δ : Q×A×Cons(C) → B+(Q×℘(C)) a finite
partial transition function, satisfying the partition condition: for every q ∈ Q and
a ∈ A, the set of constraints {[σ] | δ(q, a, σ) is defined} partitions the set of
clock valuations C → /. (B+(X) is positive boolean formulas over X.)

A timed word over A is a sequence over A × /. The second (time) component
gives the time elapsed between reading the previous letter and the current one.

The acceptance game GM,w between two players Pathfinder and Automaton
is defined as follows. Automaton’s objective is to accept w = (a1, t1) . . . (an, tn),
Pathfinder’s is to reject. A play starts at the configuration (q0, v0) and proceeds
for n = |w| rounds. Suppose the configuration reached at the end of the i’th round
is (qi, vi). Let σ be the unique constraint satisfied by the valuation vi + ti+1 and
δ(qi, ai+1, σ) is the formula b. Now there are three cases: if b is a conjunction,
Pathfinder chooses one of the conjuncts; if b is a disjunction, Automaton chooses
one of the disjuncts; and if b = q, the round ends with qi+1 = q and vi+1 =
(vi + ti+1)[x := 0, x ∈ ρ(qi+1)]. Automaton wins the game if qn is a final state,
otherwise Pathfinder wins.

The automaton M accepts the timed word w if and only if Automaton has a
winning strategy in the game GM,w.

The languages accepted by ATA are closed under boolean operations. The
papers [LW05, OW05] showed that the emptiness problem for ATA with one
clock is decidable. It follows from [AD94] that the problem is undecidable for
ATA with two clocks. It is known [LW05] that ATA, even with one clock, are
incomparable in expressive power to the usual nondeterministic timed automata
of Alur and Dill [AD94].

In order to accept timed languages defined by formulas, automata have to
work over models of these formulas. Typically an alphabet 2Pvar is used.

5.2 Decidability of the Nesting-Free Logic Punct-FgIML[�]

Recall that Punct-FgIML[�] is the subset of Punct -GIML[�] with only forward
guarded modalities G → D and where no guarded modality occurs in D. More-
over, we will confine ourselves to sampled time prefix models (finite timed words).
The usual Alur-Dill timed automata [AD94], as well as the ATA introduced in
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the previous section, are recognisers for such timed words. They have decid-
able emptiness checking. We give an automata-theoretic decision procedure for
Punct-FgIML[�] by reduction to emptiness of ATA. This logic can already ex-
press properties not recognised by any timed automaton.

Example 4. Consider behaviour over a single propositional variable. The follow-
ing property says that there are no pairs of positions exactly one time unit apart:
¬(true �(� = 1 → true) �true).

Theorem 5. For each D ∈ Punct-FgIML[�] over Pvar, we can construct ATA
A(D) over alphabet 2Pvar with a single clock x such that θ |= D iff θ ∈ L(A(D)).

Corollary 2. Punct-FgIML[�] is decidable for sampled time prefix models.

Proof (of Theorem 5). We give the construction of A(D) inductively as follows.
Some specific features of our automata are first outlined: These automata have
a unique starting state which is never accepting. Our automata never accept
the empty word. The automata may also have two distinguished states *,⊥
where * is accepting and ⊥ is rejecting. We assume that δ(*, P, true) = * and
δ(⊥, P, true) for all P . The symbol x denotes that the unique clock x is reset
and x that it is not reset.

(i) In the base case we have D ∈ ITL without any measurements. Then, we
can straightforwardly construct a DFA A(D) recognising the models of D. Note
that the models of D satisfiable at an interval [b, e] with b = e are accepted by
A(D) with a transition from an initial state to a final state.

(ii) Next, we construct one-clock ATA for GQ = G → D. By the nesting-
free property, D is a pure ITL formula without measurements. Let A(D) =
(Q, δ, q0, F ) be the DFA for D. Then A(GQ) = (Q ∪ {*, q′0}, δ′, q′0, {*}). The
transition relation δ′ is defined as follows.

– Let δ(q0, P ) = q. If G[0/�] evaluates to true and q ∈ F , then δ′(q′0, P, true) =
(*, x). Otherwise, δ′(q′0, P, true) = (q, x).

– Let δ(q, P ) = q′. If q′ /∈ F , then δ′(q, P, true) = (q′, x). Otherwise, q′ ∈ F
and we have δ′(q, P, G[x/�]) = (*, x) and δ′(q, P,¬G[x/�]) = (q′, x).

Claim: A(GQ) accepts all nonempty words θ such that θ, [0, 0] |= GQ �true.
To prove the claim, by the property mentioned in (i), the models of length

0 are obtained by the immediate transitions to the final state. For the other
models, the automaton moves off from the initial state (the clock condition for
these initial transitions is true) and reaches the final state after checking the
guard. Since by our convention δ(*, P, true) = *, the automaton will continue
accepting an extension of a GQ behaviour.

A(GQ) is a deterministic one-clock timed automaton (without alternation).
Let ¬A(GQ) denote the complement of A(GQ) where all ∧,∨ are exchanged
and *,⊥ are exchanged and the final states are Q. (That is, the final states are
complemented, but since the empty word is not to be accepted, we remove the
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initial state q′0 from the final states.) It is clear that ¬A(GQ) is a one-clock ATA
recognising the complement of the language accepted by A(GQ).

(iii) Next, let D be a formula having syntactic occurrences GQ1, . . . , GQk of
guarded modalities. Using from above the ATAs A(GQi) and ¬A(GQi), for each
i, we construct the one-clock ATA A(D).

Let GW = {p1, . . . , pk} be fresh witness propositions. Replace each occurrence
of a guarded modality GQi by witness formula $pi%0 in D to get the ITL formula
DW (without measurements) such that D = DW [GQi/$pi%0, i = 1..k].

Let A(DW ) = (Q, δ, q0, F ) be the deterministic finite automaton accepting
finite nonempty words over the extended alphabet 2Pvar∪GW which are models of
DW . Let A(GQi) = (Qi, δi, si, Fi) and ¬A(GQi) = (Q′

i, δ
′
i, s

′
i, F

′
i ). We construct

the one-clock ATA A(D) = (Q′′, δ′′, q′′0 , F ′′) as follows. The states Q′′ are a
disjoint union of the states Q of A(DW ) together with the states Qi and Q′

i of
A(GQi) and ¬A(GQi). The initial state is q′′0 = q0. Final states are also unions
of the final states of the component automata A(DW ), A(GQi) and ¬A(GQi).

For each P ⊆ Pvar we have in A(D):

δ′′(q, P, true) =
∨

P⊆S⊆P∪GW

⎛⎝(δ(q, S), x) ∧
∧

pi∈S

δi(si, P, true) ∧
∧

pi /∈S

δ′
i(s

′
i, P, true)

⎞⎠
By induction on the number of occurrences of guarded modalities k, we now

show that A(D) recognises the θ satisfying D.
For the base case, if there are no guarded modalities and no witnesses, then

A(D) = A(DW ) does accept models of DW = D.
For the induction step, consider D = DW [GQ/$p%0] for an additional guarded

modality GQ and witness proposition p.
Suppose θ is a model of D. Then there is a corresponding model θp of DW

over the alphabet 2Pvar∪{p} which is accepted by A(DW ), determining a subset
S at every point along the word. The transition function δ(q, S) determines
δ′′(q, S ∩ Pvar), which ensures that the corresponding constraint is checked by
A(GQ) or ¬A(GQ) and the substituted model θ is accepted by A(D).

Conversely, suppose θ is a word accepted by A(D). At each point of the word,
we can ask whether the point formula GQ holds or not. Substituting GQ by
p, this defines a set of models of DW over the alphabet 2Pvar∪{p}. Each such
model θp is accepted by A(DW ), and the ∧-branches in the transition function
δ′′ ensure, using the automata A(GQ) and ¬A(GQ), that the corresponding
timing constraint holds so that θp with the valuation of p removed, i.e. θ, is a
model of DW [GQ/$p%0] = D.

Acknowledgements. Four Formats referees commented on this paper. After
reading what they said, we wondered whether we should have called this pa-
per an overdose! This is not to criticise the referees: we found their detailed
reports constructive and helpful, and would like to thank them. We have re-
moved some of the proofs from this conference version and are preparing a full
version.
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Abstract. We show how to transform formulae written in the real-time tempo-
ral logic MITL into timed automata that recognize their satisfying models. This
compositional construction is much simpler than previously known and can be
easily implemented.

Prediction is very difficult, especially about the future.
Niels Bohr

1 Introduction

Decision procedures for model-checking of temporal logic formulae [MP91, MP95]
play a central role in algorithmic verification [CGP99]. Such procedures are based,
in the linear-time context, on deriving from a formula ϕ an automaton-like device
that accepts exactly sequences of states or events that satisfy it [VW86]. For discrete-
time models, used for functional verification of software or synchronous hardware,
the logical situation is rather mature. Logics like LTL (linear-time temporal logic) or
CTL (computation-tree logic) are commonly accepted and incorporated into verifica-
tion tools. LTL admits a variety of efficient algorithms for translating a formula into an
equivalent automaton [GPVW95, SB00, GO01, KP05] and it even underlies the indus-
trial standard PSL [KCV04, HFE04].

When considering timed models and specification formalisms whose semantics in-
volves the time domain R+ rather than N, the situation is somewhat less satisfac-
tory [A04]. Many variants of real-time logics [Koy90, AH92a, Hen98, HR04] as well
as timed regular expressions [ACM02] have been proposed but the correspondence
between simply-defined logics and variants of timed automata (automata with aux-
iliary clock variables [AD94]) is not as simple and canonical as for the untimed
case, partly, of course, due to the additional complexity of the timed model. Conse-
quently, existing verification tools for timed automata rarely use temporal properties
other than safety. One of the most popular dense-time extensions of LTL is the logic
MITL introduced in [AFH96] as a restriction of the logic MTL [Koy90]. The princi-
pal modality of MITL is the timed until UI where I is some non-singular interval. A
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formula pU[a,b] q is satisfied by a model at any time instant t that admits q at some
t′ ∈ [t + a, t + b], and where p holds continuously from t to t′. The decidability of
MITL was established in [AFH96] and it was, together with MTL, subject to further
investigations [AH92b, RSH98, HRS98, OW05]. However, the automaton construc-
tion in [AFH96] is very complicated (11 pages) and, to the best of our knowledge,
has never been implemented. The only logic that has been integrated into a real-time
model-checking tool was the timed version of CTL, TCTL [HNSY94], used in the
tool KRONOS [Y97].4

In this paper we remedy this situation somewhat by presenting a simple construc-
tion of timed automata that accept exactly models of MITL formulae. The construc-
tion is based on two ideas, the first being the modular construction of property testers
for untimed formulae [KP05] and the other is the observation, similar to the one al-
ready made in [AFH96], that the evolution over time of the satisfiability of a formula
of the form pU[a,b] q is of bounded variability, regardless of the variability of p and q.

The rest of the paper is organized as follows. In Section 2 we illustrate the modu-
lar construction of testers for (untimed) LTL formulae. The logic MITL is presented
in Section 3 together with its semantic domain (Boolean signals) and timed automata.
The main result, the construction of property testers for MITL, is presented in Sec-
tion 4, followed by a brief discussion of the differences between the version of MITL
that we use and the one presented in [AFH96].

2 Temporal Testers for LTL

In this section we discuss some of the problems associated with the construction of
automata that accept models of LTL formulae, and describe the modular procedure
of [KP05] which we later extend for MITL. We feel that, independently of its timed
generalization, this construction, based on composition of acausal sequential trans-
ducers, improves our understanding of temporal logic and can serve as a unifying
framework for both verification and monitoring. We assume familiarity with basic
notions of LTL, whose syntax is defined according to the grammar

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | © ϕ | ϕ1Uϕ2

where p belongs to a set P = {p1, . . . , pn} of propositions. LTL is interpreted over
n-dimensional Boolean ω-sequences of the form ξ : N → Bn. We abuse p to denote
the projection of the sequence ξ on p. The semantics of LTL formulae is typically
given via a recursive definition of the relation (ξ, t) |= ϕ indicating that the sequence
ξ satisfies ϕ at position t. The satisfaction of a compound formula op(ϕ1, ϕ2), where
op is a temporal or propositional operator, by a sequence ξ is an op-dependent func-
tion of the satisfaction of the sub formulae ϕ1 and ϕ2 by ξ. Functionally speaking,
the satisfaction of ϕ by arbitrary sequences can be viewed as a characteristic func-
tion χϕ which maps sequences over Bn into Boolean sequences such that β = χϕ(ξ)

4 An efficient emptiness checking algorithm for timed Büchi automata has been proposed
and implemented in [TYB05] but without an upstream translation from a logical formal-
ism.
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means that for every i, β[i] = 1 iff (ξ, i) |= ϕ. The semantics of LTL can thus be
formulated5 as a recursive definition of χϕ:

χp[t] = p[t]
χ¬ϕ[t] = ¬χϕ[t]
χϕ1∨ϕ2 [t] = χϕ1 [t] ∨ χϕ2 [t]
χ©ϕ[t] = χϕ[t + 1]
χϕ1Uϕ2 [t] =

∨
t′≥t(χ

ϕ2 [t′] ∧
∧

t′′∈[t,t′] χ
ϕ1 [t′′])

(1)

Given a formula ϕ, its characteristic function is defined as a composition of sequen-
tial functions, following the pattern of its parse tree, as illustrated in Figure 1. So
what remains to be done is to build an automaton that realizes the appropriate se-
quential function for each LTL operator and use these building blocks, that we call
temporal testers, to construct a mechanism that computes the characteristic function
for arbitrary formulae, but some problem related to causality should be settled first.

χ¬p2 U p3

χ¬p2

χ(©p1)∨(¬p2 U p3)

χ©p1p1 = χp1

p2 = χp2

p3 = χp3

U

∨

¬

©

Fig. 1. Computing the characteristic function of (©p1) ∨ (¬p2 U p3)

A sequential function f : Aω → Bω is said to be causal if for every u ∈ A∗,
v, v′ ∈ B∗ such that |u| = |v| = |v′| and every α ∈ Aω and β ∈ Bω

f(u · α) = v · β and f(u · α′) = v′ · β′ implies v = v′.

In other words, the value of f(α) at time t may depend only on the values {α[t′] :
t′ ≤ t}. Causal functions are realized naturally by deterministic automata with out-
put (sequential synchronous transducers). However, unlike the semantics of the past
fragment of LTL which is causal (see [HR02]), the semantics of future LTL is not.
Looking closely at (1) we can see that while the propositional operators define causal
sequential functions, the future temporal operators are acausal. The output of the next
operator at time t depends on the input at t + 1 and, even worse, the output of the
until operator at t may depend on input values at some t′ which may be arbitrarily
further in the future.

One can think of two ways to realize acausal sequential functions. The first ap-
proach, which works well for operators with a bounded level of acausality, such as

5 Throughout the paper we use a variant of until in which p U q requires that p holds also
at the same time instant when q becomes true, which can be expressed as p U(p∧q) using
the standard interpretation. For LTL this variation just simplifies the corresponding tester
while for MITL it avoids certain anomalies.
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the next operator or several nestings of which (denoted by ©d) is to dissociate the
time scales of the input and the output. That is, let the automaton ignore the first d
input symbols, and then let β[t] = α[t+d]. Unfortunately this does not always work
for unbounded acausality.

Using the second approach the transducer responds to the input synchronously but
since at time t the information might not be sufficient for determining the output, it
will have to “guess” the output non-deterministically and split the computation into
two runs, one that predicts 0 and one that predicts 1. Each of the runs needs to re-
member its predictions until sufficient input information is accumulated to abort all
but one run. The automaton for operators with acausality of depth d, may need to
memorize up to 2d predictions. The first approach is more intuitive6 but since we
do not know how to extend it to unbounded acausality, we use the second one. The
automaton that computes the characteristic function of © is depicted in Figure 2
along with a sample run.7 State s0 indicates that the prediction made in the previous
step was 0, hence at this state, observing p contradicts the prediction and the run is
aborted. Input p confirms the prediction and the run splits by generating two pre-
dictions for the next value and so on. For every infinite input sequence ξ, only one
infinite run survives and its output is χ©p(ξ). The automaton for ©dp follows the
same pattern and is nothing but an output-driven shift register of depth d (see Fig-
ure 2). States s00 and s01 of this automaton represent predictions for unsatisfiability
at t−2 and hence admit only p-labeled transitions. It is worth mentioning that these

s0 s1 p/1p/0

s00

s01

s11

s10

p/0

p/1

p/0

p/1

p/1

p/1

p/0

p/0

p/1

p/0
p/1

s0 s1

p/1p/0

s0 s1

s0 s1

· · ·· · ·

p/0

p/0

p/1

p/0

p/1

Fig. 2. The testers for ©p and for ©(©p); An initial fragment of the behavior for the
©p-tester while computing χ©(pppp · · · ) = 110 · · ·
6 After all, it is more natural to reply “I don’t know yet” rather than saying “the answer

now could be either 0 or 1, but only in the next step I will tell you which of them is
actually true”.

7 To ease readability we use {p, p} instead of {0, 1} as the input alphabet for unary op-
erators and {pq, pq, pq, pq} for the binary ones. Moreover, we use p as a shorthand for
{pq, pq}.
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automata are output-deterministic and can be obtained by reversing the transitions in
the ordinary input-driven shift registers that correspond to the past temporal operator
previously, also known as the delay operator z−1.

The situation with pU q is more involved because a priori, due to the unbounded
horizon, one might need to generate and memorize 2ω predictions. However the se-
mantics of until implies that at most two confirmable predictions may co-exist si-
multaneously.

Lemma 1. Let β = χpU q(ξ). Then for every t such that ξ[t] = ξ[t + 1] = pq,
β[t] = β[t + 1].

Proof. There are three possibilities: 1) The earliest t′ > t + 1 such that β[t′] 
= pq
satisfies β[t′] = pq. In that case, the property is satisfied at t and t+1; 2) The same
t′ satisfies β[t′] = p and the property is falsified at both t and t + 1; 3) β[t′] = pq
for every t′ > t + 1 and the property is falsified from both time points.8

This fact is reflected by the tester of Figure 3. At time instants where p is observed,
the value of the output is determined to be 0. Likewise when pq is observed the
output is determined to be 1. The only situation that calls for non-determinism is
when pq occurs and we do not know in which of the three cases of Lemma 1 we
will eventually find ourselves. Hence we split the run into positive and negative pre-
dictions (states spq and spq , respectively). The only input sequences that will lead
to two infinite runs are those ending with an infinite suffix of pq’s. To choose the
correct one among the two we add a Büchi condition requiring infinitely many vis-
its in the set {sp, spq, spq} which amounts to rejecting runs that stay forever in spq .
With these two testers (and simple testers for the Boolean operators) one can build
testers for arbitrary LTL formulae. Note that in both the next and until testers, all
transitions entering a state are decorated by the same output symbols so, in fact, one
might view outputs as associated with states rather than with transitions, as is done
in [KP05].

The notion of compositional temporal testers, as introduced in [KP05], is based on
several key ideas. One of them is the allocation of an individual Boolean variable
to each sub-formula of an LTL formula. This idea, to which we refer in [KP05]
as statification of the sub-formula, has been considered first in [BCM+92] in the
context of symbolic implementation of a tableau construction. The observation that
such a Boolean variable can replace the sub-formula itself in the context of model
checking has been considered in [CGH94]. It is worth mentioning the translation
of LTL to alternating automata [Var96] which, like the temporal testers approach,
works inductively on the structure of the formula but not in a compositional manner.

3 Signals, Their Temporal Logic and Timed Automata

Extending the construction of temporal testers from discrete to dense time requires
adaptations of the semantic domain, the logic and the automata. The interaction

8 This is the “strong” interpretation of until. For the weak version both t and t + 1 will
satisfy the property.
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pq/1

pq/0

pq/1

pq/0

pq/1

pq/0p/0

pq/1

sp spq

spqspq

p/0

pq/1

pq/1

sp spq

spqspq

pq/0p/0

pq/1pq/1

p/0

Fig. 3. The tester for p U q for sequences (left) and for signals (right). All states except spq

are accepting. All transitions in the signal tester should be decorated by z > 0/z := 0,
with z being an auxiliary clock, to force signals to maintain each value for a non-punctual
duration.

between discrete transitions and dense time may give rise to certain anomalies and
complications that we avoid by deviating slightly from the original definitions of
[AFH96].

3.1 Signals

Two basic semantic domains for describing timed behaviors have been introduced in
an algebraic form in [ACM02, A04]. The first semantic objects are the time-event
sequences, elements of the free product (shuffle) of the monoids Σ∗ and R+. Time-
event sequences consist of instantaneous events (or finite sequences of events) sep-
arated by numbers that represent time durations. The other semantic domain is that
of signals, elements of the free product of several copies of the monoid R+, a copy
for each alphabet symbol. Signals are thus viewed as concatenations of “typed” real
numbers, where σ5

1 ·σ3
2 represents a σ1 period of duration 5 followed by a σ2 period

of duration 3. Zero is the identity element of each of the monoids and it is absorbed
when signals are transformed to a canonical form, that is σt1

1 · σ0 · σt2
2 = σt1

1 · σt2
2 .

A signal-event monoid containing both can be defined as well [ACM02].
The transformation of these objects into the form of functions from the time do-

main to the alphabet is not painless. For time-event sequences a “super-dense” time
[MMP92] had to be invented, a subset of the product of R+ and N, where a se-
quence of discrete events, all taking place at time t, is mapped to the sequence
(t, 1), (t, 2), . . . of generalized time instants. The timed traces of [AD94] constitute
another representation of the same objects. Signals, which are the natural domain for
MITL, are more well-behaving in this respect and can be mapped bijectively to func-
tions from R+ to the alphabet if one accepts some restrictions. The one we adopt
is to view a signal of the form σt1

1 · σt2
2 as a function whose value is σ1 in the

left-closed right-open interval [0, t1) and σ2 in the interval [t1, t1 + t2). Since such
intervals cannot be punctual without being empty, we exclude from the discussion
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signals that may have a distinct value in some isolated point.9 Since our construction
is based on characteristic functions and signal transducers, we need this property of
signals to be preserved by the temporal operators, hence we deviate from [AFH96]
by restricting the quantitative temporal modalities to closed intervals.

Definition 1 (Signals). Let R+ be the set of non-negative real numbers. A Boolean
signal is a function ξ : R+ → Bn such that for every σ ∈ Bn, ξ−1(σ) is a union of
left-closed right-open intervals.

A partial signal is a restriction of a signal to some interval [a, b). We will sometimes
refer to a partial signal of the form σt1

1 ·σt2
2 · · ·σtk

k as a σ1 ·σ2 · · ·σk-segment of the
signal.

3.2 Real-Time Temporal Logic

The syntax of MITL is defined by the grammar

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1U[a,b]ϕ2 | ϕ1Uϕ2

where p belongs to a set P = {p1, . . . , pn} of propositions and b > a ≥ 0 are
rational numbers (in fact, using normalization, it is sufficient to consider integers).
From basic MITL operators one can derive other standard Boolean and temporal
operators, in particular the time-constrained eventually and always operators

�[a,b]ϕ = T U[a,b]ϕ and �[a,b]ϕ = ¬�[a,b]¬ϕ.

We interpret MITL over n-dimensional Boolean signals and define the satisfiability
relation via characteristic functions, which for the propositional operators and the
untimed until are defined exactly as for LTL. The semantics of timed until is given
by

χϕ1U[a,b]ϕ2 [t] =
∨

t′∈[t+a,t+b](χ
ϕ2 [t′] ∧

∧
t′′∈[t,t′] χ

ϕ1 [t′′])

The difference with respect to untimed until is that t′ ranges over the bounded (but
dense) interval [t + a, t + b] rather than over the unbounded set {t, t + 1, . . .} of
integers. Our interpretation of the timed until slightly deviates from [AFH96] by re-
quiring ϕ1 to hold also at the moment t′ when ϕ2 becomes true, and not only in
the open interval (t, t′). A signal ξ satisfies the formula ϕ iff χϕ(ξ)[0] = 1.

The following lemma, proved also in [DT04], shows that timed until can be ex-
pressed by a combination of untimed until and timed eventually whose characteristic
function is

χ�[a,b]ϕ =
∨

t′∈[t+a,t+b] χ
ϕ[t′].

Lemma 2 (Timed Until is Redundant). For every signal ξ,

ξ |= pU[a,b]q ↔ ξ |= �[0,a](pU q) ∧ �[a,b]q.

9 Other possibilities are left-open right-closed intervals with the exclusion of time zero, or
a non-bijective representation which may map the algebraic object into two time functions
that differ on t1.
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Proof: One direction of the equivalence follows directly from the semantics of timed
until, so we will consider only the other direction which is proved via the following
observations:

1. If ξ |= �[0,a]pU q then p is continuously true throughout [0, a].
2. If ξ |= �[0,a]pU q, then pU q has to hold at a and hence there exists t′ ≥ a such

that q is true at t′ and p holds during [a, t′].
3. Formula �[a,b]q requires the existence of t′ ∈ [a, b] such that q holds at t′

Combining these observations we can see that ξ |= �[0,a](pU q) ∧ �[a,b]q implies
that there exists t′ ∈ [a, b] such that q is true at t′ and p holds continuously during
[0, t′], which is exactly the semantic definition of pU[a,b] q.

For the sake of completeness, let us mention that the special case pU[0,b] q can be
written as pU q ∧ �[0,b]q, and that pU[a,∞) q, which is not allowed by our syntax,
can be written as �[0,a](pU q).

3.3 Timed Automata

We use a variant of timed automata which differs slightly from the classical defi-
nitions [AD94, HNSY94, Alu99] as it reads multi-dimensional dense-time Boolean
signals, and outputs Boolean signals. Hence the input and output alphabet letters are
associated with states rather than with transitions. We also extend the domain of
clock values to include the special symbol ⊥ indicating that the clock is currently
inactive10 and extend the order relation on R+ accordingly by letting ⊥ < v for ev-
ery v ∈ R+. For a set A ⊆ Rn we use cl(A) to denote its closure (in the topological
sense).

The set of valuations of a set C = {x1, . . . , xn} of clock variables, each denoted
as v = (v1, . . . , vn), defines the clock space H = (R+∪{⊥})n. A configuration of a
timed automaton is a pair of the form (q, v) with q being a discrete state. For a clock
valuation v = (v1, . . . , vn), v + t is the valuation (v′1, . . . , v′n) such that v′i = vi if
vi = ⊥ and v′i = vi + t otherwise. A clock constraint is a conjunction of conditions
of the form x ≤ d, x < d, x ≥ d or x > d for some integer d.

Definition 2 (Timed Signal Transducer). A timed signal transducer is a tuple A =
(Σ, Q, Γ, C, λ, γ, I, ∆, q0, F ) where Σ is the input alphabet, Q is a finite set of dis-
crete states, Γ is the output alphabet and C is a set of clock variables. The input
labeling function λ : Q → Σ associates an input letter to every state while the out-
put function γ : Q → Γ assigns output letters. The staying condition (invariant) I
assigns to every state q a subset Iq of H defined by a conjunction of inequalities of
the form x ≤ d or x < d, for some clock x and integer d. The transition relation ∆
consists of elements of the form (q, g, ρ, q′) where q and q′ are discrete states, the
transition guard g is a subset of H defined by a clock constraint and ρ is the up-
date function, a transformation of H defined by an assignment of the form x := 0 or

10 This is syntactic sugar since clock inactivity in a state can be encoded implicitly by the
fact that in all paths emanating from the state, the clock is reset to zero before being
tested [DY96].
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x := ⊥. Finally q0 is the initial state and F ⊆ 2Q is a generalized Büchi acceptance
condition.

The behavior of the automaton as it reads a signal ξ consists of an alternation be-
tween time progress periods where the automaton stays in a state q as long as ξ[t] =
λ(q) and Iq holds, and discrete instantaneous transitions guarded by clock conditions.
Formally, a step of the automaton is one of the following:

– A time step: (q, v)
σt/τ t

−→ (q, v + t), t ∈ R+ such that σ = λ(q), τ = γ(q), and11

v + t ∈ cl(Iq).
– A discrete step: (q, v) δ−→ (q′, v′), for some transition δ = (q, g, ρ, q′) ∈ ∆,

such that v ∈ g and v′ = ρ(v)

A run of the automaton starting from a configuration (q0, v0) is a finite or infinite
sequence of alternating time and discrete steps of the form

ξ : (q0, v0)
σ

t1
1 /τ

t1
1−→ (q0, v0 + t1)

δ1−→ (q1, v1)
σ

t2
2 /τ

t2
2−→ (q1, v1 + t2)

δ2−→ · · · ,

such that
∑

ti diverges. A run is accepting if for every F ∈ F , the set of time in-
stants in which it visits states in F is unbounded. The input signal carried by the
run is σt1

1 · σt2
2 · · · and the output is τ t1

1 · τ t2
2 · · · The automaton realizes a sequen-

tial relation fA over its input and output alphabets defined by fA(ξ) = ξ′ iff the
accepting run induced by the input signal ξ, outputs the signal ξ′.

4 Main Result

In this section we show how to build for every MITL formula ϕ a property tester, a
timed signal transducer Aϕ whose associated sequential function coincides with the
characteristic function of ϕ, that is, fAϕ = χϕ. The construction follows the pattern
of the untimed one by composing testers corresponding to operators that appear in
the formula. The tester for the untimed until can be easily adapted to signals by asso-
ciating input and output symbols with states and removing self loops (see Figure 3).
The only missing link is the following proposition.

Proposition 1. One can construct a timed signal transducer that realizes χ�[a,b]p.

The construction used to prove this proposition follows the lines of the untimed one,
based on generating output predictions non-deterministically and aborting them when
they are contradicted by actual values of p in ξ. Dense time, however poses new
problems because the set of potential predictions of bounded duration includes sig-
nals with an arbitrary number of switchings between true and false, and such pre-
dictions cannot be memorized by a finite-state timed device. We first show in the
following lemma, also used in [AFH96], that predictions that switch too frequently
cannot be true for any sub formula of type �[a,b]p. A similar property was used in
[MNP05] to show that past MITL is deterministic. We use the auxiliary variable u
for the output of the tester.
11 Note that we have chosen Iq to be “backward-closed” so that v + t ∈ cl(Iq) implies

v + t′ ∈ Iq for every t′, 0 ≤ t′ < t.
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Lemma 3. Let β be a Boolean signal satisfying β = χ�[a,b]p(ξ) for 0 ≤ a < b
and some arbitrary ξ. Then for any factorization β = v · 0r1 · 1r2 · 0r3 · w we have
r2 ≥ b − a.

Proof: The following observation concerning the constraints on the values of u and
p at every t follows from the definitions: if p holds at t+ b, u must hold throughout
the interval [t, t+b−a]. Let [t1, t2) be the corresponding interval for 1r2 . Since t1 is
the first instant where u holds, p must start holding at t1 +b and not before that, be-
cause otherwise this would imply that u holds before t1, contrary to our assumptions.
Following the observation, u has to hold during the entire interval [t1, t1 + b − a].
Consequently, t2 ≥ t1 + b − a and we are done.

r1 r2 r3

t1 t2

Fig. 4. A signal χ�[a,b]p(ξ) for an arbitrary ξ

The importance of this property is that it bounds the variability of any realizable
prediction and constrains the relation between the number of changes and the dura-
tion of candidate signals. Let d = b− a and m = $b/d%+ 1. Since every12 10 or 01
segment of β has at least d duration, any acceptable prediction of the form (01)m

or (10)m has a duration beyond b and, hence, its initial segment can be forgotten.
Consequently, 2m clocks suffice to memorize relevant predictions.

Let us first explain our construction in discrete time where �[a,b] is just syntactic
sugar:

�[a,b]p ≡
∨

i∈[a,b]

©ip

As this operator is bounded by d = b−a, a tester will need to remember at most 2d

predictions, which can be encoded explicitly as states that correspond to elements of
Bd. For obvious reasons, this approach will not extend to dense time. Instead, we
can encode such sequences by the length (duration) of their 0 and 1 segments as
is done in data compression. For example, the sequence 00011011 can be encoded
as 03120112. This information can be memorized by an automaton augmented with
additional discrete clocks (counters), each reset upon a change between 0 and 1, and
incremented at each step. For this example, assuming x1 is reset at the first 0, y1
reset at the subsequent occurrence of 1, and so on, we reach the end of the sequence
with x1 = 8, y1 = 5, x2 = 3 and y2 = 2. With such a “symbolic” representation,
the relevant past predictions at any time instant are identified via conditions on the
clocks, which are used to admit or reject actual values of the input.

Our construction does exactly that in dense time. Due to the symbolic encoding of
states, it is simpler to decompose the tester into two parts, as depicted in Figure 5: a
prediction generator (Figure 6) which generates output signals non-deterministically

12 To be more precise, the first 10 segment can be arbitrarily small.
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x1 . . . ym

ξ

Generator

Checker

χ�[a,b]p(ξ)

Fig. 5. The architecture of the tester for �[a,b]p

and the checker (Figure 7) which checks whether actual inputs confirm these
predictions.

The generator simply generates arbitrary Boolean signals subject to the sole re-
striction of bounded variability, according to Lemma 3. This condition is imposed
via the guards of the form yi ≥ b − a on all transitions from 1 to 0. The values of
the 2m clocks x1, . . .xm and y1 . . . ym represent at time t the form of the prediction
segment at the time window [t − b, t]. Clocks whose value cross b become inactive
and can be re-used to memorize new events. This way the denotation of the clocks
shifts circularly, and the value of the active clocks always represents the boundaries
of the relevant prediction segments.

To see that the checker indeed aborts all but correct predictions observe a prefix
of its behavior as it moves through states {s1, s2, s3} trying to match prediction to
input (see Figure 8). The negative prediction segment at [t0, t1) forbids p anywhere
in the interval t0 + a, t1 + b) and this is guaranteed by forcing the checker to be
at the p-state s1 from the time x1 ≥ a until the time y1 = b. At time t1 + b, p
must be observed and a transition to s2 is taken. The positive prediction interval
requires p to hold during the interval [t1 + b, t2 +a) (which corresponds to the clock
conditions y1 ≥ b and x2 < a) except, possibly, for short episodes of p that last less
than b − a time. This is reflected in the transition from s2 to s3 which resets the
clock z. If z = b − a and we are still in s3, the run is aborted. When x2 ≥ a we
arrive to a new negative prediction segment and move to the next identical segment
of the automaton. This bounded operator requires no Büchi condition, and the proof
of Proposition 1 is concluded.

To complete the construction for MITL we just need to compose the testers for the
propositional, untimed and timed operators according to the structure of the formula.
The parallel composition of transducers is fairly standard and we give only the defi-
nition of an input-output composition of signal transducers A1 �A2 where the output
of A1 is the input of A2. Note that the need for a generalized Büchi condition comes
from such a composition of testers for unbounded operators as we need to identify
accepting runs of A2 triggered by outputs of accepting runs of A1.
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/x1 := y1 := . . . := xm := ym := ⊥

/x1 := 0 /y1 := 0

∧m
i:=1

xi < b ∧
∧m

i:=1
yi < b

y1 ≥ b/y1 := ⊥

x1 ≥ b/x1 := ⊥

xm ≥ b/xm := ⊥

ym ≥ b/ym := ⊥

. . .

x2 := 0

x3 := 0
y2 ≥ b − a/

y1 ≥ b − a/

ym ≥ b − a/
x1 := 0

/y1 := 0

/y2 := 0

/ym := 0

/0 /1

/1/0

/0 /1

. . .

Fig. 6. The prediction generator. We use a StateChart-like notation when several states admit
the same transition or staying condition.

Definition 3 (I/O Composition). Let A1 = (Σ1, Q1, Γ 1, C1, λ1, γ1, I1, ∆1, q1
0 , F

1)
and A2 = (Σ2, Q2, Γ 2, C2, λ2, γ2, I2, ∆2, q2

0 , F
2) be timed signal transducers such

that Γ 1 = Σ2. Their I/O composition is the transducer

A = A1 � A2 = (Σ1, Q, Γ 2, C, λ, γ, I, ∆, q0, F )

where
Q = {(q1, q2) ∈ Q1 × Q2 s.t. γ1(q1) = λ2(q2)},

C = C1 ∪ C2, λ(q1, q2) = λ1(q1), γ(q1, q2) = γ2(q2), I(q1,q2) = I1
q1 ∩ I2

q2 , q0 =
(q1

0 , q
2
0) and F = F 1 ∪ F 2. The transition relation ∆ is the restriction to Q of the

set of all transitions of either of the following forms

((q1, q2), g1 ∩ g2, ρ1||ρ2, (q′1, q′2))
((q1, q2), g1 ∩ Iq2 , ρ1, (q′1, q2))
((q1, q2), Iq1 ∩ g2, ρ2, (q1, q′2))

such that (q1, g1, ρ1, q′1) ∈ ∆1 and (q2, g2, ρ2, q′2) ∈ ∆2.

It is not hard to see that A1 � A2 realizes the sequential function obtained by com-
posing the sequential functions realized by A1 and A2.

Corollary 1 (Main Result). MITL formulae can be transformed into timed automata
using a simple procedure.
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/z := 0

/z := 0

/z := 0

p

p

p

p

p

p

p

p

p

y1 ≥ b/

y2 ≥ b/

ym ≥ b/

s1 s2 s3

· · ·

x1 ≥ a

y1 < b

y2 < b

ym < b

x1 < a y1 < a

· · ·

x1 ≥ a/

x1 ≥ 0/ y1 ≥ 0/

x2 ≥ a/

x3 ≥ a/

z < b − a

z < b − a

z < b − a

y1 ≥ a/

x2 < a

x3 < a

x1 < a

z := 0
y1 ≥ a/

Fig. 7. The automaton for checking predictions

χ :

p :
t0 + a t1 + b

s1 s2 s3 s2

t0 t1 t2

s3 s2

t2 + a

Fig. 8. A behavior of the checker on a prediction-input pair

This construction provides a decision procedure for MITL by emptiness checking.
Following the results in [TYB05, Tri06], timed Büchi emptiness checking can be re-
duced to the search of accepting cycles in the zone-closed simulation graph, which
is generated in practice by timed verification tools such as KRONOS [Y97], UPPAAL

[LPY97] or IF [BGM02]. The test for emptiness can be conducted efficiently on-
the-fly using standard maximal SCC or double DFS algorithms [CVWY92]. Due to
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the generalized Büchi conditions, our implementation is based on the nested DFS
algorithm of [Tau06].

Given a real-time system S modeled by a timed automaton AS and an MITL
formula ϕ, the model checking problem, that is, the language inclusion L(AS) ⊆
L(ϕ) between the possible behaviors of AS and the behaviors satisfying ϕ, reduces
to the timed Büchi emptiness check on the product automaton AS × A¬ϕ, where
A¬ϕ is obtained from the negated MITL formula ϕ using the modular construction
described in this paper.

5 Discussion

Our definitions deviate from those of [AFH96] in the following respects:

1. We disallow signals that admit punctuality;
2. We restrict the temporal modalities to closed intervals;
3. We modify the semantics of pU q to require a “handshake” moment where both

p and q hold.

The restriction to non-punctual signals is very reasonable from a semantic point of
view and constitutes the natural choice for signals. The two other modifications are
consequences of this choice as we want the output of the testers to be valid signals as
well. The main limitation of this logic is the inability to specify events (or the rising
and falling of a signal) which prevents, for example, expressing properties such as
bounded variability. The extension of the logic to express subsets of the more general
signal-event monoid [ACM02] is a topic for future research.

Let us also remark that giving preference to results proved with respect to the most
general existing definitions is a mathematicians attitude that should not be adopted
without a critical examination. Such an attitude can be counter-productive in young
domains where “classical” results and definitions are only decade old, and the most
appropriate formalization has not yet stabilized.
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marks and suggestions.
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Abstract. Recently, a new approach to the symbolic model checking
of timed automata based on a partial order semantics was introduced,
which relies on event zones that use vectors of event occurrences instead
of clock zones that use vectors of clock values grouped in polyhedral
clock constraints. Symbolic state exploration with event zones rather
than clock zones can result in significant reductions in the number of
symbolic states explored. In this work, we show how to extend the event
zone approach to networks of automata with local state invariants, an
important feature for modeling complex timed systems. To avoid for-
malizing local states, we attach to each transition an urgency constraint,
that allows to code local state invariants. We have integrated the exten-
sion into a prototype tool with event zones and reported very promising
experimental results.

1 Introduction

Timed automata [1] are a powerful tool for the modeling and the analysis of
timed systems. They extend classical automata by clocks, continuous variables
“measuring” the flow of time. A state of a timed automaton is a combination
of its discrete control location and the clock values taken from the real domain.
While the resulting state space is infinite, clock constraints have been introduced
to reduce the state spaces to a finite set of equivalence classes, thus yielding a
finite (although often huge) symbolic state graph on which reachability and some
other verification problems can be resolved.

While the theory, algorithms [9,10] and tools [13,3] for timed automata repre-
sent a considerable achievement (and indeed impressing industrial applications
have been treated), the combinatorial explosion particular to this kind of model-
ing and analysis – sometimes referred to as “clock explosion” (at the same time
similar to and different from classical “state explosion”) – remains a challenge
for research and practice. Despite the theoretical limits (for a PSPACE complete
problem), great effort has been invested into the optimization of the symbolic
approach (see e.g. [8,4,7,2]).

Event zone automata [11] are a partial order based approach to reduce one
source of clock explosion, interleaving semantics. Partial order methods basically
try to avoid redundant research by exploiting knowledge about the structure
of the reachability graph, in particular independence of pairs of transitions of
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loosely related parts of a complex system. Such pairs a and b commute, i.e.
a state s allowing a sequence ab of transitions to state s′ also allows ba and
this sequence also leads to a state s′′ that has the same control location as s′.
However, this kind of commutation is easily lost in classical symbolic analysis
algorithms for timed automata, which represent sets of possible clock values by
symbolic states: Consider two “independent” actions a resetting clock x := 0,
and b resetting clock y := 0. Executing a first and then b means that afterwards
(time may have elapsed) x ≥ y whereas executing b first and then a implies that
afterwards x ≤ y. The result of this is that in the algorithms used in tools like
UppAal [3] and Kronos [13], ab and ba lead to incomparable symbolic states.

The event zone approach successfully avoids such zone splitting, while preserv-
ing most algorithmic possibilities offered by clock zone automata. The underlying
notion of independence is based on reading and writing of shared variables: If
for some clock x, transition a resets x and transition b has a condition on x or
if both a and b reset x, then they must be dependent.

However, being based on Mazurkiewicz trace theory and thus more action
than state oriented, [11] did not address the question of state invariants (urgency
constraints), an important modeling feature used in tools like UppAal. Unlike
transition guards that give conditions on the interval in which a transition can be
executed, state invariants are conditions attached to states (locations) that limit
the allowed stay in the state, somewhat like a residence permit : before a violation
of the invariant, a transition must be taken. Typically, allowed invariants are
conjunctions of upper bounds on clock values.

The contribution of this work is completing the approach of [11] by an integra-
tion of local state invariants. With this addition, the full class of timed automata
as present in tools like UppAal as networks of timed automata can be analyzed.
This generality also distinguishes our work from many other publications in the
same area, which exclude global clocks (e.g. [6] or recently [12]).

A technical difficulty to overcome for this is the formalization of invariants:
The event zone approach assumes only a single timed automaton with structural
properties (diamonds) but does not as such expose “local states”. It was not ob-
vious, how state based invariants could be added to that framework. Our solu-
tion attaches urgency constraints to transitions, and then requires a consistency
between these constraints and global state invariants. The urgency constraints
allow a way of coding of local state invariants: One attach to a transition the lo-
cal state invariant of its original automaton. Urgency constraints on transitions
have been introduced before, our contribution is to use them (rather than state
based urgency) for independence analysis.

Then we show how to extend the framework of [11] to the timed automata
with these invariants. A key auxiliary tool, a “separator action” $, in [11] is
transformed into a “snapshot action”: A snapshot is an artificial action that
separates past and future and at which the global state invariant must be sat-
isfied. The snapshot action establishes a link between partial order semantics
and interleaving semantics. In terms of classical algorithms for timed automata,
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adding the snapshot action at the end of a sequence is like a transformation of a
zone by passage of time (limited by invariants). The key to avoid zone splitting
is that the snapshot is not introduced into the zones we explore, but is used to
stop exploration.

For all actions other than the snapshot, the invariants to be satisfied are local:
We only require satisfaction of its invariant whenever a clock is reset! It turns
out that this approach allows to preserve completely the notion of independence
from [11].

In this extended abstract, we concentrate on the formalization of the local
invariants and the snapshot action and show the relevant properties. Moreover,
we have extended the algorithm in [11] and added it to a new prototype tool
POEM (Partial Order Environment of Marseille) based on the code of ELSE [14]
to give an interesting (albeit not exhaustive) experimental comparison with a
recent build of UppAal (v3.6 beta 1).

The paper is structured as follows: In Section 2, we informally explain the use
and problems related to local state invariants. In Section 3, we formalize timed
automata with invariants attached to transitions and we introduce the notion
of a run and the language of a timed automaton. In Section 4, we develop the
notion of independence in the context of the automata introduced in Section
3 and show the main fundamental results of this paper, the consistency of the
relaxed semantics with the standard semantics. In Section 5, we give hints on how
event zone based exploration tools for timed automata with invariants actually
work. In Section 6, we give some experimental results.

2 State Invariants and Reachability in Timed Automata

Many verification problems, notably safety properties, of timed automata can be
coded as (non-)reachability of a location (discrete state), and we concentrate on
such specifications in this section. This does not exclude the extension of our
ideas to more sophisticated properties like emptiness of Büchi automata.

A state invariant is a downward closed condition on the clocks, a conjunction
of constraints like “x < 5” or “y ≤ 7” or even “z ≤ 0”, stating, how long at most
the “stay” in a state is “allowed”, i.e. the stay in the state must not extend to a
moment where the invariant is violated. In a run, a transition must thus occur
before the expiry of the state invariant.

For reachability in timed automata, state invariants do not fundamentally
add expressive power! We can eliminate invariants without touching the set of
reachable states by two transformation steps:

– Strengthen the conditions of each outgoing transition by the invariant with-
out changing the possible behaviour of the automaton; likewise strengthen
the conditions so to guarantee that the invariants of the target states are
respected at entry.

– Remove the invariants from the states after having strengthened the transi-
tions. While this change may allow partial runs where the automaton stays
beyond invariant in a state, it cannot add to the reachable states.
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However, the situation changes when we consider the use of invariants in
modelling networks of timed automata. Consider the following timed system in
Figure 1: A multi lane highway with cars on each lane and a rabbit who wants
to cross. The rabbit has some freedom of going slower or faster and so do the
cars. Can - with the help of the car drivers - the rabbit reach the other side of
the highway alive? To model this by a network of timed automata, we choose
to model the highway as a checker board of lanes and positions on lanes as
indicated in the picture, cars move in the horizontal direction and the rabbit
in the vertical direction. Each car and the rabbit is realised by an individual
automaton. The freedom of going slower or faster is modeled by a time interval
in which the rabbit can advance by one lane and an interval in which the car
can advance for one unit length on a discretized highway. If a car and the rabbit
are in the same field of the checker board at the same time, an accident occurs.
The UppAal model is indicated by showing the automaton for the rabbit and
an instance of the automata for cars.

Fig. 1. A real life race condition and its UppAal model with invariants

Without invariants, the cars or the rabbit could just stop (not take a advancing
transition), in which case it is obvious that the rabbit will reach its target safely.
Hence, the invariants are essential for correct modeling in that the invariants
enforce a more or less synchronous progress of the cars and the rabbit, so that
everyone has to choose their speed to allow the rabbit to pass unharmed.

A näıve approach to eliminate the invariants is to apply the two step trans-
formation to automata (on-the-fly or offline) and after that have an Alur-Dill
automaton without invariants to which we could apply the algorithm shown in
[11]. However, the global invariant limits the time progress for the local clock
of each car, thus the rewriting will essentially render all transitions dependent!
This is precisely a source of combinatorial explosion in this example.

But this additional dependency is not unavoidable, the “independence” of the
cars in the example is quite obvious: They don’t interfere with each other, they
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just interfere with the rabbit. In the rest of the article we show that there is a
better way of dealing with local invariants, preserving full independence.

3 Timed Automata with Transition Invariants

In this section, we introduce basic notions of timed words, timed languages, as
well as their finite representation by timed automata [1].

For an alphabet Σ of actions denoted by a, b, c . . ., let $ /∈ Σ be a special
symbol, the snapshot action1, and let Σ$ := Σ � {$} denote the extension of Σ
by $. Σ∗ (or Σ∗

$ ) is the set of finite sequences a1 . . . an called words, with ε the
empty word. The length n of a word a1 . . .an is denoted by |a1 . . .an|. A timed
word is a sequence (a1, τ1) . . . (an, τn) of elements in (Σ$×R+)∗, with R+ the set
of non-negative reals, the τi’s are time stamps. For convenience, we set τ0 = 0
to be an additional time stamp for the beginning. A timed word is normal if
τi ≤ τj for i ≤ j as in (a, 3.2)(c, 4.5)(b, 6.3) whereas (a, 3.2)(c, 2.5)(b, 6.3) is not
normal. Normal timed words represent temporally ordered sequences of events
and serve as standard semantics of timed automata in the literature.

In timed systems, events can occur only if certain time constraints are satis-
fied. In timed automata, a finite set of real valued2 variables X , called clocks,
are used to express the time constraints between an event that resets a clock and
another event that refers to the clock value at the time of its occurrence. The
clock constraints permitted here are conjunctions of atomic clock constraints,
comparisons between a clock and a numerical constant. To preserve decidability,
constants are assumed to be positive rationals and for simplicity in N, the set
of natural numbers. For a set of clocks X , the set Φ(X) of clock constraints
φ is formally defined by the grammar φ := true|x �� c |φ1 ∧ φ2, where x is a
clock in X , ��∈ {<,≤, >,≥} and c is a constant in N (true is for transitions
without conditions), moreover excluding the trivially false combination “< 0”.
Another way of looking at clock constraints is sets of atomic constraints that
must all be satisfied. A subset of clock constraints result from the restriction to
upper bounds � ∈ {<,≤}, so let Φupper(X) ⊆ Φ(X) be defined according to the
grammar φ := true|x � c |φ1 ∧ φ2.

A clock valuation v : X → R is a function that assigns a real number to each
clock. We denote by v + τ the clock valuation that translates all clock x ∈ X
synchronously by τ such that (v + τ)(x) = v(x) + τ . For a subset C of clocks,
v[C ← 0] denotes the clock valuation with v[C ← 0](x) = 0 if x ∈ C and
v[C ← 0](x) = v(x) if x /∈ C, i.e. the valuation where the clocks in C are reset to
0. The satisfaction of the clock constraint φ by the clock valuation v, i.e. the fact
that all atomic constraints are satisfied when substituting v(x) for x, is denoted
by v � φ.

In this paper, we use classical timed automata semantics defined in [1]. How-
ever, in order to be able to apply partial order reduction to verification, we
extend the definition of timed automata as follows:
1 The rôle of which will become clear later.
2 For normal timed words positive real values would suffice, see Remark 2.
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1. We assume at the origin of our timed automaton the interleaving semantics
of a network of timed automata, where states have local invariants.

2. To make the local state invariants accessible in a global automaton (a prod-
uct of the local automata), we add local invariants to the guards of transi-
tions, as transition invariants.

3. We add a snapshot action to each global state as a self loop. The guard
of a snapshot action is true. In addition, we use global state invariants as
transition invariants of snapshot actions.

4. While we assume that the global invariant of a state is the conjunction of lo-
cal invariants, we assume in our formalization global invariants for each state
that have to meet certain consistency properties concerning the transition
invariants.

It is easy to see that the above extension does not change the semantics of timed
automata. Now we give a formal definiton for the extended timed automata.

Definition 1. Given an alphabet Σ$ and a set of clocks X, a timed automaton
with transition invariants is a quintuple A = (Σ$, S, s0,→, Inv, F ) where S is
a finite set of locations, s0 ∈ S is the initial location, F ⊆ S is the set of final
locations and → ⊆ S× [Σ$ ×Φ(X)×Φupper(X)×2X ]×S is a set of transitions,
Inv : S −→ Φupper(X) is an assignment of clock invariants to locations. For a

transition (s, a, φ, ψ, C, s′) ∈→, we write s
(a,φ,ψ,C)

−−−−−−−→ s′, and call a the label of
the transition, and ψ the invariant of the transition or the transition invariant.

For a conjunction of constraints φ, let φ(x) denote the restriction of φ to
constraints concerning the clock x. The following rules must be satisfied for all
transitions (s, a, φ, ψ, C, s′):

1. Inv(s) ⇒ ψ, i.e. the global state invariant implies the transition invariant;
2. For all x /∈ C we have Inv(s)(x) ∧ φ(x) =⇒ Inv(s′)(x);
3. For all x /∈ C we have Inv(s′)(x) ∧ ψ(x) =⇒ Inv(s)(x).

A state (s, v) consists of a location s and a clock valuation v. A snapshot action
is of the form (s, $, true, Inv(s), ∅, s). Here s is a global location and Inv(s) is
the global state invariant, i.e. we require that the snapshot action verifies the
global state invariant.

The intuition of the invariant constraint ψ of a transition is to result from
the local state invariant of the predecessor state of one automaton in a network.
Hence, the first condition says that the global state invariant is (at least as strong
as) the conjunction of the invariants of the outgoing transitions. Indeed, it is the
case according to the definition of the global state invariant.

Remark 1. A timed automaton is action deterministic if for two transitions

s
(a,φ1,ψ1,C1)
−−−−−−−→ s1 and s

(a,φ2,ψ2,C2)
−−−−−−−→ s2, we have that φ1 = φ2, ψ1 = ψ2, C1 = C2 and

s1 = s2. Similarly, we call the timed automaton constraint consistent if actions
determine uniquely clock constraints and resets, i.e. for each pair of transitions
(s1, a, φ, ψ, C, s2) and (s′1, a, φ′, ψ, C′, s′2) with the same action, we have φ = φ′,
ψ = ψ′ and C = C′. In that case, given an action a, the unique clock constraint,
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invariant and reset are denoted by φa, ψa and Ca respectively. In this paper, we
will only consider timed automata that are action deterministic and constraint
consistent. This is no restriction to applications, as this can be easily achieved
by renaming (a more detailed discussion is in [11]).

Figure 2 (produced by UppAal) shows a system consisting of two automata.
Initial locations are s0 and w0, and final locations are s0, s2, s3 and w0. Clocks
are x, y, and z. States invariants are labeled in boldface, e.g., “y<=9” is the
variant for local state s1 and “y<=9 ∧ z<=4” is the global variant for (s1,w1).

s3
x<=10

s2
x<=7

s1

y<=9

s0

x<=1

y>=9 and ack==0
x:=0c

x>=6
count:=count+1,
x:=0

e

x>=4d

ack==count
ack:=0,
x:=0

b
pkt:=count, y:=0

a

w3
z<=9

w2
z<=5

w1

z<=4

w0

z>=4

i

z>=3h
ack := tmp

z>=2
y:=0

g

pkt>0
tmp := pkt,
pkt := 0,
z := 0

f

Fig. 2. The example

For our formal development, we introduce three distinct notions of sequences
of execution: paths (ignoring time constraints), runs (paths with time stamps
respecting the time constraints), normal runs (furthermore the time stamps
respect the progress of time):

Definition 2. A path in A is a finite sequence s0
(a1,φ1,ψ1,C1)
−−−−−−−→ s1 . . .

(an,φn,ψn,Cn)
−−−−−−−→

sn of consecutive transitions si−1
(ai,φi,ψi,Ci)
−−−−−−−→ si. The word a1 . . .an ∈ Σ∗

$ of
transition labels is called the path labeling. If an = $ (final snapshot) and sn ∈
F , the path is said to be accepted. The set of labelings of accepted paths is called
the untimed language of A and denoted L(A).

Definition 3. A run of a timed automaton is a path extended by time stamps
for the transition occurrences satisfying clock constraints and resets:

(s0, v0)
(a1,φ1,ψ1,C1),τ1

−−−−−−−−−→ (s1, v1) . . .
(an,φn,ψn,Cn),τn

−−−−−−−−−→ (sn, vn) where (a1, τ1). . .(an, τn)
is a timed word and (vi)0≤i≤n are clock valuations defined by:

1. v0(x) = 0 for all x ∈ X, τ0 = 0
2. vi−1 + (τi − τi−1) � φi ∧ ψi

3. vi−1 + (τi − τi−1) � Inv(si−1)(x) for x ∈ Ci

4. vi = (vi−1 + (τi − τi−1))[Ci ← 0].

Note that the above conditions imply for ai =$ that vi �Inv(si), since si =si−1.
The timed word (a1, τ1) . . . (an, τn) is the timed labeling of the run. The run is
accepted by A if an = $, sn ∈ F .
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Definition 4. A normal run is a run such that its timed labeling (a1,τ1) . . . (an,τn)
is a normal timed word i.e. τ1 ≤ τ2 ≤ . . . ≤ τn.

Remark 2. It is straightforward to see that for normal runs the valuations always
produce positive values: Clocks are either reset to 0 or the translations v + (τi −
τi−1) increase the values since τi ≥ τi−1. In non-normal runs, this need not be
the case.

Proposition 1. In a normal accepted run it holds for all intermediate states si

that vi + (τi+1 − τi) � Inv(si), i.e. global invariants are never violated.

Proof. The proof is by induction on n−k, i.e. on the distance from the last state
in the sequence.

The basis is to prove that the proposition holds for k = 1. Since an = $,
sn = sn−1 and ψn = Inv(sn) = Inv(sn−1). The second condition implies in turn
that vn−1 + (τn − τn−1) � ψn.

For the induction step, assume that for k ≥ 1, the proposition is true, i.e.,
vn−k + (τn−k+1 − τn−k) � Inv(sn−k). For the case k = k + 1, vn−k−1 + (τn−k −
τn−k−1) � φn−k ∧ ψn−k and vn−k−1 + (τn−k − τn−k−1) � Inv(sn−k−1)(x) if
x ∈ Cn−k−1. For y /∈ Cn−k−1, vn−k−1 + (τn−k − τn−k−1) � Inv(sn−k)(y)∧ψn−k

implies vn−k−1+(τn−k−τn−k−1) � Inv(sn−k−1)(y). Therefore, vn−k−1+(τn−k−
τn−k−1) � Inv(sn−k−1), which means the proposition holds for k + 1. �

The timed language LT(A) of A is the set of normal timed words (a1,τ1). . .(an,τn),
such that accepted by A. The path labeling a1 . . .an is said to be realizable if
for some time stamps τi the normal timed word (a1, τ1) . . . (an, τn)($, τ) (then
called the normal realization of a1 . . . an) is the labeling of a normal run. The
language of realizable words that are the labeling of an accepted run is denoted
by LN (A).

For instance, in Figure 2 (a,0.5)(f,2.5)(g,4.6)(h,7)(i,9.3)(b,9.4)∈ LT (A) is a
normal realization of the path labeling afghib, hence afghib∈ LN (A).

4 Independence for Timed Automata

To model concurrency, we use an independence relation between actions such
that actions are independent when the order of their occurrence is irrelevant.
Formally, an independence relation I for an (action deterministic and constraint
consistent) timed automaton A = (Σ$, S, s0,→, Inv, F ) is a symmetric and ir-
reflexive relation I ⊆ Σ ×Σ such that the following two properties hold for any
two a, b ∈ Σ with a I b:

(i) s
(a,φa,ψa,Ca)
−−−−−−−→ s1

(b,φb,ψb,Cb)
−−−−−−−→ s2 implies s

(b,φb,ψb,Cb)
−−−−−−−→ s′1

(a,φa,ψa,Ca)
−−−−−−−→ s2 for some

location s′1
(ii) Ca ∩ Cb = ∅ and no clock x in Cb belongs to an atomic clock constraint

x �� c of φa ∧ψa and conversely no clock x in Ca belongs to an atomic clock
constraint x �� c of φb ∧ ψb.
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We also use the dependence relation D = Σ × Σ − I, which is reflexive and
symmetric.

We extend the independence relation to Σ$ by setting $Db for all b ∈ Σ$, i.e.
we define the snapshot to be dependent of every other action. This obviously
meets conditions (i) and (ii).

Intuitively, condition (ii) arises from the view of clocks as shared variables
in concurrent programming: An action resetting a clock is writing it whereas
an action with a clock constraint on this clock is reading it. The restriction
states that two actions are dependent if both are writing the same variable, or
one is writing a variable and the other one is reading it. In pratice, we extend
timed automata to allow testing program variables in guards of transitions, and
assigning values to program variables by transitions.

Since I = ∅ trivially meets (i) and (ii) such a relation always exists. Computing
a good (the larger, the better) I meeting (i) and (ii) is a matter of static analysis
and is typically done on the level of a network before constructing the product
timed automaton: Sufficient criteria for (i) may require that two transitions
originate from distinct components and do not have conflicts around shared
variables and do not synchronize on the same channels. For instance, (b,f) is in
the independence relation for the timed automata of Figure 2, while (b,g) in
the dependence relation because after we put the state invariant y<=9 to be the
transition invariant of b, b reads the clock y and g writes it.

The Mazurkiewicz trace equivalence associated to the independence relation I
is the least congruence 2 over Σ∗ such that ab 2 ba for any pair of independent
actions a I b. A trace [u] is the congruence class of a word u ∈ Σ∗. By definition,
two words are equivalent with respect to 2 if they can be obtained from each
other by a finite number of exchanges of adjacent independent actions. E.g., acf
2 afc for Figure 2, but acf 
2 fac (a and f are dependent). In other words, this
permutation of actions between two equivalent words lets the relative order of
occurrences of dependent actions unchanged, formally:

Lemma 1. Let I be an independence relation, 2 the induced Mazurkiewicz trace
equivalence and a1 . . . an 2 b1 . . . bn be two equivalent words. There exists a
uniquely determined permutation π : {1, . . . , n} → {1, . . . , n} such that ai = bπ(i)
and for ai D aj we have i < j iff π(i) < π(j).

Conversely, let a1 . . . an be a word and π : {1, . . . , n} → {1, . . . , n} be a permu-
tation of indices such that for each pair i, j ai D aj we have i < j iff π(i) < π(j).
Then aπ(1) . . . aπ(n) 2 a1 . . . an.

Proof. By induction on the number of exchanges. �
For convenience in applications to timed words, we assume π to be extended to
0 with π(0) = 0.

The untimed language L(A) of a timed automaton A is closed under the equiv-
alence 2 and this is the theoretical foundation of many partial order reduction
approaches. For instance, reductions that preserve at least one representative
for each equivalence class do preserve non-emptiness of the untimed languages.
Moreover the equivalence relation extends to runs when disregarding normality
constraints:
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Lemma 2. Let (a1, τ1) . . . (an, τn) be the timed labeling of a run,
π : {1, . . . , n} → {1, . . . , n} be a permutation with a1 . . . an 2 aπ(1) . . .aπ(n).
Then (aπ(1), τπ(1)) . . . (aπ(n), τπ(n)) is also a timed labeling of a run.

Proof. The proof is by induction of the number of exchanges in π, it is sufficient
to consider the case of a single exchange.

Let (a1, τ1) . . . (ak, τk)(a, τk+1)(b, τk+2)(ak+3, τk+3) . . . (an, τn) be the time la-
beling where a I b and let r = (s0, v0) . . . (sn, vn) be the corresponding run.

Assume that sk

(a,φa,ψa,Ca)
−−−−−−−→ sk+1

(b,φb,ψb,Cb)
−−−−−−−→ sk+2.

We prove the existence of a unique run r′ = (s′0, v
′
0) . . . (s

′
n, v′n) with timed la-

beling (a1, τ1) . . . (ak, τk)(b, τk+2)(a, τk+1)(ak+3, τk+3) . . . (an, τn) such that s′i =
si for i 
= k + 1 and v′i = vi for i /∈ {k + 1, k + 2}.

By property (i) of I, sk

(b,φb,ψb,Cb)
−−−−−−−→ s′k+1

(a,φa,ψa,Ca)
−−−−−−−→ sk+2 and all other transi-

tions are unchanged hence s′i = si for i 
= k + 1.
The sequence r′ is a run if the time valuations v′i satisfy the constraints. We

consider two cases:

(1) i ≤ k or i > k + 3. The result holds since r is a run.
(2) i = k + 1,i = k + 2 and i = k + 3.

First observe that since r is a run, we have vk+1 +(τk+2 − τk+1) � φb ∧ψb: By
condition (ii) of independence, no clock mentioned in φb∧ψb is reset in Ca hence
(vk+1 + (τk+2 − τk+1))(x) = vk+1(x) + (τk+2 − τk+1) = (vk + (τk+1 − τk))(x) +
(τk+2 − τk+1) = (vk + (τk+2 − τk))(x) for any clock x mentioned in φb.

Therefore vk+1 + (τk+2 − τk+1) � φb ∧ ψb iff vk + (τk+2 − τk) � φb ∧ ψb.
Second, for a clock x ∈ Cb we have vk+1 + (τk+2 − τk+1) � Inv(sk+1)(x).

Then, since due to independence we know that x /∈ Ca, again (vk+1 + (τk+2 −

τk+1))(x) = (vk + (τk+2 − τk))(x). Therefore the transition sk

(b,φb,ψb,Cb)
−−−−−−−→ s′k+1

is enabled at τk+2 yielding (s′k+1, v
′
k+1) � Inv(sk+1)(x). But Inv(sk+1)(x) ∧

ψa(x) =⇒ Inv(sk)(x) and ψa does not restrict x (due to independence), hence
Inv(sk+1)(x) =⇒ Inv(sk)(x) and we obtain vk + (τk+2 − τk) � Inv(sk)(x). We
therefore obtain that r′ is a run up to (s′k+1, v

′
k+1).

Similarly the transition s′k+1

(a,φa,ψa,Ca)
−−−−−−−→ sk+2 satisfies the conditions on v′k+1+

(τk+1−τk+2): For x /∈ Cb we have (v′k+1+(τk+1−τk+2))(x) = (vk+(τk+1−τk))(x),
hence v′k+1 +(τk+1 − τk+2) � φa ∧ψa. If, on the other hand, x ∈ Ca, then x /∈ Cb

and we see that v′k+1 +(τk+1 − τk+2) � Inv(sk)(x). But Inv(sk)(x)∧φb ∧ψb =⇒
Inv(s′k+1)(x) and since φb ∧ ψb do not constrain x due to independence, we
obtain that Inv(sk)(x) =⇒ Inv(s′k+1)(x) and hence v′k+1 + (τk+1 − τk+2) �
Inv(s′k+1)(x).

Finally, since Ca ∩ Cb = ∅ we get v′k+2 = vk+2 + (τk+1 − τk+2) which implies
v′k+2 +(τk+3 − τk+1) = vk+2 +(τk+3 − τk+2). This guarantees that the transition
corresponding to ak+3 is still possible at τk+3 and that v′k+3 = vk+3. �
However, Lemma 2 only claims commutability of runs without taking time
progress into account. For the timed language LT (A) and consequently for
LN(A), the normality condition may exclude some representatives in a trace:
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Let afcgahib and acfgahib be two equivalent paths of Figure 2. It is easy to
know that the former one is in LN(A), while the latter not because the constraint
(τ5 − τ2 ≤ 1) ∧ (2 ≤ τ4 − τ3 ≤ 4) ∧ (τ2 ≤ τ3) ∧ (τ4 ≤ τ5) cannot be satisfied by
a normal word (a,τ1)(c,τ2)(f,τ3)(g,τ4)(a,τ5)... Therefore we introduce a weaker
notion of normality:

A timed word (a1, τ1) . . . (an, τn) is I-normal iff for any two letters ai, aj

with i ≤ j and additionally ai D aj we have τi ≤ τj . In Figure 2, the timed
word (a,0.5)(c,9.5)(f,5.7)(g,9.6)(a,10.1) is I-normal. The intuition behind this
relaxation of constraints is that in practice, actions are dependent if they are
executed by the same component in a network of timed automata. This non-
decreasing condition on action occurrences models the sequential behavior of
each component. In [6], this is modeled by considering a local time for each
component. The interaction between components leads to the propagation of
time progress to other components (formally due to dependency).

In analogy to realisable words, we say that a1 . . . an is I-realisable iff it is the

labelling of a run (s0, v0)
(a1,φa1 ,Ca1),τ1

−−−−−−−−−→ (s1, v1) . . .
(an,φan ,Can),τn

−−−−−−−−−→ (sn, vn) in A
such that (a1, τ1) . . . (an, τn) is I-normal. As for LN , let LI(A) denote the set of
I-realisable words a1 . . .an such that a1 . . . an$ is the labelling of an accepted run
(i.e. sn ∈ F and in particular vn � Inv(sn)). For instance, afghb is I-realisable
in Figure 2 as time stamps 0.5, 2.5, 4.6, 7, 9.4, 9.3 satisfy clock constraints of
transitions from (s0,w0) to (s2,w0) and (a,0.5)(f,2.5)(g,4.6)(h,7)(b,9.4)(i,9.3) is
I-normal. Moreover, afghbi is also in LI(A) since (s2,w0) is final.

Obviously LN(A) ⊆ LI(A).
By definition LT (A) = ∅ if and only if LN(A) = ∅. Moreover, the following

proposition implies that LN (A) = ∅ iff LI(A) = ∅, so that we can check this
emptiness problem equivalently for either language.

Proposition 2. For every I-normal labelling (a1, τ1) . . . (an, τn) of a run in
an action deterministic, constraint consistent timed automaton A, there exists
(aπ(1), τπ(1)) . . . (aπ(n), τπ(n)) an equivalent normal labelling of an (equivalent)
run in A, where π is a permutation as defined in Lemma 1.

Proof. Consider the following ordering on {1, . . . , n}: i 	 j iff τi < τj or τi = τj

and i < j. There is a unique permutation such that i 	 j iff π(i) < π(j).
Moreover, for aiDaj and i < j, I-normality implies that τi ≤ τj and finally π(i) <
π(j), i.e. π yields an equivalent path. By Lemma 2, (aπ(1), τπ(1)) . . . (aπ(n), τπ(n))
is thus a timed labelling of some run and by the construction of 	 it is a normal
timed word. �

A sorting algorithm provides an efficient way of computing a normal timed la-
belling of a run from an I-normal labelling.

A key main feature of LI(A) is the closure under equivalence that is stated
in Theorem 1. In principle this allows to limit exploration of realisable clocked
words to representatives of equivalence class:

Theorem 1. (1) Let u 2 v and u ∈ LI(A) then v ∈ LI(A).
(2) LI(A) = {u | ∃v 2 u : v ∈ LN (A)}.



Adding Invariants to Event Zone Automata 301

Proof. (1) Let u = a1 . . .an, v = b1 . . . bn and π be the permutation linking
a1 . . . an and b1 . . . bn according to Lemma 1. Let (a1, τ1) . . . (an, τn) an I-normal
labelling of some accepting run of A. Then (b1, τπ(1)) . . . (bn, τπ(n)) is a timed
labelling of some accepting run according to Lemma 2 and it inherits I-normality
since π preserves the order of occurrences of dependent actions.

(2) “⊇” follows from LN (A) ⊆ LI(A) (normality implies I-normality) and
reflexivity of 2. “⊆” is an easy consequence of Proposition 2. �

5 Symbolic Analysis for LI

The goal of this section is to show how the results of the previous section can
be used for reachability analysis. A full description would require a lot of space
and we refer the reader to [11] for an exhaustive treatment without invariants.
Instead, here we concentrate on one aspect, the constraints required to check
whether a word belongs to LI(A).

Let T = {t0, t1, . . .} be a set of time stamp variables. An atomic time con-
straint is a time constraint of the form ti−tj ≺ c, a general constraint a conjunc-
tion of atomic constraints, where ti, tj are time stamp variables in T, ≺∈ {<,≤}
and c is a constant in Z. An interpretation of a time stamp constraint ϕ is a
function v : T→R+ assigning a non-negative real number τi to each time stamp
variable ti. The satisfaction of ϕ by v is denoted v � ϕ and in that case v is a
model for ϕ. We call ϕ consistent iff it has a model otherwise inconsistent. As is
well known, consistency and a model can be determined with the Bellman-Ford
shortest path algorithm.

To express I-realizability in terms of time stamp constraints we need to
define special positions in a path. Given a path labeling a1 . . . an we define
lasta(a1 . . . an), the last occurrence of a, to be the maximal k such that ak = a, if
such a k exists, otherwise lasta(a1 . . . an) = 0. Similarly, we define lastx(a1 . . . an)
to be the maximal position k at which x is reset, that is x ∈ Cak

, if such a posi-
tion exists, otherwise lastx(a1 . . . an) = 0 (every clock is reset at the beginning).

With these positions we express that in a word dependent actions are ordered
according to their order of occurrence (condition (1) in the following) and that
clock constraints are satisfied (conditions (2) (3) and (4)) allowing to check I-
realizability on the level of consistency:

For a timed automaton A and a path labelling a1 . . .an let ϕa1...an be the
associated time stamp constraint which is the conjunction of the time stamp
constraints satisfying one of four cases :

1. ti − tj ≤ 0 with i < j and ai D aj and i = lastai(a1 . . . aj−1);
2. tj − ti ≺ c with x ≺ c in φj , ψj , and i = lastx(a1 . . . aj−1)
3. ti − tj ≺ −c with x " c in φj , and i = lastx(a1 . . .aj−1)
4. tj − ti ≺ c with x ∈ Cj and x ≺ c = Inv(σ(a1 . . .aj−1))(x)

and i = lastx(a1 . . . aj−1)

Proposition 3. Let A = (Σ, S, s0,→, F ) be a deterministic timed automaton
and I an independence relation. Moreover, let a1 . . .an be a path labeling of A.
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The word a1 . . . an is I-realizable iff its associated time stamp constraint ϕa1...an

is consistent.

In [11], event zones were introduced as an incremental way of computing con-
sistency of time stamp constraints: An event zone is a triple Z = (T, ϕ, Last)
where T is a set of time stamp variables, ϕ is a time stamp constraint and
Last : X ∪ Σ→T is the last occurrence function that assigns to a clock or an
action a the time stamps that represents respectively its last reset and the last
occurrence of the action. Formally, the event zone Zu = (Tu, ϕu, Lastu) of the
path labeling u = a1 . . . an is given by Tu = {t0, . . . , tn}, where ϕu is the time
stamp constraint associated to u and Lastu(a) = ti with i = lasta(a1 . . . an) for
all action a, Lastu(x) = ti with i = lastx(a1 . . . an) for all clock x.

To obtain a symbolic automaton, we consider pairs (s, Z) with s a location
from the original timed automaton and Z an event zone, symbolic states. Tran-
sitions on symbolic states are obtained by extension (s1, Z1) ◦ a := (s2, Z2) =
(s2, (T2, ϕ2, Last2)) of a symbolic state (s1, Z1) = (s1, (T1, ϕ1, Last1) by an ac-

tion a is defined if there exists a transition s1
a,φa,ψa,Ca

−−−−−−−→ s2, such that T2 =
T1 � {t} with t a fresh time stamp variable not in T1, and ϕ2 is the consistent
conjunction of ϕ1 and

– ti − t ≤ 0 for all ti = Last(b) for b such that a D b,
– t − ti ≺ c with x ≺ c in φa, ψa, and ti = Last(x),
– ti − t ≺ −c with x " c in φa and ti = Last(x),
– t − ti ≺ c with x ≺ c = Inv(s1)(x) iff x ∈ Ca,

and finally Last2 is such that Last2(α) = t for α a clock in Ca or α = a otherwise
Last2(α) = Last1(α).

Following the lines of [11], it is then possible to define an equivalence relation
2EZ compatible with the extension, such that if (s1, Z1) 2EZ (s2, Z2) then
(s1, Z1) ◦ a 2EZ (s2, Z2) ◦ a. This equivalence is essentially “same constraint up
to pointer renaming”. It turns out that the independence relation is compatible
with 2EZ , i.e. for a I b we have (s1, Z1)◦a◦b 2EZ (s1, Z1)◦b◦a, the fundamental
reason why event zones reduce the number of symbolic states explored. The
equivalence classes are the symbolic states of the event zone automaton, which
thus itself respects the independence relation.

The interesting aspect of event zones is that they allow to abstract from
time stamps that are not referenced by Last. More precisely, the constraint of
the event zone is closed using the Floyd-Warshall algorithm and then the time
stamps not referenced by pointers can be projected away. This allows to limit
the dimensions of event zones to the number of pointers (here: clocks and the
size of the alphabet). In practice, we use an optimized set of pointers to further
reduce the dimensions, which moreover results in event zones for $ terminated
paths that never have more dimensions than the number of clocks plus one. This
corresponds to the dimension of classical clock zones.

The snapshot action $ obtains a special rôle in the state exploration with
event zones: When we reach a final state (desired property) with a symbolic
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state (s, Z), we evaluate the consistency of (s, Z) ◦ $ according to Definition
3. We also eliminate intermediate states using the snapshot action, due to the
following observation:

Lemma 3. Let (a1, τ1) . . . (am, τm)(am+1, τm+1) . . . (an, τn)($, τn) be a normal
run accepted by A, then so is (a1,τ1). . .(am,τm)($,τm)(am+1,τm+1). . .(an,τn)($,τn).
In particular, a1 . . . am$ is I-realisable.

Proof. Check definitions and use Proposition 1. �

This observation allows us to restrict our search to paths u such that u$ is
I-realisable (we do not want to check realisable). This reduction ensures that
every symbolic state we explore is also reachable by some equivalent interleaving
in classical zone automata: We never explore paths (up to commutation) that
would not be explored with standard semantics.

Algorithm 1. Generic exploration algorithm
Waiting ← {((sε, Zε), ε)}, Past ← ∅
while Waiting �= ∅ do

Choose ((s,Z), w) ∈ Waiting, Waiting ← Waiting \ {((s, Z), w)}
for all w′ = wa with (s′, Z′) = (s,Z) ◦ a consistent do

if (s′, Z′′) := (s′, Z′) ◦ $ consistent then
if s′ ∈ F then return “witness(w′)” end if
if there exits no (s′, Z′′′) ∈ Past with (s′, Z′′) �C (s′, Z′′′) then

Waiting ← Waiting ∪ {((s′, Z′), w′)}, Past ← Past ∪ {(s′, Z′′)}
end if

end if
end for

end while
return “empty”

Algorithm 1 shows how we search for a state in F . “Waiting” is a set of paths
and symbolic states to be explored, whereas “Past” is a set of symbolic states
terminated with $ that have been explored. �C is similar to a zone inclusion test
and assures that we explore only a finite number of symbolic states, for details
see [11]. It is essential, that we do not put the same symbolic states in Past and
Waiting and that $ is never used in a symbolic state in Waiting.

6 Experiments

We recently finished a prototype implementation based on a previous implemen-
tation of event zones without invariants. We made two experiments to demon-
strate the performance of the event zone approach with state invariants. The
experiments were carried out in a machine with two 2.8GHz Xeon CPUs, 2GB
memory and Fedora core 4 Linux.

The first experiment is a timed version of dining philosophers with urgency
representing constraints to avoid literal starvation (due to lack of space, we
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cannot give the detailed model here). Figure 3 shows the results generated by
our prototype and UppAal (v3.6 beta 1). The data under the title “No partial
order” were obtained by our implementation setting all transitions dependent.
They are results in principle in the same basic algorithm used by UppAal, but
our implementation is lacking abstraction techniques like [8], which explains
the largely superior results obtained by UppAal. The potential of the reduction
can thus be seen by comparing the figures with and without “partial order”
reduction. However, with reduction - despite the lack of abstractions - even the
current implementation greatly outperforms UppAal.

Number of philosophers No partial order With partial order UppAal
time memory time memory time memory

2 0.02s 16m 0.03s 16m 0.03s 4m
3 0.11s 17m 0.05s 16m 0.04s 5m
4 21.88s 44m 0.53s 17m 0.29s 6m
5 — — 9.79s 22m 12.86s 36m
6 — — 175.10s 72m 1523.22s 730m
7 — — 2909.32s 540m — —

Fig. 3. Results of the philosophers example

The second experiment was performed on the highway example of Section 2.
The results3 are listed in Figure 4. The advantage of event zone with state
invariants against UppAal in this experiment was more explicit than the first one.

Number of lanes No partial order With partial order UppAal
time memory time memory time memory

1 0.02s 16m 0.03s 16m 0.02s 6m
2 0.03s 16m 0.03s 16m 0.02s 6m
3 0.06s 16m 0.04s 16m 0.03s 6m
4 1.98s 22m 0.30s 17m 0.23s 7m
5 548.57s 279m 1.29s 19m 20.35s 29m
6 34681.91s(*) 2301m 10.80s 36m 2946.67s 438m
7 — — 87.35s 119m — —
8 — — 554.35s 466m — —

Fig. 4. Results of the highway example

7 Conclusions

In this paper, we have shown how to add local state invariants to the event zone
approach for timed automata reachability. We thus lift the application domain
to the full class of reachability analysis that can be done with tools like UppAal
or Kronos. Moreover, we have implemented the algorithm and shown that it can
compete with state of the art timed automata tools. However, we continue to
improve certain aspects of the implementation, that is meant to be published
soon.
3 The number labeled “(*)” was not accurate since the swap memory was used auto-

matically by the operating system.



Adding Invariants to Event Zone Automata 305

Recently, an alternative approach to the exploitation of independence has
been introduced in [12], which is based on unions of clock zones for different
interleavings of the same trace. Note that a single event zone represents these
unions, regardless of the interleaving that was used to compute it. On the other
hand, the current setting for invariants can be applied in the dependency analysis
of an extension of the latter work, where clocks can be shared variables between
different automata/processes of a network.
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Abstract. Polygonal hybrid systems (SPDI) are a subclass of planar
hybrid automata which can be represented by piecewise constant differ-
ential inclusions. The reachability problem as well as the computation of
certain objects of the phase portrait, namely the viability, controllability
and invariance kernels, for such systems is decidable. In this paper we
show how to compute another object of an SPDI phase portrait, namely
semi-separatrix curves and show how the phase portrait can be used for
reducing the state-space for optimizing the reachability analysis.

1 Introduction

Hybrid systems combining discrete and continuous dynamics arise as mathe-
matical models of various artificial and natural systems, and as approximations
to complex continuous systems. They have been used in various domains, in-
cluding avionics, robotics and bioinformatics. Reachability analysis has been the
principal research question in the verification of hybrid systems, even if it is
a well-known result that for most subclasses of hybrid systems most verifica-
tion questions are undecidable. Various decidable subclasses have, subsequently,
been identified, including timed [AD94] and rectangular automata [HKPV95],
hybrid automata with linear vector fields [LPY01], piecewise constant derivative
systems (PCDs) [MP93] and polygonal hybrid systems (SPDIs) [ASY01].

Compared to reachability verification, qualitative analysis of hybrid systems
is a relatively neglected area [ALQ+01b, DV95, MS00, SP02, SJSL00]. Typical
qualitative questions include: ‘Are there ‘sink’ regions where a trajectory can
never leave once it enters the region?’ and ‘Are there regions in which every
point in the region is reachable from every other?’. The collection of objects in
a system satisfying these properties is called the phase portrait of the system.

Defining and constructing phase portraits of hybrid systems has been directly
addressed for PCDs in [MS00], and for SPDIs in [ASY02]. Given a cycle on a
SPDI, the viability kernel is the largest set of points in the cycle which may loop
forever within the cycle. The controllability kernel is the largest set of strongly
connected points in the cycle (such that any point in the set may be reached from
any other). An invariant set is a set of points such that each point must keep
rotating within the set forever, and the invariance kernel is the largest such set.
Algorithms for computing these kernels have been presented in [ASY02, Sch04]
and implemented in the tool set SPeeDI+[PS].
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Fig. 1. (a) An SPDI and its trajectory segment; (b) Reachability analysis

The contribution of this paper is threefold. We start by introducing a new
element of the phase portrait of SPDIs, semi-separatrix curves, and give an
algorithm to compute them. Separatrices are convex polygons dissecting the
plane into two mutually non-reachable subsets. We then show how the kernels
can be used to answer reachability questions directly. We also show how semi-
separatrices can be used to optimize the reachability algorithm for SPDIs by
reducing the number of states of the SPDI graph. The optimization is based on
topological properties of the plane (and in particular, those of SPDIs).

2 Theoretical Background

We summarize here the main definitions and results about SPDIs; for a more
detailed description refer to [Sch02]. A (positive) affine function f : R → R is
such that f(x) = ax + b with a > 0. An affine multivalued function F : R →
2R, denoted F = 〈fl, fu〉, is defined by F (x) = 〈fl(x), fu(x)〉 where fl and fu

are affine and 〈·, ·〉 denotes an interval. For notational convenience, we do not
make explicit whether intervals are open, closed, left-open or right-open, unless
required for comprehension. For an interval I = 〈l, u〉 we have that F (〈l, u〉) =
〈fl(l), fu(u)〉. The inverse of F is defined by F−1(x) = {y | x ∈ F (y)}. The
universal inverse of F is defined by F̃−1(I) = I ′ where I ′ is the greatest non-
empty interval satisfying ∀x ∈ I ′ · F (x) ⊆ I.

Clearly, F−1 = 〈f−1
u , f−1

l 〉 and F̃−1 = 〈f−1
l , f−1

u 〉, provided that 〈f−1
l , f−1

u 〉

= ∅.

A truncated affine multivalued function (TAMF) F : R → 2R is defined by
an affine multivalued function F and intervals S ⊆ R+ and J ⊆ R+ as follows:
F(x) = F (x) ∩ J if x ∈ S, otherwise F(x) = ∅. For convenience we write
F(x) = F ({x} ∩ S) ∩ J . For an interval I, F(I) = F (I ∩ S) ∩ J and F−1(I) =
F−1(I ∩J)∩S. The universal inverse of F is defined by F̃−1(I) = I ′ if and only
if I ′ is the greatest non-empty interval such that for all x ∈ I ′, F (x) ⊆ I and
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F (x) = F(x). We say that F is normalized if S = Dom(F) = {x | F (x)∩J 
= ∅}
(thus, S ⊆ F−1(J)) and J = Im(F) = F(S).

It can be proved [ASY01], that TAMFs are closed under composition.

Theorem 1. The composition of two TAMFs F1(I) = F1(I ∩ S1) ∩ J1 and
F2(I) = F2(I∩S2)∩J2, is the TAMF (F2 ◦F1)(I) = F(I) = F (I∩S)∩J , where
F = F2 ◦ F1, S = S1 ∩ F−1

1 (J1 ∩ S2) and J = J2 ∩ F2(J1 ∩ S2). ��

2.1 SPDIs

An angle ∠b
a on the plane, defined by two non-zero vectors a,b, is the set of all

positive linear combinations x = α a + β b, with α, β ≥ 0, and α + β > 0. We
will assume that b is situated in the counter-clockwise direction from a.

A polygonal hybrid system1 (SPDI) is a finite partition P of the plane into
convex polygonal sets, such that for each P ∈ P we have two vectors aP and bP .
Let φ(P ) = ∠bP

aP
. The SPDI is determined by ẋ ∈ φ(P ) for x ∈ P .

Let E(P ) be the set of edges of P . We say that e is an entry of P if for all
x ∈ e and for all c ∈ φ(P ), x + cε ∈ P for some ε > 0. We say that e is an exit
of P if the same condition holds for some ε < 0. We denote by in(P ) ⊆ E(P )
the set of all entries of P and by out(P ) ⊆ E(P ) the set of all exits of P .

Assumption 1. All the edges in E(P ) are either entries or exits, that is, E(P )
= in(P ) ∪ out(P ).

Reachability for SPDIs is decidable provided the above assumption holds
[ASY01]; without such assumption it is not know whether reachability is de-
cidable.

A trajectory segment of an SPDI is a continuous function ξ : [0, T ] → R2

which is smooth everywhere except in a discrete set of points, and such that for
all t ∈ [0, T ], if ξ(t) ∈ P and ξ̇(t) is defined then ξ̇(t) ∈ φ(P ). The signature,
denoted Sig(ξ), is the ordered sequence of edges traversed by the trajectory
segment, that is, e1, e2, . . ., where ξ(ti) ∈ ei and ti < ti+1. If T = ∞, a trajectory
segment is called a trajectory.

Example 1. Consider the SPDI illustrated in Fig. 1-(a). For sake of simplicity
we will only show the dynamics associated to regions R1 to R6 in the picture.
For each region Ri, 1 ≤ i ≤ 6, there is a pair of vectors (ai,bi), where: a1 =
(45, 100),b1 = (1, 4), a2 = b2 = (1, 10), a3 = b3 = (−2, 3), a4 = b4 = (−2,−3),
a5 = b5 = (1,−15), a6 = (1,−2),b6 = (1,−1). A trajectory segment starting
on interval I ⊂ e0 and finishing in interval I ′ ⊆ e4 is depicted.

We say that a signature σ is feasible if and only if there exists a trajectory
segment ξ with signature σ, i.e., Sig(ξ) = σ. From this definition, it immediately
follows that extending an unfeasible signature can never make it feasible:

1 In the literature the names polygonal differential inclusion and simple planar differ-
ential inclusion have been used to describe the same systems.
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Proposition 1. If a signature σ is not feasible, then neither is any extension
of the signature — for any signatures σ′ and σ′′, the signature σ′σσ′′ is not
feasible. ��

Given an SPDI S, let E be the set of edges of S, then we can define a graph GS
where nodes correspond to edges of S and such that there exists an arc from one
node to another if there exists a trajectory segment from the first edge to the
second one without traversing any other edge. More formally: Given an SPDI S,
the underlying graph of S (or simply the graph of S), is a graph GS = (NG , AG),
with NG = E and AG = {(e, e′) | ∃ξ, t . ξ(0) ∈ e ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′}. We
say that a sequence e0e1 . . . ek of nodes in GS is a path whenever (ei, ei+1) ∈ AG
for 0 ≤ i ≤ k − 1.

The following lemma shows the relation between edge signatures in an SPDI
and paths in its corresponding graph.

Lemma 1. If ξ is a trajectory segment of S with edge signature Sig(ξ) = σ =
e0 . . . ep, it follows that σ is a path in GS . ��

Note that the converse of the above lemma is not true in general. It is possible
to find a counter-example where there exists a path from node e to e′, but no
trajectory from edge e to edge e′ in the SPDI.

2.2 Successors and Predecessors

Given an SPDI, we fix a one-dimensional coordinate system on each edge to
represent points laying on edges [ASY01]. For notational convenience, we in-
distinctly use letter e to denote the edge or its one-dimensional representation.
Accordingly, we write x ∈ e or x ∈ e, to mean “point x in edge e with coordi-
nate x in the one-dimensional coordinate system of e”. The same convention is
applied to sets of points of e represented as intervals (e.g., x ∈ I or x ∈ I, where
I ⊆ e) and to trajectories (e.g., “ξ starting in x” or “ξ starting in x”).

Now, let P ∈ P, e ∈ in(P ) and e′ ∈ out(P ). For I ⊆ e, Succe,e′ (I) is the
set of all points in e′ reachable from some point in I by a trajectory segment
ξ : [0, t] → R2 in P (i.e., ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). Succe,e′ is a TAMF
[ASY01].

Example 2. Let e1, . . . , e6 be as in Fig. 1-(a), where all the edges have local
coordinates over [0, 10], and I = [l, u]. We assume a one-dimensional coordinate
system. We show only the first and last edge-to-edge TAMF of the cycle:

Fe1e2 (I) =
[

l
4 ,

9
20u
]
, S1 = [0, 10] , J1 =

[
0, 9

2

]
Fe6e1 (I) = [l, 2u] , S6 = [0, 10] , J6 = [0, 10]

with Succeiei+1(I) = Feiei+1(I ∩ Si) ∩ Ji, for 1 ≤ i ≤ 6; Si and Ji are computed
as shown in Theorem 1.

Given a sequence w = e1, e2, . . . , en, since TAMFs are closed under composition,
the successor of I along w, defined as Succw(I) = Succen−1,en ◦ . . . ◦Succe1,e2(I),
is a TAMF.
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Example 3. Let σ = e1 · · · e6e1. We have that Succσ(I) = F (I ∩Sσ)∩Jσ, where:
F (I) = [ l

4 + 1
3 ,

9
10u + 2

3 ], with Sσ = [0, 10] and Jσ = [13 ,
29
3 ].

For I ⊆ e′, Pree,e′ (I) is the set of points in e that can reach a point in I by a
trajectory segment in P . The ∀-predecessor P̃re(I) is defined in a similar way
to Pre(I) using the universal inverse instead of just the inverse: For I ⊆ e′,
P̃reee′ (I) is the set of points in e such that any successor of such points are in I
by a trajectory segment in P . Both definitions can be extended straightforwardly
to signatures σ = e1 · · · en: Preσ(I) and P̃reσ(I). The successor operator thus has
two “inverse” operators.

2.3 Qualitative Analysis of Simple Edge-Cycles

Let σ = e1 · · · eke1 be a simple edge-cycle, i.e., ei 
= ej for all 1 ≤ i 
= j ≤ k. Let
Succσ(I) = F (I∩Sσ)∩Jσ with F = 〈fl, fu〉 (we suppose that this representation
is normalized). We denote by Dσ the one-dimensional discrete-time dynamical
system defined by Succσ, that is xn+1 ∈ Succσ(xn).

Assumption 2. None of the two functions fl, fu is the identity.

Without the above assumption the results are still valid but need a special
treatment making the presentation more complicated.

Let l∗ and u∗ be the fixpoints2 of fl and fu, respectively, and Sσ∩Jσ = 〈L,U〉.
A simple cycle is of one of the following types [ASY01]: STAY, the cycle is
not abandoned neither by the leftmost nor the rightmost trajectory, that is,
L ≤ l∗ ≤ u∗ ≤ U ; DIE, the rightmost trajectory exits the cycle through the left
(consequently the leftmost one also exits) or the leftmost trajectory exits the
cycle through the right (consequently the rightmost one also exits), that is, u∗ <
L∨ l∗ > U ; EXIT-BOTH, the leftmost trajectory exits the cycle through the left
and the rightmost one through the right, that is, l∗ < L∧u∗ > U ; EXIT-LEFT,
the leftmost trajectory exits the cycle (through the left) but the rightmost one
stays inside, that is, l∗ < L ≤ u∗ ≤ U ; EXIT-RIGHT, the rightmost trajectory
exits the cycle (through the right) but the leftmost one stays inside, that is,
L ≤ l∗ ≤ U < u∗.

Example 4. Let σ = e1 · · · e6e1. Then, Sσ ∩ Jσ = 〈L,U〉 = [13 ,
29
3 ]. The fixpoints

from Example 3 are 1
3 < l∗ = 11

25 < u∗ = 20
3 < 29

3 . Thus, σ is a STAY.

Any trajectory that enters a cycle of type DIE will eventually quit it after a
finite number of turns. If the cycle is of type STAY, all trajectories that happen
to enter it will keep turning inside it forever. In all other cases, some trajectories
will turn for a while and then exit, and others will continue turning forever. This
information is crucial for proving decidability of the reachability problem.

Example 5. Consider the SPDI of Fig. 1-(a). Fig. 1-(b) shows part of the reach
set of the interval [8, 10] ⊂ e0, answering positively to the reachability question:
2 The fixpoint x∗ is the solution of f(x∗) = x∗, where f(·) is positive affine.
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Is [1, 2] ⊂ e4 reachable from [8, 10] ⊂ e0? Fig. 1-(b) has been automatically
generated by the SPeeDI toolbox we have developed for reachability analysis of
SPDIs [APSY02].

2.4 Kernels

We present now how to compute the invariance, controllability and viability
kernels of an SPDI. Proofs are omitted but for further details, refer to [ASY02]
and [Sch04]. In the following, for σ a cyclic signature, we define Kσ ⊆ R2 as
follows: Kσ =

⋃k
i=1(int(Pi)∪ei) where Pi is such that ei−1 ∈ in(Pi), ei ∈ out(Pi)

and int(Pi) is Pi’s interior.

Viability Kernel. We now recall the definition of viability kernel [Aub01]. A
trajectory ξ is viable in K if ξ(t) ∈ K for all t ≥ 0. K is a viability domain if
for every x ∈ K, there exists at least one trajectory ξ, with ξ(0) = x, which is
viable in K. The viability kernel of K, denoted Viab(K), is the largest viability
domain contained in K.

For I ⊆ e1 we define Preσ(I) to be the set of all x ∈ R2 for which there exists a
trajectory segment ξ starting in x, that reaches some point in I, such that Sig(ξ)
is a suffix of e2 . . . eke1. It is easy to see that Preσ(I) is a polygonal subset of the
plane which can be calculated using the following procedure. We start by defining
Pree(I) = {x | ∃ξ : [0, t] → R2, t > 0 . ξ(0) = x∧ξ(t) ∈ I∧Sig(ξ) = e} and apply
this operation k times: Preσ(I) =

⋃k
i=1 Preei(Ii) with I1 = I, Ik = Preek,e1(I1)

and Ii = Preei,ei+1(Ii+1), for 2 ≤ i ≤ k − 1.
The following result provides a non-iterative algorithmic procedure for com-

puting the viability kernel of Kσ on an SPDI:

Theorem 2. If σ is DIE, Viab(Kσ) = ∅, otherwise Viab(Kσ) = Preσ(Sσ). ��

Example 6. Fig. 2-(a) shows all the viability kernels of the SPDI given in Ex-
ample 1. There are 4 cycles with viability kernels — in the picture two of the
kernels are overlapping.

Controllability Kernel. We say K is controllable if for any two points x
and y in K there exists a trajectory segment ξ starting in x that reaches an
arbitrarily small neighborhood of y without leaving K. More formally: A set K
is controllable if ∀x,y ∈ K, ∀δ > 0, ∃ξ : [0, t] → R2, t > 0 . (ξ(0) = x∧|ξ(t)−y| <
δ ∧ ∀t′ ∈ [0, t] . ξ(t′) ∈ K). The controllability kernel of K, denoted Cntr(K), is
the largest controllable subset of K.

For a given cyclic signature σ, we define CD(σ) as follows:

CD(σ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
〈L,U〉 if σ is EXIT-BOTH
〈L, u∗〉 if σ is EXIT-LEFT
〈l∗, U〉 if σ is EXIT-RIGHT
〈l∗, u∗〉 if σ is STAY
∅ if σ is DIE

(1)
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(a) (b)

Fig. 2. (a) Viability kernels; (b) Controllability kernels

For I ⊆ e1 let us define Succσ(I) as the set of all points y ∈ R2 for which
there exists a trajectory segment ξ starting in some point x ∈ I, that reaches
y, such that Sig(ξ) is a prefix of e1 . . . ek. The successor Succσ(I) is a polygonal
subset of the plane which can be computed similarly to Preσ(I). Define C(σ) =
(Succσ ∩ Preσ)(CD(σ)). We compute the controllability kernel of Kσ as follows:

Theorem 3. Cntr(Kσ) = C(σ). ��

Example 7. Fig. 2-(b) shows all the controllability kernels of the SPDI given in
Example 1. There are 4 cycles with controllability kernels — in the picture two
of the kernels are overlapping.

The following result which relates controllability and viability kernels, states
that the viability kernel of a given cycle is the local basin of attraction of the
corresponding controllability kernel.

Proposition 2. Any viable trajectory in Kσ converges to Cntr(Kσ). ��

Let Cntrl(Kσ) be the closed curve obtained by taking the leftmost trajectory
and Cntru(Kσ) be the closed curve obtained by taking the rightmost trajectory
which can remain inside the controllability kernel. In other words, Cntrl(Kσ)
and Cntru(Kσ) are the two polygons defining the controllability kernel.

A non-empty controllability kernel Cntr(Kσ) of a given cyclic signature σ
partitions the plane into three disjoint subsets: (1) the controllability kernel
itself, (2) the set of points limited by Cntrl(Kσ) (and not including Cntrl(Kσ))
and (3) the set of points limited by Cntru(Kσ) (and not including Cntru(Kσ)). We
define the inner of Cntr(Kσ) (denoted by Cntrin(Kσ)) to be the subset defined
by (2) above if the cycle is counter-clockwise or to be the subset defined by (3)
if it is clockwise. The outer of Cntr(Kσ) (denoted by Cntrout(Kσ)) is defined to
be the subset which is not the inner nor the controllability itself. Note that an
edge in the SPDI may intersect a controllability kernel. In such cases, we can
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generate a different SPDI, with the same dynamics but with the edge split into
parts, such that each part is completely inside, on or outside the kernel. Although
the signatures will obviously change, it is easy to prove that the behaviour of the
SPDI remains identical to the original. In the rest of the paper, we will assume
that all edges are either completely inside, on or completely outside the kernels.
We note that in practice splitting is not necessary since we can just consider
parts of edges.

Proposition 3. Given two edges e and e′, one lying completely inside a con-
trollability kernel, and the other outside or on the same controllability kernel,
such that ee′ is feasible, then there exists a point on the controllability kernel,
which is reachable from e and from which e′ is reachable. ��

Invariance Kernel. In general, an invariant set is a set of points such that for
any point in the set, every trajectory starting in such point remains in the set
forever and the invariance kernel is the largest of such sets. In particular, for
an SPDI, given a cyclic signature, an invariant set is a set of points which keep
rotating in the cycle forever and the invariance kernel is the largest of such sets.
More formally: A set K is said to be invariant if for any x ∈ K there exists at
least one trajectory starting in it and every trajectory starting in x is viable in
K. Given a set K, its largest invariant subset is called the invariance kernel of K
and is denoted by Inv(K). We need some preliminary definitions before showing
how to compute the kernel. The extended ∀-predecessor of an output edge e of
a region R is the set of points in R such that every trajectory segment starting
in such point reaches e without traversing any other edge. More formally, let
R be a region and e be an edge in out(R), then the e-extended ∀-predecessor
of I, P̃ree(I) is defined as: P̃ree(I) = {x | ∀ξ . (ξ(0) = x ⇒ ∃t ≥ 0 . (ξ(t) ∈
I ∧ Sig(ξ[0, t]) = e))}. It is easy to see that P̃reσ(I) is a polygonal subset of
the plane which can be calculated using a similar procedure as for Preσ(I). We
compute the invariance kernel of Kσ as follows:

Theorem 4. If σ is STAY then Inv(Kσ) = P̃reσ(P̃reσ(Jσ)), otherwise it is ∅.
��

Example 8. Fig. 3-(a) shows the unique invariance kernel of the SPDI given in
Example 1.

An interesting property of invariance kernels is that the limits are included in
the invariance kernel, i.e. [l∗, u∗] ⊆ Inv(Kσ). In other words:

Proposition 4. The set delimited by the polygons defined by the interval [l∗, u∗]
is an invariance set of STAY cycles. ��

The following result relates controllability and invariance kernels.

Proposition 5. If σ is STAY then Cntr(Kσ) ⊆ Inv(Kσ). ��
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(a) (b)

Fig. 3. (a) Invariance kernel; (b) All the kernels

Example 9. Fig. 3-(b) shows the viability, controllability and invariance kernels
of the SPDI given in Example 1. For any point in the viability kernel of a cycle
there exists a trajectory which will converge to its controllability kernel (propo-
sition 2). It is possible to see in the picture that Cntr(·) ⊂ Inv(.) (proposition 5).
All the above pictures has been obtained with the toolbox SPeeDI+ [PS].

In a similar way as for the controllability kernel, we define Invl(Kσ) and Invu(Kσ).

3 Semi-separatrix Curves

In this section we define the notion of separatrix curves, which are curves dis-
secting the plane into two mutually non-reachable subsets, and semi-separatrix
curves which can only be crossed in one direction. All the proofs of this and
forthcoming sections may be found in [PS06]. We start by defining these notions
independently of SPDIs.

Definition 1. Let K ⊆ R2. A separatrix in K is a closed curve γ partitioning
K into three sets KA, KB and γ itself, such that KA, KB and γ are pairwise
disjoint, K = KA ∪KB ∪ γ and the following conditions hold: (1) For any point
x0 ∈ KA and trajectory ξ, with ξ(0) = x0, there is no t such that ξ(t) ∈ KB;
and (2) For any point x0 ∈ KB and trajectory ξ, with ξ(0) = x0, there is no t
such that ξ(t) ∈ KA. If only one of the above conditions holds then we say that
the curve is a semi-separatrix. If only condition 1 holds, then we say that KA

is the inner of γ (written γin) and KB is the outer of γ (written γout). If only
condition 2 holds, KB is the inner and KA is the outer of γ.

Notice that, as in the case of the controllability kernel, an edge of the SPDI
may be split into two by a semi-separatrix — part inside, and part outside. As
before, we can split the edge into parts, such that each part is completely inside,
or completely outside the semi-separatrix.
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The above notions are extended to SPDIs straightforwardly. The set of all the
separatrices of an SPDI S is denoted by Sep(S), or simply Sep.

Now, let σ = e1 . . . ene1 be a simple cycle, ∠bi
ai

(1 ≤ i ≤ n) be the dynamics
of the regions for which ei is an entry edge and I = [l, u] an interval on edge e1.
Remember that Succe1e2(I) = F (I ∩S1)∩J1, where F (x) = [a1x+ b1, a2x+ b2].
Let l be the vector corresponding to the point on e1 with local coordinates l
and l′ be the vector corresponding to the point on e2 with local coordinates F (l)
(similarly, we define u and u′ for F (u)). We define first Succ

b1

e1
(I) = {l+α(l′−l) |

0 < α < 1} and Succ
a1

e1
(I) = {u + α(u′ − u) | 0 < α < 1}. We extend these

definitions in a straight way to any (cyclic) signature σ = e1 . . . ene1, denoting
them by Succ

b
σ(I) and Succ

a
σ(I), respectively; we can compute them similarly as

for Pre. Whenever applied to the fixpoint I∗ = [l∗, u∗], we denote Succ
b
σ(I∗) and

Succ
a
σ(I∗) by ξl

σ and ξu
σ respectively. Intuitively, ξl

σ (ξu
σ) denotes the piece-wise

affine closed curve defined by the leftmost (rightmost) fixpoint l∗ (u∗).
We show now how to identify semi-separatrices for simple cycles.

Theorem 5. Given an SPDI, let σ be a simple cycle, then the following hold:

1. If σ is EXIT-RIGHT then ξl
σ is a semi-separatrix curve (filtering trajectories

from “left” to “right”);
2. If σ is EXIT-LEFT then ξu

σ is a semi-separatrix curve (filtering trajectories
from “right” to “left”);

3. If σ is STAY, then the two polygons defining the invariance kernel (Invl(Kσ)
and Invu(Kσ)), are semi-separatrices. ��

In the case of STAY cycles, ξl
σ and ξu

σ are also semi-separatrices. Notice that
in the above result, computing a semi-separatrix depends only on one simple
cycle, and the corresponding algorithm is then reduced to find simple cycles in
the SPDI and checking whether it is STAY, EXIT-RIGHT or EXIT-LEFT. DIE
cycles induce an infinite number of semi-separatrices and are not treated in this
setting.

Example 10. Fig. 4 shows all the semi-separatrices of the SPDI given in Ex-
ample 1, obtained as shown in Theorem 5. The small arrows traversing the
semi-separatrices show the inner and outer of each semi-separatrix: a trajectory
may traverse the semi-separatrix following the direction of the arrow, but not
vice-versa.

The following two results relate feasible signatures and semi-separatrices.

Proposition 6. If, for some semi-separatrix γ, e ∈ γin and e′ ∈ γout, then the
signature ee′ is not feasible. ��

Proposition 7. If, for some semi-separatrix γ, and signature σ (of at least
length 2), then, if head(σ) ∈ γin and last(σ) ∈ γout, σ is not feasible. ��
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Fig. 4. Semi-separatrices

4 State-Space Reduction Using Semi-separatrices

Semi-separatrices partition the state space into two parts3 – once one crosses such
a border, all states outside the region can be ignored. We present a technique,
which, given an SPDI and a reachability question, enables us to discard portions
of the state space based on this information. The approach is based on identifying
inert states (edges in the SPDI) not playing a role in the reachability analysis.

Definition 2. Given an SPDI S, a semi-separatrix γ ∈ Sep, a source edge e0
and a destination edge e1, an edge e is said to be inert if it lies outside the
semi-separatrix while e0 lies inside, or it lies inside, while e1 lies outside:

inertγe0→e1 = {e : E | e0 ∈ γin ∧ e ∈ γout} ∪ {e : E | e1 ∈ γout ∧ e ∈ γin}.

We can prove that these inert edges can never appear in a feasible signature:

Lemma 2. Given an SPDI S, a semi-separatrix γ, a source edge e0 and a desti-
nation edge e1, and a feasible signature e0σe1 in S. No inert edge from inertγe0→e1
may appear in e0σe1. ��

Given an SPDI, we can reduce the state space by discarding inert edges.

Definition 3. Given an SPDI S, a semi-separatrix γ, a source edge e0 and a
destination edge e1, we define the reduced SPDI Sγ

e0→e1 to be the same as S but
without the inert edges.

Clearly, the resulting SPDI is not bigger than the original one. Finally, we prove
that checking reachability on the reduced SPDI is equivalent to checking reach-
ability on the original SPDI:

3 Here, we do not consider the semi-separatrix itself.
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Fig. 5. Reduction using semi-separatrices

Theorem 6. Given an SPDI S, a semi-separatrix γ, and edges e0 and e1, then,
e1 is reachable from e0 in S if and only if e1 is reachable from e0 in Sγ

e0→e1. ��

We have shown, that once semi-separatrices are identified, given a reachability
question, we can reduce the size of the SPDI to be verified by removing inert
edges of all the known semi-separatrices.

Example 11. The shaded areas of Fig. 5 (a) and (b) are examples of subsets of
the SPDI edges of the reachability graph, eliminated by the reduction presented
in this section applied to all semi-separatrices, when answering reachability ques-
tions (in this case to the question: Is I ′ reachable from I?).

This result enables us to verify SPDIs much more efficiently. It is important to
note that model-checking an SPDI requires identification of simple loops, which
means that the calculation of the semi-separatrices is not more expensive than
the initial pass of the model-checking algorithm. Furthermore, we can perform
this analysis only once for an SPDI and store the information to be used in any
reachability analysis on that SPDI. Reduction, however, can only be applied
once we know the source and destination states.

5 State-Space Reduction Using Kernels

5.1 State-Space Reduction Using Kernels

We have already shown that any invariant set is essentially a pair of semi-
separatices, and since the invariance kernel is an invariant set, we can use the
results from section 4 to abstract an SPDI using invariance kernels. We now turn
our attention to state space reduction using controllability kernels:

Definition 4. Given an SPDI S, a loop σ, a source edge e0 and a destination
edge e1, an edge e is said to be redundant if it lies on the opposite side of a
controllability kernel as both e0 and e1:



318 G. Pace and G. Schneider

redundantσe0→e1 = {e : E | {e0, e1} ⊆ Cntrin(σ) ∪ Cntr(σ) ∧ e ∈ Cntrout(σ)}
∪ {e : E | {e0, e1} ⊆ Cntrout(σ) ∪ Cntr(σ) ∧ e ∈ Cntrin(σ)}.

We can prove that we can do without these edges to check feasibility:

Lemma 3. Given an SPDI S, a loop σ, a source edge e0, a destination edge e1,
and a feasible signature e0σe1 then there exists a feasible signature e0σ′e1 such
that σ′ contains no redundant edge from redundantσe0→e1. ��

Given an SPDI, we can reduce the state space by discarding redundant edges.

Definition 5. Given an SPDI S, a loop σ, a source edge e0 and a destination
edge e1, we define the reduced SPDI Sσ

e0→e1 to be the same as S but without
redundant edges.

Clearly, the resulting SPDI is smaller than the original one. Finally, based on
proposition 3, we prove that reachability on the reduced SPDI is equivalent to
reachability on the original one:

Theorem 7. Given an SPDI S, a loop σ, a source edge e0 and a destination
edge e1, then, e1 is reachable from e0 in S if and only if e1 is reachable from e0
in Sσ

e0→e1. ��

Given a loop which has a controllability kernel, we can thus reduce the state space
to explore. In practice, we apply this state space reduction for each controllability
kernel in the SPDI. Once a loop in the SPDI is identified, it is straightforward
to apply the reduction algorithm.

5.2 Immediate Answers to Reachability Questions

By definition of the controllability kernel, any two points inside it are mutually
reachable. This can be used to answer reachability questions in which both the
source and destination edge lie (possibly partially) within the same controllabil-
ity kernel. Using proposition 2, we know that any point in the viability kernel
of a loop can eventually reach the controllability kernel of the same loop, which
allows us to relax the condition about the source edge to just check whether
it (partially) lies within the viability kernel. Finally, we note that the union of
non-disjoint controllability sets is itself a controllability set which allows us to
extend the result to work for a collection of loops whose controllability kernels
form a strongly connected set.

Definition 6. We extend viability and controllability kernels for a set of loops
Σ by taking the union of the kernels of the individual loops, with Viab(KΣ) being
the union of all viability kernels of loops in Σ, and similarly Cntr(KΣ).

Definition 7. Two loops σ and σ′ are said to be compatible (σ � σ′) if their
controllability kernels overlap: Cntr(Kσ) ∩ Cntr(Kσ′) 
= ∅.

We extend the notion of compatibility to a set of loops Σ to mean that all
loops in the set are transitively compatible: ∀σ, σ′ ∈ Σ · σ �∗ σ′.
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Fig. 6. Answering reachability using kernels

Based on proposition 2, we can prove the following:

Theorem 8. Given a source edge esrc and a destination edge edst, if for some
compatible set of loops Σ, esrc ∩ Viab(KΣ) 
= ∅ and edst ∩ Cntr(KΣ) 
= ∅, then
edst is reachable from esrc. ��

Example 12. Fig. 6-(a) shows a viability and a controllability kernel of a cycle
and two intervals I and I ′. Whether I ′ is reachable from I cannot be answered
immediately in this case, but Fig. 6-(b) shows the overlapping of the viability
and controllability kernels depicted in Fig. 6-(a) with the kernels of an inner
cycle. I ′ thus lies in a compatible controllability kernel, and we can immediately
conclude (by theorem 8) that I ′ is reachable from I.

In practice, we propose to use these theorems to enable answering certain reach-
ability questions without having to explore the complete state space. It can
also be used to reduce reachability questions to (possibly) simpler ones by try-
ing to reach a viability kernel rather than a particular edge. As in the case of
semi-separatrices, a preliminary analysis of an SPDI’s kernels be used in all sub-
sequent reachability queries. SPeeDI [APSY02] starts by calculating and caching
all loops in the given SPDI, and can thus easily identify maximal compatible sets
of loops. Combining this technique with the semi-separatrix reduction technique
we envisage substantial gains.

6 Concluding Remarks

We have introduced the concept of semi-separatrices for polygonal hybrid sys-
tems, and presented non-iterative algorithms to calculate them.

Using semi-separatrices and kernels, we presented techniques to improve reach-
ability analysis on SPDIs. In all cases, the techniques require the identification
and analysis of loops in the SPDI. When multiple reachability questions are to
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be asked about the same SPDI, this information can be gathered once to avoid
repeated analysis. We note that most of this information is still required in reach-
ability analysis, and thus no extra work is required to perform the optimization
presented in this paper. The results presented all depend on checking whether
an edge lies within a given polygon which can be efficiently checked using stan-
dard geometrical techniques frequently used in computer graphics such as using
the odd-parity test [FvDFH96]. Sometimes, using kernel information, we can
answer reachability questions without any further analysis. In other cases, we
use semi-separatrices and controllability kernels to reduce the size of the SPDI.

Our work is obviously restricted to planar systems, which enables us to com-
pute these kernels exactly. In higher dimensions and hybrid systems with higher
complexity, calculation of kernels is not computable. Other work is thus based
on calculations of approximations of these kernels (e.g., [ALQ+01b, ALQ+01a,
SP02]). We are not aware of any work using kernels and semi-separatrices to
reduce the state-space of the reachability graph as presented in this paper.

We have built a toolset SPeeDI [APSY02] for the analysis of SPDIs. We have
recently extended this toolset to SPeeDI+ [PS] which calculates kernels of SPDIs.
We are currently exploring the implementation of the optimizations presented in
this paper to improve the efficiency of SPeeDI+. We are also investigating other
applications of these kernels in the model-checking of SPDIs.
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Abstract. We compare the expressiveness of variants of Metric Tem-
poral Logic (MTL) obtained by adding the past operators ‘S’ and ‘SI ’.
We consider these variants under the “pointwise” and “continuous” in-
terpretations over both finite and infinite models. Among other results,
we show that for each of these variants the continuous version is strictly
more expressive than the pointwise version. We also prove a counter-
freeness result for MTL which helps to carry over some results from [3]
for the case of infinite models to the case of finite models.

1 Introduction

The timed temporal logic Metric Temporal Logic (MTL) [6] has received much
attention in the literature on the verification of real-time systems. It is inter-
preted over (finite or infinite) timed behaviours and extends the until operator
of classical temporal logic with an interval which specifies the time distance
within which the formula must be satisfied. Over dense time the logic has tradi-
tionally been interpreted in either of the two ways which have come to be known
as the “pointwise” and the “continuous” semantics. In the pointwise version tem-
poral assertions are interpreted only at time points where an “action” or “event”
happens in the observed timed behaviour of a system, whereas in the continuous
version one is allowed to assert formulas at arbitrary time points between events
as well. For instance consider a timed word comprising two events: an a which
happens at time 1 and a b which occurs at time 3. Then the MTL formula �[1,1]b
(“a b occurs at a distance of 1 time unit”) is not true at any point in this model
in the pointwise semantics, since there is no action point from which the action
b happens at a distance of 1 time unit. However in the continuous semantics the
formula is true at the time instant 2 in the model since at this point the event
b occurs at a time distance of 1.

There are many results in the literature regarding the decidability of these
logics and the reader is referred to [2,1,8,9] for more details. In this paper we
are more interested in the expressiveness of the variants of MTL obtained by
adding the past operators S (“since”) and SI (interval constrained “since”),
under the pointwise and continuous interpretations, for both finite and infinite
models. We will refer to these logics as MTLS and MTLSI respectively, and add
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the superscripts pw and c to denote the pointwise and continuous versions of
the logics respectively.

It is easy to see that for each of these variants the continuous version is at
least as expressive as the pointwise version, as one can characterize the action
points in the continuous semantics, and hence mimic the pointwise interpreta-
tion. There have also been some strict containment results. In [3], it is shown
that the language L2b , which consists of timed words in which there are two oc-
currences of b’s in the interval (0, 1), is not expressible by MTL in the pointwise
semantics but is expressible by MTL in the continuous semantics, and also by
MTLS in the pointwise semantics. It is also shown that the language Llast a ,
which consists of timed words in which there is an action at time 1 which is
preceded by an a, is not expressible by MTL in the continuous semantics but is
expressible by MTLS in the continuous semantics. However these results hold for
the case of infinite words and do not extend readily to the case of finite words.
The proofs exploit the fact that the models are infinite by using the property
that the futures of two distinct points in the constructed models are the same
(which is never true for any finite model).

In [4], it is shown that MTL in the continuous semantics is strictly more
expressive than MTL in the pointwise semantics for the case of finite words.
This is done by showing that the language Lni (for “no insertions”) over the
alphabet {a, b}, consisting of timed words in which for every two consecutive
a’s the time period between them translated by one time unit does not contain
any events, is expressible in the continuous semantics, but its expressibility in
the pointwise semantics would render the logic undecidable, contradicting the
decidability result in [8].

The diagram below shows the known relative expressiveness results. The solid
arrows denote “strict containment”, the dashed arrows represent “containment”,
the dashed line says that “relative expressiveness in not known”, and the absence
of an arrow, transitive arrow, or line, denotes “incomparable”.

Infinite wordsFinite words

MTLc

MTLc
S

MTLpw
SI

MTLpw
S

MTLpw

MTLc
SI

MTLpw
S

MTLpw
SI

MTLpw

MTLc

MTLc
S

MTLc
SI

In this paper we first show a way of carrying over the results of [3] to the case
of finite words by proving a kind of “counter-freeness” property of MTL. We
show that for a given MTL formula ϕ, there cannot exist finite timed words µ,
τ and ν, such that for infinitely many i’s, µτ iν is a model of ϕ, and for infinitely
many i’s, µτ iν is not a model of ϕ. This is true for the pointwise semantics and



324 P. Prabhakar and D. D’Souza

we show a similar result for the continuous semantics which takes into account
the “granularity” of ϕ. These results help us in extending the results of [3] to
finite models.

Next we show that each of the continuous versions of the logic is strictly
more expressive than its pointwise counterpart. We do so by showing that the
language L2ins , which consists of timed words which contain two consecutive
a’s such that the time period between them when translated by one time unit
contains two a’s, is not expressible by MTLSI (and hence by MTLS and MTL)
in the pointwise semantics, but is expressible by MTL (and hence by MTLS and
MTLSI ) in the continuous semantics.

Finally we show that the language Lem (for “exact match”), which consists
of timed words such that for every a in the interval (0, 1) there is an a in the
interval (1, 2) at distance 1 from it, and vice versa, is expressible by MTLSI

in the pointwise semantics but not by MTLS in the pointwise semantics. This
result holds for both finite and infinite words.

The picture below summarizes the relative expressiveness of the various ver-
sion of MTL after the work in this paper.

Finite words Infinite words

MTLc

MTLc
S

MTLc
SI

MTLpw
SI

MTLpw
S

MTLpw

MTLc

MTLc
S

MTLc
SI

MTLpw
SI

MTLpw
S

MTLpw

We note that it is still open whether MTLc
SI

is strictly more expressive than
MTLc

S and whether MTLpw
SI

is contained in or incomparable with MTLc
S .

At some places in the sequel, we have only sketched the proofs due to lack of
space. However, the details can be found in [10].

2 Preliminaries

We begin with some preliminary definitions. As usual, A∗ and Aω will denote the
set of finite words and the set of infinite words over an alphabet A, respectively.
For a finite word w = a1 · · · an we use |w| to denote the length of w (in this case
n). Given finite words u and v, we denote the concatenation of u followed by v
as u ·v, or just uv. We use ui to denote the concatenation of u with itself i times,
and uω to denote the infinite word obtained by repeated concatenation of u. We
extend these notations to subsets of A∗ in the standard way.

The set of non-negative and positive real numbers will be denoted by R≥0
and R>0 respectively, the set of positive rational numbers by Q>0, and the set
of non-negative integers by N.
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We now define finite and infinite timed words which are sequences of action
and time pairs. An infinite timed word α over an alphabet Σ is an element of
(Σ × R>0)ω of the form (a1, t1)(a2, t2) · · · satisfying:

– (Strict-monotonicity) t1 < t2 < · · · .
– (Progressiveness) For every t ∈ R≥0, there exists i ∈ N such that ti > t.

Wherever convenient we will also denote the timed word α above as a sequence
of delay and action pairs (d1, a1)(d2, a2) · · · , where for each i, di = ti − ti−1.
Here and elsewhere we use the convention that t0 denotes the time point 0.

A finite timed word over Σ is an element of (Σ × R>0)∗ which satisfies the
strict monotonicity condition above. Given σ = (a1, t1)(a2, t2) · · · (an, tn), we use
time(σ) to denote the time of the last action, namely tn. The delay representation
for the above finite timed word σ is (d1, a1) · · · (dn, an) where for each i, di =
ti − ti−1. Given finite timed words σ and ρ, the delay representation for the
concatenation of σ followed by ρ is the concatenation of the delay representations
of σ and ρ. We will use TΣ∗ for the set of all finite timed words over Σ, and
TΣω for the set of all infinite timed words over Σ.

We now give the syntax and semantics of the two versions of the logic MTLSI .
Let us fix a finite alphabet Σ for the rest of this section. The formulas of MTLSI

over the alphabet Σ are built up from symbols in Σ by boolean connectives
and time-constrained versions of the temporal logic operators U (“until”) and S
(“since”). The formulas of MTLSI over an alphabet Σ are inductively defined
as follows:

ϕ := a | ¬ϕ | (ϕ ∨ ϕ) | (ϕUIϕ) | (ϕSIϕ),

where a ∈ Σ and I is an interval with end-points which are rational or ∞.
The models for both the pointwise and continuous interpretations will be

timed words over Σ. With the aim of having a common syntax for the pointwise
and continuous versions, we use “until” and “since” operators which are “strict”
in their first argument.

We first define the pointwise semantics for MTLSI for finite words. Given
an MTLSI formula ϕ, a finite timed word σ = (a1, t1)(a2, t2) · · · (an, tn) and a
position i ∈ {0, . . . , n} denoting the leftmost time point 0 or one of the action
points t1, t2, · · · , tn, the satisfaction relation σ, i |=pw ϕ (read “σ at position i
satisfies ϕ in the pointwise semantics”) is inductively defined as:

σ, i |=pw a iff ai = a.
σ, i |=pw ¬ϕ iff σ, i 
|=pw ϕ.
σ, i |=pw ϕ1 ∨ ϕ2 iff σ, i |=pw ϕ1 or σ, i |=pw ϕ2.
σ, i |=pw ϕ1UIϕ2 iff ∃j : i ≤ j ≤ |σ| such that tj − ti ∈ I, σ, j |=pw ϕ2,

and ∀k such that i < k < j, σ, k |=pw ϕ1.
σ, i |=pw ϕ1SIϕ2 iff ∃j : 0 ≤ j ≤ i such that ti − tj ∈ I, σ, j |=pw ϕ2,

and ∀k such that j < k < i, σ, k |=pw ϕ1.

The timed language defined by an MTLSI formula ϕ in the pointwise seman-
tics over finite timed words is given by Lpw (ϕ) = { σ ∈ TΣ∗ |σ, 0 |=pw ϕ}. We
will use MTLpw

SI
to denote the pointwise interpretation of this logic.
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We now turn to the continuous semantics. Given an MTLSI formula ϕ, a
finite timed word σ = (a1, t1)(a2, t2) · · · (an, tn) and a time t ∈ R≥0, such that
0 ≤ t ≤ time(σ), the satisfaction relation σ, t |=c ϕ (read “σ at time t satisfies ϕ
in the continuous semantics”) is inductively defined as follows:

σ, t |=c a iff ∃i such that ti = t andai = a.
σ, t |=c ¬ϕ iff σ, t 
|=c ϕ.
σ, t |=c ϕ1 ∨ ϕ2 iff σ, t |=c ϕ1 orσ, t |=c ϕ2.
σ, t |=c ϕ1UIϕ2 iff ∃t′ such that t ≤ t′ ≤ time(σ), t′ − t ∈ I, σ, t′ |=c ϕ2

and ∀t′′ such that t < t′′ < t′, σ, t′′ |=c ϕ1.
σ, t |=c ϕ1SIϕ2 iff ∃t′ such that 0 ≤ t′ ≤ t, t− t′ ∈ I, σ, t′ |=c ϕ2

and ∀t′′ such that t′ < t′′ < t, σ, t′′ |=c ϕ1.

The timed language defined by an MTLSI formula ϕ in the continuous seman-
tics over finite timed words is defined as Lc(ϕ) = { σ ∈ TΣ∗ |σ, 0 |=c ϕ}. We
will use MTLc

SI
to denote this continuous interpretation of the MTLSI formulas.

We can similarly define the semantics for infinite timed words. The only
change would be to replace time(σ) and |σ| by ∞.

We define the following derived operators which we will make use of in the
sequel. Syntactically, �Iϕ is *UIϕ, �Iϕ is ¬�I¬ϕ, ϕ1Uϕ2 is ϕ1U(0,∞)ϕ2, �ϕ
is �(0,∞)ϕ, �ϕ is ¬�¬ϕ, �-Iϕ is *SIϕ, �-Iϕ is ¬�-I¬ϕ, ϕ1Sϕ2 is ϕ1S(0,∞)ϕ2, �-ϕ
is �-(0,∞)ϕ and �-ϕ is ¬�-¬ϕ.

The fragment of MTLSI without the SI operator will be called MTL. The
fragment of MTLSI obtained by replacing SI with the derived operator S will
be called MTLS . We denote their pointwise and continuous interpretations by
MTLpw and MTLc, and MTLpw

S and MTLc
S respectively. The continuous ver-

sions of the above logics can be seen to be at least as expressive as their pointwise
versions. This is because one can characterize the occurrence of an action point
in a timed word in the continuous semantics using the formula ϕact =

∨
a∈Σ a.

We can then force assertions to be interpreted only at these action points.

3 Ultimate Satisfiability of MTLpw

In this section we show that an MTL formula in the pointwise semantics is either
ultimately satisfied or ultimately not satisfied over a periodic sequence of timed
words, leading to a “counter-freeness” property of MTL.

We first define the notion of when a formula is ultimately satisfied or ultimately
not satisfied over a sequence of finite timed words. Let 〈σi〉 be a sequence of
finite timed words σ0, σ1, · · · . Given a j ∈ N and ϕ ∈ MTL, we say that 〈σi〉 at
j ultimately satisfies ϕ, denoted 〈σi〉, j |=us ϕ, iff ∃k ∈ N : ∀k′ ≥ k, σk′ , j |=pw ϕ.
We say that 〈σi〉 at j ultimately does not satisfy ϕ, denoted 〈σi〉, j |=un ϕ, iff
∃k ∈ N : ∀k′ ≥ k, σk′ , j |=pw ¬ϕ. We refer to the least such k in either case above
as the stability point of ϕ at j in 〈σi〉.

We now define a periodic sequence of timed words. A sequence 〈σi〉 of finite
timed words is said to be periodic if there exist finite timed words µ, τ and ν,
where |τ | > 0, such that σi = µτ iν for all i ∈ N.
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The following theorem says that a periodic sequence of timed words at a
position j either ultimately satisfies a given MTL formula or ultimately does
not satisfy it. This is not true in general for a non-periodic sequence. For
example, consider the sequence 〈σi〉 given by σ0 = (1, a), σ1 = (1, a)(1, b),
σ2 = (1, a)(1, b)(1, a), etc. Then the formula �(a ∧ ¬�*), which says that the
last action of the timed word is an a, is neither ultimately satisfied nor ultimately
not satisfied in 〈σi〉 at 0.

Theorem 1. Let 〈σi〉 be a periodic sequence of finite timed words. Let ϕ be an
MTL formula and let j ∈ N. Then either 〈σi〉, j |=us ϕ or 〈σi〉, j |=un ϕ.

Proof. Since 〈σi〉 is periodic, there exist timed words µ = (d1, a1) · · · (dl, al),
τ = (e1, b1) · · · (em, bm) and ν = (f1, c1) · · · (fn, cn), such that σi = µτ iν. Let
µτω = (a′1, t

′
1)(a

′
2, t

′
2) · · · . We use induction on the structure of ϕ.

Case ϕ = a: If a′j = a, then clearly 〈σi〉, j |=us ϕ, otherwise 〈σi〉, j |=un ϕ.
Case ϕ = ¬ψ: If 〈σi〉, j |=us ψ, then 〈σi〉, j |=un ϕ. Otherwise, by induction

hypothesis, 〈σi〉, j |=un ψ and hence 〈σi〉, j |=us ϕ.
Case ϕ = η∨ψ: Suppose 〈σi〉, j |=us η or 〈σi〉, j |=us ψ. Let k be the maximum

of the stability points of η and ψ at j in 〈σi〉. For all k′ ≥ k, σk′ , j |=pw η or for
all k′ ≥ k, σk′ , j |=pw ψ, and hence for all k′ ≥ k, σk′ , j |=pw η ∨ ψ. Therefore,
〈σi〉, j |=us η∨ψ. Otherwise, it is not the case that 〈σi〉, j |=us η and it is not the
case that 〈σi〉, j |=us ψ. By induction hypothesis, 〈σi〉, j |=un η and 〈σi〉, j |=un

ψ. So, 〈σi〉, j |=us ¬η and 〈σi〉, j |=us ¬ψ. Let k be the maximum of the stability
points of ¬η and ¬ψ above, at j. Then for all k′ ≥ k, σk′ , j |=pw ¬η and for all
k′ ≥ k, σk′ , j |=pw ¬ψ, and hence for all k′ ≥ k, σk′ , j |=pw ¬η ∧ ¬ψ. Therefore,
〈σi〉, j |=us ¬η ∧ ¬ψ and hence 〈σi〉, j |=us ¬(η ∨ ψ). So, 〈σi〉, j |=un η ∨ ψ.

Case ϕ = ηUIψ: We consider two cases, one in which there exists j′ ≥ j such
that tj′ − tj ∈ I and 〈σi〉, j′ |=us ψ and the other in which the above condition
does not hold.

Suppose there exists j′ ≥ j such that tj′ − tj ∈ I and 〈σi〉, j′ |=us ψ. Let js
be the smallest such j′.

Now suppose for all k such that j < k < js, 〈σi〉, k |=us η. Let nk be the
stability point of η at k for each k above and njs that of ψ at js. Let n′ be
the maximum of all nk’s and njs . So, for all n′′ ≥ n′, σn′′ , j |=pw ηUIψ. Hence
〈σi〉, j |=us ϕ.

Otherwise there exists k such that j < k < js and 〈σi〉, k |=un η. Let mk

be the stability point of η at k. For each j < k′ < js such that tk′ − tj ∈ I,
〈σi〉, k′ |=un ψ (because we chose js to be the smallest). Let nk′ be the stability
point of each k′ above. Take n′ to be the maximum of mk and nk′ ’s. For all
n′′ ≥ n′, σn′′ , j 
|=pw ηUIψ. Hence 〈σi〉, j |=un ϕ.

Now turning to the second case, suppose that for all j′ ≥ j such that tj′ −
tj ∈ I, it is not the case that 〈σi〉, j′ |=us ψ. Then by induction hypothesis,
〈σi〉, j′ |=un ψ.

Suppose I is bounded. If there is no j′ such that tj′ − tj ∈ I, then it is easy
to see that 〈σi〉, j |=un ηUIψ. Otherwise there exist finite number of j′’s which
satisfy tj′ − tj ∈ I and 〈σi〉, j′ |=un ψ since I is bounded. Let nj′ be the stability
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point of ψ at each of these nj′ ’s. Take n′ to be the maximum of all nj′ ’s. Then
for all n′′ ≥ n′, σn′′ , j 
|=pw ηUIψ. Hence 〈σi〉, j |=un ϕ.

Suppose I is unbounded. Let S = {s1, s2, · · · , sm} be the suffixes of τ in the
order of decreasing length. Thus si = (ei, bi) · · · (em, bm). Let W = {w1, w2, · · · ,
wn} be the suffixes of ν in the order of decreasing length. Let X = W ∪(S ·τ∗ ·ν).
(We note that we can arrange the timed words in X in the increasing order of
length such that the difference in lengths of the adjacent words in this sequence
is one and that the succeeding string in the sequence is a prefix of the present.
The sequence is wn, wn−1, · · · , w1, snν, sn−1ν, · · · , s1ν,
snτν, · · · , s1τν, snτ

2ν, · · · , s1τ
2ν, and so on.)

We now claim that ψ is satisfied at 1 for only finitely many timed words from
X . Otherwise ψ is satisfied at 1 for infinitely many timed words from W ∪S ·τ∗ ·ν
and hence for infinitely many from si · τ∗ · ν for some i. By induction hypothesis
〈σi〉, l + i |=us ψ (l is the length of µ) and therefore 〈σi〉, l + i + cm |=us ψ, m
is the length of τ and c ∈ N. Since I is unbounded there exists j′ ≥ j such that
tj′ − tj ∈ I and 〈σi〉, j′ |=us ψ. This is a contradiction.

Every j′′ > j such that tj′′ − ti ∈ I and j′′ < |µ|, 〈σi〉, j′′ |=un ψ (by the
assumption of the present case). Let nj′′ be the stability point of the j′′’s (which
are finite in number).

Suppose there is no timed word in X which satisfies ψ at 1. Let n′ be the
maximum of nj′′ ’s. For all n′′ ≥ n′, σn′′ , j 
|=pw ηUIψ. Hence 〈σi〉, j |=un ηUIψ.

Suppose there exists a timed word in X which satisfies ψ at 1. Since we proved
that they are finite in number, let l′ be the length of the largest such timed word.

Suppose that there exists a timed word in X whose length is greater than l′

and which does not satisfy η at 1. Let the length of one such timed word be l′′.
Let n′ be a number which is greater than or equal to the maximum of nj′′ ’s and
which satisfies |σn′ | > max(j, |µ|) + l′′. Now for all n′′ ≥ n′, σn′′ , j 
|=pw ηUIψ
since the smallest j′ ≥ j where ψ is satisfied is |σn′′ | − l′ but before that there
is the point |σn′′ | − l′′ where η is not satisfied. Hence 〈σi〉, j |=un ϕ.

Suppose that all timed words in X whose length is greater than l′ satisfy η
at 1. Now if there exists j < k ≤ |µ| such that 〈σi〉, k |=un η, then let n′ be such
that it is larger than the nj′′ ’s and the stability point of η at k and |σn′ | > |µ|+l′.
For all n′′ ≥ n′, σn′′ , j 
|=pw ηUIψ. Hence, 〈σi〉, j |=un ϕ. Otherwise for every
j < k ≤ |µ|, 〈σi〉, k |=us η. Take n′ to be greater than the maximum of the
stability point of η at k’s and such that |σn′ | > j +nI + l′, where nI is such that
tj+nI − tj ∈ I. For all n′′ ≥ n′, σn′′ , j |=pw ηUIψ and hence 〈σi〉, j |=us ϕ. ��

It is well known that linear-time temporal logic (LTL) and counter-free languages
[5,7] are expressively equivalent. We recall that a counter in a deterministic finite
automaton is a finite sequence of states q0q1 · · · qn such that n > 1, q0 = qn and
there exists a non-empty finite word v such that every qi on reading v reaches
qi+1 for i = 0, · · · , n − 1. A counter-free language is a regular language whose
minimal DFA does not contain any counters. It is not difficult to see that the
following is an equivalent characterization of counter-free languages. A regular
language L is a counter-free language iff there do not exist finite words u, v and
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w, where |v| > 0, such that uviw ∈ L for infinitely many i’s and uviw 
∈ L for
infinitely many i’s.

We show a similar necessary property for timed languages defined by MTLpw

formulas. Let us call a timed language L counter-free if there do not exist finite
timed words µ, τ and ν, where |τ | > 0, such that µτ iν ∈ L for infinitely many
i’s and µτ iν 
∈ L for infinitely many i’s. The following theorem follows from the
ultimate satisfiability result for MTLpw .

Theorem 2. Every timed language of finite words definable in MTLpw is
counter-free.

Proof. Suppose that a timed language L is definable in MTLpw by a formula ϕ,
but is not counter-free. Then there exist finite timed words µ, τ and ν, where
|τ | > 0, such that µτ iν ∈ L for infinitely many i’s and µτ iν 
∈ L for infinitely
many i’s. The periodic sequence 〈σi〉 where σi = µτ iν, is neither ultimately
satisfied by ϕ nor ultimately not satisfied by it which is a contradiction to
Theorem 1. ��

The above theorem, for example, implies that the language Leven b , which con-
sists of timed words in which the number of b’s is even, is not expressible in
MTLpw . Taking µ = ν = ε and τ = (1, b) implies that Leven b is not counter-
free. By Theorem 2, Leven b is not definable in MTLpw .

4 Ultimate Satisfiability of MTLc

In this section we show an ultimate satisfiability result for the continuous se-
mantics analogous to the one in the previous section for pointwise semantics. We
show that an MTLc formula with “granularity” p is either ultimately satisfied
or ultimately not satisfied by a “p-periodic” sequence of finite timed words.

We say that an MTL formula ϕ has granularity p, where p ∈ Q>0, if all the
end-points of the intervals in it are either integral multiples of p, or ∞. We denote
by MTL(p) the set of MTL formulas with granularity p. A periodic sequence of
timed words 〈σi〉 has period p if there exist µ, τ and ν such that time(τ) = p and
for each i, σi = µτ iν. Note that every periodic sequence has a unique period.

We now proceed to define the notion of ultimate satisfiability for the con-
tinuous semantics. Given a sequence 〈σi〉 of finite timed words, t ∈ R≥0 and
ϕ ∈ MTL, we say that 〈σi〉 at t ultimately satisfies ϕ in the continuous seman-
tics, denoted 〈σi〉, t |=c

us ϕ, iff ∃j : ∀k ≥ j, σk, t |=c ϕ. And we say that 〈σi〉 at t
ultimately does not satisfy ϕ in the continuous semantics, denoted 〈σi〉, t |=c

un ϕ,
iff ∃j : ∀k ≥ j, σk, t |=c ¬ϕ.

In the proof of the ultimate satisfiability for the pointwise case in the previous
section, we extensively use the argument that if a formula is ultimately satisfied
at all points in a bounded interval then there is a point in the periodic sequence
after which all timed words in the sequence satisfy the formula at all points in
the interval. However the argument fails in the continuous semantics since there
are infinitely many time points even in a bounded interval. Towards tackling
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this problem, we define a canonical set of time points in a timed word such that
the satisfiability of a formula is invariant between two consecutive points in the
set. So given a finite timed word σ = (a1, t1) · · · (an, tn) and a p ∈ Q>0, we
define the set of canonical points in σ with respect to p to be the set containing
0 and {t | ∃i, c ∈ N : t = ti − cp}. Since this is finite, we can arrange the time
points in it in increasing order to get the sequence r0r1 · · · rm which we call
the canonical sequence of σ with respect to p. We mention below some of the
immediate properties of a canonical sequence which we will use later.

1. For each i ∈ {0, · · · ,m − 1} σ does not contain any action in the interval
(ri, ri+1).

2. Let t, t′ ∈ [0, time(σ)] with t < t′, such that (t, t′) does not contain any ri.
Then for every c ∈ N, the interval (t + cp, t′ + cp) also does not contain any
ri.

Lemma 1. Let σ be a finite timed word and p ∈ Q>0. Let r0r1 · · · rm be the
canonical sequence of σ with respect to p. Let ϕ ∈ MTL(p). Then for each i ∈
{0, · · · ,m− 1} and for all t, t′ ∈ (ri, ri+1), σ, t |=c ϕ iff σ, t′ |=c ϕ. ��

With each finite word σ we associate a sequence of delays which specifies the
delays between the consecutive canonical points in the canonical sequence. So
given a canonical sequence r0r1 · · · rm of σ with respect to p, we call the sequence
of delays D = e1e2 · · · em an invariant delay sequence of σ with respect to p if
each ei = ri − ri−1. Given any subword of σ, (di, ai) · · · (dj , aj), we can associate
a delay sequence with it in a natural way which is given by ei′ · · · ej′ , where i′

and j′ are such that
∑i−1

k=1 dk =
∑i′−1

k=1 ek and
∑j

k=i dk =
∑j′

k=i′ ek.

Proposition 1. Let σ = µτν be a finite timed word such that time(τ) = p and
p ∈ Q>0. Let D = D1D2D3 be the invariant delay sequence of σ with respect to
p where D1, D2 and D3 are the delay sequences corresponding to the subwords
µ, τ and ν. Then for any j, the invariant delay sequence of µτ jν with respect to
p is D1(D2)jD3. ��

To mimic the proof of the pointwise case we define intervals in a timed word in
which the satisfaction of formulas is invariant. Moreover we require this breaking
up of the timed word into intervals to be consistent in some sense over the timed
words in a periodic sequence. Hence we introduce the following definitions.

Given a canonical sequence r0r1 · · · rm of σ with respect to p, we define the
invariant interval sequence of σ with respect to p to be J = J0J1 · · · J2m where
J2i = [ri, ri] and J2i+1 = (ri, ri+1). It follows from Lemma 1 that the satisfiability
of an MTL(p) formula is invariant in σ over each interval Ji.

Given a delay sequence D = d1 · · ·dm, we can associate an interval sequence
J = J0J1 · · · J2m with it such that J0 = [0, 0], J2i = [t, t], where t =

∑i
j=1 dj and

J2i+1 = (t1, t2), where t1 =
∑i

j=1 dj and t2 =
∑i+1

j=1 dj . Note that the interval
sequence associated with an invariant delay sequence is the invariant interval
sequence.
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Lemma 2. Let σ = µτν be a finite timed word such that time(τ) = p, where
p ∈ Q>0. Let D = D1D2D3 be the invariant delay sequence of σ with respect to
p, where D1, D2 and D3 are the delay sequences corresponding to the subwords
µ, τ and ν. Let 〈σi〉 be the periodic sequence of finite timed words given by
σi = µτ iν. Let J = J0J1 · · · be the interval sequence corresponding to the delay
sequence D1(D2)ω. Then for all t ∈ Jj and ϕ ∈ MTL(p),

1. if 〈σi〉, t |=c
us ϕ then there exists nj such that for all n ≥ nj and t′ ∈ Jj,

σn, t
′ |=c ϕ and

2. if 〈σi〉, t |=c
un ϕ then there exists nj such that for all n ≥ nj and t′ ∈ Jj,

σn, t
′ 
|=c ϕ. ��

Proposition 2. Let 〈σi〉 be the periodic sequence given by σi = µτ iν and time(τ)
= p, where p ∈ Q>0. Let t ∈ R≥0 such that t > time(µ). Let c ∈ N and let
ϕ ∈ MTL. Then 〈σi〉, t |=c

us ϕ iff 〈σi〉, t + cp |=c
us ϕ. ��

Theorem 3. Let 〈σi〉 be a periodic sequence with period p, where p ∈ Q>0.
Let ϕ be an MTL(p) formula and let t ∈ R≥0. Then either 〈σi〉, t |=c

us ϕ or
〈σi〉, t |=c

un ϕ.

Proof. The proof follows that for the pointwise case. Since the ultimate satis-
fiability of a formula is invariant within the intervals of an invariant interval
sequence, and there exists an nj for each interval Jj as given by Lemma 2, we
consider each of these intervals as one entity (comparable to a point in the point-
wise case). The details of the proof can be found in [10]. ��

The above theorem gives us a counter-freeness result for the continuous case.
Given a p ∈ R>0, we call a timed language L, p-counter-free, if there do not
exist timed words µ, τ and ν such that time(τ) = p and there exist infinitely
many i’s for which µτ iν ∈ L and infinitely many of them for which µτ iν 
∈ L.
Below is the result for the continuous semantics.

Theorem 4. Let p ∈ Q>0. Then every timed language of finite words definable
by an MTL(p) formula in the continuous semantics is p-counter-free. ��

5 Strict Containment of MTLpw in MTLc

In this section we show the strict containment of MTLpw in MTLc for finite
words. We show that the language L2b described below is not expressible by any
MTLpw formula. We will first sketch a proof of the same for infinite words. It is
a simplified version of the proof in [3] and the details can be found in [10].

L2b is the timed language over the alphabet Σ = {b} which consists of timed
words in which there are at least two b’s in the interval (0, 1). Formally, L2b =
{(b, t1)(b, t2) · · · ∈ TΣω | ∃ti, tj : 0 < ti < tj < 1}.

Let p ∈ Q>0, where p = 1/k and k ∈ N. We give two models, αp and βp such
that αp ∈ L2b but βp 
∈ L2b , and no MTL(p) formula ϕ can distinguish between
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the two models in the pointwise semantics in the sense that αp, 0 |=pw ϕ iff
βp, 0 |=pw ϕ. αp is given by the timed word (1−3p/4, b)(p/2, b)(p/2, b)(p/2, b) · · ·
and βp is given by (1 − p/4, b)(p/2, b)(p/2, b) · · · . They are depicted below.

11 − p 1 + p 1 + 2p 1 + 3p

αp

11 − p 1 + p 1 + 2p 1 + 3p

βp

Proposition 3. Let i, j ∈ N and i, j > 0. Let ϕ ∈ MTL. Then αp, i |=pw ϕ
iff αp, j |=pw ϕ. Similarly, βp, i |=pw ϕ iff βp, j |=pw ϕ and αp, i |=pw ϕ iff
βp, j |=pw ϕ.

Proof. All proper suffixes of the two timed words are the same. ��

Theorem 5. For any ϕ ∈ MTL(p), αp, 0 |=pw ϕ iff βp, 0 |=pw ϕ. ��

Now suppose that there exists an MTL formula ϕ which in the pointwise se-
mantics defines the language L2b. It belongs to MTL(p) where p = 1/k and k is
the least common multiple of the denominators of the interval end-points in ϕ
(recall that the end points are rational). But ϕ cannot distinguish between αp

and βp. It is either satisfied by both of them or is not satisfied by any of them.
In either case it does not define L2b. Hence L2b is not definable in MTLpw .

But the disjunction of the formulas, �(0,0.5]b∧�(0.5,1)b, �(0,0.5](b∧�(0,0.5)b)
and �(0,0.5)(�[0.5,0.5]b∧�(0,0.5)b), expresses L2b in the continuous semantics. So,
MTLpw is strictly contained in MTLc over infinite words.

Now we extend the above proof for the case of finite words using the notion of
ultimate satisfiability. We replace every infinite word by an infinite sequence of
finite timed words. Thus we replace αp by 〈σp

i 〉 and βp by 〈ρp
i 〉, respectively, which

are defined as σp
i = µ1τ

i and ρp
i = µ2τ

i, where µ1 = (1 − 3p/4, b)(1 − p/4, b),
µ2 = (1−p/4, b) and τ = (p/2, b). It can be seen that 〈σp

i 〉 is completely contained
in L2b and 〈ρp

i 〉 is completely outside L2b . We can now argue that a formula ϕ
in MTL(p) is ultimately satisfied at 0 in 〈σp

i 〉 iff it is ultimately satisfied at 0
in 〈ρp

i 〉. We see that the claims which were true for the infinite case continue to
hold for the finite case with the notion of ultimate satisfiability.

Proposition 4. Let i, j ∈ N and i, j > 0. Let ϕ ∈ MTL. Then 〈σp
i 〉, i |=us ϕ

iff 〈σp
i 〉, j |=us ϕ. Similarly, 〈ρp

i 〉, i |=us ϕ iff 〈ρp
i 〉, j |=us ϕ and 〈σp

i 〉, i |=us ϕ iff
〈ρp

i 〉, j |=us ϕ. ��

Theorem 6. Given any ϕ ∈ MTL(p), 〈σp
i 〉, 0 |=us ϕ iff 〈ρp

i 〉, 0 |=us ϕ. ��

Suppose there exists a formula ϕ which defines L2b in the pointwise semantics.
Then ϕ ∈ MTL(p) for some p. Since ϕ defines L2b it is satisfied by all timed
words in 〈σp

i 〉. So ϕ is ultimately satisfied at 0 in 〈σp
i 〉 and hence is ultimately

satisfied at 0 in 〈ρp
i 〉. This is a contradiction since none of the timed words in 〈ρp

i 〉
are in L2b . Therefore no MTL formula defines L2b in the pointwise semantics.
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6 Strict Containment of MTLc in MTLc
S

In this section we show that MTLc is strictly contained in MTLc
S for finite

timed words by showing that the language Llast a is not expressible by any
MTLc formula but is expressible by an MTLc

S formula. Llast a consists of timed
words over {a, b} such that the last symbol in the interval (0, 1) is an a and there
is an action at time 1. We will sketch a proof of the above claim for the case of
infinite words which essentially follows the one given in [3] and then show how
it can be extended for finite words.

Let p ∈ Q>0, where p = 1/q and q ∈ N, and let n ∈ N. We give two infinite
timed words αp,n and βp,n such that αp,n ∈ Llast a and βp,n 
∈ Llast a . Let
d = p/(n + 4). Then,

0 p 2p

a a
αp,n

0 p 2p

a a
βp,n

αp,n = (c1, d)(c2, 2d) · · · where ck = a if k mod (n+4) = n+3, ck = b otherwise.
βp,n = (c1, d)(c2, 2d) · · · where ck = a if k mod (n+4) = n+2, ck = b otherwise.

Let us consider the following infinite model ηp,n given by the timed word
(c1, d)(c2, 2d) · · · , where ck = a if k mod (n + 4) = 0, ck = b otherwise.

0 p 2p

ηp,n
a a

We denote by MTL(p, k) the formulas in MTL(p) with an U nesting depth of k.

Lemma 3. Let k ∈ N and 0 ≤ k ≤ n. Let ϕ ∈ MTL(p, k). Let i, j ∈ {1, · · · , n+
3−k} and let α ≥ 0. Then ηp,n, (α(n+4)+i)d |=c ϕ iff ηp,n, (α(n+4)+j)d |=c ϕ
and for all t1, t2 ∈ (0, d), ηp,n, (α(n+4)+ i)d− t1 |=c ϕ iff ηp,n, (α(n+4)+ j)d−
t2 |=c ϕ. ��

Corollary 1. Let ϕ ∈ MTL(p, n) and let α ≥ 0. Then ηp,n, (α(n+4)+1)d |=c ϕ
iff ηp,n, (α(n+4)+2)d |=c ϕ iff ηp,n, (α(n+4)+3)d |=c ϕ and for all t1, t2, t3 ∈
(0, d), ηp,n, (α(n + 4) + 1)d − t1 |=c ϕ iff ηp,n, (α(n + 4) + 2)d − t2 |=c ϕ iff
ηp,n, (α(n + 4) + 3)d− t3 |=c ϕ. ��

Theorem 7. Let ϕ ∈ MTL(p, n). Then αp,n, 0 |=c ϕ iff βp,n, 0 |=c ϕ. ��

We now extend the results for the case of finite words. As before we replace the in-
finite words αp,n and βp,n by the sequences 〈σp,n

i 〉 and 〈ρp,n
i 〉, respectively, which

are given by σp,n
i = µ1τ

i, and ρp,n
i = µ2τ

i, where µ1 = (b, d)(b, 2d) · · · (b, (n +
2)d)(a, (n+3)d), µ2 = (b, d)(b, 2d) · · · (b, (n+1)d)(a, (n+2)d) and τ = (b, d)(b, 2d)
· · · (b, (n+3)d)(a, (n+4)d). Further, we replace ηp,n by 〈σ′p,n

i 〉 where σ′p,n
i = τ i.

We can now mimic the proof sketched above by replacing satisfiability by ulti-
mate satisfiability of the continuous semantics.
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7 Continuous Semantics is Strictly More Expressive

In this section we show that the language L2ins is not expressible by MTLpw
SI

but
is expressible by MTLc . This leads to the strict containment of the pointwise
versions of the logics in their corresponding continuous versions, since L2ins is
not expressible by MTLpw

SI
, and hence is not expressible by MTLpw

S and MTLpw ,
but is expressible by MTLc , and hence by MTLc

S and MTLc
SI

.
We will first show the result for finite words and then show how it can be

extended for infinite words. L2ins is the timed language over Σ = {a, b} such
that every timed word in the language contains two consecutive a’s such that
there exist two time points between their times of occurrences, at distance one
in the future from each of which there is an a. Formally, L2ins = {σ ∈ TΣ∗ |σ =
(a1, t1) · · · (an, tn), ∃i ∈ N : ai = ai+1 = a, ∃tj , tk ∈ (ti + 1, ti+1 + 1) : j 
= k, aj =
ak = a}.

Let p ∈ Q>0, where p = 1/k and k ∈ N, and let n ∈ N. Let d = p/(2n + 3).
We give the two models σp,n and ρp,n which are as defined follows. σp,n is given
by (a, 1 − p + d/2)(a, 1 − p + 3d/2) · · · (a, 1 − p/2 − d)(a, 1 − p/2)(a, 1 − p/2 +
d) · · · (a, 1 − d/2)(a, 2 − p + d)(a, 2 − p + 2d) · · · (a, 2 − d) and ρp,n is given by
(a, 1 − p + d/2)(a, 1 − p + 3d/2) · · · (a, 1 − p/2 − d)(a, 1 − p/2 + d) · · · (a, 1 −
d/2)(a, 2 − p + d)(a, 2 − p + 2d) · · · (a, 2 − d). They are depicted below.

1 − p 1 2 − p 2
σp,n

1 − p 1 2 − p 2
ρp,n

It is easy to see that σp,n 
∈ L2ins and ρp,n ∈ L2ins . We use the following
lemmas to show that no MTLSI formula can define L2ins in the pointwise se-
mantics. Let X2

k = {k+1, · · · , 2n+3− k} and Y 2
k = {2n+3+(k+1), · · · , 2n+

3 + (2n + 2 − k)}.
X1

k X2
k X3

k

Y 3
kY 1

k Y 2
k Y 2

k+1

X2
k+1

1 − p 1

2 − p 2

Lemma 4. Let k ∈ N and 0 ≤ k ≤ n. Let ϕ ∈ MTLSI (p, k). Then for all
i, j ∈ X2

k , σp,n, i |=pw ϕ iff σp,n, j |=pw ϕ and for all i, j ∈ Y 2
k , σp,n, i |=pw ϕ iff

σp,n, j |=pw ϕ. ��

Given an n ∈ N, we define a partial function hn : N → N which is defined for all
i ∈ N except for n+2. hn(i) = i if i < n+ 2 and hn(i) = i− 1 if i > n+2. hn(i)
is the position in ρp,n corresponding to the position i in σp,n in the sense that
the time of the hn(i)-th action in ρp,n is the same as that of the i-th action in
σp,n (hence it is not defined for n + 2).
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Lemma 5. Let k ∈ N, 0 ≤ k ≤ n and let ϕ ∈ MTLSI (p, k). For all i, j ∈
X2

k − {n + 2}, ρp,n, hn(i) |=pw ϕ iff ρp,n, hn(j) |=pw ϕ and for all i, j ∈ Y 2
k ,

ρp,n, hn(i) |=pw ϕ iff ρp,n, hn(j) |=pw ϕ. ��

Corollary 2. Let ϕ ∈ MTLSI (p, n). Then σp,n, n+1 |=pw ϕ iff σp,n, n+2 |=pw ϕ
iff σp,n, n + 3 |=pw ϕ and ρp,n, hn(n + 1) |=pw ϕ iff ρp,n, hn(n + 3) |=pw ϕ. ��

Theorem 8. For any ϕ ∈ MTLSI (p, n) and i ∈ N, where i 
= n+2, σp,n, i |=pw

ϕ iff ρp,n, hn(i) |=pw ϕ. ��

Corollary 3. For any ϕ ∈ MTLSI (p, n), σp,n, 0 |=pw ϕ iff ρp,n, 0 |=pw ϕ. ��

It can now be argued that no MTLSI formula in the pointwise semantics can
define L2ins . But the following MTL formula in the continuous semantics defines
L2ins . �(a ∧ ¬ϕactU(¬ϕact ∧ �[1,1]a ∧ ¬ϕactU(¬ϕact ∧ �[1,1]a ∧ ¬ϕactUa))).

The above result can be extended for infinite timed words by replacing the
finite models above, by infinite models which are similar to their counterparts
in the interval [0, 2] but contain a b at every integer time greater than 2. Then
the proof for infinite models is very similar to that of the finite models.

8 Strict Containment of MTLpw
S in MTLpw

SI

In this section we show the strict containment of MTLpw
S in MTLpw

SI
by showing

that the language Lni is not expressible by MTLpw
S , but is expressible by MTLpw

SI
.

The timed language Lem (for “exact match”) consists of timed words in which
for every b in the interval (0, 1), there is a b in the future which is at time distance
1 from it, and for every b in the interval (1, 2), there is a b in the past which is
at time distance 1 from it. The structure of the proof is very similar to that of
the previous section. We give below a description of the models.

d1 − p 2 − p0 1 2

1 2 2n+32n+2n+3n+2n+1
σp,n

ρp,n

Let x = 1 − p, y = 2 − p and d = p/(2n + 4). Then σp,n is given by (b, x +
d)(b, x+ 2d) · · · (b, x+ (n + 1)d)(b, x+ (n + 2)d)(b, x+ (n+ 3)d) · · · (b, x+ (2n+
2)d)(b, x+(2n+3)d)(b, y+d)(b, y+2d) · · · (b, y+(n+1)d)(b, y+(n+2)d)(b, y+
(n + 3)d) · · · (b, y + (2n + 2)d)(b, y + (2n + 3)d).

And ρp,n is given by (b, x + d)(b, x + 2d) · · · (b, x + (n + 1)d)(b, x + (n +
3)d) · · · (b, x + (2n + 2)d)(b, x + (2n + 3)d)(b, y + d)(b, y + 2d) · · · (b, y + (n +
1)d)(b, y + (n + 2)d)(b, y + (n + 3)d) · · · (b, y + (2n + 2)d)(b, y + (2n + 3)d).

Taking X2
k = {k + 1, · · · , 2n + 3 − k} and Y 2

k = {(2n+ 3) + k + 1, · · · , (2n +
3) + 2n + 3 − k}, we can follow the proof of the inexpressibility of L2ins . The
proof can be similarly extended for the case of infinite words.
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9 Expressiveness of MTL with Past Operators

In the diagram below, we summarize the relative expressiveness results. The
timed language La consists of timed words containing an a. L′

em and L′
2ins are

obtained from Lem and L2ins respectively by replacing the occurrences of a’s
and b’s in the timed words by c’s and d’s, respectively.

?? L2b L2ins

Llast a

L′
2ins ∪ Llast a

MTLpw MTLc
MTLc

S

MTLc
SI

L′
em ∪ Llast a

Leven b

La

MTLpw
S

MTLpw
SI

Lem

Timed languages over Σ = {a, b, c, d}
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9. Joël Ouaknine and James Worrell. On Metric Temporal Logic and Faulty Turing
Machines. In FoSSaCS, volume 3921 of Lecture Notes in Computer Science, pages
217–230. Springer, 2006.

10. Pavithra Prabhakar and Deepak D’Souza. On the expressiveness of
MTL with past operators. Technical Report IISc-CSA-TR-2006-5, In-
dian Institute of Science, Bangalore 560012, India, May 2006. URL:
http://archive.csa.iisc.ernet.in/TR/2006/5/.



Simulator for Real-Time Abstract State
Machines
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2 Computer Science Department, University of Saint Petersburg, Russia

Abstract. We describe a concept and design of a simulator of Real-Time
Abstract State Machines. Time can be continuous or discrete. Time con-
straints are defined by linear inequalities. Two semantics are considered:
with and without non-deterministic bounded delays between actions. The
simulator is easily configurable. Simulation tasks can be generated ac-
cording to descriptions in a special language. The simulator will be used
for on-the-fly verification of formulas in an expressible timed predicate
logic. Several features that facilitate the simulation are described: ex-
ternal functions definition, delays settings, constraints specification, and
others.

1 Introduction

Usually the process of software development consists of several main steps: analy-
sis, design, specification, implementation, and testing. The steps can be iterated
several times, and the last two ones are repeated very often. All the phases
of development are accompanied by this or that validation. We are interested
in the validation by simulation of a program specification with respect to the
requirements. The problem we consider has the following features :

– we consider real-time reactive systems with continuous or discrete time, and
time constraints expressed by linear inequalities,

– programs are specified as Abstract State Machines (ASM) [1],
– requirements are expressed in a First Order Timed Logic (FOTL) [2,3].

The specification languages we consider are very powerful. Even rather sim-
ple, “basic” ASMs [4] are sufficient to represent any algorithmic state machine
with exact isomorphic modeling of runs. This formalism bridges human under-
standing, programming and logic. The ASM method has a number of successful
practical applications, e.g., SDL semantics, UPnP protocol specification, seman-
tics of VHDL, C, C++, Java, Prolog (see [5,6]).

To express properties of real-time ASMs we use FOTL. This logic is clearly
undecidable. There exist practical decidable classes [2,3,7], however the decid-
ability algorithm is not so simple to apply. We know from the practice that most

� Partially supported by ECO-NET project No 08112WJ.

E. Asarin and P. Bouyer (Eds.): FORMATS 2006, LNCS 4202, pp. 337–351, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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errors in software can be revealed on rather simple inputs ; for reactive systems
this means that finite models of small complexity are usually sufficient to find
very serious errors.

Thus, we design our simulator as some kind of partial, bounded, on-the-fly
model-checker. It is presumed to be light, portable and easily configurable. The
simulator provides a language to describe a timed semantics and to generate in-
puts. We consider two semantics, both with instantaneous actions, one without
delays between actions, another one, more realistic, with bounded non determin-
istic delays between actions (by action here we mean an update of the current
state, we make it more precise below). The simulator checks the existence of a
run for a given input, outputs details of the run that can be specified in a special
language, and checks the requirements formula for this run.

There are several implementations of ASM interpreter or compiler. One of
them is the Microsoft AsmL [8]. AsmL is integrated with Microsoft’s software
development, documentation, and runtime environments. It supports specifica-
tion and rapid prototyping of object oriented and component oriented software.
Another language is Distributed ASML [9]. Distributed ASML is also aimed at
development of object-oriented and component-oriented software but has addi-
tional features for specification of distributed and multi-agent systems. There
is also a number of other interpreters such as Michigan interpreter, Gem-Mex,
Prolog-based interpreter.

These systems do not deal with real-time ASMs or predicate logic require-
ments. We simulate real-time ASMs and we wish to have an easily configurable
simulator. To do that we need some additional features such as explicit time ma-
nipulation, built-in features for time propagation and delays maintenance, and
more powerful capabilities for constraints and properties defining. In this paper
we do not describe the part that concerns FOTL properties checking, it will be
done elsewhere.

2 Timed ASM

In this paper by an ASM we mean timed basic Gurevich abstract state machine. A
timed ASM is a tuple (V, IS, Prog), where V is a vocabulary, IS is a description
of the initial state, and Prog is a program. The vocabulary consists of a set of
sorts, a set of function symbols, and a set of predicate symbols. The following
pre-interpreted sorts are included: R is the set of reals; Z is the set of integers;
N is the set of natural numbers; Bool is the set of Boolean values: true and false;
T = R+ special time sort; Undef = {undef} is a special sort used to represent
the undefined values.

All functions of an ASM are divided into two categories: internal and external
functions. Internal functions can be modified by the ASM. External functions
cannot be changed by the ASM. On the other hand, the functions can also be
divided into static and dynamic functions. Dynamic external functions represent
the input of the ASM. A static function has a constant interpretation during any
run of the ASM. Among the static pre-interpreted functions of the vocabulary are
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arithmetical operations, relations, and boolean operations. The equality relation
“=” is assumed to be defined for all types.

The timed ASMs use a special time sort T and a nullary function CT : → T
which returns the current “physical” time. Only addition, subtraction, multi-
plication and division by a rational constant, standard equality and inequality
relations are supported. Following is an example of a guarded update:

if (CT = 5) or (CT >= 11) then
x := CT + 2.3;

Both discrete time (natural numbers including zero) and continuous time (we
use only finite sets of intervals and points) are supported by the simulator. A run
of an ASM is a mapping from time to states. Each state is an interpretation of
the vocabulary of the ASM. Thus, from the “run viewpoint” a dynamic function
is a function of time.

In this work we admit only piecewise linear inputs defined on sets of left-closed
right-open intervals [tk, tk+1), where tk are time points, k is natural. The internal
functions will be also piecewise linear defined on sets of left-open right-closed
(tk, tk+1] (it is implied by the structure of ASM).

The program of the timed ASM is defined in a usual way as a sequence of
instructions of several types. Here we show the main constructions though there
are also class and method definitions, while-do and repeat-until loops, forall
and choose statements, etc.:

– A single update rule in the form of an assignment A = {f(x1, . . . , xk) := θ};
– A parallel block of update rules [A1; . . . ; Am] which are executed simultane-

ously (this block is called an update block);
– A sequential block of update rules {A1; . . . ; Am} which are executed in the

order they are written;
– A guarded rule, where Guardi, i ∈ 1, . . . , n are guard conditions and Ai, i ∈

1, . . . , n + 1 are statements:
if Guard1 then A1 elseif Guard2 then A2 . . . else An+1

2.1 Lamport’s Bakery Algorithm

Here we propose an example of asynchronous distributed algorithm, based on
N processes. This algorithm was originally presented by L. Lamport in [10]. A
modified version of the algorithm was found in the article [11]. This algorithm
shows a way of mutual-exclusive work with a resource. Here the Bakery class
denotes a process which works with some resource after the CS (Critical section)
variable turns to true. Here is the text in the syntax of Timed ASML:

class Bakery {
var number: Integer;
var CS: Boolean;
var x: Bakery -> Integer;
run() {
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number := 0;
CS := false;
forall q: Bakery do x(q) := 0;
while true do {

// Doorway:
number := 1; x(me) := 1;
forall q: Bakery where q != me do x(q) := q.number;
x(me) := 1 + max(x);
number := x(me);

// Bakery:
forall q: Bakery where q != me do

repeat x(q) := q.number;
until (x(q) = 0 or (x(me), me) < (x(q), q));

CS := true;
// Critical section:

CS := false;
number := 0;

}
}

}

3 External Functions Definition

An external function definition looks as follows: f : X → Y, the corresponding
timed version of the function is the following: f◦ : T × X → Y, where f is the
name of the function, X is an abstract sort or a direct product of two abstract
sorts, T is the pre-interpreted time sort, Y is an abstract sort or pre-interpreted
sort R. The timed version of a function f◦ can not be used explicitly in an ASM
specification, it is used in requirements. A function can change its interpretation
during the run of the ASM, therefore the time dimension T allows us to use the
time variable as an independent variable. Definite time variable values split the
whole run of an ASM into a sequence of “slices” in which the interpretations are
constant.

The sort X can be enumerated as a sequence of natural numbers. Thus, we
can define a function as follows:

f(i) := (ti1, f
i
12; t

i
2, f

i
23; . . . ; t

i
k, f i

kk+1; . . .)

where i ∈ 1, . . . , n, n is the number of intervals or the cardinality of the sort X ,
t1, t2, . . . , tk, . . . are start points of intervals, f i

12, f
i
23, . . . , f

i
kk+1, . . . are function

values defined on the time left-closed right-open intervals. If X is a product of
two abstract sorts, X = X ′ ×X ′′ then the definition will look as follows:

f(i, j) := (ti,j1 , f i,j
12 ; ti,j2 , f i,j

23 ; . . . ; ti,jk , f i,j
kk+1; . . .)

where i ∈ 1, . . . , n, j ∈ 1, . . . , m, n is the number of intervals or the cardinality
of the sort X ′, m is the cardinality of the sort X ′′, and all other designations are
analogous to the ones in the previous sequence.
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Each function can be also defined by an expression. The following additional
pre-interpreted variables can be used in the definitions: ta — absolute time, tr
— relative time, varying in the time interval [0, tk+1 − tk), for each k. Thus, for
[tk, tk+1) the following holds: ta = tk + tr.

4 Delay Settings

All updates in ASM [1] are instantaneous. In reality, it may take some time
to perform an update. We model this by non-deterministic bounded delays be-
tween actions that remain instantaneous. In the current implementation of the
simulator the delay is calculated deterministically. The value of a delay depends
on the complexity and quantity of instructions used in the specification. Non-
deterministic bounded delays will appear in the next version of the simulator.
Some ideas of managing the process of time propagation already appeared, for
example in [12,11]. We propose several ways of dealing with delays depending
on the purposes of the user. We define a function of time delay δ on the set of
all statements and expressions which will be denoted as S. The function of time
delay can be specified as δ : S → T . For each operation the value of time delay
function can be set individually and it will be used in the process of simulation.

There are two different types of calculations: sequential composition and par-
allel composition. For the sequential composition f◦g the delay is calculated as
a sum of delays of each function, i.e. δ(f◦g) = δ(f) + δ(g). For the parallel
composition ||fi the delay is the maximum of the delays of all functions, i.e.
δ(||fi) = maxi δ(fi).

This function δ can be used at different levels of abstraction. For example,
it can be used at the level where we have only two different time delays for
slow and fast operations making difference between operations with internal and
shared variables. The notion of shared variables is used to mark the variables
that can be accessed from several processes. This kind of variables is one of the
methods for implementing inter-process communication. Operations with shared
variables are usually slower than operations with internal variables of a process,
as they imply several inter-process operations. In our Bakery algorithm the field
number of the Bakery class is a shared variable. Thus, we can specify delays
in various ways, e.g.:

– Two dedicated delays δext (operations with external functions) and δint (op-
erations which deal only with internal functions), δext > 0, δint > 0;

– The same as the previous one but all internal operations are instantaneous:
δext > 0, δint = 0;

– No delay, all operations are instantaneous: δext = δint = 0. In this degener-
ated case we have a standard abstract state machine;

– A generalized case: there are no predefined delays for all operations. We have
a set of delays each of them corresponds to one function or operation. All of
them have to be defined manually.

Examples (in the configuration file we write d(<instruction>)=<delay>):

d(+) = 1; d(*) = 2; dext = 3; dint = 1;
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5 Non-determinism Resolving

A typical example of nondeterministic choice is the choose statement when one
of the possible values has to be chosen. We consider this situation as a tuple of
all possible choices with several ways of element selection. The method should be
provided in the configuration of the simulator. It is set by one assignment in the
configuration file (the abbreviation ndr stands for non-determinisms resolution).
Here some methods are shown:

– The first (last) element of the tuple: ndr = first,
– The minimal (maximal) element of the tuple, if some order is defined for the

elements: ndr = min,
– The element defined by its index — a sequence of natural numbers with a

predefined step: ndr = seq start <x> step <y>,
– The element defined by its index; the index is provided by a random numbers

generator: ndr = random.

For example, consider a tuple {5, 1, 3, 2, 9, 6, 4}. The first and the last elements
will be 5 and 4. The minimal and the maximal elements will be 1 and 9. If we
define a sequence of natural numbers starting from 1 with the step of 3 we will
get a resulting sequence as follows: {5, 2, 4, 9, 3, 6, 1}.

6 Properties

To express requirements for ASMs one needs a powerful logic. In this work we
consider a First Order Timed Logic (FOTL) [2,3] for representing the require-
ments. For the Lamport’s Bakery the following properties are required:
Safety: ∀pq ∀t(p 
= q → ¬(CS◦

p (t) ∧ CS◦
q (t))

Liveness:

∃c1c2 ∀p ∀t(number◦p(t) > 0 → ∃t′(t < t′ < t + c1 · δint + c2 · δext ∧ CS◦
p(t′)))

where δint > 0, δext > 0 (in the degenerated case we should use another formula).
There are already several existing solutions in which some properties and con-

straints of a specification can be explicitly formulated. The Abstract State Ma-
chine Language proposed by Microsoft supports the Object-Oriented approach.
The following properties are supported in MS AsmL2: require — a precondition,
ensure — a postcondition, constraint — a general assertion. Preconditions and
postconditions can be used in different statement blocks with AsmL operations.
The reserved word constraint can be also used in data type declarations. Here
are two examples of constraints:

structure Rational
numerator as Integer
denom as Integer
constraint NonZeroDivisor: denom <> 0
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var Counter = 1 Increment()
require Counter >= 0
ensure resulting Counter = Counter + 1
Counter := ((((Counter + 1) * 2) - 2) / 2) + 1

In Distributed AsmL [13] the following integrity constraints are supported:
require — a precondition, ensure — a postcondition, invariant — a formula
which holds on the level where it is defined. Invariants can be defined at the
level of namespaces and classes. The preconditions and postconditions can be
used only for methods. The constructions are similar to Microsoft version of
AsmL but there are several differences. For example, in MS AsmL2 one can
define constraints regarding the data types, but defining a constraint for the
whole namespace is impossible.

6.1 First Order Timed Logic

The main idea of FOTL is to choose a decidable theory to work with arithmetics
or other mathematical functions, and then to extend it by abstract functions of
time that are needed to specify the problems taken under consideration. In some
way, the theory must be minimal to be sufficient for a good expressivity. For the
purposes of the present work we take the theory of mixed real/integer addition
with rational constants and unary multiplications by rational numbers. This
theory is known to be decidable [14]. Though we can consider either discrete
time as non negative integers or continuous time as non negative reals, we take
the case of continuous time.

Syntax of FOTL. The vocabulary W of a FOTL consists of a finite set of sorts,
a finite set of function symbols and a finite set of predicate symbols. To each sort
a set of variables is attributed. Some sorts are pre-interpreted and have a fixed
interpretation. Such sorts are real numbers R and the time sort T . Therefore,
we have the same sorts as in the description of the Timed ASM including the
time sort T . Other sorts are finite and if a finite sort has a fixed cardinality it
can be considered as a pre-interpreted sort. Some functions and predicates are
also pre-interpreted. These are addition, subtraction, and scalar multiplication
of reals by rational numbers. The pre-interpreted predicates are =,≤, < over
real numbers. The vocabulary of FOTL also contains equality for all types of
objects and a CT ◦ function to define the time. Any abstract function is of the
type T ×X → Y, where X is a finite sort or a direct product of two finite sorts,
and Y is a finite sort or the pre-interpreted sort R. An abstract predicate is of
the following type T × X → Bool with the same type of sort X .

Semantics of FOTL. For FOTL the notions of interpretation, model, sat-
isfiability and validity are treated as in first order predicate logic except the
pre-interpreted symbols of the vocabulary. Therefore, M |= F,M 
|= F , and
|= F where M is an interpretation and F is a formula, denote correspondingly
that M is a model of F , M is a counter-model of F , and F is valid.
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7 Basic Abstract State Machines’ Syntax

In this section most of the constructs of the Timed ASM language are described.
The Timed ASML syntax is similar to MS AsmL or Distributed ASML as we
tried to preserve the existing syntactical features. The description is provided
with several examples of alternative syntaxes.

7.1 Update Instructions

Update is one of the main instructions of the ASM languages as it changes the
state of an ASM. As usually a basic update is implemented as an assignment.
Here is an example of a basic update:

x := a;

An important case of an update is a guarded update. This kind of updates is
executed when the guarding condition turns to true. This update is implemented
as a if − then − else construction. The following is an example of a guarded
update:

if Condition_1 then Statement_1
elseif Condition_2 then Statement_2
else Statement_3

In the last example Statement1 and Statement2 can be a simple update, a
sequential or a parallel block of updates.

Another way to describe an update rule is a named update rule, it can be a
procedure or a method of some class. Such an update can be called from some
point of the specification. Here is an example of a named update rule :

method_name (par1 : type1, par2 : type2) : return_type

7.2 Sequential Block of Statements

A sequential block of statements is simply a sequence of statements which are
executed one after another. Several ways of defining sequential blocks have been
presented in different works. They propose to specify a sequential composition
of statements P and Q like:

P seq Q

step
P

step
Q

We have chosen a way more familiar to programmers:

{
P
Q

}
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7.3 Parallel Block of Statements

A block of parallel is a set of statements for which the order of statements is
not important. All statements in a parallel block are executed simultaneously.
Among the existing works there are also several ways of parallel block definition,
for example:

do in-parallel
P1
:
Pn

enddo

par
P1
:
Pn

endpar

We have chosen a more short variant:

[ P1 ... Pn ]

7.4 Types

For type defining the following constructs can be used:

type new_type1 = other_type;
type new_type2 = {val1, val2, ... valN};
type new_type3 = type1, type2, ... typeN -> result_type;

7.5 Functions (in Terms of ASM)

All functions both of zero and non-zero arity are defined with the help of var
keyword.

var function_name1 : defined_function_type;
var function_name2 : type1, type2, ... typeN -> result_type;

7.6 Variables and Constants

To declare a variable the var keyword should be also used as a function of zero
arity:

var variable_name [= initial_value] : variable_type;

Constant definition should be made in a similar way:

const const_name = const_value : const_type;
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7.7 Sets and Sequences

Here is an example of constructing several sets:

x = {2..5} // same as {3, 2, 5, 4}
y = {i | i in x where i < 4} // same as {2, 3}
z = {3, 2} // same as y

The following is an example of constructing sequences:

x = [2..5] // same as [2, 3, 4, 5]
y = [i | i in x where i < 4] // same as [2, 3]
z = [2, 3] // same as y
w = [2, 2, 3] // not the same as z

7.8 Iterators and Selection

Here are some examples of iterators used to process all elements of a set:

forall x with Y do P

do forall x:Y
P

enddo

And the following construct is used to choose some elements of a set:

choose x with Y do P

choose x:Y
P

endchoose

We will use a more flexible of the existing notations:

foreach u in U where b(u) do S
choose u in U where b(u) do S

7.9 Predicate Formulas

To represent a predicate formula we will use a common syntax that is used in
most of the ASM based languages:

forall x in Y holds F(x)
exists x in Y where F(x)

Both keywords ”in” and ”:” can be used to specify the membership of a variable
x to the set Y. The predicate formula itself is specified by F(x) — a FOTL
expression of Boolean type.
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8 Timed Abstract State Machine Semantics

8.1 Simulation Process

In brief the process of simulating a system defined by an ASML specification in
our approach consists of the following steps:

1. Calculation of the next time point in which at least one guard is true;
2. State update, which is represented by one or more statement blocks;
3. Evaluation of constraints before and after the state update.

As it was defined earlier, the value of the time function can only be read and
used in further calculations. The formulas for representing guards can include
arithmetical operations (+, −, ∗, /, %), equality, inequality, logical relations (not,
and, or, xor), and time variable CT. The delays are also taken into consideration.
So, if we have a block with a sequence of guarded updates we must even skip
some updates in case of the delay of the previous update overlaps the time point
where the guard of the next update becomes true.

In definitions of constraints we can use all features of FOTL language. We
consider only time quantified formulas, so we can provide verification of the
properties on-the-fly. Additionally, we can add some useful operators which can
help the user to formulate some specific properties. These can be temporal opera-
tors regarding the future as “soon”, “always”, “never”, or specific “next update”,
“in the nearest k updates”, as we have a sequence of time intervals for model
interpretation.

Similar to “C” programming language and Java the Main() method is used as
the top-level entry point of a specification. From the beginning of this method
the simulation of the top-level abstract state machine starts. At first, the main
ASM on the top level of the specification is executed. Further the process of
simulation runs as follows.

8.2 Sequential Execution

In the sequential mode of execution the next operation is taken, all required
calculations are made and the state of the machine is changed. Then the next
construct or instruction is taken and so on.

If the user has specified the time delays for Timed ASML operations then the
time value is changed according to the given configuration. The current time
value is simply incremented by the value of current instruction time delay.

8.3 Block of Parallel Instructions

All instructions in a parallel block are considered to be executed in parallel.
We consider it as block of sub-machines running in the same way as the top-
level ASM but in its own space of states. Each sub-machine does not interact
or affect other sub-machines. If several sub-machines have been executed from
a parallel block they have the same initial state but their end states after the
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execution, in general, are different. When all of them finish their execution the
total state change of the upper level sub-machine has to be calculated. Let each
sub-machine be designated as SMi, i = 1, 2, . . . , N , where N is the number
of parallel instructions in the block. Let SCi be the final state change of each

sub-machine. The total change of state will be calculated as
N⋃

i=1
SCi. If

⋃
i�=j

SCi∩

SCj = ∅, the state changes are consistent and the situation is entirely correct.
Otherwise, we have some inconsistencies and the user will be informed about
it. But, if the user has configured the non-determinism resolving procedure the
execution can be continued. In this case the new values of the functions from the
intersection set are chosen in accordance to the rules of simulation configuration.
After the total state change is calculated all further instructions start from the
new time point (see Delay settings). For example, consider the following parallel
block:

[
x := 1;
y := 2;
z := 3;
x := x + y + z;

]

It is clear that the variable x is affected two times and the user can choose if the
simulation process has to be stopped or it will be continued like in the situation
of a non-deterministic choose operation. If the first assignment x := 1; is chosen
the total time delay of the whole parallel block should be smaller than the total
time delay of the parallel block with the second assignment x := x + y + z;.

8.4 Looped Parallel Block

If a parallel block is looped it can happen that there are no instructions for the
current time moment to be executed. Therefore, infinite looping is possible. In
this case we have to wait for the closest time moment at which at least one of the
guards turns to true and some instructions can be executed. If such a time point
does not exist a message is sent to the user. This time point is calculated and if
it is not the time to exit the loop, the instructions concerning this time point are
executed. If there are several guards that become true at this time point then all
of the guarded instructions are executed. The execution of parallel instructions is
performed just as in the case of a basic parallel block. The summary time delay
and the resulting state change is calculated according to the rules specified for
the parallel block. After the state is updated the simulation proceeds to the next
iteration with a new time value. A case when all the delays are set to zero is
detected by the simulator and a warning message can be sent to the user. The
following is a simple example with guarded updates in a loop.

{
x := 0; y := 0; z := 0;
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while (CT < 16) do [
if (CT >= 12) then x := x + 1;
if (CT >= 8) then y := y + 1;
if (CT >= 17) then z := z + 1;

]
}

In this example it is clear that the third guarded update will not be executed.
The others will be executed if the value of CT is below 16 when the simulator
starts processing the loop statement. Each of these updates will be executed sev-
eral times depending on the value of time delay specified for operations used in
the update. In the first update there are three operations: read the value of x, add
1 to the value of x, save the calculated value to x. Therefore, the time delay for
both of updates is the same and the time intervals are (12,16) and (8, 16) corre-
spondingly. So if the value of CT was below 8 when the loop was entered the first
guarded update will be executed about two times less than the second one.

8.5 Classification of Functions

In general, all functions can be separated into two classes: static functions and
dynamic functions. A dynamic function can change its value, so it can be an
internally used function or a function used as input or output. In the works
of Egon Börger and Robert Stärk (e.g. [6]) the following notations for different
function types are used: static (this type of functions cannot be modified); dy-
namic: in (read-only, input from the environment), out (write-only), controlled
(internal), shared (no restrictions).

In this work a similar but more general notation is used for specifying the
properties of a function. The possible configurations are considered from the
point of view of read and write operations executed from the specified module
or some external module (e.g., environment). The following is the table that
shows all modifiers.

ASM module Others Comment
read — private static function
read read public static function
read write input function (in)
read read & write input controlled by other module
write read output function (out)
write read & write output controlled by other module

read & write — private dynamic function (controlled)
read & write read output that can be read
read & write read & write public dynamic function (shared)

others not used
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8.6 Send and Receive Operations

For communication between different processes we shall use special operations
Send and Receive:

Send(To: Object; From: Object; Message: String?);
Receive(To: Object; From: Object?; Message: String?): Boolean;
WaitReceive(To: Object; From: Object?; Message: String?;

WaitTime = inf: Time): Boolean;

The “To” field denotes the recipient object, the “From” field denotes the
sender object and the “Message” contains the information we want to send.
The Send method adds the given message to the end of the message queue. The
Receive and WaitReceive operations deliver a message to its recipient. When one
of these operations is executed the next message is extracted from the message
queue and is passed to the executor. If the “From” field is undef, then the next
message will be taken. If the “From” parameter is defined then only messages
from the specified sender will be taken. The Receive method returns the next
message or null if there is no one and WaitReceive waits for some time defined by
the WaitTime parameter. The WaitTime parameter by default is inf, i.e. it will
wait until a message comes. The Receive method can be modeled by WaitReceive
if we set the WaitTime parameter to zero.

9 Conclusion

In this paper several new important features concerning the semantics of the
ASM based language were described. These features will help us to build and ver-
ify specifications of real-time systems via a customizable simulation of the mod-
els. The most important parameters of simulation can be configured, i.e. external
functions, time delays for language operations and constructs, non-determinism
resolving. The semantics of Send and Receive statements is described. These
statements are useful for encapsulation of data in a class and provide a method
for communication between agents and synchronising the processes.

The whole project is aimed at development of a simulator for the described
version of ASM language extension where the results of the current work are
used. At the moment a simulator prototype is ready, which implements most of
the specified features. The following is the list of the implemented features:

– Lexical and syntactical analysis with building a parse tree;
– Loading definitions of external functions from a file;
– Loading the simulation parameters;
– Simulation of most constructs and operations of Timed ASML;
– Checking the specified formulas during the simulation;
– Simulation results output with the history of all state changes.
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Abstract. Continuous-time Markov decision process are an important
variant of labelled transition systems having nondeterminism through la-
bels and stochasticity through exponential fire-time distributions. Non-
deterministic choices are resolved using the notion of a scheduler. In this
paper we characterize the class of measurable schedulers, which is the
most general one, and show how a measurable scheduler induces a unique
probability measure on the sigma-algebra of infinite paths. We then give
evidence that for particular reachability properties it is sufficient to con-
sider a subset of measurable schedulers. Having analyzed schedulers and
their induced probability measures we finally show that each probability
measure on the sigma-algebra of infinite paths is indeed induced by a
measurable scheduler which proves that this class is complete.

1 Introduction

Continuous-time Markov decision processes (CTMDP) [1,2,3,4] are an important
class of finite labelled transition systems (LTS). They have external nondeter-
minism through the interaction with edge labels and internal stochasticity given
by the rates of negative exponential distributions. Besides their applications in,
e. g., stochastic control theory [2], stochastic scheduling [5,6] and dynamic power
management [7], these systems are interesting in their own, because they intro-
duce a continuous quantity, namely the fire-time of transitions.

The external nondeterminism is usually reduced to probabilism using the no-
tion of schedulers, also called adversaries or policies. Given that the system is
in a particular state, a randomized scheduler eliminates the nondeterminism by
making a decision for a certain probability distribution over edge labels. This
decision making can be based on the present state alone, or together with all
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previous states, edge labels and time points, leading to memoryless or timed
history-dependent schedulers, respectively. Besides, it is also possible to have
deterministic schedulers as a particularization of randomized schedulers. How-
ever, as shown in [8], timed history-dependent schedulers are strictly more pow-
erful than schedulers abstracting from time. Therefore time has an explicit role
in the global behavior of the model of CTMDPs and cannot, in principle, be
avoided. We take the most general class of schedulers, namely randomized timed
history-dependent (THR) schedulers as our starting point.

Time is continuous in its nature and thus particular issues quickly arise. Many
of them refer to practical aspects as discretization, abstraction, approximation
and computation, but others like measurability are more fundamental [9]. It is
well known, that there are sets, namely Vitali sets, in the real interval [0, 1] that
cannot be measured. A measure is a function that generalizes the usual notions
of cardinality, length, area and probability. With these unreasonable sets, all
the questions about our system asking for a quantitative answer start to be
endangered. The motivation of this paper is to tackle this particular problem.

We give a soundness result, showing that measurable schedulers generate a
well-defined probability measure for timed paths. For this we first construct a
combined transition that merges scheduler and CTMDP probabilism in a single
transition probability. We establish that measurability of combined transitions
is inherited from schedulers and vice versa, improving a result from [9]. Based on
transition probabilities we construct a probability measure on the set of infinite
timed paths with the aid of canonical product measure theorems.

A proper subclass of measurable schedulers inducing positive probability mea-
sures on infinite paths is identified. Besides that and the construction of scheduler
dependent probability measures, we also answer the question if there is a proper
subclass of measurable schedulers which is easily definable and generates arbi-
trary measurable schedulers (called probabilistically complete) in the affirmative.

Finally a completeness result is presented, showing that every timed path
probability is generated by some measurable scheduler. To do this we mo-
tivate the need of this probability to be related or compatible with the un-
derlying CTMDP. This compatibility cannot be stated using the probability
measure. Instead, (continuous) conditional probabilities are obtained by the so-
called Radon-Nikodym derivatives. However, those conditional probabilities turn
out to be insufficient for the intended compatibility result. Taking advantage of
our particular setting (timed paths as denumerable product of discrete spaces
and positive reals), we use disintegrability to obtain transition probabilities in-
stead of conditional ones. Deconstructing the probability into transition proba-
bility lead us to state compatibility and the completeness theorem.

Outline. The rest of the paper is organized as follows. In Section 2 we give an
overview of related work. Section 3 establishes mathematical background and no-
tation, including the CTMDP model with schedulers, as well as the measurability
problem. Section 4 develops a timed path probability measure w.r.t. measurable
schedulers. In Section 5 we propose the simple scheduler subclass and discuss its
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limiting properties. Section 6 shows that measurable schedulers can capture ev-
ery probability measure generated by a CTMDP. Finally, Section 7 concludes the
paper.

2 Related Work

In systems with continuous state spaces featuring nondeterminism and proba-
bilism, measurability issues of schedulers have been studied from the point of
view of timed systems [10], extensions of discrete probabilistic automata [9] and
Markov decision process (MDP) with Borel state space [11].

In [10] continuous probabilistic timed automata are defined and its concrete
semantics is given in terms of dense Markov process once the nondeterminism
is resolved by a timed history-dependent scheduler. Although the model is not
comparable with CTMDPs because of the denseness of the state space, scheduler
measurability issues also appear. The authors disregard this particular problem
by considering it pathological.

Stochastic transition systems [9] are a generalization of CTMDPs and the
measurability of schedulers is an important issue here. Cattani et al. show how to
construct a measure on so called executions. For this they have to, and indeed do
discard nonmeasurable schedulers. In particular, although we discuss our results
in a more restrictive modelling formalism, this work is an improvement over their
construction in two aspects. First, we use standard measure-theoretic results
in conjunction with product space measures, leading to results that are more
compact and provide deeper insight than the results presented in [9]. Secondly,
the need for measurable functions in the construction of the probability measure
is in this paper directly inherited from the definition of scheduler measurability.
Instead, in [9] measurability properties are kind of directly given for the according
functions [9, Definition 5] without giving a connection to schedulers. We added
to this work a complete characterization of measurable schedulers, something
that has not been considered in [9].

A result similar to our deconstruction discussed in Section 6 is given in the
context of epistemic game theory [12]. The proof-tools used there are disintegra-
tion theorems for the product of two spaces [13] and the so-called Ionescu-Tulcea
theorem. However, we prove a similar theorem by resorting to the well-known
Radon-Nikodym theorem together with canonical product measures for denu-
merable product spaces.

To the best of our knowledge, the decomposition of particular probability
measures on the infinite behavior of probabilistic systems with nondeterminism
leading to measurable schedulers has not been considered in the literature so far.

3 Background and Problem Statement

3.1 Mathematical Notation and Background

By R and N the set of real numbers and natural numbers are denoted, R+ is
the set of positive real numbers including 0. Disjoint union is denoted Ω1 �Ω2,
while partial function application is denoted f(·, ω2).
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Given a set Ω and a collection F of subsets of Ω, we call F a σ-algebra iff
Ω ∈ F and F is closed under complement and denumerable disjoint union. The
σ-algebra generated by the family H ∈ 2Ω is the minimal σ-algebra containing H.
We call the pair (Ω,F) a measurable space. A measurable set is denoted as A ∈ F .
When dealing with a discrete set Ω, we take the powerset σ-algebra 2Ω as the
default, however we still denote a measurable set as A ∈ F instead of the simpler
A ⊆ Ω. Let (Ωi,Fi), i = 1, 2, . . . , n be arbitrary measurable spaces and Ω =
Ω1×Ω2×· · ·×Ωn. A measurable rectangle in Ω is a set A = A1×A2×· · ·×An,
where Ai ∈ Fi. The product space σ-algebra denoted FΩ1×Ω2×···×Ωn is the σ-
algebra generated by measurable rectangles. Given a measurable space (Ω,F),
a σ-additive function µ : F → R+ is called measure, and if µ(Ω) = 1 it is
called probability measure. The triple (Ω,F , µ) is a measure space or probability
space depending on µ. For a measurable set (Ω,F) we denote by Distr(Ω) the
set of all probability distributions over Ω, and given µ ∈ Distr(Ω) a support
of µ is a measurable set A such that µ(A) = 1. A function f : (Ω1,F1) →
(Ω2,F2) is measurable if ∀A2 ∈ F2, f−1(A2) ∈ F1, i.e., the inverse function maps
measurables to measurables. A measurable predicate P : Ω → Bool in a measure
space (Ω,F , µ) is µ-almost everywhere valid, P a.e. [µ], iff µ(P−1(false)) = 0,
that is the set of non-valid points is negligible. We call a function f : Ω1 ×F2 →
[0, 1] transition probability or Markov kernel iff for all ω1 ∈ Ω1, f(ω1, ·) is a
probability measure on (Ω2,F2) and for all A2 ∈ F2, f(·, A2) is a measurable
function.

3.2 Continuous-Time Markov Decision Processes

In the following we present the basic definitions of continuous-time Markov de-
cision processes. We use essentially the same notation as in [3].

Definition 1 (CTMDP). A continuous-time Markov decision process (CT-
MDP) is a tuple (S,L,R,Prinit) where S is a finite non-empty set of states, L is
a finite non-empty set of transition labels also called actions, R : S×L×S → R+

is the three-dimensional rate matrix, Prinit ∈ Distr(S) is the initial distribution
over states.

Given a CTMDP tuple C = (S,L,R,Prinit), we define the projection function
CPrinit

.= Prinit, and so on for the other coordinates. For set Q ⊆ S we denote by
R(s, a,Q) .=

∑
s′∈Q R(s, a, s′) the cumulative rate to leave state s under label a.

In Ls
.= {a ∈ L | R(s, a, S) > 0} we collect all labels that belong to transitions

emanating from s.

Behavior. The behavior of a CTMDP is as follows. R(s, a, s′) > 0 denotes that
there exists a transition from s to s′ under label a where R(s, a, s′) corresponds
to the rate of a negative exponential distribution. When s has more than one
successor state under label a, one of them is selected according to the race
condition. The discrete branching probability Ps(a, s′) from s to s′ under label
a is given by Ps(a, s′)

.= R(s,a,s′)
R(s,a,S) , where R(s, a, S) is the overall exit rate of s
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Fig. 1. Continuous-time Markov decision process

under label a. The probability that one of the successors of s is reached within
time t is given by 1− e−R(s,a,S)·t. In CTMCs this time is also referred to as the
sojourn time in state s. Given that a ∈ L is chosen, the sojourn time in s ∈ S is
determined by a negative exponential distribution with rate R(s, a, S).

Figure 1 shows a simple CTMDP. Arrows indicate transitions between states.
They are labelled by an action and a rate, e. g., under label a there exists
a transition from s1 to s3 whose fire-time is exponentially distributed with
rate 1.

3.3 Timed Paths

A timed path σ in CTMDP C = (S,L,R,Prinit) is a possibly infinite se-
quence of states, labels and time points, i. e., σ ∈

(
S × (L× R+ × S)∗

)
�(

S × (L× R+ × S)ω). For a given path σ = s0a1t1s1 . . . we denote by first(σ) =
s0 its first state, σ[k] denotes its (k + 1)-st state, e. g., σ[0] = first(σ). A finite
path σ′ = s0a1t1s1 . . . aktksk has length k, denoted as |σ′| = k and its last state
equals last(σ) = sk. For arbitrary paths σ we denote by σi the prefix of length i
of σ, i. e., σi = s0a1t1s1 . . . aitisi. For finite σ′ = s0a1t1s1 . . . aktksk, the prefix of
length i > k equals σ′. Pathn, Path∗, Pathω and Path denote the sets of paths of
length n, finite paths, infinite paths and the union thereof, respectively, where
Path = Path∗�Pathω and Path∗ =

⊎
n∈N

Pathn. A time abstract path is a timed
path where time points are omitted. It will be clear from context which type of
path we use in particular sections. Thus, the above given definitions carry over
to time abstract paths.

Paths are defined as arbitrary sequences of states, labels and time points
w.r.t. C. We do not require that R(si, ai, si+1) > 0 but we will overcome this
obstacle by giving all power to our schedulers. Given CTMDP C we distinguish
between observable and unobservable paths w.r.t. C. A path σ = s0a1t1s1 . . . is
called observable iff R(si, ai+1, si+1) > 0 for i = 0, 1, . . . . Otherwise we call σ
unobservable. As will be evident in Section 4, the probability measure on paths
induced by a given scheduler will evaluate to 0 for unobservable paths. But
before we introduce the measure, we have to define the measurable space over
paths.
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σ-Algebra over timed paths. We endow states and labels with the powerset σ-
algebra, and R+ with the standard Borel σ-algebra. The σ-algebra FPathn is the
standard product space σ-algebra, FS×(L×R+×S)n , generated by the rectangles
Q0×M1× · · ·×Mn, where Q0 ∈ FS and Mi ∈ FL×R+×S . The σ-algebra FPathω

is defined using the concept of cylinders [14, Definition 2.7.1]. Given the set of
timed paths Λ with |Λ| = k, CΛ

.= {σ ∈ Pathω | σk ∈ Λ} defines a cylinder with
base Λ. A measurable cylinder has measurable base, and a measurable rectangle
(in Pathω) is a cylinder whose base is a measurable rectangle. The σ-algebra
FPathω is the minimal σ-algebra generated by either measurable cylinders or
measurable rectangles. Finally FPath is standard σ-algebra for the disjoint union
of {FPathn}n∈N and FPathω .

3.4 Schedulers

A scheduler resolves the nondeterminism inherent in a CTMDP. Most generally,
schedulers can be considered as functions from finite paths to probability distri-
butions over labels. Such a general definition allows for all special cases as, e. g.,
given in [3].

Definition 2 (Scheduler over CTMDP). Let C be a CTMDP with label set
L. A scheduler D over C is a function D : Path∗ → Distr(L) such that the
support of D(σ) is equal to Llast(σ).

The support condition says that the scheduler distributes its whole mass among
the outgoing labels. We can also denote D as a two argument function D :
Path∗ × FL → [0, 1], being a measure in its second argument D(σ, ·) for all
finite path σ. We now turn our attention to the measurability problem. This
is motivated by the fact that there exist “bad-behaved” schedulers. Reconsider
the CTMDP depicted in Figure 1 and the randomized timed history-dependent
(THR) scheduler D with

D(s0cts1) =

{
δa if t ∈ V ,
δb otherwise,

where δi, i ∈ {a, b} denotes that action i is chosen with probability 1 and V is the
nonmeasurable Vitali set in [0, 1], i. e., for each time point in a nonmeasurable
set, D will choose deterministically a and for all other time points, D will choose
deterministically b. So the question, “What is the probability to reach s3 in two
steps?”, cannot be answered, because it necessarily involves the evaluation of a
measure in the set {t|D(s0cts1) = δa} = V that is nonmeasurable.

In the subsequent definition we restrict to the class of schedulers that respects
measurability issues.

Definition 3 (Measurable scheduler). We call a scheduler D over CTMDP
C measurable scheduler iff for all A ∈ FL, D(·, A) : Path∗ → [0, 1] is a measur-
able function.
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4 Constructing Timed Path Probability

Probabilistic schedulers allow to quantify uncertainty. Therefore composing
CTMDP negative exponential distributions with a particular scheduler, we can
construct probability measures usually called combined transitions [9].

Definition 4 (Combined transition). For a given CTMDP C, scheduler D
and finite path σ, the combined transition µD : Path∗ × FL×R+×S → [0, 1] is
defined in the measurable rectangles by

µD(σ, A×I ×Q) .=
∑
a∈A

D(σ, {a}) ·Plast(σ)(a, Q) ·
∫
I

R(last(σ), a, S)e−R(last(σ),a,S)·tdt .

(1)

The second factor in the terms of the above summation is the discrete branching
probability from last(σ) to Q by the label a, while the third one is the probability
that the transition triggers within measurable time set I.

We have, thanks to support restriction in the scheduler, µD(σ, L×R+×S) = 1,
however µD is just defined for the FL×R+×S generators. The extension to the
whole σ-algebra is standard and follows by applying Carathéodory Extension
Theorem [14, Theorem 1.3.10] to the field of finite disjoint unions of measurable
rectangles [14, Problem 2.6.1].

Lemma 1 (Combined transition is a probability measure). Given a
CTMDP C and a finite path σ, the combined transition µD(σ, ·) as defined in (1)
extends uniquely to a probability measure on FL×R+×S.

Additionally we deduce the following lemma, where the only if implication is
given by Lemma 1 and the if implication can be established by considering
Definitions 2 and 4.

Lemma 2. Given a CTMDP C and scheduler D, ∀σ ∈ FPath∗ , it is the case
that D(σ, ·) : FL → [0, 1] is a measure iff ∀σ ∈ FPath∗ , we have µD(σ, ·) :
FL×R+×S → [0, 1] is a measure.

Next we prove that combined transition measurability is inherited from scheduler
measurability and vice versa, and this will be crucial to integrate and disintegrate
a probability measure on timed paths.

Theorem 1 (Combined transition measurability). Given a CTMDP C
and scheduler D, ∀A ∈ FL, it is the case that D(·, A) : Path∗ → [0, 1] is mea-
surable iff ∀M ∈ FL×R+×S, we have µD(·,M) : Path∗ → [0, 1] is measurable.

Proof. We prove each direction separately.

Only if: Having D(·, A) measurable, function µD(·, A×I ×Q) is measurable in
its first argument because projection functions like last() are measurable, as well
as functions coming from powerset σ-algebras like FS and FL. Closure properties
of measurable functions (sum, product, composition) make the entire expression
measurable.
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We have to extend this result to the whole σ-algebra FL×R+×S . We re-
sort to the good sets principle [14]. Let G = {M ∈ FL×R+×S |
µD(·,M) is a measurable function} and show that the set G forms a σ-algebra.
Let {Mi}i∈N be a disjoint collection such that Mi ∈ G, then by σ-additivity
µD(·,

⊎
i∈N

Mi) =
∑

i∈N
µD(·,Mi), and this is measurable by closure properties

of measurable functions, therefore G is closed under denumerable disjoint union.
It is also closed under complement as µD(·,M c) = µD(·, L×R+×S)−µD(·,M).
Hence all sets in σ(G) are good, and since rectangles are included in G we have
σ(G) = FL×R+×S , concluding µD(·,M) is measurable for all M ∈ FL×R+×S .

If: By hypothesis the function µD(·, A× R+ × S) is measurable for all A ∈ FL,
but is easy to check that µD(·, A× R+ × S) = D(·, A), finishing our result. �

Given the previous results, we can deduce the following corollary.

Corollary 1. Let D be a measurable scheduler on CTMDP C. D is a transition
probability iff µD is so.

From now on we use canonical product measure theory [14, Sections 2.6, 2.7] to
define finite and infinite timed path probability measure, where the combined
transition plays a central role.

Definition 5 (Probability measure for measurable rectangle finite
paths). Let C be a CTMDP, D a measurable scheduler, and µD their combined
transition. The probability measure for finite paths consisting of measurable
rectangles PrD is given inductively as follows:

Pr0
D(S0) = CPrinit(S0) , (2)

Prn+1
D (Λ ×Mn+1) =

∫
σ∈Λ

µD(σ,Mn+1)dPrn
D(σ) . (3)

where Prinit is the initial distribution, Λ is a measurable rectangle of FPathn ,
and Mn+1 ∈ FL×R+×S.

Combined transitions are measurable, thus the above Lebesgue integral is well-
defined. However, the definition only captures the measurable rectangles and we
have to extend the measure to the complete σ-algebra. The unique extension of
Prn

D is given by [14, Theorem 2.6.7].

Lemma 3 (Probability measure for finite paths). For each n there is a
unique probability measure Prn

D over the σ-algebra (Pathn,FPathn) that extends
Prn

D defined in (2),(3).

Note that Prn
D is not a probability measure for finite paths but a denumerable

set of probability measures one for each path length. They can be put together
in a single probability measure space, namely the infinite timed path measure
space (Pathω,FPathω ,Prω

D) [14, Theorem 2.7.2] [15, Ionescu-Tulcea Theorem].
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Lemma 4 (Probability measure for infinite paths). Given the measurable
space (Pathω,FPathω ), if we define a probability measure on measurable rectangle
bases as in Definition 5, then there is a unique probability measure Prω

D on
FPathω such that for all n, Prω

D(CΛ) = Prn
D(Λ) with Λ ∈ FPathn.

The previous results can be summarized in the following theorem.

Theorem 2 (Soundness). Given a measurable scheduler D over CTMDP C,
then a probability measure Prω

D over FPathω can be constructed.

Lemma 3 and Lemma 4 define probability measures for each of the disjoint
measurable spaces (�n∈N(Pathn,FPathn))�(Pathω,FPathω ). A unifying measure
(that is not a probability) on the disjoint union space can be defined in a standard
way and is denoted by PrD. It is important to remark that under this way of
constructing Pr , there is no CTMDP that can “hide” a nonmeasurable scheduler,
namely having a well defined timed path probability, implies that the combined
transition is measurable, and by Theorem 1 this implies a measurable scheduler.

5 Meaningful Schedulers

In the previous section we have defined a measure on paths induced by mea-
surable schedulers by using measure theoretic results and in particular abstract
Lebesgue integration [14]. Now we examine the integral in more detail and char-
acterize various classes of measurable schedulers that respect more than just
the initial probability distribution over states. This boils down to investigate
basic properties of abstract Lebesgue integrals over combined transitions. These
classes of schedulers are of special interest because they comprise all schedulers
that contribute to, e. g., particular reachability properties like: “what is the max-
imum probability to reach a set B of states within t time units” [8].

The following results are taken from [14] and give the theoretical background
for our observations. Each nonnegative Borel measurable function f is the limit
of a sequence of increasing simple functions that are nonnegative and finite-
valued [14, Theorem 1.5.5]. And so, given a measurable scheduler D the combined
transition µD(·,M) is measurable for each M ∈ FL×R+×S and is the limit of
an increasing sequence of simple functions, say, µi

D(·,M). Formally, we define
µi

D(·,M), for fixed M ∈ FL×R+×S as

µi
D(σ,M) .=

k − 1
2i

if
k − 1

2i
≤ µD(σ,M) <

k

2i
, k = 1, 2, . . . , 2i . (4)

Due to convergence properties of the abstract Lebesgue integral [14, Theo-
rem 1.6.2] it holds that Prn

D(Λ ×M) = limi�→∞
∫

σ∈Λ
µi

D(σ,M)dPrn−1
D (σ), i. e.,

the probability distribution over infinite paths induced by D coincides with the
limiting sequence of integrals over µi

D. Recall, that the probability measure over
infinite paths is defined w.r.t. finite path-prefixes. Thus we deduce for given Λ
with |Λ| = n− 1.
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Prn
D(CΛaIs) =

∫
σ∈Λ

µD(σ, (a, I, s))dPrn−1
D (Cσ)

= lim
i�→∞

∫
σ∈Λ

µi
D(σ, (a, I, s))dPrn−1

D (Cσ)

= lim
i�→∞

⎡⎣ 2i∑
j=1

j − 1
2i

· Prn−1
D (Ai

j)

⎤⎦ , (5)

where Ai
j

.=
{
σ ∈ Λ | j−1

2i ≤ µD(σ, (a, I, s)) < j
2i

}
. The summation in Equa-

tion 5 is a direct consequence of the definition of Lebesgue integration over
simple functions. As a result we see, that the induced probability measure eval-
uates to zero iff the limiting sequence evaluates to zero.

Almost Always Measure Zero Schedulers. First of all we characterize the class
of schedulers that gives measure zero to almost all sets of paths of a given
CTMDP C. We refer to the schedulers of this class as almost always measure
zero schedulers. In this class we summarize all schedulers for which it is not
possible to find cylinders on which they give positive probability. We restrict
to particular cylinders as, e. g., cylinders Cs, s ∈ S give for each scheduler D
that Prω

D(Cs) equals Prinit(s). Dependent on scheduler D we can always give at
least one cylinder base Λ of length two such that PrD(CΛ) is positive, e. g., for
Λ = s0a1I1s1, where I1 is a right-open interval with |I1| > 0 and D(s0, {a1}) > 0.
This motivates the following definition.

Definition 6 (Almost always measure zero scheduler). We call scheduler
D almost always measure zero scheduler (AAMZ) iff PrD(CΛ) = 0 for all Λ
with |Λ| ≥ 2.

The probability measure Prω
D on the set of infinite paths induced by scheduler D

evaluates to 0 iff µD equals 0 a.e. [PrD]. Due to the inductive definition of Prω
D it

can be observed, that µD(σ′, (a′, I ′, s′)) = 0 at some stage of the computation for
all (σ′, (a′, I ′, s′)). We now describe for which type of schedulers this is generally
true. For this we use the notion of time abstract paths and show that AAMZ
schedulers do not give positive probability to all paths σ with corresponding
time abstract path σ′ that is observable in the system. We put this restriction in
our analysis since the probability measure of unobservable paths is always zero,
independently of the scheduler. Thus, the probability measure only depends on
the set of time points I that has to be considered.

Based on I we compute the sojourn time distribution inside of the combined
transition. As sojourn times are distributed according to negative exponential
distributions, this reduces to the standard computation of a Riemann integral.
Thus it is sufficient to investigate when this integral evaluates to zero which is
the case for all point-intervals I. Thus, if I comprises only point-intervals the
probability measure will evaluate to zero. This means, if we can not group paths
together in a set Λ′ for which D behaves friendly, the probability measure will
not be positive.
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Definition 7 (Friendly scheduler). Let σ = s0a1t1s1 . . . aktksk be an arbi-
trary finite path. We say that D behaves friendly on σ iff

∀ti : ∃Ii : ti ∈ Ii ∧ |Ii| > 0 ∧ ∀t ∈ Ii : D(s0a1t1s1 . . . aitsi, {ai+1}) > 0, (6)

where Ii is an interval on R+.

A scheduler that does not behave friendly on path σ is called unfriendly. We can
establish the following lemma.

Lemma 5 (Almost always measure zero). If D behaves unfriendly on all
finite paths σ then D is an AAMZ.

Suppose D is a scheduler behaving unfriendly on all finite paths. Further assume
that we have as cylinder base Λ = s0a1I1s1 . . . akIksk. It holds for D (by Defi-
nition 7) that Ii cannot be partitioned into intervals Ij

i with |Ij
i | > 0 such that

D(s0a1t1s1 . . . aitisi, {ai+1}) > 0 for all ti ∈ Ij
i . As a consequence, we can only

partition Λ into singular paths σ but Prω
D(Cσ) = 0.

Restricted Class of Schedulers. Now we discuss a restricted class of schedulers
that gives positive probability to particular sets of infinite paths. This restriction
depends on the property we want to check for a given CTMDP, i. e., when
checking a timed reachability property like “what is the maximum probability
to reach set B within time t” we are only interested in schedulers that contribute
to that probability in a sense that they give positive probability to all sets of
paths hitting B before time t. It is thus sufficient to consider schedulers that
behave friendly on at least one time abstract path that hits B.

The following example shows how simple the computation of the probability
measure is, when the given scheduler behaves friendly on the given set of paths.
Assume that Λ = s0a1I1s1 . . . akIksk is a given set of finite paths (which all
share the same time-abstract path), where Ii is a nonsingular interval of length
greater than 0. Now suppose scheduler D is such that each decision is consistent
in each of the Ii, i. e., D(s0a0t0s1 . . . ait

m
i si+1) = D(s0a0t0s1 . . . ait

n
i si+1) for all

tmi , tni ∈ Ii. The probability of cylinder CΛ induced by D is given by

Prω
D(CΛ) = Prω

D(CΛk−1akIksk
)

=
∫

σ∈Λ′
µD(σ, (ak, Ik, sk))dPrω

D(Cσ)

=
∫

σ∈Λ′
1Λ′(σ)µD(σ, (ak, Ik, sk))dPrω

D(Cσ)

= µD(Λ′, (ak, Ik, sk)) · Prω
D(CΛ′ )

...
= Prinit(s0) · µD(s0, (a1, I1, s1)) · µD(s0a1I1s1, (a2, I2, s2)) · · · ·

·µD(s0a1I1s1 . . . ak−1Ik−1sk−1, (ak, Ik, sk)) ,

where we use, e. g., D(Λ′) to denote D(σ) for arbitrary σ ∈ Λ′. In this case non
zero probability is given as long as D(s0a1I1s1 . . . aiIisi, {ai+1}) > 0 which is a
weak form of a friendly behaving scheduler.
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Simple Scheduler. In this section we give the definition of an important class of
schedulers, namely simple schedulers. Simple functions are functions that take on
only finitely many different values. Along this line we define simple schedulers to
have a finite range only, too. In particular, simple scheduler D gives a partition
P of the set of finite paths in finitely many blocks Bj , for j, n ∈ N with n > 0 and
j ≤ n. Given arbitrary block Bj of P it holds that D(σ) = D(σ′) for all σ, σ′ ∈
Bj

i . Thus, a simple scheduler D is a simple function on the set of finite paths.
As a direct consequence, it can be observed that when D is simple, µD is also a
simple function in its first argument, i. e., µD(·,M) is a simple function for given
M ∈ FL×R+×S . As we have discussed earlier in this section every measurable
combined transition is the limit of simple combined transitions. This, and the
fact that each simple combined transition can only be generated by a simple
scheduler leads to the result that the set of simple schedulers can be used to
generate arbitrary measurable schedulers and thus, this class is probabilistically
complete.

Simple schedulers can be partitioned in two sets, namely friendly simple and
AAMZ simple schedulers. An easy example of a friendly simple scheduler is as
follows. Suppose label a is in Ls for all s ∈ S. A scheduler that always chooses
a with probability 1 is friendly and simple. As an example of an AAMZ let D
be a scheduler and µ1, µ2 ∈ Distr(L). When D schedules for all σ where t|σ|
is an irrational number µ1, and µ2 otherwise, then D is simple and an AAMZ
scheduler. Simplicity follows from the fact that D is only supposed to decide
between µ1 and µ2. There exists no path σ such that Equation 6 can be fulfilled
for D, thus D is an unfriendly scheduler and by definition an AAMZ scheduler.

6 Deconstructing Timed Path Probability

In Section 4 a measure PrD for finite and infinite paths was constructed from a
measurable scheduler D. The goal now is to recover a measurable scheduler from
an arbitrary probability measure Prω (note there is no subscript D indicating
the scheduler generating it) on the infinite timed path σ-algebra. This shows
that measurable schedulers are sufficient to generate all quantitative behaviors
of a CTMDP.

Given a CTMDP not every Prω ∈ Distr(Pathω) is related or compatible with
it. For example in the CTMDP C below, a probability measure Prω such that
Prω(s0a[0, 1]s1a[0, 1]s1) > 0 is not compatible with C. We postpone the def-
inition of compatibility until we settle down some continuous space measure
theoretic results.

s0
1
a

�� s1

1
b

��

For a given timed path σ finishing at s, we are aiming at identifying two inde-
pendent random sources: the scheduler selecting a label after history σ, and the
sojourn time probability induced by the rate matrix.
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Given Prω, the tool to compute this product probability is a conditional
probability, because we want to know the probability of the event CσaIs given
that event Cσ happened.

Prω(CσaIs′ | Cσ) =
Prω(CσaIs′ ∩ Cσ)

Prω(Cσ)
= D(σ, {a}) · R(s, a, s′)

∫
I

e−R(s,a,S)·tdt . (7)

For continuous systems like CTMDPs the numerator will usually be zero, so we
resort to the continuous version of conditional probability the Radon-Nikodym
derivative [16]. For this, some definitions are needed.

Definition 8. The marginal of Prω for the first n steps or coordinates is Prn ∈
Distr(Pathn) where Prn(Λ) .= Prω(Λ× (L×R+×S)ω) = Prω(CΛ) and |Λ| = n.

Definition 9. Given two probability measures µ, ν ∈ Distr(X), we say that µ is
absolutely continuous with respect to ν, notation µ 4 ν, if ∀A ∈ FX , ν(A) =
0 ⇒ µ(A) = 0.

It is straightforward to see Prn+1(· × M) 4 Prn, ∀M ∈ FL×R+×S , and this
is the condition to apply Radon-Nikodym [14, Theorem 2.2.1] to obtain (con-
tinuous) conditional probability fn : Pathn × FL×R+×S → [0, 1], such that
∀Λ ∈ FPathn ,M ∈ FL×R+×S :

1. fn(·,M) : Pathn → [0, 1] is measurable,
2. Prn+1(Λ×M) =

∫
Λ fn(σ,M)dPrn(σ).

Note that conditional probability is defined up-to sets of Prn-measure 0, there-
fore there are (potentially) infinite versions of it. This object shares with tran-
sition probability the measurability in its first argument. However if the mea-
surable space is not restricted conveniently, it may be the case that from all
versions of the conditional probability, none of them is a probability measure in
its second argument [17, Section 6.4] [18, Problem 33.13]. Note this would be
inconvenient for our purposes since equation (7) extends straightforwardly to a
probability measure for all timed paths σ.

In our particular measure space (product of discrete spaces and positive reals),
transition probabilities exists among conditional probabilities, and according
to [13,19] we use disintegration. Namely Prω can be disintegrated into transition
probabilities, and this is where the compatibility with CTMDP can be defined.

Lemma 6 (Disintegration). Given a probability measure Prω ∈
Distr(Pathω), then there is a transition probability µ : Path∗×FL×R+×S → [0, 1]
unique Prω-almost everywhere, that generates this probability measure.

Proof. Using the same arguments of conditional probability we have for each
M ∈ FL×R+×S there is a measurable function µn(·,M) : Pathn → [0, 1] such
that ∀Λ ∈ FPathn :

Prn+1(Λ ×M) =
∫

Λ

µn(σ,M)dPrn(σ) (8)
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From all the versions µn has, there is transition probability if the underlying
space is analytic [20, Theorem 2.2] (the existence argument is over regular con-
ditional probabilities but this problem is equivalent to transition probabilities [19,
Theorem 3.1]). Examples of analytic spaces includes the discrete ones and the
reals [9], and adding the fact that analytic spaces are closed under finite and
denumerable product, we conclude FPathn is a space where we can choose a
particular version of µn being a transition probability. The union ∪0≤nµ

n is de-
noted as µ : Path∗ ×FL×R+×S → [0, 1] and gives the transition dynamics of the
CTMDP.

Finally using Pr0 ∈ Distr(S) and µ, by [14, Theorem 2.6.7] expression (8)
extends uniquely to the marginals Prn. As Prω(CΛ) = Prn(Λ), by [14, Theorem
2.7.2] Prω is the unique extension of this marginals to the infinite timed path
probability measure, concluding that Pr0 and µ generate Prω. �

Having the transition probabilities underlying Prω, we can state precisely what
compatible means.

Definition 10 (Compatibility). Given a CTMDP C, we say probability mea-
sure Prω on FPathω is compatible with C if: i) Pr0 = CPrinit , ii) there is some
scheduler D and transition probability µ from Lemma 6 that satisfies:

µ(σ, {a} × I × {s′}) = D(σ, {a}) ·R(last(σ), a, s′)
∫
I
e−R(last(σ),a,S)·tdt . (9)

It is clear that Definition 4 satisfies (9), and as both are additive in its second
argument’s first and third component, it is easy to show that µ(σ,A×I ×Q) =
µD(σ,A × I ×Q). Using Lemma 1, the main theorem follows.

Theorem 3 (Completeness). Given a probability measure Prω over FPathω

compatible with CTMDP C, then the underlying transition probability is gener-
ated by some measurable scheduler.

Following the discussion of Section 5 it can be observed that given a positive
probability measure Prω for, e. g., CΛ with |Λ| ≥ 2, yields a friendly scheduler
that generates the underlying transition probability. In contrast, when Prω is
almost always zero in the sense of Definition 6 the obtained scheduler falls in
the class of AAMZ schedulers.

7 Conclusion

This work studies CTMDPs where external nondeterminism is resolved through
timed history-dependent randomized schedulers. Taking time into account is the
key difference that makes continuity and its related problems unavoidable, and
this is where measurability issues arise.

We have obtained a complete characterization of those measurable schedulers,
first using them to construct (integrate) a probability measure on timed paths,
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and later to deconstruct (disintegrate) an arbitrary probability measure on timed
paths compatible with the CTMDP into a measurable scheduler. We showed
that friendly schedulers generate positive probability measures and, vice versa,
deconstructing positive measures yields friendly schedulers. We also showed an
easily definable and probabilistically complete subclass of measurable schedulers.

As mentioned in Section 2, most of the results presented in this paper, how-
ever, do also carry over to less restrictive systems, e. g., stochastic transition
systems [9]. We leave the consideration of a similar characterization of sched-
ulers and the precise adaption of definitions and theorems to future work.
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