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Abstract. Diffusion weighted magnetic resonance (DWMR or DW) imaging is
a fast evolving technique to investigate the connectivity of brain white matter by
measuring the self-diffusion of the water molecules in the tissue. Registration is
a key step in group analysis of the DW images that may lead to understanding
of functional and structural variability of the normal brain, understanding disease
process, and improving neurosurgical planning. In this paper, we present a new
method for registering DW images. The method works directly on the diffusion
weighted images without using tensor reconstruction, fiber tracking, and fiber
clustering. Therefore, the performance of the method does not rely on the accu-
racy and robustness of these steps. Moreover, since all the information in the orig-
inal diffusion weighted images is used for registration, the results of the method is
robust to imaging noise. We demonstrate the method on intra-subject registration
with an affine transform using DW images acquired on the same scanner with the
same imaging protocol. Extension to deformable registration for images acquired
on different scanners and/or with different imaging protocols is also discussed.

This work is part of the National Alliance for Medical Image Computing, funded
by the National Institutes of Health through the NIH Roadmap for Medical Re-
search, Grant U54 EB005149. Information on the National Centers for Biomed-
ical Computing can be obtained from http://nihroadmap.nih.gov/bioinformatics.

1 Introduction

Diffusion is a process caused by Brownian motion of molecules. From the microscopic
viewpoint and within a small enough time period, the motion is completely random,
governed by thermal dynamics. When observed at a relatively large scale, the diffusion
is often limited by the structure of the substance in which the molecules reside. By in-
vestigating the diffusion properties of molecules in a sample, one can infer the structure
of the sample. Diffusion weighted magnetic resonance imaging is an emerging modal-
ity that is able to measure the diffusivity in a sample [1,2]. Its use in the area of medical
imaging has drawn increasing interest over the past decade. DW imaging is a powerful
tool for neurologists in mapping the brain white matter fibers and has a great poten-
tial to elicit the functional organization, development, aging, and disease process of the
brain [3,4,5,6]. DW imaging also plays an important role for neurosurgical planning [7].

Group analysis is essential for understanding normal variability and detecting abnor-
malities. It involves transforming images to a canonical coordinate frame, normalizing
gross inter-subject morphological differences [8]. In the general framework of image
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(a) (b) (c) (d)

Fig. 1. T2-weighted images [(a) and (b)] and DW images [(c) and (d)] of the same subject (regis-
tered and interpolated to the same axial slice) from two different sessions. Although (a) and (b)
show good alignment, (c) and (d) differ due to DW intensity dependency on patient orientation.

registration, a transformation is sought to maximize the similarity between the trans-
formed moving image and the fixed image. One premise is that both images contain the
same information that is independent of the transformation. This premise, however, is
not true for DW images whose intensity values also depend on the patient orientation,
and therefore on the transformation (Fig. 1). The dependence of the DW measurements
on patient orientation makes DW image registration fundamentally different from con-
ventional registration of T1 and T2 weighted images.

Previous approaches for registering DW images usually decompose the DW images
into an orientation independent part (e.g., a fractional anisotropy (FA) map) and an
orientation dependent part (e.g., a diffusion tensor map or a principal direction map).
The orientation independent parts are registered and the orientation dependent parts are
reoriented by the transformation from the orientation independent part [9,10,11,12,13].
Note, the orientation independent parts are usually derived from a tensor estimation or
are based on an extra T1 acquisition. Therefore, the accuracy of DW image registration
depends on these steps.

In this paper, we develop a unified framework for DW image registration, which
works directly on the DW images without requiring tensor reconstruction, or co-regis-
tration of DW images with corresponding T1 weighted images. We demonstrate the
new algorithm on intra-subject registration using affine transforms. We also compare
the proposed algorithm with an algorithm based on reorientation of principal diffusion
directions. Finally, we discuss how this new registration framework can be extended
into more general deformable registration.

2 Background

In organized tissues, such as brain white matter, water molecules undergo anisotropic
self diffusion, which is often modeled by the self-correlation function P (r|r + R, t)
(using the nomenclature from [1]). The self-correlation function can be thought of as
the probability that a molecule initially at r will move to location r + R after a time of
t. The average propagator is defined as:

P̄ (R, t) =
∫

P (r|r + R, t)ρ(r)dr, (1)



596 X. Tao and J.V. Miller

where ρ(r) is the proton density. Under certain assumptions (e.g., narrow gradient
pulse), the average propagator is related to the measured MR diffusion signal by the
Fourier relationship:

E(q) =
∫

P̄ (R, t)ei2πq·RdR, (2)

where q = (2π)−1γδg, γ is the gyromagnetic ratio for the protons, δ is the diffusion
gradient duration, and g is a diffusion gradient vector. The above equation has been
normalized such that E(q) = 1 for q = 0. In practice, one or more T2-Weighted
baseline images are acquired to properly normalize the diffusion weighted images. The
MR signal, E(q), is used to reconstruct the average propagator, P̄ (R, t), based on a
model for diffusion (e. g., anisotropic Gaussian diffusion). When studying orientational
structure of tissue, it is often sufficient to limit the diffusion gradient vectors to be unit
vectors. Under these conditions, E(q) in Eq. (2) can be viewed as samples drawn from
a function defined on the unit sphere. In the following, we will denote a DW image as
I(r,g), with r ∈ �3 and ‖g‖ = 1.

R

R

g

Affine

transform

T
g R•

g T(R)•

g

R

: diffusion gradient direction

: displacement along a fiber

r
T(r)

g =T(g)/||T(g)||’

Fig. 2. A voxel is transformed by an affine transform T. Under such a transform, the projection
of the displacement vector R on the diffusion gradient direction changes from g ·R to g ·T(R).

From Eq. (2), we can see that the diffusion MR signal depends on the relative position
of the tissue sample and the diffusion gradient vector g. Usually g is defined in the
world coordinate system and is fixed for a given imaging protocol. Therefore, I(r,g)
depends on the patient orientation with respect to the scanner. For a constant g and a
given anatomic location, the MR signal, I(r,g), varies with the orientation of r with
respect to g. This is illustrated in Fig. 2. The orientation dependency of the DW images
differs from conventional T1-weighted and T2-weighted images and makes it difficult
to compare DW images directly. In Section 3.1, we describe an angular interpolation
algorithm that enables a direct comparison of DW images. The angular interpolation
algorithm is the basis of our registration method for DW images.

3 Registration Framework

Many image registration algorithms exist in the literature. The majority can be formu-
lated as a general optimization problem. Given two images in 3-dimensional space, a
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fixed image I1(r) and a moving image I2(r), r ∈ �3, a transformation T is sought to
minimize a cost function:

E [T] = D [I1(r),T ◦ I2(r)] , (3)

where D is a measure of difference between two images. D can be the mean squared er-
ror between image intensities, distances between corresponding pairs of landmarks, or
information theoretic measures such as mutual information. Generally speaking, there
are four major components for a registration task [14]: a metric [D in Eq. (3)] that de-
fines the difference measure between images; a transformation T that defines the class
of transformation applied to the moving image, which may be linear (e. g., affine trans-
form) or deformable (e. g., B-Spline deformable transform); an optimizer that searches
the parameter space of the transformation; and an interpolation method that interpolates
image intensities in the transformed moving image.

3.1 Angular Interpolation of Diffusion Weighted Images

As shown in Fig. 1, registered and resampled T2-weighted images can accurately align
the anatomy, yet the resampled DW images can be quite different due to the DW MR
signal’s dependency on patient orientation. To address the orientation dependency, we
need to transform diffusion weighting gradient directions in accordance with the trans-
form that aligns the patient anatomy. We will describe an angular interpolation algo-
rithm in this section.

The MR diffusion signals E(g) is a function defined on the unit sphere. The mea-
surements are samples of this function in the given diffusion gradient directions. Given
N diffusion gradient directions gi, with ‖gi‖ = 1, the intensity of DW image with a
diffusion gradient direction k at a spatial location r is

I(r,k) =

(
N∑

i=1

wiI(r,gi)

)
/

(
N∑

i=1

wi

)
, (4)

where wi = e−d2/2σ2
, with d = cos−1 |k · gi| being the geodesic distance on the

sphere between the gradient direction and the interpolated direction, and σ being a
parameter that controls the smoothness of the interpolation operator. Other weighting
schemes based on angular difference can also be used. By taking the absolute value
of the dot product of k and gi, we assume the image I(r,g) is symmetric in g, i.e.,
I(r,g) = I(r, −g). Using the interpolation of Eq. (4), we can estimate a diffusion MR
measurement in any direction, given that the underlying orientational structure of tissue
is fairly smooth. We note that when k = gi for some i, Eq. (4) becomes a smoothing
operation on the DW images, which can serve as a pre-processing step to reduce noise.
This angular smoothing operation uses information at a given voxel from all diffusion
gradient directions. Moreover, it does not spatially average across voxels.

3.2 Resampling DW Images Using Angular Interpolation

The angular interpolation algorithm can be used to transform and resample DW images
to have consistent diffusion gradient directions. Given an affine transform T, we can
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represent it by a 3 × 3 transformation matrix, M , and a translation vector, t. Using
this representation, a point r and a diffusion gradient vector g are transformed into (see
Fig. 2)

r′ = M · r + t, and g′ = M · g/‖M · g‖. (5)

The vector g′ is normalized to have unit length because we only care about its direction.
Therefore, an affine transform T will transform a DW image I(r,g) into

I ′(r,g) = I

(
M−1(r − t),

M−1g
‖M−1g‖

)
(6)

using Eqs. (4). Note if we can register T2 weighted image, we could use the resulting
transformation to reorient the DW images using the above equation.

3.3 Registration of Diffusion Weighted Images

Although it is possible to use T2 weighted images to obtain a transform that aligns two
DW image sets, much more information is contained in diffusion weighted images. By
using the complete information, we will get more accurate and robust results. We now
describe a method to directly register DW images using the angular interpolation. For
the purpose of discussion, we will use a mean squared error (MSE) and an affine trans-
form in the following. Extension to other image metric is straightforward. Extension to
deformable registration can be achieved by approximating a deformable transform with
locally affine transforms.

Given two sets of DW images, I1(r) and I2(r), r ∈ �3, that consist of volumetric
images in M and N diffusion gradient directions, respectively. The volumetric images
are denoted as

I1(r,g
(1)
i ) and I2(r,g

(2)
j ), i = 1, · · · , M, j = 1, · · · , N.

Note that I1(r) and I2(r) can have different gradient direction. Therefore, the proposed
method is able to register DW images acquired with different protocols. The intensity of
the DW images are properly normalized and bias corrected. So, mean square error can
be used as an image similarity measure. The objective of registration is to find the affine
transformation T (composed of a transformation matrix M and a translation vector t)
that minimizes the MSE between I1(r) and transformed I2(r), which is given by [see
Eq. (6)]

E(M, t) =
M∑
i=1

∫

r

⎡
⎣I1

(
r,g(1)

i

)
− I2

⎛
⎝M−1(r − t),

M−1g(1)
i∥∥∥M−1g(1)
i

∥∥∥

⎞
⎠

⎤
⎦

2

dr. (7)

The transform, T, not only maps a point r in the fixed image domain to an anatom-
ically corresponding point r′ in the moving image domain, but also interpolates the
DW image intensity at r′ in the properly transformed diffusion gradient direction using
measurements at that location from all directions. Effectively, the spatial transforma-
tion “moves” the patient so that the same anatomic feature is at the same location with
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respect to the scanner, and the angular interpolation “rotates” gi so that a consistent
relationship between gi and tissue orientation is achieved. We use a gradient descent
method to solve Eq. (7). Other optimization algorithms can also be used.

The registration algorithm is implemented using the Insight Segmentation and Reg-
istration Toolkit (ITK) [15], which provides rich sets of transformations, image metrics,
optimizers, and interpolation algorithms that can be customized for different applica-
tions. In our implementation, we use an affine transform, a mean square error metric,
and a gradient descent optimizer. The transformed images are interpolated using a lin-
ear interpolation algorithm. The new angular interpolation algorithm is used to compute
MSE between DW images.

4 Experimental Results

Two sets of DW images were acquired for one subject with the same imaging protocol.
Each set of DW images has 5 baseline T2 weighted images and 30 diffusion weighted
images. The image resolution is 0.9375 × 0.9375 × 2.5mm3. The two sets of images
are denoted as I1 and I2 for session one and session two. I1 is used as the fixed image.
I2 is registered to I1, resulting in a transform T. Based on our experiments, we fixed
σ to be the average of the geodesic distances between neighboring directions in all the
experiments.

Fig. 3 shows the axial slices of a DW image with same diffusion weighting gradient
from I1, transformed I2, and transformed I2 with angular interpolation. From the image,
we can see that angular interpolation introduces blurring, but the image with angular
interpolation does reveal same tissue orientation at same place. The regions highlighted
by the boxes are zoomed in for better visualization in each images.

(a) (b) (c)

Fig. 3. An axial slice from I1 (a); same slice from transformed I2 (b); and transformed I2 with
angular interpolation (c). The images have same diffusion weighting gradient w.r.t. the scanner.

Fig. 4 (a) shows the fractional anisotropy map of an axial slice of I1; Fig. 4 (b)
shows the same slice of the transformed FA map of I2; and Fig. 4 (c) shows the FA map
computed from the registered I2. The same structures can be seen in all the images.
Because of the extra step of angular interpolation, the FA map showed in Fig. 4 (c) has
less contrast.

In Fig. 5, tractography results are overlaid on a coronal slice of FA maps. We used a
streamline based tractography algorithm similar to [16]. For all tractography, the same
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(a) (b) (c)

Fig. 4. An axial slice of the FA map of I1 (a), the transformed FA map of I2 (b), and the FA map
of the registered I2 (c)

(a) (b) (c)

Fig. 5. Fiber tracts of the fixed DW images (a), registration using only T2 weighted images (b),
and registration using entire DW image set (c)

set of parameters are used; the seed points are located near mid-sagittal plane and have
the same coordinates. Fig. 5 (a) shows fiber tracts obtained from the fixed image I1;
Fig. 5 (b) shows fiber tracts obtained by reorienting principle directions using a method
similar to [9]; and Fig. 5 (c) shows fiber tracts obtained from the registered I2 using
the proposed method. The figures clearly show that fiber tracts in (a) and (c) reveal the
same white matter structures. In (b) the fiber tracts deviate from the underlying WM
structures, although the FA map look similar to the ones in (a) and (c). The deviation is
primarily due to the inconsistency between the registration and tensor reorientation.

5 Summary and Discussion

In this paper, we presented a novel method for registering diffusion weighted MR im-
ages. The method works directly on the DW images without using tensor reconstruction
or referencing co-registered T1 weighted images. We developed an angular interpola-
tion algorithm that allows us to estimate DW image intensity at a given location in any
direction from the acquired DW images. This interpolation algorithm effectively rotates
the patient into a consistent orientation so that direct comparison of DW images with
same diffusion gradient direction is meaningful. We showed preliminary results of reg-
istering DW images of the same subject acquired in two imaging sessions. Because of
the smoothing effect of the angular interpolation, the DW images after interpolation is
smoother and the FA of the registered images is smaller. The principal diffusion direc-
tions are well preserved, indicated by fiber tracking results.

There are several advantages of the proposed method. Firstly, by using all the infor-
mation in the original DW images, the registration is robust. The cost function [Eq. (7)]
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depends on DW images in all diffusion directions. It is minimized only when all images
are consistently aligned. Secondly, the method does not depend on tensor reconstruc-
tion or reference to co-registered T1 weighted images. Therefore, its performance does
not rely on the accuracy and robustness of these steps. And thirdly, the method fits well
in the unified registration framework without requiring an extra step to reorient tensors
or principal diffusion directions.

Validation is a difficult but important topic for the future. More studies will be done
to compare the proposed method with existing ones. In this paper, we used an affine
transform to register DW images of same subject acquired in two sessions. Extend-
ing the algorithm to non-rigid registration of DW images of different subjects will be
very interesting, and have broader applications. Future work also includes applying the
method to more datasets and studying variability of diffusion properties of the brain
white matter.
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