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Abstract. Cardiac catheter ablation is a minimally invasive medical
procedure to treat patients with heart rhythm disorders. It is useful to
know the positions of the catheters and electrodes during the interven-
tion, e.g. for the automatization of cardiac mapping. Our goal is therefore
to develop a robust image analysis method that can detect the catheters
in X-ray fluoroscopy images. Our method uses steerable tensor voting
in combination with a catheter-specific multi-step extraction algorithm.
The evaluation on clinical fluoroscopy images shows that especially the
extraction of the catheter tip is successful and that the use of tensor
voting accounts for a large increase in performance.

1 Introduction

Cardiac catheter ablation is a procedure to treat heart rhythm disorders (ar-
rhythmias). It involves the insertion of one or more flexible thin tubes, called
electrophysiology (EP) catheters, through small skin incisions, usually in the
groin. These catheters are threaded through blood vessels into the heart. The
EP catheters contain a number of electrodes used to make intracardiac elec-
trograms. Using these electrograms, the firing spot or conduction path causing
the arrhythmias can be identified. A special EP catheter (the ablation catheter)
emits radiofrequency energy to destroy the spot or to block the undesired con-
duction path. The movement of the catheter through the body is guided using
a real-time X-ray fluoroscopy imaging system (Figure [Th).

Catheter ablation is a time-consuming medical procedure, therefore tools to
speed up the process are of great interest. An important tool is the automa-
tization of cardiac mapping, i.e. creating a 3D map of cardiac activation pat-
terns over the entire heart. By using bi-plane fluoroscopy, the 3D position of
the catheters can be estimated and can be used to superimpose the cardiac
activation sequences onto fluoroscopic images. Different research groups and
companies are working on this problem, see e.g. [TJ2I3]. In these papers, segmen-
tation of the catheters, and especially the electrodes, is considered an important
but difficult task to automate. Kynot et al. [I] have proposed an algorithm

R. Larsen, M. Nielsen, and J. Sporring (Eds.): MICCAI 2006, LNCS 4191, pp. 25-[32) 2006.
© Springer-Verlag Berlin Heidelberg 2006



26 E. Franken et al.

(b)

Image
|

Calculate local
feature images

ECG sticker r |g |q Local
EP catheter tip features
Border of the heart Enhance using
steerable tensor voting
EP catheter tip 7 |3 | Enhanced
features
ECG sticker High-level

EP catheter extraction

*CaLheter positions

Fig.1. (a) An example of a typical EP X-ray fluoroscopy image acquired during a
clinical intervention. We only want to detect the EP catheters, not the other visible
elongated structures. (b) Framework of our method. See text for details.

to detect the electrodes of the catheters, but problems remain in associating
the electrodes with the catheters in the image. De Buck et al. [3] constructed
an advanced cardiac mapping system, but still require the user to perform a
manual segmentation of the catheter and the electrodes. Fallavollita et al. [2]
developed a catheter tip detection algorithm based on thresholding of the X-ray
image, but due to the noisy nature of fluoroscopy images, the performance is not
satisfactory.

In our present work we propose a method for automatic detection of EP
catheters in noisy X-ray fluoroscopy images, without the need for any user in-
tervention. Our method detects the catheter bodies as well as the corresponding
electrodes. We restrict ourselves to the detection of catheters in a still image,
i.e. only spatial information is used.

Figure[Ib shows the general framework of our EP catheter extraction process.
The method is divided into three main stages. In the first stage, calculate lo-
cal feature images, we perform preprocessing and use local filtering operations
to calculate a number of local feature images. Because fluoroscopy images are
noisy, these local feature images are unreliable. Therefore, the idea behind the
next step is to use information from a larger spatial neighborhood, compared to
the neighborhood of the local filters, to make the feature images more consis-
tent and specifically enhance the elongated structures. For that purpose we use
steerable tensor voting [4], which is based on tensor voting [5]. In the last stage,
high-level EP catheter extraction, the enhanced feature images generated by the
previous step are used to finally decide where the EP catheters are located. EP
catheter-specific properties are used to discriminate the catheters from other line
structures.

These three stages will be explained in the next sections. The paper will
conclude with an evaluation on clinical images and a discussion.
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2 Local Feature Detection

Prior to any filtering we first apply background equalization to remove disturbing
structures in the background. We apply a morphological closing operation with
a disc-shaped structure element on a slightly blurred version of the input image,
to get an image that only contains background structures. Each pixel of the
original image is divided by the corresponding pixel in this image to cancel out
the background structures.

The second order differential structure of an image gives important informa-
tion about line-like and blob-like structures. Therefore, we construct a Hessian
matrix for each pixel position by calculating second order Gaussian derivatives,
see e.g.[6]. We use the 2 eigenvalues A; and Ay with Ay > Ay and corresponding
eigenvectors e; and es to obtain the following feature images

— A local ridgeness image s(z,y) = max(A1(z,y),0), indicating the likelihood
that the image contains a line segment at position (x,y). We use A; because
its value exactly corresponds to the value one would find when seeking the
maximum response of the second order derivative applied in all different
orientations. We only keep positive values because we know that catheters
are always dark relative to the background.

— A local orientation image 3(x,y) = Ze1(z,y) (where “/£” denotes the angle
of the eigenvector relative to the horizontal direction), indicating the most
likely orientation of a line segment at position (x,y). The orientation of the
first eigenvector corresponds to the orientation at which the response of the
second order derivative is maximum.

— A local blobness image q(z,y) = max(l2(z,y),0), indicating the likelihood
that the image contains a blob-like structure at position (z,y). The motiva-
tion is that Ay > 0 implies that A\; > A2 > 0, which corresponds to a locally
concave shape.

3 Contextual Enhancement by Steerable Tensor Voting

To enhance the noisy local ridgeness and orientation measures, we need a model
for the continuation of curves in images. For tensor voting [5] we need a function
w(x) that indicates the probability that a certain curve passes through position
x, given that the same curve passes the origin (0,0) horizontally. In addition
we want to know the most probable angle v(x) of this curve at position x.
Different choices are possible for w and + []. In this work, we base the choice
on the Gestalt principles [7] of prozimity (closer curve segments are more likely
to belong together) and good-continuation (low curvature is favored over large
curvature), and get the following functions

2

w(x) =e 2020 cos2” ¢ and y(x) =2¢, with x = (rcos¢,rsing) (1)

where o¢x > 0 is the scale (size) of the function (i.e. this parameter controls
the proximity), and v € N determines the angular specificity of the function
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Fig. 2. (a) Example of a stick voting field. Gray scale indicates the value of w(x) (darker
means higher value) and the line segments indicate the orientation «(x). (b) Graphical
representation of a second rank symmetric semi-positive definite tensor. (c¢) Illustration
of tensor voting illustrated for a single voter at position x’, which broadcasts a vote to
its neighbors.

(i.e. this parameter controls the good-continuation). The function for v expresses
the cocircularity constraint, meaning that the most likely connections between
two points (with one orientation imposed) is assumed to be a circular arc. The
model is visualized in Figure Zh.

In tensor voting, w and y are combined to generate a tensorial filter kernel
V : R? — R? x R? (i.e. a function that assigns a 2 x 2 matrix to all spatial
positions), called the stick voting field, as follows

Vi(x) = w(x)e(x) c(x)T  with c(x) = (gfjggg) . 2)
Notice that due to this construction all matrices V(x) have a largest eigenvalue
A1(x) = w(x), and the other eigenvalue Ay(x) = 0.

The input for tensor voting is the local ridgeness image s and orientation image
B and the output of the method is a tensor field. The operation is intuitively
displayed in Figure 2k. The operational definition is

Ulx) = /Q s(x') VA (x — x') dx, 3)

where VA (x) is the tensorial voting field rotated over 3 where rotation is achieved
as follows

sinf3 cosf3

Since s(x) > 0 Vx € (2, cf. the definition in the previous section, and due
to the way V is constructed, cf. (2]), all tensors in the resulting tensor field
U are positive semi-definite and symmetric. From the eigenvalues A1, Ao and
eigenvectors €1, € of these tensors we calculate enhanced feature images §, 5,
and ¢, as follows (omitting spatial coordinates for simplicity)

VP(x) = RsV(R;'0R;!, Ry= (C?Sﬂ—sinﬂ). (4)

F=M—X, fB=s&, G=q-(\—X). (5)

In tensor voting terminology, § is referred to as stickness and is a measure for
orientation certainty, see Figure 2b.
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In the EP catheter detection algorithm, we perform two subsequent tensor
voting steps. The first one is performed on the local feature images s and 3. The
enhancement is not always sufficient. To get more consistent curves, directional
non-maximum suppression (thinning) is applied on the resulting stickness image
to keep the centerlines of the curves, followed by a second tensor voting step
with the thinned image as input.

Equation (@) is not straightforward to implement in an efficient way, due to
the necessity to constantly rotate the voting field V. Therefore we developed a
generic method called steerable tensor voting [4]. The idea is to write the tensorial
voting field as a steerable filter [8] which allows us to implement eq. [B) simply
as a sum of a number of complex-valued convolutions, allowing a reduction
of complexity from O(n?) to O(n?logn) where n is the number of pixels in
one dimension. This algorithm is might also be very suitable to implement on
graphical processing unit (GPU).

4 High-Level Extraction of the EP Catheters

In the last part of the algorithm, we use specific knowledge about EP-catheters
to extract them. We will explain it briefly here, and refer to Figure Bh for a
schematic overview.

The algorithm consists of three modules. The first module is path extraction.
The ridgeness and orientation images § and B are used to perform directional
non-maximum suppression, resulting in an image with curves of 1 pixel thickness.
From this image we extract a number of most salient connected pixel strings (the
paths). If a path exhibits very high curvature or is likely to be part of branching
lines, the path is split to allow proper reconnection in the subsequent steps. From
the resulting paths, a path graph is created, which has connections between paths
whose spatial positions and orientations make it probable that they belong to
the same global elongated object in the image.

The second module is electrode extraction and grouping. From the blobness
image ¢ the most salient local maxima are extracted as electrode candidates. Us-
ing the extracted paths and knowledge of typical distances between electrodes,
a graph is created with connections between all candidates that might be neigh-
boring electrodes on a catheter. Then, we scan for groups of connected electrodes
in this graph that have the best match with the known properties of electrode
spacing on EP catheters. These electrode groups and the extracted paths are
used to create catheter tip paths, describing the curves in the image that connect
all electrodes of a catheter with each other.

The catheter tip is now fully extracted (which might already be enough for
most applications), but in the third module, path grouping, our algorithm also
attempts to extract the entire catheter. Using the catheter tips and the path
graph, different reasonable extensions of the catheter are considered. The best
extension is selected based on a global criterion involving minimization of cur-
vature and change of curvature.
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Fig. 3. (a) Schematic overview of the high-level extraction method. (b) three example
images from the clinical the test set. Upper row: without additional noise. Lower row:
with artificially added multiplicative Poisson noise, which is added to investigate the
noise robustness. (c¢) Extraction results on the test set for low noise and high noise
images, and with and without tensor voting. The colours indicate extracted catheter
tips (%tip), extracted additional catheter segments (%tip+ext), and extracted entire
catheters (% entire). The grey vertical lines with horizontal serifs indicate confidence
intervals of 95%.

5 Results

We implemented the EP catheter extraction algorithm partly in Mathematica
and partly in C4++. The parameters for local feature detection and tensor voting
were optimized on 6 different images using the signal-to-background ratio as
criterion. The parameter values are (512 x 512 pixel images): scale of Gaussian
derivatives 01oca1 = 3.4 pixels, angular specificity of the voting field v = 4, scale
of the voting field o.tx = 15 pixels, and scale of the voting field for the second
tensor voting step o¢ix2 = 7.5 pixels. The parameter of the high-level extraction
part were optimized using a test set of 10 images. Since these test sets are small,
we think that the parameters can be further optimized.
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Fig. 4. EP catheter extraction example. 1 - Original image. 2 - Original image with
additional noise, used as input for this example. 3 - Background equalized image. 4 -
Local ridgeness image. 5 - Blobness image. 6 - Result of first tensor voting step. 7 -
Result of a second tensor voting step. 8 - Extracted paths and electrode candidates. 9
- Final extraction result.

We used an evaluation set of 50 randomly selected X-ray images acquired
during 4 clinical interventions (see Figure Bb), without any image that was used
for parameter tuning. These images contain 103 EP catheters that all contain
from 4 up to 10 electrodes. The catheters were extracted both with tensor voting
and without tensor voting (by simply skipping this step) and both with and
without added multiplicative Poisson noise.

Each catheter extraction result was assigned to one of the following categories:
(1) catheter not detected at all, (2) successful extraction of the tip only, i.e.
the part containing the electrodes, (3) successful extraction of the tip plus an
additional catheter segment with the same length, and (4) successful extraction
of the entire catheter.

Figure Bk displays the results of the catheter extraction, showing that espe-
cially the tip detection is successful. The increase in performance due to tensor
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voting is high. For example, the success rate of catheter tip extraction increased
from 57% to 80% and from 43% to 72% for low and high noise images re-
spectively. The success rates on extraction of tip+extension and extraction of
the entire catheter are still low, especially in noisy images. For clinical practice,
however, tip extraction is most relevant. Figure d shows an example of the entire
EP catheter extraction algorithm.

6 Discussion

We introduced an algorithm for the extraction of EP catheters in fluoroscopy
images. One novelty of this work is that we are able to extract the EP catheter
fully automatically, without an initial seed, by using an advanced EP catheter-
specific high-level extraction algorithm. A further novelty is the use of steerable
tensor voting to contextually enhance our image information, thus creating more
noise robustness, as shown in the evaluation.

The implementation is currently still too slow for clinical use. The algorithm
can, however, be implemented more efficiently. This is an important area of
future research. Finally, it should also be noted that both the extraction results
and the computational performance could be greatly improved by including the
information from previous frames in the image sequence.
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