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Preface

The 9th International Conference on Medical Image Computing and Computer
Assisted Intervention, MICCAT 2006, was held in Copenhagen, Denmark at the
Tivoli Concert Hall with satellite workshops and tutorials at the IT University
of Copenhagen, October 1-6, 2006.

The conference has become the premier international conference with in-
depth full length papers in the multidisciplinary fields of medical image com-
puting, computer-assisted intervention, and medical robotics. The conference
brings together clinicians, computer scientists, engineers, physicists, and other
researchers and offers a forum for the exchange of ideas in a multidisciplinary
setting.

MICCALI papers are of high standard and have a long lifetime. In this vol-
ume as well as in the latest journal issues of Medical Image Analysis and IEEE
Transactions on Medical Imaging papers cite previous MICCAIs including the
first MICCALI conference in Cambridge, Massachusetts, 1998. It is obvious that
the community requires the MICCALI papers as archive material. Therefore the
proceedings of MICCATI are from 2005 and henceforth being indexed by Medline.

A careful review and selection process was executed in order to secure the best
possible program for the MICCATI 2006 conference. We received 578 scientific
papers from which 39 papers were selected for the oral program and 193 papers
for the poster program.

The papers were evaluated by 3 independent scientific reviewers. Reviewer
affiliations were carefully checked against author affiliations to avoid conflicts of
interest, and the review process was run as a double blind process. A special
procedure was devised for papers from the universities of the organizers uphold-
ing a double blind review process also for these papers. A total of 98 % of the
reviews we asked for were received.

The MICCAI program committee consisted of the local organizers, 2 inter-
nationally selected co-chairs, and 15 internationally selected area chairs, each
a leading expert in his/her field. Each area chair was assigned 40 papers from
which he/she formed a recommendation for the program committee based on
the scientific reviews as well as their own assessment.

The entire program committee met in Copenhagen for 2 full days in May 2006.
At this meeting all 578 papers and their corresponding reviews were printed and
discussed. In a first round of discussions the area chairs were divided into 5 groups
of 3. From their joint pool of 120 papers each group identified 12 potential oral
papers, 28 poster papers, and 16 potential poster papers. In the second round
the oral program was made from the resulting 60 potential oral papers. Oral
papers were selected based on their quality, total coverage of MICCAI topics,
and suitability for oral presentation. In parallel the remaining 80 potential poster
papers were considered and 33 papers were accepted for poster presentations.



VI Preface

The entire procedure was designed such that the papers were selected by paper
to paper comparison forcing the committee members to argue for the decision
in each individual case.

We believe a careful and fair selection process has been carried out for MIC-
CAI 2006. Each paper was examined by 3 reviewers, and further scrutinized
by 3-8 program committee members. Our thanks go to the reviewers and area
chairs for their hard work and enthusiasm, and to the two program co-chairs
David Hawkes and Wiro Niessen for their dedication to putting together the
program.

This year’s MICCAI was augmented by more workshops than previously.
Twelve independent workshops were held prior and subsequent to the conference.
These workshops served as a forum for MICCAT subfields and made room for
many more presentations due to their parallel programs. The workshops were
organized for all scientific and most practical matters by the workshop chairs. We
thank the workshop organizers for suggesting, arranging, and managing these
excellent workshops. It is our hope that we will see multiple workshops also
at future MICCAI conferences. Three tutorials were also provided by leading
experts in their fields of research.

We thank the two keynote speakers Terry Jernigan, UCSD and Copenhagen
University Hospital, Hvidovre, Denmark and Thomas Sinkjeer, Director, Center
for Sensory-Motor Interaction, Aalborg University, Denmark. A series of spon-
sors helped make the conference possible. for this they are thanked. Finally, we
thank our 3 general co-chairs Anthony Maeder, Nobuhiko Hata, and Olaf Paul-
son, who provided insightful comments and invaluable support during the entire
process of planning MICCAT 2006.

The greater Copenhagen region in Denmark and the Skane region in Southern
Sweden are connected by the @resund Bridge. The region hosts 14 universities
and a large concentration of pharmaceutical and biotech industry as well as 26
hospitals. This makes Copenhagen the capital of one of the most important life
science centers in Europe.

It was our great pleasure to welcome delegates from all over the world to
Denmark and the city of Copenhagen. It is our hope that delegates in addition
to attending the conference took the opportunity to sample the many excellent
cultural offerings of Copenhagen.

We look forward to welcoming you to MICCAI 2007 to be held October 29 -
November 2 in Brisbane, Australia and chaired by Anthony Maeder.

October 2006 Rasmus Larsen, Mads Nielsen, and Jon Sporring
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Student Awards

Every year MICCAT awards outstanding work written and presented by students.
Both oral and poster presentations are eligible for the awards, and the awards
are presented to the winners in a public ceremony at the conference.

MICCALI 2005 — Palm Springs

At MICCAT 2005 five prizes each valued at 500 USD sponsored by Northern
Digital Incorporation (NDI) were awarded in the following categories

Image segmentation and analysis: Pingkun Yan, MRA Image Segmentation with
Capillary Active Contour

Image registration: Ashraf Mohamed, Deformable Registration of Brain Tumor
Images via a Statistical Model of Tumor Induced Deformation

Computer assisted interventions and robotics: Henry C. Lin, Automatic Detec-
tion and Segmentation of Robot Assisted Surgical Motions

Simulation and visualization: Peter Savadjiev, 3D Curve Inference for Diffusion
MRI Regularization

Clinical applications: Srinivasan Rajagopalan, Schwarz Meets Schwann: Design
and Fabrication of Biomorphic Tissue Engineering Scafolds

MICCAI 2004 — St. Malo

At MICCALI 2004 four prizes each valued at 600 Furos sponsored by Northern
Digital Incorporation (NDI) were awarded in the following categories

Image segmentation and processing: Engin Dikici, Quantification of Delayed En-
hancement MR Images

Image registration and analysis: Dimitrios Perperidis, Spatio-Temporal Free-
Form Registration of Cardiac MR Image Sequences

Image guided therapy and robotics: Danail Stoyanov, Dense 3D Depth Recov-
ery for Soft Tissue Deformation During Robotically Assisted Laparoscopic
Surgery

Image Simulation and Display: Davide Valtorta, Dynamic Measurements of Soft
Tissue Viscoelastic Properties with a Torsional Resonator Device
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Abstract. A novel method for vertebral fracture quantification from X-ray im-
ages is presented. Using pairwise conditional shape models trained on a set of
healthy spines, the most likely normal vertebra shapes are estimated conditional
on all other vertebrae in the image. The differences between the true shape and
the reconstructed normal shape is subsequently used as a measure of abnormal-
ity. In contrast with the current (semi-)quantitative grading strategies this method
takes the full shape into account, it uses a patient-specific reference by com-
bining population-based information on biological variation in vertebra shape
and vertebra interrelations, and it provides a continuous measure of
deformity.

The method is demonstrated on 212 lateral spine radiographs with in total 78
fractures. The distance between prediction and true shape is 1.0 mm for unfrac-
tured vertebrae and 3.7 mm for fractures, which makes it possible to diagnose
and assess the severity of a fracture.

1 Introduction

Osteoporosis is a common skeletal disorder characterized by a decrease in bone mass,
leading to bone fragility and an increased risk of fractures. It is a major public health
problem; one out of every three women and one out of eight men over the age of 50
is expected to have an osteoporosis-related fracture in the remainder of their lives. Any
bone can be affected but the fractures typically occur in the hip, spine, and wrist. Of
these, hip fractures are the most serious in terms of morbidity and mortality. Vertebral
fractures can be asymptomatic, but can also have serious consequences, including se-
vere back pain and deformity. Furthermore, vertebral fractures are the most common
osteoporotic fracture, they occur in younger patients, and their presence is known to
be a good indicator for the risk of future spine and hip fractures. This makes verte-
bral fracture assessment suitable as an outcome variable in clinical trials to diagnose
osteoporosis incidence and progression.

Vertebral fractures are conventionally detected and graded on lateral X-rays. Nu-
merous methods have been proposed for this purpose, typically relying on a subjective
judgement of vertebral appearance by an expert radiologist in connection with six-point
morphometry. In the latter, six points are placed on the corners and in the middle of
the vertebra endplates, defining the anterior, middle and posterior heights. The fracture
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grade is derived from these heights or from the ratios between these heights, possibly
in comparison with population based measurements and/or normalized for inter-patient
variability by comparison with measurements taken from a neighboring or reference
vertebra (see for instance [1, 2, 3,4]).

Several authors have proposed methods for automatic spine segmentation from X-
ray or dual X-ray absorptiometry (DXA) images with the aim of automating vertebral
morphometry [5, 6,7, 8]. In this work, we start from the segmented vertebrae and aim
at improving the diagnosis of fractures with respect to the current height based mea-
surements. Currently, the diagnosis of a vertebral fracture in clinical trials relies on a
20% decrease in body height of a vertebra. Due to the categorical nature of this study
parameter, clinical trials continue to demand a large number of participants and long
follow-up time.

One shortcoming of the conventional models is that the sparse representation of six
points is unable to capture subtle shape changes. Smyth et al. [5] used point distri-
bution models to represent the full contour of normal and fractured vertebrae and de-
tected fractures using a Mahalanobis distance classifier on this representation. A slight,
but significant improvement with respect to conventional height measurements was
reported.

We propose to model not only the shape variation over a population for individual
vertebrae, but to also model the interrelations between vertebrae in the same subject.
This additional prior information allows adjustment of the models to individual patients
so as to distinguish normal biological shape variation from osteoporosis-related defor-
mation. We use conditional shape models to predict the most likely shape of a vertebra
given the known shape of a neighboring vertebra. If the models are constructed from
a training set of normal, healthy spines this provides an estimate of what the vertebra
shape would have been if it were normal. In a previous paper we showed that vertebrae
in healthy spines can be accurately reconstructed from their neighbors[9].

In the current paper we show how the reliability of predicted shapes can be estimated
and we use this to combine pairwise predictions of all vertebrae in the image into one
single, optimal prediction for each vertebra. The difference between the prediction and
the true, segmented shape provides a (continuous) measure of fracture severity.

2 Shape Estimation

The variations of vertebra shape over a training set of examples of unfractured spines
are modeled using the linear point distribution models (PDM) as proposed by Cootes
and Taylor [10]. PDMs model the shape probability distribution as a multivariate Gaus-
sian in a subspace of reduced dimensionality. Shapes are defined by the coordinates of
a set of landmark points which correspond between different shape instances. A col-
lection of training shapes are aligned using for instance Procrustes analysis [11] and
a principal component analysis (PCA) is applied to the aligned shape vectors. To this
end, the mean shape x, the covariance matrix Y, and the eigensystem of X' are com-
puted. The eigenvectors ¢; of X' provide the so-called modes of shape variation which
describe a joint displacement of all landmarks. The eigenvectors corresponding to the
largest eigenvalues \; account for the largest variation; a small number of modes usually
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captures most of the variation. Each shape x in the set can then be approximated by a
linear combination of the mean shape and these modes of variation:

x=x+®b+r

where ®; consists of the eigenvectors corresponding to the ¢ largest eigenvalues, ¢y =
(d1]|@2] . - . |#t), b is a vector of model parameters that weigh the contribution of each of
the modes, and r is a vector of residual shape variation outside of the model subspace.

2.1 Modeling Relations Between Shapes

The distribution P(.S1]S2), the probability distribution of a shape S; given a known
other shape S5, can be modeled as the Gaussian conditional density

P(S1]S2) = N(p, K) (D

with
= p1 + 12555 (S2 — pia)

K =X — Y1255 Yo

where 117 and po are the mean shapes of the training sets for S; and Sy, and covariances
X;; are obtained from the combined covariance matrix

211 Yo
) =
[221 222}
as
1
Tig=_ 4 > (Sin = 1) (Sjn — )"

2122521 is the matrix of regression coefficients of 51 — 1 on Sy — po. Usually, Yoo is
not invertible owing to multi-collinearity in the landmark positions and unreliable due
to chance covariance in a limited training set. Some regularization is therefore required.
One option is to replace Yy by Yoo + I, where y is a positive and typically small
constant. This approach is known as ridge regression [12]. As ~ tends to infinity, the
influence of the shape S5 decreases, and the remaining model is the original model for
S1, describing the shape variation independent of So.

Applied to pairwise vertebra shape prediction from neighboring vertebrae, Sy is the
predictor vertebra shape, Sy is the shape to predict, x is the maximum likelihood esti-
mate of S given So, and K is the variance in the estimate.

One can choose to model both pose and shape with respect to the given vertebra,
which means that the training shape pairs should be aligned together, on the basis of
the transformations that optimally align the predictor vertebra in all training shapes.
Alternatively, one could model the shape variation alone and leave out any possible
correlations between shapes and relative position, scale, and rotation. In that case, the
vertebrae should be aligned independently.
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2.2 Estimator Uncertainty

The pairwise shape prediction results in several shape estimates for each vertebra. Not
all of these estimates will be equally accurate. For instance, one would expect that the
vertebral shape correlation between two direct neighbors is stronger than between two
vertebrae that are further apart. In a fractured spine, the fractured vertebra(e) will likely
produce inaccurate estimates of normal vertebra shape, even for its direct neighbors.
We will therefore define the final shape estimate as a weighted combination of the
individual predictions, where the weights express the degree of belief in each estimate.

We assume that the observed vertebral shapes are produced by the underlying shape
model of normal shapes, resulting in a multi-variate Gaussian with variances \; in ¢
directions, plus additional uncorrelated Gaussian noise with a variance o2 in all direc-
tions which accounts for any residual shape differences. The probability density for a
shape S is then given by the product of the Gaussian densities of the shape model and
the residual model:

1
p(S]0) = cscrexp[—2 (Ms +M,)] 2)
1 L2
CS - bl MS = ¢
CJen T s ; Ai
i=1 " =
1 r[?
Cr = ’ r =
\/(277)710-?71 U?

where b; are the model parameters from the PDM and r is a vector of residuals.

2.3 Combining Shape Estimates

The probability density for each conditional shape estimate can be expressed as
P(51|S2)P(S2), where P(S2) is the probability that the predictor shape Ss is a valid
normal (unfractured) shape, and the variance in P(.S;|S2) expresses the uncertainty in
the prediction of S; from the model conditional on S2. The weight for the ith prediction
of S is then given by
we — L5118 P(5:)
t Y P(S11S)P(S:)’

and the individual estimates are combined as a weighted sum.

P(S;) can be determined by substituting the predictor shape .S; for .S in Equation 2
and the mean and covariance of the training set for the predictor shapes for 6, whereas
for P(S51]S;) the predicted shape for S7 and the mean and covariance of the condi-
tional model must be substituted. Note, that the regression models will typically produce
shapes that are inside the model subspace — apart from some minor differences owing
to the cut off at ¢ eigenmodes — and thus in this case the residuals 7; and shape parame-
ters b; are negligible and the estimate reduces to a constant that is proportional to the in-
verse of the total variance in the conditional model. This constant is independent of both
the predictor and the predicted shape and expresses the amount of correlation between
the two shape models. In the pairwise vertebra predictions, the fact that direct neighbors
contain the most useful information for predicting a shape is encoded in this term.

3
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3 Vertebral Fracture Quantification

To summarize, we propose the following procedure for fracture quantification from
segmented spine images:

— construct models of vertebral shape variation for all pairs of vertebrae in an image,
according to Section 2
— for each pair of vertebrae in a new image:
e align the predictor shape with the model
e perform shape regression using Equation 1
e determine reliability weights according to Equation 3
— combine all predictions for each vertebra as a weighted sum
— if pose is not included in the model, align prediction to true shape
— measure fracture severity

Various measures can be used to express the difference between the true shape and
the predicted shape as a measure of vertebral deformity. In this work we ignore the
points where the true shape is outside the prediction, which is usually caused by osteo-
phytes. We then use the root mean squared (RMS) distance from all points where the
prediction is outside the true shape to their closest points on the true shape.

4 Experiments

Our database currently consists of 212 lateral, lumbar spine radiographs taken from
different programs of osteoporosis and atherosclerosis screening in post-menopausal
women. The dataset is diverse, ranging from normal spines to spines with several severe
fractures. The original radiographs have been scanned at a resolution of either 300 or
570 dpi and the lumbar vertebrae L1 — L4 were annotated and graded by experienced
radiologists.

The outlines of the vertebrae were drawn manually and the corner points and mid-
points of the vertebral endplates were indicated. Fractures were identified and graded
according to the Genant at al. method of semi-quantitative visual assessment [1] in
severity mild, moderate, or severe and type wedge, biconcave, or crush fracture. A total
of 78 fractures was identified in 64 spines; 148 of the spines were unfractured.

A set of leave-one-out experiments is performed in which the models are trained
on all available healthy vertebra shapes except those of the patient under study. To
avoid including mild fractures in the model, shapes of which the difference between
the maximum and minimum heights exceeds 15% of the maximum height are excluded
from training.

4.1 Parameter Settings

A total of 52 landmarks is placed along the upper, anterior, and lower boundary of
each vertebra, interpolated equidistantly between the four vertebral corners. The corners
are defined as the points on the contour closest to the corner points that were used
for standard six-point morphometry. Shapes are aligned individually using translation
and rotation without scaling, since vertebra size is expected to correlate with important
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Fig. 1. Each row shows the vertebrae L1 — L4 of the same image; the true shape (black line), three
pairwise predictions (gray dashed lines), and the combined prediction (black line with pluses).
The numbers above the plots give the RMS distance to the true shape for each of the three indi-
vidual predictions. The top row depicts a normal spine; row 2 contains 2 fractures (vertebra 3 and
4); row 3 was graded as all normals but vertebra 1 had a large shape difference in our method.

shape information on fracture type and severity. The number of modes is selected so that
95% of the variance is kept in the model. The residual variance and the regularization
parameters v were optimized separately for each pairwise regression model using leave-
one-out validation on the training set of normal vertebrae.

4.2 Results

Some examples of predictions obtained are given in Figure 1. Most of the normal shapes
are predicted accurately. The second row in Figure 1 contains two fractures, which
results in two of the three predictions being consistently smaller than the true shape.
However, the model is able to detect that those shapes are less likely and the weighted
estimate for the normal vertebrae is still close to the correct shape.

Figure 2 summarizes the prediction results of all 212 images, separated into fracture
type and grade. The RMS shape-to-contour distance between the predicted shape and
the true contour was 1.0 mm on average for unfractured vertebrae and 3.67 mm for
fractures. The area under the ROC curve is 0.93; at a sensitivity of 95% the specificity is
84%. The areas under the ROC curve for mild, moderate, and severe fractures separately
are 0.92, 0.96. and 0.99 respectively.
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== moderate
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all

Fig. 2. (a) Measured RMS distances in mm between the predicted shapes and true shapes. To
allow discrimination of similar measures the distances are set out against a random value on the
horizontal axis. The symbols denote the type of vertebral deformity: Normal (circles); wedge
fracture (triangles); biconcave fracture (crosses); and crush fracture (squares). For the fractures,
the grey value denotes the fracture severity: mild (light grey); moderate (darker grey); and severe
(black) (b) Matlab box and whisker plot of the average distances between predicted and true
shapes separated into fracture grade, ranging from normal (0) to severely fractured (3). The box
has lines at the lower quartile, median, and upper quartile values. The whiskers extending from
each end of the box show the extent of the rest of the data. Data with values outside 1.5 times the
interquartile range from the median are considered to be outliers and are denoted by pluses.(c)
ROC curves of vertebral fracture detection.

Overall, we are able to distinguish fractures from normals and there is a fair corre-
lation (0.81) between the shape distance and the fracture severity as indicated by the
radiologists. However, Figure 1 reveals that the class of normal vertebrae contains a
relatively large number of outliers that have a larger difference between the prediction
and the true shape. One of these outliers is shown in the third row of Figure 1. The
leftmost vertebra may be a very mild ‘fracture’ that falls outside the capture range of
the standard semi-quantitative morphometry and that the shape prediction, more sensi-
tive to subtle changes, can already identify. This should be further validated using for
instance longitudinal studies. Visual inspection of the dataset revealed that many of the
unfractured vertebrae that had a large shape distance exhibit this type of deformation.

5 Discussion and Conclusion

We propose a shape model based approach to vertebral fracture quantification in which
an observed vertebral shape is compared to its reconstructed normal shape as can be
predicted from its neighbors. Compared to the current standard of semi-quantitative
morphometry which is based on three height measurements per vertebra, this method
provides a richer description of deformation and may be able to detect more subtle
shape changes while maintaining specificity. This could lead to earlier diagnosis and
reduce the number of participants and/or the follow-up time required in clinical trials
assessing the efficacy of drug candidates.

Currently, the shape differences are summarized into one average distance. This en-
ables detection of deformities and specification of the degree of abnormality, but not
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the type. If a sufficiently large training set of different types of deformity is available,
it may be useful to take the shape difference vectors— or a low-dimensional represen-
tation of them —as input in a supervised classification scheme. Such explicit models
of deformities could also be incorporated in the step of combining different shape esti-
mates, such that the estimate of uncertainty is not based only on the distance to known
normal shapes but also on the distance to known deformities.

In the current setup, vertebral shapes were reconstructed with an accuracy of on

average 1.0 mm for normal vertebrae and 3.7 mm for fractures, leading to fracture
detection with a sensitivity of 95% at a specificity of 84%.
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Abstract. We present a new approach for cranial implant design which uses
anatomical constrained deformation based on reference models. The methodo-
logical framework contains three steps: patient-specific generation of the
reference model containing the anatomical constraints about the skull shape;
determination of the spatial correspondence between the patient skull and the
reference model by 3D matching; adaptive deformation of the fragment on the
reference model corresponding to the defect area on the patient skull for im-
plant design. The proposed method was validated by simulating the reconstruc-
tion of artificially generated defects on healthy skulls. The validation results
show that this approach can generate implant geometry very fast and with satis-
factory quality. This approach also outperforms the surface interpolation
method in reconstructing cranial defects.

1 Introduction

Calvarial tumors, infectious bone flap, and neurosurgical external decompression
are the main causes for large cranial defects. The main indications for cranial recon-
struction of these patients are cosmetic reasons and protection of intracranial struc-
tures from mechanical impact [1][2]. With the advance of the three-dimensional
(3-D) Computed Tomography (CT) it is possible to reconstruct the 3D patient anat-
omy and design an implant with help of computers. The currently well-established
approaches for implant design often involve a complicated CAD/CAM process
chain [3][4][5][6]. In the CAD/CAM based approaches a surgeon needs support
from technical staffs or tools out of clinics, which sometimes leads to high cost
and low efficiency. Despite the technical improvement in CT and CAD/CAM,
the reconstruction of a large-format skull defect sometimes remains difficult
because manual construction and modelling of a free-form surface is necessary
for each individual patient. Some alternative methods have been proposed to design
the implant based on CT data without CAD process by using methods like mirror-
ing [7], surface interpolation or deformation [8][9]. These methods use either
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anatomical or mathematical features of the skull surface to reconstruct the defect
area. The mirroring method uses the anatomical features on the contra-lateral part
but is suitable for the defect on one side of the skull (unilateral defect) only. The
interpolation and deformation methods, such as thin-plate spline (TPS), use mathe-
matical constraints (e.g. C' continuity) to design the implant from the remaining
part of a skull, however, without considering anatomical constraints.

In this paper, we present a novel approach for cranial implant design which uses
anatomically constrained adaptive deformation based on a reference model. The
patient-specific reference model is used as anatomical constraints for implant de-
sign. The approach was validated by simulating the reconstruction of 44 artificial
defects on nine healthy skulls with known ground truth. Furthermore, we also com-
pare the performance of the proposed method with the surface interpolation method.

2 Methods

The methodological framework of anatomically constrained deformation for implant
design can be divided into three steps (Fig. 1.): Firstly, a reference model is generated
according to the patient skull; then 3D-matching is performed to determine the spatial
correspondence between the patient skull and the reference model; finally, adaptive
deformation is used to design the implant geometry according to the defect area on
the patient skull and its corresponding fragment on the reference model.

[ Preparation of patient model ]

v

Step 1: Patient-specific generation of
the reference model

A 4
Step 2: Determination of the correspondence
between patient skull and reference model

\ 4
Step 3: Anatomically constrained adaptive
deformation for implant design

v
[ Refinement and fabrication of the implant ]

Fig. 1. The methodological framework for anatomically constrained implant design based on
reference models in the workflow of cranial implant design and fabrication

2.1 Patient-Specific Generation of the Reference Model

The reference model can be generated in different ways according to the patient
skull defect. For unilateral defects, mirroring the normal side could be used to
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generate the reference model. For cranial defects spanning both sides of the skull
(bilateral defects), or more generally (i.e. also applied to unilateral cases), the refer-
ence model can be obtained by searching a similar skull in a 3D reference database
of healthy skulls. The reference database contains currently 25 healthy skulls (13
Male, 12 Female) with mean age 36 and median age 39 (range 20-62 years). To
enable the efficient 3D retrieval of the similar skull model, the original datasets are
indexed by descriptors about the demographic information (e.g. age, sex, etc.) and
geometrical characters based on anthropometric measurement of craniofacial land-
marks [10]. The craniofacial landmarks are also used to define standardized cutting
planes or view directions. The contour of a 2D images on such planes or in such
view directions is then extracted and represented by morphological descriptors
based on normalized Fourier descriptors, which enable a similarity comparison with
scaling and rotation invariance.

2.2 Determination of the Spatial Correspondence by 3D Matching

The paired point matching method [11] was used to match craniofacial landmarks on
the patient skull and the corresponding landmarks on the reference model. It is also
possible to do the matching based on the user-defined points on the skull surface
through user interaction. Through geometric matching, a spatial correspondence be-
tween the points of the patient skull and the points of the reference model is estab-
lished. The aim of this step is to obtain an estimation of transformational relationship
between the patient skull and the reference model. Since the shapes of the patient
skull and the reference model might be totally different, surface-based matching
methods like ICP [12] are not used here. Moreover, the paired point matching method
is computationally more efficient for our purpose.

2.3 Implant Design Based on Anatomically Constrained Adaptive Deformation

The main idea of the proposed method is to use the reference model as anatomical
constraint to control the deformation adaptively at each point. An internal coordinate
system based on the craniofacial landmarks is defined so that a point on the surface of
the patient skull and the reference model can be described in spherical form r, (0.0)

at

and rre/"(¢’6) (i.e. radial distance as function of the directional angles: ¢ and 6). The

origin of the coordinate system is defined as the centroid of the landmark pair Porion
(po, the most superior point on the upper margin of the external auditory meatus when
the head is in the Frankfort horizontal plane). The directions of the three axes in Car-
tesian coordinate system are defined as follows: the average of the directional vectors
of the 2 connecting lines between landmarks Porion (po) and Frontozygomaticus (fz,
the most lateral points on the frontozygomatic suture) on the left and on the right side,
the directional vector along the connecting line from Porion (po) on the right side to
Porion (po) on the left side, and their cross product [13].

The implant geometry is generated by adaptive deformation based on radial scal-
ing. The direction-dependent radial scaling factor s(go,H) is defined as:
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S(¢, 9) = rpaz (¢’ 9)/rref (¢' > 0'> (1)

where the ¢ and @ are the directional angle in the coordinate system of the patient
skull and the @' and @' are the corresponding directional angle in the coordinate sys-

tem of the reference model calculated by using the transformational relation deter-
mined in the step 2. By user-interactive delineation of the defect margin, a set of
points on the patient skull { " ((gi,gi ), i=1, ..., N} are defined. Since the radial dis-

P
tance of their corresponding points on the reference model can be determined, the
scaling factor 5((Pn‘9i) at each point Foat (¢,,6,) is known. Taking all these points as

control points, the scaling factor s(goﬁ) on the defect area of the patient skull (i.e.
where me((/’ﬂ) is unknown) can be estimated by interpolation according to direc-

tional angles. Since the radial distance on the fragment of the reference model corre-
sponding to the defect area of the patient skull is known, the radial distance at the
defect area can be estimated by scaling the radial distance on the reference model with
the interpolated scaling factor. In this way, the coordinates of the surface points of the
implant to reconstruct the defect can be calculated. So the implant surface is the result
of deforming the corresponding fragment on the reference model by radial adaptive
scaling. The thickness of the implant can be set by users. In contrast to the direct
surface interpolation method, we first interpolate the scaling factor and then multiply
the scaling factor with the radial distance on the reference model so that both the
remaining part of the patient skull and the reference model (which contains anatomi-
cal constraints) contribute to the final implant geometry (Fig. 2.).

— -e— —Implant Model

—=a— Patient Model
—a— Reference Model

Radius

---e-- - (Interpolated)

12 383 4 5 6 7 8 9 1011 12 13 14 15 16 17 18

Fig. 2. Illustration of the anatomically constrained deformation. The reference model gives the
anatomical constrain for implant geometry while direct interpolation fails to recover certain
anatomical detail on the defect area.
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Further refinement such as morphological operation is used to smooth the implant
and make it fit well with the defect on the patient skull.

3 Results

To validate the proposed methods, nine datasets of healthy skull were selected and
totally 44 defects with different size and location were generated from these datasets.
Since the ground truth is known, we can evaluate the quality of the reconstruction.
We also compared the proposed method with the surface interpolation method.

3.1 Computational Performance

The time needed for the entire reconstruction process is less than 25 minutes on a
Pentium 4 computer (3.2 GHz, 1GB RAM). Compared with the CAD/CAM based
approaches which might need a couple of days, it is now possible for the surgeon to
perform the planning task of implant design on his own.

3.2 Validation of the Reconstruction Quality with Ground Truth

The reconstruction quality was evaluated by comparing the healthy skull (ground
truth) and the test datasets (i.e. the original healthy skull with an artificial defect)
reconstructed with the implant designed with the proposed method. Taking 9 healthy
skulls (5 Male, 4 Female, Age range 26-47) as ground truth, 44 test datasets are gen-
erated by artificially removing a fragment from one of the healthy skulls. These 9
healthy skulls were not contained in the reference database. The defects have different
sizes and different locations. The assessment criterion of the reconstruction quality is
the reconstruction error defined as the difference between radial distance of surface
voxels on the original skull (ground truth) and radial distance of surface voxels on the
reconstructed part of the test datasets (i.e. implant). The reconstruction error is meas-
ured in voxels so that this criterion is independent of the resolution of CT. The aver-
age percentage of surface voxels with reconstruction error within certain ranges (e.g.
error < 1 voxel) were calculated for statistical evaluation.

Table 1. The reconstruction quality of the implant measured by the difference in the radial
distance: the distribution of the reconstruction error within different range

0-1 voxel 2-4 voxels >4 voxels
Total (44) 81.6% (68%-96%) 12.8% (4%-19%) 5.6 % (0%-13%)
Group A (21) 82.8% 12.0% 5.2%
Group B (23) 80.5% 13.5% 6.0%
Group 1 (16)  88.0% 9.0% 3.0%
Group 2 (28) 77.9% 15.1% 7.1%

An average of 81.6% (68% - 96%) of the surface points can be reconstructed
within an error of 1 voxel. The average percentage of surface points reconstructed
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with large error (> 4 voxels) is less than 6% (Table 1.). According to the defect size,
the test datasets are subdivided into 2 groups: Group A covering less than 100 cm’
(n=21), Group B covering more than 100 cm? (n=23). There is no significant differ-
ence between these two groups considering the reconstruction quality. The test data-
sets can also be subdivided into 2 groups according to coverage and location: Group 1
with unilateral defect (n=16) and Group 2 with bilateral defect (n=28). There is a
significant difference between these two groups because the mirrored model provides
more patient-specific and precise anatomical constraints for implant design. This can
be further confirmed when implants are designed using reference skull models instead
of mirrored models for unilateral defects (Table 2.).

Table 2. Comparison of reconstruction quality of the implant for unilateral defects (Total 16)
using mirrored models (Method 1) and similar skulls as reference models (Method 2)

0-1 voxel 2-4 voxels >4 voxels
Method 1 88.0% 9.0% 3.0%
Method 2 79.5% 14.8% 5.7%

It is also shown that the reconstruction quality is strongly dependent on the avail-
ability of similar skulls in the reference database when reconstructing bilateral defects
(Table 3.). However, if the reference database contains skulls with large varieties,
good results could be expected in general.

Table 3. Comparison of reconstruction quality of the implant for skull defects (Total 20) using
the most similar skull (Method 1) and using a skull by randomized selection in the reference
skull database (Method 2) as the reference model. Method 2 has a large deviation in reconstruc-
tion error compared with Method 1.

0-1 voxel 2-4 voxels >4 voxels
Method 1 79.6% (68%-93%) 14.1% ( 6%-19%) 6.3% (1%-13%)
Method 2 62.3% (38%-87%) 27.2% (10%-46%) 10.5% (3%-29%)

3.3 Comparison to Surface Interpolation Methods

The proposed method has been compared with the surface interpolation method using
thin-plate splines [8]. Twelve test datasets were reconstructed by these two methods.
It is shown that our method outperforms the surface interpolation method. Although
the surface interpolation method can recover a smooth surface on the defect area, it
has no anatomical constraints which can contribute to a better reconstruction quality
for individual patients (Fig.3. and Table 4.). For the surface interpolation method, the
surface voxels near to the defect margin have usually less reconstruction error
whereas the surface voxels at the middle part of the defect area have often the large
reconstruction error. This shows the limitation of pure mathematical constraints for
implant design.
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Table 4. Comparison of reconstruction quality of 12 test datasets between the proposed method
(Method 1) and the surface interpolation method (Method 2)

0-1 voxel 2-4 voxels >4 voxels
Method 1 81.0% 13.1% 5.9%
Method 2 69.5% 18.8% 11.7%

A) (B) ©

D) (E) (F)

Fig. 3. Comparison of the reconstruction using anatomically constrained deformation and sur-
face interpolation with thin-plate splines. (A) Original dataset (ground truth) (B) Reconstruction
with anatomically constrained deformation (the yellow part is implant) (C) Reconstruction with
thin-plate splines (D) Midsagittal slice of the original dataset (E) Midsagittal slice of recon-
struction with anatomically constrained deformation (F) Midsagittal slice of reconstruction with
thin-plate splines.

4 Conclusions

In this paper, a new approach to design cranial implant using anatomically con-
strained deformation is presented and validated by reconstruction simulated skull
defects with known ground truth. The results show that the proposed method is fast
and can design implants with quite good quality. Therefore, the surgeon can perform
the task of designing the implant geometry without the help of technicians and use the
original CT data for medical verification in one planning session.
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Besides the clinical studies, the ongoing work includes introducing statistical shape

models of skull in this methodological framework and investigation of the influence
of the user-interactive localization of craniofacial landmarks and the defect margin to
the reproducibility of the implant design. Furthermore, the database structure and its
search strategies will be extended and optimized for an internet-based architecture so
that the central reference database of the skull geometry can be shared by different
users.
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Abstract. Shape correspondence is the foundation for accurate statis-
tical shape analysis; this is usually accomplished by identifying a set of
sparsely sampled and well-corresponded landmark points across a popu-
lation of shape instances. However, most available shape correspondence
methods can only effectively deal with complete-shape correspondence,
where a one-to-one mapping is assumed between any two shape instances.
In this paper, we present a novel algorithm to correspond 2D open-curve
partial-shape instances where one shape instance may only be mapped
to part of the other, i.e., the endpoints of these open-curve shape in-
stances are not presumably corresponded. In this algorithm, some ini-
tially identified landmarks, including the ones at or near the endpoints of
the shape instances, are refined by allowing them to slide freely along the
shape contour to minimize the shape-correspondence error. To avoid be-
ing trapped into local optima, we develop a simple method to construct
a better initialization of the landmarks and introduce some additional
constraints to the landmark sliding. We evaluate the proposed algorithm
on 32 femur shape instances in comparison to some current methods.

1 Introduction

Tt is well known that the performance of statistical shape analysis [1,3, 10,7, 8]
is highly dependent upon the performance of shape correspondence [4,2,11,9],
which identifies a set of sparsely sampled and well-corresponded landmark points
across a population of shape instances. However, accurate shape correspondence
is a very challenging problem given the strong nonlinearity of shape geometry
and the complex nonrigid deformation occurring among the considered shape
instances.

Many new models and methods have been developed recently to achieve more
accurate landmark-based shape correspondence. Each method has its own mer-
its and difficulties. Davies et al [4] develop a Minimum Description Length
(MDL) algorithm where the correspondence error is measured by the required
bit-length to transmit these shape instances as well as the template shape. Both
random-searching [4] and gradient-descent algorithms [6] have been developed
to minimize this nonlinear MDL-based measure. Xie and Heng [14] develop a
medial-axis-based shape-correspondence method, where the medial axes of all
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the shape instances are assumed to be of the same topology and then the shape-
correspondence problem is decomposed into a set of simpler problems of corre-
sponding some short curve segments with very few high-curvature points. With
some roughly-corresponded landmarks, Bookstein [2] develops an algorithm to
move these landmarks along the tangent directions of the shape contour to
achieve a minimum landmark-correspondence error that is defined by the thin-
plate bending energy. However, the resultant landmarks may not be located on
the underlying shape contour. Wang, Kubota, and Richardson [13,9] address
this problem by adding a step of projecting the landmarks back to the shape
contour.

However, all these methods can only address the complete-shape correspon-
dence where a one-to-one mapping is assumed between each pair of the shape
instances. In 2D cases, each shape instance is in the form of a continuous curve.
For convenience, we sometimes refer to this ground-truth continuous form of
a shape instance as a shape contour. These shape contours may be open or
closed (the starting and ending point of the contour is in the same physical loca-
tion). When the shape contour is open, the endpoints are always corresponded
landmarks across all the shape instances. In many real applications, however,
the assumption of the complete-correspondence does not usually hold for open-
curve shape contours. An shown in the femur contours in Fig. 1, we can see that
it is difficult to guarantee that the initially extracted open femur boundaries
have exact endpoint correspondence and one boundary may only be mapped
to a portion of the other. Such examples are common in practice since we may
only be interested in portions of a structure and it is difficult, even manually,
to accurately extract open-curve shape contours with consistently corresponded
endpoints. Furthermore, many medical images suffer from cropping and occlusion
within a whole structure. In this paper, we develop an algorithm to address such
an open-curve partial shape correspondence problem by extending and adapting
the landmark-sliding algorithms [2,13,9]. This algorithm is tested on 32 femur
shape instances and the correspondence performance is quantitatively compared
with the results of a popular implementation of the MDL algorithm [12] and the
most recent landmark-sliding algorithm [9].

2 Problem Formulation and Landmark-Sliding

In this paper, we consider 2D partial-shape correspondence, where each shape
instance is in the form of a continuous open-shape contour, as shown in Fig. 1.
Denote the given set of open-curve shape instances to be S = {51, 52,...,5,}.
Each shape instance S; is in the form of an arc-length parameterized curve
si(t;) = (xi(t:),y:(t)), 0 < t; < L;, where L; is the perimeter length of S;
and t; is the traversed arc-length along the curve from s;(0) to s;(¢;). Note that
si(0) and s;(L;) are the two endpoints of the shape contour S;. In practice, we
obtain these shape instances by applying the Catmull-Rom spline interpolation
to approximate some structural boundaries that are manually extracted from
the medical images.
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To address the partial shape correspondence, we need to determine a con-
tinuous subcontour P; of each shape contour S; such that a complete corre-
spondence exists across P;, i = 1,...,n. As a subcontour of S;, we can denote
the two endpoints of P; as P;; = s;(t;1) to Pix = si(tix), where t;; > 0 and
t;x < L; are the traversed curve lengths from s;(0) to these two endpoints of
P;. Without loss of generality, we let t;7 < t;x. The problem formulation of the
open-curve complete-shape correspondence is well known for nonrigid shape cor-
respondence: identifying K nonfixed landmarks along P;, i = 1,...,n such that
a predefined correspondence error among them is minimum and the two end-
points of each shape contour are always selected as corresponded landmarks, i.e.,

P;1,i=1,...,n are priorly known to be corresponded and P;x, ¢ =1,...,n are
also priorly known to be corresponded. This way, we can define the open-curve
partial shape correspondence as finding parameters 0 < t;; < ... < t;x < Ly,

i =1,...,n such that the sampled landmarks s(t;x), k =1,....K,i=1,...,n
minimize a selected correspondence error.

As in [2] and [13,9], we define the landmark shape-correspondence error using
the thin-plate bending energy [5], which has been widely used to describe non-
rigid shape deformation. Since corresponding n shape instances is usually treated
by corresponding each shape instance separately to a template shape instance,
we can focus on the correspondence between two shape instances: the template
V in which the K sequentially sampled landmarks vy, ..., vk have been priorly
given and the target U in which we want to find the K corresponded landmarks
uj,...,ug. The correspondence error is defined to be the thin-plate bending
energy

1

8 (XszXu + ngUYu)v
where x,, and y,, are columnized vectors of z- and y-coordinates of K landmarks
along the target U, and M, is the thin-plate bending matrix calculated from
K landmarks in the template V [5]. Specifically, the bending matrix M, is the

upper-left K x K submatrix of
K, P,\ '
PT 0 )

where K, is K x K kernel matrix with element k;; = K(v;,v;) = ||vi —
vi[[2log [vi = v, and P, = (x,, y,. 1).

Given the nonlinearity of the continuous shape contour and the inability
to slide landmarks along the contour directly, we adopt the landmark sliding
method of [13], which starts from some initialized K landmarks along the target
shape U, moves the landmarks along the tangent directions to reduce the cor-
respondence error, and then projects the updated landmarks back to the shape
contour. The sliding and projection operations are iteratively performed until
convergence. Specifically, letting ay be the sliding distance of ug, k =1,..., K,
the landmark-sliding algorithm aims to minimize the correspondence error

plar, ... ax) = (xy+Pha) My (xy +PLa) + (yu + Plo) M, (yu +Pa) (1)

BV —-U)=
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where a = (ay, ..., k)" and P/, and P}, are diagonal matrices of the - and
y-components of the estimated tangent vectors at the current K landmarks in
the target shape U. The projection is performed by simply traversing the current
landmarks along the shape contour by the sliding distance ax, k =1,..., K. To
preserve the shape topology, each landmark is not allowed to slide across its two
neighbors; in [13], it is shown that this can be described by some linear con-
straints [13,9]. Therefore, the above cost function can be optimized efficiently
by the quadratic-programming algorithm. The major problem of the landmark
sliding algorithm is its vulnerability to being trapped into local minima. For
complete-shape correspondence with known corresponded endpoints, good ini-
tialization of the K target landmarks can be easily constructed, which, however,
is not the case in the partial-shape correspondence discussed in this paper.

3 Landmark-Sliding for Open-Curve Partial Shape
Correspondence

There are several important issues in extending the landmark-sliding algorithm
to the open-curve partial shape correspondence. First, the landmark initializa-
tion becomes a very important issue without endpoint correspondence. Second,
by moving the first and last landmark points, we actually resize the target shape
to be mapped to the template. Reducing the size of the target shape, although it
is an affine transformation, can decrease the bending energy. Therefore, without
further considerations, we can not directly use the bending energy to decide the
desirable correspondence results. Third, we also cannot allow the landmarks to
move beyond the original endpoints of the open shape contours.

To simplify the algorithm description, we assume that the template shape
contour V' corresponds to part of the target shape U, i.e., the endpoints of V'
can be included as landmarks and their correspondence in U is located along U.
Then the third issue above is easy to handle: we need only to add a constraint
on the sliding distance oy and ax so that they are smaller than the respective
remaining external curve length. These are still linear constraints and, therefore,
the quadratic programming algorithm still applies. In the following, we extend
the landmark-sliding algorithms to address the other two important issues.

3.1 Imitial Landmark Construction

The landmark-sliding algorithm is vulnerable to being trapped into a local
optima, especially when the considered shape instances contain many high-
curvature points, motivating an accurate initialization method. In the open-
curve partial shape correspondence, it can be assumed that the shape contours
extracted from medical images contain a similar subject of interest that can be
extracted within a certain variance expressed as a percentage. For completeness,
this variance is not assumed to be a priori knowledge though it may be known
by an expert. For the cases considered herein, it is reasonable to assume that the
variance of shape information at the endpoints is not greater than 50 percent.
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We therefore iteratively test the bending energy by clipping an equal percentage
w from both sides of target shape instance U and distributing the K landmarks
as described above over the remainder of the curve as follows:

(1-w)L, wL,

t, =ty 2
L'U 2 ( )

where t, is the set of arc-length parameters for the K landmarks of shape in-
stance U and L, is the perimeter length of shape instance U (t, and L, are
similarly defined for template shape instance V). With each distribution, we can
then test the initial bending energy to determine the optimal w clip length that
should be used to establish the final correspondence with V. Because the land-
marks of each U are not fixed, the step length is flexible and, within a certain
range, the sliding will converge to the same result; for our purposes, we varied
the clip length from 0 to 50 percent with a step length of 0.5 percent. The opti-
mal clip length for each shape instance is determined independently to account
for greater variability. As an added constraint to prevent undue collapse of the
shape contour, endpoints are not allowed to move inward more than “15 for
each shape instance U; however, the endpoints are allowed to move outward to
recapture length that was previously assumed to be removed.

3.2 An Adapted Correspondence Error

The remaining problem is to choose the desirable correspondence result out of
the ones that are resulting from different clip lengths. It is well known that the
thin-plate bending energy is invariant to the affine transformation, i.e., if the
map between V and U can be described by an affine transformation, the re-
sulting bending energy is always zero. However, if the map between V and U
is not an affine transformation, then some additional affine transformations on
the target landmarks U would change the bending energy that is calculated
without consideration of this additional affine transformation. As an example,
a scaling factor of 0.75 applied to the target landmarks U in Eq. (2) would de-
crease the bending energy 3(V — U) to (0.75)28(V — U). A scaling in either
x- or y-coordinates alone will decrease the bending energy in a similar way. In
a degenerate case where all target landmarks are moved to the same point, the
size of the target shape contour that finally corresponds to the template is zero
and, in this case, the bending energy, or the shape-correspondence error, is also
zero. Therefore, the direct comparison of the bending energy may not help us
decide the desirable correspondence result out of the ones from different clip
lengths.

To address this problem, we introduce a normalized bending energy to help
decide the desirable correspondence result. Specifically, for the correspondence
result from each clip length, we normalize the resulting U by removing the affine
transformation between V and U and then calculating their bending energy
as the final shape-correspondence error. Then, for the correspondence results
from different clip lengths, we pick the one with the smallest such normalized



22 T. Richardson and S. Wang

correspondence error as the desirable correspondence. In the next section, we
will show that, given the flexility of the landmark-sliding algorithm, the desirable
correspondence with smallest normalized correspondence error can be obtained
from a certain range of the clip length.

4 Experiments and Analysis

To test the proposed method, we used a fixed template of 41 landmark points and
a data set of 32 open-curve femur shapes extracted from medical images. We test
the effectiveness of the method by comparing the initial normalized bending en-
ergy to the final normalized bending energy (after applying the landmark-sliding
algorithm) for each clip length. We can see that the desirable correspondence
with minimum normalized bending energy can be obtained from a wide range
of clip lengths between 8% and 20%. Therefore, the optimal clip length is not
unique and can take a range of values. A sample of the visual results for the
optimal clip length can be seen in Fig. 1(c-g) along with (b), which shows the
polyline interpolated landmarks in the template shape.

Evaluation and comparison among shape correspondence methods is a diffi-
cult problem in which the ground truth is often unknown. As such, we focus on
known metrics with which to compare the performance of the proposed method
to extant methods for shape correspondence, namely a popular implementation
of MDL capable of operating with nonfized endpoints in which the landmarks
at the endpoints of the contour are allowed to vary to the same extent as any
other landmark in the set[12] and the most recent incarnation of the landmark
sliding algorithm [9]. The same template shape was used for all of the methods
under consideration to allow for a fair comparison. A brief explanation of the
metrics used for comparison follows: (a) E(8) and std(8): the mean and stan-
dard deviation of the thin-plate bending energy between the template and all
the shape instances according to the identified landmarks; (b) A1, Aa, and As:
the three principal eigenvalues of the covariance matrix of U;,7 = 1,2,...,n.
These are the principal zeros of the characteristic polynomial describing the co-
variance of the data set, which should be as small as possible if the regularity of
the shape has been extracted successfully. In calculating the covariance matrix,
the Procrustes analysis [1] is applied to normalize the size and orientation of all
the shape instances. (¢) the sum of the eigenvalues of the covariance matrix of
U,i=1,2,...,n; (d) G, the generality of the resulting shape model, calculated
according to the leave-one-out cross-validation measure common to statistical
processing [11]; and (e) the total CPU time used for processing each data set,
based on the adopted specific implementations. In general, with a similar rep-
resentation error, a good shape correspondence is expected to have small E(3),
A1, A2, Az, YA, and G. The statistical improvement gained by this method can
be seen in Table 1 as it clearly outperforms the sliding method at a small cost of
CPU time and produces results that are comparable to or better than the MDL
implementation using free endpoints.
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Fig. 1. (a) Comparison results for clip length showing the initial and final normalized
bending energy. This bending energy shown here is the mean value on all 32 shape
instances. (b) Template shape and (c-g) identified target landmarks on five sample
shape instances using the proposed method.
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Table 1. Statistical comparison of correspondence results

Measures MDL [12] Landmark Sliding developed in [9] Proposed Method

E(B) 1.2304 0.4628 0.3149
std(B) 0.3373 0.1125 0.0824

M 0.0024 0.0030 0.0026

A2 0.0008 0.0007 0.0007

A3 0.0005 0.0006 0.0005

A 0.0051 0.0059 0.0046
G() 0.8722 0.6337 0.4714
CPU time(s)  418.7 124.7 160.6

5 Conclusion

Because most of the current shape correspondence methods can only effectively
deal with complete-shape correspondence, where a one-to-one mapping is as-
sumed between any two shape instances, we present a novel algorithm to corre-
spond open-curve shape instances where a one-to-one correspondence does not
exist across all shape instances. In this algorithm, we first introduce an ini-
tialization by allowing some portion along the open-curve shape contours to
be clipped. We then apply the landmark-sliding algorithm to find the corre-
spondence from each starting clip length. Finally, we introduce a normalized
shape-correspondence error to decide the desirable correspondence. The pro-
posed algorithm is tested on 32 femur shape instances and compared to the cur-
rent landmark-sliding algorithm [9] and an implementation of the MDL method
[12]. In this comparison, there is significant statistical improvement using the
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proposed algorithm compared to the other current methods with only a small
CPU time increase over the current landmark-sliding algorithm.
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Abstract. Reconstruction of patient-specific 3D bone surface from 2D
calibrated fluoroscopic images and a point distribution model is dis-
cussed. We present a 2D /3D reconstruction scheme combining statistical
extrapolation and regularized shape deformation with an iterative image-
to-model correspondence establishing algorithm, and show its application
to reconstruct the surface of proximal femur. The image-to-model cor-
respondence is established using a non-rigid 2D point matching process,
which iteratively uses a symmetric injective nearest-neighbor mapping
operator and 2D thin-plate splines based deformation to find a fraction
of best matched 2D point pairs between features detected from the flu-
oroscopic images and those extracted from the 3D model. The obtained
2D point pairs are then used to set up a set of 3D point pairs such that we
turn a 2D /3D reconstruction problem to a 3D/3D one. We designed and
conducted experiments on 11 cadaveric femurs to validate the present
reconstruction scheme. An average mean reconstruction error of 1.2 mm
was found when two fluoroscopic images were used for each bone. It de-
creased to 1.0 mm when three fluoroscopic images were used.

Keywords: point distribution model, surface reconstruction, 2D/3D
correspondence, extrapolation, deformation, thin-plate splines.

1 Introduction

Constructing three-dimensional (3D) bone surface from a few two-dimensional
(2D) calibrated fluoroscopic images is a challenging task. A priori information is
often required to handle this otherwise ill-posed problem. In Fleute and Lavallée
[1], a point distribution model (PDM) of distal femur was iteratively fitted to
the bone contours segmented on the X-ray views by sequentially optimizing the
rigid and non-rigid parameters. It utilizes the principle of the shortest distance
between the projection ray of an image edge pixel and a line segment on the ap-
parent contour to set up image-to-model correspondence. However, this method
requires an explicit contour extraction, which may be quite difficult when the
shapes involved become complex or when the background of the images becomes
complex. Furthermore, least-squares based fit may result in unstable solution.

R. Larsen, M. Nielsen, and J. Sporring (Eds.): MICCAI 2006, LNCS 4190, pp. 25-32, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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In Benameur et al. [2][3], a PDM of scoliotic vertebrae was fitted to two
conventional radiographic views by simultaneously optimizing both shape and
pose parameters. The optimal estimation was obtained by iteratively minimiz-
ing a combined energy function, which is the sum of a likelihood energy term
measured from an edge potential field on the images and a prior energy term
measured from the statistical shape models. No explicit image-to-model corre-
spondence was used. To avoid trapping in a local minimal, their method requires
a close initialization.

This paper presents a 2D /3D reconstruction scheme combining statistical ex-
trapolation and regularized shape deformation with an iterative image-to-model
correspondence establishing algorithm, and shows its application to reconstruct
the surface of proximal femur. The image-to-model correspondence is established
using a non-rigid 2D point matching process, which iteratively uses a symmet-
ric injective nearest-neighbor mapping operator and 2D thin-plate spline (TPS)
based deformation to find a fraction of best matched 2D point pairs between
features detected from the fluoroscopic images and those extracted from the 3D
model. The obtained 2D point pairs are then used to set up a set of 3D point
pairs such that we turn a 2D/3D reconstruction problem to a 3D/3D one. No
explicit contour extraction from fluoroscopic images is required in the present
scheme.

This paper is organized as follows. Section 2 presents the point distribution
model. Section 3 describes the iterative image-to-model correspondence estab-
lishing algorithm. Section 4 briefly recalls the 3D/3D reconstruction framework
introduced in [4]. Section 5 presents the experimental results, followed by the
conclusions in Section 6.

2 Point Distribution Model

The PDM used in this paper was constructed from a training database consisted
of 30 proximal femoral surfaces from above the less trochanter. To optimally
align these training surfaces, a sequence of correspondence establishing methods
presented in [5] was employed. It started with a SPHARM-based parametric sur-
face description [6] and then was optimized using Minimum Description Length
(MDL) based principle as proposed by Davis et al [7].

Following the alignment, the PDM is constructed as follows. Let x;,i =
0,1,...,m — 1, be m (here m=30) members of the aligned training surfaces.
Each member is described by a vectors x; with N vertices:

Xi = {%0, Y0, 20, L1, Y1, 21, -y EN—1, YN—1, ZN—1} (1)

The PDM is obtained by applying principal component analysis.

D=(m-1)""- 20 - %)(x - )T 2)
P = (pg,P1s-); D p; = 07 - p;

where X and D are the mean vector and the covariance matrix, respectively.
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Then, any one of the instance in this space can be expressed as:

m—2
X=X+ Zi:o ;p; (3)
And the estimated normal distribution of the coefficients «; is:

P00, 01, ) = (27) "5 exp(— ) 3 (02 /0) (4)

where S27 % (a2 /02) is the Mahalanobis distance defined on the distribution.

3 Image-to-Model Correspondence

Given a few fluoroscopic images, our task is to establish correspondence between
the input images and a model estimated from the PDM. Here we assume that
the input images are calibrated and registered to a common coordinate system.
And for a pixel in an input image we can always find a projection ray emitting
from the focal point of the associated image through the pixel.

A. Edge detection: A standard implementation of Canny edge detector with
hysteresis [8] is used to find the edge pixels of the considered bone structure
from the input images. The detected edge pixels are further processed using
the knowledge about the X-ray machine. Detected edge pixel whose intensity is
below some threshold or whose position is of a certain distance away from the
image center is eliminated.

B. Apparent contour extraction: For fast extraction a smooth appar-
ent contour from a given surface model, we use the approach introduced by
Hertzmann and Zorin [9]. This approach first constructs a dual representation
of the given surface mesh in a four-dimensional (4D) space based on the posi-
tion and tangent planes of every vertex. The focal point’s dual (a plane in 4D)
intersects with the mesh triangles dual. Before hand, the approach normalizes
the dual vertices using the [, norm so that the vertices end up on one of the
unit hyper-cube’s sides. This reduces the problem to intersecting the triangles
on a hypercube’s sides with the focal point’s dual plane, whose solution can be
accelerated greatly using octree data structure. An example is given in Fig. 1.

Then, for a point (27, (j =0,1,..., M — 1) on the extracted apparent contours
using the projection parameters of the sth input X-ray image, we do a forward
projection of this point onto image s to get its 2D position Aj. Each 2D point in
{ A3} is thus associated to a 3D point in {{27}. Next, we will describe an iterative
matching process for build 2D association between the points in {A;q } and the
detected edge pixels in the X-ray image s.

C. Iterative non-rigid 2D matching process: Following the general
framework of point matching proposed in [10], we also formulate the 2D match-
ing as a two-stage process: correspondence and spatial mapping. TPS is used
here for parameterization of the spatial mapping. But unlike [10], we solve the
correspondence problem differently. To make the description simple, we denote



28 G. Zheng et al.

Fig. 1. Example of extracting apparent contours (white) and edge pixels (green)

the detected edge pixels in image s as I° = {If,i = 0,1,...,Q — 1} and the 2D
projection of the apparent contours as A® = {A;,j =0,1,....,. M — 1}. Here we
focus on 2D matching in one image. The overall correspondence is established
by combining matched point pairs found in all input images.

Definition 1: Injective Nearest-neighbor. A point I? can only be matched
to at most one point of A* and this point must be the closest one in A° to I?.

Definition 2: Cross-matching. Assume there are two matched pairs
(I, A3) and (I5,, A7) If the line segmentation from 17 to A3 intersects at a point
with the line segment from I, to A}, we define this event as cross-matching.

Definition 3: Symmetric Injective Nearest-neighbor (SIN). I? and A;
is a symmetric injective nearest-neighbor if and only if A;T is the closest point in
A® to I} and I7 is the closest point in I° to Aj.

Definition 4: Symmetric Injective Nearest-neighbor Mapping Opera-
tor (SIN-MO). We define the action of finding a number of SIN’s from two
points set as symmetric inject nearest-neighbor mapping operator.

Claim 1: If we apply SIN-MO on two point sets to find a number of matched
point pairs, all of them are one-to-one mapping (proof omitted).

Claim 2: If we apply SIN-MO on two point sets to find a number of matched
point pairs, there is no cross-matching (proof omitted).

The iterative non-rigid 2D matching process can be described as follows.

Input: two point sets I and A°, and a weight parameter \.

Output: a list of 2D matched point pairs.

Initialization: We first calculate the centroids of I° and A%, and then trans-
late A° so that its centroid is aligned with the centroid of I°®.

Iteration: It is a dual update process taking points in I° as references.

Stage 1: Update the correspondence. Apply SIN-MO on I® and A® to
find a number of SINs and denote the set of SINs as {(I$, A%);a =0,1,..., K—1}.

Stage 2: Update the positions of all points in A®. This is done in a
two-step procedure.

Step 2.1. Compute a 2D TPS-based spatial mapping f using the estimated
set of SINs by minimizing the following cost function:



Reconstruction of Patient-Specific 3D Bone Surface 29

(a) Before building correspondence (b) After building correspondences

Fig. 2. Establishing 2D/3D correspondence; detected edge pixels (green), extracted
apparent contours (white), and the estabilished correspondences (linked with yellow
line segment for visualization purpose)
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Step 2.2. Update the positions of all points in A° based on the estimated
TPS transformation f.

Repeat stage 1 and 2 a certain times (e.g. 30) or until convergence.

D. 3D point pair building: Assume that we have found a set of 2D matched
point pairs {(I, A7);b=0,1,..., L—1}, we are trying to build the corresponding
3D point pairs as follows. For a 2D point I, we can find a projection ray r;
emitting from the focal point of image s through point I;. Additionally, for its
matched point Aj, we always know its associated 3D point (2; on the apparent
contour of the model whose projection onto the image s is A7. By computing a
point v; on the ray r; that has the shortest distance to {2;, we can build a 3D
point pair (v}, £27). Combining all these 3D point pairs, we can establish 2D /3D
correspondence between the input images and a 3D model estimated from the
PDM. An example is given in Fig. 2.

4 3D/3D Reconstruction

Using the developed algorithm for establishing correspondence, we can always
find a set of 3D point pairs given an initial model state, i.e., the initial scale
and the initial pose parameters of our point distribution model. The problem of
surface reconstruction is then solved optimally in three stages as presented in our
previous work [4]: affine registration, statistical extrapolation, and regularized
shape deformation.

A. Affine registration: This is the only stage that is solved by iteration.
In this stage, the scale and the rigid registration transformation between the
mean model of the PDM and the input images are iteratively determined using
a generalization of the Iterative Closest Point (ICP) algorithm developed by
Guéziec et al. [11]. The difference between this algorithm and the traditional
ICP algorithm is that in each iteration we need to set up a set of new point pairs
using the present algorithm for building 2D/3D correspondences.
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B. Statistical extrapolation: Based on the estimated scale and pose infor-
mation from the first stage, we can use the correspondence establishing algorithm
to obtain a set of n 3D point pairs from all input images. Let’s denote the points
computed from the image data as v/ = {v} = (2,4}, 2));i = 0,1,..,n — 1} and
call them the image points. Let’s further denote those points on the mean model
of the PDM as X' = {(Xj)i; 0<j<N-1;i=0,1,....,n—1} and call them the
model points, where N is the number of points of the mean model; n is the
number of the matched point pairs. (X;); means that the jth model point X; on
the mean model X is the closest point to the ith image point v;. The statisti-
cal extrapolation is formulated as the minimization of the following joint cost
function:

o (X, v',%) =p - log(3n) - E(X',v',x) + B(x)s x = %+ 1 g by
%) = (07 S ) = (&) + Sy e PRI (6)
x) = (1/2)- T35 (af /o)

where the first term is the likelihood energy term and the second term is the prior
energy term (or the stabilization term), used to constrain the estimated shape to
a realistic result. p is a parameter that controls the relative weighting between
these two terms. p;(j) is the jth tuple of the kth shape basis eigenvector.

For details about how to solve Eq. (6), we refer to our previous work [4].

C. Regularized shape deformation: Similar to the second stage, we first
set up image-to-model correspondence between the input images and a template
surface model estimated through optimizing Eq. (6). To keep the same notation,
let’s assume that the image points are v/ = {v) = (2}, v}, 2});i = 0,1,....,1 — 1}
and that the model points are v = {v; = (x;); = (z4,¥i,2);t = 0,1,...,1 — 1},
where [ is the number of point pairs and (x;); means that the jth model point
x; on the statistically extrapolated surface x is the closest point to the 7th image
point v;. The regularized shape deformation is described as a regression prob-
lem of finding a spatial transform t:R® — R3 that minimizes following cost
function:

-1 log(m
B = (1) X, I (el + - - 11 @
where 7 > 0 is a parameter controlling the fitting quality and the regularization
constraint; m is the number of training surfaces; t(v) = {t(v;)} are the results of
applying the mapping on the model points and L[t] is a thin-plate splines based
regularization functional defined on the nonlinear mapping t and has following
form [12]:

L] = / / /% (B()dudyd
82

2 ., 0

82 (8)
B = (gl + (oo F (o2

0? 2
0z0x

022

62

4 (50, + (500" +

For details about how to solve Eq. (7), we refer to our previous work [4].
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Fig. 3. Different stages of reconstruction. First: one of the acquired images. Second: the
initialization of the mean model of the PDM. Third: after establishing image-to-model
correspondence. Forth: after 3D paired point matching. Fifth: after re-establishing cor-
respondence; Sixth: the final reconstruction result after a series of computations

Table 1. Reconstruction errors when different number of images were used

Reconstruction errors when only AP and LM images were used for each bone
Bone Index No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 No. 11
Median (mm) 1.3 08 15 1.0 13 10 1.1 1.0 08 1.1 1.2
Mean (mm) 15 08 14 13 14 12 12 12 10 1.1 1.6

Reconstruction errors when all three images were used for each bone
Bone Index No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 No. 11
Median (mm) 1.3 0.7 07 1.1 10 11 08 09 07 1.0 0.9
Mean (mm) 13 07 08 12 11 11 11 09 09 11 1.2

5 Experiments and Results

We designed and conducted experiments on 11 cadaveric femurs (Note: none of
them has been included for constructing the PDM) with different shape to vali-
date the present reconstruction scheme. Three fluoroscopic images were acquired
for each bone: the first one along the anterior-posterior (AP) direction, the sec-
ond one along the lateral-medial (LM) direction, and the last one from an oblique
angle in between the AP and the LM directions. All acquired images were cali-
brated and registered to the associated reference coordinate system. And in all
reconstructions, three controlling parameters are set as follows: A=0.5, p=0.05,
and 7= 0.05.

Two experiments using different number of images were performed for each
bone. In the first experiment only AP and LM images were used to reconstruct
the surface of the bone. In the second one, all three images were used.

The reconstruction accuracies were evaluated by randomly digitizing 100 -
200 points from each surface of the cadaveric specimen and then computing the
distance from those digitized points to the associated surface reconstructed from
the images. The median and mean reconstruction errors of both experiments are
presented in Table 1. An average mean reconstruction error of 1.2 mm was found
when only AP and LM images were used for each bone. It decreased to 1.0 mm
when three images were used. Different stages of one reconstruction example are
presented in Fig. 3.
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6 Conclusions

In this paper, we have presented a 2D /3D reconstruction scheme combining sta-
tistical extrapolation and regularized shape deformation with an iterative image-
to-model correspondence establishing algorithm, and showed its application to
reconstruct the surface of proximal femur. The advantages of the present image-
to-model correspondence establishing algorithm include the robustness with re-
spect to certain outliers and automatic exclusion of cross matching, which is an
important property for preservation of topology. Experiments performed on 11
cadaveric femurs demonstrated the accuracies of the present scheme. It holds
the potential to increase reconstruction accuracy when more images are used.
Our future plan is to improve the algorithm for image feature detection with the
final goal of applying the present reconstruction scheme to real situation.
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Abstract. This paper presents results of a pilot study evaluating the efficacy of
robotic assistance using novel steerable electrode arrays for cochlear implant
surgery. The current surgical setup of cochlear implant surgery is briefly re-
viewed and its limitations are highlighted. In an effort to reduce trauma to the
structure of the cochlea, the kinematics and path planning for novel cochlear
steerable electrodes are developed to minimize the interaction forces between
the electrode and the cochlea. An experimental robotic system is used to com-
pare the electrode insertion forces of steerable implants with those of non-
steerable electrodes. The results of these experiments show about 70% reduc-
tion in the insertion forces when steerable electrodes are used with our proposed
path planning and control. A distance metric explaining this reduction in the in-
sertion force is defined and experimentally validated. Although this is only a
preliminary study, we believe that these results provide a strong indication to
the potential of robot-assisted cochlear implant surgery to provide a significant
reduction in trauma rates during cochlear implant surgery.

1 Introduction

Cochlear implant surgery allows surgeons to restore partial hearing to patients suffer-
ing from severe hearing loss due to damaged neuroepithelial (hair) cells. During this
surgery surgeons insert long, thin, and flimsy electrodes into the scala tympani canal.
The interaction forces during this surgery are small (less than 10 grams) [1]. The tools
used by surgeons do not provide any force feedback and are often very difficult to
control. The complex anatomy of the cochlea does not lend itself to intra-operative
imaging of its fine structures such as the basilar membrane. The basilar membrane is
very delicate and can be easily ruptured by the inserted implant electrode. All these
characteristics of cochlear implant surgery currently limit both its success (lower than
60% of atraumatic insertions [2-4]) and applicability.

* Corresponding authors.
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The success of an implanted electrode in restoring a wider frequency range de-
pends on the depth of its atraumatic insertion. While increased depth of insertion
promises improvement, it also increases the risk of trauma to the delicate structures of
the cochlea. For these reasons cochlear implant surgery is currently characterized by
shallow atraumatic insertions (less than 450°). Due to the traumatic nature of the
electrode insertions cochlear implant surgery is currently not applicable to patients
with residual hearing, but suffering from hearing loss that can not be restored by ex-
ternal hearing aids.

Following previous works on snake-like robots for distal dexterity enhancement [5,
6], this paper quantifies the potential improvement in cochlear implant surgery if
robotic-assistance is used with novel steerable electrodes that provide some dexterity
inside the cochlea. The design, kinematic modeling, calibration, and path planning of
under-actuated flexible steerable electrodes are treated in this paper with a goal of
minimizing the interaction forces with the walls of the cochlea. Mathematical model-
ing and path planning are presented in section 2. Although we present results using
novel steerable electrodes currently being developed in our lab, our methodology in
section 2 is valid for robotic assisted insertions using current electrodes with off-stylet
insertion tools [3]. These tools provide some control over the shape of the electrode
while sacrificing force feedback due to the very small interaction forces and friction
in the traditional insertion tools. Section 3 presents our experimental results compar-
ing the insertion forces of straight non-steerable electrodes to steerable electrodes and
quantifying the benefits of steerable implants.

2 Problem Statement and Mathematical Modeling

The purpose of this preliminary study is to evaluate the efficacy of robot-assisted elec-
trode insertion using novel steerable cochlear implant electrodes. We hypothesize that
a reduction in the electrode insertion forces will result in a significant reduction in the
trauma rates during cochlear implant surgery'. We thus use the insertion force of the
electrode as a performance measure to quantify the potential benefits of using these
steerable electrodes for reducing trauma in cochlear implant surgery.

Due to the small size of the cochlear implant electrodes we assume that controlling
the shape of the electrode will be limited for a single actuator. Accordingly, we treat
the steerable electrodes as continuum under-actuated snake-like robots. For these
robots the solution of the direct kinematics is determined by the variational solution
minimizing the elastic energy of the electrode [7, 8].

Fig. 1 shows scaled up (3:1) steerable electrode models that we fabricated using

silicone rubber. These implant models are actuated by a &100 pm Kevlar thread.

Figure 1-(b) and Figure 1-(c) show two different electrodes that we molded to yield
different bending shapes. The problem at hand is to design an electrode that bends
into the desired shape that best approximates the shape of the cochlea and to deter-
mine the optimal path planning that will provide the best approximation of the shape
of the cochlea during the electrode insertion process. This in turn will yield minimal
interaction forces with the walls of the cochlea.

! This hypothesis will be clinically tested in future studies.
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Fig. 1. (a) Top and front view of the electrode, (b-c) Two electrode models with different bend-
ing characteristics

Direct kinematics of the steerable electrodes: Let 6 and s represent the angle and
the arc length along the backbone of the electrode. Let s=0 indicate the base and s=L
the tip of the electrode. Let ¢ be the value of the active joint controlling the bending
of the electrode. The shape of a planar bending electrode is given by 6(s). Let the
minimum energy solution for the direct kinematics of the electrode be approximated
using a modal representation [9-12], Eq. (1) where vector a is a vector of modal fac-

tors. Let this vector of modal factors be given by a(q) = An(g), ne R",Ae R

where ' =[1,q,q%,---,q™']. We note that for high-order polynomial approxima-

tions (m>6), a set of orthogonal polynomials (e.g. Chebyshev polynomials) should be
used for considerations of numerical stability [13].

0(s,q)=w(s)'alq) a,yeR" where y(s)= [1 s,...,s“_]]t (D

Since the minimum-energy solution does not lend itself to real-time control we
choose to calibrate the direct kinematics experimentally. The shape of the electrode
may be digitized by r equidistant points along its backbone in z different images of
the electrode associated with z different values of g. For each point along the back-
bone the angle of the curve tangent is digitized and recorded in an experimental data

matrix ®€ R™ such that D, ;= H(Si,q j). Using the modal representation in Eq.

(1) the direct kinematics problem is cast as an algebraic matrix equation, Eq. (2).

y'(s=0)
D= A ['l(q :())’ Tt Tl(q = Qmax )]:QanAnermXL
y'(s=L) r
Q
(2)
1 1 1
1 s s
Q- r-| ¢ 1 1
n-1 .
1 s § xn qm—l qm—l qm—l .

Q and I' are Vandermonde matrices corresponding to the r numerical values of s
and the z values of g used to generate the experimental data matrix @ . Solving Eq.
(2) (® =QAT ) for matrix A provides the required solution for the direct kinematics
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problem. The solution of this algebraic matrix equation is given by
[T'® Q] Vec(A)= Vec(®) [14]. Where ® represents Kronecker’s matrix product

t
and Vec(A ) =lay; - app.a12 - apaay, - ap, |-

Optimal electrode insertion path planning: Let s, represent the electrode insertion

depth and let 6, (s) be the shape of the cochlea. Equation (3) returns the optimal

value of g that minimizes the shape difference between the inserted portion of the
electrode and the cochlea. The optimal value of q is found by calculating the objective
function for all columns of ® and the minimum is found by numerical interpolation
between the columns that best approximate the minimum value of the objective
function.

L
argmin [ (6.(5)-6s)) 3)
q L—sq

Fig. 2 shows the results of a Matlab simulation of this path planning process applied
using the experimental data matrix ® of the electrode of Fig. 1-(c). The figure dem-
onstrates that the implant coincides with the cochlear model well except for the tip
because the implant does not actively bend at its tip.

+ ’i_ ¥
| * '.I AT
..| S + | +
S - E //..*/*F
T F F & ——5 5% T % F %

+ = Indicates the shape of steerable electrode.
Solid line = shape of the cochlea using 2D Cohen’s template up to 330° insertion angle.

Fig. 2. Path planning insertion simulation for the electrode in Fig. 1-(c)

3 Experimental Validation

Phantom models of the cochlea: The cochlea has a 3-dimensional spiral anatomical
structure that was statistically characterized in the work of Cohen, et. al. [15], and
extended to 3D by Ketten et. al. [16]. The backbone curve of the cochlea is given by
Eq. (4) where r, z, and @ are the cylindrical coordinates of this curve (r is the radial
distance to the curve, z is the height, and @is the angle). The values of the constants a,
¢, b, d, 6y, p are based on [16], [17].

Fig. 3-(a-b) show a CAD model of the cochlea and the scala tympani. Fig. 3-(c)
shows a 3-dimensional stereo lithography 2:1 model of scala tympani. Figure
Fig. 3-(d) shows a 2-dimensional 3:1 scaled up model of the cochlea using Cohen’s
2D template. The 2-dimensional phantom model in Fig. 3-(d) was used in this work
for electrode insertion evaluation. Although this model does not provide insertion
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angles larger than 340°, it is enough to demonstrate the differences between passive
electrodes and active bending electrodes used in our work.

o arno 1-dlog(8-6y)) 6<100°
oelioso0°], =< g 0 . z=pO-6 4
[ ] { ae_bg 921000} p( O) ()

A two Degrees-of-Freedom (DoF) experimental robotic insertion system with force
monitoring: The experimental system shown in Fig. 4 was used to compare electrode
insertion forces for steerable and non-steerable electrodes. This system is composed
from a single DoF linear actuator, AG NTEP 5000d single axis load cell, and a steerable
implant that is inserted into the 3:1 phantom model of Figure 3-(d). The electrode model
is supported against buckling
using an implant support ring
that is affixed to the force
sensor. This support ring was
placed in two axial positions:
one for shallow insertions,
and another for deep inser-
tions, Fig. 5. Since the direct
kinematics of the implant is
affected by the constraint Fig. 3. (a) A 3D CAD model of the cochlea. (b) A CAD
imposed by the slip ring, we model of the scala tympani. (c) A 2:1 3D stereo-
calibrated the direct kinemat-  lithography model of the scala tympani. (d) A planar 3:1
ics for both configurations in model of the cochlea.

Fig. 5.

. amplifier

. linear actuator

. force sensor

. electrode actuator
. implant support

. implant

. 2D cochlea model

Fig. 5. Two configurations of the implant buckling support ring were used: (a) Configuration
for shallow insertion. (b) Configuration for deep insertion.
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Direct kinematics calibration: For the electrode direct kinematics calibration we
marked the electrode with sixteen equidistant points along its backbone. Twelve
images with different total bending angles of the electrode were acquired and the
position of the implant support ring was changed from a pre-set value for shallow
insertions to another pre-set value for deep insertions, Fig. 5.

Insertion experiments: The same electrode was inserted three times without control-
ling its bending (the electrode was set in a straight shape outside of the cochlea).
Another set of three insertions was performed while controlling the bending of the
electrode based on the path planning algorithm of section 2. As in [1], we wetted the
cochlea with glycerin to emulate the friction conditions during surgery. The forces of
insertion were recorded as a function of the insertion depth of the electrode.

Results: Fig. 6-(a) shows the average insertion forces over three insertion experiments
using the electrode of Fig. 1-(c) with and without control of its bending. Fig. 6-(b)
compares the best insertion of the electrode without bending control with the three
insertion experiments using the path planning of section 3. The results show that the
active bending insertions are repeatable and that the best non-steerable insertion is
significantly worse than the worst steerable insertion. A prominent reduction of 68%
in the insertion force was achieved when using our path planning.

(a) l i I : (b) =} 1)Non-steerable Tip
40H —Non-steerable Average Force 2)Steerable Tip Experiment]
) | Steerable Average Force 30 —3)Steerable Tip Experiment2
:.; 1 1 4)Steerable Tip Experiment3 A
30 ; L f-]
2 - - . . /
u? 20_.........._...........:...........:...........----
= 20 ..................................................
@ 1 : : : :
g 10 : H : :
£
& 10
10 30 50 70 0 10 20 30 40 50 60
Insertion Displacement (mm) Insertion Displacement {mm)

Fig. 6. (a) Average insertion forces of steerable vs. non-steerable electrode over three inser-
tions. (b) The insertion forces for all the steerable electrode insertions are significantly lower
than the best non-steerable implant insertion.

Analyzing experimental results: The insertion force due to friction between the
electrode and cochlea is equivalent to friction force in a band brake system [18],
which depends on the contact angle of the electrode with the external walls of the
cochlea. To explain the results of Fig. 6, several images during the insertion experi-
ments were acquired for several insertion depths and digitized as shown in Fig. 7-(a).
Third-order polynomials were fitted to the digitized data to represent the curve of the
external wall of the electrode, r,., and the curve of the outer wall of the cochlea , 1y,
Fig. 7-(b). Using these polynomial representations a distance metric
6(9)=||1'c(9)—1'1(9)||2 e [0,(p] was calculated (where ¢ is the insertion angle)

and averaged for every insertion angle during the insertion, Eq. (5).
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Fig. 7. (a) A sample digitized image. (b) The plots of Cohen’s 2D template and the curve of the
outside wall of the electrode (all units in mm).

Fig. 8 shows the average distance met-
ric e vs. the electrode insertion depth.
Fig. 8 and Fig. 6 explain the decrease in
the insertion forces when the electrode is
actuated since the average distance met-
ric is increased significantly compared to
the non-steerable electrode. Moreover,
the difference between steerable and
non-steerable electrodes becomes more
prominent as the insertion depth
increases.

—
&)1

s Non-steerable Metric e
+ Steerable Metric e

Average Metric ¢ (mm)

@

S 2

o
o
+

i i <

20 40 60

Fig. 8. Average distance metric € for Non-
steerable and Steerable implant as a func-

4 Conclusion tion of insertion depth (in mm)

This paper presented a pilot study that evaluates the potential benefits of robot-
assisted cochlear implant surgery using active-bending electrodes. Although this is a
preliminary study using phantom models, it clearly indicates the potential of robot-
assisted cochlear implant surgery using steerable electrodes in reducing the trauma to
the cochlea. The paper presented the mathematical modeling for the steerable elec-
trodes including a path planning algorithm that minimizes the interaction forces
during electrode insertion. An experimental system was presented and the results of
insertion experiments comparing insertions using steerable versus non-steerable elec-
trodes showed a reduction of about 70% in the insertion forces when steerable elec-
trodes are used. The paper also correlated the reduction in the insertion forces with an
increase in the average distance metric between the electrode and the cochlea as a
result of the distal dexterity provided by the proposed steerable electrodes. Based on
these results we are currently developing a tele-robotic system for robot-assisted co-
chlear implant surgery.
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Abstract. In contemporary brachytherapy procedures, needle placement at the
desired target is challenging due to a variety of reasons. A robot-assisted
brachytherapy system can improve the needle placement and seed delivery
resulting in enhanced patient care. In this paper we present a 16 DOF (degrees-
of-freedom) robotic system (9DOF positioning module and 7DOF surgery
module) developed and fabricated for prostate brachytherapy. Techniques to
reduce needle deflection and target movement have been incorporated after
verifying with extensive experiments. Provisions for needle motion and force
feedback have been included into the system for improving the robot control
and seed delivery. Preliminary experimental results reveal that the prototype
system is quite accurate (sub-millimeter) in placing brachytherapy needles.

1 Introduction

In traditional brachytherapy procedures, the needles are inserted transperineally under
the guidance of transrectal ultrasound (TRUS) images. Both the needle and the TRUS
are operated manually; the seeds are deposited using a manual applicator. The needles
are inserted through fixed holes of a physical template. Therefore, flexibility and
maneuverability of needle insertion are severely limited. Sometimes it is difficult to
avoid pubic arch (especially for patients with larger prostates) because the needles can
only be inserted straight through the template’s holes. The consistency and efficiency
of the treatment procedure are highly dependent on the clinicians. In order to assist
clinicians, it is important to develop a motorized semi-automated robotic system for
prostate brachytherapy. Robotic system will not only accurately place the needle and
deliver seeds but also can assist less experienced or skillful surgeons to perform the
procedures with higher consistency and efficiency.

Several researchers have been developing robotic systems for prostate
brachytherapy procedures [1]-[7]. The needle placement robot system developed by
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© Springer-Verlag Berlin Heidelberg 2006
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Fichtinger et al. [1] and Stoianovici et al. [2] comprised a 3 “egree-« ~freedom (DOF)
Cartesian bridge over the patient, a 2DOF remote center f moti n (RCM), and a
IDOF needle insertion with a motorized driver using ... axially loaded friction
transmission. A 7DOF passive arm was employed between the Cartesian stage and the
rest two modules (RCM and needle inserter) to position and orient the needle.
Although the stages had sufficient encoders, the needle driver lacked precise encoding
of the depth of needle insertion which was performed by a friction drive. In this
system, seeds can only be deposited manually. Wei et al. [3],[4] and Wan [5] et al.
have developed a robotic system for prostate brachytherapy where they have used an
industrial robot to position and orient a single hole template through which a needle
can be inserted manually. A separate motorized module is used for operating the US
probe. The needle placement robot system designed by Kronreif et al. [6], [7]
consisted of two offset x-y stages which allow positioning and orienting the needle
over the perineum in 4DOF (two translational and two rotational). The needle can be
inserted through the needle guide manually by the clinician.
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Fig. 1. Workspace for robotic-assisted brachytherapy (i) front view, (ii) top view

The available workspace for the robot is quite limited while the patient is in
lithotomy position for transperineal prostate brachytherapy (Fig. 1). Thus most of the
industrial robots may loose dexterity (or may loose DOF) working in severely
constrained workspace in the operating room (OR). Currently, hardly any robotic
system is available for full functionalities that are required during actual brachytherapy
in the OR. In this paper, we present a robotic system (called EUCLIDIAN - Endo-Uro
Computed Lattice for Intratumoral Delivery, Implantation, Ablation with Nanosensing)
for brachytherapy that is more equipped to perform most of the required procedures
automatically (or semi-automatically). We present a detailed design and development
of EUCLIDIAN, sequence of operations in clinical procedures, and experimental
results to evaluate EUCLIDIAN’s accuracy and repeatability.

2 System Design and Development

We have designed and fabricated a more complete robotic system for assisting
clinicians during prostate brachytherapy procedures. We collected in-vivo data
measuring the available workspace for a robot during actual brachytherapy
procedures (Fig. 1); this information helped us in designing a compact robotic system
that can work efficiently in the severely constrained workspace in the OR.
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2.1 Objectives

The main objects of this robotic system are to (1) Increase accuracy of needle
placement and seed delivery, (2) Increase avoidance of critical structures (urethra,
pubic arch, bladder), (3) Update dosimetry after each needle is implanted, (4) Detect
tissue heterogeneities and deformation via force sensing and imaging feedback, (5)
Reduce tediousness and assist clinicians, (6) Reduce trauma and edema, (7) Reduce
radiation exposure, (8) Reduce learning curve, and (9) Reduce OR time.

2.2 Functional Requirements

The functional requirements of the system are: (1) Quick and easy disengagement in
case of emergency, (2) Provision for reverting to conventional manual brachytherapy
method at any time, (3) Improvement of prostate immobilization techniques, (4)
Provision for periodic quality assurance checking, (5) Updating implant plan after
implanting the periphery of the prostate, or most of the needles have been placed and
seeds implanted, or any time, (6) A method for the clinician to review and approve the
motion plan before the first needle placement, (7) Ability to modulate velocity and
needle rotation by automatic feedback control, (8) Visual confirmation by the chosen
imaging technique of each seed deposition or the needle tip at the resting position, (9)
Steering of the needle by automatic feedback control, (10) Force feedback during needle
insertion, and (11) Ease of operation and safety for the patient and OR environment.

2.3 Prototype Robotic System

We have designed and fabricated a prototype robotic system for prostate
brachytherapy. It comprises of a 9DOF Positioning and a 7DOF Surgery Module.

2.3.1 Positioning Module
3DOF Cart — the cart can move in x-y horizontal plane and rotate about a vertical
axis. It consisted of a base having four wheels capable of rotating about two of its
own axes (a horizontal axis and a vertical axis) and a floor locking mechanism; while
locking the cart, it drops four legs and lifts the whole system off the wheels. This
ensures rigid locking on any floor and provides greater rigidity to the system. Above
the base, all the electronic and electrical components including an industrial computer
are housed in an enclosure. The cart is brought near the patient’s bed to a relatively
rough position and locked on the floor by pressing a lever, then the positioning
platform is suitably adjusted.

6DOF Platform — it connects the surgery module to the cart. The platform has
3DOF translational motions and 3DOF rotational motions. Thus it can position and
orient the surgery module at any location in the 3D space so that the ultrasound (US)
probe can be positioned and oriented in the patient’s rectum easily and comfortably,
and at the same time the needling mechanism should be suitably aligned with the
patient’s perineum. The vertical lift (y-motion) of the platform is motorized for ease of
operation against gravitational effect. The translational motion in horizontal plane are
manual, however these joints are unlocked using two solenoids, for safety and stability
they are by default locked. The 3DOF rotational motions (roll-pitch-yaw) are achieved
by using a spherical joint which can be mechanically locked at a desired orientation.
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2.3.2 Surgery Module

2DOF Ultrasound Probe Driver — the US probe (Acuson™ 128xP, Mountain View,
CA) can be translated and rotated separately by two DC servo motors fitted with
encoders and gear boxes. This enables imaging in transverse plane as well as in sagittal
plane, providing capability for improving 3D prostate model for dosimetric planning.
Working ranges of motions for US probe are 0-185mm and -91° to +91° in translation
and rotation, respectively. The clinician can also drive the US probe manually using
the knobs; during this mode the motors are automatically disengaged by the electrical
clutches (Fig. 2).The template holder at end of the US probe driver is a provision for
manual takeover, if required. The prostate stabilization needle guide can orient the
needle at any desired angle in both horizontal and vertical plane resulting in improved
stabilization of the prostate and thereby enhanced delivery of the seeds.

Ultrasound X
Probe Y Motion

Template

(Optional) Encoder

Probe Gripper

Stabilization
Needle Guide

X Motion
Platform

n
Knob 1
Bevel Gear

Fig. 2. Ultrasound probe driver Fig. 3. Gantry robot

3DOF Gantry — it connects the needle driving module to the positioning platform.
The gantry has two translational motions (x- & y- direction) and one rotational motion
(pitch). The motions are achieved by DC servo motors and optical encoders fitted
with the motors (Fig. 3). The working range of motion of the x-direction is 0-62mm
and in y-direction is 0-67mm which are sufficient to cover the projected treatment
area of a conventional template grid (60mm x 60mm). The rotational range for
angulating the needle to avoid pubic arch is -5° to +5°. The 3DOF motions of the
gantry enable to position and orient the needle at any desired location on the patient’s
perineum with greater freedom due to the absence of a physical template used in
conventional brachytherapy. Once the needle is positioned at the desired location
close to the perineum, the needle driver inserts the needle into the patient. The
motions of the US probe driver and the rest of the surgery module (gantry and needle
driver) are decoupled by making two separate open kinematic chains attached to the
same positioning platform.

2DOF Needle Driver — the needle which consists of a hollow cannula and a solid
stylet are driven separately by two DC servo motors. The cannula is rotated
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continuously or partially using another tiny DC motor. Both the stylet and the cannula
are driven from the back (they are pushed); therefore there is no chance of slipping.
During actual brachytherapy procedures, the needle traverses through different types
of tissues and organs to reach the target in the prostate, and these tissues and organs
have different types of boundary conditions that cannot be assessed from
experimental data obtained from ex-vivo tissue/organ samples. Therefore, in-vivo
measurement of needle insertion force (Figure 4) [9] is very useful in designing and
controlling any robotic system that will work in such a constrained space (Fig. 1). In
our design process, we have used this in-vivo information. It has been proven that
continuous rotation can improve targeting accuracy and can reduce insertion force ,
whereas partial rotation can increase needle placement accuracy [5],[9]. Therefore, we
have incorporated the provision for needle rotation in our EUCLIDIAN robot for
improving accuracy and seed delivery. To measure and monitor force profiles during
the operational procedures, we have installed two single-axis force sensors (Model 13,
Honeywell Sensotech, Columbus, OH) each at the proximal ends of the stylet and
cannula, and one six-axis force-torque sensor (Nanol7, ATI Industrial Auto., Apex,
NC) at the distal end of the cannula (Figure 5). Monitoring of these forces is useful in
detecting pubic arch interference (PAI) and will help in assessing needle bending.
Unlike commercially available seed cartridges (hold maximum 15 seeds), this
cartridge can accommodate 35 seeds at a time resulting in less frequent replacement
of the cartridge, and thereby reducing potential radiation exposure as well as reducing
OR time.

In-vivo Neelde Insertion Force
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Seed Pusher — a flat ended style (for beveled-tip brachytherapy needle) is used
to push the seed out of the cartridge and to deposit it at the planned locations in
the prostate; the stylet’s motor is deployed to push the stylet from the proximal end
(Fig. 5). All the sequence of motions during the seed delivery is fully automatic;
however, at any time the clinician can interrupt the motion. The force sensor at the
proximal end of the stylet monitors the force profile on the stylet and thereby
confirms the seed removal from the cartridge to the cannula; experiments showed that
on an average about 2.5N force is required to push the seed out of the cartridge. This
is also checked by monitoring the stylet’s motor current.

User’s Pendant — the handheld pendant with 10 buttons provides the surgeon the
freedom to take over the control of the surgery module at any desired time. From the



46 Y. Yuetal.

user’s pendant the surgeon can control the needle insertion, needle rotation, X-y
movement of the gantry and system abort.

The EUCLIDIAN system is quite compact to work in the constrained workspace
available during prostate brachytherapy procedures (Figs. 6 & 7). The overall
maximum dimensions (length x width x height) of the surgery module are 510mm x
290mm x 235mm; width at patient’s end (distal end) of US Probe Diver is 100mm
and that of Needle driver is 60mm. The gross weight of the surgery module is about
9kg, which can be reduced significantly by using plastic/nylon instead of presently
used surgical grade stainless steel and aluminum. All the motors are fitted with optical
encoders (MicroMo Electronics, Inc., Faulhaber Group, Clearwater, FL) which
provide final motion resolutions (considering gear ratios and screw leads) of
0.0007mm for gantry x-y translations, 0.004mm for stylet and cannula motions;
0.005mm and 0.06° for US probe translation and rotation, respectively.

Needling Mechanism

Seed Cartridge (Insertion & Implantation)

Needle Angulation

/ Template
Mounting Stage

Ultrasound Probe

Ultrasound Probe Drive.r RotstionaliStace

(Rotation & Translation) Mounting Bracket

Fig. 6. Assembled surgery module Fig. 7. Prototype robotic system

3 Clinical Procedures Using the Prototype Robotic System

Clinical work flow of the prostate brachytherapy procedures using the robotic system
is segmented into seven steps as described below.

In setup state, the EUCLIDIAN is initialized and patient information is entered into
the computer by the user. Then the TRUS (transrectal ultrasound) is moved to scan
the prostate in transversal plane and the images at a desired interval are saved. In the
next step, modeling state, the TRUS images are used in delineating the prostate
boundary, urethra, pubic bone, rectum, and seminal vesicle. Then a 3D model of the
prostate is generated automatically.

Next, this 3D model of the prostate is used for dosimetric planning to obtain the
desired coordinates of the radioactive seed distribution. The designed software can
display the planned iso-dose contours, needle position and seed locations in 3D. This



Robot-Assisted Prostate Brachytherapy 47

provides the clinicians a useful visualization of the whole treatment plan and if
required, the clinicians can edit the plan.

Once the plan is approved by the clinicians, a single needle is inserted into the
patient according to the plan. At this stage the TRUS is employed in sagittal plane to
tract the needle location. To ensure patient’s safety, this needle insertion is performed
in a sequential order, i.e. first, the gantry moves in x-y direction to bring the tip of the
needle close to the perineum of the patient; second, the gantry is stopped and then the
needling mechanism pushed the needle (stylet & cannula together) into the patient
unto a predefined depth; third, the clinician uses the user’s pendant to insert the
needle up to the final depth. The last stage of user’s takeover is to ensure patient’s
safety as well as to accommodate any change in planned depth that may be required
due to tissue/organ deformation or needle deflection. After the needle insertion, the
system is in implanting state. Seed is loaded from cartridge and implanted according
to the plan, and the needle is withdrawn.

As seeds being delivered, the system can go into a validation state to validate the
latest dosimetry, or skip the validation and return to the needling state. In validation
state, the prostate is scanned and seeds are located in order to update the dosimetry for
validation purpose. If the clinicians find that the dosimetry is not satisfactory, the
system can return to the planning state to make adjustment for the remaining seeds to
be inserted.

The patient safety is ensured by a variety of hardware (sensors and stops) and
software checks. An emergency button on the top of the cart can be used to stop the
whole system in case of emergency. The clinician can move the needle and gantry at
any desired speed by using the user’s pendant. He can also abort the any motion at
any time using the pendant. Although the system can execute coordinated (or
simultaneous) motion of all the axes, we preferred to have sequential motions of the
critical components such as needle insertion, seed delivery, and needle withdrawal for
patient’s safety reasons. However, to optimize total operating time some of the
motions (US probe and gantry) are coordinated. Sterilization of needle passages and
seed passages have been ensured by incorporating sterilized inserts. In this prototype
system, these inserts are permanent; however, for routine use they can be of
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Fig. 8. Position and size of holes (a) after one hundred penetrations at each location by moving
the needle from one location to the next location after each penetration, and (a) after single
penetration at each location
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disposable type. Most of the parts of the EUCLIDIAN robot are isolated from
patient’s blood and fluids by using leather jacket for the positioning module and
drapes for the TRUS driver, gantry, and needling mechanism. The cleaning and
decontamination of the relevant portions of the system is performed the same way as
that currently practiced in the OR.

4 Results and Discussions

To evaluate the system’s accuracy and repeatability we performed some preliminary
experiments. The system was run in a pattern (as shown in Fig. 8) for about 2 hours at
a time. An 18 gauge beveled-tip brachytherapy needle was inserted into a graph paper
pasted on a block of foam. There were a total of 16 penetration locations in a 60mm x
60mm area. The gantry moved the needle driver in a sequence (1-2-3- ...-16), as
shown in Fig. 8(a)) so that the mechanical systems go through back and forth motion
to experience backlash/slack errors in the motion transfer trains/linkages. After a
single penetration at each location the needle was moved to the next location, and this
was repeated for 100 times. The x and y speed of the gantry was 10mm/s and the
needle speed was 50mm/s. To assess the error and deviation we have also done the
same for a single insertion at each location (Fig. 8(b)). It was very difficult to
distinguish the deviation of the penetration holes even after 100 runs. We magnified
the image of the holes by 5 times to measure the errors. The average errors in x and y
motions that the system (needle tip) encountered after 100 insertions was +0.15mm
with repeatability of £0.05mm.

5 Remarks and Future Work

This paper presented the design and development of a compact robotic system for
prostate brachytherapy treatment with radioactive permanent seed deposition.
Numerous techniques and sensors were incorporated into the prototype to improve the
needle insertion accuracy, and thereby reducing the seed delivery errors; this ensures
improved radiation dose delivery to the patient. The system can be operated in both
automated and semi-automated modes. In case of any emergency the system can be
stopped instantaneously and the clinicians can switch to conventional manual mode.
The patient safety is ensured by a variety of hardware (sensors and stops) and
software checks. Accuracy and repeatability of the prototype system were tested and
they were found to be very accurate. We are performing more rigorous experiments
with phantoms to evaluate the overall performance of the system. In addition to US
imaging modality we are considering the use of CT (computed tomography) as more
precise imaging modality. Once the phantom studies are completed we intend to start
clinical trials.
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Abstract. We developed an image-guided robot system to achieve highly
accurate placement of thin needles and probes into in-vivo rodent tumor
tissue in a predefined pattern that is specified on a preoperative image.
This system can be used for many experimental procedures where the
goal is to correlate a set of physical measurements with a corresponding
set of image intensities or, more generally, to perform a physical action
at a set of anatomic points identified on a preoperative image. This
paper focuses on the design and validation of the robot system, where
the first application is to insert oxygen measurement probes in a three-
dimensional (3D) grid pattern defined with respect to a PET scan of
a tumor. The design is compatible with CT and MRI, which we plan
to use to identify targets for biopsy and for the injection of adenoviral
sequences for gene therapy. The validation is performed using a phantom
and includes a new method for estimating the Fiducial Localization Error
(FLE) based on the measured Fiducial Distance Error (FDE).

1 Introduction

We are investigating non-invasive methods for identifying hypoxic (oxygen de-
ficient) cells in tumors. This is important because hypoxic cells are resistant
to radiation treatment and therefore treatment can be improved by tailoring
the radiation dosage directed at them. By measuring the tissue oxygen tension
(pO2) level of the cells using an Oxylite probe[l] and correlating these mea-
surements with Positron Emission Tomography (PET) scan data, it is possible
to verify the efficacy of PET scans for locating hypoxic cancer cells prior to
radiation treatment[2]. Initially, we used a manual method to verify the corre-
lation between PET scan data and pOs; measurements for tumors on rodents.
The procedure was to place the anesthetized rodent inside a foam-filled bed that
contained a template with PET-compatible markers. After the PET scans, the
entire rodent and bed assembly were placed beneath a passive fixture that held
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the Oxylite probe. A set of measurement targets (a “track”) on the PET image
was selected and the corresponding template hole was located. After the skin
and tumor were punctured with a needle, the Oxylite probe was manually ad-
vanced through the template hole to measure the pOs level at each point along
the track. This procedure was repeated for multiple template holes (tracks). Our
goal was to design and build a robot system to automate this time-consuming
and labor-intensive procedure, while eliminating the constraint that measure-
ment tracks be defined only through template holes. The desired accuracy of the
robot system was specified to be 0.25 mm or better, not including the error due
to the imaging system.

2 System Design

2.1 Hardware Design

The robot system consists of a mobile cart that houses the electronics and pro-
vides a table top for the four axis robot and display (see Fig. 1). The robot is
composed of a two degree-of-freedom X-Y horizontal platform and two vertical
slides (Z1, Z2). A horizontal arm is mounted on the first vertical slide (Z1) and
provides an attachment for either a registration probe or cannula. The second
vertical slide (Z2) is attached to the first vertical slide and contains a probe
holder. This allows the system to insert the Oxylite probe through the cannula
and into the tumor. Note that in this case, the Z1 axis positions the cannula near
the skin surface and the Z2 axis drives the measurement probe to the target.
The rodent bed (Fig. 2) fits inside the limited bore of the small animal imag-
ing scanners and mounts onto the robot X-Y platform. It includes markers for
the registration between image and robot coordinates. The markers are mounted
on an adjustable bridge so that they can be positioned over the target region
(tumor) and within the scanner field of view. The bridge is removed after regis-
tration to enable access to the rodent. As shown in Fig. 2, we initially used the
Acustar® marker system[3], donated by Z-Kat Inc. (Hollywood, Florida, USA),
for the CT, MRI and robot markers and a separate set of support tubes (offset
by a known amount) for the radioactive PET markers. We are currently using
a simpler marker system that consists of four small hemispheres (3 mm diam-
eter), drilled into the adjustable bridge. These hemispheres are filled with an
appropriate contrast agent prior to imaging. After imaging, the contrast agent
is removed and the holes are physically located by the robot. For this procedure,
the cannula is replaced by a registration probe, which is guided to the markers
using a force control mode[4]. Force control is possible because the system con-
tains a two-axis sensor (XY) beneath the rodent bed and a single-axis sensor
(Z1) near the attachment mechanism for the registration probe and cannula.
The robot controller consists of a rackmount computer connected via Ethernet
to a DMC-2143 controller board and AMP-20540 power amplifier (Galil Motion
Control, Rocklin, CA, USA). The controller provides low-level servo control of
the four robot motors. Application software on the PC sends position goals via
Ethernet to the controller, which then moves each joint to its goal. The power
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Fig. 1. Robot system Fig. 3. Measurement track in PET

amplifier provides eight analog inputs, three of which are used for the interface
to the force sensors. For the XY force sensor, we used the DX-480 from Bokam
Engineering (Santa Ana, CA, USA) with a custom amplifier board that fits
inside a shielded metal case below the sensor body. The Z1 force sensor is an
L2357 sensor manufactured by Futek, Inc. (Irvine, CA, USA).

2.2 Software Design

We developed the application software, using 3D Slicer (www.slicer.org), to guide
the user through most steps of the procedure, which are:

1. Place anesthetized tumor-bearing rodent in rodent bed.
2. Place rodent bed in scanner and obtain image data.
3. Move rodent bed to robot system and load image data into computer.
4. Register image data to robot:
(a) Manually guide robot’s registration probe into contact with each of the
four markers.
(b) Use a semi-automatic image processing procedure to locate the corre-
sponding image markers.
(¢) Perform an optimization to determine the transformation that aligns the
two sets of marker positions (robot and image).
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Remove registration probe from Z1 axis and attach cannula.

Attach measurement (Oxylite) probe to Z2 axis and zero its position.

Identify target regions (sets of vertical tracks) in the image (see Fig. 3).

Transform the track points to robot coordinates and move the robot so that

it positions the cannula at the entry point of the first probe track.

9. Prompt the user to manually puncture the skin by inserting a needle through
the cannula and then removing it.

10. Command the robot to move the measurement probe through the cannula
and into the tumor. The robot moves the probe vertically inside the tumor
in user-defined increments (typically 1 mm), recording data at each position.

11. When the measurement probe reaches the end of the current track, command

the robot to retract the probe back inside the cannula, move it to the starting

point of the next track, and repeat the above cannula insertion and probe
measurement sequence until the entire grid pattern has been traversed.

®© N oo

The manual guidance feature is achieved by a force control algorithm that uses
nonlinear gains to provide fine positioning without sacrificing maximum motion
speed[4]. A simplified representation of the nonlinear force control equation is
given by:

Vi=F;«G;x (1 —cos(9x F;))

where V;, F; and G; are the commanded velocity, measured force and maximum
admittance gain for axis ¢, respectively. The multiplication by 9 ensures that
the maximum force reading (10 Volts) produces the largest commanded velocity
because cos(90) is 0. The nonlinear factor 1 — cos(9 * F;) is relatively flat for
low forces but has a higher slope for large forces. The actual implementation
includes a deadband (so that sensor noise does not cause unwanted motion) and
another nonlinear factor that is a function of the distance to the travel limit (so
that the robot slows down as it approaches the limit).

The transformation FT between image coordinates and robot coordinates is
obtained by performing a best-fit estimation between the two 3D point sets (4
image markers and 4 robot markers). There are several closed-form solutions
that minimize a cost function that is the sum of the squared L2-norms, where
Bp. and TP, k =1 ... N, are the robot and image marker positions, respectively
(N =4 in our case):

N
COStZZHRPk —?TIP]CHz (1)
k=1

Due to a somewhat arbitrary implementation decision, we instead compute an
initial transformation using three of the markers and then iteratively estimate
the final transformation using a variation of Powell’s Method [5]. This mini-
mizes a cost function as given in equation (1), except that the L2-norms are not
squared. Although our method has the potential advantage of being less sensi-
tive to outliers (because the errors are not squared), it has the disadvantage of
being incompatible with much of the literature, which assumes the formulation
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of equation (1). For example, the Fiducial Registration Error (FRE) is defined
based on the minimum value of equation (1):

L
FRE = NZHRPIC_FTZ' IPkH2 (2)
k=1

To avoid confusion, the results of the phantom experiments reported in the
next section were computed (offline) using the standard technique described
by Arun[6] and modified by Umeyama[7], instead of the iterative technique. In
our testing, we noted minor differences between the registrations obtained with
these two methods and we intend to replace the iterative technique with this
closed-form technique.

3 Phantom Experiments

We performed several tests using a phantom to evaluate the accuracy of the
overall system, as well as the accuracy of the major subsystem components
(imaging system and robot). Following the terminology of [3], we focus on the
following categories of error:

Fiducial localization error (FLE): error in determining the position of a
marker in image coordinates (FLE-I) or robot coordinates (FLE-R).

Target registration error (TRE): mean error for locating markers that were
not used for registration. This is most relevant to the application.

3.1 Phantom Design

We designed a phantom (Fig. 4) that has 20 small hemispherical holes (1-20), 2
cylindrical holes (C1-C2) and 4 large registration holes (R1-R4) arranged at 5
different heights. The 2 cylindrical holes and 4 large registration holes (R1-R4)
were not used for any of the tests reported here and will not be discussed further.
The 20 small holes have a diameter of 3 mm and are therefore equivalent to the
markers on the rodent bed. Four of these holes (1, 3, 10, 11) are arranged in the
same pattern as the four markers on the rodent bed. We chose Delrin because it is
compatible with all image modalities of interest (PET, CT, MRI). The phantom
is 120mm x 50mm x 45mm, which is small enough to fit inside all small animal
scanners. It was machined on a CNC machine with a known accuracy of £0.0005
inches (£0.0127mm). Considering the material properties of Delrin, we estimate
the overall accuracy of the phantom to be £0.05mm. Because our “hole finding”
procedure with the robot is a manual task involving hand-eye coordination, we
darkened the edges of the holes to obtain sufficient visual contrast.

For microPET imaging of the phantom, the hemispherical holes were filled
with contrast agent (radioactive tracer). After scanning, the application soft-
ware was used to find the centroid of each marker in the image. For the robot
measurements, the robot’s registration probe was manually guided to each acces-
sible hole. The data was analyzed to determine the Fiducial Localization Errors
(FLE-I and FLE-R) and the Target Registration Error (TRE).
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3.2 Fiducial Localization Error (FLE)

FLE can be simply defined as “the error of determining the positions of the
markers” [3], but it can be difficult to measure directly. One approach is to infer
FLE from FRE, using the following approximation (see [8]):

FLE = \/ < N]i 2) FRE? (3)

This is especially useful with an accurately-machined (CNC) phantom because it
can be individually applied to each measurement subsystem (image and robot).
Furthermore, the phantom can contain a large number of markers and thereby
produce a robust estimate of FLE.

We developed an alternate method for estimating FLE based on the Fidu-
cial Distance Error (FDE) which we define as the difference, for each pair of
markers, between the measured distance and the known distance. For example,
if P, is the measured distance between markers a and b (in image or robot
coordinates) and Cy; is the distance between those markers in CNC coordi-
nates, the FDE is |Py, — Cyp|. Note that for N markers, there are a total of
N(N —1)/2 measurements. The relationship between FLE (assumed identical
at each marker) and the average FDE depends on the geometrical arrangement
of the markers. We performed simulations to obtain an empirical relationship.
Each simulated data set was created by adding zero-mean Gaussian noise, with
a specified standard deviation (applied isotropically), to the CNC coordinates
of each phantom marker. For each standard deviation, we created 10,000 sim-
ulated data sets and computed the average FDE. We performed separate sim-
ulations for the image markers and the robot markers because even though
we used the same phantom, 14 markers were in the PET field of view and
16 markers were accessible by the robot. In both cases, we obtained a linear
relationship between FLE and FDE, with the ratio FLE/FDE approximately
equal to 1.5.

3.3 Target Registration Error (TRE)

It is first necessary to find the four registration markers in PET and robot coor-
dinates and compute the transformation between these two coordinate systems.
The TRE is then determined by transforming all other markers (not used for reg-
istration) into a common coordinate system and computing the distance between
each set of corresponding points; for example, if P; and R5 are the positions of
point 5 in PET and robot coordinates, respectively, and 7T is the transforma-
tion from PET (image) to robot coordinates, the TRE for point 5 is given by
|Rs = TP

TRE is the most meaningful measurement of the overall system accuracy be-
cause it estimates the accuracy with which the robot can position the instrument
(Oxylite probe) at the location identified on the PET image. It is important, how-
ever, to understand the limitations of the test conditions. The phantom tests do
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not include errors due to instrument compliance/bending or to the motion of
the target (tumor). In the case of the fiber-optic Oxylite probe, the error due
to bending can be significant. Furthermore, the TRE value does not include any
error due to the tool drive axis (Z2).

4 Results

The hemispherical markers in the phantom were filled with 5 ul of ¥ F-FDG (26.5
pCi). Only 14 markers (1-14) were visible in the microPET scanner’s limited field
of view. On the robot, it proved to be too difficult to see the 4 deepest markers
(2, 7,13, 17) and therefore they were eliminated from the testing.

4.1 PET Image Fiducial Localization Error (FLE-I)

One microPET scan of the phantom was acquired and the application software
was used to find all 14 imaging markers (filled holes) in the field of view. We
used a corrected value (1.229 mm) for the PET slice spacing that had been
experimentally determined during earlier testing.

The 14 markers resulted in 91 computed distance errors and yielded an FDE-I
of 0.172 £0.121 mm (mean + standard deviation). The largest distance error
was 0.497 mm. Our simulations produced the empirical relationship FLE-I =
1.49*FDE-I, which estimates FLE-I to be 0.26 mm.

For comparison, we applied the standard least-squares registration technique
[6][7] to all 14 imaging markers. The resulting FRE was 0.236 mm, which ac-
cording to equation (3), with N = 14, estimates FLE-I to be 0.26 mm.

4.2 Robot Fiducial Localization Error (FLE-R)

The robot was used to locate the 16 accessible markers in three different trials.
Each trial yielded 120 computed distance errors, with an FDE-R, value (over all
three trials) of 0.121 £ 0.096 mm (mean =+ standard deviation). The largest dis-
tance error was 0.455 mm. Our simulations produced the empirical relationship
FLE-R = 1.51*FDE-R, which estimates FLE-R to be 0.18 mm.

Once again, we compared our result to the one obtained by applying equation
(3) to the FRE from the least-squares registration of all 16 markers. For the data
obtained from the three trials, the FRE was 0.168, 0.127, and 0.117 mm, for a
mean value of 0.137 mm. This estimates FLE-R to be 0.15 mm.

4.3 Target Registration Error (TRE)

There were 11 markers, including all 4 reference markers, that were found in the
PET image and by the robot. Therefore, it was possible to register the PET data
set to each of the 3 robot data sets and compute TRE for the 7 target markers
(see Table 1).
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Table 1. Target Registration Error, mm

Trial FRE TRE

Mean Std Dev Max
1 0.217 0.305 0.098 0.447
2 0.200 0.293  0.088 0.395
3 0.227 0.279  0.105 0.475
Fig. 4. Phantom Mean 0.215 0.292  0.097

5 Conclusions

We completed the design of an image-guided robot system to assist with cancer
research and performed phantom experiments to measure its accuracy. Our re-
sults indicate a mean positioning accuracy (TRE) of 0.29 mm, with the accuracy
of the robot system alone well within the 0.25 mm specification. The results do
not include errors due to the instrument drive unit (Z2 axis), instrument compli-
ance/bending, or motion of the target (tumor). The largest error source is marker
localization in the PET image (FLE-I), followed by marker localization by the
robot (FLE-R). We introduced a new method for estimating FLE based on dis-
tance errors (FDE) and found good agreement with the existing method based
on FRE. Our results indicate that this robot system should improve the efficiency
and accuracy of needle-based procedures for in-vivo measurement, biopsy, and
injection in small animals.
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Abstract. Real-time 3D ultrasound can enable new image-guided sur-
gical procedures, but high data rates prohibit the use of traditional track-
ing techniques. We present a new method based on the modified Radon
transform that identifies the axis of instrument shafts as bright patterns
in planar projections. Instrument rotation and tip location are then de-
termined using fiducial markers. These techniques are amenable to rapid
execution on the current generation of personal computer graphics pro-
cessor units (GPU). Our GPU implementation detected a surgical in-
strument in 31 ms, sufficient for real-time tracking at the 26 volumes
per second rate of the ultrasound machine. A water tank experiment
found instrument tip position errors of less than 0.2 mm, and an in vivo
study tracked an instrument inside a beating porcine heart. The track-
ing results showed good correspondence to the actual movements of the
instrument.

1 Introduction

Real-time three-dimensional ultrasound (3DUS) is a viable tool for guiding sur-
gical procedures [1]. This visualization technique may enable a range of new
minimally invasive procedures in cardiac surgery. For example, beating heart
intracardiac surgery is now possible with the use of 3DUS and minimally in-
vasive instruments [2][3]: ultrasound permits visualization through the opaque
blood pool in the heart, and the advent of real-time 3DUS overcomes many of
the difficulties with 3D spatial perception in conventional 2D ultrasound [1].
These procedures eliminate the need for a cardiopulminary bypass and its well
documented adverse effects, including delay of neural development in children,
mechanical damage from inserting tubing into the major vessels, increased stroke
risk, and significant decline in acute and chronic cognitive performance [4][5][6].

Initial animal trials highlighted several obstacles to clinical implementation of
ultrasound-guided intracardiac surgery [2][3]. One such limitation is instrument
perception, due to the distorted appearance of stiff materials under 3DUS, in-
cluding high noise levels, shadowing, and a variety of artifacts. To address this
issue, researchers have developed techniques to detect instruments in ultrasound.
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By detecting instruments as they move within the ultrasound image it is possi-
ble to highlight the position of the instrument for the surgeons. Eventually, this
will allow surgeons to more accurately control the instruments as they perform a
surgical task. For example, Vitrani et al. [7][8] tracked the fingers of a endoscopic
grasper with 2D ultrasound. In addition, there have been numerous reports of
tracking surgical needles with ultrasound [9]. These techniques, however, use 2D
ultrasound or track instruments in homogeneous static tissue, which limits the
applicability to the heterogeneous dynamic environment found in intracardiac
procedures. Stoll et al. showed that instruments could be tracked in 3DUS using
passive markers[10]. This implementation employed singular value decomposi-
tion for instrument shaft detection that was unable to distinguish instruments
from tissue or other objects. It was also incapable of tracking instruments faster
than 1.5Hz and therefore unsuitable for beating heart procedures.

In this work we present a technique capable of detecting instruments used
in minimally invasive procedures. We build upon previous work by combining
two methods: Radon transform-based instrument shaft detection in 3DUS [11]
and passive markers for instrument tip localization [12]. These two methods are
complimentary, and we describe a hybrid approach for complete 6 degree of free-
dom instrument tracking. In addition, we demonstrate that this hybrid technique
is well-suited for implementation on powerful personal computer graphics pro-
cessor units (GPUs). By using a GPU based approach, the complete system is
capable of real-time tracking at the rate of the 26 volumes per second produced
by the 3DUS machine. The tracking method is validated in water tank and in
vivo experiments.

2 Methods and Materials

To attain real-time tracking of instruments within an 3DUS image, we utilized
techniques that were especially amenable to high performance implementations.
This consideration is especially important due to the high data rates of the
real-time 3DUS, where volumes (204x48x148 voxels) are produced at a rate of
25-28 Hz. This high data rate requires that real-time algorithms must handle
40 MB of data every second. For this challenge, we build upon work presented
by Novotny et al. [11], that introduces a high performance instrument shaft de-
tection algorithm. We also incorporate passive markers similar to those presented
n [12], but pay careful attention to marker design for increased performance.

2.1 Instrument Tracking

The first step is to detect the axis of the instrument. Generally, minimally inva-
sive instruments such as those used in intracardiac procedures are fundamentally
cylindrical in shape (Fig. 1). Graspers, scissors, needle drivers, and clip deploy-
ment devices are all attached to a long cylindrical tube. A modified form of the
Radon transform has been shown to be capable of identifying these long straight
cylinders (Fig. 2), a feature that is not found in cardiac ultrasound images [11].
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Fig. 2. Example of the modified Radon
transform. Each image (A-C) is a projec-
tion of the ultrasound image along the di-
rection (7a-7¢).

Fig.1. In vivo 3D ultrasound image of
a porcine heart with a 5 mm instrument
inserted into the right atrium

The algorithm identifies maximums of the the equation:

36,6, u,0) = / g (57 (8,8) + ucr(6,6) + vB (8, 6)) ds (1)

where g is referred to as the modified Radon space of the ultrasound volume,
g. Each point in § corresponds to the integral along a three dimensional line
defined by the four parameters 8, ¢, v and v. The angular parameters, 6 and ¢,
define an orthonormal basis composed of «, 3, and 7 that are defined as

cosfcosp —sinf —cosfsing
7= | sinfcos¢ |, a= | cosh |, B=| —sinbsing | . (2)
sing 0 cost

Two positional parameters, u and v, are also used to fully define a 3D line
(Fig. 3). Identifying lines in a 3D volume now becomes a problem of finding local
maximums of §. By finding the maximum value of §, the axis of the instrument
in 3D space is implicitly defined by the parameters (0, ¢, u,v).

This algorithm is especially well suited for implementation on parallel archi-
tectures such as modern graphics processing units. In its original implementation
it detected instruments in an ultrasound volume in 0.6 s [11]. To improve upon
this previous implementation, we both refined the search algorithm that identi-
fies maximums of Eqn. 1 and also used the information from previous volumes
to seed the tracking of the current volume.

To this end, we start by calculating Eqn. 1 for evenly spaced points throughout
the volume space g. Spatially, the volume is sampled at 5 voxel increments in x,
y, and z. For angles 6 and ¢, Eqn. 1 is sampled in 10 degree increments. Due
to symmetry, the angles are only sampled from 0 to 180 degrees. This search
constitutes the initialization of the instrument tracking, as the entire volume
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Fig. 3. Schematic of the modified Radon  Fig. 4. Picture of an instrument with pas-
transform in 3D. The transform integrates  sive markers. The instrument tip and roll
along a line (shown as dashed), defined by  angle is calculated using the distances 1
a, B, and T. and 2.

is searched for the instrument. For 148x48x208 voxel volumes, this results in
408,000 iterations of Eqn. 1.

For subsequent frames, the tracking algorithm confines its search space to an
area centered on the location found in the previous frame. Since the ultrasound
volumes are updated at 25-28 Hz, this search space can be fairly small. In our
trials, we empirically found that limiting the search space to +5 voxels spatially
in the z, y, and z directions and +10 degrees around the angles 6 and ¢ found
in the previous frame was sufficient to capture typical surgical movements.

To enable real-time tracking, the instrument axis tracking algorithm is calcu-
lated on the GPU where the 3DUS volume is stored in texture memory. Each
calculation of Eqn. 1 is performed by a pixel shader on the GPU. These pixel
shaders take advantage of high performance volume interpolation and vector ma-
nipulation built into the GPU. In addition, the GPU used in the implementation
(7800GT, nVidia Corp, Santa Clara, CA) has 16 pipelines that calculate Eqn. 1
simultaneously for 16 different positions in the § space. Once the § space has
been sufficiently sampled, the maximum identifies the position of the instrument
axis.

2.2 Passive Markers

Once the axis of the instruments is found, it is necessary to detect the final
two degrees of freedom of the instrument (tip position and roll angle) to fully
define its position and orientation. To this end, we build on work first introduced
by Stoll et al. [12]. Here we use a new marker design, shown in Fig. 4. To
produce distinct elements, 800 um polyurethane foam was wrapped around the
instrument shaft as shown in Fig. 4. Uncoated metals such as the stainless steel
used for surgical instruments are highly reflective in ultrasound. To ensure that
the instrument is visible in ultrasound, a more diffusive interaction with the
ultrasound pulse is desired. As a result, an 80 um fiberglass embedded PTFE
coating was applied to the instrument in order to improve the appearance.
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Fig. 6. 3D ultrasound image of a surgical instru-
ment in a water tank with white dots indicating
tracked passive markers

Fig. 5. Passive marker template

Finding the markers begins with the image volume already loaded into texture
memory from the Radon transform algorithm, then the built-in tri-linear inter-
polation is used to quickly render a slice through the instrument axis, orientated
so that the instrument axis is horizontal. To identify the position of the bumps,
a template matching algorithm is used on the ultrasound slice. The algorithm
uses the sum of the absolute differences between a candidate region of the slice
and a template, shown in Fig. 5.

The positions of the three best matches found in the slice are used to determine
the tip position of the instrument and the roll angle (Fig. 6). The tip position
is found with a known offset of 3 mm between the two closest markers and the
instrument tip. To find the roll angle, the ratio of the distances 1 and xo is
used (Fig. 4). Since the third marker is wrapped in a helical pattern around the
instrument shaft, the roll angle is a linear function of this ratio.

The configuration of these markers was designed to minimize the computa-
tional complexity for real-time implementation. Although there are more com-
pact and higher-resolution marker designs [12], they result in time consuming
calculations. In this implementation, the calculations are linear and negligibly
add to the computational requirements of the algorithm.

2.3 Experimental Setup

The system uses a Pentium 4 3 GHz personal computer with 1 GB of RAM. The
ultrasound machine (SONOS 7500, Philips Medical, Andover, MA) streamed
image data over a 1 Gb LAN to a personal computer using TCP/IP. A program
written in C+4++ retrieved the ultrasound volumes and loaded them onto the
GPU (7800GT, nVidia Corp, Santa Clara, CA) through a PCl-express bus.

To prove the effectiveness of the complete instrument tracking algorithm, we
performed two validation experiments. The first was a water tank study and
measured the accuracy of the full six degree of freedom instrument tracking.
Six positions on a acetyl block were marked in a 1 c¢m rectangular pattern.
The ultrasound probe and 6 marked positions were held statically, while the
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Fig. 7. Plot of the tip location for an in- Fig. 8. Distance from position 1 calcu-

strument in 1 cm spaced positions in a Jated by the tracking algorithm
water tank

instrument was moved from position to position. At each of the 6 positions
the instrument was imaged for 5 s. The tip position calculated by the tracking
algorithm was logged to a data file for analysis.

Second, in vivo validation was performed by tracking an instrument within
a beating porcine heart. Electromagnetic tracking (miniBIRD 800, Ascension
Technology, Burlington, VT) was used to simultaneously track the instrument
tip position. The instruments were imaged inside a porcine heart during an open
chest beating heart procedure. The instruments were inserted through ports in
the right atrial wall and secured by purse-string sutures. The ultrasound probe
was positioned epicardially on the right atrium to give a view of the right and left
atrium. The surgeon was instructed to move the instrument toward the atrial
septum. During this movement, the instrument tip position calculated by the
algorithm and the tip position measured by the electromagnetic trackers was
recorded to a data file.

3 Results

The algorithm was shown to be effective at real-time tracking surgical instru-
ments in both the water tank and in vivo experiments. In the tank experiment,
the tracking algorithm accurately measured the relative distances traveled by
the instrument tip as it moved to 6 positions 1 cm apart on an acetyl block.
Fig. 7 shows the tip positions as reported by the algorithm. The estimated dis-
tance of points 2-5 from point 1 is shown in Fig. 8; these distances correspond
to the actual separation of the six points marked on the block. The algorithm
found distances to points 2 and 3 with a mean error of 0.0 mm and with stan-
dard deviation of 0.1 mm. The distance to point 4 showed the largest mean error
of 1.6 mm=+0.01 mm and points 5 and 6 had mean errors of 0.2+0.1 mm and
0.140.1 mm, respectively.
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Fig. 9. In vivo x, y, and z position of the instrument tip as reported by an electro-
magnetic tracker (solid line) and the tracking algorithm (dots)

Fig. 9 shows the results of the in vivo trials. The figure plots the z, y, and z
trajectories of the instrument tip versus time. Both the instrument tip position
reported by the instrument tracking algorithm and the electromagnetic trackers
is shown. The tracking method correctly tracked the instrument tip as the sur-
geon moved it for 5 s. The mean difference between the tip position reported by
the electromagnetic tracker and tracking algorithm was 1.4 mm, 0.4 mm, and
0.9 mm in z, y, and z directions.

In our experimental setup, the instrument tracking technique required 1.7 s to
initially detect the instrument in the entire ultrasound volume. For subsequent
tracking, the algorithm required 32 ms per volume. This speed is well within the
38 ms required for the algorithm to keep pace with the 26 volumes per second
generated by the ultrasound machine.

4 Discussion

These results show that real-time tracking of surgical instruments is possible
with 3DUS. The method successfully integrates Radon transform-based instru-
ment axis tracking and passive marker-based tip and roll tracking to determine
the full 6 degrees of freedom of the instrument. In addition, by harnessing the
computational power of the GPU and using a fast search schema, the tracking
system kept pace with the 25-28 volumes per second produced by the 3DUS
machine. To the authors knowledge, this is the first demonstration of real-time
tracking of surgical instruments in vivo with 3DUS.

The tank experiments highlighted the accuracy of the technique, within 0.2 mm
for most cases. However, as seen in one of the measurements (Fig. 8), the marker
detection algorithm incorrectly identifies the position of the passive markers. As
a result, the tip position is incorrectly calculated along the shaft axis. Further
research is underway to improve upon the marker template matching procedure,
and to introduce predictive filters to improve accuracy.

In wivo trials provided verification of the effectiveness of the algorithm when
instruments are surrounded by blood and highly inhomogeneous and rapidly
moving tissue within the beating heart. The electromagnetic tracking used for
verification is by no means a ”gold standard”, as it is highly susceptible to
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electromagnetic interference that is found in a modern operating room. It did
provide a corroborative data set that showed the tracking technique presented
here is in fact tracking the surgical instrument. A more rigorous study into how
accurately the method performs in vivo is left for future work.

By developing a real-time instrument tracking technique, it is now possible to
introduce a range of improvements to aid in our target procedures, intracardiac
surgery. Real-time tracking can now be used for instrument overlays and naviga-
tional aids to help the surgeon deal with the distorted appearance of tissue and
instruments in 3DUS images. In addition, tracking of instruments opens a wide
range of possibilities for implementing robot control under 3DUS guidance.
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Abstract. This paper presents a novel active surface segmentation al-
gorithm using a multiscale shape representation and prior. We define a
parametric model of a surface using spherical wavelet functions and learn
a prior probability distribution over the wavelet coefficients to model
shape variations at different scales and spatial locations in a training
set. Based on this representation, we derive a parametric active surface
evolution using the multiscale prior coefficients as parameters for our op-
timization procedure to naturally include the prior in the segmentation
framework. Additionally, the optimization method can be applied in a
coarse-to-fine manner. We apply our algorithm to the segmentation of
brain caudate nucleus, of interest in the study of schizophrenia. Our vali-
dation shows our algorithm is computationally efficient and outperforms
the Active Shape Model algorithm by capturing finer shape details.

1 Introduction

The characterization of local variations in a shape population is an important
problem in medical imaging since a disease could affect only a portion of an
organs surface. For example, the surfaces of certain structures in the brain, such
as the caudate nucleus, contain sharp features. During the segmentation process
of such structures, this relevant high frequency information needs to be preserved
since it is relevant to further shape analysis [1].

Object segmentation with deformable models and statistical shape modelling
are often combined to obtain a robust and accurate segmentation [2, 3,4, 5]. Active
shape models (ASMs) [3] are a standard technique for statistical segmentation
tasks based on a prior learned over a point distribution models (PDM): landmarks
on the shape are used as parameters and a joint prior probability distribution is
learned using principal component analysis (PCA) over the landmarks. However,
ASMs are often limited by the training set size and the inability of relatively few
eigenvectors to capture the full biological variations in the data [6].

To address this, a decomposable shape representation seems natural, where
shape descriptors are separated into groups that describe independent global
and/or local biological variations in the data, and a prior induced over each
group explicitly encodes these variations. Wavelet basis functions are useful for
such a representation since they range from functions with global support to
functions localized both in frequency and space, so that their coefficients can
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be used both as global and local shape descriptors, unlike spherical harmonics
or PCAs over landmarks which are global shape descriptors. The authors in [6]
used wavelet functions for curve representation and learned a prior over groups
of coefficients that are in proximity both in scale and space used for segmenta-
tion of 2D medical imagery, with convincing results. In [7], authors presented a
multiscale representation of 3D surfaces using conformal mappings and spherical
wavelets, and a novel multiscale shape prior shown to encode more descriptive
and localized shape variations than the PDM shape prior for a given training set
size. In this work, we present a segmentation framework using this 3D wavelet
representation and multiscale prior. To the best of our knowledge, this is the
first application of spherical wavelets for medical image segmentation.

In Section 2, we give an overview of the shape representation and shape prior
using spherical wavelets [7]. Both will be used in the segmentation framework
described in Section 3. In Section 4, we present our results on caudate datasets,
and in Section 5 we summarize our results and outline further research.

2 Shape Representation and Prior

2.1 Spherical Wavelets

In this work, we use biorthogonal spherical wavelets functions described in [8].
Spherical wavelets are scalar functions defined on surfaces which are topologically
equivalent to the unit sphere and equipped with a multiresolution mesh, created
by recursively subdividing an initial mesh so that each triangle is split into 4
“child” triangles at each new subdivision (resolution) level (see Figure 1). At each
resolution level, scaling and wavelet functions are constructed, with decreasing
support as the resolution increases (see Figure 1). For a mesh with N vertices, a
total of N functions constitute an L? basis, which means that any finite energy
function defined on the mesh can be expressed in the basis. In matrix form, the
set of basis functions can be stacked as columns of a matrix @ of size N x N where
each column is a basis function evaluated at each of the IV vertices. Since the
spherical wavelet functions are biorthogonal, ' ® # Id (the identity matrix), so
the inverse basis ¢! is used for perfect reconstruction, since '@ = Id.

Any finite energy scalar function evaluated at N vertices, denoted by the
vector F' of size N x 1, can be transformed into a vector of basis coefficients
I'r of size N x 1 using the Forward Wavelet Transform: I'» = &~ 'F, and
recovered using the Inverse Wavelet Transform: F' = &1k.

Next, we describe how to represent shapes using spherical wavelets.

2.2 Data Description

To illustrate our work, we use a dataset of 29 left caudate nucleus'. The MRI
scans were hand-segmented by an expert neuroanatomist to provide ground truth
segmentations. Each manual segmentation defined a 3D surface extracted by
standard isosurface algorithm. We used 24 training shapes and 5 test shapes.

! The details are: 1.5 Tesla GE Echospeed system, coronal SPGR images, 124 slices
of 1.5 mm thickness, voxel dimensions 0.9375 x 0.9375 x 1.5mm.
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2.3 Shape Representation

We first re-triangulate and register surfaces in the dataset so that they each have
the required multiresolution mesh to conduct the wavelet analysis and the same
mesh node on all shapes correspond to the same anatomical location. To achieve
this, we find a one-to-one mapping from each surface of the population to the
sphere, constrained by the requirements that 6 consistently chosen landmark
points? on the shapes get mapped to the same point on the sphere [10]. Then,
by interpolating the resulting spherical maps at the vertices of a multiresolu-
tion triangulation of the sphere (shown in Figure 1(b)), we can re-triangulate
the original caudate surfaces in a consistent manner, providing a point-by-point
registration of all surfaces in the dataset and the required mesh for spherical
wavelet analysis. After registration, all shapes have N vertices and the i*" shape
is represented by the vector X; of size 3N (all x, then y then z coordinates). All
shapes are aligned with Procrustes [11] to find the mean shape X.

We encode the deviation from the mean for the i*" shape with the signal
vi = X; — X. We then transform v; into a vector of spherical wavelet basis
coefficients I, of size 3N with the forward spherical wavelet transform:

1 0 0
L,=|0 &1 0 |, (1)
0 0 &t
~ ~
-1

Therefore a shape is transformed into wavelet coefficients by taking the forward
wavelet transform of the x,y and z deviation from the mean signal.

2.4 Multiscale Shape Prior

To build a prior that captures both global and local variations in the data, we first
reduce the dimensionality of the I',, coefficients and keep only the coefficients
that encode relevant variations in the training data. We use a technique that
takes into account biorthogonality and estimates which coefficients can be trun-
cated (set to 0) without significantly affecting the function approximation [9].
In the caudate dataset, 74% of the coefficients were removed resulting in a re-
construction error smaller than 0.1% of the total shape size. This leads to a nice
compression property since the transform can match variations in the caudate
shape population using a small number of basis functions.

After truncation, we wish to decompose the set of non-truncated coefficients
(vector of size 3M ) such that highly correlated coefficients are grouped together in
a band, with the constraint that coefficients across bands have minimum cross-
correlation as described in [7]. This models the joint probability distribution
of the coefficients by a product of smaller probability distributions over each
band, assumed to model independent shape variations at a particular scale.
We recursively cluster coefficients using spectral graph partitioning [12]. The

2 The landmarks are chosen automatically as described in [9].
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(a) level 0 (b) level 4 (c) wavelet, level 1 (d) wavelet, level 2

Fig.1. (a-b) Recursive Partitioning of an octahedron (c-d) Visualization of wavelet
basis functions at various levels. The color corresponds to the value of the functions.
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Fig. 2. 3 examples bands discovered by the prior color-coded on the mean shape. The
color shows the cumulative value of the wavelet basis functions that belong to that band.
Whiter areas represent surface locations with correlated variations across shapes.

visualization of resulting bands on the mean shape can in itself be interesting for
shape analysis (see Figure 2) by indicating which surface patches co-vary across
the training set. For example at scale 1, bands 1 and 2 indicate two uncorrelated
shape processes in the caudate data that make sense anatomically: the variation
of the head and of the body. It is interesting that bands have compact spatial
support, though this is not a constraint of our technique.

Once we discovered the bands, the final step is to estimate the probability
distribution of each band of coefficients via PCA. The eigenvectors and eigenval-
ues of lower scale bands represent relatively global aspects of shape variability,
whereas bands at higher scales represent higher frequency and more localized
aspects of shape variability. Additionally, our prior accurately encodes finer de-
tails even with small training sets, since if there are a total of B bands, there
exists on the order of L ~ B(K — 1) eigenvectors, as opposed to just K — 1
eigenvectors when performing PCA on PDMs.

The full prior contains all the eigenvectors for all bands and all resolutions in
a matrix U of size 3M x L if there are L eigenvectors in total®. The vector of
basis coefficients I, is then :

Ly, =1y, + Uay, (2)

3 Each column of U is an eigenvector of a particular band with non-zero entries only
for coefficients that were assigned to that band, see [7,9] for more details.
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where a,, (size L x 1) represents the coordinates of the wavelet coefficients of
that shape in the eigenvector space.

3 Segmentation with the Spherical Wavelet Prior

In order to exploit the multiscale prior, we derive a parametric surface evolution
equation by ewvolving the weights « directly. As the surface evolves to fit the
image data, we constrain the weights a to remain within +3 standard deviation
of their values observed in the training set. The parameters of our model are
the shape parameters «, as well as pose parameters that accommodate for shape
variability due to a similarity transformation (rotation, scale, translation) which
is not explicitly modelled with the shape parameters.

3.1 Pose Parameters

Given a surface mesh with N vertices X : [1,...,N] — R* expressed in ho-
mogeneous coordinates so that a mesh point is denoted by X(u) = x, =
[T, Yu, 2u, 1]T, a transformed surface X is defined by:

2(u) = T[p]Z(u). 3)

The transformation matrix T'[p] is the product of a translation matrix with 3
parameters t;,1,,t,, a scaling matrix with 1 parameter s and a rotation matrix
with 3 parameters w,, w,, w,, using the exponential map formulation [13].

3.2 Shape Parameters

A surface point X(u) can be represented in the wavelet basis using (1) and (2):
(u) = B(u) +H (L) = Z(u) +H (IL(I + Ua)) @)

where the function H : [3N x 1] — [4 x N] rearranges a matrix to have correct
homogeneous coordinates and I, are all the basis functions in I evaluated at
point x,,. The parameters « are the shape parameters of our model.

3.3 Segmentation Energy

We use a region-based energy to drive the evolution of the parametric deformable
surface for segmentation. With region-based energies, the force that influences
the evolution of a contour depends on more global statistical information [4,5].
We employ the discrete version of a segmentation energy presented in [5]:

E(a,p) = Y  L(X)AX, (5)

%XER
where R is the region inside the evolving surface Y and the force is L(X) =
—log( ﬁé((ll((’;())))) where 1(X) is the image intensity at a point X located inside the

region R of the evolving surface, P;(I(X)) is the probability that a point X with
intensity I(X) belongs to the interior of an object to be segmented in the image,
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and Pp is the probability that the point belongs to the exterior of the object.
The segmentation energy is minimized when the surface evolves to include points
that have maximum L (points that have a higher P; than Pp). To estimate the
probability density functions P; and Pp from a training set, we collect sample
voxel intensity values inside and outside the segmented shapes in a neighborhood
of width 10 pixels around the boundary and use Parzen windows [11].

The surface evolution is defined by a gradient of X' that minimizes the energy
in terms of the pose p and shape parameters a. We use the area formula, and
discrete divergence theorem to express the region sum in (5) as a surface sum [9].
Using the notation of (4), the gradient with respect to each pose parameter
Pr € p is given by:

dE . dT ~ —
=Y <Lz Pl o). 4 > A%, (6)
L dpr,
X, €8
N is the inward normal of surface point x,, expressed in homogeneous coordinates
and the image force L is evaluated at points on the surface boundary of X.
The gradient flow with respect to each shape parameters ay € « is given by:

dE

d = > < L)TPIHUILU (- k), N > Ax, (7)

Xu€Z
where U(:, k) selects the k*" eigenvector corresponding to ay.

3.4 Parameter Optimization Via Multiresolution Gradient Descent

We can now use the gradient equations (6) and (7) to conduct a parameter
optimization via gradient descent. Explicitly, the update equations are:

pdE WdE

(8) alt+1)=at)+6 (9)

where 6% and &} are positive step size parameters and ot + 1), p(t + 1) denote
the values of the parameters a and p at the (¢ + 1)*" iteration. We start with an
initial shape and iterate between (8) and (9). We update the a parameters in a
multiresolution fashion. Since each shape parameter «; corresponds to a band at
a wavelet resolution j, we first only update « coefficients corresponding to the
coarsest level bands (j = 1). Once « changes less than a threshold value v, we
add the o parameters of the next resolution level to the gradient and update (9).
This results in a more stable segmentation since few global parameters are first
updated when the shape is far from the solution, and more localized parameters
are added as the shape converges to the solution.

We start with (8) until (p'™ — p’) < vp where vy, is a threshold value. We
then run (9) for 1 iteration, and iterate the process. At each « iteration, we
ensure that the value of the o parameters stays within +3 standard deviation of
the observed values in the training set. After each iteration, the updated shape
and pose parameters are used to determine the updated surface.
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Fig. 3. Surface Evolution using the Ground Truth labelmap as the image force for
ASM (top rown) and Mscale (bottom row) algorithms. The ground truth is shown in
light gray, the evolving surface in dark grey.

4 Results

We have applied our algorithm to the segmentation of caudate nucleus shapes
from MRI scans as previously described. We learned a shape prior from a training
set of 24 shapes. We use spherical wavelet basis functions of resolution up to
j = 5. In total, we obtained 16 bands in the shape prior. We learned the mean
position p,, of the caudate shapes in the MRI scans (in patient coordinate space).
To initialize the segmentation, we use the mean caudate shape learned during
the training phase and positioned it at position p,, in the scan to be segmented.
We then evolved the surface according to the process described in Section 3. The
step size parameters were 6 = 0.5,6F = 0.001 for translation and 6 = 0.0001
for scale and rotation and vp = v, = 0.02.

To measure the discrepancy between the segmented shape (S) and the ground
truth (G) (obtained from the hand-segmented labelmaps), we use the Hausdorff
distance H (G, S) that measures the maximum error between the boundary of two
shapes G and S, as well as the partial Hausdorff distance Hy (G, S) that measures
the f% percentile of the Hausdorf distance. We compare our algorithm (called
Mscale) to the standard ASM algorithm that uses the PDM shape prior [3],
using the same training, testing shapes and keep 100% of the eigenvectors.

To validate our algorithm, we first use the Ground Truth labelmap as the
image force in Equations (6, 7) by replacing the log expression with a value of 1
inside the (known) object and —1 outside. The end goal is to validate whether the
surface evolution converges to the right solution, given perfect image information.
Since we are evolving in the space of the shape prior, the discrepancy between
the ASM and Mscale algorithm is due to the expressiveness of the shape prior.
Figure 3 shows the result for test shape 5. The final segmentation with the
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Fig. 4. Surface Evolution using the density estimation as the image force for ASM
(top rown) and Mscale (bottom row) algorithms. The ground truth is shown in light
gray, the evolving surface in dark grey.

Table 1. Hausdorff (H) and partial Hausdorff (Hy) distance for the five test shapes,
for the Multiscale (Mscale) and Active Shape Model segmentation algorithm.

Error Measure Segmentation Alg. N=1 N=2 N=3 N=4 N=5 Mean

Hos (mm)  Mscale 4.822.22 3.03 3.04 3.95 3.16
ASM 551 3.24 3.98 3.18 4.26 3.83
H (mm) Mscale 5.89 4.06 3.75 5.23 5.57 4.85
ASM 9.79 5.68 6.33 7.22 6.06 7.07

multiscale prior captures more of the shape and finer details than the ASM
segmentation. Furthermore, we see that as the resolution level is increased for
the o parameters, the Mscale segmentation is able to capture finer details.

We then validated the full segmentation algorithm, using the proposed im-
age force in Equation 5. The results of the validation for both algorithms are
shown in Table 1. For each test shape, the lowest error among the two algo-
rithms is in boldface. The Mscale algorithm consistently outperforms the ASM
algorithm. Figure 4 qualitatively compares the segmentation of Test shape 3 for
both algorithms. The Mscale algorithm is more accurate and captures finer de-
tails, especially at the tail of the shape. We note that the segmentation is not
fully accurate due to non-perfect image statistics. Our algorithm runs under 5
minutes on a Pentium IV 2GHz using non-optimized MATLAB code.

5 Conclusions and Future Work

We presented a computationally efficient segmentation algorithm based on a
spherical wavelet shape representation and multiscale shape prior. Our results
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show that the proposed segmentation algorithm outperforms standard ASM by
capturing finer details during the evolution, due to the expressiveness of the
multiscale prior that captures a wider range of global and local variations in the
training set than the ASMs prior. We plan to validate the algorithm on other
medical structures, in particular other brain structures involved in diagnosis of
schizophrenia. Additionally, we plan to investigate the usefulness of the spherical
wavelet shape representation and multiscale prior for shape classification.
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Abstract. Due to small training sets, statistical shape models constrain
often too much the deformation in medical image segmentation. Hence,
an artificial enlargement of the training set has been proposed as a so-
lution for the problem. In this paper, the error sources in the statistical
shape model based segmentation were analyzed and the optimization
processes were improved. The method was evaluated with 3D cardiac
MR volume data. The enlargement method based on non-rigid movement
produced good results — with 250 artificial modes, the average error for
four-chamber model was 2.11 mm when evaluated using 25 subjects.

1 Introduction

Quantitative information, such as various volumetric measures, are needed to
make more objective diagnosis. However, manual extraction of such information
from images is both highly time-consuming and prone to segmentation errors
due to subjective image interpretation. Therefore, accurate and reliable meth-
ods to automatically perform the segmentations are highly needed. Development
of automatic segmentation methods has appeared to be challenging due to sev-
eral reasons, such as high variability in the shape and appearance of various
anatomical regions, low contrast between objects and noise in images.

Numerous model-based segmentation methods have been studied to solve the
aforementioned difficulties. Especially active shape models (ASM) [1] has turned
out to give promising results. In ASM, the mean model and its typical defor-
mation modes, based on a training set, are defined using Principal Component
Analysis (PCA). Several ASM-based approaches have been proposed for the
3D modeling and segmentation of medical images [2,3,4,5]. Furthermore, the
methods have lately been used to model the function of the heart [6].

Because the model construction process is time consuming and not enough
data are always available, the number of examples in the training set remains
often relatively low. This means that the degrees of freedom in the model are
limited and the model can not represent accurately all cases in a population from

R. Larsen, M. Nielsen, and J. Sporring (Eds.): MICCAI 2006, LNCS 4190, pp. 75-82, 2006.
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which the training set has been sampled. At least two techniques have been
proposed to the problem: for example in [7,8], the approach was to decrease
the dimension of the model, whereas in [9, 10], the size of the training set was
artificially increased.

In addition to testing different methods to enlarge the dataset artificially
in [10], we studied the relation between the size of the training set and the abil-
ity of the model to represent an unseen object. We found that a heart model
with 100 modes has enough degrees of freedom to reach about 1 mm segmen-
tation accuracy for ventricles and atria. However, preliminary tests with real
data showed that the segmentation accuracy did not improve as much as the
modeling accuracy.

In this work, we identified three sources for the segmentation error: 1) the
properties of the model, i.e., degrees of freedom in the model, 2) the properties
of the deformation algorithm, such as goodness of criterion to be optimized and
an optimization algorithm used, and 3) the errors in the golden standard to which
a segmentation result is compared. Our objective is to study the contribution
of these error sources to the final segmentation result. This was obtained 1) by
proposing a method to eliminate the effects of the manual segmentation errors
on the segmentation accuracy, 2) by improving and testing different optimization
methods to deform the shape model and 3) by further analyzing and verifying the
effects of the artificial enlargement of the training set. Image data used consisted
of cardiac MR volumes.

Another contribution made in this work was the development of a novel seg-
mentation algorithm for cardiac MR, images. The method was based on arti-
ficially enlarged ASM. The weights of the deformation modes were optimized
by fitting line profiles, defined for model points, to image data by simulated
annealing.

2 Materials and Methods

Materials. The database consisted of both long- and short-axis MR volumes
obtained from 25 healthy subjects. Atria, ventricles and epicardium were man-
ually segmented from the volumes by an expert. The segmentations were made
by fitting a triangulated surface model simultaneously into the short- and long-
axis volumes. All manual segmentations were made using a specially designed
software package [3].

Model Construction. Both the mean shape § and the mean gray-scale short-
and long-axis volumes were constructed according to the procedure proposed
in [3]. Also, the point correspondence between the training set shapes s; were
obtained, and used to model the shape variability in the training set using point
distribution model (PDM) [1]. A covariance matrix was computed from the devi-
ations of the training set shapes from the mean shape. The deformation modes,
i.e. modes of shape variation, were defined by computing eigenvectors and -values
of the covariance matrix.
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In statistical shape models, new examples of the shape, s = [s1, ..., s,]7, that
are specific to the studied object, are generated using a linear combination

s=§8+ &b, (1)
where § = [51,...,5,]7 is a reference shape, typically a mean shape constructed
from a training set, ® = [¢1,..., ¢n] i @ matrix consisting of the deformation
modes ¢;, and b = [by,...,b,]T is a weight vector. The number of the non-zero

eigenvectors is min(N — 1,n), where N is the number of the training set shapes
and n the number of shape parameters, i.e. point coordinates in PDM.

To avoid the training set constricting too much the model deformation during
the segmentation process, the size of the training set, and hence, the number
of the deformation modes was artificially enlarged. In [10], we evaluated several
methods and the best one called a non-rigid movement strategy was adopted
here. The method moves non-rigidly surface points inside a deformation sphere.
The sphere is randomly positioned to 50 locations on the object surfaces, and the
original surface points are locally deformed at each position. The displacement
vector for the movement is calculated from

_g—ea)?H(y—ey)(z—ez)? 5

e 2 —e

v(z,y,z) = 10— o2 Vv, (2)

where (cz,cy,c.) and r are the location and the radius of the sphere

(r = 50 mm), and V a random vector. The length of the vector V is chosen

from a uniform distribution ([0 25] mm). Outside the sphere, the displacement
vector is zero.

In ASM-based segmentation, the mean model is deformed according to Eq. 1
in such a way that the deformed model fits optimally to the target data. In
other words, the objective is to find a combination of weights b; optimizing a
selected similarity function. In this work, the weights were constricted to satisfy
|b;| < 5v/A;, in which )\; is the eigenvalue corresponding to the ith eigenvector.

Optimization Criteria. Two optimization criteria were tested for the model
deformation. Both criteria were based on the use of line profiles normal to the
subject surface [11]. The first method utilized Normalized Mutual Information
(NMI) [12]. For each surface point j, the grayscale information along the profile
was sampled and put into the vector g;. The varying of the weight vector b was
made in such a way that the NMI between the profiles from the mean model
and the profiles from the same locations in the target data was maximized.

In the second method, the normalized profiles g; were built for each surface
point of each subject in the training set. Then, their mean g; and covariance
Sy were calculated. Here, it was assumed that the normalized samples were
distributed as a multivariate Gaussian. Thereafter, the quality of fit between the
target profiles and the profiles from the mean model was computed by minimizing
the sum of the statistical (Mahalanobis) distances, f(g), calculated over all the
surface points as
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flg)=> (g-8)7"S, (g —8) (3)

Jj=1

Optimization Algorithms. A commonly known problem with deformable
models is that the deformation fails easily if the model is not close enough
the final result. In other words, the deformation stops to some local mini-
mum/maximum of the optimization function. Therefore, we evaluated in this
work both local and global optimization methods. Conjugate gradient and sim-
plex optimization methods were used as local optimization methods. Simulated
annealing (SA), a method simulating physical annealing process was used for
global optimization. In SA, annealing schedule for the simulated temperature
was calculated from

T=Ty(1 - 5" @

where T} is the initial temperature, k the iteration number and K the number of
total iterations (o = 4). All the implementations pertaining to the optimization
methods were based on the algorithms proposed in [13].

Modified Training Set. The segmentations were first done for original MR,
volumes with both normal PCA modes and artificially enlarged modes, using
the mean model as an a priori model. However, the errors in the manual seg-
mentations were discovered to have an influence on the process both during
the deformation step (wrong shapes in the training set) and during the method
validation step (inaccurate golden standard). Because no realistic cardiac MR
phantom images were available, the following strategy was used to eliminate the
errors in the golden standard.

A modified training set was built by exploiting the transformation fields ob-
tained during the model construction phase. New a priori model was obtained
by registering the database subject k& with the mean model using the volumetric
transformation Ty : z — T (Fig. 1a). To better simulate the mean model, the
new model was filtered with a Gaussian lowpass filter (Fig. 1b). Moreover, the tar-
get volumes were obtained by registering database subject k to all other database
subjects [ using the transformations Ty, : xx +— ;. This yielded subjects having
the grayscale information from subject k£ and shapes from subject [. The segmen-
tations were then applied to these volumes using the same statistical shape models
than in normal MR volume segmentations. Thus, the manual segmentation errors
were propagated both to the mean model and to the database subjects in a similar
way, removing the effects on the measured segmentation accuracy.

Evaluation. First, the generality of the statistical shape model based segmenta-
tion was verified by applying the method to labeled volumes, where each object
was presented by one grayscale value (Fig. 1c). Thereafter, the segmentation was
evaluated both with 25 real and modified short- and long- axis MR volumes. In
the segmentations, both the NMI- and Mahalanobis-based optimization criteria
were used with different optimization algorithms. In addition to standard PCA,
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(c)

Fig. 1. An a priori model of the modified training set, i.e., one database subject trans-
ferred into the mean coordinate system a) before and b) after the Gaussian lowpass
filtering process. ¢) An example of labeled volumes used to verify the generality of the
statistical shape model based segmentation.

the segmentations were made using 24, 100 and 250 artificial modes, respectively.
During all tests, leave-one-out cross-validation was used to avoid biasing.
Euclidean distances between the results obtained from the automatic and
manual segmentation processes were used as error measures. The distances were
averaged over all surface points of all subjects. Moreover, comparison between
the absolute energy values were also made to better understand the phenomena.

3 Results

The segmentation results are summarized in Table 1. Moreover, the error dis-
tributions between different cardiac objects using simulated annealing and Ma-
halanobis distance based optimization are shown in Table 2. As an example,
two randomly selected results are illustrated in Fig. 2, one in short- and one in
long-axis view.

4 Discussion

As shown in Table 1, the performance of the method with labeled volumes follows
the accuracy estimated in [10], i.e. the modeling accuracy in terms of the number
of deformation modes. For example with 100 modes, approximately 1 mm error
was produced since the deformation modes did not have more degrees of freedom
to represent the full range of shape variations of the target object. Furthermore,
the error increased to 1.36 mm when the modified volumes were used. This means
that image characteristics, such as image noise and poorly visible interfaces
between neighboring objects, increased error approximately 0.3-0.4 mm. This 1.4
mm can be considered as the real segmentation error of the algorithm. Finally,
as the errors from the manual segmentations were also present, the error further
increased by 0.5-1 mm, being 2.16 mm for real MR volumes using Mahalanobis
distance based optimization.

For comparison, we segmented manually the left and right ventricle as well as
epicardium from seven cases twice. The difference between these segmentations
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Table 1. Top: Segmentation error and its standard deviation (mm) for simulated
annealing. The standard PCA as well as the PCA with 24, 100 and 250 artificial
modes were used (columns). The errors from top to bottom are for the lower limit
of segmentation accuracy estimated in [10] (theoretical), labeled volumes (NMI based
optimization), modified volumes (NMI) and real MR volumes using both NMI and
Mahalanobis based optimization. Bottom: Comparison of optimization algorithms.
Segmentation error and standard deviation (mm) was computed using PCA with 100
artificial modes.

Method Standard PCA  Artificial 24  Artificial 100  Artificial 250
Theoretical - 1.50 1.03 0.70

Labeled 1.45 4+ 0.48 1.42 + 0.40 1.02 4+ 0.36 1.00 + 0.39
Modified 1.86 4+ 0.48 1.67 + 0.39 1.36 4+ 0.30 1.33 + 0.31
NMI 2.47 £ 0.52 2.54 + 0.57 2.40 £+ 0.43 2.28 + 0.41
Mahalanobis 2.23 £ 0.44 2.26 + 0.50 2.16 £ 0.41 2.11 £ 0.45
Algorithm Labeled Modified NMI Mahalanobis
Conjugate gradient 1.17 £ 0.37 1.43 £ 0.31 2.45 4+ 0.49 2.21 £ 0.41
Simplex 1.03 + 0.35 1.38 + 0.29 2.39 £ 0.37 2.17 £ 0.43

Simulated annealing 1.02 + 0.36 1.36 £ 0.30 2.40 + 0.43 2.16 + 0.41

was about 1.4 mm. This value is in accordance with the estimates obtained in
[3] (1.8 mm) and in [4] (1.2 mm). The accuracy of automatic segmentation (Ta-
ble 2) was about 1.9 mm for the ventricles and epicardium. In other words, the
accuracy should be improved by 0.5 mm in order to reach the human accuracy.
However, according to our results increasing the number of deformation modes
above 100-200 does not solve the problem but the optimization of the weights
of the deformation modes becomes the problem. Although global optimization
was used, the accuracy could not be significantly improved. Two reasons can
explain the result: 1) the function to be optimized does not have the global

Table 2. Segmentation error for different cardiac objects using simulated annealing
and Mahalanobis based optimization criterion. The error and its standard deviation
(mm) are obtained when using standard PCA (top) and PCA with 250 artificial modes
(bottom). Abbreviations LV, RV, LA, RA and EC stand for left ventricle, right ventri-
cle, left atrium, right atrium and epicardium, respectively. As shown in Table 1, total
errors were 2.23 mm for standard PCA and 2.11 mm for PCA with 250 artificial modes.

LV RV LA RA EC

St PCA 1.89 + 0.36 2.23 + 0.64 2.67 £ 076  3.21 £ 1.67 1.96 £ 0.40
Artif 250 1.77 £ 0.36 2.13 + 0.63 244 +£ 085  3.17 £1.89 1.85 £ 0.51
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Fig. 2. Two randomly selected examples of the segmentations achieved by using Ma-
halanobis distance based criterion and simulated annealing. The slices with the short-
(top) and long-axis (bottom) view have been chosen from different cases. a) Manual
segmentations, b) initial conditions and c¢) automatic segmentations using standard
PCA and d) PCA with 250 artificial modes. The errors for these particular cases were
1.65 and 1.61 (top) and 2.36 and 2.18 (bottom) for the standard PCA and PCA with
250 artificial modes, respectively.

maximum/minimum in the correct location due to image imperfections, and 2)
the optimization was not run long enough to reach the global optimum. Despite
the correct reason, increasing the computation time considerably is not feasible
from clinical point of view. Therefore, more attention should be put on devel-
oping better optimization criteria. Furthermore, to ensure the artificial shapes
produced by the non-rigid movement strategy (Eq. 2) would reflect true and
physically plausible shape variation, it would be beneficial to constrain the de-
formations of the surface points using the local probability density functions
generated from the database.

In terms of the energy optimization, simulated annealing outperformed sim-
plex and conjugate gradient algorithms in all cases. However, since the difference
in the segmentation errors was not statistically significant (Table 1), the choice
between the optimization algorithm had no substantial role in the segmenta-
tion. The Mahalanobis distance performed slightly better than NMI when real
MR volumes were used. This was probably due to small amount of information
obtained from profile points.

For real MR volumes, the method developed resulted in relatively small fi-
nal error, 2.11 mm by using 250 modes, simulated annealing and Mahalanobis-
distance. The errors for the left and right ventricles were 1.79 mm and 2.14 mm,
respectively. The errors are comparable with the results recently reported, and
slightly better than reported for example in [3,14].
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Abstract. This paper presents a new deformable model using both population-
based and patient-specific shape statistics to segment lung fields from serial
chest radiographs. First, a modified scale-invariant feature transform (SIFT) lo-
cal descriptor is used to characterize the image features in the vicinity of each
pixel, so that the deformable model deforms in a way that seeks for the region
with similar SIFT local descriptors. Second, the deformable model is constrained
by both population-based and patient-specified shape statistics. Initially, popula-
tion-based shape statistics takes most of the rules when the number of serial im-
ages is small; gradually, patient-specific shape statistics takes more rules after a
sufficient number of segmentation results on the same patient have been ob-
tained. The proposed deformable model can adapt to the shape variability of dif-
ferent patients, and obtain more robust and accurate segmentation results.

1 Introduction

Evaluation of the variation of cardiac size from month to month by taking serial chest
radiographs [1-3] remains crucial for the treatment of hemodialysis patients. This is be-
cause the evaluation of a patient’s dry weight (DW) is usually based on the cardiac size
measured during each dialysis session [4], and the misevaluation of DW often results in a
fatal illness such as patient’s death. Since segmentation of lung fields in the chest radio-
graphs provides a means to measure cardiac size, it is important to accurately segment
lung fields from the regularly captured serial chest radiographs of each patient. Methods
for segmenting lung fields in chest radiographs [1] can be classified into three groups,
i.e., the rule-based methods [3], the pixel-based classification methods [2], and the de-
formable model-based methods, including ASM [5] and AAM [6]. In this paper, a new
deformable model is proposed for robust and accurate serial lung field segmentation.
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In deformable segmentation, it is important to characterize the relatively rich image
features around the boundaries of lung fields, and then use these image features to
guide the image segmentation. This is because the generic image features, such as
edges along the boundaries of lung fields, are always inconsistent, and not sufficiently
distinctive to discriminate, for example, rib edges from lung field edges. Therefore, the
complex local descriptors, such as SIFT [7], might be suitable to characterize the im-
age features around each point along the boundaries of lung fields. In the proposed
deformable model, SIFT is used to capture image features for guiding the segmentation
of lung fields, since it has been validated as the best among many local descriptors [8].

Another important idea in the proposed method is that the deformable model is
constrained by both population-based and patient-specific shape statistics. The shape
statistics collected from the segmentation results of a population, i.e., the shapes of
lung fields of individuals, can be used for constraining the segmentation of lung fields
in the initial time-point images of a specific patient. As the number of serial images of
the same patient increases with time, it is possible to collect the patient-specific shape
statistics from previous segmentation results of the same patient and use it to guide
the segmentation of lung fields in the serial chest radiographs of the same patient. In
this way, the deformable model gradually adapts to the shape statistics of the specific
patient and yields more robust segmentation results. In our method, the patient-
specific shape statistics is updated each time after a new image is acquired and seg-
mented; then the segmentation results of all the previous time-point images are further
refined by using the updated shape statistics.

2 Method

2.1 Description

In the clinical setting, serial chest radiographs are acquired monthly from each pa-
tient. Our goal is therefore to accurately segment the lung fields from the serial im-
ages and provide measures such as cardiac size for quantitative estimation of DW. At
each time-point ¢, two major steps are performed for the newly captured image, i.e.,
the preprocessing step and the deformable segmentation step, as detailed next.

» The preprocessing step. The first time-point image is selected as the template im-
age, and the image captured at time ¢ is rigidly transformed onto the space of the tem-
plate image by using rigid transformation [9]. Moreover, the image intensities are
globally normalized to have a similar distribution to the one of the template image
[10]. Thus, we obtain a normalized image at time ¢. All the normalized serial images
are denoted as {[, i=1, 2,..., t}, where I, is the current time-point image.

» The deformable segmentation step. A new deformable model is utilized to segment
the current image I,, by using the statistical information collected from a population
and also from #-1 previously segmented images of the same patient. The energy func-
tion of the deformable model is defined as,

E =E™ +EM™ +(1-w)EF + o,E] )

where E®™" denotes the smoothness constraint of the deformable contour, and it re-
quires that the first and the second derivatives of the deformable contour be close to
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zero. EP™" denotes the overall difference of the SIFT features of the corresponding
model points in the image /, and in the template 7, which is actually a mean shape

generated from a public database [2, 11]. E denotes the constraint derived from the
population-based shape statistics, while E' denotes the constraint required by the pa-
tient-specific shape statistics, trained from #-1 segmentation results on previous time-
point images of the same patient. The energy term E! is not existent for several initial
time-point images, simply because the available segmentation results for the specific
patient are not sufficient to train a statistical shape model. We can actually begin to train
the patient-specific statistical shape model once N, time-point images have been col-

lected and segmented. Here, N, is the minimal number of segmentation results for the
same patient, and N, =5 is used in our study. Afterward, we can gradually increase the
weight of energy term E' and simultaneously decrease the weight of energy term E,

as more and more new images are added. This is controlled by parameter @, :

0 t<N,
@ =4{(t-N,)/(N,-N,) N,<t<N, 2)
1 N, <t

If we have more than N, images from the same patient, we will stop using the popula-

tion-based shape constraint term E, since the patient-specific statistics collected from
over N, samples is sufficient to capture the variation of lung fields of the patient.
The deformable segmentation of image /, is summarized as follows:
(1) If 1 < N,, segment I, by minimizing Eq. (1), where @, is 0 and E] is not used.
(2) If t > N, the following two steps are performed (refer to Fig.1 for details):
Step (2.1), segment image I, by incorporating the patient-specific constraint term
E!', which is derived from #-1 segmentation results on previous time-point images
I,...1,.,.
Step (2.2), update the patient-specific shape statistics by adding a new segmenta-
tion result of /, to the training set, and then use this updated patient-specific
shape statistics to refine the segmentations on all ¢ images I,,...,1,. Finally, the

patient-specific shape statistics is updated again, which will be used for segment-
ing the next time-point image.

Step (2.1) E/ l T ., s A
ep (2. ' <
/—/% ¥ 4
I I, I, 1 e ir §+
P % 2 :
Step (2.2) ‘/‘/ t \ b J}‘ %
1 I I, 1, ‘

Fig. 1. Two major steps for seg- Fig. 2. Demonstration of using SIFT features for corre-
menting the current image at ¢ spondence detection in two different time-point images
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2.2 Energy Terms

Denoting the deformable contour as M ordered points, i.e.,{vi =(x,y)0i= 1,2,...,M},

ESmth

the smoothness constraint term can be represented as,

M
ESm™ = Z(a,.Ef,.““‘ EL) Za (d=1v,, =v, . D+ Bv, . =2v, +v, ., ) (3)

i=1
where E™ and E are the continuity and the curvature constraints on the i-th
point of the contour during the segmentation of lung fields at time ¢. ¢, and f, are the
weights, and d, is the average distance between neighboring points in the contour.
The second energy term in Eq. (1) EX™" is a distance measure between two SIFT

features, and minimizing it enables us to determine point correspondences between
the template 7, and image /,. As we will describe in the next subsection, SIFT

features are distinctive, thus facilitating the correspondence detection in the chest
radiographs. The SIFT features used in our study are designed as: for each point v,, a
128-element vector s; is used to represent the histogram of orientations in the local
image around the point v, . Then, the energy term E®™ can be defined as,

M 12
SIFT
E =

8
M (1) = 5] () 4)

i=1 =1

Mdl

where s, and s; represent the SIFT feature vectors of point v, in the template im-

Mdl

age I and its corresponding point in the image 7,. 5, (/) and s/ (/) represent the /-

th element of sM‘"

and s/, respectively.

The third and forth energy terms are population-based and patient-specific statistical
constraints, respectively. We use [5] to capture shape statistics from the population,
i.e., a set of manually segmented training samples [2]. In contrast, we use a hierarchical
shape representation in [12] to effectively capture the patient-specific shape statistics,

since the number of segmentation results from the same patient is not large.

2.3 SIFT Local Descriptor

SIFT, as detailed in [7], consists of four major steps: (1) scale-space peak selection; (2)
key point localization; (3) orientation assignment; (4) key point description. The first
two steps detect the key points in the scale space, and they are not required in this
study since we only focus on using SIFT features of the contour points along the
boundaries of lung fields. Thus, we use the last two steps to compute the SIFT features
for each contour point. The SIFT local descriptor for a point is computed as follows:

(1) A patch is centered on the point, rotated according to the dominant gradient orien-
tation around the point, and scaled to an appropriate size.

(2) The SIFT local descriptor is then created by sampling the magnitudes and the
orientations of the image gradients in the patch around the point, to build the
smoothed orientation histograms for capturing the important information in this
patch of image. A 4x4 array of histograms, each with 8 orientation bins, is ob-
tained, capturing the rough spatial structure of this patch of image.
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(3) This 128-element vector is then normalized to a unit length and further thresh-
olded to remove the elements with small values.

Fig. 2 shows the performance of SIFT features in detecting corresponding points in
the chest radiographs. In this figure, the SIFT features of the red crossed point in one
time-point image as shown in the left image are compared with the SIFT features of
all the points in another time-point image as shown in the middle image. As indicated
by the color-coded similarity map in the right image, a very small number of points in
the middle image are similar to the red crossed point in the left image. Since the two
images have been rigidly aligned, the corresponding point of the red crossed point in
left image is detected in the middle image by searching the maximal similarity within
a local neighborhood.

2.4 Learning Patient-Specific Shape Statistics

For serial image segmentation, it is important to use the segmentation results from the
previous time-point images to guide the segmentation of the current time-point image.
Similarly, the segmentation results of previous images can also be refined using the
information collected in the later time-points. Since we have normalized intensities
and poses of other time-point images to the first time-point image, all the lung fields
are globally overlapped well. However, although the globally aligned serial lung field
shapes are very similar, there still exist visible differences, due to distortion, pose
change, 3D-2D projection, and normal or abnormal development. Fig. 3 shows an
example of the serial lung field shapes. The thin black contours represent the bounda-
ries of lung fields in each image, while the thick red contours are identical and they
are actually the same contour segmented from the first time-point image. It can be
seen that the segmentation results obtained from the serial images of the same patient
are globally similar while locally different, because of the reasons mentioned above.
Note that it is relatively easy to capture the shape statistics from the shapes of the
same patient, even using a small number of shape samples. This type of patient-
specific shape statistics, collected from the previous segmentation results, can guide
the segmentation of the current and future time-point images. This is the main idea of
our on-line learning method for capturing the patient-specific shape statistics.

ANINENNENANARTEN
ANENANANTENAVENTAN

Fig. 3. Demonstration of local deformations of lung field shapes from the serial images of the same
patient. The thin black contours are the segmentation results of the serial images, and the thick red
contours are identical, denoting the same shape segmented from the first time-point image.
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At time-point #, we have #-1 previously segmented images and a current time-point
image I,. We can use the 7-1 segmentation results from images /,,...,1,; (in Step (2.1)
of Fig.1), or the ¢ segmentation results from images /,,...,I, (in Step (2.2) of Fig.1), as
the training samples. In order to capture the patient-specific shape variability informa-
tion from the training samples, we adopt the hierarchical representation of shape sta-
tistics that can effectively guide the deformable segmentation of lung fields in the
current time-point image [12].

It should be noted that this on-line and incrementally learned patient-specific shape
statistics can be used only after a sufficient number (N,) of segmentation results are
obtained. As more images are processed, the constraint derived from the population-
based shape statistics becomes less and less important, while the constraint derived
from the patient-specific shape statistics increases gradually. Finally, the weight for
population-based statistical constraint is 0 if we have N, or more training samples.

This mechanism enables the deformable model to adapt to the patient-specific shape
variability, thus it is more robust and accurate for lung field segmentation.

3 Experimental Results

The serial frontal chest radiographs of 39 patients, most with up to 17 monthly scans,
are used. The lung fields of all serial images have been manually delineated by a
human observer, which are used as a gold standard to validate the segmentation re-
sults obtained by our method, a standard Snake [13], and ASM [6] in the next.

3.1 Segmentation of Serial Chest Radiographs

Visual comparison. Fig.4 qualitatively compares the performances of our method, the
standard Snake, and ASM in segmenting the lung fields from the serial chest radio-
graphs (256x256). Initializations for these three methods are displayed in the top left
image. The top right image is a selected time-point image from the serial images. The
red, green and black contours denote the segmentation results by the standard Snake,
ASM, and our method, respectively. It can be observed that our results are very close
to the lung field boundaries, and they are temporally more stable than the ASM results
(please refer to the four small serial images shown on the bottom of the figure). These
results indicate that the use of patient-specific shape statistics improves the accuracy
of image segmentation. They also indicate that a simple feature, such as a local gradi-
ent used in the standard Snake, is not able to describe the complex and inconsistent
image content along the boundaries of lung fields. On the other hand, SIFT features
facilitate the detection of correspondences in the serial images, which ensures the
relatively better segmentations by our method.

Quantitative comparison. We also used quantitative measures to compare the seg-
mentation results obtained by the three segmentation algorithms. We use the overlay
percentage to compare the automated segmentation results with the manual segmenta-
tion results for each image. It turns out that the mean and standard deviation of overlay
percentage are 93.8%+0.58% by our method, 92.6%+0.8% by ASM, and 78.7%=+1.3%
by the standard Snake. We also compute the average contour distance between auto-
mated segmentations and manual segmentations [2]. The mean and standard deviation
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of average contour distance are 1.76+0.23 pixels by our method, 2.06+0.25 pixels by
ASM, and 5.31+0.29 pixels by the standard Snake, respectively. These results show
that our method achieved better performance than the standard Snake and ASM.

3.2 1D and 2D Cardiothoracic Ratios

By segmenting lung fields from chest radiographs, we can compute the diagnostic
measures, i.e., cardiothoracic ratio (CTR), referred to as 1D-CTR. 1D-CTR is defined
as the ratio of the transverse diameter of the heart to the transverse diameter of the
thorax, as shown in Fig.5. Recently, the extraction of 2D cardiothoracic ratio (2D-
CTR) from the chest radiographs has been extensively studied [14], since it is be-
lieved to be more robust than 1D-CTR. In our study, 2D-CTR is defined as the
squared root of the ratio between the area of white region and the area of both white
and grey regions, as shown on the right of Fig.5.

The importance of 1D-CTR has been validated in many clinical applications. For
evaluating the usefulness of 2D-CTR, we need to measure the relationship between
1D-CTR and 2D-CTR from the same serial chest radiographs. As shown by the left
plot in Fig.6, 2D-CTR is highly related to 1D-CTR, which indirectly indicates that
2D-CTR can be also used as a diagnostic measure.

Moreover, the Bland and Altman plots [15] of 1D-CTR and 2D-CTR are provided
in the middle and right plots in Fig.6, respectively, by using the manual segmentation
results as the gold standard. These two plots indicate that the distribution of 2D-CTR
is more compact than that of ID-CTR. Also, the mean difference value by 2D-CTR
measurement is smaller than that by 1D-CTR measurement. Moreover, the confidence
interval of 2D-CTR is tighter than that of 1D-CTR.

initial contour matching results Fig. 5. ID-CTR and 2D-CTR. In left

image, MR+ML denotes the cardiac di-
ameter, and MTD denotes the thoracic
diameter. In right image, white region
represents the central shadow in the chest
radiograph, while gray region represents
Fig. 4. Comparison of automated segmentations ~the bilateral lung fields.

LAY

month 8 month 9 month 10 month 11

4 Conclusion

We have presented a new deformable model to segment the lung fields from serial
chest radiographs by using both population-based and patient-specific shape statistical
constraints. The patient-specific shape statistics is on-line and incrementally learned
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from the segmentation results of the previous time-point images of the same patient.
For the initial time-point images, the population-based shape statistics plays the major
rule for statistically constraining the deformable contours. As more and more segmen-
tation results are obtained, the patient-specific shape statistics starts to constrain the
segmentation, and it gradually takes the major rule for statistical constraining. Also,
SIFT features, used to characterize image points, are relatively distinctive, thus mak-
ing the correspondence detection in the two chest radiographs relatively easy. Ex-
perimental results show that our method can segment the lung fields more accurately,
compared to the standard Snake and ASM. Finally, we demonstrated that 2D-CTR is
highly related to 1D-CTR, but it is more robust to compute the diagnostic measure.

Correlation between 1D-CTR and 2D-CTR 1-Dimensional Cardiothoracic Ratio 2-Dimensional Cardiothoracic Ratio
~ 0.05 ~ 0.05f
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Fig. 6. Relationship between 1D-CTR and 2D-CTR (left), the Bland and Altman plots of 1D-
CTR and 2D-CTR (middle and right), respectively
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Abstract. We develop a 4D (3D plus time) statistical shape model for
implicit level set based shape representations. To this end, we represent
hand segmented training sequences of the left ventricle by respective 4-
dimensional embedding functions and approximate these by a principal
component analysis. In contrast to recent 4D models on explicit shape
representations, the implicit shape model developed in this work does not
require the computation of point correspondences which is known to be
quite challenging, especially in higher dimensions. Experimental results
on the segmentation of SPECT sequences of the left myocardium confirm
that the 4D shape model outperforms respective 3D models, because it
takes into account a statistical model of the temporal shape evolution.

1 Introduction

Model-based imaging analysis of the left ventricle (LV) has gained an important
role in diagnosis and treatment of heart diseases [8]. Segmentation in particular,
either of the inner volume or the myocardium has found to be a significant pre-
requisite of further quantitative analysis, such as the estimation of the ejection
fraction within one cardiac cycle. With standard 3D approaches, segmentation
is carried out for each recorded image volume separately, i.e. by neglecting all
temporal correlations. Recent approaches however aim at taking also the tempo-
ral dimension into account, arising from the fact that more and more 4D, i.e. 3D
plus time, imaging techniques have become available. Relative to cardiac imag-
ing, which provides a relatively high three-dimensional spatial resolution, isotope
imaging methods, like gated perfusion SPECT, still have low resolution in both
space and time and exhibit a relatively low signal to noise ratio. On the other
hand, SPECT imaging inherently provides an excellent mean for cardiovascular
diagnosis, because it allows direct visualization of physiology.

In terms of shape modeling, either explicit representations by landmarks or
binary images/volumes are employed, or implicit ones, describing the separat-
ing three-dimensional contour as the zero-level set of a four dimensional func-
tion [16, 11]. Additionally, a statistical model is incorporated, in order to describe

R. Larsen, M. Nielsen, and J. Sporring (Eds.): MICCAI 2006, LNCS 4190, pp. 92-100, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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inter-patient shape variabilities. In most cases, Principal Component Analysis
(PCA) is the method of choice. In the case of explicit shape representations [4, 9],
PCA is either applied directly to the landmark coordinates or to the components
of a deformation field relative to a mean shape, or, for the implicit representation,
to the components of the embedding level set functions [11,17,20].

The extension of shape models to the spatio-temporal case has been mainly
pursued with explicit (parametric) shape models [18, 3,12, 14]. While these meth-
ods have shown quite some success in modeling and estimating the temporal
evolution of surfaces, one should point out that explicit shape representations
are known to have certain inherent limitations. Firstly, when matching two para-
metric surfaces (in the shape learning phase), there is the fundamental corre-
spondence issue of which points on one surface are associated with which points
on the other surface. Explicit representations are typically based on a specific
point correspondence, estimating this correspondence and thus solving this com-
binatorial problem is an enormous computational challenge [6], especially in the
4D case considered in this paper. Misaligned point correspondences will appear
as artifacts in the subsequently estimated shape deformation modes. Secondly,
in the shape estimation step, the evolution of parametric surfaces has certain
limitations. The spatial resolution of the surface representation is determined
by the local density of control points which may fluctuate due to the motion
of points. This evolution may become unstable once control or marker points
start overlapping. Splitting or remerging of contours in the segmentation of
multiply-connected structures is by default not possible. Sophisticated regrid-
ding mechanisms are required to handle these problems [7]. At the same time,
the required amendments to the control point evolution may lead to artifacts
in the shape deformation that are not inherent to the geometric shape warping
problem.

While the level set method overcomes the above drawbacks of explicit repre-
sentations, there have only been very few recently published works on extending
the shape modeling to the spatio-temporal domain [5,19]. While the latter ap-
proaches treat the temporal dimension separately and employ dynamical models,
we propose to treat time as an ordinary fourth dimension and thus implement-
ing a segmentation of the volume sequence as a whole. Unlike Chandrashekara
et al. [3], who developed this idea for deformation fields relative to an explicit
(parametric) mean sequence, we propose to apply a 4D PCA subspace estimation
directly to the level set functions. As a consequence, we do not require a sophis-
ticated non-rigid registration of training sequences, or the challenging combina-
torial correspondence searches required by explicit landmark-based approaches.
Moreover, due to considering all volumes of a sequence at the same time, and
thereby also learning the temporal evolution of the shape model, segmentation
quality can be shown to improve over treating each volume separately [11]. In
addition, temporal alignment can be incorporated into the segmentation pro-
cess straightforwardly, avoiding the need for any pre-alignment of the input
sequence.
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2 Approach

2.1 Level Set Representation

Let the recorded image volume sequence be denoted by the continuous intensity
function I : 2x[1,T] — R defined on the 3D volume 2 € R? and the time period
[1,T]. In contrast to other approaches treating intensity volumes at different
times points separately, in the following we will always consider I as a function
in the four-dimensional spatio-temporal space £2 x [1,T].

In order to be independent of contour parametrization, support topological
changes as well as avoiding correspondence problems when introducing a prior
shape model later on, we pursue the approach in [16] in application to the four-
dimensional space and embed any contour C : [0,1]? x [1,T] = R? as the zero
level set of a function ¢ : 2 x [1,T] = R, such that

Cx,t) ={(x,t) | ¢(x,t) = 0} ,

which has been successfully applied to 2D [13] and 3D [10] image segmentation.
In aiming at having a unique correspondence between a shape C and its em-
bedding function, we furthermore assume ¢ to be a signed distance function, i.e.
|[V¢| =1 almost everywhere.

However, since we want to estimate spatial translation and scale as well as
temporal translation and scale separately, we introduce the intermediate trans-

formation
Om.x — 04,
TG(th) = <9m t— add) )

with 6. € R? and 6,, € R referring to translation parameters in space and time,
respectively, and ani € R and 9;& € R to those in scale!, respectively. By this,
the embedding function will, in the following, be of the form:

do(x,t) == H;Li (;S(Tg(x, t)) .

2.2 Segmentation as Variational Problem

Subsequently, the problem of segmenting the image sequence I implicitly by the
4D level set function ¢ is stated as the joined minimization of the energies

E(¢7 9) = Edata (d)a 0) +v Eshape(d)) 5 (1)

where the data-driven energy term Eguiq(¢,0) = —logP(I | ¢,0) measures the
probability of observing the image sequence I given the segmentation¢ (at place
04 and scale 60,,), and Espape(¢) = —log P (), which reflects the probability of
the occurrence of a segmentation ¢ in relation to a set of 4D training segmenta-

tions {¢1,...,dun}-

! Here, we consider only isotropic scale in space.
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In particular, for the data energy term we make use of the global approach by
Mumford and Shah [15] given as a level set formulation [2] in the spatio-temporal
space 2 x [0,T]:

Faa9r0) = [ [ (10 0) —m(0) Houtxt

+ (1T 1)) - uz(t)>2 (1= Hoox.t)) dxdt (2)

with H¢ := H(¢) denoting the Heaviside step function, which is one at coordi-
nates (x,t) where ¢ is positive, and zero else, as well as yu; = all f[l,T]fQ THayg
dx dt, g = 0412 f[LT]fQ I(1 — Heyg) dx dt, and ap, = f[LT]fQ Heg dx dt, k=1,2.

With respect to the shape prior, we propose to conduct an PCA directly
on the set of vectorized training sequences thereby reaching a low-dimensional
parametrization of the subspace [11,20]:

Sau(x,1) := do(x, 1) + " p(x,1) 3)

where ¥ = (¢1,...,1%x) " denotes the eigenmode vector of the 4D levelset, func-
tions and ¢g = 1\14 Zf\il ¢; the mean function®. Note that in contrast to [20],
the eigenmodes here describe spatio-temporal variations across the whole volume
sequence. Within this subspace coordinate system, we assume the prior proba-
bility P(¢,0) as multivariate Gaussian distribution, and infer for an arbitrary
function ¢ the energy

Eahape(9) = ' 27

with ¥ ~1 denoting the inverse eigenvalue matrix resulting from the PCA.

Moreover, following the approach suggested in [20], we represent ¢ by means
of the parametrization given in (3) throughout the whole segmentation problem,
i.e. also in the data term, and consequently substitute ¢ by ¢q in (2). Thereby,
we restrict the minimization of (1) to the much lower-dimensional subspace
induced by the training shapes.

Due to the prior shape model being invariant towards translation and scale
both in space and time, it is required for the training set to be free of such
transformations prior to applying the PCA. Here, this is implemented by a prior
alignment of each training shape (;ASZ» to an arbitrarily chosen reference by mini-
mizing the energy

/[IT]/Q(Gm1¢ref (To(x,1)) — bi(x, t)>2dx dt, i=1,...,M.

2.3 Gradient Descent Minimization

Determining a minimum of (1) with respect to e and 6 is implemented by
gradient descent with respect to both vectors, that is

2 Note that ¢ is not a distance function, since the space of the latter is nonlinear.
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dO(r)  OBaara(c,0)
dr da go 0 T e

da(T) o _8Edam(a, 9) . l/aEShape
with 7 denoting the artificial evolution time, as opposed to the physical time ¢,
and dr the gradient step size. Thereby, the data term gradient reads

O0Fqata 2 2 _
o :/[I,T]/Q ((I - ,u1) - (I - N2) ) 0(¢ar0) emii/Ji(To(X, t)) dx dt ,

with 6 referring to the regularized Dirac measure, and the prior gradient aEg&“"“

= ¥ la. Furthermore, the gradient of the scaling and translating transformation
is given by

aEshape _ 9 ) dTg
90¢ _/[I,T]/Q((I )" = (I = p2)*) 8(bar.0) Voo 6 dx dt

with £ € {d,m}, and ng =— (113>7 jg:i = (’;), respectively.

3 Experimental Evaluation and Discussion

We compared the segmentation results of our proposed approach to that of
Tsai et. al. [20] (3D, similarity transforms only, Chan-Vese) while measuring
the relative symmetric vozel error: |b(¢) & b(¢rer)|/ |b(¢rer)| with b(¢) giving
the binarized volume of ¢, ® denoting the exclusive or operator and ¢,y the
ground truth distance function. As training and ground truth data sets we had
15 hand-segmented gated perfusion SPECT recordings of the left myocardium
with a volume of 30x30x27 voxels (each of size 6.59 mm?) times eight frames
over the cardiac cycle, and possible pathologies being removed. After alignment
due to translation and scale, as explained above, 3D PCA was conducted over
the vectorized 15x 8 volumes alike, whereas 4D PCA on the 15 vectorized se-
quences only. Ten gradient descent iterations were taken for 3D or 4D. Scaling
and translation parameters # were performed prior to the interleaved descent
for both @ and € in order to avoid local minima with respect to («, ) due to
spatial or temporal misalignments. Different weightings v of the prior gradient
were tried in the range from 1/100 to 1/1 of the data gradient’s L? norm and
we chose the one yielding the best results w.r.t. the quality measure.

Figures 1 and 2 depict two typical segmentation results for both methods in
comparison to the hand-segmented ground truth. While the dataset in Fig. 1 was
contained in the training set, that in Fig. 2 was not. In the first experiment, the
3D-based method yields a systematic over-segmenting especially at end diastole,
which is mainly due to over-estimating the per-volume scales. The error for the
3D approach did range from 35% (end systole) up to 90% (end diastole) vs. 40%
to 20% with the 4D approach (averages: 53% vs. 28%). In the second experiment,
Fig. 2, the 3D prior subspace allows for too many variations®, due to ignoring

3 A stronger weighting of the prior term inhibits most of the temporal variation.



Fig. 1. Segmentation result for a sequence included in the training set. White: Man-
ually segmented ground truth. Gray: 3D-prior method. Black: 4D-prior method. Esti-
mating one scale for the whole sequence yields better results than one for each volume,
and in turn allows for a better fit with respect to shape.
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Fig. 2. Segmentation result for a sequence not being in the training set. White: Manu-
ally segmented ground truth. Gray: 3D-prior method. Black: 4D-prior method. Due to
taking the temporal correlations into account also, the 4D prior yields a more specific
prior per time point. Despite a strong weighting of the 3D prior, better results for the
latter were not achievable, while still allowing for temporal variations.
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the temporal index. On the other hand, the fifteen training vectors of the 4D
PCA already yield an acceptable generalization (the errors were: 35% to 80%
vs. 40% to 30% and 57% and 27% in average). These and other experiments
clearly show the advantage of the new approach of taking the whole temporal
dimension into account — both in the data-dependent probability, as well as the
statistical shape prior.
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Abstract. Current level-set based approaches for segmenting a large
number of objects are computationally expensive since they require a
unique level set per object (the N-level set paradigm), or [log, N level
sets when using a multiphase interface tracking formulation. Incorpo-
rating energy-based coupling constraints to control the topological in-
teractions between level sets further increases the computational cost to
O(N?). We propose a new approach, with dramatic computational sav-
ings, that requires only four, or fewer, level sets for an arbitrary number
of similar objects (like cells) using the Delaunay graph to capture spatial
relationships. Even more significantly, the coupling constraints (energy-
based and topological) are incorporated using just constant O(1) com-
plexity. The explicit topological coupling constraint, based on predicting
contour collisions between adjacent level sets, is developed to further
prevent false merging or absorption of neighboring cells, and also reduce
fragmentation during level set evolution. The proposed four-color level
set algorithm is used to efficiently and accurately segment hundreds of in-
dividual epithelial cells within a moving monolayer sheet from time-lapse
images of in vitro wound healing without any false merging of cells.

1 Introduction

High-throughput content screening using cell image-based assays offers a power-
ful new tool for understanding the chemical biology of complex cellular processes
and offers opportunities for identifying new targets in drug discovery [1]. Image-
based live-cell assay experiments need to image and analyze hundreds of thou-
sands of images collected over a short period of time using automated high speed
microscopy data acquisition [2]. Since tens of thousands of cells typically need to
be screened, highly reliable image analysis algorithms are of critical importance.
One fundamental task of automated screening systems is accurate cell segmen-
tation that often precedes other analyses such as cell morphology, tracking and
behavior. Since cells undergo complex changes during the cell division process,
identifying and segmenting hundreds of closely interacting cells per frame is a
challenging task. Cells are also densely clustered due to spatiotemporal sampling

* This work was supported by a U.S National Institute of Health NIBIB award, R33
EB00573.

R. Larsen, M. Nielsen, and J. Sporring (Eds.): MICCAI 2006, LNCS 4190, pp. 101-108, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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and instrumentation cost trade-offs. The accurate, scalable, and computation-
ally efficient segmentation of closely grouped cells, without distinct edges, that
approach, touch or overlap each other and whose nuclei become more indistinct
at the start of mitosis is the focus of this paper.

Level set based image segmentation techniques [3], in comparison to other
algorithms, are well suited to segment a large (unknown) number of deformable
but characteristically similar objects (in terms of intensity variation), like cells.
Level set methods, adapted to image sequences, are versatile and able to read-
ily adapt to indistinct cell boundaries, appearing or disappearing cells, complex
cell shape changes over time, global illumination or focus changes, background
motion and non-stationary noise processes.

The two-phase Chan and Vese level set algorithm which segments an image
into two sets of possibly disjoint regions, by minimizing a simplified Mumford-
Shah functional [4], is ideal for the segmentation of cell image sequences or other
sequences in which the intensities or textures of all foreground objects in the im-
ages are nearly the same [5]. However, if multiple cells are overlapping, touching
or in close proximity to each other, level set methods will tend to merge adja-
cent contours into a single object (as shown in Fig. 1), which leads to difficulties
when tracking individual cells. In order to prevent the merging of cells during
tracking, an implicit pair-wise region-based coupling constraint was introduced
within the level set and parametric snake-based segmentation frameworks by
Zhang et al., [6], Dufour et al., [7] and Zimmer and Olivo-Marin [8]. The critical
a priori assumption that cells do not merge (which is mostly accurate) is used
to guide the curve evolution process during segmentation. Without this coupling
constraint, cells that are properly segmented in previous frames may get merged
with other cells in subsequent frames. The proposed graph vertex coloring (four-
color) level set method uses implicit active contours, so we focus our comparison
to the coupled geometric level set approach [6].

In [6], the first frame of the image sequence is segmented into N—connected
components. Each object (cell) is then assigned a unique level set leading to an
N —level set paradigm. These level sets are subsequently used to track the cells
throughout the image sequence. The energy functional, Eys(¢Cin, Cout, ®), used
to evolve N— coupled level sets, with n = 0, is shown below [6]:

Enls(cinacouta Q) = Hin Z / (I - Czn)2 H((bl) dy

i=1 7

N N
o [ (1o T] (1 100) ay w03 [ 198 (0] ay

N N N 1
12 Y [ aene)ayea{y [ 0vel-1ta} @

i=1 j=i+1

Here, ® = {¢1, d2,..., 0N} represents N—level sets associated with N cells in
the image; ¢;, represents the average intensities of cells for ¢; > 0 while ¢y
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is the average intensity of the background'. The first and second terms are ho-
mogeneity measures of the foregrounds and background of all level sets. The
third term controls the lengths of interfaces ¢; = 0, and minimizes the length
of all level sets. The fourth term of the functional penalizes pair-wise couplings
or overlaps between level sets, while the last term enforces the constraint of
[V¢;| = 1, thus helping us avoid explicit redistancing of level sets during the
evolution process [9]. The constants fiin, tout, V, 7, and n are weights associated
with each of the terms.

However, the coupled level set algorithm of Zhang et al., is computationally
expensive and scales as the square of the number of objects (cells) in the frame.
Since each frame may have hundreds to thousands of cells, speed of the algo-
rithm for high-throughput screening studies is extremely important. Trying to
evolve thousands of level sets by solving thousands of separate partial differential
equations with millions of coupling interaction terms is currently impractical or
too expensive even using specialized hardware or parallel processing computing
clusters. The number of level sets can be reduced from N to [log,N]| using a
multiphase Vese and Chan level set segmentation algorithm, as described in [10].
However, there appears to be no mechanism to define spatial coupling constraints
between the multiple phases. Each phase segments a set of objects with similar
gray-level intensities. So, if two cells touch or overlap each other they will be
associated with the same phase, and hence would get merged.

2 Four-Color Level Set Algorithm with Coupling
Constraints

In order to improve computational efficiency, we want to take advantage of the
fact that objects of interest ( i.e., cell nuclei) have similar intensity characteris-
tics. In addition, each object has only a limited number of neighbors compared

! The region exterior to all level sets indicates the background.



104 S.K. Nath, K. Palaniappan, and F. Bunyak

to the total number of objects in the frame. We want to divide the N objects
into k independent sets ( or k-colors ) such that objects within each set are
not neighbors, and for a given object its clique of neighbors do not share the
color of the given object (i.e., are in different independent sets). Hence, in order
to prevent cell merges, the first task is to assign cells into a small number of
independent sets (i.e., separate colors or level sets). In this scenario:

What is the minimum number of “colors”, k, that need to be assigned,
so that no two neighboring cells have the same “color” ¢

Representing a segmentation as a graph in which cells are vertices, and the adja-
cency relationships are edges, the problem can be computationally solved using
graph-vertex coloring (i.e., graph chromaticity or k-coloring). For general graphs
finding the minimum value of k is an NP-complete problem. However, for planar
graphs, the famous “Four-Color Theorem” states that at most k = 4; any planar
graph can be colored with at most four colors such that no two neighboring
vertices are assigned the same color [11,12,13]. Although for some graphs k = 2,
or 3, for most applications including biological cell segmentation typically k = 4.
Since four level sets are sufficient for 2D cell imaging studies, we set kK = 4 and
do not search for a graph’s chromatic number.

Hence, we can now use Eq. 1, with N = 4 and make the coupled level set func-
tional independent of, N, the number of objects (i.e., cells) in the image. This
reduces the number of coupling terms from O(N?) to O(1) (i.e., a constant num-
ber of six coupling terms, per level set, in the energy functional shown in Eq. 1).

Using the realistic a priori assumption that all cells in the image have very
similar characteristics, enables us to assign a single average intensity c;, to all
of them (i.e., Vi, ¢!, = ¢;s). This is identical to the two-phase Chan and Vese
level set algorithm with just one foreground [4], and more efficient than [6] which
requires computing N average intensities.

The four FEuler-Lagrange evolution equations associated with the minimiza-
tion of Eq. 1 are as follows (i = 1,2,3,4):

s 6<¢i>{um<1—czin>2 — tout(l = cou)® T] (1= H(9))

j=1
Vi H(6;)<0,5#i

B T R A

J=Lij#i

where, A is the Laplacian operator. In our implementation of the energy func-
tional shown in Eq. 1, we use regularized Heaviside and Dirac-delta functions [4].

Computing a single average c¢;,, for all objects helps us in randomly associ-
ating cells with different level set functions, subject to the four-color criterion
being satisfied. Thus, cells associated with a “red” level set in a previous frame,
can be associated with a “blue” level set in a subsequent frame. It is necessary
to “re-color” the cells at the beginning of the iteration process, as positions of
cells may change during the evolution process.
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Fig. 3. [Left]Narrow-band fronts of cells belonging to three different “colors”. The
corresponding zero level set curves are given by ¢1 (“red”), ¢2 (“green”), and ¢s3
(“blue”), with the narrow bands given by the region where §(¢;) > Sthresh. At region
A the narrow band of the “red-colored” cell intersects with the narrow band of the
“blue-colored” cell. We enforce an explicit rule that the narrow band of a cell, ¢;
that is currently being updated cannot overlap with a different colored cell (i.e., (¢;)).
Hence, in region A, the narrow-band of the “red-colored” cell (i.e., §(¢1) > Sthresh)
does not include those areas for which ¢3 > 0. A similar rule is applied when updating
the “blue-colored” cell, at region B. [Right] If a “collision” occurs between cells (i.e.,
6(¢s) = 6(dj),i # j), then depending on which order the level sets are updated, we
may get either C; protruding into Cz or vice-versa.

In addition to the energy-based coupling term of Eq. 1 to penalize overlaps
between level sets, we also use an explicit topological technique to penalize such
overlaps. First, we compute 6(¢;);¢ € [1,4]. As we use a narrow-band approach
(i-e., 6(pi) > Sthresh) to update the level set curves, we check the saliency of
6(¢i) ie., 6(¢i) > 6(¢;); 7 # i to identify pixels on the front of the current level
set that overlaps the narrow-band fronts of other level sets. A pixel on the front
of a current level set is updated only if its saliency is highest. Topological “col-
lisions” between adjacent cells are detected in this manner and the evolution of
the associated level sets near the colliding fronts are stopped (see Fig. 3).

The four-color level set segmentation algorithm is given below:

1. Initialize the segmentation process using level lines [14], and applied to the
starting image. Isolate cells that may be touching or very close to each other
to produce the segmentation mask (used in step 4).

2. Apply steps 3 to 8 for each frame f=1...N

3. To speed up convergence project the segmentation mask (i.e., converged level
set) from the previous frame as an initial estimate (c.f. [14,15]).

4. Use the binary segmentation mask to extract connected components, their
centroids, and associated (planar) adjacency or neighborhood graph such as
the Delaunay triangulation (c.f. [16]). Apply a graph-vertex coloring algo-
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rithm (c.f. [17]) to partition the cells into four independent sets and produce
a colored segmentation mask.

5. Associate one level set function with each mask color, and calculate the
signed distance functions for each of the four initial zero level sets (i.e., ¢}
at evolution time ¢ = 0).

6. For each frame apply K iterations, and
(a) Update ¢, and coyt;

(b) Evolve the level set within the narrow band of a cell using Euler-Lagrange
equations;

(c) Enforce an explicit coupling rule that the narrow band of a cell, ¢; cannot
overlap with the level set of any of its neighbors.

7. Generate a binary mask from the four-color segmentation and apply mor-
phological filtering to remove spurious fragments.

8. Apply a spatially-adaptive level line-based coarse segmentation to the back-
ground (i.e., complement of the dilated colored segmentation mask), in order
to detect objects not present in the previous frame (i.e., new objects entering
the current frame).

3 Results and Analysis

The proposed algorithm was tested on a wound healing image sequence consist-
ing 136 frames, with dimensions of 300x 300 pixels (40umx40um). The sequence
used in our simulations was obtained using a monolayer of cultured porcine
epithelial cells, as described by Salaycik et al., in [18]. Images were sampled
uniformly over a 9:00:48 hour period and acquired using phase contrast mi-
croscopy with a 10x objective lens, at a resolution of approximately 0.13pm per
pixel. We provide two sets of results for our four-color level set algorithm with
Lin = 1, oyt = 1,v = 0.004,v = 1.0,7 = 0.1, while the number of iterations K
is set to 10 for each frame. A qualitative comparison in Fig. 4 shows the benefit
of an explicit topological coupling constraint on two representative frames (113
and 124) where cell merges are correctly prevented. A quantitative comparison
in Table 1 shows the benefit of using the (energy-based and explicit) coupling
constraints in preventing 46 manually verified cell merge events. Splits, merges,
appearances (App.) and disappearances (Disapp.) in Table 1 were confirmed
manually, since complete ground truth for such a complex sequence is difficult
and time consuming to construct. Appearances and disappearances indicate cells
that are not associated with cells in the previous or next frame, respectively (i.e.,
cells entering or leaving the frame, or cell apoptosis). Splits and merges are cells
that can be associated with multiple parents or children in the trajectory, re-
spectively (i.e., cell mitosis or cell clumping). However, segmentation artifacts
or tracking mis-associations can produce any of these events. Cell splits, merges,
appearances or disappearances can be due to biological events, or segmentation
and tracking errors [5]. A split-merge-split cycle which is indicative of fragmen-
tation during segmentation leads to a high score for split and merge events.
The results shown in Table 1, confirm the advantage of using coupling in our
four-color level set algorithm.
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Fig. 4. The left column indicates frame numbers 113 and 124 from the wound healing
image sequence. The central column depicts segmentation results when our four level-set
functional, without any explicit control on the evolution of level set functions. The right
column indicates segmentation results when using our four level-set algorithm, with ex-
plicit coupling. The “color” masks are different in each frame due to a “re-coloring” process
applied at the beginning of the iteration process. Images have been scaled for display pur-
poses. The arrows in the central and right columns show where cell merge events occur.

Table 1. Tracking results, when using the four-color level set algorithm, with and
without coupling. With coupling indicates both energy-based (v = 1.0) and explicit
coupling constraints. Without coupling indicates (v = 0) as well as no explicit coupling.

Objects Splits Merges App. Disapp.

Uncoupled 13986 73 46 24 35
Coupled 14570 34 0 21 30

4 Conclusions

A novel four-color level set algorithm for segmenting N cells (objects) based on
graph-vertex coloring was presented, using the “active contour without edges”
level set coupled energy functional, combined with a new explicit topological ob-
ject to object coupling constraint. The four color level set algorithm dramatically
reduces the computational cost of incorporating coupling constraints to prevent
cells (objects) from merging, from O(N) level sets and O(N?) coupling constraints
to O(1) level sets and O(1) coupling constraints for N objects. The reduction in
the number of level sets (IV to 4) and energy-based coupling constraints in the
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Euler-Lagrange equations (N2 — N to 12), with 12 explicit topological checks per
pixel makes the proposed algorithm highly scalable, and computationally resource
efficient for segmenting a large number of complex shaped objects.
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Abstract. A classical neural tract tracer, WGA-HRP, was injected at
multiple sites within the brain of a macaque monkey. Histological sections
of the labeled fiber tracts were reconstructed in 3D, and the fibers were
segmented and registered with the anatomical post-mortem MRI from
the same animal. Fiber tracing along the same pathways was performed
on the DTI data using a classical diffusion tracing technique. The fibers
derived from the DTI were compared with those segmented from the
histology in order to evaluate the performance of DTI fiber tracing. While
there was generally good agreement between the two methods, our results
reveal certain limitations of DTT tractography, particularly at regions of
fiber tract crossing or bifurcation.

1 Introduction

Tracing neural connections lies at the heart of neuroanatomy, and has profound
implications for the study of neural function and for the study of developmental
and adult plasticity of the nervous system. It is also important for the study
of neurodegenerative diseases, and for the planning of neurosurgical procedures,
such as tumor ablation. Methods for tracing connections in the brain have a
long history, beginning with those based on lesions and the resulting retrograde
or anterograde degeneration [Nissl 1894; Marchi 1886; Nauta and Gygax 1954].
Subsequent methods exploited the axonal transport of specific molecules, be-
ginning with horseradish peroxidase (HRP) [1], which opened up a new era in
neuroanatomy. This was followed by the discovery of a host of other tracers
including small fluorescent molecules [2,3], lectins [4], neurotrophins [5], neuro-
toxins [6], dextrans [7], and, more recently, carbocyanine dyes [8], latex micro-
spheres [9] and viruses [3]. While constituting a powerful armamentarium with
which to study connections in the brain, all of these methods possess the obvious
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drawback that they are highly invasive and require sacrifice of the experimental
animal for histological visualization of the transported substance.

In the 1970’s, water diffusion magnetic resonance imaging was introduced and
later used for medical applications [10]. With the introduction of diffusion tensor
imaging (DTT) [11], white matter tractography based on DTI became the first
non-invasive, in vivo technique for gross fiber tract tracing. Since then, many
advanced methods and models have been proposed to improve the quality of
the tractography [12,13,14]. It is important to stress the fact that the explicit
quantity measured is water diffusion and not fibers. Moreover, since MRI meth-
ods in general always obtain a macroscopic measure of a microscopic quantity,
which necessarily entails intravoxel averaging, the voxel dimensions influence the
measured diffusion tensor at any particular location in the brain.

As the sophistication of DTI tractography algorithms increases, it becomes
essential to validate the results. These techniques are already used in many
biomedical studies. It is clear that DT reveals gross connectivity as described in
atlases based on histology (e.g. [15]), but, as of yet, no rigorous validation of these
techniques has been done. In particular, the performance of DTI tractography
is unknown in the case of fiber decussations and the transition of fibers through
a relay. Moreover, the ability of the methods to give reliable information on the
density of fibers remains an open issue. Here we compare tracts revealed with
WGA-HRP on histology to the corresponding tracts calculated from DTI data
in a macaque brain. Our group presented preliminary results on this data in [16].

2 Material and Method

Using procedures approved by the Harvard Medical Area Standing Committee
on Animals, craniotomies were performed on a Macaque monkey under gen-
eral anesthesia, and 4% Wheat Germ Agglutinin (WGA) conjugated to HRP
(WGA-HRP) in water solution was pressure-injected under microscopic stereo-
taxic guidance. WGA is a plant lectin that transported in both the retrograde
and anterograde directions, and that binds to specific cell-surface glycans, in
particular, N-acetylglucosamine and sialic acid, which are then internalized via
receptor-mediated endocytosis. Though we use the term in the discussion below,
WGA is not a ”"stain” per se; it is rendered visible by virtue of a reaction with
the peroxidase. Four 0.25 microliter injections were made in primary visual cor-
tex (V1), five 0.2 microliter injections each along the pre- and post-central gyri
and one 5 microliter injection into the left eye. Three days later the monkey was
sacrificed, perfused with aldehyde fixative and the brain removed from the skull.

2.1 MR Image Acquisition

Post-mortem MR, imaging of the fixed brain was performed on a 4.7T Bruker
Biospec using a 3D gradient echo proton density sequence (TR 100, flip angle
10) for anatomy. Diffusion weighted imaging (DWI) was performed using a spin-
echo sequence (30 directions, bvalues of 1000 s/mm?), with voxel dimensions
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0.5 x 0.5 x 1mm?3. In vivo DWI data was also acquired prior to sacrifice but is
not described here.

2.2 Brain Sectioning and Histo-chemistry

After MR imaging, the brain was separated into two blocks to facilitate section-
ing. The whole brain was serially sectioned in the coronal plane (80um thickness)
using a freezing, sliding microtome. Prior to cutting each section, the block face
was photographed using a rigidly mounted Hasselblad camera with a 25 Mpixel
Phase 1 digital back. This greatly facilitated subsequent 3D reconstruction.

Every eighth section was reacted for WGA-HRP using tetramethyl benzidine
[17], producing a series of 90 sections spanning the entire brain. These sections
were then mounted on glass slides and scanned using both a GE Healthcare
Amersham Typhoon 9410 in fluorescent transparency mode at 100pum resolution,
and a regular flat-bed scanner in reflection optical mode at 400dpi resolution. The
fluorescent scanning optimizes the grey/white matter contrast for registration
purposes whereas the optical scanning allows differentiation of fiber staining for
segmenting the bundles. A linear combination of these two scans produced a
hybrid image with both good contrast and clear fiber staining. In this linear
combination the optical scanning images were inverted producing white areas of
HRP reacted tissue.

2.3 Photographic Volume and Spatial Alignment

The block face photographs corresponding to the subset of stained and mounted
histological slices were selected and stacked. Within each of the anterior and
posterior blocks, the stacked photographs were aligned slice by slice with the
flat-bed scanned histology sections. The anterior and posterior blocks were then
assembled together using an affine registration. The resulting image data set will
be referred to as the “photographic volume.”

Each histological slice was then co-aligned on the corresponding photograph
using per-hemisphere affine registration, consist of automatically segmenting the
hemispheres and estimating an individual 2D affine transformation for each one
[18]. This volume of histological slices will be referred to as the histological
volume. A 3D affine tranformation followed by an elastic Free Form Deformation
(FFD) [19] were estimated between the photographic volume and the anatomical
MRI data to compensate the mechanical deformations due to the handling of
the brain during the two scans [20]. These transformations were applied to the
histological volume to get both MRI data and histological volume in the same
geometry.

2.4 Tracing DTI and Histological Volume

The HRP reacted areas in the histological volume were manually segmented.
This was performed by tracing them through the histological slices, and refined
by inspecting reformatted orthogonal views.
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The fiber segmentation from the histological volume then was used to as a
guide to define seed points for the tractography performed in the DTT volume.
A standard hyper-streamline based method for tractography was used [14].

3 Results

The three different data sets (the DTI data volume, the photographic volume,
and the HRP stained histological volume) were spatially aligned to a common
coordinate system to allow for direct comparison between results from DTT trac-
tography and the HRP staining. The histological and photographic volumes were
registered to the MRI geometry. Segmentations of fibers according to the stain-
ing on the histological slices and the tracts derived from the DTI are presented
for comparison for all the injection sites.

In the rest of this section we present five figures, the first four of which show
cross-sections of the HRP reacted volume and the segmented fibers overlayed in
the structural MRI and photographical volumes. Figure 1 shows sagittal views
of the segmented fibers connecting the primary motor cortex (precentral gyrus)
and the pons via the internal capsule, along with the fibers connecting the so-
matosensory cortex (postcentral gyrus) and the ventral posterio-lateral nucleus
(VPL) of the thalamus. Figure 2 shows fibers in the primary motor cortex (same
injection as shown in Figure 1), connecting the left and right hemispheres via
the corpus callosum. Figure 3 shows fibers connecting the primary visual cortex
(V1) and the lateral geniculate nucleus (LGN) in the thalamus. Figure 4 shows
fibers connecting the left eye to the lateral geniculate nucleus (LGN) in the tha-
lamus via the optic chiasm (the optic nerves can not be seen because they are
outside of the brain). Figure 5 shows the combined result of the histological tract
segmentation and the DTI tractography from Figures 1-4.

Fig. 1. Fibers connecting the primary motor cortex (precentral gyrus) to the pons via
the internal capsule and fibers connecting the somatosensory cortex (postcentral gyrus)
from the ventral posterio-lateral nucleus (VPL) of the thalamus. The figure shows (a)
sagittally reformatted view of the HRP reacted histological volume (bright in this
picture), (b) fiber pathways derived from histology DTT tractography superimposed on
the corresponding structural MRI data and (c) on the photographic volume.
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Fig.2. Fibers in the primary motor cortex (precentral gyrus) connecting the hemi-
spheres via the corpus callosum. The figure shows (a) coronal view of the HRP reacted
histological volume (bright in this picture), (b) fiber pathways derived from histology
DTI tractography superimposed on the corresponding structural MRI data and (c) on
the photographic volume.

Fig. 3. Fibers in the primary visual cortex (V1) connecting to the lateral geniculate
nucleus (LGN) in the thalamus. The figure shows (a) sagittal view of the HRP reacted
histological volume (bright in this picture), (b) fiber pathways derived from histology
DTTI tractography superimposed on the corresponding structural MRI data and (c) on
the photographic volume.

4 Discussion

In this paper we have presented results visually comparing tracts derived from
DTTI tractography and tracts derived from histology sections of a macaque brain.
To enable direct comparisons, the data sets were spatially aligned to a common
coordinate system using non-linear registration methods. To the best of our
knowledge this study is the first that compares long range connectivity derived
from histology in 3D and results from DTI tractography.

The results presented show that the tracts derived from DTI correlate well
visually with the corresponding tracts derived from the HRP reacted histology
volume, as shown in the chiasma (Figure 4) and the connections to the visual
cortex (Figure 3). However, some discrepancies can be noticed. For the tract
seed points in isotropic areas such as in the cortex, the DTI tractography fails
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Fig.4. Fibers connecting the left eye to the lateral geniculate nucleus (LGN) in
the thalamus via the chiasma. The figure shows (a) axial view of the HRP reacted
histological volume (bright in this picture), (b) fiber pathways derived from histology
DTI tractography superimposed on the corresponding structural MRI data and (c) on
the photographic volume.

b P
(a) (b) (c)

(2) (h) (i)
Fig.5. Three different views of the paths derived from histological slices (a, b, ¢),
the corresponding fiber tracts derived from DTI (d, e, f), and both results displayed
together (g, h, i)
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to trace the main bundles. Figure 1) shows that tracts derived from DTT did not
continue into the cortex injection sites.

In general, DTI tractography tends to have difficulties when tracts cross or
divide. When reaching such areas, the tracts often stop due to low anisotropy
of the diffusion tensors or fail to follow the correct branch when tracts divide.
This was noticed for the pathways from the primary motor cortex injection going
both to the corpus callosum and to the internal capsule. The DTI tractography
from the motor cortex injection, shown in Figure 1 and in Figure 2, could not
be used to trace both pathways, and additional seed points along the segmented
tract were needed. The problem of terminated tracts was noticed when fibers,
which were seeded from the optic tract, stopped in the lateral geniculate nucleus
(Figures 3 and 4). The resolution of crossing fibers is a known problem in trac-
tography - modeling of two or more tensors in each voxel is an emerging research
area that may help in solving this problem [21,22,23,24]. Future work will in-
clude studies on how to optimize parameter settings for tractography methods,
and how to incorporate more complex diffusion models than the single tensor
model to better handle complex fiber regions in DTI tractography.
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Abstract. Rician noise introduces a bias into MRI measurements that
can have a significant impact on the shapes and orientations of ten-
sors in diffusion tensor magnetic resonance images. This is less of a
problem in structural MRI, because this bias is signal dependent and
it does not seriously impair tissue identification or clinical diagnoses.
However, diffusion imaging is used extensively for quantitative evalua-
tions, and the tensors used in those evaluations are biased in ways that
depend on orientation and signal levels. This paper presents a strat-
egy for filtering diffusion tensor magnetic resonance images that ad-
dresses these issues. The method is a maximum a posteriori estima-
tion technique that operates directly on the diffusion weighted images
and accounts for the biases introduced by Rician noise. We account for
Rician noise through a data likelihood term that is combined with a
spatial smoothing prior. The method compares favorably with several
other approaches from the literature, including methods that filter dif-
fusion weighted imagery and those that operate directly on the diffusion
tensors.

1 Introduction

The quality of DT-MRI images is limited by the relatively long acquisition times
necessary to obtain data at high spatial resolutions. Because acquisition time is
restricted by issues of patient comfort and system demand, the signal-to-noise
ratio(SNR) in DT-MRI is often low. Thus, post processing techniques to remove
noise in the acquired data are important. The diffusion weighted images (DWIs),
from which the tensors are derived, are corrupted by Rician noise, which intro-
duces a positive bias in those measurements. These signal-dependent biases are
not so detrimental to structural imaging, because they typically do not inter-
fere with diagnostic decisions or tissue classification. However, DT-MRI mea-
surements are being used extensively for quantitative comparisons, and several
studies [1,2,3] have shown that bias can affect tensor properties such as trace
and fractional anisotropy (FA).

Previous DT-MRI filtering methods fall into two categories: filters that op-
erate on the DWIs and those that operate directly on the tensors. For instance
Parker et al. [4] use Perona & Malik (P&M) [5] anisotropic diffusion to filter
DWTIs, and show that it produces less distortion in FA than filtering images of
FA. Wang et al. [6] formulate a variational approach to regularize DWIs while
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constraining the estimated tensors to remain positive definite. Martin et al. [7]
develop a Gaussian Markov Random Field model to regularize the estimated
diffusion tensor images. Pennec et al. [8] describe a framework for performing
anisotropic diffusion on tensors which preserves the property of tensors being
symmetric and positive definite. Their filter is based on the idea that the space
of all positive definite symmetric matrices forms a Riemannian manifold with
each point representing a diffusion tensor. None of these techniques explicitly
account for the effects of bias in the original DWI measurements. After sub-
mission of this work, we became aware of the work by Fillard et al. [9] that
adds a Rician noise model to smoothing of tensor images in a Log-Euclidean
framework.

In this paper we show Monte Carlo simulations that add new insights into
the effects of Rician bias on tensor measurements. These results demonstrate
the need for realistic noise models in DT-MRI filtering. We describe a filter-
ing strategy that explicitly models the Rician noise as a data likelihood term
in a maximum a posteriori framework. To assess the performance of our tech-
nique, we propose a new method for producing low noise DWIs using a max-
imum likelihood estimate (MLE) from repeated scans of a healthy volunteer.
We present a comparison of filtering performance for tensor based methods
and methods that smooth the DWIs. Our results show that filtering on the
original DW images gives better results than filtering on tensor images, and
that our method using an explicit model of Rician noise gives the best overall
results.

2 Rician Noise and Its Effects on Diffusion Tensors

It is well known that MR magnitude images are corrupted by Rician noise, which
arises from complex Gaussian noise in the original frequency domain (k-space)
measurements. The Rician probability density function for the corrupted image
intensity x is given by

x 22+ A2 xA
o) = Sew (=70 )0 (22, 0

where A is the underlying true intensity, o is the standard deviation of the noise,
and I is the modified zeroth-order Bessel function of the first kind.

Previous studies on the effect of noise on diffusion tensor measurements have
shown that as noise increases, the tensor trace decreases [1] and FA increases
[1,2,3]. Here we show that these effects can actually be quite different depending
on the orientation of the diffusion tensor with respect to the measurement gradi-
ents. Using power series analysis, Anderson [2] shows that the major eigenvalue
increases with higher noise, causing FA to increase. This analysis assumes the
major eigenvalue is a combination of several diffusion weighted measurements,
which happens when the major eigenvector lies in between several gradient di-
rections. However, consider the special case of six gradient directions where the
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Fig. 1. Results of Monte Carlo simulations for trace (left) and FA (right). As an ex-
ample, the SNR from the real data in section 4.2 is plotted as a vertical line.

major eigenvector is aligned with one gradient direction. Here the major eigen-
value will be completely determined from the diffusion weighted measurement
in that direction. In this case, the Stejskal-Tanner equation for the ith diffusion
weighted value reduces to A; = Ag exp(—bA1]|g;||), where A1 is the major eigen-
value, Ag is the baseline T2 value, and g; is the gradient direction with which
the major axis is aligned. Since )\ is large, the value A; will be much lower than
the baseline Ag, and will thus be more susceptible to Rician bias. This positive
bias will tend to underestimate the diffusion in the major eigendirection. We
can thus expect two things: the underestimation effect of the tensor trace will
be greater and FA will actually go down.

To test the hypothesis that tensor orientation changes the effects of noise
on diffusion tensors, we performed Monte Carlo simulations of diffusion tensors
characteristic of those found in brain white matter. These tensors had constant
trace of 2.1 x 1072 mm? /s and four levels of fractional anisotropy, with eigen-
values A1 > X2 ~ A3. We used a b-value of 2000 s mm~2 and a commonly
used sampling scheme of six gradient directions [10]. We repeated the tests for
two tensor orientations: one with major axis (1,0,0), equally splitting the sur-
rounding gradient directions, and one with the major axis aligned with a gradi-
ent direction. We varied the 1/SNR from 0 to 0.2 and used 10,000 tensors per
trial.

Figure 1 shows the average trace and FA of the simulated tensors as a func-
tion of the noise level. Beyond what has previously been reported, our results
show that the amount of bias in the trace increases when the tensor has higher
anisotropy or when the tensor is aligned with a gradient direction. Our results
show that tensors that are not aligned with gradient directions tend to have in-
creased FA, while those aligned with a gradient direction tend to have decreased
FA for moderate levels of noise. However, for lower b-values (e.g., b = 1000) these
effects are less pronounced. The fact that FA can be overestimated or underesti-
mated depending on the orientation of the fiber tract in the scanner has serious
consequences for clinical studies using DT-MRI.
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3 Rician Bias Correction Filter

Our Rician bias correction filter is based on a maximum a posteriori (MAP)
approach to the image reconstruction problem. Given an initial noisy image uy,
we construct the filtered image u that maximizes the log-posterior probability

log p(ulug) o log p(ug|u) + log p(u), (2)

where p(up|u) is the likelihood term, or noise model, and p(u) is the prior.
For DWIs we consider u to be a vector-valued image, each gradient direction
(including b = 0) representing a vector component. The formulation in this
section would also be valid for structural MRI.

3.1 The Rician Likelihood Term

The formulation of the filtering problem as maximization of a posterior p(u|ug)
is useful as it allows us to incorporate the Rician bias correction as a data attach-
ment term which can be added to the prior model. Using the Rician distribution
(1) as the likelihood term and assuming independent noise, the pointwise log-
likelihood becomes

0 _u%—i—uQ

_ U Ul
logp(uolu) =log , — 7 +10gIo( ) (3)

o2

The derivative of (3) with respect to u, gives Rician data attachment term

e () ) o

o2 o2 /1 o2

3.2 Combining the Rician Model with a Prior

The data likelihood term can be combined with any image prior model. In this
paper we use a Gibb’s prior model based on a P&M energy functional, given by

P = ep(-E@). @ =2 [ (V) dedy. ()
U

where z is a suitable normalization, U is the image domain and c is the conduc-
tance given by c(||Vul||?) = exp(—||Vul||?/2k?), k is the conductance parameter
and A is a constant weighting term.

By adding the Rician likelihood term (4) with the variational of the P&M
energy functional we form the update equation for the filtered image,

ou .
ot = B+ Adiv (c (|| Vu||?) Vu). (6)
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4 Results

The performance comparisons were made on four different filtering methods:
Euclidean tensor filtering, Riemannian tensor filtering [8] and vector anisotropic
diffusion on DWIs with and without the Rician likelihood term as described
in section 3.1. Here Euclidean filtering refers to vector anisotropic diffusion on
the tensor components. To compare these methods, we used both synthetic and
real datasets. We used three different error metrics - root mean squared (RMS)
error in the tensor, trace and fractional anisotropy. The error between tensors
is computed using the Frobenius norm. The parameters for each method were
optimized for the RMS error on the tensor components. Both synthetic and real
datasets use seven images for each slice, one without diffusion gradient (b=0) and
the remaining six with b=1000s/mm? and diffusion gradients along the standard
six orientations [10].

4.1 Synthetic Data

We used a 10x10x4 volume of tensors oriented in two directions so as to have a
tensor discontinuity. One group of tensors have major axes that split the gradient
directions, while the others are aligned with a gradient. Figure 2 shows the clean
and noisy synthetic tensors with SNR=15.
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Fig. 2. Synthetic Data Filter Results
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Fig. 4. Plots of error metrics for the various filters on real data

4.2 Real Data

DTI Ground Truth Generation: A key challenge in quantitatively evaluat-
ing filtering methods on real diffusion tensor data is the lack of a ground truth.
While realistic simulated brain datasets exists for structural MRI, no such nor-
malized data is available for DT-MRI. For this paper we develop a new approach
for generating high SNR diffusion weighted image data. This technique builds
a ground truth image as a maximum likelihood (ML) estimate from a set of
repeated scans of the same subject. If {z;} is the set of intensities from the same
voxel in N repeated scans, then the ML estimate of the true intensity A is found
by maximizing the log-likelihood, log L = vazl log p(z;]A), where p(z;|A) is the
Rician pdf as given in (1). The properties of the ML estimate are investigated
by Sijbers et al. [11]. This ML estimate is superior to a simple averaging of the
intensities as it incorporates a priori knowledge of the noise statistics. Also, it
is well known that in the limit the ML estimate is most precise.

About the data: We generated our ground truth ML images from a set of five
scans of a healthy volunteer on a Siemens head-only 3T scanner (Allegra). For
each sequence, a single shot echo planar (EPI) diffusion tensor sequence with
total scan time of approximately 12 minutes was used. The imaging parameters
were: TR=5400ms, TR=73ms, isotropic voxels with 2mm slice distance and in-
plane resolution = 2 x 2mm, 20 averages. We added known Rician noise to the
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ML estimated DWIs at SNR levels of 10, 15 and 20 with respect to the average
white matter signal level in the b = 0 image. A slice from the ground truth and
SNR=15 tensor images is shown in Figure 5.
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4.3 Performance

The resulting error metrics for the various filtering methods on the synthetic
and real data are shown in Figures 3 and 4. The original, noisy and filtered
images for SNR=15 are shown with superquadric glyphs [12] in Figures 2 and
5. The results demonstrate that the Rician filter with the bias correction term
gives better RMS error on tensor components. On both the real and synthetic
data the Rician filter is superior to all the other filtering techniques. The data
also shows that for most of the error metrics the filtering methods on the DWT’s
yields better results than smoothing on the tensor space. The Riemannian filter
requires all tensors to be positive definite and is thus disadvantaged by the
process of adjusting for negative eigenvalues.

5 Conclusions

We presented a new method for denoising diffusion tensor images that includes
a Rician noise model as part of MAP estimation framework. To the best of our
knowledge, this is the first work to explicitly model and remove the bias effects
of Rician noise in DT-MRI. We presented Monte Carlo simulations that show
that noise can distort tensors in a manner that is dependent on the orientation
and anisotropy of the underlying tensor. Our filtering results demonstrated that
filtering on the original DWIs yields superior results to filtering methods that
operate on the estimated tensors. Filtering on the DWIs with our Rician noise
model gave the best overall results.
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Abstract. Current methods for extracting models of white matter
architecture from diffusion tensor MRI are generally based on fiber trac-
tography. For some purposes a compelling alternative may be found in an-
alyzing the first and second derivatives of diffusion anisotropy. Anisotropy
creases are ridges and valleys of locally extremal anisotropy, where the
gradient of anisotropy is orthogonal to one or more eigenvectors of its Hes-
sian. We propose that anisotropy creases provide a basis for extracting a
skeleton of white matter pathways, in that ridges of anisotropy coincide
with interiors of fiber tracts, and valleys of anisotropy coincide with the
interfaces between adjacent but distinctly oriented tracts. We describe a
crease extraction algorithm that generates high-quality polygonal models
of crease surfaces, then demonstrate the method on a measured diffusion
tensor dataset, and visualize the result in combination with tractography
to confirm its anatomic relevance.

1 Introduction

Diffusion tensor magnetic resonance imaging (DTT) is a popular means of assess-
ing white matter in the central nervous system. Coherent organization of axons
leads to diffusion anisotropy, and insofar as a tensor model accurately represents
the form and direction of anisotropy, DTI can detect white matter architec-
ture [1]. Fiber tractography has become the dominant method of DTI analysis,
wherein the course of axons in fiber tracts is modeled by computing paths along
the direction of greatest diffusivity (the diffusion tensor principal eigenvector),
allowing connectivity between different brain regions to be mapped and quan-
tified [2,3]. Clustering collects individual tracts into coherent structures that
can model the shape and direction of fiber pathways [4]. Other white matter
analysis methods do not use connectivity information from tractography, e.g.
region-of-interest studies of fractional anisotropy (FA) [5,6].

We introduce anisotropy creases as a technique for extracting a skeleton of
white matter directly from the intrinsic structure of FA. Scalar image process-
ing defines creases as features at which the gradient is orthogonal to one or
more eigenvectors of the Hessian [7]. Given the ubiquity of FA as a quantitative
variable in the diffusion tensor literature, we have started by detecting creases
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in FA. We propose that the ridge surfaces and ridge lines of FA coincide with
the interiors of white matter fiber tracts, and that valley surfaces of anisotropy
delineate the interfaces between fiber tracts that are adjacent but orthogonally
oriented (such as between the corpus callosum and the cingulum bundles).

Anisotropy creases may have utility in a variety of contexts. Explicitly mod-
eling the interfaces between adjacent but orthogonal fiber tracts may helpfully
constrain non-rigid registration of tensor fields for group studies, as slight mis-
registration of these configurations could lead to comparison of tensor values
within entirely separate pathways. The ability to extract white matter skeletons
directly from tensor invariants, without the algorithmic complexity or param-
eter tuning of fiber tracking and clustering, could increase sensitivity in shape
analysis studies. Finally, major crease features could play a role analogous to
that of the cortical surface in functional imaging, namely a reference manifold
onto which variables of interest are projected and analyzed [8].

2 Related Work

Creases have been an object of study for many years in different disciplines.
In the context of geomorphology, de Saint-Venant [9] defines creases as the loci
where the slope is minimal along the isocontours of the relief, which Haralick
later reformulates in terms of the Hessian of the height function [10]. Maxwell
gives a topological and global definition of ridges and valleys as watersheds and
watercourses: slope lines that connect saddle points to local maxima or min-
ima [11]. Others study creases in terms of differential geometry [12]. Eberly et
al. motivate the idea that creases should be defined locally and be invariant with
respect to a variety of transforms (rigid transforms, uniform scaling, and mono-
tonic mappings of intensity) [7]. They also generalize the height-based definition
of de Saint-Venant to d-dimensional manifolds embedded in n-dimensional image
space, and observe that this definition produces good results for a medical imag-
ing problem [7]. Other previous work focuses on extracting polygonal models of
crease geometry; this is reviewed in Section 3.3.

A separate line of previous work studies feature detection in DTI by means
other than tractography. Pajevic et al. use B-splines to generate continuous tensor
fields that are differentiated to highlight anisotropy boundaries [13]. O’Donnell et
al. use structure tensors to detect general boundaries in tensor values [14]. In both
cases, results are visually evaluated by confirming a high edge strength near struc-
tural boundaries, but the techniques do not analyze the familiar FA measure, nor
is the feature geometry explicitly extracted. Recent work by Smith et al. is most
similar to our approach in that they perform voxel-based morphometry with a
white matter skeleton calculated from ridges in a mean FA map (though “ridges”
are not mentioned per se) [8]. By using an established mathematical definition of
crease features, our technique extracts true codimension-one crease surfaces from
continuous tensor fields of individual DTT scans, rather than a voxel-based ridge
mask from the inherently smooth mean FA image from a set of registered scans.
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3 Methods

3.1 Convolution and Differentiation

We start with a first-principles approach to measuring derivatives of FA in a
tensor field. We use separable convolution between C? cubic splines and the ten-
sor coefficient discrete samples to reconstruct a smooth tensor field [15,13]. By
linearity, analytic derivatives of the reconstructed field are measured by convolv-
ing the sampled data with derivatives of the reconstruction kernel [16]. FA can
be defined in terms of principal invariants .J;, which can in turn be expressed
in terms of the tensor coeflicients [5]. Differentiating these relations produces
formulae for the gradient of FA in terms of the gradients of tensor coefficients:
FA — \/J4 - J2 . J2 = DmmD1J1/+Dmszz+D111/Dzz_Diy_Diz_Diz (1)
Jy ' Ju=D2 +D2 +D? 4+2D% +2D2_+2D?

vy Ty Yz

(Dyy+D:2)V Dig+(DyatDz 2 )V Dyy +(DpatDyy )V Dz

VdJy =
UFA — JoVIy =y Vo 2 —2D4yVDyy —2D,.V D, —2D,.VD,. )
- b
J: 2D30V Dgoy +2DyyVDyy +2D.. VD,
2‘]4% \/1_ Ji VJ4 _ yy yy
44Dy VDyy +4D,.VD,. +4D,.VD,.

Formulae for the second derivative (the Hessian) are longer but straight-forward
to derive. Because FA is a non-linear function of the tensor, pre-computing FA
on a discrete grid and then differentiating is not equivalent to this approach.

3.2 Crease Feature Definition

Crease features are defined in terms of the gradient g = V f and Hessian H of
a scalar field f [7]. Section 3.1 described how to measure the derivatives of FA
at any point in a tensor field. Let Ay > Ao > A3 be the eigenvalues of H, and
{e1, ez, e3} be the corresponding eigenvectors. Ridges and valleys are defined by:

Surface Line
Ridge g-e3=0, A3 <0 g-ea=g-e3=0, A3,A2<0
Valley g-e; =0, A\ >0 g-eg=g-e2=0, A\, a>0

One way to inspect ridge surfaces (for example) in a volume is to densely sample
|g - e3] on a two-dimensional cutting plane and look for the dark lines indicating
the ridge surface intersection with the plane. Figure 1 shows an example of FA
ridge surfaces in a two-dimensional coronal slice of a human brain DTI scan'.
For context, Figure 1(a) shows the standard RGB colormap of e; at the original
image resolution. Figures 1(b) and 1(c) illustrate how smooth features arise from
convolution-based measurements of FA and VFA. Figure 1(d) uses contrast-
enhancement to show the dark smooth lines indicating the ridge surfaces. The
cubic spline used in this and all other results was 4mm between inflection points.

! DTI data was estimated from 30 DWIs at b = 700s/mm? and 5 non-DWI T2s, from
a 1.5 T Philips scanner, with resolution 0.94 x 0.94 x 2.5mm.
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(a) RGB(e1) (b) FA (c) g = [V(FA)| () lg - es|'?

Fig. 1. Two-Dimensional Demonstration of Ridge Surface Evaluation

3.3 Crease Surface Extraction

We extract crease surfaces by per-voxel triangulation of the zero-isocontour of
g-e; (g es for ridges, g - e; for valleys) using Marching Cubes [17], taking care
in evaluating g - e; at voxel corners. Eigenvectors lack intrinsic sign, so g-e; can
suddenly change sign, far from a crease, simply due to the numerical properties
of eigenvector computation. The literature offers ways to overcome this. Morse
suggests determining correspondences between sets of eigenvectors rather than
individual ones, to handle eigenvector permutations associated with eigenvalue
equality [18]. Furst et al. use similar ideas in Marching Cores to extract crease
manifolds in image scale-space [19]. For Marching Ridges, Furst and Pizer choose
eigenvector signs to agree with the principal eigenvector of the average of outer
products of the eigenvectors under consideration [20].

Our experience suggests that Hessian eigenvectors of non-linear scalar at-
tributes of tensors (such as FA) tend to vary more rapidly than those of a
similarly sampled scalar field. Accordingly, we explicitly determine eigenvector
orientation consistency by traversing voxel edges to monitor eigenvector rotation.
Samples are adaptively generated along voxel edges to satisfy an upper-bound
on the angle between unsigned eigenvectors at successive samples. This deter-
mines whether the smooth transport of e;(vg) from vertex vq to vertex vy agrees
in sign with the eigenvector e;(vi) computed at vi. The per-edge eigenvector
sign information determines a per-voxel sign consistency prior to evaluating the
Marching Cubes case. Inter-voxel sign inconsistencies lead to triangulations with
inconsistent vertex windings. Thus, as a final pass, we traverse the surface mesh
to fix vertex windings, which allows graphics hardware to appropriately render
the crease surfaces with two-sided lighting [21].

The continuous tensor field measurements allow the voxel grid of the crease
surface triangulation to be independent of the underlying data resolution. The
results in Section 4 use a triangulation resolution two to three times that of the
data. The strength of the crease surface is assessed with the appropriate Hessian
eigenvalue (—\3 for ridges, A1 for valleys) so that geometry is extracted only for
significant features.

4 Results

Figure 2 shows ridge detection results on the same cutting plane used in Figure 1.
Ridge strength is mapped in Figure 2(a), the coherent organization of which is
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Fig. 3. Anisotropy Creases Near the Corpus Callosum

suggestive of white matter pathways. A combination of ridge strength masking,
contrast enhancement, and RGB directional encoding created Figure 2(b) from
Figure 1(d), to highlight the lines through major white matter pathways. Fig-
ure 2(c¢) maps a quantity that is zero on ridge lines of FA, intersecting the plane
in points. Multiple lines lie within the corpus callosum, but there are two clear
dots within the cingulum bundles, and one in the fornix, consistent with the
shape and orientation of these tracts relative to this coronal plane.

The renderings in Figure 3 (from a posterior viewpoint) show a cropped region
around the same coronal slice of previous figures. In Figure 3(a) fibers are seeded
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Fig.4. Anisotropy Creases in the Brainstem

from the RGB encoded plane. Figure 3(b) shows how the ridge surfaces (using the
same RGB encoding) follow major fiber paths, especially the corpus callosum
(CC), internal capsule (IC), corona radiata (CR), and fornix (FX) [22]. The
(white) anisotropy valley surfaces in Figure 3(c) delineate interfaces between the
CC and cingulum bundles (CB), superior fronto-occipital fasciculus (SFO) and
1C, and IC and superior longitudinal fasciculus (SLF). Figure 3(d) also illustrates
how anisotropy valleys lie between adjacent paths of differing orientation.
Figure 4 illustrates anisotropy crease analysis in the brainstem (lateral ante-
rior superior viewpoint), starting with (in Figure 4(a)) a plane seeding fibers for
anatomical context. Here, a viewpoint-aligned cutting plane partially cuts into
the middle cerebellar peduncle (MCP) to reveal the corticospinal tract (CST)
and pontine crossing tract (PCT), anterior to the medial lemniscus (ML) and su-
perior cerebellar peduncle (SCP). These pathways appear as distinct anisotropy
ridge surfaces in Figure 4(b), and their interfaces are delineated by the valley
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surfaces in Figure 4(c), especially the enclosure of CST between MCP and PCT.
Figure 4(d) combines the crease surfaces with faint fibers to illustrate how the
alternating layers of ridges and creases combine to form a fiber path skeleton.

5 Discussion and Future Work

Anisotropy creases model white matter structure from DTI using continuously
measured anisotropy derivatives and explicitly triangulated surface geometry.
The invariance properties of their mathematical definition help give anisotropy
creases the attractive property of being parameter free (aside from the choice of
convolution kernels), in contrast to most tractography and clustering algorithms.

Future work will include extraction of FA ridge lines, and their comparison
to individual fiber tracts. An interesting question left unanswered is why strong
valley surfaces of FA reliably indicate adjacent orthogonal tracts, considering
that FA is simply a scalar invariant, with no knowledge of nearby eigenvectors.
Finally, to extract true image cores, crease detection must work across measure-
ment scales [19], which we have not yet implemented. Prior anatomical knowl-
edge may usefully constrain, however, the necessary scale range. For example,
extracting fiber interfaces as anisotropy valleys may require only a single image
scale, considering that the interfaces are not apt to have much physical thickness,
thus the measurement scale is determined by the acquisition resolution.

We hope to use anisotropy creases with non-rigid tensor registration, first
analyzing existing methods according to how well anisotropy creases are aligned,
and then perhaps enhancing registration to use the creases as fiducials.
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Abstract. We present a method for the 3-D shape reconstruction of the retinal
fundus from stereo paired images. Detection of retinal elevation plays a critical
role in the diagnosis and management of many retinal diseases. However, since
the shape of ocular fundus is nearly planar, its 3-D depth range is very narrow.
Therefore, we use the location of vascular bifurcations and a plane+parallax ap-
proach to provide a robust estimation of the epipolar geometry. Matching is
then performed using a mutual information algorithm for accurate estimation of
the disparity maps. To validate our results, in the absence of camera calibration,
we compared the results with measurements from the current clinical gold stan-
dard, optical coherence tomography (OCT).

1 Introduction

Retinal diseases are the most common causes of acquired blindness among adults in
developed nations. Glaucoma is also a frequent cause of vision loss worldwide. One
characteristic feature of all of these diseases is their distortion, either through excava-
tion, elevation or thickening, of the ocular fundus topography. For this reason, 3-D
visualization or imaging of the retina and optic nerve are necessary for the accurate
diagnosis and evaluation of these disorders. Traditionally, this assessment has been
performed by highly-trained eye-care professionals using examining microscopes.
More recently, an imaging technique known as optical coherence tomography (OCT)
has emerged for this purpose. Based on the principle of low-coherence interferometry,
OCT provides an in vivo cross-sectional image of the retina that simulates micro-
scopic visualization and has axial resolutions under 3pum [11]. Unfortunately, the cost
of OCT equipment and the expertise required for its interpretation has limited wide-
spread adoption of this technology.

An alternative to subjective inspection and high-cost imaging consists of inferring
the 3D shape of the retina using images acquired with a common, lower-cost fundus
camera. This paradigm suggests a potentially cost-effective solution for developing
nations faced with the emerging epidemic of diabetes mellitus. Since this analysis can
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be carried out either on-site or remotely, it is also well-suited to a modern era of
global telemedicine.

In the assessment of pathologic changes due to retinal disease or glaucoma, the 3-D
reconstruction of two main areas of the ocular fundus is important: the optic disc and
the macula. The numerous features provided by blood vessels merging at the optic
disc make this area easier to reconstruct than the macula which is equally important in
human vision. For example, the normal macula is devoid of large vessels and other
consistent registration points. Therefore, stereoscopic reconstructions of this essential
part of the eye are quite challenging. Retinal images also have unique features that
prevent classical stereo algorithms from estimating the 3-D shape of the fundus from
stereo paired images. Intensities and colors of the same physical positions may vary
between consecutive images. In addition, the shape of ocular fundus is nearly planar
and so, its 3-D depth is very narrow. This prevents accurate estimation of the epipolar
geometry using traditional stereo algorithms. Finally, image blur may prevent accu-
rate stereo reconstructions.

Scharstein and Szeliski present a comprehensive review of commonly used meth-
ods for stereo estimation [12]. Graph cut [7] and belief propagation [13] methods
have shown good performance on test sets of stereo images which deal with scenes
with large depth changes, similar intensities for identical pixels, and textured regions.

Fig. 1. Two pairs of stereo retinal images from a patient with age-related macular degeneration
(a)(b) A characteristic ‘blister’ in the macula is harder to see in the red-free images (a)(b) than
it is in the images taken after injection of fluorescein dye (c)(d) into the antecubital vein.
Nevertheless, the image in (d) is blurred which complicates stereoscopic measurements.
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As discussed above, retinal images have challenging features such as inconsistent
intensities, smooth and thin surfaces, and less texture in the image, that complicate
stereoscopic estimations. Methods commonly used in the literature are not well
adapted for stereo estimation of the retina from fundus images, as attested by our
comparative study presented in the experimental results section. Figure 1 shows vari-
ous sets of stereo images.

Our paper proposes a method for 3-D reconstruction from a pair of retinal images
and its evaluation. The method consists of three steps. First, using matched Y-
features, a plane+parallax approach is taken to estimate the epipolar geometry. After
image rectification, the search space on the scanline for stereo matching is estimated
based on the Y-feature correspondences. Second, our mutual information method
matches points to produce a dense disparity map. Finally, the reconstructed 3-D shape
is validated by OCT data.

2 Estimation of Epipolar Geometry

This section briefly describes the method for estimating the epipolar geometry from a
pair of fluorescein images of the retina [1]. Many types of robust features can be used
to estimate the epipolar geometry such as Harris corners [4] or SIFT features [10]. We
utilized the locations of vessels’ bifurcations, so-called Y-features, which are well
distributed in the fundus and more robust to intensity changes within images. These
features are used to estimate the epipolar geometry and search space in stereo match-
ing. Extracted Y-features are matched by maximizing a mutual information criterion.
Typically, at least seven point correspondences are necessary to estimate the
fundamental matrix of the epipolar geometry. However, various standard
implementations of the 7-points and 8-points algorithm were tested and did not
provide satisfactory results [9]. Figure 2-(a)(c) shows the erroneous result of the

(o) pipolar geometry usig 8-Point algorithm (d) Plane+Parallax Algorithm
Fig. 2. (a)(c) Examples of inaccurately estimated epipolar geometry with 8-point algorithm in
the case of a translation of the camera. (b)(d) The epipolar lines obtained from the
plane+parallax based fundamental matrix estimation.
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corresponding epipolar lines defined by the fundamental matrix estimated with an 8-
point algorithm. In this example, the motion of the camera between the two
acquisitions is close to a pure translation. However, a degenerate case occurs in the
estimation of the fundamental matrix when all the points lie on a plane. This happens
quite frequently in retinal imaging since the surface of the retina is relatively flat.
Although the points are not on the same plane, the range of 3-D depth appears to be
too narrow to get a satisfactory fundamental matrix from the 8-point algorithm.

To overcome this limitation of the 8-point algorithm on retinal images, we imple-
mented the plane+parallax algorithm proposed by Kumar et al [8]. Given 4
corresponding points, first a homography is calculated. Adding 2 more point
correspondences belonging to residual parallax regions enables us to estimate the
location of the epipoles. We have implemented a RANSAC-based algorithm for the
plane+parallax method. Fig. 2-(b)(d) shows the corresponding epipolar lines by the
plane+parallax approach. After estimating the fundamental matrix, stereo images are
rectified using Gluckman and Nayar’s method [3] for the estimation of the depth map.

3 Stereo Matching

After rectification, all matching pixels are located on the same scanlines. On the
scanline, the lower and the upper bound of the search space is estimated by utilizing
disparities of the matched Y-features [2]. This method produces a 1-D narrow search
space, which enables a more accurate computation of the dense disparity map. In the
case of retinal imaging where the intensities of the matching areas vary across the
stereo images, a general cross-correlation based algorithm did not seem to provide
satisfactory results. Instead, we implemented a mutual information algorithm for
point matching along the scanlines and estimation of the depth map.
Mutual information for a pair of windows z, and z is defined by [14]:

MI(ZA’ZE):H(ZA)_ H(ZB)' H(ZA’ZE) (1)

where H(z) = _I p(z)In p(z) dz is Shannon entropy of the image window z, and p is

the distribution of the grey levels in the considered window. In [6], the authors used
only joint entropy H(za, zg) rather than mutual information. The proposed method
does not work well on low-textured areas. When mostly textureless areas are
Icompared to each other, joint entropy has a high value on textureless area, which is
incorrect. However marginal entropies H(z,) and H(zg) help to boost the mutual in-
formation value on the textured structures. We consider the following approximation
of the entropy [14]:

H(z) = n p(z,)

7 ZE€Z

where N, is the size of the window z, and the density function p(z) is estimated based
on Parzen window density estimation. We consider a Gaussian density function for
the Parzen window Wp, and the distribution of the grey levels is locally approximated
as follows:
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(@)=~ > g,(z-2)
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where N, is the number of sample in the Parzen window Wp, and g, (2) is the uni- or

bi-variate Gaussian density function with diagonal covariance matrix  [14]. In [5],
the author estimated the discretized density function p(z) in order to reduce the time
complexity. p(z) is calculated at the given point and it is convoluted by 2-D Gaussian
to simulate the density function. However this simplification reduces the accuracy of
the mutual information. The entropy function is then rewritten as:

1 1
H(z)z—FZInN— Y g, (z-2z,) 2)

z Z€Z p 2j€Wp

We utilize Equation (2) to implement the mutual information. In mutual informa-
tion, the marginal entropies H(z,) and H(zg) are included and the density function
p(z) is calculated individually using Parzen window estimation with Gaussian as-
sumption. The disparity of each pixel is determined by following equation.

disparity = ar%nslax MI(d) = ar%nslax Ml(z,,z,,) 3)
where MI(z4,2 4) is the mutual information from Equation (1) and zg, is the window
of d pixel distance from the window z; in the second image. Each pixel is centered in
a window z,, which then is compared with a window zg , in the other image within the
search space S. The pair of windows that has the maximum mutual information
determines the disparity of each pixel position.

To speed up the calculation of MI, we constructed a look-up table of Gaussian
function in advance. Since the heaviest calculation of MI is the Gaussian function and
the variable is an integer that ranges from 0 to 255, for each input value, the Gaussian
function was pre-calculated and saved in the look-up table. The same method was
applied to the 2-D Gaussian function, which requires two integer input variables. This
implementation made the calculation time of MI 8 times faster than the regular MI
implementation.

Since the range of disparity values is too narrow, the subpixel resolution of dispar-
ity is essential in 3-D reconstruction of retinal images to avoid “staircasing” in the
disparity map. We estimate the disparity map using subpixel accuracy by using a
quadric interpolation relying on neighboring mutual information values. Every dispar-
ity is determined individually by mutual information matching criteria. We did not
apply a smoothness constraint to calculate disparities. Based on the taxonomy of ste-
reo algorithms [12], only the matching function is applied. Neither aggregation nor
optimization methods are used. In our experiments we have noted that these methods
degraded the accuracy of the matching.

4 Evaluation of 3-D Surface

The reconstructed 3-D shape is evaluated by comparing our results to aligned OCT
data from a commercial instrument (Carl Zeiss Meditec, Dublin, CA). Our data differs
slightly from OCT data since we have a disparity map — not a true depth map. A more
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accurate depth map requires knowledge of internal camera parameters that are
currently unavailable.

4.1 3-D Shape of Retinal Fundus

We conducted experiments on numerous stereo pairs and selected three pairs, named
Retina_A, B and C, for evaluation. Fig. 1 presents the two selected pairs of stereo
images that had corresponding OCT data. The images demonstrate a retinal pigment
epithelial detachment (‘blister’) in the macula secondary to choroidal neovasculariza-
tion from age-related macular degeneration. The ‘blister’ in the right stereo image of
Retina_B is unfocused, which makes the image reconstruction difficult.

After Y-features were extracted and matched from each image, the epipolar
geometry was estimated with the plane+parallax algorithm (Fig. 2). The stereo images
were rectified based on the fundamental matrix, and the search space was estimated
from a set of matching Y-features. Using mutual information, subpixel resolution
dense disparity maps were estimated (Fig. 3).

(a) Surface map of Retina_A  (b) Texture map of Retina_A  (c¢) OCT map of Retina_A

(d) Surface map of Retina_B  (e) Texture map of Retina_B (f) OCT map of Retina_B

Fig. 3. Reconstructed 3-D shape of the retinal fundus (a)(d) Surface maps with an intersection
line. (b)(e) Texture maps with intersection line in the same position. (c)(f) The enlarged 3-D
OCT map of a blister area.

Fig. 3-(a)(d) shows different surfaces of 3-D retinal fundus that were obtained from
several sequences of stereo images. Displayed depth values are scaled (by a factor of
30) to magnify the 3-D depth. Since the camera calibration is not performed, radial
distortion and perspective effect still exist in the 3-D shape. The center of the esti-
mated 3-D depth maps are very smooth with little noise and did not require a post
processing step such as smoothing and regularization. The calculated depth values
near the boundary are incorrect due to the occlusions.

In Fig. 3-(b)(e), the image texture is mapped over the 3-D depth map. The green
lines, which respectively correspond to the line of the surface images on the left, dis-
play the 3-D depth of the texture. The 3-D shape of the blister and the optic disc are
accurately estimated.
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Fig. 3-(c)(f) presents OCT maps of the ‘blisters’. 3-D OCT maps are extracted from
data exported by the OCT machine using custom software (OCTOR, Doheny Image
Reading Center). The size and degree of the ‘blister’ areas closely match the OCT data.

4.2 Combination of OCT and 3-D Shape Model

The reconstruction of 3-D surfaces is one of the most difficult processes in medical
imaging because of the difficulty in accessing ground truth measurements. One possi-
ble source of ground truth data is obtained in this study from OCT. However, because
OCT data and fundus images are acquired by different machines, it is hard to align the
data to the 3-D shape data. Therefore, for evaluation, we manually matched several
feature positions from the OCT to the 3-D depth map to align them to obtain a trans-
formation matrix 7. Differences between the 3-D point in the transformed OCT data,
T(X), and its nearest neighbor point in the 3-D depth map, Y, were calculated as an
evaluation criterion.

E(X,Y,T):NLZ

X xeX

T(x;)—arg ryrgrylHT(X,») =1

“

where Ny is the number of the points in OCT data.

We evaluated the performance of different stereo matching algorithms using the
evaluation codes from the Middlebury database [15] for SSD, dynamic programming,
scanline optimization, and graph cut algorithms. The best parameters for each image
were selected for each method. We implemented normalized cross-correlation and
mutual information. Table 1 demonstrates that, in our study, mutual information out-
performed other methods in terms of accuracy. Mutual information generated little
noise and is highly accurate, even in areas with low textures.

Table 1. Difference between OCT data and 3-D shape in pixel metric. For each method, pa-
rameters with the best performance for each image are selected.

Retina_A Retina_B Retina_C
Sum of Squared Difference (SSD) 0.282563 0.510051 1.352426
Dynamic Programming (DP) 0.285503 1.142079 0.673890
Scanline Optimization (SO) 0.332272 0.626138 1.777096
Graph Cut (GC) 0.290186 0.515139 1.708525
Normalized Cross Correlation (NCC) 0.159760 0.437529 0.258479
Mutual Information (MI) 0.152694 0.328937 0.245442

5 Conclusion

Reconstructing the 3-D shape of the human retina from a stereo pair of fundus images
is a challenging task because of intensity variation, the paucity of features in the
macular area, and the plane-like surface of the retina. In this paper, we proposed a
method for 3-D reconstruction of the retinal surface in an attempt to overcome such
difficult cases. Specifically, our method employs a plane+parallax approach for robust
epipolar geometry estimation and utilizes the mutual information criteria for
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estimating a dense stereo map. The proposed method has been tested on numerous
stereo sequences and validated by aligning OCT data with reconstructed 3-D depth
data. Techniques such as this can be implemented easily in a telemedicine system
which may have great utility in addressing the epidemics of eye disease that are
emerging around the world due to diabetes, macular degeneration and glaucoma.
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Abstract. A variety of different methods of finding correspondences across sets
of images to build statistical shape models have been proposed, each of which is
likely to result in a different model. When dealing with large datasets (particularly
in 3D), it is difficult to evaluate the quality of the resulting models. However, if the
different methods are successfully modelling the true underlying shape variation,
the resulting models should be similar. If two different techniques lead to similar
models, it suggests that they are indeed approximating the true shape change. In
this paper we explore a method of comparing statistical shape models by evaluat-
ing the Bhattacharya overlap between their implied shape distributions. We apply
the technique to investigate the similarity of three models of the same 3D dataset
constructed using different methods.

1 Introduction

Statistical Shape Models (SSMs) are parametric representations of the shape and vari-
ation in the shape of a class of objects, learnt using a suitably representative training
set. They are suited to medical structures as they allow the variation of the shape of
the structure(s) being modelled to be captured. This proves useful for model fitting
to unseen structures (segmentation), and investigations into the changes in shapes of
anatomical structures due to disease (morphometric analysis).

The construction of statistical shape models requires that a correspondence is es-
tablished across the training set. To construct SSMs of 3D structures, establishing cor-
respondence manually is time consuming and subject to errors. Therefore, there is a
burgeoning field of research into automatic methods for obtaining correspondence e.g.
[1],[2]. In the case where the shapes of the structures being modelled are represented
as points, the statistical shape model is a point distribution model (PDM) [3]. This is
a linear model of the n-dimensional space in which each member of the training set is
represented as a vector. Different methods of establishing correspondence for the same
training set, represented by the same number of points, will result in different distribu-
tions in the n-dimensional space. Therefore, given the same training set represented by
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the same number of points, the different methods of establishing correspondence give
rise to different SSMs.

Each such SSM captures information about the true variation in shape of the underly-
ing dataset, but will also be influenced by the method used to obtain correspondences. It
is important to be able to understand the true underlying variation in the data, especially
for medical applications (where one may be looking for changes due to disease). It is
often impractical to manually annotate enough data to construct models, so methods
are required to confirm that the models resulting from automatic methods are reliable.
One approach is to use two or more different model building methods - if they all result
in similar models, one can begin to have confidence that the models are a true repre-
sentation of the underlying variation. However, this requires a method of comparing
the similarity of models which is the subject of this paper. The fact that two models
are similar does not necessarily mean they are right, and methods of measuring model
quality are still needed.

SSMs have been compared indirectly by evaluating their compactness and specificity
[11,[4], and the quality of registration used in model construction has been evaluated us-
ing overlap measures [5]. In this paper we propose a method of quantitatively evaluating
the similarity between two models. SSMs give compact representations of the proba-
bility distribution functions (PDFs) from which training examples are assumed to be
drawn. Thus each SSM implies a PDF, and two models can be compared by evaluating
the overlap between their implied PDFs. Such a measure gives insight into the different
ways of constructing SSMs.

The Bhattacharya metric [6] has been shown to be suitable for comparing the simi-
larity of two probability distributions. Thacker et. al. [7] have explored its application
to model similarity in 1D and for parameter estimation. In the following, we describe
the Bhattacharya measure and how we apply it to comparing the similarity of SSMs. Its
application to 3D SSMs in their standard form is not possible because of memory re-
quirements. An important contribution of this paper is the application of singular value
decomposition to reduce the dimensionalities involved. Details of this are given in the
Appendix at the end of the paper.

2 Bhattacharya Measure and Applicability

2.1 Bhattacharya Measure for Overlap of Two n-variate Gaussian Distributions

The Bhattacharya measure for two distributions is given by

B:/\/pl(x)pg(x) dx (1)

The measure gives the overlap for two distributions p; and p, as a value between 0 (no
overlap) and 1 (exact overlap) and is symmetric i.e. B(p1,p2) = B(p2,p1). If p1(x)
and py(x) are two n-variate normal distributions with means g, and 5, and covariance
matrices V1 and Vo, then

() = etV )Y xep( =y m) V) @)
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The Bhattacharya overlap B(p1,p2) is then

B =27 |det(Vy)|”4|det(Vy)| 4|det(Vi' + V1) 2

1 _ (3)
o (= o~ )TV V) s ) )
2.2 Application to PDMs
A PDM is a linear model of the form (see [3])
x=pu+Pb+r (@)

Where x is a shape vector formed by concatenation of the coordinates of the points used
to represent an instance of the class of shapes being modelled and g is the mean shape
vector. P is a matrix whose columns are the eigenvectors of the covariance matrix, b is
a vector of weights allowing instantiation of a particular set of values for x, and r is a
vector of residuals not explained by the model.

If we assume the original data was drawn from a Gaussian distribution, then each b;
is distributed as a zero mean Gaussian with variance \; (the eigenvalue of the original
covariance matrix of the training data).

Given a model constructed by applying PCA to the shape vectors of a training set,
we can estimate the covariance matrix from the model as

V =PTAP + oI (5)

A is a diagonal matrix giving the variance of each parameter b; and I is a square
identity matrix. o2 represents the variance of residuals. It is given by:

tmas
APy
0F = 0 (Z“t“ ) (6)

n—t

Each dimension in each of the distributions being compared has an element of noise
associated with it. This is expressed by the first term in equation 6 and its value is
determined empirically (see section 4.1). In applying PDMs to image search and mor-
phometric analysis, not all the modes of the model are necessarily used as the first few
modes usually contain most of the variation. In the case where not all modes are used,
the mean of the variance of the modes left out (second term of equation 6) is included
in determining the residual variance. In such cases ¢ represents a cutoff in the number
of modes of variation of the model, and ¢,,,,, is the maximum number of modes of
variation in the model. The value of o2 should be less than the lowest value of b; of the
modes used in the comparison.

2.3 Implementation Details

Calculating the Bhattacharya overlap involves computing the inverse and determinants
of “large” matrices, which require huge amounts of computer memory and can lead to
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numerical instability unless handled with care. The size of the covariance matrices are
determined by the number of points used to represent the shapes. For n points in 3D the
covariance matrix is of size 3n x 3n.

To allow application of the Bhattacharya overlap to 3D SSMs we use singular value
decomposition (SVD) to move the 3n X 3n covariance matrix into a smaller m x m
matrix, where m < 2x number of training examples (see appendix for details). The
Bhattacharya overlap is obtained using the smaller m X m matrix. In the present case
we reduced our covariance matrices from (76, 776 x 76, 776) to (74 x 74). Results from
2D have shown that the values obtained for the Bhattacharya overlap with and without
the SVD stage are equivalent.

3 Building the Statistical Shape Models

A training set consisting of magnetic resonance images of 37 subjects was used to build
the 3D statistical shape models. The dataset contained T1 structural MR scans of the
head of each subject at Imm x 1.5mm x 1mm resolution. For each subject there was a
corresponding image in which a number of cortical and subcortical structures had been
labelled.

Three methods were used to build 3D SSMs of 10 subcortical structures (lateral
ventricles, caudate, putamen, accumbens, pallidum, thalamus, amygdala, hippocampi,
brain stem and the fourth ventricle). The first method was based on B-Spline free form
deformations (FFD) [2], the second on composition of grid based diffeomorphic warps
[8] and the last used a deformable surface mesh [9].

A reference subject was chosen by identifying the member of the training set that was
most similar to all other subjects within the set. An initial mesh for each of the labelled
structures in the reference subject was obtained using the deformable mesh. This point-
set was used to build the SSM for each method. Therefore, there were three SSMs of
the same training set built by different methods with the same number of points. The
SSM produced by the mesh based method was used to investigate properties of the
Bhattacharya metric, then the three models were compared with each other.

4 Experiments and Results

4.1 Calibrating the Metric

The Bhattacharya overlap returns a value between 0 and 1. In order to better interpret
the values obtained when comparing models, we performed two different experiments
to investigate how the metric degrades as model training data is corrupted. The model
constructed using the mesh based method was used in these experiments.

In the first experiment random Gaussian noise was added in increasing amounts to
vertices of the points of each member of the training set. The random noise was obtained
from a Gaussian distribution with standard deviation expressed in fractions of the mean
distance between connected vertices. The model constructed from the members of the
training set with noise was compared to that constructed from the original training set.
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Bhattacharya overlap for different values of residual variance

Fig. 1. Value of the Bhattacharya overlap as the amount of noise added to a 3D SSM is increased.
The amount of noise is expressed in terms of the s.d. of the Gaussian distribution from which
the noise values were sampled. The s.d. was in units of the mean distance between the connected
vertices of the mesh. The values of agmm for each plot are shown in the legend.

Leave n out experiments

Bhattacharya overlap

) 1 2

3 5 6 7 8 9 10
Number of members of the training set replaced

Fig. 2. Value of Bhattacharya overlap during leave n out experiments. The values for Ugmm are
shown in the legend

In the second experiment the members of the training set were incrementally re-
placed (leave-n-out). The training set was divided into two parts. 27 members were
used to construct a SSM. The members of the 27 member training set were incremen-
tally replaced by randomly picking members from the 10 member training set. The SSM
constructed from this new set was compared with that of the original 27 member train-
ing set. For each data point 10 random choices from the left out members were used.

Figure 1 shows that the Bhattacharya overlap decreases as the amount of noise added
to the model increases. The resulting curve has a sigmoid shape. Figure 2 shows that the
Bhattacharya overlap decreases as the number of the 27 member training set replaced
increases.

The results from the random noise experiment allows a relationship to be defined
between the Bhattacharya overlap and the similarity of two models. For a particular
value of the measure, the amount of noise required to achieve a similar difference from
the initial distribution can be estimated.
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Table 1. Values of the Bhattacharya overlap for comparing the first three modes of three SSMs
of the same dataset. ngin was set at 5.

Models Compared Bhattacharya Overlap
FFD vs Compositional Warp 0.166
FFD vs Mesh 0.085
Mesh vs Compositional Warp 0.337

Bhattacharya overiap for adding Gaussian noise to mesh model

Fig. 3. Variation of Bhattacharya overlap with noise for Mesh model. The intercept marked by
the red (thick) line shows the overlap with the Compositional warp model is equivalent to adding
noise from a Gaussian distribution with s.d. 4.25 times the mean intervertex distance. That for the
overlap with the FFD model (6.15 times the intervertex distance) is marked by the thin line.aimm
was set at 5.

4.2 Quantitative Model Similarity Results

Table 1 lists the values obtained for the Bhattacharya overlap when comparing the dif-
ferent SSMs. These values were obtained using U?Ymm = 5. To give some physical
meaning to the values, they are marked on a plot of the Bhattacharya overlap with noise
for the Mesh model for 02 = 5 (figure 3).

4.3 Qualitative Analysis of Models

The mean shapes of the three models are shown in Figure 4. The figure also shows
colour-mapped images of the difference between the mean shapes of the FFD and the
compositional warp models relative to the mesh model. This shows that the mean shape
of the mesh model is more similar to that of the compositional warp model than it is to
the mean shape of the FFD model.

In the PDM equation 4, the eigenvectors contained in P each define a mode of vari-
ation, with eigenvectors corresponding to the largest eigenvalues describing the most
significant modes of variation. To visualise the differences captured by the modes, in-
stances of the shape can be generated between limits determined by each b;. We in-
stantiated shapes between +2.51/\y and —2.5+/\2 of the first three modes of variation
for each of the different models. However, we could not draw definite conclusions on
which models were more similar by observing these modes of variation.
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Fig. 4. The mean shapes of the three models. In subfigures (b) and (c) the difference in Euclidean
distance between the corresponding points in the Mesh model was used to colour-map the sur-
faces in the 2™ row. The relationship between the colours and the Euclidean distance (in mm) is
shown in the colour bar

5 Discussion

The results have shown that the Bhattacharya overlap can be used as a measure of the
similarity of two SSMs. We have quantified the value of the metric in terms of the
amount of Gaussian noise added to a model. The residual variance acts as a regularisa-
tion term allowing the sensitivity of the measure to be adjusted.

Results from the permutation experiments suggest that the metric could also be used
to evaluate the generalisation ability of a model. This is the ability of the model to
adequately represent the training set. We would expect a model that is representative of
a class of shapes to be relatively insensitive to the actual members of the training set.
However, as the results of figure 2 show this is not the case for the models considered
here. This is a common problem in medical applications - basically the numbers in the
training set are too small.

We are pursuing several aspects of this work further. Evidently, a,%min plays an im-
portant role in determining the value obtained for the Bhattacharya overlap. We intend
to investigate their relationship further and explore alternative approaches to calibrating
the measure. We would also like to investigate decoupling the differences in the mean
shapes of the two models from the differences in the modes of variation. Lastly, we
intend to further explore the application of the Bhattacharya overlap to measuring the
generalisation ability of 3D SSMs.

To conclude, we have presented a novel method of comparing statistical shape mod-
els. The method gives us a new approach for evaluating the quality of models built
automatically from large datasets, particularly in the medical field.
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Appendix - Using SVD to Decrease Matrix Size

Given two models of training sets consisting of s training examples each with n land-
marks defined in three dimensions :

x; = +Pib; +r and Xg = oy +Poba +r 7
x and r are column vectors of length 3n, P is of size (3n x s — 1), and b is a row
vector of length (s — 1).
We create a (3n X 2s)union space of vectors and perform an SVD:
UWVT = SVD ([P [P) ®)

U is a (3n x 2t) matrix whose columns form basis vectors in the union space. The
components of the models in the union space can be obtained by projecting using U :

UTx,; = UT,ui—&—UTPZ-bi—&—UTr and pi(x) = p(U) (UTX) X pEU)(CTX)

)

€))
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where C is the complement of U. Then

B(p1,p2) Z/\/ng)ng) P ax

1
/ \/p(w \/pw)p2 Jx (10)
U Uy (O
=B, ps) BRI, pi)
If we assume that the variance of the noise in both models is the same, then the distri-
butions in the null space of U, p(U)() = pg )() and B(pg ),ng)) = 1. Therefore,
B(p1,p2) = B(pi" (UTx1).p{"” (UTx2)) (11)

and the (25 x s — 1) matrix U” P can be used to estimate a (2s x 2s) covariance matrix,
instead of using the (3n X s — 1) matrix P to estimate a (3n X 3n) covariance matrix.
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Abstract. Quality of segmentations obtained by 3D Active Appear-
ance Models (AAMs) crucially depends on underlying training data.
MRI heart data, however, often come noisy, incomplete, with respiratory-
induced motion, and do not fulfill necessary requirements for building an
AAM. Moreover, AAMs are known to fail when attempting to model lo-
cal variations. Inspired by the recent work on split models [1] we propose
an alternative to the methods based on pure 3D AAM segmentation. We
interconnect a set of 2D AAMs by a 3D shape model. We show that our
approach is able to cope with imperfect data and improves segmentations
by 11% on average compared to 3D AAMs.

Introduction

Correct segmentation of the left ventricle (LV) in cardiac MRI short-axis images
is very important for further diagnosis of the heart’s function. Manual segmen-
tation is very time-consuming and therefore efforts are taken to automate this
process to the largest possible extent.

Although variants of Active Appearance Models (AAMSs) [2] have been applied
to this problem [3,4,5], a robust and completely automatic segmentation still
poses a challenge.

Several problems appear in the context of shape- and appearance-based mod-
eling of the left ventricle:

The appearance of papillary muscles and trabeculae varies irregularly from
patient to patient. Especially in slices close to the heart’s apex these fuzzy
anatomical structures are hard to model statistically. The necessary require-
ment for building an AAM — that the underlying training data has a gaussian
distribution — is not satisfied in the apical/apex region.

Often, only a part of the left ventricle is captured. Training data consisting of
poorly corresponding volumes decreases the quality of the resulting model.
Respiratory-induced motion introduces shifts of neighboring slices and so
leads to irregular local variances in the data.

Principal Component Analysis (PCA) involved in the build leads to a model
where variances apply to the complete model. This makes it hard to handle
local variations, e.g. different brightness of individual slices.

R. Larsen, M. Nielsen, and J. Sporring (Eds.): MICCAI 2006, LNCS 4190, pp. 151-158, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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In this paper we propose a new and robust approach to segmentation of the
left ventricle. By linking a set of 2D AAMs with a simple 3D shape model we
perform model matching on a global and local context iteratively. With this
approach we handle the above list of problems.

This paper is structured as follows. In section 2 we review related work on
statistical models of shape and appearance in context of LV segmentation. In
section 3 we introduce a two-component model of the left ventricle. In section
4 we outline how the two-component model is matched to unseen data. Results
are presented in section 5 and a conclusion is drawn in section 6.

2 Statistical Modeling of the Left Ventricle

Our approach benefits from the combination of both Active Shape Models (ASMs)
[6] and Active Appearance Models (AAMs) [2]. ASMs are statistical models of
shape that can be used for identification and segmentation of known objects in
unknown images. AAMs are a direct extension of ASMs and incorporate not only
information about shape but also model the underlying texture. Variations of both
methods have successfully been applied to segmentation in medical imaging [4,7,8].

Statistical models of shape and appearance are created from a finite number
of training data sets. In other words, the model is only able to represent and thus
segment new data sets that are similar to the ones in the training set. Increasing
the size of the training set is a rather limited way to improve the generalization
ability of the model. By adding local deformability the generalization ability
can be increased explicitly. The statistical model is used to find a rough initial
segmentation which is refined by restricted local deformations [8].

Several authors have discussed local and global deformability of a model.
Independent Component Analysis (ICA) [9,10] leads to modes of variation which
have a rather local effect compared to the global modes of variation derived from
the conventionally used PCA. To deal with local variations of a model it can
explicitly be split into sub-models. The split is achieved either with the help of
human expertise or by means of optimization based on the Minimal Description
Length (MDL) [1].

A great problem that arises in segmentation of short-axis MRI images of
the left ventricle is respiratory-induced motion. Such artifacts appear as slight
displacements of spatially neighboring slices. Handling of these displacements is
crucial to achieve both a correct model and correct segmentations. A recently
proposed approach [11,12] first detects the left ventricle in one or multiple slices.
In a second step image alignment is used to compensate the shifts of neighboring
slices. Finally a 3D AAM search is performed to achieve the final segmentation.

3 A Two-Component Model of the Left Ventricle

Inspired by the idea of modeling global and local features separately [1,8] we pro-
pose to combine a set of local 2D AAMs with a global 3D shape model. The pur-
pose of the 2D AAMs is to precisely match the well articulate slices of the heart’s
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Fig. 1. Typical examples of (a) basal, (b) mid (the arrows indicate papillary muscles),
(c) apical, and (d) apex slices (top) and the first two principal components of texture
after PCA (bottom)

base. The purpose of the 3D shape model is twofold: to propagate the position
and size of the basal slices to apical ones and to keep the global shape character-
istics plausible. In the following we describe the two components of our model.

3.1 Component 1: A Set of 2D Active Appearance Models

In a first step we consider the given training data, i.e. texture and annotation,
slice-wise. From base to apex we identify the following four classes of slices:

Basal slices (fig. 1(a)) reside close to the base of the heart and do not contain
papillary muscles.

Mid slices (fig. 1(b)) clearly show papillary muscles (arrows).

Apical slices (fig. 1(c)) contain trabeculae and papillary muscles, which are
represented by irregular texture.

Apex slices (fig. 1(d)) show the very apex of the heart and contain highly
irregular texture.

We performed PCA on the shape-normalized texture vectors of all slices in the
training set. Scatter-plots of the first two principal components are shown in
figure 1 for the according classes of slices. We observe that basal and mid slices
show a relatively compact gaussian distribution and are thus well suited for
linear statistical modeling using PCA. This is not the case for apical and apex
slices, whose texture is much more irregular.

With a manual classification of slices we build a set of four individual 2D
AAMs. This proceeding has the advantage that even incomplete MRI data sets
can be included in the training set and used for building the first component of
the model.
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Fig. 2. The original and smoothed centerlines projected to XZ (a) and YZ (b) plane.
(c) The assignment of sub-models to sections of the global shape model.

Fig. 3. The first (a), second (b), and third (c¢) modes of variation of the global shape
model. The plots show the mean shape together with the largest possible deformations.

3.2 Component 2: A Global Shape Model

The intention of the global model is to represent the ventricle’s shape in an
overall simplified way. Its task is to assure a valid relative placement and scaling
of the four 2D AAMs.

The core of the global model is a centerline connecting the 2D AAMs in 3D.
For the landmark points of each slice of the annotated training set a centroid
is calculated. The assembly of these centroids forms the centerline. Figures 2(a)
and 2(b) show such a centerline for one of the annotated data sets. It can be
seen that respiratory-induced shifts of neighboring slices appear in the data. We
use a gaussian filter to smooth the centerlines and to reduce respiratory motion
artifacts in the training set.

Additionally to the centroids we incorporate the radii of slices into the global
model. For each slice a radius as the mean distance of shape points to the centroid
is calculated. This results in three variables that approximately describe the
ventricle’s shape on one slice: x/y-coordinates and radius.

To build a statistical shape model, an equal number of corresponding land-
marks has to be placed in every training example. We interpolate centroid posi-
tions and radii to get a total of 20 evenly-spaced slices. With the three features
per slice this results in a total of 60 features included in the global shape model.
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Before PCA can be applied, the individual training examples have to be
aligned. Since we model not only the positions of centroids but also the radii we
can not directly apply 3D Procrustes analysis. We rather align the center lines
with respect to x/y-coordinates. The radii are thus not affected by the alignment.
Figure 3 illustrates the first three modes of variation of the global shape model.

3.3 Combining Local Models and Global Model

In order to benefit from both components the local models have to be linked to
the global model. As some data sets are delivered without apex or basal slices, we
compensate this missing information by attaching two 2D A AMs to each slice. For
example, the top most slice is assigned the basal model and the mid model. The
better matching model is kept while the other one is ignored. Figure 2(c) shows
the assignment of 2D AAM sub-models to the global shape model.

4 Matching the Two-Component Model

In the previous section we have outlined the idea of splitting a statistical model
of the left ventricle into four parts and described how those parts are coupled
over a global model. In this section we explain how the model iteratively is
matched to unseen data.

4.1 Matching the Local Sub-models

We switch between two strategies. First a local matching of 2D AAMs is carried
out for individual slices by standard AAM search [2]. In theory it should be
possible to match all 2D AAMs in this way to get a valid global segmentation.
While a valid match is obtained in basal and mid areas the 2D AAM search very
often fails in the apical and apex slices. This is where the global model comes
into play.

4.2 TUpdating the Global Model

Using the global component we propagate information from the better fitting
slices to badly matching slices: The root mean square (RMS) texture error is
calculated for all slices and the best 80% are used to update the global shape
model. This update is done analogously to ASM search [6].

4.3 Iterative Global and Local Matching

After the global model has been updated the local AAMs are aligned to it. The
search proceeds iteratively switching between 2D AAM search and update of the
global model. In this way divergence due to bad initialization in critical slices
is avoided and the overall segmentation gets improved. The loop of 2D and 3D
updates is repeated until convergence.
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The resulting segmentation still suffers from the lack of local variability. Fur-
ther improvements are achieved performing additional 2D AAM search steps
with position updates restricted by a constant maximum displacement.

Finally respiratory-induced shifts are compensated. The slices are shifted such
that the centroids of the 2D AAMs align to the global model’s centroid coordi-
nates. Compared to the work of Stegmann [11] our motion compensation thus
benefits from prior knowledge that is encoded in the global shape model.

5 Results

We evaluated the described method with a set of 32 different short-axis studies.
The quality of segmentation achieved with the two-component model was com-
pared to that of 3D AAMs. Leave-one-out tests for all of the 32 data sets were
performed. The average point-to-surface error (PSE) with respect to expert an-
notation was used to validate the segmentation quality. Figure 4 illustrates the
measurements. Although the two-component model led to slightly worse results
in 9 cases out of 32, the overall PSE got improved from an average of 2.20mm
(3D AAM) to 1.96mm (the two-component model). Even though the average im-
provement by 0.24mm does not sound impressive, we emphasize that compared
to the standard 3D AAM the two-component model performs better by 11%.

In figure 5 we provide a visual comparison for the largest improvement in terms
of the average PSE which could be achieved for data set 10. It shows the result
obtained with a standard 3D AAM (fig. 5(a)) and the improved segmentation
achieved with the two-component model (fig. 5(b)).

Figure 6 demonstrates the motion compensation performed with the two-
component model. A section of data set number 10 is depicted in figure 6(a).
Figure 6(b) shows the data set after matching and aligning the slices to the
centerline of the global shape model.
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Fig. 4. Point-to-surface error measured in leave-one-out tests for all training data sets
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(a)

Fig. 6. Motion compensation of data set 10 carried out by the two-component model.
The original data (a) and the automatically corrected data (b) are shown.

Between 10 and 20 iterations are necessary for the two-component model
matching algorithm to converge. The whole segmentation process typically takes
a few seconds on standard PC hardware.

6 Conclusion, Discussion, Future Work

We have introduced a new approach to 3D segmentation of the left ventricle from
short-axis MRI images by interconnecting a set of 2D AAMs with a simple 3D
shape model. The two-component model is more robust than a 3D AAM since
local irregularities such as respiratory-induced motion and different intensities
of gray values in individual slices can be handled.

Incomplete training data sets that do not contain the entire LV from base
to apex pose a severe problem for 3D AAMs. If such data sets are present in
the training set the correspondence between them is ill-posed. The outcoming
model allows for shrinking within its modes of variation. The topmost or the
bottommost slices thus often remain unsegmented. This disadvantage is avoided
with the two-component model which allows the use of incomplete data sets as
training examples. Since slices are assigned to individual 2D AAM sub-models
even a single annotated 2D short-axis slice can be added to the training set. As
the two-component model attempts to match two neighboring 2D AAMs to each
slice, segmentation of data sets that do not cover the entire LV is still possible.
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We are convinced that the idea of combining different types of models over a
global shape model is promising for other medical segmentation problems. Espe-
cially if local anatomical abnormalities (e.g., a tumor) appear, models consisting
of multiple components will likely lead to more precise results.
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Abstract. Cephalometric analysis of lateral radiographs of the head is
an important diagnosis tool in orthodontics. Based on manually locating
specific landmarks, it is a tedious, time-consuming and error prone task.
In this paper, we propose an automated system based on the use of Active
Appearance Models (AAMs). Special attention has been paid to clinical
validation of our method since previous work in this field used few ima-
ges, was tested in the training set and/or did not take into account the
variability of the images. In this research, a top-hat transformation was
used to correct the intensity inhomogeneity of the radiographs generating
a consistent training set that overcomes the above described drawbacks.
The AAM was trained using 96 hand-annotated images and tested with a
leave-one-out scheme obtaining an average accuracy of 2.48mm. Results
show that AAM combined with mathematical morphology is the suitable
method for clinical cephalometric applications.

1 Introduction

Cephalometry means measurement of the head. Accordingly, a cephalometric
analysis consists of characterizing distances and angles between significant struc-
tures in a x-ray image of the head. The whole process is based on the localization
of cephalometric landmarks. These points correspond to specific locations on the
radiograph and are accurately defined for hard, external soft and pharyngeal tis-
sues [1]. Figure 1 shows the location of commonly chosen cephalometric points
for several methods. Once located, lines are traced between the points to measure
angles and distances, which are the cephalometric indices. After a comparison of
these measurements with the norms stated for the same age, ethnicity and sex,
a diagnosis can be established and a treatment forecast.

Manual positioning of landmarks is a tedious, time-consuming and error prone
task. Depending on the quality of the radiograph and the experience of the user,
the location will be slightly different. According to Dean et al. [2] and Geelem
et al. [3], inter-expert variability during the positioning task varies from 3.3mm
to Smm and intra-expert variability is of 1mm.

* Radiographs provided by Y. Perrin, A. Sanpietro and the Eastman Dental Institute.

R. Larsen, M. Nielsen, and J. Sporring (Eds.): MICCAI 2006, LNCS 4190, pp. 159-166, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Lateral cephalometric points of bony tissue for different methods of analysis

The orthodontist spends on average 15-20 minutes per analysis depending on
the quality of the cephalogram, his/her experience and the number of points con-
sidered in the method selected. A fully automated system would detect landmarks,
thus reducing the time required to carry out an analysis, improving the accuracy
of landmark localization and decreasing errors due to expert subjectivity.

2 Previous Work

Several approaches have been proposed for the automatic detection of cephalo-
metric landmarks. They can be classified into 3 groups:

Knowledge-based Systems. The first attempt was undertaken by Levy et
al. [4], who applied enhancement filters and a knowledge-based line tracker to
extract edges. Landmarks were located according to their geometric definitions.
The method was tested on two high-quality x-ray images. 23 of 36 landmarks
were located on good quality images. Parthasaraty et al. [5] improved the previ-
ous work by including a four level resolution pyramid to reduce time-processing.
The testing was done in five images. Nine of the landmarks considered in that
study, 58% were within +2mm, 18% within +1mm and 100% within +5mm.
These studies used few images for training and tested the method on the train-
ing set. In the presence of artifacts and bad quality images, these methods will
not work and, therefore, cannot be used for clinical cephalometric systems.

Template Matching. Template matching methods implement a grey-level
model around each landmark on each image in the training set. Then, they search
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for a correspondence between the model and new images. Cardillo et al.[6] applied
a pattern-matching algorithm based on mathematical morphology to detect land-
marks. They considered 40 images in the training set. The testing was done on 20
images. Of 20 landmarks, 66% were within +2mm. Grau et al. [7] improved on
the work of Cardillo et al. by using a line detection module to search for the most
significant lines. They used 20 images for training and 20 for testing and reported
that 90% of the 17 landmarks tested were repeatedly located within +£2mm. Chen
et al. [8] developed a method of neural networks and genetic algorithms to search
for sub-images containing each of the cephalometric points. These methods con-
sider the texture around each point. However, this appearance can vary from one
image to another making local detection worse. Moreover, not enough images were
used to represent the variability existing in cephalograms. In our experience, these
methods, when used on images slightly different from the ones of the training set,
are not sufficiently accurate for clinical applications.

Statistical Models. Statistical methods are one of the most suitable options
for considering the huge amount of variability in cephalograms, as they take into
account the variation of characteristics in the images. Hutton et al. [9] applied
Active Shape Models (ASMs) to cephalometric point detection. They used 63
randomly selected cephalograms and tested the training set with a drop-one-
out method. 13% of 16 landmarks were within +£1mm, 35% within +2mm and
74% within +5mm. The authors concluded that ASM did not give sufficient
accuracy for landmark detection in clinical applications and could only be used
as a good starting point for global landmark identification. ASM mainly considers
the variation in shape present on the images. The intensity variations are only
modeled in the profiles normal to the contour. Accordingly, to improve accuracy
it is necessary to add more information to the system. The appearance of the
radiographs contains useful information that should be taken into account.

3 Method

Active Appearance Models (AAMs), recently proposed by Cootes et al. [10][11],
can model both shape and texture variability existing in a training set. To create
a model we need a set of labeled images representative of the real variability
of the object we want to segment. AAMs have proved to be powerful tools for
medical image segmentation and understanding [12]. The more homogeneous the
images of the training set are, the more robust the model will be. The problem
of the images we work with in this research is that they can be greatly different
and present huge luminosity inhomogeneity. Mathematical morphology can solve
this; in particular, we will apply a top-hat transformation [13] on the images to
extract light objects from an uneven background.

3.1 Selection of the Training Set

The images forming the training set must be representative of the variability
existing in clinical cases. The data and the source should reflect the target
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population for the algorithm that is being developed. In particular, it is nec-
essary to consider: the anatomical and morphological variability of the human
head, the variability of texture depending on image quality, the variability of
structures present in a cephalogram (not all the radiographs have the same size
and include the same structures), the variability of capturing the x-ray (i.e. dou-
ble structures appearing because of the non-orthogonal position of the patient
during capture of a lateral head film) and the variability of the source.

3.2 Luminosity Inhomogeneity Correction

Depending on the source, the cephalogram can present varied textures and thus
be completely different from one another. Background cannot be separated from
the rest due to its non-uniformity. Therefore, a purely preprocessing approach
for intensity inhomogeneity correction is required to improve results when using
AAM. Mathematical morphology [14], which is based on set theory, provides
powerful tools for image analysis. Fundamental operations are erosion, dilation,
opening and closing. An opening consists of an erosion followed by a dilation. A
structuring element defines the size and the shape of the transformation to be
done. In our case we will use a circular structuring element with a radius of 75
pixels. We use this size to extract the structures of interest correctly. The white
top-hat p(f) extracts bright structures and is defined as the difference between
the image f and its opening v(f):

p(f) = f—=~(f) (1)

Subtracting the open image from the original provides an image where re-
moved objects stand out clearly. This technique is used to extract contrasted
components with respect to the background. The result of applying this trans-
formation can be seen in Fig. 2 (right column).

3.3 Training the Model

To generate a statistical model of shape and texture variation it is necessary
to describe the shape and the texture of each training example. Therefore, we
represent n landmark points, (x;,y;), for each image as a 2n vector, x, where
X = (T1,...,Tn,Y1,-.-,Yn)" will describe the shape of an object. The anno-
tated training set is aligned into a common co-ordinate frame using a Procrustes
Analysis [15]. Hence, we obtain the Point Distribution Model (PDM) for all
the images of the training set. The mean shape is extracted and the appear-
ance variation collected by establishing a piece-wise affine warp (based on the
Delaunay triangulation) between each image of the training set and the mean
shape. Next, the intensity is sampled from the shape-normalized images over the
region covered by the mean shape. The resulting samples are then normalized
to minimize the effect of global lighting variation and the texture (grey-levels)
vector g is obtained. Finally, for both shape and texture, we perform a Principal
Component Analysis (PCA) on the aligned training set to describe the shape
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and appearance variations of the object. Often, shape and texture are corre-
lated. Therefore, we can deduce a combined model of shape and texture with
parameters c, controlling the shape and texture at the same time. We get:

x=x+Q,c,g=g+Q,c (2)

where x and g are the mean shape vector and the mean normalized grey-level
vector, Q, and Q, are matrices describing the modes of variation derived from
the training set and ¢ the combined PCA parameters. New images of the object
can be synthetically constructed from c. More details about AAMs can be found
in [10][11].

3.4 Segmenting New Images

We first place an initial template model over the unseen image. We then use a
principal component multivariate linear regression model to generate new images
to fit the unseen image in the best way. Once the process converges, a match can
be declared. Finally, an optimization scheme accomplishes further refinement of
the match.

3.5 Model Evaluation

The final step of the whole process consists of testing the performance of the
algorithm. Care should be taken to test the algorithm in data that has not been
used in the training.

In this case, we will use a common methodology called leave-one-out. In this
approach, a set of M images (ground truth) is split in M different ways into a
training set of size M-1 and a test set of size 1. For each of the M splits, training
is done on the M-1 images and then testing is done on the remaining 1 item.
Performance is then estimated as the average of the M tests.

4 Experimental Results

We applied the method described to automatically detect cephalometric land-
marks. The open C++ source code AAM-API [17] was partially used in this study.
We implemented the leave-one-out algorithm in Matlab to evaluate the model.
96 images, annotated by an expert, form the training set used in this study.
Image selection fulfils the requirements stated in Sect. 3.1. This number of ima-
ges is sufficient to include all the existing variability. Each image has a size
of 780x 1000 pixels and 256 grey-levels. 43 cephalometric landmarks were con-
sidered to assess most of the cephalometric analysis. We used a combination
of scanned and digital x-ray images, coming from different sources, to consider
different image qualities in the training set. Anatomical variability is assessed
with good proportion between ages, different norm groups (Caucasian, black and
oriental), incisor relationship (III or III) and dentition (mixed or permanent).
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Fig. 2. Results of the search in a digital image (first row) and a scanned x-ray (second
row) after luminosity inhomogeneity correction. We can appreciate that the original
x-rays are very different and the intensity normalized images are more homogeneous.

We have created a template with 289 points. Points were divided into cephalo-
metric, mathematical and pseudo-landmarks [15]. Double contours were added
to some structures to improve the search giving more specificity to the model [16]
(Fig. 2). The evaluation of the model was assessed using a leave-one-out method.
We considered the initialization of the system to have failed if more than 60% of
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the points have an error larger than 5mm. In these conditions, for 96 images used
in this study, the automatic initialization failed in 9.37% of the cases. Figure 2
shows the results of different quality cephalograms. The first row assesses the
result in a digital x-ray whereas the second row shows the result in a scanned
x-ray with high luminosity variation, black regions and rotation of the head. For
both, the segmentation works well and with high precision. Table 1 assesses the
accuracy of the system for the main landmarks considered. The names of the
landmarks correspond to locations in Fig. 1.

Table 1. Results and comparisons of the main landmarks

mean std < 2mm< 3mm< 5mm mean std < 2mm< 3mm< 5mm
(mm)(mm) (%) (%) (%) (mm)(mm) (%) (%) (%)
Na 2.31 1.78 56.32 75.86 91.95 SOr 2.16 1.33 49.42 80.46 96.55
Se 2.04 1.12 52.87 80.46 100 S 229 1.26 39.08 70.11 97.70
Or 2.05 1.23 5747 7356 97.70 Po 3.66 2.12 18.39 42.53 78.16
PMS 2.24 1.25 4828 75.86 96.55 Co 2.47 1.35 37.93 64.37 94.25
Ba 2.70 1.79 37.93 67.82 91.95 Ar 227 1.41 44.83 74.71 96.55
Pt 219 1.22 47.13 78.16 98.85 PtC 2.14 1.37 55.17 78.16 97.70
Cf 2.02 1.18 54.02 85.06 98.85 R1 1.95 1.02 60.92 &85.06 100
B 219 1.26 43.68 80.46 97.70 Pm 197 1 56.32 85.06 98.85
Pg 1.83 1.06 57.47 89.66 98.85 Gn 1.58 1.12 73.56 86.21 98.85
Me 1.59 1.07 70.11 86.21 100 Go 3.88 2.41 26.44 43.68 66.67
R2 246 1.43 41.38 71.26 91.95 LIT 1.52 0.90 77.01 94.25 100
LIR 155 0.92 67.82 94.25 100 PNS 2.67 1.42 36.78 68.97 91.95
ANS 2.12 1.28 55.17 78.16 96.55 A 2 141 67.82 83.91 94.25
UIT 1.82 1.85 75.86 87.36 94.25 UIR 1.98 1.43 65.52 82.76 95.40

On average, for all the cephalometric landmarks considered, the system has a
precision of 2.48mm and an average standard deviation of 1.66mm. Considering
that inter-expert variability varies from 3.3mm to 5mm, these results are to date
the best option for clinical applications. In this study, 50.04% of the landmarks
were located within 2mm, 72.62% within 3mm and 91.44% within 5mm.

5 Conclusions

In this paper, we have shown that AAM achieves precise, automatic detection
of cephalometric landmarks that takes into account the variability existing in
shape and texture. This leads to the clinical applicability of automatic land-
mark identification. Previous work in this field used few images, tested their
methods in the training set or did not select a consistent training set that well
characterized the variability of this type of images. None of the previous studies
undertaken had achieved clinical cephalometric analysis. Our method has proved
to be useful to locate a considerable number of the landmarks with a high preci-
sion rate for clinical cephalometric applications. Image homogeneization and the
use of double contours for some structures improve AAM results when applied
to cephalometric radiographs.
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Abstract. Preoperative planning systems are commonly used for oral
implant surgery. One of the objectives is to determine if the quantity
and quality of bone is sufficient to sustain an implant while avoiding
critical anatomic structures. We aim to automate the segmentation of
jaw tissues on CT images: cortical bone, trabecular core and especially
the mandibular canal containing the dental nerve. This nerve must be
avoided during implant surgery to prevent lip numbness. Previous work
in this field used thresholds or filters and needed manual initialization.
An automated system based on the use of Active Appearance Models
(AAMs) is proposed. Our contribution is a completely automated seg-
mentation of tissues and a semi-automatic landmarking process necessary
to create the AAM model. The AAM is trained using 215 images and
tested with a leave-4-out scheme. Results obtained show an initialization
error of 3.25% and a mean error of 1.63mm for the cortical bone, 2.90mm
for the trabecular core, 4.76mm for the mandibular canal and 3.40mm
for the dental nerve.

1 Introduction

Dental implants are titanium roots placed in the bone of the jaw to support
replacement teeth. Preoperative planning systems are commonly used for oral
implant surgery. The dentist or surgeon placing the implant needs to determine if
the quality and quantity of bone is sufficient for long-term function and stability.

The body of the mandible is formed by a hard exterior, the cortical bone,
and a soft spongy inside, the trabecular core. Teeth are fixed to the jaw by their
roots and nerved to the mandibular canal. The canal contains the mandibular
nerve which has to be avoided to prevent permanent or temporary lip numbness.
This nerve runs from the area behind the wisdom teeth, passes under the molars
and emerges under the skin of the face in the region where the premolar teeth
are or used to be (Fig. 1).

* This research has been partially supported by SDENT Sistemas Dentales, Spain.

R. Larsen, M. Nielsen, and J. Sporring (Eds.): MICCAI 2006, LNCS 4190, pp. 167-174, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Mandible structure: diagram and CT sectional view

Oral implant surgery uses different views on CT images to plan the interven-
tion. Our work aims to segment cortical bone, trabecular core and the mandibu-
lar canal in sectional views (Fig. 1, right) because of their simplicity and the
coherence existing between nearby slices. Depending on the patient, the shape
of the bone can be very different and present mandible bone reabsorption. More-
over, the boundary of the trabecular core is not always well defined. We attempt
to detect this region roughly because the mandibular canal is located inside. The
canal is not always distinguishable in the trabecular zone because of the similar-
ity of intensities in this region. Furthermore, these images present artifacts and
sometimes teeth which make segmentation difficult.

2 Previous Work

We aim to automate the segmentation of cortical bone, trabecular core and
the mandibular canal in CT images. Most of the studies carried out in the
area of implantology has focused on 3D mandible reconstruction from projec-
tions [1] [2] avoiding the segmentation of tissues. Few studies have been found
about mandible tissues segmentation. In most cases, the method was based on
threshold and needed the intervention of an expert. For example, Fiitterling
et al. [3] developed an approach to automate the segmentation process of jaw
tissues. They concluded that it was not possible to reliably detect any border
between the cortical bone and the trabecular core without massive interaction.
Stein et al. [4] proposed an approach to the detection of the mandibular canal
using Dijkstra’s algorithm to find the path and a deformable model to build the
tubular structure. The process required the initialization of an expert.

De Bruijne et al. [5] obtained good results in the segmentation of tubular
structures using Active Shape Models (ASMs). ASMs adapt the shape of the
object to be segmented according to the statistical information of a training set
previously annotated by an expert.

Previous work has shown that the problem to solve is complex and often re-
quires expert interaction. Threshold techniques have proved to be inefficient to
separate cortical bone and trabecular core. Nonetheless, the use of ASM to seg-
ment tubular structures gave good results. Therefore, if we want more accuracy
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we have to consider texture information. Active Appearance Models is an exten-
sion of ASMs that takes into account texture and shape variability. We will use
this method to segment mandibular tissues automatically.

3 Method

Active Appearance Models (AAMs), recently proposed by Cootes et al. [6][7],
can model both shape and texture variability existing in a training set. To create
a model we need a set of labeled images representative of the real variability of
the object we want to segment. AAMs have proved to be powerful tools for
medical image segmentation and understanding [8]. The whole process followed
is summarized in Fig. 2.

Training Set Training Set Training Segmenting Model
Selection Annotation the Model New Images Evaluation

Fig. 2. Methodology

3.1 Selection of the Training Set

The images forming the training set must be representative of the variability exis-
ting in real cases. The data and the source should reflect the target population
for the algorithm that is being developed.

3.2 Semi-automatic Annotation of the Training Set

Because of the high variability of shape and the few anatomic landmarks exist-
ing in these images, manual landmarking, with high correspondence of points
between images, will be difficult, tedious and error prone. The best solution is to
automatize the process as much as possible. We use threshold techniques to find
the contour of each structure. First, we find the external contour of the cortical
bone (Fig. 3.a). Second, we define five mathematical landmarks (points of high
curvature) on the cortical contour (Fig. 3.b). Third, we find the contour of the
trabecular core (Fig. 3.c). Then, we locate the dental nerve, which is the only
anatomical landmark, in the center of the mandibular canal (Fig. 3.d). Finally,
we select the radius of the canal (Fig. 3.e).

Once this is done, we automatically define pseudo-landmarks equally spaced
between the anatomical and mathematical landmarks previously located. To
describe each structure we use a large number of landmarks. As stated in [9],
duplicating the structure gives more specificity to the model and more accurate
segmentation. The annotation for each structure can be seen in black in Fig. 4.
Each black point is a landmark.

The cortical bone (Fig. 4.a) is described with 30 landmarks and a double
contour of 28 points. The structure is open to avoid the presence of teeth. The
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a)

¢) d) e)

Fig. 3. Semi-automatic landmarking steps

b)

Cortical bone Trabecular bone  Mandibular canal Nerve

Fig. 4. Model landmarking

trabecular core is described with 10 landmarks and a double contour of 10 points.
This structure has high variability and we use few points to avoid the adaptation
of the shape to details. The mandibular canal uses 8 landmarks and the dental
nerve only one.

3.3 Training the Model

To generate a statistical model of shape and texture variation it is necessary
to describe the shape and the texture of each training example. Therefore, we
represent n landmark points, (z;,y;), for each image as a 2n vector, x, where x =
(X1, Tn,Y1,---,Yn) T describes the shape of an object. The annotated training
set is then aligned in a common co-ordinate frame using a Procrustes Analysis.
Hence, we obtain the Point Distribution Model (PDM) for all the images of the
training set. The mean shape is extracted and the appearance variation collected
by establishing a piece-wise affine warp (based on the Delaunay triangulation)
between each image of the training set and the mean shape. Next, the intensity is
sampled from the shape-normalized images over the region covered by the mean
shape. The resulting samples are then normalized to minimize the effect of global
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lighting variation and the texture (grey-levels) vector g is obtained. Finally, for
both shape and texture, we perform a Principal Component Analysis (PCA)
on the aligned training set to describe the shape and appearance variations of
the object. Often, shape and texture are correlated. Therefore, we can deduce a
combined model of shape and texture with parameters c, controlling the shape
and texture at the same time. We obtain:

x=x+Q,c (1)

g=g+Q,c (2)

where x and g are the mean shape vector and the mean normalized grey-level
vector, Q, and Q, are matrices describing the modes of variation derived from
the training set and ¢ the combined PCA parameters. New images of the object
can be synthetically constructed from c. More details about AAMs can be found
in [6][7]. The whole process is summarized in Fig. 5.

I—l Annotated Training Set

‘ Procrustes Analysis ‘

v

‘ Point Distribution Model ‘

For each image

Mean Shape
Extraction

Shape—-normalized

images

PCA shape

Combined PCA

PCA Parameters

Fig. 5. Building an Active Appearance Model

3.4 Segmenting New Images

We first place an initial template model over the unseen image. We then use a
principal component multivariate linear regression model to generate new images
to fit the unseen image in the best way. Once the process converges, a match can
be declared. Finally, an optimization scheme accomplishes further refinement of
the match.
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3.5 Model Evaluation

The final step of the whole process consists of testing the performance of the
algorithm. Care should be taken to test the algorithm in data that has not been
used in the training.

In this case, we will use a common methodology called leave-N-out. In this
approach, a set of M images (ground truth) is split in N different ways into
a training set of size M-N and a test set of size N. For each of the N splits,
training is done on the M-N images and then testing is done on the remaining
N. Performance is then estimated as the average of the N tests.

For each image segmented, we compare the result with the corresponding
ground truth image. We calculate the distance between the structures segmented
and those previously annotated, which gives the average error for each image and
for each structure. There are two ways of measuring this distance: point-to-point
(pt.pt) or point-to-curve (pt.crv). The pt.pt distance measures the Euclidean dis-
tance between each corresponding landmark, whereas the pt.crv distance mea-
sures the shortest distance to the curve in the neighborhood of the corresponding
landmark. Pt.crv distance is more representative of the global segmentation be-
cause it does not evaluate each isolated point. We therefore based our evaluation
on the pt.crv distance.

4 Results

The method described to segment cortical bone, trabecular core and the mandibu-
lar canal was applied to 215 CT images which were selected from 62 patients com-
ing from different sources in order to cover the variability existing in real cases. The
entire model was described by 87 landmarks annotated on each image of the train-
ing set. Semi-automatic landmarking was undertaken to give more accuracy to the
system and assure that all the intermediate points were really equally spaced. The
open C++ source code AAM-API[10] was partially used in this study. We created
a tool with OpenCV libraries in C++ to annotate the images semi-automatically
and to build AAM models automatically. We developed the leave-4-out to evalu-
ate the models.

To calculate the optimized parameters in shape, we fixed the texture variance
at 40% and the combined variance at 95%. We then took into account the re-
sults obtained and fixed the shape variance at 25% to calculate the optimized
parameters in texture. The results can be seen in Fig. 6.

The best configuration is for 25% of the shape variance and 50% of the texture
variance. For the optimal configuration, results in mean and standard deviation
for each structure are shown in Table 1.

For a mean pt.crv distance lower than 5mm for at least 90% of the points for
each image or structure, a good initialization can be defined. Accordingly, 90%
of cortical bones, 66% of trabecular cores, 70% of mandibular canals and 72% of
dental nerves were found correctly for all the 215 images. An example of good
segmentation can be seen in Fig. 7.
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Fig. 6. Influence of shape and texture variance considered

Table 1. Results for the optimal configuration

mean (mm) std (mm)
Cortical Trabecular Canal Nerve Cortical Trabecular Canal Nerve
pt.crv  1.63 2.90 4.76  3.40 1.63 2.16 0 1.11

Fig. 7. Successful fitting

We do not expect more accuracy in the trabecular core because this structure
has a high shape variability and we annotated the training set to avoid trabecular
details during the segmentation.

5 Conclusion

A AMs perform accurate and automatic segmentation of cortical bone, trabecular
core, mandibular canal and dental nerve taking into account all the variability of
real cases. None of the previous work undertaken had achieved a real, automatic
jaw tissues segmentation. In the research presented in this paper, semi-automatic
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landmarking was developed to improve the AAM method and decrease annota-
tion time.
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Abstract. In this paper, we present a comprehensive framework to
detect morphological changes in skull vaults of adolescent idiopathic sco-
liosis girls. To our knowledge, this is the first attempt to use a combina-
tion of medical knowledge, image analysis techniques, statistical learning
tools, and scientific visualization methods to detect skull morphological
changes. The shape analysis starts from a reliable 3-D segmentation of
the skull using thresholding and math-morphological operations. The
gradient vector flow is used to model the skull vault surface, which is fol-
lowed by a spherically uniform sampling. The scale-normalized distances
from the shape centroid to sample points are defined as the features. The
most discriminative features are selected using recursive feature elimina-
tion for support vector machine. The results of this study specify the
skull vault surface changes and shed light on building the evidence of
bone formation abnormality in AIS girls.

1 Introduction

Adolescent idiopathic scoliosis (AIS) is a cause-unknown complicated 3-D spine
deformity appearing most commonly in girls between 10 and 16 years old. The
current treatment of AIS is still unsatisfactory because the etiopathogenesis re-
mains unclear [1]. To enable evidence-based treatments and prognosis of curve
progression, research on AIS has been carried out from various aspects, e.g. neu-
romotor mechanisms, hormonal system, and genetics [2]. In previous research
studies carried out by our center, we have found persistently low bone mineral
density [3,4,5,6,7,8] and abnormal skeletal growth in AIS during peri-pubertal
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development, which includes both peripheral [9] and axial skeleton [10,11]. Com-
pared with age-matched controls, the longitudinal growth of the vertebral bodies
in AIS is disproportionate and faster and mainly occurs by endochondral ossi-
fication. In contrast, the circumferential growth by membranous ossification is
slower in both the vertebral bodies and pedicles [10]. We have hypothesized that
there is generalized abnormal systemic growth in AIS and there might be as-
sociated abnormal growth and ossification of whole skull, which comprises the
endochondral and membranous ossification process. In this work, we sought to
analyze skull vault morphologies, which might bring out inspiring findings of
ossification abnormality of the skull in AIS girls.

In a typical shape analysis application, the first step is the acquisition of the
2-D or 3-D shape from the data; it usually refers to image segmentation. Then
shape descriptors are extracted to quantitatively characterize the shape. Finally,
the shape difference accounts for the classification can be inferred from statistical
analysis performed on these numerical descriptors.

Shape Extraction. There is limited work on segmenting skulls from MRI data,
since the signals of bony structures is very weak in MRI. In recent work of Dogdas
et al., [12], a human skull and scalp segmentation method is proposed based on
thresholding and morphological operations.

Shape Description. Driven by various applications, shape description methods
include parametric methods, e.g., spherical harmonic transform [13], and non-
parametric methods, e.g., distance transform [14]. Snakes have been used to
represent an object boundary as a parameter curve or surface. Xu et al. proposed
the gradient vector flow (GVF) snake [15], which addresses the problems of the
short capture range and inability to track at boundary concavity.

Statistical Analysis. The determination of discriminative descriptors that sep-
arates the two groups with least error can be interpreted as a feature selection
problem in the machine learning domain. Feature selection methods can be clas-
sified into three categories [16], i.e., filter, wrapper, and embedded approaches.
Various feature selection schemes have been proposed for the popular large mar-
gin classifier, support vector machine (SVM). Guyon et al. [16] introduced SVM-
RFE, a backward elimination method for gene selection using SVM.

Figure 1 shows the framework of the proposed skull vault analysis scheme.
The implementation details are introduced in the remainder of this paper.

2 Skull Vault Extraction and Description

2.1 Skull Segmentation

Reliable 3-D skull segmentation is an indispensable prerequisite for further fea-
ture extraction and statistical analysis. However, defining the skull in MRI is a
challenging problem because of the weak magnetic resonance signals in the bony
structures. We adopt a recently proposed effective strategy for skull segmentation
in MRI data [12], which uses simple thresholding and math-morphological opera-
tions but achieves results close to CT data, especially in the range of skull vault.
Before segmentation, the images are first preprocessed using the anisotropic
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Fig.2. The process of skull segmentation using thresholding and 3-D math-
morphological operations

diffusion filter, which smoothes the volume while preserving sharp edges. The
brain is extracted using the BSE algorithm [17]. The segmented brain is used as
an inner bound for further skull segmentation. Thereafter, the scalp, the outer
bound of the skull, is segmented using a combination of thresholding and math-
morphological operations. Then the skull surface is found between outlines of
brain surface and scalp using thresholding and morphological closing and open-
ing. Figure 2 gives a summary of the skull segmentation process.

2.2 Skull Vault Description

In our particular application, we are interested in localizing the discriminative
features in the skull vaults between AIS patients and normal controls, thus local
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descriptors are preferred, which implies straightforward correspondences with
the spatial distribution of the skull vault.

Skull Vault Determination. The skull vault is normally measured in anthro-
pometry as the upper part of the skull determined by the plane passing through
the three well-defined anatomical landmarks: bilateral frontozygomatic synchon-
drosis and the most superior posterior point of the external auditory meatus, as
shown in Figure 4 (a). In order to be accurate, we identify the three landmarks
on the 2-D slices. In Figure 3 (a), we find the frontozygomatic synchondrosis
on the axial slice where the neighboring slices have significant morphological
changes pointed by the thick arrows. The most superior posterior point of the
external auditory meatus is determined as shown in Figure 3 (b). The separated
skull vault and the separating plane are reconstructed in Figure 4 (b).

Skull Vault Modeling. Given the edge map f(x) : 2 — R defined in 2 C R3,
the three-dimensional GVF field is defined as the vector field v(s) : 2 — R3
that minimizes the energy function

e= [oul Vv +1v [PV —vf?)ds, (1)

where p is the regularization parameter and f is the edge map determined using
the edges on the image convoluted with a Gaussian kernel. The GVF field can
be obtained by solving the Euler equations

pviv—(v-vhlv =0, (2)

where 172 is also applied to each component of the vector field v separately.

Distance-Based Feature Calculation. Using GVF, a smooth description of
the surface is obtained. A uniformly sampled sphere (see Figure 5 (a)) is gen-
erated for each reconstructed skull vault model m;(i = 1,---,]S]|), where S is

The most superior posterior point of the
external auditory meatus on 2-D sll(;ageww

Frontozygomatic
synchondrosis on 2-D slices

L -
L 8

Sagittal View Asial View Sagittal View Axial View

Fig. 3. Identification of the landmarks frontozygomatic synchondrosis, the most su-
perior posterior point of the external auditory meatus that determine the skull vault
demarcation plane. (a) Finding frontozygomatic synchondrosis. (b) Finding the most
superior posterior point of the external auditory meatus.
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Fig.4. Separation of the skull vault from the whole skull. (a) Positions of the three
landmarks on a real skull model indicated by the red points. (b) The skull vault deter-
mined by the separating plane passing through the three anatomical landmarks.

Anterior <= Posterior

Fig.5. Distance-based feature calculation. (a) The unit sphere centered at the skull
vault centroid. (b) The spherically uniform sample points on the skull vault surface.

the set containing all subjects, and N points are sampled on each sphere. The
center of sphere is translated to the centroid of m;, and the positive direction
along the y axis is rotated to the normal direction of the basal plane (or the
separating plane defined in Figure 4) of m;. Along each of these N directions,
a “ray” is emitted from the center and possibly intersects with m;. These in-
tersections are recorded as the candidate sample points for model m;. For each
skull vault model m;, we can find that the sample points are obtained in the
same way and inherently correspond to each other. In order to ensure equal
length of the resultant feature vectors, the directions that have no intersection
with the surface are tagged and the corresponding sample points are removed
for all subjects in S. Then the distances from the remaining sample points
(see Figure 5 (b)) to the centroid of m; are calculated as the features to de-
scribe the skull vault surface for subject m;. These features are translationally
invariant since they are all calculated relative to the centroid. And the rotational
invariance is guaranteed because the basal planes have been implicitly aligned.
In order for these features to be invariant to scaling, we normalize the feature
vector for each subject m; as x} = el
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3 Pathological Abnormality Discovery Using Statistical
Feature Selection

In order to select the discriminative features, we adopt a popular wrapper feature
selection method, the recursive feature elimination (RFE) for support vector
machine (SVM) proposed by Guyon et al. [16] to solve a cancer gene classification
problem. SVM-RFE performs feature selection by iteratively training an SVM
with the current set of features and removing the feature with the smallest
weight in the resulting hyperplane at a time. Ultimately, this algorithm results
in a ranking list of features. The number of dominating features is selected by
plotting a curve of the number of features against the accuracy, and choose the
number of features to be relatively small but corresponds to the highest accuracy.

4 Subjects and Results

Subjects. In the current study, the MRI data set are acquired from 10 AIS
patients between 12 and 18 years old and 10 age-matched healthy girls recruited
from the Scoliosis Clinic of Prince of Wales Hospital, Hong Kong. The MRI
scanner used is a 1.5T MR scanner (Sonata, Siemens, Munich, Germany). The
whole skull is scanned from left to right using 2-D acquisition and turbo spin-
echo T2-weighted sequence with TR=6500, TE=118 ms. The thickness is 3mm
without gap, and the field of view is 512 x 512.

Results. The effectiveness of the feature selection method is validated by the
quality of the selected feature subsets in the classification. Figure 6 (a) shows
the classification accuracies calculated as 1 minus the leave-one-out (LOO) errors
given different numbers of selected features. One can find that the SVM-RFE
selects a small feature subset which can classify AIS patients from normal con-
trols with the highest accuracy. The classification accuracy begins to drop when
too many features are added to the subset.

g 0 ' Posterior Anterior
1 -,

(a)

Fig.6. (a) The classification accuracies given different sizes of selected dominating
features. (b) The group difference in skull vaults between normal controls and AIS
patients mapped on the skull vault of a randomly selected normal control: top view.
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The detected group difference in the skull vaults between normal controls
and AIS patients are mapped on the skull vault of a randomly selected normal
subject, as displayed in Figure 6 (b). The colors correspond to the values of
difference: equal features for AIS and normal control are indicated by yellow;
red means normal controls are statistically larger with respect to that particular
feature; and blue means reversely. From the result, a direct observation is the
posterior region in AIS is comparatively smaller while the left part is larger.
Although it deserves further anatomical interpretations, this finding sheds light
on building quantitative evidence of the ossification abnormality in AIS patients.

5 Conclusion and Future Work

This paper presents a comprehensive framework of the statistical morphology
analysis for the detection of shape difference in the skull vaults between AIS pa-
tients and normal controls. To solve this particular problem, medical knowledge
is combined with a variety of engineering techniques in areas of image process-
ing, machine learning, and computer graphics. The preliminary detection result
on a relatively small sample size (10 subjects in each group) is inspiring and
encouraging. Based on these findings, it is promising to derive concrete evidence
of systematic imbalance in the bone formation mechanisms in the AIS group.
As a pilot study, there is a lot to be explored in the future. Firstly, we plan
to increase the number of subjects for more statistically reliable results. We
realize that to form a clear interpretation of the current result, related findings
and existing theories in other domains need to be considered. Meanwhile, the
Cobb’s angle of each subject, which quantifies the severity of scoliosis, can be
used as the weight in statistical learning. The above work is part of an ongoing
research project in the AIS Research Team using MR imaging of the whole
central nervous system, which includes the skull, brain, vertebral column and
spinal cord. We sought to investigate any disproportional growth between the
skeletal (skull and vertebral column) and neural system (brain and spinal cord)
and define the presence of neuro-osseous link in the etiopathogenesis of AIS.
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Abstract. Cortical surface reconstruction is important for functional brain map-
ping and morphometric analysis of the brain cortex. Several methods have been
developed for the faithful reconstruction of surface models which describe the
true cortical surface in both geometry and topology. However there has been no
explicit method for the quantitative evaluation of the whole-cortical-surface
models. In this study, we present a novel phantom-based evaluation method of
the cortical surface reconstruction algorithm and quantitatively validated the lo-
cal morphometric accuracy of CLASP which is one of the well-established re-
construction methods. The evaluation included local geometrical accuracy and
performance of cortical thickness measure. The validation study revealed that
there were some underestimations of cortical thickness measure using CLASP
in the ventral and sulcal areas of the cortex and overestimations in the gyral ar-
eas and inferior temporal lobe. This study could present a generic metric for the
quantitative evaluation of cortical surface reconstruction algorithm.

1 Introduction

The relationship between the cortical morphometry and the cytoarchitectonic and
functional organization of the underlying cortex is a subject of much current interest
and debate. Reconstructed cortices enable the visualization and the study of the sulcal
and gyral patterns of an individual subject [1] and allow morphometric measurements
such as cortical thickness [2]. To fulfill these needs, it is important to faithfully repre-
sent true cortical surface in terms of geometry. This task is difficult, because of arti-
facts such as image noise, partial volume effects, and intensity inhomogeneities [2].
Especially in tightly folded sulci, the exact boundaries of the cortex are hard to detect,
because opposing sulcal banks are closer than the magnetic resonance imaging (MRI)
resolution. This causes inaccuracies in surface extraction and subsequent morphomet-
ric measures such as cortical thickness.

For the evaluation of the cortical surface reconstruction, there have been various
methods such as a visual validation [3], a repeatability test of the procedure [4], and a
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landmark-based validation [5]. In visual validation, the intersections of the recon-
structed surface with the underlying MRI intensity data are inspected. Although this is
very intuitive and easy to perform, it cannot assess the whole cortical surface in objec-
tive and quantitative way. In repeatability test, it could answer whether the procedure
results in similar reconstructed surface models from different scans of the same sub-
ject. However, the accuracies of reconstructions could not be measured. In the land-
mark-based validation, experts select several landmark points or draw some landmark
areas on the MR brain volume image. Then the closest point from each landmark to
the corresponding surface is found and the distance between them computed. This
distance from each landmark to the estimated cortical surface serves as a measure of
accuracy. This is a quantitative validation approach. However, when experts select or
draw the landmarks, some biases could be induced. In addition, it is difficult to vali-
date the whole boundaries of cerebral cortex with this approach.

In this study, we present a novel method for the quantitative evaluation of the cor-
tical surface reconstruction algorithm using an MRI simulator generating a realistic
MRI incorporating the calculation of noise and partial volume effects. The evaluation
strategy provides “gold standard” with which to access the performance of cortical
surface reconstruction algorithms In previous studies, we developed a method called
CLASP [3], an enhanced version of the iterative-morphing method first developed by
MacDonald et al. and validated this method using a phantom-based approach. In this
paper, we validated CLASP with phantom-based approach focused on the local geo-
metric accuracy and the performance of cortical thickness measure.

2 Methods

In this phantom-based evaluation, an MRI simulator [6, 7] was used to create a “gold
standard” with which to access the performance of cortical surface reconstruction
algorithms directly. The accuracies of cortical geometries and thickness measures
were evaluated using phantom-based comparison detailed below. T1-weighted MR
images (n=12) with 1.0 mm x 1.0 mm x 1.0 mm resolution and 181 x 217 x 181
voxel dimensions were selected randomly from the datasets of the International Con-
sortium for Brain Mapping (ICBM) [8] for this evaluation.

2.1 Cortical Surface Reconstruction and Thickness Measure

In each brain, the white (i.e. GM/WM boundary) and pial (i.e. GM/CSF boundary)
surface was extracted by CLASP [3]. The CLASP algorithm consists of several stages
as follows:

Acquired T1 MR images are preprocessed by intensity inhomogeneity correcti on
[9] and spatial normalization to stereotaxic space [10]. Preprocessed images are clas-
sified into GM, WM, and CSF tissues [11]. The classified volumes are divided into
left and right hemispheres for reconstructing two hemispheric cortical surfaces. The
WM surface is reconstructed by deforming a spherical polygon model to the white
matter boundary. A Laplacian field is generated between the WM surface resampled
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to voxel space and a skeletonized CSF fraction image. The GM surface is initiated
from the WM surface and is expanded to the boundary between GM and CSF along
the Laplacian field. These stages are described in greater detail in the original paper
[3]. In order to measure the cortical thickness, several preprocessing algorithms were
required.

Fig. 1. Three metrics for cortical thickness measure: Tlink is the distance between correspond-
ing points. Tnear is the distance from a vertex on the outer surface to the nearest point on the
inner surface. Tnormal is the distance from a vertex on the outer surface to the nearest point on
the inner surface in the direction of the surface normal. The dot lines represent improper esti-
mations of thicknesses.

Given a surface representing the gray/CSF boundary and another representing the
gray/white boundary, the cortical thickness measure could be performed [2]. Among
various metrics for thickness measure, Tlink was used for the evaluation of thickness
measure, which means the distance from a vertex on the outer surface to the corre-
sponding vertex on the inner surface, as defined by the linkages used in the two-
surface deformation of the CLASP algorithm (Fig. 1).The Tlink measure attempts to
use the correspondence between points on the surface, which provides a measure of
thickness that is less sensitive to fluctuations in surface normal and areas of high
curvature. White and pial surfaces reconstructed by CLASP had the same vertex
number, and the correspondence of each vertex between surfaces was defined. Thus,
the cortical thickness was easily measured using the Tlink method [2]. Tnear is an-
other approach for thickness measure which indicates the distance from a vertex on
the outer surface to the nearest point on the inner surface (Fig. 1). We used Tnear
metric for the measure of geometric differences between two surfaces, because it
provides robust performance without the explicit correspondence of each vertex be-
tween two surfaces.

2.2 Phantom-Based Evaluation

We evaluated the cortical surface reconstruction method using a phantom-based pro-
cedure. Since there is no readily-available “gold standard” with which to assess the
performance of the surface extraction algorithm, we approached the problem with an
MRI simulator [6, 7]. This simulator generates a realistic MRI incorporating the cal-
culation of noise and partial volume effects. For the validation, the following steps
were performed:
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1) pial and white surfaces were first extracted from the real MRI volume (Fig. 2 (a)).
2) A digital phantom including four tissue types (GM, WM, CSF, and background) was
created from the surfaces. WM voxels were defined inside the white surface, and GM
voxels were inserted between the pial and white surfaces. To create partial volume ef-
fects, voxels on the pial surface were given probabilities of 70% for GM and 30% for
CSF. Voxels between the exterior brain mask and the pial surface were labeled as CSF.
All other voxels were labeled as background (Fig. 2 (b)). 3) A T1 MR image was simu-
lated from the phantom using the same parameters as the real data acquisition
(TR=18ms, TE=10ms, slice thickness=1mm) (Fig. 2 (c)). 4) Additional substructures
(skull, basal ganglia) were added from the real MRI (Fig. 2 (d)). 5) Pial and white sur-
faces were then extracted from the simulated MRI volume (Fig. 2 (e)). 6) Differences
between each surface obtained from real or simulated MRI were measured.

In this process, the surface extracted from the real data is regarded, by definition,
as “true”. The experiment was designed to assess how well the surface extraction
algorithm could re-capture the true surface by operating upon a simulated MRI vol-
ume derived from the true surface. CLASP was applied to the simulated MRI to gen-
erate a “test” surface. The root mean square (RMS) error between “true” and “test”
surfaces then provided a measure of accuracy in surface extraction. To measure RMS
error between the “true” and “test” surfaces, we calculated the distances using Tnear
metric which are detailed in the previous section [2]. To validate thickness measure,
we calculated the differences between “true” thicknesses and “test” thicknesses meas-
ured by Tlink. The validation of geometric accuracy and thickenss measure were
performed on regional areas as well as on whole brain. To measure the local errors,
we used non-rigid registration of 2-D cortical surfaces which is to find the corre-
sponding regions of the surface model between subjects. This 2-D registration method
is described in detail in next section.

Fig. 2. Process of the evaluation using phantom (a) created cortical surface (b) surface masked
volume (c) digital brain phantom (d) phantom including skull (e) recreated cortical surface
from phantom

2.3 Statistical Analysis

To find the thickness of corresponding regions of the surface model between the groups,
the thickness value was spatially normalized using surface based 2-D registration [12].
In the CLASP algorithm, since the cortical surfaces start from a spherical polygon
model, the vertices are easily transformed to the spherical model. Vertices of each sub-
ject are nonlinearly registered to an average template on the sphere by matching crowns
of gyri between subjects using a geodesic distance map [12]. Using the transformation,
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thickness information and local geometric errors on the vertices were transformed to a
template. Diffusion smoothing, which generalizes Gaussian kernel smoothing, with 20
mm FWHM (full-width half-maximum) was used to increase the signal-to-noise ratio of
the measured cortical thickness and local geometric accuracy [13]. We then calculated
mean difference between and error rate which is a difference value normalized by a
thickness of “true” surface.

3 Results

The global geometric errors of the extracted cortical surfaces were measured by calcu-
lating the mean RMS distance between “true” and “test” surfaces. Fig. 3 shows mean
RMS errors. The mean RMS errors was measured by Tnear (0.42 + 0.096 mm) and
Tnormal (2.73 + 0.94 mm) respectively (Fig. 3). The local geometric errors were
measured after finding correspondence between subjects. Fig. 4 shows maps of local
geometric accuracies which were measured by RMS distance. RMS distance was
measured by Tnear. Incorrect estimations were found in the ventral and sulcul areas
of the cortex.

Cortical thicknesses using Tlink were measured and evaluated. Global/local mean
differences between cortical thicknesses were measured from “true” and “test” sur-
faces respectively. Global mean difference of cortical thicknesses were measured on
the left hemisphere (-0.061+0.24 mm), the right hemisphere (-0.080+0.20 mm), and
the whole brain (-0.07+0.22 mm). Validation of local mean difference of the thickness
revealed some errors in the specific areas (Fig. 5). There were some overestimations
of cortical thickness measure from the “test” surface (i.e. the surface reconstructed
from MRI phantom) in the ventral area and sulcus of the cortex. Underestimations
were also found in the gyrus, occipital lobe, and inferior parts of temporal lobe. We
measured also error rate of the cortical thickness. These values are normalized mean
differences by the thicknesses of “true” surface. The overestimations of the cortical
thicknesses were up to about 10% in the cingulated gyrus and some sulcal parts of the
cortex. The underestimations of the cortical thicknesses were up to about 15% in the
gyrus, occipital lobe, and inferior parts of temporal lobe.
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Fig. 3. Geometric errors of cortical surfaces. It was measured by calculating RMS distance
between surfaces of “gold standard” and surfaces made from MR phantom images. Each col-
umn shows average RMS errors of cortical surfaces (pial/white surfaces of left/right hemi-
spheres) created from CLASP.
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Fig. 4. Local geometric accuracies which mean the RMS distances between “true” and “test”
surfaces. RMS distance was measured by Tnear. Incorrect estimations were found in the ven-
tral and sulcul areas of the cortex.
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SRR

(a) (b)

Fig. 5. (a) mean difference and (b) error rate between cortical thicknesses measured from “true”
and “test” surfaces respectively. Error rate is normalized mean difference by the thicknesses of
“true” surface. There were some overestimations of cortical thickness measure from the “test”
surface (i.e. the surface reconstructed from MRI phantom) in the ventral area and sulcus of the
cortex. The overestimations of the cortical thicknesses were up to about 10% in the cingulated
gyrus and some sulcal parts of the cortex. Underestimations were also found in the gyrus,
occipital lobe, and inferior parts of temporal lobe. The underestimations of the cortical thick-
nesses were up to about 15% in the gyrus, occipital lobe, and inferior parts of temporal lobe.

4 Discussion and Conclusions

Given the variety of cortical surface reconstruction methods, choosing an appropriate
algorithm for an existing or a new problem can be quite a challenging task. Therefore,
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an objective validation is necessary to provide the intrinsic characteristics of the
methods, evaluate their performances and limitations. Moreover, while developing a
new method, validation is essential in order to compare new and existing methods and
estimate of the optimal processing parameters. However, since MR imaging, like
many other medical modalities, is an in vivo study, validation becomes even more
challenging and its issues are often overlooked. In this study, we conducted a quanti-
tative validation of the performance of the cortical surface reconstruction tool using
an MRI simulator. The evaluation strategy presented in this paper using MR phantom
provides “gold standard” with which to access the performance of cortical surface
reconstruction algorithms. We performed simulation study in which “true” surfaces,
initially extracted from real MR images, were used to generate simulated MRI vol-
umes which were then analyzed by the cortical surface reconstruction tool to re-
capture the original surfaces. The ability of an algorithm to re-capture this “true”
surface from the simulated MRI volume, which now includes many confounding data
acquisition factors (noise, loss of contrast, partial volume effects, inhomogeneity,
etc.), could now be quantified. Although a simulator does not incorporate every aspect
of real data, this strategy provides quantitative lower-bound performance metrics with
which to assess algorithm performance.

In general, the pre-processing steps such as intensity inhomogeneity correction,
skull stripping, and tissue classification are essential to the cortical surface reconstruc-
tion. However, we were mainly interested in the performance of the final surface
reconstruction step out of whole reconstruction procedure including pre-processing.
Therefore, the evaluation was performed using the whole procedure.

Despite of many advantages, a limitation to this phantom-based approach is that
the MR phantom generated from any particular algorithm could be biased toward that
method. This bias would underestimate the errors measured from the phantom-based
validation. In order to overcome this limitation, it is possible that we could use an-
other algorithm to reconstruct the phantom surfaces and cross-validate between vari-
ous algorithms. The evaluation strategy presented in this paper using MR phantom
provides “gold standard” with which to access the performance of cortical surface
reconstruction algorithm and enables the evaluation of the specific performance
which is dependent on applications such as thickness measure, surface area, fractal
dimension and sulcal depth.
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Abstract. Tensor-based morphometry (TBM) is widely used in com-
putational anatomy as a means to understand shape variation between
structural brain images. A 3D nonlinear registration technique is typi-
cally used to align all brain images to a common neuroanatomical tem-
plate, and the deformation fields are analyzed statistically to identify
group differences in anatomy. However, the differences are usually com-
puted solely from the determinants of the Jacobian matrices that are
associated with the deformation fields computed by the registration pro-
cedure. Thus, much of the information contained within those matrices
gets thrown out in the process. Only the magnitude of the expansions
or contractions is examined, while the anisotropy and directional com-
ponents of the changes are ignored.

Here we remedy this problem by computing multivariate shape change
statistics using the strain matrices. As the latter do not form a vector
space, means and covariances are computed on the manifold of positive-
definite matrices to which they belong. We study the brain morphology
of 26 HIV/AIDS patients and 14 matched healthy control subjects using
our method.

The images are registered using a high-dimensional 3D fluid reg-
istration algorithm, which optimizes the Jensen-Rényi divergence, an
information-theoretic measure of image correspondence. The anisotropy
of the deformation is then computed. We apply a manifold version of
Hotelling’s T2 test to the strain matrices. Our results complement those
found from the determinants of the Jacobians alone and provide greater
power in detecting group differences in brain structure.
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1 Introduction

Accurate measurement of differences in brain anatomy is key to understanding
the effects of brain disorders, as well as changes associated with normal growth
or variation within a population. Statistical methods that make full use of the
available data can greatly improve the analysis of temporal changes within a sin-
gle subject, as well as inter-subject variations. Given the subtle and distributed
brain changes that occur with development and disease, improved statistical
analyses are needed that detect group differences or time-dependent changes in
brain structure with optimal power.

In tensor-based morphometry (TBM), a template T is matched to a study
S using non-linear registration, and the displacement vector w(r) is found such
that T'(r — u) corresponds with S(r). Here r denotes the voxel location. To
help estimate anatomical correspondences, features such as point, curve, and
surface landmarks present in both datasets can be used, or, more commonly,
intensity-based cost functions are used based on normalized cross-correlation,
mean square intensity difference, or mutual information. The Jacobian matrix
of the deformation field is defined (in 3D) by

0z — uy)/0x Oy — uy)/0z O(z — u,)/Ox
J =1 0(x—us)/0y Oy —uy) /0y O(z — u.) /Dy
O(r — uy)/0z O(y — uy)/0z O(z — u,)/0z

Its determinant, the Jacobian, is most commonly used to analyze the distortion
necessary to deform the images into agreement. A value detJ(r) > 1 implies
that the neighborhood adjacent to r in the study was stretched to match the
template (i.e., local volumetric expansion), while detJ(r) < 1 is associated with
local shrinkage. When many subjects’ images are aligned to the same standard
template or atlas, maps of the Jacobians can be computed in the atlas coordinate
system and group statistics can be computed at each voxel to identify localized
group differences in anatomical shape or size.

However, much of the information about the shape change is lost using this
measure. As a toy example of this problem, let us consider a pixel for which the
eigenvalues of the Jacobian are A1 23 = {1,2,0.5}. In such a case, the value of
the Jacobian would be 1. Thus, though the eigenvalues clearly indicate direc-
tional shrinkage and growth, these changes would be left undetected, if only the
Jacobian were analyzed.

In this work, we resolve this issue by making use of the strain matrices for
the analysis, which are defined as (J7.J)/2. In particular, we apply Hotelling’s
T? test to obtain statistics for the deformation.

However, the problem is complicated by the fact that for smooth transfor-
mations, the strain matrices are constrained to the space of positive definite
matrices. The latter form a cone in the space of matrices, which is itself a vector
space. Thus, the strain matrices do not form a vector space, and a manifold
version of the statistics is needed.

Several research groups have worked on the statistics of positive definite sym-
metric matrices. The first person to investigate this problem was Fréchet[1], who
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defined the mean S on a manifold as the point that leads to a minimum value
for the sum of squared geodesic distances between S and all the other points.
(S) yields the usual value for the mean in Euclidean space, but is not necessar-
ily unique on other manifolds. Thus, the local value of the mean is generally used
instead [2], [3]. To facilitate computations, Pennec et al. [4], [5] and Fletcher and
Joshi [6] independently proposed the use of the affine-invariant metric on the space
of symmetric, positive-definite tensors. Pennec then proceeded to use the latter
to define normal distributions on these matrices, as well as the Mahalanobis dis-
tance and x? law. Fletcher and Joshi [6], [7] used the metric to create the principal
geodesic analysis, which is an extension of principal component analysis to mani-
folds. The application of these techniques to calculate means of Jacobian matrices
was first suggested by Woods [8]. In [9], statistics on strain tensors were used to
determine the a weight factor for the regularizer in non-rigid registration. Fur-
thermore, the Mahalanobis distance of these tensors was used as an elastic energy
for the regularizer in [10]. However, to our knowledge this is the first time the full
matrices are used in the context of tensor-based morphometry.

Once a metric is defined, the manifold-valued elements are projected into the
tangent plane at the origin using the inverse of the exponential map, and the
computations are done in this common space. Recently, Arsigny et al. [11], con-
sidered a new family of metrics, the 'Log-Euclidean metrics’. The latter facilitate
computations, as they are chosen such that the transformed values form a vec-
tor space, and thus statistical parameters can be easily computed using standard
formulae for Euclidean spaces. For two points S; and S on the manifold, these
metrics are of the form

d(S1,52) = ||log S1 — log S,
where ||.|| denotes a norm. Following [11], in this work we will use,
d(S1, S2) = (Trace(log Sy — log S5)2)Y/2. (1)

In this paper, we use a set of brain MRI scans from HIV/AIDS patients
and matched healthy control subjects to illustrate our method. We use a fluid
registration algorithm [12] to compute displacement fields and thus obtain strain
matrices. All our statistics are computed within the Log-Euclidean framework.
A pixelwise Hotelling T2 test is used as a measure of variation between patients
and controls. To assess the difference between our results and the ones found
from the determinant of the Jacobian, these results are compared to the one-
dimensional Student’s t test on the determinant of the Jacobian matrices. The
goal of the work was to find out whether multivariate statistics on the strain
tensor afforded additional power in detecting anatomical differences between
patients and controls.

The usual measure of anisotropy for tensor-valued data is the fractional
anisotropy (used widely in diffusion tensor imaging) but this measure is not
valid on positive definite symmetric manifolds, as it relies on a Euclidean mea-
sure for the distance. Thus, in [13], the authors propose a new measure which
depends instead solely on distances computed on the manifold. They define the
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geodesic anisotropy as the shortest geodesic distance between the tensor and the
closest isotropic tensor within the affine-invariant metric framework. Similarly,
in the Log-Euclidean metric, we can define a geodesic anisotropy GA as:

GA(S) = (Trace(log S — ((log S) I)?)*/2,  with (log S) = Trace(log S)/3. (2)

2 Method

Twenty-six HIV/AIDS patients (age: 47.2 & 9.8 years; 25M/1F; CD4T T-cell
count: 299.5 £ 175.7 per ul; log;, viral load: 2.57 & 1.28 RNA copies per ml of
blood plasma) and 14 HIV-seronegative controls (age: 37.6 = 12.2 years; 8M/6F)
underwent 3D T1-weighted MRI scanning; subjects and scans were the same as
those analyzed in the cortical thickness study by Thompson et al. [14], where
more detailed neuropsychiatric data from the subjects is presented. All patients
met Center for Disease Control criteria for AIDS, stage C and/or 3 (Center for
Disease Control and Prevention, 1992), and none had HIV-associated dementia.
Health care providers in Allegheny County, PA, served as a sentinel network for
recruitment. All AIDS patients were eligible to participate, but those with a his-
tory of recent traumatic brain injury, CNS opportunistic infections, lymphoma,
or stroke were excluded.

All patients underwent a detailed neurobehavioral assessment within the 4
weeks before their MRI scan, involving a neurological examination, psychosocial
interview, and neuropsychological testing, and were designated as having no,
mild, or moderate (coded as 0, 1, and 2 respectively) neuropsychological impair-
ment based on a factor analysis of a broad inventory of motor and cognitive tests
performed by a neuropsychologist [14].

All subjects received 3D spoiled gradient recovery (SPGR) anatomical brain
MRI scans (256x256x124 matrix, TR = 25 ms, TE = 5ms; 24-cm field of view; 1.5-
mm slices, zero gap; flip angle = 40°) as part of a comprehensive neurobehavioral
evaluation. The MRI brain scan of each subject was co-registered with scaling (9-
parameter transformation) to the ICBMb53 average brain template, after removal
of extracerebral tissues (e.g., scalp, meninges, brainstem and cerebellum).

The images were non-linearly registered using a fluid registration algorithm [12],
based on a convolution filter developed by Bro-Nielsen and Gramkow [15], [16] to
increase the speed of the registration. As a cost function, we chose to maximize a
modified version of the Jensen-Rényi Divergence (JRD). A more detailed descrip-
tion of our registration method can be found in [17]. To save computation time
and memory requirements, the source and the target images were filtered with a
Hann-windowed sinc kernel, and isotropically downsampled by a factor of 2. As in
other TBM studies [18] [19], we preferred registration to a typical control image
rather than a multi-subject average intensity atlas as it had sharper features. The
resulting deformation field was trilinearly interpolated to drive the source image
towards the target at the original resolution to obtain the warped image.

The geodesic anisotropy GA was found at each voxel using eq.2; tanh(GA) is
displayed in Fig.1 a) and b). The hyperbolic tangent of the geodesic anisotropy
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was used rather than GA itself, as it takes values in the interval [0, 1], while those
of GA span the interval [0, 00) (see [13]). We notice widespread directionality in
the strain matrices, which strengthens the idea that valuable information may
be found from the non-uniform components of the changes.

In order to apply Hotelling’s T2 test, we need to compute the mean and
covariance matrices of the tensor-valued data. Thus, here we provide a brief
summary of the method to find those quantities.

In R”, the mean S of a set of n-dimensional vectors S;,i = 1,...,m is the
point that minimizes the summed squared distance d to all the S;. For data on
a manifold A, d becomes the geodesic distance, so S is given by [1]:

S = argming,, 2™, d(S, S;)?. (3)

In the log-Euclidean framework, computations are simplified by transforming
the space of symmetric, positive-definite matrices into a vector space on the tangent
plane, and then transforming it back to the manifold using the exponential map
once the mean is taken. Thus, the formula for the mean is easily shown to be [11]:

1
S = exp (MEZ”L log Sl) (4)

Arsigny et al. demonstate that the covariance is

Couv(S) = /Q(log(S(w)) —log(S(w))) @ (log(S(w)) — log(S(w)))dP