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Preface

This volume collects the papers accepted for presentation at the Eight Interna-
tional Conference on “Advanced Concepts for Intelligent Vision Systems” (Acivs
2006). The ACIVS conference was established in 1999 in Baden-Baden (Ger-
many) as part of a large multiconference. ACIVS has maintained the tradition of
being a single track event with oral presentations 25 minutes each, even though
the number of participants has been steadily growing every year. The conference
currently attracts computer scientists from more than 20 countries, mostly from
Europe, Australia and Japan, but also from the USA, Asia and the Middle-East.

Though ACIVS is a conference on all areas of image processing, one of its
major domains is image and video compression. A third of the selected papers
dealt with compression, motion estimation, moving object detection and other
video applications. This year, topics related to clustering, pattern recognition
and biometrics constituted another third of the conference. The last third was
more related to the fundamentals of image processing, namely noise reduction,
filtering, restoration and image segmentation. We would like to thank the invited
speakers Kathrin Berkner (Ricoh Innovations), Nikos Paragios (Ecole Centrale
de Paris) and Dimitri Van de Ville (Ecole Polytechnique Federale de Lausanne)
for enhancing the technical program with their presentations.

A conference like ACIVS would not be feasible without the concerted effort
of many people and support of various institutions. The paper submission and
review procedure was carried out electronically and a minimum of 3 review-
ers were assigned to every paper. From 242 submissions, 45 were selected for
oral presentation and 81 as posters. A large and energetic Program Committee,
helped by additionnal referees – listed on the following pages – completed the
long and demanding reviewing process. We would like to thank all of them for
their timely and high-quality reviews. Also, we would like to thank our sponsors,
Philips Research, Barco, Eurasip, the IEEE Benelux Signal Processing Chapter
and the Flemish FWO Research Community on Image Processing Systems, for
their valuable support.

Last but not least, we would like to thank all the participants who trusted
us in organizing this event for the seventh time. We hope they attended a stim-
ulating scientific event and enjoyed the atmosphere of the ACIVS social events
in the historic city of Antwerp.

July 2006 J. Blanc-Talon, D. Popescu, W. Philips and P. Scheunders



Organization

Acivs 2006 was organized by the University of Antwerp and Ghent University.

Steering Committee

Jacques Blanc-Talon (DGA/D4S/MRIS, Arcueil, France)
Wilfried Philips (Ghent University, Ghent, Belgium)
Dan Popescu (CSIRO, Sydney, Australia)
Paul Scheunders (University of Antwerp, Wilrijk, Belgium)

Organizing Committee

Wilfried Philips (Ghent University, Ghent, Belgium)
Paul Scheunders (University of Antwerp, Wilrijk, Belgium)

Sponsors

Acivs 2006 was sponsored by the following organizations:

– Faculty of Engineering Sciences, Ghent University
– Philips Research
– The IEEE Benelux Signal Processing Chapter
– Eurasip
– Barco
– DSP Valley
– The FWO Research Community on Audiovisual Systems (AVS)

The Acivs 2006 organizers are especially grateful to Philips Research for their
financial sponsorship. They are also grateful to the FWO Research Community
on Audiovisual Systems for sponsoring some of the invited speakers and to Barco
for providing a small present for the participants.

Program Committee

Fritz Albregtsen (University of Oslo, Oslo, Norway)
Attila Baskurt (INSA Lyon, Villeurbanne, France)
Laure Blanc-Feraud (CNRS, Sophia-Antipolis, France)
Philippe Bolon (University of Savoie, Annecy, France)
Nikolaos Bourbakis (Wright State University, Dayton, USA)



VIII Organization

Salah Bourennane (EGIM, Marseille, France)
Patrick Bouthemy (IRISA/INRIA, Rennes, France)
Jocelyn Chanussot (INPG, Grenoble, France)
David Clausi (University of Waterloo, Waterloo, Canada)
Pamela Cosman (University of California at San Diego, La Jolla, USA)
Jennifer Davidson (Iowa State University, Ames, USA)
Ricardo de Queiroz (Universidade de Brasilia, Brasilia, Brazil)
Christine Fernandez-Maloigne (Université de Poitiers, Chasseneuil, France)
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Abstract. When the reconstructed image of the base layer is up-sampled for 
decoding the enhancement layer of spatial scalability, direction information 
derived during decoding the spatially lower layer is used. That is direction 
information used for Intra prediction which is used for up-sampling again. In 
most cases, it shows 0.1-0.5dB quality improvement in images up-sampled 
by using directional filtering compared to those up-sampled conventionally. 
The same interpolation algorithm should be used in both the encoder and  
decoder.  

1   Introduction 

In a SVC, up-sampling of video sequences is an important process for spatial scal-
ability. In order to re-use the lower layer information, the base layer images should 
be up-sampled to the size of the higher layer images. The rate-distortion perform-
ance of spatial scalable video coding directly depends on the up-sampling methods 
used in the encoder and decoder. Currently for inter blocks and intra blocks, 2-tap 
filter and 6-tap filter are used, respectively. These filters achieve up-sampling by 
interpolating pixels horizontally and vertically. By using this method, horizontal 
and vertical high frequency is well preserved. However, this method is not effi-
cient because characteristics of blocks are different. Intra prediction in H.264 uses 
the minimum SAE (Sum of Absolute Error) method out of the 9 prediction modes. 
Through prediction we can see that this mode shows  direction characteristics of 
blocks. This paper proposes to use directional filtering according to direction in-
formation used Intra prediction in the baser layer. It includes directional filtering 
method for any direction out of 8 directions of intra prediction. Section 2 describes 
Characteristics of up-sampling in JVT (Joint Video Team) / SVC (Scalable Video 
Coding).[6] Section 3 describes why directional up-sampling is needed. Section 4 
proposes directional up-sampling method. It is followed by Section 5 which de-
scribes experiments for performance analysis of directional filter. Section 6 con-
cludes this paper.  
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2   Characteristics of Up-Sampling Filter in JSVM 

To generate a multi-resolution input for scalable video coding, the down-sampling of 
(1) is used in [6]. For the reuse of the lower layer at the higher layer, up-sampling 
filter of (2) is used in [6].  

[2,0, 4, 3,5,19,26,19,5, 3, 4,0,2]

64downH
− − − −=  (1) 

[1, 5,20,20, 5,1]

32upH
− −=     (2) 

Fig.1 shows characteristics of the 6-tap filter compared to the ideal LPF. Area A 
shows loss of energy while area B shows imperfect cut-off. These two areas result in 
distortion in up-sampling. 

Fig.2.(a) shows the 2D response of a ideal LPF. It can be seen that the high fre-
quency is removed and the low frequency is left. Fig.2.(b)  and fig.2.(c)  shows the 
frequency response of a 6-tap filter, where due to area A and  B, high frequency is left 
 

 

Fig. 1. Characteristics of a 6-tap filter and a ideal LPF 

 
(a)            (b)        (c)  

Fig. 2. (a) Frequency response of a ideal LPF, (b) and (c) frequency response of a 6-tap filter 
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and low frequency is removed, distortion occurs. It can be seen the most distortion 
occurs where area A and B is applied horizontal and vertically. We propose the use of 
directional filter to reduce the distortion . 

3   Necessity of Directional Upsampling 

Fig.3. (a)~(c) shows vertical(90°), horizontal(0°), diagonal(45°) features and 2D fre-
quency response. Fig.3.(a)~(c) show concentrated distribution horizontally, vertically 
and diagnally respectively. 

  
(a)   (b)   (c) 

Fig. 3. (a) vertical(90°) features and 2D frequency response, (b) horizontal(0°) features and 2D 
frequency response, (c) diagonal(45°) features and 2D frequency response 

 
(a) (b)  

Fig. 4. (a) Conventional filter (b) Proposed directional filter 
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(a)      (b) 
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Fig. 5. (a) Example of diagonal image (b) DCT representation of  diagonal image 
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Fig. 6. DCT representation of blocks with directional information 
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Fig.4.(a) shows the example when the features of a image are like fig.3.(c) and a 
conventional up-sampled filter is used. The black area in fig.4 represents the distorted 
area when a 6-tap filter is used and A and B show the extreme areas. In the conven-
tional up-sampling filter, much low frequency is distorted in area. This case the direc-
tional filter is used to up-sample and we can avoid area A and B .fig.4.(b) shows that 
this has less distortion. 

Fig.5.(a) show a -45° feature image and fig.7.(b) is its DCT representation. Normally, 
the distribution is near the DC component, but high AC components can be seen 

Fig.6 shows in the DCT domain of which contains blocks with directional information 
and the other without it. Fig.6.(a) show block A in intra prediction mode 2 which shows 
DC characteristics and block B is intra prediction mode 8 with 22.5° characteristics. 
Fig.6 (b) represents the DCT coefficient distribution of block B and Fig.6.(c) shows 
DCT coefficient distribution of block B. The DCT coefficients of block A show con-
centration near the DC while Block B shows it is distributed towards it directional 
characteristics at AC. 

4   Method of Directional Upsampling 

Currently, the low pass filter shown in fig.7.(a) and fig.7.(b) is used for vertical 
and horizontal 1:2 interpolation of the whole  picture. We  propose  a  diagonal  1:2  

 

(a) 90  interpolation                   (b) 0  interpolation 

(c) First 45  interpolation               (d) Second 45  interpolation 

Fig. 7. Directional Interpolation (gray: non-zero sample, white : zero-pad) 
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32/))55cos(2)33cos(10)cos(4032(),(1 yxyxyxyxdH ωωωωωωωω +++−++=  

(a) 

 
30/))2cos(10cos4030(),(2 yxyyxdH ωωωω +−+=  

(b) 

        

),(),(),( 21 yxdyxdyxd HHH ωωωωωω =  

(c) 

Fig. 8. (a) and (b) each represent the fourier transform and frequency response of the first 
and second 45° interpolation. Fig.9.(c) is the sequential application of these filters repre-
sented in fourier transform and frequency response of the directional up-sampling. It can be 
seen in fig.9.(c) that this filter has a -45° characteristic and can be applied to intra predic-
tion mode 3.  
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(a) 

 

(b) 

Fig. 9. Our proposed method to reduce bad effect of unsuitable directional filtering is used only 
when a diagonal characteristic is larger than the other directional characteristics  

Table 1. Combination of directional interpolation for 8 direction modes 

Modes 0, 1 3 4 5 6 7 8 
Angles 90 o, 

0 o 
45 o -45 o -67.5 o -22.5o 67.5o 22.5o 

1st   

interpolation 
0 o 45 o -45 o -45 o -45 o 45 o 45 o 

2nd  

interpolation 
90 o 45 o -45 o 90 o 0 o 90 o 0 o 

interpolation by using the low pass filter as shown in fig.7.(c) and fig.7.(d).  Be-
fore applying the directional filter, the use must be determined by the features of 
the block and the intra prediction mode. By combining three interpolation direc-
tions such as vertical(90o), horizontal(0o), and diagonal(45o) interpolation, we 
could interpolate in any direction. 

For example, 45o and -45o interpolation are used for mode 3(45o ) while 45o 
and 90o interpolation is used for mode 7(67.5o ). Table.1 shows a choice of direc-
tional interpolation for 8 different directions. 

Interpolation would have a bad effect by unsuitable directional filtering cause of the 
fact that Intra prediction mode does not show the directional characteristics of block. 
There are 16 4X4 blocks in a macroblock. When the directions of the blocks differ, the 
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bad effects increase.  In order to reduce computational complexity and bad effects, a 
direction for each macroblock is determined from 16  blocks. 

4.1   Ratio of Macroblocks with Respect to Directions 

Fig.10 shows the ratio of macroblocks with respect to directions of the bitrate of an 
image. It can be seen that the Ratio of macroblocks with respect to direction changes 
with no special characteristic respecting to bitrate. In all images, ratio of macroblocks 
with vertical or horizontal direction is less than 50%. They are interpolated by using 
conventional vertical and horizontal 1:2 interpolation filtering. The other macroblocks 
are interpolated by using the proposed directional 1:2 interpolation filtering.  

 

 
Fig. 10. Ratio of macroblocks with respect to directions 

4.2   Subjective Improvement and Objective Improvement 

Fig.11 shows a region where directional interpolation improves subjective quality sub-
stantially. In this case 22.5o interpolation is applied. Block B is area A upsampled with 
the existing filter and block C is area A upsampled with a 22.5 degree directional filter. 
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By comparing area D of block B and area E of block C, it can be seen that the edges of 
area E at a 22.5 direction is more active. The PSNR of block C is 31.7dB, which is 0.4dB 
higher than the 31.3dB of block B. 

Fig. 12 shows the R-D curves of the proposed method and current method.  The pro-
posed interpolation has a higher PSNR at about 0.1dB~0.5dB. The higher PSNR of the 
decoded image, the more effectivity of proposed method. This is caused by the fact that 
intra prediction mode show the directionality of image signal at high quality. In the case 
of high bitrate encoded bitstream, the quality of decoded image is increased up to 0.5dB. 

Fig. 11. D : interpolated by conventional filtering, E : interpolated by proposed directional 
filtering 
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Fig. 12. R-D curves of Proposed method and current method 
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5   Conclusions 

This paper suggests using direction information of intra prediction again in up-
sampling for spatial scalable coding. This paper, also, provides directional interpo-
lation by introducing a method to apply the current low pass filter used in vertical 
and horizontal 1:2 interpolation to diagonal 1:2 interpolation. The same up-
sampling procedure should be applied to both encoding and decoding. Experiments 
show that more than 50% macroblocks are so inclined that the proposed directional 
interpolation could be performed. No syntax change is required, but only a change 
in up-sampling process is required. Logical complexity is increased since interpo-
lation is performed macroblock by macroblock while currently it is performed on 
the whole picture. The computation amount, however, remains almost the same 
because the computation amount per pixel is the same as the current. Up-sampled 
images by using bad effect excluded proposed directional filter are better by 0.1-
0.5dB in PSNR, which results in quality improvement of decoded images.  
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Abstract. This paper focuses on fuzzy image denoising techniques. In
particular, we investigate the usage of fuzzy set theory in the domain
of image enhancement using wavelet thresholding. We propose a simple
but efficient new fuzzy wavelet shrinkage method, which can be seen as
a fuzzy variant of a recently published probabilistic shrinkage method
[1] for reducing adaptive Gaussian noise from digital greyscale images.
Experimental results show that the proposed method can efficiently and
rapidly remove additive Gaussian noise from digital greyscale images.
Numerical and visual observations show that the performance of the
proposed method outperforms current fuzzy non-wavelet methods and is
comparable with some recent but more complex wavelets methods. We
also illustrate the main differences between this version and the proba-
bilistic version and show the main improvements in comparison to it.

1 Introduction

In general, image denoising imposes a compromise between noise reduction on
the one hand and preserving significant image details on the other hand. To
achieve a good performance, a noise reduction algorithm should adapt itself
to the spatial context. The wavelet transform [2] significantly facilitates the
construction of such spatially adaptive algorithms, due to its energy compaction
property: it compresses the essential information into a few large coefficients
which represent the image details along several resolution scales.

Typical wavelet based denoising methods consist of three steps: (i) compute
the discrete wavelet transform (DWT) or a non-decimated wavelet transform,
(ii) remove noise from the wavelet coefficients and (iii) reconstruct the enhanced
image by using the inverse wavelet transformation. Due to the linearity of the
wavelet transform, additive noise in the image domain remains additive in the
transform domain as well. If ws,d(i, j) and ys,d(i, j) denote the noisy, respectively
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the noise-free wavelet coefficients of scale s and orientation d then we can model
the additive noise in the transform domain as:

ws,d(i, j) = ys,d(i, j) + ns,d(i, j) (1)

where ns,d(i, j) is the corresponding noise component. In this paper we restrict
ourselves to additive Gaussian noise.

The second step in the wavelet denoising procedure usually consists of shrink-
ing the wavelet coefficients: the coefficients that contain primarily noise should
be reduced to negligable values, while the ones containing a significant noise
free component should be reduced less. A common shrinkage approach is the
application of simple thresholding nonlinearities to the empirical wavelet coeffi-
cients [3,4,5]: if the coefficient’s magnitude is below the threshold T it is reduced
to zero, otherwise it is kept or modified. Shrinkage estimators can also result
from a Bayesian approach, in which a prior distribution of the noise-free data
(e.g., Laplacian [6], generalized Gaussian [7,8,9], Gaussian Scale Mixture [10])
is integrated in the denoising scheme. The simplest Bayesian methods assume
statistically independent data and rely on marginal statistics only [7,8,11,12].

However, algorithms that exploit the different kinds of dependencies between
the wavelet coefficients can result in better denoising performance, compared
with the ones derived using an independence assumption. The wavelet coef-
ficients are statistically dependent mainly due to two properties of the wavelet
transform of natural images: (1) large coefficients will propagate across the scales
(interscale dependencies), and (2) if a coefficient is large/small, some of the neigh-
bouring coefficients are also likely to be large/small (intrascale dependencies).

Recently, non-Gaussian bivariate distributions capturing the interscale depen-
dency were proposed[13], and corresponding nonlinear shrinking functions were
derived from these distributions using Bayesian estimation theory. Interscale de-
pendencies among the wavelet coefficients are also often modelled with Hidden
Markov Trees (HMT)[14,15]. Related methods [9,16,17] use Markov Random
Field (MRF) models for capturing intrascale (spatial) dependencies among the
wavelet coefficients. It has been proved useful to combine the first order statis-
tical properties of the coefficient magnitudes and their evolution across scales
within a joint statistical distribution model [9].

Many other techniques combine inter- and intrascale dependencies. For exam-
ple, denoising methods based on Gaussian Scale Mixture models, often employ
the neighbouring coefficients on the same and adjacent scales [10]. Locally adap-
tive window-based methods [1,18] are highly performant despite their simplicity.
Local contextual HMT models have been developed, which capture both inter-
scale and intrascale information[19,20].

If a certain wavelet coefficient and its neighbouring coefficients are small
enough we know that this coefficient is noisy for almost sure and should be
put equal to zero. Coefficients above a certain threshold contain the most im-
portant image structures and should not be reduced, but coefficients with values
around the threshold contain both noise and signals of interest. A good thresh-
old is generally chosen so that most coefficients below the threshold are noise
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and values above the threshold are signals of interest. In such situation it can
be advantageous to use fuzzy set theory as kind of soft-threshold method. Fuzzy
set theory is a mathematical extension of the binary set theory.

Fuzzy set theory and fuzzy logic [21] offer us powerful tools to represent and
process human knowledge represented as fuzzy if-then rules. Fuzzy image pro-
cessing [22] has three main stages: (i) image fuzzification, (ii) modification of
membership values and (iii) image defuzzification. The fuzzification and defuzzi-
fication steps are due to the fact that we do not yet possess fuzzy hardware.
Therefore, the coding of image data (fuzzification) and decoding of the results
(defuzzification) are steps that make it possible to process images with fuzzy
techniques. The main power of fuzzy image processing lies in the second step
(modification of membership values). After the image data is transformed from
input plane to the membership plane (fuzzification), appropriate fuzzy tech-
niques modify the membership values. This can be a fuzzy clustering, a fuzzy
rule-based approach, a fuzzy integration approach, etc.

The main advantages of the new method are: (i) the complexity of the method
is much lower than the probabilistic one [1] (which results in a lower execution
time), (ii) we do not lose any noise reduction performance and (iii) by adding
new fuzzy rules it should be easily extendable to incorporate other information
as well (e.g. interscale or interband information), to further improve the noise
reduction performance (future work).

The paper is structured as follows: In section 2 we discuss the proposed fuzzy
shrinkage method. Experimental results are presented in section 3 and section 4
concludes the paper.

2 Fuzzy Shrinkage Method

We develop a novel fuzzy wavelet shrinkage method, which is a fuzzy-logic variant
of the recent ProbShrink method of [1]. The method of [1] defines for each coeffi-
cient ws,d(i, j) two hypotheses: H1: signal of interest present (|ys,d(i, j)| > σ) and
H0: signal of interest absent (|ys,d(i, j)| ≤ σ). The method was named ProbShrink
because it shrinks each coefficient according to probability that the coefficient
presents a signal of interest given its value ws,d(i, j) and given a local spa-
tial activity indicator xs,d(i, j) as follows: ŷs,d(i, j) = P (H1|ws,d(i, j), xs,d(i, j))
ws,d(i, j). The local spatial activity indicator was defined as the average mag-
nitude of the surrounding wavelet coefficients within a local window. In our
notation, this is:

xs,d(i, j) =

( K∑
k=−K

K∑
k=−K

|ws,d(i + k, j + l)|
)
− |ws,d(i, j)|

(2K + 1)2 − 1
(2)

The method of [1] proceeds by estimating the conditional probability density
functions of ws,d(i, j) and xs,d(i, j) given H1 and given H0 and by using the
corresponding likelihood ratios: ξ(ws,d(i, j)) = p(ws,d(i, j)|H1)/p(ws,d(i, j)|H0)
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and η(xs,d(i, j)) = p(xs,d(i, j)|H1)/p(xs,d(i, j)|H0) and by expressing the shrink-
age factor as ŷs,d(i, j) = γs,d(i, j)/(1 + γs,d(i, j))ws,d(i, j), where γs,d(i, j) =
ρξ(ws,d(i, j))η(xs,d(i, j)) is the generalized likelihood ratio with
ρ = P (H1)/P (H0).

In this paper, we put the main idea of [1] into a fuzzy logic framework and
develop a novel FuzzyShrink method. Namely, we also express the shrinkage
factor for the wavelet coefficient ws,d(i, j) as a function of ws,d(i, j) and xs,d(i, j),
but instead of estimating the likelihood ratios for these measurements, we impose
on them fuzzy membership functions. Our shrinkage factor will also express how
likely it is that a coefficient is a signal of interest, but we shall accomplish this
by using the appropriate fuzzy norms and co-norms as opposed to the Bayesian
formalism and probabilities.

2.1 Defining Membership Functions and a Fuzzy Rule

Our reasoning in defining the fuzzy shrinkage rule is the following. If both the
neighbourhood around a given position (i, j) and the wavelet coefficient at this
position itself (ws,d(i, j)) contain mainly large (small) coefficients then we have
enough indication that we have a signal of interest (noise). If the wavelet coef-
ficient ws,d(i, j) is small but the neighbourhood around a given position (i, j)
contains of mainly large coefficients then it is wise to give more importance to
the neighbourhood instead wavelet coefficient ws,d(i, j) itself to judge if the value
is a signal of interest or not. Otherwise we would give more importance to one
single value (that does not correspond to the neighbourhood), which of course
is less robust. In this situation (i.e. a small ws,d(i, j) but a large neighbourhood)
we should conclude that the position (i, j) is a signal of interest, in spite of the
fact that the coefficient is probably lower than the given threshold. This leads
us to the Fuzzy Rule 1 introduced below, where the variable xs,d(i, j) represents
the average of the wavelet coefficients in the (2K + 1) × (2K + 1) neighbour-
hood around a given position (i, j). This variable indicates if the corresponding
neighbourhood contains mainly large or small wavelet coefficients.

Fuzzy Rule 1. The definition of the membership degrees in the fuzzy set signal
of interest of the wavelet coefficient ws,d(i, j) with scale s and orientation d:

IF
(
|xs,d(i, j)| is a large variable AND |ws,d(i, j)| is a large coefficient

)
OR |xs,d(i, j)| is a large variable

THEN ws,d(i, j) is a signal of interest

Fuzzy rules are linguistic IF-THEN constructions that have the general form “IF
A THEN B”, where A and B are (collections of) propositions containing lin-
guistic variables. A is called the premise or antecedent and B is the consequence
of the rule. In Fuzzy Rule 1 we can distinguish two linguistic variables for the
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consequent: (i) large wavelet coefficients |ws,d(i, j)| and (ii) large neighbourhood
values |xs,d(i, j)|. Both linguistic terms are modelled as fuzzy sets. A fuzzy set C
[23] in a universe U is characterized by a U− [0, 1] mapping μC , which associates
with every element u in U a degree of membership μC(u) of u in the fuzzy set
C. In the following, we will denote the degree of membership by C(u).

The membership functions that are used to represent the two fuzzy sets of (i)
large wavelet coefficient |ws,d(i, j)| and (ii) large neighbourhood value |xs,d(i, j)|,
are denoted as μw and μx, respectively. We use triangular membership functions
shown in Fig. 1 (a) and (b).

From these figures we see that our method depends on three parameters. As
in many image processing methods it is important that each filtering method is
adapted to the noise situation (noise level). Therefore we have related all these
parameters to the standard deviation of the noise. Good choices for the param-
eters are: T1 = σ, T2 = 2σ and T3 = 2.9σ− 2.625, with σ the standard deviation
of the noise, which is estimated with the median estimator proposed by Donoho
and Johnstone [25]. Those threshold values were obtained experimentally by
optimising their performance on several test images with several noise levels.

The membership functions for the two fuzzy sets that are shown in Fig. 1
function as a kind of lookup-tables for the likelihood ratios of the probabilistic
versions [1].

T2

1

0

Membership degree

T1

� 2�
,

( , )
s d

x i j

LARGE VARIABLES

T3

1

0

Membership degree

2.9 2.625� �

,
( , )

s d
w i j

LARGE COEFFICIENT

(a) (b)

Fig. 1. (a) The membership function LARGE COEFFICIENT denoted as μw for the
fuzzy set large coefficient and (b) The membership function LARGE VARIABLE
denoted as μx for the fuzzy set large variable

In Fuzzy Rule 1 we can observe an intersection and a union of two fuzzy
sets. The intersection A ∩ B of two fuzzy sets A and B is generally specified
by a binary mapping D leading to: (A ∩ B)(y) = D(A(y), B(y)). The union
A ∪ B of two fuzzy sets A and B is specified by a binary mapping S leading
to: (A ∪ B)(y) = S(A(y), B(y)).In fuzzy logic, triangular norms (roughly the
equivalent of AND operations) and triangular co-norms (roughly the equivalent
of OR operations) are used to represent the intersection and the union of two
fuzzy sets, respectively. Some well-known triangular norms together with their
dual triangular co-norm are shown in Table 1.
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Table 1. Some well-known triangular norms (T -norms) and triangular conorms (T -
conorms)

T -norms

minimum min
(
x, y
)

algebraic product x · y

weak
{

min(x, y) if max(x, y) = 1
0 otherwise

bounded sum max
(
0, x + y − 1

)
T -conorms

maximum max
(
x, y
)

probabilistic sum x + y − x · y

strong
{

max(x, y) if min(x, y) = 0
1 otherwise

bounded sum min
(
1, μA(x) + μB(x)

)

From all possible triangular norms the minimum norm is the largest and the
weak norm (Table 1) is the smallest. From all possible triangular conorms the
strong norm is the largest and the maximum norm (Table 1) is the smallest. We
have chosen for a t-norm (with his dual conorm) which is situated between those
two extremes, i.e. the product and the probabilistic sum, respectively. So the an-
tecedent

(
|xs,d(i, j)| is large variable AND |ws,d(i, j)| is large coefficient

)
can be translated into the “truth” value: μx(|xs,d(i, j)|) · μw(|ws,d(i, j)|), where
μx and μw are the membership functions for the fuzzy set large variables and
large coefficient, respectively. In the next subsection we explain how to shrink
the wavelet coefficients of a noisy image.

2.2 Output of the Method

The shrinkage rule of the proposed method for scale s, direction d and position
(i, j) is calculated as follows:

ŷs,d(i, j) = γ(ws,d(i, j), xs,d(i, j)) · ws,d(i, j) (3)

with ŷs,d(i, j) the shrink output coefficient for scale s, direction d and position
(i, j) and where γ(ws,d(i, j), xs,d(i, j)) is the degree of activation of Fuzzy Rule 1
for the wavelet coefficient ws,d(i, j). This value indicates the membership degree
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in the fuzzy set signal of interest for the wavelet coefficient ws,d(i, j). If the
membership degree has value 1, this means that the corresponding coefficient is
a signal of interest certainly (and should not be changed), while a degree zero
indicates that the coefficient is certainly not a signal of interest (and should be
set equal to zero). A value between zero and one indicates that we do not know
quite sure if this coefficient is a signal of interest or not. This means that the
coefficient is a signal of interest only to a certain degree. The calculation of the
value γ(ws,d(i, j), xs,d(i, j)) is illustrated in expression (4).

γ(ws,d(i, j), xs,d(i, j)) = α + μx(|xs,d(i, j)|)− α · μx(|xs,d(i, j)|)
(4)

with α = μx(|xs,d(i, j)|) · μw(|ws,d(i, j)|)
Actually, the α of expression (4) can be seen as the fuzzy counterpart of gener-
alized likelihood ratio used in the probabilistic version [1]. One can see that we
used the product and probabilistic sum for the triangular norm and co-norm,
respectively.

3 Experimental Results

In this section we present some experimental results. We compared our new fuzzy
wavelet-based shrinkage method with (i) other well-known fuzzy filters and (ii)
recently developed wavelet-based methods. More precisely we have:

– FUZZY: the GOA filter [26], FRINRM [27] (fuzzy randomly valued impulse
noise reduction method), HAF [28] (histogram adaptive fuzzy), EIFCF [29]
(extended iterative fuzzy control based filter), SFCF [29] (smoothing fuzzy
control based filter), DWMAV [30] (decreasing weight fuzzy filter with mov-
ing average centre), AFSF [31] (the adaptive fuzzy switching filter), FSB
[32,33] (fuzzy similarity filter) and AWFM [34] (adaptive weighted fuzzy
mean).

– WAVELET: the bivariate wavelet shrinkage function proposed by Şendur
[35], the feature-based wavelet shrinkage method proposed by Balster [36]
and the probabilistic shrinkage function proposed by Pižurica [1].

We have used a redundant wavelet transform with the Haar wavelet and four
resolution scales and a neighbourhood of size 9× 9 (K = 4) for both the prob-
abilistic version and the proposed one. As a measure of objective dissimilarity
between a filtered image F and the original noisefree one O, we use the peak
signal to noise ratio (PSNR).

In order to get a clear idea of the performance of all mentioned methods we
have carried out experiments for three well known test images: ‘Lena’, ‘Peppers’
and ‘Barbara’, each of size 512 × 512. The numerical results for the corrupted
versions (for σ = 5, 20, 30 and 40) are shown in Table 2. From this Table we
can make the following conclusions:
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– The wavelet-based methods perform generally better than the state of the
art fuzzy non-wavelet based methods for the additive noise type. Wavelet-
based methods reduce the noise quite well for both low and high σ values,
while the fuzzy-based methods only perform well for higher noise levels.

– The only fuzzy-based method that receives comparable results to the wavelet
ones is the GOA filter. This filter even results in the best PSNR value for the
Peppers images corrupted with σ = 30 and 40 additive Gaussian noise. But
the GOA filter is developed only for a specific group of images like the Lena
and the Peppers images. If an image contains regions with lots of fine details,
texture or contours (like grass, hair etc.) then the GOA filter destroys such
structures, which is confirmed by the low PSNR value for the Barbara image.

– Generally, the best numerical results were received by the proposed and
the probabilistic shrinkage method. The proposed fuzzy shrinkage method
performs quite similar as the probabilistic one.

The visual performance of the best numerical filters can be seen at http://www.
fuzzy.ugent.be/ACIVS05/paper161.pdf, where we show (in Fig. 2) the denoised
versions of the Barbara image corrupted with σ = 40 additive Gaussian noise.
It is shown that the proposed and the probabilistic shrinkage method do not
only yield the highest PSNR values (Table 2), but also the best visual results.
The other wavelet-based methods reduce the noise well but introduce typical
wavelet compression artefacts. From Fig. 2 (f) (in the longer paper version at
the website) we see that the GOA filter destroys more images structures than the
wavelet-based method, which results in a blurrier image. We can also conclude
that the other state of the art fuzzy-based methods are not able to receive such
good visual performances as the wavelet-based methods.

Previous experiments have clearly confirmed that the proposed method per-
forms at least as well as the probabilistic method of [1]. In this paragraph we
will illustrate that the proposed method, which can be viewed at http://www.
fuzzy.ugent.be/ACIVS06.html, has a lower complexity than the probabilistic ver-
sion. In Table 3 we have compared the execution time between those two methods
for the noise reduction of one wavelet band of size 512× 512. The comparison is
done by implementing both methods in the same programming language namely
Java (not Matlab because Matlab uses many C-files so that the comparison would
not be correct). The main difference of both methods is that the probabilistic
method has to estimate the (image dependent) distributions first before the fil-
tering can be started while the fuzzy shrinkage method can be applied directly.
This fuzzy shrinkage method uses membership functions that are shown in Fig.
1, which functions as a kind of lookup-tables for the likelihood ratios of the prob-
abilistic versions [1]. This explains while the proposed method is less complex.
The execution time for the distribution estimation of [1] does not depend on
the used neighbourhood size. Next even if we observe the execution time of the
denoising methods only we see that the fuzzy shrinkage method is faster. This
small difference is analysed in Table 4, where we have compared the amount
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Table 2. PSNR results for the (512×512-) Lena, Peppers and Barbara images corrupted
with additive Gaussian noise with σ = 5, σ = 20, σ = 30 and σ = 40 and several fuzzy
and wavelet based denoising methods

Lena Peppers Barbara
σ 5 20 30 40 5 20 30 40 5 20 30 40

Noisy 34.2 22.1 18.6 16.1 34.2 22.1 18.6 16.1 34.2 22.1 18.6 16.1
New 38.2 32.4 30.5 29.2 37.1 32.0 30.5 29.3 37.2 29.7 27.5 25.9

ProbShrink 38.3 32.3 30.4 29.2 37.1 32.0 30.5 29.3 37.2 29.4 27.1 25.5
BiShrink 37.4 31.2 29.3 28.1 35.7 31.0 29.3 28.1 36.2 28.2 26.1 24.8
Balster 37.2 31.5 29.8 28.5 34.4 31.7 30.1 28.9 35.8 27.6 25.3 24.0
GOA 36.4 31.2 29.5 28.3 35.6 31.7 30.0 28.6 33.9 25.8 24.2 23.5

FRINRM 34.9 26.2 23.8 21.3 34.3 25.4 22.2 20.4 34.2 23.7 21.4 20.2
HAF 33.7 29.5 26.9 24.8 33.1 28.8 26.2 24.0 25.3 24.4 23.3 21.1

EIFCF 33.6 29.3 27.2 25.5 33.8 29.5 27.3 25.6 25.5 24.6 23.7 22.8
SFCF 33.1 29.4 26.2 23.5 33.1 29.4 26.3 23.6 25.8 24.8 23.3 21.6

DWMAV 33.2 29.6 27.2 25.2 32.9 29.4 27.1 25.1 25.2 24.4 23.5 22.6
AFSF 34.5 27.6 25.0 23.0 34.4 27.6 24.9 22.9 26.0 23.9 22.5 21.2
FSB 33.8 28.8 25.5 23.1 33.7 28.9 25.7 23.3 25.2 23.9 22.6 21.2

AWFM 34.3 29.2 26.1 22.1 34.2 29.4 25.2 23.0 26.1 24.5 22.9 22.9
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Fig. 2. Comparison of the mean execution time for the ProbShrink method of [1], the
GOA filter of [26] and the proposed FuzzyShrink method with (upper) a windowsize
K = 4 and (lower) a windowsize K = 2

of operations that have to be carried out to perform the denoising method for
one wavelet band only. We observe that the amount of logical operations is very
similar. But if we know that memory operations cause more time to be done
than all other operations we see why the probabilistic method is slower.

In Fig. 2 we have illustrated the mean execution time of both methods (for a
neighbourhood size of 5× 5 and 9× 9 (i.e. K = 2 and K = 4, respectively)) and
the fuzzy non-wavelet based GOA filter [26]. We observe that the non-wavelet



A New Fuzzy-Based Wavelet Shrinkage Image Denoising Technique 21

Table 3. Comparison between the proposed fuzzy shrinkage method (FuzzyShrink)
and the probabilistic shrinkage method (ProbShrink) in term of the execution time
(ms) for the denoising method of a noisy wavelet band of size (512 × 512)

Execution time in ms

K = 1 K = 2 K = 3 K = 4
FuzzyShrink Total 58.5 108.0 179.3 273.5
ProbShrink Denoising 63.4 110.6 195.8 282.0

Distribution estimation 179.9 180.0 180.3 180.3
Total 243.3 290.6 376.1 462.3

Table 4. Comparison between the proposed fuzzy shrinkage method (FuzzyShrink) and
the probabilistic shrinkage method (ProbShrink) of the amount of operations necessary
for the denoising methods of a noisy wavelet band of size (N × M) with η = M · N
(exclusive the amount of operations necessary to calculate the distribution estimation)

Execution time in ms

+ - / * memory
FuzzyShrink (4 + (2K + 1)2)η 6η 3η 4η ((2K + 1)2)η
ProbShrink (5 + (2K + 1)2)η η 2η 5η ((2K + 1)2 + 3)η

based method GOA performs much faster than the two wavelet based algorithms.
The main two reasons for this difference are (i) in wavelet-based methods, the
images have to be transformed into the wavelet domain and (ii) for both methods
we have used a redundant wavelet transformation, so that the amount of data
becomes larger. The second observation that can be made from Fig. 2 is that the
proposed method is significantly faster than the probabilistic shrinkage method,
which confirms that the proposed method is less complex than the probabilistic
one.

4 Conclusion

In this paper an alternative wavelet based soft-computing method for the re-
cently published probabilistic shrinkage method of Pižurica [1] for the reduction
of additive Gaussian noise in digital images was proposed. Experimental results
show that the proposed method receives the same noise reduction performance
as the probabilistic one, which outperforms the current fuzzy-based algorithms
and some recently published wavelet-based methods. Next we have shown that
the proposed method clearly reduces the complexies of the probabilistic shrink-
age method in terms of execution time. A future advantage of the method is the
ability of incorporate more information (e.g. interscale and/or colour informa-
tion) by adding other fuzzy rules to improve the noise reduction performance.
Future work should be done on this promising issue.
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Abstract. In this paper we adapt different techniques for image decon-
volution, to the actual restoration of works of arts (mainly paintings and
sculptures) from the baroque period. We use the special characteristics
of these works in order to both restrict the strategies and benefit from
those properties.

We propose an algorithm which presents good results in the pieces we
have worked. Due to the diversity of the period and the amount of artists
who made it possible, the algorithms are too general even in this context.
This is a first approach to the problem, in which we have assumed very
common and shared features for the works of art. The flexibility of the
algorithm, and the freedom to choose some parameters make it possible
to adapt the problem to the knowledge that restorators in charge may
have about a particular work.

1 Introduction

Image restoration is a widely known topic in image processing, consisting of
recover some deteriorated features of an image. But, before its use as a scientific
subject, restoration is a term used in the artistic world meaning the task of
cleaning and modifying a spoiled work of art in order to make it as similar as
possible to the aspect it had when created.

Professionals of art restoration must have a multidisciplinary, both artistic
and scientific training. Though it has been introduced recently, as in most other
aspects, nowadays the help afforded by computer design packages of programs
is very important. Restoration techniques are more and more complex, and it is
required more and more exigency in the results. Thus, one cannot trust only in
his or her own feelings in order to get the best possible results. Computer can
never replace the human factor, but it can be used to provide support to the
restorer, in order to recover possible lost elements or enhance details which can
be important during the restoration process.

From a mathematical point of view, paintings may be consider as a particular
class of images. Each period, and even each artist has its own characterisitics,
but there are some properties different from other images, such as photographs,
medical images or other kind of images. We will comment some of these partic-
ularities. On the other side, deterioration of paintings is also due to some sort
of physical processes, which we will analyze.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 24–34, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The goal of this paper is to obtain an algorithm to deconvolve artistic paint-
ings. In particular, our study is restricted to Spanish baroque, and it has been
applied to the altarpiece of the church of Saint Bartholomew in Bienservida. In
our interest to make it as general as possible, we have suppressed some details
that improve the results in this case but are very restrictive to be aplied in other
art works.

The structure of this paper is as follows. In the next section, we introduce the
frame in which we raise our problem. In §3 some algorithms are introduced, and
we stablish a strategy in §4. Finally, in §5 results are presented, and we draw
conclusions and prospectives.

2 The Problem of Deconvolving Paintings

Artistic restoration of paintings must consider two main tasks: one is inpainting
(that is, to fill lost regions of the painting, often needing previous knowledge of
the piece) and other one is cleaning. Cleaning is a process that includes enhance-
ment and elimination of spurious details (dust particles, for instance). In this
paper we address this last point. Practical application of mathematical models
for inpainting deserve by themselves their own study.

The pieces we want to restore belong to the Spanish baroque. We are not
going to get deeper into the artistic analysis, except for the special features we
can deduce, having mathematical consequences, which are the following:

– In the artistic style we deal, the edges of the original pieces are not strictly
well outlined, that is, some blur was present even when the work was painted
(as a difference with photographs or drawings, or even other kind of paint-
ings. Impressionism, or realism, for example, should need a different treat-
ment).

– Weather factors (humidity, light, extreme temperatures, ...) and time spoil
the works in a very deterministic way, and there is an almost absence of
stochastic white noise, because dust, grease and other particles have created
a uniform layer instead of a random distribution.

The first one allows us a broader definition of image enhancement, in the
sense that we are worried about the location but not so much the enhancement
of edges, in order to get painting quality. Without losing interest on edge enhance-
ment, we will also be concerned, by the color and contrast enhancement. Besides,
it is safe the use of the fast Fourier transform, because Gibbs phenomenum is
controlled.

The second point makes us consider a very particular class of blur. Mathe-
matically, the only noise we must be careful with is that produced by our own
algorithms, and not by the image. Practically, it is a case of pure deconvolution
without noise. The spoil is usually extended to large areas of the painting, and
we may consider it global. Furthermore, the uniform appearance of the factors,
provides the basis to consider that the blur has been produced by Gaussian-type
convolution kernels.



26 P.D. Romero and V.F. Candela

The above remarks together with the usual image processing, are summarized
in the following paragraphs.

We consider a gray scale image as a two dimensional function, f(x, y), where
(x, y) are the spatial coordinates, and the value is the normalized intensity of
the light (from 0 for black, to 1 for white).

In a general frame, the image we have is the result of an original one fo(x, y),
after being spoiled by a linear process:

f(x, y) = fo(x, y) ∗ k(x, y) + n(x, y)

k is called the kernel (or psf , point spread function) of the convolution, and
it does not have to be spatially invariant (in fact, the spoil does not need to be
linear. We assume so due to the special characteristics of painting restoration),
but in practice we are going to consider it that way. k represents the deterministic
part of the deterioration, and n, the noise, is the stochastic part.

As we said above, in our context, we may consider noise is not present ,
because the pictures have been cleaned by the professional restorers when we
start the digital process. Then, we have:

f(x, y) = fo(x, y) ∗ k(x, y) =
∫

fo(x− s, y − u)k(s, u)dsdu

The deconvolution problem consists of recovering the original function, fo.
This is an ill conditioned problem ([7]). Linear convolution smoothes the func-

tion and, thus, irrecoverable information is lost (such as discontinuities, corners,
...). In the sense of Fourier transform,

f̂ = f̂o k̂ (1)

and k̂ is a function decaying to zero in the large frequences, making the above
formula unstable if used to recover f̂o.

Our problem is a blind deconvolution one. We do not only have to deconvolve
the image, but we do not know what k is. However, in this case, we have some
information about k. We know, for example, that k is almost Gaussian, in the
sense that:

k̂(ξ, η) = e−α(ξ2+η2)β

(2)

for some α > 0, 0 < β ≤ 1.
A kernel k satisfying (2) and defining fractionary powers

Ktf = {k̂t(ξ, η)f̂(ξ, η)}∨ , 0 ≤ t ≤ 1

is said to be a class G kernel ([2]) (as usual, ∨ denotes the inverse Fourier trans-
form). These kernels appear in generalized linear diffusion processes associated
to the backward heat-like equation (with fractional powers of the Laplacian Δ):

ut = −
∑

i

λi(−Δ)βiu 0 < t ≤ 1

u(x, y, 1) = f(x, y)

⎫⎬⎭ (3)
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where the coefficients λi are related to the exponent α of the kernel k, λi =
αi(4π2)−βi .

The above equation is ill-posed, because it is not reversible. In the next section
it will be solved by introducing a regularizing term.

Paintings are a special kind of images, defined as the class N , which their
Fourier transforms verify, once normalized, that

1. |f̂∗(ξ, η)| has isolated zeros in the frequency space, (ξ, η).
2. log(|f̂∗(ξ, η)|) is decreasing along any ray reiθ , for r increasing, except for

isolated singularities.

The normalization of f̂ , is defined by:

f̂∗(ξ, η) =
f̂(ξ, η)

f̂(0, 0)

due to the fact that |f̂(ξ, η)| ≤ f̂(0, 0), because of Hölder’s inequality.
In the actual context, color is an important subject in order to get good results,

and it must be taken account as a fundamental part of our study. In literature,
color is obtained by decomposition of the image in three filters, each one with
information of features of the chromatic components. Though in screening and
printing it is advisable to decompose in primary colors (that is, RGB or CMYK),
it is known that paintings must be repaired not because they lose color, but be-
cause ambiental factors affect their luminance, brightness or contrast. Thus, we
get better results by decomposing the color in one luminance channel and two
complementary ones. LUV and HSV filters are more adequate to our problem. In
the experiments we have done, LUV has afforded better resolution than the oth-
ers, due to the fact that there is less correlation between the luminance and the
other channels. Enhancement filters produce an undesired effect on monochro-
matic decompositions (RGB or CMYK), in the sense that they increase the
dominance of some colors above the others, modifying their equilibrium.

Now, we have the elements leading us to choose the right models to decon-
volve the images. In the next paragraph, we introduce two models which will be
combined in order to get acceptable results.

3 Deconvolution Models

Due to the characteristics of the kernel in our problem, we will start by estimate
the parameters α and β in (2), by means of a nonlinear least-square approxi-
mation, in this way: as we consider there is practically no noise, from (1), after
normalizing the image,

log |f̂∗(ξ, η)| ≈ −α(ξ2 + η2)β + log |f̂o

∗
(ξ, η)|

Of course, we do not know the values |f̂∗
o |. We will apply the so called APEX

method ([2]), consisting of replacing log |f̂∗
o | by a fixed value A, determined by
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the apex of log f∗(ξ, 0), because it is not restrictive to obtain the coefficients by
fixing the ray η = 0,

log |f̂∗(ξ, 0)| ≈ −α|ξ|2β −A (4)

By the secant method, we get the parameters α and β.
Once we have the kernel, we will use two direct deconvolution methods. As the

blur is almost anisotropic, as we pointed out above, it is appropriate to consider
one of them ([1]) based on the local linearization of the variational equation

−Δfo + λk ∗ (k ∗ fo − f) = 0

λ is the Lagrange multiplier, which regularizes the equation in order to better
conditioning. Large values of λ deconvolve the image, increasing the noise, while
small λ smoothes it. In our case we shall choose λ as large as possible. By Fourier
transform,

f̂o(ξ, η) =
k̂(ξ, η)f̂ (ξ, η)

k̂(ξ, η)2 + 4π2(ξ2+η2)
λ

The other model we will use (Slow Evolution Constraint Backward, [2]) is
the one coming from the generalized heat equation with fractionary powers (3).
After regularizing, we look for solutions with a slow evolution, in the sense that

||u(s)− u(0)||2
is bounded by a parameter, K depending on the regularization, the image and
the estimation of the noise, in a given interval of points [s∗, 1]. This interval fixes
the capability to recover u(s) from the equation.

f †(ξ, η) =
k̂(ξ, η)f̂ (ξ, η)

|k̂(ξ, η)|2 + K−2|1− k̂s(ξ, η)|2
(5)

To obtain the solutions:

u†(x, y, t) = Htf †(x, y)

Being a nonlinear method, this one, SECB, enhances edges in a finer scale than
the first one, but, in order to be stable, we must choose between a loss of contrast
as we approximate u(s), for small, close to zero, s, due to a very large regular-
ization parameter, or a very slight enhancement because small regularization
parameters do not allow us to go back in time beyond an s close to 1.

4 Algorithm for Restoring Paintings

As we presented above, the local linearization and the SECB methods present
different advantages and difficulties in order to deconvolve images. The algorithm
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we introduce here tries to keep the advantages of both, while eliminating some
of its problems. These are direct methods in the sense that we do not need any
iterative process to reach the deconvolved image, a property that makes them
appropiate for fast test and correction of the experimental parameters for the
restorers in order to get a good deconvolution.

Local linearization limits the resolution till a certain scale, and beyond that
the image cannot improve. On the other side, SECB may recover a finer reso-
lution, but it must have a large regularization in order to keep stability. This
regularization produces a loss of contrast. Our goal is to deconvolve fine scales
without loss of contrast. To do this, we will follow the next steps, in what we
may consider a hybrid method:

1. Detection of the parameters of the kernel by the algorithm in (4).
2. Deconvolution by the local linearization method.
3. Detection of the parameters of the kernel of the deconvolved image.
4. Deconvolution by the nonlinear method.

This algorithm may be consider as a multiscale process: we detect the kernel
and deconvolve the image by a linear method in the coarse scales, and then we
make the corresponding corrections in the finest scales by the nonlinear algo-
rithm. This process allows us to improve the image with values of s close to 1
instead of close to 0, with a very small loss of contrast, because we do not need
to recover the large frequences, making it possible to enhance the edges by going
back a very small interval of time. Thus, in this case, we may process images
with a not so slow evolution.

As we process color images, we use the LUV filter, because it has the least
correlation between luminance and colors. Thus, what we actually restore is
the luminance without introducing spurious colors, which is an important point
when restoring paintings.

Finally, we remark that both algorithms in our method may be performed via
fast Fourier transforms. Thus, the proposed method is fast, and, due to both
the regularity parameters and the features of the paintings (with practically
no noise), it is stable. The idea of a linear method to enhance coarse scales
and a nonlinear one to enhance the fine ones may be applied to other set of
methods also (in fact, it is a sort of prediction-correction, or preconditioning of
the image), but the characteristics of the algorithms we propose are adequate to
the resolution we wish, and the computational features as speed, computational
cost and stability we need in our context. In ([2]), the nonlinear method is
proposed as the preconditioner of the image. Due to the previous application of
the local linearization, SECB improves its performance and, in our case, gives
well behaved results, without the need of more complex and expensive methods.

5 Results and Conclusions

The results we present in this section have been obtained from the altarpiece
of Iglesia de San Bartolomé (Saint Bartholomew Church), in the town of Bi-
enservida (Albacete, Spain), which was being restored while the elaboration of
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this research. The photographs were taken at different stages of the restoration
in the best conditions we could get. The altarpiece belongs to the Obispado de
Albacete (Bishopship). The imagery is religious, as it happens with most of Span-
ish art of that era, and it is included in this work as a representative example of
the application of the mathematical models, in its artistic, beyond its religious,
context.

The paintings had a chemical treatment, cleaning, previous to our digital pro-
cessing. This is the reason why the original pictures show a wide range of colours,
though limited to the somewhat dark style of the Spanish Baroque. In these ex-
amples, we will show the enhancement obtained by our method, compared to the
actual artistic restoration made by the professionals. In order to check the value
of the preconditioning strategy, we will show the results obtained by the local
linearization and by the SECB, in which their independent strengths and weak-
nesses are illustrated. We will see the improvement obtained by the combined,
hybrid, strategy. The pictures we show were taken in the same technical condi-
tions (light, distance, focus, ...). Though virtual restoration is not complete in
our examples (we just did the deconvolution part), we show the artistic restored
paintings in order to illustrate the task the professionals carry.

The goal of deconvolution is the enhancement of details in the painting which,
are going to be reintegrated later in the process, interesting in order to establish
sound boundary conditions for the mathematical models of segmentation to re-
construct wrought parts.

In the first example we show, corresponding to one of the paintings (La Anun-
ciación), we see how both, linear and SECB, methods enhance edges, but, while
the first one keeps contrast and luminance, the enhancement in the second one is
sharper, in spite of its loss of brightness. This must be so, due to the large regu-
larization parameter needed in order to go backward the equation. In our hybrid
proposal we improve these methods, with a better enhancement and luminance
quality. We also show the professional, hand made restoration. Though, as it was
expected, this last was the best one, in some regions of the painting our restora-
tion shows details which could not be observed in the original. It is remarkable
that our method does not produce ringing effects nor additional noise in the
processing, because we adjust boundary conditions and regularity is controlled.
One of these regions may be examined in figure 2, in which we remark the lines
written in the book, which are better outlined in the hybrid method than in
any of the other ones, and even in the physical restoration by the professionals.
Chemical color processing makes the restored image different from our convolved
ones. Digital color processing is currently a work in progress in our research.

In figure 3, similar results are shown for another painting of the same set. The
original picture is darker than the last one, but our method also works under
these conditions. Some loss of luminance is obtained, but we can recover it after
an independent treatment for contrast enhancement. Another of the advantages
we present is the capability of our method to introduce different, mainly lin-
ear, processes independent of deconvolution without further deterioration of the
image. This is an important requirement, because artistic restoration needs to
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(a) (b)

(c) (d)

(e)

Fig. 1. (a) La Anunciación; (b) Local Linearization Method, λ = 107; (c) SECB,
parameters: s = 0.00001, K = 104, t = 0; (d) Hybrid method parameters, λ = 107,
s = 0.1, K = 102, t = 0.9; (e) After the artistic restoration
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(a) (b) (c)

(d) (e)

Fig. 2. (a) Section Desktop of La Anunciación; (b) Local Linearization Method; (c)
SECB; (d) Hybrid method (e) After the artistic restoration

process different aspects of the artwork in a separate way. More sophisticated,
and possibly better, methods lose some of their strengths when the image must
be postprocessed (or preprocessed). We may observe that digital enhancement
outlines edges with a greater accuracy than the actual restoration. In figure 3,
it is observed how details in the clothes, mainly, are more remarkable in our
method, as opposed as the actual artistic restoration. Chemical, and physical,
color treatment, however, enlarges the quality aspect of the picture. Let us note
that it was not the goal of this paper digital color processing, which is a different
problem, that can be studied in further works.
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(a) (b)

(c)

Fig. 3. (a) Paint of Circuncision; (b) Hybrid method parameters used λ = 107, s =
0.1, t = 0.93, K = 103; (c) After the artistic restoration

As a conclusion, we have devised a numerical algorithm for image deconvo-
lution which is both reliable and robust for a large class of paintings. It allows
different processes independent from deconvolution without loss of accuracy and
it is fast enough to be performed with a low computational cost and time. It
is possible the adaptation to factual requirements such as increase/decrease of
luminance and color properties. Last, but not least, the results show acceptable
human vision quality, and they may help restorers in their recovery tasks.
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enservida, for his support in the documentation, and the permissions to obtain



34 P.D. Romero and V.F. Candela

the pictures of the altarpiece, as well as his disposal to help in logistic and
personal aspects.

Thanks are also due to Grupo Ábside, restorers of the piece, in particular to
their director, Guadalupe, whose professional advice and explanation of their
job were useful throughout the research.

Comments and suggestions by J.V. Arnau Córdoba helped to improve the
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Abstract. This paper deals with concealment of motion blur in image
sequences. The approach is different from traditional methods, which at-
tempt to deblur the image. Our approach utilizes the information in con-
secutive frames, replacing blurred areas of the images with corresponding
sharp areas from the previous frames. Blurred but otherwise unchanged
areas of the images are recognized using blur invariant features. A statis-
tical approach for calculating the weights for the blur invariant features
in frequency and spatial domains is also proposed, and compared to the
unweighted invariants in an ideal setting. Finally, the performance of
the method is tested using a real blurred image sequence. The results
support the use of our approach with the weighting scheme.

1 Introduction

In many applications, the quality of video is degraded by blurring. One impor-
tant class of blurring is caused by camera motion during exposure. A typical
situation which generates such blur is recording using a handheld camera. The
blur becomes even more noticeable after video stabilization as the random mo-
tion no longer hides the blur. In this paper, we consider the concealment of this
kind of global blur in stabilized video sequences.

Image deblurring is a difficult problem. Traditional solutions include the es-
timation of the point spread function (PSF) of the blur and deconvolution of
the image using that PSF. When the PSF is known, the latter ill-posed prob-
lem can be solved using approaches which use regularization [1]. In practice, the
PSF is unknown and very hard to estimate accurately. In this case, blind image
restoration algorithms are used. Such algorithms are presented in [2].

In the case of an image sequence, it is natural to utilize multiple frames for
restoration. This is the case in multichannel or multi-frame models which use
sequential frames which are degraded differently. A survey of these approaches,
as well as a method that does not need any information on the PSF or perfect
registration of the frames are given in [3].

Our approach is also a multi-frame method in the sense that it utilizes the
information in multiple frames. However, the approach is relatively simple and
many obstacles of the above mentioned methods are avoided. The basic idea is
to replace the scene which is detected to be blurred using the same areas from
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a registered previous sharp frame. If the image is heavily blurred it is difficult
to classify the image regions into unchanged scene and moving objects. We have
divided the image into blocks and used blur invariant features invented by Flusser
et al. [4] to classify the blocks as changed or unchanged for detection of motion.
A partly similar deblurring method was presented in [5] but it uses the sum of
absolute differences (SAD) of images as a classification criterion. Blur invariant
features seem to work much better than SAD which is error prone in the case of
heavy blur.

Previously, no weighting scheme of the Flusser’s blur invariants has been
presented. Our statistical approach weights the invariants according to the image
noise characteristics. The weights are derived both for spatial and frequency
domain blur invariants. The experiments confirmed that the invariants perform
much better when the noise is taken into account. However, the border effect of
the blur still remains a problem.

The rest of this paper is organized as follows. In Sect. 2, after an introduction
of the blur invariant features, the method for estimation of the weight factors is
proposed. Then in Sect. 3, the framework for concealment of motion blur in image
sequences is presented. In Sect. 4, the performance of the statistical weighting of
the blur invariants is compared to the unweighted use of the invariants [4] in an
ideal setting. Finally, the results with our motion blur concealment framework
are presented and compared to a reference method in a practical case.

2 Blur Invariants for Noisy Images

In this section, the invariants in the spatial and frequency domain are given and
then the noise covariances in both cases are derived.

2.1 Blur Invariant Features

The blur invariant features of Flusser et al. [4] are invariant to blur that has
centrally symmetric PSF, as is the case with ideal linear motion blur. If f(x, y)
is an image function, the blur invariants based on image moments in the spatial
domain are the following:

IS(p, q) = mpq − 1
m00

p∑
n=0

q∑
m=0

0<n+m<p+q

(
p

n

)(
q

m

)
IS(p− n, q −m) ·mnm, (1)

when order r = p + q is even and IS(p, q) = 0 otherwise, and where

mpq =
N∑

i=1

N∑
j=1

ipjqf(i, j) (2)

is the approximation of the image moment of order p+q and N×N is the image
size.
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Let F (u, v) be the 2-D Fourier transform of the image f(x, y). Then the blur
invariants in the frequency domain are given by

IF (u, v) = tan(phF (u, v)) =
Im F (u, v)
Re F (u, v)

=
Fim(u, v)
Fre(u, v)

. (3)

The space and frequency domain invariants are equivalent from the theoret-
ical point of view, as shown in [4], but may differ in numerical behavior, noise
robustness etc. In a practical case, these invariant features are not fully invari-
ant because of the boundary effect of convolution by the blur PSF. This is due
to the fact that information flows across the borders of the observed image, as
is shown mathematically in [6] for the invariants in the spatial domain. To be
fully invariant, the whole convolution result would have to be known, which is
impossible in practice.

2.2 Estimation of the Noise of the Blur Invariants

Image noise degrades the classification results obtained using the invariants.
It is known that in the spatial domain case, the higher order moments suffer
more from noise [7]. Previously any noise modeling has not been incorporated
into these blur invariants [4,8]. We have derived a statistical approach which
calculates weights for the invariants according to their estimated noise.

Let’s assume the following model for an observed image:

f̂(x, y) = f(x, y) + n(x, y), (4)

where f(x,y) is the original, possibly blurred image and n(x,y) is zero-mean
independent and identically distributed noise with variance σ2.

We will consider first the spatial invariants. If the image moments which are
used to build invariants are calculated according to (2) for the observed images
(4), the noisy moments are

m̂pq =
N∑

i=1

N∑
j=1

ipjq
{
f(i, j) + n(i, j)

}
= mpq +

N∑
i=1

N∑
j=1

ipjqn(i, j). (5)

It is easy to show that the covariances of the noisy moments are

σpq,rs =
N∑

i=1

N∑
j=1

ip+rjq+sσ2, (6)

where p, q and r, s are the orders of the two moments for which the noise covari-
ance is being calculated.

The covariance matrix for the spatial invariants cannot be calculated directly
as the equations for the invariants are non-linear. However, the covariance matrix
can still be approximated using linearization according to the equation

Cr ≈ J ·Cm · JT, (7)
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where Cm is the Nm×Nm covariance matrix build using covariances of equation
(6) and J is Nr ×Nm Jacobian matrix containing partial derivatives

∂ISi

∂mj
, i = 1, . . . , Nr and j = 1, . . . , Nm. (8)

where Nr is the number of invariants up to order r and Nm is the number of
moments needed in calculation of those invariants.

The Nr × Nr noise covariance matrix Cr is used to weight the differences
of the invariants by calculating the Mahalanobis distance between invariants
IS(p, q)(f) and IS(p, q)(g) of images f̂(x, y) and ĝ(x, y), namely

distance = D ·C−1
r ·DT, (9)

where

D = I(f)
S − I(g)

S . (10)

The use of the covariance matrix Cr effectively weights each invariant according
to its estimated signal-to-noise ratio. Notice that σ2 is not needed if only relative
distances are considered.

For the frequency domain invariants, the derivation of the noise covariance
matrix is quite similar. The real and imaginary parts Fim(u, v) and Fre(u, v) of
the Fourier domain invariants (3) are obtained as real and imaginary parts of
the equation

F̂ (u, v) =
N∑

x=1

N∑
y=1

{
f(x, y) + n(x, y)

}
e−2πj(ux+vy)/N (11)

= F (u, v) +
N∑

x=1

N∑
y=1

n(x, y)e−2πj(ux+vy)/N , (12)

which describes the discrete Fourier transform of a noisy image (4). The cor-
responding noise covariance between image frequencies (u1, v1) and (u2, v2) be-
comes

σu1v1,u2v2 =
N∑

x=1

N∑
y=1

e−2πj(u1x+v1y)e−2πj(u2x+v2)σ2. (13)

It can be shown that the covariance is zero if (u1, v1) and (u2, v2) are different.
Hence, only variances need to be calculated, leading to the simplification of (13),
namely

σuv =
N∑

x=1

N∑
y=1

e−2πj(ux+vy)σ2. (14)
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The resulting 2Nr×2Nr diagonal noise covariance matrix Cm for Fim(u, v) and
Fre(u, v) contains the diagonal values

{
Im(σ(uv)1 ), Re(σ(uv)1), . . . , Im(σ(uv)Nr

),
Re(σ(uv)Nr

)
}

from equation (14). Nr is the number of Fourier domain invariants
used.

The noise covariance matrix Cr for the invariants (3) is calculated using lin-
earization similar to (7) in the spatial domain. In this case, J is a Nr × 2Nr

matrix containing the partial derivatives of the invariants IF (u, v) with respect
to Fim(u, v) and Fre(u, v). The distance between images is calculated similarly
to the spatial case using equation (9).

3 Framework for Motion Blur Concealment

Typically not all the images in a sequence recorded with a handheld camera
are severely blurred. Our idea is that after the blurred images are detected, the
blurred but otherwise unchanged scene in these images is replaced using the
same scene from previous sharp frames which are first registered. To replace
only the unchanged parts of the scene, each image block is classified as changed
(e.g. moving objects) or unchanged using the blur invariant features presented
in Sect. 2 for motion detection.

Our framework for motion blur concealment is presented in Fig. 1(a). As can
be seen, it consists of four steps preceded by stabilization, which is not considered
here. However, the motion parameters that are needed for registration can be
taken directly from the stabilization step. Otherwise they need to be estimated
separately.

Detection of blurred frames is performed using gradient information. The sum
of absolute gradients was approximated for each image ft(x, y) in a sequence to
get the measure for its sharpness, namely

st =
∑
x,y

{ ∣∣dx ∗ ft(x, y)
∣∣+ ∣∣dy ∗ ft(x, y)

∣∣ }, (15)

where dx and dy are derivative filters along the x- and y-directions.
Measure st does not give an absolute evaluation of the image sharpness but

if the scene is relatively unvarying this measure can be compared to the same
measure for surrounding frames. A frame ft(x, y) is classified as blurred if

st < T ·max
{
st−1, . . . , st−K

}
, (16)

where T is a threshold and K is the number of previous images used as a refer-
ence. This approach is robust if the scene does not vary too quickly and some of
the previous K frames are sharp. In our tests T = 0.75 and K = 5.

The classification of the scene into changed and unchanged blocks using blur
invariant features is the main contribution of this research. The principle is as
follows: The last image classified as sharp in the blur detection step is kept until
the next one is encountered. This image is registered with the subsequent blurred
frames. After this, the sharp and blurred frames are divided into blocks of size
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(a)

(b)

(c)

Fig. 1. (a) Framework for motion blur concealment. Classification into changed and
unchanged scene in (b) using blur invariants and in (c) using SAD.

B × B as in Fig. 1(b) and 1(c), and the distance (10) using the blur invariant
features is calculated between each sharp vs. blurred block pair. If this distance
between corresponding blocks in sharp and blurred frames deviates enough, the
blocks are considered to be different. In the last step, the unchanged blocks in
blurred frame are replaced using the blocks from the sharp frame. We have used
either spatial or frequency domain invariants, as discussed in Sect. 4. Fig. 1(b)
shows an example of the classification of the blocks of a blurred image. The
blocks with lighter borders are classified to be changed i.e. they are different in
this and the preceding sharp image. Fig. 1(c) shows the classification result if
SAD measure, which is not invariant to blur, is used.

The unchanged scene blocks are replaced using a method resembling that used
in overlapped block motion estimation (OBME) [9] i.e. the overlapping blocks
are larger than B ×B and are windowed so that the total weight for each pixel
is one. This makes the transition at the borders smooth. Fig. 2(a) illustrates
a typical blurred input frame and Fig. 2(b) the corresponding output frame
generated using our method to conceal the blur. As can be seen, all other blocks
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(a) (b)

Fig. 2. (a) Blurred input frame. (b) Motion blur concealed output frame.

except those containing the person are replaced and the transition to the blocks
containing the person is smooth.

4 Experiments

The evaluation of deblurring methods in general is difficult as the correct un-
blurred video sequence is not known in a practical case for comparison. In our
case, it is quite clear that the final quality of the video depends on the robustness
of finding the unchanged blocks from each blurred frame. For this purpose, we
have tested the classification performance of the unweighted and weighted blur
invariant features in two experiments using an ideal and real setting.

In the experiments, we used a QVGA resolution test sequence of length 200
frames. The sequence was recorded using a vibrating handheld camera resulting
in blurred frames like that shown in Fig. 2(a). The sequence was stabilized before
the tests. The images of the sequence were divided into 6 × 8 blocks of size 32 ×
32 pixels discarding the excess edge pixels. In both tests, we used 12 invariants
in either the spatial or Fourier domain. This corresponds to spatial invariants
of orders r = 1, 3 and 5. In the Fourier domain, this yields to the invariants
IF (u, v) for which

√
u2 + v2 ≤ √8, where u and v may also be negative, and when

invariants corresponding to zero frequency and redundant mirror frequencies are
discarded. In the unweighted case, the frequency domain invariants are taken as
such and the spatial domain invariants are normalized by (N/2)p+q, as proposed
in [4], because the numerical range of the higher order spatial invariants is larger.

In the first experiment, we compared the classification results of the un-
weighted and weighted invariants in a theoretical setting in which we used ar-
tificially created blur. Before blurring, the image blocks of the test sequence
were padded with zeros to cancel the border effect. In this way, the only factor
deteriorating the results was the noise that was added after blurring. As the
weighting of the invariants is based on the estimated noise in them, this was an
ideal experiment to demonstrate the performance difference of the weighted and
unweighted invariants.
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Two classes of block pairs were created, based on the image blocks of the gray
scale version of the test sequence: “unchanged” i.e. original vs. blurred blocks
and “changed” i.e. original vs. shifted and blurred blocks as shown in Fig. 3.
The class original vs. shifted blocks mimics the situation of a changing scene in
the real video. The shift length was one pixel and the blur length 10 pixels. The
noise standard deviation was either σ = 2 or σ = 5. Notice that the length of
the blur does not have much effect in this ideal case.

In Fig. 4(a) and Fig. 4(b) the classification results are presented as receiver
operating characteristics (ROC) curves for spatial and frequency domain in-
variants, respectively. The vertical axes show the probability of being correctly
classified as “unchanged” and horizontal axis the probability of being incorrectly
classified as “unchanged”. The results were calculated using either weighted or
unweighted blur invariants and noise standard deviations σ = 2 or σ = 5. It
can be seen that the weighting improves the results significantly. Particularly
the frequency domain invariants seem to be performing unsatisfactorily for our
purpose without weighting. Also in the case of spatial domain invariants the
improvement in the classification accuracy is clear.

In the second experiment, the real test sequence containing only the original
blur was used. 67 frames from the total of 200 were detected as blurred. The
blocks of the test sequence were labeled subjectively into “changed” and “un-
changed”. The classification result obtained using blur invariant features was
compared to this ground truth classification to obtain similar ROC curves to
those in the first experiment. True positive, i.e. correctly classified as unchanged
scene, versus false positive, i.e. incorrectly classified as unchanged scene prob-
abilities for different decision boundaries are shown in Fig. 5. Notice that for
finer detail only the upper left quadrant of the full ROC diagram is shown. The
curves represent the results using spatial or frequency domain invariants either
weighted or unweighted. The classification results were compared to a simple
change detection method based on the SAD of the image blocks. We calculated
the blur invariants and SAD of blocks separately for each RGB-channel, and
used their mean value as the final distance. Furthermore, the classification re-
sults were calculated only for the blurred frames of the sequence, as this is the
interesting situation.

To get acceptable video quality the false positive rate has to be quite low.
Otherwise the blocks containing moving objects may be replaced, contaminating
the image content of the sequence. So one should concentrate on the results
where the false positive rate is relatively low. First of all the results show the
positive effect of weighting the invariants. The improvement of the true positive
rate at a given false positive rate using weighted invariants in the spatial or
frequency domain is not as large as in the ideal case, probably because of the
boundary effect which now causes the results to deteriorate. The improvement
is still significant in the case of spatial invariants, and again very large in the
case of frequency domain invariants. Clearly, without weighting, the frequency
domain invariants could not be used for our purpose.
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Fig. 3. Example of the blocks used for the two test classes

(a) (b)

Fig. 4. (a) ROC curves for the spatial domain invariants. (b) ROC curves for the
frequency domain invariants.

Except in the unweighted frequency domain case, all the invariant approaches
performed better than SAD. This can be explained by the fact that SAD is
not invariant to blur, and it separates blurred and unblurred blocks. According
to tests in [4] the error of the boundary effect is significant when the ratio
blurlength/B is greater than 0.15. This corresponds to a blurring length of
4.8 pixels when B = 32. It was noticed also in our experiments that the blur
invariants fail when the blur becomes too large.

The performance of the weighted frequency domain invariants seemed to be
lower compared to the spatial case. On the other hand, the frequency domain
invariants are much faster to calculate using FFT. Also the calculation of the
weights is faster as the matrix Cm is diagonal and the matrix J block diagonal.
For this reason we tried to improve the results. It was noticed that by using
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Fig. 5. ROC curves showing the classification performance of the invariants for the
real world test sequence

slightly larger and overlapping image blocks and by windowing those blocks
before calculation of the invariants, the results were improved as shown in Fig.
5 by curve “freq weighted win”. Here, the block size was 48 × 48, overlapping
8 pixels, and the window was W = kT · k, where k is a 1-D Kaiser filter, with
length 48 and parameter β = 2. In the case of spatial domain invariants, the
windowing did not help noticeable. When the false positive rate is less than 0.1
the weighted frequency domain invariant method using windowing seems to be
the best alternative.

5 Conclusions

The method proposed in this paper can be used to conceal the motion blur
of the unchanging scene of the video by replacing the blurred areas from the
previous frames. The blur invariant features, which are used for recognition of
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this unchanged scene, perform significantly better when our weighting scheme
is used. It is noticeable that the frequency domain invariants, which are much
faster to calculate, would be unsuitable for our purpose without weighting. When
windowing is combined with weighting of the frequency domain invariants they
become the best alternative. The invariants outperform also the SAD measure
used as a reference. In practice, better classification of the blocks results in more
complete concealment of the blur.

A downside of our method is that it cannot deblur the moving objects and
other changing parts of the video. However, inclusion of a desirable deblurring
method for moving objects is possible. The use of our method for as large region
as possible is advantageous, as nuisances like ringing and noise amplification of
the traditional deblurring methods are avoided.

Future improvements to the method might include calculation of the invari-
ants for hierarchical and/or overlapping blocks. The invariants would first be
calculated for larger blocks and blocks that seem to be changing would be inves-
tigated in greater detail. This is likely to reduce the border effect in the results
and will make the calculation faster.
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Abstract. A standard sigma filter proposed by J.-S. Lee has found wide appli-
cations and frequent implementations in software packages. Later, several 
modifications have been introduced in order to improve its performance. In this 
paper we propose some new modifications trying to combine advantages of the 
original sigma and local statistic Lee filter as well as to ensure the filter robust-
ness with respect to impulse noise. The basic performance characteristics of the 
proposed hybrid sigma filter are studied for cases of pure multiplicative noise. 
The comparison to some other well known filters is performed. A real life ex-
ample of the designed filter application to side-look radar image is given. 

Keywords: Image denoising, modified sigma filter, multiplicative noise. 

1   Introduction 

A standard sigma filter (SSF) [1] was proposed more than twenty years ago and since 
then it has found wide applications in processing of optical and radar images cor-
rupted by Gaussian additive or multiplicative noise, respectively [2]. An evidence of 
the standard sigma filter popularity is that it has been implemented in many software 
packages intended on image processing needs (see, e.g., [3]). This is basically due to 
two main advantages of the SSF, namely, its excellent ability to preserve edges and 
fine details and its simplicity.  

Based on advantages of the scalar SSF, its vector analogs have been designed [4], 
[5], [6]. Note that vector sigma filters possess the same advantages and they are very 
useful if a pre-processed multichannel or color image is a subject to further interpret-
ing [4], [7]. Besides, the use of the SSF and its modifications has been shown expedi-
ent and effective within hard switching locally adaptive schemes [2], in particular, for 
solving a task of small sized object detection [8]. 

However, the SSF is characterized by several drawbacks restricting its applicabil-
ity. The main among them is its rather poor noise suppression efficiency in image 
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homogeneous regions [9], [10]. Sometimes it is also desirable to provide filter ability 
to remove outliers and, respectively, to perform well in mixed noise environment.  

Several modifications have been proposed in order to avoid aforementioned draw-
backs of the SSF [9], [10], [11]. Due to them, the performance of the designed modi-
fied scalar sigma filters has become considerably better in image homogeneous  
regions and for mixed noise environment.  

In this paper we propose one more modification of the SSF for which attractive 
features and operation principles of the SSF and the local statistic Lee filter [12] are 
successfully combined. The robustness to outliers can be also provided. The case of 
Gaussian multiplicative noise is considered. Extensive simulation data that allow 
comparing the characteristics for a set of filters are given. They confirm the efficiency 
of the proposed filter. Finally, an example of processing a real life image formed by 
side-look aperture radar (SLAR) is presented. 

2   Hybrid Sigma Filter 

Recall that in this paper we consider images for which multiplicative noise is the 
basic factor degrading their quality. Multiplicative noise is supposed to obey Gaussian 

distribution with mean equal to unity and (relative) variance 1.02 <μσ .  This is typical 

for remote sensing data obtained by SLARs or multilook synthetic aperture radars [2]. 
All sigma filters are based on one or another way of forming an initial neighbour-

hood for further determining scanning window pixel values that belong to this 
neighbourhood, and averaging of these values for output calculation. For the SSF, the 
neighbourhood forming is based on an assumption that the neighbourhood centre 
coincides with the noisy value of the scanning window central pixel g(i, j):  
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the averaging interval and it is commonly set equal to 2 μσ  [1], 2(M+1) defines the 

scanning window size. 
A rather low efficiency of noise suppression in image homogeneous regions observed 

for the SSF is explained by ”incorrect” selection of neighbourhood centre in such cases 
when a noise value corrupting the scanning window central pixel relates to distribution 
”tail”. Due to this, up to 60% of scanning window pixel values can be excluded from 
averaging, then it becomes inefficient. 

The noise suppression efficiency in image homogeneous regions can be improved by 
modifying the way to select the neighbourhood centre gs (for the SSF ),( jiggs = ). Our 

proposition is the following. For the initial interval [g(i, j) -  g(i, j); g(i, j) +  g(i, j)] let 
us find such gh that the number of the given scanning window pixel values that belong to 
the interval [gh -  gh; gh +  gh] is maximal 
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To our experience [9], [10], such modified selection of a new neighborhood should 
lead to considerable improving the noise suppression efficiency in image homogeneous 
regions. However, this can also result in larger blurring. To partly alleviate this shortcom-
ing, we propose one more modification. Let us take into account the local variance esti-
mate in a scanning window similarly to that it is done for the local statistic Lee filter [12]. 
In opposite to the Lee’s filter [12], let us calculate local variance in a scanning window 
with accounting not all values. This can be done as follows:  
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With taking into consideration (1), (2), and (3), the output of the proposed hybrid 
sigma filter (HSF) is defined as  
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According to (4), the proposed HSF should perform better noise suppression if 2
hσ  is 

smaller, i.e., in image homogeneous regions or in edge/detail neighborhoods where the 
remained values (that belong to the new neighborhood) obey well to Gaussian distribu-
tion. On the contrary, if 2

hσ  is rather large, then ),( jig  is taken into account with a 
larger weight to provide good preservation of edges and fine details. 

If an image is corrupted by mixed noise, then we propose to apply the same procedure 
as for the modified sigma filters [9], [10]. It presumes the following: if for a given scan-
ning window ΔN  for the original neighborhood is not larger than some present threshold 

thresN , then one has to apply a robust detail preserving filter for obtaining HSF output. 
Otherwise, all operations (1) – (3) should be performed. As the robust detail preserving 
filter we recommend to use either 3LH+ variant of FIR hybrid median filter [13] if prob-
ability of impulse noise is less than 5% or center weighted median filter [14] with appro-
priately set parameters [15]. 

3   Analysis of Filter Performance for Artificial Test Images 

For getting quantitative estimations of filters’ performance, we have first used an artifi-
cially created test image presented in Fig. 1. This image contains a homogeneous region, 
edges, small sized and prolonged objects with positive and negative contrasts C (ratio 
of object intensities with respect to background, C is from 3 to 4). 
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a) 

 

b) 

Fig. 1. The artificial test image (a) and its enlarged fragment that contains small sized objects 

Consider the filter performance for the values of 2

μσ  typical for radar images, 
namely, 0.006, 0.01, 0.02, 0.04, and 0.09. Table 1 contains the values of a parameter 
that characterizes noise suppression in image homogeneous regions. This parameter is  

22 / μσσθ rem= , (5) 

where 2

remσ  - is the residual noise variance in processed image  
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where G is the considered area, G  denotes the number of pixels in this area, get(i,j) 

denotes the ij-pixel value in the corresponding noise-free image. 
The considered filters in Table 1 and other Tables below have the following nota-

tions: Sig5 and Sig7 are the SSFs with the scanning window sizes 5x5 and 7x7, re-
spectively [1], Lee is the local statistic Lee filter (5x5) [12], MSig is the modified 
sigma filter (5x5) with 0=thresN  (the parameter that denotes the number of pixels in 
the neighborhood for which the switching to FIR hybrid median filter is performed) 
[9], ASig denotes the Alparone’s hybrid sigma filter [11], HSig5 and HSig7 are the 
proposed hybrid sigma filters with the windows 5x5 and 7x7, respectively. 

The data presented in Table 1 confirm rather poor efficiency of noise suppres-
sion in image homogeneous regions for the SSF. Obviously, all modifications of 
the sigma filter as well as the Lee filter perform in such situations considerably (by 
3…8 times) better. And the proposed filters HSig are among the best. 

The integral values of  determined in the edge neighbourhoods of the test image are 
given in Table 2. As seen in the sense of edge preservation the proposed HSF is also one 
of the best. It produces very good edge preservation if 2

μσ  is small (or, in other  words,  if  
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Table 1. Efficiency of noise suppression in image homogeneous regions,  

2

μσ  Sig5 Sig7 Lee MSig ASig HSig5 HSig7 

006.02 =μσ  0.2146 0.1808 0.0670 0.0608 0.1013 0.0578 0.0313 

01.02 =μσ  0.2207 0.1881 0.0681 0.0642 0.0980 0.0599 0.0322 

02.02 =μσ  0.2360 0.2033 0.0647 0.0707 0.1025 0.0582 0.0319 

04.02 =μσ  0.2676 0.2347 0.0655 0.0941 0.1105 0.0624 0.0346 

09.02 =μσ  0.3256 0.2964 0.0620 0.1457 0.1253 0.0789 0.0501 

Table 2. Efficiency of noise suppression in edge neighbourhoods,  

2

μσ  Sig5 Sig7 Lee MSig ASig HSig5 HSig7 

006.02 =μσ  0.2753 0.2257 0.9649 0.0831 0.1809 0.0917 0.0495 

01.02 =μσ  0.2622 0.2140 0.9216 0.0933 0.1720 0.0897 0.0475 

02.02 =μσ  0.2699 0.2256 0.9064 0.1086 0.1722 0.0924 0.0529 

04.02 =μσ  0.3350 0.3049 0.8431 0.2045 0.2111 0.1363 0.1089 

09.02 =μσ  0.5101 0.5059 0.7351 0.4529 0.3461 0.4977 0.5585 

edges have enough high contrasts). Only for 2

μσ =0.09 the results for ASig become 
slightly better that for other analyzed filters. 

Finally, Table 3 presents the integral values  for the neighbourhoods of small sized 
objects in the artificial test image. As seen they can be very large for ASig filter if 2

μσ  is 
small. This means that ASig considerably distorts small sized objects. Hsig produces the 
best results (the smallest ) if 2

μσ  is small. And only if 2

μσ =0.09 the proposed filter pro-
duces larger distortions in comparison to the SSF (compare the results for Sig5 and 
Hsig5, for Sig7 and HSig7). 

The aggregate preliminary conclusion is that the proposed HSF for the considered  
artificial test image and the analyzed set of 2

μσ  produces an appropriate trade-off of the 
basic characteristics: efficiency of noise suppression in image homogeneous regions and 
edge/detail preservation. 

Table 3. Efficiency of noise suppression in small sized object neighbourhoods,  

2

μσ  Sig5 Sig7 Lee MSig ASig HSig5 HSig7 

006.02 =μσ  0.5650 0.5129 3.1858 0.4244 92.501 0.3488 0.2990 

01.02 =μσ  0.5436 0.4826 4.2307 0.4035 52.569 0.3251 0.2695 

02.02 =μσ  0.5515 0.5064 5.9393 0.4876 23.842 0.4818 0.4861 

04.02 =μσ  0.7750 0.8138 8.5451 1.0288 10.225 0.7946 0.9224 

09.02 =μσ  1.1481 1.3261 10.589 2.5447 3.4750 6.1620 9.7632 
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4   Analysis of Filter Performance for a Set of Standard Test 
Images and for Real Life SLAR Image 

In the previous Section we have examined the filter performance for particular types of 
fragments of the artificial test image. Below, in Table 4, we give PSNR values for a set of 
standard test images: Baboon, Barbara, Goldhill, Lenna, and Peppers. 

Table 4. Efficiency of noise removal for standard test images, PSNR, dB 

Image 2 Sig5 Sig7 Lee MSig ASig HSig5 HSig7 

006.02 =μσ  29.33 29.42 29.78 28.50 27.92 29.19 29.15 

01.02 =μσ  27.60 27.69 28.15 27.06 26.81 27.70 27.64 

02.02 =μσ  25.19 25.27 26.05 25.04 25.12 25.75 25.66 

04.02 =μσ  22.68 22.76 24.09 23.03 23.29 23.90 23.86 

Baboon 

09.02 =μσ  19.34 19.44 22.12 20.41 20.97 21.74 21.85 

006.02 =μσ  31.24 31.41 31.95 30.97 30.58 31.52 31.61 

01.02 =μσ  29.40 29.59 30.25 29.42 29.27 29.92 30.04 

02.02 =μσ  26.86 27.07 28.10 27.21 27.26 27.84 28.04 

04.02 =μσ  24.15 24.39 26.08 24.97 25.20 25.93 26.25 

Barbara 

09.02 =μσ  20.59 20.82 23.94 22.02 22.62 23.51 24.07 

006.02 =μσ  31.88 31.89 32.70 32.02 32.19 32.63 32.41 

01.02 =μσ  30.20 30.23 31.32 30.81 30.90 31.38 31.13 

02.02 =μσ  27.69 27.75 29.49 29.00 28.99 29.69 29.49 

04.02 =μσ  24.95 25.07 27.83 27.00 26.95 28.01 27.98 

Goldhill 

09.02 =μσ  21.18 21.35 25.79 23.63 24.11 25.32 25.67 

006.02 =μσ  32.25 32.35 33.79 33.32 33.28 33.90 33.73 

01.02 =μσ  30.37 30.51 32.31 31.97 31.80 32.55 32.48 

02.02 =μσ  27.69 27.90 30.42 30.09 29.66 30.79 30.87 

04.02 =μσ  24.62 24.87 28.44 27.51 27.19 28.72 29.08 

Lenna 

09.02 =μσ  20.60 20.82 26.08 23.40 23.90 25.49 26.18 

006.02 =μσ  32.35 32.45 33.69 33.47 33.34 33.92 33.80 

01.02 =μσ  30.58 30.75 32.41 32.29 32.03 32.77 32.74 

02.02 =μσ  27.86 28.10 30.57 30.43 29.96 31.07 31.24 

04.02 =μσ  24.81 25.09 28.68 27.77 27.56 28.98 29.45 

Peppers 

09.02 =μσ  20.80 21.05 26.42 23.69 24.28 25.74 26.52 

The analysis of these data shows that PSNR values for the proposed HSF are prac-
tically always either the best or among the best. They are almost always by about 1 
dB better than for MSig and HSig and at the same level as for the Lee filter [12].  
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The studies carried out in our papers [2] and [16] have demonstrated that Msig per-
forms in the best manner for images that contain many relatively contrast edges and 
fine details like that one presented in Fig. 2,a.  

 
a) 

 
b) 

Fig. 2. Noise-free test images  

 
a) 

 
b) 

Fig. 3. Original SLAR X-band image (a) and the designed HSF output (b) 

The same relates to the designed HSF. For such and similar images, the modified 
and designed hybrid sigma filters outperform other filters considered above by up to 
4…6 dB if 2

μσ  values are within the limits from 0.005 to 0.02. But for images con-
taining a lot of textural regions like that one represented in Fig. 2, b as well as the test 
image Baboon MSF and HSF perform worse than some other filters. As shown in our 
paper [2], the best performance for such images is demonstrated by filters based on 
orthogonal transforms (in particular, the discrete cosine transform based filter [2]) or 
by more complex locally adaptive filters. 
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An example of real life image processing is shown in Fig. 3. This image was 
formed by an X-band airborne SLAR and kindly offered to us by A. Kalmykov Cen-
ter for Earth Radiophysical Sensing. The value of 2

μσ  estimated for this image by 
means of blind procedure [17] is about 0.012, i.e. just within the interval of 2

μσ  simu-
lated by us. Multiplicative noise presence in the original image (Fig. 3,a) is well ob-
served in image homogeneous fragments with large mean intensities. The output of 
the proposed filter is depicted in Fig. 3,b. As seen, noise is efficiently suppressed 
while all small sized objects and edges are preserved well.   

5   Conclusions 

The carried out analysis of the designed hybrid sigma filter shows that it is able to 
outperform the standard and modified sigma filters as well as some other well known 
smoothers. In the sense of noise suppression efficiency, HSF approaches to the mean 
filter with the same scanning window size and is better than the standard median 
filter. Concerning edge/detail preservation, the proposed filter produces very good 
results for 2

μσ =0.006…0.04, especially if edges and fine details are sharp and have 

rather large contrasts. Our HSF commonly outperforms earlier proposed modifica-
tions of the SSF.  

Such properties allow recommending the HSF for processing of SLAR images 
contaminated by middle intensity multiplicative noise. This filter can be especially 
useful for pre-processing of images for which the primary task of their further inter-
preting consists in small object detection and localization.  

Partly supported by the European Union. Co-financed by the ERDF and the 
Regional Council of Brittany, through the European Interreg3b PIMHAI project.  
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Abstract. This paper presents a method for automatic removal of local defects 
such as blotches and impulse noise in old motion picture films. The method is 
fully automatic and includes the following steps: fuzzy prefiltering, motion-
compensated blotch detection, and spatiotemporal inpainting. The fuzzy prefil-
ter removes small defective areas such as impulse noise. Modified bidirectional 
motion estimation with a predictive diamond search is utilized to estimate the 
motion vectors. The blotches are detected by the rank-ordered-difference 
method. Detected missing regions are interpolated by a new exemplar-based in-
painting approach that operates on three successive frames. The performance of 
the proposed method is demonstrated on an artificially corrupted image se-
quence and on a real motion picture film. The results of the experiments show 
that the proposed method efficiently removes flashing and still blotches and im-
pulse noise from image sequences. 

1   Introduction 

Vertical scratches and flashing blotches are artifacts commonly encountered in de-
graded motion picture films. These defective areas are caused either by accumulation 
of dirt or by the film material being abraded. They appear as bright and dark blotches 
on the scene, and are referred to as “dirt and sparkle” in the motion picture industry. 
Another type of defect is “still blotches”. Still blotches may be artificially formed to 
remove logos or undesired objects.  

The successful restoration of corrupted image sequences involves mainly three 
processes: motion compensation, detection of blotches, and interpolation of the miss-
ing data in the blotched regions. In order to detect and interpolate the blotched re-
gions, robust motion estimation techniques with respect to additive and replacement 
noise must be applied [1–3]. A priori information on the location of the missing re- 
gions facilitates the development of efficient algorithms to interpolate the missing 
                                                           
* This work was supported in part by the Research Foundation of Karadeniz Technical Univer-

sity under Grant 2004.112.004.01. 
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regions. Defects such as dirt and sparkle are usually determined by blotch detection 
methods, which use temporal discontinuities in the image sequence. Some existing 
methods for the detection of missing regions in image sequences are the spike detec-
tion index (SDI) method [4] and the rank-ordered-difference (ROD) detector [5,6]. 
Interpolation of the missing regions can be accomplished by methods based on a vec-
tor median filter (VMF), as presented in [7]. The VMF method promises good results, 
especially with respect to preserving detail and color. A common problem with detec-
tion and interpolation methods is that they yield poor performance when intense 
blotches and/or motion occur in successive image frames. It is difficult to interpolate 
useful data in areas of significant motion, such as motion involving rapid occlusion 
and uncovering. In this case, using more frames in the motion estimation and interpo-
lation procedure may be a solution [7]. Recently, some techniques based on inpainting 
for removing objects from digital images or restoring damaged images have been 
presented in [8, 9]. It has been shown that large objects or damaged areas in an image 
can be successfully removed and considered, if the locations of the objects or dam-
aged regions are known.  

In this paper, we have extended the inpainting process to an interframe method, 
where the locations of the damaged regions are detected automatically. Our method is 
a hybrid restoration method that can remove flashing blotches, still blotches, and 
impulse noise. The proposed method not only combines the advantage of fuzzy filter-
ing, motion-compensated blotch detection, and inpainting methods, but also improves 
on these methods when they are used to restore old motion picture films. 

2   Proposed Method 

Our proposed restoration method consists of a fuzzy prefilter, bidirectional motion 
estimation, automatic blotch detection with motion compensation, and spatiotemporal 
exemplar-based inpainting. Each stage used is represented in Fig. 1, and is described 
in the following subsections. 

 

Fig. 1. Block diagram of the proposed restoration method 

2.1   Fuzzy Prefilter 

“Salt and pepper” noise may reduce the accuracy of the processes of motion esti-
mation and inpainting. This type of noise can be removed successfully by intra-
frame nonlinear filtering, applied to each frame separately. There are many filters 
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that perform well on various noisy images [10]; we chose a Gaussian fuzzy filter 
because of its good performance. We have modified this filter and applied it to 
color images. For a point (x, y) in an image, the filtered output is defined as fol-
lows:  
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where BGRc ,,=  represents the color components, A is the area of the window, 
c
medI  is the median value, and 2σ  is the value of the variance of ),( yxI c  for 

Ayx ∈),( . 

2.2   Motion Estimation 

Motion estimation plays an important role in most applications of image sequence 
processing, such as video compression, object tracking, and video restoration. In 
video restoration applications, some robust bidirectional motion estimation tech-
niques have been developed and are already being used [1–3, 7]. These techniques 
are based mainly on block matching because of the ease of implementation. In 
these techniques, two or more sets of motion vectors are estimated dependently or 
independently. Then, motion trajectories that pass through the locations of missing 
pixels are estimated. These techniques give reasonable results for occlusion, un-
covering, and scene cut problems. However, in corrupted image sequences, it is 
difficult to estimate motion trajectories accurately because blocks in large missing 
regions cannot be easily matched with blocks in the previous or subsequent frame. 
Therefore, the motion estimation process is adversely affected by the presence of 
large blotches.  

We have used a bidirectional motion estimation method that is slightly different 
from the method presented in [7]. Since fuzzy filtering has been used, the mul-
tiresolution motion estimation used in [7] becomes unnecessary. For motion esti-
mation, we used backward, forward, and cross searching applied to a single block, 
as shown in Fig. 2. This procedure can be implemented very easily and tends to be 
very robust in noisy and blotched regions. It consists of the following steps: (1) 
selecting a temporal mask involving three consecutive frames, in which the middle 
frame is the current frame to be restored; (2) dividing the frames into blocks; (3) 
searching the blocks in the previous and subsequent frames; (4) finding at most 
three candidates for the motion vector field; (5) postprocessing of the motion vec-
tors to predict the final motion vector field for the current frame; and (6) shifting 
the mask by one frame and applying the above steps again. These steps are de-
scribed below. 
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Fig. 2. Procedure for searching for motion vector 

First, the frames are segmented into small rectangular blocks. Then, the blocks are 
searched according to the procedure shown in Fig. 2. In this figure, the beginning and 
the end of each arrow show the reference frame and the searched frame, respectively. 
Each block of a frame requires three independent searches to find the motion vectors. 
The first search is from the nth frame to the (n − 1)th frame, the second search is from 
the nth frame to the (n + 1)th frame, and the third search is from the (n + 1)th frame to 
the (n − 1)th frame. To achieve fast block matching, we used a predictive diamond 
search algorithm [11]. In this algorithm, the center of the search area is the predicted 
motion vector (the motion vector of the previous block). A large diamond pattern 
consisting of nine points is then examined. If the minimum is found to be the same as 
the prediction, then a smaller diamond is used and the final four points around the 
prediction are examined to optimize the final motion vector. If the minimum is not 
found to be the same as the prediction, the search moves back to the initial center, and 
the original diamond search algorithm is used until the best match is found in the 
center of the diamond pattern. 

The searching approach illustrated by arrows 1 and 2 in Fig. 2 is bidirectional and 
therefore this approach can solve problems of covered and uncovered areas, and of 
scene cuts. This approach also improves the success of the matching. 

If there is a large blotch, as big as an entire block in the current frame, however, 
the approach described above will not provide good results. This problem is signifi-
cantly reduced by using an approach corresponding to arrow 3 in Fig. 2. With this 
approach, a motion vector trajectory passing through the block in the blotched area 
can be estimated more accurately. On the assumption of constant velocity, the motion 
vectors estimated by the searching approach illustrated by arrow 3 will pass through 
the location 2/))(( 1,1 rvr nn +−+  in the current frame (here, ),( yxr = , and (.)v  is 

the motion vector). This location may not coincide with the actual center of the block.   
After checking whether occluded motion vectors have been obtained by these 

searches, the motion vector which has the minimum matching error is selected. 
This procedure is repeated for each pixel in the block. Pixels with no motion vec-
tors are represented by a single vector that is obtained by averaging the motion 
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vectors associated with the other pixels. This procedure is applied if at least half of 
the pixels have a motion vector and if the maximum angle between the predicted 
vectors is less than a predefined value. The estimated motion vectors, along with 
the related frame numbers, are provided to the blotch detection and inpainting 
stages described in Section 2.3 and 2.4, respectively. 

2.3   Blotch Detection 

The blotch detector utilized in our method is based on the ROD method because that 
method is simple and has high detection performance. In the following, we describe 
our method. 

Let )(rIn  be the intensity value of the pixel at the spatial coordinates ( )yxr ,=  in 

the nth frame. Let P  be a vector defined by 

[ ]621 ,...,, ppp=P , (2) 

where the pixel values 621 ,...,, ppp  are taken from the motion-compensated previous 

and subsequent frames at locations that are spatial neighbors of )(rIn , as shown in 

Fig. 3. 

Fig. 3. Blotch detection procedure 

Blotch detection is done according to the following steps. First, the elements of P  are 
ordered by rank, which yields a vector R ,  

[ ]621 ,...,, RRR=R , (3) 

where 621 ,..., RRR ≤≤≤ . The rank-order mean is 2/)( 43 RRm += . Three rank-

order differences are then calculated for R. These differences are denoted by 
3 ,2 ,1    ),( =lrDl , and defined as follows: 
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The pixel at the location ( )yxr ,=  in the frame n is detected as corrupted if at least 

one of the rank-order differences exceeds one of the preselected thresholds lT , which 

determine the detector’s sensitivity. The threshold values were selected such that 

3210 TTT <<< . 

2.4   Spatiotemporal Exemplar-Based Inpainting  

We propose a spatiotemporal exemplar-based inpainting method for the restoration of 
damaged regions of the image. This method is like the image inpainting method pre-
sented in [8] for still images. In [8], Criminisi et al. proposed an exemplar-based in-
painting method, which fills in the target region with patches from the source region 
possessing a similar texture. The candidate patches are selected from the whole im-
age, with special priority being given to those along the isophotes (lines of equal gray 
value) so as to preserve the linear structure during the filling-in. Criminisi’s method is 
intraframe and considers blotched areas to be known. So, if the missing regions can-
not be found exactly from undamaged areas of the current frame, the restoration may 
fail. The major disadvantage of this method is the global searching, which not only 
leads to errors in the match but also greatly decreases system performance. It merely 
adopts a simple priority computing strategy without considering the cumulative 
matching error. Therefore we have extended the method into three dimensions. Our 
method uses the points where the motion trajectories pass through the frames as start-
ing points for the search algorithm. Therefore it searches accurately and rapidly in a 
small region. The algorithm uses three sequential frames at the same time. The pro-
posed spatiotemporal inpainting process is shown in Fig. 4. The steps of the algorithm 
are as follows: 

Step 1. Determine the blotched area to be used as the target region. Compute the num-
ber of pixels of the target region to be used for setting up the size of the patches on the 
contour Ω δ  of the target regionΩ . Repeat steps 2–7 below for every blotched area 
while 0>Ω . 

Step 2. Identify the fill front t δ . If 0=Ωt , exit (the superscript t indicates the 
current iteration). 

Step 3. Determine the source region for each blotched area in the input image, as 
shown in Fig. 4.  

 Step 4. Determine the filling priorities so that the method to be capable of propagat-
ing information about both texture and structure from the exemplar-based filling algo-
rithm. It performs the synthesis task through a best-first filling strategy that depends 
entirely on the priority values that are assigned to each patch on the fill front. The 
computation of the priorities is biased toward those patches which are on the con-
tinuations of strong edges and are surrounded by high-confidence pixels. Given a 
patch rψ  centered at a point r  on the contour Ω δ  of the target region Ω , its prior-

ity )(rP  (i.e. trrP Ω∈∀=  δ)( ) is defined as 
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)()()( rDrCrP = , (5) 

where )(rC  and )(rD  are called the confidence term and the data term, respectively. 

The confidence term is a measure of the amount of reliable information surrounding 
the pixel r . The intention is to fill first those patches which have more of their pixels 
already filled, with additional preference given to pixels that were filled early on (or 
were never part of the target region). The priority )(rP  is computed for every patch 

centered on the contour Ω δ . The confidence term )(rC  is defined by 

= Φ∩∈ nr
r

qA
qCrC ψψ

)()( 1 , (6) 

where 
r

Aψ  is the area of rψ , nΦ  is the source region in the nth frame, q  is the 

vector of a pixel point inside rψ , and )(qC  is the previously calculated confidence 

term at the pixel point q . For initialization, the confidence term )(rC  is set to 0 for 

the target region Ω  and set to 1 for the source region nΦ .  

The data term )(rD  is a function of the strength of the isophotes hitting the front 

Ω δ . This factor encourages linear structures to be synthesized first, and therefore 
propagated securely into the target region. The data term )(rD  is defined as   

255/|.|)( rrIrD n⊥∇= , (7) 

where, rn  is the unit vector orthogonal to the front Ω δ  at the point r , and ⊥  de-

notes the orthogonal operator.  The gradient ⊥∇ rI  at the pixel point r  and the unit 

vector  rn   are defined as  

[ ]2/)),1(),1((2/))1,()1,(( yxIyxIyxIyxIIr −−+−−−+=∇ ⊥       , (8) 

[ ]Trr yxnyxnyxnyxn ),()1,(),(),1(1 −+−+= nn , (9) 

where T indicates the transpose, and 

[ ] [ ]22 ),()1,(),(),1( yxnyxnyxnyxnr −++−+=n . (10) 

If the location of (.)n  falls into the target region, its value set to 0; otherwise, it is set 

to 1. 

Step 5. Once all priorities on the fill front have been computed, the patch 
r̂

ψ  with the 

highest priority is found, i.e., )(maxargˆ rPr tr  δ∈= . This patch is then filled with 

data extracted from the source regions ,nn ΦΦ − ,1 and 1+Φn . The centers of the 
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Fig. 4. Spatiotemporal exemplar-based inpainting process 

search regions are taken to be on the motion trajectory for all of the frames. The im-
age point which the motion trajectory passes through is taken as only the initial search 
point for the patches, because the center of a patch may not coincide with the actual 
center of the matched block in the motion estimation process. 

Step 6. The image texture is propagated by direct sampling of the source region. The 
patch which is most similar to 

r̂
ψ  is searched for in the source regions to obtain the 

source exemplar 
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where the distance (.)d  between two generic patches is defined simply as the sum of 

the squared differences for the pixels already filled in the two patches. 

Step 7. Once the source exemplar 
q̂

ψ  has been found, the image data is copied from 

q̂
ψ  to Ω∩∈∀

rr
r ˆˆ ψψ   . After the patch 

r̂
ψ  has been filled with new pixel values, 

)(rC is updated in the area delimited by 
r̂

ψ  : Ω∩∈∀=
r

rrCrC ˆ),ˆ()( ψ  . 

Since the centers of the source regions in the previous and subsequent frames are 
taken to be on the motion trajectories, the search areas within these frames can be 
smaller than those in the current frame. Hence this inpainting method spends less time 
on searching in the previous and subsequent frames than it does in the nth frame. 



 Automatic Restoration of Old Motion Picture Films 63 

3   Experimental Results  

The validity of the proposed method was tested on both an artificially corrupted 
and a real image sequence that contained flashing and still blotches. The quantita-
tive and qualitative performance of the method was compared with that of the 
methods presented in [7, 8]. The size of the images in both sequences was 352 × 
288 pixels. The block size was chosen as 4 × 4 for the block matching. The patch 
size was taken as maximum 9 × 9  and minimum 5 × 5 for the exemplar-based 
inpainting. The size of the source regions was 50 × 50 in the current frame and 16 
× 16 in the other frames. 

We used 400 frames of an image sequence called the “Foreman” sequence. The 
sequence was corrupted by artificially generated flashing blotches (5%), still 
blotches (2%), and impulse noise (10%). Some of the blotches were placed in re-
gions that included rapid motion, occlusion, and uncovering. Three typical cor-
rupted consecutive images (with frame numbers 254, 255, and 256) from the 
“Foreman” sequence are shown in Fig. 5(a). As can be seen from this figure, a still 
blotch has been added to the upper right corner of the sequence, which might rep-
resent a television logo. Another sequence used was a real image sequence from a 
motion picture film, captured from a television broadcast. Frames 51, 52 and 53 of 
this sequence are shown in Fig. 5(b). 

3.1   Performance Analysis on the Artificially Corrupted Image Sequence  

To evaluate the restoration performance of the method, we computed the normal-
ized mean squared error (NMSE); this is a standard quantitative measure, defined 
by 
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where (.)
~cI  is the restored pixel value, and I is the entire image. A graph of the 

NMSE versus frame number for frames 250–270 (21 frames) of the “Foreman” 
sequence is shown in Fig. 6. As can be seen from this figure, the proposed method 
shows a smaller NMSE and less error variation than the do other two methods, 
even for heavily corrupted frames. We used a fuzzy prefilter with the methods 
described in [7, 8] also, in order to compare the methods under the same condi-
tions. 

In a second experiment, we evaluated the methods qualitatively. We chose the 
values of 1T , 2T , and 3T  as 37, 39, and 55, respectively, for the ROD detector. 

The results for the 255th frame of the “Foreman” sequence are shown in Fig. 7. As 
can be seen from Fig. 7(b), the still blotches were removed successfully by the 
method presented in [8] (the region shown by the dashed rectangle), but in the 
region that shows a hand moving (shown by the solid rectangle) the method has 
failed. There was no blotch detection here, because in this method the blotches are 
assumed to be known. As shown in Fig. 7(c), the region  containing  the  moving  hand     
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Fig. 5. Three consecutive frames taken from (a) artificially corrupted “Foreman” sequence (b) 
an old motion picture film  
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Fig. 6. NMSE for “Foreman” sequence artificially corrupted by flashing blotches (5%), still 
blotches (2%), and salt and pepper noise (10%) 

(dotted rectangle) was restored successfully by the method presented in [7]. How-
ever, the still blotch (the region shown by the solid rectangle) could not be re-
moved because it was not detected. The blotches were detected automatically here. 
Figure 7(d) shows that all of the critical regions, containing rapid movement and a 
still blotch, were successfully restored by the proposed method. 

3.2   Performance Analysis on the Real Image Sequence 

We applied the same methods to the degraded real image sequence shown in Fig. 
5(b). The detected blotches are shown in Fig. 8(a) for the 52nd frame. The results 
of the methods of [8] and [7] and of the proposed method are shown in Figs. 8(b), 
(c), and (d), respectively. As can be seen from the figure, the blotched regions in 
the rectangles were successfully restored by the proposed method.  

x10-2 
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Fig. 7. A sample of the result of restoration of the artificially corrupted “Foreman” sequence. (a) 
Detected blotches, (b) the result of the method presented in [8], (c) the result of the method pre-
sented in [7], and (d) the result of the proposed method. The solid, dotted, and dashed rectangles 
indicate that the results in those critical areas are poor, moderate, and good, respectively.  

 

Fig. 8. A sample of the result of restoration of a real corrupted image sequence (frame number 
52). (a) Detected blotches, (b) the result of the method presented in [8], (c) the result of the 
method presented in [7], and (d) the result of the proposed method. The solid rectangles indi-
cate regions in which the restoration has failed, and the dashed rectangles show the regions in 
which restoration was successful. 

The methods were implemented in Visual C++.NET without regard to computa-
tional efficiency, and run on a Pentium 2.4 GHz computer with 256 Mbytes of physi-
cal memory. The average time required to restore a frame depends on the size of the 
blotched regions, the size of the images, and the amount of motion. For the corrupted 
image sequence shown in Fig. 5(b), the average process times of the proposed 
method, the method of [7], and the method of [8] were 116 seconds/frame, 72 sec-
onds/frame, and 59 seconds/frame, respectively.    

4   Conclusions 

In this paper, we have proposed a new method for the restoration of motion picture 
films that have deteriorated owing to flashing blotches, still blotches, and impulse 
noise. The main elements of the method are fuzzy prefiltering, modified bidirectional 
motion estimation, blotch detection, and interpolation of missing data by spatiotempo-
ral exemplar-based inpainting. 

The performance of the method was tested not only on an artificially corrupted image 
sequence but also on a naturally degraded video of an old motion picture film, and as 
compared with that of the methods presented in [7, 8]. The results show not only that the 
method automatically detects and removes flashing blotches successfully, but also that it 
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successfully removes still blotches and impulse noise because it combines the advan-
tages of the methods of [7, 8] for the interpolation of such regions. 
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Abstract. We present a novel dedicated hardware system for the extraction of 
second-order statistical features from high-resolution images. The selected fea-
tures are based on gray level co-occurrence matrix analysis and are angular sec-
ond moment, correlation, inverse difference moment and entropy. The proposed 
system was evaluated using input images with resolutions that range from 
512×512 to 2048×2048 pixels. Each image is divided into blocks of user-
defined size and a feature vector is extracted for each block. The system is im-
plemented on a Xilinx VirtexE-2000 FPGA and uses integer arithmetic, a 
sparse co-occurrence matrix representation and a fast logarithm approximation 
to improve efficiency. It allows the parallel calculation of sixteen co-occurrence 
matrices and four feature vectors on the same FPGA core. The experimental re-
sults illustrate the feasibility of real-time feature extraction for input images of 
dimensions up to 2048×2048 pixels, where a performance of 32 images per 
second is achieved. 

1   Introduction 

The second-order statistical information present in an image relates to the human 
perception of texture. It has been successfully utilized in a variety of machine vision 
systems, including biomedical [ 1, 2], remote sensing [ 3], quality control [ 4], and in-
dustrial defect detection systems [ 5].  

A well established statistical tool that captures the second-order statistical informa-
tion is the co-occurrence matrix [ 6].  The calculation of the co-occurrence matrix has 
a complexity of only O(N2) for an input image of N×N-pixel dimensions, but the cal-
culation of multiple matrices per time unit increases the processing power require-
ments. Using software co-occurrence matrix implementations running on conven-
tional general-purpose processors does not enable real-time performance in a variety 
of applications, which require a high number of calculated matrices per time unit. 
Such demanding applications in the field of image processing include analysis of 
video streams [1,6], content-based image retrieval [7], real-time industrial applica-
tions [5] and high-resolution multispectral image analysis [2]. 

Field Programmable Gate Arrays (FPGAs) are high-density reconfigurable devices 
that can be hosted by conventional computer hardware [ 9]. They enable the rapid and 
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low cost development of circuits that are adapted to specific applications and exploit 
the advantages of parallel architectures. A dedicated hardware system that efficiently 
computes co-occurrence matrices in parallel can meet the requirements for real-time 
image analysis applications. The Very Large Scale Integration (VLSI) architectures 
[ 10] provide an alternative to the FPGAs, but have drawbacks such as higher cost and 
time-consuming development. Furthermore, they cannot be reconfigured. 

Within the first FPGA-based systems dedicated to co-occurrence matrix computa-
tions, was the one presented in [ 5, 11]. It involves the computation of two statistical 
measures of the co-occurrence matrix. Moreover, the measures are extracted indi-
rectly, without calculating the co-occurrence matrix itself. A later work by Tahir et al. 
[ 2] presents an FPGA architecture for the parallel computation of 16 co-occurrence 
matrices. The implementation exploits the symmetry, but not the sparseness of the 
matrices, resulting in a large FPGA area utilization. This leads to the need of a sepa-
rate core for the feature calculation. Thus, the system is capable of processing high-
resolution images, but does not achieve real time performance. 

In this paper, we present a novel FPGA based system that allows the parallel com-
putation of 16 co-occurrence matrices and 4 feature vectors. The dedicated hardware 
exploits both the symmetry and the sparseness of the co-occurrence matrix and uses 
an efficient approximation method for the logarithm, enabling real-time feature ex-
traction for input images of dimensions up to 2048×2048 pixels. Furthermore, the 
system comprises of a single core for both the co-occurrence matrix and the feature 
calculation. Thus, no overhead is incurred by reprogramming cores onto the FPGA in 
order to calculate the feature vectors. 

The paper is organized in five sections. Section 2 refers to the second-order statis-
tical features and their integer arithmetic formulation. The architecture of the pro-
posed system is described in Section 3. Section 4 presents the experimental results 
that demonstrate the system performance. The conclusions of this study are summa-
rized in Section 5.   

2   Second-Order Statistical Features 

The co-occurrence matrix of an N×N-pixel image block, encodes the gray-level spatial 
dependence based on the estimation of the second-order joint-conditional probability 
density function Pd, (i, j). It is computed by counting all pairs of pixels of an image 
block at distance d having gray-levels i and j at a given direction .  

= =

=
g gN

i

N

j
d

d
d

jiC

jiC
jiP

1 1
,

,
,

),(

),(
),(

θ

θ
θ

 
(1) 

where 
),(, jiCd θ  = # {(m, n), (u, v) ∈ N×N: f(m, n) = j, f(u, v) = i, |(m, n)-(u, v)| = d, 

∠((m, n), (u, v)) = }, # denotes the number of elements in the set, f(m, n) and f(u, v) 
correspond to the gray-levels of the pixel located at (m, n) and (u, v) respectively, and 
Ng is the total number of gray-levels in the image [ 6]. We choose Ng = 32 (5-bit repre-
sentation).  
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The co-occurrence matrix can be regarded symmetric if the distribution between 
opposite directions is ignored. The symmetric co-occurrence matrix is derived as 

( ) 2/),(),(),( ,,, ijPjiPjiP ddd θθθ += . Therefore, the co-occurrence matrix can be 
represented as a triangular structure without any information loss, and  is chosen 
within the range of 0° to 180°. Common choices of  include 0°, 45°, 90° and 135° 
[ 1, 2, 6, 12]. 

Moreover, depending on the image dimensions, the co-occurrence matrix can be 
very sparse, as the number of gray-level transitions for any given distance and direc-
tion, is bounded by the number of image pixels. 

Out of the 14 features originally proposed by Haralick et al. [ 6] we have consid-
ered four, namely angular second moment (f1), correlation (f2), inverse difference 
moment (f3) and entropy (f4):  
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where μx, μy, x and y are the means and the standard deviations of the marginal prob-
abilities Px(i) and Py(j) obtained by summing the rows and columns of matrix 

),(, jiPd ϑ  respectively. These four measures have been shown to provide high dis-
crimination accuracy that can only be marginally increased by adding more features 
to the feature vector [ 1], [ 13]. 

The calculation of the four measures requires floating point operations that result in 
higher FPGA area utilization and lower operating frequencies. To implement the 
calculation of the measures efficiently in hardware, we have extracted five expres-
sions that can be calculated using integer arithmetic: 
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The logarithm in Eq. (9) is approximated using the method described in Section 3.2, 
whereas IDMLUT is a 32×32-bit Look Up Table (LUT) used for the calculation of the 
Inverse Difference Moment. The result of the calculation in hardware is a vector 

],,,,[ 54321 VVVVVV =  that is used for the calculation of the four Haralick features 
through the use of the following equations: 
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Eqs. (14)-(17) are executed in software. The computation of these equations incurs a 
negligible overhead to the overall system performance. 

3   System Architecture 

The architecture of the proposed system was developed in Very High Speed Inte-
grated Circuits Hardware Description Language (VHDL). It was implemented on a 
Xilinx Virtex-XCV2000E-6 FPGA, which is characterized by 80×120 Configurable 
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Logic Blocks (CLBs) providing 19,200 slices (1 CLB = 2 slices). The device includes 
160 256×16-bit Block RAMs and can support up to 600kbit of distributed RAM. The 
host board, Celoxica RC-1000 has four 2MB static RAM banks. The FPGA and the 
host computer can access the RAM banks independently, whereas onboard arbitration 
and isolation circuits prohibit simultaneous access. 

The system architecture is illustrated in Fig. 1. The FPGA implementation includes 
a control unit, four memory controllers (one for each memory bank), 16 Co-
occurrence Matrix Computation Units (CMCUs) and four Vector Calculation Units 
(VCUs). Each input image is divided into blocks of user-specified dimensions and 
loaded into a corresponding RAM bank using a 25-bit per pixel representation. Each 

pixel is represented by a vector ],,,,[ 13590450 aaaaaa p=  that comprises of five 5-bit 
components, namely, the gray-level ap of the pixel and the gray-levels a0, a45, a90 and 
a135 of its neighboring pixels at 0°, 45°, 90° and 135° directions. 
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Fig. 1. Overview of the system architecture 

All FPGA functions are coordinated by the control unit, which generates synchroniza-
tion signals for the memory controllers, the CMCUs and the VCUs. The control unit also 
handles communication with the host, by exchanging control and status bytes, and re-
questing or releasing the ownership of the on-card memory banks. The system includes 
16 CMCUs that are grouped in four quadruplets. Each CMCU in the quadruplet reads the 
vectors a  that represent an image block from one of the memory controllers and com-
putes the GLCM for a single direction. The 16 CMCU outputs of the four quadruplets are 
connected to the four VCUs that calculate the vectors V  from the GLCMs. These vec-
tors are written to the on-card memory through the memory controllers. 
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3.1   Co-occurrence Matrix Computation Units 

Considering the requirements of the proposed application, the CMCU was developed 
to meet three main objectives: small FPGA area utilization, high throughput per clock 
cycle and high frequency potential. The small area utilization allows the implementa-
tion of the four VCUs on the same core, whereas the high throughput and frequency 
ensure the high efficiency of the design. To meet these three objectives we have con-
sidered various alternatives for the implementation of the CMCUs. These include the 
utilization of the existent FPGA BlockRAM arrays, the implementation of standard 
sparse array structures that store pairs of indices and values, and the implementation 
of set-associative [ 14] sparse arrays. The BlockRAM arrays and the standard sparse 
array structures would not suffice to meet all three objectives. The BlockRAM arrays 
would lead to larger area utilization, compared with the sparse implementations, 
whereas the standard sparse arrays would result in a lower throughput, compared with 
the other implementations, as the cycles needed to traverse the indices of the array are 
proportional to its length. In comparison, the set-associative arrays could be consid-
ered as a more flexible alternative that can be effectively used for achieving all three 
objectives. 
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Fig. 2. Structure of the Co-occurrence Matrix Computation Unit 

The internal structure of the CMCU is illustrated in Fig. 2. Every CMCU is imple-
mented by means of an n-way set-associative array of Nc cells and auxiliary circuitry, 
which include n comparators, an n-to-log2n priority encoder and an adder. The set-
associative arrays can be utilized for efficient storage and retrieval of sparse matrices, 
ensuring a throughput of one access per cycle with a latency of four cycles. An n-way 
set-associative array consists of n independent tag arrays (tags0 - tagsn-1). The tag-
arrays are implemented in the distributed RAM of the FPGA and each of them con-
sists of Nc/n cells. The set-associative array uniquely maps an input pair of 5-bit gray-
level intensities (i, j) into an address of the Nc-cell data array. The data arrays are 
implemented using FPGA Block RAMs, each of which can hold up to 256 co-
occurrence matrix elements. The data array cells contain the number of occurrences of 
the respective (i, j) pairs. 

The circuit is implemented as a four-stage pipeline. In the first two cycles the cir-
cuit reads an input pair of gray-level intensities (i, j) and maps it to the address of the 
BlockRAM cell that stores Cd, (i,j). In the next two cycles the value of Cd, (i,j) is 
retrieved from the data array and incremented by one. The necessary forwarding 
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circuits are implemented, ensuring a stall free operation of the pipeline regardless of 
the input data, thus guaranteeing a throughput of one update operation per cycle with 
a latency of four cycles. After all input pairs (i,j) have been read and the correspond-
ing cells have been updated, the unit outputs the computed GLCM. 

3.2   Vector Calculation Units 

The Vector Calculation Unit receives a GLCM computed by a CMCU and calculates 
the ],,,,[ 54321 VVVVVV =  (Eqs. 6-10) vector. The resulting vector is written to a bank 
of the on-card memory through the corresponding memory controller. The calculation 
of V1 to V4 is implemented in four independent pipelined circuits. The pipeline stages 
for each circuit are a preprocessing stage, calculation stages, a postprocessing stage 
and an accumulation stage. The preprocessing and postprocessing stages facilitate the 
operations needed to calculate the V1 to V5 from the lower triangular representation of 
the GLCM. In the preprocessing stage, the elements of the diagonal of the GLCM are 
doubled and in the postprocessing stage the intermediate results of the computation 
are multiplied by two for all elements that do not belong to the diagonal. The calcula-
tion stages involve LUT access or arithmetic operations such as addition, multiplica-
tion and subtraction. The output of each postprocessing stage is accumulated in a 
register during the accumulation stage. The intermediate results of each operation are 
not truncated or rounded, ensuring a high accuracy of the final results. The width of 
the integers increases after each arithmetic operation. The values of i and j are 5 bits 
wide and their product i·j is 10 bits wide. The value of Cd, (i,j) is 16 bits wide and the 
product i·j·Cd, (i,j) is represented by 26 bits. The accumulators in the final stage of the 
computation are 64 bits wide. 

The calculation of V5 (Eq. 10) is implemented in two separate pipelined circuits. 
The first pipeline has two stages and uses a 64×16-bit BlockRAM for the storage of 
Cx(i). At the first stage, the previous value of Cx(i) is read from the BlockRAM and at 
the second stage it is incremented by Cd, (i,j) and stored back to the memory. A for-
warding circuit ensures correct operation of the pipeline without stalls. The second 
pipeline is activated when all values Cd, (i,j) have been read and Cx(i) has been calcu-
lated. It consists of three stages. At the first stage, Cx(i) is retrieved from the Block-
RAM, at the second it is squared and at the third it is accumulated into a register. The 
value of the accumulator after all Cx(i) have been processed is the correct value of V5. 

Computation of the Logarithm. To support the calculation of V4 (Eq. 9), we imple-
mented a method for the efficient approximation of the base-2 logarithm of 16-bit 
integers. This method results in a 3-stage pipelined circuit that requires 123 slices 
(less than 0.7% of the total FPGA area) and achieves a maximum frequency of 
121.5MHz. The stages of the circuit are: 

1. The integer part of the logarithm nli 2log=  is calculated by means of a priority 
encoder. Its value is the position of the most significant bit of the input integer. 

klknkn i
kk =+<≤<≤ + 1log22 2

1  (18) 

2. The fractional part of the logarithm lf = log2n − li is estimated from Eq. (19), as a 
linear approximation between the points (2k, k) and (2k+1, k+1). The value lf  can be 
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easily extracted from the binary representation of n, by removing its most signifi-
cant bit and right shifting by k bits. 
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3. A novel method has been devised to increase the accuracy of this linear approxi-
mation of the logarithm. The fractional part of the logarithm lf is transformed by 
Eq. (20).  
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The optimal a is the one that minimizes the error E between log2n and the approxi-
mated logarithm ( '
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The error E as a function of a is illustrated in Fig. 3  
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Fig. 3. Estimation of the error E for different values of a 

Although the minimum error was achieved for a=0.22 (E=0.07%), we selected a=0.25 
(E=0.08%) because it is implemented using simpler circuits (just a single shifter) and the 
error is only marginally higher. 

4   Results 

The proposed system was tested using natural raw images of 512×512, 1024×1024 
and 2048×2048-pixel dimensions. The images were divided into blocks of 8×8, 
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16×16, 32×32, 64×64, 128×128 and 256×256-pixel dimensions and given as input to 
the system in order to evaluate its performance. 

In the case of a 16×16-pixel or smaller input block, the triangular co-occurrence 
matrix for Ng = 32 is sparse, as the number of pixel pairs that can be considered for its 
computation, is smaller than the total number of co-occurrence matrix elements. 
Therefore, for input blocks of 8×8 and 16×16 pixels, Nc is set to the maximum possi-
ble value of 64 and 256 respectively.  

In the case of a 32×32-pixel or a larger input block, the co-occurrence matrix is not 
considered sparse, as the number of all possible pixel pairs that take part in its computa-
tion is larger than the total number of its elements (i.e. 528). Therefore, Nc is set to 528.  

By following a grid search approach for the determination of n, it was found that 
the sixteen-way set-associative arrays (n = 16) result in the optimal tradeoff between 
circuit complexity and time performance. 

The proposed architecture, as implemented on the Xilinx Virtex-XCV2000E-6 
FPGA, operates at 36.2MHz and 39.8MHz and utilizes 77% and 80% of the FPGA 
area for 8×8 and 16×16 input blocks respectively, by exploiting the sparseness of the 
co-occurrence matrices. The use of larger input blocks results in approximately the 
same operating frequency reaching 37.3MHz and an area utilization of 83%. 

The image and block dimensions for which the proposed system achieves real-time 
performance are illustrated in Fig. 4. 
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Fig. 4. Performance of the proposed system in images per second 

The results show that as the dimensions of the block increases, the system per-
formance is enhanced. It is worth noting that a real-time performance for video appli-
cations is reached using images of 2048×2048 pixels with a block size of 128×128 
pixels or higher. Best time performance is achieved for 512×512-pixel images with a 
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block of 256×256 pixels, whereas marginal real-time performance is obtained for 
1024×1024-pixel images with a block of 16×16 pixels, and for 2048×2048 with a 
block of 64×64 pixels. 

5   Conclusion 

We presented a novel dedicated hardware system for real-time extraction of second-
order statistical features from high-resolution images. It is based on a parallel FPGA 
architecture, enabling the concurrent calculation of sixteen gray-level co-occurrence 
matrices and four feature vectors. The input images are divided into blocks which are 
loaded to the RAM banks of the FPGA board. The FPGA processes each block and 
writes back four feature vectors. The performance of the proposed system increases as 
the image blocks become larger and the number of calculated vectors decreases. 

The experimental results showed that the proposed system can be used for high 
resolution video applications which require real-time performance, the analysis of 
multiple video streams, and other demanding image analysis tasks.   

The proposed system displays several advantages over the system presented in [ 2], 
which are summarized in the following: 

 It calculates both the co-occurrence matrix and the features in a single FPGA core, 
whereas in [ 2] they are calculated in two separate cores. This avoids the overhead 
introduced by reprogramming each core onto the FPGA. 

 It is capable of producing multiple feature vectors for each image, whereas in [ 2] a 
single feature vector is produced for each image. This facilitates in more accurate 
localization of texture within the image. 

 It uses 25 bits per pixel for the representation of the input images, whereas in [ 2] 
the input images are represented using 5 bits per pixel. This allows a read rate of 
25 bits per clock cycle from each memory bank, which results in a 5 times larger 
input bandwidth. 

 It uses set-associative arrays for the sparse representation of the co-occurrence 
matrices, which enable the inclusion of four vector calculation units in a single 
core. 

The results advocate the feasibility of real-time feature extraction from high-
resolution images, using an efficient hardware implementation.  

Future perspectives of this work include:  
 The implementation of more second-order statistical features in a single FPGA 

core. 
 The implementation of Color Wavelet Covariance (CWC) features [ 1] or other 

features based on co-occurrence matrices. 
 The classification of feature vectors in hardware. 
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Abstract. When magnifying a bitmapped image, we want to increase the
number of pixels it covers, allowing for finer details in the image, which are
not visible in the original image. Simple interpolation techniques are not
suitable because they introduce jagged edges, also called “jaggies”.

Earlier we proposed the “mmint” magnification method (for integer
scaling factors), which avoids jaggies. It is based on mathematical mor-
phology. The algorithm detects jaggies in magnified binary images (using
pixel replication) and removes them, making the edges smoother. This
is done by replacing the value of specific pixels.

In this paper, we extend the binary mmint to greyscale images. The
pixels are locally binarized so that the same morphological techniques can
be applied as for mmint. We take care of the more difficult replacement
of pixel values, because several grey values can be part of a jaggy. We
then discuss the visual results of the new greyscale method.

1 Introduction

A bitmap, or raster graphic, consists of pixels, aligned on a grid. The scene in
the image is described in terms of those pixels’ values. In order to magnify a
bitmap image, the same scene must be represented using more pixels, i.e., image
interpolation is needed.

The simplest interpolation method is pixel replication or nearest neighbour
interpolation; pixel values in the enlarged image are copied from the pixels at
the corresponding position in the original image, or – if that position does not
correspond to a pixel centre – from the pixels nearest to that position. Fig. 1
shows an example for 4 times magnification. The result contains unwanted jagged
edges, called jaggies. For non-integer scaling, other artefacts such as aliasing are
even more undesirable.

Other linear (non-adaptive) techniques are the bilinear and bicubic interpola-
tion [1]. Here, the new pixel values are computed as the (weighted) mean of the 4
and 16 closest neighbours, respectively. Other non-adaptive methods use higher
order (piecewise) polynomials, B-splines, truncated or windowed sinc functions,

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 78–90, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) Original image (b) 4× magnified (c) Interpolated (mmint)

Fig. 1. Pixel replication (b) creates “jaggies”

etc. They create a greyscale image even for a binary input and most of them
introduce additional artefacts, e.g., blurring and/or ringing.

Adaptive or non-linear interpolation methods incorporate prior knowledge
about images to achieve better interpolation results. Edge-based techniques fol-
low the principle that no interpolation across the edges in the image is allowed
or that interpolation has to be performed along the edges. Examples of these
techniques are edi [2], nedi [3] and aqua [4]. Restoration methods use regular-
ization methods or smoothing to limit interpolation artefacts. Some restoration
methods use pde-based regularization [5], isophote smoothing [6], level curve
mapping [7] and mathematical morphology [8]. Our proposed method mmint(g)
(see fig. 1(c)) also belongs to the class of restoration interpolation techniques.

Some other adaptive methods exploit the self-similarity property of an image,
e.g., methods based on iterated function systems [9]. Example-based approaches
are yet another class of adaptive interpolation methods. They map blocks of
the low-resolution image into pre-defined interpolated patches [10, 11]. Adaptive
methods still suffer from artefacts: their results often look segmented, bear im-
portant visual degradation in fine textured areas or random pixels are created
in smooth areas.

In earlier work [12], we presented a non-linear interpolation technique for bi-
nary input images based on mathematical morphology, mmINT (Mathematical
Morphological INTerpolation). The technique performed quite well and had the
advantage of producing a binary output image. The basic idea of the method is
to detect jaggies from a pixel replicated image and then iteratively correct them
by inserting “corner pixels” in or removing them from those jagged edges, while
taking care not to distort real corners.

In this paper we present a greyscale extension of mmint. The new method is
called mmintg. The basic idea is to locally binarize the greyscale input image, in
order to detect the corners of the jagged edges, and then change their pixel values
so the edges become smooth, but still remain sharp and not blurred. mmintg is
backward compatible with mmint, in the sense that the interpolation result of
mmintg on a binary input image is binary too.

The next section gives an introduction to mathematical morphology and the
morphological hit-miss transform used in our algorithm. Section 3 summarizes
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the principles of mmint [12], while section 4 describes the changes made for the
greyscale extension (mmintg). Then we discuss the visual results of mmintg
and we will conclude that this method is good at interpolating line drawings.

2 Theoretical Background

2.1 Morphological Operators

Mathematical morphology [13, 14, 15], originally developed as a theory for binary
images, is a framework for image processing based on set theory. Morphological
image processing can simplify images, preserving objects’ essential shape char-
acteristics, while eliminating irrelevant objects or smoothing their border.

Binary mathematical morphology is based on two basic operators: dilation
and erosion. The dilation and erosion of a set A by a structuring element (short:
strel) B are defined as:1

Dilation : A⊕B =
⋃

b∈B Tb(A)
Erosion : A
B =

⋂
b∈B T−b(A) ,

(1)

with Tb(A) the translation of image A over the vector b. Computing A⊕B and
A
B amounts to sliding the strel over the input image and computing for each
position an output pixel based on the contents of the strel and the contents of
the corresponding part of A.

In general, a dilation results in an enlarged version of the input object. The
net effect of an erosion is to shrink or erode the input object.

The structuring element B can be of any size or shape and is chosen depending
on the image and the application. The origin of the strel is also important, as it
states how the strel is positioned relative to the examined pixel.

2.2 The Hit-Miss Transform

The hit-miss transform “⊗” is a morphological operator used extensively in our
algorithm. It is defined in terms of two disjoint structuring elements: one for the
erosion of object pixels (B), and one for the erosion of background pixels (C).
Its definition is:

A⊗ (B, C) = (A
B) ∩ (Ac 
 C) , (2)

with Ac the complement set of A.
With the hit-miss transform it is possible to detect specific shapes in the

image. We will use it to detect corners. To detect the upper-left corners of an
object, we use the structuring elements (a) and (b) of fig. 2. An alternative for
strel C for the corner detection is the use of the structuring element (c) in fig. 2.

The result of the hit-miss transform is an image in which the foreground pixels
indicate the position of the upper-left corners. Alternatively, the output can also
1 A is the set of the coordinates of the foreground pixels (value 1) in an image. In the

remainder of this paper, we will often simply refer to A as “the (binary) image”.



Greyscale Image Interpolation Using Mathematical Morphology 81

(a) Strel B (foreground) (b) Strel C (background) (c) Strel C′ (b.g. alternative)

Fig. 2. Upper-left corner detection with the hit-miss transform. Specific strels are used.
The black squares are pixels of the strel; the cross is the origin of the strel.

Fig. 3. The difference between “jagged corners” and “real corners” (encircled)

be viewed as a set of corner coordinates. We further refer to this set as a corner
map. In our method we apply the hit-miss transform several times, with rotated
versions of the structuring elements in fig. 2 in order to produce four corner
maps (upper-left, upper-right, lower-left and lower-right).

3 Binary Interpolation Scheme: mmINT

In this section we summarize the mmint method presented in [12]. Its purpose
is to remove the jagged edges from a pixel replicated image, by swapping specific
pixels from background to the foreground and vice versa. We consider the most
frequent colour in the image to be the background.

Different steps can be distinguished in the algorithm:

1. Pixel replication: First the image is pixel-replicated by an integer factor
M . The resulting image contains strong staircase patterns because of the
pixel replication (see for example fig. 1).

2. Corner detection: Using a combination of hit-miss transforms, the algo-
rithm determines the positions of corners, both real and false (due to jaggies)
in the image.

3. Corner validation: Some corners found in the preceding step are real cor-
ners, which have to be retained in the interpolated image. For example, the
corners of the door and walls in fig. 3 are real corners. The corners detected
on the roof are jagged corners, because the ideal roof is a diagonal line. The
aim of corner validation is to distinguish false corners from real ones.

4. Pixel swapping (interpolation): We swap the colours of pixels classified as
false corners, and the colours of some of their neighbours.
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(a) Original image (b) Pixel replicated image (3×)

(c) Partial smoothing of jaggies (d) Interpolated image

Fig. 4. The jagged edges have to be removed, by replacing the values of specific pixels.
The dotted lines show the orientation of the original line (a). The dots show the pixels
that will change value after interpolation.

The above operations (except the first one) are repeated iteratively, each
iteration operating on the output image from the preceding iteration.

In order to illustrate the details of our method, we consider the case of enlarg-
ing an object consisting of a thin line of foreground pixels (see fig. 4). The result
after pixel replication is shown in fig. 4(b) and is clearly jagged. The dotted lines
show the ideal boundaries of the magnified line. The ideal solution would be to
replace all background (white) pixels between the dotted lines with foreground
(black) pixels and to replace all foreground pixels outside the dotted lines with
background pixels. The iterative procedure aims to do just that.

As illustrated in fig. 4(b), the jaggies can be removed by altering the pixel
values at the locations of object and background corners. The positions of these
corners can be located with the morphological hit-miss transform as explained
before, using the structuring elements from fig. 2. We not only look for corners
of the objects, but also for corners in the background. This way, we will have 8
corner maps (4 object corner maps and 4 background corner maps).

If we use the same structuring elements for the detection of object corners and
background corners, then artefacts will occur at lines with barely touching pixels
(see fig. 5 (M = 3)), i.e., pixels with the same value that are only connected by
8-connectivity. Two object corners and two background corners are found at such
8-connectivity. If all those corner pixels change value, then holes are introduced
(fig. 5(b)). To avoid these artefacts, the structuring element shown in fig. 2(b) is
replaced by the one shown in fig. 2(c): for the detection of an upper-left corner,
not only the pixel values to the left and above the current pixel are investigated,
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(a) Before pixel swapping (b) Without compensation (c) With more strict strels

Fig. 5. (a) Barely touching pixels (encircled) could give (b) artefacts after interpolation.
(c) The use of more strict strels for the detection of object corners prevents this.

(a) Complements across the edge (b) Complements along the edge

Fig. 6. Complementary corners: the background corner (black dot) has different com-
plementary corners (white dots) at specific relative coordinates. Magnification M = 3.

but also the neighbouring pixel at the upper-left. This new strel is only used
for the detection of a foreground corner, because otherwise no interpolation will
take place at all at lines with barely touching pixels.

In the corner validation step, we distinguish between real and jagged corners
by searching for one or more complementary corner pixels in a local neighbour-
hood, and this for every detected corner pixel, in each of the 8 corner maps.
A complementary corner of an object corner co is a corner in the background
(or vice versa) that lies at specific relative coordinates w.r.t. co. Fig. 6(a) shows
a pixel-replicated line (magnification M = 3) with a background corner and
two complementary corners across the edge at a distance of M pixels. Comple-
ments along the edge (fig. 6(b)) are located at M − 1 pixels in one direction
and 1 + (θ − 1)(M − 1) in the other direction (with θ the iteration step). The
existence of a complementary corner indicates the presence of a jagged edge, and
thus a corner with at least one complementary corner will not be removed from
the corner map.

In the pixel swapping step, we change the value (0 or 1) of the pixels (and
surrounding neighbours) that are detected as corners of a jagged edge. Which
pixels exactly need to change, is defined by the n times dilation of the corner
maps with the structuring element B, with B shown in fig. 8(a) for the upper-left
corner map. n = �M

2 −1 for odd magnification M ; for even M , n = �M
2 −1 for

the background and n = �M
2  − 2 for the objects in the odd iterations, and the

situation is reversed in the even iterations. If n < 0, then no pixels are swapped.
At this point, lines with angles other than 0◦, ±45◦ or 90◦ are not yet com-

pletely smooth. In our example, fig. 4(c) shows the result of the first iteration
step of our method, while we want to obtain fig. 4(d). Therefore the algorithm
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B (1st step) B (2nd step) B (3rd step)

C (1st step) C (2nd step) C (3rd step)

Fig. 7. The hit-miss structuring elements are different for every iteration step

1st step 2nd step 3rd step

Fig. 8. The interpolation structuring element is different for every iteration step

is repeated until all appropriate changes have been made (on average 15 times),
using different (and larger) structuring elements in successive iteration steps for
the hit-miss transform (see fig. 7) and pixel swapping step (see fig. 8). Notice
that the structuring elements are less symmetric for θ > 1, so the number of
corner maps doubles because we also have to look for corners using the mirrored
strels, besides rotated versions [12].

The interpolation result of fig. 1(a) using mmint is shown in fig. 1(c).

4 Extension to Greyscale: mmINTg

In this paper we introduce the greyscale extension of mmint. In the binary case,
only two possibilities exist: a pixel is part of the fore- or the background. Also,
when we look for jagged edges, the result is a detection of a corner or no corner.

The greyscale case is more complicated: the classification of a pixel to the
foreground or the background is not straightforward, which makes the detection
of corners using the binary hit-miss transform more difficult. We therefore adapt
the corner detection step (see section 4.1). For this purpose the pixels are locally
binarized, before applying the hit-miss operation. A majority ordering is used
for the classification of a pixel as a foreground or a background corner.

In the pixel swapping step (see section 4.2), the values of the neighbouring
pixels are taken into account to calculate the interpolated pixel value. This
algorithm for greyscale interpolation is called mmINTg.

We will now discuss the new corner detection and pixel swapping algorithm.
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Fig. 9. If white is considered background, then no black corners will be detected, which
results in a “real” edge

4.1 New Corner Detection Method for Step 2

Binarization. In order to apply the binary hit-miss transform to detect cor-
ners, we binarize the pixel values. A greyscale hit-miss transform would also be
possible [16, 14], but then the result is still a greyscale image, while we wish for
a binary result (i.e., corner or not). The binarization is done locally and only the
pixels that are then covered by the structuring elements are taken into account
(see fig. 2 for the strels used in the first iteration step). The threshold value
T (x, y) is defined by:

T (x, y) =

{
1
2 (m + M) + α, if I(x, y) ≥ 1

2 (m + M)
1
2 (m + M)− α, if I(x, y) < 1

2 (m + M)
, (3)

with m and M respectively the minimum and maximum value of the set of pixels
defined by the structuring elements, I(x, y) is the grey value of the currently
checked pixel, and α is a threshold for classifying more neighbouring pixels into a
class different to the one of the current pixel. We have experimentally found that
α = (M −m)/10 is a good choice. The current pixel is always given the binary
value 1, the value of the other considered pixels depends on their classification
w.r.t. the current pixel.

Majority Ordering. In section 3 we mentioned that different strels are used
for foreground and background corner detection. Also, the corner validation step
looks at complementary corners, which are part of the opposite class as the pixel
under investigation. This means that we need to classify the pixels as either
possible object corner or background corner.

We utilize the majority sorting scheme (mss) [17, 18] to order the grey values
locally in function of their presence in a local window. If the grey value of the
currently investigated pixel appears less than the grey values of the other pixels
covered by the strels, then the pixel is considered foreground and strels (a) and
(c) from fig. 2 are used for the upper-left corner detection.

The area in which we calculate an ordering map with the mss is an 11 ×
11 window in the original low-resolution image, since this size gives satisfying
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(a) Original image (b) 3× magnified (pixel replication)

(c) hq interpolated (d) mmintg interpolated

Fig. 10. The interpolation of a greyscale cartoon sprite

interpolation results. If the window is taken too small, then the ordering will be
less accurate, because the probability to get the same counts for different grey
values will become higher. If we take the window too large, then some pixels
might not be interpolated. For example, fig. 9 shows a white line on a black
background. We expect this line to be interpolated, but if in a larger window
the white pixels are in the majority, then white is considered as background.
In this case, no interpolation will occur, since different structuring elements are
used for object and background corner detection. There will only be detection
of white corners, which will not pass the corner validation step, because there
are no black corners detected in their neighbourhood.

The majority ordering only has to be performed in the first iteration step.
From then on we know whether the pixel belongs to the fore- or background.

4.2 New Interpolation Method for Step 4

In the binary case, the values of the jagged corner pixels and surroundings are
replaced by the opposite colour, i.e., black becomes white and white becomes
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(a) Original image

(b) 3× magnified (pixel replication)

(c) hq interpolated

(d) mmintg interpolated

Fig. 11. The interpolation of a greyscale line graphic
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black. With greyscale images, we cannot simply swap the pixel values to the
opposite grey value. The grey values of the surrounding pixels must be taken
into account, so that the transition between grey values does not occur abruptly.
The new pixel value is the average grey value of the pixels that are covered by
the background hit-miss structuring element when positioned at the corner pixel
(see fig. 2(b) for the strel used in the first iteration step). The resulting value
is thus defined in function of the surrounding values of the other class. For a
binary image, the effect is the same as with mmint, since the average is taken of
pixels of the same colour, a colour that is opposite to that of the current pixel.
As a consequence, no blurring occurs.

5 Results

mmint is a technique that is very good at interpolating line art images, like
logos, cartoons, maps, etc. Our proposed greyscale extension, mmintg, also per-
forms very well on this kind of images. When binary images are processed, the
same results can be expected with mmintg as with mmint. When the mss
locally produces the opposite ordering as on the entire image (which is done
for mmint to define the background colour), this will lead to slightly different
results. Situations like the ones in fig. 9 will be tackled by mmintg.

The figures 10 and 11 show images with clear sharp edges. We compare our
greyscale method with hq, a technique that is very competitive with mmint
when interpolating binary images [10, 12]. In the first figure, we notice that
mmintg interpolates the lines better and the result is less blurred. The results

(a) Pixel replication (M = 4) (b) mmintg interpolated

Fig. 12. The interpolation with mmintg of a real life scene (a cut-out of the Lena
image)
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shown in fig. 11 look very similar, except that the rotated squares look blurred
with hq. Also, hq introduces too much unnecessary colours in the arrows at the
right, i.e., when 8-connectivity lines are present.

Fig. 12 shows a real life scene containing a lot of texture and grey value vari-
ation. mmintg produces quite good results, but because the edges in the image
are less sharply defined and more grey values are involved, the interpolation
looks segmented, i.e., the grey value change after interpolation is too abrupt.

6 Conclusions

We presented a greyscale solution for the binary morphological interpolation
technique mmint. A temporary local binarization of the grey values, combined
with a local majority ordering, makes it possible to perform the morphological
hit-miss transform on the image. The grey values of the pixels that need to
change value, are defined in terms of neighbouring pixel values.

The visual quality of the new mmintg is very good for cartoon sprites and
line graphics. Its results are in most cases visually better than those of hq.
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Abstract. For nonseparable bidimensional wavelet transforms, the cho-
ice of the dilation matrix is all–important, since it governs the downsam-
pling and upsampling steps, determines the cosets that give the positions
of the filters, and defines the elementary set that gives a tesselation of
the plane. We introduce nonseparable bidimensional wavelets, and give
formulae for the analysis and synthesis of images. We analyze several
dilation matrices, and show how the wavelet transform operates visually.
We also show some distorsions produced by some of these matrices. We
show that the requirement of their eigenvalues being greater than 1 in
absolute value is not enough to guarantee their suitability for image pro-
cessing applications, and discuss other conditions.

Keywords: quincunx, nonseparable, dilation, wavelet.

1 Introduction

In the last 20 years, wavelet transforms have adquired great importance. They
have proved efficient in many domains, and the number of their applications
is continually increasing. As a tool in image processing, wavelet transforms are
being applied to image compression (they are the basis of the standard JPEG
2000 [1]), image denoising, texture analysis and pattern recognition.

Wavelets functions are bases which have excellent time (or space) localization,
and good frequency localization. In one dimension they are dilations (changes in
scale in powers of 2 ) and integer translations of one same function Ψ(x) called
wavelet. Representing a signal in these bases, we obtain a decomposition of the
signal in sums of details of different resolutions, plus a coarse approximation of
the signal.

The wavelet transform can be calculated by means of the fast wavelet trans-
form, through convolutions of the signal with two filters, one lowpass filter and
one highpass filter, followed by a decimation by 2, i.e. only the even coefficients
are retained. Because of the properties of the wavelet, this operation is reversible.

To process an image, the traditional manner is to apply twice a one-dimensional
wavelet transform, first by rows and then by columns. This is called the separable

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 91–102, 2006.
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bidimensional transform. It originates 3 different detail coefficients, in the hori-
zontal, vertical and diagonal directions, which does not correspond to our visual
system. Seeking a more isotropic treatment of the details of an image, more gen-
eralized wavelets were investigated, and truly bidimensional wavelets were found.
These functions, defined on the real plane, cannot be factorized into a product of
functions of one argument. They are called nonseparable wavelets.

Since bidimensional nonseparable wavelets are defined on the plane, their
dilation factor is a 2 × 2 matrix, called the dilation matrix. It can be equal to
twice the identity matrix, or can have other values. Its elements must be integers,
and it must be an expansion of the plane. For this, the requirement generally
used is that its eigenvalues be > 1 (in absolute value). Some authors ([2], [3]),
require instead that the singular values be > 1.

If |D| = 2, the number of wavelets associated to one scaling function is 1.
That is, at each scale of the wavelet transform, we will have only one kind of
detail coefficients.

The choice of the dilation matrix is all–important. It governs the decimation
(or downsampling) and the upsampling steps of the wavelet transform or an-
titransform. It determines a grid that defines the positions of the filters. The
orthogonality condition of the filter bank, the degree of polynomial approxima-
tion of the scaling function, and the behaviour of the filters (as good lowpass
or highpass filters) can be written in terms of the filters and their positions,
which depend on the dilation matrix (see [4], [2], [5] [6] [7]). Finally, in order to
prove the Holder continuity of the wavelets, a tesselation of the plane has to be
made with shifts of an elementary set [8], [2]. This elementary set is completely
determined by the dilation matrix.

Before applying these nonseparable wavelet transforms, it is imperative to
know what visual effects will result.

We shall analyze four different dilation matrices, having determinant equal to 2
(in absolute value). They are Di, for i = 1 . . . 4; their values are given in Section 3.

Kovacevic and Vetterli [4], Cohen and Daubechies [2], found examples of non-
separable wavelets with matrices D1 and D2.

Ayache [9], Kovacevic and Vetterli [10], He and Lai [11] and Faugère et. al.
[12] gave examples of nonseparable wavelets with dilation matrix D = 2I.

Belogay and Wang [13] found examples of orthogonal, nonseparable wavelets
with dilation matrix D4.

In previous papers were constructed examples of nonseparable multiwavelets
for matrices D1 and D2 ( [14], [15], [7]).

In [16], dilation matrices are analyzed for cubic lattices.
In this paper, we analyze different possible dilation matrices for the plane.

We introduce nonseparable bidimensional wavelets, and give formulae for the
analysis and synthesis of images. We show pictures of wavelet processing for D1.
We show that the requirement (on the dilation matrices) of their eigenvalues
being greater than 1 in absolute value is not enough to guarantee their suitability
for image processing applications, and discuss this condition versus the condition
on the singular values.
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2 The Nonseparable Bidimensional Scaling Function
and Wavelet

Wavelets are associated to a scaling function. A one dimensional scaling function
Φ(x) verifies a dilation or refinement equation

Φ(x) =
N∑

k=0

hk Φ(2x− k).

This indicates that Φ is equal to a weighted sum of integer shifts of a compressed
version of itself. To obtain a compressed version of Φ, we multiply the argument
by a factor of 2.

For the nonseparable bidimensional case, a scaling function

Φ : �2 → �,

is a function that also verifies a dilation or refinement equation:

Φ(x) =
∑

k∈Λ⊂Z2

hk Φ( D x− k ), (1)

where the values hk correspond to a 2 dimensional filter, k = (k1, k2) ∈ Z2, and
D is a 2× 2 matrix called dilation matrix. We multiply x = (x1, x2) = [x1 x2]T

by the dilation matrix D, to obtain a condensed version of Φ.
By abuse of notation, Φ( D x − k ) indicates that we apply Φ to the 2 com-

ponents of vector

D x− k =
[
d11 d12

d21 d22

] [
x1

x2

]
−
[
k1

k2

]
.

The approximation spaces Vj are generated by integer shifts of the scaling
function Φ, or a contracted or dilated version of Φ:

Vj = gen{Φ(Dj x− k)}k∈Z2 .

They are nested subspaces

.. ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ ..,

their union is dense in L2(�), and their intersection is the null function.
In the following we shall only consider the cases in which the set

{Φ(x− k)}k∈Z2

is orthonormal.
A nonseparable bidimensional wavelet verifies:

Ψ : �2 → �,

Ψ(x) =
∑

k∈Λ⊂Z2

gk Φ( D x− k ), (2)

where g is a 2 dimensional filter.
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Table 1. Properties of the dilation matrices

Dilation matrix Determinant eigenvalues singular values

D1 −2
λ1 = +

√
2

λ2 = −√
2

σ1 =
√

2
σ2 =

√
2

D2 2
λ1 = 1 + i
λ2 = 1 − i

σ1 =
√

2
σ2 =

√
2

D3 2
λ1 = 2
λ2 = 1

σ1 = 2.28824561
σ2 = 0.874032

D4 −2
λ1 =

√
2

λ2 = −√
2

σ1 = 2
σ2 = 1

The detail subspace Wj is the orthogonal complement of Vj in Vj+1,

Vj+1 = Vj ⊕Wj ,

and it is generated by shifts of the wavelet

Wj = gen{Ψ(Dj x− k)}k.

Remark 1. If the dilation matrix is D = 2I, and if there exist onedimensional
filters f and � such that hi,j = fifj and gi,j = �i�j, then h and g are separable
filters, and we have a separable wavelet.

3 Dilation Matrices

As stated, we shall deal with dilation matrices having determinant equal to ±2.
Their entries must be integers, and we require that their eigenvalues |λk| > 1;
although we shall allow one of the eigenvalues to have norm 1. With these require-
ments, four different matrices can be constructed; others will be a permutation
of these four.

We shall focus our analysis on

D1 =
[

1 1
1 −1

]
, D2 =

[
1 −1
1 1

]
, D3 =

[
2 1
0 1

]
and D4 =

[
0 2
1 0

]
.

D1 is a reflection on axis
[
1
√

2− 1
]T

, followed by an expansion in
√

2.
D2 is a rotation in π

4 , followed by an expansion in
√

2. D3 is a shear.
D4 is an expansion in one direction, followed by a reflection on x2 = x1.
In table 1 are listed their eigenvalues and singular values.

4 Cosets

A dilation matrix D induces a decomposition of the set of all pairs of integers,
into several cosets. The number of cosets is determined by the number of classes
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of quotient Z2/DZ2, which is equal to |D| = |det(D)|. If all the entries of D are
integers, then its determinant is also an integer.

In the cases we are concerned with, |D|=2, and we have 2 cosets Γ0 and Γ1,

Z2 = Γ0 ∪ Γ1 ; Γ0 = {DZ2} ; Γ1 =
{

DZ2 +
[
1
0

]}
. (3)

In the following, the cosets are drawn with crosses and circles.
For dilation matrices D1, D2 and D3, we have the following cosets

O × O × O
× O × O ×
O × O × O

(4)

which are displayed as the black or white squares of a chessboard. They conform
the quincunx grid.

For dilation matrix D4, we have a different grid. The 2 cosets are interleaved
columns of Z2.

× O × O ×
× O × O ×
× O × O ×

.

5 Up and Downsampling with D

When downloading an image from a database, first a small image with poor
definition is shown (thumbnail), which enables the user to recognize the image
promptly and cut down or finish the transmission. Then a progressive transmis-
sion is done. The thumbnail image may be obtained from the approximation
coefficients of the wavelet transform, which includes many downsampling steps
to reduce the size of the image. The process is useless if the thumbnail image is
distorted.

Let us see the definition and the visual effects of downsampling and upsam-
pling with the 4 dilation matrices, operating on the original image in Fig. 1.

Definition 1. Downsampling with matrix D:

y = x ↓ D ⇐⇒ y(k) = x(Dk)

When we downsample an image with D, we eliminate the pixels having their
index in coset Γ1. We keep the pixels x(j) = x(j1, j2) standing on coset Γ0, that
is, j = Dk, and relocate them at position k = D−1j.

In the case of the first 3 dilation matrices, we have eliminated the pixels on
the black squares of the chessboard. In the case of D1, the image is contracted
and reflected. It has to be downsampled twice to recover its original position.
In the case of D2, the image is contracted and rotated. In the case of D3, the
image is contracted in one direction, and elongated in the other. In the case of
D4, the image is contracted in the direction of one of the axes, and reflected on
line x2 = x1.
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Fig. 1. Original image

In the first 2 cases, the image is reflected or rotated, but the operation is an
isotropy. Therefore, the distance between any 2 points in the image is maintained.
In the case of D3, the image is severely distorted. In the case of D4, it has been
contracted along one of the axes; in the orthogonal direction it maintains its
original size.

Definition 2. Upsampling with matrix D:

y = x ↑ D ⇐⇒ yk =
{

xr if k = Dr
0 else .

When an image is downsampled, and afterwards upsampled, it recovers its ini-
tial size and orientation. The pixels that were eliminated in the downsampling
process are zero, and marked in black in Fig. 4, where a detail of the images is
shown. The influence of the different cosets can be clearly appreciated.

6 The Wavelet Transform

Let c
(0)
· be the original image. Let f0(x) be the function associated to the original

image, f0 ∈ V0. If we decompose f0(x) into the sum of its projections on V−1

and W−1, we have

f0(x) =
∑

k∈Z2

c
(0)
k Φ(x − k)

= f−1(x) + r−1(x)

=
∑

k∈Z2

c
(−1)
k

1√|D|Φ(D−1x− k) +
∑

k∈Z2

d
(−1)
k

1√|D|Ψ(D−1x− k).
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(a) Phone downsampled with D1 (b) Phone downsampled with D2

Fig. 2. Effects of downsampling

Applying the orthogonality condition, and equations 1 y 2, we deduce the for-
mulae for analysis

c
(−1)
k =

1√|D| ∑
j∈Z2

h(j−Dk)c
(0)
j , (5)

d
(−1)
k =

1√|D| ∑
j∈Z2

g(j−Dk)c
(0)
j , (6)

which enable us to calculate the coefficients of one step of the wavelet transform.
Applying the same formulae to c

(−1)
k instead of c

(0)
k , we have 2 steps of the

transform.
These steps are shown in Figure 5, where we have applied the Kovacevic-

Vetterli [4] which operates with D1. The detail coefficients are very small and
had to be rescaled to appreciate the details.

In a similar way, we obtain the synthesis formula

c
(0)
k =

1√|D|
⎡⎣∑

j∈Z2

h(k−Dj)c
(−1)
j +

∑
j∈Z2

g(k−Dj)d
(−1)
j

⎤⎦ (7)

Formulae 5 and 6 can be understood as convolutions of the image with filters h́
and ǵ, (where ǵ indicates the reverse of filter g), followed by downsampling with
D, whereas formula 7 indicates upsampling with D, followed by convolutions
with h or g, summed up.
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(a) Phone downsampled with D3 (b) Phone downsampled with D4

Fig. 3. Effects of downsampling

7 Condition on Eigenvalues Versus Singular Values

It is not desirable to have distorsions in an image. A matrix is an isotropy if its
singular values are equal; that is why D1 and D2 work well.

In addition, a dilation matrix must be an expansion of the plane. We claim
that it not enough to have an expansion in any norm, we need to have an
expansion in Euclid norm, that corresponds visually to our notion of distance.

Lemma 1. If the singular values of D verify σk > 1 for k = 1, 2, then D is an
expansion of the plane in Euclid norm, and D−1 is a contraction in the same
norm.

Proof. By the singular value decomposition of matrix D, there exist two 2 × 2
orthogonal matrices U and F such that

UT DF = S =
[

σ1 0
0 σ2

]
,

where
σk =
√

λ (DT D) ,

and
σ1 ≥ σ2 > 1

by hypothesis. Then
D = U S FT ,

D−1 = F S−1UT ,
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(a) Phone downsampled and upsampled
with D1, D2, or D3.

(b) Phone downsampled and upsampled
with D4

Fig. 4. Effect of subsampling followed by upsampling

so that ∥∥D−1
∥∥

2
= max

k

1
σk

=
1
σ2

< 1.

Then

‖x‖2 =
∥∥D−1Dx

∥∥
2
≤ ∥∥D−1

∥∥
2
‖Dx‖2 ,

σ2 ‖x‖2 =
∥∥D−1
∥∥−1

2
‖x‖2 ≤ ‖Dx‖2

and D is an expansion of the plane in Euclid norm. Besides,∥∥D−1x
∥∥

2
≤ ∥∥D−1

∥∥
2
‖x‖2 =

1
σ2
‖x‖2 ,

and D−1 is a contraction in Euclid norm.

Lemma 2. Let λk be the eigenvalues of a real n×n matrix A, and σk its singular
values. If σk > 1, ∀k, then |λk| > 1, ∀k.

Proof. Since AT A is a symmetric positive definite matrix, the Rayleigh quotient
verifies:

xT AT Ax

xT x
≥ σ2

m ∀x (8)

whre σ2
m is the smallest eigenvalue of AT A, and by hipothesis σ2

m > 1. Let x be
the eigenvector of A corresponding to λk; replacing in Eq. 8), we obtain λ2

k > 1.
Then |λk| > 1 ∀k.
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Fig. 5. 2 steps of the KV transform: d
(−1)
k , d

(−2)
k and c

(−2)
k

Remark 2. The inverse is not true. For example, matrix

A1 =
[

0.6 0.3
3.0 −0.6

]
has eigenvalues λ = ±1.1225, and singular values σ1 = 3.1057, σ2 = 0.4057.

Thus we have shown that it is not enough that the eigenvalues be larger than 1
in absolute value to guarantee that the matrix is an expansion in 2 norm.

8 The Elementary Set U

Let L = {e0, e1} = {(0, 0), (1, 0)} be a set of representatives of group Z2/DZ2.
Let f be the function

f : �2 → �
f(x) = f(Dx− e0) + f( D x− e1 ).

It can be proved that there exists a compact set U = U(D,L) in �2– see [2], of
which f is the characteristic function, that satisfies

U = {D−1(U + e0)} ∪ {D−1(U + e1)} = D−1(U + L), (9)

meaning that the elementary set is the disjoint union of 2 reduced copies of itself.
In Figs. 6 and 7 we have drawn the elementary sets for D1, D2 and D4. We have
colored subset D−1U in black, and subset D−1(U + e1) in grey. The elementary
set for D3 is an interval: [0 1].

In the case of D1, the elementary set is a parallelogram; in the of D2, the
elementary set is the so–called twin dragon, and in the case of D4, it is a square.
To determine the continuity of the wavelet, a tesselation of the plane with these
sets has to be done. With matrix D3 no continuous wavelet can be constructed
on the plane.
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(a) Elementary set U for D1.
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(b) Elementary set U for D2.

Fig. 6. Elementary sets associated to D1 and D2

  

Fig. 7. Elementary set associated to D = D4

9 Conclusions

We have introduced the nonseparable wavelet transform, and show its visual
effects. Most of these effects are a consequence of the choice of the dilation
matrix. We have analyzed several dilation matrices, and shown how some of
them produce distorsions.

We have explained why requirements on the singular values of a dilation
matrix are better than the requirements on its eigenvalues; simple conditions give
an expansion in Euclid norm, and ensure that they will not produce distorsions.
We have also drawn the elementary set determined by the matrices analyzed.
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Abstract. A new evolutionary approach for construction of uniform im-
pulse noise filter is presented. Genetic programming is used for combining
the basic image transformations and filters into tree structure, which can
accurately estimate noise map. Proposed detector is employed for build-
ing switching-scheme filter, where recursively implemented α-trimmed
mean is used as the estimator of corrupted pixel values. The proposed
evolutionary filtering structure shows very good results in removal of
uniform impulse noise, for wide range of noise probabilities and different
test images.

1 Introduction

One of the common problems in image processing is impulse noise. It is often
generated as a result of acquisition or transmission errors [1]. Relatively small
amount of this noise can severely degrade image quality. Also, it can be a cause
of serious problems in further processing, especially when linear techniques are
applied. Hence, impulse noise filtering is a required preprocessing stage and
a number of nonlinear techniques have been developed in order to treat this
problem properly.

Regardless of the origin of image impulse noise, it has two major properties:
only certain percentage of image pixels is contaminated, and the intensity of a
damaged pixel is significantly different when compared to intensity of the pixels
in its neighborhood. Therefore image containing impulse noise x can be described
as follows:

xij =
{

nij , with probability p
zij , with probability 1− p

, (1)

where zij denotes noiseless image pixel at the location (i, j), nij∈ [Nmin, Nmax]
are noisy impulses and p is noise probability. Frequently used impulse noise
model is salt-and-pepper noise, where noisy pixels take either Nmin or Nmax

value. In this paper we focus on more general random-valued or uniform impulse
noise model, where nij can take any value within the given interval ([0, 255] for

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 103–113, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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grayscale images), with uniform probability distribution. Differences between
values of noisy pixel and noise-free pixels in its local neighborhood are more
significant for salt-and-pepper noise then for uniform impulse noise. As a result,
removal of uniform impulse noise is more challenging task and the majority of
existing filters fail with this noise model.

Nonlinear techniques, used for impulse noise removal, are mainly based on
median and its modifications [2]. These robust estimators are resistant to high
concentrations of impulse noise. On the other hand, they are prone to destroying
fine image details. If the filter is applied uniformly across the image, this blur-
ring effect can be very strong and noise-free pixels are unnecessarily modified.
Consequently, modern impulse noise filters use switching scheme mechanism [3],
consisted of detector, whose task is to identify noisy impulses, and estimator
which can be any of classical robust estimators. Only pixels detected as noisy
will be replaced by estimated values. Performances of such filters are mainly
influenced by quality of the detector. Good detector has to meet two opposing
demands: to suppress an impulse noise and to preserve fine details. Contempo-
rary algorithms [2]-[7] try to solve this problem by analyzing difference between
value of processing pixel and one or more local neighborhood statistics. Differ-
ences are compared to corresponding thresholds and decision if pixel is noisy or
noise-free is based on the results of these comparisons.

Recently, an impulse detection method based on pixel-wise MAD (PWMAD)
is proposed for impulse noise removal [8]. It identifies noisy pixels by iterative
removal of image details. Result of these consecutive image details filtering is map
of image regions with no details, but only significant variations in illumination
related to noise. Transition from this map to noise map is straightforward.

In this work, the approach to detector design used in PWMAD is extended.
Instead of ad-hoc construction where several iterations of median filtering are
used, genetic programming (GP) [9], relatively recent and fast developing ap-
proach to automatic programming, is employed to construct optimal filter from
a broader set of simple filters. In GP, solution to a problem is represented as a
computer program in the form of a parse tree, consisting of primitive functions
and terminals. It has been chosen among other learning algorithms due to its
capability to fit extremely nonlinear functions easily and mitigate influence of
futile features. GP employs evolutionary principles of natural selection and re-
combination to search the space of all possible solutions (combinations of filters)
in order to find the most satisfactory one. The obtained GP tree should trans-
form noisy image into noise map. GP has been chosen among other learning
algorithms for several reasons:

– The obtained tree is composed of simple building blocks – common image
processing filters and operations,

– GP evolution is capable of rejecting irrelevant primitive filters, and keeping
only those that contribute significantly to overall filtering performance,

– The structure of the GP tree can be analyzed in order to bring conclusions
about the influence of its building blocks,

– GP has capability to fit extremely nonlinear functions easily.
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Tree structures, which are used for transforming noisy image into noise map,
are trained in such a manner that iterative filtering effectively suppresses noise
while preserves image details from blurring. Attention is also given to estima-
tor construction. Instead of using simple median, recursive α-trimmed mean is
employed for improvement of the filtering performance.

This paper is organized as follows. The design method of an impulse detector
is presented in Section 2, while the practical solution found by this new approach
is presented in Section 3. Section 4 contains analysis and comparisons of the new
filter performances and finally, conclusions are drawn in Section 5.

2 Proposed Method

Proposed approach is based on standard switching scheme design. Let xij and yij

denote pixels with coordinates (i, j) in a noisy and a filtered image, respectively.
If the estimated value of a particular noisy image pixel is ϕ(xij), then the filtered
image is defined as

yij = ϕ(xij)Mij + xij(1−Mij), (2)

where Mij is the binary noise map, containing ones at the positions detected as
noisy and zeros elsewhere.

2.1 Detector Design

Detection process is divided into two steps. Firstly, noisy image is transformed
through the filtering tree-structure. Afterwards, result of this transformation
is compared to threshold Td. Values larger than threshold are considered as
detected noise impulses and designated as “1” in noise map. Values smaller than
threshold, denoted as “0” in noise map, indicate noise-free locations.

It has already been shown that it is possible to construct complex filtering
structures automatically by means of genetic programming [12]. In this approach
GP tree is built from simple image filters and operations presenting GP primitive
functions. Tree-structure for noise detection is constructed in a similar way,
where common impulse noise filters are used as primitive functions (e.g. median,
centre-weighted median, Min and Max, etc.). For purpose of transforming noisy
image into noise map, the terminal set consists of only one element – input noisy
image, while the primitive function set is composed of standard one-input filters
and simple two-input operations.

Terminal and Function Set. Let WK denote rectangular window centered
at the position (i, j), where the size of the window is (2h + 1) × (2h + 1) and
K = 2h+1. A set of pixels contained in the window WK , centered at the position
(i, j), is defined as:

WK
ij = {xij | − h ≤ i ≤ h, − h ≤ j ≤ h, K = 2h + 1} . (3)

Each one-input image filter transforms input image xij into output image yij .
If the filter is two-input then xij is replaced by x1ij and x2ij . Image pixels can
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take an integer value in range [0,Vmax], where Vmax = 255. Filter output yij is
set to 0 if it is smaller than zero, and to Vmax if it is larger then Vmax. Definition
of filters used as primitive functions in genetic programming, along with their
GP coding notation, are given as follows:

1. Absolute deviations from the median {d med3x3,d med5x5}

yij =
∣∣xij −median(W 3

ij)
∣∣ , yij =

∣∣xij −median(W 5
ij)
∣∣ , (4)

2. Absolute deviations from centre-weighted median {d cwm3x3,d cwm5x5}

yij =
∣∣xij −median(W 3

ij)♦2k
∣∣ , k = 2, (5)

yij =
∣∣xij −median(W 5

ij)♦2k
∣∣ , k = 6,

where 2k weight is given to central pixel and symbol ♦ represents repetition
operation,

3. Minimum and Maximum {Min,Max}

yij = min{W 3
ij}, yij = max{W 3

ij}, (6)

4. Inversion {Inv}
yij = Vmax − xij , (7)

5. Bounded sum and product {BoundedSum,BoundedProd}

yij = x1ij + x2ij , yij = x1ij + x2ij − Vmax, (8)

6. Logical sum and product {LogicSum,LogicProd}

yij = max{x1ij , x2ij}, yij = min{x1ij , x2ij}, (9)

7. Algebraic sum and product {AlgebraicSum,AlgebraicProd}

yij = x1ij + x2ij − x1ij · x2ij

Vmax
, yij =

x1ij · x2ij

Vmax
. (10)

Note that first three filter types are based on standard median, center weighted
median and simple morphological filters. An idea was to use these filters to
capture important information for impulse noise detection. The purpose of the
other operators was to combine that information with logical and arithmetic
functions.

Fitness function. The fitness function is based on similarity measure between
ideal and calculated noise map for training image. It is composed of two factors:
sensitivity and specificity. If noisy pixels are defined as positive samples and
noise-free pixels as negative samples the fitness is given as

fitness =
1
3

(sensitivity + (2× specificity)) =
1
3

(
t pos

pos
+ 2

t neg

neg

)
. (11)
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The numbers of positive and negative samples are denoted as pos and neg, while
the numbers of true positive and true negative samples are denoted as t pos
and t neg. Fitness definition guaranties that evolution process will lead in the
direction of the solutions which are more accurate in detecting noise-free pixels
than noisy impulses. Thus, when the image is affected by small percent of noisy
impulses, uncorrupted pixels will not be needlessly filtered. Furthermore, for
larger impulse concentrations in image, filter can be applied multiple times in
order to make better results.

GP parameters. Evolutionary process was performed with the following ge-
netic parameters: crossover 55%, mutation 40%, reproduction 5%, population
size 200, number of generations 100. Maximal number of nodes in a tree was
set to 40 in order to prevent bloat and avoid overfitting. New generations were
created by using tournament selection. This method chooses each parent by ran-
domly drawing a number of individuals from the population and selecting only
the best of them. Survival method used was halfelitism, where half of the new
population was occupied by the best individuals chosen from both parents and
children. The remaining places were occupied by the best children still available.

2.2 Estimator

Filtered image has been generated according to switching scheme defined by (2).
Instead of using simple median as the estimator, recursive α-trimmed mean has
been utilized. It can be defined as a function of the trimming parameter α

Xα =
1

N − 2[αN ]

N−[αN ]∑
i=[αN ]+1

X(i), (12)

where [·] is the greatest integer function and X(i) represents the i-th data item
in the sorted sample (X(1) ≤ X(2) ≤ ·· · ≤ X(N)). When α = 0, Xα is the sample
mean, and when α = 0.5, the previous equation reduces to the sample median.
Although median is a robust estimator with breakdown point ε∗ = 0.5 [10], the
reason for using less robust α-trimmed mean is found in a fact that recursive
filter implementation make estimator safe from such extreme situation when
50% of samples are outliers. Besides, recursive estimator structure will not cause
excessive blurring [11] due to existence of noise detector which adaptively selects
filtering operation. Therefore, usage of recursive α-trimmed mean produce better
noise attenuation and generally better results.

3 Tree-Structured Detector

Training set was built from standard test image Couple. Firstly, image was
corrupted by a uniform impulse noise, and the information of noise map was
recorded. Output of each automatically generated filter is compared to a constant
threshold Td = 63, presenting one quarter of full interval of allowed grayscale
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Fig. 1. Tree-structured filter for impulse noise detection

range. Values larger then the threshold are labeled as corrupted in noise map,
while smaller values are labeled as noise-free.

For classification problems, it would appear natural to choose half of the in-
terval as a threshold value. Nevertheless, in this particular application, a quarter
of the interval is chosen due to the fact that the output will depend on certain
combination of absolute differences between actual pixel intensity and some local
neighborhood statistics, which, most likely, will not be very large in amplitude
for uniform impulse noise case.

An example of tree-structured filter, which is found during the evolutionary
process is given in Fig.1, where Im denotes input noisy image, and filters are
denoted as above. The corresponding LISP syntax string is given as follows:

BoundedSum(d med5x5(BoundedSum(d med5x5(BoundedSum

(d cwm3x3(Im), d cwm3x3(Im))), d med5x5

(d med5x5(Im)))), d med5x5(d med5x5(BoundedSum

(d med5x5(BoundedSum(BoundedSum(d med5x5(d med5x5

(BoundedSum(Im, d med5x5(Im)))), LogicProd

(d med5x5(Im), Im)), d med5x5(LogicProd

(d med3x3(Im), Im)))), LogicProd(d med3x3(Im), Im)))))

4 Results

The proposed filter has been compared to some of the standard impulse noise
filters. Simulations were made on several standard grayscale test images (reso-
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Table 1. Comparative results of impulse noise filters in PSNR (dB). Test images not
included in the training set are corrupted by 20% and 40% of uniform impulse noise.

20%
Filter Lena Bridge Goldhill Peppers Airplane Boats Mandrill
Median 3 × 3 30.82 24.57 29.23 30.85 29.71 28.59 22.04
TSM [4] 33.53 26.89 31.92 33.58 32.13 31.01 23.63
PWMAD [8] 34.38 26.95 32.10 34.43 32.54 31.34 24.32
SDROM [5] 33.76 27.18 32.13 33.61 32.45 31.28 23.83
ACWMF [7] 33.98 26.91 32.12 33.91 32.63 31.25 23.85
Proposed 34.37 27.29 32.30 34.45 32.77 31.56 24.45

40%
Filter Lena Bridge Goldhill Peppers Airplane Boats Mandrill
Median 3 × 3 26.73 22.31 26.55 26.39 25.69 25.37 21.02
TSM [4] 27.55 23.38 26.98 27.05 25.82 26.03 21.80
PWMAD [8] 29.06 23.44 27.73 28.47 26.98 26.92 21.79
SDROM [5] 28.07 23.68 27.45 27.66 26.70 26.55 21.81
ACWMF [7] 28.42 23.53 27.66 27.88 26.83 26.67 21.86
Proposed 30.18 24.21 28.87 29.99 27.96 27.90 22.13

lution 512×512) that were not included in the training set, contaminated with
uniform impulse noise for wide range of impulse concentrations. Simulations
were repeated a number of times, for each particular image and noise probabil-
ity and averaged results are given in Table1 and Fig.2. Quality measure used
for evaluation was the peak SNR. Proposed filter is compared to recursive im-
plementations of standard median (filtering window 3 × 3), TSM [4], SDROM
[5] and ACWMF [7], and iterative implementation of PWMAD [8] filter. Pro-
posed filter is implemented in only one iteration for noise ratios ≤ 25%, and
in two iterations for noise concentrations >25%. Recursive implementation of
algorithm means that the estimate of the current pixel is dependent on the new
values of previously processed pixels instead of the old ones, while the iterative
implementation means that the algorithm is successively applied on the entire
noisy image and on the images which are the outputs of the previous filtering.

Performance comparisons of those filters, over noise ratios from 5% to 50%,
for test images Airfield and Harbour, which were not included in the training
set are given in Fig.2. Proposed filter shows similar performances for other test
images. Table1 shows results of PSNR comparison for images degraded by uni-
form impulse noise, where 20% and 40% of the pixels are contaminated in each
image. These results have similar tendency for all images, where the proposed
filter performs best in most situations. Furthermore, performance improvement
which is made by proposed algorithm for higher noise ratios is apparently sig-
nificant. As an example, filtering results obtained for test image Lena corrupted
with 40% of uniform impulse noise are shown in Fig.3. It can be noticed that
the proposed filter achieves the highest level of impulse noise suppression, while
image details are still well preserved.
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5 10 15 20 25 30 35 40 45 50
18

20

22

24

26

28

30

Noise Ratio (%)

P
S

N
R

 (
dB

)

Airfield:  Uniform Impulse Noise

MEDIAN 3x3

TSM

SDROM
ACWMF

PWMAD

PROPOSED

(a)

5 10 15 20 25 30 35 40 45 50
21

22

23

24

25

26

27

Noise Ratio (%)

P
S

N
R

 (
dB

)

Harbour:  Uniform Impulse Noise

MEDIAN 3x3

TSM

SDROM
ACWMF

PWMAD

PROPOSED

(b)

Fig. 2. Performance comparison of filtering algorithms: Test images Airfield and Har-
bour corrupted by uniform impulse noise from 5% to 50%
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Enlarged detail of a test image Lena corrupted by 40% of uniform impulse noise:
(a) noisy image, (b) TSM, (c) PWMAD, (d) SDROM, (e) ACWMF, (f) proposed
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5 Conclusions

A new evolutionary approach to impulse noise filter design is presented. Trade-
off between noise suppression and detail preservation is accomplished by using
tree-structured impulse detector, trained to accurately detect noise-free pixels.
This property of the detector results in possibility to iteratively use the filter for
impulse noise removal, without damaging fine details. Results of such procedure
are especially noticeable in images corrupted by high noise ratios. Although
presented approach requires time consuming training of the impulse detector,
obtained tree-structure contains just basic image filters and operations, and can
be implemented easily on any platform. Simulations prove that achieved general-
ization is outstanding. In addition, in most cases the proposed filter outperforms
other filters included in comparison. Although large number of filters were in-
cluded in primitive functions set, GP evolution has chosen only few of them,
mostly based on median filter concept. Additional extension of the GP termi-
nals set with randomly generated constants could lead to further improvement
of filter performance, by allowing fine adjustment of the threshold Td. Also, by
introducing salt and pepper impulse noise in the training set, the proposed filter
can easily be adapted for filtering of fixed-valued impulse noise, which is less
demanding task than the uniform impulse noise. Evolutionary approach allowed
for the development of high performance filtering structure, that would otherwise
be impossible to construct.
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Abstract. In this paper we compare the overall image quality of 7 state-
of-the-art denoising schemes, based on humanvisual perception.Apsycho-
visual experiment was set up in which 37 subjects were asked to score and
compare denoised images. A perceptual space is constructed from this ex-
periment through multidimensional scaling (MDS) techniques using the
perceived dissimilarity and quality preference between the images and the
scaled perceptual attributes bluriness and artefacts.

We found that a two-dimensional perceptual space adequately repre-
sents the processed images used in the experiment, and that the percep-
tual spaces obtained for all scenes are very similar. The interpretation
of this space leads to a ranking of the filters in perceived overall image
quality. We can show that the impairment vector, whose direction is op-
posite to that of the quality vector, lies between the attribute vectors for
bluriness and artefacts, which on their account form an angle of about 35
degrees meaning they do interact. A follow-up experiment allowed us to
determine even further why subjects preferred one filter over the other.

1 Introduction

Denoising has been a hot topic for many years in different image processing and
analysis tasks, e.g. in image restoration or as a preprocessing step to image seg-
mentation. Multiple advanced denoising schemes have been presented in recent
literature using locally adaptive spatial filters in a multi-resolution representa-
tion [8, 9, 11], shape-adaptive transforms [4], block-matching with 3D transforms
[1], Steerable Filter Pyramid based [5, 10] or Fuzzy Logic [13] techniques.

All of these try to suppress the noise present while preserving as much im-
age content, structures and detail information as possible. Different well-known
measures such as the Root Mean Square Error (RMSE) or Peak Signal-to-Noise
Ratio (PSNR) are commonly used to compare how well the different filters per-
form. Although these are good measures to determine a relative distance, for
instance to the original noise-free image (if provided), and accordingly to rank
the filters, little do these differences tell us about the overall image quality since
they don’t incorporate human visual information.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 114–126, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Different alternative measures have been proposed tending to incorporate this
kind of knowledge, for example the fuzzy similarity measures described in [14].
Yet for certain purposes, e.g. when image distortions are less obvious to be well
captured by any instrumental measure, a better approach is to determine a
ranking solely based on human visual perception, through some psycho-visual
experiment [6].

Here, we perform an experiment on 7 state-of-the-art denoising schemes, try-
ing to rank the filters in perceived overall image quality and to determine why
our subjects prefer one filter over the other.

Multidimensional scaling (MDS) analysis has been used in many research areas
that deal with the psychovisual evaluation of stimuli, varying in multiple aspects
[3]. The rationale underlying this framework is twofold. First, the concept of “ho-
mogeneity of perception” should hold, meaning that different subjects are able to
reach one common conclusion, e.g. on overall image quality. Secondly, the concept
of overall image quality is rarely unidimensional, meaning that different attributes
such as noise, blur or artefacts all can influence the perceived quality. The input for
the MDS methods are data of psychovisual experiments, and the MDS methods
consist of a series of mathematical algorithms that determine the stimulus posi-
tions and/or the attribute directions in the MD space on the basis of this input.

In the next sections we will first present a brief overview of the different
denoising schemes, Section 2, then elaborate on our psycho-visual experiment
and the data processing using MDS, Section 3, before turning to the results and
conclusions in Sections 4 and 5.

2 Denoising Schemes

From recent literature the following denoising schemes were selected based on
good overall performances. For technical details we refer to the papers in the
references:

– The GOA filter [13]: A two-step filter where first a fuzzy derivative for
eight different directions is computed which is then used to perform a fuzzy
smoothing by weighting the contributions of neighboring pixel values. Both
stages are based on fuzzy rules using membership functions.

– The SA-DCT filter [4]: The Shape-Adaptive DCT scheme uses an over-
complete transform-domain filter in conjunction with the anisotropic LPA-
ICI technique, which - for every location in the image - adaptively defines
an appropriate shape for the transform’s support.

– The 3D-DFT filter [1]: The block-matching and 3D filtering approach
exploits the possible correlation among similar blocks within an image by
filtering in the 3D-transform domain. The third dimension corresponds to
stacking together the blocks which are matched as similar.

– The ProbShrink filter [8]: This adaptive spatial filter shrinks the wavelet
coefficients in a multi-resolution representation according to the probability
of the presence of a signal of interest conditioned on a local spatial activity
indicator.
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– The BLS-GSM filter [5]: This method extends filtering in the steerable
pyramid domain based on Gaussian Scale Mixtures [9] by employing a two-
level (coarse-to-fine) local adaptation to spatial image features.

– The Bishrink1, Bishrink2 filters [11]: This method applies a bivariate
shrinkage of the wavelet coefficients using the interscale dependencies and the
local spatial variance estimation. Two variants were provided corresponding
to different noise estimation levels.

– The SPERRIL filter [10]: This is an image restoration method, where
the regularization (denoising) part is done in the steerable pyramid domain
employing the interscale (parent-child) relationships between the coefficients.

(a) Barbara (b) Face (c) Hill

Fig. 1. The test scenes used in our psycho-visual experiment

3 Psycho-visual Experiment

3.1 Experimental Setup

A psycho-visual experiment for the assessment of perceived image quality has
been described in detail in [6] for images artificially degraded by noise and blur.
Partly based on that, we constructed our own experiment that was slightly big-
ger and focused on more subtle differences.

Stimuli. Three 512× 512 pixels 8-bit scenes (Barbara, Face and Hill) containing
different kinds of information ranging from texture over fine details to uniform
backgrounds, see Fig. 1, were used in the experiment. These images were de-
graded by additive zero mean white Gaussian noise with a standard deviation
of σ = 15 and were sent to the authors of the filters mentioned above who
were asked to denoise them blindly, i.e. without any information on the noise
level. The original image, the noisy one σ = 15, together with the 8 denoised
images were presented on the same calibrated display, under comparable light-
ing conditions. A cut-out example of the Barbara test scene can be seen in Fig. 2.

Method. There were 3 experimental sessions for each scene. In the first session
dissimilarity scores and quality preference scores for all pairs of stimuli were
collected in a double-stimulus procedure. All unique couples of the 10 stimuli
of each scene were displayed on a LCD monitor, one image on the left and the
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other on the right. The subjects were instructed to rate the dissimilarity between
two images using an integer score between 0 and 5. The subjects were asked not
to base that score on any preference, quality or emotional criteria yet. A score
of 5 indicated the greatest dissimilarity and a score of 0 implied no perceived
difference.

Next, preference scores were asked for image quality on the same couples, this
on an integer scale ranging from -3 to +3. Here -3 corresponded to the greatest
preference for the left hand image, +3 to the greatest preference for the right
hand image, 0 to no preference in perceived quality.

In a second session perceived blur, artefacts and overall quality of the images
were judged using a numerical category single-stimulus scaling procedure. Each
of the subjects scored the attributes mentioned for all scenes presented separately
and the numerical category scale ranged from 0 to 5. The stronger the perceived
attribute, the higher the score.

In a third session a follow-up experiment took place in which, based on the
outcome of the MDS, 5 well-chosen triples of images were shown to the subjects
who were then asked to retain the 2 best images in overall quality and describe
in words why they had retained them.

Subjects. 37 subjects took place in the first two sessions of the experiment. 10
additional subjects from the same group took part in the follow-up experiment.
Most subjects were familiar with numerical category scaling and the concepts of
image quality, bluriness and artefacts. Through a training phase they were made
familiar with numerical category scaling. All subjects took part in a trial session
involving 10 stimuli from a fourth scene covering the entire range of distortions
to adjust the sensitivity of their scale.

3.2 Multidimensional Scaling of Perceived Image Quality

In order to simultaneously model the results from different experiments with
the same stimuli and subjects, multi-dimensional geometrical models can be
adopted. In such models, images are represented by points in a multi-dimensional
space and all observations are related to geometrical properties of these points,
such as distances between points and coordinates of point projections onto se-
lected axes. Below, we will describe the class of multidimensional models used
in our experiment. We explain the maximum-likelihood optimization criterium
used to estimate the model parameters from the experimental data, but start
by shortly describing the 3 different kinds of data present: dissimilarity data,
preference data and attribute data.

Dissimilarity Data. The first part of the experiment resulted in a 10×10 lower
triangular dissimilarity matrix for each subject and each scene. The entry Dk,i,j

at position (i, j) in the k = 1 . . .Kth matrix is the judged dissimilarity for subject
k between stimuli i and j. The goal is to construct a stimulus configuration
x1,x2, . . . ,xN in a n-dimensional vector space, such that a linear relationship is
persued between transformed dissimilarity scores TDk,i,j = Tdk(Dk,i,j) and the
interstimulus distances
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(1) BLS-GSM filter (2) noisy image (3) original image

(4) ProbShrink filter (5) SA-DCT filter (6) GOA filter

(7) SPERRIL filter (8) BiShrink1 filter (9) BiShrink2 filter

(10) 3D-DFT filter

Fig. 2. The test images for Barbara as presented in our psycho-visual experiment
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TDk,i,j ≈ dk · ‖xi − xj‖2 (1)

where the norm is the Euclidean norm and dk as well as Tdk are to be derived
from the data. An important implication of this persued relationship is that the
transformed dissimilarities are assumed to be metric, i.e. have ratio properties,
since they are compared to metric distances. This implicitly assumes that there
exists a monotonic transformation Tdk that maps possible non-metric observed
dissimilarities Dk,i,j into metric transformed dissimilarities TDk,i,j if needed.
In our framework to either chosing no transformation at all (when data are
metric), a generalized optimum power-like transformation, a generalized Kruskal
transformation or an optimum spline transformation, for details see [7].

According to the principle of homogeneity of perception the stimulus con-
figuration should be shared by all subjects, while Tdk and dk can be subject-
dependent.

The assumption that the stimulus configuration models the experimental data
can be mathematically reformulated by demanding that the error between the
transformed dissimilarities and the model predictions is modeled by a chosen
probability density function (PDF). Suppose the average transformed model
prediction to stimulus pair (i, j) is

T̂Dk,i,j = dk · ‖xi − xj‖2 (2)

then
p(TDk,i,j) = φ[TDk,i,j − T̂Dk,i,j ; σd(k)], (3)

is called the link function for subject k and σd(k) is a measure for the variability
in the transformed responses TDk,i,j of subject k on repeated presentations
of the same stimulus combination (i, j). Here φ is chosen to be a zero mean
generalized Gaussian PDF. The transformation Tdk is assumed monotonic, so
that the probability p(Dk,i,j) of obtaining the original dissimilarity Dk,i,j can
be derived from the probability p(TDk,i,j) as

p(Dk,i,j) = p(TDk,i,j) · |T ′
dk(Dk,i,j)| (4)

where T
′
dk denotes the derivative function of Tdk. If all subject responses are

independent, then

Pd =
K∏

k=1

∏
(i,j)

p(Dk,i,j) (5)

is the overall probability, according to the model of finding the specific dissim-
ilarity responses Dk,i,j that are observed in the experiment. Finding the model
parameters that maximize this probability Pd, or equivalently, minimize the in-
verse of the log-likelihood function

Ld = − logPd = −
K∑

k=1

∑
(i,j)

log p(Dk,i,j) (6)
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corresponds to adjusting the model parameters such that the experimentally
observed responses are the most likely outcomes. One can show that the ML
criterium is invariant to linear translations and uniform dilation of the stimulus
coordinates xi. A priori conditions on the stimulus configuration are therefore
needed in order to guarantee a unique stimulus configuration, see [6] for details.
On the other hand, no measures are taken to uniquely select the orientation of
the stimulus configuration, this implies that stimulus configuration can be equal
up to a rotational variance.

Preference Data. In a second step we collected 10×10 lower triangular prefer-
ence matrices for each subject and each scene. The entry Pk,i,j at position (i, j)
in the k = 1 . . .Kth matrix is the judged preference in perceived quality for sub-
ject k for stimuli i and j. The ML criterium for the double-stimulus preference
data can be derived in a more or less similar way as in the case of dissimilarity
data, and is equal to

Lp = −
K∑

k=1

∑
(i,j)

log p(Pk,i,j) (7)

where p(Pk,i,j) and p(TPk,i,j) are determined in similar ways as in the dissim-
ilarity case. Different is here that the transformed preference scores TPk,i,j =
Tpk(Pk,i,j) are compared against their expected values

T̂ P k,i,j = mk · ([pk,xi]− [p,xj ]). (8)

These predictions for subject k are derived from the stimulus positions xi, xj

and the preference vector pk and are equal to the vector product

[pk,xi]− [p,xj ] = < pk,xi > − < pk,xj >=< pk,xi − xj > (9)

=
n∑

m=1

pkm · (xim − xjm) (10)

between the difference xi − xj , pointing from stimulus j to stimulus i, and the
preference vector pk. The regression mk expresses the linear relationship between
the transformed scores and the predictions. A consequence of the ratio property
(scale invariance) of the transformed preferences is that only the directions of the
preference vectors pk are uniquely determined, their amplitudes may be scaled
arbitrarily.

Very often also, the available preference data can be divided into groups. Here
we will consider all 37 quality preferences as belonging to the same group, in
which case a single prediction vector pk = p is estimated for all indices in the
group. For an elaborate discussion on the estimation of p we refer to [7].

Attribute Data. Finally, attribute data for blur, artefacts and quality were
gathered resulting in 10 × 1 arrays for each of the subjects, each of the scenes
and each of the attributes. The ML criterium for the attribute data is equal to

La = −
K∑

k=1

∑
(i,j)

log p(Ak,i,j) (11)



Perceived Image Quality Measurement 121

where again p(Ak,i,j) and p(TAk,i,j) are derived in similarways as described above.
Different here is that the transformed attribute scores TAk,i,j = Tak(Ak,i,j) are
compared against their expected values

T̂Ak,i,j = ck + fk · [ak,xi]. (12)

These predictions for subject k are derived from the stimulus positions xi and
the attribute vector ak. The regression parameters ck and fk determine the linear
relationship between transformed attribute scores and predictions for subject k.
Here again the vector-product compares the transformed attribute scores TAk,i,j

with the linear prediction

ck + fk · [ak,xi] = ck + fk· < ak,xi >= ck + fk ·
n∑

m=1

akm · xim.

The average strength of attribute k for stimulus i hence increases with the co-
ordinate of the stimulus projection on a one-dimensional axis with scale factor
fk and the direction of the attribute vector ak. As in the case of the preference
data the attribute data may be subdivided into groups. This corresponds to es-
timating a single prediction vector ak = a for all indices k in the group. For an
elaborate discussion on the estimation of a again we refer to [7].

3.3 Maximum-Likelihood Estimation

Combining the former sections, in our global experiment the ML criterium

L =
K∑

k=1

∑
(i,j)

log p(Dk,i,j) +
K∑

k=1

∑
(i,j)

log p(Pk,i,j) +
K∑

k=1

∑
(i,j)

log p(Ak,i,j) (13)

needs to be minimized as a function of the stimulus positions x1,x2, . . . ,xN ,
the regression parameters dk (for dissimilarity), mk and pk (for preference),
ck, fk and ak (for attribute scaling), and the PDF noise standard deviations
σd(k), σp(k) and σa(k). In the case of non-metric data, the monotonic transfor-
mations Tdk, Tpk and Tak must also be optimized.

All required optimizations are performed iteratively. If the stimulus configu-
ration needs optimized, then one iteration step involves three stages. In the first
stage, the stimulus positions are optimized, assuming fixed values for the regres-
sion parameters, the standard deviations and the monotonic transformations. In
a second stage, the regression parameters and standard deviations are optimized
for a fixed stimulus configuration and known monotonic transformations on the
data. Non-metric MDS adds a third stage to each iteration step in which the
monotonic transformations are updated.

The following general result on ML estimation can be used to compare the
goodness-of-fit of alternative multidimensional models at any stage. The estima-
tion of the different parameters, such as dk, mk, ck and fk, leads to a number
of degrees of freedom (DOF) in the MDS [7]. Suppose now, that L1 is the opti-
mized ML criterium value for a model with F1 DOFs, and the L2(> L1) is the
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optimized ML criterium value for a reduced model with F2(< F1) DOFs. It can
be shown that the statistic

G2
12 = 2 · (L2 − L1) (14)

satisfies a χ2-distribution (chi-squared) distribution with F12 = F1 − F2 DOFs,
i.e., the probability that G2

12 exceeds the value χ2 is given by

P (G2
12 > χ2; F12) =

Γ (F12
2 , χ2

2 )
Γ (F12

2 )
(15)

with Γ the incomplete gamma function [7]. Suppose that χ2
α(F12) is the value

for which P (G2
12 > χ2

α(F12); F12) = α, then the observed value G2
12 > χ2

α(F12) is
an indication that both models are not equivalent. Indeed, the probability that
such a value occurs in the case both models are equivalent is less than α. In our
application α = 0.05 is chosen.

4 Results

Fig. 3 shows the 2D-geometrical output configuration as optimized by the MDS
framework assuming the 37 subjects constitute a homogeneous group, so that
the attribute vectors were shared by all. The stimulus configurations were deter-
mined for different transformations on the experimental data. There was statisti-
cal evidence that a spline interpolation with two kernel knots on the experimental
data performed better than a generalized Kruskal or power-like transformation,
so that we will use the latter in the subsequent analysis.

Each point in Fig. 3 corresponds to one of the filters shown in Fig. 2. The 95
% confidence intervals on the positions are also plotted as the little ellipses. All
stimulus positions were found statistically significant and similar configurations
were obtained for all three scenes, apart from a rotational variance and slight
change in position of certain filters which we will discuss later.

The arrows point out the directions through which the different attributes
should be measured. “I” stands for the impairment vector and is the opposite
direction of perceived image quality, the further along the axis the more quality
degrades. “B” stands for the perceived blur, the further along the axis the less
blur perceived. “A” stands for the artefact axis, the further along the axis the
less artefacts perceived.

The orthogonal projection of all points on these axes gives us a relative ranking
of the images. Fig. 4 gives us the projection of the perceived quality for all three
scenes. Note that for Barbara the ranking seems to be opposite. This is no error
in the experiment yet is the result of the rotational variance in the MDS.

The outcome of the different plots in Fig. 4 is comprised in Table 1 where one
can see that the original image (3) always comes out best, followed by the 3D-
DFT (10) and SA-DCT (5) filter. The BLS-GSM (1) filter, ProbShrink (4) filter
and Bishrink 1 (8) follow yet switch places over the different scenes. The GOA
filter (6) and SPERRIL filter (7) and Bishrink2 (9) filters are ranked worst, even
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Fig. 3. The Multidimensional scaling output of the experiment. The numbers of the
filters correspond to the numbers in Fig. 2.

below the noisy image (2). A connotation to the distances in Fig. 4 can be given
through an interpretation of the attribute axes in Fig. 3, as we will show further
on. In the same Fig. 3 we can also see that the 3D-DFT (10) and SA-DCT (5)
filter, BLS-GSM (1) filter, ProbShrink (4) filter and Bishrink (8) filters seem to
cluster, meaning that although they differ in ranking, they do have a common
ground in terms of perceived image quality.

As a matter of comparison we also plotted the PSNR-ranking in Table 1. We
see that 3D-DFT (10) still performs best in terms of PSNR but now the BLS-
GSM (1) filter comes in second in case of Barbara, followed by SA-DCT (5). If
we look at the bottom of the table we also see some changes. Next to that, we
also notice a bigger shift in ranking through the scenes than in our psychovisual
experiment where the top and bottom 3 images were always consistently ranked.
Finally, if we e.g. compare the SA-DCT (5) and BLS-GSM (1) filters visually,
see cutouts (5) and (1) in Fig. 2, it is clear the SA-DCT filter has less disturbing
artefacts (e.g. around the nose), although there is an inverse ranking in PSNR.

Fig. 3 also gives us the direction of the blur and artefacts axis. Projections on
those axes can explain the ranking in Table 1. Now since in the middle part of
the table the differences are quite small and confidence regions tend to overlap,
see Fig. 4, we set up the extra follow-up experiment described in section 3 to
try and grasp these smaller differences. The results from this experiment, for the
Face image, are presented in Table 2.

This table shows the main attributes taken into account by the different sub-
jects in pointing out the actual difference between the images and should be
interpreted as follows: the filter in row i outperforms the filter in column j,
mainly based on table entry (i, j).

For instance, although the 3D-DFT (10) and SA-DCT-filter (5) are very close
to one another as well in the 2D-configuration as in the 1D-projection in Fig. 3
and Fig. 4, their main difference lies in the amount of detail information left in
3D-DFT that is not present in SA-DCT. Also we can see that the noisy image is
preferred above the Bishrink 2 (9) and GOA (6) filter, mainly because of the blur
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Fig. 4. This figure shows the 1D-geometrical output of the MDS framework for Face.
On the X-axis the different filters as numbered in Fig. 2, on the Y-axis the perceived
quality.

Table 1. Quality ranking of the filters for each of the 3 scenes based on the outcome
of the MDS as well as PSNR. 1 corresponds to best, 10 corresponds to worst.

ranking Face Barbara Hill

MDS PSNR MDS PSNR MDS PSNR

1 (best) Original Original Original Original Original Original
2 3D-DFT 3D-DFT 3D-DFT 3D-DFT 3D-DFT 3D-DFT
3 SA-DCT SA-DCT SA-DCT BLS-GSM SA-DCT SA-DCT
4 BLS-GSM BiShrink1 Probshrink SA-DCT BLS-GSM BLS-GSM
5 ProbShrink BLS-GSM BLS-GSM Bishrink1 Bishrink1 Bishrink1
6 Bishrink1 Bishrink2 Noisy ProbShrink Noisy ProbShrink
7 Noisy ProbShrink Bishrink1 Bishrink2 ProbShrink Bishrink2
8 Bishrink2 SPERRIL BiShrink2 SPERRIL Bishrink2 SRERRIL
9 GOA Noisy GOA Noisy GOA Noisy
10 (worst) SPERRIL GOA SPERRIL GOA SPERRIL GOA

in the images. This means that although there is a lot of noise present, subjects
tend to prefer the preservation of high frequency information and sharpness of
edges in the images. Notice also that not all possible triples were shown, but
only those relevant to the quality ranking of Fig. 4.

From this table we can conclude that quality is highly related to the amount
of remaining blur in the images. This is also justified by the findings of the MDS
where we obtain a direction strongly related to the quality axis.

As for the artefact axis we see from the follow-up experiment it comprises
noise and detail information. Since most of the filters perform very well in terms
of noise reduction, it is understandable the bigger part will be blurring artefacts
and the presence or absence of detailed information.

Nevertheless, from Fig. 3 we consistently see that perceived overall quality is
an (inverse) combination of blur and artefacts, which form an angle of about
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Table 2. This table shows the main attributes by which the filter in row i is chosen
over the filter in column j, based on the follow-up experiment. B = blur, A = artefacts,
D = detail information.

original 3Swdft SA-DCT BLS-GSM Genlik Noisy Bishrink2 GOA
original / B B B / N / N + B

3D-DFT / / D B + A / / / /
SA-DCT / / / A + D B + A / / /
BLS-GSM / / / / B + D / / /

Genlik / / / / / B B + N /
Noisy / / / / / / B B

Bishrink2 / / / / / / / N

GOA / / / / / / / /

35 degrees, meaning they are not uncorrelated and the perceived artefacts are
mostly blurring artefacts. This is all in accordance with Table 2.

For instance, when we relate the findings in Table 2 to the distances in the
2D-MDS configuration we see that although the noisy image (2) and Bishrink2
(9) filter are very close in perceived overall quality they are quite far apart in
the 2D-geometry of Fig. 3. There is a relatively big difference in perceived blur
level, see Fig. 3 as well as Table 2, and a smaller difference in perceived artefacts,
again see Fig. 3.

The same discussion can be repeated for all 3 scenes, where even the scene
content can be taken into account. Notice that although the MDS results are
consistent for the bigger part over all of them, some slight changes in ranking
might also be explained by the actual image content. This is still work in progress
and out of the scope of this paper.

5 Conclusions

The aim of this paper was to compare the perceived image quality of 7 state-of-
the-art filters based on a psycho-visual experiment, leading to a ranking that is
more true to human visual perception than instrumental measures as the PSNR.
We were able to show consistently based on the subjective scores, which filters
related best to the original image, namely the 3D-DFT and SA-DCT filters,
followed by the BLS-GSM, ProbShrink and Bishrink1 filter. We noticed from
the MDS that, although the difference in quality, these five filters seem to cluster
more or less, meaning that they show common grounds in terms of human visual
perception.

In a follow-up experiment we were able to show why certain filters outper-
formed others and we could relate this to the findings of the MDS. Blurring and
artefacts are shown to be the decision criteria, of which blur seems to carry the
biggest load.

As overall conclusions we showed that for these type of filters it is possible
to make a consistent ranking based on human visual perception and filters that
succeed in denoising images with minor blurring, even though this means leaving
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some of the noise present, while introducing minor artefacts, are considered
perceptually best. If a trade off needs to be made then the blurring is more a
problem than the remaining of noise or artefacts.
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Abstract. A new multidimensional modeling of data has recently been
introduced, which can be used a wide range of signals. This paper presents
multiway filtering for denoising hyperspectral images. This approach is
based on a tensorial modeling of the desired information. The optimization
criterion used in this multiway filtering is the minimization of the mean
square error between the estimated signal and the desired signal. This min-
imization leads to some estimated n-mode filters which can be considered
as the extension of the well-known Wiener filter in a particular mode. An
ALS algorithm is proposed to determine each n-mode Wiener filter. Us-
ing the ALS loop allows to take into account the mode interdependence.
This algorithm requires the signal subspace estimation for each mode. In
this study, we have extended the well-know Akaike Information Criterion
(AIC) and the minimum description length (MDL) criterion to detect the
number of dominant eigenvalues associated with the signal subspace. The
performance of this new method is tested on hyperspectral images. Com-
parative studies with classical bidimensional filtering methods show that
our algorithm presents good performances.

1 Introduction

Multidimensional model is used in a large range of fields such as data analysis or
signal and image processing [1]. In multidimensional signal processing, tensors
are built on vector spaces associated with physical quantities such as length,
width, height, time, color channels etc... . Each mode of the tensor is associ-
ated to a physical quantity. When dealing with data modeled by tensor, the
classical processing techniques consist in rearranging or splitting the data set
into matrices or vectors in order for the classical algebraic processing methods
to be applicable. The original data structure is then rebuilt after processing.
In particular, hyperspectral images are split or unfold into observation vectors
or matrices in order to apply classical methods based on covariance matrix or
cross-spectral matrix. The splitting of multidimensional data reduces consider-
ably the information quantity related to the whole tensor and then the possibility
of studying the relations between components of different channels is lost. In this
study, hyperspectral images are considered as whole tensor. Hence, we propose a
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c© Springer-Verlag Berlin Heidelberg 2006



128 N. Renard, S. Bourennane, and J. Blanc-Talon

multiway filtering [2], [3] for denoising hyperspectral images. This new approach
implicitly implies the use of multilinear algebra and mathematical tools [4] that
extend the SVD to tensors. In [5] a survey on tensor signal filtering for based on
a subspace approach is presented.

The paper is organized as follows. Section 2 presents the tensor model and
a short overview of its main properties. The tensor formulation of the classical
noise-removing problem and new tensor filtering notations are introduced. Sec-
tion 3 presents a new version of Wiener Filtering based on the n-mode signal
subspace and tensor decomposition. Section 4 presents AIC and MDL criteria
for estimating the n-mode signal subspace dimension required by tensor filter-
ing. Section 5 details the final ALS algorithm by summarizing step by step the
filtering process.

Section 6 contains some comparative results concerning the multiway filtering
and channel-by-channel based Wiener filtering, in the case of noise reduction in
hyperspectral images. Finally, conclusion is presented in section 7.

2 Tensor of Hyperspectral Images and Multiway Filtering

Hyperspectral images can be modeled by a third order tensor A ∈ RI1×I2×I3

(see Figure 1) in which I1 is the number of rows, I2 is the number of columns,
and I3 is the number of spectral channels. Each dimension of tensor is called
n-mode where n refers to the nth index.

Fig. 1. Tensor of hyperspectral images

In order to study properties of data tensor A in a given n-mode, let’s define
E(n) the n-mode vector space of dimension In, associated with the n-mode of
tensor A. By definition, E(n) is generated by the column vectors of the n-mode
unfolding matrix. The n-mode unfolding matrix An of tensor A ∈ RI1×···×IN is
defined as a matrix from RIn×Mn , with:

Mn = I1 · · · In−1In+1 · · · IN . (1)
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Fig. 2. n-mode unfolding of tensor A

An columns are the In-dimensional vectors obtained from A by varying index in
and keeping the other indices fixed. These vectors are called tensor A ”n-mode
vectors”. An illustration of the 1-mode unfolding of a image is represented on
Figure 2.

The hyperspectral image X is assumed as the sum of the desired information
with additive white and Gaussian noise B results in the data tensor:

R = X + B. (2)

The goal of this study is to estimate the desired signal X thanks to a multidi-
mensional filtering of the data:

X̂ = R×1 H1 ×2 H2 ×3 H3,

where ×n is the n-mode product. The n-mode product between a data tensor
R and matrix Hn represents the consecutive matrix products between matrix
Hn and the In-dimensional vectors obtained from R by varying index in and
keeping the other indexes fixed. From a signal processing point of view, the n-
mode product is a n-mode filtering of data tensor R by n-mode filter Hn. Then,
Hn is the n-mode filter applied to the n-mode of the data tensor R, for all n = 1
to 3. In the following we establish the expression of the multiway Wiener filtering
for tensor of order N [2].

The optimization criterion chosen to determine the optimal n-mode filters
{Hn, n = 1, . . .N} is the minimization of the the mean square error between
the estimated signal X̂ and the initial signal X :

e(H1, . . . , HN ) = E
(
‖X −R×1 H1 · · · ×N HN‖2

)
. (3)

In extension of the first order case, n-mode filters Hn correspond to n-mode
Wiener filters.

In the classical multidimensional and multi-mode signal processing assump-
tion [6],[7], E(n) is the superposition of two orthogonal subspaces: the signal
subspace E

(n)
1 of dimension Kn, and the noise subspace E

(n)
2 with dimension

In −Kn, such as E(n) = E
(n)
1 ⊕ E

(n)
2 .
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3 Expression of n-Mode Wiener Filters

Developing the squared norm of equation (3), and unfolding it over the n-mode
and expressing the tensorial scalar product with the trace operator (tr(·)) lead
to [2]:

e(H1, . . . , HN ) = E
[
‖Xn‖2
]

−2E
[
tr
(
g
(n)
XRHT

n

)]
+ E
[
tr
(
HnG

(n)
RRHT

n

)]
,

(4)

where
g
(n)
XR = Xnq(n)RT

n , (5)

with
q(n) = H1 ⊗ · · ·Hn−1 ⊗Hn+1 · · · ⊗HN , (6)

and
G

(n)
RR = RnQ(n)RT

n , (7)

with
Q(n) = q(n)T

q(n) = HT
1 H1 ⊗ · · ·HT

n−1Hn−1

⊗HT
n+1Hn+1 · · · ⊗HT

NHN .
(8)

The symbol ⊗ defines the Kronecker product.
The optimal n-mode Wiener filters {H1, . . .HN} are the arguments that

minimize the mean square error (4). These filters are found when grad(e) =
[ ∂e
∂H1

. . . ∂e
∂HN

]T = 0, that is when ∂e
∂Hn

are simultaneously null for all n = 1 to
N . Let’s study ∂e

∂Hn
for a given n-mode. The n-mode filters Hm are supposed

fixed for all m ∈ {1, . . .N} − {n}, then g
(n)
XR and G

(n)
RR are independent from

n-mode filters Hn. Hence imposing ∂e
∂Hn

= 0 and extracting Hn lead to the opti-
mal filter which minimizes the mean square error criterion (3) for fixed m-mode
filters Hm, m �= n:

Hn = γ
(n)
XRΓ

(n)
RR

−1
, (9)

where:
γ

(n)
XR = E

[
g
(n)
XR

]
= E
[
Xnq(n)RT

n

]
, (10)

is the q(n)-weighted covariance matrix between the signal X and the data R,
and:

Γ
(n)
RR = E

[
G

(n)
RR

]
= E
[
RnQ(n)RT

n

]
, (11)

is the Q(n)-weighted covariance matrix of the data. In the following, γ refers to
the q(n)-weighted covariance, and Γ to the Q(n)-weighted covariance.

In order to determine the expression of γ
(n)
XR and Γ

(n)
RR of equation (9), let’s

make the assumption that the n-mode unfolding matrix of the signal Xn can
be expressed as a weighted combination of Kn vectors from the n-mode signal
sub-space E1

n:
Xn = V (n)

s O, (12)
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with Xn ∈ RIn×Mn , where Mn = I1 · · · In−1In+1 · · · IN , V (n)
s ∈ St(In, Kn) the

matrix which contains the Kn In-dimensional orthogonal vectors of the basis of
the n-mode signal sub-space E1

n. O ∈ RKn×Mn is a random weighted matrix
whose terms are supposed mutually independent.

Following [2] and after some computations, the final expression of Hn n-mode
filter associated to fixed Hm m-mode filters, m �= n, becomes:

Hn = V (n)
s

⎡⎢⎢⎢⎢⎣
λγ
1−σ(n)2

γ

λΓ
1

0
. . .

0
λγ

Kn
−σ(n)2

γ

λΓ
Kn

⎤⎥⎥⎥⎥⎦V (n)T

s , (13)

in which {λγ
i , ∀i = 1, . . . , Kn} and {λΓ

i , ∀i = 1, . . . , Kn} are the Kn largest
eigenvalues, respectively of the matrix γ

(n)
XR and Γ

(n)
RR defined in the relations

(10) and (11). Also, σ
(n)2

γ can be estimated by determining the In−Kn smallest
eigenvalues mean of γ

(n)
RR:

σ(n)2

γ =
1

In −Kn

In∑
i=Kn+1

λγ
i . (14)

Note that this expression requires the unknown parameter Kn. To apply it
on real data, without a priori knowledge, we have to estimate it. We propose in
the following section two criteria.

4 n-Mode Signal Subspace Estimation

In order to estimate the signal subspace dimension for each n-mode, we extend
the well-know detection criterion [8]. Thus, the optimal signal subspace dimen-
sion is obtained merely by minimizing one of AIC or MDL criteria.

The signal subspace dimension is equal to the n-mode rank of the noisy
image R.

Consequently, for each n-mode unfolding of R, the form of detection criterion
AIC can be expressed as

AIC(k) = −2N

i=In∑
i=k+1

log λi + N(In − k) log

(
1

In − k

i=In∑
i=k+1

λi

)
+ 2k(2In − k)

(15)
and the MDL criterion is given by

MDL(k) = −N

i=In∑
i=k+1

log λi +N(In−k) log

(
1

In − k

i=In∑
i=k+1

λi

)
+

k

2
(2In−k)logN

(16)
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where (λi)1≤i≤In
are In eigenvalues of the covariance matrix of the n-mode

unfolding R: λ1 ≥ λ2 ≥ . . . ≥ λIn , and N is the number of columns of the
n-mode unfolding R.

The n-mode rank Kn is the value of k (k = 1, . . . , In − 1) which minimizes
AIC or MDL criterion.

Those criteria are integrated in the final algorithm summarized in the follow-
ing section.

5 ALS Algorithm

An Alternative Least Square algorithm needs to be used to jointly find Hn n-
mode Wiener filters that enables to reach the global minimum of mean square
error e(H1, . . .HN ) given by (3). One ALS algorithm can be summarized in the
following steps:

1. initialization k = 0: R0 = R ⇔ H0
n = IIn for all n = 1 to N .

2. ALS loop: while
∥∥X −Rk

∥∥2 > thr, with thr > 0 a priori fixed,
(a) for n = 1 to N :

i. Rk
n = R×1 Hk

1 · · · ×n−1 Hk
n−1 ×n+1 Hk

n+1 . . .×N Hk
N ,

ii. Hk+1
n = argmin

∥∥X −Rk
n ×n Qn

∥∥2 subject to Qn ∈ RIn×In .
(b) Rk+1 = R×1 Hk+1

1 · · · ×N Hk+1
N , k ← k + 1.

3. output: X̂ = R×1 Hk
1 · · · ×N Hk

N .

Step (2)(a)(ii) of the ALS algorithm can be decomposed into the following
sub-steps:

1. n-mode unfold Rk
n into Rk

n = Rn(Hk
1 ⊗ · · ·Hk

n−1 ⊗Hk
n+1 · · · ⊗Hk

N ), and R
into Rn;

2. compute γn
RR = E(Rk

nRT
n ), perform its EVD and place the eigenvalues in λγ

k
,

for k = 1 to In;
3. estimate Kn using AIC (15) or MDL (16) criterion;

4. estimate σ
(n)
γ

2
by computing 1

In−Kn

∑In

k=Kn+1 λγ
k and estimate βi by com-

puting λγ
i
− σ

(n)
γ

2
, for i = 1 to Kn;

5. compute Γ
(n)
RR = E(Rk

nRkT

n ), perform its EVD, keep in matrix V n
s the Kn

eigenvectors associated with the Kn largest eigenvalues of Γ
(n)
RR , and keep

the Rn largest eigenvalues λn
Γk

for k = 1 to Kn;
6. compute the (k + 1)th iteration of n-mode Wiener filter Hk+1

n using (13);

6 Performances and Hyperspectral Images

In this section, multiway Wiener filtering is applied and compared with classical
signal subspace based methods to improve the SNR of hyperspectral images. The
first classical bidimensional processing methods basically consist in a consecutive
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Wiener filtering of each two-dimensional spectral channel. The second method
consists to a preprocessing by projection on the spectral mode to decorrelate
the different channels each other, then Wiener filtering is applied on each two-
dimensional spectral channel. In both applications, the efficiency of denoising is
tested in presence of additive white Gaussian noise.
This noise, N , can be modeled by

N = α · G (17)

in which every element of G ∈ RI1××I2×I3 is an independent realization of a
normalized centered Gaussian law, and where α is a coefficient that enables to
set the SNR in noisy data tensor G.

Let’s define the Signal to Noise Ratio (SNR in dB) in the noisy data tensor.

SNR = 10× log(
‖ X ‖2
‖ B ‖2 ) (18)

In order to a posteriori verify the quality of estimation of the different tensor
filtering, it is possible to use the Relative Reconstruction Error (RRE) defined
as follows:

RRE =
‖X̂ − X‖2
‖X‖2 . (19)

The RRE criterion enables a qualitative comparison between multiway Wiener
and classical filtering.

The hyperspectral images with 300 rows, 300 columns and 146 spectral chan-
nels (from 435 nm to 2326 nm) are considered initially. It can be modeled by
tensor X ∈ R300×300×146. For example Figure 4 shows image of channel 20.

Experiment 1: Detection criteria:
We have applied the proposed criteria on several noisy tensors X ∈ R300×300×20

constructed from the twenty first channels and white Gaussian tensor noise. We
have compared the optimal n-mode tensor rank estimated thanks to the lower
rank-(K1, K2, K3) tensor approximation, LRTA(K1, K2, K3)[9] to the estimated
values by the proposed criteria. In this study, the optimal estimation is in the
sense of minimization of the RRE criterion defined above. Figure 3(a) shows
the results obtained for 1-mode rank estimation. One can see that AIC criterion
and LRTA give the same results for all SNR values. Indeed, the optimal 1-mode
rank increases when the SNR value increases. Figure 3(b) shows the two criteria
efficiency when the LRTA is used with the optimal n-mode ranks given by AIC
or MDL criterion.

Experiment 2: Multiway Wiener filtering:
In order to evaluate the performances of the proposed multiway filtering method,
some signal-independent white Gaussian noise N , is added to X and results
in noisy image R = X + N . Channel 20 of noisy hyperspectral image R is
represented, for example, on Figure 4, and corresponds to a global computed on
tensor R of 17.3 dB.
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Fig. 3. n-mode rank estimation of a noisy tensor X . a) AIC, MDL and LRTA(k1, k2, k3)
n-mode rank estimation of a noisy tensor. b) Approximation results with the two-
criteria AIC and MDL function of SNR.
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Fig. 4. Different methods of denoising: a) Image denoised with 2D Wiener channel by
channel SNR = 20.87 dB. b) Image denoised first whitenning on the spectral mode
then 2D Wiener SNR = 19.05 dB. c) Image denoised with Wiener multiway SNR =
23.20 dB.

Figures 4 (a), 5 (a)and 6(a) represent channel 20 of the hyperspectral image ob-
tained by applying channel-by-channel-based wiener-filtering on noisy image R.
Figures 4(b), 5(b) and 6(b) represent channel 20 of the hyperspectral image ob-
tained by applying channel-by-channel-based wiener-filtering on noisy image R
after whitening the data in spectral mode.

Finally, Figures4(c), 5(c) and 6(c) represent channel 20 of the hyperspectral
image obtained by applying the proposed multiway wiener filtering on noisy
image R. According to the last simulation, the proposed method gives better
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Fig. 5. Different method of denoising: a) Image denoised with 2D Wiener channel per
channel SNR = 14.5 dB. b) Image denoised first whitenning on the spectral mode then
2D Wiener SNR = 17.04 dB. c) Image denoised with Wiener multiway SNR = 18.45 dB.
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Fig. 6. Different methods of denoising: a) Image denoised with 2D Wiener channel per
channel SNR = 10.31 dB. b) Image denoised first whitenning on the spectral mode
then 2D Wiener SNR = 11.10 dB. c) Image denoised with Wiener multiway SNR =
14.56 dB.

results than channel-by-channel wiener filtering in regard to the improvement of
SNR.

Moreover, the evolution of the RRE with respect to the SNR varying from
−5 dB to 30 dB, represented on Figure 7 shows that the RRE obtained with
the proposed method is lower than the one obtained with previously existing
methods.
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In each of this situation, the multiway Wiener filtering improves considerably
the SNR.

7 Conclusion

In this paper we have described a new algorithm for denoising a tensor of ar-
bitrary order. For hyperspectral images, we have proposed a tensor model to
consider all data as whole tensor. The proposed multiway filtering is an exten-
sion of bidimensional wiener filtering to tensor signal. In order to estimate the
signal subspace for each mode we have extended the well-known criteria AIC
and MDL to tensor signal. Since filters that minimize the mean squared error
need to be determined simultaneously, an ALS algorithm has been developed
: both spatial and spectral informations are taken into account conjointly . A
simulation involving several tensors with known rank for each mode shows the
efficiency of the proposed criteria. It was also confirmed that the multiway fil-
tering improves significantly more efficiency the SNR than the classical methods
in several experiments with hyperspectral images.
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séparation d’ondes sismiques. Phd thesis, INPG, Grenoble, France (2001)

7. Muti, D., Bourennane, S.: Multidimensional signal processing using lower rank
tensor approximation. In: IEEE Int. Conf. on Accoustics, Systems and Signal Pro-
cessing, Hong Kong, China (2003)

8. Wax, M., Kailath, T.: Detection of signals information theoretic criteria. IEEE
International Conference on Acoustics Speech and Signal Processing 33 (1985) 387–
392

9. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decom-
position. SIAM Journal on Matrix Analysis and Applications 21 (2000) 1253–1278



A Linear-Time Approach for Image
Segmentation Using Graph-Cut Measures�

Alexandre X. Falcão, Paulo A.V. Miranda, and Anderson Rocha

Institute of Computing – State University of Campinas (UNICAMP)
CEP 13084-851, Campinas, SP – Brazil

{afalcao, paulo.miranda, anderson.rocha}@ic.unicamp.br

Abstract. Image segmentation using graph cuts have become very pop-
ular in the last years. These methods are computationally expensive, even
with hard constraints (seed pixels). We present a solution that runs in
time proportional to the number of pixels. Our method computes an
ordered region growing from a set of seeds inside the object, where the
propagation order of each pixel is proportional to the cost of an opti-
mum path in the image graph from the seed set to that pixel. Each
pixel defines a region which includes it and all pixels with lower prop-
agation order. The boundary of each region is a possible cut boundary,
whose cut measure is also computed and assigned to the correspond-
ing pixel on-the-fly. The object is obtained by selecting the pixel with
minimum-cut measure and all pixels within its respective cut boundary.
Approaches for graph-cut segmentation usually assume that the desired
cut is a global minimum. We show that this can be only verified within
a reduced search space under certain hard constraints. We present and
evaluate our method with three cut measures: normalized cut, mean cut
and an energy function.

1 Introduction

We consider the problem of segmenting an image in object and background by
graph-cut measures. The image is interpreted as an undirected graph, whose
nodes are the image pixels and whose arcs are weighted and defined by an adja-
cency relation between pixels. We wish to assign weights to the arcs and define
an objective function (a graph-cut measure), such that its minimum corresponds
to the desired segmentation (i.e., a cut boundary whose arcs connect the nodes
between object and background).

Approaches for graph-cut segmentation usually aim at assigning higher
weights to arcs inside object and background, and lower weights otherwise. Their
objective functions measure some global property of the object’s boundary from
this weight assignment. Wu and Leahy [1] were the first to introduce a solution
for graph cut using as measure the sum of the arc weights in the cut boundary.
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Their cut measure has the bias toward small boundaries and other objective
functions, such as average cut [2], mean cut [3], average association [4], normal-
ized cut [5], ratio cut [6], and energy functions [7, 8, 9] have been proposed to
circumvent this problem.

The problem of finding a minimum of an objective function through graph cut
is NP-hard for a generic graph and very often solutions require hard constraints.
Heuristic solutions have been proposed in polynomial time [10], but with poor
computational performance, and the results are sometimes far from the desired
segmentation [11]. Indeed we have verified that even in a reduced search space
that includes the desired cut, it does not always correspond to the minimum cut.
This suggests that hard constraints are really needed in practice. For example,
two terminal nodes (source and sink) can be added to the image graph, rep-
resenting object and background respectively [7, 8]. Additionally to the weight
assignment between pixels, this approach aims at assigning lower arc-weights
between source and object pixels, higher arc-weights between sink and object
pixels, lower arc-weights between sink and background pixels, and higher arc-
weights between source and background pixels. A min-cut/max-flow algorithm
from source to sink [12, 13] is used to compute the minimum-cut boundary. If
the method fails the detection of the desired boundary, the user can impose
the arc weights with source and sink by selecting seed pixels inside and outside
the object [7]. The running time of these algorithms is still polynomial [8] (i.e.,
typically O(mn2) where m is the number of arcs and n is the number of nodes).

We present a solution that runs in linear time (i.e., in O(n)). Our method com-
putes an ordered region growing from a set of seeds inside the object, where the
propagation order of each pixel is proportional to the cost of an optimum path in
the image graph from the seed set to that pixel. Each pixel defines a region which
includes it and all pixels with lower propagation order. The boundary of each re-
gion is a possible cut boundary, whose cut measure is also computed and assigned
to the corresponding pixel on-the-fly. The object is obtained by selecting the pixel
with minimum-cut measure and all pixels within its respective cut boundary.

Our method essentially reduces the search space by ordering possible cuts
from inside to outside the object. It requires lower arc weights across the object’s
boundary than inside it in order to include the desired cut in the reduced space.
When this weight assignment is not achieved, the method can still work by
adding more seeds. A problem, however, has been the sensitivity of some cut
measures with respect to the heterogeneity (arc weights) outside the object.
We evaluate this aspect with normalized cut [5], mean cut [3], and an energy
function [7, 9].

We could use the same adjacency relation, weight assignment between pixels,
and energy function to compare our method with the one by Boykov and Jolly [7]
in the context of interactive segmentation. However, under the same conditions,
both methods are likely to produce similar results except to the fact that our
algorithm is more efficient. Instead of that, we prefer to verify the accuracy
of our approach in a real application that represents the worst case for the
aforementioned cut measures.
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Section 2 presents the image graph, weight functions, and cut measures used
in this paper. We present our method for the 2D case, but its extension to 3D
is straightforward. The method and its algorithm are presented in Section 3.
Section 4 evaluates it using three cut measures and our conclusions are stated
in Section 5.

2 Image Graphs and Cut Measures

Consider an undirected graph where the pixels are the nodes and the arcs are
defined by an irreflexive 4-adjacency relation between pixels. There are many
ways of exploiting image features to compute arc weights [5, 7, 14]. We suggest
to assign a membership value for each pixel with respect to the object based
on image features (texture, color, gradients), which may be different depending
on the application. The idea is to improve the weight assignment by reducing
inhomogeneities inside the object.

Let xp be a feature vector computed at a given pixel p; μp and Σp be mean
and covariance matrices of the feature vectors xq computed at all pixels q within
an adjacency radius around p; and T be a set of training pixels, selected in object
regions that have different image features. For a given pixel s ∈ T , we compute
a membership value Rs(p) for every image pixel p.

Rs(p) = exp
(
− 1

2d
(xp − μs)tΣ−1

s (xp − μs)
)

(1)

where d > 1 takes into account the absence of statistical information (e.g., we
use d = 10). We also set a distinct adjacency radius for each pixel s ∈ T , making
it as largest as possible, in order to compute the best estimation for μs and Σs

inside the object region that includes s. A region map R is obtained as

R(p) = max
∀s∈T

{Rs(p)}. (2)

We also apply a median filter on R to make it more homogeneous. The weight
w(p, q) for any arc (p, q) is given by

w(p, q) = exp
(
− (R(p)−R(q))2

2d

)
. (3)

Figures 1a–c show three original images, where the training pixels and their
adjacency radii are indicated by circles. The respective region maps are shown in
Figures 1d–f. We used two normalized attributes within [0, 1] for the feature vec-
tors of Equation 1 in each case: brightness and gradient magnitude (Figure 1a);
and red and green values (Figures 1b and 1c). Note that the choice of these at-
tributes is a separate problem, and the segmentation can not be generally solved
by thresholding the region map and extracting the binary components, which
are hard-connected to internal seeds (e.g., Figure 1d).

Due to the heterogeneity of the background, it is very difficult to obtain higher
arc weights outside the object. This affects some graph-cut measures more than
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) A Magnetic Resonance (MR) image of a brain with three training pixels
(the circles indicate their adjacency radii). (b) A colored image of peppers with four
training pixels. (c) A colored image of two cows with two training pixels. (d–f) The
respective region maps of (a),(b), and (c).

others. Therefore, we will consider the normalized cut [5], mean cut [3], and an
energy function [7, 9] to evaluate this aspect in Section 4.

Let I and E be the interior and exterior of a cut boundary IE, which consists
of a set of arcs (p, q) where p ∈ I and q ∈ E. The normalized cut is defined as

cut(I,E)
asso(I) + cut(I,E)

+
cut(I,E)

asso(E) + cut(I,E)
(4)

where

cut(I,E) =
∑

∀(p,q)| p∈I,q∈E

w(p, q) (5)

asso(I) =
∑

∀(p,q)| p∈I,q∈I

w(p, q) (6)

asso(E) =
∑

∀(p,q)| p∈E,q∈E

w(p, q). (7)
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The mean cut is defined as
cut(I,E)
|IE| (8)

where |IE| is the number of arcs in IE.
We have chosen an energy function similar to that proposed in [7] and con-

sistent with the general formulation described in [9].

λ

⎛⎝∑
∀p∈I

(1−Ro(p)) +
∑
∀q∈E

(1−Rb(q))

⎞⎠ +cut(I,E) (9)

where Ro and Rb are region maps computed by Equation 2 using training pixels
inside object and background, respectively; and λ > 0 represents the importance
of the first term (a normalization factor) with respect to the second one.

3 Region Growing by Ordered Propagation with Graph
Cut

Let A4(p) be the set of the 4-adjacent pixels of p, excluding it. A path π in the
image graph (Section 2) is a sequence 〈p1, p2, . . . , pn〉, such that pi+1 ∈ A4(pi),
for i = 1, 2, . . . , n− 1.

First, assume that Equation 3 assigns lower arc weights across the object’s
boundary than inside it. These arc weights are inversely proportional to the
dissimilarities δ(p, q) between 4-adjacent pixels of the region map. For a given
set S of internal seeds, we define the cost c of a path π as:

c(π) =
{

maxi=1,2,...,n−1{δ(pi, pi+1)} if p1 ∈ S
+∞ otherwise (10)

where δ(p, q) = K(1 − w(p, q)) for an integer K that represents the maximum
dissimilarity between pixels (e.g., K = 1023). The reason for using an integer K
will be explained later.

A path from a seed set S to a pixel p is optimum when its cost is minimum as
compared to the cost of any other path from S to p. Under the above conditions,
it is enough to have a single seed in S (we will discuss later the case of multiple
seeds), and the optimum paths from S to object pixels will have costs strictly
less than the costs of optimum paths with terminus at background pixels. The
object could be detected by thresholding the costs of the optimum paths from
S, but this threshold is unknown. Thus, we grow a region from S by aggregating
one adjacent pixel at a time in order proportional to the cost of an optimum
path from S to that pixel; such that the object pixels will be aggregated before
the background pixels.

Each pixel defines a region which includes it and all pixels with lower prop-
agation order. The boundary of each region is a possible cut boundary, whose
cut measure is also computed and assigned to the corresponding pixel on-the-fly.
The desired cut boundary consists of arcs between object and background pixels,
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and the object is defined by the pixel with minimum-cut measure and all pixels
within its respective cut boundary.

This region growing process creates a reduced search space that includes the
desired cut boundary. Now it is expected that the objective function be able to
detect it as the one with minimum cut. This is certainly not a problem when
Equation 3 assigns lower arc weights across the object’s boundary than inside
and outside it.

If Equation 3 assigns low arc weights inside the object, the method may require
one seed for each part of the object that satisfies the above conditions. The cut
boundaries from each seed will merge into the desired cut boundary before the
optimum paths reach the background pixels.

3.1 Algorithm

Our method uses the Image Foresting Transform (IFT)— a tool for the design
of image processing operators based on connectivity [15]. The IFT algorithm
essentially reproduces the aforementioned process by assigning an optimum path
from S to every pixel in a non-decreasing order of cost. Its bottleneck is a
priority queue Q, which selects a path of minimum cost C(p) at each iteration
by removing its last pixel p from Q. Ties are broken in Q using first-in-first-out
policy. The algorithm runs in linear time if δ(p, q) is an integer in [0, K] and Q
is implemented as described in [16].

We need to modify the IFT algorithm as follows. When a pixel p is removed
from Q, p receives a propagation order Od(p) ∈ [1, n], for an image with n pixels.
At this moment, p and all pixels with lower propagation order define a region I
and the algorithm has found the optimum paths from S to every pixel in I [15].
The remaining pixels define a region E; the cut IE is defined by arcs between
pixels of I and its 4-adjacent pixels in Q; and the cut measure M(p) for IE is
computed on-the-fly. We first illustrate these modifications for normalized cut.

Algorithm 1 Computation of the propagation order map Od and nor-
malized cut map M

Input: An image and adjacency A4.
Output: Maps Od and M .
Auxiliary: A priority queue Q and variables o, ai, ie, and ae that store the order

and values of the Equations 5- 7 for the cut IE.

1. Set o ← 1, ai ← 0, ie ← 0, and ae ← 0.
2. For every image pixel p, do
3. Set C(p) ← +∞ and Od(p) ← +∞.
4. For every pixel q ∈ A4(p) do
5. Set ae ← ae + w(p, q)/2.
6. For every pixel p ∈ S do
7. Set C(p) ← 0 and insert p in Q.
8. While Q is not empty do
9. Remove p from Q such that C(p) is minimum.
10. For every pixel q ∈ A4(p) do



144 A.X. Falcão, P.A.V. Miranda, and A. Rocha

11. If Od(q) < Od(p), then
12. Set ie ← ie − w(p, q) and ai ← ai + w(p, q).
13. Else
14. Set ie ← ie + w(p, q) and ae ← ae − w(p, q).
15. Set cst ← max{C(p), δ(p, q)}.
16. If cst < C(q) then
17. If C(q) �= +∞ then
18. Remove q from Q.
19. Set C(q) ← cst and insert q in Q.
20. Set Od(p) ← o and o ← o + 1.

21. Set M(p) ← ie

ie + ai
+

ie

ie + ae
.

Lines 1–7 initialize maps, variables and insert seed pixels in Q. The division by
2 in Line 5 takes into account that the graph is undirected (i.e., w(p, q) = w(q, p)
should be considered only once). Thus, variable ae is initialized with the sum of
all arc weights in the graph. Lines 8–21 compute the maps M and Od during
the IFT. When p is removed from Q (line 9), it leaves E and goes to I. At this
moment, all arcs that contain p need to be evaluated. The condition stated in
Line 11 indicates that q ∈ I, then arc (p, q) is being removed from IE and its
weight must be considered to update ie and ai. Otherwise q ∈ E, then arc (p, q)
is being inserted in IE and its weight must be used to update ie and ae. Lines
15–19 evaluate if the path that reaches q through p is better than the current
path with terminus q and update Q and C(q) accordingly. Finally, lines 20–21
compute the propagation order of p and the measure of its corresponding cut IE.
After Algorithm 1, the object is obtained by selecting a pixel m with minimum-
cut measure and thresholding Od at values less than or equal to Od(m).

The above algorithm can be easily modified for mean cut if we set a variable
nie to 0 in line 1 (where nie stores the size of IE); compute ie as above; insert
nie ← nie − 1 in line 12 and nie ← nie + 1 in line 14; and set M(p) to ie/nie

in line 21. In the case of the energy function, we substitute lines 4 and 5 by
ae← ae + (1−Rb(p)); compute ie as above; remove the computation of ai and
ae from lines 12 and 14; and insert ai← ai+(1−Ro(p)) and ae← ae−(1−Rb(p))
between lines 20 and 21. In line 21, we set M(p) to λ(ai + ae) + ie. Note that,
we can do the same for many other graph-cut measures (e.g., [2, 4, 9]).

4 Results and Evaluation

Figures 1d and 1e show that the cut boundary may contain multiple contours
due to “holes” (dark regions) inside the region map. The holes may be part of the
object (Figure 1e) or not (Figure 1d). This problem may occur in any graph-cut
segmentation approach. In our method, we close the holes in the resulting binary
image and consider only the external contour as object boundary. Some results
using the region maps of Figure 1 are presented in Figure 2 for normalized cut,
mean cut, and energy function. In the latter, we also used training pixels outside
the object to compute the background region map Rb of Equation 9.
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(a) (b) (c)

Fig. 2. Segmentation results where the seeds are indicated by dots, using (a) normalized
cut, (b) mean cut, and (c) energy function

Figure 3 shows the cut measure versus the pixel propagation order for mean
cut, normalized cut, and energy function using the region map of Figure 1d. In
the case of the energy function, we also created a background map and set λ to 80
in Equation 9. In all cases the IFT parameters are the same and the desired cut
occurs at order 13,340 of the reduced search space. However, it corresponds to the
minimum cut only for the energy function (Figure 3c). Mean cut and normalized
cut fail because of the weight assignment outside the object (Figures 3a–b). On
the other hand, both cut measures can work if we add more hard constraints,
such as limiting the search up to some propagation order o, for o < n and greater
than the object’s size (e.g., o = 0.7n in this case).

This shows that any approach to separate object and background using graph
cut is likely to require some hard constraints, because the problem can not be
simply reduced to finding a minimum of an objective function in the entire
search space. Since false-cut boundaries due to similarities between object and
background are very common in practice, we have chosen a real application
representing the worst case in this respect to evaluate our method.

4.1 Experiments for Evaluation

We have selected 6 images of archaeological fragments, similar to the one shown in
Figure 4a. In this application, the boundary of each fragment has to be perfectly
detected to reassemble the original object [17]. Thus, any failure in the detected
boundary is considered a segmentation error. The similarities between object and
background and touching fragments fail segmentation by thresholding.

The images have 512×384 pixels (n = 196, 608) and a total of 211 fragments.
We applied morphological operations to reduce internal noise, eliminate the grid
pattern in the background, and estimate one seed pixel inside each fragment. This
approach was able to find seeds inside 201 out of the 211 fragments automatically.
Therefore, our experiments consist of using the method to detect the boundary
of 201 seeded fragments in the filtered images.
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Fig. 3. The cut measure versus the pixel propagation order for (a) mean cut, (b)
normalized cut, and (c) energy function using the MR-brain image
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A suitable region map for each fragment would require seed selection on the
shadow region that appears on most fragments. Since this is impractical in an
automatic fashion, we decided to use dissimilarity and weight functions based
on differences of brightness, as usually done in graph-cut segmentation [5, 3, 7].

δ(p, q) = |f(p)− f(q)| (11)

w(p, q) = 1.0− δ(p, q)
K

(12)

where f(p) is the brightness of pixel p and K is the maximum brightness value
in the filtered image. However, the region maps Ro and Rb were computed for
the entire image (taking into account that fragments and non-fragments have
dissimilar features) and used in the following energy function.

λ

⎛⎝∑
∀p∈I

(1−Ro(p)) +
∑
∀q∈E

(1−Rb(q))

⎞⎠ +

∑
∀(p,q)|p∈I,q∈E

α(p, q)w(p, q) (13)

where

α(p, q) =

⎧⎨⎩0 if Ro(p) > Rb(p) and
Ro(q) < Rb(q)

1 otherwise.
(14)

and λ = 40. Note that Equation 14 uses Ro and Rb to restrict the computation
of w(p, q) inside uncertainty regions, as suggested in [7].

Our strategy is to assign a distinct number for each seed, detect each frag-
ment separately, and label it with its corresponding number (see examples in
Figures 4b–c). Some fragments touch each other, but the algorithm can separate
them. When the algorithm fails, it usually outputs the union of two touching
fragments twice, one for each seed. This situation is automatically detected and
the fragments are separated by watershed transform restricted to their union [15].

The method with normalized cut correctly detected only 52 fragments
(25.87%). In order to confirm that this bad result was not due to the IFT,
we repeated the experiment with normalized cut and mean cut, but we limited
the search for the minimum-cut value up to order o = 0.05n. The method with
normalized cut correctly detected 104 (51.74%) fragments, while the method
with mean cut detected 190 (94.53%) fragments correctly.

We also performed the experiments with the energy function. In this case, the
method correctly detected 182 (90.50%) fragments. Although the number of cor-
rect detections was lower than using mean cut with o = 0.05n, we have observed
that energy functions are usually more robust than the other two cut measures,
when it is possible to devise a suitable normalization factor in Equation 9.

Finally, the mean running time to execute the method over images with 512×
384 pixels was 161 milliseconds, using a 2.8GHz Pentium IV PC.
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(a) (b) (c)

Fig. 4. Detection of archaeological fragments. (a) the original image. (b-c) Examples
of correct and incorrect detections.

5 Conclusion

We showed that the segmentation by graph cut usually requires hard constraints
to find the desired cut as minimum cut. We proposed a linear-time solution
where the desired cut is included in a reduced search space under certain hard
constraints applied to arc weight assignment and seed selection. We presented
and evaluated our method for three cut measures: normalized cut, mean cut and
an energy function.

The method requires proper weight assignment and/or more seeds inside the
object, such that the IFT can reproduce its boundary during the region growing
process. Under this condition, the problem is reduced to the sensitivity of the cut
measures with respect to the weight assignment outside the object. The experi-
ments evaluated this aspect in the worst case (i.e., when object and background
parts have similar image properties). Even so, the results show accuracy greater
than 90% for some cut measures. Therefore, we may conclude that our approach
is a significant contribution in graph-cut segmentation.

In interactive segmentation, the IFT allows competition among internal and
external seeds [18]. The combination of external seeds (to reduce the search
space) and cut measures (to reduce user intervention) may provide more effective
solutions than using [18, 7]. We are currently investigating this variant.
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Abstract. A new design for image processing frameworks is proposed.
The new design addresses high-level abstractions suited for component-
based image processing applications, in particular real-time image
processing with high performance demands. The RIM framework, an im-
plementation of this design, is gone through. It is explained how RIM can
be adapted in applications, and integrated with other image libraries. It
is also shown how it can be used to confirm some properties of widely
used image formats.

1 Introduction

This paper studies a recently developed image processing framework. The frame-
work is called the Raster Imaging Framework, or RIM. Focus will be on what
may be called dynamic image processing frameworks, since RIM can be placed
in this category. A dynamic image processing framework doesn’t concern itself
with storing results persistently. Rather it is concerned with delivering ephemeral
images, which may be based on an image composition description. The result
is kept in memory until some other software has made use of it. Other software
may be a web server transmitting the result to a client, a program storing the re-
sult to file or a graphical user interface displaying the result on screen. Frequent
requests are typical, so memory usage and performance are important factors.

The paper [1] discusses in detail performance of some parts of RIM. To study
RIM’s dynamic image processing capabilities closer, the concept of lazy evalua-
tion was introduced. Lazy evaluation means to process ephemeral images piece
by piece, such as scanline by scanline, keeping only small parts of the image in
memory at a time. This reduces the working set [2], [3] of the image processing.

There is an application-driven need for dynamic image processing libraries. A
typical application is to extract a small section of a large image, and convert it
to another image format. Such applications often come in the form of requests to
a server, in particular a map server. The OpenGIS consortium has established a
standard for map servers, called WMS, or Web Map Server [4]. WMS specifies
the behaviour of a service which produces georeferenced maps.
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One attempt to categorize image processing frameworks may be the following:

– Some address issues like software reusability through emphasis on image pro-
cessing algorithm generics (templates). These contain independent building
blocks, and the user can restrict the use of blocks to only the ones he needs.
An example of this kind is the Vigra Computer Vision Library [5].

– Some libraries, like Java’s image processing library [6], attempt to be as
general as possible. The user has access to rich functionality, even if he may
only be interested in a small part of it.

RIM stands somewhere between these types. It does not attempt to be a set
of loosely coupled general purpose algorithms, although parts of it may be ex-
tracted as a template library. It does not attempt to be a fully featured image
processing framework either. It is a small set of high-level interfaces targeting
component-oriented usage. The interfaces offer general image operations, partic-
ularly transcoding between widely used formats. These operations are abstract
to the user in the form of an Image Algebra, a set of functions to compute new
images as a function of other images. The image operations are polymorphic
with respect to the concrete image formats.

2 The RIM Core

The core of the RIM framework is implemented in C++, see public header file [7].
It is at an experimental stage, so that not all parts of it have been optimised
or tested. RIM does not link with other image processing libraries, and support
for some image standards have been implemented from scratch. This was done
in order to support optimisations for lazy evaluation and runlength-based image
processing.

The interface to the RIM framework is inspired by Microsoft’s Component
Object Model, or COM [8], in order to be programming language independent
and target distributed applications. COM provides a standardized API in the
form of the IUnknown interface, and all RIM functionality is based on COM
interfaces offering this interface. Although the interfaces were implemented in
C++, the COM interop system of .NET [9] can use these interfaces with it’s
garbage collector to achieve a smooth integration with languages based on CLI
(Common Language Interface), such as C#. C++ and Java are the languages
currently supported by RIM. The Java interfaces are given in [10]. Interface
naming conventions in this paper follow those in [10], with the exception that a
class prefix is dropped.

One advantage with an interface-based API is that one can hide implemen-
tation strategies. Different image formats can for instance utilize data represen-
tations in different domains during image processing, the details of the domains
and when they are chosen being completely hidden to the application developer.
The most widely used image processing frameworks assume that a raster rep-
resentation is used. RIM takes this further by using both runlength-based and
raster-based internal representations [1], the choice depending on the image for-
mat. Some image formats and operations may be most efficiently processed when
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a runlength-based internal representation is used, and [1] exploits this in terms of
image transcoding. It was shown that more efficient processing is obtained when
the input and output formats can efficiently convert between runlength repre-
sentations and compressed data. GIF and bi-level TIFF were used as examples
for such formats. One can utilize other internal representations also. Operating
directly in the wavelet domain is for instance known to be more efficient for
certain operations [11].

The high-level abstractions of RIM makes it suitable for use as a dynamic
image library in a web application setting. RIM has been integrated with an
XML interpreter, where different XML elements correspond to different RIM
interface methods. Example XML files can be found in [12]. The XML interpreter
has been integrated with an Image Server component [1] for prolonging the life
span of ephemeral images likely to be used in the future. The Image Server is
designed to host image requests for a map server, so it can be seen as an analogy
to WMS. It is reviewed in section 4.1.

2.1 RIM Main Interfaces

Certain interfaces are of particular importance in RIM. The most fundamen-
tal interface is Image, which is the interface abstraction of an image format’s
read-only view to the image data. The Image interface contains methods for
retrieving common image characteristics, like dimensions. An Image can offer
other interfaces also, reflecting different aspects of the underlying image data.
It may for instance be that the underlying image data is actually vector data.
The VectorSource interface is then also offered. This offers vector-based meth-
ods, like functionality for processing objects like text, circles and lines. The
ColoredImage interface is offered if a colour image is used. Interface inheritance
relationships are summed up in figure 1.
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�����
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��
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�������������

ColoredImage
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Fig. 1. Image and Handle hierarchies. Solid line represents inheritance. Dashed line
represents ways of producing objects of the given types.

The Image interface provides a method for producing references to it’s im-
age data. The references represent the context of image traversal, and are used
when iterating a (potentially) compressed image. Many references could be cre-
ated. Each can traverse the image data independently, thereby supporting con-
current image processing. The references offer the interface Handle (figure 1),
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which supports functionality like rendering image data to an output buffer. In
Java, there is a similar duality between the classes Graphics and Image. In the
RIM implementation, classes implement these interfaces on a per-format basis.
The inheritance hierarchy in figure 1, together with internal processing domains
shared by many image formats, offer possibilities for code reuse. This is reflected
in the relatively small code footprint achieved by RIM: The entire RIM dll is
only about 450kb when compiled on win32 platforms.

Handle objects need not arise as references to image data. They can also arise
from Font objects, which represent textual data. Handle objects can also be
constructed from Image Algebra operations.

2.2 Image Algebra

Map images typically consist of a number of bi-level layers placed together. RIM
supports bi-level images in the following way: If an Image originates from a
bi-level file, it will offer the Layer interface. Layer objects support boolean oper-
ations. A particularly important boolean operation is image difference. Boolean
operations are part of an important category, called Image Algebra operations.
Image Algebra operations produce Handle objects from existing Handle objects.
Other examples of Image Algebra operations supported in RIM are

– scaling, which produces a scaled Handle object,
– rotation,
– clipping,
– duplication,
– combining a set of Handle objects in a given Z-order,
– separating a colour-indexed image into LayerHandle objects,
– inversion (switching foreground and background in a bi-level image).

Image Algebra operations can be combined recursively to form a tree, for instance
by taking image difference of scaled or rotated Handles. In such a tree, leaf nodes
would correspond to what one may call atomic Handles. These include Handles
which are references to image data. An Image Algebra tree using some of the
listed operations is shown in figure 2. Note that Image Algebra operands can
refer to either image data or vector data, opening up for applications to hybrid
formats like SVG [13].

The common factor for Image Algebra operations is that new Handle objects
are created. How this is done is up to the implementation, but it is recommended
done without creating new image data segments. RIM is implemented with this
in mind, for instance by performing operations like scaling and image differences
with only small parts of the image loaded at any time.

If an intermediate Image Algebra result is reused more than once, it may be
desirable to precalculate the Image Algebra to avoid performing repeated Image
Algebra. A method in the Handle interface offers this functionality, and creates
a compressed in-memory representation of the Image Algebra tree. The format
used for this representation is at the discretion of RIM, and different formats
are used for different image content: TIFF G4 is used for bi-level images, a
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Fig. 2. A typical Image Algebra tree. � represents image difference. Text data is placed
on top of the image layers.

proprietary format is used for vector data. JPEG2000 is a natural candidate for
colour images.

The functionality for compressing to an in-memory representation, along with
the other Image Algebra operations, constitute a rather complete set of image
operations. Performing Image Algebra raises a string of performance issues, like
how Image Algebra trees can be transformed into equivalent trees more suitable
for processing. RIM implements several such optimisations.

2.3 I/O Support in the RIM Framework

RIM supports GIF, BMP and TIFF input. TIFF input is analysed in [1], where
the focus is on TIFF G4 [14]. An API method exists which creates an Image
object from file name and file type identifiers. Depending on the image type, this
object may offer any of the interfaces already discussed.

RIM supports GIF, TIFF, lossless JPEG2000, JPEG and PNG output. The
PNG implementation is based on the libpng reference library [15]. The RIM
framework supports different types of output through a method taking an out-
put format identifier as parameter. This method creates an object offering the
Renderer interface. The Renderer interface has a method which, for a selected
image region, incrementally renders compressed output to a buffer. The method
signature is similar to the read-methods of java.io.InputStream classes in
Java: A parameter indicates the size of the buffer to read from, and another
parameter indicates the number of bytes actually read. Such a method signa-
ture frees us from the underlying file system: The output buffer can for instance
be drained onto a network connection, enabling integration with web servers.
Another advantage is that one is offered natural support for splitting output in
logical units since the method can produce output in parts. Logical units for dif-
ferent image formats could be blocks (used by GIF), chunks (PNG) or packets
(JPEG2000). Java also uses InputStreams for image processing purposes, for
instance for the deflate compression algorithm.

Prior to rendering compressed output, one must restrict compression to a
concrete region, and the Handles to render must be added. Handles which are
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results of Image Algebra expressions are typically added, and the order they are
added dictates the Z-order. A typical application can have a colour image or a
set of bi-level images as background, and have text fragments or small bitmap
images anchored at designated positions. Bitmaps may be used to represent
some kind of user interaction (like zoom or pan), so this could constitute a user
interface. Example XML is listed below:

<?xml version="1.0" encoding="UTF-8" ?>
<visalg>
<coloredsection color="beffe9">
<file x0="0" y0="0" laysf="1" name="l1.tif" format="3"/>

</coloredsection>
<coloredsection color="ffd1bf">
<file x0="0" y0="0" laysf="1" name="l11.tif" format="3"/>

</coloredsection>
<coloredsection color="000000" static="true">
<text height="16" width="8" text="Test" x0="10" y0="70"/>

</coloredsection>
<coloredsection color="00ff00" static="true">
<file x0="10" y0="40" laysf="1" name="rimtool.bmp" format="2"/>

</coloredsection>
</visalg>

When RIM’s XML interpreter processes this, two TIFF layers overlaid with a
black text segment and a green bitmap will be produced (figure 3).

3 Applications of the RIM Framework

A useful and simple application of RIM is layer separation. One of the dashed ar-
rows in figure 1 represents layer separation, so that occurrences of a single colour
in a colour-indexed image may be obtained as a dedicated object. This object
can be compressed to an in-memory representation, which may be desirable to
avoid repeated colour separation.

Performance results are here obtained for different image formats using RIM.
The image formats which will be used are GIF, PNG and lossless JPEG2000. GIF
and PNG are perhaps the most widely used formats for exchange of losslessly
compressed images on the world wide web, while JPEG2000 is the emerging
standard for both lossy and lossless compression. Measurements use the same
test images as in [1], i.e. two images of different parts of Norway comprising of
19 TIFF G4 bi-level layers. One of these is 7469× 8886 pixels in size (figure 3).
The test images have tile dimensions of 512 × 512, and tests are performed on
the tiles separately to obtain a high number of tests. XML files written for the
tests are listed in [12].

3.1 Comparison of Performance for Different Output Formats

Performance in terms of clock cycles should be higher when little detail is present
in the image. For RIM, this is verified in the first plot in figure 4, where accumu-
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(a) Output for the XML example listed (b) Layered image of Lyngen, one of the
test images used in this paper

Fig. 3. Images used in this paper

lated runs per line is plotted against clock cycles. Accumulated runs per line [1]
measures the level of image detail in the form of counting the number of runs
per line for all layers. The connection between performance and image detail
is best seen for GIF and PNG. GIF comes out best in terms of performance,
as it has the least complex algorithm. For JPEG2000, two main components
have impact: The embedded block coder (EBCOT), and the Discrete Wavelet
Transform (DWT). The DWT has not been applied in the plot, so the poor
performance of JPEG2000 as compared to GIF has to do with the complexity
of the embedded block coder. The most expensive part of a PNG compressor is
the matching algorithm part of deflate. If much time is spent matching previ-
ous combinations of pixels, compression is improved. The PNG compressor used
here is more concerned about compression than performance, which is reflected
in poor performance numbers when compared to GIF.

It may be that compression of bi-level images is of interest. According to [16]
chapter 16.3, JPEG2000 outperforms GIF when it comes to compression at low
bit-depths, and is comparable to JPEG-LS and TIFF G4 (for bi-level images).
The second plot in figure 4, generated by using just one layer (rich in content)
in the test image, supports this statement.

3.2 JPEG2000 Compression Strategies

JPEG2000 is flexible when it comes to techniques which can improve compres-
sion. Palette mode can be used for images with a limited number of colours.
Palette-based JPEG2000 can improve compression considerably for two reasons:
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(a) Performance in megacycles (= 106

clock cycles)
(b) Compression of bi-level file

Fig. 4. Comparison of widely used image formats using RIM

First of all, bit-depth and the number of components are reduced. Secondly,
palette-indices can be reorganized. This can be exploited by the JPEG2000 com-
pression algorithm, since the JPEG2000 block coder is bit-plane oriented and
gives higher compression in areas with low bit-plane complexity. Reorganizing
palette indices for some image formats has been exploited in [17]. The figures in
this paper have used a simple palette reorganization, in which the background is
assigned palette index 0, and the next colours are assigned indices in alternating
and increasing order around 0. Both PNG and JPEG2000 support palette mode,
and so does RIM for both these formats. Comparison with and without palette
mode is done in figure 5 for these two file formats.

Both JBIG and JPEG2000 can apply multi-resolution transforms. [16] notes
that the reversible wavelet transform JPEG2000 uses is primarily designed for
continous-tone imagery. One would therefore expect that compression would

(a) PNG (b) JPEG2000

Fig. 5. Comparison of compressed file sizes for palette-based and RGB-based compres-
sion. PNG and JPEG2000 are used.
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Fig. 6. Comparison of compressed file sizes for JPEG2000 with no DWT and one level
DWT

suffer somewhat for our type of images when different resolutions are used. This
is verified in figure 6, where compressed file sizes for zero and one DWT levels are
compared. RIM uses a Config interface for image format specific configuration.
For JPEG2000, this supports setting tile sizes, block sizes, progression order [16]
and the number of DWT levels. The JPEG2000 Config interface is here used to
set the number of DWT levels.

4 Integration of RIM with Other Component Libraries

RIM can easily be integrated with components like web servers and GUI libraries.
Qt [18] is a C++ class library for writing GUI applications. It has been used
to build the popular open source KDE desktop environment for Unix. Making a
scrollable component with QT boils down to subclassing the class QScrollView,
and implementing the method drawContents to draw the image contents of
the current part of the image. An example file in [19] sketches how this can be
done using RIM. The RIM framework can also be integrated with Java Swing
components or Java servlets in a similar way. An example file in [19] sketching
this is also listed.

4.1 Integration with the Image Server

The Image Server acts as a cache for frequently accessed files, and as a front-end
to RIM. A typical use of the Image Server is to extract a small part of a large
image on request from a web server. The Image Server ensures that frequently
requested parts are readily available in shared memory. The architecture used
by the image server is shown in figure 7.

The Image Server could also be used as a cache for compressed representations
of the most commonly used Image Algebra requests. Another possible use could be
to serve as information holder for occurrences of colours within different parts of
the image. Such information can be used in the process of improving compression.
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Fig. 7. The Image Server architecture

JPIP [20] is one of the more recent extensions to JPEG2000. It defines a pro-
tocol for scalable delivery of JPEG2000 data in client-server systems. Supporting
the JPIP protocol is another possible use of the Image Server.

5 Other Work

The Image Server generates images from image description files using XML.
Other dynamic image libraries have also been developed for use in web devel-
opment settings similarly to RIM. An example is the gd library [21], which has
been integrated with the fly gd command interpreter. Separate gd commands ex-
ist for different drawing primitives, so that image processing can be embedded in
scripting languages. This is similar to the way XML is used by the Image Server.
The RIM API supports the most common drawing primitives, like circles, lines
and text, so the RIM XML interpreter supports similar functionality to gd.

6 Conclusion

A small dynamic image processing library has been demonstrated. It was argued
that the library meets low-memory demands imposed in dynamic image process-
ing. It was also shown how the library can be used to demonstrate properties
about widely used image standards, and easily be integrated with other GUI
component libraries. It was also demonstrated that RIM can handle different
image formats in a completely transparent manner, and how RIM’s support for
Image Algebra makes it a very general tool.

Results in this paper were obtained with an Intel Pentium M processor with
1600MHz clock speed, L2 cache size of 1MB and 512 MB RAM. All tests were
run under Windows XP, and all programs were compiled with Microsoft Visual
C++.NET 7.1.
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The work in this paper is partially based on the RIM library from Raster
Imaging AS (www.rasterimaging.com) which provides high performance imag-
ing technologies. The post.doc project carried out by Dr. Øyvind Ryan at the
University of Oslo has enhanced this implementation, and added algorithms for
improved performance and scalability with regards to server applications and
memory consumption.
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Abstract. Only three set of pattern chain elements to detect corners in
irregular shapes are introduced. A code based on three orthogonal change
directions, when visiting a contour shape, are used. Previous approaches
for detecting corners employ eight different symbols and usually compute
angles and maximum curvature. The three basic pattern contour chain
elements, founded in this paper, represent changes of direction in the
contour curves, requiring few computing power to obtain corners. Also,
we have found that the method is independent of shape orientation.

Keywords: Shape corner; Contour; Chain element; Freeman chain code;
Symbol chain code; Pattern substrings.

1 Introduction

Nowadays, corner detection of shape objects is an active field in object recogni-
tion and image retrival. In literature, usually the aim in obtaining corner points
by computing angles of curvature on the contours of shapes is studied and repre-
senting discrete contours by Freeman chain codes. Freeman and Davis [1] proposed
to find corners by computing incremental curvature to represent contour shapes
by an eight-direction chain code. Since then, many authors have suggested to use
this code when representing contour shapes. Part of the algorithm presented by
Teh and Chin [2] consists on computing the curvature of contour points and de-
tecting corners by a process of nonmaxima suppression. Liu and Srinath [3] have
compared a number of corner detectors due to Medioni and Yasumoto [4], Beus
and Tiu [5], Rosenfeld and Johnston [6], Rosenfeld and Weska [7] and Cheng and
Hsu [8]. All those authors represented samples of shapes through a sequence of
eight direction changes from 0-7, known as the Freeman Chain Code [9].

Wu [10] proposed an adaptive method to find local maximum curvatures of
digital curves. Sobaina and Evans [11] described a corner detection from seg-
mented areas using mathematical morphology employing paired triangular struc-
turing elements.

Basak and Mahata [12] developed a connectionist model along with its state
dynamics for detecting corners in bynary and gray level images. We have studied
that it is suitable to represent any binary closed shape with binary resolution
cells, and using only three symbols of a chain code, without loss of information
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[13]. This method of chain code is sufficient to represent binary shapes and
represents low cost in storage memory. Techniques due to Freeman chain codes
in finding corner detection are based in eight different directions (see Fig. 1a).

Fig. 1. Two different chain codes: (a) The eight different directions given by Freeman
chain code. (b) The three orthogonal change directions.

We propose here to use a method of only three relative direction changes
given by Fig. 1b. An advantage in using three symbols is its low storage power,
as can be seen by the recent work duo to Sánchez-Cruz & Rodŕıguez-Dagnino
[13]. They found that coding with three symbols is sufficient to represent binary
shapes saving storage efficiently. Recently Yong Kui Liu & Boruk Zalik[15], found
efficient storage properties by using Huffman coding applied on change directions
of Freeman chain code.

For each orthogonal change direction code, chain segments are divided in three
parts (given in Fig. 1b): a reference segment (in Fig. 1b appears as horizontal
segment in each code), a basis segment (perpendicular to reference segment) and
a segment indicating a direction change with regard to reference segment.

The meaning of the three symbols (see Ref[14] for 3D case), given by the set
C = {0,1,2}, is as follows: the element 0 represents the direction change which
means to “go straight” through the contiguous straight line segments following
the direction of the last segment; the ‘1’ indicates a direction change upward
with regard to the reference segment; and ‘2’ means to “go back” with regard to
the sense of the reference segment. In this work we have noticed that when the
symbol ‘2’ appears in a contour shape, can easily indicate an existing corner. In
Section 2 definitions concerning to this article are presented, seeking the problem
as a pattern substring search. In Section 3 some rules to detect shape corners
are proposed; in Section 4 experimental proving of postulated rules are applied
on some binary shapes; in Section 5 rotation independence is analized, and in
Section 6 we give some conclusions.

2 Some Definitions

Our proposal method considers to find a specific set of pattern substrings of
length l, trying to find all those substrings in a shape contour coded by a chain
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that match with those patterns. Let us consider, for example l = 11 as the length
of the substrings. Which substrings are all composed of 11 symbols and which
of them are considered corner chains? In fact, there are substrings composed
of 11 symbols, of course, not all are considered corner chains due to its low
curvature or because the region they are associated in the contour shape is not
“well behaved”, as we explain at once.

Let P denote the complete chain code (or simply chain code) associated to the
shape contour, given by the string of symbols pi of eq(1).

P = p1p2 · · · pn, (1)

and P the contour discrete perimeter, given by the number of symbols of the
chain code.

Consider a substring template of l symbols: C ∈ P , given by eq(2).

C = a1a2 · · · al, l � P, (2)

as a contour chain element, or simply: chain element, this is, a small piece of
contour from the whole shape contour.

Let us consider m = l/2 the middle point of a substring of size l, so that
am, the pivot, be the center of the substring. It is possible to associate a pair of
line segments to any chain element. They can be drown up from to the opposite
end points, producing an angle ϕ. We define a well behaved chain element when
an angle has been subtended by a pair of associated line segments such that
the chain does not form loops. Observe a sample of chain elements and their
corresponding visual meaning in Fig. 2.

Fig. 2. Angle ϕ of curvature. Consider a 5-neighborhood of pivot (1+2):
00000(1+2)10011.

We define a neighborhood of radii r, when considering a piece of the complete
string; this region is composed of a small number of symbols in comparing with
the whole contour chain code, r symbols on one side of a particular pivot symbol,
and r symbols on the other side of the pivot symbol. Fig. 2 presents an example
of neighborhood of radii 5: chain elements having 00000 in its left first part,
10011 in the right part, and 1 or 2 (1+2 to abreviate) as a pivot symbol could
appear on the contour shape.
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We propose to save calculation of corner-angles or curvature changes directly.
Instead we give a family of substrings that represents high curvature. Well be-
haved substrings should not be considered a corner chain when their corner
chains associated angles are so much obtuse.

Another definition we need is a well behaved contour shape, this is, a contour
shape having been smoothed in such a manner that there is no noise or local
defects.

3 Rules for Detecting Chain Corners

In this work we did our experiments with a vicinity of eleven symbols in chain
elements giving good results in finding chain corners.

A way to obtain a complete set of templates considered chains corners, is to
search all the substrings arrays composed of l symbols from the set C = {0,1,2},
calculate the angle associated to each substring and apply the threshold to see
if it is a chain corner. But we propose a small enough set of template substrings
to find the evident chain corners from an arbitrary set of 2D shapes. To find a
group of pattern substrings or pattern chain elements considered as chain cor-
ners is to focus in a vecinity of each change code contour, by for example eleven
chain segments, nine of them labeled with symbols, representing orthogonal di-
rection changes. The first two are called reference segment and basis segment,
respectively. There are a huge number of combinations given by nine symbols
(11 segments) and we are interested on finding chain elements that have no
loops. Even more, fixing the reference segment of the chain, there are 39 com-
binations duo to the other nine chain directions. Fig. 3 presents part of these
combinations.

By analizing the different chain sets mentioned, we have observed that pattern
substrings representing corners. Parameters we have to take into account are the
next:

l: states for the size of substring.
q: represents “many” times a symbol is repeated in a substring. This quantity

depends on resolution of binary object. By many we define that the number of
symbols is greater than l/4, so q ∈ (l/4, l].

Part of the study made to find a simple pattern of substrings that represent
corners, was to find that we have to consider only the cases when there is an ap-
preciable direction change when visiting the discrete contour. At first glance, this
happens with high probability when a symbol ‘2’ from the orthogonal changes
appears. As was introduced in Section 1, this symbol represents “go back” when
covering the shape contour, indicating a corner shape. Of course, in a given sit-
uations, where there is some noise or local shape defects, ‘2’ symbol should not
constitute a perceptible corner. So, our first pattern chain class to be proven is
composed of a string of 1s or 0s, then a ‘2’ symbol and then a sequence of 1s or
0s again.

Another pattern chain elements, that represents contour change directions,
ocurres when there are many 0s (with possibly some pairs of 1s) following a ‘1’
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Fig. 3. Part of the complete set of 39 substrings

as a middle symbol of the chaing element, following again many 0s (with possibly
some pairs of 1s).

The other pattern chain elements represents only changes of directions of the
contour shape. Changes of directions ocurre simply when there are a substring of
many 1s, with possibly some 0s, following a substring of many 0s (with possibly
some 1s); or viceversa, a substring of many 0s (with possibly some 1s) following
a substring of many 1s (with possibly some 0s).

So, to simplify the pattern of chain elements that correspond to chain corners,
we are talking about pattern strings of discrete chain corners, postulated by next
regular expressions:

S1 = (0 + 1)l/2(2)(0 + 1)l/2,

S2 = (0q + 1p)l/2(1)(0q + 1p)l/2,

S3 = (0q + 1p)l/2(1)(0 + 1p
q)l/2 + (1q + 0)l/2(1)(1 + 0q)l/2, (3)

where q represents many symbols, p states for a pair of symbols: p = {0, 2}. Rule
S1 states that when a symbol 2 appers, the chain element can be considered a
corner chain. Rule S2 means there are many zeros in both sides of the middle
point of the the chain element. Rule S3 means that substring has many zeros or
ones in the first part of the chain element and many ones or zeros in the second
part of the chain. See Fig. 4 for a sample of these rules. Our proposed method
relies on looking for these pattern substrings on any contour shape.

We consider shapes represented by resolution cells, each having a value 0
or 1. For the implementation of an algorithm to encode this shape we have to
visit the ones that represent the contour shape, i.e., the ones of the boundary.
We follow the contour of the shape clockwise sense, updating in every step,
the reference segment with the contiguous segment, and giving one of the three
symbols according to each orthogonal change direction (see Ref[13] for a detailed
explanation).
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Fig. 4. Samples of the three types of corners, each invariant under rotations tranforms

Fig. 5. Examples of chain elements, covering the contour on clockwise sense. The grid
is part of the inner shape.

The object shape is confined to a minimum rectangle that is visited line by
line, from left to right and from top to bottom. The first cell resolution, of the
object to be visited, is that which appears at the leftmost and highest part
of the occupied region. Fig. 5 shows part of a contour shape and examples of
chain elements coded by the three symbols of the orthogonal directions given
in Fig. 1b. Given this representation, we can reconstruct the original image by
interpreting the code of every symbol in terms of the direction changes that can
follow.

Finally, the pattern substrings, S1, S2 and S3 are parsing the resulting chain
string of the complete contour.
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4 Experiments

Consider the set of four shapes S = {Irregular shape, Circles, Hammer,
Tigger } showed in Fig. 6 as binary objects.

Consider Irregular shape object and its corresponding chain code (Fig. 7), 51
chain corners were found in its conotur shape. Some of them are so closed, in

Fig. 6. Four shapes: (a) Irregular shape; (b) shape of intersecting Circles; (c) Hammer;
(d) Tigger

(a)
01111200110011000110000011000110111111111000000002101100000000002111101101100011110000000000000
000102100111100011011110001111000000020000000110001011111000000000000000111100110011111010101
1011101011111011111101111011000000021110000110011001101111001101100000000211011011011001100111100
110001111110011000110001111102011011001101100111101101100110110110001000211011011001101111000011
001100111101020110011110000110110110011010110011001110110000000110000000000000002100011011000001
1001100000000000000000000100201000000210000011010002100000000002000000000210110001101101100110
00000000000021011011111000000000000021000001100000000000000021000000110010211111111011011011011
111011110111111011101111111111111101111110110111110110111011021011011010101111111101100011110100000
000000001100111011110001100011010101100110101001110111111011011100200000011000110100000211110111
11000000021011101101101100000001111011011011111111

(b)

Fig. 7. Irregular shape and its corresponding 3-symbol chain code: (a) the shape; (b)
its chain code
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Table 1. Chain elements encountered from the Fig. 7 that belong to one of the two
classes of chain patterns postulated. Corners 5,9,27,41 and 46 are split by two closed
chain corners.

Num Chain Class Num Chain Class
corner element pattern corner element pattern

1 01111200110 S1 12 01111100000 S3

2 11111100000 S3 13 00000111100 S3

3 00000210110 S1 14 11101100000 S3

4 00000211110 S1 15 00000211100 S1

5a 11000111110 S3 16 01101100000 S3

5b 00111100000 S3 17 00000211011 S1

6 00010210011 S1 18 10000111111 S3

7 01111100011 S3 19 11110201101 S1

8 10111100011 S1 20 11000100021 S2

9a 11000111100 S3 21 01000211011 S1

9b 00111100000 S3 22 11010201100 S1

10 00000200000 S1 23 10000110110 S3

11 11000101111 S3 24 11101100000 S3

12 01111100000 S3 25 00000210001 S1

26 01101100000 S3 39 10110210110 S1

27a 00000100201 S2 40 11011000111 S3

27b 00100201000 S1 41a 11000111110 S3

28 00000210000 S1 41b 11110100000 S3

29 00000110100 S2 42 00000110011 S3

30 01000210000 S1 43 10111100011 S3

31 00000200000 S1 44 11000110101 S3

32 00000210110 S1 45 11100200000 S1

33 11001100000 S3 46a 11000110100 S2

34 00000210110 S1 46b 00110100000 S2

35 11111100000 S3 47 00000211110 S1

36 00000210000 S1 48 11111100000 S3

37 00000210000 S1 49 00000210111 S1

38 10010211111 S1 50 01101100000 S3

51 00000111101 S3

such a manner that their corresponding pivots are in the neighborhood of each
other, in this case we could define only one corner. In Table 1 is listed each of
the chain elements and the corresponding class pattern given by eq(3) of the
Irregular shape contour.

From Figures 7 to 10, contour shapes of the set S and their corresponding
chain codes are presented. They also show the results of applying the method
proposed to search chain corners given a substring length of l = 11.
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10000021000011110111101111101111110110000110111001101101111111101111111111101111110110111101100001100
01100012011111101111101111011110000110000021000011110111101111101111110110000110000210000110111111011
11101111011110000110000021000011110111101111101111121111001100001101111011011111101111111111101111111
10110110111011000011011111101111101111011110000110000021000011110111101111101111110110000110010110110
11111111011111111111011111101101110101101100110011111211110111110111101111000011000002100001111011110
11111011111101100001100002100001101111110111110111101111000011000002100001111011110111110111111012001
10011011000111101111011011111101111111111101111111101101110011000011011111101111101111011110000110000
021000011110111

(c)

12000000110000002100001100110110110011110000000021011011111101101111001101100011001100011000110000110
00000002101100011011010101100111101100110110101011101011001111111101101101100000211100001100110111100
11001111011011011010111111011001101100110000000000000000000000001100000000000000000000000000000000210
00011000011000110000000000210011110101100110111011110000000110000000110000011000011001101111011110111
11000000002010010111111001100011011110000011000000000000000000000000000000000001100000001100000001100
00000000000000000001100000001100000110000110000001100000000000000001100000000011000000000000000000000
01101100001101100000000000000001100110000001002100011000000000110100101010110110000000000210111100101
11111110110000000021110000000002101100000000000000021000000000000000000000000000000000000000000021000
00000021001100000110011021210110011111100000000001101101101010000000000000000210011011011000000000011
00011100021101100101101101111000110000021000010110111110100111100011001111001100110011001101100011000
11011000000011000000000011001012100000000000000002120111111000021001111111011011011111121000002100000
00000000000000000110110001100010101002110000000000000000011000000000000000000000000000000011000000011
02121011000011000001100000110011110111111110111111111101011011011000110011111100110110011000000000000
00000000021000001100110011011011001101101101110101101111011111101111111101111110111111111111111110111
10110110110101111101101101101100110000011000011210000021011001010000011000000001010000011011001101010
11011001100110001101101111011110110011111100110011000110001101100011110000011011011000001100011000011
00110000110001100011001101100111101111001111001100110111111101101111101011110111111010111101001011011
11111110101111111111111001010110111100021110011111111000110110000110000211101111101010000000000020100
11111101111000002111001011101011100110001111000110000000000000000021000011000110000000020100110110001
111011111011110011101011101

(d)

Fig. 8. Objects and their chain codes: (a) Circles; (b) Tigger; (c) and (d) their respec-
tive chain codes

Fig. 9. Hammer shape and its corners despite rotations: (a) original shape; rotated (b)
30◦, (c) 45◦, (d) 75◦ and (e) 90◦ in counterclockwise sense
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20000000000000021000000000000000000000000000000000000000000000000000000000000000000000000001102102101
10010111110011110111111111011111101111001101100111100110011011011001101111110101010100000020210101111
10101111010111111011000110110110110110000001100001010000000000002021000000000110000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000110001100000000000002100000000000
21000001101100000011000000110000000000210100011000000000000000000000000000000002000110000000000000000
00000000110000000000000000000000000002100000000000000001100011000000000000000000000210001100000110000
00000000000000000000000000000000002100000000000000000000200000000000000000000110000000000000000000000
0000100000000000000000000000000000000

(a)

12010000212100000011011011001101101010110101001110101111110110101011011001100110111110110211002010000
01101111212100000021000001121212121000110110011011021021011011110110111201110110111101110101101101111
01101101111011011011110110110111101101111011011011110110110111101101101111011011011110110111101101101
11101101110101111111101101101111011000111101101101110101101011111111101110101101101011101101111011000
20111010111101101101111011011011110110110111101101121101010111101101101111011011011110110111010110111
10110110111101101101111011011121011110110110111101100011000111101101111011011011110110101110101011110
10111011011011110110110111101101101111011011011110110111210111101101111011011011110102101111011011011
11011011011001101101101111011011011110110110111121101101111011011110110110111101101101111011002011011
01111011011000111101101101111011011011110110110111101101101111011011011110110111101101101111011011011
1101101101111000101000001

(b)
10000021000011000110011011000111101100110001111000001102121021211111111021100210002102100000000210011
11011000110110011111111011111102121111111111111111020111111111111001111111111111111111111111111111111
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110111101
11111111111111111101111111111111110111111110001111111111001111111101111111111111110002111011111111111
11111111111111111111111111111111110211101111111111111111111111111111111111001111111111111111111111111
11111111111100111111111111111111111111011110111111111111111111111111111110111101111111100111111111111
11111111111111111111111111111111111111111001111111111111111111111111110211111111111111111111111111100
11111111111111111111111111111111111100211111111111111111111111111111111111111111100211111111111111111
10011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
111111011101011001100000110001

(c)
12100011010211112121110110110011111101111100111111111101110100110011110011101001100110001102112102100
01100000001100011001100011000110001100110001100011000110011000110001100011001100011000110001100110001
10001100011001102102102102100011000110011110011000110000001100212121002100000001100000011000110011111
02102102100110001100011001100011000110011000111210021210001100110001100011000110011210021000110001100
01100110001100011110011001100011000110111100111100011000110011000110001121002121002100000011000110001
10011000110001100011000110011000101000110011000110001100011211000110001100110001100010100110001100011
00110001100011001110210011000110001100011000110011000110010000210001100011011110001100110001100011000
11001100011000110011000110001100110001100011001100011000110011000111102111111110100110100101111110110
1100111100011000011021210112102121021000110212100110110110010

(d)
10000000211011111010111101011111101100011011011011011000000110000101000000000000202100000000011000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000011000110000000000
00021000000000002100000110110000001100000011000000000021010001100000000000000000000000000000000200011
00000000000000000000000011000000000000000000000000000210000000000000000110001100000000000000000000021
00011000001100000000000000000000000000000000000000210000000000000000000020000000000000000000011000000
00000000000000000000100000000000000000000000000000000200000000000000210000000000000000000000000000000
00000000000000000000000000000000000000000001102102101100101111100111101111111110111111011110011011001
1110011001101101100110111111010101

(e)

Fig. 10. Hammer code, (a) original chain; rotated (b) 30◦, (c) 45◦, (d) 75◦ (e) 90◦ in
clockwise sense

5 Rotation Independence

When a rotation transformation is applied to any shape, a grid basis is main-
tained fixed, so the chain code of the same figure changes substantially. Never-
theless, most important corners can be found with the set of pattern substrings
given by the rules (3).

Searching the pattern substrings given by eq(3) the most important shape
corners are conserved in Hammer shape (Fig. 9), despite its chain code changes
when rotated (as can be seen in Fig. 10).
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6 Conclusions

To save time and memory storage to manage this kind of objects, we used three
symbols that represent orthogonal directions when covering contours of binary
shapes. With this method we have found shape corners including there where
is apparently circular, like happenning with figure constructed by intersecting
circles. We found three classes of patter substrings to obtain the most important
shape corners in contour shapes, preventing to compute angles and curvatures
directly; so we have presented a new research topic. Also, we have analized that
the proposed metod is invariant under rotations of shape contours. As future
work most be studied if this method is invariant under scale transforms. A
universal and simplified set of pattern substrings, comparing with other chain
codes in literature is suggested to be investigated.
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Abstract. We propose a novel active contour model by incorporating
particle based electrostatic interactions into the geometric active con-
tour framework. The proposed active contour, embedded in level sets,
propagates under the joint influence of a boundary attraction force and
a boundary competition force. Unlike other contour models, the pro-
posed vector field dynamically adapts by updating itself when a contour
reaches a boundary. The model is then more invariant to initialisation
and possesses better convergence abilities. Analytical and comparative
results are presented on synthetic and real images.

1 Introduction

Ever since the introduction of the parametric snake [1], deformable models
have received much attention for region segmentation and object detection. The
geodesic active contour [2] is a significant improvement over the parametric snake
in that it can naturally handle topological changes. However, it still suffers from
drawbacks such as edge leakage and sensitivity to initialisation. There have been
many efforts in improving both parametric and geometric snakes, for example
by introducing region-based features to make the model more robust to initial
conditions [3, 4, 5]. One significantly improved parametric model is the Gradi-
ent Vector Flow (GVF) snake [6] which uses a bi-directional external force field
that provides long-range capture of object boundaries from either side. One of
its main drawbacks however is that the contour does not propagate where the
vector flows are tangent to the contour or diverge within a neighbourhood. One
improvement of the geometric snake model is the GVF geodesic snake [7] which
integrates the GVF with a geometric contour formulation and introduces an
adaptive balloon force to help propagate the contour when the vector flows are
tangent to the contour. This allows it to outperform the GVF snake while also
benefitting from topological freedom. However, it is still unable to propagate
through the points where the GVF field has large divergence which form in ho-
mogeneous areas depending on object topology. Therefore, the contours must be
initialised with great care in order to avoid getting trapped at these points.

Recently, a new formulation for a “deformable model” based on charged par-
ticle dynamics, founded on electrostatics and particle movements, and called the
Charged Particle Model (CPM), was introduced by Jalba et al. [8]. CPM can
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capture object boundaries over the entire image with a set of free charged par-
ticles. These are attracted by object boundaries via an image-based force field,
while at the same time being repelled from one another by a charged particle-
based force which constantly imposes on the particles to advance them along
object boundaries. While an initialization step is still required, it is certainly
less pivotal than in the contour model. However, this particle model a) can not
guarantee continuous and closed final contours, b) does not stabilise as there is
no effective stopping term, and c) is computationally intensive.

In order to overcome the common drawbacks in the traditional deformable
contour model and the deformable particle model, we propose a new framework
by introducing particle based electrostatics into active contour propagation that
incorporates the advantages of both contour and particle based models. We re-
fer to this as CACE, a Charged Active Contour based on Electrostatics. CACE
can detect object boundaries via contour propagation under the influence of a
bi-directional force field that simulates the electrostatic interaction between an
image-derived point charge field and a charged contour. In other words, the force
consists of boundary attraction and competition terms that lead the contour to-
wards object boundaries. CACE is much faster and more efficient in convergence
than CPM. More importantly, it eliminates CPM’s tendency to sometimes result
in open contours. CACE also has significant advantages over the geodesic and
GVF geodesic snakes in that it is more robust to initial placement and is able
to handle objects of more complicated topology, e.g. those with narrow parts.

As electrostatics is the starting point of our work, we will review its key con-
cepts in Section 2, along with a brief introduction to CPM and its shortcomings.
In Section 3, the construction of our proposed model is discussed, with experi-
mental results shown in Section 4. Section 5 concludes our work.

2 Background

An electrostatic field E is defined as the electrostatic force upon a unit charge due
to other charges. Suppose there is a distribution of N point charges c1, c2, · · · , cN

fixed at locations r1, r2, · · · , rN respectively in a 2D space.According to Coulomb’s
Law, the electrostatic field at location x in this 2D domain is given as:

E(x) =
N∑

i=1

ci

4πε0

x− ri

|x− ri|3 , x ∈ X, (1)

where ε0 is the permittivity of free space and X is the set of all possible locations
in this 2D domain. Thus E is a vector field that has a force at every location in
X. If a test charge e is placed in the field at location x, the electrostatic force
put upon it can be obtained by:

F(x) = eE(x). (2)

It is important to note that the electrostatic force acting on the test charge
e is merely the superposition of separate electrostatic forces imposed by every
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Fig. 1. Columnwise from left: synthetic circle image with highlighted weak edge area,
the normalized Coulomb1 force field in box area, initialized CPM, instance of particle
movements, and the final CPM result

fixed charge ci. This implies that the force of charge ci upon test charge e is not
influenced by the presence of any other fixed charges in space. This principle
enables us to compute forces from different sources separately and control their
contribution to our charged contour model.

CPM [8] is a particle model built on the simulation of particle movements in
an electrostatic field. A set of positively charged free particles is placed in a field
distributed with negative fixed charges proportional to the input image edge
strength. As the particles have the same polarity to each other, and opposite
polarity to the fixed charges, an attracting image-based force is imposed on each
particle by the fixed charges, while a repelling particle-based force is imposed
by the particles upon each other1. These force are computed respectively using
(2). Their normalised weighted sum, reduced by a damping factor, plays the
role of acceleration for each particle. As the image-based force has larger weight
than the particle-based force, the particles primarily move towards the nearest
and strongest edges. The repelling forces then try to advance the particles along
the boundary until they have reached an equilibrium state, thus detecting the
entire boundary. A multiscale approach was used to partially alleviate the heavy
computational costs, and also to allow particles quickly spread across the image
domain at coarser levels to capture as many boundaries as possible.

The CPM model [8] benefits from initialisation that is largely insensitive to
placement. Nevertheless, it is computationally intensive as (a) particles have to
advance along boundaries in order to encompass the desired object, and (b) par-
ticles are added and deleted dynamically at each iteration. Although a damping
factor is used to reverse the direction of acceleration when a particle crosses an
edge, the particle will still move as long as its speed is not exactly zero, and there-
fore oscillations occur at the boundaries and particle convergence needs to be
flagged by some criterion. Above all, CPM can not guarantee closed contours,
inevitably resulting in gaps in the recovered object boundaries particularly if
the object is occluded or has weak edges. Furthermore, a final reconstruction of
points into curves for continuous representation of object boundaries is neces-
sary which may not encapsulate the true boundary of the object. Fig. 1 shows
a synthetic image of a circle with a blurred edge region indicated by a black

1 In [8], the attractive force is referred to as the Lorentz force in the absence of a
magnetic field, and the repellent force as the Coulomb force.
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window. In such regions the image-based forces are significantly influenced by
the stronger edges nearby (see vector field in Fig. 1). As the image-based forces
always dominate the direction of movement, particles which have arrived at the
weak edges will continue moving to the stronger edges with the weak edges left
unmarked. This leads CPM to fail to close the border around the synthetic circle.

3 Proposed Model: Charged Active Contour Model
Based on Electrostatics (CACE)

The aim of our work is to improve on the drawbacks of the CPM particle model
and the more traditional geometric contour models by integrating electrostatics
principles with active contour evolution. Our proposed charged active contour
model, CACE, detects objects starting with a positively charged active contour
that propagates in an electrostatic field distributed with negative fixed charges
proportional to image edge magnitudes.

The contour propagation in CACE results from the confluence of two com-
ponents: a boundary attraction force and a boundary competition force. The
attraction force acts as a bi-directional vector field which leads each point on
the contour towards the boundaries from both sides. The competition force ex-
erts most influence once any part of the snake reaches a boundary. It repels free
contours nearby from reaching the already occupied boundary. The stronger the
boundary, the larger the repelling force the contour exerts. This repelling force
is also designed in a way such that only contours in homogeneous regions are
most affected. In other words, contours that reach object boundaries will exert
repellent forces upon other contours while they themselves will be least affected
by others. At the same time, contours in homogeneous regions will continue to
deform according to both attraction and competition forces. This is significantly
different from the repelling force in the CPM model where the particles are con-
stantly pushing each other in opposite directions. The electrostatic force field in
the proposed CACE model is dynamically adapting as the contour evolves. This
brings flexibility in initialisation and better curve propagation towards object
boundaries. The CACE model is implemented in a geometric contour propaga-
tion framework using the Level Set representation to naturally handle topological
changes.

We now describe in detail how these two forces are obtained and how they
interact to create the joint electrostatic force field for the propagation of CACE.

3.1 Boundary Attraction Force Field

Let I denote an image and x the pixel position. We use the Gaussian-based edge
detector, with zero mean and variance σE , used in [7] as the boundary descriptor:

f(x) = 1− 1√
2πσE

exp(−|∇(Gσ ∗ I)(x)|2
2σE

), x ∈ X. (3)

where Gσ ∗I denotes the convolution of the input image and a Gaussian smooth-
ing kernel. The construction of the attraction force is based on the electrostatic
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force interaction as given in (1) and (2). Here, we treat the boundary pixels,
defined in (3), as fixed negative charges with magnitude proportional to their
edge strength. Thus, given N as the number of negative charges at locations
r1, r2, · · · , rN across the edge map then the negative charge assigned to each
edge pixel ri, denoted as qri and simplified to qi, is qi = −f(ri) < 0.

The electrostatic field EA(x) generated by these negative fixed charges can
then be computed according to (1) as:

EA(x) =
N∑

i=1

qi

4πε0

x− ri

|x− ri|3 , x ∈ X. (4)

This electrostatic vector field points towards the negative fixed charges, i.e. the
edges, resulting in a bi-directional force field. The snakes can be hypothesised as
positive charges moving in the image domain under the influence of the negative
boundary charges with the aim of converging towards them from both sides. Let
M be the number of positive charges at positions s1, s2, · · · , sM on the contour,
and psj , simplified to pj , denote the positive charge assigned to point sj . The
attractive electrostatic force FA enforced upon the contour is then:

FA(sj) = pjEA(sj), sj ∈ X. (5)

As the contour and the fixed charges have opposite polarity, the electro-
static boundary attraction force continuously pushes the contour towards object
boundaries. In this study, a constant unit positive charge pj is assigned to all
snake points. However, pj can be treated as a variable for other applications.

3.2 Boundary Competition Force Field

While the boundary attraction force is constantly pushing the snake towards
boundaries, the boundary competition force allows progress only towards unoc-
cupied object boundaries. It helps a snake already occupying an object boundary
to check the advance of free contours nearby.

The competition force results from an electrostatic field which continuously
adapts as the contour evolves and reaches boundaries. Two conditions charac-
terise this force: (a) Contours that are on the object boundaries endow most to
the electrostatic field with contributions proportional to the edge strength. (b)
The force upon a contour due to this electrostatic field is proportional to the
inverted strength of the edge covered by this contour. In other words, contours in
homogeneous regions are most enforced upon while those on top of strong edges
are least pushed. This ensures the snakes stay at their detected boundaries but
push away nearby snakes competing for the same boundaries.

Condition (a) above is realised by weighting the contour charges with the edge
function, i.e. p′j = f(sj)pj . The resulting electrostatic field comprises vectors
pointing away from the edges already occupied by contours. It is given as:

EC(x) =
M∑

j=1

p′j
4πε0

x− sj

|x− sj|3 =
M∑

j=1

f(sj)pj

4πε0

x− sj

|x− sj |3 , x ∈ X. (6)
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Condition (b) is realised by weighting the contour charges with an edge stopping
function, i.e. g(.) = 1− f(.), to generate the boundary competition force FC :

FC(sj) = g(sj)pjEC(sj), sj ∈ X. (7)

Thus, FC can be considered as a boundary competition force that prevents
contours from approaching the same boundaries. For example, consider point
charges pa and pb on the active contour at positions sa and sb. If these two
points are both in homogenous regions, EC(sa) and EC(sb) are small, and they
exert little competition force upon each other (and on other snake points). How-
ever, both of them are repelled by any other points that have already reached
boundaries. When one of this pair, say pa, reaches a boundary, it (along with
all other snake points on object boundaries) will alter the electrostatic field ac-
cording to (6), with its contribution to the field being proportional to its edge
strength f(sa). The impact of this electrostatic field on pa itself is however min-
imised since the force FC(sa) is weighted by g(sa) (in (7)), i.e. the stopping
function prevents it from being pushed away from the boundary. The snake
point pb on the other hand provides little contribution to this field, but will be
most affected by the competition force FC(sb) due to the large value of g(sb) in
the homogeneous region. When both snake points reach a boundary, they both
contribute to the electrostatic field but have barely any influence on each other.

3.3 Joint Electrostatic Force

The joint electrostatic force J on the active contour is obtained by combining
(5) and (7) as such:

J(sj) = pj [λEA(sj) + (1− λ)g(sj)EC(sj)] (8)
= λFA(sj) + (1− λ)FC(sj).

The real positive constant λ balances the contribution between the boundary
attraction force and the boundary competition force. As shown in sections 3.1
and 3.2, the first term attracts the contours to object boundaries, while the
second term prevents the contours from approaching the boundaries that are
already covered by other contours. The ever-changing force field causes the free
contours to change direction and search for other boundaries.

It is important to further emphasise that the joint force field is dynamically
adapting to the evolution of the snake and in turn defining its advance. The elec-
trostatic attraction force field described in Section 3.1 is a static bi-directional
vector field that attracts contours to object boundaries. A deformable contour
model solely based on this static force field inevitably suffers from similar dif-
ficulties as the GVF snake model and its variations. Instead of attempting to
overcome the saddle or divergent points in a vector field as proposed in [7], the
CACE model adapts the vector field through the boundary competition force so
that such critical points change as the snake approaches.

Fig. 2 illustrates adaptive changes of the joint electrostatic force field during
contour propagation. The test image and the initial CACE snake are shown in
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 2. Change of force fields during contour propagation. (a) Test image with letters
‘V’ and ‘S’; (b) Initial snake; (c) Initial CACE vector field with marked region; (d)
Closeup view of the vectors in the marked region in the valley between ‘V’ and ‘S’;
(e)-(f) Adapting vector field as snake progresses. Snake positions are indicated in thick
dark red, and critical points are shown in thin blue circles.

2(a) and 2(b) respectively. Fig. 2(c) shows the initial vector force field and Fig.
2(d) is a closeup of the square region marked in 2(c) in the valley between the
letters ‘V’ and ‘S’. There are four critical points, indicated by thin blue circles,
that can stop the snake from further propagation. A, C, and D are saddle points,
while B is a divergent point. The thick red contours in Figs. 2(e)-2(h) are the
progressing positions of the CACE snake. In 2(e), as the snake evolves in the
valley, the saddle points A and C disappear. Notably, the divergent point B
becomes a saddle point. Saddle point D stays approximately the same, as the
snake is still far away from it. In 2(f), the snake has just passed the valley and
is going to enter the deep concave in the letter ‘S’. In 2(g) the saddle point D is
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clearly moving away from the entrance of the concavity as the snake approaches.
Finally in 2(h), the snake reaches the boundaries and the vector field takes a
similar form as the initial state. The saddle points A and C re-emerge, saddle
point D is back to the entrance of the concave, and B changes back into a
divergent point. The corresponding CACE evolutions are shown in the last row
of Fig. 4.

3.4 Geometric Active Contour Formulation for CACE

Let C be the active contour. The contour evolution formulation for the CACE
model is defined as:

Ct = αgκN + (1− α)(J · N )N , (9)

where α is a real constant, κ denotes the curvature, and N is the unit inward
normal. The first term regulates the contour, and the second term attracts the
snake towards the object boundaries. To ensure efficient contour propagation,
we normalize the force field along the contour normal by replacing the term
(J · N )N with (J·N )N

|(J·N )N| .
To achieve topological flexibility, we use level sets [9] to represent the contour,

implicitly evolving it by deforming the level set function, u. This involves two
extensions. The first is to embed the 2D contour into a 3D level set function u,
which is achieved by using the signed distance transform such that the embedded
snake is given by the zero level set at any time. The second is to extend the force
field defined on the 2D contour to the 3D level sets. The Fast Marching Method
can be used to accomplish this as proposed in [10]. However, in this study, we
can simply compute the extended force field by treating each level set as a
deforming contour at each time step. Thus, the joint force field J(sj) as given
in (9) is extended to J(x) across the image domain. Thus, given the fact that
N = − ∇u

|∇u| , the level set representation of our CACE snake is given as:

ut = αgκ|∇u| − (1− α)J · ∇u. (10)

4 Experimental Results

In this section we present results for our CACE model and compare its perfor-
mance against the CPM, the geodesic contour, and the GVF geodesic contour
models. The software for all the methods we compare against was developed
in-house based on the relevant literature, i.e. [8, 7, 11].

CACE copes much better than CPM when faced with weak edges (cf. Fig.
3 with Fig. 1). As CPM particles arrive at weak edges, they carry on moving
towards stronger edges along the boundaries, hence fail to correctly recover the
object boundaries. CACE stabilizes around the boundaries, successfully detect-
ing the whole object, due to the bi-directional nature of its force field and the
characteristics of the contour itself. The vectors pointing towards the edges,
although weak, prevent leakage from both sides.
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Fig. 3. Propagation of CACE on disc object with weak edges (cf. with Fig. 1)

CACE possesses significant advantages over other contour models, e.g. it is
more robust to initial placement than the geodesic snake, and better capable
of handling object topology than the GVF geodesic snake, as shown in Fig. 4.
While the geodesic snake fails to detect the objects under initialization that
crosses boundaries, the GVF geodesic snake is less constrained, but nonetheless,
still unable to reach some of the boundaries when it gets trapped by divergent
vectors in homogeneous areas. CACE improves on these limitations and succeeds
in detecting both objects in Fig. 4.

Fig. 4. Contour propagation for boundary detection. Top row: iterations of the CPM,
2nd row: geodesic snake, 3rd row: GVF geodesic snake, final row: CACE.

Fig. 5 shows the evolution process in CPM, geodesic snake, GVF geodesic
snake, and CACE, on a corpus callosum detection task in an MRI brain im-
age. Although the coarse-to-fine multi-scale setting is used, CPM still fails to
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Fig. 5. From left to right, top: input image and initialisation for all the models, iteration
of the CPM, final CPM result, 2nd row: evolution of the geodesic snake, 3rd row:
evolution of the GVF geodesic snake, final row: evolution of CACE

recover the corpus callosum, as particles can not advance from stronger bound-
aries towards weaker ones and are thus blocked in the area where strong edges
occur. The geodesic snake also fails in the detection task due to initialization
across boundaries, as does the GVF geodesic snake which gets trapped by saddle
points formed within the corpus callosum. In comparison, CACE benefits from
the self-adaptive nature of the force field and manages to propagate through the
elongated part of the object and capture the entire boundary.

Figs. 6 and 7 show more examples where CACE again performs more accu-
rately than the other snake models under highly noisy and textured conditions.

The CACE model performs well on a range of parameter settings. Two main
parameters are involved: (λ, α). The parameter λ in (9) balances the contribution
between the attraction and the competition forces. We set λ = 0.3 throughout
our experiments determined empirically for the set of images shown. The pa-
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Fig. 6. From left to right, top: noisy input image, initialization for all models, CPM
results, and bottom: results for the geodesic snake, the GVF geodesic snake, and CACE

Fig. 7. From left to right, top: input image, initialization for all models, CPM results,
and bottom: results for the geodesic snake, the GVF geodesic snake, and CACE

rameter α controls the smoothness of the contour and has minor impact on the
model performance and was kept constant at α = 0.1 throughout our work.

It is worth noting that the computation of the electrostatic force field in (4)
or (6) is simple but inefficient, requiring O(N2) computational complexity and
increases drastically as the image size increases. Therefore, as with CPM in [8],
we use the Particle-Particle Particle-Mesh method, originally proposed in [12],
for fast and accurate evaluation of the electrostatic field. Details of the method
can be found in [12]. In terms of comparative computational performance, we
used a 200×200 image in which all models successfully found the object. Using
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a 2.8 GHz Linux PC running uncompiled Matlab code, the computational times
for the different particle and contour models were as follows: 281s for CPM, 26s
for the geodesic snake, 20s for the GVF geodesic snake, and 29s for CACE.

5 Conclusion

In this paper, we presented a novel active contour model, namely the Charged
Active Contour, CACE. It incorporates electrostatics principles from the CPM
particle model [8] into the deformable contour model. The CACE snake deforms
under the confluence of an external boundary attraction force and an external
boundary competition force. Driven by this combined electrostatic force, con-
tours move towards object boundaries, and will end up there if the boundaries
are not covered by other contours, or change direction and search for other
boundaries otherwise.

Experimental results have demonstrated that by introducing particle dynam-
ics into the contour model, the snake can be more initialisation independent,
exhibit better ability in reaching concavities, and ensure closed contours.
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Abstract. Recent developments in dynamic contour tracking in video
sequences are based on prediction using dynamical models. The param-
eters of these models are fixed by learning the dynamics from a training
set to represent plausible motions, such as constant velocity or critically
damped oscillations. Thus, a problem arise in cases of non-constant ve-
locity and unknown interframe motion, i.e. unlearned motions, and the
CONDENSATION algorithm fails to track the dynamic contour. The
main contribution of this work is to propose an adaptative dynamical
model which parameters are based on non-linear/non-gaussian observa-
tion models. We study two different approaches, one statistical and one
shape-based, to estimate the deformation of an object and track complex
dynamics without learning from a training set neather the dynamical
nor the deformation models and under the constraints of missing data,
non-linear deformation and unknown interframe motion. The developed
approaches have been successfully tested on several sequences.

1 Introduction

Many problems require the estimation of the state process of a dynamic system
using a sequence of noisy measurements. Filtering is used in a widely applica-
tions, such as tracking problems in image processing. An optimal solution to
predict the state process is given by the bayesian approach which aim is to con-
struct the posterior probability density function of the state using all available
informations. When the system and measurements are linear with gaussian ad-
ditive noise, the density is characterized by its mean and covariance matrix. In
image processing, the optimal solution requires a relatively long computation
time and cannot be solved, except for gaussian linear systems: Kalman filter
provides an analytical recursive expression for the first two moments [1]. For
non-linear systems, extensions of Kalman filter have been developed [2], but the
performance is quickly degraded with time when the system presents a strong
nonlinearity. Thus, when the model is highly nonlinear and/or non gaussian,
Kalman filter and its extensions fail to give an accurate approximation of the
mean and the covariance matrix, and make the problem of optimal filtering diffi-
cult to solve. Under such difficulties, numerical methods, such as the Sequential
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Monte Carlo methods, are particularly appropriate to approximate the poste-
rior probability density function of the state. These approaches are known as
particle filters and mainly consist in propagating a weighted set of particles that
approximates the density function. They provide flexible tracking frameworks as
they are limited neither to linear systems nor to Gaussian noise [3,4,5].

According to Isard and Blake in [6,7], dynamic contour tracking is based on
predictions using dynamical models. The parameters of these models are fixed
by hand to represent plausible motions, such as constant velocity or critically
damped oscillations. Experimentations allow these parameters to be refined by
hand to improve tracking but this is a difficult and unsystematic business, es-
pecially in a high-dimensional shape-space which may have complex couplings
between the dimensions. It is far more attractive to learn dynamical models on
the basis of training sets. Once a new dynamical model has been learned, it can
be used to build more efficient trackers. It can more accurately track the original
training sequence or a new testing sequence, involving greater agility of motion.
In practice, they incorporate the learned model into the CONDENSATION al-
gorithm [8], estimation process which should enable particles to be concentrated
more efficiently. This allows the curve motion to be estimated correctly with N
particles in each time step. In this framework, learning the dynamics is required
to achieve and succeed the task of tracking. Although, it may fail if the motion is
not anticipated by the learned model. To resume, the performance of a building
tracker is based on the parametrisation of the dynamic model.

In practical interpretation problems, the complex dynamics, such as non-
constant velocity or non-periodic oscillations, make too difficult the choice of the
parameters of the dynamical model for an estimation algorithm. Furthermore,
the learning step becomes particularly more difficult in case of missing data
where we don’t know neather the dynamical nor the deformation models in an
interval of time between two successive observations (see Figure 1). Adaptative
and automated parameters of dynamics is of crucial importance. Therefore, as
the motion has non-constant velocity and/or non-periodic ocillations, dynamical
model parameters are needed in order to determine the settings of the estima-
tion parameters. In addition, in the case of deformable curves, the probabilistic
framework is not sufficient to track them and estimate the parameters of their
affine transformations (i.e. translation, rotation and scale).

t

1st obs ??? ... ???︸ ︷︷ ︸
Unknown Information

2nd obs ??? ... ???︸ ︷︷ ︸
Unknown Information

ith obs ...

Fig. 1. A set of observations: we don’t know neather the dynamical nor the deformation
models in the interval of time between two successive observations

In this paper, we propose to model the dynamics in an adaptative way, without
any learning from a training sequence, only by using the available measurements.
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In addition, we suggest two approaches, a statistical one and a shape-based
one, for tracking non-rigid contour in a video sequence under the constraints
of unknown interframe motion, missing data, non-linear/non-gaussian observa-
tions and non linear dynamics. Our aim rest on the estimation of the affine
transformation and the dynamics of the discrete contour of an object between
two observations occured at times t and t + δt. The representation of a dis-
crete contour by pixels is impossible since their number is too high. Moreover,
some pixels are redundant for the smooth portions whereas other more irregu-
lar portions are represented inaccurately. In this case, we need an abstraction
of the contour which ideally is invariant against translations, scales, rotations,
and starting point, while still representing the essential form of the contour. We
then propose a method based on a frequency-domain decomposition where the
discrete contour is represented by the Fourier descriptors. This representation
consists in breaking up the contour according to a base of orthonormal func-
tions and can moreover truncate the parameters of high frequencies. The main
advantage of these descriptors is that they contain the parameters of the affine
transformation, (i.e. translation, rotation and scale), undergone by the contour
from one frame to another one. We propose a shape-based approach which is
divided into several steps. We first compute the Fourier descriptors of the con-
tour via a Discrete Fourier Transform (DFT), then make a high-pass filtering
and perform an Inverse Discrete Fourier Transform (IDFT) to reconstruct the
truncated contour. These remaining points are tracked using a particle filter so
that we can extract, from the estimated Fourier descriptors, the motion and the
affine transformation of the contour.

The idea of the statistical approach consists in estimating the underlying
motion only by using the statistical parameters of an object: mean and variance.
Using the available observations and particle filter, we estimate its mean in the
interval of time that separate two successive observations. Then, we interpolate
its variance using a cubic B-Spline to measure the spread around its mean and
compute its orientation using its variance.

The outline of this paper is as follows. Section 2 presents a brief review on par-
ticle filter. The shape-based and statistical approaches are respectively developed
in Sections 3 and 4. In Section 5, we explain the adaptative dynamical model and
test the previous approaches on different video sequences to show their robustness.
Finally, comparisons and conclusions are given in Sections 6 and 7.

2 Particle Filter

Given a video sequence depicting a moving object, the tracking consists in es-
timating its state process Xt in frame t. Particle filtering, or Sequential Monte
Carlo algorithm, is an inference process which can be considered as a general-
ization of the Kalman filter [3,4]. It aims at estimating the unknown state Xt

from a set of noisy observations that occured sequentially, Y1:t = (y1, ..., yt).
Two important components of this approach are the state transition and ob-
servation models whose most general forms can be given by Xt = Ft(Xt−1, Ut)



188 A. El Abed, S. Dubuisson, and D. Béréziat

and Yt = Gt(Xt,Vt), respectively. We notice that Ut is the system noise, Ft the
kinematics, Vt the observation noise, and Gt the observation model. The particle
filter approximates the posterior distribution P (Xt|Y1:t) by a set of weighted par-
ticles {s(j)

t , w
(j)
t }j=1,..,N . This set of particles represents the state of the object

and w
(j)
t is the discrete probability of the particle s

(j)
t . Generally, the displace-

ment of the particles is computed from an appropriate density f wich depends
on the available data [9]. The particle filter algorithm proceeds as follows:

Initializing generate the particle set S0 = (sn
0 , w

n
0 ) where sn

0 ∼ P (X0) and
w

(i)
0 = 1

N ;
Resampling s̃j

t from P (Xt|Xt−1 = sj
t−1, Yt = yt);

Weighting and normalizing w̃j
t = wj

t−1

P (s̃j
t |s

j
t−1)P (yt|s̃j

t)

f(s̃j
t |s

j
t−1,yt)

and wj
t = w̃j

t∑
N
j=1 w̃j

t

.

where n, j = 1, ..., N and t = 1, ..., T . Finally, the density function can be ap-
proximated by

∑N
n=1 w

n
t δsn

t
. It has been shown that, after few iterations, the

variance of the particle weights always increases over time, which causes the
weight degeneracy phenomenon [9]. A resampling of the particle weights is then
required to reduce this effect. Resampling consists in selecting, during filtering,
samples with high weights while those with relatively low weights are not. Us-
ing the multinomial resampling approach [10], we resample the particles in an
adaptive way when their effective number is estimated by seeking a value for
Neff = 1∑

N
n=1(w

n
t )2

that is under a given threshold.

3 Shape-Based Approach

To track a deformable object under the constraints of unknown interframe mo-
tion and non linear dynamics, we suggest an approach based on a combination of
a frequency-domain decomposition of the contour and a particle filtering using
an adaptative dynamical model. Our idea for tracking a dynamic contour and
estimating its deformation amounts to:

• Compute, for each observation, the Fourier descriptors of the contour via DFT;
• Smooth the contour by removing the harmonics of high frequencies (e.g low-

pass filtering) and only keeping the r first Fourier descriptors;
• Compute the IDFT of the remaining descriptors to reconstruct the truncated

contour with the remaining (2r + 1) descriptors;
• Track the remaining points between frames t and t + δt using a particle filter

and compute their Fourier descriptors via DFT. Then, extract from these
descriptors the parameters of the affine transformation, by comparison with
the Fourier descriptors computed in frame t, and rebuild the contour only
using (2r + 1) descriptors.

3.1 Fourier Descriptors

Consider the N points, Pi(xi, yi)i=1...N , of a contour as a discrete function C =
(x, y) where x = (x1, x2, ..., xN )t and y = (y1, y2, ..., yN)t. We can describe C
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in the frequential domain as a discrete complex function U = X + jY with
U(i) its ith component. The result can be transformed back into the spatial
domain via IDFT without any loss. DFT and IDFT are defined respectively by
U(k) and c(n): U(k) =

∑N−1
n=0 c(n)e−

2πj
N kn and c(n) = 1

N

∑N−1
k=0 U(k)e

2πj
N kn,

where (−N
2 ≤ k, n ≤ N

2 − 1). The coefficients U(k) are also called Fourier
descriptors [11]. They describe the discrete contour of an object in the Fourier
domain. Some geometrical transformations of the contour function U(k) can
be related to simple operations in the Fourier domain. Translation by k0 only
affects the first Fourier descriptor U(0). Scale of the edge with a factor α leads to
scaling all the Fourier descriptors by α. Rotating the edge by an angle θ0 yields
a constant phase shift of θ0 of the Fourier descriptors. Changing the starting
point of the edge to the position n0 results in a linear phase shift of 2πn0k

N of the
Fourier descriptors.

The truncated contour obtained by applying a IDFT after removing the har-
monics of high frequencies (e.g keeping the r first Fourier descriptors) is given by:
Cr

v = a(0)+
∑r

k=1 a(k) exp(μ)+
∑r

k=1 a(N−k) exp(−μ), where v = (0, ..., N−1),
μ = 2jπ kv

N . The quantity of lost information if we only keep r coefficients can

be measured by the following quadratic error: Er
N =

∑N−r−1
k=r+1 |a(k)|2∑N−1

k=1 |a(k)|2 .
The number r of coefficients to be preserved is determined such as the error

Er
N is lower than a given threshold β. We have adopted this modeling to rebuild

the contour of the tennis man in Figure 2.a only using (2r + 1) descriptors. The
threshold β is fixed to 0.05 and Figure 2.b shows that Er

N ≤ 0.05 for r = 2 for
the first frame and r = 3 for the second frame. Using the Fourier descriptors, we
can extract the parameters of the affine transformation undergone by the tennis
man from frame 1 to frame 45. The translation vector is (−2, 61) pixels in the
(x, y) plane, the scaling factor is 1.35 and the rotation is −8◦. Figure 2.c shows
the rebuilt contour for the tennis man using different values of r.
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 0  10  20  30  40  50  60

Frame 1
Frame 2

b c

Fig. 2. Test in Tennis sequence:(a) Frames 1 and 45; (b) Error evaluation for both
frames according to r;(c) Rebuilt contour of the tennis-man using different values of r

4 Statistical Approach

To track an object and estimate its deformation between two observations, we
suggest to estimate the parameters of its affine transformation only by using its
statistical parameters (mean and variance). The main steps of this approach are
given below:
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• We apply the particle filter to estimate the mean X̂ i
t =
∑N

n=1 w
n
t s̃

n,i
t which

represents the translation vector of the object;
• We interpolate the variance (to measure the spread around the mean) using

a cubic B-spline, whose control points are the variance extracted from the
available observations. The cubic B-splines are parameterized curves defined
by a sum of NB basic functions: c(u) =

∑NB−1
i=0 PiB

3
i (u), where Pi is the

ith control point and NB the number of control points. The Bk
i are polyno-

mial functions of degree k and recursively defined using the selected nodes
(ti)i=0,..,NB+k−1:

B1
i (u) =

{
1 if ti ≤ u ≤ ti+1

0 else (1)

Bk
i (u) =

(u− ti)Bk−1
i (u)

ti+k−1 − ti
+

(ti+k − u)Bk−1
i+1 (u)

ti+k − ti+1
(2)

Fig. 3. Test on ” Taxi ” sequence: estimation of the orientation of the white taxi ( red
arrows in both frames )

• We define the orientation of an object in the plane (x, y) by the slope m of
the following equation:

y = mx + b =
σy

σx
x +

σx × μy − σy × μx

σx
(3)

where (μx, μy) and (σ2
x, σ

2
y) are respectively its mean and variance. As an

example, we suggest to define the orientation of the white taxi shown in Fig-
ure 3. We compute the mean μ and the standard deviation σ in both frames:
the numerical results are approximately (μx1 , μy1) = (562, 463), (σx1, σy1) =
(51, 25), (μx2 , μy2) = (504, 422) and (σx2 , σy2) = (34, 25). We then compute
the orientation (see Eq. 3) that is symbolized by arrows in Figure 3. As we
can see the orientation of the taxi is well detected in both frames.

5 Experimental Results

The modeling of the tracking problem consists in defining the state vector of
the object Xt = (xt, yt, vxt , vyt , axt , ayt), implying position, velocity and accel-
eration. The observation model is only defined by a position Y i

t = (xt, yt). We
have chosen to characterise the dynamical model with a third order equation:

xt = c1(t)x3
t−1 + c2(t)x2

t−1 + c3(t)xt−1 + c4(t) (4)
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where (c1(t), c2(t), c3(t), c4(t)) are adaptative parameters that vary with time
according to the nature of the motion: their values are selected from the available
observations. In addition, the velocity and acceleration are respectively given
by: vxt =

.
xt and axt =

..
xt. The associated discretized state equation, with time

period Δt, is given by:

X i
t+Δt

=

⎛⎝ Id Id Id

0 Id 2× Id

0 0 Id

⎞⎠X i
t +

⎛⎝Δ2
t

2 Id

ΔtId

Id

⎞⎠Ut + Wt (5)

where Id is the 2× 2 identity matrix, Wt a non linear function depending on the
variables (c1(t), c2(t), c3(t), c4(t)) and Ut is a Gaussian zero-mean vector with

covariance matrix ΣU =
[
σ2

x 0
0 σ2

y

]
.

5.1 Cases Study

For all the following tests, we use the same dynamic noise (σx = σy = 0.01) to
predict particles and the number of particles is set to 100. The threshold of the
resampling step is equal to 0.3. Also, for all the tests, we plot the Regression
Error Characteristic (REC) curve [12], the error rate is on the x-axis and the
accuracy is on the y-axis. Accuracy is defined as the percentage of points that are
fit within the tolerance. If we have a zero tolerance, we only consider the points
that the function fits exactly as accurate. If we choose a tolerance that exceeds
the maximum error observed for the model on all the data, then all points would
be considered accurate. The error here is defined as the difference between the
actual value and its prediction for any point (x, y). As the error increases, the
accuracy increases. The accuracy goes to 1 when the error becomes large enough.

a. Tennis table’s ball tracking: the more difficult problem when tracking
the ball of a tennis table is that the motion is oscillatory and of a duration that
is not an integer multiple of the period of oscillation (see Figure 4.(a-b)). As
shown in Figure 4.b, the dynamics of the ball is complex and undergoes verti-
cal and horizontal oscillations with different periods coupled with translation in
both direction. Furthermore, the velocity is non-constant and the movement of
the ball accelerates and decelerates according to the blow given by the player.
In such kind of systems, it is very difficult, even impossible, to learn the mo-
tion from a training set because it is non-linear, non-periodic and variable from
a sequence to another. For this reason, we propose the use of an adaptative
dynamical model (Eq. 5) which parameters vary in time and depend on the
available observations. Figure 4.a represents some observation frames showing
the vertical and horizontal oscillations of the ball. We notice that the observa-
tions are not occured with regular times. To track the ball of Figure 4.a without
learning its dynamic, by only using 15 observations (in a sequence of 90 frames),
we incorporate the adaptative dynamical model into the particle filter. The dot-
ted line in Figure 4.b shows the estimated trajectory of the ball. Despite the
high non linearity of the dynamic and the constraint of missing data, we have
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obtained 8.13% as an average estimation error for the position which prove the
effectiveness of the adaptative dynamical model. Figure 4.c shows the REC curve
(error tolerance on the x-axis versus the percentage of points predicted within
the tolerance on the y-axis).
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Fig. 4. Test on Tennis Table sequence: (a) Some observation frames. From left to
right {1, 11, 50, 71 and 78}; (b) The dotted and solid lines respectively represent the
estimated and real trajectory. The blue points reprensent the observations; (c) REC
curve plots the error rate on the x-axis and the accuracy on the y-axis.

b. Bio-cellular tracking: we have tested our approaches on biocellular video
sequences where the motion of a dark structure evolving on the surface of a
cell is non rigid (see Figure 5.c). We just use an observation every 10 frames
and we do not have any prior knowledge about the motion and the defor-
mation of the dark structure between two successive observations. We suppose
that this structure is well segmented. Using the shape-based approach, the state
vector is composed of (2r + 1) Fourier descriptors. For the sequence of Fig-
ure 5.c, the error is smaller than 5% for r = 2. Five descriptors are sufficient
to track the motion of the dark structure with the particle filter and estimate
its deformation. Figure 5.a shows the position estimated with the particle filter
for each point and Figure 5.c shows that the estimated structure is closed to
the original one. Figure 5.b shows the REC curve which plots the error toler-
ance on the x-axis versus the percentage of points predicted within the toler-
ance on the y-axis. Using the statistical approach, we track the mean of the
structure using the particle filter and then can estimate its translation vec-
tor between two observations (Figure 5.e). The variance is then computed by

Table 1. Error ratio between the original and the estimated structure with both ap-
proaches

Frames 3 7 12 15 18

Shape-Based 3.2 3 4.5 5.35 4.9
Statistical 0.8 1.05 2.75 2.18 1.7
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Fig. 5. Test on Bio-cellular sequences: (a) Estimated trajectory of points {A,B,C,D,E}
by using the particle filter; (b) REC curve: error rate on the x-axis and the ac-
curacy on the y-axis for the predicted positions; (c) Results of tracking using the
shape-based approach where the estimated structure (white contour) is close to the
original (black structure). The frames of this sequence are numbered as follows:
{1, 3, 7, 10, 12, 15, 18, 20}, and the frames {1, 10, 20} are the observations. In this se-
quence the observations are squared; (d) Dotted and solid lines are the interpolated
and real variance; (e) Dotted and solid lines are the mean estimated with particle fil-
ter and real measurements; (f) Results of tracking using the statistical approach: the
estimated structure (white contour) is close to the original (black structure).

interpolation using a cubic B-Spline whose control points are the variance ex-
tracted from the observations (Figure 5.d). Finally, the estimation of the ori-
entation is done by using the estimated variance (Section 4). The ratio error
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of the estimated mean and variance is 3.8% and (1.73%, 2.6%), respectively.
Figure 5.f shows that the estimated structure is closed to the original, that
confirms the effectiveness of our approach. The ratio of loss information in both
approaches is given in Table 1.

c. Ants Tracking: we have tested the statistical approach on a video sequence
showing ants whose motion is unknown and highly non linear: the solid lines in
Figure 6.a show their trajectories.
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Fig. 6. Test on ” Ants ” sequence: (a) Dotted lines: the estimated mean of the ants;
solid lines: the real mean; (b) The estimated orientation of the Ants; (c) REC curve:
error rate on the x-axis and the accuracy on the y-axis; (d) The tracking result obtained
with the statistical approach

To track these ants under the assumption of missing data, we only use five
frames from the sequence as observations without having any prior knowledge
about the motion or the trajectory in the interval of time that separates two suc-
cessive observations. The motion of these ants is sometimes limited to a rotation
around their axis and sometimes is coupled with a translation vector. In another
word, they move with a non-constant velocity and can accelerate, decelerate and
sometimes stop moving or starting. Our goal is to estimate the components of their
motion (translation and orientation), only using their mean and variance. We ap-
ply the particle filter to estimate their mean, X̂ i

t =
∑N

n=1 w
n
t s̃

n,i
t , which represents

their translation vector. The dotted lines in Figure 6.a show the estimated mean
for each ant. The orientation of an object is defined by its mean and variance (Sec-
tion 4). Thus, under the assumption of missing data, the variance of the ants is
only known in the available observations. We notice that some part of the ant’s
body can rotate which implies a variation of the variance. The variance of each
ant is computed by interpolation using a cubic B-Spline method whose control
points are the given variance extracted from the observations. After the estima-
tion of mean and variance of the ant, we generate a set of random points, having
the same estimated mean and variance, to localize its position and orientation.
Figure 6.c shows for each ant the REC (the error rate on the x-axis versus the per-
centage of points predicted within the tolerance on the y-axis). Figure 6.b shows
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the estimated orientation for each ant which are computed from their interpolated
standard deviation (see Eq. 3). Figure 6.d shows that the generated set is closed
to the ant, which confirms the effectiveness of our approach.

d. Tennis Man Tracking: to track the dynamics and estimate the deformation
of the tennis man, we use the shape-based approach. We smooth the contour of the
player after removing the harmonics of high frequencies. The number r of coeffi-
cients to be preserved is 6 for an error≤ 5%. In figure 7, at the beginning the curve
gives a rough approximation of the shape of the player, but progressively in the se-
quence this one really sticks to the shape of the player. Our aim is to estimate the
evaluation of his deformation/appearance with time only using four observations.
The black shape in Figure 7 represents the estimated shapes between observations
while the color ones are the observations. We represent the remaining points to be
tracked using the particle filter with the green arrows (last image in Figure 7).

Fig. 7. Test on ”Tennis Man” sequence: the green arrows (see last image) point on the
remaining points to be tracked using the particle filter (r = 6 for an error ≤ 5%). The
black structure are the estimated contour between observations, and the color image
are the observations.

6 Discussions and Comparison of the Approaches

The purpose of this paper is to compare two approaches, one statistical and one
shape-based, for non-rigid motion tracking under the constraints of missing data.
The two approaches present a probabilistic framework but are formulated in dif-
ferent ways. Their capacity of tracking the dynamics and estimating the evolu-
tion of a curve depends on the observations. In both approaches, the particle filter
is integrated with an adaptative dynamical model for quite different objectives.
The evaluation of the performance of these approaches depends on the dynamic
and the deformation of an object (linear or non-linear). In some particular prob-
lems, we have found that one approach gives better results than the other, also
depending on the sequences and the deformation undergoes by the curve of the
object. This can happen in case of partial deformations like the example of the
tennis man, i.e. when a part of the curve/shape is only deformed and the other
part is rigid: the shape-based approach will give a better estimation of the trajec-
tory than the statistical one. In fact, this difference rests on the formulation of the
shape-based approach because it is based on the estimation of the evolution of the
remaining points independently, while the other one estimates the deformation of
all the shape using its statistical parameters. The main advantage of the shape-
based approach is that it takes into account the evolution of all the extrema that
represent the essential form of the curve. In the other cases, when all the curves
evolve with the same factor of scaling, a global deformation, both approaches are
efficients and provide good results (as shown in Section 5).
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7 Conclusions

In practice, to improve tracking dynamic contour, learning the motion from a
training set is required to define the parameters of the dynamical model. Learn-
ing can be handle in the case of plausible motions such as constant velocity or
critically damped oscillations. Thus a problem arises in cases of highly non-linear
dynamic (e.g. non-periodic oscillation, non-regular acceleration and deceleration,
non-constant velocity,...) where we can not define the parameters of the dynam-
ical model. Furthermore, the problem is more complicated in case of no prior
knowledge about the dynamic coupled with missing data. For this reason, we
have proposed in this paper an adaptative dynamical model which parameters
vary with time and are selected from the set of available observations. We also
have suggested two approaches to estimate the deformation of an object in video
sequences. The results have shown that the objects are successfully tracked over
the sequence, despite the highly non linearity of the motion and the constraint
of missing data, which proves the robustness of our approaches. Future works
will involve extending both approaches to track multiple and varying number of
non-rigid objects using a set of multimodal observations.
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Abstract. The use of active contours for texture segmentation seems rather at-
tractive in the recent research, indicating that such methodologies may provide 
more accurate results. In this paper, a novel model for texture segmentation is 
presented, combining advantages of the active contour approach with texture in-
formation acquired by the Local Binary Pattern (LBP) distribution. The pro-
posed LBP scheme has been formulated in order to capture regional information 
extracted from distributions of LBP values, characterizing a neighborhood 
around each pixel, instead of using a single LBP value to characterize each 
pixel. The log-likelihood statistic is employed as a similarity measure between 
the LBP distributions, resulting to more detailed and accurate segmentation of 
texture images.  

1   Introduction 

The automatic segregation of textures within images is generally viewed as an essen-
tial first step in various vision applications, such as medical image analysis, industrial 
monitoring of product quality, content-based image retrieval and remote sensing.  

Because of its wide applicability, texture segmentation has been the subject of in-
tensive research in many recent studies [1-5]. However, no known approach is able to 
consistently and accurately segment textured images [6]. A commonly used strategy 
for texture segmentation is to extract texture features on a pixel-by-pixel basis and then 
use some technique to segment the image based on the extracted features and poten-
tially, on some additional spatial constraints. Overall quality of texture segmentation is 
determined by the quality of both texture features and the segmentation technique.  

Early image segmentation approaches have been utilizing boundary-based local  
filtering techniques such as edge detection operators, which require additional edge-
linking operations in order to establish the connectivity of edge segments. This prob-
lem has been resolved by employing active contour models [7], which directly result in 
continuous curves. These models involve the deformation of initial contours towards 
the boundaries of the image regions to be segmented. A recent active contour model, 
named Active Contour Without Edges (ACWE) [8] has been gaining increasing 
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interest due to its advantages: 1) it is region-based, enabling the delineation of regions 
defined by smooth intensity changes, 2) its level set formulation provides adaptability 
to topological changes, and 3) it does not impose any significant initialization con-
straint [8]. However, in the scalar ACWE model the contour evolution depends on the 
image intensities rather than on the textural content of the image to be segmented. 
Consequently, the scalar ACWE model cannot discriminate regions of different tex-
tures that have equal average intensities. 

Latest advances in active contour research focus on using feature vectors to guide 
contour evolution, as in the case of the extended ACWE model for vector-valued 
images, proposed by Chan et al [9]. Within a texture segmentation framework, such 
active contour models use feature vectors that encode the textural content of an image 
by means of features deriving from Gabor and wavelet transforms [5], [10-11]. 

The Local Binary Pattern (LBP) distribution, introduced by Ojala et al. [12], offers 
an alternative approach to spatial texture representation. Unlike the Gabor features, 
which are calculated from the weighted mean of pixel values over a small neighbor-
hood, the LBP operator considers each pixel in the neighborhood separately, provid-
ing even more fine-grained information. In addition, the LBP texture features are 
invariant to any monotonic change in gray level intensities, resulting in a more robust 
representation of textures under varying illumination conditions. Comparative studies 
have demonstrated that the use of LBP distributions may result in higher classification 
accuracy than Gabor and wavelet features with a smaller computational overhead  
[12-14].  

In this paper we introduce a novel active contour model for texture segmentation 
guided by LBP distributions. Based on the fact that texture is a local neighborhood 
property, we have considered using regional information extracted from distributions 
of LBP values characterizing a neighborhood around each pixel, instead of using a 
single LBP value to characterize each pixel. In accordance with [15], the similarity 
between the LBP distributions is estimated by means of the log-likelihood statistic. 
Moreover, time performance considerations led us to reduce the length of the LBP 
distributions by limiting the number of pixels participating in the estimation of the 
LBP values, provided that the resulting LBP operator maintains adequate discrimina-
tive capability. 

The rest of this paper is organized in five sections. Section 2 briefly reviews the 
formulation of the LBP operator. The proposed active contour model is presented in 
Section 3. The results from its application on two-textured images are apposed in 
Section 4. Finally, in Section 5 the conclusions of this study are summarized. 

2   The Local Binary Pattern Operator 

We adopt the formulation of the LBP operator defined in [15]. Let T be a texture 
pattern defined in a local neighborhood of a grey-level texture image as the joint dis-
tribution of the gray levels of P (P > 1) image pixels:  

),...,( 10, −= Pc gggtT  (1) 
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where gc is the grey-level of the central pixel of the local neighborhood and gp (p = 
0,…, P-1) represents the gray-level of P equally spaced pixels arranged on a circle of 
radius R (R > 0) that form a circularly symmetric neighbor set. 

Much of the information in the original joint gray level distribution (1) about the 
textural characteristics is conveyed by the joint difference distribution: 

),...,( 10 cPc ggggtT −−≈ −  (2) 

This is a highly discriminative texture operator. It records the occurrences of vari-
ous patterns in the neighborhood of each pixel in a P-dimensional vector. 

The signed differences gp-gc are not affected by changes in mean luminance; result-
ing in a joint difference distribution that is invariant against gray-scale shifts. More-
over, invariance with respect to the scaling of the gray-levels is achieved by consider-
ing just the signs of the differences instead of their exact values: 

))(),...,(( 10 cPc ggsggstT −−≈ −  (3) 

where 
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For each sign s(gp-gc) a binomial factor 2p is assigned. Finally, a unique LBPP,R 
value that characterizes the spatial structure of the local image texture is estimated by: 
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The distribution of the LBPP,R values estimated over an image region comprises a 
highly discriminative feature vector for texture segmentation [14-17].  

3   Active Contour Model Guided by LBP Distributions 

The proposed active contour model is inspired by the ACWE model for vector-valued 
images [9], which uses single point information to guide contour evolution. In what 
follows, we firstly review this original model and secondly we appose the formulation 
of the proposed model that uses regional information to guide contour evolution.  

3.1   The Original Model 

The ACWE model for vector-valued images is based on Mumford-Shah functional 
[18] and the level set formulation [19]. This model was originally proposed for the 
segmentation of color images using vectors formed by the RGB values of the pixel 
intensities [9]. It was later adapted for texture segmentation using Gabor transform 
coefficients [11]. The model is formulated as follows: 

Let u0 be the original image, defined on a planar domain  with real values. Let iu0 , for i=1,…,b, be the components that describe the original image u0. Let C be the 
evolving contour. The two averages of 

iu0  inside and outside the curve C are denoted 
as ic+  and ic−  for i=1,2,…,b. Following [9], an energy functional E is introduced 
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which, when minimized with respect to ),...,(),,...,( 11 bb cccccc −−−+++ == , and C, per-
forms binary segmentation:  
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where each value ),(0 yxui
, i=1,…,b, is defined over a single point (x, y). For example 

in [9], ),(0 yxui  represents the RGB intensities at the point (x, y), for i = 1, 2, and 3 
respectively. The positive scalars μ,

+
iλ  and 

−
iλ  for i=1,…, b, are weight parameters 

for each image component. Minimizing the above energy, one tries to segment possi-
ble regions in the image with contours given by C and denoted as “inside C”, from a 
uniform background denoted as “outside C”. 

In [9] the implementation has been done using the level set method of Osher and 
Sethian [19], which gives an efficient method for moving curves and surfaces, on a 
fixed regular grid, allowing for automatic topology changes, such as merging, break-
ing of curves etc.  

The curve C is represented implicitly, via a level set function ),( yxφ  such that 
}0),(:),{( == yxyxC φ , and 0),( >yxφ  inside C, 0),( <yxφ  outside C. The en-

ergy E is expressed in level set formulation using the Heaviside function H, which is 
defined as: 
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and the Dirac Delta function (x)=dH(x)/dx. 
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Minimizing ),,( −+ ccCE  with respect to the unknown constant vectors +c , −c  the 
following relations are obtained, embedded in a time-dependent scheme: 
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i.e. the averages of component iu0  inside and outside the curve C respectively, for 
i=1, 2, …,b where b is the number of components. 
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Minimizing ),,( −+ ccCE  with respect to φ , and parameterizing the descent direc-
tion by an artificial time, the following Euler-Langrange equation for φ  is obtained:  
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where a smooth approximation of the Heaviside function H is used, as in [9]. 
Starting with an initial contour, given by 0φ , at each time step the vector averages 

+c , −c are updated and the partial differential equation in φ  is evolved. More details 
for the numerical aspects of the level set evolution can be found in [20]. 

3.2   The Proposed Model 

The notion of texture is undefined at single pixel level and it is always associated with 
some set of pixels [21]. Moreover, as it is stated in Section 2, the single LBP values 
are texture pattern “signatures” and only their distribution over an image region pro-
vides a discriminative feature vector for texture segmentation. This motivated us to 
formulate the equations of the proposed model using the normalized histogram N i(x, 
y), i=1,…,b, calculated considering regional LBP information, instead of using the 
single LBP values characterizing each pixel. This regional LBP information is cap-
tured by the distribution of the LBPP,R values of all pixels that belong to a k×k 
neighborhood centered at the pixel (x, y). The i-th component, or “bin” of the normal-
ized histogram N i(x, y) , i=1,…,b describes the probability of occurrence of a specific 
texture pattern on each k×k neighborhood centered at a pixel (x, y) of the considered 
image region. The total number b of the histogram bins corresponds to the total num-
ber of the LBPP,R values and is determined from the number of neighborhood pixels P. 
It should be noted that in previous vector active contour approaches, the value of each 

component ),(0 yxui of the vector ),(0 yxu is determined from a feature of the single 
point (x, y) and not from a region feature, as it is the case in the proposed model. For 

example, in [9] ),(0 yxui
 represents the RGB intensities at the point (x, y), for i = 1, 2, 

and 3 respectively.  
For the sake of efficiency, we choose LBP4,1 (Fig. 1) because it involves less com-

plex computations than the standard LBP8,1 or other LBPP,R (P > 8, R ≥ 1) operators 
and results in a shorter histogram of 16 bins. The LBP4,1 operator maintains adequate 
discriminative capability within the current segmentation framework, as demonstrated 
by our segmentation results. The use of vector quantization alternatives that have been 
commonly used instead [16], would introduce a significant computational overhead to 
the estimation of the feature vectors. 

g0g2

g1

gc

g3

g0g2

g1

gc

g3  

Fig. 1. Local neighborhood of pixels for LBP4,1 
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A rule of thumb suggests that the number of entries for each bin of a histogram 
should be at least 10. Considering that the LBP4,1 produces a 16-bin histogram, the 
number of entries required for the whole histogram is at least 16x10=160. Therefore 
k=13 corresponds to the minimum neighborhood that satisfies this requirement 
(132=169>160). 

In [15], it is suggested that the similarity between the LBP histograms can be esti-
mated by means of the log-likelihood statistic L. Within our context, the log-
likelihood statistic L can be employed as a similarity measure between the LBP nor-
malized histogram N(x, y) and the average LBP histograms +c  and −c of the region 
inside and outside the contour respectively: 
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where N i(x, y) is the i-th bin of the local LBP normalized histogram N(x, y), ci
+ (ci

-) is 
the i-th bin of the average LBP histogram +c  ( −c ), and b is the total number of histo-
gram bins of the considered LBP probability distributions (equal to 16 for the operator 
LBP4,1). As L is an increasing function of similarity of the histograms N i(x, y) and ci

+ 

(ci
-),  we use (1-L) as a distance measure between the considered histograms, instead 

of their squared differences, suggested by equation (6) of the original model. Thus, 
(6) is replaced by: 
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(12) 

Minimizing ),,( −+ ccCE , results in a segmentation of regions characterized by a dif-
ferent average LBP probability distribution than the rest of the image. The positive 

scalars +
iλ  and −

iλ  for i=1,…, b, are weight parameters for the i-th bin of the LBP 

histograms N(x, y), +c  and −c . Similarly to (6), the regions to be segmented are de-
fined by contours given by C and denoted as “inside C”, whereas the background 
region is denoted as “outside C”. 

The Euler-Langrange formulation of (12), which corresponds to equation (10) of 
the original model becomes: 
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where φ  is the level set function, implicitly representing curve C.  
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4   Results 

The proposed active contour model is implemented and applied for the segmentation 
of two-texture images, composed of Brodatz textures [22], as well as of natural scenes 
obtained from VisTex database [23]. In order to evaluate the contribution of the log-
likelihood statistic to segmentation accuracy, we perform experiments with: 1) the 
proposed model employing the log-likelihood statistic, as stated in equation (12), 2) 
the proposed model employing the squared differences of N i(x, y) and ci

+ (c
i
-), as 

suggested by equation (6) of the original model. Both variations of the proposed 
model are implemented in Microsoft Visual C++ and executed on a 3.2 GHz Intel 
Pentium IV workstation. The model constants are generally chosen as follows: 

750000== −+
ii λλ , μ = 6500 for the first variation, and 750== −+

ii λλ , μ = 6500 for 
the second variation. These two sets of values where empirically determined to 
achieve higher segmentation accuracy in the majority of the two-texture images used. 
The LBP operator used is LBP4,1 and each local LBP histogram is extracted from k×k 
neighborhoods with k=13, as described in the previous section. 

Figures 1-4 illustrate four example results of the application of both variations of 
the proposed model on two-texture images. The results of the application of the first 
model variation, employing the log-likelihood statistic, are depicted on Fig. 1(a), 2(a), 
3(a), 4(a) whereas the results of the second model variation, employing the squared 
differences of N i(x, y) and ci

+ (c
i
-), are depicted on Fig. 1(b), 2(b), 3(b), 4(b). The 

,, 

 
(a) 

 
(b) 

Fig. 1. Segmentation results of the application of the two model variations on the two-texture 
image D4D84, composed of Brodatz textures [22]: (a) segmentation result of the first model 
variation, (b) segmentation result of the second model variation 
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segmentation results obtained by the first model variation, employing the log-likelihood 
statistic, are very promising. The frames composed of different texture patterns are very 
well segmented. Moreover, the segmentation quality obtained by the application of the 
first model variation is generally improved when compared to that obtained by the sec-
ond model variation, in the cases of Fig. 1,3,4 (in the case of Fig. 2, both variations 
achieved a practically perfect segmentation result). This improvement indicates that the 
log-likelihood statistic is more descriptive within the current segmentation framework. 
The computational cost of our approach varies between 40 and 60 seconds.  

 
(a) 

 
(b) 

Fig. 2. Segmentation results of the application of the two model variations on the two-texture 
image D8D84, composed of Brodatz textures [22]: (a) segmentation result of the first model 
variation, (b) segmentation result of the second model variation  

  
(a) (b) 

Fig. 3. Segmentation results of the application of the two model variations on the two-texture 
image D9D77, composed of Brodatz textures [22]. It should be noted that the “ground-truth” 
shape of the region to be segmented is a rectangular: (a) segmentation result of the first model 
variation, (b) segmentation result of the second model variation.  
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(a) (b) 

Fig. 4. Segmentation results of the application of the two model variations on the two-texture 
image D17D55, composed of Brodatz textures [22]: (a) segmentation result of the first model 
variation, (b) segmentation result of the second model variation 

The results illustrated in Fig. 5 show that the proposed active contour model is able 
to achieve high quality segmentation of natural scenes. 

  
(a) (b) 

Fig. 5. Segmentation results of the application of the two model variations on natural scenes 
obtained from VisTex database [23]: (a) GrassPlantsSky.0005, (b) GroundWaterCity.0001 

5   Conclusion 

In this paper, we presented a novel model for texture segmentation, featuring an ac-
tive contour approach. The proposed active contour model is guided by the texture 
information, which is encoded with the use of a local binary pattern scheme. The 
texture information is extracted from distributions of LBP values, characterizing  
a neighborhood around each pixel, instead of using a single LBP value to characterize 
each pixel. As a similarity measure between the LBP distributions, we have used  
the log-likelihood statistic. We demonstrated that the proposed model achieves high 
quality segmentation results by applying the model on composite texture images taken 
from the Brodatz album. Possible future extensions of this work include : 1) an exten-
sive testing on medical images instead of the artificial ones used in this work, 2) the 
adoption of a quantitative measure for a more accurate evaluation of the segmentation 

results, 3) test the model performance when adopting the 2
,

riu
RPLBP operator introduced 
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in [15], and 4) extension of the proposed model for the segmentation of multiple-
texture images by incorporating the multi-phase ACWE [24]. 
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Abstract. An approach is presented for characterize objects and image texture 
by local lacunarity. This measure makes possible to distinguish sets that have 
same fractal dimension. In image analysis it can be used as a new feature in the 
pattern recognition process mainly for identification of natural textures. Illus-
trating the approach, two types of examples were presented: 3D objects repre-
senting approximations of fractal sets and medical images. In the first type, we 
apply this approach to show its possibility when the objects presents the same 
fractal dimension. The second type shows that it can be used as a feature on pat-
tern recognition alone in many resolutions. 

1   Introduction 

One important application of fractals is in the field of image texture analysis. The 
main aspect of Fractal Geometry used in such application is the concept of fractal 
dimensions to characterize the texture scaling behavior [3,4,6-10,12]. Like any other 
measure used to quantify the texture of a region, the obtained results are related with 
the predicates of the specific quantifier to identify the relevant texture content. For 
example, the same texture in any linear transformation is easily recognized by meas-
ures based on fractal dimensions [3,4]. It is a very important property in a great num-
ber of situations and improves the use of this quantify on texture analysis. But this 
characteristic can be negative depending on the application.  

A good use of an identifier is related with the perception of the meaning of what it 
represents. Fractal dimension represents the complexity of a texture in their descrip-
tion space. However, different textures having same fractal complexity present same 
fractal dimension [8,10]. Moreover, sets with the same fractal dimension may differ 
substantially in their structure (Figs. 1 and 2 shows two examples; others can be seen 
on http://www.ic.uff.br/~rmelo/projetos.htm). If the complexities of the textures in 
analysis are almost the same this characteristic can produce confusion in textural 
segmentation, then they need additional parameters to be appreciated [2,3]. Although 
in this case this fractal measure is not adequate, it continues to be the best measure to 
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identify the same texture under affine transformations. Other fractal based measures 
can be used to recognize this difference. The proposition here presented to handle this 
is to describe the set, not only by one fractal characteristic, but by a set of fractal 
properties with complementary characteristics. It specially discusses how to compute 
other fractal characteristic: the lacunarity. 

  

 

 

Fig. 1. First steps on reproduction of Sierpinski's sponge. A cube is divided in 27 pieces each 
one scaled by 1/3; 7 pieces are eliminated: the middle piece of each face of the cube and the 
piece on the interior. 

1.1   Importance of the Use of More Than One Fractal Measure 

It is well known that fractal dimension measures both the irregularity and the frag-
mentation of sets, which means that fractal properties may be insensitive to topologi-
cal and affine changes [10]. Moreover, the same fractal dimension, FD, is compatible 
with very different structures. In other words, objects can exhibit different texture and 
appearance but still have the same fractal dimension. For example, compare the ob-
jects in figure 1 and 2. 

Figure 1 represents the first, second, third and forth initial steps of construction of 
the fractal named Sierpinski's Sponge [9]. The first step of Sierpinski's Sponge is 
made dividing each side of a cube by 3, eliminating the central piece of each of the 
six faces and the interior piece. The others steps are constructed repeating recursively 
the production. So as 20 pieces are taking and the scale relating each step of the pro-
duction is 1/3, its fractal dimension is: FD = log 20 / log 3 ≈ 2.7268.  

Figure 2 shows the same steps of a diverse fractal object. The first step of this 
fractal object is made dividing also each side of a cube by 3, but now the seven  
eliminated pieces are all connected on the same face as shown in the first image on  
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Fig. 2. Initial steps on reproduction of other fractal object made as Fig 1 of 20 parts each one 
scaled by 1/3, but grouped without gap. In this object the 7 eliminated pieces are all on the 
same face where only 2 consecutive pieces kept their positions. 

figure 2. The others steps are constructed repeating recursively this production, in a 
way that now results the objects on the others images on figure 2. 

From the construction, the final fractal objects in both figures, 1 and 2, have the 
same fractal dimension but they are (topologically) completely different. However, 
this difference is not represented by the FD, it can be characterized in other fractal 
features.  

Empty spaces or gaps and their spatial distribution in more or less regular intervals 
allowing or not percolation and inter communication are very important aspects. 
These are manifested in terms of lacunarity and succolarity, respectively. Since lacu-
narity measures the largeness and regularity of gaps or holes it should be of utility as 
a feature to differentiate figures 1 and 2. It can also be important in many other tex-
tures characterizations and as a feature to be extracted of 3D medical images. In this 
work, we discuss how it can be used to characterize a texture pattern. An approach to 
compute it for 2D images or 3D objects is presented. It also considers the efficiency 
of using a set of local lacunarity (LL) characteristics to texture classification. Exam-
ples illustrate practical LL used in real medical images on detection of malignant or 
benign tumors.  

2   Proposed Approach for the Local Lacunarity 

Our proposition to compute Local Lacunarity is based on the gliding box algorithm 
used to analyze the mass distribution on one-dimensional generalized Cantor sets [1].  
It considers a box of side s which glides in the object on all possible manners comput-
ing the mass distribution with is basic for the lacunarity measure. The notion of posi-
tion is added to make it possible to distinguish among different part of the same set. 
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The proposition for compute Local Lacunarity comprehends the following steps: 

1 - Objects are first adjusted to an axial aligned bounding box (AABB), example 
on fig. 3. The size of this box is a function of the object’s size: S, in a specific resolu-
tion. (If it is an image it is equalized to compensate for possible differences in acquisi-
tion conditions before the beginning of local lacunarity, LL, computation. Colour and 
grey scale information are important aspects on texture [2] and must be considered if 
available. Lacunarity can be computed on 2D grey-scaled images by threshold or the 
third coordinate can be used and the images can be seen as collection of voxels. In a 
specific resolution each voxel can only be considered as empty or full. It is important 
to stress that the term "local" for lacunarity is related to the AABB position, (i,j), on 
the original image and to the AABB resolution, r, but mainly to the threshold mass or 
grey value, t). 

2- The gliding box method is used to get the mass probabilities for the AABB in all 
possible combination of parameters: gliding box edge, s, object resolution, r, and size, 
S, thresholds levels, t, and position (i,j). Note that the gliding boxes overlap. 

3- The probability obtained as a function of all parameters is used to define the la-
cunarity associated with the local parameters of the object or image. 

 

 

Fig. 3. In dashed, the example of an axial aligned bounding box (AABB) for the third image on 
figure 2 

In the step 2, the incremental analysis of each parameter is associated with the glid-
ing box procedure. In this procedure the first voxel of an s x s x s voxels gliding box 
is initially placed on the corner at first voxel of the images. The computation is per-
formed and then the first voxel of the box is positioned at the second voxel of the 
images and so on until it reaches the last possible position. Name N this last possible 
position. The box of s x s x s voxels glides over the entire image registering each time 
the number ni of non void voxels related to that resolution and its side, s. As s3 is the 
maximum possible number of voxels for the box side s, the sequences of the number 
of non void voxels, {ni}, i ∈ {1,2,....N}  can be organized to define the frequency of 
boxes of size s with mass M: n(M, s). For 3D objects, the total number of boxes of 
size s, N(s), is also a function of the size of the object, S, that is: 

N(s) = (S - s +1)3. (1) 
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The frequency distribution of boxes of size s voxels with mass M, n(M, s), defines 
a probability function Q(M,s) by dividing it by the total number of boxes: 

Q(M, s) = n(M, s) / N(s) , (2) 

where Q(M,s) represents the probability that a gliding box of side s voxels contains M 
non void voxels, in other words it is easy to show that Q(M, s) satisfies all the axioms 
of probability [11]. Local Lacunarity (for box side s) is defined by the ratio between 
the second moment and the first moment square: 

 

Λ(s) =        M2 Q(M, s)  /  (        M Q(M, s) )2.  (3) 

When considering all BB position, (i,j), resolution, r, and possible threshold value, t, 
it is clear that the above expression is not only a function of the box side s, but related to 
a set of parameters (Λi,j(r,t,s)). Although this method is easily implemented in section 
2.1, we use some manual results in order to promptly interpret some aspects, resulting of 
this measure, that can be useful in many recognition applications. Highest value for a 
given image will always be found for gliding box equal in size to one voxel, i.e. s=1. 
However, this computation need not be performed since at s=1, Q(1,1) represent the 
occupied ration and Λ(1) is the inverse of this value. This value is: (i) only a function of 
the percentage of occupied sites; (ii) independent of the overall size of the image; and 
(iii) no related with details of the distribution. Local Lacunarity then must be computed 
by equations (3) for box side s ranging from 2 to r (or to a representative value). 

2.1   Computing the Mass Distribution  

Let us compute it for the first object in figure 2, suppose it is represented by 3x3x3 
boxes. The total number of boxes of size s=2 that can glide inside the object is 8. If 
the “gliding” process begin from the most distant position of the viewer to the nearest 
viewer position, the number of occupied voxels ni found is:{8, 8, 6, 5, 8, 8, 4, 4}.  
Then n(M,s) for s=2 is defined in table 1.  

Table 1. Lacunarity computation for iteration 1 of Figure 2 represented with 9 voxels, consider-
ing gliding box with s=2 

mass: i frequency 
n(Mi,s) 

Probabiblity 
Q(Mi,s) 

MiQ(Mi,s) Mi
2Q(Mi,s) 

0 0 0 0 0 
1 0 0 0 0 
2 0 0 0 0 
3 0 0 0 0 
4 2 0.25 1 4 
5 1 0.125 0.625 3.125 
6 1 0.125 0.75 0 
7 0 0 0 4.5 
8 4 0.5 4 32 
Σ 8 1 6.375 43.625 

=

 N

 1i =

 N

 1i
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Figure 1 - step 2
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Figure 1 - step 3
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Fig. 4. Log-log plot of lacunarity versus box size for object of figure 1 from the first to the third 
step. Objects are described at resolution of 9, 27 and 81 voxels. 

From table 1 and equation (3) we have: Λ(2) ≈ 43.625/(6.375)2 ≈ 1.073. The posi-
tional parameters in this computation is not important and the threshold level is obvi-
ously at void voxel but the obtained result is related with the used AABB resolution of 
r=3. That is, in fact, Λ(3, 0.5, 2) ≈ 1.073.  
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Figure 2 - step 1
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Figure 2 - step 2
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Figure 2 - step 3
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Fig. 5. Log-log plot of lacunarity versus box size for object of figure 2 from the first to the third 
step when described at resolution of 9, 27 and 81 voxels 

Considering the first object in figure 1 and supposing that it is represented by 
3x3x3 voxels, for s=2, the number of occupied voxels ni registered for all position of 
a gliding box is 4. Then n(M,2)=8 and Q(M,2)=0 for M≠4 and Q(4,2)=1. So we have: 
Λ(2) =1. That is, for the first iteration of this approximation of Sierpinski's Sponge 
Λ1(3,0.5,2)=1. Another results are Λ1(81,0.5,2)≈1.3449 and Λ1(3,0.5,3)=1 considering 
both the first iteration on the object construction. For the same object but in other 
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iteration, as the second, third and fourth object in Figure 1 we have respectively: 
Λ2(81, 0.5, 2) ≈ 1.7672, Λ3(81, 0.5, 2) ≈  2.1619 and Λ4(81, 0.5, 2) ≈ 2.1577. 

Then, an additional point is that, for real fractals, as these in figures 1 and 2, the LL 
results change with the iteration. For the same object, but in other iteration, as the 
second, third and fourth object in these figures we have the values that can be seen on 
the graph on figure 4 and 5. Note: for real fractal on generation LL is a function of 
one more parameter, here represented by the index I: ΛI

i,j(r,t,s). 
Figures 4 and 5 shows the results for all possibility of parameters of the objects on 

figures 1 and 2, that is ΛI(r , 0.5, s) for r=9,27,81;  s = 2,3,4, ...,80,81 and I=1,2,3. The 
entire object is considered, so the positional parameters (i,j) is irrelevant. It is possible to 
see on http://www.ic.uff.br/~rmelo/down/results_3D_lacunarity.pdf results for all pos-
sibility of parameter variations of the objects on figures 1, 2 and also for other objects. 

It is interesting to note that all the objects on figures 1 and 2 will be a real fractal 
only if the generation goes to infinite. As it is impossible for representation of digital 
objects or images, they are mathematically only approximations of real fractal objects. 
Their construction is limited by the voxel limit which is digitally or physically our 
lower limit of representation.  

3   Experiments on Medical Images  

For natural acquired objects, the role of the iteration can be represented by the scale 
used in image capture. Figure 6 represents a set of mammogram images (all database 
is located on our Web page at http://www.ic.uff.br/~aconci/mam/frameex1.htm) with 
different threshold to binary images. They are used to compute the lacunarity curves 
showed on the log-log plots of figure 7. The values of threshold were obtained heuris-
tically analyzing the brightness areas of the image and testing some values until be-
came to the optimal values represented on the four binary images of fig. 6.  

The idea of consider lacunarity for breast cancer is not new, Einstein et al. [6] 
measures lacunarity for cytology specimens from Papanicolaou protocol on binary 
images in a classificatory scheme to benign and malignant diagnoses. Here they are 
used only to illustrate the proposed methodology of compute Local Lacunarity. 

Considering also mammograms Conci et al. [5] used classical image processing 
techniques to form the five elements feature vector using the 2D shape and contour 
characterization of the images. LL could be used as another feature in this form of 
pattern recognition. 

The lacunarity plots (Fig. 7) shows important features to note: (1) the lacunarity 
values reflects de degree gaps; (2) the lacunarity curves is more near of a straight line 
as more self-similar is the image; and (3) the lacunarity values reveals the aspects of 
gaps distribution over the entire image, permitting detect presence of hierarchical 
structures, homogeneity in gaps distribution, random or self-similar behavior. 

For objects with the same space occupancy ratio (as those from figures 1 and 2) lacu-
narity decreases (for same resolution and box size) with the increase of regularity of gaps 
distribution. For s=1 all curves with the same percentage of voxels will present the same 
value. As a result, all curves for a given number of voxels occupied intercept the same 
point. A completely regular gap distribution, i.e. a translational invariant image presents 
lacunarity 1 for any box size larger than the unit size of the repeating pattern. 
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Fig. 6. Two original grey scale image from the mammogram database: Ben3 and Mal13, repre-
senting benign (top left) and malignant case (top right). The same images thresholded at 220 
and 170 level of the intensity histogram (middle), they are named level 1 on figure 7. Images 
thresholded at level 2: grey value 240 and 180, respectively. 

4   Conclusions 

A new idea is presented here: the use of the Fractal Geometry's measure named lacu-
narity for texture identification in objects or image analysis. Lacunarity has several 
practical advantages over other indices of texture analysis: method is simple to im-
plement and is not computation expensive compared to other texture calculations; it 
exhaustively samples the image to quantify changes and self-similarity with scale and 
it can be used for an analysis of natural or synthetic images. 

This work presents also a method for estimation LL of any kind of 3D object or 
image. It is not a simple extension of the usual lacunarity characterisation of 1D sets 
because it considers many local aspects as: resolution, generation and box size in 
images representation. Moreover, image now is an element of the 3D space, which 
means that its gaps distribution may consider the grey level representing z coordinate.  
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Fig. 7. Lacunarity values for the mammograms in figure 6 

The proposed method is used for lacunarity computation of an approximation of 
fractal objects and real images. The experimental results shows the quality of texture 
recognition obtained using the lacunarity as a feature extracted from image. Although 
single values can be used for characterizations aspects of an area like a filter, the use 
of lacunarity values combined as log-log graphs are much more representative for the 
characterization of the texture. It is the change of the lacunarity values over different 
gliding box sizes that yields greater amount of information. These combined values 
capture pattern over the entire range of scales from the minimum grid to the entire 
image.  

Geometric aspects of an object, a pattern or an image related with fractal Geometry 
are diverse. Only lacunarity has been considered in this work. Succolarity measures is 
other aspect of texture related with the sucker, holes or filaments distribution that 
must be considered in next developments. 

This technique can be easily adapted for analysis of 3D images. Results for these 
and other plots can be seen on the IC Web page at http://www.ic.uff.br/~rmelo/ 
projetos.htm. Differently of objects, 2D grey level images presents no gaps unless 
tresholded. For digital images it is possible identify constrains related to the limits of 
resolution. These limits are related in the lower bound with the pixel or voxel and in 
the upper bound with the image resolution, r, in 2D or 3D, that is, the number of pix-
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els (r x r) or voxels (r x r x r) it contains. In other words, in the lower bound lacunarity 
reflects the degree of space occupancy similarly to the FD. On the opposite side, the 
larger possible value is the entire image and lacunarity is similarly constrained at this 
limit.  

Considering equation (3), if the denominator (mean), goes to zero, the lacunarity, 
Λ, goes to ∞. If the box size contains the entire image (s = r), then the variance of the 
masses in the box is zero and Λ(r)=1. Although, it is far from the limits that the values 
measuring the texture present utility, the above discussion of boundary limitation can 
be useful (e.g. for algorithm verification or as edges representation on graphical visu-
alisation of results). The average mass increases with the box size, then the probabil-
ity that box masses greatly differ from the average decreases so that relative variance 
decreases.  

The use of a single value of lacunarity estimated considering a single box size is of 
limited value and meaningless as a basis for comparing different images. The useful 
feature of lacunarity is the great deal of information gained by computing it over a 
range of box size. It is especially interesting if resolution, r, also change. For each 
object, the lacunarity representation can be calculated for box (cubes) sizes ranging 
from s=2 to r incrementing one voxel at the box size each time.  
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Abstract. In general, the less probable an event, the more attention
we pay to it. Likewise, considering visual perception, it is interesting to
regard important image features as those that most depart from ran-
domness. This statistical approach has recently led to the development
of adaptive and parameterless algorithms for image analysis. However,
they require computer-intensive statistical measurements. Digital reti-
nas, with their massively parallel and collective computing capababilities,
seem adapted to such computational tasks. These principles and oppor-
tunities are investigated here through a case study: extracting meaningful
segments from an image.

1 Introduction

Designing robust vision algorithms is a serious challenge. The infinite variability
of natural images and the difficulty to find precise rules specifying how to solve
a -generally trivial for a child- vision problem are greatly contributing to this
complexity.

Dynamically adapting algorithms to images they encounter is certainly a way
to overcome part of this complexity. Being robust also requires a strict manage-
ment of algorithm parameters, by relating them to a physical quantity, deducing
them from image properties, learning them, selecting them to optimize further
treatments through a closed loop process, etc.

Recently, an almost parameterless statistical framework has been proposed
[6], relying on the so-called Helmholtz principle, which states that meaningful
events are events whose probability to appear in a purely random environment
is very low. It seems that human perception follows this rule to some extent, and
this framework has been applied notably to gestalts detection with some success
[3, 5]. The absence of parameters mainly comes from the fact that no generative
probability model of events has to be defined, but only a rarity measure in a
well-defined random environment. In addition, some properties of the image can
be taken into account to define the random model in which the rarity of other
properties will be evaluated, enabling adaptation to the analyzed image.

Such kind of approaches generally requires a considerable number of poten-
tially meaningful events to be evaluated, making real-time processing difficult or
impossible. Adaptivity also requires the computation of global quantities, such as

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 220–231, 2006.
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probability distributions over the image, which are time- and power-consuming
to obtain using a standard computer. The reason is that pixel data have to be
transfered many times, for each pixel, from memory to processor.

To ease such global computations, less standard architectures are needed,
that better combine processor and memory, in a more distributed fashion. The
latter issue is addressed for more general reasons by the computer architecture
community (e.g. [14]). But, in this paper, we focus on artificial retinas (also
known as vision chips [11]), which mix processor and memory in an extreme way.
Indeed, these are smart imaging sensors, with processing ressources in each pixel,
thus making massively parallel image array processors without input bottleneck.

On the output side, many retinas are fitted with a global adder (analog as [1]
or digital as [10]), able to quickly provide the sum of pixel data over the whole
image. The global adder has been used to measure image moments, e.g. for ex-
tracting the position of a target. More powerfully, it has been used in a feedback
scheme to allow image capture with automatic histogram equalization [12]. We
believe that this feedback scheme is worth being systematically extended to im-
age processing : sums provided by a global adder can be surely taken advantage
of to better control the way in which images are processed. In particular, it can
provide at low cost statistical measures about images in order to make algorithms
more adaptive, therefore more robust, as we are looking for. Of course, this only
makes sense with programmable retinas, that is retinas with a programmable
processor in each pixel - thus allowing versatile image processing - such as the
digital retinas we design in our lab [13, 9].

In the present paper, our goal is two-fold:

– show the potential of these general principles through a case study: mean-
ingful segment detection;

– use this experience to improve algorithm/architecture adequation, by moti-
vating future evolutions of both vision system architectures and statistical
methods.

In the following, we deal with segment detection in natural images, a stan-
dard primitive which can be interesting in artificial environments and which
drastically reduces the information contained in an image, while keeping impor-
tant features. We are looking for an adaptive, parameterless algorithm taking
advantage of retina capabilities.

After a global overview of the proposed algorithm in Section 2, Section 3 fo-
cuses on segment candidates extraction on digital retinas, then Section 4 gives
statistical criteria to decide whether the candidates are meaningful or not. Fi-
nally, quantitative results are given in Section 5 and questions raised by this
study are discussed in Section 6.

2 Overview of the Algorithm

2.1 What Is a Segment?

Definition 1. A segment in a cone C is a one-pixel thick connected set of pixels,
such that:
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– each pixel has a local gradient direction in C;
– for each non-extremity pixel, the direction of the vector formed by its two

neighbors is also in C.

Gradient vectors are computed using a Sobel operator. To keep cone belonging
easy to check, only eight cones are considered, corresponding to the possible
angles in a 5x5 discrete neighborhood, as shown in Figure 1. The main steps of
the algorithm are as follows:

1. groups of pixels conforming to the definition of segments are extracted as
briefly described in Section 3 and their properties (length, mean of pixels
gradient magnitude, etc.) are attached to one of their extremities;

2. the extremities are selected by an a contrario statistical criterion, as will be
detailed in Section 4. The criterion takes into account global image measures
and for each segment answers the question: “could a segment with the same
properties possibly be observed in a purely random environment?”;

3. segments for which the answer is “no” are reconstructed from their repre-
sentative extremity, resulting in a binary image of meaningful segments.

Fig. 1. Top row: the eight overlapping direction cones. Bottom row: illustration of
Definition 1 for the first cone (horizontal). Dark pixels must have a local gradient
direction in the cone. Dashed lines show the direction induced by the neighbors of each
point. Among the three sets of dark pixels, only the left and central ones are segments
according to Definition 1, since all dashed lines are within the cone. The right one is
not a valid segment since the white dashed line lies outside the cone (too large angle).

3 Candidates Extraction

Segment extraction, the first step of the overall algorithm (see Section 2) is itself
performed in three steps, as illustrated in Figure 2:

1. Eight binary images are computed, each representing a direction cone in
which segments will be looked for. Any pixel with a determined gradient
direction is marked as white in the direction image(s) of which it matches
the direction.
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2. In each direction image, connected sets of white pixels are made one-pixel
thick, such that the remaining pixels lie where the image gradient magnitude
is maximal in the orthogonal direction.

3. In each direction image, independently, connected groups of white pixels
which match our segment definition are reduced to one of their extremities, to
which segments properties are attached. This step is performed by iterative
segment erosion: for e.g. horizontal segments, left extremities are removed
at each iteration. Before removal, extremities transfer all the information
gathered so far to their right neighbor. At the end of this step, extremities
support the needed properties of their associated segment.

The extremities are now ready to go through the selection step.

Fig. 2. Overview of the segment extraction algorithm. Step 1 produces eight binary
direction images by analyzing local gradient directions in the original image. Each
image corresponds to a direction cone and white pixels are pixels whose local direction
fits in the cone. Step 2 and 3 are illustrated on portions of the horizontal direction
image. Step 2 makes connected sets of white pixels one-pixel thick by only keeping pixels
lying where the image gradient magnitude is maximal. Step 3 iteratively propagates
segment information (length in the example) from the left extremity to the right one,
following the rules of Definition 1. Finally, only right extremities will be fed to the
selection step.
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4 Candidates Selection

4.1 About the Number of False Alarms (NFA)

The question addressed in this section is: observing a segment with some prop-
erties, how to decide whether this segment is meaningful or whether it is just an
artefact or coincidence? Two segment properties will be considered, the mean of
the gradient magnitude of the segment pixels in Section 4.2 and the length of
the segment in Section 4.3. In the spirit of [6], we chose to reason a contrario,
i.e. instead of computing the probability to observe such a segment in a natural
image, we try to answer the question: could the observed segment possibly ap-
pear in a noise image? If not, it must be due to a real world phenomenon: object,
shadow, etc. To quantify this a contrario likelihood, we recall the definition of
the number of false alarms of an event.

Definition 2. The number of false alarms of an event E is the expected number
of occurrences of E in a random environment.

Using the NFA, the notion of ε-meaningfulness may be defined, with ε a strictly
positive (possibly � 1) real number.

Definition 3. An ε-meaningful event E is an event such as NFA(E) < ε. A
1-meaningful event is simply called a meaningful event.

In practice, choosing ε = 1 means that the event is expected to appear less
than once in a random context. It is a sound choice as the NFA generally has a
exponential behavior w.r.t. event properties, so the dependence on ε is rather a
log-dependence.

An example is provided in Figure 3 to illustrate how deviations from a random
model make events perceptually meaningful.

Finally, to decide whether an event is meaningful in this framework, we need
three elements, chosen a priori :

1. What kind of events are we looking for?
2. Which event’s property should be analyzed?
3. What is the relevant a contrario random model?

For segments detection, we have already answered question 1 with Definition
1. Question 2 and 3 will be shortly addressed in Section 4.2 and Section 4.3.

4.2 Selection Based on a Gradient Magnitude Criterion

A natural criterion to start with is based on the contrast between the segment
and its neighborhood, an approach comparable to [4]. Whereas [4] was inter-
ested in the minimal gradient intensity value along level lines, here we consider
the mean gradient value along the segment to be less sensitive to outliers. The
gradient magnitude is computed using 2x2 finite differences to avoid creating
artificial correlation between pixels (see [2] for detailed explanations).
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P (black) = 0.5 P (black) = 0.23 P (black) = 0.1
NFA(E) � 63 NFA(E) � 0.5 NFA(E) � 10−3

Fig. 3. Illustration of the number of false alarms. Unlike the more complex segments
matching Definition 1, the events considered here are simply “perfectly horizontal seg-
ments”. The property associated to the event is the length and the a contrario random
model is an image whose black pixel density is the same as in the original image but
where points are spatially independent and uniformly distributed. A segment of 6-pixel
length has been artificially added to each image, which otherwise follows the a con-
trario model. As the density of black pixels gets smaller, the number of false alarms
of the 6-pixel segment decreases and it becomes an increasingly important deviation
from the a contrario model. Our perception seems to follow similar rules: the segment
becomes detectable with a NFA of 0.5 and obvious for a NFA of 10−3.

The a contrario model we choose is a white uniform noise with the same
gradient magnitude distribution as in the original image, but where pixels are
spatially independent and uniformly distributed. This makes the model adapted
to the global gradient properties of the image, while making pixel spatial or-
ganization in the original image the source of large deviations. The rarity of
a segment will not come from the fact of observing pixels with high gradients
in itself, but from the fact that a group of adjacent pixels contains many high
gradient values.

Under these assumptions, we can compute a number of false alarms for seg-
ments.

Definition 4. Let μg and σg be respectively the gradient magnitude mean and
standard deviation on the whole image. Let Nsegments be the number of candidate
segments detected in the image. Let μ(S) be the mean gradient value of a segment
S and L(S) its number of pixels. Then

NFA(S) = Nsegments × (1 − normcdf(μ(S), μg,
σg√
L(S)

))

where normcdf(x, μ, σ) is the normal cumulative distribution function with mean
μ and deviation σ applied to x.

This definition comes from the central limit theorem. Under the a contrario
assumption, a segment can be seen as a collection of L(S) independent and
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identically distributed samples of the image, thus the mean of their gradient
magnitude should follow a normal law if L(S) is big enough, according to the
central limit theorem. Since we have Nsegments candidates, the expected number
of segments having a deviation from the random model at least as large as the
one observed for S is the NFA(S) of Definition 4.

We have implemented this selection criterion on a standard computer, but
not on digital retinas because of some limitations of the current generation. This
is discussed in more details in Section 6. This has led us to consider a different
criterion as defined in Section 4.3, enabling a fast implementation on our retina.

4.3 Selection Based on Segment Length

Instead of considering the gradient values along the segment, one might wonder
what minimal length is required for a segment to be meaningful, whatever its
contrast. The question becomes: in a direction image Id, how many chains of
pixels of length l matching Definition 1 would be expected under an a contrario
random model?

The choice of the a contrario model is somewhat similar to the one of Section
4.2. Taking Id, the a contrario image is an image whose white pixels density
is the same as Id, but where pixels are spatially independent and uniformly
distributed. This way, the selection adapts to the global density of pixels sharing
the same local directions, and large deviations correspond to large groups of
adjacent white pixels.

Unfortunately, even under these fairly simple assumptions, a NFA is analyt-
ically difficult to compute. This complexity comes from the rather particular
connectivity induced by our definition of segments, which makes the number of
candidates difficult to count. Still, we have to find the minimal length above
which the NFA will be less than one, depending on the direction image white
pixel density. This can be evaluated by stochastic Monte Carlo simulation, that
is, by analyzing the actual statistical distribution of the lengths of segments
occurring in randomly generated images.

Let Id be a direction image of size N ×N , and pwhite its white pixel density
#whitepixels

N×N . The following procedure is repeated M times:

1. Generate a random black and white image of size N ×N by drawing inde-
pendently for each pixel the value white or black according to pwhite ;

2. Apply on it the segment extraction algorithm of Section 3 ;
3. Store the histogram of the segment lengths.

This results, for one pwhite value, into a collection of M samples of segment
lengths histograms, as depicted in Figure 4. We are looking for the length thresh-
old Lmin which ensures NFA(L(S)) < 1 whenever L(S) ≥ Lmin. NFA(L(S))
is the expectation of the number of occurrences of segments with length greater
than L(S) in random images. It can be estimated from the simulations. Having
a NFA < 1 means the expected maximal segment length in a random image
must be less than Lmin.
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Fig. 4. Horizontal axes are segments length. Vertical axes are the number of occur-
rences. (a) Histogram of maximal segments lengths for 1000 different uniform noise im-
ages with pwhite = 0.1 (b) Histogram of segments lengths for 100 different uniform noise
images with pwhite = 0.1, only segments of length greater than four are considered.

From the M simulations above, one can compute a confidence bound on the
expected maximal length. Let Xi the maximal length observed in random image
i. The empirical mean μ and empirical deviation σ of the maximal length are
then:

μ =
1
M

M∑
i=1

Xi σ2 =
1

M − 1

M∑
i=1

(Xi − μ)2

Let μtrue be the real expectation of the maximal segment length. When M is
big enough, the random variable Y = (μ−μtrue)

√
M

σ follows a Student law with
M − 1 degrees of freedom. We construct a bound on μtrue such that:

P (Y < t) = α

with α the confidence we want. We can get α arbitrarily close to 1 by increasing
M and t. Note that α gets exponentially closer to 1 with respect to t, so for
M = 1000 and t = 3.1 the Student law gives α = 0.999, leading to:

P (μtrue < μ + 3.1
σ√
1000

) = 0.999

Thus, choosing Lmin = μ + 3.1 σ√
1000

ensures P (NFA(L(S)) < 1) = 0.999
whenever L(S) ≥ Lmin. Figure 4 shows the typical exponentially decreasing
distribution of maximal lengths values.

Finally, running simulations for different pwhite gives a table of minimal
lengths thresholds. Then, the selection algorithm becomes, for each direction
image:

1. Estimate pwhite from the direction image using the global adder;
2. Lookup in a table the corresponding minimal length threshold;
3. Remove extremities associated to segments having a too small length.
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5 Quantitative Results

Meaningful segment extraction based on the segment length criterion (see Sec-
tion 4.3) has been successfully implemented on Pvlsar34, a home-made digital
retina of 200x200 pixels, each containing a pixellic Boolean processor with 42 bits
of local memory, under SIMD control. To evaluate our algorithm, we bypassed
Pvlsar34 capture abilities by transferring standard images into retina memory,
scaled to 200x200 pixels and reduced to 64 gray levels to save retina memory.
Figure 5 shows an example of segment extraction on an interior scene. Note
that there is no free parameter to set in the method, since the segment length
thresholds are automatically derived from the direction images densities.

Figure 6 clearly illustrates the benefits of context adaptation. If meaningful
segments had been selected on the ”house” image with the same threshold as the
one derived for the ”desk” image, a lot of false alarms would have been obtained,
as shown on Figure 6(c).

(a) (b) (c)

Fig. 5. (a) “Desk” image (b) Horizontal direction image, localized on gradient maxima,
pwhite = 0.09 (c) In white: segments which have a meaningful length

(a) (b) (c) (d)

Fig. 6. (a) “House” image (b) Horizontal direction image, localized on gradient max-
ima, pwhite = 0.2 (c) In white: horizontal segments which would have a meaningful
length if the same threshold as for the desk image was used (d) In white: meaningful
horizontal segments according to the new threshold
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The meaningful segment extraction algorithm runs in real-time on our digital
retina Pvlsar34, at video rate. It runs 10 times slower on an up-to-date per-
sonal computer, with 2 images processed per second. This factor of ten seems
ridiculously small considering the massive parallelism (40k processors operating
together) available in Pvlsar34. One of the reasons is that Pvlsar34 is operated
at a low frequency of 5MHz, which ensures a very low power consumption of a
few tens milliwatts, 3 to 4 orders of magnitude as small as that of a PC! Another
reason is examined in the next section.

6 Discussion

6.1 About Statistical Criteria

We try to avoid ad-hoc parameters. But there are still a number of choices which
are subject to discussion: the definition of segments, the considered properties,
the chosen a contrario models, etc. Of course, ideally, those assumptions should
be replaced by objective measurements or justifications. What should be noted
however is that the nature of the remaining a priori is never quantitative but
only qualitative. This means the a priori decisions always rely on reasoning,
never on numerical, empirical values.

Another limitation of current a contrario approaches is the global nature of
the statistics from which large deviations are measured. There is an underlying
assumption of image spatial stationarity, which is obviously not true in the gen-
eral case. A direct consequence is the so-called blue sky effect, where a very flat
zone in the image influences detection in other, shaky, parts. In [2], relying on
level lines nesting properties, local meaningful level lines are detected using the
statistics of the region associated to their closest surrounding meaningful level
line. However, this is not easily applicable in our case.

Finally, we notice that our meaningful segment extraction algorithm does not
use so much the retina abilities to compute global statistics though global sum-
mations. Using it much more intensively could provide interesting algorithmic
and statistical innovations in the future.

6.2 About Candidates and Properties Extraction

Whereas using a digital retina fitted with a fast global adder is a source of
algorithmic inspiration, implementing algorithms on it suggests architectural
improvements. Here, what are lessons to draw? Whereas gradient and direction-
related computations are fast, information propagation toward extremities takes
most of the computation time. Indeed, these propagations are done
synchronously in Pvlsar34, and only a few pixels (the extremities) are actually
performing useful computations at each iteration. This is clearly under-exploiting
massive parallelism. To drastically reduce propagation delays and energy con-
sumption, asynchronous retinas (e.g [8, 7]) have been proposed, allowing efficient
computing of regional quantities, which are typical of middle level vision. For
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example, the computation of a gradient magnitude mean over a segment would
become tractable, thereby enabling more complex properties to be statistically
analyzed. More generally, to cope with statistical detection of big groups of
pixels, we believe asynchronism will play an important role and we are currently
working on the realization of the model described in [9].

6.3 Conclusion

This paper shows a first step towards more adaptive, parameterless and statis-
tically founded algorithms taking advantage of digital retinas philosophy and
capabilities. We have developed an original algorithm for the detection of mean-
ingful segments. On the presented images, detected segments indeed seem to
be the important ones. These encouraging results are obtained in spite of the
relative simplicity of the statistical segment model we have chosen. Implemen-
tation on our home-made digital retina has allowed real-time operation but
has recalled the limitations of its synchronous SIMD character for middle level
vision.
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Abstract. In this paper we present our region merging algorithm that
is built with special attention on speed but still includes all the necessary
functionality to use a wide range of both region based and border based
dissimilarity criteria. The algorithm includes a novel method to dynam-
ically link the common borders between two segments during the region
merging. The main part of the paper will concentrate on the efficient
data structures and functions that are needed to obtain a fast region
merging algorithm. Also, all the special situations that can occur in the
segment topology are completely covered. We give a detailed report on
the execution times of the algorithm and show some of the segmentation
results we obtained.

1 Introduction

Image segmentation is the process of partitioning a digital image in meaningful
segments, i.e. segments that show a certain degree of homogeneity. This can
be homogeneity of any type, such as intensity, color or texture. It is crucial in
a number of applications, ranging from image coding and tracking to content-
based image retrieval and object recognition. Region merging is one of the most
well known and most popular techniques to reduce a set of connected segments
(or pixels) to a smaller set by iteratively merging the least dissimilar pair of
neighboring segments following a certain criterion that ensures that the the
final partition consists of meaningful segments. Those criteria can be divided
in two classes. The first class consists of region based criteria. They calculate
the difference in the statistics of the pixels of two neighboring segments. The
second class consists of border based criteria. They incorporate the statistics of
the pixels along the common border of two neighboring segments.

In this paper we will present our region merging algorithm that is built with
special attention on speed but still includes all the necessary functionality to use
a wide range of different criteria from both mentioned classes. Thus the main
part of this paper will concentrate on the efficient data structures and func-
tions that are needed to obtain a fast region merging algorithm. Before we start
with the explanation of the region merging algorithm we briefly enumerate the
steps we took to generate the initial segmentation that is used as the starting
set of segments for the region merging algorithm. First we calculate the gradient

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 232–241, 2006.
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magnitude of the input image by convolving it with the first derivative of a Gaus-
sian [1]. Then we regard the gradient magnitude as a topographic landscape and
apply the watershed transform on the topographic landscape. These two steps
produce the initial segmentation. We used our own fast rainfalling watershed
segmentation algorithm [2] to accomplish this task. It has average execution
times of approximately 20 ms and worst case execution times of approximately
25 ms (for images of size 512x512 and run on an Intel Pentium 4 2.8 GHz).

In the following sections we will explain in detail how our region merging
algorithm is constructed and which decisions we took to make it fast and memory
efficient while reasonably generic. The paper is split up in sections following the
important modules in the algorithm. In Sect. 2 we will describe and motivate the
graph data structure we used to represent the region adjacency graph, the main
data structure of a region merging algorithm. In Sect. 3 we will explain how we
extracted the inner an outer contour of each segment. In Sect. 4 the extraction of
the common border of two neighboring segments out of the previously calculated
contours will be discussed. In Sect. 5 the dynamic linking of the borders of
two segments that need to be merged will be addressed. In Sect. 6 we end the
discussion with the least dissimilar pair of segments calculation and the actual
region merging. In Sect. 7 we give a detailed report on the execution times of
the region merging algorithm and show some of the segmentation results we
obtained. Finally we draw some conclusions in Sect. 8.

2 Region Adjacency Graph Data Structure

Let us first explain what a region adjacency graph is [3]. The region adjacency
graph is a planar graph where each node represents a distinct segment of the
image partition and where an edge connecting two nodes represents the fact that
the two segments associated with those nodes are adjacent (neighbors). We need
this graph to get direct access to each neighbor of a segment. The watershed
segmentation algorithm produces a segment label image, i.e. an image with for
each pixel a label of the segment to which the pixel belongs. So we have to
transform the segment label image to a region adjacency graph. First we make
sure that every segment is completely connected by horizontal or vertical (four-
neighborhood) pixel connection relationships, because later on it will become
clear that we get uncontrolled behavior otherwise. We can accomplish this by
simply using a watershed algorithm that inherently produces four-neighborhood
connected segments, or by transforming the segment label image to that state by
splitting up the diagonally (eight-neighborhood) connected segments. Now we
construct the graph by doing a raster scan of the segment label image. For every
two different neighboring (four-neighborhood) segment labels i, j we encounter,
we add the edge (i, j) and the edge (j, i) connecting the nodes i and j to the
graph. Consequently the region adjacency graph will be a directed graph. This
will be necessary for the dynamic border linking and it also make the handling
of the graph data structure easier.

This brings us to the choice we made for the graph data structure. We opted
for an array G of linked lists. The edge (i, j) is represented by an element with



234 J. De Bock et al.

value j for the end node field and this element is part of the linked list G[i]. Thus
each neighbor of a node (segment) i will be in the linked list G[i]. This gives us
a compact data structure with random access for the start node of an edge and
sequential access for the end node of the edge. During the region merging, nodes
will only be removed and no new nodes will be created so we do not need a linked
list for the start nodes. An adjacency matrix would be an alternative data struc-
ture to represent a region adjacency graph, but in this case this would lead to a
very sparse matrix with high memory demands. Using a special sparse matrix data
structure would lead to exactly the same data structure we just defined.

We use four functions to do the manipulation of the region adjacency graph
data structure. The function AddEdgeC(i, j, w) first checks if the edge is not
already part of the graph. If it is already part of the graph the function does
nothing, otherwise it adds the edge in front of the linked list G[i] with information
w. This function is only used when creating the region adjacency graph (during
the raster scan). The function AddEdge(i, j, w) just adds the edge without the
check, consequently this function is considerably faster than AddEdgeC. This
function will be used if we are sure the edge isn’t already part of the graph.
This will always be the case during the region merging because we will first
delete an edge, extract the information and then add it again with the updated
information. The function w := DelEdge(i, j) looks up the edge, removes it and
stores the information in w. The last function p := FindEdge(i, j) looks up the
edge and returns a pointer p to the edge.

3 Contour Extraction

To be able to use border based criteria to quantify the dissimilarity between
segments, we need to obtain the common border of each pair of neighboring
segments. The first step in doing this is the extraction of the inner an outer
contour of each segment. To store the border pixels we use linked lists instead of
arrays, because we can easily relink those as segments get merged. Copying the
contents of arrays would take too much time and random access is not necessary.
Before the contour extraction we first calculate several statistics for each segment
by doing one raster scan of the input image along with the segment label image
and save the statistics in an array. These statistics per segment will be used
for the region based criteria. During the same raster scan we also calculate the
bounding box of each segment.

We now apply the following steps for each segment to extract the outer con-
tour. We first limit the segment label image to the bounding box of the segment
to form a local segment label image. This will reduce the memory requirements
for the next steps. Then we enlarge the local segment label image by using pixel
replication with a factor three. This will be necessary to cope with segments of
only one pixel width during the common border extraction. Now we can easily
track the outer contour of the segment by using an eight-neighborhood clockwise
contour tracking algorithm. We store all the pixels of this contour in a linked
list, each element of the linked list contains the global row and column position
and the value of the pixel.
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B CA

Fig. 1. Special merging case

It is possible that a segment completely surrounds other segments. That seg-
ment thus has one or more inner contours. To determine the location of sur-
rounded groups of connected segments, we apply a four-neighborhood connected
components algorithm on the local segment label image. For each connected com-
ponent we then track the inner contour. We have to do this counterclockwise to
synchronize them with the outer contours in case one segment of a group of sur-
rounded connected segments would be merged with their surrounding segment.
This case is shown in Fig. 1. Here segment A and B will be merged and they
have a common neighbor C. The common border of A and C must follow the
same direction as the common border of B and C to be able to correctly link
them, the reason for doing this will be explained in Sect. 5.

4 Common Border Extraction

Now we have to calculate the common border for each neighboring segment pair
out of the inner and outer contours and store this information in the region ad-
jacency graph. We will do this directly after the contour extraction of a segment
(then we can reuse the local segment label image). We store the common border
as a linked list w.border in the information w of a directed edge. The algorithm
works as follows. We scan the linked list of the outer contour of segment i pixel
per pixel and look within a four-neighborhood for labels of neighboring segments.
For each label j we find, we add the current pixel at the end of the linked list
w.border of the corresponding directed edge (i, j) in the region adjacency graph
(by using FindEdge). We only add the pixel if it is different than the previously
added pixel (in the same edge). This is necessary because it is possible to have
the same label multiple times as neighbor. We finally repeat all these steps for
all the inner contours.

After the previous calculations each directed edge will have at least one pixel
in its linked list w.border. Otherwise the directed edge would have never been
added to the region adjacency graph in the fist place. But there are still a few
quirks that have to be solved. First we have to make sure that each linked list
w.border starts with a pixel that is also a start pixel of a border spatially (if
the border is not cyclic). We check and solve this by executing the next steps.
The start pixel of the linked list must not be eight-neighborhood connected with
the end pixel of the linked list. If this is the case we scan the linked list for
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Fig. 2. False connection case

BA

C

Fig. 3. Separate border parts

two consequent pixels that are not spatially connected. The second pixel then
becomes the new start pixel and the first pixel the new end pixel. If we do not find
two not spatially connected pixels, then the border is cyclic and then any start
and end pixel is good. This method will only work completely if we enlarged
the local segment label image by a factor three, otherwise we would get false
spatially connected borders in some special cases. In Fig. 2 such a special case
is displayed for a segment of 1x2 pixels enlarged by a factor three. The arrow
depicts the sequence of pixels in the linked list before and after the start pixel
relocation. Correct spatial connection checks would not be possible for smaller
enlargement factors.

There is still one special case for a common border we still do not handle
correctly. It is possible that a segment has two or more separate connections with
the same neighboring segment. The common border thus consists of separate
parts. An example of this special case is displayed in Fig. 3, segment A and B
both have separate border parts in common with segment C. Consequently we
need to split the previously calculated linked lists w.border into these separate
parts. We store them in w.border as an array of linked lists. The search for
the pairs of split pixels is also done with the spatial connection check. Without
this step it would not be possible to perform correct dynamic linking of these
borders.

5 Dynamic Border Linking

When two segments A and B are merged and when those two segments have a
common neighboring segment C, we have to link or join the common borders for
both sides to form the set of separate border parts corresponding with the new
situation. This is shown schematically in Fig. 4. The arrows designate the com-
mon borders. Let us assume we have two borders X and Y that have to be linked,
border X consisting of m separate border parts (linked lists) X [1] . . .X [m] and
border Y consisting of n separate border parts Y [1] . . .Y [n]. We first look for
the spatial connections between the two sets of border parts. By synchronizing
the inner and outer contour earlier, now the end of a border part of X can only
be spatially connected with the start of a border part of Y and vice versa.
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Fig. 4. Dynamic border linking, left: before, right: after
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Fig. 5. Schematic view of the dynamic linking process, left: spatial locations of the
separate border parts, right: the separate border parts of both borders and the spatial
connections (arrows) between them after the search for connections

In the first double loop over the border parts of X and Y we look for the
spatial connections from X to Y . In the array of integers ptrX we will store with
which border part of Y , a border part of X is connected. In the array of boolean
variables chkY we will store which border parts of Y are already connected with
their start to a border part of X . So if the end of X [i] is spatially connected
with the start Y [j] we set ptrX [i] := j and chkY [j] := true. The array ptrX
is initialized with −1 and the array chkY is initialized with false. Because a
border part can only be connected once from X to Y , we can eliminate all the
unnecessary spatial connection checks by checking chkY and breaking the inner
loop if a connection is found. In the second double loop we look for the spatial
connections from Y to X , this is completely analogous. We also count the amount
of connections in conncount. A schematic view of the dynamic linking process
for an exemplary case is displayed in Fig. 5.

After the search for connections, we have all the information we need to link
the the border parts to form a new set of border parts. If conncount = m + n
then each border part must be linked with another border part, consequently
the new border will be cyclic. In this case we just select a start border part and
then follow the pointers in ptrX and ptrY to the next border part until we come
back to the start border part, meanwhile we link the border parts (linked lists).
In any other case we do not have a cyclic new border, and there will be one or
more border parts with chkX [i] = false or chkY [j] = false. These border parts
are the start border parts of the new set of border parts. For each start border
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part we follow the pointers in ptrX and ptrY to the next border part until we
encounter ptrX [i] = −1 or ptrY [j] = −1, meanwhile we again link the border
parts (linked lists). We store all these new linked lists in an array to form the
correct new set of separate border parts.

6 Least Dissimilar Pair Calculation

In this section the least dissimilar segment pair calculation and the actual re-
gion merging will be explained. Before we can start with the calculation of the
first least dissimilar pair we still have to calculate the initial dissimilarities (one
dissimilarity value per criterion) for each pair of neighboring segments. We do
this by scanning the complete region adjacency graph and calculating the region
based dissimilarities for each edge (pair of neighboring segments). We use the
array of segment statistics as input for these calculations. We do the same for
the border based dissimilarities, but here we use the statistics directly calculated
out of w.border. We store all those dissimilarities in the information w of the
respective edge.

Now we can start with the calculation of the first least dissimilar pair. We first
calculate the minimal edge for each start node, i.e. the edge with the smallest
dissimilarity value according to a criterion or a combination of criteria. We will
store the values of the minima and the respective start node numbers in an
array minval and the respective end nodes numbers of the directed edges in an
array minpos. We now transform the array minval to an array that satisfies
the heap property for the values of the minima. The heap structure is a very
efficient data structure to find the next minimum as fast a possible if there are
not too many updates in the heap and if the heap is not too small. This concept
is also used in [4], but there they used it for the calculation of the minimum of
all the edges together. We only use it for the calculation of the minimum of the
minimal edges per start node (the array minval), because the minimum does
not change for most start nodes due to the local nature of the region merging.
In fact the only nodes (segments) that will have to be updated after a merge
are the two merging segments and their neighbors. For the recalculation of the
minimal edge of a start node after a merge we use a normal minimum calculation.
Using a heap structure per start node would not be beneficial, because many
dissimilarity values will change for the segments in question and because the
amount of edges per start node is mostly very limited. It would also use up a
considerable amount of additional memory.

The least dissimilar pair of segments is now given by the first element of the
heap. The start node number indicates one segment A and the end node number
B := minpos[A] indicates the other segment. We now merge the two segments A
and B to form segment D (D will take the place of A) by applying the following
steps. We first merge the statistics of the segments and update the segment
statistics array (in the position of segment A). Then we look for segments that
only have segment A and not segment B as neighbor. For all those segments we
delete the two directed edges connecting them with segment A, calculate the new
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region based dissimilarities, add the edges back to the region adjacency graph for
segment D, recalculate the minimum of the start node corresponding with the
segment and update the heap with the new minimum. We do not have to update
the border based dissimilarities because the common borders remain unchanged
for these segments. We repeat the same process for segments that only have
segment B and not segment A as neighbor. Next we look for segments that have
segment A and segment B as neighbor. For these segments we repeat the same
process and additionally we dynamically link the borders and recalculate the
border based dissimilarities. To end the region merging iteration we recalculate
the minimum of the start node corresponding with segment D (or A) and update
the heap with the new minimum. For segment B the heap is updated with ∞
to make sure it disappears. We can repeat this process until a certain amount of
segments is reached or until a certain value is reached for the next minimum.

7 Results

To give a good insight in the computational complexity of the different parts
of the algorithm, we divided the algorithm in three stages. Stage 1 includes the
calculation of the gradient magnitude and the rainfalling watershed segmenta-
tion. Stage 2 includes the creation of the region adjacency graph, the calculation
of the segments statistics, the extraction of the inner and outer contour, filling
the graph with the common borders and filling the graph with the initial region
based and border based dissimilarities. Stage 3 includes all the region merg-
ing iterations. We tested the algorithm on the well-known test image Peppers
512x512 and measured the execution times of the three different stages. The
amount of segments in the initial segmentation (used as input for the region
merging and produced by stage 1) is the most influential factor in the total exe-
cution time. Therefore we tuned the parameters of stage 1 to get more or less a
certain amount of segments. We then logarithmically lowered the amount with a
constant factor two. The region merging was stopped at 20 remaining segments
and the criterion used for the region merging was the minimal mean squared
error increase criterion [4, 5]. All the execution times of this test procedure are
shown in Table 1. The complete algorithm is implemented in C and this test
was run on an Intel Pentium 4 2.8 GHz. Our algorithm calculates several region

Table 1. Execution times for Peppers 512x512

Number of segments Execution times (in seconds)
after stage 1 Stage 1 Stage 2 Stage 3 Total
24014 0.07 1.27 1.98 3.32
12007 0.07 0.87 1.14 2.08
6001 0.10 0.62 0.46 1.18
3008 0.12 0.46 0.20 0.78
1502 0.17 0.35 0.10 0.62
750 0.17 0.29 0.05 0.51
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Fig. 6. Left: Peppers 512x512, right: the segmentation produced by our region merging
algorithm

Fig. 7. Segmentation of a spot on a non-woven textile

based and border based criteria, including the already mentioned minimal mean
squared error increase criterion, the Fischer distance [6], the average gradient on
the common border [5], . . . , also any combination of the criteria can be used
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as a criterion. A segmentation result on Peppers 512x512 is displayed Fig. 6,
here we used the minimal mean squared error increase criterion combined with
the minimum of the gradient on the common border. We also included marker
propagation in our region merging algorithm. This gives us the possibility to
use marker images to guide the segmentation or to perform region of interest
segmentation. We used the region of interest segmentation to segment the spot
in the following application. The goal of this application was to quantify the
hydrophile character of a non-woven textile by measuring the area of the spot
left by the water. Some of the segmentation results we obtained are displayed in
Fig. 7. Here we used a border based criterion that measures the median of the
gradient in a window along the common border to get extra noise robustness
without losing to much detail. This criterion exploits the fact that we know the
order of the border pixels at any time.

8 Conclusion

We have developed a fast region merging algorithm that includes all the neces-
sary functionality to use a wide range of both region based and border based
dissimilarity criteria. It uses a novel method to dynamically link the common
borders between two segments during the region merging. We showed that the
algorithm correctly handles all the special cases that can occur in the segment
topology. We gave a detailed report on the execution times of the algorithm
and showed some of the segmentation results we obtained. Future work could be
the optimization of the contour extraction algorithm and the inclusion of more
criteria and input features.
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Abstract. Due to the variable block sizes and multi-reference frame used
in the H.264/AVC standard; the motion estimation process becomes even
more computationally intensive, resulting in a very low encoding speed. To
overcome this low encoding speed, fast motion estimation algorithms such
as UMHexagonS [1] and EPZS [2] have been proposed. Since the integer-
pixel motion estimation speed has significantly decreased, the fractional
or sub-pixel motion estimation speed is no longer non-negligible. We pro-
pose a fast sub-pixel motion estimation algorithm using an adaptive rood
pattern based on the fractional motion vector of adjacent blocks and also
a simplified small diamond search. Our algorithm is able to reduce the
number of sub-pixel search points by more than 50%, while restricting the
PSNR loss to less than 0.1 dB, compared to the hierarchical fractional pixel
search.

1 Introduction

The sub-pixel motion estimation (SPME) is used to improve the accuracy of
the block matching method, where each sub-pixel interpolates its value from the
original integer pixels. In H.264/AVC, the final motion vector (MV) has quarter-
pixel accuracy by default. This allows the final MV to have a more precise range
of: (MV-0.75) ≤ MV ≤ (MV+0.75), with a ± 0.25 step-size in value. By using
SPME, the reconstructed video has a 1-2 dB improvement in quality.

In the current SPME algorithm (known as hierarchical fractional pixel search
(HFPS) [1]) provided in the JM reference software, the 8 half-pixel positions
around the integer pixel MV are initially evaluated. The sub-pixel center
position- (0,0), which corresponds to the integer MV value is also reevaluated if
Hadamard transform [3] and adaptive block-size transforms (ABT) [3] are used.
The best MV of the half-pixel position is then selected. The search then shifts
to the best half-pixel MV, which acts as the search center for refining the MV
to quarter-pixel accuracy. The 8 quarter-pixel surrounding the half-pixel MV is
evaluated and the best MV, which has quarter-pixel accuracy, is obtained. These
steps are illustrated in Fig. 1.

In the HFPS method, 8 interpolations using a 6-tap filter and 8 linear inter-
polations are performed to obtain the half-pixel values and quarter-pixel values
respectively. In addition, the 16 sub-pixel points are evaluated using the Sum of
Absolute Difference (SAD) operations. The computational complexity is further
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Fig. 1. Hierarchical fractional pixel search (HFPS)

increased if Hadamard transform and ABT is used. In this case, the SPME be-
comes more significant in the motion estimation process with the improvement
in the integer motion estimation speed.

A Center-biased Fractional Pel Search (CBFPS) algorithm [1] has been pro-
posed to reduce the computational complexity of HFPS. In CBFPS, the sub-pixel
search is treated as a normal motion search with a maximum search range of 3
and the distance between the points to be in quarter-pixel (± 0.25) unit. The
sub-pixel search begins by evaluating the predicted fractional pel MV and the
integer-pel MV, which corresponds to the (0,0) position in the sub-pixel search
window (see Fig. 1). The predicted fractional pel MV is obtained using:

frac pred mv = (pred mv −mv)%β (1)

where pred mv is the basic predicted MV used in H.264/AVC and is obtained
as the median value of the MV of the left, top, top-right adjacent blocks. mv
is the integer pel MV, % is the remainder operation and β is 4 for quarter-pel
accuracy.

The CBFPS algorithm is illustrated using Fig. 2. In CBFPS, the best pre-
dicted sub-pixel point from the predicted fractional MV and the (0,0) forms
the search center where further refinement search is performed using the mov-
ing Small Diamond Search pattern (SDSP) [4] method. In the moving SDSP
method, the small diamond pattern (Fig. 3) is placed on the search center and
its points are evaluated. The best point obtained forms the new search center
for further search using the small diamond pattern. This is iteratively done until
the minimum cost function [3] is located at the center of the pattern.
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Fig. 2. Center-biased Fractional Pel Search (CBFPS)

In this paper, we propose an extension to the CBFPS method, which have
similar quality to the CBFPS, but reduce the number of sub-pixel search points.
Our algorithm uses an adaptive rood pattern and also simplifies the moving
SDSP method.

2 Adaptive Rood Pattern

The ARPS algorithm [5] introduces an adaptive rood pattern (Fig. 4), where the
size of the rood pattern is adaptively calculated based on the motion activity of
the adjacent blocks: left, top, top-left, top-right. The rood arm size is calculated
based on the maximum distance between the MVs of the adjacent blocks, since
it can effectively represent the dynamic range of the local motion movement.
The following equation is used to calculate the rood arms size:

Rx =
1
2

(Max [MVx]−M in [MVx]) ; Ry =
1
2
(
Max
[
MVy
]−M in

[
MVy
])

(2)
where MVx and MVy are the horizontal and vertical components respectively
of the adjacent blocks’ MVs. The result from (2) is rounded-up to the nearest
integer value. For example if the calculation returns a value of 0.5, the respective
rood arm size is equals to 1.

Our fast SPME method uses the adaptive rood pattern to refine the fractional
motion search around the best predicted sub-pixel position, before using the
SDSP. However in the calculation of the rood arm size, we only use the MVs
that has a significantly close value to the current integer-pel MV. In our study,
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Fig. 3. Small Diamond pattern Fig. 4. Adaptive rood pattern

we define these significantly close MV as integer-pel MVs that has an absolute
value of less than 3 from the current MV value.

Select MV if (‖MV(x)cur - MV(x)adj‖ < 3 AND ‖MV(y)cur - MV(y)adj‖ < 3)

where MV(x)cur, MV(y)cur and MV(x)adj , MV(y)adj are the horizontal and
vertical components of the current integer-pel MV and adjacent MV respectively.

Consider the following case: the MV of one of the adjacent blocks, MV1 is =
10.25 (0.25 is the fractional-pel MV), while the current integer-pel MV is = 0.
Therefore, we would expect that the fractional-pel unit of MV1 will not be highly
correlated with the current fractional motion due to the significantly different
integer-pel MV values.

A study is done to evaluate the effectiveness of the use of the adaptive rood
pattern for the fractional motion search. A comparison is performed between the
following methods:

1. Method 1: The use of only the predicted fractional MV and integer-pel MV,
(0,0) in sub-pixel search window without any patterns.

2. Method 2: The use of the adaptive rood pattern on the best position from
Method 1.

The best fractional MV obtained from the methods is compared to the optimal
fractional MV of HFPS. Figures 6-8 shows the percentage of the correct fractional
MV, which is defined as the percentage of the best fractional MV having the
same value as the optimal fractional MV, while Table 1 shows the average sub-
pixel search points evaluated and the entropy of the difference between the best
fractional MV and the optimal fractional MV. The results shown in Figures 6-8
and Table 1 is the average of the results encoded using quantization parameter
(QP) of 28, 32, 36, 40 and each sequences is encoded using a frame-rate of 30
fps.

Figures 6-8 and Table 1 shows that with the use of the adaptive rood pat-
tern, the percentage of the correct fractional MV improves by 1-10%, while the
entropy difference between the best fractional MV obtained and the optimal
fractional MV is reduced by 3-13%. As seen in the results for the high-motion
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sequences such as Tempete and Mobile, the increase in the percentage of the cor-
rect fractional MV by using the adaptive rood pattern is quite significant, with
an improvement of 10%. At the same time, the increase in the number of search
points from using the rood pattern is not too high, an addition of < 1.7 points.
Therefore, it is advantageous to use the adaptive rood pattern in improving the
fractional motion search.

3 Simplified Small Diamond Search

The use of the rood pattern in Sect. 2 has improve the accuracy of the fractional
motion search, as indicated by the increase in the correct fractional MV obtained
and the decrease in the entropy difference. Hence, it is very probable that the
best fractional MV obtained is close to the optimal fractional MV.

In this case, we propose that the small diamond pattern (SDP) is only used
once for the refinement search. The SDP is placed onto the best sub-pixel po-
sition obtained from the rood pattern search and its points are evaluated. If
the minimum cost function is located at the center of the pattern, the search is
terminated. Otherwise, 2 extra corner points corresponding to the edge with the
minimum cost function is evaluated. This is illustrated in Fig. 5.

Similar to the study performed for Sect. 2, we also evaluate the effectiveness
of the proposed simplified small diamond search for the sub-pixel motion esti-
mation. The comparison done is performed between the following methods on
the use of different refinement patterns:

1. Method 3: Simplified Small Diamond Search.
2. Method 4: Moving Small Diamond Search pattern.

The result of this study is shown in Figs. 6-8 and Table 1. As seen from Figs.
6-8, the use of the proposed simplified Small Diamond Search is able to signif-
icantly improve the overall percentage of the correct fractional MV by 7-25%.
This is especially prominent for the high-motion sequences, where the improve-
ment of the correct fractional MV is ≥ 20%. The entropy difference is simi-
larly decreased by a significant amount of 30-60%. This improvement comes at
the modest expense of an increase of fractional search points by only 3.7-4.2
points.

By using the more computational intensive moving SDSP, the increase in
percentage of correct fractional MV, compared to our proposed simplified Small
Diamond Search is 1-10%, while the entropy difference is further decreased by
20-40%. However, this comes at the expense of an increase in fractional search
points by 0.5-1.7 points. Therefore, if computational speed is not of the main
concern, then the use of the moving SDSP can be considered.

From Figs 6-8, it is observed that the use of our proposed simplified Small Dia-
mond Search already returns quite a satisfactory result. In most cases, the number
of correct fractional MV obtained is > 75%. In fact for the low-motion sequences,
the number of correct fractional MV obtained is ≥ 94%. This shows that the use
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Fig. 5. Simplified Small Diamond Search for sub-pixel motion estimation
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Fig. 6. Percentage of correct fractional MV obtained from different implementations
for low-motion sequences

of the simplified Small Diamond Search is already sufficient to obtain good re-
sults, and the advantage of using the moving SDSP is only marginal. Therefore,
we firmly propose the simplified Small Diamond Search for use in the SPME.

4 Results

Our experiments were carried out using the H.264/AVC reference software [6],
where the H.264/AVC main profile is used, and the following encoding parameters
are switched on: Hadamard transform, RD Optimization and CABAC encoding.
We use the UMHexagonS algorithm for the integer-pel motion estimation and the
default quarter-pel accuracy is used for the fractional motion search. The results
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Fig. 7. Percentage of correct fractional MV obtained from different implementations
for medium-motion sequences
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Table 1. Entropy of difference between best fractional MV and optimal MV and
average fractional search points for different implementations
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Table 2. Comparison of the fast sub-pixel algorithms with respect to the hierarchical
fractional-pel search method (HFPS)
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are presented for the encoding frame-rates of 30 frames per second (fps) and at
different quantization accuracy (28, 32, 36, 40).

We also make use of several measures to judge and compare the performance
of our algorithm.

1. δPSNR – average increase in Peak Signal-to-Noise ratio per frame, compared
to the HFPS method. A negative value shows a loss of PSNR, compared to
the HFPS.

2. Ave. Pts – The average number of fractional search points used for each
SPME. The HFPS method uses a fixed 17 fractional search points.

3. δBitrate – Percentage of savings in total number of bits needed to encode
the sequence, compared to HFPS. A positive value shows an increase in the
bits needed for the encoding.

The result presented for each sequence is the average of the results obtained
for the different quantization accuracy. The sequences (Hall, Mother, Container,
Coastguard) is in QCIF format, while the rest of the sequences are in CIF format.
The search range used for the motion estimation is ± 32 and ± 16 for the CIF
and QCIF sequences respectively. “No.ref” represents the number of reference
frames used for the motion estimation. Our algorithm is compared to the CBFPS
algorithm and the results are shown in Table 2.

As seen in Table 2, the decrease in PSNR when our proposed algorithm is
used is < 0.1 dB, while the encoding bitrate only increase marginally by <
1%, compared to the HFPS method. This corresponds to an overall decrease of
PSNR that is limited to 0.1 dB for all bitrates, compared to HFPS. Therefore,
our proposed algorithm does not affect the quality of the motion estimation
at all. On the other hand, the reduction in fractional search points is much
more significant, where there is a reduction of > 58% in the number of points
used, compared to HFPS. This corresponds to an overall savings of 20% in
computational time.

Comparing our proposed algorithm to the CBFPS, the quality and encoding
bitrate is quite similar. However, our algorithm has the advantage of using less
number of fractional search points. Our algorithm uses 0.15-0.8 less search points,
compared to CBFPS.

5 Conclusion

In this paper, we propose the use of an adaptive rood pattern and a simplified
Small Diamond Search for the sub-pixel motion estimation. The size of the rood
pattern is adaptively calculated based on the fractional motion information from
adjacent blocks and it is used to obtain a more accurate search center for the re-
finement search using the simplified Small Diamond Search. The simplified Small
Diamond Search is sufficient in obtaining the best fractional MV while retaining
a modest number of search points. Our algorithm is able to reduce the number
of fractional search points by > 50%, while restricting the PSNR loss to < 0.1
dB, compared to the Hierarchical Fractional-Pel Search (HFPS). The reduction
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of these fractional search points correspond to a reduction of > 20% in computa-
tional time. Furthermore, our algorithm has similar quality to the Center-Biased
Fractional-Pel Search algorithm, but uses less number of search points.
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Abstract. The H.264/AVC standard uses new coding tools to improve coding 
efficiency. Among the tools, motion estimation using smaller block sizes leads 
to higher correlation between the motion vectors of neighboring blocks. This 
characteristic of H.264/AVC is useful for motion vector recovery to conceal a 
lost macroblock. In this paper, we propose a motion vector recovery method 
based on optical flow in H.264/AVC video coding. We first determine the 
optical flow region to alleviate the complexity, and choose an initial value of 
flow velocity using neighboring motion vectors of a lost macroblock. The 
proposed method recovers the motion vectors of 4x4 blocks included in a lost 
macroblock using the weighted average of obtained flow velocities. Simulation 
results show that our proposed method gives higher objective and subjective 
visual qualities than conventional approaches. 

1   Introduction 

When video streams are transmitted through a noisy channel, channel noise or 
congestion often leads to packet loss. This can drastically degrade the visual quality 
of the decoded sequence. As a way to solve this problem, error concealment is very 
useful, since the decoded frame which has lost blocks still includes spatial and 
temporal redundancy. In temporal error concealment, correlation between the current 
decoded frame and previous decoded frames is exploited. A damaged macroblock of 
the current decoded frame is replaced by a macroblock in the reference frame using 
the estimated motion vector of the lost macroblock.  

Among conventional approaches for temporal error concealment, the simplest way 
is a temporal replacement (TR) method which conceals a lost macroblock with a 
macroblock located at the same position in a previous frame. A TR method produces 
reasonably good visual qualities in stationary areas, but significant degradations in 
dynamic areas.  

A boundary matching algorithm (BMA) is one of the most popular methods for 
motion vector recovery. It exploits the fact that adjacent pixels in a video frame 
exhibit high spatial correlation. The reference software of H.264/AVC (we called it 
just H.264) also uses a temporal error concealment method based on BMA. 

Several approaches to temporal error concealment have been proposed to enhance 
performance. Chen et al. proposed the so-called refined boundary matching algorithm 
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(RBMA), which is based on the boundary matching algorithm [1]. To better satisfy 
the criterion of minimizing the boundary differences between a lost macroblock and a 
replaced macroblock in the reference, they use different motion vectors for different 
regions of a lost macroblock. Zheng et al. proposed a temporal error concealment 
method for H.264 using the Lagrange interpolation formula to constitute a polynomial 
that describes the motion tendency of motion vectors [2]. It exploits the fact that there 
is higher correlation between the motion vectors of adjacent blocks in H.264. Suh et 
al. proposed the motion vector recovery method using optical flow in MPEG2 [3]. To 
alleviate the complexity, they determine the optical flow region, and recover the 
motion vector of a 16x16 block by using the average value of flow velocity vectors of 
neighboring macroblocks. Xu et al. proposed a set of error concealment schemes to 
improve the error resilience ability for video consumer applications [4]. Their 
methods include refined motion compensated temporal concealment with weighted 
boundary matching criteria, an algorithm of refined directional weighted spatial 
interpolation, and an adaptive spatial/temporal estimation method with low 
complexity to combine the above algorithms. 

In this paper, we propose a motion vector recovery method for temporal error 
concealment based on optical flow in H.264. Since optical flow fields are very similar 
to true motion and can be used to recover two-dimensional motion information, we 
first compute flow velocity vectors by Horn and Schunck’s method [5], and then 
recover the motion vectors of 4x4 blocks in a lost macroblock using the weighted 
average of flow velocities. 

2   Horn and Schunck’s Method 

Optical flow is referred to as the two dimensional distribution of apparent velocities 
of intensity pattern movements in an image plane. In other words, an optical flow 
field consists of a dense velocity field with one velocity vector for each pixel in the 
image plane. If we know the time interval between two consecutive images, which is 
usually the case, then velocity vectors and displacement vectors can be converted 
from one to another. In this sense, optical flow is one of the techniques used for error 
concealment. 

2.1   Constraints for Determining Optical Flow 

To find optical flow, Horn and Schunck use two constraints. They are the brightness 
invariant constraint and the smoothness constraint. 

Brightness Invariance Constraint. Let the image brightness at the point (x,y) in the 
image plane at time t be denoted by E(x(t),y(t),t). If the image brightness is invariant 
with respect to the time interval from t to t+ t, we then have 

)),(),(()),(),(( ttttyttxEttytxE Δ+Δ+Δ+=  (1) 

Equation (1) is the brightness invariance equation; strictly speaking, it is the 
brightness time-invariance equation. The expansion of the right-hand side of Eq. (1) 
in the Taylor series at time t leads to 
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where  contains second and higher order terms, and u and v are the horizontal and 
vertical components of an optical flow velocity, respectively. 

After dividing both sides of the equation by t and evaluating the limit as t 0, 
we have a single linear equation in the two unknown parameters: u and v. 

0=++ tyx EvEuE  (3) 

where Ex, Ey and Et are the partial derivatives of image brightness with respect to x, y 
and t, respectively.  

Figure 1 depicts the brightness invariance constraint. 
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Fig. 1. Brightness invariance constraint 

Smoothness Constraint. Equation (3) reveals that we have two unknowns: u and v, 
but only one equation to relate them. It indicates that there is no way to compute 
optical flow without an additional constraint. 

The smoothness constraint means flow velocity vectors vary from one to another 
smoothly, particularly for points belonging to the same object. Mathematically, the 
smoothness constraint is imposed in optical flow determination by minimizing the 
square of the Laplacians of the x and y components of flow. 
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2.2   Approximation 

For determining optical flow using two constraints, we must compute the partial 
derivatives (Ex, Ey, Et in Eq. (3)) and also the Laplacian of the flow velocities ( 2u, 

2v in Eq. (4)). Horn and Schunck estimate Ex, Ey and Et at a point in the center of a 
cube formed by eight measurements, as shown in Fig. 2. 
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Fig. 2. The cube to estimate the three partial derivatives 

Each of the estimates is the average of four first differences taken over adjacent 
measurements in the cube. 
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The average can remove the noise effect, thus making the obtained partial 
derivatives less sensitive to various noises.  

The Laplacians of u and v are approximated by 
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where u  and v  indicate the local average with respect to the x and y components of 
flow vectors, respectively, and are estimated as follows: 
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2.3   Determination of Optical Flow 

To determine optical flow, the Horn and Schunck method minimizes a weighted sum 
of the error in two constraints. 

∇+∇+++ dxdyvuEvEuE tyx ))()(( 2222 α  (8) 

In Eq. (8), 2α  plays a significant role only for areas where the brightness gradient 
is small, preventing haphazard adjustments to the estimated flow velocity occasioned 
by noise in the estimated derivatives. 

Using the calculus of variations and the approximation of the Laplacians shown in 
Eq. (6), the minimization of Eq. (8) requires solving the two equations in Eq. (9) 
simultaneously. 
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Finally, as described in Eq. (10), optical flow can be computed iteratively from the 
estimated derivatives and the average of the previous velocity estimates using the 
Gauss-Seidel method [6]. In this formula, n is the iteration number. 
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3   Proposed Algorithm 

3.1   Determining the Optical Flow Region (OFR) and Choosing  
the Initial Value of the Flow Velocity Vector 

Before evaluating the flow velocity vector, we first determine optical flow regions 
(OFR) which are located at the top, bottom, left and right positions of a lost 
macroblock. Figure 3 depicts four OFRs used in our method. 

OFRB

OFRROFRL

OFRT

Lost Macroblock

OFR Optical Flow Region
 

Fig. 3. Optical flow region used in our proposed method 
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Choosing a more accurate initial value is very important to a fast convergence. 
Since the H.264 standard estimates the motion vector for finer block size, H.264 has 
higher correlation between motion vectors of adjacent blocks than previous standards. 
This characteristic of H.264 enables us to choose a good initial value of a flow 
velocity vector using motion vectors adjacent to a lost macroblock. 

In our algorithm, four OFRs have different initial values. We use the average of 
motion vectors of four 4x4 blocks adjacent to a lost macroblock as an initial value  
for each OFR. Figure 4 indicates the motion vectors for choosing the initial value  
of each velocity vector. Consequently, we can obtain initial values for all OFRs 
using Eq. (11). 
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Fig. 4. Motion vectors used for choosing the initial value of the velocity vector 

3.2   Motion Vector Recovery 

To obtain optical flow of each OFR, we use the iterative scheme described in Eq. 
(10). After calculation of flow vectors from four OFRs, we take the flow vectors at  
 

one-pixel wide outer boundaries and use them to obtain recovery motion vectors of 
4x4 blocks. Figure 5 depicts positions of velocity vectors used for motion vector 
recovery and recovery ordering. In this figure, (u,v)i

T,L,B,R indicates the average 
velocity vector of four boundary pixels. 

For blocks 0 to 3, the process of motion vector recovery is described in Fig. 6. 
As shown in Fig. 6, the top and left flow velocities are used for motion vector 
recovery in blocks 0 to 3. In the case of block 0, all weights are equal to 1. In the 
case of blocks 1 and 2, the different weights are assigned according to distance. 
The motion vector of block 3 is recovered by using the median vector of blocks 0 
to 2.  
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Fig. 5. Velocity vectors used for motion vector recovery and recovery ordering 
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Fig. 6. Motion vector recovery of blocks 0 to 3 ((•) weight) 

This process can be formulized as Eq. (12). 
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The same process is used for the other blocks (blocks 4 to 15). 
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Fig. 7. Comparison of objective video qualities when there is block error ratio of 10% 
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(a)                                                             (b) 

   
(c)                                                             (d) 

Fig. 8. Comparison of subjective video qualities of the foreman sequence (a) temporal 
replacement (b) H.264 reference implementation [7] (c) Zheng’s method [2] (d) the proposed 
method 

4   Simulation Results 

To evaluate the proposed algorithm, we used a public reference encoder, JVT 
Model (JM) v.10.1 [7]. Four standard video sequences in QCIF (176×144) format 
were analyzed. These included Coastguard, Foreman, Mobile, and Table Tennis. 
The first 100 frames of each sequence were used. We compared the simulation 
results of the proposed algorithm with those of the temporal replacement, the 
H.264 reference implementation, and Zheng’s method [2]. In our simulation, n, 
iteration times, was limited to be less than 32 in Eq. (10) and w in Eq. (12) was set 
to 2. 

Figures 7 and 8 illustrate objective and subjective qualities of the proposed  
method compared with conventional approaches. As shown in these results, the 
proposed method gives better visual qualities than conventional approaches. 
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5   Conclusions 

For temporal error concealment in H.264 we propose the motion vector recovery 
technique based on optical flow. We first determine four OFRs, estimate the initial 
value of each OFR from the motion vectors of neighboring blocks adjacent to a lost 
macroblock, and calculate flow vectors from the initial values. After that, the 
proposed method recovers the motion vectors of 4x4 blocks in a lost macroblock by 
weighted averaging of obtained flow vectors. Simulation results show that the 
proposed method outperforms conventional methods in terms of subjective and 
objective video qualities. 
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Abstract. It is well known that motion detection using single frame
differencing, while computationally much simpler than other techniques,
is more liable to generate large areas of false foregrounds known as ghosts.
In order to overcome this problem the authors propose a method based on
signed differencing and connectivity analysis. The proposal is suitable to
applications which cannot afford the un-avoidable errors of background
modeling or the limitations of 3-frames preprocessing.

1 Introduction

Image preprocessing is the first step in many image processing applications such
as object localization and tracking [1].

One important preprocessing task is motion detection which is a particularly
critical problem since it represents the basic step of information extraction for
many complex applications like traffic monitoring [2], video-surveillance [3] and
others.

Our aim is to propose a general purpose method for detecting unknown mo-
ving objects in a completely unknown environment by satisfying both real-time
and low-cost requirements. The only assumption we make is that the unknown
background is not in motion.

In the absence of any a priori knowledge about the moving object and about
environment the most widely used approaches are background subtraction (e.g.
[4], [5], [6], [7],[8], [9]) and frame differencing (e.g. [10], [11]).

Background subtraction bases the detection of moving objects on the diffe-
rence between the current frame and a reference frame, often called background
image. This implies that the background image has to be reliable, i.e. it has to
be an image of the scene without moving objects. This turns into the need to
compute and update a background model, which could account for changes in
light conditions or small movements of the scene. A lot of methods have been
proposed in the literature on the subject, but no one is reliable in all condition.

If a perfect background modeling would be available, then no other approach
could compete with background subtraction.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 263–274, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Left: Image at time (t − 1), It−1. Right: Image at time t, It.

For instance the Median Filter approach, as proposed in [12], [13], [2], [14],
computes each pixel of the background image as the average of the corresponding
pixels in the n previous images basing on the assumption that a pixel is part
of the background image for at least n

2 frames, but this assumption is valid
only “on average” and not always. Mixture of Gaussians [8], is computationally
intensive and its parameters require careful tuning. Moreover, it is very sensitive
to sudden changes after a period of stationary conditions [4].

Frame differencing instead uses differences between consecutive images to
detect the motion in the actual frame. These approaches present the advantage
of using a very up-to-date image of the scene as background. Unfortunately, this
image includes the moving objects as well and therefore frame differencing is
liable to generate large areas of false foreground, known as ghosts. The advantage
of frame differencing is that it requires much lower computational effort and
avoids errors typically due to the use of a particular background model.

Two kinds of Frame Differencing methods exist in literature: Single Difference
and Double Difference. Single Difference uses the video frame at time (t− 1) as
the background image for the frame at time t.

Let It(x, y) be the pixel intensity at the spatial location (x, y) and T a given
threshold parameter, then pixels detecting motion are given by:

SDifft(x, y) =
{ |It(x, y)− I(t−1)(x, y)| if |It(x, y) − I(t−1)(x, y)| > T

0 otherwise
(1)

and the corresponding Motion Image, IMt(x, y) can be defined as follows:

IMt(x, y) =
{

1 if SDifft > 0
0 otherwise. (2)

Notice that IMt(x, y) includes both the moving objects, i.e. the foreground,
and their ghosts (see Fig. 2 left).

The ghost problem is known to be solvable, with some disadvantages, by using
the Double Difference method [10], which uses I(t−2) as the background image
for the frame at time (t − 1), and the latter as the background image for the
frame at time t. In this case the motion is detected in image DDifft given by:
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Fig. 2. Left: SDiff: both foreground pixels and ghost pixels are set to 1 in the Motion
Image shown. Right: SSDiff: ghost and foreground pixels have different intensity.

Fig. 3. Left: Image at time t + 1, I(t+1). Right: DDiff:the ghost problem is solved. The
image represents the forbidden region.

DDiff(x, y) = IM(t−1)(x, y) AND IMt(x, y).

As mentioned above, this method solves the ghost problem of the Single Dif-
ference (see Fig. 3 right), but introduces a minor and a major drawback:

1. The minor drawback is the introduction of one frame delay in the detection
of moving objects, i.e. at time t we detect what was moving at time (t− 1);

2. As in any frame difference based approach, a moving object A spans part of
the image space during time: this area is forbidden to other moving objects
because the detection of other moving objects in this area would be mixed
up with the detection of A. The major drawback is the increasing of the
forbidden area with the time interval [(t− 2), t], given the frame rate. Note
that its weightless is also counter-proportional to the speed of the target.
In order to handle a higher speed, one could either increase the frame rate,
which could be costly, or take the background difference route, which requires
background modeling.
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Our proposal tries to circumvent the ghost problem for the Single Difference
approach, and could be of interest in many applications which cannot afford the
limitations of Double Differencing or the errors introduced by the background
modeling methods or their computational cost.

The paper is organized as follows: in section (2) we present our approach, in
section (3) we present experimental evidence of the effectiveness of our proposal.
In section (4) conclusions and future works are presented.

2 Our Approach

The method we propose is based on the difference between consecutive frames.
Usually, such difference is calculated as the absolute value of the difference in
the intensity, as in (1). In SDiff motion is detected in two areas, one due to
the image position the object had at time (t − 1) (ghost), and the other due to
the object position in the current frame (foreground). The two instances have
similar image intensity in SDiff , and the possibility of distinguish between the
two is lost.

In Fig. (2), another relevant area, called Foreground Aperture, is emphasized.
It is formed by the overlapping of the target positions in I(t−1) and It and its
weightless depends by the motion of the target in the image with respect to the
frame rate. The foreground aperture (F.A.) area is characterized by pixels where
the intensity is close to zero, due to the effect of the subtraction of pixels more
or less at the same intensity level: in this area no motion can be detected.

We propose to use the Signed Single Difference and to separate pixels of po-
sitive intensity from pixels of negative intensity: this separation will be used to
discriminate the foreground from the ghost, as shown in Fig. (2) right. In order
to discriminate between the two we propose a heuristic whose generality, we
claim, is quite high.

Given two consecutive frames, I(t−1) and It (Fig. 1, left and right) we consider
the Signed Single Difference , SSDifft(x, y):

SSDifft(x, y) =
{

(It(x, y)− I(t−1)(x, y)) if |It(x, y)− I(t−1)(x, y)| > T
0 otherwise

(3)

2.1 The Heuristic

We are now left with some ghost and some foreground areas, which we want to
discriminate. In Fig. 4 left a simple example with one foreground and one ghost
area is shown.

The basic idea is that around both the foreground and ghost area, as detected
in the SSDifft(x, y) image, we have background in It(x, y) (see Fig. 4 right).
The heuristic can base on the different behavior/mode of the image intensity
pattern inside and outside the corresponding areas in It(x, y). In other words, if
some local descriptor changes significantly, when computed inside the supposed-
foreground and in some neighborhood of it, in the current image It(x, y), we can
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Fig. 4. Left: The neighborhood for the heuristic are defined in the SSDiff image.
Right: The descriptor for the neighborhood are evaluated in the current image, It.

deduce that the supposed-foreground is indeed foreground. Conversely, doing the
same for the ghost area would turn into no significant change for the descriptor.

We propose to segment SSDifft in regions, by applying an usual connectivity
analysis; this allows the definition of the areas where to apply the heuristic. We
can then work on a neighborhood of the blobs (Bi) in the current image It(x, y).
The algorithm we propose is therefore built of the following steps:

1. SSDifft is divided in two images containing the pixels of positive and ne-
gative value respectively.

2. The two images are segmented and several blobs (Bi) are identified; note
that, the sign of the single difference becomes useful here as it allows the
discrimination into different blobs.

3. Compute the descriptor value for each Bi from It.
4. Compute the descriptor value for the neighborhood of each Bi, denoted as

n(Bi), from It.
5. classify Bi as foreground if descriptor(Bi) is significantly different from

descriptor(n(Bi)); classify Bi as ghost otherwise.

Concerning the descriptors, which can be used to discriminate the nature
(foreground or background/ghost) of the different Bi, there are many possible
choices, some of which are mentioned below:

1. the average light intensity,
2. the average standard deviation of the light intensity,
3. some texture descriptor, as a parameter of some statistical modeling in spa-

tial domain

We can choose one of this descriptor or a weighted sum of them. We are not
interested here in the specific pros and cons of each of them, as we are presenting
the approach.

Our claim is that the value of a suitable descriptor takes significantly different
values when computed in Bi, with respect to the value taken in n(Bi), if Bi is part
of the foreground; we recall that all values are computed in the current image, It
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Fig. 5. Left: The image at time t−1. Right: The image at time t in a textured-toy-world.

Fig. 6. The SSDiff, the textured background make the sign of blobs of the same area
different

but the Bi (and the n(Bi) as well) are detected in SSDifft. Conversely, if the
descriptor value does not change significantly, when moving from Bi to n(Bi) it
means we are dealing with a background area.

We now move from the toy world (flat image intensity) used to introduce
the approach, to more realistic textured images. Texture of the target is not a
problem because what would happen is that the target would split into blobs
of different sign. This is not a problem because each of the blob would then be
classified as foreground.

If the background is textured, both the target and ghost split into blobs of
different sign. We need to consider the scale of the texture patches.

If the texture patches are much smaller then the foreground ones, there is
no problem, provided a suitable descriptor is chosen. If the texture patches are
comparable in size with the foreground ones, we can only report, for some of
the blobs of the target and of the ghost, the compatibility with both being
foreground and being background. This is not a failure, but a situation in which
we have lack of information. The amount of blobs for which the ambiguity will
not be resolved depends on the shape of the target and the texture patches.
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Fig. 7. Left: The neighborhood for the heuristic are defined in the two images, positive
pixels. Right: negative pixels.

Fig. 8. Left: The neighborhood for the heuristic are used in the current image It,
positive pixels. Right: negative pixels, even in this case it is possible to correctly detect
the ghost and the foreground area. With “+” and “-” the positive and negative areas
are shown.

Given two consecutive frames (Fig. 5), we consider the Signed Single Differ-
ence (Fig. 6) and we separate it into images depending on the sign of the value
of its pixels (Fig. 7). We consider the neighborhood in the frame at time t (Fig.
8): the heuristic discriminates between ghost and foreground even in presence of
Bi of different sign.

The complexity of this method is strictly dependent on the number of blobs
in the image. Processing a scene as in Fig. 9 a code that needs to be optimized
takes 60 ms.

3 Experiments

We present some illustrative examples, taken from our main application domain,
which is traffic monitoring. The first one deals with many moving objects. Fig.
(9) shows a typical indoor scenario with i.e. three cars in a tunnel.
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Fig. 9. Left: Image at time t, It. Right: Image at time (t − 1), It−1.

Fig. 10. Left: Absolute Single Difference. Right: Signed Single Difference.

By applying Single Difference we obtain the image shown in Fig. (10) on
the left, where one can notice that point A has the same intensity of point B
(grey level 160), even though they belong to two different areas (foreground and
ghost).

Instead, the result of applying Signed Single Difference is shown in Fig. (10) on
the right, where the foreground and the ghost are clearly more distinguishable.
This is even more evident in Fig. (11) left and right, where the pixels of positive
and negative value are shown respectively.

In order to discriminate between ghost and foreground we apply the proposed
heuristic. We first perform the connectivity analysis [15] by the usual 8-con
algorithm. Blobs having an area less than a given threshold, 10 pixels in this
experiment, have been thrown away. The overall result is shown on the left of
Fig. (12).

We come now to the definition of the neighborhood of a blob. Many alterna-
tives are available and we are not interested, as we are presenting the approach,
in the most efficient one. In these experiments we considered the neighborhood
as the area covered by widening the blob bounding box by 5 pixels. In Fig. (12)
on the right we show the blobs altogether with their bounding boxes. In Fig.
(13), on the left, we show the neighborhood of the detected blobs used, super-
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Fig. 11. Left: Image of the positive pixels only. Right: Image of the negative pixels
only.

Fig. 12. Left: Each blob is depicted in a different level of grey. Right: Blobs and their
bounding boxes; the numbers are the blob labels.

imposed to the current image. On the right, we show the blobs which have been
classified as foreground.

In these experiments the descriptor we adopted is the simple average image
intensity. We are therefore interested in the descriptor values inside each blob
and outside its bounding box (the area 5 pixels around it). In Table (1) we
report the differences that this descriptor takes inside and outside the blobs.
Column 2 reports the labels given by the connectivity analysis to each blob,
while in column 1, one can find the computed differences, in an increasing order.
The ghosts are identified by choosing the first four values of differences, i.e. the
smallest ones. The remaining four are classified as foreground.

We present hereafter other examples of significant situations, whose appro-
priate handling is obviously required. We present video footage for a fast target
together with a large slow target in indoor, and for many overlapping targets in
outdoor. For each situation we show It, I(t−1) and the blobs classified as fore-
ground. As for the experiment described above, we used the (simple) average
image intensity as descriptor and the area 5 pixels around the bounding box
of each blob as neighborhood. Notice in the first example, Fig. (14), that the
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Fig. 13. Left: Image at time t showing the bounding boxes and the considered neigh-
borhood. Right: Blobs classified as foreground.

Table 1. Differences of the average luminance between inside the blobs and outside
their bounding box

differences labels
0.0669 125
18.0231 75
18.5301 250
21.6420 445
81.6571 181
83.6615 386
98.2408 319
102.1331 406

Fig. 14. Left: Image at time t, It. Center: Background, I(t−1). Right: Blobs classified
as foreground.

preprocessing detects both targets. In the second example, Fig. (15), all targets
are detected, apart the fifth, which is very far and has nearly no image motion.
The interesting point is that the two nearest targets have ghost and foreground
mixed up, but still the heuristic, even with this simple selection of neighborhood
and descriptor, is capable to distinguish them.
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Fig. 15. Left: Image at time t, It. Center: Background, I(t−1). Right: Blobs classified
as foreground.

4 Conclusions

We presented a proposal for overcoming the ghost problem in Single Difference
preprocessing. The proposal is based on signed difference and connectivity analy-
sis, and is suitable to applications which cannot afford the limitations of 3-frames
preprocessing, like the double difference, or the errors of reliable background
modeling or its computational cost. The results obtained with experimentation
is promising. Further investigations are ongoing about the applicability of similar
ideas to the detection of the foreground aperture area.
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Abstract. A moving object in a video sequence is removed and corre-
sponding background is completed by using a novel global feature regis-
tration technique. To find a 2D homography between two adjacent video
frames, we track background and foreground features, separately. After
estimating the homography, we extract and remove the moving object
in every frame. To fill the background of the removed object accurately,
we introduce a global feature registration technique. The technique it-
eratively reduces and distributes the accumulation errors associated to
global video registration. Experimental results show that the proposed
technique yields seamless background sequences.

1 Introduction

Removing moving objects in a video sequence is one of the digital post-processing
techniques. Some common digital post-processing techniques include composi-
tion of graphic objects, removal of unnecessary objects, and insertion of real
or virtual objects to a video sequence. Until today, most of these tasks are
done by user intervention using specially designed graphics software. Thus post-
processing is a very time-consuming and difficult job. Recently, several investiga-
tions of automatic post-processing are reported which employ computer graphics
and computer vision techniques.

This paper presents a computer vision technique of removing moving objects
in a video sequence. We track, remove and replace a moving foreground object
(hereafter object) with its corresponding background objects (hereafter back-
ground). After tracking the object using a feature-based technique, we obtain
the background of the object from one of the other frames by accurately esti-
mating the 2D homographic transformation. In Figure 1(a) a moving object is
shown in one of the video frames. The object is removed and its empty area is
filled with the corresponding background as shown in Figure 1(b).

Recent investigations of object removal fall in two categories, one is filling
the background of static objects and the other is of moving objects. Here are
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Fig. 1. Object removal example. Left: Original frame. Right: After object removal.

some literature reviews of moving object removal. A. Agarwala et al. [AG] semi-
automatically extract and track the boundary features of a moving object. They
define keyframes to refine the boundary of the object and generate a new video
sequence. Y. Zhang et al. [ZH] separate foreground and background objects in
multiple layers to extract a moving foreground object. This layered approach
removes a foreground object whether it moves or not. Y. Sugaya and K. Kanatani
[SU] assume a feature point is an affine transformation of a 3D feature, then
generate a trajectory vector by stacking 2D coordinates of tracked features from
all frames. By affine space fitting, they remove outliers, extract and remove a
moving object.

Y. Wexler et al. [WE] addresses a problem of completing a moving object
which is partly occluded in a video sequence. They use a stationary camera
to obtain the video frame. They complete the occluded object areas by filling
empty holes with space-time patches which have spatio-temporal consistency.
P. Sand and S. Telle [SA] use two video sequences to match features frame by
frame. They register two video sequences and apply special effects such as object
removal, object insertion, and rotoscopy. K. Bhat [BH] extracts a moving object
from a video sequence by making a video mosaic of a scene. A. Yamashita et al.
[YA] remove noises in a dynamic scene. They change the direction of a pan/tile
camera to identify and remove the noises. Their approach can be applied to only
adherent noises close to a video camera.

To obtain a new seamless background video sequence, it is necessary to es-
timate the 2D homographies of all video frames. If the 2D homographies of all
video frames are very accurate, we can obtain the seamless video by filling the re-
moved object areas using the matching background. Therefore, finding accurate
transformations of all video frames is very important in object removal. In this
paper, object removal is done based on a global feature registration technique.
We track object and background features frame by frame. Then 2D homogra-
phies of every pair of frames are estimated. The RANSAC technique is used to
remove erroneous outliers in object and background features. Empty object areas
are finally completed by their background images. Figure 2 shows the overview
of the proposed technique.
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Fig. 2. Overview of the proposed object removal technique

2 Background and Object Tracking

To track a moving object with respect to a moving background, we need to know
the motion of the background. Because both object and background are moving,
we need to separate the motion of two subjects. In this paper, we track the
corner features of object and background separately. Background features are
then used to estimate the 2D homographies between video frames, and object
features are used to estimate the motion of the object.

2.1 Background Tracking

Suppose we obtain a video sequence of a moving object using a rotating video
camera. In the video sequence, we know that both background and foreground
objects are moving but in different motion. In the background, we assume there
is enough features by which we can track using an object tracking technique.
Let fB and fO be the sets of background and object features. To obtain fB
and fO, we extract and track corner features frame by frame using the KLT
(Kanade-Lucas-Tomasi) tracker.

To separate the background and foreground objects, we define two tracking
windows, WO and WS . WO is the object window and WS is the search window
and we assume WO is always inside WS . In the first frame, the object window is
defined manually by a human intervention. We modified the KLT algorithm to
find background corners only in WS . A binary image mask is used to modify the
KLT algorithm to find and track corner features only in WS . After all features
are extracted, we regard those in WS as elements of fB and those in WO as
elements of fO. However, it needs to determine if a feature in WO is an object or
a background feature. If the feature is determined as a background one, we move
it to fB. Figure 3 shows two tracking windows, the green (light gray) rectangle is
the background window and the red (dark gray) rectangle is the object window.
In each window, corner features are shown as dot clouds.
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Fig. 3. Object and background tracking windows

2.2 2D Perspective Transformation

Once we find both object and background features between two adjacent frames,
i.e. we estimate the 2D perspective transformation (homography) between the
two frames. Because the KLT tracker yields some erroneous results, we use the
RANSAC algorithm to remove outliers. We assume that the camera is rotating
along the vertical axis passing the optical center of the lens (but not exactly) and
consider 2D homography as the estimation model of the RANSAC algorithm.

Suppose there are two images g(t) and g(t− 1) which are obtained at time t
and t − 1, respectively. If the coordinates of two matching points between two
images are (x, y) and (x′, y′), the 2D perspective transformation matrix M is
defined as ⎛⎝x′

y′

1

⎞⎠ =

⎛⎝ u
v
w

⎞⎠ = M

⎛⎝x
y
1

⎞⎠ =

⎛⎝m00 m01 m02

m10 m11 m12

m20 m21 m22

⎞⎠⎛⎝x
y
1

⎞⎠ (1)

By setting m22 = 1, the above equation is rewritten as

x′ =
m00x + m01y + m02

m20x + m21y + 1
(2)

y′ =
m10x + m11y + m12

m20x + m21y + 1
(3)

Because the number of matching features is usually more than the minimum
requirement for computing the matrix, we use the linear least squares method
to solve the over-determined equation. We estimate the homography so that the
registration error of more than 90% of features is within 0.5 pixel.

2.3 Object Tracking

As mentioned in the previous section, we define the object window WO in the
first frame manually by user intervention so that a moving object is inside the
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window. Let O(x, y, t) be the coordinates of the upper-left corner of the window
WO(t). The width and the height are assumed constant. If we know Mt−1,t, the
transformation of two video frames obtained at t and t − 1, we can write an
equation

O′(x, y, t) = Mt−1,tO(x, y, t− 1) (4)

As mentioned in an earlier section, Mt−1,t is derived from the background fea-
tures. Thus O’(x,y,t) is not exact coordinates of WO(t). However, O’(x,y,t) is
very close to O(x,y,t) because the object motion between two adjacent frames is
small. Therefore, it needs to determine WO(t) using the tracking features inside
WO′(t). WO(t) is determined by the following steps.

1. Suppose an object feature fO(t− 1) moves to fO(t)
2. If a registration error = |fO(t)−Mt−1,tfO(t− 1)| is less than a predefined

threshold value, then fO(t) is regarded as fO(t) ∈ fB , because Mt−1,t is
derived from the background features.

3. Else fO(t) ∈ fO, because it is not consistent with the background motion.
4. The center of WO(t) is decided by the centroid of fO.

When the coordinates of the centroid of fO at time t is (xt, yt) and at time
t− 1 is (xt−1, yt−1), motion of the object vm(t) = (xt, yt)− (xt−1, yt−1).

In addition to tracking corner features, we also use the difference image of
WO(t) and WO(t− 1) to obtain another motion vector. To obtain the difference
image, two video frames need to be registered to a reference frame to compensate
the background motion. By considering WO(t) as the reference frame, we get an
difference image

Wd(t) = |WO(t)−W ′
O(t− 1)| , (5)

where
W ′

O(t− 1) = M−1
t−1,tWO(t). (6)

W ′
O(t − 1) is the transformation of WO(t) to the frame at t − 1. Wd(t) is then

binarized by a predefined threshold. Similarly, Wd(t − 1) is obtained between
WO(t − 1) and WO(t − 2) and a motion vector vd(t) between two frames is
obtained by using the binarized images, Wd(t) and Wd(t − 1). To filter out
image noise in the difference image, an accumulation image Wa of consecutive
frames is employed [TI]. The relationship between Wa(t) and Wd(t) is as follows:

Wa(t) = (1− wa)Wa(t− 1) + wa |WO(t)−W ′
O(t− 1)|

Wd(t) =
{

1 if(Wa(t) > Td)
0 otherwise,

(7)

where wa and Td are a weighting factor and a threshold value, respectively.
Object motion based on the accumulation image is determined by the centroid
difference of Wd(t) and Wd(t − 1). From two motion vectors, we compute the
object motion at t as

v(t) = wmvm(t) + (1− wm)vd(t). (8)

In the above equation, wm is the weighting factor of vm(t) to determine v(t).It
is usually set to 0.5.
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3 Background Completion

3.1 Background Matching

If a moving object is tracked successfully in all video frames, we can remove the
object regions in the frames. The next step is then to fill the empty object areas
with appropriate background images, which is called ’background completion’.
Because the 2D homography for every pair of video frames is known already, we
can acquire the background image of a removed object from one of the other
frames. Suppose the object region WO(t) needs to be filled by the matching
background image. Then the transformation of this region to g(t + k) frame is
written as

W ′
O(t + k) = Mt,t+kWO(t). (9)

If W ′
O(t + k) does not overlap with WO(t + k), W ′

O(t + k) can be used to fill the
empty region of WO(t). In Figure 4 for example, W ′

O(t + k), the transformation
of WO(t) from g(t) to g(t+k) frame, does not overlap with WO(t+k). However,
W ′

O(t−q) in g(t−q) frame overlaps with WO(t−q). Therefore, the empty object
region WO(t) is filled by warping the image of W ′

O(t+k). Transformation between
g(t) and g(t+k) frames is obtained by multiplying pair-wise transformations from
Mt,t+1, to Mt+k−1,t+k such that

Mt,t+k = Mt+k−1,t+k · · ·Mt+1,t+2M t, t + 1. (10)

3.2 Global Registration Refinement

Multiplication of many pair-wise transformations accumulates a significant regis-
tration error between source frame and target frame. Without using any registra-

Fig. 4. Matching background search for filling object area
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tion refinement technique, background completion could results in visible seams
along the boundary of the object window. To solve this problem, we refine all
pair-wise transformations between all frames using a global feature registration
technique.

The proposed refinement technique iteratively reduces registration error in all
frames. The main idea is using the traces of background features to refine the
pair-wise registration. Suppose there is a background feature point fB(x, y, t) at
time t. If it is successfully tracked until the (t + k)th frame, i.e. fB(x, y, t + k),
we know the trace of the feature from t to t + k. Similarly if we know the
traces of all features from fB(t) to fB(t + k), we can generate a 2D trace ta-
ble using a 2D linked-list or array. Figure 5 visualizes a 2D form of all fea-
ture traces using pseudo colors. The horizontal axis corresponds to the frame
number and the vertical axis corresponds to the feature number in each frame.
This figure shows all features in the video sequence shown in figure 1. The
sequence consists of 150 frames and maximum 500 features are extracted in
each frame. However, only about 200 features are successfully tracked in each
frame. In the figure, different features are represented with different colors. In
a single horizontal line, it is shown that the line color changes several times. A
Black-colored lines means the corresponding features fail to track in that time
interval.

Fig. 5. Tracking feature color table

In Figure 6, a background feature fB(x, y, t − 1) is tracked across multiple
frames from time t to t + k. A pair-wise transformation Mt−1,t is derived by
using feature sets fB(t − 1) and fB(t). Instead of using only two video frames
for estimating homography, we use the traces of all features in the consecutive
frames. In Figure 6, we know that fB(x, y, t − 1) in frame g(t − 1) moves to
fB(x, y, t) in frame g(t). However, transformation of fB(x, y, t − 1) by Mt−1,t

falls on f ′
B(x, y, t), because Mt−1,t is derived by the least squares error mini-

mization. Therefore, there is always a registration error between fB(x, y, t) and
f ′

B(x, y, t). Similarly suppose fB(x, y, t + 1) is transformed to g(t) such that
M−1t,t+1fB(x, y, t + 1). Then the transfored point f ′

B(x, y, t + 1) also yields a
registration error with respect to f ′

B(x, y, t). In an ideal case, all transformations
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Fig. 6. Registration refinement using global features

of the same tracking features must yields the same coordinates. Therefore, we
refine the pair-wise registration matrix Mt−1,t by minimizing global registration
error εt−1,t such that

f̂B(x, y, t) =
1
K

K−1∑
k=0

M−1
t,t+kfB(x, y, t + k), (11)

εt−1,t =
∑

∀fB∈fB(t−1)

‖f ′
B(x, y, t)− f̂B(x, y, t)‖, (12)

where f ′
B(x, y, t) = Mt−1,tfB(x, y, t− 1).

In the above equations, K is the maximum frame number before fB(x, y, t− 1)
fails to track. We also use the least-squares error minimization to iteratively min-
imize the global error criterion εt−1,t. For every pair of feature sets {f ′

B(x, y, t)}
and {f̂B(x, y, t+k)}, their centroids are moved to (0, 0) and the average distance
to their centroids is scaled to

√
2.

For each iteration, the refinement consists of two steps. In the first step, all
pair-wise transforms from the first frame to the last frame are computed. In the
second step, they are updated. When updating the transformations, we need to
consider another error accumulation effect. Because we use the trace of a fea-
ture from the current to the last frame, there is no trace in the last frame. In
other words, the last frame is the reference in the global registration. This causes
another accumulation error which propagates from the last to the first frame.
Let us show an example of accumulation effect in Figure 7. A transformation
M ′

t−1,t is the updated form of Mt−1,t, similarly M ′
t,t+1 is the updated form of

Mt,t+1. Suppose we compute a transformation from g(t − 1) to g(t + 1), then
M ′

t,t+1M
′
t−1,t brings the position of a background feature to a green-colored

(light gray) point in g(t + 1), while the correct position of the feature is the
red-colored (dark gray) point. This is because the updated transformations have
been derived by using the old coordinates of features in the first step. Therefore,
we have to compensate the updated transformation to eliminate the error. Be-
fore multiplying the new transform from g(t) to g(t+1), (M ′

t,t+1 in this example),
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Fig. 7. Compensation of accumulation error due to refinement

we modify M ′
t−1,t so that fB(x, y, t− 1) transforms to the green-colored points

instead of the red-colored point as follows:

M ′
t−1,t ←

(
M ′

t,t+1

)−1
Mt,t+1M

′
t−1,t. (13)

The two refinement steps are repeated until global registration error converges
close to zero.

After refining the transformations, we fill the background images of removed
object regions in all frames and generate a new video sequence. An image blend-
ing technique is also used to minimize the brightness blocking effect along the
boundary of the object area.

4 Experimental Results

To obtain a video sequence of a moving object, we use a Canon GL-2 video
camcorder. To minimize interlaced-scan noise, the video is recorded in pro-
gressive scan. From the original video sequence, we obtain a short video se-
quence which length is about 150-frame with 720× 480 image resolution. Each
frame is then saved to a TIFF or PPM image. After object removal and back-
ground completion, new frames are combined to generate a new video sequence.
After defining the object window WO(0, x, y) in the first frame, corner fea-
tures are extracted in a 300 × 300 image region, placing the object at its
center.

Figure 8 shows results of the first experiment which uses a video sequence of
a moving car. The sequence consists of 150 frames. The figure shows the original
and new frames of number 0, 80, and 149. Figure 9 shows results of the second
experiment. This sequence also consists of 150 frames. In each figure, an object-
removed region is shown in detail. Background images are very accurately filled
in the sequence. Table 1 shows registration error and processing time for the two
objects. The registration error is measured at frame 0. Figure 10 shows panorama
images of before and after refinement of the ’person’ sequence. Accumulation of
all frames shows the proposed global egistration yields very accurate results.
Figure 11 plots the average of absolute registration error at some frames.
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Fig. 8. Results of ’car’ sequence. Top: Original frames. Middle: New frames. Bottom:
Detail of removed region.

Fig. 9. Results of ’person’ sequence. Top: Original frames. Middle: New frames. Bot-
tom:Detail of removed region.
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Fig. 10. Comparison of video mosaics. Top: Before refinement. Bottom: After refine-
ment.

Fig. 11. Registration error (absolute average) of the ’person’ sequence
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Table 1. Registration error and processing time

Object car person

Absolute error (pixel) Average 0.114 0.105
Max. 1.540 1.275

Processing time (sec) BT 42 42
GR 36 28
BC 4.5 5.2

BT: background tracking, GR: global registration (50 iterationas), BC: background
completion

5 Conclusions

We present a computer vision technique to remove a moving object in a video
sequence. A new video sequence is generated by accurately filling the empty
object area with its background image. To track the moving object, background
features are tracked frame by frame using the KLT feature tracker. A global
feature registration technique is introduced to refine all pair-wise transforma-
tions. Experimental results show that the proposed technique produces seamless
background video sequences.
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Abstract. This paper presents an approach for evaluating multiple co-
lor histograms during object tracking. The method adaptively selects his-
tograms that well distinguish foreground from background. The variance
ratio is utilized to measure the separability of object and background
and to extract top-ranked discriminative histograms. Experimental re-
sults demonstrate how this method adapts to changing appearances of
both object undergoing tracking and surrounding background. The ad-
vantages and limitations of the particle filter with embedded mechanism
of histogram selection are demonstrated in comparisons with the stan-
dard CamShift tracker and a combination of CamShift with histogram
selection.

1 Introduction

This work addresses the issue of on-line selection of discriminative color features
during object tracking. Feature selection is a process of mapping the original data
into more effective features [1]. If features with little discrimination capabilities
are selected, even a good algorithm can lead to poor tracking performance. On
the other side, if discriminative features are selected the tracking system can be
simplified and thus a limited number of CPU cycles can be sufficient. The most
tracking methods operate using only a fixed set of features that are determined in
advance. As stated in [2][3], comparatively little work has been done in building
tracking systems, which can select most discriminative features on-line. In their
work [4], Shi and Tomasi have pointed out that discriminative features are just
as equally important as good tracking algorithms.

Selecting a low-dimensional discriminative feature set can improve tracker
performance. The goal of dimensionality reduction is to preserve most of the
relevant information of the original data according to some optimality criteria.
Methods such as principal component analysis (PCA), independent component
analysis (ICA) and linear discriminant analysis (LDA) are exemplars of algo-
rithms finding a mapping between the original feature space and a lower di-
mensional feature space [5]. These methods involve feature transformation and
create a set of transformed features rather than a subset of the original features.
In work [3] feature extraction is achieved by PCA and the number of dimensions
is determined by the pre-defined proportion of eigenvalues. Weights are assigned
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to each pixel and the mean-shift algorithm [1][6] is utilized to perform tracking.
The variance ratio is employed to evaluate the degree of the salience for the fore-
ground in the likelihood image. The main limitation of this approach is that some
visual information from the original image can be lost by the projection. The
work [2] also uses the likelihood image to combine feature spaces and to select
better ones. A method for evaluating several feature spaces while the tracking
process proceeds is proposed. It selects the best feature space among candidates
that are constructed by different linear combinations of the three color channels
from the RGB color space. The method utilizes the previous frame as the train-
ing frame to perform a feature selection and then utilizes the current frame as
the test frame for foreground-background classification. The features are ranked
on the basis of a variance test for the distinctiveness between object and back-
ground. Improved tracking performance to standard mean-shift based tracking
algorithm has been reported. However, the creation of 49 likelihood images is
time consuming.

The importance of the background appearance for tracking has been empha-
sized in other work [7]. This algorithm maintains a pool of discriminant functions
each distinguishing an object pattern against the background patterns that are
currently relevant. A searching for the region that best matches the targets and
simultaneously avoids background patterns seen previously is embedded in this
algorithm. Combining both labeled and unlabeled data is utilized in discrimi-
nant expectation maximization (D-EM) algorithm [8] to automatically select a
good color space. The basic idea of D-EM is to identify some similar samples in
the unlabeled set to grow the labeled data set and then to apply a supervised
technique on such enlarged labeled set. Both background and foreground are
represented by mixtures of Gaussians.

In work [9] a dynamic switching between five predetermined color spaces takes
place in order to improve the performance of face tracking. The selection of color
space is done using the ratio of flesh probability pixels within the internal and
external face windows with concentric location.

Traditional appearance based representations construct appearance models
from examples in training data sets and then utilize such models to track the
object of interest. Color histograms [10] that are invariant to some degree of
viewpoint change are often used to construct appearance models. Appearance
based representations can be very useful in construction of fast and effective
tracking systems [11][12][6][13]. For example, the scale invariant feature trans-
form (SIFT) [14] employs a histogram of gradient that is scale and rotation
invariant.

Recent work on on-line selection of discriminative features for tracking as well
as the success of appearance methods in tracking inspired us to base our tracking
method on color histograms. We employ a selection algorithm that maintains a
pool of histograms to select histograms yielding more discriminative power. A
pool of histograms assigning the various number of bins to each of the color
component of the utilized color space is maintained. Our contribution to on-line
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selection of discriminative features is a method which allows to select the most
appropriate color histograms in the current context.

The rest of the paper is organized as follows. The next Section contains a
description of evaluating feature discriminability. Section 3. is devoted to object
tracking. In Section 4. we outline CamShift based tracking with feature selection.
In Section 5. we present all ingredients of our probabilistic tracker with adaptive
feature selection and report results which were obtained in experiments. Finally,
some conclusions follow in the last Section.

2 Evaluating Feature Discriminability

At the beginning of this section, we show how the log likelihood ratios are com-
puted. The feature space will be presented as the second topic. A description of
feature discriminability ends this section.

2.1 Likelihood Ratios of Foreground and Background Histograms

A variety of parametric and non-parametric statistical methods can be utilized
to represent color distributions of homogeneous colored areas. The histogram
is the oldest and most widely applied non-parametric density estimator. It is
computed by counting the number of pixels in a region of interest that have
given color. The colors are quantized into bins. This operation allows similar
color values to be clustered as single bin. By normalizing the histogram by the
number of elements in it we form the discrete probability density representing
the given object. Methods using histograms techniques are effective only when
the number of bins can be kept relatively low and when sufficient data amounts
are in disposal. Histogram based methods are only suitable for low dimensional
data spaces because as the number of dimensions expand, the number of bins
should grow exponentially.

Given a foreground histogram and a background histogram, the log-likelihood
ratio for a pixel with color u is given by [3]:

L(u) = log
max(p(u), δ)
max(q(u), δ)

, (1)

where δ is a very small number, whereas p(u), q(u) represent the discrete proba-
bility density of color pixels in the foreground and background, respectively. Col-
ors that are shared by both foreground and background have values L(u) which
tend towards zero. The likelihood image can be computed by back-projecting the
ratio for each pixel in the image. Then the salient region in object of interest can
by identified by pixels with high likelihood ratios. Such regions, extracted on the
basis of different features can be employed to extract a binary mask identifying
the object.
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2.2 Feature Space

The color histograms are usually extracted through assigning to each color chan-
nel a fixed number of bits, determined a priori. Such approaches ignore the fact
that both foreground and background appearance undergo changes as the tar-
get moves. The ability to distinguish between object and background can be
insufficient when histograms assigning each color channel a fixed number of bits
have been chosen. A color histogram with specific combination of bins for each
color channel and possessing good discrimination capabilities for tracking a car
in front of green background can perform poorly when colors in the background
change their values.

In our approach we maintain identical number of total bins in all candidate
histograms. The set of candidate histograms is composed of linear combinations
of bin numbers assigned to color channels. In our implementation the RGB color
space is utilized and the number of histogram bins m is set to 512. With this
histogram length and assuming that the number of bins for each color channel
can take the values 2b, where b = 0, 1, ..., 5, we can construct a pool of candidate
histograms. Table 1. presents a set of candidate histograms that was utilized
in this work. Given a pixel at position xi, the bin index of 1D histogram is
computed as follows:

idx = cR(xi) + cG(xi) ∗mR + cB(xi) ∗mR ∗mG (2)

where the function cj(x) : �2 → {1, ..., mj} associates the value of pixel at
location xi to bin number, j ∈ {R, G, B}, whereas R, G, B denote color channels.

Table 1. Number of bins assigned to each color channel in the set of candidate his-
tograms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
mR 8 4 4 8 16 16 8 2 16 16 1 1 16 32 16 32
mG 8 16 8 4 4 8 16 16 2 16 16 32 32 16 1 1
mB 8 8 16 16 8 4 4 16 16 2 32 16 1 1 32 16

2.3 Feature Discriminability

The foreground and background pixels are sampled using center-surround ap-
proach in which an internal rectangle covers the object, while a larger surround-
ing rectangle represents the background. Following the suggestion in [2], the
grade of the salience for the foreground and the likelihood image can be ex-
pressed by the variance ratio:

VR(L; p, q) =
var(L; (p + q)/2)

var(L; p) + var(L; q)
(3)

where var(L; a) =
∑

i a(i)L2(i)− [
∑

i a(i)L(i)]2. The log likelihood images asso-
ciated with features of high variance ratio correspond to good features in terms
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of foreground and background separability. On the basis of the variance ratio we
extract top-ranked discriminative histograms.

3 Object Tracking

There are, generally, two types of tracking algorithms: deterministic and proba-
bilistic. The mean-shift algorithm and CamShift are the most famous determin-
istic tracking algorithms. They may be trapped in local minima and generally
can not recover from temporary failure. This problem can ameliorate proba-
bilistic methods built on particle filters. They achieve robustness to clutter and
occlusion by maintaining multiple hypotheses over the state space. At the be-
ginning of this section we describe the CamShift algorithm. The second part of
this section is devoted to particle filtering.

3.1 CamShift

CamShift tracking algorithm is based on a robust non-parametric technique
called mean-shift to seek the nearest mode of probability distribution. The
searching starts from the final location in the previous frame and proceeds itera-
tively to find the nearest mode. The value of each pixel in the probability image
represents the probability that the pixel belongs to the object of interest. The
object probability density image P (x, y) is extracted through thresholding the
log likelihood image.

The mean location of the distribution within the search window is computed
using moments [15][12]. It is given by:

x1 =

∑
x

∑
y xP (x, y)∑

x

∑
y P (x, y)

, y1 =

∑
x

∑
y yP (x, y)∑

x

∑
y P (x, y)

(4)

where x, y range over the search window. The eigenvalues (major length and
width) of the probability distribution are calculated as follows [15][12]:

l = 0.707
√

(a + c) +
√

b2 + (a− c)2, w = 0.707
√

(a + c)−
√

b2 + (a− c)2 (5)

where

a = M20
M00

− x2
1, b = 2M11

M00
− x1y1, c = M02

M00
− y2

1 , M00 =
∑

x

∑
y P (x, y),

M20 =
∑

x

∑
y x2P (x, y), M02 =

∑
x

∑
y y2P (x, y).

The algorithm repeats the computation of the centroid and repositioning of
the search window until the position difference converges to some predefined
value, that is, changes less than some assumed value. Relying on the zero-th
moment M00 the CamShift adjusts the size of the search window in the course
of its operation. It requires the selection of the initial location and size of the
search window. The algorithm outputs the position, dimensions, and orientation
of object undergoing tracking. It can be summarized in the following steps [12]:
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1. Set the search window at the initial location (x0, y0).
2. Determine the mean location in the search window (x1, y1).
3. Center the search window at the mean location computed in Step 2, set the window

size to zero-th moment M00.
4. Repeat Steps 2 and 3 until convergence.

3.2 Particle Filtering

The effectiveness of object tracking in image sequences has been greatly improved
with the development of particle filtering. The particle filter is an algorithm
for estimating the posterior state of a dynamic system over time where the
state cannot be measured directly, but may be estimated at the current time-
step t. Particle filters are attractive for nonlinear models, multi-modal, non-
Gaussian or any combination of these models for several reasons. They utilize
imperfect observation and motion models and incorporate noisy collection of
observations through Bayes rule. The ability to represent multimodal posterior
densities allows them to globally localize as well as relocalize the object of interest
in case of temporal failure during tracking. Particle filters are any-time because
by supervising the number of samples on-line they can adapt to the available
computational resources.

Two important components of each particle filter are motion model p(xt |
xt−1) describing the state propagation and observation model p(zt |xt) describ-
ing the likelihood that a state xt causes the observation zt. Starting with a
weighted particle set S =

{
(x(n)

t−1, π
(n)
t−1) | n = 1...N

}
approximately distributed

according to p(xt−1 | z1:t−1) the particle filter operates through predicting
new particles from a proposal distribution. To give a particle representation
S =
{
(x(n)

t , π
(n)
t ) | n = 1...N

}
of the posterior density p(xt | z1:t) the weights of

particles are set to π
(n)
t ∝ π

(n)
t−1p(zt |x(n)

t )p(x(n)
t |x(n)

t−1)/q(x
(n)
t |x(n)

t−1, zt). When
the proposal distribution from which particles are drawn is chosen as the distri-
bution conditional on the particle state at the previous time step, the importance
function reduces to q(x(n)

t |x(n)
t−1, zt)= p(x(n)

t |x(n)
t−1) and the weighting function

takes the form π
(n)
t ∝ p(zt | x(n)

t ). This simplification leads to a variant of a
particle filter, Condensation [16]. From time to time the particles should be
resampled according to their weights to avoid degeneracy [17].

4 CamShift Based Tracking with Feature Selection

The tracking algorithm we present here follows the idea of selection of discrim-
inative features on-line, which is presented in [2]. In this section we examine
a selection algorithm to determine how well each histogram distinguishes ob-
ject from background in the current frame. The feature selection algorithm is
embedded in CamShift based tracking system.

The CamShift algorithm is utilized to find the estimate of the 2D object
location of the object in the frame. Using the estimated object location as well
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as an object mask we extract all candidate histograms. Afterwards, we select the
top-ranked discriminative histograms on the basis of the variance ratio. The best
three histograms are used to extract the likelihood images for the next frame.
Using such likelihood images we extract the compound likelihood image, which
is a simple weighted average. After thresholding the compound image we get the
binary image. The compound image is subjected to CamShift.

The algorithm iterates through frames and chooses new sets of discriminative
histograms. All candidate histograms representing both background and fore-
ground are adapted over time. To avoid model drift the histograms are adapted
using linear combination of current observed histograms, the histograms from
the last frame as well as histograms from the first frame. The accommodation
coefficients were determined experimentally under assumption that the object
appearance will not change drastically over the tracking sequence. The set of
features used for tracking changes while the tracking process proceeds. Figure 1.
depicts some probability images corresponding to the best and worst pair of fore-
ground and background color histograms, in terms of foreground and background
separability.

Fig. 1. Probability images of foreground/background and corresponding histograms
(frame #50 in the sequence of images demonstrated in Fig. 2). The probability images
and histograms for the most discriminative feature are in upper row. The images and
histograms for least discriminative feature are in bottom row.

The images from middle row of Fig. 2. illustrate the failure of standard
CamShift algorithm. The standard CamShift algorithms operate using only a
fixed set of three histograms and do not change this pre-selected set while the
tracking process proceeds. During tracking in varying illumination conditions
the tracker is affected by similar background color, leading to tracking failure.

The tracker with histogram selection detects which colors in the model are
similar to colors in background and tries to choose the histograms that allow
for better foreground/background separation. This property can be observed in
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#2 #11 #165 #180

Fig. 2. Face tracking in varying illumination conditions using CamShift. Raw color
images (top row), object probability images-no feature selection takes place (middle
row), object probability images-feature selection (bottom row).

Fig. 3. We see that during tracking under illumination changes, frame #165 in
Fig. 2., the tracker adapts to changing appearances of both tracked object and
the background. Our algorithm continues the tracking whereas the standard
CamShift with pre-selected histogram pool suddenly loses the object.

Figure 3. shows how the selection of the best histogram in sequence of images
from Fig. 2. evolves over time. For most frames of the sequence the algorithm
selects the histogram number zero, see Tab. 1., which assigns the equal number
of bins to all color channels. In several frames the algorithm selects thirteen pair
of histograms. The selection mechanism supports the tracking and allows the
object model to adapt to current conditions and background distractions.

5 Probabilistic Tracking with Feature Selection

In our approach we consider only the location d = (x, y) in the image coordinate
system, the window scale s and the histogram number as the state variables to
be estimated. One way to model the transition of the state is using a random
walk which can be described by

xt+1 = xt + η. (6)

A Gaussian noise N(0, ν2), where ν2 is typically learned from training sequences,
has been added to the first three state variables, whereas the evolution of the
histogram number in such a hybrid state particle filter was modeled using a
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Fig. 3. Number of the best histogram for tracking versus frame number

probability distribution over possible histogram numbers. Such a choice was
motivated by observation that the frame to frame position differences in our test
sequences are not too large.

The observation model must favor candidate object locations close to the true
object locations as well as favor histograms yielding better separability between
foreground and background. We therefore need to consider the object probability
in the object window given the state of the particle. An iterative mode-seeking
in the form of the mean-shift algorithm can be applied to shift the particles to
high weight areas [18][19].

The kernel based methods of density estimation construct an estimate of the
true density distribution through placing a kernel function on each sample. The
estimate of the posterior distribution p(xt | zt) with kernel K can be formulated
as follows:

p̂(xt | zt) =
N∑

n=1

Kh(xt − s(n)
t )π(n)

t (7)

where Kh(xt − s(n)
t ) = 1

Nhd K(xt−s(n)
t

h ), and h is the kernel bandwidth. For
the radially symmetric kernel we have K(xt − s(n)

t ) = ck(‖xt − st‖), where c

is a normalization constant which makes the integral K(xt − s(n)
t ) to one, and

k(r) = k(‖xt − st‖) is called the profile of the kernel K. In our particle filter we
employ the Epanechnikov kernel that is defined as:

KE(x) =
{

1
2c−1

d (d + 2)(1− ‖x‖2) 0 ≤ ‖x‖ ≤ 1
0 ‖x‖ > 1

(8)

Given a particle set and the associated weights {π(n)
t }N

n=1, the particle mean
is determined by
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m(s(n)
t ) =

∑N
i=1 Hh(s(n)

t − s(i)
t )π(i)

t s(i)
t∑N

i=1 Hh(s(n)
t − s(i)

t )π(i)
t

, (9)

where h(r) = −k′(r) is in turn a profile of kernel Hh. It can be shown that the
mean-shift vector m(x)−x always points toward steepest ascent direction of the
density function.

The choice of bandwidth h is of crucial importance in kernel based density
estimation. A small value can generate a very ragged density approximation
with many peaks, while a large value of h can produce over-smoothed density
estimates. In particular, if the bandwidth of the kernel is too large, significant
features of the distribution, like multi-modality can be missed.

The mode-seeking continues searching until a maximum number of iterations
has been reached or until the Euclidean distance between the corresponding
modes in the last two iterations is below an empirically determined threshold.
We scale down the kernel bandwidth at each mean-shift iteration in order to
concentrate on the most dominant modes. Following mode-seeking, the most
dominant mode is extracted on the basis of weighted average over all particles
within the kernel. The tracking scheme can be summarized as follows: p(xt−1 |
zt−1) dynamics−−−−−−→ p(xt | zt−1) measurement−−−−−−−−−→ p(xt | zt) mean−shift−−−−−−−−→ p̂(xt | zt).
Each particle can only change its location during mean-shift iterations. The
following observation model is utilized:

p(zt |xt) = (1.0− exp (−λ1VR2))× (1.0− exp (−λ2Pr2)) (10)

where VR denotes the variance ratio and Pr is the mean probability in the object
window.

#2800 #2810 #2866

Fig. 4. The results of tracking using CamShift (top row) and particle filter (bottom
row)
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To test our probabilistic tracker we performed experiments using various test
sequences. Experimental results that are depicted in Fig. 4. indicate that due
to its Monte Carlo nature, the particle filter better handles confusions that are
caused by similar colors in the background. Both CamShift and probabilistic
tracker were initialized with a manually selected object region of size 20x20 in
frame #2799.

The algorithms were implemented in C/C++ and run on a 2.4 GHz PIV PC.
The average number of mean-shift iterations per frame is 2.9. The tracker runs
with 60 particles at frame rates of 12-13 Hz. All experiments were conducted on
images of size 320x240.

6 Conclusions

We have presented an approach for evaluating multiple color histograms dur-
ing object tracking. The elaborated method adaptively selects histograms that
well distinguish foreground from background. It employs the variance ratio to
quantify the separability of object and background and to extract top-ranked
discriminative histograms. The superiority of CamShift based tracker using the
histogram selection over the traditional CamShift tracking arises because the
variance ratio when applied to log likelihood images, which are computed on
the basis of various candidate histograms, yield very useful information. Our
algorithm evaluates all candidate histograms to determine which ones provide
better separability between foreground and background. By employing the his-
togram selection, the modified CamShift can track objects in case of dynamic
background. The particle filter with the embedded selection of histograms is able
to track objects reliably during varying lighting conditions. To show advantages
of our approach we have conducted several experiments on real video sequences.
Currently, only RGB space is used. The performance of the visual tracker could
be much better if other color spaces such as HSI could be utilized within this
tracking framework.
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Abstract. This paper presents an implementation of a color-based multiple 
agent tracking algorithm targeted for wireless image sensor networks. The 
proposed technique is based on employing lightweight algorithms and low-
bandwidth data communication between multiple network nodes to track the 
path of autonomous agents moving across the fields of view (FOV) of the 
sensors. Segmentation techniques are applied to find the agents within the FOV, 
and a color histogram is constructed using the hue values of the pixels 
corresponding to agents. This histogram is used as a means of identification 
within the network. As such, the algorithm is able to reliably track multi-
colored agents of irregular shapes and sizes and can resolve identities after 
collisions. The proposed algorithm has low computational requirements and its 
complexity scales linearly with the size of the network, so it is feasible in low-
power, large-scale wireless sensor networks. 

1   Introduction 

The problem of tracking people, cars and other moving objects has long been at the 
focal point of many technical disciplines. Many techniques have been proposed and 
implemented to track multiple objects with multiple cameras, most of which employ 
stochastic models such as Kalman filtering, particle filtering, and condensation 
algorithms to overcome problems of occlusion, noisy observations and other visual 
artifacts [1]. Nguyen et al. [2] have implemented a distributed tracking system 
employing a Kalman filter to track multiple people within a room monitored by 
multiple cameras with overlapping fields of view. A similar solution to the same 
problem has been proposed by Chang et al. [3], who use a Bayesian network and 
Kalman filtering to establish correspondence of subjects between subsequent frames. 
There have also been applications of multiple object tracking algorithms implemented 
in sensor networks, such as the method demonstrated by Chang and Huang [4], in 
which distributed processing between multiple trackers is employed and data fusion is 
realized by an enhanced Kalman filter. 

Color-based tracking methods that combine color information with statistical 
methods have also been in practice. Liu et al. [5] have implemented an algorithm 
based on particle filtering and color histogram information for object tracking. A 



300 E. Oto, F. Lau, and H. Aghajan 

similar color-based Kalman particle filter algorithm has been implemented for the 
same application by Limin [6]. Perez et al. [7] have used a hue-saturation histogram 
with a particle filter based probabilistic technique for tracking in cluttered 
environments. One common aspect of all the mentioned color-based algorithms is that 
they have been designed for use outside of the wireless sensor networks domain, and 
require significant processing load by a centralized processing unit.   

In this paper, we propose a hue histogram based multiple object, multiple camera 
tracking algorithm that is intended to be simple in nature to find potential use in 
wireless sensor nodes. The main contribution of this paper is to demonstrate that 
identity management of multi-colored agents of irregular shapes traveling on a 
cluttered background in an image sensor network can be performed using 
deterministic histogram matching techniques on the hue histogram, a metric that is 
small in size to be communicated between sensor nodes, and yet provides reasonable 
resilience against changes in illumination.  

The Color-Based Multiple Agent Tracking (COBMAT) algorithm uses multiple 
image sensors to track the movement of autonomous mobile agents or targets 
traveling within overlapping or non-overlapping fields of view (FOVs) of overhead 
and side view cameras. The objective of the algorithm is to keep track of the agent 
positions in a distributed fashion, without the need for a centralized control scheme. 
The algorithm achieves this by communicating agent information between sensors 
and by performing identity management using hue histograms. The algorithm does 
not predict the path of agents traveling between non-overlapping FOVs. This is 
coherent with practical applications where cameras may be used to monitor specific 
areas of a field, e.g. rooms of a building or particular sectors of a military field.  

The image sensors are assumed to be localized by an algorithm such as in [8]. In 
some tracking applications, the objective may be to know which network node is 
tracking the agents or targets of interest. In other applications, the global coordinates 
of the agent at observation times may also be required. In the case of overhead 
cameras, the agent’s global position in the area spanned by the network can be 
calculated by the tracking node and broadcasted to other nodes. In the case of side 
view cameras, exchange of image plane agent positions between the nodes that 
simultaneously observe the agent can result in determining the global position of the 
agent.  

The COBMAT algorithm relies on a background subtraction and segmentation 
routine to obtain the blobs in each frame. The color histogram of each blob is 
extracted by calculating the hue of each pixel from the RGB (red, green, blue) values 
and then binning the hue values to create a histogram. This hue histogram is 
compared to those belonging to the agents identified in previous observations to 
associate new blobs with agents tracked in the previous FOV. The blobs that could 
not be identified as existing agents are compared against a local database called the 
“Potential Agents Database”, which contains the histograms of the agents detected by 
neighboring sensors. Each node broadcasts every new agent entering its FOV to its 
one-hop neighbors and each sensor records these messages in its “Potential Agents 
Database”. This is done to determine if the new agent has been previously identified 
by the network or if it is a new entry to the realm of the network. 
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2   System Overview 

COBMAT is an algorithm intended for use with image sensor nodes in tracking 
agents or targets within the field of view (FOV) of one sensor and in providing inter-
sensor broadcast of information on agents or targets traveling between the FOVs of 
different sensors. Fig. 1 illustrates a schematic for a network of image sensors 
covering an area of monitoring interest.  

 

 

Fig. 1. Illustration of the network of overhead image sensors and a moving agent 

The overall operation of the COBMAT algorithm can be epitomized as in Fig. 2. 
Within a single FOV, the blobs are extracted with the Blob Extraction Module, and 
then identified using the Identity Management Module. The Inter-sensor 
Communication Module handles the broadcast of new entries to a sensor’s FOV to its 
one-hop neighbors. These three modules are described in the following sections. The 
distributed nature of COBMAT enables it to be scalable to large camera networks.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Overall system block diagram of the COBMAT algorithm 

2.1   Blob Extraction 

Blob extraction is performed on the still images obtained at each frame instant. This 
operation relies on background subtraction followed by a segmentation routine. 
Background subtraction identifies the change mask by thresholding the difference 
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between the intensities of each of the color channels in the current frame and the 
background image. To be identified as a changed pixel, the pixel values in any of the 
red, green or blue channels of the pixel must have changed by more than a certain 
threshold. During experimental studies, this threshold was selected according to the 
illumination of the environment. In a practical system, however, the threshold must be 
adaptively determined as a function of the ambient illumination. 

Due to the manner in which changed pixels are found, it is important that the 
background image manifest the current lighting conditions. Thus, background 
subtraction assumes that an up-to-date image of the sensor FOV devoid of agents is 
available. A measure that has been taken against illumination changes is color 
balancing of the background image and the frame prior to background subtraction. A 
color balancing algorithm based on the gray-world assumption has been observed to 
eliminate spurious blobs arising in the case of low illumination.  

Following background subtraction, a small-region removal is run on the mask 
image to remove artifacts due to slight noise effects. This is followed by a large-
region removal algorithm, applied on the inverted mask, to fill the holes within the 
regions identified as blobs. These regions are then labeled, and the mask resulting 
from the two region removal operations is applied on the original image to retrieve 
the blob pixel values. The hue of each pixel is then calculated and the hue histogram 
of each blob is produced. The hue histograms used in this study were of 36 bins.  

The position of the blob, i.e. the target location within the FOV, is found as the 
median of the rows and the median of the columns comprising the blob.  

2.2   Identity Management 

In each frame instant, the hue histograms of the blobs are extracted, and these 
histograms are compared to those belonging to the agents in the previous frame to 
identify which agents have remained in the FOV, which agents have just entered, and 
which have left the FOV. The histogram matching routine employed at this stage 
relies on two different distance measures to decide whether the two histograms are the 
same: the Euclidean Distance (ED) and the Vector Cosine Distance (VCD) measures. 
The ED between two histograms h[n] and g[n] of length N is given as in (1). 

=
−=

N

1n

2h[n])(g[n]ED  . (1) 

Treating the histograms h[n] and g[n] as two vectors in RN, ED is the norm of the 
difference vector h[n]-g[n]. VCD is a measure of proximity proposed by Sural et al. 
[9] that derives itself from the Euclidean geometry, and is the angle between the two 
vectors. This projection angle (g[n], h[n]) can be calculated as given below: 

⋅

⋅
=θ =−

hg

)h[n](g[n]
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N
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where 
=

=
N

1n

2])n[g(g   and  
=

=
N

1n

2])n[h(h  . 

Two agent histograms are inferred to be the same if both the ED and VCD tests 
yield that the histograms are the same, which is decided if the distance calculated by 
the two measures are individually smaller than the thresholds. Through 
experimentation, an ED of 1 and a separation angle of /4 were found to be 
appropriate thresholds for correct detection even under varying illumination 
conditions.  

It can easily be observed that both the ED and VCD are scalar norms calculated on 
a bin-by-bin basis. By their nature these norms fail even if the histograms are very 
similar in shape but are shifted with respect to one another. The effect of such a shift 
can be amplified in the case of the hue histogram since it is an angular measure 
wrapping around from 2  to 0 radians. To alleviate the bin shift and wrap around 
problems, the ED and VCD are calculated as follows: 

EDg,h= min( ED(g[n],h[n]), ED(g[n],h[((n-1))N]), ED(g[n],h[((n+1))N]), ED(avg(g[n]),avg(h[n])) ) (3) 

g,h= min(  (g[n],h[n]),  (g[n],h[((n-1))N]),  (g[n],h[((n+1))N]),  (avg(g[n]),avg(h[n])) ) , (4) 

where (( )) N  represents a circular shift in modulo N, and the avg() function is the 
application of an averaging window of size Nw. The circular shift by 1 covers 
single bin shifts of the histograms with respect to each other, while the window 
averaging leverages the result by smoothing when the two histograms are shifted 
by more than a single bin. In our empirical studies, we observed that Nw = 3 
achieved sufficient smoothing. 

Fig. 3 depicts the identity management algorithm employed in each sensor. The 
histograms of agents traveling in the FOV in the most recent frame are stored in 
cache memory for easy access when performing identity associations of agents in 
the current frame. At each frame instant identity association is performed by means 
of histogram matching as explained above. If a blob in the current frame can be 
matched to any of the agents, the position of that agent is updated in the cache.  

If no match can be found in the current FOV, then the position of the blob is 
considered. If all the cameras are overhead cameras, then the background on which 
the agents travel is a 2-D plane, so new agents may not emerge from inside the 
FOV. Using this fact, we only consider the blobs that emerge near the edge of the 
FOV to be new agents, and assume all other blobs are artifacts caused by sudden 
lighting changes. The threshold distance used to decide if the agent is far away 
from the edge or not was determined by experimentation as it depends on the size 
of the FOVs and the agents as well as the frame rate and the range of possible 
agent speeds. In the situation where side-view cameras are used, this condition for 
the position of the blob is not used.  

Agents that are new to a FOV are first sought in the “Potential Agents Database”, 
which contains the histograms and labels of the agents communicated by the sensor’s 
one-hop neighbors upon entrance to their FOVs. If the agent is identified in the“Potential 
Agents Database”, the matching entry is copied from the database to the cache. If the  
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Fig. 3. Identity management algorithm 

agent cannot be matched to any of those in the database, then it is declared as a new 
entry to the network, and the agent is stored in the cache and a copy is also stored in 
the database. The node then broadcasts a message to its one-hop neighbors, as 
described in the next section. 

2.3   Inter-sensor Communication 

Once a new agent is registered to the cache, the corresponding agent label is updated 
with the current timestamp, and this label along with the current position and the 
sensor ID is communicated to the one-hop neighbors. If the agent is also a new entry 
to the network, then the agent histogram is also transmitted.  

This dissemination algorithm informs all neighboring nodes about the entry of an agent 
into the FOV of the sensor. Each sensor also listens to transmissions from its one-hop 
neighbors and keeps its “Potential Agents Database” up-to-date. Currently, the algorithm 
has been designed such that the sensor constantly listens for incoming packets. 
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A networked imaging system as devised here allows any end user at a sink node to 
make queries about some or all of the agents currently being tracked by the network. 
Specifically the user may wish to know the positions of the agents being tracked relative 
to a global coordinate system on the area encompassing the sensor network. Agent 
position information can be included in the packet sent to one-hop neighbors to allow for 
data aggregation through gateway nodes in a large sensor network. A query-based 
protocol can then collect the positions and identities of agents traveling in different FOVs 
for a centralized observer node. 

To report agent positions, the coordinates of an agent relative to the FOV must be 
transformed into the global coordinate system. For an overhead camera system, the 
nodes could be localized using a method such as in Lee et al. [8], and the following 
transformation can be used to convert coordinates within a sensor’s FOV to the global 
coordinates: 

si = (  R)-1 yi + p . (5) 

In this equation, yi are the coordinates of the agent in the FOV in which it is traveling, si 
are the coordinates in the global coordinate system, p is the vector extending from the 
origin of the global coordinate system to the origin of the sensor’s FOV,  is the number 
of pixels in the FOV corresponding to one inch on the ground, and R is the rotation 
matrix with theta as the rotation in radians. 

3   Results and Discussion 

The networked tracking scheme described above operates under the assumption that the 
hue histograms of agents are invariant of the cameras and camera placements so that 
objects can be matched between different FOVs possibly observing different lighting 
conditions. This assumption was verified using a four-camera setup to compare the hue 
histogram produced by the different cameras. The effect of illumination on the hue 
histogram was investigated with a single camera and different illumination conditions. 
These experiments and their results are presented in the following sections. 

3.1   Tracking Within the FOV 

Fig. 4 illustrates an example of tracking two multi-colored agents traveling within the 
FOV of a camera. The displayed hue histograms are used to track the position of the 
agents as they appear in the subsequent frames captured by the camera.  

Original Frame Segmented Frame

0 10 20 30
0

0.1

0.2

0.3

0.4
Histogram of Car 1

0 10 20 30
0

0.1

0.2

0.3

0.4
Histogram of Car 2

1 2

 

Fig. 4. Tracking multi-colored agents within the FOV of a camera using their hue histograms 



306 E. Oto, F. Lau, and H. Aghajan 

3.2   Multiple FOV Operation 

Three overhead cameras of the same model and one oblique camera of a different 
model were placed facing the floor of our lab, and three remote controlled cars were 
driven through their FOVs. The results of the experiment are as in Fig. 5. 
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Fig. 5. Comparison of hue hisograms produced by four different cameras for three agents. Each 
bin on the x-axis corresponds to ten degrees of hue. 

The first, second, and third cars were blue, red, and yellow, respectively, but 
each car had details in other colors. It was observed that within a single FOV, both 
the overhead cameras as well as the oblique camera tracked the objects reliably. It 
is worth noting that the oblique camera tracked the three cars successfully 
regardless of perspective effects. However, the oblique camera could only track 
agents successfully under the assumption that the agents did not occlude each 
other. Occlusions could be resolved by the collaboration of two or more cameras, 
which has not been addressed in this work. Frames were captured from the four 
cameras and hue histograms were produced for each of the segmented blobs as 
presented in Fig. 5. The histograms obtained through this experiment demonstrate 
that each car’s hue histogram retained its form between the cameras, despite the 
fact that the fourth camera had an oblique view and was of a different model. 

3.3   Variations in Illumination Condition 

The variation of the hue histogram within a single FOV with different lighting 
conditions was investigated for the same three agents presented in Sec. 3.2, and it was 
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observed that for all the three agents the histogram remained almost the same with 
varying illumination level. Fig. 6 presents the hue and intensity histograms for the 
yellow agent under three different illumination settings. 
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Fig. 6. Comparison of hue and intensity histograms for the yellow agent produced in three 
different illumination conditions. Each bin on the x-axis corresponds to ten degrees of hue. 

The intensity histograms change depending on the illumination level. Therefore, by 
only considering the hue, the algorithm demonstrates robustness against changes in 
illumination. We did not have precise control over the illumination of the room and 
could not investigate the effect of larger changes in illumination. However, it was 
observed that the algorithm fails under very low illumination, such as when all the lights 
in the room are turned off and there is only a small amount of light entering through the 
door. It also fails under very heterogeneous illumination, that is, when part of the FOV 
has extremely low or extremely bright lighting. This result is expected since it is known 
from [9] that the hue histogram is only a definitive measure when the saturation is 
relatively high and the intensity is not extremely low or high. When the saturation is 
very low, the color becomes very pale and it is difficult to detect the hue. When the 
intensity is extremely low or high, the image is so dark or bright, respectively, that the 
hue is not apparent. In these cases, a color is better represented by its grayscale intensity 
rather than its hue. A possible solution to this problem is proposed in Sec. 4.  

3.4   Collision Handling 

COBMAT differentiates between agents after a collision with the same method as when 
no collisions occur, namely, by matching the hue histograms. Therefore, the elegance of 
our solution is that we use one technique to handle both tracking without collisions and 
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tracking with collisions. This ability to handle collisions is the primary advantage of 
attribute-based tracking versus path history-based tracking.   

The current implementation of COBMAT cannot track multi-colored agents during a 
collision but can recover the agent identities right after the collision. If the collision 
occurs at the edge of the FOV, the sensor assumes that the merged blob is a new agent 
and broadcasts it to neighboring nodes, causing a false alarm. That condition needs 
special handling via predicting a collision when two agents approach each other in an 
edge zone, and is the subject of further investigation. However, by constraining the 
agents to single-colored objects, we were able to reliably track the agents even during 
collisions. Figure 7(a) shows the situation that occurs when agents collide: The blobs 
merge. Figure 7(b) illustrates how a tracking scheme would resolve the collision by 
taking the following steps to localize the agents within the merged blob. 

1) Create a histogram for the merged blob.   
2) Determine the number of peaks. Since the agents are single-colored, the 

number of peaks equals the number of agents in the merged blob (see  
Fig. 8(a)). Record the hue value of these peaks. 

3) Divide the merged blob into sub-blocks (see Fig. 8(b)). 
4) Create one histogram for each sub-block. 
5) For each hue value recorded in step 2, determine which sub-block has a 

histogram with the greatest amplitude at this hue. The center of this sub-block 
is reported as the center of the agent with that hue. This is a reasonable 
estimate since the sub-block with the largest amplitude at a certain hue has the 
largest area that is of that hue. 

An experimental test result for the case of single-color agents is depicted in Fig. 9. 
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Fig. 7. (a) Merging of blobs in a collision (b) Resolved paths during a collision 

 

                                             (a)                                                                            (b) 

Fig. 8. (a) Two peaks in histogram indicate two single-color agents merged (peaks at 0 and 360 
degrees both correspond to the red agent). (b) Scheme for localizing agents within merged blob. 
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                         (a) At the collision                                 (b) After the collision 

Fig. 9. Experimental result of the collision handling scheme for single-color agents, showing an 
illustration of the path plotted with the coordinates obtained 

3.5    Computational Complexity 

Since this algorithm is targeted for wireless sensor networks with low-power and 
low-cost sensor nodes, low computational complexity is one of the main objectives. 

This algorithm achieves this goal by employing simple and elegant techniques 
designedwith the specific needs of wireless sensor networks in mind. The 
computational complexity C for each sensor to analyze one frame is approximately 

imageSizenumBinsagentSizenumAgentsC ⋅+⋅+⋅⋅⋅= κγβα )( , (6) 

where numAgents is the number of agents in the FOV, agentSize is the size of each 
agent (in pixels), numBins is the number of bins used in the histograms, imageSize is 
the size of the FOV (in pixels), and , , , and  are constants.  accounts for the 
processing required to extract the blobs and  represents the histogram matching 
computations. This algorithm is remarkably efficient because it is only linearly 
proportional to its parameters. Due to the broadcasting nature of transmissions, the 
network’s operational complexity is also linear in the number of nodes. This makes 
the algorithm scalable, and hence feasible in large-scale wireless sensor networks. 

4   Conclusions 

A lightweight technique based on color histograms has been proposed for tracking 
multiple agents in a distributed image sensor network. The algorithm employs simple 
image processing and limited data communication between the nodes. The algorithm 
operates by exploiting the invariance of the hue histogram in different camera and 
different illumination settings to differentiate and match agents traveling within the 
network. It has been demonstrated that the hue histogram can be used reliably when 
the illumination within the FOV does not show drastic changes on the background. To 
adapt the current scheme to backgrounds with large illumination gradients, e.g. the 
floor of a forest, the histogram matching algorithm must be made adaptive to consider 
larger shifts of the hue histogram depending on the variation in the corresponding 
intensity histograms.  It is also known that the hue histogram is not a reliable metric 
under very low illumination. To alleviate this effect, it may be possible to use hue and 
intensity histograms interchangeably depending on the saturation level of the image, 
stemming from the ideas presented in [9] and discussed in Sec. 3.3. However, the 
additional use of the intensity histogram will double the data overhead incurred.  
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Abstract. A fast motion estimation (ME) algorithm is proposed to search mo-
tion vectors for variable blocks. The proposed method is based on the succes-
sive elimination algorithm (SEA) using sum norms to find the best estimate of 
the motion vectors and to implement efficient calculations for variable blocks. 
The proposed ME algorithm is applied to the Joint Video Team (JVT) encoder 
that performs a variable-block ME. In terms of computational complexity, the 
proposed ME algorithm with limited search range searches motion vectors at 
about 6.3 times as fast as the spiral full search and 5.5 times as fast as the fast 
full search using the hierarchical sum of absolute difference (SAD), while the 
PSNR (peak signal-to-noise ratio) of the reconstructed image is slightly de-
graded with only 0.1~0.4 dB. 

1   Introduction 

Most video compression standards, including ITU-T H.263 [1], MPEG-4 [2], and the 
JVT codec [3] which is a joint standard of ITU-T Recommendation H.264 and 
ISO/IEC MPEG-4 Part 10, use a block-based motion estimation/compensation. Mo-
tion estimation (ME) plays an important role in saving bit-rates by reducing temporal 
redundancy in moving picture coding, but it requires intensive computations in the 
encoder. In particular, the JVT codec adopts the variable block-based motion estima-
tion/compensation for each 16× 16 macroblock (MB), whose motion vectors have 
quarter pixel resolution. It improves the peak signal to noise ratio (PSNR) and subjec-
tive quality, but it requires heavy computations for motion estimation.  

Several ME algorithms have been proposed to save computation time. The well-
known approaches to speed up motion estimation are the three-step search [4], the 2-
D logarithmic search [5], the one-at-a-time search (OTS) [6], and the new diamond 
search [7]. These methods estimate integer motion vector with approximately 3%~5% 
of the computational complexity compared to the full search by sampling of the 
search positions for ME. However, these approaches cannot provide as high PSNR as 
the full search. The successive elimination algorithm (SEA) [8] shows the same 
PSNR as the full search with 13% computational complexity of the full search. The 
enhanced SEA (ESEA) [9] further reduces computational complexity, while maintain-
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ing the PSNR. The spiral full search [10] in the JM (Joint Model) of JVT performs a 
full search in a way that an initial motion vector is predicted by median value of mo-
tion vectors of the adjacent blocks and the motion vector search is performed in the 
spiral sequence from the median-predicted motion vector to 16±  motion vector. The 
fast full search [10] in the JM performs SAD calculations of sixteen 4×4 blocks in an 
MB over 16±  search ranges and the SAD values of 4×4 blocks are used hierarchi-
cally to estimate the motion vectors of larger blocks. 

In order to apply the concept of SEA to the JVT codec, a new fast motion vector 
search algorithm is proposed for integer-pixel unit. We also use the rate-distortion opti-
mization (RDO) [11] that was adopted in JVT as an informative module. The RDO is 
applied to select the optimum variable block size, with which we have both the minimum 
mean-square error and the minimum bit allocations for each 16×16 MB. 

This paper consists of the following three sections. In Section 2, a detailed proposed 
method is described. Experimental results are shown to evaluate the proposed method in 
Section 3. Finally, conclusions are given in Section 4. 

2   Motion Estimation Algorithm in Integer-Pixel and Quarter-Pixel 
Units 

2.1   Motion Estimation Algorithm in Integer-Pixel Unit 

The JVT codec uses the motion estimation of the variable blocks such as 16×16, 16×8, 
8×16, and 8×8 blocks for each 16×16 MB and 8×4, 4×8 and 4×4 blocks for each 
8×8 block. In the hierarchical motion vector search algorithm of the variable blocks, the 
best motion vector is found in consideration of the number of bits to represent motion 
vectors and the SAD of the motion-compensated MB. In this paper, sum norms are cal-
culated in advance on the reference frame for fast motion search. 

Assume that the current frame is denoted by f(i,j) with spatial coordinates (i,j), and the 
reference frame is r(i,j). Motion estimation of S×T blocks, such as 16× 16, 16× 8, 
8×16, 8×8, 8×4, 4×8, and 4×4, is performed by using the inequality equation [8, 12] 
as follows: 

1 1 1 1 1 1

| | ( , ) | | ( , ) | | | ( , ) ( , ) |
S T S T S T

i j i j i j

r i x j y f i j r i x j y f i j
= = = = = =

− − − ≤ − − −  (1) 

where (x, y) represents a motion vector. For simplicity, eq. (1) is described as follows: 
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Fig. 1. Neighboring blocks for the motion vector prediction of current block. E is the current 
block and A, B, and C are the neighboring blocks. MVA, MVB, and MVC are motion vectors 
of the neighboring blocks A, B, and C, respectively. 

In eq. (2), ( , )S TR x y×  is the sum norm of S×T block of the reference frame with the 

motion vector (x,y),  S TF ×  is the sum norm of S×T block of the current frame and 

( , )S TSAD x y×  is the sum of absolute difference (SAD) between the current S×T block 

and the reference S×T  block with the motion vector (x,y). If the motion vector (x,y) 
is a better estimation than the other motion vector (m,n) in terms of SAD, then the 
inequality is given as follows: 

( , ) ( , )S T S TSAD x y SAD m n× ×≤  (3) 

Eqs. (2) and (3) can be combined as follows: 

| ( , ) | ( , )S T S T S TR x y F SAD m n× × ×− ≤  (4) 

Eq. (4) can be rearranged without absolute terms as follows: 

( , ) ( , ) ( , )S T S T S T S T S TF SAD m n R x y F SAD m n× × × × ×− ≤ ≤ +  (5) 

If eq. (5) is satisfied on the motion vector (x,y), ( , )S TSAD x y×  is calculated and 

( , )S TSAD m n×  is replaced with ( , )S TSAD x y× . To obtain the best estimation of the 

current S×T block, computation of SAD is performed only for the motion vector (x,y) 
satisfying eq. (5). The number of motion vectors satisfying eq. (5) is obviously less 
than the total search range. Therefore, the proposed algorithm can reduce the compu-
tational complexity without degradation of the PSNR. The efficiency of the algorithm 
depends on the fast calculation of the sum norms for each block and the initial motion 
prediction, ( , )S TSAD m n× . Fig. 1 illustrates the relative location of the current block E 

and the neighboring blocks of A, B, and C, whatever the block size is. The median-
predicted motion vector PMV is used as the initial motion vector of the current block, 
which is predicted from the upper block B, the upper right block C, and the left block 
A of the current block E as follows:  
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PMV=median(MVA,MVB,MVC), 

where MVA, MVB, and MVC  are motion vectors of A, B, and C, respectively in Fig. 1. 
Since JVT adopts variable blocks for motion estimation/compensation, there are 

various numbers of motion vectors for each MB according to the block size. As an 
example, if all 4×4 blocks in an MB are selected, 16 motion vectors should be en-
coded and transmitted to receiver. Including the motion vector cost as suggested in 
the JVT encoder, eq. (3) is modified as follows: 

( , ) ( ( , ))

( , ) ( ( , ))
S T

S T

SAD x y MVbits PMV x y

SAD m n MVbits PMV m n

λ
λ

×

×

+ × −
≤ + × −

 (6) 

where the Lagrangian multiplier λ  is set to ( 12) / 30.85 2 QP−×  as defined in the JVT 
encoder [3, 10, 11], MVbits(PMV-(x,y)) is the bit amount to represent the difference 
between the motion vector (x,y) and the predicted-motion vector PMV by Exp-
Golomb code, and QP is the quantization parameter of the JVT codec. Then, eq. (6) is 
rearranged to be used for the proposed fast motion estimation as follows: 

( ( , ) ( ( ( , )) ( ( , )))

( , )

( ( , ) ( ( ( , )) ( ( , )))

S T S T

S T

S T S T

F SAD m n MVbits PMV m n MVbits PMV x y

R x y

F SAD m n MVbits PMV m n MVbits PMV x y

λ

λ

× ×

×

× ×

− + × − − −
≤
≤ + + × − − −

 (7) 

Eq. (7) is the proposed sum norm inequality which considers both SAD and the mo-
tion vector cost. Weighting of SAD and the motion vector cost can be adjusted by the 
Lagrangian multiplier λ , which is the same value as JVT encoder in this paper. 

2.2   Efficient Calculation of the Hierarchical Sum Norms of Variable Blocks 

The sum norms of the variable blocks are computed hierarchically. First of all, the sum 
norms of the smallest blocks of 4×4 among variable blocks are first calculated in the 
reference frame. In order to reduce the computation amount, an efficient procedure to 
compute the sum norms of 4×4 blocks is described. The first row strip, C(0, j), that is 
the sum of four elements of j-th row is computed for reference frame as follows: 

3

0
(0, ) ( , )     0

k
C j r k j for j W

=
= ≤ <  (8) 

Then, next row strip, C(i,j) for 1i ≥ , is computed by using C(i-1,j) as follows: 

( , ) ( 1, ) ( 1, ) ( 3, )   1 3,   0C i j C i j r i j r i j for i H j W= − − − + + ≤ < − ≤ <  (9) 

From C(i, j), 4 4 ( , )R x y×  (x=0,1,2,…,H-4, y=0,1,2,…,W-4) is derived in the same way 

as the sum of four column elements as follow: 

3

4 4
0

4 4 4 4

( ,0) ( , )   0 3

( , ) ( , 1) ( , 1) ( , 3)   0

3,    1 3

k
R i C i k for i H

R i j R i j C i j C i j for

i H j W

×
=

× ×

= ≤ < −

= − − − + +
≤ < − ≤ < −

 
(10) 
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Fig. 2. Limited search ranges for each variable block matching: (a) matching position of the 
16× 16 macroblock in the reference frame, (b) search positions in the reference frame of the 
two 16× 8 blocks, (c) search positions in the reference frame of the two 8× 16 blocks, (d) 
search positions in the reference frame of four 8× 8 blocks, (e) matching position of the 8× 8 
block in the reference frame, (f) search positions in the reference frame of two 8× 4 blocks, (g) 
search positions in the reference frame of two 4× 8 blocks, (h) search positions in the reference 
frame of four 4× 4 blocks 

From the above sum norms of 4×4 blocks, the sum norms of 4×8 and 8×4 blocks 
are calculated as follows: 

4 8 4 4 4 4( , ) ( , ) ( , 4)   0 3,    0 7R i j R i j R i j for i H j W× × ×= + + ≤ < − ≤ < −  (11) 

8 4 4 4 4 4( , ) ( , ) ( 4, )   0 7,    0 3R i j R i j R i j for i H j W× × ×= + + ≤ < − ≤ < −  (12) 

Also, 8 8 8 16 16 8( , ), ( , ), ( , ),R i j R i j R i j× × ×  and 16 16 ( , )R i j×  can be derived in the same way 

as 4 8 ( , )R i j×  and 8 4 ( , )R i j× . The proposed hierarchical sum norm calculation is based on 

4×4 sum norm and expanded to the sum norms calculation of lager blocks using 4×4 
sum norm in eqs. (11) and (12). The main contributions on the proposed method are that 
the proposed sum norm inequality of eq. (7) considers both SAD and the motion vector 
cost and the proposed hierarchical sum norms calculations of eqs. (8)~(11) enable to find 
the motion vector very fast. 

2.3   Motion Estimation Procedure for Variable Blocks in Integer-Pixel Unit 

The hierarchical calculation of sum norms can reduce the computation time. The 
sequence of variable block matching is executed from the 16×16 block to the 4×4 
blocks to find the best estimates of the motion vectors and block sizes. After obtaining 
the seven sum-norm sets of 4 4 ( , )R i j× , 4 8 ( , )R i j× , 8 4 ( , )R i j× , 8 8 ( , )R i j× , 8 16 ( , )R i j× , 

16 8 ( , )R i j× , and 16 16 ( , )R i j×  in the reference frame, the motion estimation of variable 

blocks is performed by eq. (7) for 16×16 MBs. Once we find the motion vector (l,m) 
that has a minimum SAD for 16×16 MB as shown in Fig. 2(a), motion estimation of 
16×8, 8×16, 8×8 blocks are performed for the motion vector (l,m) and its eight- 
neighbor search ranges as shown in Fig. 2(b)-(d), in which the eight- neighbor search  
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Fig. 3. A fast quarter pixel search method: the upper-case letters are integer-pixel unit, the 
lower case letters are half-pixel unit, and the numbers in triangle are quarter-pixel unit 

ranges mean 1±  integer search range around the motion vector (l,m) for estimating 
16×8, 8×16, 8×8 block motion vector. This limited search range can reduce the com-
putation amount, whereas image quality is slightly degraded. After we find an optimum 
motion vector for each 8×8 block, the 8×8 block is divided into two 8×4 blocks, two 
4×8 blocks and four 4×4 blocks. If the optimum motion vector of the 8×8 block is 
(p,q), the motion estimation of 4×8, 8×4, and 4×4 blocks is performed for the motion 
vector (p,q) and its eight neighbor motion vectors. In order to retain the image quality, 
the search range can be 16±  for all variable blocks, which requires a longer computation 
time compared to the limited search range. 

The proposed algorithm adopts the early termination to reduce the computations of 
( , )S TSAD x y× . ( , )S TSAD x y×  should be calculated only if eq. (7) is satisfied. When 

( , )S TSAD x y×  is calculated, the intermediate result of ( , )S TSAD x y×  between the 

current block and the reference block after 75% calculations of S×T block is com-
pared with ( , )S TSAD m n× . If the intermediate result is greater than ( , )S TSAD m n× , the 

remaining calculation is not necessary. Therefore, it slightly contributes to the reduc-
tion of computation amounts. 

2.4   Fast Quarter-Pixel Search 

For fast quarter-pixel motion estimation, three points quarter-pixel search algorithm is 
developed. An example of quarter-pixel search is shown in Fig. 3, in which the upper-
case letters are integer-pixel unit, the lower case letters are half-pixel unit, and the 
numbers in triangle are quarter-pixel unit. When an integer pixel is found as the 
matching block of a block that can be one of 16×16, 16×8, 8×16, 8×8, 8×4, 4×8, 
and 4×4 blocks according to the value of S and T, the eight-neighbor positions of b, 
c, d, e, f, g, h, and i in half pixel unit are investigated by full search and the candidate 
position that has the minimum MAD is selected as the best half pixel motion vector 
position. If the half-pixel motion vector position is b, only positions of 1, 2, and 3 in 
quarter-pixel unit are investigated for the quarter-pixel search. When the half-pixel 
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Fig. 4. Rate-distortion plots of the proposed methods “A” and “B”, the methods “C”, and “D” 
to compare the performance of eq. (5) and eq. (7) 

motion vector position is h, only positions of 4, 5, and 6 are investigated for the quar-
ter-pixel search. That is, only three quarter pixel positions between the integer motion 
vector position and the half-pixel motion vector position are investigated as the can-
didate of quarter-pixel motion vector, because the possibility of the best quarter pixel 
candidate is very high within three points in quarter pixel unit between the best inte-
ger and best half pixel position. 

3   Experimental Results 

The proposed motion vector search algorithm is applied to the JVT encoder [3,10] 
with the Exp-Golomb code, variable-block ME/MC having 16× 16, 16× 8, 8× 16, 
8×8, 8×4, 4×8, and 4×4 blocks, 16±  motion search range, quarter pixel interpola-
tion, 4×4 DCT (Discrete Cosine Transform), and rate-distortion optimization. Sev-
eral image sequences, each of which has 300 frames, were used for this experiment. 
Each sequence is compressed with the scheme of I,P,P,P,P… , i.e., only the first 
frame is INTRA frame, while the others are all INTER frames without the B frame. 
The proposed method is compared to the spiral full search, the fast full search and 
UMHexagon search (Unsymmetrical-cross Multi-Hexagon grid Search) [13], which 
are implemented in JM (Joint Model) source code [10], with respect to PSNR and 
computation time. In the comparison study, the “A” method is the proposed method 
using eq. (7) with 16±  search ranges for all variable blocks that gives the same PSNR 
as the spiral full search, and the “B” method is the proposed method using eq. (7) with 
the limited search ranges described in Section II. The fast full search in the JM source 
code performs SAD calculations of 4×4 blocks for variable-block motion estimation, 
in which SAD values of 4×4 blocks are used hierarchically to estimate motion vec-
tors of larger blocks. Also, the same rate distortion optimization technique, which was 
introduced in the references [10, 11], is used for fair comparison. 
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Fig. 5. The computation time of the spiral full search, the fast full search, UMHexagonS, the 
proposed method “A”, and “B”. Only the first frame is Intra-coded: (a) “Mother & Daughter” 
sequence with a frame rate of 10Hz and QCIF resolution, (b) “Foreman” sequence with a frame 
rate of 10Hz and QCIF resolution.  

In order to show that eq. (7) has PSNR improvement in comparison to eq. (5), the 
motion estimation using eq. (7) is compared to that using eq. (5) in terms of PSNR as 
shown in Fig. 4. “C” and “D” are the methods using eq. (5) with 16±  and the limited 
search ranges, respectively. The result of eq. (7) is approximately 0.4~0.5 dB better 
than that of eq. (5) in the Foreman QCIF sequence with a frame rate of 10 Hz. 

All experiments were carried out on a Pentium IV, 1.7 GHz, using the JVT (Joint 
Video Team) codec [10] for various video sequences with QCIF and CIF size. The 
computation times of four different motion estimation methods are compared for two 
QCIF sequences in Figs. 5(a) and (b), where the horizontal axis represents the quanti-
zation parameters of the JVT codec. The computation time(msec) is the measured 
average time per a frame on the Pentium IV-1.7GHz for only motion estimation in 
JM73. The “A” method shows that the proposed method results in the same PSNR as 
the spiral full search if it is applied to 16±  search ranges for all variable-blocks 
whereas computation amount increases in Figs. 5 and 6. UMHexagonS, which is 
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Fig. 6. Rate-distortion plots: (a) “Mother & Daughter” rate-distortion plot corresponding to Fig. 
5(a), (b) “Foreman” rate-distortion plot corresponding to Fig. 5(b) 

adopted as an informative part of JVT, is the motion estimation method using initial 
search point prediction and early termination. In the “Mother & Daughter” and 
“Foreman” sequences, Figs. 5(a) and (b), show that the proposed search method is 
approximately 6.3 times faster than the spiral full search method, 5.5 times faster than 
the fast full search, and 2.4 times faster than the UMHexagon search in the JM source 
code. Figs. 6(a) and (b) show the rate distortion curves of the “Mother & Daughter” 
and “Foreman” sequence of QCIF, in which a frame rate of 10 Hz was used in this 
experiment. In terms of rate-distortion curve, the PSNR of the proposed method is 
approximately 0.4dB degraded in comparison to that of the fast full search, the spiral 
full search and the UMHexagon search methods. If the image quality is more impor-
tant than the computation time, we can increase the search range into 16×16 in the 
proposed method, which improves the PSNR. Figs. 7 and 8 show the computation 
times and the rate distortion curves of four motion estimation methods for the two 
CIF sequences, “Paris” and “Foreman”, with frame rates of 10 Hz. In the CIF se-
quences, the proposed method shows similar results to that of the QCIF sequences. 
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Fig. 7. The computation time of the spiral full search, the fast full search, UMHexagonS, and 
the proposed methods “A” and “B”. Only the first frame is Intra-coded: (a) “Paris” sequence 
with a frame rate of 10Hz and CIF resolution, (b) “Foreman” sequence with a frame rate of 
10Hz and CIF resolution. 

The “A” method always shows the best PSNR as shown in Figs. 6 and 8. The “B” 
method requires the smallest computation amount as shown in Figs. 5 and 7, whereas 
PSNR is degraded. Therefore, methods “A” or “B” can be applied alterenatively ac-
cording to the importance of the image quality and the computation time. 

4   Conclusions 

The proposed motion vector search method utilizing hierarchical sum norm, which is 
developed through eqs (6)~(12) in this paper, can be easily applied to the JVT codec. 
The JVT codec, which is H.264 and MPEG-4 part-10 video coding standard, adopted 
variable blocks and quarter-pixel motion estimation/compensation in its codec. There-
fore, the proposed method can be applied to the JVT codec to reduce the computa-
tional complexity of the search process with a very small loss in PSNR. The proposed 
one can also be applied to multiple reference frames without a serious loss of video 
quality. The hierarchical sum norm and the fast three points search for quarter-pixel 
motion estimation contribute to the reduction of computational complexity. 
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Fig. 8. Rate-distortion plots: (a) “Paris” rate-distortion plot corresponding to Fig. 7(a), (b) 
“Foreman” rate-distortion plot corresponding to Fig. 7(b) 
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Abstract. Most existing object segmentation algorithms suffer from a so-called 
under-segmentation problem, where parts of the segmented object are missing 
and holes often occur inside the object region. This problem becomes even 
more serious when the object pixels have similar intensity values as that of 
backgrounds. To resolve the problem, we propose a constrained region-growing 
and contrast enhancement to recover those missing parts and fill in the holes in-
side the segmented objects. Our proposed scheme consists of three elements: (i) 
a simple linear transform for contrast enhancement to enable stronger edge de-
tection; (ii) an 8-connected linking regional filter for noise removal; and (iii) a 
constrained region-growing for elimination of those internal holes. Our experi-
ments show that the proposed scheme is effective towards revolving the under-
segmentation problem, in which a representative existing algorithm with edge-
map based segmentation technique is used as our benchmark. 

1   Introduction 

Video object segmentation consistent with human visual perception has long been 
identified as a difficult problem since it requires characterization of semantics to de-
fine the objects of interest. Unique definition of such semantics is not possible as the 
semantics are often context dependent and thus low-level segmentation has been fo-
cusing on segmentation of regions rather than objects. As video processing and cod-
ing is moving towards content-based approaches, object segmentation becomes an 
important research topic. The content-based video compression standard, MPEG-4, 
stands as a most representative scenario for such content-based approaches. As a 
result, research on this subject has been very active and many algorithms have been 
reported in the literature. Existing video object segmentation can be roughly classified 
into two categories according to their primary segmentation criteria. One category is 
represented by those regional segmentation techniques [1-5], where spatial homoge-
neity is primarily used as the criteria to develop rules towards the segmentation  
design. As these techniques are rooted among low-level image processing and essen-
tially data-driven, precise boundaries of the segmented regions can often be obtained. 
However the computation incurred is normally high since iterative operations are 
often required. Examples of such techniques include watershed, snake modeling, and 
region-growing [11] etc. The other category of segmentation can be characterized by 
detection of changes [6-15], where motion information is utilized to segment those 
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moving objects together with other spatio-temporal information. In this category, the 
objects segmented are close to semantic video objects and thus provide promising 
platforms for further research and development. 

Specifically, existing research on video object segmentation is built upon change 
detection assisted by other sideline information including spatial segmentation, edge 
detection and background registration etc. [6-15]. In [6], Kim et. al. described a spa-
tio-temporal approach for automatic segmentation of video objects, where hypothesis 
test based on estimated variances within a window is proposed to exploit the temporal 
information, and spatial segmentation is included to assist with detection of object 
boundaries.  The final decision on foreground and background objects is made in 
combining the spatially segmented object mask with the temporally segmented object 
mask, in which a two-stage process is designed to consider both the change detection 
and the historical attributes. In [7], another similar approach was described towards a 
robust or noise-insensitive video object segmentation, which follows the idea of com-
bining spatial edge information with motion-based edge detection. Based on these 
algorithms, we carried out a series of empirical studies and testing. Our experiments 
reveal that, while the algorithms perform well generally, there exist an under-
segmentation problem, where parts of the object region are missing or there exist 
holes inside the object region. This is a serious problem especially when the back-
ground has similar intensity values to those inside objects or at the boundary of the 
object region. To rectify this problem, we propose a new scheme of automatic seman-
tic object segmentation, where elements of edge enhancement and constrained region 
growing are proposed, combing the strength of change detection with the strength of 
spatial segmentation (region-grow). We also illustrate via extensive experiments how 
our proposed algorithm could achieve this objective in comparison with the existing 
VO segmentation algorithm reported in [7]. The rest of the paper is organized into 
two sections. One section is dedicated to our proposed algorithm design, and the other 
is dedicated to experiments and presentation of their results. Finally some concluding 
remarks will also be made in the same section. 

2   The Proposed Algorithm Design 

2.1   Edge Enhancement and Linear Filtering 

In practice, when the grey level difference between the object and the background is 
small, part of the object at its boundary will have similar intensity values to that of 
background. In this circumstance, edge detection could fail to detect all the edges of 
the object, and thus some parts inside the objects become missing. To reduce such a 
negative effect upon object segmentation, we propose a simple linear transformation 
as part of the pre-processing to enhance the contrast of the luminance component of 
the video frame before edge detection is performed. Although there exist many con-
trast enhancement algorithms that may provide better performances, our primary aim 
here is not only improving the segmentation accuracy, but also maintaining the 
necessary simplicity for real-time applications. Considering the fact that increase of 
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contrast will inevitably introduce additional noise, we also designed a simple 2D filter 
to remove the noise. By combining these two elements together, we achieve the ob-
jective that edges are enhanced to enable edge detection to extract the boundaries of 
moving objects and hence ready for semantic object segmentation. 

Given an input video frame, ),( yxIn , assuming that their intensity values are 

limited to the range of [a, b], its transformed video frame can be generated as: 

( )ayxI
ab

ab
ayxg nn −×

−
−+= ),(

''
'),(  (1) 

Where 255',0' == ba  and 180,70 == ba . 

Following the contrast enhancement, we then apply Canny edge detector [7] to ex-
tract edges from the video frames to characterize the semantic objects to be seg-
mented. This is essentially a gradient operation performed on the Gaussian convo-
luted image. Given the nth video frame In, the Canny edge detecting operation can be 
represented as: 

( )nn IGI *)( ∇=Φ θ  (2) 

where G*In stands for the Gaussian convoluted image, ∇  for the gradient operation, 

and θ  for the application of non-maximum suppression and the thresholding opera-
tion with hysteresis to detect and link the edges. 

Following the spirit of the work reported in [7], we extract three edge maps: (i) the 

difference edge map ( )nnn IIDE −Φ= −1 , (ii) the current edge map )( nn IE Φ= , 

and (iii) background edge map Eb, which contains background edges to be defined by 
manual process or by counting the number of edge occurrences for each pixel through 
the first several frames [7]. Our implementation adopted the latter option. 

From these three edge maps, a currently moving edge map, change
nME , represent-

ing the detected changes can be produced as follows:  

≤−∈=
∈ change

DEx
n

change
n TxeEeME

n

min  (3) 

where e stands for edge pixels inside the moving edge map, and Tchange for a threshold 
empirically determined as 1 in [7]. Essentially, (3) describes an operation in selecting 
all edge pixels within a small distance of DEn. 

Further, a temporarily still moving edge map still
nME can also be produced by con-

sidering the previous frame’s moving edges. This edge map is used to characterize 
those regions that belong to the moving object but temporally no change is incurred 
between two adjacent frames. Such an operation can be described as given below: 

≤−∉∈=
−∈ still

MEx
bn

still
n TxeEeEeME

n 1

min,  (4) 
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where stillT  is another threshold, which is also empirically determined as 1 in [7]. As 

indicated in (3), temporarily still moving edge map contains edge pixels that they are 
part of current edge map but not part of background edge map, and they also satisfy 
the condition: 

still
MEx

Txe
n

≤−
−∈ 1

min . 

After the identification of those moving edges by (3) and (4),  the remaining opera-
tion for extracting video objects is to combine the two edge maps into a final moving 

edge map: still
n

change
nn MEMEME = , and then select the object pixels via a logic 

AND operation of those pixels between the first and the last edge pixel in both rows 
and columns [7]. 

As the contrast enhancement introduced by (1) often produce noise, the edge maps 
produced could be affected. As a result, to remove the additional noise introduced by 
the linear transformation, we adopt the method of 8-connected linking region sign to 
design a filter and apply the filter to both the motion edge map MEn and the extracted 
object sequences. 

Given an edge pixel at (x, y) whose value is 1 in the binary map, we examine its 
3× 3 neighborhood to produce a set of all connected points N= {A1, A2 … Ak}. 
If Tk ≤ , a threshold for noise removal, the set of points N will be regarded as noise 
and thus deleted. 

2.2   Constrained Region Growing 

Most existing segmentation algorithms often include post-processing to improve the 
final segmented objects [7-15].  The change detection based techniques such as the 
one reported in [7] tends to design post processing based on morphological opera-
tions, which proved to be an effective towards removal of small holes inside the ob-
ject regions. When part of the moving object is relatively still across a few frames, 
however, the edge maps in both (3) and (4) will fail to include those pixels, and thus 
create large holes inside the segmented object, for which the morphological opera-
tions will not be able to recover those missing parts inside or at the boundary of the 
segmented object. To this end, we propose a constrained region-growing technique to 
recover those missing parts. Unlike the normal region growing used by those spatial 
segmentation techniques for still images, our proposed region-grow is under certain 
constraints to reflect the fact that object segmentation has been done by change detec-
tions across adjacent frames. Therefore, the constraints include: (i) the seed selection 
is fixed at those edge points at the boundary of the final edge map; (ii) the number of 
pixels outside the first and the last edge points must be smaller than a certain limit. In 
other words, if the majority of the pixels on any row are outside the boundary of the 
edge map, the constrained region grows will not be applied. 

Given the final edge map MEn, we examine those pixels outside the first and the 
last pixel in each row to see if any further growing can be facilitated by using the 
pixel at the boundary of the edge map as seeds. Specifically, given the set of pixels 
outside the first and the last edge points in the ith row: POi={PO1, PO2, … POk}, we 
decide whether the region of those edge points should be grown into any of the points 
inside POi or not by the following testing: 
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Previous video frame In-1 

Contrast enhancement by (1) 

Current video frame In

Produce difference edge map 
by Canny edge detector given 
in (2): 

nnn IIDE 1

Produce current 
edge map: 

nn IE

Produce background 
edge map: Eb

Produce moving edge map: 
change
nME  by (3) 

Produce temporarily still moving 

edge map: still
nME by (4) 

Produce final moving edge map:
still
n

change
nn MEMEME

Noise removal by 8-
connected sign filtering 

Constrained region growing 

Final semantic object segmented 
 

Fig. 1. Summary of the proposed algorithm 

≤−
=

elsePO

TePOife
PO

i

eii
i  (5) 

 

where Te is a threshold indicating that the pixel tested is very similar to e, which is the 
first or the last edge pixel depending on which of these two edge points is closest to 
the position of POi. If the condition is satisfied, the POi will be grown into the edge 
points. Otherwise, they will stay as they are outside the edge map. 
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The above post processing will also apply to those points along the columns. After 
the post processing, the VO is extracted by logic AND operation of both row and 
column candidates as described in [7]. 

In summary, the proposed segmentation algorithm is highlighted by Figure 1. 

 

Fig. 2. Comparison of segmentation results between the benchmark and the proposed with 
linear transform given in (1) 

(b): segmentation by the proposed for Hall-
monitor frame 71 

(a): segmentation by benchmark for 
Hall-monitor frame 71 

(c): segmentation by benchmark for 
Clair 

(d): segmentation by the proposed for 
Clair 

(e): segmentation by benchmark for 
Mother-daughter (frame304) 

(f): segmentation by the proposed for 
Mother-daughter (frame 304) 
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3   Experimental Results and Conclusions 

To evaluate the proposed algorithm, we used a set of three video clips: Hall-monitor, 
Claire, and Mother-daughter, all of which are publicly available and Hall-monitor is 
the same as that used in [7]. In order to enable detailed analysis of how each element 
of the proposed algorithm actually contributes to the effect of final video object seg-
mentation, we implemented the VO segmentation algorithm as in [7] as our bench-
mark, and carried out experiments each time one element of the proposed algorithm is 
added. These elements include: (i) linear transform for contrast enhanced edge detec-
tion; (ii) filter design for noise removal; and (iii) constrained region-growing.  

 

 
 
 

Fig. 3. Illustrations of segmentation by the proposed with both linear transform and noise re-
moval filtering 

  

                   

Fig. 4. Comparison of segmented results by benchmark and the proposed, where only the con-
straint region growing is considered 

(b): segmentation by the proposed 
(frame 73) 

(a): Segmentation by benchmark(frame 
73) 

(a): Segmentation result by the proposed for 
Hall-monitor (frame71) 

(b): Segmentation result by the proposed for 
Mother-daughter (frame304) 
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Fig. 5. Final segmentation results by the proposed algorithm: (a)-(c) are originals, and (d)-(e) 
are the segmented video objects 

Figure 2 illustrates the comparison of the segmented results, where part-(a), (c), (e) 
and (f) are the segmented objects by the benchmark and part-(b), (d), (f) and (g) are 
the segmented objects by the proposed algorithm, where only the linear transform is 
included. As seen, the proposed linear transform introduced additional noise while the 
segmentation accuracy is improved. 

Figure-3 illustrates the segmented results by the proposed algorithm, where both 
linear transform and the noise removal filter are considered, from which it can be seen 
that the noise introduced is effectively removed. 

Figure-4 illustrates the comparison of segmented results between the benchmark 
and the proposed, where part-(a) and (c) represents the results of the benchmark, and 
part-(b) and (d) the results of the proposed with only the element of constrained re-
gion-growing. Although the proposed constrained region-growing can not recover all 
the missing parts, it can still be seen that the proposed algorithm does recover the 
missing part inside the left leg, which has achieved significant improvement com-
pared with the benchmark. 

Finally, by gathering all the elements, the full segmented video objects by the pro-
posed algorithm can be illustrated in Figure 5. Note that all the figures illustrated here 
are much larger than those given in references [6-15]. If we make the pictures smaller, 
the segmentation results will look better as those boundaries will look smoother. 

In this paper, we proposed an automatic semantic object segmentation scheme to 
provide a possible solution for the under-segmentation problem experienced by most 
existing segmentation techniques [6-15]. From the experimental results shown in Figure 
2 to Figure 5, it can be seen that, while the proposed algorithm can effectively recover 
those missing parts inside the video object, it inevitably introduces some of the back-

(a) (b) (c) 

(f) (d) (e) 
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ground points into the object region, which can be referred to as over-segmentation, for 
which further research is being organized around: (i) looking for other cues to provide 
additional semantic information for segmentation; (ii) combinational approaches in both 
change detection and background registration[9]; and (iii) inclusion of further spatial 
segmentation elements such as snake modeling, and water shed [1-5] etc. 

Finally, the authors wish to acknowledge the financial support from the Chinese 
Academy of Sciences and European Framework-6 IST programme under the IP pro-
ject: Live staging of media events (IST-4-027312). 
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Abstract. Motion estimation by means of spatio-temporal energy fil-
ters –velocity tuned filters– is known to be robust to noise and aliasing
and to allow an easy treatment of the aperture problem. In this pa-
per we propose a motion representation based on the composition of
spatio-temporal energy features, i.e., responses of a set of filters in phase
quadrature tuned to different scales and orientations. Complex motion
patterns are identified by unsupervised cluster analysis of energy fea-
tures. The integration criterion reflects the degree of alignment of max-
ima of the features’s amplitude, which is related to phase congruence.
The composite-feature representation has been applied to motion seg-
mentation with a geodesic active model both for initialization and image
potential definition. We will show that the resulting method is able to
handle typical problems, such as partial and total occlusions, large inter-
frame displacements, moving background and noise.

1 Introduction

In this paper we deal with the problem of segmentation of apparent-motion.
Apparent-motion segmentation can be stated as the identification and classifi-
cation of regions undergoing the same motion pattern along a video sequence.
Usually, segmentation is based on some low level feature describing the mo-
tion of each pixel in a video frame. So far, the variety of approaches to deal
with the problems of motion feature extraction and motion segmentation that
has been proposed in literature is huge. However, all of them suffer from dif-
ferent shortcomings and up to date there is no completely satisfactory solution.
Segmentation and tracking techniques developed so far present diverse kinds of
problems: restriction to some specific motion model, as methods those based in
the Hough transform [1]; inability to deal with occlusions and abrupt changes,
like Kalman filter based approaches [2]; need of some prior model or template [3];
sensitivity to noise and lack of correlation among segmentations from different
frames, as it happens with Bayesian classification methods [4].

Many other problems are a consequence of the low-level motion representa-
tion underlying the segmentation model. It usually involves the estimation of the

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 332–343, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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temporal derivative of the sequence. When used directly to detect mobile points
[5], this measure is limited to static background and can not discriminate inde-
pendent motion patterns. Most representations use the inter-frame difference to
estimate optical flow. Optical flow estimation algorithms present diverse kinds of
problems as well [6]. In general, they assume brightness constancy along frames,
which in real situations does not always hold, and restrict allowed motions to
some specific model. Particularly, differential methods are not very robust to
noise, aliasing, occlusions and large inter-frame displacements and present the
aperture problem, i.e., they operate locally so they do not yield reliable estima-
tions of the direction of motion. Matching techniques require prior knowledge
about the tracked object and, generally, consider only rigid transformations.

Alternatively, energy based algorithms [7,8,9,10,11] do not employ the tempo-
ral derivative, but estimate motion from the responses of spatio-temporal filter
pairs in quadrature, tuned to different scales and orientations, which is translated
into sensitivity to 2D orientation, speed and direction of movement. These tech-
niques are known to be robust to noise and aliasing, to give confident measure-
ments of velocity and to allow an easy treatment of the aperture problem. This
representation is further developed in [12], by defining spatio-temporal integral
energy features as clusters of elementary velocity-tuned filters. The integration
criterion, which introduces no prior information, is based on the congruence or
similitude of a set of local statistics of the energy features.

In this work we present a motion representation scheme based on the clus-
tering of non-causal energy filters that introduces a new integration criterion,
that improves the computational cost and performance of earlier approaches.
It is inspired on the importance of Phase Congruence (PC) [13] and local en-
ergy maxima [14] as low level cues of information for the HVS. Our integra-
tion criterion to group band-pass features reflects the degree of concurrence of
their energy maxima. We estimate the degree of alignment of energy maxima
of pairs of band-pass features from the correlation between their energy maps.
Moreover, spatio-temporal filters with rotational symmetry will be introduced.
We will show this representation handles motion patterns composed of different
speeds, directions and scales, distinguishes visually independent patterns and is
robust to noise, moving background, occlusions and large displacements.

The representation model will be applied here to segmentation in combination
with a geodesic active model [15]. Composite motion features will be applied di-
rectly, avoiding the estimation of optical flow. They will be employed for both
the definition of the image potential and for the initialization of the model in
each frame. This solution is novel in the sense that both initialization and seg-
mentation is based on motion information. In [5], initialization is defined from
the segmentation from previous frame, which is problematic in case of occlu-
sions. In [16], motion features are employed for initialization in each frame while
segmentation is based only in spatial information.

The outline of this paper is as follows. Section 2 is dedicated to the compos-
ite feature representation model. Section 3 is devoted to the proposed method
for segmentation with active models. In section 4 we illustrate the behavior
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the model in different problematic situations, including some standard video se-
quences. In 5 we expound the conclusions extracted from this work and set out
some lines for future work.

2 Detection of Composite-Features

Identification of composite energy features involves the decomposition of the se-
quence into a set of band-pass features and their subsequent grouping according
to some dissimilarity measure. Composite-features are then reconstructed as a
combination of the band-pass features in each clusters. The following subsections
detail the process.

2.1 Bank of Spatio-temporal Energy Filters

As mentioned earlier, we employ non-causal band-pass features, This allows
treating the temporal dimension as a third spatial dimension. In particular, here
we apply an extension to 3D [17] of the log Gabor function [18] that presents
rotational symmetry. The filter is designed in the frequency domain. The filters’
transfer function T is designed in spherical frequency coordinates (ρ,φ, θ).

Ti(ρ,φ, θ) = exp

(
− (log(ρ/ρi))

2

2 (log(σρi/ρi))
2 −

αi(φ, θ)2

2σ2
αi

)
(1)

with,

αi(φ, θ) = arccos
(

f · vi

‖f‖
)

(2)

where (ρi,φi, θi) is the central frequency of the filter, σρi and σαi are the standard
deviations, vi = (cos(φi) cos(θi), cos(φi) sin(θi), sin(θi)) and f is the position
vector of a point in the frequency domain, expressed in Cartesian coordinates.
It is the product of a radial term, the log Gabor function, selective in frequency
and an angular term, a gaussian in the angular distance α [19], which provides
selectivity in spatial orientation, direction or motion and speed.

The filter bank is composed of a predefined set of the previous energy filters
with λi = 2/ρi = {4, 8, 16, 32}, θi is sampled uniformly and φi is sampled to
produce constant density with θ by forcing equal arc-length between adjacent
φi samples over the unit radius sphere. Following this criterion, the filter bank
has been designed using 23 directions, i.e. (φi, θi) pairs, yielding 92 bands. σρi

is calculated for each band to obtain 2 octave bandwidth and σαi is set to 25◦

for all orientations.
From the previous bank, only active channels, contributing the most to energy,

are selected as those comprising some value of E = log(|F |+ 1), where F is the
Fourier transform, over its estimated maximum noise level. Noise is measured
in the band λ < 4 [20], as η + 3σ, where η is the average and σ is the standard
deviation. Thresholding is followed by a radial median filtering, [17] to eliminate
spurious energy peaks. Complex-valued responses ψ to active filters play the role
of elementary energy features.
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2.2 Energy Feature Clustering

Integration of elementary features is tackled in a global fashion, not locally
(point-wise). Besides computational efficiency, this provides robustness since it
intrinsically correlates same-pattern locations –in space and time–, avoiding re-
covering of disconnected regions.

Our criterion for integration of frequency features is derived from the concept
of Phase Congruence (PC), i.e., the local degree of alignment on the phase of
Fourier components. Features where Fourier components are locally in phase
play an important role in biological vision [13]. Our grouping strategy consists
on finding the frequency bands that are contributing to a point or region of lo-
cally maximal PC. Since points of locally maximal PC are also points of locally
maximal energy density [14], we will use local energy as a detector of relevant
features. Then, subband images contributing to the same visual pattern should
present a large degree of alignment between their local energy maxima. The dis-
similarity between two subband features is determined by estimating the degree
of alignment between the local maxima of their local energy. Alignment is quan-
tified using the correlation coefficient r of the energy maps of each pair {ψi, ψj}
of subband features. If A = ‖ψ‖ = (�(ψ)2 + #(ψ)2)1/2, the actual distance is
calculated from r(Ai, Aj) as follows

Dρ (Ai, Aj) =
(

1−
√

(1− r(Ai, Aj)) /2
)2

(3)

To determine the clusters from the dissimilarities, hierarchical clustering has
been applied, using a Ward’s algorithm to determine inter-cluster distance, which
has proved to improve other metrics [21]. To determine the number of clusters
Nc, the algorithm is run for each possible Nc and the quality of each resulting
partition is evaluated according to a validity index, the modified Davies-Boulding
index [22].

2.3 Composite-Feature Reconstruction

The response ψ of an energy filter is a complex-valued sequence. Its real and
imaginary components account for even and odd symmetric features respectively.
The use of �(ψ), #(ψ) or A(ψ) in the construction the composite-feature Ψ will
depend on its purpose. Here we define the general rule for the reconstruction of
Ψ based on a given representation E of the responses of the filters.

Ψ j(x, y, t) =

∑
i∈Ωj

Ẽi

Card (Ωj)

∑
i∈Ωj

Ei(x, y, t) (4)

where Ωj is the set of all features in cluster j and Ẽi results from applying a
sigmoidal thresholding to feature Ei. The first factor in the right side of previous
equation weights the response in a point favoring locations with a large fraction
of features contributing to it, avoiding artifacts caused by individual elementary
features.



336 R. Dosil et al.

For visualization purposes, we use the even-symmetric representation of the
composite featureΨ j

even = Ψ j(Ei = �(ψi)).The full-wave rectified odd-symmetric
representation Ψ j

odd = |Ψ j(Ei = #(ψi))| is employed in the definition of image po-
tentials to reflect motion contours. Initialization is determined from the amplitude
representation Ψ j

amp = Ψ j(Ei = ‖ψi‖), except for objects with uniform contrast,
where max(±Ψ j

even, 0) is used, with sign depending on the specific contrast sign.

3 Motion Pattern Segmentation

In this section we prove the usefulness of the developed representation in segmen-
tation and tracking. The chosen segmentation technique is the geodesic active
model as implemented in [15], due to its ability to introduce continuity and
smoothness constraints, deal with topological changes and simultaneously de-
tect inner and outer regions. Our segmentation model involves the selection, by
user interaction, of one of the identified composite-features Ψ . From that pat-
tern, we derive the initial state and the image potential of the model in each
frame. Segmentation of a frame is illustrated in figure 1.

3.1 Geodesic Active Model

The geodesic active model represents a contour as the zero-level set of a distance
function u. The evolution of the level-set determines de evolution of the contour.
Let Ω := [0, ax]×[0, ay] be the frame domain and consider a scalar image u0(x, y)
on Ω. We employ here symbol τ for time in the evolution equations of u and t
for the frame index. Then, the equations governing the evolution of the implicit
function are the following.

u(x, y, t = tk, τ = 0) = u0(x, y, t = tk) on Ω (5)
∂u

∂t
= g(s)|∇u| · (κ + c) +∇g(s) · ∇u on Ω × (0,∞) (6)

g(s) = (1 + (s/smin)2)−1 (7)

where smin and c are real constants, s is the selected image feature and κ is the
curvature. The role of the curvature can be interpreted as a geometry dependent
velocity. Constant c represents a constant velocity or advection velocity. Here,
c = 0. The factor g(s) is called the image potential, which decreases in the
presence of image features. In the first term, it modulates velocity (c + κ) so as
to stop the evolution of the contour at the desired feature locations. The second
term is the image dependent term, which pushes the level-set towards image
features. smin plays the role of a feature threshold.

The image feature s is determined from Ψodd. A dependence on pure spa-
tial features, namely, a spatial contour detector, is also introduced to close the
contour when part of the boundary of the moving object remains static –when
partial occlusion or when part of the moving contour is parallel to the direction
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Fig. 1. Scheme of the segmentation technique. Composite feature detector is repre-
sented by the isosurfaces of the constituent filters with Ti = exp(−1/2).

of motion. Accordingly, the image feature s is a weighted sum of a spatial term
Cs and a motion term Cm

s = wsCs + smCm, with ws = 1− wm and 0 ≤ wm ≤ 1,
Cs(x, y, tk) = ‖∇I∗(x, y, tk)‖/ max(‖∇I∗(x, y, tk)‖), (8)

Cm (x, y, tk) =
1

1 + exp{−K(Cs(x, y, tk)− C0)}
Ψodd(s, y, tk)

max(Ψodd(x, y, tk))
,

where C0 and K are a positive real constants and asterisk indicates regulariza-
tion. The first factor in the expression for Cm is a sigmoidal thresholding of the
spatial contour detector Cs that modulates the contribution of the motion feature
depending on the concurrent presence of a spatial gradient. This is to minimize
the effect of temporal diffusion in Ψ . Regularization of a frame is accomplished
here by feature-preserving 2D anisotropic diffusion, which brakes diffusion in the
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presence of contours and corners [23]. The specific values of parameters involved
are C0 = 0.1, K = 20, wm = 0.9. In equation (7), smin is calculated so that,
on average, g(s(x, y)) = 0.01, ∀x, y : Cm(x, y) > 0.1. Considering the geodesic
active model in a front propagation framework, g = 0.01 means a sufficiently
slow speed of the propagating front to produce stopping in practical situations.

3.2 Initialization

The initial state of the geodesic active model is defined, in the general situation,
from Ψamp unless other solution is specified. To enhance the response of the
cluster we apply a sigmoid thresholding and remapping to the interval [−1, 1].
To handle the situation where the object remains static during some frames,
the initial model is defined as the weighted sum of two terms, one associated to
the motion pattern and the other to the segmentation in previous frame. The
zero-level of the resulting image is the initial state of the contour.

u0(x, y, tk) = wk (2/(1 + exp(−K(Ψamp(x, y, tk)− Ψ0))) − 1)
+ wk−1u(x, y, tk−1, τmax), with wk−1 = 1− wk, 0 ≤ wk ≤ 1 (9)

In the experiments presented in next section, wk = 0.9, K = 20 and Ψ0 = 0.1.

4 Results

In this section, some results are presented to show the behavior of the method
in problematic situations. The video sequences and corresponding segmentations
are available at [24]. The results are compared to an alternative implementation
similar to that in [5]: the initial state is the segmentation of the previous frame
and the image potential depends on the inter-frame difference. However, instead
of defining the image potential from the temporal derivative using a Bayesian
classification, the image potential is the same as with our method, except that
the odd-symmetric representation of the motion pattern is replaced by the inter-
frame difference It(x, y, tk) = I(x, y, tk) − I(x, y, tk−1). This is to compare the
performance of our low-level features with inter-frame difference under the equal
conditions. The initial state for the first frame is defined by user interaction.

4.1 Moving Background

This example is part of the the well-known ”flower garden” sequence, a static
scene recorded by a moving camera. The inter-frame difference detects motion
at every image contour, producing deep minima in the image potential all over
the image. Therefore, the active model is not able to distinguish foreground ob-
jects from background –see figure 2. It is not possible to isolate different motion
patterns by simple classification of It values. In contrast, visual pattern decom-
position allows isolation of different motion patterns with different speeds. The
image potential in our approach considers only the motion pattern corresponding
to the foreground, leading to a correct segmentation –see figure 1.
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(a) (b) (c) (d)

Fig. 2. A frame of the ”flower garden” sequence. (a) Input data. (b) Inter-frame dif-
ference. (c) Image potential from It. (d) Segmentation using It based active model.

4.2 Large Inter-frame Displacements

When the sampling rate is too small in relation to the speed of the moving object,
it is difficult to find the correspondence between the positions of the object in
two consecutive frames. Most optical flow estimation techniques present strong
limitations in the allowed displacements. Differential methods try to find the
position of a pixel in the next frame imposing some motion model. Frequently,
the search is restricted to a small neighborhood. This limitation can be overcome
by coarse-to-fine analysis or by imposing smoothness constraints [6]. Still, large
displacements are usually problematic. The Kalman filter is not robust to abrupt
changes when no template is available [2]. When using the inter-frame difference
in combination with an active model and initialization with previous frame, the
correspondence is yielded by the evolution of the model from the previous state
to the next one [5]. However, if the previous segmentation does not intersect the
object in the following frame, the model is not able to track the target, as shown
in the example in figure 3.

When using energy features, the composite motion patterns are isolated from
each other. In this way, the correspondence of the motion estimations in different
frames is naturally provided by the representation scheme, as shown in the right
column of figure 3. This is also a property of techniques based on the Hough
transform [1] but they are limited to constant speed and direction motion. In this
example there is an oscillating movement, so it does not describe a line or a plane
in the velocity-space. Unlike the Hough transform, composite features combine
elementary velocity-tuned features to deal with complex motion patterns. The
ability to represent complex pattern in a global fashion, leads the active model
to a correct segmentation of the ball –see figure 3, third column– besides the
large displacement produced and the changing direction or movement.

4.3 Occlusions

In the sequence in first column of figure 4, the mobile object is totally occluded
during several frames. This is a severe problem for many tracking algorithms.
In region classification techniques [4], the statistical models extracted for each
region can be employed for tracking by finding the correspondence among them
in different frames. This is not straightforward when the object disappears and
reappears in the scene. The same problem applies for Kalman filtering [2]. In the
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(a) (b) (c) (d)

Fig. 3. (a) Two consecutive frames of the ”table tennis” sequence. (b) Segmentations
of frames in (a) using the alternative. (c) Segmentations of frames in (a) using the
composite-feature active model. (c) x − t cut plane of the input data (top) and Ψamp

(bottom).

Fig. 4. Three frames of a sequence showing total occlusion. Left: Input data. 2nd

Column: Segmentation using the alternative active model. 3rd Column: Initial model
from max(−Ψeven, 0) Right: Segmentation using the composite-feature active model.

case of active models with initialization with previous frame is applied, when to-
tal occlusions, the model collapses and no initial model is available in subsequent
frames, as can be observed in second column of figure 4. A new stage of motion
detection can be used to reinitialize the model [5], but it can not be ensured that
the newly detected motion feature corresponds to the same pattern.

With our representation this problem is automatically solved, as in the case
of large inter-frame displacements. In third column of figure 4, we observe that,
when the object reappears, initialization is automatically provided by the motion
pattern without extra computation and without the need of a prior model, lead-
ing to a correct segmentation –see figure figure 4, right column. In this example
the initial model is defined using max(−Ψeven, 0).

Figure 5 shows another example presenting occlusions where the occluding ob-
ject is also mobile. As can be seen, the alterative active model fails in segmenting
both motion patterns, both due to initialization with previous segmentation and
incapability of distinguishing both motion patterns, while our model properly seg-
ments both patterns using the composite-features provided by our representation
scheme.
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Fig. 5. Three frames of a sequence showing two occluding motion patterns. 1st Row:
Input data. 2nd and 3rd Rows: Inter-frame based segmentation, using a different initial-
ization for each of the motion patterns. 4th and 5th Rows: Ψeven of two of the obtained
composite-features, corresponding to the two motion patters. 6th and 7th Rows: Seg-
mentations produced using composite-features from rows 4th and 5th respectively.

Fig. 6. Two frames of the ”silent” sequence: Left: Input data. 2nd Column: Segmen-
tation using the alternative active model. 3rd Column: max(Ψeven, 0) of the selected
motion pattern. Right: Segmentation using the composite-feature active model.

4.4 Complex Motion Patterns

The following sequence, a fragment of the standard movie know as ”silent” is
relatively complex, presenting different moving parts, each one with variable
speed and direction and deformations too, over a textured static background.
As can be observed in left column of figure 6, the motion pattern of the hand can
not be properly described by an affine transformation. Moreover, the brightness
constancy assumption is not verified here. The active model based on the inter-
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frame difference is not able to properly converge to the contour of the hand
–figure 6, second column– due to both interference of other moving parts or
shadows and wrong initialization. The composite-feature representation model
is able to isolate the hand and properly represent its changing shape in different
frames –figure 6, third column. Hence, the initial state of the active model is
already very close to the object’s shape, thus ensuring and accelerating conver-
gence –figure 6, right column.

5 Conclusions

This work proposes a new motion representation scheme for video sequences
based on non-causal composite energy features. It involves clustering of elemen-
tary band-pass features under a criterion of spatio-temporal phase congruence.
This motion representation is able to isolate visually independent motion pat-
terns without using priori knowledge. The model intrinsically correlates infor-
mation from different frames, providing it with robustness to occlusions and
large inter-frame displacements. Furthermore, it is suitable for complex motion
models thanks to the composition of elementary motion features.

Our representation model has been applied to the definition of image potential
and initialization of a geodesic active model for segmentation and tracking. The
proposed technique presents good performance in many of the typical problem-
atic situations, such as noise, moving background, occlusions, and large inter-
frame displacements, while previous solutions do not deal with all these issues.
In the comparison with an alternative implementation, that employs segmenta-
tion of previous frame for initialization and inter-frame difference for definition
of image potential, our method shows enhanced behavior.
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Abstract. Intra coding in current hybrid video coding method has very impor-
tant functionality like low delay in decoder, random access and error resilience. 
Unfortunately coding efficiency of intra frame is very low relative to inter 
frame coding because of mismatch between current block and its predicted 
block. In this paper, new intra luma prediction algorithm which improves intra 
coding efficiency is proposed. The proposed additional intra luma prediction 
mode uses collocated chroma pixels and weight values to estimate correct spa-
tial pattern of coded block. From neighboring blocks, weight value between 
chroma and luma values is calculated and then the predicted luma block is ob-
tained by multiplying calculated weight value and collocated upsampled 
chroma block. The proposed method is effective for complex or non-directional 
macroblocks and experimental results show that the efficiency of intra coding is 
increased up to 0.6 dB. 

1   Introduction 

H.264/AVC [1] based on hybrid video coding algorithms is the new standard focusing 
on high coding efficiency, error resilience and network adaptability. For high coding 
efficiency, H.264/AVC uses several new tools such as new intra prediction, multiple 
reference frames, new integer transform and Context Adaptive Binary Arithmetic 
Coding (CABAC). New intra prediction method in H.264/AVC is one of the best 
improvements factors in H.264/AVC relative to the previous video coding standards. 

In intra block coding the predicted block is obtained from neighboring blocks 
which are already encoded and reconstructed. And the predicted block is subtracted 
from current original block to obtain residual block. In general cases, intra prediction 
is applied to 4x4 and 16x16 luma blocks and 8x8 chroma blocks. There are 9 predic-
tion modes for each 4x4 luma block, 4 modes for 16x16 luma block and 4 modes 8x8 
chroma block totally. Encoder selects optimal prediction mode for each luma and 
chroma components to get minimum number of bits for coding residual block. Predic-
tion algorithms in each component are basically same, even if block size and the num-
ber of modes to be used are different. In 4x4 luma block, 13 neighboring pixels are 
used for intra prediction. Fig. 1(a) shows example labeling for 4x4 luma block to be 
encoded. 
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Fig. 1. Intra prediction mode. (a) Labeling of samples for 4x4 intra luma prediction. a, b, c,.., o 
and p represent current block samples and A, B, C,.., L and M represent neighboring samples to 
be used in prediction. (b) Directions of intra prediction mode for 4x4 luma block. 

Intra prediction in H.264/AVC is based on block directionality and its correlation 
with neighboring blocks. All prediction modes except DC mode mean direction of 
prediction and Fig. 1(b) shows the directions for intra prediction. In intra prediction 
process, neighboring samples (capital letters in Fig. 1(a)) are extrapolated into current 
block sample position in according to each prediction mode. Using these intra predic-
tion modes, H.264/AVC can show high coding efficiency relative to previous image 
and video coding standards such as JPEG-2000 [2], MPEG-2 Video [3] and MPEG-4 
Visual [4]. 

New intra prediction scheme has many advantages rather than inter prediction such 
as low-delay, random access and error resilience. Despite of several good advantages, 
fatal disadvantage of intra coding relative to inter coding is its low coding efficiency 
because of mismatch between original and the predicted blocks. The biggest cause of 
mismatch in intra prediction is the lack of reference information. To get the predicted 
image using intra mode prediction, we can only 13 neighboring pixel in 4x4 luma 
block. It is very small amount of information compared to all pixels of the previous 
frame(s) in inter prediction. In generally, intra prediction coding method shows good 
performance for blocks with directional pattern, which is defined in intra prediction 
modes. But for irregular or undefined pattern, serious mismatch happens and then 
residual coding needs more bits. Because current intra prediction is based on only 
assumption of directional pattern with neighboring blocks of current block, it is im-
possible to predict correct image for block without directional pattern. 

In this paper, the proposed intra prediction method uses the correlation between 
luma and chroma components. The proposed method is motivated from relation be-
tween luma and chroma component in macroblock. Why inter prediction coding 
method has high coding efficiency for block with irregular or unidirectional pattern is 
because its prediction image is not related with directional pattern. In inter coding, 
prediction image is obtained from reference frame and copied directly. By getting the 
same spatial pattern image from reference directly, the predicted image is very similar 
to current block. This is the most important difference between inter and intra  
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prediction coding. Therefore if same spatial pattern can be obtained in intra predic-
tion, coding efficiency can be increased. 

It is generally known that there is no relation between luma and chroma compo-
nents. However for one macroblock of 4x4 or 16x16, spatial relation between luma 
and chroma exist. One macroblock size is relatively small compared to the overall 
image. Therefore the possibility of several objects in one macroblock is very low. 
That means real object may have similar luma in macroblock and chroma value and 
luma value can be represented by multiplication of chroma value and weight value 
with floating type. Therefore it is possible to predict luma block with collocated 
chroma value and weight value. 

This paper is organized as following. Section 2 describes the proposed intra predic-
tion coding method and section 3 shows experiment results. And section 4 leads dis-
cussion for the proposed method and finally section 5 concludes the proposed paper. 

2   Proposed Methods 

The main idea of the proposed method is luma blocks can be approximated as multi-
plication of float weight value (multiplicand) and predicted chroma blocks (multi-
plier). The proposed method is applied to luma component not chroma ones. Intra 
prediction of chroma components uses 4 prediction modes just same to the conven-
tional H.264/AVC. In conventional intra prediction, chroma and luma components are 
processed separately since it is known that there is no correlation with them. In the 
proposed method, firstly chroma block is predicted using 4 intra prediction modes. 
Chroma components are divided into two sub components, U (Cb) and V (Cr). 
Chroma component used in prediction of luma component is made by averaging U 
and V components.  

 

Fig. 2. (a) Original 4x4 luma block and (b) collocated upsampled chroma block 
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And to obtain the predicted luma blocks using the proposed method, calculation of 
weighted value to be used as multiplicand of the predicted chroma block is needed. 
Prior to weight calculation process, the predicted chroma samples and its neighboring 
ones are upsampled by 2 using simple bilinear interpolation because the number of 
chroma samples is half of luma. Fig. 2 shows 4x4 luma block and its neighboring pre-
encoded luma pixels and upsampled predicted chroma block. 

LN are original luma pixels and CN are upsampled collocated chroma pixels which 
are pre-encoded using chroma intra prediction scheme where N is 1, 2, 3,..,16. And 
capital alphabet characters (A, B,.., I) are pre-encoded luma neighboring pixel for 
current block and small alphabet characters (a, b,.., i) are pre-encoded upsampled 
chroma neighboring pixels. For preventing from mismatching between encoder and 
decoder, the proposed method also uses neighboring pixels which are predicted using 
intra prediction scheme. To obtain proper weight value, neighboring pixels in luma 
and chroma component are used. Equation 1 represents calculation of weight value 
used as multiplicand. 
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By using neighboring pixel to obtain weight value, no additional information to be 
transmitted is needed. After calculation of weight value, predicted image for 4x4 luma 
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These methods are applied to 16x16 luma intra prediction equally, but total number of 
neighboring pixels to calculate weight value is 33 and maximum N is 256.  

The proposed method is added to conventional intra prediction method as new ad-
ditional mode and the best intra prediction mode including the proposed mode is de-
cided using RD-constrained algorithm. To represent additional intra prediction mode, 
encoding scheme equal to H.264 intra prediction coding is used except total number 
of intra prediction mode is increased by one for both 4x4 and 16x16 luma prediction. 
And after obtaining predicted image, residual coding is followed to conventional 
H.264/AVC intra coding standard equally. 

3   Experiment Results  

In this paper, we add the proposed intra method into the conventional 4x4 and 
16x16 luma intra prediction modes. And for evaluation of performance improve-
ment, we test Rate-Distortion (RD) performance for 5 sequences (mobile, foreman, 
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football, crew, waterfall) with different size of QCIF and CIF and 4(city, crew, 
harbour, soccer) 4CIF sequences. The proposed method focuses on intra prediction 
and so we encode every frame as I-frame and don't use I_PCM option. As com-
mented above, the proposed method is not applied into chroma component and 
 

 

Fig. 3. RD curves for Crew (QCIF) 

 

Fig. 4. RD curves for Foreman (CIF) 
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Fig. 5. RD curves for Waterfall (CIF) 

 

Fig. 6. RD curves for City (4CIF) 

added to 4x4 and 16x16 luma intra prediction modes. We use main profile and RD 
optimization based on JM9.2 source. For each sequence, full number of frames is 
used for simulation and framerate of every sequence is 30Hz. All sequences used 
in experiment are I420 type which means width and height chroma components are 
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half of luma component. To represent coding efficiency, we use 8 QP values (20, 
24, 28, 30, 34, 38, 42, 45) and measure bitrate for each QP value. 

Fig. 3, Fig. 4, Fig. 5 and Fig. 6 show RD curves of conventional intra prediction 
method and the proposed method for Crew (QCIF), Foreman (CIF), Waterfall 
(CIF) and City (4CIF). 

The proposed intra prediction mode shows about maximum 0.6dB enhancement 
of RD performance in Fig. 3 and maximum 0.5dB in Fig. 4. We identify the pro-
posed method improves coding efficiency of intra coding by maximum 0.1~0.6dB 
and overall experiment result is depicted in Table 1. 

Table 1. Maximum coding efficiency enhancement of the proposed method for test sequences 

Reso-
lution 

QCIF CIF 4CIF 

Name 

m
obile 

forem
an 

football 

crew
 

w
aterfall 

m
obile 

forem
an 

football 

crew
 

w
aterfall 

city 

crew
 

harbour 

soccer 

Max 
(dB) 

0.5 0.6 0.5 0.6 0.6 0.5 0.4 0.5 0.5 0.5 0.4 0.3 0.4 0.3 

 

Fig. 7. The blocks to select the proposed mode as RD-based optimal 4x4 intra prediction mode 
in mobile (CIF) 
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Fig. 8. The blocks to select the proposed mode as RD-based optimal 4x4 intra prediction mode 
in football (CIF) 

In Fig. 7 and Fig. 8, they represent the blocks which choose the proposed mode 
as RD perspective optimal 4x4 intra prediction mode in mobile (CIF) and football 
(CIF) sequences. From above results the proposed mode can yield the improve-
ment in most of intra coding blocks though its coding efficiency enhancement is 
even different for the block pattern. 

4   Discussion 

In this paper, we proposed new additional intra prediction method in H.264/AVC for 
more high coding efficiency of intra macroblock coding. The proposed method  
utilizes the correlation between luma and its collocated chroma components. In predic-
tion of luma block, predicted luma pixel value is estimated by using multiply collocated 
chroma value and proper weight value and its weight value is obtained from neighbor-
ing blocks to be encoded previously. It is based on assumption that for one small block a 
few colors are only used in general cases. By adding the proposed method into conven-
tional H.264/AVC intra prediction modes, overall RD performance is improved by 
maximum 0.6dB in sequences used for simulation. 

In inter prediction coding, the predicted block is estimated by copying block which 
is most similar to current block in reference frame. Therefore correct prediction image 
is obtained if and only if similar block exists in reference frame though current block 
has complex or irregular pattern. The proposed method is based on prediction of simi-
lar spatial pattern, but the difference is to predict luma block from chroma in same 
position. For overall frame one block with 4x4 or 16x16 is not large relatively as seen 
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Fig. 7 and Fig. 8. Therefore in one block a few colors are used and common multipli-
cation relation between luma and chroma value in one block exists.  

Additionally in the proposed method, there is one more advantage rather than con-
ventional intra prediction method. In conventional H.264/AVC intra prediction, the 
prediction image is estimated by one of prediction modes which are based on direc-
tional prediction from neighboring. This process of prediction from neighboring 
blocks is based on assumption that neighboring pixels have high similarity. But cur-
rently reference pixels in neighboring blocks used for directional prediction are recon-
structed pixel, not original pixel. So the reconstructed pixel values are different origi-
nal values and they show bigger difference between neighboring original pixel values. 
As bigger QP values are used, bigger difference between neighboring pixels and cur-
rent original pixels is represented. And its difference value is limited by integer value 
level. The proposed method uses floating value as weighting value and the predicted 
luma value can be closer to original luma value. It can lead smaller residual values 
and high coding efficiency. From Fig. 3 - Fig. 6, the proposed method shows higher 
coding efficiency for every resolution level even if additional bits must be used for 
representing additional intra prediction mode. The enhancement of coding efficiency 
means the proposed concept about relation between luma and chroma components is 
very significant. In RD optimized coding routing, the proposed intra prediction 
method can replace conventional intra prediction modes for many blocks as seen Fig. 
7 and Fig. 8. In generally more complex image is, higher coding efficiency can be 
obtained.  

From experiment result, we identify the proposed method shows best performance 
middle bitrate range. The advantages of the proposed algorithm is that there is no 
necessary additional data bits except one bit for representing additional prediction 
mode for new intra prediction mode and it can improve conventional intra coding 
performance. In this paper, the additional computation power is a little critical prob-
lem because weight value is floating point type and for its calculation division opera-
tion is needed. Floating point type division operation can be serious from complexity 
point of view. 

5   Conclusion 

In this paper, new intra luma prediction coding method is proposed to improve coding 
efficiency. The proposed method utilizes relation luma and chroma in one small block 
and we can conclude from experimental results that the proposed relation is very 
significant. The main advantage of the proposed method is to improve coding effi-
ciency of intra coding without complex modification of conventional intra coding 
standard. Therefore the proposed method is very useful for video coding and it can be 
extended to various video coding methods. 

Acknowledgment 

The presented research is supported by INHA UNIVERSITY Research Grant. 



 New Intra Luma Prediction Mode in H.264/AVC 353 

References 

1. ISO/IEC 14496.10:2003, Coding of Audiovisual Objects. Part 10: Advanced Video Coding, 
2003, also ITU-T Recommendation H.264 "Advanced video coding for generic audiovisual 
services."  

2. ISO/IEC 15441-1:2000, Information Technology: JPEG 2000 Image Coding System. Part 1: 
ISO/IEC-Core Coding System. 

3. ISO/IEC 13818-2:2000, Information technology -- Generic coding of moving pictures and 
associated audio information: Video. 

4. ISO/IEC 14496-2:2004, Information technology -- Coding of audio-visual objects -- Part 2: 
Visual. 

5. G. J. Sullivan and T. Wiegand, "Rate-Distortion Optimization for Video Compression," 
IEEE Signal Processing Magazine, pp. 74--90, Nov. 1998. 



Fast Mode Decision for H.264/AVC Using Mode
Prediction

Song-Hak Ri and Joern Ostermann

Institut fuer Informationsverarbeitung, Appelstr 9A, D-30167 Hannover, Germany
ri@tnt.uni-hannover.de

ostermann@tnt.uni-hannover.de

Abstract. In this paper, we present a new method to speed up the mode
decision process using mode prediction. In general, video coding exploits
spatial and temporal redundancies between video blocks, in particular
temporal redundancy is a crucial key to compress video sequence with
little loss of image quality. The proposed method determines the best
coding mode of a given macroblock by predicting the mode and its rate-
distortion (RD) cost from neighboring MBs in time and space. Compared
to the H.264/AVC reference software, the simulation results show that
the proposed method can save up to 53% total encoding time with up
to 2.4% bit rate increase at the same PSNR.

1 Introduction

Video coding plays an important role in multimedia communications and con-
sumer electronics applications. The H.264/AVC is the latest international video
coding standard jointly developed by the ITU-T Video Coding Experts Group
and the ISO/IEC Moving Picture Experts Group. It can achieve higher coding
efficiency than that of previous standards, such as MPEG-4 and H.263 [1].

However, it requires a huge amount of computational loads due to use of the
variable block-size motion estimation, intra prediction in P slice coding, quarter-
pixel motion compensation, multiple reference frames, etc. The complexity anal-
ysis described in [1] shows that examining all possible modes takes the most
time out of the total encoding time. Hence, fast mode decision making becomes
more and more important.

H.264/AVC Baseline profile employs seven different block sizes for inter frames.
The size of a block can be 16×16, 16×8, 8×16, or 8×8, and each 8×8 can be further
broken down to sub-macroblocks of size 8×8, 8×4, 4×8, or 4×4, as shown in Fig.1.
To encode a given macroblock, H.264/AVC encoder tries all possible prediction
modes in the following order; SKIP, Inter16×16, Inter16×8, Inter8×16, Inter8×8,
Inter8×4, Inter4×8, Inter4×4, Intra4×4, Intra8×8, Intra16×16. The SKIP mode
represents the case in which the block size is 16×16 but no motion and no residual
information are coded. Except for SKIP and intra modes, each inter mode decision
requires a motion estimation process.

In order to achieve the highest coding efficiency, H.264/AVC uses rate distor-
tion optimization techniques to get the best coding results in terms of maximizing
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8x8 8x4 4x8 4x4

8x88x1616x816x16

Fig. 1. Variable block sizes in H.264/AVC

coding quality and minimizing coded data bits. The mode decision is made by
comparing the rate distortion cost of each possible mode and by selecting the
mode with the lowest rate distortion cost as the best one.

The existing fast mode decision algorithms can be classified into two cate-
gories: The first class is to find the optimal mode by using some features, such
as texture and edge information, which are computed from the raw video data.
D. S. Turaga et al [5] and J. Chen et al [2] introduce the so-called mean removed
mean absolute difference (mrMAD) and use the feature to make fast intra and
inter mode decision. In [6], the 3×3 Sobel operator is used to get the edge map
of a whole frame. The edge map and the gradient are both employed to find the
best interpolation direction as the best intra mode. They also use the edge map
to determine whether a macroblock is homogeneous in order to find the best
inter mode. However, the algorithm has to evaluate all the pixels in the whole
frame and it leads to high computational complexity.

The second class is trying to make full use of the relationship among the
modes and predicts the best mode by using the already checked modes and their
statistical data. A representative method [4] of such class divides all modes into
3 groups. Using one mode from each group, the best group is determined. All
modes of the best group are evaluated to determine the best mode selection. Thus
the number of candidate modes is greatly reduced. In [3], the most probable mode
is predicted based on the observation that most modes are spatially correlated
in a given frame. If the predicted mode satisfies some conditions which estimate
if the predicted mode is the best mode, the encoder codes the macroblock with
the predicted mode. Thus it can skip all of the calculations on other modes.

Based on the analysis above, we propose a novel algorithm to determine the
best mode based on RD optimization by using the combination of spatial and
temporal mode prediction. We investigate whether it is possible to temporally
or spatially predict the best mode.

This paper is organized as follows: Section 2 shows a consideration about the
possibility of mode prediction for fast mode decision. In Section 3, we propose a
new mode decision scheme by combined mode prediction, and finally, experimen-
tal results and conclusions are presented in Section 4 and Section 5, respectively.
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2 Mode Prediction

Video coding is achieved by reducing spatial and temporal redundancies between
video frames. This implies indirectly that a mode of a given macroblock (MB
hereafter) also might be correlated to that of MBs neighboring in space and
time. It was noted that there was a spatial mode correlation between a given
MB and its neighboring MBs and, therefore, it is possible to spatially predict a
mode of the MB [3].

Since a video sequence contains, in general, more redundancies in time domain
than in space domain, we stipulate that temporal mode correlation is higher
than spatial mode correlation. Thus we consider spatial, temporal and spatial-
temporal prediction of the best mode for a given MB.

In order to do that, we must answer these two questions:

1. How high is the correlation of spatial and temporal modes?
2. Is it necessary to consider all modes for the mode prediction?

Let’s mark the current MB as X , collocated MB of X in the previous frame
as X−1 and neighboring MBs as A, B, C and D (see Fig.2).

To compare correlation of both mode predictions, let’s define the following 3
events:

ES : Modes of 2, 3 or 4 MBs out of A, B, C and D are the same as
the RD-optimal mode of X .

ET : The mode of X−1 is the same as the RD-optimal mode of X .
EC : ES ∪ ET

Here, ES , ET and EC mean spatial, temporal and combined mode events.
Table 1 shows the probabilities (PS , PT and PC) of each event for the video se-
quences container, mother&daughter, stefan, mobile, foreman and
coastguard.

In Table 1, it is found that the probability of spatial mode prediction is
lower than the probability of temporal mode prediction and, of course, com-
bined mode prediction is also greater than spatial or temporal mode correla-
tion. In the case of sequences such as container and mother&daughter, which
are characterized by slow and smooth motion, the probability of a spatial mode
event is similar to the temporal mode event. In the case of some sequences,
such as foreman and coastguard, which are characterized by fast motion, the
probability of a spatial mode event is far lower than that of the temporal mode
event. The table tells us that by using combined mode correlation, the encoder
can predict the best mode of a given MB more frequently than by using spatial
mode correlation. From now on, the combined mode prediction will be called
mode prediction.

To answer to the second question, let’s calculate the probability of an event
where the predicted mode of a given MB is SKIP, Inter16×16, Inter16×8,
Inter8×16, Sub8×8, Intra4×4 and Intra16×16, under the condition that
X has the same prediction mode with X−1 (see Table 2). Let’s mark the
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A
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−X 1

Fig. 2. The current MB X, its collocated MB X−1 of the previous frame, and neigh-
boring MBs, A, B, C and D

Table 1. Comparison of an occurrence probability of spatial, temporal and combined
mode events, QP (Quantization Parameter)=28, QCIF, 100 frames

Sequences PS(%) PT (%) PC(%)
container 46.9 53.6 68.7
mother-daughter 33.8 40.3 56.5
stefan 13.8 31.2 41.7
mobile 10.2 27.4 35.5
foreman 8.8 29.8 34.2
coastguard 8.5 24.0 32.1

Table 2. Statistics of modewise-temporal mode correlation in case X and X−1 have
the same RD-optimal mode (unit=%), QP=28, QCIF, 100 frames

Sequences PSKIP PInter16×16 PInter16×8 PInter8×16 PSub8×8 PIntra4×4 PIntra16×16

container 79.5 9.4 3.6 3.7 3.7 0.0 0.1
mother-da. 64.9 16.6 6.1 6.9 5.2 0.1 0.0

stefan 21.1 32.2 10.3 15.1 20.2 0.6 0.5
mobile 17.4 27.2 13.1 10.2 31.7 0.1 0.4
foreman 12.3 39.8 13.5 11.7 22.4 0.2 0.1

coastguard 3.4 19.7 16.0 14.2 46.6 0.0 0.0

probability P (SKIP|X=X−1) as PSKIP , P (Inter16×16|X=X−1) as PInter16×16,
... ,P (Intra4×4|X=X−1)asPIntra4×4 andP (Intra16×16|X=X−1)asPIntra16×16.

As seen in Table 2, when the predicted mode of X equals the actual best
mode, which can be calculated by the exhaustive mode decision of JM ref-
erence software, the occurrence probabilities of Intra4×4 and Intra16×16 are
very low. This probability is also very low at other QP values, too. There-
fore, we don’t use the predicted modes, Intra4×4 and Intra16×16, as candi-
dates for the best mode of a given MB, if the predicted mode is Intra4×4 or
Intra16×16.
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3 Fast Mode Decision by Mode Prediction

The most important thing for applying mode prediction to fast mode decision is
to make sure that the predicted mode is the best mode for a given MB. So far,
there have been several ways to decide whether the predicted mode is the best
mode of the MB or not.

The most common method [3] adopts a threshold value derived from the RD
cost which is already calculated. The threshold is set to an average of RD costs
of neighboring MB with the same mode and it is compared with the RD cost
of the given MB X with the predicted mode to estimate if it is the best mode.
Another method [7] adopts the square of the quantization parameter (QP) as a
threshold to decide whether the predicted mode is to be used.

For the sequence foreman, the RD cost difference between the spatially pre-
dicted mode and the optimal mode is shown in Fig 3. The size of this difference
does not necessarily depend on the actual RD cost. Therefore, a threshold based
on neighboring MBs or QP should not be used for evaluating the quality of the
predicted mode.
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Fig. 3. Relationship between RD cost of X and average RD cost of neighboring MBs
with the same mode (spatial RD cost prediction)

We use the RD cost of X−1 as the threshold. Fig.4 intuitively shows a rela-
tionship between the actually optimal RD cost of X and the optimal RD cost
of X−1 when the optimal mode of X is the same as one of X−1. From Fig. 5
and Table 3, it also should be noted that the correlation of both RD costs is
great even in the case that the optimal mode of X−1 is not the same as one of
X , which means that optimal RD cost of a MB can be predicted by one of the
previous MB.
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of X is the same as one of X−1
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Fig. 5. Relationship between RD cost of X and RD cost of X−1

Such a relationship can be seen in the comparison of the following three cor-
relation coefficients; correlation coefficient (ρS) between the spatially predicted
RD cost and the optimal RD cost, correlation coefficient (ρT ′) between the ac-
tually optimal RD cost of X and the optimal RD cost of X−1 when the optimal
mode of X is the same as one of X−1, and correlation coefficient (ρT ) between
the actually optimal RD cost of X and the optimal RD cost of X−1. Table 3
shows that a temporal correlation is greater than a spatial one.
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Table 3. Comparison of three correlation coefficients in QCIF and CIF format

QCIF CIF
Sequences ρS ρT ′ ρT ρS ρT ′ ρT

foreman 0.722 0.949 0.922 0.683 0.952 0.939
coastguard 0.772 0.942 0.933 0.560 0.934 0.921

stefan 0.870 0.969 0.957 0.779 0.975 0.972
mother-daughter 0.814 0.979 0.964 0.789 0.987 0.976

mobile 0.485 0.974 0.970 0.358 0.964 0.965
container 0.764 0.988 0.976 0.508 0.993 0.983
average 0.738 0.967 0.954 0.613 0.968 0.959
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Fig. 6. Probabilities at which the chosen, the eliminated candidate or other mode is
the same as the RD-optimal mode (average probability in the case of other mode)

Another problem in using mode prediction might be error propagation, due
to the misprediction of the best mode. To prevent the propagation of mode
prediction errors, it is expected that an exhaustive mode decision will be carried
out periodically. In the experiment of the proposed algorithm, a phenomena of
error propagation is likely to happen more frequently in video sequences with
smooth and slow motion, resulting in some increase of the total bit rate.

The last problem of mode prediction is that using only one predicted mode to
decide upon the best mode could be unstable. It has been observed that sometimes
temporal mode prediction shows better result than spatial one, and also vice versa.
Therefore we apply two mode candidates, mt and ms, predicted temporally and
spatially to a given MB and choose the mode with the lower RD cost. Fig. 6 shows
the three probabilities: the red curve is the probability that the chosen candidate,
mt or ms, is the best mode, the blue curve the probability that the other mode, mt

or ms, is the best one and the green curve shows the probability that a different
mode is the best mode. As one can see, the probability that the chosen candidate
is the best mode is far higher than the probability of a different mode.
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The proposed algorithm is as follows:
Step 1: if the current frame is an exhaustive mode decision frame, check all

modes and stop mode decision.
Step 2: get two predicted modes, mt and ms, from temporal and spatial mode

predictions.
Step 3: get the RD cost, RDPred, of the collocated MB in the previous frame

with its already known best mode.
Step 4: if both predicted modes are the same, apply it to the current MB,

otherwise, compare the two RD costs by applying both and choose the
better one.

Step 5: if the chosen RD is lower than the threshold, TH = α · RDPred,
set it to the best mode and stop, otherwise check all other modes
(here, α is a positive constant derived from experiment).

4 Experimental Results

The proposed fast mode decision scheme was implemented in H.264/AVC refer-
ence software JM 10.1 baseline profile for performance evaluation. The experi-
mental conditions are as follows:
Software & Profile : H.264/AVC reference software JM 10.1 Base-line
Sequences : container, coastguard, stefan, foreman, mobile,

mother&daughter
Video Format : QCIF, CIF
ME Strategy : Full Motion Estimation

The proposed algorithm was evaluated based on the exhaustive RDO mode
decision of H.264/AVC in the following performance measures:
- Degradation of image quality in term of average Y-PSNR: $PSNR (dB)
- Increase of bit rate: +Bits (%)
- Prediction rate: PR (%)

PR =
NPred

NTotal
× 100(%),

where, NTotal is total number of MBs and NPred is the number of the mode
prediction successes.
- Encoding time saving: TS (%)

TS =
TREF − TPROP

TREF
× 100(%),

where, TREF and TPROP are the total encoding times of REFerence and PRO-
Posed method, respectively.

In the experiment, the exhaustive mode decision is implemented at an interval
of 10 frames, to prevent error propagation. α is set to 1.1.

We compared the performance of the proposed method with that of an al-
ternative method which is based on spatial mode prediction [3]. For the QCIF
video format, Table 4 shows that the proposed algorithm can achieve 44% of
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Table 4. The comparison in the performance measures, QP=24, QCIF, 100 frames,
where the alternative method is spatial mode prediction based method [3]

Alternative Proposal
sequences �PSNR(dB) +Bits(%) TS(%) �PSNR(dB) +Bits(%) TS(%) PR(%)
mobile -0.05 3.6 24.6 0.00 1.4 42.5 45.6
stefan -0.06 4.7 29.6 0.04 1.9 43.2 49.6

foreman -0.01 3.5 26.5 -0.05 2.9 35.3 37.8
mother-da. -0.03 3.9 35.3 -0.02 1.2 46.4 51.5
container -0.02 3.7 26.2 0.01 1.7 35.1 40.7

coastguard -0.01 2.3 23.3 -0.02 2.0 35.3 38.9
average -0.03 3.6 27.6 -0.01 1.9 39.6 44.0

Table 5. The comparison in the performance measures, QP=24, CIF, 100 frames,
where the alternative method is spatial mode prediction based method [3]

Alternative Proposal
sequences �PSNR(dB) +Bits(%) TS(%) �PSNR(dB) +Bits(%) TS(%) PR(%)
mobile -0.10 3.1 29.7 -0.01 2.9 52.9 58.3
stefan -0.08 3.7 28.6 -0.02 2.5 47.4 55.5

foreman -0.09 3.5 38.2 -0.05 2.1 41.6 49.8
mother-da. -0.03 3.9 46.3 -0.03 1.6 46.0 52.4
container -0.10 3.3 37.5 -0.05 2.6 48.2 55.6

coastguard -0.10 2.3 26.1 -0.10 1.8 51.5 63.6
average -0.08 3.3 34.4 -0.04 2.4 47.9 55.9
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average time savings in total encoding time with 0.01dB of PSNR degradation
and 1.9% of extra bits. For the CIF video format, Table 5 shows better perfor-
mance compared to that of the QCIF case resulting in about 48% of time saving
with 0.04dB PSNR degradation and 2.4% of extra bits. The proposed algorithm
shows better performance than that of the alternative algorithm [3], which is
achieving about 27% of average time savings, 0.03dB of PSNR degradation and
3.6% of extra bits for QCIF sequences, and 35% of average time savings, 0.08dB
of PSNR degradation and 3.3% of extra bits for CIF sequence.

Table 4 and Table 5 also show that prediction rate of the best mode de-
pends on the contents and resolutions of video sequence, that is, how slow or
fast motion is, and how fine the spatial resolution is. Fig 7 shows the rate-
distortion performance of the three algorithms, the exhaustive method, alter-
native method (based on spatial mode prediction) and the proposed method.
The curve shows that the proposed algorithm has better RD efficiency than the
alternative method, achieving similar efficiency to the exhaustive method.

5 Conclusions

In this paper, we proposed a new method to speed up mode decision process
using mode prediction. The proposed method determines the best coding mode
of a given macroblock by predicting the mode and its RD cost from neighboring
MBs in time and space. Compared to the H.264/AVC reference software, the
simulation result shows that the proposed method can save up to 53% of the
total encoding time with up to 2.4% bit rate increase at the same PSNR.
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Abstract. Employing block-based motion models in scalable video coding 
based on spatial-domain motion-compensated temporal filtering (SDMCTF) in-
troduces artificial block-boundary discontinuities that adversely affect the video 
compression performance, particularly at low bit-rates. This paper focuses on 
the problem of deblocking in the context of SDMCTF-based video coding. One 
possible solution to this problem is the use of overlapped-block motion com-
pensation (OBMC). An alternative solution is applying an adaptive deblocking 
filter, similar to the one used in H.264. With this respect, a novel adaptive de-
blocking filter, tailored to SDMCTF video coding is proposed. In terms of vis-
ual-quality, both approaches yield similar performance. However, adaptive de-
blocking is less complex than OBMC, as it requires up to 34% less processing 
time. Experimental results show that the two techniques significantly improve 
the subjective and objective quality of the decoded sequences, confirming the 
expected benefits brought by deblocking in SDMCTF-based video coding.  

1   Introduction 

Scalable video coding based on SDMCTF simultaneously provides resolution, quality 
and frame-rate scalability and yields a compression performance comparable to that 
of H.264, the state-of-the-art in single-layer video coding [1], [2]. These scalable 
video codecs typically employ block-based motion models in the motion-
compensated temporal filtering process. It is well known that when such motion mod-
els fail to capture the true motion, block-boundary discontinuities are introduced in 
the predicted frames. These artificial discontinuities propagate in the high-pass tem-
poral frames (H-frames) produced by temporal filtering. The H-frames are subse-
quently wavelet transformed and entropy coded. Due to the global nature of the  
spatial wavelet transform, the wavelet bases overlap the discontinuities, generating a 
large number of high-amplitude high-frequency coefficients, synthesizing these dis-
continuities. These coefficients are expensive to code, and quantizing them causes 
visually disturbing blocking artefacts in the decoded video, particularly when operat-
ing at low bit-rates.  

One possible approach to alleviate this problem is to reduce the blocking artefacts 
by using overlapped-block motion compensation [3] in the predict step performed by 
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the temporal lifting transform. However, a known drawback of OBMC is a significant 
increase in the computational complexity of the employed motion model. An alterna-
tive solution is the use of an adaptive deblocking filter. This technique was adopted in 
H.264 to suppress the block-boundary discontinuities introduced by its block-based 
motion model and texture coding [4], [5]. Contrary to OBMC, which requires the 
execution of a large number of multiplications, H.264 deblocking can be implemented 
using only additions, shifts and conditional expressions. This suggests that adaptive 
deblocking is computationally more efficient than OBMC. However, the direct appli-
cation of H.264’s deblocking filter in a wavelet-based video codec is not possible, 
given the differences between the two coding architectures. For this reason, a novel 
adaptive deblocking filter, tailored to the targeted SDMCTF-based architecture is 
introduced in this paper. The paper compares the compression performance and the 
computational complexity of OBMC versus adaptive deblocking in the context of 
scalable SDMCTF-based video coding. The significant performance improvements 
offered by both approaches confirm the expected benefits brought by deblocking in 
wavelet-based video coding.  

The paper is structured as follows: in the following section, we overview the 
SDMCTF video codec and describe the two approaches used to perform deblocking – 
OBMC and adaptive deblocking. An overview of OBMC is given in section 3, while 
section 4 describes the proposed deblocking filter. The experimental comparison 
between the two deblocking techniques is presented in section 5. Section 6 draws the 
conclusions of this work.  

2   Performing Deblocking in SDMCTF-Based Video Coding 

Motion-Compensated Temporal Filtering (MCTF) [6], [7], [8] begins with a separa-
tion of the input video sequence into even and odd temporal frames (temporal split), 
as illustrated in Fig. 1. The assumed motion model is a variable-size block-based 
motion model employing no intra-prediction. The temporal predictor performs  
motion-compensated prediction to match the information in frame 2 1tA +  with the 
information present in frame 2tA . The difference between the two is the high-pass 
temporal frame (or error-frame) tH . Subsequently, the motion-compensated update 
operation inverts the prediction-error information back to frame 2tA , thereby produc-
ing the updated frame tL . The update operation uses either the inverse vector set 
produced by the predictor, or generates a new vector set via backward motion estima-
tion. The process iterates on the tL  frames, following the multilevel operation of the 
conventional lifting, thereby forming a hierarchy of temporal levels for the input 
video. Finally, the high-pass temporal frames tH  produced at each temporal level and 
the tL  frame(s) at the highest temporal level are spatially wavelet-transformed, quan-
tized and entropy coded.  

To prevent the wavelet bases from overlapping block-boundary discontinuities, a 
deblocking operation must precede the spatial wavelet-transform. In other words, the 
predicted frame needs to be free of block-boundary discontinuities prior to any spatial 
global transform. A possible solution is to employ overlapped-block motion-
compensation in the predict step of the temporal transform. An alternative solution is 
to apply a deblocking technique directly after the predict-step of the temporal lifting 



366 A. Munteanu et al. 

transform, as illustrated in Fig.1. In both approaches, the blocking artefacts are sup-
pressed prior to wavelet-based coding of the H-frames, which is expected to result in 
an improved coding performance. This is to be confirmed experimentally.  

Notice that one does not consider additional deblocking after the update step. In-
deed, given the typically high-frequency characteristics of the H-frames, the blocking 
artefacts introduced in the update step are likely to be far less severe than those intro-
duced in the predict-step.  
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Fig. 1. SDMCTF video coding architecture; deblocking of the tH  frames can be performed in 
the predict step via OBMC or via adaptive deblocking preceding the spatial wavelet transform 

3   Overlapped-Block Motion Compensation 

The underlying assumption used in block-based motion models is that each block of 
pixels follows a uniform translational motion. Since this assumption is often invalid, 
block boundary discontinuities are created [3]. A possible solution to this problem is 
given by OBMC, which was first introduced in [9] and [10] and later formalized in [3].  

A summary of OBMC is given next. The technique is described for a simple mo-
tion model, wherein only one block size and one reference frame are supported and a 
single motion vector is produced. The extension to more complex models is straight-
forward. The following notations are introduced: 

• ( ),pI x y : the pixel value at position ( ),x y  in the predicted frame; 
• ( ),rI x y : the pixel value at position ( ),x y  in the reference frame; 
• 0B : the currently visited block in the predicted frame; 
• 1B , 2B , 3B , 4B : the blocks to the left, to the right, above and below 0B ; 

• ( ),B B
B x yMV mv mv= : the motion vector associated to block B  in the predicted frame. 

Using classical motion compensation, the pixel values ( ),pI x y′ ′  in the currently 
visited block 0B  are calculated as: 

( ) ( ) ( )0 0
0, : , ,B B

p r x yx y B I x y I x mv y mv′ ′ ′ ′ ′ ′∀ ∈ = − − . (1) 

Each pixel belonging to 0B  is assigned the same motion vector, regardless of its 
position in the block. This means that the algorithm uses only a minimal fraction of 
the available motion information to estimate the true motion in each pixel, which is a 
sub-optimal approach.  
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OBMC on the other hand, uses the block’s own motion vector as well as the mo-
tion vectors from neighboring blocks to approximate the true motion in each pixel of 
the block. The pixel values ( ),pI x y′ ′  belonging to the currently predicted block 0B  
are calculated as: 

( ) ( ) ( ) ( )
4

0
0

, : , , ,i i

i

B B
p B r x y

i

x y B I x y h x y I x mv y mv
=

′ ′ ′ ′ ′ ′ ′ ′∀ ∈ = ⋅ − − . (2) 

The weight function ( ),
iBh x y , with ( )0 , 1

iBh x y≤ ≤  and ( ), 1
iBi

h x y = , ex-
presses the probability that 

iBMV  corresponds to the true motion at position ( ),x y . 
The function ( ),

iBh x y  is symmetric around the center of its associated block iB  
since it is assumed that the probability that 

iBMV  is the true motion at position ( ),x y  
only depends on the distance of ( ),x y  to the center of iB .  

Equation (2) states that (a) the motion vector 
0BMV , associated to the current block 

0B , and the motion vectors ,1 4
jBMV j≤ ≤ , associated to the neighboring blocks of 

0B , are all used in the motion-compensated prediction, and (b) the weight of each 
prediction contribution ( ),i iB B

r x yI x mv y mv− −  is determined by the probability that 

iBMV  represents the true motion at position ( ),x y . This approach significantly in-
creases the accuracy of the motion-compensated prediction and prevents the manifes-
tation of strong block-boundary discontinuities.  

4   Proposed Adaptive Deblocking Filter 

The adaptive deblocking filter used in H.264 [4], [5] served as basis for the design of 
the proposed deblocking filter. The H.264 deblocking filter consists of two parts: (1) 
the decision logic that determines whether filtering is turned on or off and that con-
trols the filtering strength and (2) the filtering procedure itself. The decision logic 
cannot be reused in its original form given the differences between the H.264 coding 
architecture and SDMCTF. Indeed, in wavelet-based video coding, the block-based 
motion model is the only source of blocking artefacts. On the other hand, in H.264, 
blocking artefacts are not only caused by block-based motion compensation but also, 
to a larger extent, by the block-based DCT-transform and texture coding. Secondly, 
H.264’s motion model supports intra-prediction, while it is assumed that the one em-
ployed by the targeted wavelet-based codecs does not. Our solution therefore only 
reuses the filtering procedure from the original H.264 deblocking filtering, while the 
decision logic is adapted to the targeted SDMCTF-based video coding architecture.  

The proposed deblocking filter visits the macro-blocks in raster scan order. The al-
gorithm scans the composing sub-blocks of the currently visited macro-block and 
stores the coordinates of their bottom and right edges in a list of block boundaries. 
Block boundaries coinciding with the edges of the frame are discarded. The stored 
block boundaries are thereafter processed by the deblocking filter. The decision to 
enable or disable filtering for a block boundary a bB B  between two blocks aB  and bB  
is based on the motion information associated to these blocks. Specifically, filtering is 
disabled only if the following conditions are met:  
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• aB  and bB  are predicted using the same prediction hypothesis; 
• aB  and bB  are motion-compensated from the same reference frame(s); 
• the difference in block motion between aB  and bB  is smaller than one luma sample.  

This decision is justified since, if the above conditions hold, the blocks used to pre-
dict aB  and bB  are either adjacent or interpolated from adjacent blocks, so that block 
edge discontinuities do not occur.  

Ba Bb

1q

0p1p
2p

0q
2q

Ba BbBa Bb

1q

0p1p
2p

0q
2q1q

0p1p
2p

0q
2q1q

0p1p
2p

0q
2q

 

Fig. 2. A line of samples crossing the block boundary 

If filtering is enabled for a bB B , the algorithm sequentially visits each line of sam-
ples crossing the block boundary, as illustrated in Fig. 2. First, the optimal filtering 
strength is estimated based on the local strength of the block edge discontinuity that 
needs to be suppressed. Let us denote by 2 1 0 0 1 2, , , , ,p p p q q q  a line of sample values 
crossing the block boundary, as depicted in Fig.2. The local strength of the block edge 
discontinuity BDS  is then estimated as: 

0 0 1 1BDS p q p q= − + − . (3) 

In our solution, the deblocking filter strength DS  must be an integer value be-
tween 0 and max 36DS = . When DS  is set to zero, filtering is turned off. The follow-
ing function is used to calculate DS , given BDS : 

max maxmin ,
BDS

DS DS DS
α

= ⋅ . (4) 

If BDS α≤ , DS  is a linear function of BDS . If BDS  is larger than α , DS  is 
set to its maximum value. The optimal value for α  is determined experimentally.  

Once the filtering strength is determined, the line of samples is effectively filtered. 
For chrominance frames, the deblocking filter only influences pixel values 0p  and 

0q . On the other hand, for luminance frames the deblocking filter can alter up to 2 
pixel values on either side of the block boundary. Pixel values 0p  and 0q  are always 
modified by the filter, but constraint (5) below must hold before 1p  is altered and 
constraint (6) must be satisfied before 1q  is modified:  

( )2 0p p DSβ− < , (5) 

( )2 0q q DSβ− < . (6) 
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In equations (5) and (6), ( )DSβ  is a threshold value that depends on the deblock-
ing strength DS . The values of ( )DSβ  are derived from H.264 deblocking filter’s 
lookup table for ( )IndexBβ , with Index 15B DS= +  [4], [5]. This explains the value 
of maxDS . Constraints (5) and (6) ensure that 1q  and 1p  are only modified if the sig-
nal on either side of the boundary is relatively smooth. This prevents excessive blur-
ring of highly textured regions.  

Table 1. Detailed description of the filtering process for luminance frames  

Modified 
pixel value 

Conditions Δ  c  

0p  None ( )( ) ( )( )0 0 1 12 4 3q p p q− << + − + >>  ( )0c DS  

0q  None ( )( ) ( )( )( )0 0 1 12 4 3q p p q− − << + − + >>  ( )0c DS  

1p  ( )2 0p p DSβ− <  ( )( ) ( )( )2 0 0 11 1 1 1p p q p+ + + >> − << >>  ( )1c DS  

1q  ( )2 0q q DSβ− <  ( )( ) ( )( )2 0 0 11 1 1 1q p q q+ + + >> − << >>  ( )1c DS  

Table 2. Detailed description of the filtering process for chrominance frames 

Modified 
pixel value 

Conditions Δ  c  

0p  None ( )( ) ( )( )0 0 1 12 4 3q p p q− << + − + >>  ( )1 1c DS +  

0q  None ( )( ) ( )( )( )0 0 1 12 4 3q p p q− − << + − + >>  ( )1 1c DS +  

The variable-strength filtering is implemented in the same way for luminance and 
chrominance frames. The filtered pixel-value { }1 0 0 1, , , ,p p p p q q′′ ′′ ′′ ′′ ′′ ′′∈  replacing the 
original pixel value { }1 0 0 1, , , ,p p p p q q∈  is calculated in three stages, as follows: 

• In the first stage, the filtering operation is applied, leading to the filtered sample 
{ }1 0 0 1, , , ,p p p p q q′ ′ ′ ′ ′ ′∈ .  

• From this, the difference p p′Δ = −  between the filtered and original pixel values 
is calculated. Δ  is thereafter clipped to the interval [ ],c c− , where c  is propor-
tional to the global deblocking strength DS . This clipping stage ensures that the 
applied filtering strength is proportional to DS .  

• The filtering process is completed by adding the clipped difference ′Δ  to the cor-
responding { }1 0 0 1, , , ,p p p p q q∈ ; the resulting pixel value { }1 0 0 1, , , ,p p p p q q′′ ′′ ′′ ′′ ′′ ′′∈  
replaces the original pixel value.  

A detailed overview of the filtering operations is given in Table 1 for the lumi-
nance frames and in Table 2 for the chrominance frames. For each of the pixel values 
affected by the filtering, Table 1 and Table 2 list the conditions that need to be met 
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before the pixel value is effectively altered, the expression used to calculate Δ  and 
finally, the value of c  used in the clipping stage.  

The threshold ( )1c DS  is proportional to the global deblocking strength DS . The 

lookup-table for ( )1c DS  is constructed from the lookup-table for ( )1 Index ,Ac B  [4], 

[5] used in the original H.264 deblocking filter, with 1B =  and Index 15A DS= + . 

The value of ( )0c DS  is initialized with the value of ( )1c DS  and is thereafter incre-

mented by one for each of the conditions (5) and (6) that is satisfied. 

5   Experimental Results 

In a first set of experiments, we compare the compression performance obtained 
with a scalable SDMCTF-based video codec equipped with (a) OBMC and (b) the 
proposed adaptive deblocking filter against the performance obtained with the 
original video codec employing no deblocking. Our video codec instantiation is the 
SDMCTF-version of the system described in [11], which employs multi-
hypothesis variable-size block-based motion estimation. The window function 
presented in [12] is used in the OBMC implementation. The deblocking filter’s α -
parameter is set to 28α = ; our experiments indicate this to be the optimum choice 
for a large range of sequences and bit-rates.  

The comparison is performed for three CIF-resolution test sequences, “Football” 
(256 frames), “Foreman” (288 frames), and “Canoa” (208 frames), all at a frame 
rate of 30 Hz. All video codecs perform a 5-level spatial wavelet transform and a 
4-level temporal decomposition. The GOP-size is fixed to 16 frames. The search 
ranges used in the motion estimation are [ ]16,15−  for the first temporal level, 

[ ]32,31−  for the second, [ ]48,47−  for the third and [ ]64,63−  for the highest level. 

The motion estimation is performed with quarter-pel accuracy. The results of the 
experiments are presented in Table 3 and Fig. 3. The reported average Peak Signal-
to-Noise Ratio (PSNR) is calculated as: 

( )4 / 6avg Y U VPSNR PSNR PSNR PSNR= ⋅ + +  (7) 

In this equation, YPSNR , UPSNR  and VPSNR  are the PSNRs of the Y, U and V 

frame-components respectively. The results show that the codecs equipped with 
the proposed deblocking filtering and with OBMC yield significantly better sub-
jective and objective quality than the original codec. The video codec equipped 
with OBMC outperforms the one using deblocking filtering by 0.2 dB on average. 
However, visual results (see Fig. 3) show that the subjective quality obtained by 
using the two approaches is practically the same. 

In the second set of experiments, the computational complexity of OBMC and that 
of the proposed deblocking filter are compared. To this end, the average time needed 
per H-frame to perform classical motion compensation followed by the proposed  
 



 Performing Deblocking in Video Coding Based on SDMCTF 371 

Table 3. Comparison between the original video codec and the codecs equipped with OBMC 
and the proposed deblocking filter 

Bit-rate 
(kbps) 

Original (dB) OBMC (dB) 
Deblocking 

(dB) 
Football 

512 30.75 31.76 31.63 
768 32.02 33.23 33.04 

1024 33.38 34.61 34.38 
1536 35.02 36.29 35.98 
2048 36.72 37.89 37.53 

Foreman 

128 31.86 32.22 32.15 
256 34.55 35.00 34.87 

512 37.15 37.56 37.38 
768 38.61 39.24 38.98 

1024 39.86 40.21 39.98 

Canoa 

256 27.36 27.99 27.88 
512 29.62 30.38 30.23 
768 30.82 31.58 31.42 

1024 31.81 32.65 32.42 
1536 33.58 34.28 34.08 

Table 4. Average time per H-frame needed to perform OBMC and adaptive deblocking 

Sequence 
MC+deblocking 

filtering (s) 
OBMC 

(s) 
Difference 

Football 0.178 0.270 34.1% 
Foreman 0.196 0.249 21.0% 
Canoa 0.222 0.318 30.3% 

 

deblocking filtering is compared to the time needed per H-frame to perform OBMC. 
All processing times are measured at the decoder side. A computer equipped with a 
Pentium-4 2.8 GHz processor and 1 GB of memory is used to run the experiments. 
The sequences, codec settings and target bit-rates employed in the first set of experi-
ments are reused in these experiments. The results are shown in Table 4. The last 
column of the table reports the relative difference in processing time when using the 
adaptive deblocking filter instead of OBMC. The results show that the deblocking 
filter requires up to 34 % less processing time per frame than OBMC.  
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Football, 768 kbps, 
frame 46 

Foreman, 512 kbps, 
frame 172 

Canoa, 1024 kbps, 
frame 74 

Original 

OBMC 

Deblocking filter 
 

Fig. 3. Visual comparison between the original video codec and the codecs equipped with 
OBMC and the proposed deblocking filter 

6   Conclusions 

The paper focuses on the problem of deblocking in SDMCTF-based video coding 
employing block-based motion models and investigates two basic approaches – 
OBMC and adaptive deblocking – to reduce the blocking artefacts and improve the 
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overall coding performance of such video codecs. Inspired by the state-of-the-art 
H.264 deblocking filter, a novel adaptive deblocking filtering technique, tailored to 
scalable video coding based on SDMCTF is introduced in this paper. Experimental 
results show that both OBMC and the proposed deblocking filter significantly im-
prove the subjective and objective quality of the decoded sequences. These perform-
ance improvements confirm the benefits brought by deblocking in SDMCTF-based 
architectures employing block-based motion models.  

Compared to the deblocking filter, OBMC improves the video coding results by an 
additional 0.2 dB on average. However, the visual quality of the decoded sequences, 
obtained using both techniques is practically identical. Moreover, from a computa-
tional complexity point-of-view, the deblocking filter is clearly a better solution than 
OBMC, as it saves up to 34 % and on average 28% processing time. To conclude, 
applying the proposed deblocking filter produces the same visual quality as using 
OBMC but requires significantly less processing time. 
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Abstract. This paper describes a pre-processing for DCT-based coders
and more generally for block-based image or video coders taking advan-
tage of the orientation of the blocks. Contrary to most solutions proposed
so far, it is not the transform that adapts to the signal but the signal
that is pre-processed to fit the transform. The blocks are oriented using
circular shifts at the pixel level. Before applying these shifts, the ori-
entation of each block is evaluated with the help of a selection based
on a rate-distortion criterion. We show that the insertion of this pre-
processing stage in an H.264 coder and applied on residual intra frames
can improve its rate-distortion performance.

1 Introduction

Image and video compression have always aimed at finding sparse representations
for the data by using transforms. The first transforms that have been introduced
were separable and simple such as the DCT and the first generation wavelets.
Simple means that these transforms are not optimal to represent image data
in a compact way and they are often redundant, but they are fast and not too
complex. This non-optimality is partly due to the fact that those transforms
are not well suited to data that have discontinuities positioned along regular
curves. In order to capture geometrical structures of images and video sequences,
many authors proposed new transforms such as curvelets, contourlets, bandelets
or directionlets, but some others improved classical transforms by taking into
account the geometrical structures within data.

The curvelets which have been introduced by Candès and Donoho [1] give
an optimal approximation of smooth images with C2 edges due to their high
degree of directionality. This transform requires a rotation and corresponds to
a 2D frequency partitioning based on the polar coordinates, which is equivalent
to a directional filter bank. It has originally been set up for the continuous
case and is not easily transferable to the discrete case. In order to override this
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problem, Do and Vetterli have proposed the contourlets [2] which have the same
geometrical structure as the curvelets but are directly defined in the discrete
case. This transform provides a multiresolution and directional analysis of a 2D
signal by using a pyramidal directional filter bank. First a redundant Laplacian
pyramidal multiresolution decomposition is performed, followed by a directional
filter bank applied on each of the subbands. These methods involve that curvelets
and contourlets are redundant and are not efficient at high bitrates.

Mallat has introduced the bandelets [3] and more recently the second genera-
tion bandelets [4], both of them being adaptive transforms. In the second gener-
ation case, a geometric orthogonal transform is applied to orthogonal wavelet co-
efficients by using a wavelet filter bank followed by directional orthogonal filters.
Each geometric direction leads to a different transform so there is a need of edge
detection and warping in order to apply the proper transform on the proper lattice.

More recently, Velisavljević and Vetterli have introduced the directionlets [5].
They work at critical sampling by applying separable filtering not only along
horizontal and vertical directions but also along cosets of numerical co-lines.
These numerical co-lines represent all the directions defined on an integer lattice.
In order to apply the filtering along these co-lines, an integer rotation defined by
the rational slope of these co-lines is performed before the horizontal filtering.
But these directionlets are not suitable for block-based transforms.

Other methods use rotation of the entire image or of some parts of an im-
age. They generally need some interpolation. Unser et al. [6] have realized fast
algorithms for rotating images while preserving high quality. These rotations
are decomposed in three translations performed with the help of convolution-
based interpolation. The most important disadvantage of these rotation method
is that, generally, information in the corners of the block is lost.

None of the methods presented before uses block-based transforms, which is
the most common in the existing standards (e.g. MPEGx, H.26x and JPEG)
because blocks have edges that introduce new discontinuities. Our goal is to
construct a block-based rotation that keeps the shape of the block in order to
apply block-based transforms.

This paper is organized as follows: in Section 2 we introduce our method and
describe the way it is applied to the blocks. In Section 3, we present our selection
of the orientation based on a rate-distortion criterion. Then, some numerical ex-
periments of our pre-processing applied on residual intra frames of H.264 are pre-
sented in Section 4 before drawing the conclusions and future work in Section 5.

2 Block Oriented Transform

All the transforms presented before try to adapt to the signal but each of them
needs some floating-point processing. Contourlets and curvelets are redundant,
bandelets need an edge detection and warp the data, rotations need interpolation.
All these drawbacks are in contrast with a perfect reconstruction. The method we
propose is a pre-processing of images or video sequences that takes advantage of
the geometrical structure of the data without warping or interpolation.
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The best-known block-based transform is the DCT which is used in most
of the image or video standards, like JPEG [7], MPEGx, H.26x like H.264-
MPEG4/AVC [8]. In this transform, the basic element is a block of coefficients
which can be of size 8x8 for the floating-point DCT like in JPEG or 4x4 for the
integer DCT in H.264. These blocks can be of different nature: real data coming
from the real images (JPEG) or residual data coming from a prediction (intra
predicted blocks of H.264). In each case these blocks still show some regular
pattern like presented on Figure Fig.1.

Fig. 1. Part of Flower (CIF) and its residual after intra prediction in H.264

Our pre-processing focuses on exploiting the orientation of these blocks with-
out using any rotation scheme which implies interpolation, but it is done by
some circular shifts at the pixel level.

2.1 Considered Orientations

We first define all the orientations that are going to be used in our scheme,
for a given block size. The orientations are selected in tables defining intervals.
Each of the intervals corresponds to a range of pre-calculated angles for the
block. In the 4x4 case, we define seven states : three states for the positive an-
gles (cf Fig.2), three states for their opposites and one more state referring to
non-oriented blocks and blocks which have not their directions in the defined
intervals (cf Tab.1).

2.2 Block Orientation

After an orientation has been defined for the block, using this table, we have to
pre-process it according to the corresponding orientation.

In state 0 nothing is done, because either the blocks are non-oriented (if their
direction is 0o or 90o), or the blocks do not have a direction that is included in
an interval defined before.



378 A. Robert, I. Amonou, and B. Pesquet-Popescu

Fig. 2. Two states for the positive angles in the 4x4 case

Table 1. All states in the 4x4 case

State Interval State Interval
1 [+14o; +27o] 2 [−27o; −14o]
3 [+40o; +50o] 4 [−50o; −40o]
5 [+63o; +76o] 6 [−76o; −63o]

0 all other interval

In all the others states, some circular shifts at the pixel level are applied
in order to perform a reorientation of the block. These circular shifts enable
us to override the problem of interpolation that exists in a rotation scheme.
Moreover, by this simple pixel rearrangement we simulate the corresponding
rotation without creating “holes” in the corners of the blocks. It is important to
note that our scheme just simulate a rotation by using shearing, it is not a real
rotation (which means to combine several shearing).

In state 1 (cf Fig.3) a circular shift on the first two pixels of the first line
of the block is performed and in state 2 (its opposite) on the last two pixels
of the first line. In states 5 and 6 the same rearrangements are employed but
on the first two columns (cf Fig.3). States 3 and 4 use more complex pixel
rearrangements. State 3 corresponds to circular shifts applied on the first pixel
of the first line and on the last pixel of the last line before applying the same
circular shift as in state 1. State 4 is the same as state 3 but applied to the
columns: shift first and last pixels of the first and last columns before applying
state 2 (cf Fig.3).

Figure Fig.3 shows that the direction of the block is coming back to 0o or 90o

after the rearrangement had been applied. The circular shifts have carried out
the simulation of the “rotation” without its disadvantages.

All the defined states can be summarized by two circular shifts: the first
one is applied on the first (1,5) or the last two pixels (2,6) of the first line
(1,2) or column (5,6), the second one is applied on the first pixel of the first
line (3) or column (4) and on the last pixel of the last line (3) or column (4)
(cf Tab.2).
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Fig. 3. Circular shifts in the 4x4 case

Table 2. All circular shifts in the 4x4 case

State Nb pixels Line/Column
First Last First Last

1/5 2 X
2/6 2 X

1 X
3/4 1 X

Same as State 1/2

3 Orientation Selection

Before we apply the pseudo-rotation, we have to select the proper orientation
for each block of our images or video sequences.

In order to select this orientation for each block, we have developed a method
based on the rate-distortion optimization (RDO) of H.264 [9]. This optimization
consists in testing all the combinations of available modes and coding the mac-
roblocks with the one that gives the best performance: the lowest distortion for
a given bitrate or the lowest bitrate for a given distortion.

The coding cost of a macroblock thus depends on two variables: rate and dis-
tortion. The macroblock rate is, in all the cases, the sum of the blocks rates that
compose it. And the distortion is always the total distortion of the macroblock
whatever the blocks sizes, it is given by the quadratic error of the reconstructed
macroblock:

D =
15∑

m=0

15∑
n=0

(
iMB(m,n)− ı̂MB(m,n)

)2 (1)
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where iMB(m,n) is the pixel (m,n) of the original macroblock and ı̂MB(m,n)
the corresponding in th reconstructed macroblock.

In H.264 and in intra coding, each 4x4 block is tested with all the nine pre-
diction modes [8] before being coded. The best prediction mode in the rate-
distortion sense is kept for the real coding stage. Compared to a traditional
coder, our pre-processing just adds combinations to be tested.

All of the orientations defined in section 2.1 are tested in all the H.264 existing
prediction modes. In other words, instead of testing each H.264 prediction mode
once, they are tested seven times, corresponding to the seven possible orientation
states (cf Tab.1). The best prediction mode with the best orientation in the rate-
distortion sense is kept for coding.

It is interesting to note that in state 0, none of the orientations being selected,
H.264 is applied as such.

This selecting method is efficient but complex in terms of rate-distortion eval-
uations: for example, for an intra block, as 9 prediction modes are defined in
H.264, a total number of 63 combinations of prediction modes with orientations
have to be tested per block. However this increase of complexity is only applied
on rate-distortion selection of the intra prediction modes of H.264 that represent
only a small part of the coding stage of H.264. The total complexity of the H.264
algorithm is not much increased.

4 Experimental Results

We have evaluated our pre-processing with the selecting method described above:
rate-distortion based selection. In these tests, we do not encode yet the orienta-
tion states (estimated at 1-2% of the bitstream, like the intra prediction modes
in H.264).

All the experiments have been conducted inside an H.264 video coder [8]
the JM10 [10] provided by the JVT, in Main profile at level 4.0, but only on
residual intra frames. In order to have only 4x4 blocks, we have forced the I4MB
mode which corresponds to a 4x4 intra-prediction with the 4x4 integer DCT.
The sequences are generated by varying the QP for intra slices over all available
values (0-51 and fixed at 28 for inter slices). They are then made up of three
images: an I, a P and a B.

The results for the sequence Container in CIF format at 15Hz are shown on
Figure Fig.4 and those for the sequence Mobile&Calendar in CIF at 15Hz on
the Figure Fig. 5.

One can see on these figures that our pre-processing improves H.264 cod-
ing at all bitrates. The PSNR improvement over H.264 ranges from 0.16dB for
the sequence Container and from 0.38dB for the sequence Mobile&Calendar at
150kbits/s, to up than 1dB at high bitrate in both case (after 2500-3000kbits/s).

Similar results have been obtained with a large number of sequences like
Akiyo, Foreman, Bus, Tempete as shown in Table Tab.3. For example, the se-
quence Tempete generates a gain of 0.30dB compared to H.264 at 200kbits/s,
and a gain higher than 0.5dB beyond 3100kbits/s or for a QP lower than 9.
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Fig. 4. Results for the sequence Container (CIF)

Fig. 5. Results for the sequence Mobile&Calendar (CIF)
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Table 3. Results for other sequences

Sequence d = 200kbits/s ΔPSNR > +0.5dB
CIF ΔPSNR = (dB) d > (kbits/s) QP <

Akiyo +0.10 1300 10
Bus +0.19 2600 9

Flower +0.32 3000 10
Football +0.24 2600 6
Foreman +0.23 1800 9
Tempete +0.30 3100 9
Sequence d = 80kbits/s ΔPSNR > +0.5dB

QCIF ΔPSNR = (dB) d > (kbits/s) QP <

Carphone +0.13 500 9
Foreman +0.23 600 7

5 Conclusion and Future Work

We have introduced a pre-processing tool for image and video block-based coders,
based on block reorientations without any use of segmentation, warping or in-
terpolation. First, an orientation is selected for each 4x4 block of our images
or video sequences by using a rate-distortion optimization. Then the block is
straightened out according to this orientation. This pseudo-rotation (shearing)
is obtained by applying simple circular shifts on the pixels of the blocks. We have
shown that this pre-processing can improve significantly DCT-based coders like
H.264.

Our next step will be to effectively encode the orientation states for each
block: we plan to use CABAC [11] and a method very similar to the one used in
H.264 for the encoding of intra prediction modes. We will also work in reducing
the complexity of the algorithm by using some measure of the orientation. We
are also going to introduce the 8x8 (FRExt [12] only) and 16x16 cases and to
extend our pre-processing to chroma components and inter frames.
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Abstract. This article presents a new algorithm for spatial deinterlacing
that could easily be integrated in a more complete deinterlacing system,
typically a spatio-temporal motion adaptive one. The spatial interpolation
part often fails to reconstruct close to horizontal lines with a proper conti-
nuity, leading tohighly visible artifacts.Our systempreserves the structure
continuity taking into account that themis-interpolated points usually cor-
respond to local value extrema.Theprocessing is based on chained lists and
connected graph construction. The new interpolation method is restricted
to such structures, for the rest of the image, a proper traditional directional
spatial interpolation gives satisfactory results already. Although the num-
ber of pixels affected by the extrema interpolation is relatively small, the
overall image quality is subjectively well improved. Moreover, our solution
allows to gain back one of the major advantages of motion compensation
methods, without having to afford their complexity cost.

1 Introduction

The video signal is transmitted over the world in interlaced frames. For technical
reasons, the TV signal frame frequency was selected according to the frequency
of the electrical power supply and the requirements concerning large area flicker.
Interlacing made it possible to cope both with the frame rate and the resolution
requirements. However, new flat panels like plasma or L.C.D are progressive ones
and thus require the display of the whole image at time t. Moreover, interlacing
also causes flicker on objects containing high horizontal frequencies. There is thus
a high interest in deinterlacing methods that allow a conversion from interlaced
to progressive. They can be classified in two major families, the methods without
motion compensation and the ones with motion compensation [1]. We will focus
here on the methods without motion compensation. Those methods can in their
turn be split in temporal, spatial and spatio-temporal adaptive methods. The
adaptive method consists in going towards the temporal method in areas where
there is no movement and towards the spatial method in moving areas [2] - [3].
The spatial interpolation part has its own limitations, mainly on the rendering of
close to horizontal lines and the technique proposed in this article addresses this
particular point. First, the existing methods are reviewed showing that the limi-
tation mentioned cannot be easily overcome. Then, in a second part we describe
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our method, based on a new extrema detection and interpolation principle. The
major improvements reached are then showed. Finally, we conclude on the cost
of the method and give some hints about the remaining work.

2 Existing Methods

From now on in the article, fin represents the interlaced input image and f̃ the
interpolated output image. (i, j) are the spatial coordinates where i represents
the line position number and j the column position number. fin is defined only
for half of the lines, i.e. for i even or odd. Many methods and solutions have been
proposed to perform spatial interpolation [4]. The first very basic one consists in
using the average of the pixels above and below the missing one to interpolate
the missing pixel, i.e. :

f̃(i, j) =
(fin(i− 1, j) + fin(i + 1, j)

2
. (1)

This method does not make it possible to reconstruct high frequencies (contours)
in a sharp way. Typically, it can introduce staircase contours, flicker or blur. To
improve this algorithm, the next idea was to make the interpolation along the
direction of contours, using the so-called E.L.A method (Edge-based Line Av-
eraging) [5]. This latter method detects the best direction Dir for interpolation
within a window centered on the missing pixel and then makes the interpolation
according to the found direction:

f̃(i, j) =
fin(i− 1, j −Dir) + fin(i + 1, j + Dir)

2
. (2)

Although it leads to a better interpolation of contours, the method still has sev-
eral limitations. Indeed, the correlation is done at the local level and remains
quite sensitive to noise. The direction of contours thus happens to be wrong
which can lead to very annoying artifacts since it disrupts the structure of thin
lines or contours. Many alternatives of this method [6] make it possible to correct
wrong direction interpolation for a majority of the pixels of the image, for in-
stance by computing the correlation between groups of pixels instead of pixel to
pixel (figure 1). However, the results of these methods always remain dependent
on the size of the window used, that determines the maximum angle allowed for
the reconstruction of the contours. On the other side, the larger the window is,
the higher the risk of bad interpolation [7]. Different existing features and met-
rics try to control an adequate window size and introduce weights to reduce the
number of false directions [8] - [9]. But methods used to calculate this weights
significantly increase the complexity of the solution. Still, all these alternatives
only bring a final minor improvement and do not allow to reconstruct correctly
close to horizontal lines and structures. This point is even more annoying in real
time where moving horizontal lines do not only look disrupted, but also instable
and highly flickering.
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Fig. 1. Principle of modified E.L.A.

Fig. 2. Block diagram of the process. The stages of the proposed method are in bold.

Our goal was thus to propose a system that solves this problem significantly
without having to pay for a motion compensation solution. The method proposed
here overcomes the limitation of the current directional spatial interpolation
method since it is not based anymore on a searching window. It also only affects
pixels values in image areas with given characteristics that cannot be handled
properly in existing methods. Typically it overrules the wrong interpolation of
close to horizontal structures, keeping the results of the traditional spatial inter-
polation where the results are already satisfactory. It can be added to a classical
spatial deinterlacing method that can itself be integrated in a motion adaptive
one (figure 2).

3 Extrema Detection

The existing methods are not able to respect the continuity of close to horizontal
thin structures. It is all the more awkward as the visual artifacts due to this
problem are often very visible (disconnection, erroneous interpolation), as shown
in the figure 3.c.

By comparing the modulus of the Fourier transform of a frame and the one
of a whole image, one can observe in the case of the frame, on the one hand the
spectrum folding phenomenon constituting the aliasing, and on the other hand
the loss of the horizontal high frequencies. The difficulty consists in locating and
reconstructing the continuity of these high frequencies structures which were par-
tially destroyed and systematically disconnected by horizontal under-sampling
(figure 3.b). Those correspond to local minima or maxima of the intensity func-
tion, in the vertical direction. The detection of these local extrema is carried out
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(a) Original image (b) Odd field (c) E.L.A. interpolation

Fig. 3. The algorithms which use a search window cannot accurately rebuild the
extrema-type structures

on the known lines of the image by comparing the value of each pixel fin(i, j)
with the values of the closest lower and higher lines fin(i−2, j) and fin(i+2, j).
Let H be the set of all maxima pixels and L the set of all minima pixels:

H = {fin(i, j) /fin(i, j) > max(fin(i− 2, j), fin(i + 2, j)) + T } (3)
L = {fin(i, j) /fin(i, j) < min(fin(i− 2, j), fin(i + 2, j))− T } (4)

T is a threshold value of minimum contrast (T = 16 in our experiments).

4 Segments and Associated Data Structure

On the same line, the extrema of the same type can form connected components
(called segments) according to the horizontal 2-connectivity (figure 4). As the
continuation of the method is not founded on the traversing and the processing
of pixels but on the traversing and the processing of segments, the traditional
two-dimensional image structure is not suitable any more and is replaced with a
high level structure: namely the segment. Each segment is an entity characterized

Fig. 4. Example of segments of the same type extracted (in black). The gray lines are
known, the white lines are to be interpolated.
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by its coordinates (line, starting column), its length and type (minimum or
maximum). The chosen data structure is a compromise between the memory
size needed and the complexity to traverse H and L. The adopted solution is an
array of lines (an entry for each frame line), each line being a chained list of the
segments extracted in the corresponding frame line.

5 Construction of Connected Graphs

This stage has two goals : first of all, a practical goal to fill the structure presented
above with all the segments, so that it can be easily traversed. Then a functional
goal to interconnect the segments of H (resp. of L) to constitute one or more
connected graphs of maxima (resp. one or more connected graphs of minima).The
traversing of the elements of (H ∪L) in the array of chained lists is done in the
video scanning direction.

A segment S on a line i has at most 6 direct neighbors of the same type: 3 on
the west side and 3 on the east side, 2 on each line i− 2, i and i + 2 (figure 5).
The distance between two neighboring segments of the same type S1 and S2 is
the Euclidean distance d(S1, S2), calculated between the closest extremities of
S1 and S2.

For a given side (west or east), S is connected to its closest neighbor. If two
neighbors are closest at the same distance, S is connected to both (figure 6).
Connections are bidirectional. An adaptive threshold is used in order to avoid
not very reliable (too long) connections. L1 and L2 being the respective lengths
of S1 and S2, the distance d(S1, S2) must check the following condition so that
S1 and S2 are connected:

d(S1, S2) < min(L1,L2) + δ (5)

In our experiments δ is fixed at 2. Connections of a segment with its neighbors
are stored in the segment itself (as pointers to segments). It should be noted that

Fig. 5. The white segment has 5 direct neighbors

Fig. 6. Connected graph derived from the segments of figure 4
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because of the intrinsic nature of local extrema, a segment cannot have more than
two neighbors for a given side.

6 Graph Reduction

The whole of the extracted graphs cannot be interpolated as it is. Certain con-
nections must be removed (figure 7), which causes the division of a graph into
several subgraphs. The graphs comprising only one segment or which are on only
one line are also removed. The suppression of connections must on the one hand
privilege subgraphs having each one a prevalent direction and on the other hand
remove the false positive ones (connections performed wrongly).

Let NW, W, SW, NE, E, SE be the directions associated to the 6 possible
connections for a segment. When performing the in-depth traversal of the graph,
let us call input direction the one by which the segment is reached. This direction
is non-existent for the starting segment of the traversal. The output directions
correspond to all connections of the segment except the input direction. The
simplification complies with the following rules :

1. If there are 2 output connections on the same side, they are removed. This
rule makes it possible not to connect potentially different structures wrongly.

2. If an output connection is on the same side that the input connection, it
is removed. This rule makes it possible to preserve only structures that are
stretched and not zigzag-like.

The subgraphs resulting from the traversal and the reduction rules are trees
with only one branch. Long rectilinear or curve structures can be thus
reconstituted.

Fig. 7. The remaining connections after the reduction of the graph of figure 6

7 Interpolation

The interpolation is the last stage (figure 8). It is carried out using a forward
(from west to east) traversing of each branch.

Let S1 and S2 be two connected segments described by their lengths L1 and
L2, their starting coordinates (YS1 ,Xstart1) and (YS2 ,Xstart2). The pixels to be
interpolated with our method correspond to the segment SI whose extremities
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Fig. 8. The segments in dark gray represent the pixels interpolated thanks to the black
neighboring segments

Fig. 9. Interpolation principle

XstartI and XendI are linearly interpolated from the extremities of the segments
S1 and S2 (figure 9).

XstartI = Xstart1 +
∣∣∣∣Xstart2 −Xstart1

2

∣∣∣∣ (6)

XendI = Xend1 +
∣∣∣∣Xend2 −Xend1

2

∣∣∣∣ (7)

f̃(i, j) =
1
2
fin

(
YS1 ,Xstart1 + E

(
j × L1

LI

))
+

1
2
fin

(
YS2 ,Xstart2 + E

(
j × L2

LI

))
(8)

j ∈ [XstartI ,XendI ]

The function E returns the nearest integer of its argument. LI is the size of the
segment to interpolate XendI −XstartI + 1. YS1 and YS2 represent the ordinates
i− 1 and i + 1 (or i + 1 and i− 1).

8 Results

The tests were carried out on a rather broad set of sequences, some coming from
originally interlace material, others from originally progressive material that has
been re-interlaced. The latter ones can be used as reference pictures to estimate
the quality of the interpolation. The extrema pixels were interpolated following
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(a) Original image (b) De-interlacing with our method

(c) Connection of minima

in the full size image

(d) Connection of maxima

in the full size image

Fig. 10. Reconstruction of thin structures using half of an original image
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(a) Original (b) E.L.A. (c) Proposed method

Fig. 11. Comparison of the 2 methods for different parts of the lighthouse image

our method, as described in previous sections, while the E.L.A. method [8] was
used to interpolate the other pixels in the image.

If we consider the results obtained on fixed images with many horizontal
details, such as the image of the lighthouse (figure 10) then we can see that
the method reconstructs the continuity of the thin structures in a much better
way than the E.L.A. method (figure 11). On the moving table tennis sequence,
the improvement is also very visible (figure 12) already on a still frame. In
real time, the benefit of our method is also noticeable since the stability of the
moving horizontal lines is assured and the traditional flicker effect of conventional
method is removed. The close to horizontal structures which are not properly
reconstructed by the traditional methods are almost identical to the structures
present in the original progressive material.
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(a) Original (b) E.L.A. (c) Proposed method

Fig. 12. Comparison of the 2 methods for different parts of the tennis sequence

The processing time hardly increases wrt the processing time of the original
E.L.A. method since the method only performs very simple computations and
since the amount of chained list data to be analysed is rather small. The added
memory required is also very minor wrt to the memory requirements for the
rest of a motion adaptive deinterlacing system. We analyzed the number of seg-
ments and the number of pixels interpolated by our method for a few sequences
(table 1). On average the percentage of pixels interpolated by our method is
about 2 % of the whole image. This low pourcentage is visible in the PSNR
comparison (table 2). Indeed, the difference between methods are more signif-
icant with the PSNR calculated only on pixels interpolated by our method.
Finaly, the subjective improvement is noticeable since the eye is very sensitive
to the continuity of the linear structures and to their flicker.
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Table 1. Number of pixels and segments interpolated by our method for one still image
and several video sequences

Extrema pixels Interpolated pixels
Sequences Size Number Number %of Number of Number %of

of pixels the image segments the image

Lighthouse 768 × 512 393216 15000 3.8 7800 9500 2.4
Car 2 576 × 720 414720 10000 2.4 3500 5000 1.2

Calendar 576 × 720 414720 18500 4.5 13000 13000 3.1
BBC 576 × 720 414720 9500 2.3 3500 7500 1.8

Table Tennis 480 × 720 345600 9000 2.6 5600 4000 1.2
American banner 480 × 720 345600 4000 1.2 1900 3600 1.0

Means 11000 2.8 5883 7100 1.8

Table 2. PSNR Comparison (1) PSNR on the whole image (2) PSNR on the pixels
interpolated by our method

Sequences Lighthouse TableTennis Starwars Motor Race
(1) (2) (1) (2) (1) (2) (1) (2)

Line average 30.28 18.17 24.23 17.09 38.04 24.24 30.29 20.31
ELA method 30.23 18.09 24.62 17.96 38.16 24.39 30.54 20.7
Our method 31.48 23.35 25.34 21.16 38.39 26.34 31.14 22.66

9 Conclusion

Our method is not based on the principle of existing methods. It thus does not
suffer from the limitations of these methods. The method aims at correcting
the most unpleasant artifacts for the human eye by detecting them directly.
It is based on the continuity of object limits in order to reconstruct them. So
the structures with strong contrast are more stable. Finally, our method can be
added to all the traditional methods to improve their weak point without a high
added cost. We still have to find an automatic adjustment of the threshold used
for the detection of the extrema according to local and global dynamics.
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Abstract. The H.264/AVC standard is a video compression standard that was 
jointly developed by the ITU-T Video Coding Experts Group and the ISO/IEC 
Motion Picture Experts Group. The H.264 video coding standard uses new 
coding tools, such as variable block size, quarter-pixel-accuracy motion 
estimation, intra prediction and a loop filter. Using these coding tools, H.264 
achieves significant improvement in coding efficiency compared with existing 
standards. Encoder complexity, however, also increases tremendously. Among 
the tools, macroblock mode selection and motion estimation contribute most to 
total encoder complexity. This paper focuses on complexity reduction in 
macroblock mode selection. Of the macroblock modes which can be selected, 
inter8×8 and intra4×4 have the highest complexity. We propose two methods 
for complexity reduction of inter8×8 and intra4×4 by using the costs of the 
other macroblock modes. Simulation results show that the proposed methods 
save about 55% and 74% of total encoding time compared with the H.264 
reference implementation when using a full search and a fast motion estimation 
scheme, respectively, while maintaining comparable PSNR. 

1   Introduction 

The H.264/AVC standard is a video compression standard that was jointly developed 
by the ITU-T Video Coding Experts Group and the ISO/IEC Motion Picture Experts 
Group [1]. To improve coding efficiency, H.264 adopts new coding tools, such as 
quarter-pixel-accuracy motion estimation (ME), multiple reference frames, a loop 
filter, variable block size (VBS), etc. [2], [3]. These tools have enabled the standard to 
achieve higher coding efficiency than prior video coding standards. The encoder 
complexity, however, increases tremendously. 

Several approaches have been proposed to reduce the complexity of the H.264 
encoder. Yin et al. proposed a method to alleviate encoder complexity caused by ME 
and macroblock mode selection [4]. Their low complexity ME algorithm consists of two 
steps. First, integer-pixel ME is carried out using enhanced prediction zonal search 
(EPZS). Then, depending on the result of the integer-pixel ME, sub-pixel ME is carried 
out within some limited areas. To achieve faster macroblock mode selection, their 
method simply examines limited modes based on the costs of inter16×16, inter8×8, and 
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inter4×4. Huang et al. proposed an algorithm to reduce the time to search the reference 
frames for ME complexity reduction [5]. For each macroblock, they analyze the 
available information after intra prediction and ME from the previous frame to 
determine whether it is necessary to search more frames. Their method can save about 
10-67% of ME computation. Ahmad et al. proposed a fast algorithm for macroblock 
mode selection based on a 3D recursive search algorithm that takes cost into account as 
well as the previous frame information [6]. This algorithm leads to a decrease of over 
30% in encoding time compared with the H.264 reference implementation. The 
bitstream length, however, increases by about 15%. 

To speed up the H.264 encoding time, we focus on complexity reduction of 
macroblock mode selection. When an 8×8 DCT is not used, the candidate macroblock 
modes are SKIP, inter16×16, inter16×8, inter8×16, inter8×8, intra16×16, and 
intra4×4. An inter8×8 mode can be further partitioned into four sub-macroblock 
modes: inter8×8, inter8×4, inter4×8, and inter4×4. Among these modes, inter8×8 and 
intra4×4 modes contribute most to the complexity, especially when rate-distortion 
optimization (RDO) is used.  

In this paper, we propose two algorithms. One is to alleviate inter8×8 complexity. 
It estimates four sub-macroblock modes within inter8×8 by using the costs of other 
inter modes with relatively low complexity. The other method reduces intra4×4 
complexity, using the similarity between RD costs of two intra modes. 

2   Mode Selection Algorithm in the H.264 Reference Software 

2.1   Macroblock and Sub-macroblock Modes 

The H.264 standard allows the following macroblock modes: SKIP, inter16×16, 
inter16×8, inter8×16, inter8×8, intra16×16, intra8×8, and intra4×4. Furthermore, each 
block within inter8x8 can be divided into four sub-macroblock modes. The allowed 
sub-macroblock modes are inter8×8, inter8×4, inter4×8, and inter4×4. Figures 1 and 2 
depict the macroblock partitions of inter and intra macroblock modes, respectively. 

Fig. 1. Macroblock partitions of inter macroblock modes 



398 D. Kim, J. Kim, and J. Jeong 
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16×16
MB

16×16
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Fig. 2. Macroblock partitions of intra macroblock modes 

An inter16×16 mode has only one motion vector, whereas inter16×8 and inter8×16 
have two motion vectors. An inter8×8 mode may have 4-16 motion vectors depending 
on the selected sub-macroblock modes. A SKIP mode refers to the mode where 
neither motion vector nor residual is encoded. Three intra modes have different 
prediction modes. Four prediction modes are available in intra 16x16, and nine 
prediction modes are available in intra8x8 and intra4x4. 

2.2   Macroblock Mode Selection in the Reference Software 

The reference software, JM9.3 [7], supports three cost calculation criteria: motion 
vector (MV) cost, reference frame (REF) cost, and rate distortion (RD) cost. 

The MV cost is calculated using a lambda factor and is defined as: 

MEforpositionyandxpredicted:pypx,

MEforpositionyandxcandidate:cycx,

factorlambda:f

where

py])s)mvbits[(cy

px]s)s[(cxst(f,mvbitWeightedCo
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(1) 

The REF cost is also calculated using a lambda factor and is defined as: 

factorlambda:fwhere

ts(ref))st(f,refbiWeightedCo=REFcost  (2) 

In (1) and (2), WeightedCost( ) returns the cost for the bits of motion vector and 
reference frame, respectively. Finally, the RD cost is defined as: 

multiplierLagrangewhere

RateDistortion

:

RDcost ⋅+=  (3) 

In (3), the distortion is computed by calculating the SNR of the block and the rate 
is calculated by taking into consideration the length of the stream after the last stage 
of encoding. 

When RDO and five reference frames are used, using these cost functions, the 
process of macroblock mode selection in the reference software is as follows: 

Step 1. Find reference frames and motion vectors for each block in inter16×16, 
inter16×8, and inter8×16. 
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Step 2. Calculate the sums of MV cost and REF cost in inter16×16, inter16×8, and 
inter8×16. 
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Step 3. Find reference frames and motion vectors for the first sub-macroblock in 
inter8×8. 
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Step 4. Calculate the sums of MV cost and REF cost for the first sub-macroblock in 
inter8×8. 
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Step 5. Select the mode for the first sub-macroblock in inter8×8. 
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Step 6. Repeat steps 3 to 5 for the other sub-macroblocks in inter8×8. 

Step 7. Select the macroblock mode 
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In steps 1 and 2, the reference software finds reference frames and motion vectors 
which minimize the sum of MV cost and REF cost in inter16×16, inter16×8, and 
inter8×16. Steps 3 to 6 are the process of selecting sub-macroblock modes in 
inter8×8. The final step decides the macroblock mode by comparing RD costs of all 
macroblock modes. 
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3   Proposed Algorithm 

3.1   Complexity Reduction of Inter8×8 

Since each sub-macroblock within inter8×8 needs additional RD cost computations 
for the selection of sub-macroblock modes, inter8×8 has the highest complexity 
among all of the inter macroblock modes. For complexity reduction of inter8×8, we 
assume that the costs of inter macroblock modes monotonically increase or decrease 
according to their partitioned direction. Under this assumption, we restrict selectable 
sub-macroblock modes by using the MV costs and REF costs of inter16×16, 
inter16×8, and inter8×16. For example, if the sum of MV and REF costs of 
inter16×16 is larger than that of inter16×8 and is smaller than that of inter8×16, we 
consider only inter8×8 and inter8×4 as sub-macroblock modes. Figure 3 depicts the 
proposed method for the complexity reduction of inter8×8. 

Jinter16×16 < Jinter8×16
yes
no

Jinter16×16 < Jinter16×8

Jinter16×16 < Jinter16×8

Case 1: SKIP

Case 2: inter8×8 inter8×4

Case 3: inter8×8  inter4×8

Case 4: inter8×8  inter8×4
             inter4×8  inter4×4

yes
no

yes
no

 

Fig. 3. Block diagram for the restriction of selectable sub-macroblock modes 

In case 1, since Jinter16×16 is smaller than both Jinter16×8 and Jinter8×16, neither additional 
block partition in the horizontal direction nor in the vertical direction is needed. In 
this case we do not consider any sub-macroblock mode, and step 3 to step 6 in the 
reference software are skipped. In case 2, since Jinter16×16 is smaller than Jinter8×16 and is 
larger than Jinter16×8, additional block partitioning is only considered in the vertical 
direction. In this case, either inter8×8 and inter8×4 is selected as a sub-macroblock 
mode, and the formulae of steps 3 to 6 in the reference software are modified as 
follows: 
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In case 3, since Jinter16×16 is smaller than Jinter16×8 and is larger than Jinter8×16, only 
additional block partition is considered, and only in the horizontal direction. In this 
case, either inter8×8 and inter4×8 is selected as a sub-macroblock mode, and the 
formulae of steps 3 to 6 in the reference software are modified as follows: 
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In case 4, since Jinter16×16 is larger than both Jinter16×8 and Jinter8×16, we consider all 
sub-macroblock modes, as in the reference software. 

3.2   Complexity Reduction of Intra4×4 

When 8×8 DCT is not used, the allowed intra modes are intra4×4 and intra16×16. Of the 
two intra modes, intra4×4 has the higher complexity because it has more prediction 
modes. Since intra16×16, as described in Section 2, has only four prediction modes and 
intra4×4 has nine prediction modes for finer granularity, intra4×4 generally yields a 
smaller prediction error than intra16×16. However, most of the macroblocks have only a 
small difference between the RD costs of intra16x16 and intra4x4. This is because edges 
directed in vertical or horizontal directions are dominant in natural images, which are 
considered in intra16x16. 

Using this characteristic, we first find the inter mode with a minimum RD cost. Then 
we compare the RD cost of the selected inter mode with that of intra16×16. If the RD 
cost of intra16×16 is much larger, that is, if Eq. (16) is true, then the RD cost 
computation of intra4×4 is skipped: 

)RDcost(   ] )  RDcost( Min[ 16intra 16Kmodesinter ×<⋅  (16) 

In (16), K is a proportional constant. Table 1 describes the missing rate of intra4×4. 
The missing rate indicates the probability that the skipped intra4×4 has the smallest RD 
cost. As shown in Table 1, the average missing rate is only about 0.7% for K =1.5. This 
means that the RD cost difference factor between intra4×4 and intra16×16 is less than 1.5 
for 99.3% of the macroblocks. 

4   Simulation Results 

Since the proposed methods for complexity reduction of inter8×8 and intra4×4 are 
uncorrelated, the two methods can be applied independently or simultaneously. We 
applied the two proposed algorithms simultaneously to encode test sequences. For the 
purpose of evaluation, the public reference encoder JVT Model (JM) v.9.3 was used. The 
software was tested on an Intel Pentium-IV based computer with 1024 MB RAM under 
the Windows XP Professional operating system. 
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Table 1. Missing rates of intra4x4 according to the proportional constant K 

Missing Rate (%) Sequences 
K=1.3 K=1.5 K=1.7 

Coastguard 2.0 0.4 0.2 
Container 2.7 1.0 0.9 

Mobile 0.4 0.0 0.0 
News 5.8 0.6 0.5 

Salesman 6.6 0.4 0.0 
Silent 4.7 1.7 0.4 
Stefan 2.8 0.2 0.0 
Trevor 9.0 0.9 0.1 

We adopted two different schemes for ME, used RDO, and set Quantization 
Parameter (QP) and K in (16) to 28 and 1.5, respectively. The simulation was performed 
on eight standard video sequences in QCIF (176x144) format. These included 
Coastguard, Container, Mobile, News, Salesman, Silent, Stefan, and Trevor. These 
sequences were selected on the basis of length of encoded streams and degree of motion. 
The first 100 frames of each of these sequences were used. 

For 99 P-frames, Tables 2 and 3 describe the reduction ratios of the number of RD 
cost computations in inter8x8 and intra4x4 in case when using a full search and a fast 
motion estimation scheme. As shown in these results, we can save about 72% and 89% 
of the RD cost computations, respectively.  

Tables 4 and 5 compare the bitrates and PSNRs for each test sequence. Since the 
reference implementation is an exhaustive search for selecting the macroblock mode, the 
number of encoded bits is the least for each sequence. Tables 4 and 5 show the average 
increase of the total bitrates is only about 0.9%, and the average PSNR drop is only about 
0.044 dB when using the proposed method. 

Finally, Table 6 compares total encoding time from the proposed method with that 
from the reference software. This result shows a substantial decrease of about 55% and 
74% in total encoding time compared with the reference implementation when adopting 
a full search and a fast motion estimation algorithm, respectively. 

Table 2. The number of RD cost computation in inter8x8 when using (a) a full search (FS) 
motion estimation scheme (b) a fast motion estimation (FME) scheme for luminance blocks 

Sequences 
Reference 
Software 

Proposed 
Method (a) 

Proposed 
Method (b) 

Average 
Reduction (%) 

Coastguard 156,816 59,760 59,768 61.9 
Container 156,816 17,896 18,072 88.5 

Mobile 156,816 65,360 65,280 58.3 
News 156,816 30,256 28,752 81.2 

Salesman 156,816 28,224 28,208 82.0 
Silent 156,816 40,464 40,120 74.3 
Stefan 156,816 56,472 56,952 63.8 
Trevor 156,816 54,800 54,904 65.0 

Average 156,816 44,154 44,007 71.9 
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Table 3. The number of RD cost computation in intra4x4 when using (a) a full search (FS) 
motion estimation scheme (b) a fast motion estimation (FME) scheme for luminance blocks 

Sequences 
Reference 
Software 

Proposed 
Method (a) 

Proposed 
Method (b) 

Average 
Reduction (%) 

Coastguard 9,801 2,907 2,864 70.6 
Container 9,801 1,993 2,086 79.2 

Mobile 9,801 122 130 98.7 
News 9,801 655 669 93.2 

Salesman 9,801 145 159 98.4 
Silent 9,801 637 633 93.5 
Stefan 9,801 867 953 90.7 
Trevor 9,801 995 1,040 89.6 

Average 9,801 1,040 1,067 89.3 

Table 4. Bitrates (Kbits/sec) of test sequences when using (a) a full search (FS) motion 
estimation scheme (b) a fast motion estimation (FME) scheme for luminance blocks 

Sequences 
Reference 
Software 

Proposed 
Method (a) 

Proposed 
Method (b) 

Average 
Increase (%) 

Coastguard 249.00 251.28 249.96 0.7 
Container 40.16 40.74 40.57 1.2 

Mobile 496.49 497.24 497.65 0.2 
News 75.84 76.75 76.27 0.9 

Salesman 56.89 57.61 57.74 1.4 
Silent 82.69 83.71 84.33 1.6 
Stefan 379.26 380.86 380.62 0.4 
Trevor 132.49 133.37 133.91 0.9 

Average 189.10 190.19 190.13 0.9 

Table 5. PSNRs (dB) of test sequences when using (a) a full search (FS) motion estimation 
scheme (b) a fast motion estimation (FME) scheme for luminance blocks 

Sequences 
Reference 
Software 

Proposed 
Method (a) 

Proposed 
Method (b) 

Average PSNR 
Decrease 

Coastguard 33.93 33.89 33.88 0.045 
Container 36.07 36.06 36.05 0.015 

Mobile 33.14 33.06 33.05 0.085 
News 36.65 36.64 36.66 0.000 

Salesman 35.57 35.54 35.54 0.030 
Silent 35.84 35.81 35.81 0.030 
Stefan 34.22 34.15 34.12 0.085 
Trevor 36.40 36.34 36.34 0.060 

Average 35.23 35.19 35.18 0.044 
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Table 6. Encoding time (sec) of test sequences when using (a) a full search (FS) motion 
estimation scheme (b) a fast motion estimation (FME) scheme for luminance blocks 

Sequences 
Reference 
Software 

Proposed 
Method (a)

Reduction 
Ratio (%) 

Proposed 
Method (b)

Reduction 
Ratio (%) 

Coastguard 127.64 70.08 45.10 45.08 64.68 
Container 110.77 51.19 53.79 27.62 75.06 

Mobile 142.67 57.89 59.42 35.77 74.93 
News 112.59 49.06 56.43 26.46 76.50 

Salesman 115.64 47.06 59.31 24.19 79.09 
Silent 113.77 51.52 54.72 28.59 74.87 
Stefan 130.56 58.30 55.35 36.36 72.15 
Trevor 110.35 54.15 50.93 31.27 71.67 

Average 120.50 54.91 54.38 31.92 73.62 

5   Conclusions 

The H.264 video coding standard uses new coding tools. Among the tools, the 
macroblock mode selection process tremendously increases the encoder complexity. 
For reducing the encoder complexity, we proposed two simple and effective schemes 
for the quick selection of macroblock modes in H.264 video coding.  

Using our methods, the RD cost computations of inter8×8 and intra4×4 were 
reduced by about 72% and 89%, respectively. Both schemes can be applied 
independently. When both methods are used simultaneously and two different motion 
estimation methods are applied, simulation results show that our methods can save 
about 55% and 74% of total encoding time regardless of input sequences, 
respectively, yet the average increased rate of the total bits and average PSNR drop 
are only about 0.9% and 0.044 dB, respectively. This huge reduction of encoder 
complexity may be useful in real-time implementation of the H.264/AVC standard. 
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Abstract. The multi-view simul-switching is one of the most important
features of dynamic light field (DLF) streaming. In this paper, we jointly
consider light field rendering and compression and propose a novel DLF
compression scheme based on the requirements of DLF streaming. In this
scheme, successive temporal prediction chains are broken and a shared
field is used as a reference for all the later P frames in a group of field.
Meanwhile, considering the region of interest for DLF rendering, we par-
tition all the P frames into regional blocks and code them in a manner
that any region block can be independently transmitted for bandwidth
economized streaming. With this coding scheme, a multi-camera DLF
system is developed to verify the streaming performance of the proposed
scheme. Experimental results show that our scheme saves the per-user
transmission bandwidth a lot compared with other DLF compression
schemes.

1 Introduction

The ability to interactively and seamlessly roam in a scenario while watching
a streaming video through IP network is an exciting visual experience. Thanks
to Levoy[1] and Gortler’s[2] publication of light field rendering technique, this
experience is no longer a dream. A light field is a collection of light rays following
through space in all directions captured by a multi-camera array and recorded as
multi-view images which allow seamless view generation with only a little geom-
etry information or even none geometry information involved. The introduction
of temporal dimension to light field produce a new media called dynamic light
field(DLF) [3] or plenoptic video[4]. With the advent of this new media and its
corresponding multi-camera array technique, just-in-time capturing and render-
ing of dynamic scene is guaranteed. To verify such real-time interactive rendering
ability for real dynamic scenes and to improve the rendering performance, lots
of DLF environments have been developed in recent years. B.Wilburn [5] has
implemented an MPEG2 light field camera array to capture and store DLF.
J.C.Yang [6] has developed a light field rendering system that can interactively
render 3D scene. T.Naemura [7] constructed a camera array system consisting
of 16 cameras for real-time rendering using multiply focal planes.

Despite the above works on DLF system and technologies, the fundamental
issues for DLF to become a popular media have not been investigated enough,

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 406–417, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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especially in an IP network streaming scenario. It is well known that large data
amount is one of the challenges to DLF transmission and storage. In the past
decade, there is still little work on DLF compression while a number of multi-
view video coding (MVC) techniques have been proposed [8,9,10]. These schemes
usually employ a temporal-spatial prediction manner to deal with the overall
compression efficiency. However, the key characteristic of DLF streaming and
multi-view video streaming lies in the interactivity, which can give users the
opportunity to choose their favorite camera-streams freely. The successive tem-
poral predictions used in these schemes block the random switching between
views, thus to guarantee just-in-time interactivity, all the camera-streams must
be transmitted which is not practical in real streaming systems. Recently, two
multi-view video compression schemes offer the feature of free view-point switch-
ing are reported in [11] and [12]. Both of these schemes employ a similar SP frame
[13] mechanism by using global motion estimation (GME) or wyner-ziv frames
and they may still introduce reconstruction error propagation when switching
happens. Actually, since the purpose of DLF steaming and multi-view video
streaming are different (for DLF streaming, user may choose multiple views but
not necessary the integral region of the views to render the new image, while for
conventional multi-view streaming, user may choose only one integral view), all
the above coding schemes are not well fit for DLF streaming.

Toward the goal of DLF compression for network streaming, in this paper, we
present a DLF compression scheme based on the nature of DLF rendering and
the requirements of DLF streaming. First, successive temporal prediction chains
are broken and a shared field is used as a reference for all the later P frames in
a group of field. Therefore, once the shared field is correctly received, users can
switch freely between camera-streams. Second, considering the region of inter-
est for rendering, we segment all the P frames into several regional blocks(RBs)
and code them in a manner that any region blocks can be independently de-
coded without any other region blocks. Thus the server can selectively transmit
the contents within each camera-stream according to the user requirements and
network bandwidth saved.

The rest of the paper is organized as follows. Section 2 presents the general
DLF streaming system and explains the major challenges in such application
system. Section 3 describes the details of our DLF compression scheme. In section
4, we report and analyze our experiment results. Finally, conclusions are drawn
in section 5.

2 System Architecture and Problem Statement

Figure 1 illustrates the flow of a typical DLF streaming system. The multiple
camera-views are encoded using some DLF compression scheme. For the forward
channel, the bitstreams necessary for new image rendering are transmitted from
the server, and the client receives these bits and decode them for rendering
operation. As for the backward channel, the user at the client can freely select
the preferred streams and send the selections to the server. Then the server
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Fig. 1. Typical DLF streaming system

must send the new streams corresponding to the selection of the client. Error
free decoding of the new streams must be guaranteed throughout the streaming
process.

Since the server bears only data streaming, the above server system serves for
multiple users can be practically realized. Users at the clients can enjoy seam-
lessly roaming in a scenario through the following three kinds of view trajectory:

1) Time frozen movement: Users can choose to have a pause and roam in the
scene for the interested people or object smoothly or abruptly.

2) Time continual movement: Users are able to change the viewing position
and viewing direction as the video continues along time.

3) View zooming: DLF rendering can provide zooming capability for users.
If the user trajectories are near the camera plane, a relatively small number of
frames are required to generate new views. Otherwise, as for the situation of
zooming in and out from the camera plane, more frames are needed.

As stated above, one of the main challenges of such DLF streaming service
lies in the just-in-time interactivity. Traditional successive temporal prediction
may be limited to key frame switching as illustrated in figure 2. Before instant
t3, the views user demanded and sever sent are V1 and V2. But when t3 comes,
the server receives the requirement of view V3 ,V4 and V5. Usually, it happens to
be a P frames at t3, and thus the server must wait for the next key frames and
timely response is destroyed. Because of the simultaneously switching of multiple
views, we called such situation as simul-switching.Although some SP-frame-like
information can be added to force timely switching [11,12], they will introduce
additional storage and error drifting problem.

Fig. 2. Switching problem in DLF streaming system
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3 Proposed DLF Compression Scheme

In this section, our implementation of DLF compression based on hybrid video
codec for streaming service will be described. A shared I field coding scheme is
presented in 3.1. In 3.2, we analysis the region of interest for light field rendering
and then in 3.3, based on the freely switching coding scheme in 3.1, the idea
of independent region blocks compression is incorporated to minimize per-user
streaming bit rate. In 3.4, we will give the corresponding streaming policy for
our coding scheme.

3.1 Shared I Field Coding Scheme

Figure 3 represents the shared I field coding scheme. In the DLF, the images
captured at the same instant constitute a static light field which is similar to a
”frame” in video coding. We define 2 types of light fields, and they are I field and
P field. A GOF (group of fields) is composed of an I field and all its following
P fields. The traditional temporal prediction chains can be break and successive
prediction correlation will be eliminated using the corresponding image in the
former I field as the reference image for each image in P fields and the later I
fields. The compression efficiency of such prediction is still high since the camera
array and the background of the scene are both static. As for data streaming,
I field is imperative for every clients while images in P field can be selectively
transmitted. Therefore, once I field is successfully received, images in P field
can be freely transmitted without the consideration of switching. Meanwhile,
correctly and just-in-time decoding is achieved.

Fig. 3. Prediction structure for the DLF compression

Certainly, we can improve the compression efficiency through the using of
several or even all of the images in I fields for multi-hypothesis prediction cod-
ing of each image in P fields. In addition, spatial layered prediction [14] or
disparity-compensated prediction [15] can be employed to improve the compres-
sion efficiency of the I fields. However, these two operations may introduce data
exchange between camera-views which complicate the coding operations.
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3.2 Region of Interest Analysis in Light Field Rendering

There are different rendering schemes [1,2,16,17] (with or without geometry in-
volved, regular cameras or unstructured cameras) in the literature, and all of
these schemes have the region selection (from the available camera views) and
the region blending process. Here, we use dynamically reparameterized light
fields rendering [16] to illustrate the region selection procedure. First, the data
camera’s aperture filter is projected on to the virtual camera’s(or desired cam-
era’s) image plane producing the region which uses samples from the data cam-
era. Then, the data camera’s aperture filter is projected on to the focal plane
generating the viewing content from this data camera. Such viewing content on
the focal plane is then re-projected on the data camera plane from the data
camera’s point of view. This projection produces the interested region on the
data camera’s image. At last, the interested region is texture mapped on to the
desired image plane’s region which has been computed in the first step. Multiply
texture mappings from all the single data cameras may output the final desired
image.

Fig. 4. Illustration of general light field rendering

Fig. 5. Geometry in light field rendering when the focal plane is parallel to the camera
plane
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A more straightforward illumination of the region-of-interest for light field
rendering is shown in figure 5. Under the presuppositions that the capture range
of each data camera is broad enough and the focal plane is parallel to the camera
plane, the following equations can be established from this figure:

|MN |/|PQ| = |OC|/|OF | (1)

and
|PQ|/|AB| = |V F |/|V O|. (2)

Therefore, the region of interest |MN | can be derived as:

|MN | = |AB||OC||V F |/(|OF ||V O|). (3)

Based on the figure and equations above, several conclusions concerned with the
region of interest for rendering can be made as follows:

Conclusion 1 : If the desired view range is unlimited, the region of interest for
the data camera is irrelevant to the desired view direction but relevant to the
view position. The closer the view position to the camera plane, the broader the
interested region will be.

Conclusion 2 : The longer the distance is between the camera plane to the
focal plane, the more narrow the interested region for a particular camera will
be, but the larger the number of data cameras that must contribute interested
regions to the rendering process.

3.3 Independent Region Block Coding for P Pictures

In our scheme, an image can be completely and regularly partitioned by several
region blocks which is composed of some macroblocks. As for a P-field image at
320× 240 resolution, there are 24 partition modes and the corresponding region
blocks can be of size 16m × 16n(m = 1, 2, 4, 5, 10, 20, n = 1, 3, 5, 15). Figure 6
illustrates the partition of region block at size 80 × 80. The required area for
streaming under a particular mode is the minimal set of region blocks that can
cover the region of interest.

Each region block is independently coded similar to the slice partition mecha-
nism in H.264/AVC. However, unlike slice partition, our block partition achieves
random access operation to any region block when it is combined with the shared
I field coding mechanism. Through the decorrelation of motion vectors on the
edge of region blocks and the insertion of synchronization bits at the start of
each region block’s code bits, all data in P fields are coded as independent re-
gion block streams for bandwidth economized streaming application. Once the
partition mode and the camera parameters have been determined, the required
region block streams for the particular virtual view rendering can be computed
and recorded as look-up table beforehand using the model in 3.2. It must be
noted that finely partitioned may results in economized area for transmission
but worse compression ratio. Hence, the choice of region block size must be
based on rendering algorithm and coding characteristic.
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Fig. 6. 80 × 80 region block partition for SIF format image

3.4 DLF Streaming

For compressed DLF streaming, the compressed DLF are stored in the storage
device in a manner that all the region block streams are independent between
each other. Once a client requests for streaming service, the streaming server
reads all the region block streams into the memory and buffers them for several
seconds(usually within 2 seconds). As an user changes his viewpoint or view
direction, the client checks in the look-up table and obtains the region blocks
needed for rendering and sends back the request through the feedback channel to
the streaming server. Once the streaming server receives the message, it switches
the region blocks streams and sent them through the data channel. As for I fields,
each user receives a full copy of the stream and decodes all the I images that
are captured at the same instant for region blocks decoding. If the speed of
data decoding and image rendering is fast enough, the controlling delay user
experienced may approximates to only the time of request message feedback.

4 Experiment Results

We use 64 BOSER BS-103F color cameras 8 bits per pixel CCD sensors to set
up an 8 × 8 light field camera array (see figure 7) and capture a 10 second
4× 8 dynamic light field sequences with image size of 320× 240 and frame rate
30fps. The optical axis of each camera is roughly perpendicular to a common
camera plane. The horizontal spacing between cameras is about 8cm, and the
vertical spacing is about 14cm. The cameras are connected by IEEE-1394 High
Performance Serial Bus to the producer PCs. Every 4 cameras (the one camera
with its right, bottom and diagonal neighbored cameras) are connected to one
of the 8 producer PCs. Figure 8 shows the first light field of this ”Room2”
sequences. We implement our shared I fields and region blocks based coding
scheme through the modification of the Mpeg4 XVID codec.

First, we examine the shared I field prediction efficiency. Figure 9 illustrates
the intra compression efficiency, temporal prediction efficiency, spatial prediction
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Fig. 7. A photo of our 64-camera light field camera array. The cameras are arranged
in rows of eight.

Fig. 8. 4× 8 views in the first field of DLF sequence taken with our light field camera

efficiency and I field prediction efficiency under the same quantization configura-
tion. Here, all prediction codings are implemented using only one reference frame.
Although the color calibration is satisfactory, the spatial prediction efficiency is
still much lower than temporal prediction. For our proposed coding scheme, with
the increasing interval between I field and the coding frame, the prediction effi-
ciency becomes lower but still shows better performance than spatial prediction
efficiency and approximate to conventional video coding. Therefore, the aban-
donment of spatial prediction in our coding scheme for convenient purpose is
reasonable.

Second, we examine the coding performance of the shared I field compression
when region blocks coding mechanism is introduced. Figure 10 depicts the rate
distortion characteristics of one of the views in our Room2 DLF sequence under
conventional XVID video coding scheme and our region block coding scheme.
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Fig. 9. Comparison of prediction efficiency

According to the figure, we see that when the shared length (length of GOF or
I field interval) is 30 without region partition(RB size = 320× 240), our coding
performance is comparable to tradition video coding with key frame interval
set to be 15. As for the region partition, when the image is partitioned into
6 region blocks with size 80 × 80, the increased bit-rate is only about 3kbps
compared with the case of no partition under the approximate reconstruction
image quality. However, further partition with region block size 32 × 48, the
increased bit rate will be about 25kbps and when finely partition is achieved,
the coding performance will drop rapidly as the situation of RB size 16 × 16.
Actually, the additional bits introduced by independent motion vector coding
is trivial compared with the increasing of synchronization bits which grows up
linearly with the number of region blocks.

Third, we test the average saved area under various region partition modes.
Figure 11 depicts the interested region for our 4×8 camera array light field ren-
dering. Each block in this figure represents a view (at size 320× 240) while the
black regions in the blocks represent the regions of interest. We can actually feel
that our region blocks coding have the potentiality to save the transmission band-
width. Also, an interactive rendering viewer is developed and a 10 minutes long
view roaming is simulated using this viewer. The view trajectories are recorded
and then the average percentages of image area saved (the sum of unnecessary
region areas in the required images divided by the sum of required image areas)
for streaming are computed under various partition modes. Table 1 lists the re-
sults for the 24 kinds of partition modes. The elements in the first column of
the table are the 4 heights of the region block while the elements in the first line
are the 6 widths. Note that the saved percentage increases with the decreasing
of size of the region block sizes, but such uptrend tends to be gentle when the
region block size arrives 80× 80. Also, it is shown that quadrate region block is
better because of the isotropic region requirement at both horizontal direction
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Fig. 10. Coding performance under different coding schemes. For the four shared I
field coding scheme, the GOF length is 30.

and vertical direction for planer light field rendering. Furthermore, since the
coding performance impairment of partition mode 80 × 80 is imperceptible as
has been verified in figure 10, we choose this mode for our DLF compression.

Fig. 11. An example of region of interest in the 4 × 8 light field

At last, we investigate the streaming performance of our coding scheme using
our 4 × 8 DLF sequence. Figure 12 compares the average streaming bit rates
under various coding schemes. We fix the average image coding quality within
the range from 35.8dB to 36.1dB and restrict the distance between the user view
position and the camera plane to several constant values. At each value, the user
can still rooming in the scene by changing his view point, view direction and
focal plane. For the traditional video coding scheme, all the 32 views must all
be streamed for timely switching. From the figure we can see that the streaming
bit rate of our proposed coding scheme maintains constant with the changing of
distance and obtains the minimum transmission bit rate. Also, when the view
point is near the camera plane, the required bandwidth is smaller than 2Mbps.
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Table 1. Average percentages of saved area under various region block sizes

RB size 320 160 80 64 32 16
240 0% 25% 36.7% 38.8% 46.6% 49.1%
80 48.9% 62.0% 68.2% 69.6% 73.2% 74.9%
48 62.5% 71.8% 76.4% 77.3% 79.9% 80.8%
16 67.7% 76.4% 80.7% 81.6% 83.7% 84.7%

Fig. 12. Average required transmission bandwidth changing with the distance between
the desired view point and the camera plane. The vision quality is set to be about 36dB.

5 Conclusions

In this paper, we have advanced the DLF streaming service and described the
main technical challenges for this wonderful application, namely the tremendous
data amount and the error free multiple view simul-switching problem. Unlike
previous algorithms for multi-view video (MVC) or DLF coding, we jointly con-
sider the coding and the rendering procedure and design a region block based
compression scheme for bandwidth economized streaming. Another specialty of
our work is that this region block based mechanism can be perfectly combined
with our shared I field coding scheme to generate the switching permit DLF
coding scheme. From the experimental results, we have observed that our com-
pression framework realizes DLF streaming under 2Mbps bit rate when the user’s
view point is near the camera plane. Such bandwidth requirement is suitable for
broadband IP network.
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Abstract. Scalable wavelet-based video codecs based on motion-com-
pensated temporal filtering (MCTF) require complexity scalability to
cope with the growing heterogeneity of devices on which video has to be
processed. The computational and memory complexity of two spatial-
domain (SD) MCTF and in-band (IB) MCTF video codec instantiations
are examined in this paper. Comparisons in terms of complexity versus
performance are presented for both types of codecs. Some of the trade-
offs between complexity and coding performance are analyzed and it
is indicated how complexity scalability can be achieved in such video-
codecs. Furthermore, a new approach is presented to obtain complexity
scalability in IBMCTF video coding, by targeting the complexity of the
complete-to-overcomplete discrete wavelet transform at the cost of a lim-
ited and controllable penalty on the overall coding performance.

1 Introduction

Real-time delivery of video over best-effort error-prone packet networks requires
scalable compression systems in order to (i) meet the users’ requirements in
terms of quality, resolution and frame-rate, (ii) dynamically adapt the coding
rate to the available channel capacity, and (iii) cope with the growing hetero-
geneity and complexity of devices on which video has to be processed [1].

Wavelet-based architectures based on motion-compensated temporal filtering
[2,3,4,5] have proven to be very promising coding systems for scalable video com-
pression. These codecs provide quality, resolution and frame-rate scalability cou-
pled with a coding performance competitive to that of the state-of-the-art H.264
codec [6,7]. Only recently, research has been performed on the complexity of such
video coding systems, as in [8] where the encoder’s complexity in terms of the
number of computations required during motion estimation has been analysed.

In this paper, the complexity of several modules in two instantiations of
wavelet-based MCTF video coding architectures are analyzed. For the spatial-
domain MCTF [9] codec, both the motion-compensation (MC) and entropy
coding module are subject to our research. In addition, in the context of In-
Band MCTF (IBMCTF) [10] video coding, the complete-to-overcomplete dis-
crete wavelet-transform (CODWT) [11] is investigated. It is shown that regard-
ing memory-complexity, the CODWT is the most critical component in IBMCTF

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 418–430, 2006.
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video coding. Also, analysis of the results shows how one can reduce complexity
and/or obtain complexity scalability by trading off complexity against coding
performance.

To overcome the complexity bottleneck of the CODWT, a new approach to
obtain complexity scalability in the complete-to-overcomplete discrete wavelet
transform is proposed. Experimental results show that fine-grain complexity scal-
ability can be achieved at the cost of a limited and controllable penalty in video
coding performance.

The paper is organized as follows. Section 2 overviews the MCTF and the
SDMCTF architecture. IBMCTF is described in section 3, together with a de-
scription of the shift-variance problem that has to be overcome when applying
MCTF in the wavelet-domain. Section 4 reports the setup for the complexity
analysis of the different modules under investigation (MC, entropy coding and
CODWT) and discusses the obtained results. A mathematical formulation of
the CODWT is given in section 5, followed in section 6 by the derivation of a
technique that enables complexity scalability in this module. Section 7 evaluates
the proposed approach and discusses the obtained results. Final conclusions of
our work are drawn in section 8.

2 Spatial-Domain Motion-Compensated Temporal
Filtering

MCTF was initially proposed by Ohm and later improved by Choi and Woods
[2,3]. It employs an open-loop structure, where frames are temporally filtered
along the motion trajectories. MCTF is performed by taking advantage of the

Fig. 1. (a) MCTF scheme, employing the Haar wavelet; (b) Spatial-Domain Motion-
Compensated video coding architecture

lifting implementation of the wavelet temporal transform [12,13]. This technique
applies the temporal filtering in a sequence of predict and update steps, resulting
in a perfectly invertible and computationally efficient process. Figure 1(a) shows
the lifting procedure for MCTF decomposition, using the Haar wavelet. The
temporal splitting of the input into even and odd frames is followed by motion-
compensated prediction, wherein the predict operator P produces an approxi-
mation of the odd frames based on the even ones. Within this primal lifting step
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the error-frames are determined. Next, within the dual lifting step, the update
operator U brings the mismatch information back into the even frames. This step
produces a temporal average-frame for each input pair. Finally, the normaliza-
tion step constructs the low-pass (l) and high-pass (h) temporally-filtered frames
respectively. This decomposition process is iterated, using the l-frames at tempo-
ral level j as input to produce the l- and h-frames of level j+1 , until the desired
number J of temporal decomposition levels is reached. Spatial-domain motion-
compensated temporal filtering (Fig. 1(b)) performs MCTF followed by a 2-D
discrete wavelet transform (DWT), yielding a spatio-temporal representation of
the input. Subsequently, the spatio-temporally filtered frames are compressed,
using an embedded compression scheme and transmitted together with the com-
pressed motion information.

Decoding of the compressed video is obtained by applying the inverse opera-
tions.

3 In-Band Motion-Compensated Temporal Filtering

SDMCTF video codecs determine the motion information only at the highest res-
olution level. This means that decoding at lower resolutions requires downscaling
of the motion vectors. The downscaled motion vectors however, do not follow
the true motion paths, as they would be obtained by applying motion-estimation
at that particular resolution. Consequently, the performance of SDMCT dete-
riorates when decoding to lower resolutions. Additionally, applying block-based
motion-estimation creates artificial boundaries, which, after a spatial wavelet
decomposition, results into high-amplitude high-frequency coefficients that are
expensive to code. Quantizing these coefficients leads to blocking artefacts that
are particularly disturbing when operating at low bit-rates.

Fig. 2. In-Band Motion-Compensated Temporal Filtering video coding architecture

In-band motion-compensated temporal filtering (IBMCTF) video coding ar-
chitectures, shown in Fig. 2, do not suffer from these limitations [10]. IBMCTF
consists of a DWT front-end followed by an MCTF back-end. IBMCTF applies
ME/MC directly in the wavelet domain at every resolution level. In order to ap-
ply efficient in-band ME/MC, the wavelet representation of the reference frames
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needs to be shift-invariant. The DWT however is only periodically shift-invariant
and thus cannot be used for accurate ME/MC. Therefore the overcomplete dis-
crete wavelet representation (ODWT), which is known to be shift-invariant [11],
has to be employed in IBMCTF video coding.

Given the input signal, the classical construction of the ODWT is trivial by
using for example the “à trous” algorithm [14,15]. However, in wavelet-based cod-
ing systems the codec always processes the critically-sampled (complete) DWT
subbands. Hence, a complete-to-overcomplete DWT has to take place.

Several solutions have been proposed in literature to calculate the ODWT,
given the critically sampled DWT representation. The Low-Band-Shift (LBS)
method [16] reconstructs an approximation of the input signal followed by the
“à trous” algorithm. This however causes a significant calculation overhead and
delay since the input signal has the highest sampling rate. Moreover, LBS is a
multi-rate calculation scheme involving a cascade of upsampling and downsam-
pling operations. As a result, even for high-speed high-parallel implementations,
the achievable percentage of hardware utilization is low since the filtering of ev-
ery level has to be pipelined with the production of the results of the previous
and the next level.

An alternative that can be used for the calculation of the ODWT is called
the Complete-to-Overcomplete Discrete Wavelet Transform (CODWT) [11,17],
which calculates directly the ODWT from the critically sampled subbands, using
a set of prediction filters. This approach does not require upsampling operations
and allows for fast parallel implementations. Moreover, in scenarios that require
resolution scalability, the CODWT is computed using a single-rate calculation
scheme resulting in a much lower complexity and delay than the LBS-method
[11,17].

4 Complexity Analysis of SDMCTF and IBMCTF

4.1 Experimental Setup

In the SDMCTF architecture, both the MC module and the entropy coding
module, which is the QuadTree-Limited codec of [18,19] have been examined.
For the IBMCTF codec, the access behavior of the CODWT module has been
also investigated. Additionally, the complexities of both the IBMCTF and SDM-
CTF codecs are compared in their integrated form. Given the original frame-rate
and resolution, we limit here our analysis to video reconstruction of full or half
frame-rate and full or half resolution.

To express the complexity of the modules, accesses to memory has been cho-
sen as a complexity metric. This is justified by the fact that these video-codecs
and multi-media applications in general are data dominated. Profiling and in-
strumentation of the codecs is performed by the PowerEscape tool [20], which is
based on the ATOMIUM methodology [21] developed at IMEC.

Note that the reported memory accesses only give a global overview of the
complexity behavior. Locality of the data and the size of the memory buffers are
also very important figures in complexity analysis, but they were not currently
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Table 1. Experimental Setup

Investigation of QTL
and MC

Investigation of
SDMCT, IBMCTF
and CODWT

Input sequence, resolution CIF CIF
Input sequence, frame rate 30 Hz 30 Hz
Temporal levels 4 4
Temporal wavelet filter HAAR HAAR
Spatial levels 4 2(IB),4(SD)
Spatial wavelet filter BIOR2.2 BIOR2.2
Update step NO YES
ME accuracy 1/4 pixel integer
Macroblock sizes 16x16, 8x8 16x16, 8x8

considered in our study. A full description of the parameters used is given in
Table 1.

4.2 Results

The access behavior of the QT-L codec as a function of bit-rate is shown in Fig.
3. The results show that for all three test sequences, the access-rate varies quite
linearly with the bit-rates. Furthermore, there is not much difference between
the graphs for the three sequences, which means that the data-dependency is
low. The linearity of the access-rate with the bit-rate is also observed, when
decoding to different frame-rates and resolutions, as shown in Fig. 4 for the
“Bus” sequence.

From the access-rate perspective, the option providing the largest gain is res-
olution scaling: accesses performed by QT-L are significantly reduced, especially
at high bit-rates, while those caused by the MC should reduce -independently
of the bit-rate- to 25% of the amount needed at full resolution. Experiments
however report a figure of 33.2%, confirming the expected overhead due to MV
scaling and additional interpolations.

Fig. 3. QT-L: Accesses versus bit rate for different sequences
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Fig. 4. Accesses versus bit rate for QT-L, in SDMCTF decoding of “Bus” sequence at
full/half frame-rate (FF/HF) and full/half resolution (FR/HR)

These results show that the memory access-rate can be decreased in a fine-
grain manner by varying the target bit-rate. To avoid reducing the visual quality
excessively, the user can switch to a less demanding configuration, decoding
lower-resolution versions of the input video or fewer frames, as shown in Fig.
5. Thus, when one resolution or temporal level (or both) are not processed,
the decoder switches to an operational point which lays on a curve positioned
below the one corresponding to full-resolution and frame-rate decoding. These
results show also that the relationship between access-rate and target bit-rate
for decoding at different resolutions and frame-rates can be “learned” using
appropriate training on large datasets. This way, the decoder can estimate the
optimum bit-rate, given a maximum memory access-rate, and a user-specified
resolution and frame-rate. Conversely, for bandwidth-limited applications, the
decoder can estimate the optimum operational settings in terms of resolution
and frame-rate, for a given access-rate and channel-bandwidth.

A comparison between SDMCTF and IBMCTF is shown in Fig. 6. In terms
of access-rate, these results clearly show that IBMCTF decoding is about twice
as complex as SDMCTF. Both at full frame-rate/full resolution and half frame-
rate/half resolution, the difference between the two architectures is almost com-
pletely covered by the CODWT module. The small gap between the curve cor-
responding to IBMCTF decoding at full frame-rate/full resolution for which the
CODWT accesses are omitted (FF FR inband no CODWT) and the curve cor-
responding to SDMCTF decoding at full frame-rate/full resolution (FF FR sd)
is justified by the additional operations performed by IBMCTF, as it operates
per resolution level (motion compensation, interpolation, addition of the error-
frames per subband).

Based on these graphs one can determine which architecture and decoding
operational point to choose, given a certain bandwidth or given the process-
ing/memory capabilities of the decoder platform. These results show also that
in the IBMCTF architecture, the CODWT module carries half of the complex-
ity. Hence, in order to support a broad set of “complexity profiles”, extensive
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Fig. 5. Access versus bit rate for both MC and QT-L in SDMCTF decoding of “Bus”
sequence at full/half frame-rate (FF/HF) and full/half resolution (FR/HR)

Fig. 6. Decoding of “Bus” sequence at different rates, using IBMCTF (inband) and
SDMCTF (sd). The codecs operate at full/half frame-rate (FF/HF) and full/half res-
olution (FR/HR).The last two graphs show the memory accesses performed by the
IMBCTF codec, omitting the accesses made by the CODWT (no CODWT).

memory optimizations need to be performed, especially on the CODWT module.
Additionally, a local approach for the calculation of the CODWT is necessary,
as this enables the block-based calculation of the ODWT phases [11,17], leading
to significant savings in terms of memory usage. Finally, a complexity-scalable
approach is the solution for a progressive complexity reduction of the CODWT.
With this respect, the next sections introduce a new method to achieve complex-
ity scalability in the CODWT at the cost of a limited and controllable penalty
on the overall coding performance.
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5 Mathematical Formulation of the Complete-to-
Overcomplete Discrete Wavelet Transform

In an IBMCTF codec, decoding video at a certain resolution level, the ODWT
of the reference frames are calculated by applying a set of prediction filters on
the critically sampled wavelet-subbands of that level [11]. In the following, a
brief description of the CODWT is given for the one-dimensional case, with
the extension in two dimensions following the row-column approach [11]. The
formulas for the CODWT in the resolution scalable case are given in the Z-
domain by: ⎧⎨⎩

Ak
x(z) = F l+1

4p (z)Ak
0(z) + F l+1

4p+1(z)Dk
0(z)

Dk
x(z) = F l+1

4p+2A
k
0(z) + F l+1

4p+3(z)Dk
0 (z)

(1)

where Ak
x and Dk

x denote the low- and high-frequency ODWT-subbands respec-
tively of phase x at resolution level k , F are prediction filters, l = �log2x (�a
denotes the integer part of a), and p = x− 2l [11]. Note that Ak

0 , D
k
0 correspond

to the critically-sampled low- and high-frequency wavelet subbands respectively
of level k.

Observations of the prediction filters show that their coefficients tend to have
large central values, which decrease rapidly towards the tails [22]. This prop-
erty can be exploited to reduce the complexity of the CODWT and to obtain
complexity-scalability. Using a set of truncated prediction filters reduces the
amount of calculations in the filtering process performed by the encoder and/or
decoder. The simplest truncation method consists of setting a threshold on the
coefficients, which is equivalent to truncating the smallest filter-taps. Next, this
method will be referred to as the “thresholding” approach. This technique can
be applied in the CODWT calculation performed at the decoder and/or encoder
sides, hence enabling complexity scalability at both ends of a video transmission
system.

6 Statistical Framework for Prediction Filter Truncation

Truncating the smallest filter-taps does not necessarily imply distortion opti-
mality in a statistical sense, i.e. achieving a minimal average distortion on the
calculated ODWT. With this respect, an alternative truncation technique is to
identify and truncate those filter taps that yield a minimal distortion in a sta-
tistical sense. This approach is described next.

Assume wide-sense stationary wavelet-subbands and zero cross-correlation be-
tween different wavelet-subbands. Under these assumptions, based on (1), the
expected square error on the low- and high-frequency subbands resulting from
truncating the prediction filters can be written in the wavelet-domain as:

E[(εW k
x
(n))2] =

∑
s

∑
s′ εl+1

4p+j(s)ε
l+1
4p+j(s

′)RAk
0
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0
(t− t′)

(2)
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with (W, j) ∈ {(A, 0), (D, 2)} and RAk
0
, RDk

0
are the autocorrelation functions

of the low- and high-frequency wavelet-subbands respectively. The errors εl+1
4p+1,

εl+1
4p+j+1, resulting from truncating the prediction filter coefficients follow the

same notations as (1) and are either equal to the corresponding prediction filter-
taps in case of truncation, either zero. For every combination of truncated co-
efficients, the expected square error is calculated and the optimal truncated
prediction filters are selected as those giving the smallest expected square error.
Denote by c the total number of prediction filter coefficients and by p the num-
ber of coefficients that are truncated. The total number of possible truncations
is then given by c!(p!(n − p)!)−1. As the number of combinations grows fac-
torial, this becomes problematic for a large set of prediction filters. To speed-
up these calculations, we use the following empirical property: if we denote by
Tp = {t1, t2, . . . , tp} the set of coefficient-indices that minimize the expected
square error when truncating p filtertaps, then Tp+1 is given by Tp

⋃{tp+1},
limiting the search space to pc− (p− 1)p/2 combinations.

7 Experimental Results

First, the truncated prediction filters that are obtained by truncating the small-
est coefficients (“thresholding” approach) are employed in the CODWT taking
as input a 4CIF-resolution, 3-levels wavelet-transformed image decomposed us-
ing a biorthogonal (9-7) wavelet-filter. The distortion in the resulting ODWT
expressed in terms of PSNR in the wavelet-domain (W-PSNR), is determined
given the reference ODWT, which is obtained by using the non-truncated pre-
diction filters.

The graphs shown in Fig. 7 start at a W-PSNR of 200 for zero truncation
points, which is taken as a pseudo-value for lossless calculation of the ODWT.
The experiments show that up to 28 prediction filter coefficients can be trun-
cated, while maintaining a W-PSNR above 50 dB for all levels, implying that
the losses incurred by truncation on the overall video coding performance are

Fig. 7. Wavelet-domain PSNR results for the approximated ODWT for resolution levels
1,2 and 3
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minimal. The complexity reduction of the CODWT (see Fig. 8) is measured in
terms of accesses to the memory, using the PowerEscape tool [20]. As shown in
Fig. 8, the complexity gradually decreases with the number of truncation points,
which shows that fine-grain complexity scalability can be achieved, by progres-
sively truncating the prediction filters. Truncating up to 28 coefficients reduces
the number of memory accesses of the CODWT with almost 30%, while keeping
a W-PSNR above 50dB.

To assess the quality/complexity reduction trade-off globally, the approxi-
mated prediction filters are subsequently used in an IBMCTF encoding/decoding
scenario of the “Harbour” sequence at a 4CIF-resolution and a frame-rate of
60Hz. Decoding of the sequence at a bit-rate range of 134Kbps-2.39Mbps shows
a maximum loss of 1.13dB for different resolutions (QCIF, CIF, 4CIF) and
frame-rates (15Hz, 30Hz, 60Hz) when truncating up to 28 filter-taps. The cor-
responding complexity of the CODWT reduces by almost 30%, which trans-
lates to an overall complexity reduction of about 15%, as the CODWT is re-
sponsible for almost half the number of memory operations in IBMCTF video
coding.

Fig. 8. Normalized number of accesses versus the number of truncated coefficients for
the calculation of the full ODWT

In a last experiment, the truncated prediction filters corresponding to a bior-
thogonal (9-7) wavelet-filter-bank were determined by using the statistical ap-
proach and used in the calculation of the CODWT. Here only the distortion
needs to be determined, as the complexity reductions in terms of memory ac-
cesses are identical to those obtained in the first experiment. The results show
that in terms of W-PSNR, the average difference between the statistical and
thresholding- based prediction-filter truncation methods is of only 1.2dB. This
shows that, although the statistical approach leads to better results, a simple so-
lution such as removing the smallest coefficients results in a quality which is close
to the quality obtained when using the statistical distortion-optimal truncation
method.
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8 Conclusions

Scalable wavelet-based video codecs provide the flexibility needed to adapt the
video content to the channel conditions. Moreover, they meet a variety of user
preferences in terms of quality, resolution and frame-rate. Apart of this, com-
plexity scalability is of paramount importance in order to deal with the limited
and time-varying computational capabilities of the devices on which video has
to be processed.

This paper investigates two instances of scalable MCTF wavelet-based video
coding (IBMCTF and SDMCTF) architectures. Although both coding systems
allow for quality, resolution, temporal and complexity scalability, IBMCTF out-
performs SDMCTF when decoding at lower spatio-temporal resolution, but costs
almost twice as much in terms of memory accesses compared to the latter. This
is mainly caused by the complete-to-overcomplete discrete wavelet transform,
which calculates the phases of the ODWT corresponding to the received motion
vectors.

Taking into account memory-access rates of the QT-L entropy codec and the
MC modules only, it has been shown that the decoder can meet its hardware
limitations without requiring transcoding, by an appropriate choice of the qual-
ity (bit-rate), frame-rate and/or resolution, thus enabling complexity scalability.
To overcome the high memory complexity incurred by the CODWT in the IBM-
CTF video coding system, a new approach for achieving complexity scalability in
this module has been proposed. Although the statistical framework allows for at-
taining distortion-optimal truncation (in a statistical sense), a simpler technique
such as prediction-filter truncation based on thresholding gives results close to
the optimal solution. Experimental results demonstrate that the proposed ap-
proach achieves fine-grain complexity scalability at the cost of a limited and
controllable penalty in the overall video coding performance.
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Abstract. H.264 adopts new coding tools such as intra-prediction, variable 
block size, motion estimation with quarter-pixel-accuracy, loop filter, etc. The 
adoption of these tools enables an H.264-coded bitstream to have more 
information compared with previous standards. In this paper we proposed an 
effective spatial error concealment method with low complexity. Among the 
information included in an H.264-coded bitstream, we use prediction modes of 
intra-blocks for recovering a damaged block. This is because a prediction 
direction in each prediction mode is highly correlated to the edge direction. We 
first estimate the edge direction of a damaged block using prediction modes of 
intra-blocks adjacent to a damaged block and classify the area inside a damaged 
block into the edge and the flat area. And then our method recovers pixel values 
in the edge area using edge-directed interpolation, and recovers pixel values in 
the flat area using weighted interpolation. Simulation results show the proposed 
method yields better video quality than conventional approaches. 

1   Introduction 

Channel noise or congestion often leads to packet loss when video streams are 
transmitted through noisy channel. As a way to alleviate this problem, error 
concealment is very useful, since the decoded frame which has lost blocks still 
includes spatial and temporal redundancy. A spatial error concealment method 
recovers the lost area using spatially neighboring image data. 

Several spatial error concealment algorithms for restoring missing blocks of 
received video frames have been proposed. Wang et al. proposed the optimization 
algorithm where the optimal DCT coefficients are estimated by imposing the 
smoothness constraints between the intensity values of adjacent samples [1]. Lee et al. 
proposed a spatial error concealment method based on the spatial interpolation 
filtering and DCT coefficients recovery employing fuzzy logic reasoning [2]. Park et 
al. proposed a DCT coefficient recovery algorithm for error concealment that has a 
lower complexity [3]. A block recovery algorithm based on the projection onto 
convex sets (POCS) was proposed by Sun and Kwok [4] and a fast DCT-based spatial 
interpolation technique was reported by Alkachouh and Bellanger [5]. A novel error 
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concealment algorithm, dubbed recovery of image blocks using the method of 
alternating projections (RIBMAP) was proposed [6]. 

H.264 adopts new coding tools such as intra-prediction, loop-filter, motion estimation 
and compensation using variable block size, and so on [7]. The adoption of these tools 
enables an H.264-coded bitstream to have more information compared with previous 
standards. Among the information, the prediction mode (pmode) of each intra-block is 
very useful for spatial error concealment. This is because prediction direction in each 
pmode is strongly related with the edge direction. 

In this paper, using these characteristics of H.264, we present an effective error 
concealment algorithm with low complexity for intra-frame in the H.264 standard. Using 
pmodes of intra-blocks adjacent to a lost macroblock, the proposed method estimates the 
edge direction of a lost macroblock and classifies the damaged area into the edge/flat area 
in the pre-processing stage. Afterward, the pixel values in the edge area are recovered by 
edge-directed interpolation and those in the flat area are recovered by weighted 
interpolation, which is embedded in the reference software of H.264. 

2   Intra-mode and Spatial Error Concealment in H.264 

2.1   Three Intra-modes of an Intra-block of H.264 

To encode a macroblock in an intra-frame by prediction in spatial domain, the H.264 
standard uses three different intra-modes: intra16x16, intra8x8 and intra4x4. Each intra-
mode predicts the block using the different block sizes. Figure 1 depicts macroblock 
partitions in case that the macroblock is coded into these three intra-modes, respectively. 

Intra 16x16 Intra 8x8 Intra 4x4  

Fig. 1. Block partitions of three intra-modes: intra16x16, intra8x8 and intra4x4 

The number of pmodes varies with each intra-mode. Figures 2 and 3 show pmodes for 
intra16x16 and intra4x4. As shown in these figures, intra16x16 has four pmodes, and 
intra4x4 has nine pmodes. Because pmodes of intra8x8 are the same as those of intra4x4, 
intra8x8 also has nine pmodes just like intra4x4. 
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Fig. 2. Four pmodes of intra16x16 
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Fig. 3. Nine pmodes of intra4x4 

2.2   Spatial Error Concealment in the Reference Software of H.264 

For spatial error concealment the reference software (JM 10.1 [8]) of H.264 uses 
weighted averaging interpolation of four pixel values located at vertically and 
horizontally neighboring boundaries of a lost macroblock. That is to say, as shown in Fig. 
4, a pixel value in a lost macroblock, PC is replaced with the weighted average of four 
boundary pixel values located at top, bottom, left and right side. It is formulized in  
Eq. (1). 
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As shown above, an error concealment method for intra-frames in H.264 takes only 
the weighted average of vertically and horizontally neighboring boundary pixel values 
regardless of the edge characteristics of a video frame. This method is relatively effective 
in the area including no edge (flat area) or vertical/horizontal edges, whereas it causes 
visual degradations remarkably in the area including the edges of other direction such as 
diagonal direction. 

3   Proposed Algorithm 

The proposed algorithm for spatial error concealment in intra-frames during the 
H.264 decoding process consists of two steps as shown in Fig. 5. 

The pre-processing part first decides the dominant prediction mode (DPM) among 
pmodes around a lost macroblock, and estimates the edge direction of a lost 
macroblock by the DPM. Also by using the DPM, the damaged area is classified into 
the edge and the flat area.  

After the pre-processing, the adaptive interpolation part restores pixel values with 
different interpolation methods according to the classified area. The pixel values in 
the edge area are restored by using an edge-directed interpolation method in advance. 
And then a weighted interpolation method which is embedded in the reference 
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Fig. 4. The spatial error conceal method in the reference software of H.264, where Pc indicates 
a pixel value in a lost macroblock and P0 to P3 are vertically and horizontally neighboring 
boundary pixel values 
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Fig. 5. The architecture of the proposed method for spatial error concealment in intra-frames 
during the H.264 decoding process 

software recovers the pixel values in the flat area using already interpolated pixel 
values in the edge area as well as the boundary pixel values of a lost macroblock. 

3.1   Pre-processing 

The proposed method uses pmodes of 4x4 blocks located at top, bottom, left and right 
side of a lost macroblock. Therefore sixteen pmodes are available. If one neighboring 
macroblock is coded as intra16x16 or intra8x8, we consider that a pmode of a 4x4 
block is repeated. For example, if a macroblock was coded as intra16x16 with using 
pmode1, we assume that all 4x4 blocks in the macroblock have pmode1. It is because 
the prediction directions of pmode0 to pmode3 in intra16x16 are identical with those 
in intra4x4 (see Figs. 2 and 3). Using these pmodes, in the pre-processing stage, we 
estimate the edge direction of the lost macroblock and classify the edge/flat area. 

Estimation of the Edge Direction. Sixteen pmodes located around a lost macroblock is 
able to be exploited efficiently for the purpose of estimating the edge direction of a lost 
macroblock, because each pmode represents the edge direction of the corresponding 
block, as described in Section 2. However, these pmodes do not provide any information  
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Fig. 6. Four pixel values located at the perpendicular direction of the prediction direction in 
each pmode for calculating the edge magnitudes of sixteen 4x4 blocks 

about the edge magnitude, and just represent the edge directions. Therefore, in order 
to estimate the edge direction of a lost macroblock, the edge magnitude of each block, 
as well as pmodes of neighboring blocks, needs to be considered. 

The edge magnitudes of sixteen neighboring 4x4 blocks are calculated as follows: 
1) Deciding four pixels located at the perpendicular direction of the prediction 
direction in the pmode of each neighboring block. 2) Obtaining the difference 
between maximum and minimum pixel values. It is expressed in Fig. 6 and 
formulized in Eq. (2). As shown in Eq. (2), for pmode2, we assume that there is no 
edge, and set the edge magnitude to 0. 
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Once the edge magnitudes of sixteen 4x4 blocks around a lost macroblock are 
obtained, a DPM is decided with a pmode which maximize the sum of the edge 
magnitude at each pmode, and the prediction direction of a DPM is chosen as the 
edge direction of a lost macroblock. Thus, the proposed algorithm can consider the 
eight edge directions identical with prediction direction of pmodes except pmode2. 
Table 1 depicts the edge direction of a lost macroblock in case that each pmode is 
chosen as a DPM. 

Classification of the Edge/Flat Area. The damaged area can be divided into the edge 
area where there are edge components and the flat area where there are no edge  
 

Table 1. The relation between eight pmodes except pmode2 and the edge direction (θ ) of a 
lost macroblock 
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components. Among sixteen 4x4 blocks around a lost macroblock, the block with a 
pmode decided as a DPM is chosen as a reference block, then the area on the 
prediction direction of the DPM from the reference blocks is classified as the edge 
area. In this process, we expand the width of the edge area with some margin because 
the edges in a natural image smoothly vary differently from ideal edges. Afterward 
the other area which is not chosen as the edge area is decided as the flat area. Figure 7 
depicts the example of the classification of the edge/flat area in case that a pmode4 is 
chosen as a DPM. If B1, B5 and B10 blocks have a pmode4 identical with a DPM, then 
the area located on the prediction direction of the pmode4 (135°) from the positions of 
those three blocks with margin considered is chosen as the edge area. 

Fig. 7. An example for classification of the edge/flat area when the DPM is pmode4 and B1, B5 
and B10 blocks have a pmode4 identical with the DPM 

3.2   Adaptive Interpolation 

After the estimation of the edge direction and the classification between the edge area 
and the flat area in the pre-processing stage, the lost macroblock is restored by using 
different interpolation methods for each area. First, for the edge area, pixel values are 
restored by an edge-directed interpolation method using the estimated edge direction, 
as depicted in Fig. 8. 

In Fig. 8, the pixel value in the edge area, PC is restored by first-order linear 
interpolation with two boundary pixel values which are on the straight line from the 
location of PC in the direction of the estimated edge direction, as depicted in Eq. (3).  
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When a DPM is one of pmode5 to pmode8, one of P0 and P1 in Fig. 8 is pixel value 
at a half-pixel position. In this case, the pixel value at a half-pixel position is replaced 
with the average of two pixel values at neighboring integer positions. Figure 9 depicts 
the intermediate result of the Foreman sequence, where only pixel values in the edge 
area are restored. As shown in Fig. 9, most area including edges is decided as the edge 
area and restored by edge-directed interpolation, whereas the area which represents 
the flat area is not restored. 



 Spatial Error Concealment with Low Complexity in the H.264 Standard 437 

θ

1D

0D

Lost
Macroblcok 

0P

1P

CP

 

Fig. 8. An edge-directed interpolation method using first-order linear interpolation with two 
boundary pixel values 

 

Fig. 9. The intermediate result image of the Foreman sequence when only the pixel values in 
the edge area are restored using the edge-directed interpolation method 

3.3   Complexity Analysis 

Complexity of the Pre-processing. In the pre-processing, the complexity for 
estimation of the edge direction depends upon the neighboring pmodes, because there 
is no operation to calculate the edge magnitude in case of pmode2. In the worst case, 
that is, if no neighboring 4x4 block is encoded using pmode2, 96(6x16) comparisons 
and 16(1x16) subtraction per lost macroblock are required for calculating of edge 
magnitude. The comparison operation is for sorting four values to obtain maximum 
and minimum pixel values. After the calculation of the edge magnitude of sixteen 
neighboring 4x4 blocks, 16 additions in order to calculate the sum of edge magnitude 
on each pmode are required. Lastly, 8 comparisons are needed for selecting a DPM. 
To selecting of a DPM is equal to estimating the edge direction of a lost macroblock. 
The classification of the edge/flat area requires only 16 comparisons in order to 
choose the blocks with the pmode which is identical with the DPM. Consequently, 
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during the pre-processing, 16 additions, 16 subtractions and 120 comparisons are 
needed. 

Complexity of Adaptive Interpolation. Since the different interpolation methods are 
used in each area, the complexity of adaptive interpolation varies with the size of each 
area. The pixel values in the flat area are recovered by using same way embedded in 
the reference software, as shown in Eq. (1). However, the number of additions in the 
reference software is less than that of the proposed method in the flat area. It is 
because the reference software classifies all the damaged area into the flat area (in 
terms of the proposed algorithm) and fixes the denominator of Eq. (1) as 36, thus 
saves 3 addition operations. In the proposed method, 6 additions, 4 multiplications 
and 1 division are required for restoring a pixel value in flat area.  

The pixel values in the edge area are recovered by using edge-directed 
interpolation as shown in Eq. (2). Thus 2 additions, 2 multiplications and 1 division 
are required for restoring a pixel value in the edge area. Exceptionally, when a DPM 
is one of pmode5 to pmode8, 1 addition and 1 shift operation are needed additionally. 
It is because one of boundary pixels in Eq. (2) is located at a half pixel position.  

Comparison of Complexity. As described above, the complexity of the proposed 
algorithm depends upon pmodes of neighboring blocks, a chosen DPM and the size of 
each area. Table 2 compares the complexity of the proposed algorithm with one of a 
method in the reference software of H.264 and Alkachouh’s fast DCT-based method 
when no neighboring block is encoded using pmode2 and the edge area occupies a 
half of a damaged area.  

Table 2. The number of operations for restoring 256 pixel values a lost macroblock when using 
the reference software, Alkachouh’s method and the proposed method in case that no 
neighboring block is encoded using pmode2 and the half of a lost macroblock is the edge area 

Proposed method Operations Reference 
software 

Alkachouh’s 
method Pre-processing Interpolation 

Addition 768 17,408 16 1,024 or 1,152 
Subtraction - - 16 - 

Multiplication 1,024 17,408 - 768 
Division 256 - - 256 

Comparison - 512 120 - 
Shift - - - 0 or 128 

In Table 2, the larger number of the proposed method indicates the case that one of 
pmode5 to pmode8 is chosen as a DPM, and the number of operations in Alkachouh’s 
method is obtained in case that an interpolation mask (Eq. (20) in [5]) is calculated 
and saved in advance.  

As shown in Table 2, the proposed algorithm estimates the edge direction and 
classifies the edge/flat area inside a lost macroblock with small amount of operations 
by using neighboring pmodes known already. Moreover, when the edge area covers 
more than 50% of the damaged area, the propose algorithm has lower times of 
multiplication than those of the reference software as well as Alkachouh’s. 
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Considering various edge directions in a video sequence, it is possible for proposed 
algorithm to alleviate the complexity further. 

4   Simulation Results 

To evaluate the proposed algorithm, we used a public reference encoder, JVT Model 
(JM) v.10.1 [7]. Six standard video sequences in CIF (352×288) format were 
analyzed. These included Akiyo, Coastguard, Container, Foreman, Highway and 
Silent. We use the first 30 frames of each sequence which were encoded as I-frames 
only, and compare the simulation results of the proposed algorithm with those of the 
reference software and Alkachouh’s method [5]. In our simulation, the proposed 
algorithm uses the value 2 as the margin of the edge area. 

Figure 10 shows the objective quality for each sequence when 10% of macroblocks 
are lost at the different bit-rates. As shown in Fig. 10, the proposed algorithm 
outperforms other two methods in terms of objective quality at all bit-rates for no 
matter which sequence is considered. Particularly, for Foreman sequence, the  
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(e)                                                                        (f) 

Fig. 10. Comparison of objective qualities at the different bitrates when using the reference 
software, Alkachouh’s method and the proposed method 
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proposed algorithm improves the objective quality about 3~5 dB. This is because 
there are a lot of edge components in the Foreman sequence which can not be 
considered in those methods. 

Figure 11 shows subjective qualities of three methods when 20% of macroblocks 
are lost in the first frame of the Foreman sequence. As shown in Fig. 11, the proposed 
algorithm also outperforms compared with the other two methods in terms of 
subjective qualities. 

   
(a)                                                             (b) 

   
(c)                                                             (d) 

Fig. 11. Comparison of subjective video qualities of the first frame of a foreman sequence (a) a 
damaged frame (PSNR = 11.26 dB) (b) a recovered frame by the reference software of H.264 
(JM10.1 [8]) (PSNR = 29.82 dB) (c) a recovered frame by the Alkachouh’s method [5] (PSNR 
= 28.27 dB) (d) a recovered frame by the proposed method (PSNR = 34.85 dB) 

5   Conclusions 

The H.264 video coding standard encodes intra-frames using three intra-modes. Each 
intra-mode has different pmodes, and these pmodes of intra-blocks is included in an 
H.264-coded bitstream. When the macroblock inside an intra-frame is lost, pmodes 
included in an H.264 bitstream can be exploited to restore the damaged macroblock 



 Spatial Error Concealment with Low Complexity in the H.264 Standard 441 

efficiently. This is because each pmode used in encoding an intra-frame is strongly 
related with the edge direction. 

The proposed algorithm conducts the pre-processing which estimates the edge 
direction of a lost macroblock using pmodes of intra-blocks around the lost 
macroblock. Also it classifies the area inside the macroblock into either the edge area 
or the flat area. After that, according to the classified area, different interpolation 
techniques are applied to restore pixel values. For the edge area, the edge-directed 
interpolation technique is applied, and for the flat area, the weighted averaging 
interpolation, which is used in the reference software of H.264, is applied. Besides the 
proposed algorithm has lower complexity because it makes the utmost use of the 
properties of the H.264 video coding standard in order to estimate the edge direction 
and to classify the edge/flat area of the damaged area. 

The simulation results show that the proposed algorithm outperforms other two 
existing techniques for intra-frames in terms of both the subjective and the objective 
video qualities. Especially it improves the image quality superbly for the sequence in 
which there are a lot of directions of edge except for a horizontal and a vertical 
direction. 
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Abstract. In many application scenarios, the use of Regions of Interest
(ROIs) within video sequences is a useful concept. It is shown in this
paper how Flexible Macroblock Ordering (FMO), defined in H.264/AVC
as an error resilience tool, can be used for the coding arbitrary-shaped
ROIs. In order to exploit the coding of ROIs in an H.264/AVC bitstream,
a description-driven content adaptation framework is introduced that is
able to extract the ROIs of a given bitstream.

The results of a series of tests indicate that the ROI extraction process
significantly reduces the bit rate of the bitstreams and increases the
decoding speed. In case of a fixed camera and a static background, the
impact of this reduction on the visual quality of the video sequence is
negligible. Regarding the adaptation framework itself, it is shown that
in all cases, the framework operates in real time and that it is suited for
streaming scenarios by design.

1 Introduction

In many application scenarios, the use of Regions of Interest (ROIs) within video
sequences is a useful concept. A ROI typically is a region within the video pane
containing visual information that is more interesting than the other parts of the
video pane. In the case of multiple ROIs, they can be equally important or they
might have different levels of importance. The remaining area is often called the
background. Several image or video coding standards (e.g., JPEG2000 [1] or the
Fine Granularity Scalability (FGS) Profile of MPEG-4 Visual [2]) have adopted
the idea of ROIs and they often provide functionality to code the ROIs at a
higher quality level.

The use of ROIs is, for instance, found in surveillance applications. For in-
stance, more and more cameras are developed that capture 360 degrees of video
footage with very high resolution pictures. Because it is often impossible to
transmit a coded representation of the entire video sequence, one or more ROIs
are defined and only a coded version of these smaller areas is transmitted. The
position of the ROIs within the picture can mostly be adjusted in real time by
an operator. The latter avoids the delays that are introduced by traditional Pan
Tilt Zoom (PTZ) cameras.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 442–453, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The currently ongoing standardization efforts of the Joint Video Team re-
garding Scalable Video Coding (SVC) [3] indicate that there is a clear interest
in ROI coding and ROI-based scalability [4,5]. The requirements document of
SVC [6] gives some more details about various applications in which ROI cod-
ing and ROI-based scalability can be applied, including video surveillance and
multi-point video conferencing.

This paper concentrates on the exploitation of ROI coding within the
H.264/AVC specification [7]. The H.264/AVC standard does not explicitly define
tools for ROI coding, but the authors have shown that the use of slice groups
(also called Flexible Macroblock Ordering or FMO) enables one to code ROIs
into an H.264/AVC bitstream. Nothwithstanding the fact that FMO is primar-
ily an error resilience tool, it was illustrated in [8] that it can be the basis for
content adaptation. The combination of ROI coding and a description-driven
framework for the extraction of ROIs (ROI scalability as content adaptation)
is the main topic of this paper. On top of this, it will be shown that the en-
tire content adaptation framework operates in real time and that it is suited
for live streaming scenarios. This technique illustrates the possibilities that are
offered by the single-layered H.264/AVC specification for ROI-based content
adaptation. A similar technique for the exploitation of multi-layered temporal
scalability within H.264/AVC is described in [9].

The rest of this paper is organized as follows. Section 2 describes the two main
enabling technologies: H.264/AVC FMO and the XML-driven content adapta-
tion framework. In Sect. 3, two methods for ROI extraction are introduced (back-
ground slice deletion and placeholder slice insertion). The results of a series of
tests regarding the proposed content adaptation framework are given in Sect. 4
and, finally, Sect. 5 concludes this paper.

2 Enabling Technologies

2.1 ROI Coding with H.264/AVC FMO

FMO is a novel tool for error resilience that is introduced in the H.264/AVC
specification. By using FMO, it is possible to code the macroblocks of a picture
in another order than the default raster scan order (i.e., row per row). One
can define up to eight so-called slice groups and every macroblock can freely be
assigned to one of these slice groups. This assignment results in a MacroBlock
Allocation map (MBAmap), which is coded in a Picture Parameter Set (PPS). In
fact, the set of slice groups constitute a set partition1 of the set of macroblocks of
a picture. An H.264/AVC encoder will encode one slice group after another and
the macroblocks that are part of the slice group in question are coded in raster
scan order (within that particular slice group). Apart from this, the concept of
(traditional) slices remains the same: macroblocks are grouped into slices, the
latter being spatially limited to one of the slice groups.

1 In a strictly mathematical sense.
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Because the coding of the entire MBAmap might introduce a considerable
amount of overhead, the H.264/AVC standard has specified 6 predefined types
of FMO. The MBAmap for these types has a specific pattern that can be coded
much more efficiently. FMO type 2, which is used in this paper, indicates that
the slice groups are rectangular regions within the video pane, as shown in Fig.
1(a). This type of FMO only requires two numbers to be coded per rectangular
slice group. These regions will be considered Regions of Interest. Note that the
macroblocks that are left over also constitute a (non-rectangular) slice group.
For a thorough overview of H.264/AVC FMO, the reader is refered to [10].

(a) H.264/AVC FMO type 2

slice group 0

slice group 1
slice group 2

(b) H.264/AVC FMO type 6

Fig. 1. ROI coding with H.264/AVC FMO

In H.264/AVC, the slice group configuration is coded in a PPS which contains
a number of syntax elements that are the same for a certain number of succes-
sive pictures (e.g., the entropy coding scheme). Further, every slice contains a
reference to the PPS that is into effect. Since the ROI configuration can change
in the course of time (e.g., the relative position of a ROI changes, or a ROI
appears or disappears), it is required to code a PPS into the bitstream in order
to reflect every change of the ROI configuration. In such a PPS, there are four
syntax elements that are important in the context of this paper. The number of
slice groups is coded by means of num slice groups minus1 which means that
this number denotes the number of ROIs that are present in the bitstream (the
‘background’ is also a slice group). The syntax element slice group map type
will always be 2 since we only focus on FMO type 2. Every rectangular slice
group is defined by the macroblock numbers of its top left and its bottom right
macroblock. These two numbers are coded in a PPS by means of the syntax
elements top left iGroup and bottom right iGroup.

Finally, it should be noted that it is possible to define non-rectangular ROIs
in H.264/AVC. Indeed, one can always use FMO type 6 (explicit coding of the
MBAmap) to define arbitrary-shaped sets of macroblocks, as depicted in Fig.
1(b). The content adaptation framework, as presented in this paper, is able to
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process FMO type 6; the only modification that is needed, is the algorithm that
decides if a slice is part of a ROI or not (see Sect. 3.1).

2.2 XML-Driven Content Adaptation Framework

The process of content adaptation based on (pseudo) scalable properties of a
bitstream typically requires the removal of certain data chunks, the replacement
of certain data blocks, the modification of certain syntax elements, or a combina-
tion of these three. One way to accomplish this, is to make use of automatically
generated XML descriptions (called Bitstream Syntax Descriptions, or BSDs)
that contain high-level information about the bitstreams. For the generation of
a BSD, only a limited knowledge is required about the syntax of given bitstream.
In stead of performing the adaptations directly on the bitstreams, the generated
BSDs can be transformed in such a way that it reflects the desired adaptation.
The last step is to automatically generate an adapted bitstream based on the
transformed description. The advantage of such an approach is that the adap-
tation engine itself is truely format agnostic.

The MPEG-21 Bitstream Syntax Description Language (BSDL) framework
is an example of a framework that provides the necessary functional blocks that
are described above. However, it is described in literature that some parts of this
framework have performance issues [11,12], in particular the very high execution
times and the monotonically increasing memory consumption of the BintoBSD
Parser. As a result, it is (yet) less suited to be deployed in real-life scenarios which
require real-time behavior. Another example is the Formal Language for Audio-
Visual Object Representation, extended with XML features (XFlavor [13]). The
major drawback of the latter is the fact that the generated descriptions are
too large because it is required to fully parse the bitstream up to the lowest
level (in fact, all information of the bitstream is present in its description). In
order to combine the strenghts of both BSDL and XFlavor, the authors have
developed BFlavor, which is a modification of XFlavor in order to be able to
output BSDL-compatible descriptions [14].

BFlavor allows to describe the structure of a media resource in a C++-alike
manner. It is subsequently possible to automatically create a BS Schema, as well
as a code base for a parser that is able to generate a BSD that is compliant with
the corresponding BS Schema. This implies that the generated BSDs can be
further processed by the upstream tools in a BSDL-based adaptation chain. In
Fig. 2, an overview is given of the BSD-oriented content adaptation framework,
as employed in this paper. The technology that is used to transform the BSDs
is Streaming Transformations for XML (STX, pronounced ‘stacks’) [15]. The
internals of the transformation (embodying the actual ROI scalability) are the
subject matter of Sect. 3.

3 ROI Extraction

In the context of this paper, every ROI is a slice group (containing one or more
slices). Consequently, the extraction of the ROIs comes down to the identification
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original bitstream
BFlavor-generated

parser
BSD

filter(s)

adapted
BSD

BSDtoBinadapted bitstream

adaptation

decision

taking engine

<bitstream>
<header>0 24</header>
<slice inROI=“false”>25 2637</slice>
<slice inROI=“true”>2663 746</slice>
<slice inROI=“true”>3410 1451</slice>
<slice inROI=“false”>4862 857</slice>

</bitstream>

<bitstream>
<header>0 24</header>
<slice inROI=“true”>2663 746</slice>
<slice inROI=“true”>3410 1451</slice>

</bitstream>

<stx:transform>
<stx:if test="$inROI">

<stx:copy select=“.”/>
</stx:if>

</stx:transform>

original bitstream
BFlavor-generated

parser
BSD

filter(s)

adapted
BSD

BSDtoBinadapted bitstream

adaptation

decision

taking engine

<bitstream>
<header>0 24</header>
<slice inROI=“false”>25 2637</slice>
<slice inROI=“true”>2663 746</slice>
<slice inROI=“true”>3410 1451</slice>
<slice inROI=“false”>4862 857</slice>

</bitstream>

<bitstream>
<header>0 24</header>
<slice inROI=“true”>2663 746</slice>
<slice inROI=“true”>3410 1451</slice>

</bitstream>

<stx:transform>
<stx:if test="$inROI">

<stx:copy select=“.”/>
</stx:if>

</stx:transform>

Fig. 2. XML-driven framework for video content adaptation

of those slices that are part of one of the ROIs. Afterwards, the ‘background’ can
either be dropped or replaced with other coded data. These two approaches are
described in the following two subsections. The bandwith required to transmit
a bitstream that is disposed of its non-ROI parts will be much lower. On top of
this, the use of placeholder slices (see Sect. 3.2) will result in a speed-up of the
receiving decoder and a decrease in the decoder’s complexity.

3.1 Non-ROI Slice Deletion

For every slice in the coded video sequence, one has to decide whether or not
it is part of one of the rectangular slice groups. Based on the syntax element
first mb in slice (coded in every slice header), this can be done in the fol-
lowing manner. Let Ri be the ROIs and let S be a slice having the macroblock
with number FMBS as its first macroblock (i.e., FMBS = first mb in slice).
Further, let TLi and BRi be the macroblock numbers of the top left and bot-
tom right macrobock of ROI Ri. Last, let W be the width of a picture in terms
of macroblocks (coded by means of pic width in mbs minus1 in a Sequence
Parameter Set). Then, S is part of Ri if

(TLi mod W ≤ FMBS mod W ) ∧ (FMBS mod W ≤ BRi mod W )
∧ (TLi divW ≤ FMBS divW ) ∧ (FMBS divW ≤ BRi divW )

In this expression, the div operator denotes the integer devision with trun-
cation and the mod operator denotes the traditional modulo operation. Based
on a BSD that is generated by BFlavor, this calculation can be done inside a
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STX filter. The latter will then discard all parts of the BSD that are related
to slices for which the above calculation evaluates to false for all i. It should
be noted that I slices are never affected. Based on this transformed BSD, the
BSDtoBin Parser can generate the actual adapted bitstream. It is important to
note that a bitstream that is generated by this approach will no longer comply
with the H.264/AVC standard as the latter requires that all slice groups are
present in an H.264/AVC bitstream. Despite the fact that only minor modifi-
cations of an H.264/AVC decoder are needed for the correct decoding of such
a bitstream, this may be considered a disadvantage of the procedure described
above.

3.2 Placeholder Slice Insertion

In order to avoid the disadvantages described in the previous subsection, the
authors propose the use of placeholder slices. In this approach, coded P and B
slices are no longer dropped, but they are replaced by other coded data (again,
I slices are not affected). A placeholder slice can be defined as a slice that
is identical to the corresponding area of a certain reference picture, or that is
reconstructed by relying on a well-defined interpolation process between different
reference pictures [16]. Based on the provisions of the H.264/AVC specification,
the placeholder slices, as proposed here, are implemented by means of P slices
in which all macroblocks are marked as skipped (hereafter called ‘skipped P
slices’). This subsection will explain how this substitution can be accomplished
in the XML-driven content adaptation framework.

The most straightforward case is replacing coded P slices with skipped P
slices. Since the slice header can be kept unchanged, only the slice data are to
be substituted. Only two syntax elements are needed to code the slice data for a
skipped P slice: mb skip run to indicate the number of macroblocks that are to
be skipped and rbsp slice trailing bits in order to get byte-aligned in the
bitstream. An excerpt of both the original and adapted BSD of a P slice is given
in Fig. 3(a) where some simplifications are introduced to improve readability.

In order to replace a coded B slice with a skipped P slice, the substitution
process is more complex because of the different nature, and hence header syn-
tax, of P and B slices. The syntax element slice type has to be changed from
1 or 6 (B slice) to 0 (P slice). Next to this, the slice header of a B slice con-
tains a number of syntax elements that cannot appear in a P slice, and they
need to be removed. To summarize, the STX filter which adapts the BSDs will
remove the following syntax elements (and the syntax elements that are implied
by them): direct spatial mv pred flag, num ref idx l1 active minus1,
ref pic list reordering flag l1, luma weight l1 flag (if applicable), and
chroma weight l1 flag (if applicable).

Regarding the slice data, the same process can be applied as in the case of
coded P slices. An example illustrating this scenario is given in Fig. 3(b). In
order to save some additional bits, it is possible to change the value of the
syntax element slice qp delta to zero in all cases, as this value has no impact
on skipped macroblocks.
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---------------- original description ---------------

<coded_slice_of_a_non_IDR_picture >

<slice_layer_without_partitioning_rbsp >

<slice_header >

<first_mb_in_slice >0</first_mb_in_slice >

<slice_type >5</ slice_type >

<pic_parameter_set_id >0</pic_p... >

<frame_num >1</frame_num >

<!-- ... -->

</ slice_header >

<slice_data >

<bit_stuffing >7</ bit_stuffing >

<slice_payload >7875 1177</ slice_payload >

</ slice_data >

</ slice_layer_without_partitioning_rbsp >

</ coded_slice_of_a_non_IDR_picture >

---------------- adapted description ----------------

<coded_slice_of_a_skipped_non_IDR_picture >

<skipped_slice_layer_without_partitioning_rbsp >

<slice_header >

<first_mb_in_slice >0</first_mb_in_slice >

<slice_type >5</ slice_type >

<pic_parameter_set_id >0</pic_p... >

<frame_num >1</frame_num >

<!-- ... -->

</ slice_header >

<skipped_slice_data >

<mb_skip_run >108 </mb_skip_run >

</ skipped_slice_data >

<rbsp_trailing_bits >

<rbsp_stop_one_bit >1</rbsp_stop_one_bit >

<rbsp_alignment_zero_bit >0</rbsp_a ... >

</ rbsp_trailing_bits >

</ skipped_slice_layer_without_partitioning_rbsp >

</ coded_slice_of_a_skipped_non_IDR_picture >

(a) P slice replaced by a skipped P slice

---------------- original description ---------------

<coded_slice_of_a_non_IDR_picture >

<slice_layer_without_partitioning_rbsp >

<slice_header >

<first_mb_in_slice >0</first_mb_in_slice >

<slice_type >6</slice_type >

<pic_parameter_set_id >1</ pic_parameter_set_id >

<frame_num >2</frame_num >

<pic_order_cnt_lsb >2</pic_order_cnt_lsb >

<direct_spatial_mv_pred_flag >1</direct... >

<num_ref_idx_active_override_flag >1</num ... >

<num_ref_idx_l0_active_minus1 >1</num ... >

<num_ref_idx_l1_active_minus1 >0</num ... >

<ref_pic_list_reordering_flag_l0 >0</ref ... >

<ref_pic_list_reordering_flag_l1 >0</ref ... >

<slice_qp_delta >2</slice_qp_delta >

</slice_header >

<slice_data >

<bit_stuffing >6</bit_stuffing >

<slice_payload >9543 851 </ slice_payload >

</slice_data >

</slice_layer_without_partitioning_rbsp >

</coded_slice_of_a_non_IDR_picture >

---------------- adapted description ----------------

<coded_slice_of_a_skipped_non_IDR_picture >

<skipped_slice_layer_without_partitioning_rbsp >

<slice_header >

<first_mb_in_slice >0</first_mb_in_slice >

<slice_type >0</slice_type >

<pic_parameter_set_id >1</ pic_parameter_set_id >

<frame_num >2</frame_num >

<pic_order_cnt_lsb >2</pic_order_cnt_lsb >

<num_ref_idx_active_override_flag >1</num ... >

<num_ref_idx_l0_active_minus1 >1</num ... >

<ref_pic_list_reordering_flag_l0 >0</ref ... >

<slice_qp_delta >0</slice_qp_delta >

</slice_header >

<skipped_slice_data >

<mb_skip_run >264 </mb_skip_run >

</skipped_slice_data >

<rbsp_trailing_bits >

<rbsp_stop_one_bit >1</rbsp_stop_one_bit >

<rbsp_alignment_zero_bit >0</rbsp... >

</rbsp_trailing_bits >

</skipped_slice_layer_without_partitioning_rbsp >

</coded_slice_of_a_skipped_non_IDR_picture >

(b) B slice replaced by a skipped P slice

Fig. 3. XML-driven placeholder slice insertion

4 Results

In order to have some insight in the performance and the consequences of the
proposed architecture, a series of tests was set up. The measurements include the
impact of the adaptation process on the bitstream and on the receiving decoder.
Also an assessment of the performance of the overall adaptation framework is
given.

In the experiments, four video sequences were used: Crew (600 pictures with
a resolution of 1280 × 720), Hall Monitor, News, and Stefan (the latter three
having 300 pictures at CIF resolution). In each sequence, one or more ROIs were
manually defined: the moving persons in Hall Monitor and the bag that is left
behind by the left person; the heads of the two speakers in News; the tennis
player in Stefan; the first two persons of the crew and the rest of the crew as
a separate ROI in the Crew sequence. In all sequences, the ROIs are non-static
(moving, shrinking, or enlarging) and they may appear or dissappear.

These four sequences were encoded with a modified version of the H.264/AVC
reference software (JM 9.5) which allows to encode bitstreams with FMO
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configurations that vary in the course of time. This encoding was done once
conform the Baseline Profile and once conform the Extended Profile (the only
difference here being the use of B slices). Other relevant encoding parameters
are a GOP length of 16, 2 consecutive B slice coded pictures (if applicable),
and a constant Quantization Parameter (QP) of 28. All test runs that are men-
tioned in this results section were performed on a Pentium IV 2.4 GHz machine
with 512MB RAM, running a 2.4.19 Linux kernel. Some properties of the result-
ing bitstreams are summarized in Table 1. In this table, also the impact of the
adaptation process on the bit rate of the bitstreams is given: br stands for the
original bit rate, brp denotes the size of the adapted bitstreams in which place-
holder slices were inserted, while brd denotes the size of the adapted bitstreams
of which all background P and B slices are dropped.

Table 1. Bitstream characteristics (sizes in KB)

sequence # ROIs # PPSs # slices br brp brd

IP crew 1–3 48 2020 3856 1379 1376
hall monitor 1–3 26 924 457 274 272
news 2 3 904 382 193 190
stefan 1 31 632 1657 758 756

IBBP crew 1–3 48 2020 3725 1403 1400
hall monitor 1–3 26 924 444 277 274
news 2 3 904 402 193 190
stefan 1 31 632 1829 819 817

The bitstream sizes clearly indicate that the adaptation process (i.e., ROI
extraction) considerably reduces the bit rate required to transmit a bitstream.
Both extraction methods (placeholder insertion and background deletion) yield
bit rate savings from 38% up to 64%. This reduction has in general a serious
impact on the quality of the decoded video sequence. Because the coded back-
ground P and B slices are discarded or replaced, a correct picture is only decoded
at the beginning of every GOP, resulting in bumpiness of the sequence in which
the ROIs are moving smoothly. However, because coded macroblocks inside a
ROI can have motion vectors pointing outside the ROIs, ‘incorrect’ decoded data
of the background can seep into the ROI which results in erroneous borders of
the ROI. This can be avoided by applying so-called constraint motion estima-
tion at the encoder so that motion vectors only point to the same slice group
the macroblock being predicted belongs to. ROIs that are coded in this way are
sometimes called isolated regions [17] (this was not used in the tests).

With respect to the (negative) impact of the adaptation process on the re-
ceived visual quality, there are situations in which this impact is negligible. An
example of such a situation is the sequence Hall Monitor in which both the cam-
era and the background are static. The average PSNR-Y of the adapted version
is 36.7 dB whereas the unadapted version had an average PSNR-Y of 37.7 dB
(or 38.0 dB in case B slices were used). When watching the adapted version,
even an expert viewer can hardly notice that the bitstream was subject of an
adaptation process. In case of video conferencing or video surveillance applica-
tions, this opens up new opportunities. For instance, bitstreams that are coded
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with ROIs using H.264/AVC FMO can sustain a rather big decrease in available
bandwidth without any noticable quality loss. This, of course, on condition that
the transporting network first ‘drops’ the background packets (e.g., based on
priority flags in the network layer). Alternatively, there might be an active net-
work node (implementing the adaptation framework as presented in this paper)
which adapts the bitstreams by removing or replacing the coded information of
the background.

Because the processing of P-skipped macroblocks requires less operations for
a decoder, it is expected that a decoder, receiving an adapted bitstream with
placeholder slices, operates faster compared to the case of decoding the original
bitstream. Indeed, for the decoding of a P-skipped macroblock, a decoder can rely
directly on its decoded picture buffer without performing any other calculations
such as motion compensation. Both the original and the adapted bitstreams were
decoded five times using the reference decoder (JM 10.2) in order to measure
the decoding speed (decoding every bitstream only once could be less reliable).
The average decoding speed for each bitstream is given in Table 2.

Table 2. Impact on decoding speed (frames per second)

sequence original placeholders
IP crew 1.5 2.0

hall monitor 15.6 16.9
news 16.7 18.9
stefan 10.4 14.9

IBBP crew 1.1 1.3
hall monitor 13.8 17.0
news 14.3 17.5
stefan 9.5 14.4

As can be seen from this table, the decoding speed is positively affected in
all cases when placeholder slices are inserted by the adaptation process. The
decoding speed in the cases the background was dropped, depends to a great
extent on how a receiving decoder copes with non-arriving slices. If a decoder
does nothing in case of missing slices, the decoding speed should be higher than
the speeds of Table 2. If a decoder performs an error concealment algorithm,
the decoding speed will decrease if the applied algorithm is more complex than
decoding P-skipped macroblocks (e.g., spatial interpolation techniques).

The last part of this results section is about the performance of the over-
all adaptation framework. Both the memory consumption and the execution
speed are substantial factors for the successful deployment of such an adapta-
tion framework. Therefore, it is important to have an assessment of those factors
with respect to the three main components of the adaptation framework as pre-
sented in this paper: the generation of BSDs by a BFlavor-generated parser, the
transformation of BSDs using STX, and the generation of adapted bitstreams
by means of the BSDtoBin Parser. Regarding the memory consumption, it is re-
ported in literature that all components give evidence of a low memory footprint
and a constant memory usage [11,12]. As such, the proposed framework satisfies
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the memory consumption requirements (i.e., memory consumption is constant
in the course of time).

With respect to the execution times of the adaptation framework, every com-
ponent was executed 11 times both for the placeholder slice insertion method
and the background deletion. For all cases, the averages of the last 10 runs are
summarized in Table 3. This averaging eliminates possible start-up latencies due
to the fact that all components rely on a Java Virtual Machine as their execution
environment. In Table 3, the execution speed is given in terms of Network Ab-
straction Layer Units (NALUs) per second, as a NALU is the atomic parsing unit
within the framework. Note that the number of NALUs per picture depends on
the slice group configuration. Combining the execution speed of the individual
components for both content adaptation methods results in the overall execution
speed in terms of frames per second (fps), as denoted in the last two columns of
the table.

Table 3. Performance of the overall adaptation framework

NALUs per second total fps
sequence BFlavor STXp STXd BSDtoBinp BSDtoBind placeholders dropping
IP crew 1036.3 273.0 308.7 449.2 572.9 43.3 49.9

hall monitor 2151.1 235.4 272.2 340.3 422.9 46.7 54.9
news 2371.8 260.6 302.4 344.3 421.5 46.3 54.4
stefan 1084.5 199.8 264.6 272.2 347.4 49.4 62.4

IBBP crew 1038.7 221.1 245.5 397.2 497.2 37.1 42.1
hall monitor 2090.1 200.3 226.0 308.8 385.3 41.0 47.6
news 2306.4 249.2 284.5 311.7 381.1 43.4 50.5
stefan 1016.3 155.3 179.1 253.5 325.8 41.8 49.3

It is clear from this table that the proposed framework is capable to perform
the content adaptation in real time in all cases (see ‘total fps’). As would be
expected, the framework operates slower when performing the placeholder slice
insertion because this method requires a more complex transformation in the
XML domain. On top of that, the use of B slices also leads to a slow-down in
both methods. These two trends can be observed in each component. Notwith-
standing the fact that STX is a transformation language that overcomes most
performance issues that are encountered when using, for instance, Extensible
Stylesheet Language Transformation (XSLT), the transformation in the XML
domain still is the slowest component in the framework.

All components of the proposed framework are capable of operating in video
streaming scenarios. Indeed, both STX and BSDtoBin are entirely based on
SAX events. Although the BFlavor-generated parser currently reads from and
writes to a file, it can very easily be modified so that the generated classes use
adequate buffers. This streaming capability, and also the performance measure-
ments described above, prove that the proposed framework for the exploitation
of ROI scalability within the H.264/AVC specification is suited for real-time
video streaming scenarios. This, of course, provided that the identification of
the ROIs (motion detection and object tracking) is also done in real time by the
encoder and provided that the decoder also operates in real time.
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5 Conclusions

In this paper, it was shown how ROI coding can be accomplished within the
H.264/AVC video coding specification by making use of Flexible Macroblock
Ordering. For the extraction of the ROIs (i.e., exploitation of ROI scalability), a
description-driven content adaptation framework was introduced that combines
the BFlavor framework for the generation of BSDs, STX for the transformation
of these BSDs, and the BSDtoBin Parser of the MPEG-21 BSDL framework
for the generation of adapted bitstreams. Two methods for ROI extraction were
implemented in this framework by means of a STX filter: removal of the non-
ROI parts of a bitstream and the replacement of the coded background with
placeholder slices.

Bitstreams that are adapted by this ROI extraction process have a signif-
icantly lower bit rate than the original version. While this has in general a
profound impact on the quality of the decoded video sequence, this impact is
marginal in case of a fixed camera and a static background. This observation may
lead to new opportunities in the domain of video surveillance or video conferenc-
ing. Next to the decrease in bandwidth, the adaptation process has a positive
effect on the receiving decoder: because of the easy processing of placeholder
slices, the decoding speed increases.

It was shown that the content adaptation framework, as presented in this
paper, operates in real-time. Because each component of the framework is able
to function in case of actual streaming video, the framework is suited also suited
for live streaming video applications. As such, the framework can be deployed
in an active network node, for instance at the edge of two different networks.
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Abstract. The emerging H.264/AVC video coding standard improves coding 
performance significantly by adopting many advanced techniques. This is 
achieved at the expense of great increase of encoder complexity. Specifically, 
the intra prediction using RDO examines all possible combinations of coding 
modes, which depend on spatial directional correlation with adjacent blocks. 
There are 9 modes for a 4×4 luma block, and 4 modes for a 16×16 luma block 
and an 8×8 chroma block, respectively. Therefore the number of mode combi-
nations for each MB is 592. This paper proposes a complexity reduction algo-
rithm using simple directional masks and neighboring modes. The proposed 
method reduces the number of mode combinations into 132 at the most. Simula-
tion results show the proposed method reduces the encoding time up to 70% 
with negligible loss of PSNR and bit-rate increase compared with the 
H.264/AVC exhaustive search.  

Keywords: intra mode selection, intra prediction, H.264/AVC, RDO. 

1   Introduction 

Recent huge requirement for high-performance video codecs has led ISO/IEC MPEG 
and ITU-T VCEG to develop the video coding standard jointly, known as H.264/AVC 
[1]. The emerging H.264/AVC standard is incorporated into new applications such as 
DMB (Digital Multimedia Broadcasting) and DVB-H on account of its good coding 
performance which is known to be superior to MPEG-4 ASP (Advanced Simple  
Profile) by about 40% to 50% [2]. The H.264/AVC standard adopts a lot of state-of-
the-art techniques to achieve better coding performance: 4×4 block-based integer 
transform, motion compensation using variable block sizes and multiple references, 
advanced in-loop deblocking filter, improved entropy coders such as CAVLC (Con-
text Adaptive VLC) and CABAC (Context Adaptive Binary Arithmetic Coding), and 
enhanced intra-prediction, etc. The RDO (Rate-Distortion Optimization) procedure is 
conducted in the intra- and inter-prediction of H.264/AVC in order to select the best 
coding mode among possible mode combinations. The best coding mode from the 
viewpoint of RDO means that the mode selected among possible mode combinations 
guarantees the best visual quality under the given bit-rate instead of just minimizing 
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the bit-rate or maximizing the visual quality. To select the best coding mode based on 
RDO, the H.264/AVC encoder examines all possible combinations exhaustively. 
Since transform and entropy coding should be carried out for each coding mode in 
RDO procedure, it requires very large computational complexity compared to the 
conventional standards such as MPEG-4 part 2 and H.263, thereby it makes the 
H.264/AVC standard difficult to apply directly to low complexity devices such as 
mobile devices. Many algorithms have been proposed to reduce the computational 
complexity, such as fast motion estimation [3, 4] and fast inter mode selection algo-
rithm [5, 6], etc. Fast motion estimation is a steady-studied subject through various 
standards and applications. On the other hand, fast mode selection for intra- and inter-
prediction in H.264/AVC is a challenging subject. Since there are a lot of mode com-
binations for each macroblock, fast mode selection of intra- and inter-prediction plays 
an important role in reducing overall complexity and in applying to various environ-
ments. In this proposal, we focus on reducing the complexity of intra mode selection. 
Intra coding is also carried out in inter-coded frames as well as intra-coded frames, 
thus fast intra mode selection is valuable for improving the overall coding perform-
ance of H.264/AVC. 

We propose a complexity reduction algorithm for the H.264/AVC intra-
prediction using directional masks for detecting the directional correlation within a 
block and mode information of adjacent blocks. The proposed directional masks are 
used for 4×4 luma blocks, since there are many coding modes, on the other hand, 
for 16×16 luma blocks and 8×8 chroma blocks, we use the mode information of 
adjacent blocks, since those blocks include a few number of coding modes and the 
blocks are relatively homogeneous. The directional masks are designed to represent 
each direction in the H.264/AVC standard. We also address a sampling method in 
order to reduce computations in SATD (Sum of Absolute Transformed Difference) 
for 16×16 luma blocks. 

The remaining parts of the paper are as follows. We review the intra-prediction 
scheme of H.264/AVC for 4×4 luma blocks, 16×16 luma blocks, and 8×8 chroma 
blocks, respectively, and mode selection method based on RDO technique in Sec-
tion 2. Section 3 presents, in detail, the proposed complexity reduction algorithm in 
intra mode selection, based on directional masks and mode information of adjacent 
blocks. Simulation results and conclusions are given in Section 4 and Section 5, 
respectively. 

2   Intra Mode Selection in H.264/AVC 

The H.264/AVC intra-prediction exploits the spatial directional correlation with  
adjacent blocks, and selects the best mode by RDO among a lot of mode combina-
tions. In this section, we review the intra mode decision method for each block type 
(4×4 luma block, 16×16 luma block, and 8×8 chroma block) of H.264/AVC and 
address its computational complexity when the RDO procedure is used for the mode 
selection. 
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2.1   Intra-prediction in H.264/AVC 

One of the advanced features of H.264/AVC compared to the conventional video 
coding standards is the directional intra-prediction in spatial domain with following 
considerations: the pixels in spatial domain are more correlated each other than the 
coefficients in transform domain, and the directional prediction can reflect local char-
acteristics of images better. The intra-prediction, however, requires extremely large 
computational complexity due to many coding mode combinations in spite of its good 
coding performance. For the intra-prediction, we use boundary pixels of previously 
reconstructed adjacent blocks, which are upper, upper-right, and left blocks, and the 
current block is predicted according to the maximum correlated direction. The 
H.264/AVC intra-prediction is conducted for all types of blocks such as 4×4 luma 
blocks, 16×16 luma blocks, and 8×8 chroma blocks. The residual between the current 
block and its prediction is then transformed, quantized, and entropy coded. For 4×4 
luma blocks, which are mainly selected in non-homogeneous areas, there are 9 direc-
tional prediction modes, whereas for 16×16 luma blocks, which are selected in rela-
tively homogeneous areas, there are 4 directional prediction modes. In addition, for 
8×8 chroma blocks, there are 4 directional prediction modes, and the same mode is 
applied to two chrominance components (U and V). Note that two types of blocks, 
i.e., 16×16 luma blocks and 8×8 chroma blocks, have the same directional modes but 
the order of modes are different from each other. 

Fig. 1 shows the 9 intra modes for a 4×4 luma block. In Fig. 1, A to M represent the 
boundary pixels of previously reconstructed adjacent blocks, which are available at 
the time of prediction, and the arrows indicate the direction of prediction in each cod-
ing mode. DC prediction (mode 2) that is not directional mode is carried out using an 
average of A to L. For mode 3 to mode 8, the pixels of current block are predicted 
using a weighted average of A to M with the corresponding direction. 
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Fig. 1. 9 intra-prediction modes for a 4×4 luma block defined in H.264/AVC 

Since 16×16 luma blocks are selected in relatively homogeneous areas mostly, 
there are fewer prediction modes, i.e., 4 directional modes such as vertical (mode 0), 
horizontal (mode 1), DC (mode 2), and plane (mode 3) prediction. For 8×8 chroma  
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blocks, there are 4 directional prediction modes, which are very similar to the case of 
16×16 luma prediction except the order of modes, such as DC (mode 0), horizontal 
(mode 1), vertical (mode 2), and plane (mode 3) prediction. DC prediction for 8×8 
chroma block is carried out with four 4×4 sub-divided blocks using pre-defined adja-
cent pixels depending on location of the sub-divided block. Both 8×8 chroma blocks 
of U and V use the same prediction mode. To obtain the best mode among these 
modes, the H.264/AVC encoder performs the rate-distortion optimization (RDO) 
technique for each macroblock. 

2.2   Selection of the Best Mode Using Rate-Distortion Optimization (RDO) 

The RDO procedure for one macroblock in the intra-prediction is as follows [7, 8]. 

Initialization Set parameters: macroblock quantization parameter QP and Lagrangian 
multiplier λMODE = 0.85⋅2(QP-12)/3 [9]. 

Step 1 For a 4×4 luma block, select the best mode, which minimizes the Cost of (1), 
among 9 modes. 

Cost = D + λMODE ⋅ R,                                              (1) 

where D and R denote distortion and bit-rate with given QP, respectively. 
MODE indicates one of the 9 intra modes of a 4×4 luma block. The distortion 
is obtained by SSD (Sum of Squared Difference) between the original 4×4 
luma block and its reconstructed block, and the bit-rate includes the bits for the 
mode information and the transformed coefficients for the 4×4 luma block. 
Repeat this procedure for 16 4×4 luma blocks of a macroblock. 

Step 2 For a 16×16 luma block, choose the mode that has the minimum SATD (Sum 
of Absolute Transformed Difference) among 4 modes as the best mode. In this 
case, we use Hadamard transform for SATD. 

Step 3 For an 8×8 chroma block, select the best mode, which minimizes the Costc of 
(2) among 4 modes. 

Costc = D + λMODE ⋅ R,                                              (2) 

where D is obtained by SSD between two original 8×8 chroma blocks (U and 
V) and their reconstructed blocks. R, in this case, includes only the bits for the 
transformed coefficients unlike the 4×4 luma prediction case. 

Step 4 Choose the best one as the prediction mode of one macroblock by comparing 
RD costs for 4×4 mode obtained from Step 1 and 16×16 mode from Step 2.  

Considering the RDO procedure for intra mode selection in H.264/AVC, the number 
of mode combinations in one macroblock is N8×(16×N4 + N16), where N8, N4, and N16 
represent the number of modes of an 8×8 chroma block, a 4×4 luma block, and a 
16×16 luma block, respectively. In other words, to select the best mode for one 
macroblock in the intra prediction, the H.264/AVC encoder carries out 592 RDO 
calculations. As a result, the complexity of the encoder increases extremely. We 
propose, in next section, a complexity reduction algorithm in the H.264/AVC  
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intra-prediction by reducing the number of RDO calculations for intra mode selection 
without visual quality degradation. 

3   Proposed Complexity Reduction Algorithm 

Since the RDO procedure includes time-consuming processes such as transform and 
entropy coding, the number of RDO computations is a critical point in improvement 
of the overall encoding speed. To reduce the number of RDO computations, we pro-
pose simple and multiplication-free masks, which detect the directional correlation of 
a block, instead of exhaustive search. Also we use the mode information of adjacent 
blocks to select the coding mode more accurately. Specifically, in the case of 16×16 
luma blocks, we use sampling method to reduce the SATD computations. By using 
these methods, we reduce the number of RDO computations and encoding time with 
negligible degradation of visual quality. 

3.1   Intra Mode Selection for 4×4 Luma Blocks 

We find out two major observations on features of 4×4 luma block as follows: First, 
the directional correlation of the block is generally consistent with directions of edges. 
Second, the prediction mode of current block is highly correlated with the modes of 
adjacent blocks. 

From the first observation, we obtain one candidate mode using the proposed  
directional masks shown in Fig. 2. 

(a) (b) (c) (d)

(e) (f) (g) (h)
 

Fig. 2. The proposed directional masks for a 4×4 luma block. (a) vertical, (b) horizontal, (c) 
diagonal down left, (d) diagonal down right, (e) vertical right, (f) horizontal down, (g) vertical 
left, (h) horizontal up mask. 

In Fig. 2, black dots indicate positions of the pixels to be computed for investing  
directional correlation in the 4×4 luma block, and arrows represent the directions of 
correlation associated with the corresponding mask. Since directions of the  
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H.264/AVC intra-prediction are limited to 8 directions except DC mode, we propose 
8 directional masks instead of a precise edge detector such as Sobel operator. We 
select one candidate mode with the minimum Diff using 

Diff = |a – m| + |b – n| + |c – o| + |d – p|, for vertical direction, (3) 
Diff = |a – d| + |e – h| + |i – l| + |m – p|, for horizontal direction, (4) 
Diff = |c – i| + 2·|d – m| + |h – n|, for diagonal down left direction, (5) 
Diff = |b – l| + 2·|a – p| + |e – o|, for diagonal down right direction, (6) 
Diff = |a – n| + 2·|b – o| + |c – p|, for vertical right direction, (7) 
Diff = |a – h| + 2·|e – l| + |i – p|, for horizontal down direction, (8) 
Diff = |b – m| + 2·|c – n| + |d – o|, for vertical left direction, (9) 
Diff = |e – d| + 2·|i – h| + |m – l|, for horizontal up direction, (10) 

where a to p denote the pixels for investing directional correlation associated with the 
corresponding mask of Fig. 2. Fig. 3(a) shows the indices for pixel positions used in 
(3) to (10). Diff is used as a criterion for correlation, i.e., the direction with smaller 
Diff is more correlated one. 

From the second observation, we obtain additional candidate modes using mode in-
formation of adjacent blocks, where one is the upper block with the corresponding 
mode of modeA and the other is the left block with the corresponding mode of modeB, 
as shown in Fig. 3(b). We include these additional modes, i.e., modeA and modeB, as 
candidate modes for RDO procedure, since the directions in the H.264/AVC intra-
prediction are defined with the directional relation between current block and bound-
ary pixels of adjacent blocks, instead of direction within the current block only. In this 
case, one mode when modeA and modeB are same, or two modes when modeA and 
modeB are different from each other, are included in RDO procedure. 
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Fig. 3. Pixel indices and modes of adjacent blocks used in the proposed intra mode selection 
algorithm. (a) indices used in (3) to (10) for a 4×4 luma block, (b) modes of upper and left 
blocks for additional candidate modes. 

To determine whether DC mode is included in RDO procedure or not, we have a 
sum of difference, denoted by S in (11), between an average of current block, denoted 
by avg in (11), and each pixel, denoted by pi in (11). 
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If S is smaller than a threshold, T1, we carry out RDO for at most 4 candidate modes, 
i.e., one mode from the proposed masks, at most two modes from adjacent blocks, and 
DC mode. If S is larger than a threshold, T1, we carry out RDO for at most 4 candidate 
modes, i.e., two modes from the proposed masks (with minimum and second mini-
mum Diff) and at most two modes from adjacent blocks. The proposed intra mode 
selection algorithm for a 4×4 luma block is summarized as follows. 

Step 1 For a 4×4 luma block, obtain avg and S by (11). 
Step 2a If S is larger than a threshold, T1, carry out RDO procedure for at most 4 

candidate modes: two modes with minimum and second minimum Diff by (3) to 
(10), and at most two modes from adjacent blocks. In this case, DC mode of ad-
jacent blocks is excluded from RDO procedure. 

Step 2b If S is smaller than a threshold, T1, carry out RDO procedure for at most 4 
candidate modes: one mode with minimum Diff by (3) to (10), at most two 
modes from adjacent blocks, and DC mode. 

3.2   Intra Mode Selection for 16×16 Luma and 8×8 Chroma Blocks 

H.264/AVC carries out the intra-prediction with 16×16 luma blocks when the area to 
be predicted is relatively homogeneous. The chrominance components of 4:2:0 format 
are also relatively homogeneous due to down-sampling. Thus, for 16×16 luma blocks 
and 8×8 chroma blocks, there are only 4 coding modes, different from the case of 4×4 
luma blocks, such as horizontal, vertical, DC, and plane mode. For intra mode selec-
tion with 16×16 luma blocks and 8×8 chroma blocks, we carry out RDO procedure 
using the modes of adjacent blocks not using directional masks. Since all adjacent 
blocks are not 16×16 in this case, we should consider some conditions such as sizes 
and modes of adjacent blocks when we select the best mode for 16×16 luma blocks. 
The proposed intra mode selection algorithm for a 16×16 luma block is summarized 
as follows. 

Step 1 Examine sizes of adjacent blocks: if both blocks (upper block and left block) 
are 16×16, go to Step 2, otherwise go to Step 4. 

Step 2 Examine modes of adjacent blocks: if both modes are same, go to Step 3, oth-
erwise select the best mode for a 16×16 luma block, which results in the mini-
mum SATD between two adjacent modes of modeA and modeB shown in Fig. 
3(b). 

Step 3 If both adjacent modes are DC mode, go to Step 4, otherwise select the best 
mode for a 16×16 luma block, which results in the minimum SATD between the 
adjacent mode and DC mode. 
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Step 4 Let ΔV be a vertical difference between upper boundary pixels of the current 
block and boundary pixels of the upper block, and ΔH be a horizontal difference 
between left boundary pixels of the current block and boundary pixels of the left 
block as follows. 

15 15

0 0

, ,V i i H i i
i i

u q l r
= =

Δ = − Δ = −          (12) 

where ui and qi denote boundary pixels of the upper block and upper boundary 
pixels of the current block, respectively, and li and ri denote boundary pixels of 
the left block and left boundary pixels of the current block, respectively, as 
shown in Fig. 4(a). Obtain candidate modes as follows by using two difference 
values, ΔV and ΔH: if |ΔV − ΔH | is smaller than 2T2, candidate modes are DC 
mode and plane mode; if (ΔV − ΔH) is larger than T2, candidate modes are DC 
mode and horizontal mode; if (ΔV − ΔH) is smaller than −T2, candidate modes 
are DC and vertical mode, where T2 is a positive value. Finally, select the best 
mode between each candidate mode by choosing the mode with minimum 
SATD. 

VΔ

HΔ
current 16 16 luma 

block

(a) (b)

x

 

Fig. 4. For intra-prediction with a 16×16 luma block, (a) definition of ΔV and ΔH, (b) sampling 
method to reduce computations 

To reduce SATD computation, we propose sampling method as illustrated in Fig. 
4(b), where dark shades represent the pixels used for SATD. Since a 16×16 luma 
block is relatively homogeneous, the mode selection using sampled pixels has almost 
same results with the mode selection using full pixels. For 8×8 chroma blocks, a simi-
lar method to the method for 16×16 luma block is applied except examining whether 
the sizes of both adjacent blocks are same or not, since all adjacent blocks have the 
same size in this case. 

3.3   Comparison of the Number of RDO Computations 

Table 1 summarizes the number of candidate modes for RDO procedure in the 
proposed method. As it can be seen from Table 1, the proposed algorithm carries out  
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only 132 RDO computations at the most, which are much less than those of 
exhaustive search in H.264/AVC video coding, i.e., 592 RDO computations. 

Table 1. Comparison of the number of RDO computations 

Block type H.264/AVC method Proposed method 
4×4 luma block 9 at most 4 
16×16 luma block 4 2 
8×8 chroma block 4 2 

4   Simulation Results 

In order to evaluate the proposed algorithm, we used JM 8.4 (Joint Model ver. 8.4) 
provided by JVT (Joint Video Team) under H.264/AVC baseline profile, which 
contains no B-slice and no CABAC, with RD optimization and Hadamard transform 
turned on. According to the test conditions specified in [10], we carried out simula-
tions for test sequences of Akiyo, Foreman, Carphone, Hall Monitor, Silent, News, 
Container, and Coastguard with QCIF (176×144) resolution. We used various QP 
of 28, 32, and 40 with IPPP…type and I-only type, respectively. In IPPP…type, the 
total number of frames is 300 for each sequence, where all frames are inter-coded 
with one intra-frame for every 100 inter-frames; on the other hand, in I-only type, 
the total number of frames are 300, where all frames are intra-coded. We compared 
the results with the case of exhaustive search in terms of the change of average 
PSNR (ΔPSNR), average data bits (ΔBit), and average encoding time (ΔTime), 
respectively, with the machine of Intel Pentium IV processor of 2.8 GHz and 
512MB memory. 
Table 3 summarizes the simulation results of the proposed algorithm for IPPP type 
of each sequence. This is because a macroblock can be selected as intra mode in 
inter-coded frames. In addition, Table 2 shows the results of F. Pan et al.’s method 
[6] as a reference for comparison. In Table 3, the minus of ΔPSNR and ΔTime 
means that the encoding time and PSNR are reduced compared with JM, and the 
thresholds, which include T1 to select the mode for a 4×4 luma block and T2 to se-
lect the mode for a 16×16 luma block and an 8×8 chroma block, are set to 32 and 8, 
respectively. It can be seen that the proposed algorithm saves the encoding time up 
to about 35% with negligible loss in PSNR and increment in bits. By comparing 
Tables 2 and 3, we can see that the proposed algorithm is superior to F. Pan et al.’s 
method. This is because F. Pan et al.’s method, to reduce the RDO computation, 
performs the quite complex pre-processing, and does not use the mode information 
of adjacent blocks. 
We also show the simulation results for I-only type sequences in Table 4. The thresh-
olds, in this case, are set to the same values as the case of IPPP type sequences. It can 
be seen that the proposed algorithm saves the encoding time up to about 70%, since 
all frames are intra-coded. On the other hand, the drop in PSNR and the increase of 
bit-rate is somewhat larger than the IPPP case, since all frames are selected as intra  
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mode in I-only case, whereas the drop in PSNR and the increase of bit-rate is negligi-
ble in IPPP case, since the number of macroblocks selected as intra mode over a se-
quence is limited to small. However, these results can be acceptable because the drop 
in PSNR and the increase of bit-rate of I-only case are considerably small with respect 
to saving the encoding time, and I-only case is regarded as an extreme case. By com-
paring Tables 2 and 4, we can see that the proposed algorithm is superior to F. Pan et 
al.’s method for the same reasons of the IPPP case. 

Fig. 5 and Fig. 6 show the R-D curve, which includes the results of JM, F. Pan et 
al., and the proposed method, for IPPP type and I-only type of News sequence, re-
spectively. One can see that the proposed algorithm is superior to JM and F. Pan et 
al.’s method as similar to Tables 3 and 4. 

 

Fig. 5. R-D curve for News sequence, QCIF, IPPP type 

 

Fig. 6. R-D curve for News sequence, QCIF, I-only type 
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Table 2. Results of F. Pan et al.’s method for comparison 

IPPP type I-only type Sequence 
(QCIF) ΔTime 

(%) 
ΔPSNR 

(dB) 
ΔBit 
(%) 

ΔTime 
(%) 

ΔPSNR 
(dB) 

ΔBit 
(%) 

Akiyo -22.72 -0.053 1.17 -64.32 -0.210 3.21 

Foreman -21.80 -0.077 1.54 -65.38 -0.285 4.44 

Carphone -20.51 -0.082 1.80 -65.93 -0.276 3.91 

Hall Monitor -23.38 -0.065 1.23 -66.51 -0.252 3.73 

Silent -21.94 -0.033 0.86 -65.17 -0.183 3.54 

News -23.11 -0.067 1.23 -55.34 -0.294 3.90 

Container -20.78 -0.081 1.80 -56.36 -0.234 3.70 

Coastguard -21.20 -0.017 0.50 -55.03 -0.106 2.36 

Table 3. Simulation results for IPPP type sequences 

QP = 28 QP = 32 QP = 40 Sequence 
(QCIF) ΔTime 

(%) 
ΔPSNR 

(dB) 
ΔBit 
(%) 

ΔTime 
(%) 

ΔPSNR 
(dB) 

ΔBit 
(%) 

ΔTime 
(%) 

ΔPSNR 
(dB) 

ΔBit 
(%) 

Akiyo -29.65 -0.013 0.16 -32.94 -0.008 0.21 -35.56 -0.002 0.31 

Foreman -30.61 -0.016 0.22 -34.37 -0.010 0.28 -36.17 -0.001 0.34 

Carphone -30.87 -0.018 0.17 -34.52 -0.013 0.32 -35.91 -0.009 0.33 

Hall Monitor -33.12 -0.018 0.20 -35.31 -0.014 0.26 -38.35 -0.005 0.37 

Silent -32.05 -0.014 0.18 -34.23 -0.008 0.25 -36.48 -0.004 0.30 

News -33.54 -0.017 0.19 -35.81 -0.011 0.25 -37.63 -0.003 0.30 

Container -29.93 -0.018 0.16 -33.42 -0.011 0.22 -35.41 -0.003 0.27 

Coastguard -30.05 -0.010 0.12 -33.62 -0.007 0.18 -35.42 -0.001 0.24 

Table 4. Simulation results for I-only type sequences 

QP = 28 QP = 32 QP = 40 Sequence 
(QCIF) ΔTime 

(%) 
ΔPSNR 

(dB) 
ΔBit 
(%) 

ΔTime 
(%) 

ΔPSNR 
(dB) 

ΔBit 
(%) 

ΔTime 
(%) 

ΔPSNR 
(dB) 

ΔBit 
(%) 

Akiyo -62.34 -0.10 0.47 -67.16 -0.12 0.93 -68.85 -0.07 1.62 

Foreman -62.91 -0.08 0.15 -68.11 -0.07 1.06 -70.32 -0.03 1.79 

Carphone -65.28 -0.16 0.92 -67.84 -0.13 1.52 -69.13 -0.10 1.73 

Hall Monitor -66.12 -0.14 0.36 -69.63 -0.12 1.92 -71.42 -0.10 2.94 

Silent -63.35 -0.12 0.51 -67.35 -0.08 1.35 -60.04 -0.05 2.63 

News -61.38 -0.11 0.86 -66.56 -0.10 1.26 -69.28 -0.06 1.85 

Container -61.93 -0.09 0.90 -67.07 -0.08 1.07 -69.21 -0.05 1.71 

Coastguard -60.82 -0.08 0.73 -65.81 -0.06 0.82 -68.23 -0.03 1.57 

5   Conclusions 

This paper has presented a complexity reduction algorithm for intra mode selection in 
H.264/AVC based on directional masks and mode information of adjacent blocks. 
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The proposed directional masks have simple structures, which require no 
multiplications. The simulation results show that the proposed algorithm reduces the 
number of mode combinations and computational complexity for RDO with 
negligible loss of PSNR and bit-rate increment. The proposed algorithm can be 
applied to the H.264/AVC video encoder with low computational capability. 
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Abstract. We propose a detection method of corner outlier artifacts and a sim-
ple and effective filter in order to remove the artifacts in highly compressed 
video. We detect the corner outlier artifacts based on the direction of edges go-
ing through a block corner and the properties of blocks around the edges. Based 
on the detection results, we remove the stair-shaped discontinuities, i.e., corner 
outlier artifacts, using the neighboring pixels of the corner outlier artifact in the 
spatial domain. Simulation results show that the proposed method improves, 
particularly in combination with a deblocking filter, both objective performance 
and subjective visual quality.  

Keywords: corner outlier artifact, MPEG-4 video, deblocking filter, highly 
compressed video. 

1   Introduction 

Most video coding standards, which have a hybrid structure, adopt block-based motion 
compensated prediction and transform. Consequently, the block-based processing 
generates undesired artifacts such as blocking artifacts, ringing noise, and corner outlier 
artifacts, particularly when the video is highly compressed. Blocking artifacts are grid 
noise along block boundaries in relatively flat areas; ringing noise is the Gibb’s 
phenomenon owing to truncation of high-frequency coefficients by quantization; corner 
outlier artifacts are a special case of blocking artifacts at the cross-point of a block 
corner and a diagonal edge. To reduce the blocking artifacts and the ringing noise, a 
number of studies have been carried out in the spatial domain [1, 2, 5] and transform 
domain [3, 4], respectively. However, the corner outlier artifacts are still visible in some 
video sequences, since a deblocking filter is not applied to the areas including a large 
difference at a block boundary in order to avoid undesired blurring [1]. Hardly any 
studies have been carried out on removing the corner outlier artifacts although the 
artifacts degrade visual quality considerably because the corner outlier artifacts appear 
only in limited areas and the peak signal-to-noise ratio (PSNR) improvement is 
somewhat small. Therefore, we propose a detection method of the corner outlier 
artifacts and a simple and effective filter to remove the artifacts in highly compressed 
video. The proposed method can be used along with various deblocking [1-4] and 
deringing filters [5] for more improvement of visual quality. 
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The remaining parts of the paper are as follows. We present a detection method of 
the corner outlier artifacts based on the pre-defined patterns, i.e., the direction of an 
edge going through a block corner, in Section 2. Section 3 describes, in detail, the 
proposed filter to remove the corner outlier artifacts. Simulation results and conclu-
sions are given in Section 4 and Section 5, respectively. 

2   Detection of Corner Outlier Artifacts 

Consider the original and its reconstructed frames illustrated in Fig. 1, where a 
diagonal edge goes through a block corner. The edge occupies large areas in blocks B 
and C, whereas it occupies very small areas (d0 in Fig. 1) in block D. If D is flat 
except d0, the AC coefficients of DCT of block D are mainly related to d0, and their 
values are small. Since most small AC coefficients are truncated by quantization in 
very low bit-rate coding, the area of d0, which represents the edge in block D, cannot 
be reconstructed as shown in Fig. 1(b). As a result, the visually annoying stair-shaped 
artifact is produced around the block corner. Such artifacts are called corner outlier 
artifacts. 

block boundary

block 
boundary

block A

block Dblock C

block B

edge (E)

d0

block boundary

block 
boundary

block D'

block B'

block C'

block A'

edge (E’ )

d0'

 
(a)                                                                (b) 

Fig. 1. Conceptual illustration of a corner outlier artifact, (a) an edge going through a block 
corner in an original frame, (b) an corner outlier artifact located in d0’ in a reconstructed frame 

Based on two major observations, we propose a simple detection method for corner 
outlier artifacts. First, there is a large difference between boundary values of the block 
including the corner outlier artifact and the other three blocks around the cross-point. 
For example, the difference between d0’ and its upper pixel or between d0’ and its left 
pixel is large as shown in Fig. 1(b). Second, corner outlier artifacts are more 
noticeable in flat areas, that is, each block around the cross-point is relatively flat. We 
examine the characteristics of the blocks in terms of the observations around every 
cross-point to detect the corner outlier artifacts appropriately. In addition, since the 
corner outlier artifacts are prominent when a diagonal edge occupies block areas 
unequally around a cross-point, we deal with four types, as depicted in Fig. 2, based 
on the edge direction. We detect the actual corner outlier artifact, which satisfies the 
proposed detection conditions among each detection type. Dealing with the pre-
defined detection types instead of detecting an edge precisely has an advantage in 
reduction of computational complexity. 
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To detect corner outlier artifacts based on the first observation, we obtain the  
average values of the four pixels around the cross-point, which are represented as the 
shaded areas in Fig. 3, by 
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where each capital and small letter denotes blocks and pixels, respectively, that is, 
Aavg is an average from a1 to a4 of block A, Bavg is an average from b1 to b4 of B, and 
so on. 

Fig. 2. Detection types based on the edge direction, (a) Lower 45° direction, (b) Upper 45° 
direction, (c) Upper 135° direction, (d) Lower 135° direction 
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Fig. 3. Indices of pixels for detecting and filtering corner outlier artifacts 

Then, to determine the detection type among the four cases, we examine the  
differences between the average values of the corner-outlier-artifact candidate block 
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and its neighbors, using equations listed in Table 1. By using the average values 
around the cross-point instead of each pixel value, we can reduce detection errors in 
complex areas. 

Table 1. Detection criterion according to the detection types 

Block including 
the artifact 

Type Detection criterion 

A A vs. {B, C, D} |Aavg − Bavg| > 2QP and |Aavg − Cavg| > 2QP 
B B vs. {A, C, D} |Bavg − Aavg| > 2QP and |Bavg − Davg| > 2QP 
C C vs. {A, B, D} |Cavg − Aavg| > 2QP and |Cavg − Davg| >2QP 
D D vs. {A, B, C} |Davg − Bavg| > 2QP and |Davg − Cavg| > 2QP 

In Table 1, QP denotes the quantization parameter. For example, when block A has 
a corner outlier artifact, the differences between Aavg and Bavg and between Aavg and 
Cavg is large by the first observation, thereby we consider the block A has a corner 
outlier artifact. Practically, since we do not know the corner-outlier-artifact candidate 
block, the four cases listed in Table 1 should be investigated. If two corner outlier 
artifacts appear at one cross-point, the artifacts are arranged on diagonally opposite 
sides because the corner outlier artifacts cannot be placed vertically or horizontally. In 
this case, the proposed method can detect both artifacts without additional computa-
tions, since we examine the four cases independently using the equations in Table 1. 

To detect corner outlier artifacts based on the second observation, we examine 
whether the block satisfying the condition in Table 1 is flat or not. That is, when the 
candidate block is A, we examine flatness of block A with respect to the pixel includ-
ing the corner outlier artifact using 
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flat i
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= −                 (2) 

where a1 is the pixel including the corner outlier artifact. We consider block A flat 
when Aflat is less than QP. For another block, we consider the block flat when the 
followings are less than QP, repectively. 
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where each capital and small letter denotes blocks and pixels, respectively. When the 
conditions of Table 1 are satisfied and (2) is less than QP, we regard the block as 
including a corner outlier artifact, and then the proposed filter is applied to the block 
in order to remove the artifact. 

3   Proposed Filter to Remove Corner Outlier Artifacts 

To remove the corner outlier artifacts, we propose a filter that updates pixels of the 
stair-shaped discontinuity using neighboring pixels. To reduce computational  
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complexity, we apply the proposed filter under the assumption that the edge has a 
diagonal direction instead of detecting the actual edge direction of neighboring 
blocks. This is reasonable because: 

1. Corner outlier artifacts created by a diagonal edge are more noticeable than the 
artifacts created by a horizontal or vertical edge at a cross-point. 

2. Various deblocking filters can remove corner outlier artifacts created by a horizon-
tal or vertical edge. 

According to the above assumption and the detection results obtained in Section 2, 
when block A includes a corner outlier artifact as shown in Fig. 2(b), the pixels in 
block A are replaced by 
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(4) 

where each index follows that of Fig. 3. For blocks B, C, and D, the filtering meth-
ods are similar to (4) and actual equations are as follows: in the case where B  
includes a corner outlier artifact, as seen in Fig. 2(c), the pixels in block B are re-
placed by: 
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(5) 

in the case where block C includes a corner outlier artifact, as seen in Fig. 2(d), the 
pixels in block C are replaced by: 
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(6) 

and in the case where block D includes a corner outlier artifact, as seen in Fig. 2(a), 
the pixels in block D are replaced by: 
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(7) 

In each equation, the indices follow those of Fig. 3. 

4   Simulation Results 

The proposed method was applied to ITU test sequences at various bit-rates. To 
evaluate the proposed method, each test sequence was coded using the MPEG-4 veri-
fication model (VM) [6] with two coding modes: IPPP…, i.e., all frames of a  
sequence are inter-frame coded except the first frame, and I-only, i.e., all frames are 
intra-frame coded. In each mode, we applied the proposed filter to the reconstructed 
frames with none of the coding options being switched on and with the deblocking 
filter [2] being switched on, respectively. To arrive at a certain bit-rate, an appropriate 
quantization parameter was chosen and kept constant throughout the sequence. This 
can avoid possible side effects from typical rate control methods. 

Table 2. PSNR results for IPPP… case 

PSNR_Y (dB) 
Sequence QP 

Bit-rate 
(kbps) No filtering

No filtering +
proposed filter

Deblocking
Deblocking + 
proposed filter 

Hall Monitor 18 9.39 29.8728 29.8851 30.1957 30.2090 
Mother & Daughter 16 9.45 32.2256 32.2469 32.3684 32.3894 

Container Ship 17 9.8 29.5072 29.5082 29.7281 29.7291 
Hall Monitor 9 24.29 34.0276 34.0325 34.1726 34.1835 

Mother & Daughter 8 23.83 35.3303 35.3316 35.2686 35.2708 
Container Ship 10 21.61 32.5701 32.5711 32.6003 32.6013 

Foreman 14 46.44 30.6237 30.6252 31.0727 31.0739 
Coastguard 14 44.68 29.0698 29.0763 29.1562 29.1586 

Hall Monitor 12 47.82 33.8216 33.8236 34.0921 34.0948 
News 19 47.21 31.2192 31.2202 31.3516 31.3528 

Foreman 12 64.65 31.4786 31.4798 31.7587 31.7598 
News 16 63.14 32.0648 32.0658 32.1233 32.1243 

The simulation results for IPPP… coded sequences are summarized in Table 2. It 
can be seen that PSNR results for the luminance component are increased by up to 
0.02dB throughout the sequences. Just a slight improvement in PSNR is obtained due 
to limitation of the area satisfying the filtering conditions. However, the proposed 
filter considerably improves subjective visual quality, particularly for sequences with 
apparent diagonal edges such as Hall Monitor, Mother & Daughter, Foreman, etc. 
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For emphasizing the effect of the proposed filter, partially enlarged frames of the first 
frame of Hall Monitor sequence under each method, i.e., the result of the proposed 
method without and with deblocking filter, respectively, are shown in Fig. 4. 

 
(a) 

      
(b)                                                            (c) 

      
(d)                                                              (e) 

Fig. 4. Result images for Hall Monitor sequence (a) Original sequence (QCIF, QP=17), (b) and 
(d) Partially enlarged images of MPEG-4 reconstructed images without and with the MPEG-4 
deblocking filter, respectively, (c) and (e) Partially enlarged images of the proposed method 
without and with the MPEG-4 deblocking filter, respectively 

Table 3 shows the results for I-only coded sequences of Hall Monitor and  
Foreman. The results are similar to the IPPP… coded case. The proposed filtering 
conditions are satisfied at low QP for the sequences that include low spatial details  
 



 Simple and Effective Filter to Remove Corner Outlier Artifacts 473 

 

such as Hall Monitor, since each frame is relatively flat originally. On the other hand, 
the proposed filtering conditions are satisfied at relatively high QP for the sequences 
that include medium or high spatial details such as Foreman, since each frame is 
flattened at high QP. This tendency maintains in the sequences with or without the 
deblocking filter. 

Table 3. PSNR results for I-only case 

PSNR_Y (dB) 
Sequence QP 

No filtering 
No filtering +
proposed filter

Deblocking 
Deblocking + 
proposed filter 

12 32.8170 32.8396 33.2223 33.2422 
17 30.5284 30.5381 30.9624 30.9848 
22 28.9326 28.9374 29.4025 29.4052 

Hall Monitor 

27 27.6323 27.6344 28.1188 28.1230 
12 32.1830 32.1862 32.5741 32.5760 
17 30.0531 30.0606 30.5267 30.5316 
22 28.6406 28.6540 29.1635 29.1745 

Foreman 

27 27.5515 27.5684 28.1405 28.1526 

5   Conclusions 

The corner outlier artifacts are very annoying visually in highly compressed video 
although they appear in limited areas. To remove such artifacts, we have proposed a 
simple and effective post-processing method, which includes a detection method and 
a compensation filter. The proposed method, particularly in combination with the 
deblocking filter, further improves both objective and subjective visual quality. 
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Abstract. In this paper, we present a real-time sports analysis sys-
tem, which not only recognizes the semantic events, but also concludes
the behavior, like player’s tactics. To this end, we propose an advanced
multiple-player tracking algorithm, which addresses two improvements
on practical problems: (1) updating of the player template so that it
remains a good model over time, and (2) adaptive scaling of the tem-
plate size depending on the player motion. In this algorithm, we obtain
the initial locations of players in the first frame. The tracking is per-
formed by considering both the kinematic constraints of the player and
the color distribution of appearance, thereby achieving promising results.
We demonstrate the performance of the proposed system by evaluating
it for double tennis matches where the player count and the resulting
occlusions are challenging.

1 Introduction

Sports events gain wide interest and are among the most popular media at-
tractions in the world today. Due to the the growth in hard-disk capacity, it is
now possible to record about a thousand hours of video on one disk. Therefore,
applications for organizing and analyzing the augmenting video data are emerg-
ing and may have a large market impact. Automatic sports analysis systems is
one of those applications. However, for applications that should facilitate various
users with different preferences, existing systems still cannot provide satisfactory
results in most cases.

Significant research in the area of sports video analysis has been performed,
which can be broadly divided into three stages. Earlier publications [1], have
only focused on pixel and/or object-level analysis, which segments court lines
and/or tracks the moving players. Evidently, these systems do not provide the
semantic meaning of a sports game. The second generation of sports video anal-
ysis is based on the analysis and exploration of highlights of the game. In [2],
the authors observe that the interesting events are often replayed in slow mo-
tion immediately after they occur. Such an algorithm can be applied to analyze
various sports games, but it is impossible to provide sufficient understanding of
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a sports game, since a viewer cannot deduce the complete story only in terms of
the special event. Recently, researchers have paid more attention to event-based
content-analysis systems [3]-[5], aiming at detecting predefined events that are
considered most interesting in a particular sport genre. Object color and texture
features are employed to detect events and parse a TV soccer program [3]. But
for many applications, it is difficult to achieve satisfactory results by using such
an algorithm, because the events have a complex semantic nature and there are
no distinct relations between low-level features and the corresponding semantic
concepts. Sudhir et al. [4] propose a tennis-video analysis system approaching
a video retrieval application. It detects the court lines and tracks the moving-
players, then extracts the events, such as base-line rally, based on the relative
position between the player and the court lines. Unfortunately, its scene-level
analysis model is rather limited, because only position information is employed
to extract events. Kijak et al. [5] first define four types of view in tennis video,
involving global, medium, close-up and audience, and then detect events like
first-service failure in terms of the interleaving relations of these four views.
This shot-based model does not take object behavior into account, so that it is
not able to provide sufficient classification capabilities. In our previous work [9],
we present a multi-level sports analysis system, which provides various services
at three levels, such as pixel-level, object-level and scene-level. But this system
fails to analyze a double-match tennis game, as its moving-player detection algo-
rithm does not track multiple players simultaneously. To sum up, most existing
systems, in particular tennis analysis, cannot analyze a sports game at multiple
semantic layers, since they are unable to bridge the gap among the different
layers. In addition, to the best of our knowledge, there is no system that can
parse a double-match tennis game, as the player detection algorithms adopted
by existing systems always fail at the multiple players case.

This paper attempts to solve the above problems, where we contribute on two
aspects. Firstly, we present an automatic algorithm to track the multiple mov-
ing players, while addressing two specific problems. In our approach, we model
the objects (players) by using a template technique such as in the work of [7].
The key to our solution is that we introduce a special content-based function to
automatically adapt the template whenever it is needed, which better suits to
the dynamics of sports. This overcomes the adaptation problems with conven-
tional algorithms, such as periodic modification without linking to the content.
Secondly, we provide a more advanced system that not only analyzes a tennis
video at multiple layers, but also draws conclusions about player behavior, like
the player’s game tactics. This is profited from employing a three-dimensional
(3D) camera model that bridges the gap between the video and the real-world
in order to make more robust interpretations.

The paper is organized as follows, Section 2 introduces our advanced multiple
players tracking technique. Section 3 describes the system for behavior inter-
pretation. The experimental results on tennis video sequences are provided in
Section 4. Finally, Section 5 presents conclusions.
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Fig. 1. The need of template update strategies. Left: initial location of a player in the
first frame. Middle: update template every frame, where the template drifts away at
the 32th frame. Right: the template is not updated and tracking eventually fails at the
81th frame.

2 Multiple Players Tracking System

To analyze the video at semantic level, it is required to track the players over a
sequence. Substantial work has been done in this area. In [6], the tracking is per-
formed by the maximization of a joint probability model taking both player’s mo-
tion and appearance into account. Needham et al. [1] has presented a framework
for multi-player tracking, using a condensation-based approach. Each player be-
ing tracked is independently modeled, and the matching probability is calculated
and used to select the best model fit for each player. To sum up, the previous
algorithms have primarily focused on addressing the problems of regular human
tracking, such as the technique of modeling the appearance of a target object.
In other words, little attention is devoted to the specific problems caused by the
nature of sports. Compared to human tracking in the surveillance application [7],
tracking players over a sports video sequence, especially for obtaining accurate
position of each player, is more difficult because of the following issues.

1. Template update. The players move rapidly, and show large silhouette de-
formations. This means that there are more drifting errors introduced into
the template than those occurring with normal human tracking when updat-
ing the tracking template. In this case, the solution that either updates the
template every frame (or every n frames) or no-update cannot prevent the
template to steadily drift away from the target. See Fig. 1 for an example.

2. Template-size scaling. Another issue is that the players often move away
or towards the camera with a high speed, thus the size of players in the
image domain will change dramatically. For the applications like player be-
havior analysis, they require the player’s position with high accuracy. In
other words, the template should be adaptively scaled with the size of the
player body. Regularly, a naive solution adopted by existing systems is to
change the template size with a fixed parameter.

2.1 Proposed Algorithms

Prior to introducing our new template-adaptation technique, we present a generic
formal explanation of the tracking procedure. Assume there is a template for



Content-Based Model Template Adaptation and Real-Time System 477

the nth frame, and the probability of the feature {ui}i=1...m in the template is
T̂n−1(ui), where ui represents the color histogram distribution and i denotes the
bin number of the histogram. Furthermore, we use the same method to model
the probability of the target candidates, and represent them as Ŵn(ui, P ), where
P denotes the center point of a candidate. The aim of template tracking is to
find the best match to the template. Mathematically, finding the best match
means maximizing the correspondence between the template and the candidates
at arbitrary positions P , so that we compute

Cn = argmax
P

ρ(Ŵn(ui, P ), T̂n−1(ui)). (1)

Here, the term ρ(Ŵn(ui, P ), T̂n−1(ui)) is a metric to measure the matching de-
gree between the template and the target candidates. In this paper, for the
metric function ρ, we use a divergence-type similarity function because of its
performance, namely the Bhattacharyya coefficient [7], which is defined as:

ρ(Ŵ , T̂ ) =
∑

i

√
Ŵn(ui, P )× T̂n−1(ui). (2)

(1) Similarity Function-Based Template Update Strategy
As already mentioned, due to the rapid changes of the objects, the template
for the matching is drifting. Let us now consider this phenomenon using the
previously specified metric function. Assume we extract a template T̂1(ui) in the
first frame and we update it every frame, then the template tracking technique
results in

C2 = argmax
P

ρ(Ŵ2(ui, P ), T̂1(ui)),

C3 = argmax
P

ρ(Ŵ3(ui, P ), (T̂1(ui) + e2)),

Cn = argmax
P

ρ(Ŵn(ui, P ), (T̂1(ui) + e2 . . . + en−1)).

(3)

Here, ei represents the drifting error introduced into the template by the ith

frame (e1 = 0). As seen in (3), each time the template is updated, drifting errors
are introduced in the location of the template. With each update, these errors
accumulate. If the accumulated drifting errors become too large and we still
update the template, the target will be finally lost. In video surveillance appli-
cations, there are no large drifting errors introduced into the template because
the human object moves with a normal speed and the body has no significant
deformation. In this case, the template hardly drifts away from the target, even
it is updated every frame. Based on the analysis above, we conclude that the
template should better be updated when the drifting errors are small (and re-
main unchanged when having large errors). The experimental results of [8] (the
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Fig. 2. An illustration of the correlation degree (Hor.: frame number, Vert.: correlation
degree). The dots represent that the template is updated at that frame. Left: drifting
errors among T̂1(ui) and target candidate. Right: Bhattacharyya coefficient of T̂n−1(ui)
and target candidate.

left picture of Fig. 2) also support our conclusion. In the experiment, we have
manually measured the drifting error using the correlation coefficient between
the selected target candidate and the initial template T̂1(ui). Obviously, the
drifting errors are inversely proportional to the correlation coefficient. In Fig. 2,
the updates (dots) are always located at the frames having a higher correlation
coefficient.

Now, the problem shifts to how to bridge the drifting error and the template
update, since we cannot find an absolute rule between them from the statistical
experiment in some cases. For example, a frame with a 0.5 correlation coefficient
(relative bigger drifting errors) needs to update its template, while a frame that
the coefficient is 0.6 (relative smaller drifting errors) may not require the tem-
plate updating. A good template-update strategy should be capable of bridging
the gap between the drifting errors and updating template. In [8], a smart ap-
proach is proposed that keeps the first template T̂1(ui) and uses it to correct the
drift in T̂n−1(ui). To this end, a template matching procedure is employed using
T̂n−1(ui) for the nth frame. Based on it, a similar matching procedure is ap-
plied using T̂1(ui). The distance between the two positions obtained by the two
matching procedures is adopted to determine template update. The computa-
tional cost of this algorithm is rather high, as it applies two tracking procedures
to every frame. In this paper, we employ a Similarity Function (SF) to bridge
the drifting errors and the template update, thereby eliminating the second tem-
plate matching procedure in most frames [8]. The right picture of Fig. 2 portrays
a SF curve that is obtained with (2). Note the main difference between the two
curves in Fig. 2 is that the left one is based on the relations between the drifting
errors and the template update, whereas the right one measures the similarity
between the target candidate and T̂n−1(ui). From the results, we have found that
the trends and characteristics of these two curves are similar. For this reason,
the right curve can be applied to represent the drifting errors, and the following
statistical results can help bridge the gap between the drifting error and the
template update. (1) 98% frames update its template when the SF coefficient
is bigger than 0.8, which means the errors is too small to drift the template.
(2) If the SF coefficient is between 0.65 and 0.8, there is no a simple correlation
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between the drifting error and the template update. (3) 99% frames never update
the template in case of the SF coefficient is below 0.65.

Summarizing the above, we carry out our algorithm in two steps. Firstly, the
use of (1) provides the best target candidate. Secondly, we selectively update the
template. Suppose the Bhattacharyya coefficient of the current frame is Bn, and
that of the previous frame is Bn−1. If Bn > Th1, the template will be updated,
and if Bn < Th2, the template cannot be updated. For the frames where Bn is
between Th1 and Th2 and if |Bn − Bn−1| < 0.3, the decision of updating the
template in the current frame is the same as that of the previous frame. For
other frames, we use the second template matching procedure [8] to decide.

(a) (b)

Fig. 3. Subregion-based template scaling. (a) Head and feet region, (b) Template re-
finement.

(2) Subregion-based Template Scaling Strategy
In this paper, two important subregions, head and feet (see Fig. 3(a)), are seg-
mented and indicated by horizontal lines. As an aid, these subregions are used
to compute the scale size of the template in the vertical direction. The main rea-
son is that head and feet are relative rigid parts of the human body, which can
be easily found. Once we have obtained the scale size in the vertical direction,
the same scaling factor will be performed to the horizontal dimension. As an
example, we now illustrate the detection of the head-region scaling factor when
a player moves away from the camera.

More specifically, we define the histogram distribution probability of the head
region extracted in the first frame as Ĥ1(ui). The initial head region segmented in
the current frame is defined as Ĥn(ui). We use Eq. (2) to measure the similarity
between them. Subsequently, we obtain a new head region by shifting down the
vertical boundaries of the initial head region with one line. Then the Ĥn(ui) is
updated, and the similarity is measured again. Repeating this shift procedure, we
obtain a number of similarity coefficients, as shown in Fig. 3(b) (X represents
over how many lines was shifted, and Y is the corresponding Bhattacharyya
coefficient). The next step is to find the highest point (dot in Fig. 3(b)), which
is the final location of the head region in the current frame. Compared to the
conventional method, the adaptive scaling has made our proposal content-aware,
and it enables an optimal fit to the body of the player.
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2.2 Automatic Player Tracking System

In this section, we present an automatic tennis-player tracking system which is
able to address the problems mentioned at the start of this paper, and which is
based the following algorithmic steps.

1) Player segmentation in the first frame. The player segmentation al-
gorithm [9] employs an object segmentation technique based on change detec-
tion, and summarizes several effective visual properties in the tennis video (e.g.
uniform court color) to build a background, thereby achieving more accurate
segmentation results.

2) Template modeling. A target template is represented by an rectangular
region in our system. We use a histogram distribution to model the appearance
of the template. Let {x∗

j}j=1...n
be the normalized pixel locations in the region

that define the template model. The region is normalized by the row and col-
umn dimensions hx and hy. An isotropic kernel with a convex and monotonic
decreasing kernel profile k(x) (see [7]) assigns smaller weights to pixels further
away from the center. The use of such weights increases the robustness of the
density estimation, since the peripheral pixels are often affected by occlusions.
The function b : R2 → {1...m} maps the pixel at location x∗

j to the index
b(x∗

j ) of its bin in the quantized histogram space. The probability of the feature
{ui}i=1...m in the template model is then computed as

T̂1(ui) = c
∑

j

k(‖x∗
j‖2)δ[b(x∗

j )− ui], (4)

where δ is the Kronecker delta function. The normalization constant c is derived
by imposing the condition that

∑
i T̂1(ui) = 1. The same method can be used

to model the head and feet region.
3) Target candidates modeling. Let {xj}j=1...n be the normalized pixel

location of the target candidate, centered at P in the current frame. Using the
same method, we can model the target candidates.

4) Moving-players tracking. Equations (1) and (2) can track the template
over a sequence. During the tracking procedure, our template-update strategy
and refinement strategy are employed. Once the template is updated, the tem-
plate will be remodeled using Eq. (4). When occlusions occur, the model combin-
ing the player’s kinematic constraints and the color distribution of appearance
[6] ensures our system tracks moving players well.

3 System for Real-Time Behavior Interpretation

Fig. 4 shows the architecture of the proposed system, which consists of four
modules, each being briefly explained below.

1. Playing-frame detection. A tennis sequence not only includes scenes in which
the actual play takes place, but also breaks or advertisements. Since only the
playing frames are important for the subsequent processing, we efficiently
extract the frames showing court scenes for further analysis [9].
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Fig. 4. Architecture of the real-time analysis system

2. Court detection and camera calibration. Court information, including size,
shape and location, is an important aid to analyze the tennis game. To de-
duce the semantic meaning from the position and movements of the players,
their position has to be known in real-world coordinates. However, pixel-
level image-processing algorithms will only give the player positions in im-
age coordinates, which are physically meaningless. To transform these image
coordinates to physical positions, a camera-calibration algorithm has to be
applied [10].

3. Moving player segmentation and tracking. We use our technique introduced
before to position the players in the image domain, and then map it to the
3-D domain.

4. Scene-level event classification and behavior interpretation. This unit first
selects several visual cues that enable to describe important events at high
level. Then it uses an weighted linear combination model [9] and also game-
specific contextual information to recognize the events of the tennis game.
Different from [9], a behavior-interpretation module is added to our system.
Behavior is defined as a sequence of events, with or without temporal con-
straints on the occurrence order of the events. Behavior analysis can be as
simple as the detection of a single event, e.g., a player is approaching the
net, or it can be a complex sequence of multiple events, e.g. both two players
of a team are speeding up towards the net after one of them gave a service.
Given the context of the tennis game, the player behavior (tactics) may be
analyzed by defining behavior based on a sequence of events. For example, a
standard “both up” tactics can involve two procedures (events), where the
first is a successful service and the second is an event where two players from
one team are immediately approaching the net.

4 Experimental Results

To evaluate the performance of the proposed algorithm, we tested our system
on four tennis videos recorded from three different tennis matches (in total more
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than 30 minutes). The new tracking system was applied to these video sequences,
achieving an accurate 98% correct tracking rate. Sample frames are shown in
Fig. 5, which demonstrates the tracking capability of our technique in case of
occlusion. We compared our template-update algorithm with the method of [8]
using 240 frames (720× 576 TV resolution). These two methods are capable of
finding the target over the sequence, but the computational cost is different. The
total time consumed by our algorithm on a P-IV 3GHz PC is 52.17s, while the
time required for the algorithm of [8] under the same conditions is 61.54s. This
means that our system saves 15% computation time, while at the same time
obtaining a higher quality. In addition, we tested our content-aware template
scaling technique and compared it with the conventional technique that changes
the template size with a fixed parameter, both under the same conditions. From
Fig. 6, we can find our template-scaling approach is better than the conventional
one. With our system the player is fully enclosed, while the conventional system
takes an inappropriate template size.

Fig. 5. Player tracking results for double-match game

We embedded the multiple-player tracking algorithm into our tennis analysis
system, and obtained a 90% rate on event extraction. Fig. 7 shows the user
interface of our tennis video analysis software. From this user interface, the
viewer can find analysis results at three different levels. At the pixel level, several
key objects are segmented and indicated. At the object level, the moving objects
are tracked in the 3-D domain (at the right side). At the scene level (as opposed
to [9]), the system not only detects the important events, but also indicates the
behavior of each team, e.g., one team has “both up” tactics, while the other
team is defending by “both back” tactics at the baseline. Table 1 shows the
performance evaluation results of our system. It can be seen that our system
achieves a real-time or near real-time performance (with a P-IV 3GHz PC).



Content-Based Model Template Adaptation and Real-Time System 483

Fig. 6. Adaptive template scaling. Left: our method. Right: scaling with fixed param-
eter, leading to inappropriate sizes.

Fig. 7. Results of our analysis system. The left image shows the detected court and
players. At the right is the real-word court model, where the trajectory of each player
is visualized, as well as the player’s behavior.

Table 1. System evaluation

Type Resolution Event detection System efficiency

Clip1 single match 320×240 87% 6 frames/s
Clip2 single match 720×576 91% 3.5 frames/s
Clip3 double match 720×576 88% 3 frames/s

5 Conclusions

We have presented an automatic multi-player sports analysis system, which op-
erates at various levels and can visualize features up to the player tactics. The
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system has high algorithmic efficiency and processes in near real-time. A main
improvement as compared to [9], is that we can now analyze the double-game of
the tennis match. Here, two major contributions are realized. First, we designed
a multiple-player tracking system, which can automatically update the template
whenever it is needed and also scale the template-size according to dynamics of
the player body. Second, we conclude the player behavior, e.g., player’s tactics,
based on recognizing high-level events and the game contextual information. The
detection performance of the system for the double-game condition is in the order
of 90% at a 3-6 frame/s rate. Although having obtained good results, experi-
ments have revealed that the template-refinement algorithm is not sufficiently
robust in case of noisy subregions and needs further optimization.
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Abstract. Because of limitation of low power and computational ability in 
mobile video devices, it is significant to develop energy-efficient wireless video 
compression methods for mobile video systems. In this paper, a new approach 
to low complexity wireless video compression is proposed, based on Wyner-Ziv 
coding theorem. The proposed method encodes video only by intracoding 
techniques and detection of regions of interest, without the complicated motion 
estimation and compensation in the mobile video terminal. Thus, the 
computational burden is obviously reduced and the requirement of low power 
can be satisfied in mobile video devices. Experimental results show that the 
proposed method is quite effective. 

1   Introduction 

The rapid growth in wireless video applications has resulted in spectacular strides in 
the progress of wireless communication systems. However, the stringent energy 
constraints of mobile devices and the high error rates of wireless channels still pose 
significant barriers in the deployment of wireless video applications. Current video 
coding standards, such as MPEG-x or H.26x, mainly rely on the powerful hybrid 
block-based motion compensation and discrete cosine transformation (MC/DCT) 
architecture, which account for a major share of the coding gain in rate-distortion 
(RD) performance. Because of the heavy computing burden of the motion estimation 
and compensation task in these video compression standards, the encoder is 5 to 10 
times more complex than the decoder[1-3]. This asymmetry in complexity is well-
suited for broadcasting or for streaming video-on-demand systems where video is 
compressed once and decoded many times. But for wireless mobile terminals, such as 
wireless video sensors for surveillance, mobile camera phones, and networked 
camcorders, which have the limits of low power, storage and computational ability, 
the traditional video coding system is not suitable, since low complexity in video 
coding and transmission is required. 

Wyner-Ziv Theorem on source coding with side information available only at the 
decoder suggests that an asymmetric video codec, where individual frames are en-
coded separately, but decoded conditionally (given temporally adjacent frames) could 



486 G. Jiang et al. 

achieve similar efficiency[2]. Fig.1 shows a scheme for wireless mobile video  
communication, where the mobile video devices only perform low complexity encod-
ing and decoding. From pixel-domain to DCT domain, Griod et al. accomplished a 
great deal of research on Wyner-Ziv video coding[4-8]. Based on their scheme[8], an 
improved scheme of wireless video coding with low complexity is proposed in this 
paper. A simple and efficient method of region of interest (ROI) segmentation is 
given through comparing the quantized DCT coefficients with those of previous key 
frame, so that coding of non- ROI, such as the background and smooth regions, can 
be avoided in the encoder. Experimental results show that the proposed scheme out-
performs Griod’s hash-based Wyner-Ziv video coding scheme in RD performance 
and computational burden. 

Wyner-Ziv

video encoder

MPEG

decoder

Network Infrastructure 

Wyner-Ziv

video decoder

MPEG

encoder

 

Fig. 1. Framework for wireless mobile video communication 

2   New Approach to Wireless Video Compression with Low 
Complexity 

Aaron and Girod presented a hash-based Wyner-Ziv video coding scheme in [6], 
where a blockwise DCT is applied to the Wyner-Ziv frame W. Then transform coeffi-
cients are divided into low frequency and high frequency sets. The low frequency 
coefficients are compressed with rate compatible punctured turbo code (RCPT)[9]. The 
RCPT combined with a feedback loop, and the parity bits produced by the turbo en-
coder are stored in a buffer, which transmits a subset of these parity bits to the de-
coder upon the request. The high frequency components of the frame are treated as 
the hash code, and if sent, are compressed by efficient run-length coding and are used 
at the decoder in the inverse transform and in estimation the motion. 

The decoder generates the side information frame Ŵ , as an estimate of W, from 
the previous frame and the high frequency bits. For a given block of the current 
frame, if no high frequency bits are sent, the co-located block from the previous frame 
is used as the side information. If the high frequency bits are sent, the decoder recon-
structs these coefficients and utilizes them in a motion search to generate the best side 
information block from the previous frame. 

The turbo decoder uses the received subset of parity bits and the side information 
to decode the current bits. If the decoder cannot reliably decode the bits, it requests  
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additional parity bits from the encoder buffer through feedback. The requesting and 
decoding process is repeated until an acceptable probability of bit error is 
guaranteed. 

In Griod’s scheme, additional parity bits transmission controlled by the feedback 
loop is the key to gain good RD performance. But the feedback will bring heavy 
computing burden and delay, and it does not agree with the original intention of the 
low-complexity video encoding yet. In our experiments, the quantized DCT 
coefficients of the background and smooth regions in adjacent frames are discovered 
to be very approximate or even the same. By comparing the quantized DCT 
coefficients of current block in current Wyner-Ziv frame with that of the block at the 
same position in the previous key frame, the bit rate for encoding the background and 
smooth regions can be saved. So the regions, which disagree with the previous key 
frame, are referred to as the ‘region of interest (ROI)’, and the process of detecting 
these regions as ‘ROI extraction’, just as follows. 

A quantized DCT coefficient difference (QDCD) operator is used to extract these 
regions of interest. QDCD is simple and accurate in segmenting the actual ROIs even 
though it might fail in few cases. More accurate ROI extraction scheme can increase 
the RD performance at the cost of increase in encoding complexity. 

First, the difference di of each quantized DCT coefficient is defined as 

i i id q h= − , (1) 

where qi is the current quantized DCT coefficient of the current Wyner-Ziv frame, hi 
is the quantized DCT coefficient of the previous key frame stored in encoder buffer as 
hash code. 

Then, ‘ROI extraction’ is carried out according to difference di 

if max( ) 1, ROI block

    else if , ROI block

           else background or smooth block

i

i i
i N

d

R d T
∈

>
≥ , (2) 

where Ri is the weight, the value of which is different according to the Zig-Zag scan 
positions. The weights of low frequency coefficients are larger than that of the high 
frequency coefficients. i∈N, and N represents the number of quantized DCT coeffi-
cients that hash code contains. 

The ROI extraction scheme is simple but efficient. Compared with hash-based 
Wyner-Ziv coding, it doesn’t increase additional computational complexity. More-
over, in comparison with storing the original pixel values, storing the quantized 
DCT coefficients requires less memories and computations. The ROI blocks in 
current Wyner-Ziv frame extracted by the proposed scheme are shown in Fig.2, in 
which it is obvious that lots of background and smooth regions are skipped from 
encoding. 

The proposed ROI-based Wyner-Ziv video coding scheme is shown in Fig.3. As 
shown in the figure, the first three AC coefficients in Zig-zag scan in Fig.4 are 
considered as Part-1 (i.e., low coefficients), and encoded with PCCC (parallel  
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concatenated convolutional code); while the rest are regarded as Part-2, and encoded 
through CAVLC coding. It is noted that the Part-2 plays the same role as the hash 
code in the Griod’s scheme, which is used at the decoder to estimate the motion 
information and obtain side information with high quality. 

For each block of current Wyner-Ziv frame, the distance from the corresponding 
hash code of the previous key frame is calculated. The distance D is the weighted 
SAD between the subsampled version of the current block and the collocated quan-
tized samples of the previous key frame, and defined by 

 

Fig. 2. The ROI blocks in the current Wyner-Ziv frame extracted by the proposed scheme (the 
11th frame of salesman) 

 

Fig. 3. ROI-based DCT domain Wyner-Ziv video coding 

 

Fig. 4. Zig-Zag scan and division of DCT coefficients in 4×4 block 
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1) If the distance D is smaller than a threshold T1, the block is considered as a  
non-ROI region, and the block is copied from the co-located block in the previous 
decoded key frame. 

2) If the distance D of coefficients of Part-1 exceeds a threshold T2, these 
coefficients are encoded by PCCC, and the parity bits after 1/2 punctured are sent to 
the decoder directly, without stored in the encoder buffer. The feedback loop is not 
used in the proposed scheme in order to reduce the encoding complexity further. 

3) If the distance D of coefficients of Part-2 exceeds a threshold T3, these 
coefficients are encoded with the CAVLC. If there is no channel error in video 
bitstream transmission, the decoder at the receiver can reconstructs these coefficients 
independently. In the scheme, the decoded quantized DCT coefficients of Part-2 are 
important to motion estimation at the decoder. 

4) If the coefficients in Part-1 have been coded, the decoder uses the reconstructed 
Part-2 coefficients as a characterization of the original blocks to perform motion esti-
mation in the previous decoded key frame, and choose the best matching block as the 
side information. 

3   Experimental Results 

The proposed scheme is tested with salesman and container QCIF video sequences (at 
30fps and with a total of 100 frames). For encoding Wyner-Ziv frame, 4×4 DCT 
transform is used and each coefficient is quantized with a uniform scalar quantizer. 
The turbo encoder is composed of two identical RSC encoders, and the corresponding 

generator matrix is 
3 4

3 4

1
1

1

D D D

D D

+ + +
+ +

. The parity bits after 1/2 punctured is sent 

to the decoder directly, not stored in the encoder buffer. 
Fig.5 shows the RD performances of the proposed scheme with respect to  

salesman and container test sequences. The figures show the total bit rate and aver-
age PSNR of both the key frames and the Wyner-Ziv frames. RD performance of 
the proposed scheme is compared with that of H.263+ video coding, H.264 video 
coding, and Griod’s scheme[6]. For justice, when H.263+ and H.264 interframe 
coding are carried out, the length of GOP is set to 2 (that is I-P-I-P, the same as the 
paper [6]). Besides, the SearchRange is chosen to be 16, and FME is used. The 
quantization parameters for I frames is the same as for P frames. The curve of 
‘Griod’ comes from his paper [6], and the curve of ‘Proposed’ denotes the proposed 
scheme. 

From Fig.5(a), it is seen that, for salesman sequence, the proposed scheme outper-
forms Griod’s scheme and H.263+ interframe coding about 0.5dB at high bit rate. At 
lower bit rate the proposed scheme attains even 1.0dB more than Griod’s scheme. 
Fig.5(b) gives similar results. For container sequence, the proposed scheme outper-
forms H.263+ interframe coding about 1.5dB on average. 
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(a) RD performance of salesman  

 
(b) RD performance of container 

Fig. 5. Rate-distortion (RD) performance 

It should be noted that, although the H.264 interframe coding achieves the best RD 
performance just as shown in Fig.5, it is at the cost of huge computation complexity.  

In order to achieve encoding with low-complexity, Wyner-Ziv coding adopts an 
intraframe encoder combined with an interframe decoder structure; therefore the 
encoding computation burden is much lower than any other interframe encoding 
systems. In addition, by taking advantage of effective ROI extraction, the background 
and smooth regions are avoided to be coded in the proposed scheme, so that the bit 
rate and encoding time are saved. Besides, the feedback loop is removed in the 
proposed scheme, which reduces the computational complexity further. 
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The total encoding time (for key frame and Wyner-Ziv frame) of the proposed 
scheme is given in Fig.6, in comparison of the total time of H.264 interframe coding. 
The experimental parameters are the same with the previous, the operating system of 
the PC is Windows2000, CPU is Pentium IV 3G, with 512M RAM, and the compiling 
software is Visual C++6.0. The experimental results indicate that, for salesman and 
container, the total encoding time of the proposed scheme is only 29.05% and 28.37% 
of that of H.264 interframe encoding, respectively. So, no matter in the RD perform-
ance or encoding computational complexity, the proposed scheme is superior to 
Griod’s hash-based Wyner-Ziv video coding.  

23.13

22.97

6.72

6.52

 salesman

container

Proposed

H.264 P

 

Fig. 6. Total encoding time of 100 frames (sec) 

       
(a) Decoded 95th frame of salesman,          (b) Decoded 95th frame of container, 

PSNR=36.96dB                                    PSNR=36.11dB 

Fig. 7. Decoded Wyner-Ziv frames 

Fig.7 shows the decoded images of Wyner-Ziv frame with respect to the proposed 
scheme. For the 95th frame of salesman (a Wyner-Ziv frame), it takes 4344bits and 
PSNR of the reconstructed image is 36.96 dB. For the 95th frame of container (also 
Wyner-Ziv frame), it takes 6512bit, and the corresponding PSNR is 36.11dB. 

4   Conclusions 

Based on the Griod’s scheme, a ROI-based Wyner-Ziv video coding scheme with low 
encoding complexity is proposed. To save the bit rate, the proposed scheme detects 
ROI region by using the quantized DCT coefficients, so that the background and 
smooth regions need not to be coded. In addition, there is no feedback loop in the  
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proposed scheme, therefore the computational requirement is reduced further.  
Experimental results show that the proposed scheme outperforms Griod’s hash-based 
Wyner-Ziv coding. 

In future work, low-density parity-check (LDPC) code is used instead of turbo 
codes, and the probability of bit error at decoder will be reduced. In addition, a recon-
struction filter is also expected to be studied, so as to reduce the blocking distortion of 
DCT transform and improve the subjective quality of coded images. 
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Abstract. Disparity estimation can be used to eliminate redundancy among 
different views in multi-view video compression to obtain high compression 
efficiency. However, the problem of high computational complexity in disparity 
estimation, which limits real-time applications of multi-view systems, needs to 
be solved. In this paper, a novel fast multi-view disparity estimation algorithm 
based on Hadamard similarity coefficient for multi-view video coding is 
proposed by using prediction of initial search point, selection of reference view, 
determination of the best disparity vector, and strategies of search stop. 
Experimental results show that the proposed algorithm can significantly reduce 
the computational complexity in multi-view disparity estimation. 

1   Introduction 

Convergence of technologies from multimedia, telecommunications, computer 
graphics, and related fields enables the development of applications that significantly 
extend the sensation of classical 2D video. The new types of applications allow the 
user to freely choose a viewpoint of a visual scene or/and provide a 3D depth 
impression of a visual scene[1-3], such as free viewpoint video systems and 3DTV. 
Multi-view video coding (MVC) plays an important role to free viewpoint video 
systems, which can provide video information with respect to different angle of a 
scene. MPEG has already made attention to MVC in 3D audio-visual systems[1,4]. 

There is evident redundancy between views, while disparity estimation is a key 
technology to eliminate the redundancy between views in MVC[4-6]. Just like motion 
estimation to remove temporal redundancy in mono-view video coding, disparity 
estimation can be used to eliminate effectively the redundancy among views in MVC. 
However, disparity estimation is heavy computational burthen in whole system. 
Kimata has proposed multi-reference views based disparity estimation algorithm[6], 
which is able to enhance the rate-distortion performance, but its computational 
complexity is doubled due to the multi-reference frame searching. Lopez proposed 
block-based illumination compensation and search techniques[7], but its computational 
complexity is still a problem. In this paper, a novel fast disparity estimation algorithm 
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based on Hadamard similarity coefficient is proposed, in which some techniques, 
including prediction of initial search point, selection of reference view, determination 
of the best disparity vector and strategies of search stop, are integrated so as to reduce 
the computational complexity of disparity estimation. Experimental results show that 
the proposed algorithm can significantly reduce the computational complexity in 
multi-view disparity estimation. 

 

Fig. 1. Definition of two kinds of neighboring blocks 
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Fig. 2. Disparity interpolation of multi-view images 

2   Characteristic Analysis of Neighboring Blocks  

Multi-reference disparity estimation can improve efficiency of MVC, but its 
computational complexity will be doubled when the number of its reference views 
increases. To reduce the computational complexity in disparity estimation, fast 
algorithms are needed. In this paper, definitions of two kinds neighboring blocks are 
given in Fig.1, where blocks a, b, and d are the encoded neighboring blocks of the 
current block c in the same frame, called as intra-view neighboring blocks. Block e, 
on the other hand, is the predicted block of the current block c in the adjacent view, 
called as inter-view neighboring block. Fig.2 shows disparity interpolation of multi-
view images, in which a relationship between the block c and block e may be 
determined by disparity interpolation. 

In this section, Hadamard similarity coefficient is defined to describe the 
relationship between neighboring blocks. Hadamard transform is an orthogonal 
transform with very low computational complexity, since only addition and 
subtraction are needed, and the characteristics of its transform coefficients are similar 
to those of DCT. Fig.3 gives statistical results of Hadamard coefficients of blocks 
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with the size of 8x8. It is seen that for smooth regions of image the energy 
concentrates at the position of (0,0), (0,2), (2,0), while for close-grained regions of 
image the energy mainly concentrates at the position of (0,0), (0,2), (2,0), (0,4), (4,0) 
and (4,4). 

           

Fig. 3. (a) Statistical result of smooth region,     (b) Statistical result of close-grained region 

According to the above statistical results, similarity coefficient of Hadamard  
coefficients is defined. Let H(i,j) be Hadamard coefficient at position (i,j), 
Ci,j=|H1(i,j)−H2(i,j)| be the absolute difference between Hadamard coefficients of 
two blocks, Si,j=|H1(i,j)+H2(i,j)| be the absolute sum of Hadamard coefficients of 
two blocks. For intra-view neighboring block, the Hadamard similarity coefficient is 
defined by formula (1), in this case the smooth region is usually considered. 

0,0 0,2 2,0 0,0( )R C C C S= + +  (1) 

When inter-view neighboring block is considered, the Hadamard similarity coeffi-
cient is defined as the following to discribe characteristic of close-grained region. 

0,0 0,2 2,0 0,4 4,0 4,4 0,0 4,4( ) ( )R C C C C C C S S= + + + + + +  (2) 

It is noted that it is not necessary to calculate all Hadamard coefficients, but only 
the coefficients at the positions of (0,0), (0,2), (2,0), (0,4), (4,0) and (4,4), so that the 
computational burden is very slight. 

3   A New Fast Multi-view Disparity Estimation Algorithm 

Based on characteristic analysis of neighboring blocks, a novel fast multi-view 
disparity estimation algorithm is proposed.  First, disparity maps between the leftmost 
and rightmost views are estimated, for which the leftmost and rightmost views are 
used as reference view mutually. The obtained disparity map {DVL→R} and 
{DVR→L} are as the initial ones. For disparity estimation of the current block c in the 
current view k, intra-view Hadamard similarity coefficients {Rna, Rnb, Rnd} of the 
blocks a, b and d are first calculated, let Rn be the minimum of them, then Rn is 
compared with a similarity threshold RT. If Rn<RT, the two blocks are considered to 
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be similar, called as intra-view similar block, so the disparity vector of neighboring 
block with respect to Rn is used as estimated disparity vector DVc(0) of the current 
block c, moreover, the two blocks have the same reference view. Let SADa, SADb and 
SADd be the sum-of-absolute-difference (SAD) of the three neighboring blocks, and 
SADc(0) of the current block c be the SAD value obtained by using DVc(0) and the 
corresponding reference view. Let med{} denote a median operation. If SADc(0)≤ 
med{SADa, SADb, SADd}, DVc(0) is chosen as the disparity vector DVc of the current 
block c, and disparity estimation of the block c is over; otherwise, disparity vector 
DVc have to be searched within a small range indicated by DVc(0). 
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Fig. 4. Disparity vector prediction of the block c with the disparities of the block e 

If the current block c does not have intra-view similar block, the Hardamrd 
similarity coefficient Rj between the current block c and its block e in the adjacent 
view is calculated. Let Rt be a threshold, if Rj <Rt, the block e is considered to be the 
matching one of the block c. Thus, disparity interpolation is used to obtain the 
relationship between the block c and block e. Since the block e may be composed of 
four sub-blocks e1, e2, e3 and e4, as shown in Fig.4, the disparity vector DVe of the 
block e is calculated by DVe=(e1⋅DVe1 + e2⋅DVe2 + e3⋅DVe3 + e4⋅DVe4)/64. Then, the 
estimated disparity vectors DVcl(0) and DVcr(0) of the block c corresponding to the 
leftmost or rightmost reference view are interpolated with DVe, DVL→R, and DVR→L. 
If the current view is near to the leftmost view, set the estimated disparity 
DVc(0)=DVcl(0); otherwise, set DVc(0)=DVcr(0). If |DVcl(0)-DVcr(0)|<1, DVc(0) is 
considered as the disparity vector DVc, and terminate disparity estimation of the block 
c; otherwise, DVc is estimated within a small range indicated by DVc(0). 

If Rj≥Rt, it indicates that the current block c has no inter-view similar block, so the 
best matching block in the leftmost and rightmost reference views have to be searched 
according to DVcl(0) and DVcr(0), and the best disparity vector among them is chosen 
as the disparity vector DVc of the block c. 

To reduce computational complexity further, fast searching strategies and SAD 
threshold are used to terminate the searching in advance. If the search is unavoidable, 
SADs with respect to nearby points of the point indicated by DVc(0) are firstly calcu-
lated to determine the master and slave search directions. For the master search direc-
tion, 1-D diamond search is implemented, in which 2-pixel interval is used to find the 
matching position cursorily, and then the best matching point is searched just around 
the cursorily matched position; For the slave searching direction, bi-directional search 
is used. The final matching point is the one with the minimum SAD selected from the 
master or slave search direction. 

To speed up the searching, a SAD threshold, SADT, is used as search stop criteria. 
Here, the threshold SADT is defined by SADT=(1−Rj)SADneigh, where Rj is the 
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Hadamard similarity coefficient of two blocks, SADneigh is the SAD value of the 
neighboring block. In searching process, if the SAD value of a point is small than 
SADT, the point is considered to be good enough so it is chosen as the best matching 
point and the searching process is terminated. 

The proposed multi-view disparity estimation algorithm is concluded as follows 

Step-1: Let the leftmost or rightmost view as the reference view, respectively, calcu-
late disparity map  {DVL→R} and {DVR→L} of the two reference views. 

Step-2: Calculate Hadamard similarity coefficients between the current block and its 
three intra-view neighboring blocks {Rna, Rnb, Rnd} according to formula (1), 
and let Rn=min(Rna, Rnb, Rnd). If Rn<RT, go to Step-3, otherwise go to Step-4. 

Step-3: Use the disparity vector and reference view of neighboring block as estimated 
disparity vector DVc(0) and reference view of the current block. Compare 
SADc(0) obtained with DVc(0) to SADa, SADb and SADd of the blocks a, b and 
d, if SADc(0)≤med{SADa, SADb, SADd}, DVc(0) is considered as the disparity 
vector DVc of the block c, and then go to Step-8. Otherwise, go to Step-6. 

Step-4: Calculate Hadamard similarity coefficient Rj between the current block c and 
block e according to formula (2), if Rj <Rt, go to step 5, otherwise go to  
Step-7. 

Step-5: Obtain DVcl(0) and DVcr(0) of the block c corresponding to the leftmost and 
rightmost reference views by interpolating with the disparity map  {DVL→R} 
and {DVR→L}. Choose DVcl(0) or DVcr(0) as DVc(0) in terms of the distance 
between the current view and the leftmost or the rightmost view. If ⏐DVcl(0)-
DVcr(0)⏐<1, DVc(0) is regarded as the disparity vector DVc, and then go to 
Step-8, otherwise go to Step-6. 

Step-6: Do single reference disparity estimation by using DVc(0) as the initial dispar-
ity vector of the block c, then go to Step-8. 

Step-7: Do two reference view disparity estimation by using DVcl(0) and DVcr(0) as 
the initial disparity vectors, the disparity vector with the minimum  SAD is 
chosen as final disparity vector of the block c. 

Step-8: Finish the search of the block c, and then turn to estimate the disparity of the 
next block. 

4   Experiments and Discussions 

In order to evaluate the proposed multi-view disparity estimation algorithm, 
experiments have been performed on two test sequences of real data called “Xmas”, 
and “Note”. “Xmas” is available from Tanimoto Lab, 101 viewpoint images are 
captured synchronously with the camera interval of 3mm, the image resolution is 

480640× . Here, we select 10 of 101 views, with the camera interval of 30mm, as a 
test set. “Note” is captured by a shifted camera with the interval of 30mm. Fig.5 
shows three views of the two test sequences. Fig.6 shows four blocks in one image of 
Xmas. From the figure, block 1 and block 2 are within edge regions, but do not have 
the same characteristic. Block 3 and block 4, on the other hand, are within the same 
smooth region, so they have the same characteristic. Hadamard similarity coefficients 
of the four blocks are R1,2=0.258, R1,3=0.474, R2,3=0.243, and R3,4≈0, which mean that 



498 G. Jiang et al. 

the block 1, block 2 and block 3 are different with each other, but block 3 is quite 
similar to block 4 because Hadamard similarity coefficient is close to 0. Thus, 
Hadamard similarity coefficient is able to describe the similarity of two blocks. 
Moreover, its computational complexity is very low. 

 
(a)Three views of Xmas multi-view images 

 
(b) Three views of Note multi-view images 

Fig. 5. Two test sets of multi-view images 

       

Fig. 6. Four blocks in Xmas test data                      Fig. 7. Coding results with different RT 

Fig.7 shows PSNRs of the decoded signals with respect to different threshold RT. 
Smaller RT will increase high computational complexity, so here RT is set to be 0.06. 
Fig.8 gives rate-distortion curves with respect to full search algorithm (FS), direct 
limit fast search algorithm (DLS)[8] and the proposed algorithm. Experimental results 
show that they achieve almost the same rate-distortion performance.  

Table 1 compares the computational complexity of the three algorithms. Compared 
with the FS algorithm, the proposed algorithm saves up to 98.4%~97.8% coding time. 
The proposed algorithm can also obviously reduce the computational complexity even 
compared with other fast search algorithm, such as DLS algorithm. Table 2 lists the 
number of searching points with respect to the three algorithms, from which similar 
conclusion can be made as from Table 1. 
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Fig. 8. (a) Experimental results of Xmas                      (b) Experimental results of Note 

Table 1. Comparison of three algorithms with full coding processing 

Xmas  Note  
 

bits PSNR time bits PSNR time 

FS 937904 41.66 100% 604792 40.80 100% 

DLS 956236 41.64 16% 620369 40.73 13.5% 

Proposed 954267 41.64 2.2% 619481 40.73 1.6% 

Table 2. Comparison of three algorithms only for search processing 

Test data algorithm PSNR number of 
search point 

speedup 

FS 41.66 768 1 

DLS 41.64 105.2 7.3 Xmas 

Proposed 41.64 12.2 62.9 

FS 40.80 768 1 

DLS 40.73 80.4 9.6 Note 

Proposed 40.73 9.4 81.7 

5   Conclusion 

Disparity estimation is a key technique in multi-view data compression, since it is an 
efficient tool to eliminate the redundancy among different views. In this paper, a 
novel fast multi-view disparity estimation algorithm based on Hadamard similarity 
coefficient is proposed by using prediction of initial search point, selection of refer-
ence view, determination of the best disparity vector and strategies of search stop, in 
order to reduce the computational complexity of disparity estimation. Experimental  
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results show that the proposed algorithm can significantly reduce the computational 
complexity in the multi-view video coding at the cost of tiny descent of rate-distortion 
performance compared with the full search algorithm. 
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Abstract. In this paper, we present AddCanny, an Anisotropic Diffu-
sion and Dynamic reformulation of the Canny edge detector. The pro-
posal provides two modifications to classical Canny detector. The first
one consists of using an anisotropic diffusion filter instead of a Gaussian
filter as Canny does in order to obtain better edge detection and location.
The second one is the replacement of the hysteresis step by a dynamic
threshold process, in order to reduce blinking effect of edges during suc-
cessive frames and, therefore, generate more stable edges in sequences.
Also, a new performance measurement based on the Euclidean Distance
Transform to evaluate the consistency of computed edges is proposed.
The paper includes experimental evaluations with different video streams
that illustrate the advantages of AddCanny compared to classical Canny
edge detector.

1 Introduction

Edge detection plays an important role in image processing domain, vision sys-
tem performance and different applications of computer vision such as object
detection, tracking or recognition problems. Most edge detection methods work
on the assumption that an edge occurs where there is a discontinuity in the
intensity function or a steep intensity gradient in the image. Different operators
have been proposed using first order differential methods for edge detection such
as Robert’s Cross, Prewitt or Sobel [2]. Currently, the most common approach
widely used is the Canny edge detector [4], which is aimed as the optimal edge
detector. Formally, this approach specifies an objective function to be optimized,
with the following optimization constrains: (i) maximize the signal to noise ratio
to give good detection, (ii) achieve good localization to accurately mark edges
and (iii) minimize the number of responses for a single edge.

Traditionally, Canny edge detector has been successfully applied in still image
based applications. There are works which improve Canny’s performance [6] [5]
and also those which propose a replacement with different gradient based edge
detectors [1]. Dynamic hysteresis is studied in [11] although not used in a Canny
detector. However, video processing using Canny edge detector introduces new
issues to be addressed:
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– Consistency: video processing applications using edge detection methods re-
quire edge based features to be detected consistently and efficiently at the
spatialtemporal domain. However, the use of Canny detector, which has been
mainly designed for still images, introduces instability situations in detected
edges during the sequence. These can be noticed as blinking edges, that is,
edge features that appear in one frame but suddenly disappear in the next
one. This blinking effect takes place when there are certain changes between
consecutive images in a stream, mainly originated by sensor noise effects or
small lighting changes. As a result, under continuously operating conditions,
detection quality cannot be minimally ensured for video processing.

– Complexity: computational complexity in real-time video processing is a
crucial factor. Therefore, operations to be computed must be optimized.

– Threshold computation: gradient-based edge methods require threshold val-
ues to be fixed or chosen manually for certain lighting conditions. In order
to provide stable edge features in video streams, the adaptation of these
threshold values must be automated.

– Performance measurement: measuring edge detector performance in video
streams is a complex task. It is difficult since edges are subjective features
and thus difficult to define.

In this paper, we propose a new approach to compute consistency of edge
detection on video streams. Our approach is focused on Canny edge detector with
the purpose of preserving good detection, localization and minimal response.
We improve the edge detector method, obtaining a higher edge consistency in
video streams, focusing on the reduction of parameters in order to achieve a
general purpose edge detector. We reduce the blinking effect of edges by the
substitution of the hysteresis step by a dynamic threshold process, aided by an
anisotropic diffusion filter. In order to evaluate the edge detector performance, we
propose a new edge consistency measurement based on the Euclidean Distance
Transform [7]. The structure of this paper is as follows: the Canny detector,
including an analysis of how the hystheresis step is the main responsible for
blinking edges in video sequences, is described in Section 2. Section 3 describes
the effect of hysteresis in video sequences. Section 4 explains our proposal and its
advantages, which are proved experimentally in Section 5, where a measurement
performance for edge consistency between frames is proposed and described.
Conclusions and future work are presented in section 6.

2 Canny Edge Detector

Canny edge detector [4] is a three steps procedure that leads to the three desir-
able features of an optimal edge detector: good detection - the algorithm should
mark as many real edges in the image as possible; good localization - found edges
should be as close as possible to edges in the real image; minimal response - a
given edge in the image should be marked only once, and where possible, image
noise should not create false edges. Canny’s steps are described briefly in the
following paragraphs:
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Step 1: Smoothing
A 2D Gaussian mask is convolved with the image in order to remove high fre-
quency noise. The mask aperture can be selected to perform a stronger smoothing
effect, but it may produce edge delocalization.

Step 2: Non-maximal suppression
Image’s horizontal and vertical partial derivatives are obtained and used to cal-
culate gradient magnitude and direction. Using them, it is possible to eliminate
(set to zero) those pixels which gradient magnitude is not local maxima along
the direction that is perpendicular to the edge, finally obtaining a thin-gradient
image like the one shown in Fig.4c.

Step 3: Hysteresis
Hysteresis is a powerful mechanism in many processes. The main idea is that
an element becomes more important for a certain process if an already impor-
tant element exists nearby. In the Canny edge detector, hysteresis is a recursive
procedure that involves two thresholds: l and h (low and high). According to
them, for each pixel in the thin-gradient image, it is marked as an edge pixel if
its magnitude value is higher than h, and rejected if it is lower than l. For edge
pixels, their neighbor pixels are considered, and marked as edge pixels (and thus
recursively analyzed afterwards) if their magnitude value lies between l and h.

3 Hysteresis in Video Sequences

Thanks to the hysteresis process, edges become complete or not broken in still
images. In video sequences, however, hysteresis produces undesired effects re-
lated to how thresholds affect the process. First of all, every edge created from
a single pixel higher than the higher threshold h on a certain frame, may com-
pletely disappear in the following frame if that pixel’s value descents below h.
Suppose the following 1D example, after Gaussian convolution and non-maxima
suppression, where upper rows contains values to which hysteresis with l = 4
and h = 8 is applied:

Frame n 1 2 7 8 8 8 8 8 8 8 9 8 8 8 8 8 8 7 2 1
Edge 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

Frame n+1 1 2 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 3 2 1
Edge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

While on frame n a whole edge is found thanks to a single pixel, on frame n + 1
it disappears because the same pixel is not above h. A second situation shows
how an edge is shortened because of a similar reason:

Frame n 1 2 7 9 7 6 5 7 8 8 8 8 8 8 8 8 7 2 1 4
Edge 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

Frame n+1 1 2 3 9 7 6 4 7 8 8 8 8 8 8 8 8 8 3 2 1
Edge 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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A third effect, less probable but still possible, involves an edge which is broken
in two smaller edges if two pixels’ values descent below the lower threshold:

Frame n 4 9 8 7 5 8 8 8 8 8 8 8 8 8 8 5 7 8 9 4
Edge 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Frame n+1 1 9 8 7 4 8 8 8 8 8 8 8 8 8 8 4 7 8 9 1
Edge 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

Full edges are lost or broken even when their pixel’s values are close enough
to h. This way, Canny edge detector produces complete edges, visually attrac-
tive, but it may lose information in video sequences. Due to sensor noise and
small light changes these events constantly appear in video sequences, and it
is easy to visually observe them, as seen in Fig.1. This variation may be re-
duced choosing the right h and l parameters. However, different sequences will
require different thresholds, and the blinking effect does not disappear due to
how hysteresis works. Moreover, if a sequence includes light variations, the two
thresholds may have to be reconfigured during the sequence. If thresholds are
not chosen properly, edges shall not be successfully detected and the blinking
effect may be dramatically increased, as shown in Fig.1.

a b

Fig. 1. Blinking edges example in Car sequence: From a sequence with a smooth light
transition from a lighter image to the one shown on the left, four frames from a Canny
with l=100 and h=200) are shown. Notice the rear-view mirror and how edges vary
abruptly within continuous frames.

4 An Edge Detection Proposal for Video Streams:
AddCanny

AddCanny, which stands for Anisotropic Diffusion Dynamic Canny, is an ap-
proach based on two main changes to original Canny’s proposal: the substitution
of the Gaussian filter step with an anisotropic diffusion filter [8] and the replace-
ment of the hysteresis step with a dynamic thresholding operation. Thus, edge
localization and minimal response of a Canny edge detector are conserved, but
a higher edge consistency in video sequences is obtained. During the whole pro-
cess, we focus on the reduction of the amount of parameters in order to achieve
a general purpose edge detector.
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4.1 Anisotropic Diffusion

In our proposed solution, the Gaussian convolution in the noise suppression
step is replaced with a strong anisotropic diffusion filtering process. Homoge-
neous regions are strongly smoothed and noise and weak edges are removed
while sharp boundaries are preserved. Anisotropic filtering algorithms remove
noise from images while preserving object boundaries. Tomasi and Manduchi’s
Bilateral filter [9] and Perona and Malik’s anisotropic diffusion [8] achieve this
through intensity/color and gradient dependent computations between pixels.
While Bilateral Filter seems to produce better results (see Fig.2c), it is not suit-
able for real time processing. A low number of Anisotropic Diffusion iterations
are much faster and images are properly filtered for our purposes as seen in
Fig.2d. Perona and Malik in [8] analyzed filtering processes via partial differen-

a

b c d

Fig. 2. a) Jorge image, 320x240 pixels RGB, unfiltered. b) Original image detail c)
Bilateral Filter result (range 3, domain 5, aperture 11): 406ms for the whole image d)
Simplified Anisotropic Diffusion filter result: 3 iterations : 140ms for the whole image.
(Xeon CPU, 3Ghz).

tial equations (PDE) and proposed a nonlinear modification of images replacing
the classical isotropic diffusion equation with the following equation:

∂I(x, y, t)
∂t

= div[g(‖∇I‖)∇I] (1)

where ∇I is the image gradient magnitude and g(‖∇I‖) is an edge-stopping
function, chosen in order to satisfy g(x)→ 0, when x→∞ , so that diffusion is
performed nonlinearly, applied in non-edge zones and stopped across edges. The
following function was originally suggested by Perona and Malik [8]:

G1(x) =
1

(1 + x2

K2 )
(2)

For a review of more stopping functions, see [3]. In order to maximize the dif-
fusion process, we propose the following modification of a SigmoidS [10] for the
g(·) function, avoiding the positive constant K parameter in 2.
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G2(x) =

⎧⎨⎩
1 x ≤ 0

1− x2 0 < x ≥ 0.25
0 x > 0.25

(3)

Ranges used in proposed function 3 are based on a visual analysis of the image
gradient∇I after a dynamic range amplification, setting gradient values in [0, 1].
It is reasonable to agree that, with values below 0.25, edges begin to be considered
weak enough to allow diffusion, as can be observed in terms of grey values in
Fig.3. This way, anisotropic diffusion becomes strong enough and only a few

x < 0.25 x > 0.25

Fig. 3. Gray-scale values, representing edge strengths in a gradient image ∇I

iterations are needed in order to smooth homogeneous regions (three in our
tests).

4.2 Thin-Gradient Image Information

Given a frame f from a video sequence, gradient magnitude and direction are
obtained using two partial derivative Sobel kernels on the filtered image α(f),
and pixels that are not local maxima in gradient magnitude along the direction
that is perpendicular to the gradient direction are suppressed. At this point we
have a grayscale image β(f) obtained from a filtered image α(f) that contains
thin and localized edges, as good as Canny’s (because we have followed the
same basic steps), with useful information about edge strengths. It is noticeable
how edge images are usually considered as binary images, even when non-binary
images contain much more information in relation to edge strength (see Fig.4c).
However, if a binary edge image is needed, the hysteresis step in the Canny
detector is usually applied, obtaining Fig.4d.

4.3 Hysteresis Replacement

As seen in Section 3, it is the hysteresis step what seems to produce blinking
edges in video sequences. In order to prove this observation, we propose a replace-
ment of the hysteresis step with a simple image binarization using a dynamic
threshold on each frame from a video sequence. Given the thin-gradient image
β(f) obtained from the filtered version α(f) of a certain frame f , a threshold
Tf is adjusted automatically as the mean of those pixel values pi in β(f) above
zero:

Tf = s ·
∑

pi

N
∀pi ∈ β(f), pi > 0 (4)
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a b c d

Fig. 4. Laetitia image, a) unfiltered f, b) Anisotropic Diffusion α(f), c) greyscale thin-
gradient image β(f), d) OpenCv’s Canny l=64, h=128 binary image

where N is the number of non-zero values in β(f) and s is a weighting factor.
This particular simple threshold operation does not return complete edges like
a more complex hysteresis process would do, but it returns edges good enough.
Moreover, Tf is a dynamic parameter which adapts to each frame’s lighting con-
ditions, so it becomes useful in sequences with environmental variations. How-
ever, edges are subjective features from images, and usually depend on what the
user wants to find in a given image. In order to allow a certain output control, a
single weighting factor s is introduced, which stands for edge strength. Threshold
Tf is weighted using s, which value may be chosen around 1.0 (below 1.0 would
mean more edges, because the threshold is lowered, while above 1.0 means more
edges), so it is possible to get more or less edges depending on user’s preferences
or application needs. In our experiments, we set s = 1.0 when possible.

a b c

Fig. 5. Two examples of our approach compared to Canny edge detector a) Original
image, b) Canny (top) (70, 120), Canny (bottom) l=90, h=140, c) Proposed approach
(s = 1.0)
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4.4 Anisotropic Diffusion Effect in Presence of Strong Movement

In certain video sequences captured in the presence of strong movements, both
egomotion or moving objects in the scene, there may be a certain amount of blur-
riness in images, caused when the camera recording frequency is not fast enough
to properly capture fast motion. The anisotropic diffusion filter adds definition
to these images, allowing the detection of borders with a higher quality, recov-
ering edges where Gaussian filters smoothes them, as seen in Fig.6. Anisotropic

a b c d

Fig. 6. A frame from Elena sequence: a) Original Image, b) Filtered Image, c) Canny
l=170, h=220, d) Our approach (s = 1.0)

diffusion in moving sequence aids in defining moving objects’ boundaries, as seen
on the background wall in Fig.6. Canny may manage these images, but its pa-
rameters may have to be tuned to be sensitive enough, which also adds unwanted
edges.

5 Empirical Measurement of Edge Stability in Video
Streams

In order to test edge consistency throughout consecutive frames, six sequences
are used as experimental set in this paper. They show a varied amount of sit-
uations, both indoor and outdoor sequences, with and without moving objects
and varying light conditions. For a random frame in each sequence, we adjusted
original Canny’s h and l parameters, always using a 3x3 Gaussian filter, in order
to get good edges. Then we tuned our method with three anisotropic diffusion
iterations and we set the weighting factor s in order to compute an amount of
edges similar to Canny’s, which we usually obtained using s = 1.0. Finally, we
processed all the sequences and measured stability. The amount of edge variation
was measured computing the distance between a frame from a given sequence
and the next one using Distance Transform (DT) images [7]. In a DT image, ev-
ery non-object pixel from the source binary image is labeled with its Euclidean
Distance to the closest edge pixel in the source image, as seen in the following
image: The susbstraction of DT images allows the computation of a distance be-
tween binary images, measuring not only coincidences, as a substraction of plain
binary images would return, but distance between edges present in both images.
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Fig. 7. Results from AddCanny applied to the same Car sequence from Fig. 1. Canny
l=100, h=200) is shown on top row, AddCanny(s = 1.0) in bottom row. Some new
details appear as light changes, but changes are much smoother between consecutive
frames with our approach.

Fig. 8. Binary image and its DT image. Pixels are labelled with their distance to the
closest object pixel (white pixels).

For each frame, a binary image was obtained using Canny and our approach.
Then, distances between binary images were computed using Distance Trans-
form (DT) images. This way, the sum of squares of absolute differences between
pixels from two DT images shows a measurement of the amount of variation
between both of them. Given the DT images of two binary images img1 and
img2 with the same size, their difference is measured as shown in 5.

d(img1, img2) =
∑

(||DT (img1)i −DT (img2)i||2)∀i ∈ img1 (5)

We use the squared difference to give more importance to higher values, be-
cause most edges are properly localized in both methods and thus their majority
would affect and hide the negative effect of blinking boundaries. Fig.9 shows nor-
malized results for the six sequences. On most cases our approach achieves more
consistent edges, except for the Office sequence, where results are slightly worse.
This is a particular sequence because there are no moving objects. In this case,
even though Canny and AddCanny produce visually similar edges, Canny’s un-
broken edges achieve better measurement values according to 5, mainly due to
the presence of many independent edge pixels created by AddCanny. Note that
each sequence needs a different pair of Canny parameters, while only the Duck
and Office sequence needed a different s parameter in order to raise (s = 0.5,
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Fig. 9. Edge consistency test for six sequences (each pattern one sequence). For each
sequence, the first column represents results with original Canny and the second column
results for AddCanny.

Fig. 10. Images took from online web cams at different daytimes. Original images are
shown on left row. Canny l=64, h=128 is shown on center row, and our approach
(s=1.0) on right row.

Office) or decrease (s = 1.5, Ducks) the number of edges in order to return an
amount of edge pixels similar to Canny’s. In those sequences that cover a wide
spectrum of light conditions, like certain security cameras which record during
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day and night cycles, Canny’s original proposal is not able to perform properly
because of its static parameters. In those cases, our approach behaves much bet-
ter due to the dynamic nature of its threshold parameter. It is difficult or plainly
impossible to obtain a pair of parameters for Canny method than could manage
these kind of sequences, this situation forces the use of dynamic thresholds.

6 Conclusions

In this paper, we have presented an edge detector based on Canny’s proposal for
edge detection, preserving good detection, localization and minimal response, but
reducing parameters and aiming towards edge consistency in video streams. Add-
Canny reduces edge inconsistency between continuous frames, avoiding blinking
edges like those that may appear using classical Canny edge detector. The sub-
stitution of the Gaussian filter with an anisotropic diffusion filter reduces noise
while preserving objects boundaries accurately. Furthermore, it sharpens blurred
images caused by strong movements, avoiding the disappearance of edges in those
situations. AddCanny adjusts automatically its operation parameter, regulating
its sensitivity depending on image conditions. In order to compare edge consis-
tency in video streams, a stability measure based on the Distance Transform im-
age has been proposed. Our procedure has been presented comparing it to the
use of classical hand-tuned Canny approach and results conclude that AddCanny
shows a better performance than classical Canny for video stream edge detection
purposes. Moreover, it sustains the quality of detection when lighting conditions
change. As future work, the anisotropic diffusion filter will be extended in order
to include temporal information, local thresholding will be used instead of the
current global threshold Tf , and a modification of the stability measure will be
studied in order to give the longest contours a higher weight, thus correcting the
current effect of noisy and small contours in its value. Finally, due to the nature
of thresholds in image processing, we also consider the application of fuzzy logic
to the binarization step.
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Abstract. Facial expression hallucination is an important approach to facial ex-
pression synthesis. Existing works mainly focused on synthesizing a static fa-
cial expression image given one face image with neutral expression. In this pa-
per, we propose a novel two-level hierarchical fusion approach to hallucinate 
dynamic expression video sequences when given only one neutral expression 
face image. By fusion of local linear and global nonlinear subspace learning, 
the two-level approach provides a sound solution to organizing the complex 
video sample space. Experiments show that our approach generates reasonable 
facial expression sequences both in temporal domain and spatial domain with 
less artifact compared with existing works. 

1   Introduction 

Facial expression synthesis techniques have been widely used in the fields of human-
computer interaction, film making and game entertainment. However, due to the sen-
sitivity to human face, facial expression synthesis is a challenging topic in computer 
vision. Qingshan Zhang et al. [1] developed a geometry-driven facial expression syn-
thesis system which could generate photorealistic facial expressions through blending 
sub-region texture images according to the facial feature positions. Liu et al. [2] pro-
posed an expression mapping approach based on expression ratio image (ERI). Com-
bining illumination changes of one person’s expression with geometry warping, they 
mapped an ERI to arbitrary face and generated more expressive facial expressions. 
Besides the analogy and retargeting approaches mentioned above, learning based 
techniques for face synthesis have also been explored by many researchers. “Face 
hallucination” was first proposed by Simon Baker et al. [3], the motivation was to 
create high resolution version of an input low resolution face image by sample learn-
ing. Based on a complicated probabilistic model, Liu et al. [4] built a two step ap-
proach to hallucinate human faces, the global parametric model aimed at recovering 
global face image while the local non-parametric model contributed to generating face 
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details. Similar architecture was adopted by [5, 6, 7, 8] for face hallucination. In [9], 
the authors developed an eigen-transformation approach, through which high resolu-
tion face image was synthesized by weighted linear combination of the training sam-
ples. In [10], the authors extended face hallucination to synthesize facial expressions. 
Given face image with neutral expression, they created reasonable facial expression 
from sample images.  

In this paper, we propose a facial expression synthesis approach based on face hal-
lucination, compared with [10], the novelty of our work mainly lies in two points: 
first, instead of synthesizing single facial expression image, we propose a video based 
expression hallucination approach which generates an expression video sequence 
given only one image; second, a hierarchical framework is adopted to perform the 
two-level subspace learning on video samples, this approach is a fusion of linear and 
nonlinear subspace learning. Our approach is based on neighbor reconstruction, two 
main differences make our approach work better than the weighted linear combination 
method adopted in [9]: first, applying manifold learning algorithm to select nearest 
reconstruction neighbors instead of using the whole sample space to compute the 
linear combination weights; second, radial basis function regression rather than 
weighted linear combination is adopted to gain final expression video sequence.  

The paper is organized as follows: in section 2, the framework of a two-level hier-
archical fusion approach for video expression hallucination is introduced; in section 3, 
the hallucination procedure is presented in detail; experiments and discussion are 
given in section 4; section 5 concludes this paper. 

2   Framework of the Two-Level Hierarchical Fusion 

The training samples comprise tens of video clips, each video clip represents one kind 
of facial expression of one specific person from neutral to apex. Our goal is to hallu-
cinate expression video sequences of a new test subject based on sample videos, the 
input is a single frontal face image with neutral expression.  

Due to the high dimensionality of video samples, organizing the sample space well 
becomes a challenging problem. Here, we propose a hierarchical approach to perform 
training and synthesizing, which includes two levels: local linear subspace learning 
and global nonlinear subspace learning. 

2.1   Local Linear Subspace Learning 

In this level, each training sample (a video sequence) is considered to construct a local 
linear subspace. Principal component analysis (PCA) [11] has been proved effective in 
learning such a linear subspace. So, in this level, we use PCA to compute eigen-
representation of each sample offline for further use. Given a video sequence, we stack 
columns of each frame into one vector and integrate all the vectors to form a sample 

matrix X , and then we compute 1/ 2( ) /X X X N= − to register X where X is the mean 

value and N is the number of samples. To deal with the problem caused by high dimen-

sionality, we perform QR factorization to gain [ , ] ( )q r QR X= , then SVD decomposition 

is imposed on r to get [ , , ] ( )u s v SVD r= , and then eigenvectors can be obtained by 



 Video-Based Facial Expression Hallucination 515 

U q u= i , we do so for solving the problem in a numerically stable way. Thus, we can 

project any frame f on U to get the reconstruction coefficients ( )Ty U f X= −i , 

and f can be reconstructed by f U y X= +i . So, we store each sample’s eigenvec-

tors U , coefficients y and mean value X as the eigen-representation for expression 

synthesis. 

2.2   Global Nonlinear Subspace Learning 

In global nonlinear subspace learning, given an input face image with neutral expres-
sion as a high dimensional data point, we aim at finding its nearest neighbors among 
the first frames (neutral) of the video samples by Locally Learning Embedding (LLE) 
algorithm [12]. LLE is an unsupervised manifold learning algorithm that computes 
low dimensional, neighborhood preserving embeddings of high dimensional input and 
recovers the global nonlinear structure from locally linear fits. According to LLE, 
each high dimensional data point can be reconstructed by weighted linear combina-
tion of its neighbors. The reconstruction weights reflect intrinsic geometric properties 
of the data that are invariant when high dimensional data points are transformed to 
low dimensional coordinates. The process of LLE algorithm is briefly described as 
below: 

Step 1. Selecting K closest neighbors for each point using a distance measure such as 
the Euclidean distance. 

Step 2. Solving for the manifold reconstruction weights [12]. The reconstruction er-
rors are measured by the cost function: 

2

1 1
( ) || ||

N N

i ij iji j
w X W Xε

= =
= −  (1) 

where iX is a data point and ( )wε is the sum of the squared distances between all data 

points and their reconstruction neighbors. The weights ijW represent the contribution 

of the jth data onto the ith reconstruction. 
Two constraints should be obeyed: 
1. 1ijW =  

2. 0ijW =  if jx is not a neighbor of ix  

The weights are then determined by a least squares minimization of the reconstruc-
tion errors. 

Step 3. Mapping each high dimensional data iX to a low dimensional coordinate iY . 

This is done by minimizing the cost function representing locally linear reconstruc-
tion errors: 

2

1 1
( ) || ||

N N

i ij iji j
Y Y W Y

= =
Φ = −  (2) 
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After LLE implementation, we gain the low dimensional coordinates Y of both the 
neighbor samples and the input image, then expression sequence synthesis can be 
performed based on Y andU , y , X which have been computed through local linear 

subspace learning. In deed, the two-level hierarchical approach is a fusion of nonlin-
ear and linear subspace learning, the local level aims at simplifying the video halluci-
nation by eigen-representation in temporal domain, the global level contributes to 
providing optimized expression appearance in spatial domain. The detailed expression 
synthesis procedure will be discussed in next section. 

3   Facial Expression Sequence Hallucination 

Our proposed hierarchical fusion approach performs the local linear learning offline 
only once, while the global nonlinear learning is performed each time when a test 
subject comes.  

In detail, let inI be the input subject image and trI be the first frames of training 

samples, we integrate inI and trI into one matrix form (each image can be stacked into 

one column vector) and find the N nearest neighbors of inI in trI by LLE, also, the 

reconstruction weights as well as the low dimensional manifold coordi-
nates inY and trY of these images are simultaneously computed, here inY corresponds 

to inI and trY corresponds to trI . The low dimensional coordinates of inY ’s N nearest 

neighbors can be denoted as nbY . Since the eigenvectorsU , coefficients y and mean 

value X of each video sample have been computed through local level learning, we 
choose nbU , nby , nbX (the eigen-representations) of those nearest neighbors and nbY as 

training data to synthesize the eigenvectors inU , coefficients iny and mean value inX of 

the expression sequence corresponding to the input image inI . 

The hallucination is well done by radial basis function (RBF) regression [13]. The 
RBF regression function takes the form: 

0 1
( , )

k

t i t ii
r K xβ β μ

=
= +  (3) 

where d
tx R∈ and tr R∈ are input training data, 1

0( ,..., ) k
k Rβ β β += ∈ is a vector of 

regression coefficients. K is a local kernel function centered on dRμ ∈ . In order to 

simplify the regression problem, we first perform K-NN clustering algorithm on input 
training data tx and assign the kernel function centers μ to be the clustering centers. 

Suppose tr , tx as well as the kernel function K are available, the regression parameter 
1

0( ,..., ) k
k Rβ β β += ∈ can be solved by a standard least square algorithm according to 

equation (3).  
In our implementation, tx is the neighbors’ low dimensional coordinates nbY , 

and tr is the neighbors’ eigen-representations which takes the form: 
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nb

t nb

nb

U

r y

X

=  

After β is calculated, given inY as input, the eigenvectors inU , coefficients iny and 

mean value inX of the expression sequence corresponding to the input image are 

synthesized. So according to PCA theory, the new expression sequence corre-
sponding to the input neutral face can be reconstructed frame by frame through 
formula (4): 

in in inf U y X= +i  (4) 

4   Experiments and Discussion 

There exists some facial databases for research purpose, such as FERET [14] and 
AR [15] facial database. The current facial databases may provide face images 
with variable expression, pose, and illumination, however, much of those available 
are grayscale images and the facial expression video sequence database is not easy 
to gain. So we capture facial expression videos by ourselves. We use a Sony HDV 
1080i video camera recorder, the video frame resolution amounts to 1920× 1080. 
To ensure good performance, the actors are informed to perform expressions from 
neutral to apex with no rigid movements of the head. The distance between human 
face and the camera is fixed at 2 meters. 

Our facial expression database includes 112 video sequences covering 4 kinds 
of typical expressions (happy, angry, surprise, fear) coming from 28 individuals, 
each video sequence is normalized to 20 video frames. Since the most sensitive 
parts of a human face are the eyes and the mouth, we separate the face into upper 
and lower interest regions and treat them respectively during training and synthe-
sizing, the method for hallucinating the eyes and the mouth is totally identical. We 
manually cut the upper region and lower region of each video frame for video 
sample training, a small number of the upper and lower face regions selected from 
the whole big training set are shown in Fig.1. After implementation of the pro-
posed approach, the hallucinated eyes and mouth are manually transplanted onto 
the input neutral face frame by frame without any change. To deal with the 24bit 
true color video frames, our approach is applied on the R, G, B channels respec-
tively, and the final results are the integration of the three channels. We perform 
the “cross validation” process (randomly pick one out of training data) 10 times 
and part of the experimental results are demonstrated in Fig.2 and Fig.3. In our 
experiments, the hallucination procedure generates 20 video frames for each input 
image in about 10 seconds on a Pentium IV 2.4GHz PC, the kernel function of 
RBF regression is multi-quadratic function.  
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Fig. 1. A number of selected upper and lower regions of different sample faces in our training 
database. The first line is the upper regions, the second line is the lower regions. 

 

Fig. 2. Surprise expression of two individuals. The first line is the ground-truth facial expres-
sion sequences, the second line is hallucinated facial expression sequences. 

 

Fig. 3. Happy and angry expressions of two individuals. The first line is the ground-truth facial 
expression sequences, the second line is hallucinated facial expression sequences. In both line, 
the left 5 columns are happy expression, the right 5 columns are angry expression. 

Compared with the weighted linear combination method adopted in [9], our ap-
proach maintains more high frequency information, see Fig.4. In our test, the weights 
are gained by minimizing equation (1), then the linear combination is performed using 
the weights and corresponding neighbors frame by frame to synthesize facial expres-
sion sequence. 

Through the global nonlinear learning, we’ve computed the low dimensional coor-
dinates of the input subject and the training samples by minimizing equation (2). It’s 
proved that two factors may influence the final hallucination results, i.e., the 
neighborhood size of LLE and the dimensionality of the low dimensional coordinates. 
The average RMS (root mean square) error of 10 cross validation tests using different  
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Fig. 4. Hallucinated expression by our approach (left side) and weighted linear combination 
method (right side). The upper region of the face is magnified on both sides. Note that near the 
region of the yellow circle, the result by weighted linear combination method looks smoother. 
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Fig. 5. The average RMS error under different neighborhood size 

neighborhood size and dimensionality are shown in Fig.5 and Fig.6. The RMS error is 
computed according to the only input original image and the first frame of the halluci-
nated expression sequences. We compare the RMS error of our approach with that of the 
weighted linear combination method and verify the superiority of our approach. 

Fig.5 indicates that the RMS error is very unstable when the neighborhood size is less 
than 8. We adjust the neighborhood size empirically, when the neighborhood size is 
between 8 and 17, the RMS error remains relatively stable at lower values, when the 
neighborhood size surpasses 17, the RMS error rises dramatically. 

Fig.6 shows that in global LLE learning, when the dimensionality of the low dimen-
sional coordinates is between 8 and 16, the mean RMS error remains at lower values, 
otherwise, the RMS error rises dramatically. 

Though the neighborhood size and the dimensionality of the low dimensional coordi-
nates do influence the hallucination results, there lacks perfect approach to determine 
these parameters automatically. In many applications, these parameters are determined 
empirically according to different cases. In our experiments shown in Fig.2 and Fig.3, 
the neighborhood size and the dimensionality of the low dimensional coordinates are 
fixed at 11 and 9 respectively. 
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Fig. 6. The average RMS error under different dimensionality of the low dimensional coordi-
nates computed by LLE 

5   Conclusion 

In this paper, we present a novel two-level hierarchical fusion approach to hallucinate 
facial expression sequences from training video samples given only one frontal face 
image with neutral expression. According to the fusion approach, the local linear 
subspace learning is combined with the global nonlinear subspace learning, the local 
level simplifies the video hallucination by eigen-representation of the samples in 
temporal domain, and the global level creates optimized expression appearance in 
spatial domain. The two-level hierarchical fusion approach provides a sound solution 
to the problem of organizing the complex training video sample space, and this is the 
main contribution of our work. Our approach generates reasonable facial expression 
sequences with little artifact compared with existing method. 
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Abstract. Content analysis of video and still images is attractive for
multiple reasons, such as enabling content-based actions and image ma-
nipulation. This paper presents a new algorithm and feature model for
blue-sky detection. The algorithm classifies the sky areas by computing
a pixel-accurate sky probability. Such a probabilistic measure matches
well with the requirements of typical video enhancement functions in
TVs. This algorithm enables not only content-adaptive picture quality
improvement, but also more advanced applications such as content-based
annotation of, and retrieval from image and video databases. When com-
pared to existing algorithms, our proposal shows considerable improve-
ments in correct detection/rejection rate of sky areas, and an improved
consistency of the segmentation results.

1 Introduction

Sky is among the objects of high visual importance, appearing often in video
sequences and photos. A sky-detection system can be used for different applica-
tions. At the semantic level, sky detection can contribute to image understanding
by e.g. indoor/outdoor classification or automatic detection of image orientation.
At this level, applications of sky detection include content-based actions such as
image and video selection and retrieval from data-bases, or object-based video
coding. At the pixel level, sky detection can be used for content-based image
manipulation, like picture quality improvement using color enhancement and
noise reduction, or as background detection for 3D depth-map generation.

Content-adaptive processing in general, and sky detection in specific, can be
used in high-end televisions. Modern TVs employ a variety of signal-processing
algorithms for improving the quality of the received video signal. The settings
of these processing blocks are often globally constant or adapted to some local
pictorial features, like color or the existence of edges in the direct neighborhood.
Such features are often too simple to deal with the diverse contents of video
sequences, leading to a sub-optimal picture quality as compared to a system that
locally adapts the processing to the content of the image. The above-mentioned
local adaptation can be realized if the image is analyzed by a number of object

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 522–532, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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detectors, after which areas of similar appearance are segmented and processed
with algorithms optimized to the features of each area [1].

Due to its smooth appearance, noise and other artifacts are clearly visible
in sky regions. This motivates using appropriate image enhancement techniques
specifically in the sky regions. The existence of special circuits in high-end TVs
for improving the color in the range of sky-blue also illustrates the subjective
importance of sky.

Our objective is to develop a sky-detection algorithm, suitable for image en-
hancement of video sequences. This implies that the detection must be pixel
accurate and consistent, and allow for real-time embedded implementation.

Previous work on sky detection includes a system [2][3], based on calculating
an initial ”sky belief map” using color values 1 and a Neural Network, followed
by connected-area extraction. These areas may be accepted or rejected using tex-
ture and vertical color analysis, and the degree of fitting to a two-dimensional
(2D) spatial model. While this method yields useful results in annotating sky
regions, we found it not suitable for the requirements of video applications con-
cerning spatial consistency. The algorithm takes crisp classification decisions per
connected-area, leading to abrupt changes in the classification result. As an ex-
ample, patches of sky may be rejected when their size reduces during a camera
zoom-out.

A second system proposed in [4][5] is based on the assumption that sky
regions are smooth and are normally found at the top of the image. Using
predefined settings, an initial sky probability is calculated based on color, tex-
ture and vertical position, after which the settings are adapted to regions with
higher initial sky probability. These adapted settings are used for calculating
a final sky-probability. The employed pixel-oriented technique (as opposed to
the connected-area approach of the first system) makes this system suitable for
video applications. However, due to its simple color modeling, this method often
leads to false detections, such as accepting non-sky blue objects as sky, and false
rejections, like a partial rejection of sky regions when they cover a large range
in the color space.

We propose an algorithm that builds upon the above-mentioned second sys-
tem, and and exploits its suitability for video applications, while considerably
improving the false detection/ rejection rates. The proposed sky detector is con-
fined to blue-sky regions, which includes both clear blue sky and blue sky con-
taining clouds.

Experimental simulations of our new proposal indicate a substantial improve-
ment in the correct detection of sky regions covering a large color range, and the
correct rejection of non-sky objects when compared to the algorithm proposed
in [4][5], as well as an improved spatial consistency with respect to the system
described in [2][3].

1 In this paper, “color” denotes all color components. When a distinction between
chromaticity and gray values is required, we use the terms “luminance” and “chromi-
nance”.



524 B. Zafarifar and P.H.N. de With

Fig. 1. Various appearances of sky, from left to right: dark, light, large color range,
occluded

The remainder of the paper is organized as follows. Section 2 characterizes
the sky features, Section 3 describes the proposed algorithm, Section 4 presents
the results and Section 5 concludes the paper.

2 Observation of Sky Properties

In this section, we discuss the features of sky images, and address the challenges
for modeling the sky.

Sky can have a variety of appearances, such as clear sky, cloudy sky, and
overcast sky (see Fig. 1). Sky color can cover a large part of the color space, from
saturated blue to gray, or even orange and red during sun-set. Consequently,
a system based on temporally-fixed color settings is likely to fail in correctly
detecting different sky appearances. In addition, sky regions can significantly
vary in color within an image: a wide-shot clear-sky image tends to be more
saturated at the top and becomes less saturated near the horizon, while the
luminance tends to increase from the top of the image towards the horizon. As a
result, a sky detector using a spatially-fixed color is likely to reject parts of the
sky region, when the sky color considerably changes within one image.

An additional challenge is the partial occlusion of sky by foreground objects,
cutting the sky into many disconnected parts. In order to prevent artifacts in
the post-processed video, it is important that all sky areas are assigned coherent
probabilities.

Another non-trivial task is distinguishing between sky, and objects which
look similar to sky but are actually not a part of it. Examples are areas of water,
reflections of sky, or other objects with similar color and texture as sky.

In the following section, we propose a system that addresses the aforemen-
tioned issues.
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3 Algorithm Description

3.1 Sky Detector Overview

We propose a sky-detection system based on the observation that blue-sky re-
gions are more likely to be found at the top of the image, they cover a certain
part of the color space, have a smooth texture, and the pixel values show lim-
ited horizontal and vertical gradients. The algorithm contains three stages, as
depicted in Fig. 2.
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Fig. 2. Block diagram of the Sky detector, divided in three stages

Stage 1 : Initial sky probability. In this stage, an initial sky-probability map is
calculated based on the color, vertical position and texture of the image pixels.
The texture analysis also includes horizontal and vertical gradient measures.
The settings of this stage are fixed, and are chosen such that all targeted sky
appearances can be captured.

Stage 2 : Analysis and sky-model creation. In this stage, the fixed settings of
the first stage are adapted to the image under process. As such, the settings for
the vertical-position probability and the expected sky color are adapted to the
areas with high sky probability. For the expected color, a spatially-varying 2D
model is created that prescribes the sky color for each image position.

Stage 3 : Final sky probability. In this stage, a pixel-accurate sky probability
is calculated based on the color, vertical position and (optionally) texture of the
image, using the adaptive model created in Stage 2.

With respect to implementation, we have adopted the YUV color-space be-
cause the sky chrominance components in the vertical direction of the image,
tend to traverse linearly in the UV plane from saturated blue through gray to
red. In order to reduce the amount of computations, the image is down-scaled
to QCIF resolution for usage in Stage 1 and 2. However, Stage 3 uses the image
at the original resolution in order to produce pixel-accurate results.

Sections 3.2, 3.3 and 3.4 describe the three stages of the algorithm in more
detail.
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3.2 Initial Sky Probability

Using predefined settings, an initial sky probability (PskyInitial) is calculated
using a down-scaled version of the image. We combine color, vertical position,
and texture to compute the initial sky probability as

PskyInitial = Pcolor × Pposition × Ptexture .

1 . The color probability is calculated using a three-dimensional Gaussian
function for the Y, U and V components, centered at predetermined positions
Y0, U0 and V0 (representing the expected sky color), with corresponding standard
deviations σy1, σu1 and σv1. The settings are chosen such that all desired sky
appearances are captured. The color probability is defined as

Pcolor = e
−
((

Y −Y0
σy1

)2
+
(

U−U0
σu1

)2
+
(

V −V0
σv1

)2)
.

2 . The vertical-position probability is defined by a Gaussian function, which
has its center at the top of the image, starting with unity value and decreasing
to 0.36 at the bottom of the image, so that

Pposition = e
−
(

r
height

)2
,

where r is the vertical coordinate of the current pixel (at the top of the image
r = 0) and height denotes the total number of rows (i.e. TV lines) of the image.

3 . The calculation of the texture probability is based on a multi-resolution
analysis of the luminance channel of the image. The analysis assigns low prob-
abilities to parts of the image containing high luminance variation, or excessive
horizontal or vertical gradients. This probability can be used to eliminate the
textured areas from the initial sky probability. More specifically, three down-
scaled (with factors of 2) versions of the luminance channel are analyzed using
a fixed window-size (of 5×5 pixels), and the results are combined in the lowest
resolution, using the minimum operator. The texture analysis uses the following
two measures.

SAD: The local smoothness of the image can be measured by the luminance
variation. Using the Sum of Absolute Differences (SAD) between horizontally-
adjacent, and vertically-adjacent pixels in the analysis window, we calculate the
luminance variation in the surrounding of the current pixel. The horizontal and
vertical SAD (SADhor and SADver) lead to a probabilistic measure PSAD as
follows

SADhor(r, c) =
1

NSAD

w∑
i=−w

w−1∑
j=−w

|Y (r + i, c + j)− Y (r + i, c + j + 1)| ,

SADver(r, c) =
1

NSAD

w−1∑
i=−w

w∑
j=−w

|Y (r + i, c + j)− Y (r + i + 1, c + j)| ,

PSAD = e− ([SADhor + SADver − TSAD]∞0 )2 .
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Here, r and c are the coordinates of the pixel in the image, w defines the size
of the analysis window (window size= 2w + 1), and i and j are indices of the
window. The factor 1/NSAD is used to normalize the SAD to the total number
of the pixel differences within the window (NSAD = (2w +1) ∗ 2w), and TSAD is
a noise-dependent threshold level. The symbol [.]∞0 denotes a clipping function
defined as

[f ]ba = M in (Max(f, a), b) .

Gradient: we observe that luminance values of the sky regions have limited
horizontal and vertical gradients, and that the luminance often increases in top-
down direction. We define the vertical gradient (gradver) as the difference be-
tween the sum of pixel values of the upper-half of the analysis window, and the
sum of the pixel values of the lower-half of the analysis window. The horizontal
gradient (gradhor) is defined similarly, using the pixels of the left-half and the
pixels on the right-half of the analysis window. For pixel coordinate (r, c) this
leads to

gradhor(r, c) =
1

Ngrad

⎛⎝ w∑
i=−w

−1∑
j=−w

Y (r + i, c + j)−
w∑

i=−w

w∑
j=1

Y (r + i, c + j)

⎞⎠ ,

gradver(r, c) =
1

Ngrad

⎛⎝ −1∑
i=−w

w∑
j=−w

Y (r + i, c + j)−
w∑

i=1

w∑
j=−w

Y (r + i, c + j)

⎞⎠ ,

where the factor 1/Ngrad normalizes the gradient to the size of the window
(Ngrad = w ∗ (2w + 1)).

Using appropriate threshold levels, the horizontal and vertical gradients are
translated to a probability Pgrad, calculated as

Pgrad = e− ([Tvl − gradver ]
∞
0 + [gradver − Tvu]∞0 + [|gradhor| − Th]∞0 )2 ,

where Tvl and Tvu are the threshold levels for the lower and upper bounds of
the vertical gradient respectively, and Th is the threshold level for the horizontal
gradient. These thresholds are fixed values, determined by a set of training im-
ages. Using separate thresholds for the upper and lower bounds in the vertical
direction allows an increase, and penalized a decrease of the luminance in the
downwards image direction.

Finally, the texture probability Ptexture combines PSAD and Pgrad as

Ptexture = PSAD × Pgrad .

3.3 Analysis and Sky-Model Creation

In this stage, the initial sky probability (calculated in Stage 1) is analyzed in
order to create adaptive models for the color and vertical position used in the
final sky-probability calculation. This involves the following steps.
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1 . Calculating Adaptive threshold level and global sky confidence metric: the
initial sky probability needs to be segmented in order to create a map of regions
with high probability. Simple measures for threshold determination, such as us-
ing the maximum of the sky-probability map as proposed in [5] can perform
inadequately, for example by favoring small objects with high sky probability
over larger non-perfect sky regions. In order to avoid this problem, we propose a
more robust method that takes both the size and the probability of sky regions
into account, by computing an adaptive threshold and a global sky confidence-
metric Qsky. The confidence metric yields a high value if the image contains a
significant number of pixels with high initial sky probability. This prevents small
sky-blue objects from being accepted as sky, in images where no large areas with
high sky probability are present. The calculation steps are as follows: first the
Cumulative Distribution Function (CDF) of the initial sky probability is com-
puted, after which it is weighted using a function that emphasizes the higher
sky probability values and decreases to zero towards the lower sky probability
values. Due to this weighting, the position of the maximum of the resulting func-
tion (weighted CDF) includes our preference for higher probability values, while
being dependent on the distribution of the initial sky probability values. There-
fore, this position can be used to determine the desired adaptive threshold. The
maximum amplitude of the weighted CDF is dependent on the number of pixels
with relatively high sky probability, and thus can be used for determining the
aforementioned confidence metric Qsky .

2. Adaptive vertical position: the areas with high sky-probability are seg-
mented by thresholding the initial sky-probability map, with the threshold level
described in the previous paragraph, after which the mean vertical position of
the segmented areas is computed. This adaptive vertical position is used to de-
fine a function, which equals unity at the top of the image and linearly decreases
towards the bottom of segmented sky region. This function is then used for
computing the final sky probability.

3. Adaptive expected sky color: as mentioned in Section 2, the sky detector
needs to deal with the wide range of sky color values within and between different
frames. In [5], it is proposed to use frame-adaptive, but further spatially-constant
expected colors. This method addresses the problem of large color variation
between frames, but fails when the sky covers a considerable color range within
one frame, resulting in a partial rejection of the sky areas.

To address this problem, we propose to use a spatially-adaptive expected
sky color. To this end, each signal component (Y, U, and V) is modeled by a
spatially-varying 2D function, that is fitted to a selected set of pixels with high
sky probability.

An example of model fitting technique is as follows. Using a proper adaptive
threshold, the initial sky probability is segmented to select sky regions with
high sky probability. Next, the segmented pixels are selected with a decreasing
density in top-down direction. This exploits our assumption that the pixels at
the top are more important for model fitting than those near the bottom, and
ensures that the model parameters are less influenced by reflections of sky or
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other non-sky blue objects below the actual sky region. The last step is to use
the values of the (Y, U, V) signal components of these selected pixels to fit the
2D function of the corresponding signal component.

The choice of the color model and the fitting strategy of the 2D functions
depend on the required accuracy and the permitted computational complexity.
We implemented (1) a 2D second-degree polynomial, in combination with a least-
squares optimization for estimating the model parameters, and (2) a model which
uses a matrix of 23×18 values, per color component, for representing the image
color [6]. The 2nd-degree polynomial model offers sufficient spatial flexibility to
represent typical sky colors, but is computationally expensive (the presented
results in this paper use this model). The second model, also offers the necessary
flexibility, and is in addition more suitable for hardware implementation.

3.4 Final Sky Probability

Using the adaptive model created in Stage 2, we compute a pixel-accurate final
sky-probability map as

PskyFinal = Pcolor2 × Pposition2 × Ptexture2 ×Qsky ,

where Qsky denotes the sky confidence metric. The required pixel accuracy is
achieved by using the original image resolution, and applying a moderate texture
measure to prevent distortion in the final sky probability map, near the edges of
non-sky objects. The following paragraphs further describe the features applied
in this stage.

1. The color probability is calculated using a 3D Gaussian function for Y,
U and V components, centered at the spatially-varying values Y0,(r,c), U0,(r,c)

and V0,(r,c) (representing expected sky color at the spatial position (r, c)), with
corresponding standard deviations σy2, σu2 and σv2. In order to reduce false
detections, these standard deviations are reduced with respect to the values of
stage 1.

2. As opposed to the fixed vertical-position function used for initial sky prob-
ability, the final stage uses an adaptive vertical probability function, which is
tuned to cover the sky areas with high sky probability, as calculated in Stage 2.

3. The inclusion and the type of texture measure depend on the application
for which the sky detection output is used. For some applications, using a texture
measure in the final sky-probability calculation could lead to undesirable effects
in the post-processed image, while other applications may require some form of
a texture measure. For example, for noise removal in the sky regions, we found
it necessary to reduce the sky probability of pixels around the edges of objects
adjacent to sky, in order to retain the edge sharpness. This was done by taking
the Sobel edge detector as texture measure.

4 Experimental Results

We applied the proposed algorithm on more than 200 sky images. The images
were selected to present a large variety of sky appearances, many including sky
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Fig. 3. Examples of improved correct detection, left: input, middle: proposed by [4][5],
right: our algorithm

Fig. 4. Examples of improved correct rejection, left: input, middle: proposed by [4][5],
right: our algorithm

Fig. 5. Examples of improved spatial accuracy, left: input, middle: proposed by [2][3]
(courtesy of Eastman Kodak), right: our algorithm
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reflections and other challenging situations. Figure 3 compares our results to
[4][5]. In Fig. 3-top, the halo (top-middle) is resulted by the spatially constant
color model used in [4][5], while the spatially adaptive color model employed in
our algorithm is capable of dealing with the large color range of the sky area
(top-right). A similar difference in the results can be seen in Fig. 3-bottom,
where in addition, the reflection of the sky is removed by the gradient analysis.
Figure 4 shows the improved correct rejection of non-sky objects (areas or water
in Fig. 4-top and mountains in Fig. 4-bottom), which has been achieved because
of the multi-resolution texture analysis. Lastly, Fig. 5 shows the greatly improved
spatial accuracy of our results in comparison to [2][3]. This is due to the two-pass
approach for calculating the sky probability, in which the second pass uses the
original image resolution and a moderate texture measure.

When compared to [4][5], our experiments indicate a substantial improvement
in the correct detection of sky regions covering a large color range due to the spa-
tially varying color model, and an improved correct rejection of non-sky objects
due to the multi-resolution texture analysis.

When compared to [2][3], we observed an improved spatial consistency of the
segmentation results. Here, a notable improvement in the correct detection was
discovered in 16 out of 23 images, where a side-by-side visual comparison was
made. In the remaining cases, our proposal performed comparable to the existing
system. In many of these cases we still prefer our proposal, as it is based on a
smooth probability measure, whereas the existing system produces crisp results,
which is more critical in the case of false detections for video applications. An
experiment with a video sequence indicated that the spatial consistency also
improves the temporal behavior of the system. More algorithmic tuning and
experiments will have to be conducted to validate this conjecture.

A simplified version of the proposed algorithm is currently being implemented
as a real-time embedded system, using FPGA technology. Preliminary mapping
results indicate that a real-time implementation is feasible on a standard FPGA
device.

5 Conclusions

Sky detection for video sequences and still images can be used for various pur-
poses, such as automatic image manipulation (e.g. picture quality improvement)
and content-based directives (e.g. interactive selection and retrieval from multi-
media databases). The main problems with the existing algorithms is incomplete
detection of sky areas with large ranges of color, false detection of sky reflections
or other blue objects, and inconsistent detection of small sky areas. This paper
has presented a sky-detection algorithm which significantly reduces the men-
tioned problems, and has suitable properties for video applications. This was
achieved by constructing a sky model that incorporates a 2D spatially-varying
color model, while reusing the vertical position probability from an existing
method. Moreover, we have introduced a confidence metric for improving the
consistency and removal of small blue objects. Wrong detection of the reflections
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of sky areas and other non-sky objects has been reduced by employing a gradient
analysis of the luminance component of the sky. Experimental results show that
the proposed algorithm is capable of handling a broad range of sky appearances.
The two primary advantages of the proposed algorithm are increased correct
detection/rejection rates, and an improved spatial accuracy and consistency of
the detection results.

Our future work includes developing additional measures for meeting the re-
quirements of real-time video applications. Particularly, the key parameters of
the system, such as the vertical position model, the color model, and the confi-
dence metric need to be kept consistent over time. Furthermore, the algorithm
will be optimized for implementation in consumer television systems.
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Abstract. In the context of Universal Multimedia Access, efficient tech-
niques are needed for the adaptation of video content. An important ex-
ample is the reduction of the bitrate in order to satisfy the bandwidth
constraints imposed by the network or the decoding capability of the ter-
minal devices. Requantization transcoding is a fast technique for bitrate
reduction, and has been successfully applied in previous video coding
standards such as MPEG-2. In this paper, we examine requantization in
H.264/AVC, focusing on the intra 16×16 prediction modes. Due to the
newly introduced coding tools in H.264/AVC, new techniques are needed
that are able to lower the bitrate at a minimal quality loss. We propose
two novel architectures, one in the pixel domain and one in the frequency
domain, that reuse the information from the incoming bitstream in an
efficient way, and perform approximately equally well as a cascade of
decoder and encoder. Due to their low computational complexity, the in-
troduced architectures are highly suitable for on-the-fly video adaptation
scenarios.

1 Introduction

More and more video for multimedia applications is coded using the H.264/AVC
standard [1]. For distribution of this video content, the network and the termi-
nals impose varying constraints on the characteristics of the transferred video
bitstreams. In this context, the bitstreams have to be adapted, and a reduc-
tion of the framerate, the spatial resolution or the bitrate is required. The lat-
ter is possible by means of requantization of the initial bitstreams. In order
to perform this requantization, different architectures are possible. The most
straightforward solution is the cascade of a decoder-encoder pair. Due to its
high computational complexity, this cascade is less eligible for real-time adapta-
tion scenarios [2,3]. Hence, new architectures are needed, that are able to adapt
H.264/AVC bitstreams in an efficient way. Transcoding is a fast and elegant
solution for bitrate reduction, making it possible to change the characteristics
of video sequences without fully decoding and re-encoding [2,3]. Requantization
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transcoding has been applied for previous coding standards, such as MPEG-1
and MPEG-2 Video [4,5].

In this paper, we examine requantization transcoding for H.264/AVC, and
revise the existing open-loop architecture. Due to the newly introduced coding
tools, such as H.264/AVC intra prediction, an extension of the existing archi-
tectures is required. Because of the improved coding efficiency of H.264/AVC
and the high amount of dependencies in the video bitstreams, the transcoded
video sequences are highly susceptible to quality degradation due to drift propa-
gation. In order to constrain the quality loss, two novel closed-loop transcoding
architectures for requantization of intra coded pictures are presented. These ar-
chitectures focus on the H.264/AVC intra 16×16 prediction, and compensate
for the prediction errors originated by the requantized prediction pixels. One
architecture performs this compensation in the pixel domain, the other in the
transform domain.

The remainder of this paper is organized as follows. In Sect. 2, an overview
of the 16×16 intra prediction, the transformations, and the quantization of
the H.264/AVC standard is given. In Sect. 3, an architecture for an open-loop
requantization transcoder targeting H.264/AVC bitstreams is described. Sec-
tions 4 and 5 present two novel drift-reducing architectures for requantization
transcoders exploiting pixel-domain and frequency-domain compensation meth-
ods. In Sect. 6, these types of transcoders are compared based on quality and
bitrate measurements of transcoded H.264/AVC bitstreams. Finally, Sect. 7 con-
cludes this paper.

2 H.264/AVC Tools

2.1 Intra Prediction

Intra prediction is used to exploit the spatial redundancy between neighbouring
pixels. A block is predicted using previously encoded and reconstructed pixels
of surrounding blocks. In H.264/AVC, a macroblock can be predicted using a
combination of nine 4×4 or one of four 16×16 intra prediction modes. The
intra prediction, which was not present in, for example, MPEG-2 Video, results
in an improved compression efficiency. However, it also introduces a number of
dependencies. As we will see, this has an important impact on the perceptual
quality of the transcoded video sequences.

In this paper, we focus on the intra 16×16 prediction. The four intra 16×16
modes (vertical, horizontal, DC, and plane prediction) are shown in Fig. 1.

2.2 H.264/AVC Transform and Quantization

The integer transform in the H.264/AVC specification [6,7,8] is based on the
Discrete Cosine Transform, and is applied on 4×4 blocks. The forward transform
of a 4×4 block X is represented by

Y = (CF XCT
F )⊗ EF ,
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Horizontal Vertical

Mean

DC Plane

Fig. 1. Intra 16×16 prediction modes

where CF represents the kernel transformation matrix. EF is the post-scaling
matrix. For efficiency reasons, the post-scaling operation of the transformation is
postponed and integrated in the quantization process. First, this forward trans-
form is applied on every 4×4 block of the macroblock. Of these 16 transformed
blocks, the DC values are collected in a new 4×4 block, D. On this block, a
Hadamard transform is applied:

U = (HDHT )/2 .

After the core transformation Wij = (CF XCT
F )ij , with i, j = 0, . . . , 3, and the

Hadamard transform, the coefficients Wij and Uij are quantized. H.264/AVC
provides 52 values for the Quantization Parameter (QP), which can vary on a
macroblock basis. The values of QP were defined in such a way that, if QP is
increased with a value of 6, the quantization step is doubled and the bitrate is ap-
proximately halved. This non-linear behaviour results in the possibility to target
a broad range of bitrates. The forward quantization can be implemented as

|Zij | = (|Wij | ·Mij + f)& qbits

where qbits = 15+�QP/6, and f represents the dead zone control parameter [7].
The multiplication factor Mij is determined by QP mod 6 and the position in
the 4×4 block. The quantization for the Hadamard coefficients Uij is performed
in a similar way, resulting in the coefficients Sij .

At the decoder side, the process is defined as follows. Before the inverse quan-
tization the inverse Hadamard is applied:

U ′ = HTSH .

For the AC coefficients, the inverse quantization process is defined as

W ′
ij = Zij · Vij · 2�QP/6� .

The values of Mij and Vij result in the coefficients W ′
ij and D′

ij that exceed the
pre-quantized values Wij and Dij by a factor 64 ·EFij ·EIij , hence including the
post-scaling of the forward transform along with the pre-scaling of the inverse
transform:

X ′ = CT
I (Y ⊗ EI)CI .
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Fig. 2. Transformation and quantization for intra 16×16 macroblocks

The factor 64 is introduced to avoid rounding errors in the inverse transformation
that follows. After inverse quantization, the resulting DC coefficients D′

ij are
placed back in the 16 4×4 blocks, and the inverse transform is applied.

The entire process of transformation and quantization for intra 16×16 pre-
diction is shown in Fig. 2. We refer to [6,7,8] for more information about the
intertwined transformation and quantization.

3 Open-Loop Requantization Transcoder

The most straightforward architecture for requantization is the open-loop trans-
coder. It consists of a dequantization (Q−1

1 ), followed by a requantization (Q′
2

and Q′′
2) with a coarser QP. The architecture of the open-loop transcoder is

visualized in Fig. 3.

Q1
-1

AC

DC

Q’2

Q1
-1 Q’’2

Fig. 3. The open-loop requantization transcoder

The implementation of this type of requantization transcoder was rather
straightforward in MPEG-2 [5]. However, in H.264/AVC, special attention has to
be paid to the requantization Q′

2 and Q′′
2 . The multiplication factors have to be

adapted in order to bring into account the scaling factors EFij and EIij of the
H.264/AVC integer transform. Since these scaling factors are already applied
in the original quantization, they may not be repeated in the requantization.
Because two types of transformations (the integer and the Hadamard transfor-
mation) are used for intra 16×16 prediction, we have to consider both trans-
formations separately in order to perform a correct adaptation of the different
4×4 blocks. As a result, the multiplication factors for the integer transformation
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have to be downscaled by the factors 4, 2.56 and 3.2, depending on their posi-
tion (i, j) in the 4×4 block of coefficients, as shown in Table 1 and Table 2. The
downscaling factors arise from:

(Mij · Vij)& 15 = 64 · EFij ·EIij =

⎧⎨⎩
4, r = 0
2.56, r = 1
3.2, r = 2

where the factor 64 is introduced to avoid rounding errors during the inverse
transform1, and

r =

⎧⎨⎩
0, (i, j) ∈ {(0, 0), (0, 2), (2, 0), (2, 2)}
1, (i, j) ∈ {(1, 1), (1, 3), (3, 1), (3, 3)}
2, otherwise

The multiplication factors for the Hadamard transformation have to be scaled
as well. In this case, the obtained scaling factor is position-independent. Deriving
the factor from the forward and inverse quantization formulas for Hadamard
coefficients, we obtain:

(M0,0 & 16) · (V0,0 & 2) =
1
2
.

This means that the transcoded coefficients have to be upscaled by a factor two,
in order to obtain a correct requantization Q′′

2 of the DC coefficients.

Table 1. Original multiplication factors Mij

and Vij for the integer transform

QP Mij Vij

mod 6 r = 0 r = 1 r = 2 r = 0 r = 1 r = 2
0 13107 5243 8066 10 16 13
1 11916 4660 7490 11 18 14
2 10082 4194 4194 13 20 16
3 9362 3647 3647 14 23 18
4 8192 3355 3355 16 25 20
5 7282 2893 2893 18 29 23

Table 2. Modified multiplication fac-
tor M ′

ij for the integer transform

QP M ′
ij

mod 6 r = 0 r = 1 r = 2
0 3277 2048 2521
1 2979 1820 2341
2 2521 1638 2048
3 2341 1425 1820
4 2048 1311 1638
5 1821 1130 1425

4 Requantization Transcoder with Pixel-Domain
Compensation (PDC)

The open-loop transcoder of the previous section is a fast technique for rate re-
duction. However, because there is no feedback loop, the quality of the outgoing

1 After the inverse transform, the residual values are downscaled by 64.
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Fig. 4. Transcoder with pixel-domain compensation

bitstream will degrade because of drift propagation. In this section, a novel ar-
chitecture is presented which reduces the negative impact of requantization. This
architecture avoids error propagation by compensating using a mode-dependent
matrix, φ. The compensation matrix models the effect of requantization differ-
ences of surrounding prediction pixels on the prediction of the current 16×16
block. The transcoder architecture is depicted in Fig. 4.

φ is constructed as follows. We define the error values eij as the difference be-
tween the incoming residual information after inverse quantization, inverse trans-
formation and drift compensation, and the corresponding requantized residual
values after inverse quantization and inverse transformation, i.e., eij = oij − rij ,
for i, j = 0, . . . , 15. We assign the error values eB,i,j , eC,i,j , eD,i,j as eij for mac-
roblocks B (top), C (left), and D (upper-left), for the current macroblock A. For
clarity, we only mention the error values that are required for the construction
of the compensation, namely the error values eB,15,j for j = 0..15, eC,i,15 for
i = 0..15, and eD,15,15. From these 33 values, the pixel-domain compensation
matrix φ is constructed using the formulas for the intra 16×16 prediction, just
as they are used in the encoder and decoder, but here applied on the smaller
error values. For example, for horizontal prediction (mode 1) for the four 4×4
blocks in the top row of the macroblock, φ becomes:

φ =

⎡⎢⎢⎣
eC,0,15 eC,0,15 eC,0,15 eC,0,15

eC,1,15 eC,1,15 eC,1,15 eC,1,15

eC,2,15 eC,2,15 eC,2,15 eC,2,15

eC,3,15 eC,3,15 eC,3,15 eC,3,15

⎤⎥⎥⎦ .

For the DC prediction, the average of the available surrounding pixels has to
be calculated once. The plane prediction, however, is more complex and requires
two multiplications for every position in the 16×16 macroblock [1].

The advantages of the PDC architecture when compared to a cascaded decoder-
encoder pair is that no exhaustive search for the prediction mode is required, since
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the mode is passed on from the incoming bitstream. Additionally, the intra predic-
tion formulas have to be applied only once, since we are working on differences of
residual values. In a decoder-encoder architecture, the formulas have to be applied
once at the decoder side, on the original values (resulting in a prediction matrix
P ), and at least once2 at the encoder side, on the requantized values (resulting in a
prediction matrix P ′). Because of the linear construction of the prediction formu-
las and the H.264/AVC integer and Hadamard transformations, the formulas can
be applied on the error values eij directly, resulting in the matrix φ = P − P ′. It
should be noted, however, that the downscaling after the inverse integer transfor-
mation (as mentioned in Sect. 3) and the divisions in the DC and plane prediction
modes could result in rounding errors.

5 Requantization Transcoder with Transform-Domain
Compensation (TDC)

The pixel-domain transcoder as described in the previous section tries to over-
come the quality-related problems of open-loop requantization. The question
remains if it possible to reduce the computational complexity of the closed-loop
architecture. This reduction is possible by eliminating the forward and inverse
transforms, hence working as much as possible in the transform domain. The
compensation technique as used in the previous section can also be used in the
transform domain. It is possible to calculate the formulas for intra prediction
directly in the transform domain, by combining the pixel domain intra predic-
tion formulas and the forward integer and Hadamard transforms. As in the pixel
domain, the DC and the AC coefficients are treated separately. In order to calcu-
late the prediction errors eij , one inverse Hadamard for every 16×16 macroblock
and one inverse integer transform for every 4×4 block is still required. This is
illustrated in Fig. 5.

For all four intra 16×16 prediction modes, the compensation matrices can
be calculated, both for the DC and AC values. This results in a compensation
matrix Φ for every 4×4 block, and one matrix Θ to compensate the matrix of
Hadamard-transformed DC coefficients. For the example of horizontal prediction
in the previous section, the compensation matrix Φ for the four 4×4 blocks in
the top row of the macroblock becomes:

Φ = 4

⎡⎢⎢⎣
0 0 0 0

2eC,0,15 + eC,1,15 − eC,2,15 − 2eC,3,15 0 0 0
eC,0,15 − eC,1,15 − eC,2,15 + eC,3,15 0 0 0

eC,0,15 − 2eC,1,15 + 2eC,2,15 − eC,3,15 0 0 0

⎤⎥⎥⎦ .

and Θ:

Θ = 8

⎡⎢⎢⎣
α + β + γ + δ 0 0 0
α + β − γ − δ 0 0 0
α− β − γ + δ 0 0 0
α− β + γ − δ 0 0 0

⎤⎥⎥⎦ .

2 Multiple times, in case of an exhaustive search for the optimal prediction mode.
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Fig. 5. Transcoder with transform-domain compensation

where

α =
3∑

i=0

eC,i,15, β =
7∑

i=4

eC,i,15, γ =
11∑

i=8

eC,i,15, δ =
15∑

i=12

eC,i,15 .

For the DC prediction mode, it suffices to compensate the matrix of DC values
in only one position, and no compensation is needed for the AC coefficients. In
this case, Θ becomes:

Θ = 4

⎡⎢⎢⎣
∑15

i=0(eB,15,i + eC,i,15) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ .

Computationally, the most complex mode is the plane prediction mode. If we
transform the H.264/AVC prediction formulas, we obtain the following. As in
the pixel domain, let a, b, and c be defined as:

a = 64(eB,15,15 + eC,15,15)

b = 5

[
8(eB,15,15 − eD,15,15) +

6∑
i=0

(i + 1)(eB,15,6−i − eB,15,8+i)

]

c = 5

⎡⎣8(eC,15,15 − eD,15,15) +
6∑

j=0

(j + 1)(eC,6−j,15 − eC,8+j,15)

⎤⎦ .

Further, if we define
b2 = b/512

c2 = c/512 ,
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we obtain the transform-domain Hadamard compensation matrix as follows:

Θ =

⎡⎢⎢⎣
a− 3/32b− 3/32c b/4 0 b/8

c/4 0 0 0
0 0 0 0
c/8 0 0 0

⎤⎥⎥⎦ .

The transform-domain compensation matrices for the 16 4×4 blocks are identical
and are obtained as follows:

Φ =

⎡⎢⎢⎣
0 7b2 0 b2

7c2 0 0 0
0 0 0 0
c2 0 0 0

⎤⎥⎥⎦
As it turns out, the frequency-domain compensation matrices for the plane pre-
diction can be obtained at a minimal computational cost. In the pixel domain,
apart from the derivation of a, b, and c, every position requires two multipli-
cations. Hence, performing the compensation in the frequency domain reduces
operations due to the elimination of the forward and inverse transforms (both
DCT and Hadamard), and due to the sparseness of the frequency-domain com-
pensation matrices. The calculation of the compensation in the frequency domain
should have no impact on the quality when compared to the PDC architecture.
However, since the downscaling after the inverse transform is performed in the
PDC architecture, but not in the TDC architecture, this could result in small
quality differences.

6 Implementation Results

In this section, we describe the results for the software implementation of the
transcoding architectures on H.264/AVC bitstreams. The different transcoding
architectures are tested using the Container and Stefan sequences, both in CIF
resolution. The objective quality and the bitrate of the transcoded bitstreams
are compared with the results obtained through re-encoding using a cascaded
decoder-encoder pair. The bitstreams were encoded using the JVT reference soft-
ware (Joint Model 9.8), restricted to the intra 16×16 modes only. The bitstreams
were then transcoded from the initial QP1 to a higher QP2 (ΔQP = QP2−QP1),
using the four architectures.

The results for the Stefan sequence are depicted in Table 3 (ΔQP = 5) and
Table 4 (ΔQP = 10). Here, the luma PSNR (dB) and the bitrate (Mbps) of the
original sequence at QP1 are presented, along with the luma PSNR (dB) and
the bitrate of the adapted bitstreams at QP2. The resulting bitrates are given
in percentage of the bitrate of the original sequence.

For medium to high QPs, the PSNR difference between the fast transcoding
architectures PDC and TDC, and the cascaded decoder-encoder pair remains
limited to 0.5 to 1 dB. For very low QPs (high bitrates), this difference is larger.
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Table 3. PSNR [dB] and bitrate [Mbps] results (Stefan, ΔQP = 5)

Original Cascade Open-loop PDC TDC
QP1 QP2 PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate

4 9 57.1 17.14 50.5 84.5% 42.7 82.7% 45.7 84.8% 44.2 82.9%
10 15 51.2 12.66 45.2 80.8% 38.8 79.8% 42.2 81.0% 42.0 80.2%
16 21 46.4 9.02 40.2 77.3% 34.2 76.8% 38.7 77.7% 38.7 77.3%
22 27 41.4 6.20 35.1 71.9% 29.2 71.3% 34.3 72.3% 34.3 72.0%
28 33 36.4 4.03 30.2 63.3% 24.3 63.3% 29.5 64.3% 29.7 64.2%
34 39 31.5 2.44 25.7 53.4% 19.9 54.1% 25.0 55.6% 24.8 55.5%

Table 4. PSNR [dB] and bitrate [Mbps] results (Stefan, ΔQP = 10)

Original Cascade Open-loop PDC TDC
QP1 QP2 PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate

4 14 57.1 17.14 47.2 70.9% 40.0 70.2% 43.9 71.3% 42.9 70.3%
10 20 51.2 12.66 42.0 66.8% 35.6 66.2% 40.1 67.0% 40.1 66.5%
16 26 46.4 9.02 36.8 61.3% 30.6 61.2% 35.8 61.9% 36.1 61.7%
22 32 41.4 6.20 31.8 53.8% 25.5 53.7% 31.0 54.3% 31.4 54.3%
28 38 36.4 4.03 27.1 43.7% 20.9 44.2% 26.4 45.1% 26.9 45.1%
34 44 31.5 2.44 23.1 33.1% 16.9 34.9% 22.2 36.2% 22.5 36.1%

Table 5. PSNR [dB] and bitrate [Mbps] results (Container, ΔQP = 5)

Original Cascade Open-loop PDC TDC
QP1 QP2 PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate

4 9 57.1 13.95 50.5 81.5% 42.3 78.9% 45.2 81.8% 44.2 79.0%
10 15 51.2 9.78 45.1 73.9% 38.2 72.1% 42.2 74.0% 41.9 72.4%
16 21 46.2 6.58 40.1 66.6% 33.4 65.5% 38.7 66.8% 38.7 66.0%
22 27 41.3 4.11 35.7 60.4% 28.8 60.2% 34.6 61.5% 34.3 61.0%
28 33 36.8 2.39 31.9 55.4% 23.4 57.0% 30.9 58.6% 31.0 58.5%
34 39 33.0 1.33 28.2 51.8% 19.2 53.1% 27.0 55.3% 26.1 55.2%

Table 6. PSNR [dB] and bitrate [Mbps] results (Container, ΔQP = 10)

Original Cascade Open-loop PDC TDC
QP1 QP2 PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate

4 14 57.1 13.95 47.1 65.0% 39.5 63.5% 43.2 65.3% 43.0 63.5%
10 20 51.2 9.78 41.8 56.2% 34.4 54.8% 39.9 56.5% 39.7 55.1%
16 26 46.2 6.58 37.2 48.1% 29.8 47.8% 35.9 48.7% 36.1 48.3%
22 32 41.3 4.11 33.2 42.1% 25.1 43.0% 32.0 44.0% 32.3 43.9%
28 38 36.8 2.39 29.4 37.0% 19.1 39.5% 28.1 41.0% 28.8 41.0%
34 44 33.0 1.33 25.9 32.7% 14.4 35.1% 24.5 37.2% 24.7 37.2%
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As mentioned in Sect. 4, this is caused by the non-linearity of the division after
the inverse transform and the divisions in the DC and plane prediction modes.
For higher PSNR values, the resulting defects become more distinct. Nonetheless,
from the results it is clear that both compensation methods strongly outperform
the traditional open-loop architecture at a negligible cost in bitrate reduction.
Note that the PSNR values for bitstreams transcoded with TDC and PDC ar-
chitectures are only slightly different. The results for the Container sequence are
presented in Table 5 (ΔQP = 5) and Table 6 (ΔQP = 10), and are similar to
the results obtained for the Stefan sequence.

The rate-distortion curves for the four architectures are shown in Fig. 6
(ΔQP = 5) and Fig. 7 (ΔQP = 10). These show that the rate-distortion per-
formance decreases slightly for all four transcoder architectures when ΔQP is
increased.
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7 Conclusions

In this paper, requantization techniques for H.264/AVC bitstreams were dis-
cussed, focusing on the intra 16×16 prediction. Two novel architectures were
presented that solve the problem of drift propagation, as encountered for the
more traditional open-loop requantization transcoder. Implementation results
show that both architectures perform approximately equally well, and are able
to approach the visual quality of a cascade of a decoder and a full-search en-
coder within 0.5 to 1 dB for medium to high quantization parameters. Because of
the low computational complexity of the proposed architectures, they are highly
suitable for on-the-fly rate reduction operations.
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Abstract. In this paper, we propose a new deinterlacing method using motion 
estimation and compensation of edge regions. Although motion-compensated 
deinterlacing methods provide significant results in interlaced-to-progressive 
conversion, they still have undesirable artifacts in fast moving areas and edge 
regions. The proposed method mitigates the problems by applying the edge re-
gion motion estimation and compensation with properly small search range. Af-
ter filling the missing lines with the conventional spatial and temporal methods, 
motion estimation and compensation is applied to the predefined edge areas. 
Experimental results show that the proposed method produces noticeable im-
provement more than existing motion-compensated deinterlacing methods. 

1   Introduction 

Recent display technology often requires the interlaced-to-progressive conversion. 
For examples, traditional SDTV video sequences are in interlaced scanned format and 
deinterlacing is necessary to display those videos on the progressive scanned devices 
such as PDPs, LCDs, and multimedia PCs. Deinterlacing is also required for frame 
rate conversions. 

Among various deinterlacing methods, intrafield methods employ various vertical 
interpolations. They have been widely used in many applications due to the relatively 
low computational complexity. However, they yield undesirable artifacts in motion 
and edge areas. The directional spatial interpolation methods have been proposed to 
preserve edges [1-4]. Non-linear filtering methods using median filters have also been 
proposed with various spatial medians and vertical-temporal filters [5]. 

Motion adaptive methods [6-8] first determine motion information using pixel dif-
ference between adjacent fields. Then, deinterlacing is performed by using either 
spatial interpolation for stationary areas or temporal interpolation for motion areas. 
These methods provide improved picture quality for video sequences which contain 
moving objects within still background. 

Motion-compensated deinterlacing algorithms [9-12] estimate the motion between 
adjacent fields and fill in the missing lines using motion information. Although they 
produce the best performance among various deinterlacing techniques, they may 
suffer from inaccurate estimation of motion vectors, which produce undesired results 
in fast motion. The DIMC (directional interpolation and motion-compensated) 
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deinterlacing method [12] uses directional interpolation and motion compensation. 
Motion-compensated adaptive method [13] has been proposed to mitigate the 
spurious errors from block-wise processing. 

In motion-compensated deinterlacing, key degradation factors are the inaccurate 
estimation of motion vectors and relatively poor performance in edge areas. In order 
to address these problems, we propose a new motion-compensated deinterlacing 
method that uses edge information. The proposed edge-dependent motion compensa-
tion (EMC) deinterlacing method imposes a limit on the magnitude of motion vectors 
for edge regions.  

2   Motion-Compensated Deinterlacing 

In this section, we review briefly deinterlacing algorithms based on motion  
compensation and discuss some problems that may occur in motion-compensated 
deinterlacing methods such as the DIMC (directional interpolation and motion-
compensated) deinterlacing algorithm. Fig.1 shows the block diagram of the DIMC 
method. Missing lines are filled by applying either directional intrafield interpola-
tion or motion-compensated deinterlacing results based on a certain selection rule. 
Motion estimation is carried out between the same parity fields in order to obtain 
high quality since motion compensation between the same parity fields has inherent 
advantages [14]. 
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t
nF

nF

1+nF
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1−nF
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t
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nF

1+nF

 

Fig. 1. Block diagram of the motion compensation algorithm 

Motion vectors for macro blocks are determined after full search with a large 
search range (32x32). Since motion vectors are obtained in a half-pel resolution, the 
deinterlacing algorithm requires a long processing time. Furthermore, incorrect mo-
tion estimation results in performance degradation. In that case, motion-compensated 
deinterlacing does not necessarily provide better performance than intrafield deinter-
lacing. Thus, a mechanism which checks the reliability of results obtained from mo-
tion estimation is required in motion-compensated deinterlacing. 

DIMC algorithm [12] first checks the reliability of motion estimation by 
comparing the variance of the block with the MSE. Motion estimation is considered 
as “reliable” if the MSE is smaller than the block variance or predetermined threshold 
value. Motion compensation is applied only to the “reliable” blocks as follows:  
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where )(xF s
n  is the result obtained by applying intrafield deinterlacing and )(xF t

n  the 
result obtained by applying motion-compensated deinterlacing. 

Although motion-compensated deinterlacing methods provide better performance 
in most cases, they still suffer from undesired results in some cases. In particular, the 
DIMC algorithm tends to produce poorer performance than spatial methods in fast 
moving areas, non-rigid types of motion, and in edge regions [12]. In order to address 
the problems, we propose to impose a limit on motion estimation for moving areas 
and motion compensation for edge regions.  

3   The Edge Motion Compensation Deinterlacing Method 

In this section, we will describe the proposed edge-dependent motion compensation 
deinterlacing method (EMC). As can be seen in the Fig. 2, the proposed method first 
fills the missing lines of the current field nF  by selecting one of intrafield interpola-

tion and conventional motion-compensated interfield interpolation. The motion esti-
mation is applied to a predefined small search range between the two same parity 
fields: the previous field 1−nF  and the next field 1+nF . Finally, the proposed method 

repeats motion-compensated deinterlacing only for edge areas. 
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Fig. 2. Block diagram of the proposed edge MC algorithm 

3.1   Limit on Motion Estimation  

The correlation between the adjacent fields is small when there is a large amount of 
motion. In this case, motion estimation is not always reliable even if the large search  
range is considered, and motion-compensated deinterlacing may lead to performance 
degradation.  
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Another factor that affects the performance of motion-compensated deinterlacing is 
the magnitude of motion vectors. If the vertical length of a motion vector is odd, then a 
new pixel value is obtained from two interpolated pixels of the previous and next fields, 
as can be seen in Fig. 3(a), which tends to produce poor results. If the vertical length of 
a motion vector is even, we can expect better quality since the new pixel is calculated 
using two original pixels from the adjacent fields as can be seen in Fig. 3(b). 

nF1−nF 1+nF nF1−nF 1+nFnF1−nF 1+nFnF1−nF 1+nF nF1−nF 1+nFnF1−nF 1+nF

 
(a)                               (b) 

Fig. 3. Effects of the vertical length of a motion vector in motion (a) interpolated pixels will be 
used (b) original pixels will be used 

Based on these observations, if the magnitude of motion vectors is small, it would 
produce better results for fast motion areas. Furthermore, if the vertical length is even, 
it may improve the performance of motion-compensated deinterlacing. In this paper, 
the search range for motion vectors is set as follows: 

=<= 4,2,0|
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3.2   Motion-Compensated Deinterlacing Using Edge Information 

In the proposed deinterlacing method, additional motion estimation is performed for 
edge areas within a limited search range between 1−nF  and 1+nF . First, an edge image 

e
nF 1+  of the next field 1+nF  is obtained by conventional highpass filtering such as 

Sobel and Prewitt operators. Using a threshold value mTh , an edge mask image em
nF 1+  

is generated as follows: 
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Fig. 4a shows an edge image obtained using Sobel filter, Fig. 3b the corresponding 
mask image, and Fig. 3c an extended edge image obtained using edge dilation opera-
tion. The edge dilation operation is illustrated in Fig. 5. In the edge dilation operation, 
broken edges in the mask image are filled. 



 Motion-Compensated Deinterlacing Using Edge Information 549 
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Fig. 4. (a) an image obtained using Sobel filter (b) a mask image (c) an extended edge image 

 

Fig. 5. Eight cases for the edge dilation operation 
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where the MV  is the set of the predefined limited search range for motion vectors. 
The corresponding new pixel is obtained as follows:  
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where ee vv
2

1
2 =  is a motion vector between next and current fields and dmv  is dis-

placement vector. Then, a reliability test, which is similar to that of DIMC, is em-
ployed. In the proposed method, the additional edge-dependent motion-compensated  
deinterlacing is applied only to the edge regions in the block which satisfy the follow-
ing conditions: 
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where )(xFn is obtained using (1) and )(xF e
n  is obtained using (5). In other words, 

the proposed method applies edge-dependent motion-compensated deinterlacing to 
edge areas. 

4   Experimental Results 

Experiments were conducted in order to evaluate the performance of the proposed 
edge-dependent deinterlacing algorithm (EMC). The proposed method employs two 
spatial interpolation methods along with the proposed edge-dependent deinterlacing 
algorithm: the ELA method (ELA-EMC) and the directional interpolation with verti-
cal interpolation function of the sampled 6-tap filter (DI6-EMC) of the Hamming 
windowed sinc function. An intrafield deinterlacing using the cubic spline interpola-
tion method (CBI) [12], ELA [1] and a motion-compensated deinterlacing algorithm 
(DIMC [12]) are used for comparison. 
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Fig. 6. PSNRs of the five methods for the Foreman sequence. CBI: cubic spline interpolation 
ELA: edge-based line average, DIMC: directional interpolation and motion compensation, DI6-
EMC: the proposed edge MC with vertical interpolation function of 6-tap, ELA-SMC: the 
proposed edge MC with the spatial method of the ELA. 

In the experiment, the threshold values 1Th , mTh , eTh , and 2Th  are set to 

400×× hw , 60, 6.0×× hw , and 
∈

+×
Bx

em
nF 1400 , respectively. It is noted that w  and 

h  are a horizontal and vertical resolution of the macro block with w=16 and h=8. 
PSNRs between original and deinterlaced signals are calculated and used as perform-
ance criteria. 
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Fig. 6 shows the PSNRs of the five deinterlacing methods when they are applied to the 
Foreman sequence. The proposed algorithms (ELA-EMC and DI6-EMC) outperform the 
other methods. It is noted that DIMC provides a lower PSNR than ELA in the fast mo-
tion interval (between the 64th and 80th frames) while the overall performance of DIMC 
is superior to that of ELA.  

Fig. 7 shows the difference images between the original image and the deinterlaced 
images of the 75th frame of the Foreman sequence. As can be seen in Fig. 7, the 
proposed methods show better performance in edge regions than the existing 
deinterlacing algorithms. 

Table 1 shows the average PSNRs for eight test video sequences: four CIF format se-
quences (Coastguard, Mother & Daughter, Silent, Singer) and four QCIF format sequence 
(Container, Foreman, Mobile & Calendar, Table). The proposed methods outperforms the 
existing motion-compensated deinterlacing method (DIMC) by about 1.1 dB in PSNR. 

           
(a)                                        (b)                                     (c) 

           
(d)                                         (e)                                    (f) 

Fig. 7. Difference images of the five methods using the Foreman sequence (75th frame) 
(a) Original image (b) CBI (c) ELA (d) DIMC (e) ELA-EMC (f) DI6-EMC 

Table 1. Average PSNRs for each video sequence 

 CBI ELA DIMC ELAEMC DI6EMC 

coastguard_cif 28.45  27.89  29.91  30.64  30.80  
mother_daughter_cif 38.58 38.63 40.46 41.53 41.36 

silent_cif 32.76 33.92 36.66 37.61 37.65 
singer_cif 32.72 33.65 37.09 37.87 38.00 

container_qcif 25.74 26.63 27.63 29.38 29.37 
foreman_qcif 30.09 32.72 36.18 38.14 38.25 
mobile_qcif 21.95 22.74 23.52 25.63 25.87 
table_qcif 24.99 25.98 26.63 27.16 27.35 

average 29.41  30.27  32.26  33.49  33.58  
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5   Conclusions 

In this paper, we proposed a new deinterlacing algorithm that uses edge-dependent 
motion compensation. The proposed method first employs the conventional motion-
compensated deinterlacing methods with a small search range. Then, the proposed 
method performs additional motion-compensated deinterlacing for edge areas. Ex-
perimental results show that the proposed algorithm provides noticeable performance 
improvement. In particular, the proposed method provides improved picture quality in 
edge regions. 
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Abstract. The advances in robotics and imaging technologies have brought var-
ious imaging devices to the field of the unmanned exploration of new environ-
ments. Forward looking sonar is one of the newly emerging imaging methods
employed in the exploration of underwater environments. While the video se-
quences produced by forward looking sonar systems are characterized by low
signal-to-noise ratio, low resolution and limited range of sight, it is expected
that video enhancement techniques will facilitate the interpretation of the video
sequences. Since the video enhancement techniques for forward looking sonar
video sequences are applicable to most of the forward looking sonar sequences,
the development of such techniques is more crucial than developing techniques
for optical camera video enhancement, where only specially produced video se-
quences can benefit the techniques. In this paper, we introduce a procedure to en-
hance forward looking sonar video sequences via incorporating the knowledge of
the target object obtained in previously observed frames. The proposed procedure
includes inter-frame registration, linearization of image intensity, and maximum
a posteriori fusion of images in the video sequence. The performance of this pro-
cedure is verified by enhancing video sequences of Dual-frequency Identification
Sonar (DIDSON), the market leading forward looking sonar system.

1 Introduction

Advances in robotics and imaging technologies have expanded the boundary of human
activity and perception to those areas that have been out of our reach for a long time.
The exploration of underwater environments is an example of successful applications
of novel imaging and robotic technologies.

In the study of underwater environments, the use of forward looking sonar (FLS) sys-
tems is increasing thanks to the high frame rate, relatively high resolution, low power
consumption and portability [1,2,3]. Forward looking sonar is a type of sonar that pro-
duces a 2D image by stacking 1D images produced by a 1D transducer array. Unlike in
conventional sonar, the beam forming of FLS is spontaneously achieved without addi-
tional computation, so it can produce relatively high resolution images at a frame rate
comparable to that of optical video cameras. There are several high performance FLS
systems that are commercially available, and the use of such sonar systems is increasing
these days [4,5].

Despite the merits of FLS systems, it has shortcomings when compared to optical
cameras [6]. First, the angular resolution is relatively low, typically less than 100 pixels.
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Second, the signal-to-noise ratio is still lower than that of optical cameras because of
the nature of B-scan images.

In this paper, we present a procedure to enhance FLS video sequences by fusing in-
formation collected from different frames. This procedure can reduce noise and increase
the spatial resolution of FLS video sequences.

2 Scope of Applicable Video Sequences

Video enhancement algorithms based on super-resolution techniques have been exten-
sively studied [7,8,9]. Such algorithms are basically made up in three parts including
i) the registration, ii) the transformation, and iii) the fusion of the images. For optical
cameras, the scope of video sequences that can be processed by video enhancement al-
gorithms is strictly limited by the requirements in each step of the procedure, while the
FLS video sequences are free from such restrictions. Once an enhancement method for
FLS is established, it can be applied to most of FLS video sequences. For this reason,
the development of a good video enhancement method is more important in FLS than
in conventional optical cameras.

For image registration, one needs to model the homographic relation between images
based on the imaging geometry of the imaging device. For example, when a pinhole
camera views a planar surface from different perspectives, a perspective transforma-
tion is sufficient to explain the homography of images. Most of enhancement methods
for optical camera images use a perspective homography or similar homographies of
lower hierarchy, such as affine homography. A projective homography requires, how-
ever, the target object to be a planar surface, or the camera undergoes only rotational
motion without translational motion. For optical cameras, mostly those video sequences
intentionally produced can satisfy this requirement. In contrast, FLS requires the target
object to be on a planar surface from the image acquisition level—otherwise, the visibil-
ity of sonar is extremely narrowed, and the output images suffer significant vignetting.
(See Fig. 1.) This property imposes a huge constraint to the variability of FLS images
so that an affine transformation can explain most of FLS video sequences [6].

For the fusion of images, in order to combine multiple frames of optical camera
video sequences, one needs a video sequence without any occlusion in it. Or, when an
occluded area exists in a scene, one needs to add extra steps for segmenting and ex-

Fig. 1. Correct (left), and incorrect use (right) of a forward looking sonar system. When a FLS
device is incorrectly used as describe above, the visible area in the produced image is significantly
restricted.
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Fig. 2. Occlusion by a cylindrical object in a scene of a forward looking sonar video sequence.
The occluded area appears darker than its usual appearance, instead of being replaced by the
shape of the occluding object as in optical camera images.

cluding the occlusion. Another merit of FLS video sequences is that the fusion method
can tolerate occlusions as far as the occlusion is static. In FLS images, an area turns
dark when it is occluded, and recovers its original brightness as soon as it escapes the
occlusion. This is simply a change of illumination, which is much easier to handle than
an occlusion exclusion problem in optical camera video enhancement. (See Fig. 2.)

3 Methodology

The proposed procedure is largely made up of the following steps: i) separation of
illumination profile, ii) inter-frame image registration, iii) linearization of brightness,
and iv) maximum a posteriori (MAP) fusion of images.
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Fig. 3. Block diagram of the super-resolution image fusion process

The flow of data in the procedure is depicted in Fig. 3. The detailed description of
each step in the procedure is presented in the following subsections.

In the step i), an image is separated into the high frequency part and the low fre-
quency part. In the step ii), the registration is performed both between two neighbor-
ing frames and between frames apart. The parameters of registration found therein are
combined optimally to minimize the accumulation of registration errors. In the step
iii), image intensity of the images is linearized for the maximum a posteriori fusion of
the sequence in the following step. In the step iv), the previously observed frames are
fused into one image to best render the frame displayed at the moment. The detailed
procedures are described below.

3.1 Retinex Separator

Unlike in optical camera images, the illumination condition of FLS varies significantly
within a sequence, and also within a frame, because the illumination depends merely on
the ultrasound beam incident from the device itself. A slight change of the grazing angle
of the FLS device and the curvature of the target surface can bring a variation of the
illumination condition, which eventually makes the registration and fusion difficult. For
this reason, one needs to separate the illumination profile from the reflectance profile of
the target object.

Land has modeled an illumination process as homomorphic filtering [10], and the
consequent researches disclosed algorithms to separate the illumination profile and the
reflectance profile of an image in that regard [11,12]. For FLS images, a simple homo-
morphic filtering of the image is sufficient for the separation, say,

HF (x) = I(x)/LF (x), (1)

where I(x), LF (x), and HF (x) represent the intensity values at the position x in the
original image, the low frequency part, and the high frequency part, respectively. The
low frequency part is calculated by low-pass filtering the image. We consider that LF
and HF are the illumination profile and the reflectance profile, respectively in this paper.

3.2 Inter-frame Registration

In previous work of the authors, it has been discussed that the cross-correlation based
feature matching outperforms the conventional feature matching algorithms, particu-
larly for detecting correspondence of images with low resolution [6]. With the outliers
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(1) anchor frame = 1
(2) for current frame = 2:end of sequence
(3) Register current frame with anchor frame.
(4) if anchor frame != current frame-1,
(5) Register current frame with current frame-1.
(6) end if
(7) if the registration above fails,
(8) Optimize valid transformation parameters

between anchor frame and current frame-1.
(9) reset anchor frame = current frame
(10) else if current frame-anchor frame == predefined number,
(11) Optimize transformation parameters until

between anchor frame and current frame.
(12) Reset anchor frame = current frame + 1.
(13) end if
(14)end for

Fig. 4. The algorithm for inter-frame registration

removed via an appropriate algorithm such as RANSAC (Random Sampling Consen-
sus) or LMedS (Least Median of Squares), these feature point pairs serve to register
images with subpixel accuracy.

However, even when a subpixel accuracy registration between two frames is ob-
tained, there still remains a concern about the accumulated registration error in register-
ing multiple frames in a video sequence. Further more, the registration of FLS images
is based on an affine approximation of the homography [6] instead of the exact geo-
metrical model, the accumulation of registration error can lead to even more significant
errors in the registration. A fine tuning of the registration parameters is performed in
order to address this problem.

The ideal condition for the least registration error is when all the frames in the se-
quence are consistently registered with one another. In most of cases, however, the
camera is in motion and the view of the targeted area can evolve during the image
acquisition period, so most of the frames can be registered with only a few of their
neighboring frames.

The proposed algorithm determines how many neighboring frames can be registered
with one frame (called an ‘anchor frame’). The first frame of the sequence of interest is
set to be the anchor frame (Step (1) of Fig. 4), and the following frames are registered
with the anchor frame (Step (3)), as well as their previous frame (Step (5)), until any
of the registrations fails (Step (7)). When the size of the registrable section for the
anchor frame is determined (Step (7)), one calculates the optimal set of transformation
parameters that explains the homographies of all the frames in the section, with the
minimal error (Step (8)). After this optimization step, it moves on to the remaining part
of the sequence with the anchor frame reset to be the first first frame of the remaining
part, until it reaches the end of the sequence (Step (9)). The structure of the algorithm
is described in Fig. 4.

The maximum size of a registrable section has been limited in order to prevent the
excessive dimensionality in optimization, to attain the desired latency of process under
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the allowed computational power, and also to meet the desired performance of the image
enhancement (Step (10) of Fig. 4). The optimization of transformation parameters is
done by minimizing the energy function defined as

E(p1,2, p2,3, · · ·pn−1,n)

=
n1,2∑
k=1

|FP k
1,2,2 − T(p1,2)FP1,2,1|2

+
n∑

j=3

{ n1,j∑
k=1

|FP k
1,j,j − T(p1,k)FP k

1,j,1|2

+
nj−1,j∑
k=1

|FP k
j−1,j,j − T(pj−1,j)FP k

j−1,j,j−1|2
}

, (2)

where n is the number of frames in the registrable section of the anchor frame, and
np,q is the number of inlier feature point pairs in the registration of the p-th and the
q-th frames. FP k

p,q,r is the position vector of the k-th inlier feature point pair of the
registration of the p-th and the q-th frames found in the r-th frame, and T(pp,q) is
the transformation operator defined by the registration parameter pp,q . For any two
non-consecutive frame numbers i and j, pi,j is obtained by combining all the transfor-
mation parameters of the consecutive frames between the i-th and the j-th frames, say,
pi,i+1, · · · , pj−2,j−1, pj−1,j .

Fig. 5. Paring of the frames in an inter-frame registration of a section of frames. The first frame
of a section, or the anchor frame, is registered with all other frames, and all the frames in this
section are registered with its neighbors in the section as well.
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3.3 Linearization of Image Intensity

When the strength of noise is comparable to the strength of signals as in ultrasound
B-scan images, the noise structure is better explained by Rician statistics than Gaussian
[13]. The Rician noise in general has non-zero mean, and the mean value of this additive
noise is a function of the signal intensity, which in effect distorts the linearity of the
image intensity. In addition to the distortion of linearity by the Rician noise, one has
to consider the response property of the sensors in the imaging device, which might
have been tuned to the precision that is sufficient only for visualization. Since the MAP
fusion that will be described in the following subsection requires higher linearity of the
sensor response, an additional tuning has to be performed.

For example, for DIDSON images, the following linearizing function significantly
improves the quality of the fusion:

I ′(x) =
{I(x)− μ}2, if I(x) > μ

0, otherwise
(3)

where I(x), μ, and I ′(x) represent the intensity at the position vector x, the average
background noise level, and the linearized intensity at x, respectively.

3.4 Approximated MAP Image Fusion

Once the inter-frame registration and the linearization steps are complete, the frames
are ready to undergo the final step of the procedure—the fusion step. Kim et al. have
shown that the maximum a posteriori estimation of an image based on a set of low
quality observation images of the image can be approximate by a weighted fusion of
the low quality images [14]. This implies that one can perform the MAP image fusion
without an iterative calculation that many of the super-resolution algorithms require. In
addition, the method therein provides robustness under the inhomogeneous illumination
condition which is occasional in FLS images.

The enhancement of a frame in a FLS video sequence is attained by fusing a prede-
fined number of frames into the desired perspective using the MAP fusion as described
in [14]; when N low resolution images β1, · · · , βN are fused,

θ̄ '
(

N∑
i=1

Wi + v0V
−1
0

)−1( N∑
i=1

WiMiβi

)
, (4)

where θ̄, Wi, Mi and v0V
−1
0 represent the calculated MAP fusion image, the i-th reli-

ability matrix, the i-th up-sampling matrix, and the regularization factor, respectively.
The up-sampling matrix Mi is a n2

HR-by-n2
LR matrix, where n2

HR and n2
LR are the num-

ber of pixels in the high resolution image and in the low resolution image, respectively.
The reliability matrix Wi is a n2

HR-by-n2
HR matrix, which includes all the factors that

affect the reliability of a pixel value, for example, illumination intensity, point spread
function, etc. The regularization factor v0V

−1
0 is basically the inverse of the covariance

matrix of pixel values normalized by v0, the generic variance of pixel values. Ideally it
includes non-zero off-diagonal terms, but for the simplicity of calculation, it is approx-
imated by a diagonal matrix.
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4 Results

An experiment was performed on a video sequenced used in a ship hull inspection [3].
In the inspection, a dual-frequency identification sonar (DIDSON) system mounted on
a remotely controlled vehicle recorded the images of the surface of a ship hull while the
vehicle was manipulated to move around on the ship hull surface.

Fig. 6. Comparison of a frame in the original (left) and the enhanced (right) sequences. The frame
in the enhanced sequence is a fusion of 7 consecutive frames portrayed in the same perspective.

The resolution of the initial polar coordinates images is 96x512, and the polar coor-
dinate images are mapped to images of size 512x576 size in the Cartesian coordinate
system. The size of the Cartesian coordinate image is approximately the size that the
smallest pixel in the polar coordinates image can occupy at least one pixel in the Carte-
sian coordinate, and mostly more than one pixel. In this way, one pixel in the polar
coordinates occupies from 1 pixel to up to 20 pixels in the Cartesian coordinates, due
to the fixed field-of-view of a sensor and varying distance from the transducer to the
observed area.

The suggested procedure has been applied to the video sequence. Figure 6 is the
comparison of one of the frames in the original sequence, and the enhanced sequence,
where up to 7 neighboring frames were fused to re-render a frame. In Fig. 6, one can
verify that the fusion image (right) discloses crispier edges of the target object, than
the original image (left). Also note that the surface texture that was difficult to identify
in the original sequence can be easily identified in the enhanced sequence due to the
reduced noise level and the increased solution.
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5 Conclusion

In this paper, we presented a procedure to enhance a forward looking sonar video se-
quence. The procedure includes the separation of illumination profile, inter-frame reg-
istration, the linearization of the images, and non-iterative maximum a posteriori fusion
of images for super-resolution.

Since the image acquisition method of FLS restricts the applicable target object to
be on a planar surface, most of the FLS images can be registered using a simple affine
homography. In addition, the occlusion problem, which often is an obstacle in process-
ing optical video sequences, can be viewed simply as an illumination problem in FLS
video sequences, which can be dealt with little trouble. This means there is no need
to further consider the occlusion problem in FLS video sequences. For these reasons,
video enhancement techniques for FLS in general are applicable to most of the FLS
video sequences.

The proposed video enhancement procedure is largely made up of four steps in-
cluding the separation of illumination profile, fine tuning of the registration parameters
via inter-frame image registration, the linearization of brightness, and the maximum a
posteriori (MAP) fusion of the images. All these steps are achievable with low compu-
tational power.

In future, further study for real time implementation of the proposed procedure is
anticipated.
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Abstract. Choosing the adequate registration and simulation parame-
ters in non-parametric image registration methods is an open question.
There is no agreement about which are the optimal values (if any) for
these parameters, since they depend on the images to be registered.
As a result, in the literature the parameters involved in the registra-
tion process are arbitrarily fixed by the authors. The present paper is
intended to address this issue. A two-step method is proposed to ob-
tain the optimal values of these parameters, in terms of achieving in a
minimum number of iterations the best trade-off between similarity of
the images and smoothness of the transformation. These optimal values
minimize the joint energy functional defined in a variational framework.
We focus on the specific formulation of diffusion and curvature regis-
tration, but the exposed methodology can be directly applied to other
non-parametric registration schemes. The proposed method is validated
over different registration scenarios.

1 Introduction

Image registration is the process of finding an optimal geometric transformation
that aligns points in one view of an object with corresponding points in ano-
ther view of the same object or a similar one. Particularly, in medical imaging
there are many applications that demand for registration (e.g. medical image
fusion, atlas matching, pathological diagnosis). During the past two decades,
many methods have been proposed to set into correspondence monomodal or
multimodal medical images, leading to a flourishing literature. For an overview
on registration methods, we refer to e.g. [1], [2], and more particularly to [3], [4],
[5], and references therein, for medical image registration.

In many applications, rigid registration (i.e., a registration based on rotations
and translations) does not provide a sufficient solution. A non-linear (non-rigid)
transformation is necessary to correct the local differences between the images.
Non-rigid image registration can be either parametric or non-parametric. For
parametric techniques (see e.g. [6], [7]), the transformation can be expanded in
terms of some parameters of basis functions. The required transformation is a
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minimizer of the distance measure in the space spanned by the basis functions.
The minimizer can be obtained from some algebraic equations or by applying
appropriate optimization tools.

For non-parametric techniques the registration is based on the regularized
minimization of a distance measure. A regularizing term is used to circumvent
ill-posedness and to privilege more likely solutions. It is the regularizer which
distinguishes the existing methods: e.g. Elastic [8], Fluid [9], Diffusion [10], and
Curvature [11] registration schemes. The main difference with respect to the
parametric case, where one is looking for optimal parameters of an expansion
of the transformation, is that we are now simply seeking a smooth transforma-
tion, without any parameter involved in representing it. Anyhow, non-parametric
methods also require some parameters to control the evolution of the partial
mappings towards the final result.

In contrast to many other ill-posed problems, where efficient strategies like the
Generalized Cross Validation (GCV) approach [12] are available to automatically
estimate the regularization parameters, for image registration such satisfactory
strategies are yet missing [13], leading the authors of previous works to arbitrar-
ily fix these parameters. The subsequent validation of the registration results is
commonly performed by trained experts. In many cases, the value of the pa-
rameters does not have a big impact on the accuracy of the registration (i.e.,
a rough setting of these values is allowed). However, this setting may become
more of a factor when the computed transformation is applied to clinical data,
in which the matching is a more difficult task [14]. This paper is intended to
address this problem by providing the guidelines on how to choose the registra-
tion and simulation parameters for non-parametric image registration methods,
allowing for an optimal registration in terms of both similarity of the images and
smoothness of the transformation, and minimizing the number of iterations of
the registration algorithm.

The paper is organized as follows. We start out with the mathematical formu-
lation of the general registration problem, introducing the regularization terms
to be considered all over this work. This section is followed by the proposed
methodology, which consists of two sequential steps. In section 4, we apply this
new approach and prove the effectiveness of the exposed method on three realistic
examples. Finally, the main issues presented throughout the paper are discussed.

2 Mathematical Framework

Given two images, a reference I ≡ I(x) and a template J ≡ J(x), with x ∈ Φ ≡
]0, 1[d, the aim of image registration is to find a global and/or local transforma-
tion from J onto I in such a way that the transformed template matches the
reference. Then the purpose of the registration is to determine a displacement
field v ≡ v(x) such that Jv ≡ J (x− v(x)) is similar to I(x) in the geometrical
sense. It turns out that this problem may be formulated in terms of a variational
approach [15], [16], [17]. To this end we introduce the joint energy functional to
be minimized
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Ejoint[v] = Esim[I, J ;v] + λ Ereg[v] , (1)

where Esim represents a distance measure (external forces) and Ereg determines
the smoothness of the displacement field v (internal constraints). The second
term is unavoidable, because arbitrary transformations may lead to cracks, fold-
ings, or other unwanted deformations. Therefore Ereg can be seen as a regula-
rizing term introduced to distinguish particular transformations which must be
more likely than others. The resulting transformation should be a homeomor-
phism, i.e., a continuous bijection with a continuous inverse. The parameter λ
is used to control the strength of the smoothness of the displacement vectors
versus the similarity of the images.

Probably the most popular choice for the distance measure is provided by the
so-called sum of squared differences (SSD):

Esim[I, J ;v] =
1
2

∫
Φ

(Jv − I)2dx . (2)

For this measure to be successful, one has to assume that a monomodal re-
gistration is being performed (i.e., the intensities of the two given images are
comparable).

In this paper we focus on two different smoothing terms, defined by the equa-
tions (3) and (4). Anyhow,the methodology exposed in this work can be directly
applied to other non-parametric registration schemes (e.g. elastic registration).

Ereg[v] =
1
2

d∑
l=1

∫
Φ

‖∇vl‖2 dx , (3)

Ereg[v] =
1
2

d∑
l=1

∫
Φ

(Δvl)
2
dx , (4)

where Δ is the two-dimensional Laplace operator.
The first technique (equation (3)) is known as diffusion registration [10]. It

borrows the optical flow regularizer [18] and it is also related to Thirion’s so-
called demons registration [19]. The reasons for this particular choice are two-
fold: it is designed to penalize oscillating deformations and it consequently leads
to smooth displacement fields; and it permits a fast and efficient implementation.

The second technique (equation (4)) is known as curvature registration [11].
It is based on second order spatial derivatives, so its kernel contains affine li-
near transformations (i.e., an additional pre-registration step, unavoidable in the
diffusion scheme, becomes redundant in this case). Curvature registration also
allows for an efficient implementation.

According to the calculus of variations, the Gâteaux variation of the joint
energy functional should be zero, i.e. a displacement field v minimizing equation
(1) necessarily should be a solution for the Euler-Lagrange equation

− f(x;v) + λA[v](x) = 0 (5)
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subject to appropriate boundary conditions. A[v] ≡ Av ≡ −Δv (for diffusion
registration) or A[v] ≡ Av ≡ Δ2v (for curvature registration) is a partial dif-
ferential operator related to the smoother Ereg [10], [11]. The force field

f(x;v) = (Jv − I)∇Jv (6)

is used to drive the deformation. Changing the distance measure Esim results in
a different force field. One common way to solve a non-linear partial differential
equation like (5) is to introduce an artificial time t and to compute the steady-
state solution of the time-dependent partial differential equation (i.e., ∂tv(x, t) =
0) via a time-marching algorithm, letting the time derivative ∂tv(x, t) equal to
the negative Gâteaux derivative of the registration energy functional [17]. In the
diffusion case, the resulting expression is an inhomogeneous heat equation

∂tv(x, t) − λΔv(x, t) = f (x,v(x, t)) . (7)

For the curvature scheme, the resulting expression is the bi-harmonic equation

∂tv(x, t) + λΔ2v(x, t) = f (x,v(x, t)) . (8)

Equations (7) and (8) can be discretized in time and space, and then solved by
employing the following semi-implicit iterative scheme

v
(k+1)
l =

(
I− τλA

)−1 (
v
(k)
l + τf

(k)
l

)
l = 1, ..., d , (9)

whose numerical solution allows for efficient implementations based on the dis-
crete cosine transform (it can be deduced from [20]), or on an additive operator
splitting (AOS) scheme (see [10]). Note that on the right hand side of equation
(9), τ compromises between the current displacements and the current forces.
In our implementation, the forces are scaled so that the time-step can be fixed
to a value of τ = 1.

3 Proposed Methodology

The methodology exposed in this paper consists of two sequential steps:

1. Initial estimation of the parameters relation. For a small number of iterations
n̂ (typically between 100 and 200), the value of the regularization parameter
λ̂ that minimizes the joint energy functional (1) is obtained, as seen in figure
Fig.1(a) (in this example, where a diffusion registration is performed, n̂ = 100
and λ̂ = 30). Note that due to the small value of n̂, the computational load
of this step is relatively light. In order to compute the registered template
Jv and the displacement field v for each value of λ, equations (6), (9) and
an efficient DCT implementation of the algorithm (with suitable boundary
conditions, see [21]) have been used. In order to compute the similarity and
regularization energies, equations (2) and (3) have also been used. At this
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(a) Step 1. Joint functional energies (n̂ =
100).
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(b) Joint functional energies (n̂ = 400).
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Fig. 1. Proposed Methodology

point, the quotient η between the number of iterations and the regularization
parameter can be calculated as

η =
n̂

λ̂
. (10)

The displacement field v̂ resulting from these parameters is the optimal in
terms of the best trade-off, according to the variational approach, between
Esim and Ereg. As addressed in [22], a scaling factor γ must be computed
so that Esim and γ Ereg are comparable, since these functions do not have
the same scale, the first being related to the intensities of the images and
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the second to the smoothness of the deformation field. The scaling factor is
given by the following expression:

γ =
∣∣∣∣Esim,0 − Esim,∞
Ereg,0 − Ereg,∞

∣∣∣∣ , (11)

where Esim,0 and Ereg,0 are respectively the similarity energy and the regu-
larization energy without any regularization (i.e. λ = 0) and Esim,∞ and
Ereg,∞ are the values of these energies for a large enough regularization
parameter λ which makes the registration not appreciable (typically, λ >
500). Probably, the heuristic choice of the number of iterations n̂ is not
optimal: it is almost certainly too small (i.e., the algorithm has not converged
yet) or too large (i.e., the optimal registration could be reached sooner).

2. Optimal parameters computation. Our experiments over different types of
images show that if the computed value of the quotient η between n̂ and
λ̂ is kept constant, the energies of the joint functional (1) show the same
behavior as in figure Fig.1(a) for a large enough value of the regularization
parameter (typically, λ > 10). To show the validity of the previous reasoning,
figures Fig.1(b) and Fig.1(c) are presented. In the figure Fig.1(b) the number
of iterations is four times higher than in figure Fig.1(a) (in this example,
η = 100

30 = 400
120 = 3.333). The figure Fig.1(c) illustrates that η remains

constant for every pair (λ̂, n̂) which minimizes (1). The idea is then to find
a proportionality constant κo that allows for an optimal registration from
the variational point of view and minimizes the number of iterations of the
algorithm.

λo = κo λ̂ , (12)

no = κo n̂ = κo η λ̂ = η λo . (13)

This parameter κo is obtained as the minimum value of the proportionality
parameter κ from which the slope of the joint functional (1) is close to zero
(< 10−6), i.e., the convergence has been reached, see figure Fig.1(d) (in the
example, κo = 5). Thus, the optimal parameters λo and no can be calculated
by employing equations (12) and (13).

4 Results

This section presents the results obtained with the presented methodology. Fir-
stly, the method is validated in a difficult registration scenario, where the reg-
istration algorithm is very sensitive to the values of the simulation parameters.
Then, the registration is performed on a medical image (obtained from [23]) un-
der a synthetic deformation. Finally, the registration process is carried out for a
pair of medical images, and once again the results are fully satisfactory.

In the first case, the registration is performed on a pair of photographic ima-
ges in which an object was (physically) non-linearly deformed (figures Fig.2(a)
and Fig.2(b)). The quotient calculated in the first step of the presented method is
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(a) Reference image. (b) Template. (c) Registered template
and displacement field.

(d) Regular grid under
transformation.
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(e) Step 1. Joint functional
energies (n̂ = 200).

5 10 15 20 25 30

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Proportionality constant, κ

Similarity energy, ε
sim

Regularization energy, ε
reg

Joint functional energy, ε
joint

(f) Step 2. Joint functional
energies (η = 13.333).

Fig. 2. Results for a real object with non-linear deformation

Table 1. Summary of the parameters involved in the first simulation (Fig.2)

Registration scheme Diffusion

Number of iterations, n̂ (step 1) 200
Regularization parameter, λ̂ (step 1) 15

Computed quotient, η (step 1) 13.333
Scaling factor, γ 0.048

Proportionality parameter, κo (step 2) 11.667
Optimal number of iterations, no (step 2) 2335

Optimal regularization parameter, λo (step 2) 175
PSNR before the registration 16.42 dB
PSNR after the registration 22.37 dB

η = 13.333 (corresponding to values of n̂ = 200 and λ̂ = 15, see figure Fig.2(e)).
The computed scaling factor is in this case γ = 0.048. In the second step, we
obtain the value of the proportionality constant κo = 11.667 (figure Fig.2(f)) so
the optimal simulation parameters can be calculated using equations (12) and
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(a) Reference image. (b) Template. (c) Registered template
and displacement field.

(d) Regular grid under
transformation.
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energies (η = 0.25).

Fig. 3. Results for a medical image under synthetic deformation

(13): λo = 175 and no = 2235. With these parameters, the registered image
and the deformation field are obtained (see figure Fig.2(c)). On one hand the
PSNR (peak signal-to-noise ratio) between the reference and registered images
is quite high (22.37 dB versus 16.42 dB before registering), and on the other
hand it is shown that a regular grid under the transformation x−v(x) results in
a visually smooth mesh (figure Fig.2(d)), so the trade-off between similarity and
regularization energies can be fully appreciated. Table 1 summarizes the whole
experiment.

In the second simulation, the aim is to register a magnetic resonance ima-
ge (MRI) of a human brain, subject to a synthetic deformation field (figures
Fig.3(a) and Fig.3(b)). The application of the proposed methodology is summa-
rized in Table 2 and illustrated in figures Fig.3(e)) and Fig.3(f). The optimally
registered image and the matching vectors v can be seen in figure Fig.3(c). The
smoothness of a regular grid after applying these vectors can be appreciated in
figure Fig.3(d).

In the final simulation, the objective is to register two consecutive slices ob-
tained from a MRI of a human brain (figures Fig.4(a) and Fig.4(b)). The two
steps of the presented method can be seen in figures Fig.4(e)) and Fig.4(f). The



572 J. Larrey-Ruiz and J. Morales-Sánchez

Table 2. Summary of the parameters involved in the second simulation (Fig.3)

Registration scheme Curvature

Number of iterations, n̂ (step 1) 200
Regularization parameter, λ̂ (step 1) 800

Computed quotient, η (step 1) 0.25
Scaling factor, γ 6.883

Proportionality parameter, κo (step 2) 1.875
Optimal number of iterations, no (step 2) 375

Optimal regularization parameter, λo (step 2) 1500
PSNR before the registration 13.09 dB
PSNR after the registration 23.48 dB

(a) Reference image. (b) Template. (c) Registered template
and displacement field.

(d) Regular grid under
transformation.
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Fig. 4. Results for a pair of consecutive slices of a MRI scan

resulting registered image and the displacement field are shown in figure Fig.4(c).
Figure Fig.4(d) shows that a regular grid under the computed transformation
results in a smooth mesh. Table 3 summarizes this experiment.
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Table 3. Summary of the parameters involved in the third simulation (Fig.4)

Registration scheme Diffusion

Number of iterations, n̂ (step 1) 200
Regularization parameter, λ̂ (step 1) 20

Computed quotient, η (step 1) 10
Scaling factor, γ 0.089

Proportionality parameter, κo (step 2) 4
Optimal number of iterations, no (step 2) 800

Optimal regularization parameter, λo (step 2) 80
PSNR before the registration 15.78 dB
PSNR after the registration 18.88 dB

(a) Reference image. (b) Template. (c) Registered template
with relaxed regularization
constraints.

(d) Registered template
with parameters given by
the proposed method.

(e) Regular grid under de-
formation computed for
(c).

(f) Regular grid under de-
formation computed for
(d).

Fig. 5. Registration with relaxed regularization constraints versus registration with
optimal parameters

5 Discussion

In this paper, a two-step procedure is proposed to obtain, for non-parametric
registration schemes, the optimal parameters and the minimum number of itera-
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tions that achieve the best trade-off between similarity of the images and smooth-
ness of the transformation. It is important to remark that the final transfor-
mation is always assumed to be a homeomorphism, see section 2. With this
assumption the proposed values could be considered optimum in an objective
sense. However, if the former assumption is not fulfilled it is possible to obtain
best subjective results, in terms of visual quality (e.g. higher PSNR) of the re-
gistered image, in a sensitively lower number of iterations, and probably with
different registration parameters (e.g. lower λ). To clarify this point, figure Fig.5
is shown (here, curvature registrations is performed). Note that in every regis-
tration method the final registration can always be visually improved (in this
example, the PSNR is 2 dB higher) by relaxing the regularization constraints,
but at the expense of a loss of smoothness and/or continuity in the computed
mapping (see figure Fig.5(e) versus figure Fig.5(f)). In summary, the main goal
of this work is to offer an objective upper limit of registration quality (with
the smoothness and continuity requirements) and to provide the basic design
guidelines to reach it.
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Abstract. A method to calibrate camera from a single frame of planar
pattern is presented in this paper. For a camera model with four intrinsic
parameters and visible lens distortion, the principal point and distortion
coefficients are firstly determined through analysis of the distortion in
an image. The distortion is then removed. Finally, the other intrinsic
and extrinsic parameters of the camera are obtained through direct lin-
ear transform followed by bundle adjustment. Theoretically, the method
makes it possible to analyze the calibration result at the level of a sin-
gle frame. Practically, such a method provides a easy way to calibrate a
camera used in industrial vision system on line and used in desktop vi-
sion system. Experimental results of both simulated data and real images
validate the method.

1 Introduction

Camera calibration is a necessary step in 3D computer vision to extract metric
information from 2D images, and therefore it has always been an important issue
in photogrammetry[1,2,9,18] and computer vision[3,5,14,15,17,20]. Up to now, a
number of methods have been developed to accommodate various applications.
These methods can be classified into traditional calibration[3,4,5,7,8,11-17,19,20]
and self-calibration[6,10].

Self-calibration is based on correspondences between image points from differ-
ent views of a static scene, and no calibration objects are necessary. However,a
large number of parameters need to be estimated, which results in complicated
mathematical problem and hinders it from applicable use. In traditional calibra-
tion method,the dimension of the calibration object can be three[3,5], two[15] and
one[19]. The three dimensional objects were used at beginning, but it is replaced
by two dimensional objects because two dimensional objects are more conve-
nient in making and using. Using one dimensional calibration objects can solve
the occlusion problem in multi-camera system, but it requires several motions of
the one dimensional calibration objects,so it is not convenient in practice. So far
the popular methods use two dimensional calibration objects,i.e. planar pattern,
in which several frames of the calibration objects at different poses and positions

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 576–587, 2006.
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are usually needed to calibrate a camera. On the one hand, it is desirable to cal-
ibrate vision system used in industry on line from just a single view of a planar
pattern, on the other hand, the calibration of widely used desktop vision system
also needs simple method, especially one from a single view of a planar pattern.

Besides above practical demand, camera calibration from a single frame of
planar pattern has also theoretical significance. It provides a way to analyze
the calibration result at the level of a single frame. The existing methods use
multiple frames, and therefore the calibration result is from the cooperation of
all the frames. If there are a few of outliers in the frames, their effects on the
result are not easy to be found. On the contrary, if calibration can be done
from just a single frame, the effect of an outlier on the calibration result can be
easily found. If all the results from the calibration images are consistent with
one another, it is sure that the calibration is good. In the sense, the method also
provides a way to evaluate the calibration result.

Calibration methods using a single view has been mentioned in Tsai’s and
Zhang’s methods[3,12,15], but all of them are based on the assumption that the
principal point is at the image center, i.e. the frame center, which is different
from the principal point in fact. Our method breaks through the assumption,
and therefore goes forward a further step than Tsai’s and Zhang’s calibration
methods using a single view.

In section 2, Our method is described in detail, including the determination
of the principal point and lens distortion coefficients, determination of other
intrinsic and extrinsic parameters, and a summary of the algorithm. In section
3,experiments on both computer simulated data and real images are described.
Finally, in section 4 some conclusions and discussions are given.

2 Description of the Method

2.1 Main Idea

To calibrate a camera model with five intrinsic parameters including principal
point (u0, v0), principal length (α, β) and skew factor γ, at least three views of
a planar pattern at different poses and positions are necessary[15]. For predomi-
nant majority of cameras used in vision system, the skew factor γ is small enough
to be neglect due to the developed manufacturing technology of CCD device. So
camera model with four parameters are commonly used, which needs two views
of the planar pattern for calibration[15]. To our knowledge,this is the conclusion
on minimum number of frames for calibration images reported in the literature.

The above conclusion are derived only from property of perspective projection.
Is there any other information in an image which can help us to determine the
parameters of a camera? Although the CCD device in a camera is good enough,
lenses usually have visible distortion, especially the radial component. Usually,
lens distortion is not desired in computer vision and the skilled in the art always
manage to remove it. Can we use the lens distortion to help calibration?

Through theoretical derivation and experimental tests, we find that lens dis-
tortion can be used to simplify the camera calibration, and as a result the camera
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calibration can be done from only a single frame of a planar pattern. Through
analysis of the distortion in an image, the center and coefficients of lens distor-
tion can be found, and the image can be corrected. The center of perspective
projection on the retina, i.e. the principal point in camera model, is usually
coincident with the center of lens distortion[8]. For a camera model with four
parameters, after the principal point is known and the distortion is removed, the
principal length can be obtained through direct linear transform[14,17]. Finally,
the result can be fined through bundle adjustment.

2.2 The Camera Model

In order to describe our method clearly, we start with showing how a point in
the view field is imaged onto the retina of a camera. The imaging process from
the point Pw in the world coordinate system to the point Pd on the retina of a
camera as shown in Figure 1 can be divided into four steps.

Fig. 1. The model of imaging Fig. 2. Distortion of straight line

1) The world coordinates (Xw, Yw,Zw) of the point Pw is transformed to the
camera coordinates Pc = (Xc, Yc,Zc), which can be expressed as:⎛⎝Xc

Yc

Zc

⎞⎠ = R

⎛⎝Xw

Yw

Zw

⎞⎠+ T (1)

where R is rotational matrix, and T is translational vector. Rotational matrix R
can also be expressed as a rotational vector N , and they are related by Rodrigues
Equation. Because the planar pattern lies in the XwYw plane, Zw = 0, and
equation (1) can be reduced as:⎛⎝Xc

Yc

Zc

⎞⎠ =
(
r1 r2 T

)⎛⎝Xw

Yw

1

⎞⎠ (2)

where ri(i = 1, 2, 3) is the ith column of R. Let
Rt =
(
r1 r2 T

)
(3)

then ⎛⎝Xc

Yc

Zc

⎞⎠ = Rt

⎛⎝Xw

Yw

1

⎞⎠ (4)
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2) The point Pc = (Xc, Yc,Zc) is imaged onto P = (U,V ) on the retina of a
camera according to pinhole model, which can be expressed as:⎛⎝U

V
1

⎞⎠ =
1
Zc

⎛⎝α 0 0
0 β 0
0 0 1

⎞⎠⎛⎝Xc

Yc

Zc

⎞⎠ (5)

where α and β are the scale factors of perspective projection in the U and V
direction respectively, which are also referred as principal length. Let

A =

⎛⎝α 0 0
0 β 0
0 0 1

⎞⎠ (6)

then ⎛⎝U
V
1

⎞⎠ =
1
Zc

A

⎛⎝Xc

Yc

Zc

⎞⎠ (7)

Substitute (4) into (7),we get

s

⎛⎝U
V
1

⎞⎠ = ARt

⎛⎝Xw

Yw

1

⎞⎠ = H

⎛⎝Xw

Yw

1

⎞⎠ (8)

where
H = ARt (9)

and s is a scale factor.
3) The image point P = (U,V ) shifts to Pd = (Ud,Vd) due to lens distortion,

which can be expressed as:(
Ud

Vd

)
=
(

U
V

)
+
(
δU

δV

)
(10)

where δU and δV are lens distortions. Generally, lens distortion includes three
components: radial distortion, decentering distortion and thin prism distortion
[5]. But for usual vision system, the first order radial distortion is enough. So
the lens distortion can be simply expressed as:(

δU

δV

)
=
(

k1 · U · r2

k1 · V · r2

)
(11)

where k1 is coefficient of the first order radial distortion,and r is the distance
from the point P to the distortion center, which can be expressed as:

r2 = U2 + V 2 (12)

4) The coordinates (Ud,Vd) of the image point is transformed into (ud, vd) in
the pixel coordinate system, which can be expressed as:(

ud

vd

)
=
(

Ud

Vd

)
+
(

u0

v0

)
(13)

where (u0, v0) is the coordinates of the principal point.
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2.3 Estimation of the Principal Point

Substitute (11) into (10), we get:(
Ud

Vd

)
= (1 + k1 · r2)

(
U
V

)
(14)

r2
d = r2(1 + k1 · r2)2 (15)

and (
U
V

)
=

1
1 + k1 · r2

(
Ud

Vd

)
(16)

Suppose the straight line L in Figure 2 comes from a straight line in the view
field, and is described as:

V = aU + b (17)

where a and b are constants to be determined. Substitute (16) into (17), we can
get:

Vd = aUd + b + k1br
2 (18)

If a line OS is drawn from the principal point O such that it is perpendicular
to the line L and intersects the curved line Ld at point Q, the line L

′
passing

through the point Q and parallel to the line L can be expresses as:

Vd = aUd + b + k1bd
2 (19)

where d is the distance from the principal point O to the straight line L. Suppose
the distance from a point A(Ud,Vd) on the distorted line Ld to the line L

′
is Re,

then
Re = k1d(d2 − r2) (20)

If there are m straight lines Li(i = 1, 2, ..., m) coming from the view field with
n points Aij(Uij ,Vij)(j = 1, 2, ..., n) on each, the residue Rei of the curved line
Ldi is the sum of distance Reij ,i.e.

Rei =
n∑

j=1

Reij = k1di

n∑
j=1

(d2
i − r2

ij) (21)

From (21) we can see that the residue of a distorted line is proportional to
the distance from the distortion center to corresponding undistorted straight
line. Especially, if an undistorted straight line passes through the distortion
center, the corresponding distorted line will remain straight. Therefore, if we set
some straight lines in the view field and take a picture, the fitted straight line
by Least Square Method which is nearest to the principal point will have the
minimum residue. Suppose there are two sets of parallel lines in the view field,
and the lines in the first set are orthogonal to the lines in the second set. Take a
picture such that the lines in the picture are approximately vertical or horizontal.
Suppose there are l approximately vertical lines and m approximately horizontal
lines. Among the approximately vertical lines, the fitted line with the minimum
residue is l0, and among the approximately horizontal lines, the fitted line with
the minimum residue is m0. Then the intersection (û0, v̂0) of straight lines l0
and m0 can give an estimation of the principal point (u0, v0). However, since
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di and rij in equation (21)are related to the undistorted straight line, which
are unknown,we can’t use them. Fortunately,distortion is generally small,we can
substitute di and rij with distorted values ddi and rdij .

2.4 Estimation of the Distortion Coefficient k1

For all lines in a picture, summing up the equation (21), we get,

l+m∑
i=1

Rei = k1

l+m∑
i=1

di

n∑
j=1

(d2
i − r2

ij) (22)

from which we can get an estimate k̂1 of k1

k̂1 =

∑l+m
i=1

∑n
j=1 Reij∑l+m

i=1 di

∑n
j=1 (d2

i − r2
ij)

(23)

2.5 Refining of the Estimated Values

After we obtain the initial estimates of principal point and distortion coefficient
k1, we can refine them through optimizing process according to the principle: in
perspective projecting process, a straight line remains a straight line if and only
if there is no lens distortion[16].

Suppose the maximum distance between two fitted straight lines from the
approximately vertical lines which are next to each other is du, and the maximum
distance between two fitted straight lines from the approximately horizontal lines
which are next to each other is dv, then we can refine the estimates (û0, v̂0) and
k̂1 by minimizing the total residue expressed by formula (22) within the window
from (û0 − du, v̂0 − dv) to (û0 + du, v̂0 + dv).

2.6 Determination of Other Parameters of the Camera

After the principal point (u0, v0) and distortion coefficient k1 are determined, we
can obtain the principal length α,β,rotation matrix R, and translational vector
T as follows. From equation (13) we get(

Ud

Vd

)
=
(

ud

vd

)
−
(

u0

v0

)
(24)

From equation (24),(15) and (16) we can remove distortion and get the undis-
torted image coordinates (U,V ) of the point P . From the coordinates (U,V ) of 4
intersections formed by two approximately vertical lines and two approximately
horizontal lines in the image system and the coordinates (Xw, Yw) of their cor-
responding points in the world system, the homography H in equation (8) can
be obtained up to a scale factor λ,i.e.

λ
(
h1 h2 h3

)
= A
(
r1 r2 T

)
(25)

where h1, h2, h3 is the column vector of H . We can arrange many approximately
vertical lines and approximately horizontal lines and get a lot of intersections,
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and therefore obtain the homography H through Linear Least Square Method.
Once the homography H is obtained,we can get

r1 = λA−1h1 (26)

r2 = λA−1h2 (27)
Because R is an orthonormal matrix,we have

hT
1 A−T A−1h2 = 0 (28)

λ2hT
1 A−T A−1h1 = 1 (29)

λ2hT
2 A−T A−1h2 = 1 (30)

From equation (6),we get

A−1 =

⎛⎝ 1
α 0 0
0 1

β 0
0 0 1

⎞⎠ (31)

A−T A−1 =

⎛⎝ 1
α2 0 0
0 1

β2 0
0 0 1

⎞⎠ (32)

In equation (28),(29) and (30) there are 3 unknown α, β and λ, they can be
found from H. After α, β and λ are obtained, we can compute r1 and r2 from
equation (26) and (27), then compute r3 and T from the following equations

r3 = r1 × r2 (33)

T = λA−1h3 (34)

So far all the intrinsic and extrinsic parameters of a camera have initial values,
and we can refine them by bundle adjustment.

2.7 Summary of the Algorithm

The method described above can be summarized as the following algorithm:

1) Arrange two sets of parallel lines in the view field, such that the lines in
the first set are orthogonal to the lines in the second set, such as a checkerboard;

2) Take a picture such that the lines in the picture are approximately ver-
tical or horizontal. Suppose l lines are approximately vertical and m lines are
approximately horizontal;

3) Fitted out a straight line from each of the lines in a picture with the Least
Square Method;

4) Suppose the line l0 has the minimum residue among the approximately
vertical lines, and the line m0 has the minimum residue among the approximately
horizontal lines. Then the intersection (û0, v̂0) of straight lines l0 and m0 can
give an estimation to the principal point (u0, v0).

5) Estimate the distortion coefficient k1 with formula (23);
6) Refining the estimates of the principal point and the distortion coefficient;
7) Find the principal length α,β, rotation matrix R, and translational vector

T using direct linear transform method;
8) Refine all parameters by bundle adjustment.
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It should be noted that the part of estimating the distortion center in the
algorithm including step 1) to 4) is similar to the steps i) to iii) in [21], which
focused on modelling variable resolution imaging system. But in this paper, the
method is supported by mathematic derivation in detail.

3 Experiment Result

3.1 Test on Computer Simulated Data

For camera calibration, the true parameters are unknown. To verify our method,
we predetermine a set of intrinsic and extrinsic parameters of an imagined cam-
era, from which an image of a checkerboard with 18× 26 blocks in the view field
is generated. The size of the blocks is 14mm×14mm. Noise normally distributed
with 0 mean and σ standard deviation is added to the corner points. Then we
calibrate the imagined camera with the corner points in the checkerboard image
using our method and compare the results with the given values.

Table 1. The given intrinsic parameters and calibrated results at noise level 0.6 pix-
els,including mean and standard deviation of 49 calibrated values

Parameter u0 v0 α β k1

Given 400 260 960 960 -0.5
Mean 400.08 260.11 959.76 960.34 -0.4999
Std. 0.84 0.55 32.12 34.83 0.0024

The intrinsic parameters are given in Table 1, which are typical for cam-
eras with 8mm lens. To examine the effect of different pose and position of the
checkerboard upon the calibration accuracy, we predetermine 49 cases of extrin-
sic parameters, as shown in Figure 3.We divide the 49 cases into seven groups.
The first four groups are designed for examining the effect of rotation vector N
upon calibration accuracy, and the last three groups are for translational vector
T. In group one including case 1 to 7, we increase the first component n1 of the
rotational vector N from 10×180/π to 40×180/π with an increment of 5×180/π,
while the other parameters are fixed. In group two including case 8 to 14, we
increase the second component n2 of the rotational vector N from 10 × 180/π
to 40 × 180/π with an increment of 5 × 180/π, while the other parameters are
fixed. In group three including case 15 to 21, we increase the first component n1

and the second component n2 of the rotational vector N simultaneously from
10 × 180/π to 40 × 180/π with an increment of 5 × 180/π, while the other pa-
rameters are fixed. In group four including case 21 to 28, we increase the first
component n1 of the rotational vector N from 10× 180/π to 40× 180/π, at the
same time decrease the second component n2 of the rotational vector N from
40× 180/π to 10× 180/π, both with the same increment of 5× 180/π,while the
other parameters are fixed. In group five including case 29 to 35, we increase
the first component t1 of the translational vector T from −300mm to −180mm
with an increment of 20mm, while the other parameters are fixed. In group six
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Fig. 3. The given extrinsic parameters

including case 36 to 42, we increase the second component t2 of the translational
vector T from 100mm to 220mm with an increment of 20mm, while the other
parameters are fixed. In group seven including case 42 to 49, we increase the
third component t3 of the translational vector T from 710mm to 890mm with
an increment of 30mm, while the other parameters are fixed.

We did calibration with the simulated data at noise level of σ =0.2,0.4,0.6,0.8
and 1.0 pixels respectively. Figure 4 shows the calibration results with noise level
σ = 0.6 pixel, with the mean and standard deviation of the calibrated intrinsic
parameters listed in Table 1 to be compared with the given values. The change
of deviation with noise level is shown in Figure 4(f). When the noise level is zero,
the deviation of all parameters in all 49 cases are zero, which proves that our
method is theoretically correct. In general, the proposed method can correctly
calibrate out the intrinsic and extrinsic parameters of the supposed camera. In
group three from case 15 to case 21, the deviation of principal length α, β and
the translational component t3 are big, especial at case 15 and 16, which indicate
that these poses are harmful to calibration accuracy. Except the case 15 and 16,
the deviations of the other 47 calibrations are in a acceptable range when the
noise level is within σ = 1.0 pixel,which indicates that the method can be used
with real images, because the accuracy of extracting the corner points from a
checkerboard image is within sub-pixel. As for the special poses,such as case
15 and 16, we can manage to avoid them in taking images for calibration. The
above results encourage us to do calibration with real images.

3.2 Test on Real Image

To verify the proposed method, we calibrated two cameras with 8mm lens and
6mm lens respectively which are typically used. Both cameras are WAT 902B
CCD camera with resolution of 768×576 and unit cell size of CCD sensor being
8.3μm× 8.3μm. Both lenses are standard CCTV lenses.

For each camera, 16 pictures of a checkerboard at different poses and positions
were taken as shown in Figure 5(a) and Figure 6(a).The calibration results are
shown in Figure 5 and Figure 6. To judge the calibration results, we calibrated the
two cameras with Zhang’s method[15] and the results are listed in Table 2 together
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Fig. 4. The calibration results at noise level σ = 0.6 pixels
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Fig. 5. The calibration results of camera with 8mm lens

Table 2. Intrinsic parameters of cameras calibrated from our method and Zhang’s
method

Camera with lens of 8mm focal length with lens of 6mm focal length

Parameter u0 v0 α β k1 u0 v0 α β k1

Mean 365.32 277.17 984.13 981.37 -0.4049 353.79 255.71 733.30 732.67 -0.3391
Std. 2.72 1.50 7.77 9.01 0.0023 2.51 2.03 10.68 12.81 0.0027
Zhang’ 361.34 279.19 989.69 987.22 -0.4064 350.60 258.29 734.97 732.53 -0.3396

with the mean and standard deviation of the 16 calibrations from our method.
Comparing the results in Figure 5, Figure 6 and in Table 2, we can see that:

1) the average of the 16 calibrations is close to the results from Zhang’s
method;
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Fig. 6. The calibration results of camera with 6mm lens

2) for each calibration, the maximum relative errors of the calibrated para-
meters are all within 2%.

For usual vision system, the calibration accuracy from our method is accept-
able. Because only one view of the checkerboard is needed, our method is simple
and fast. If multiple images are taken, not only can the average be closer to the
true value, but also the outlier among them can be easily found and removed.

4 Conclusion and Discussion

In this paper, we present a method to calibrate camera from a single frame of
a planar pattern. For a camera model with four intrinsic parameters and visible
lens distortion, the principal point and the distortion coefficient are firstly deter-
mined through analysis of the distortion in an image. Then the distortion can be
removed. Finally, the other intrinsic and extrinsic parameters of the camera are
obtained through direct linear transform followed by bundle adjustment. Exper-
imental results of both simulated data and real images show that the calibration
accuracy from our method is acceptable for usual vision system.

Theoretically, the method makes it possible to analyze the calibration result
at the level of a single frame. Practically, such a method provides a easy way to
calibrate a camera used in industrial vision system on line and used in desktop
vision system. In this paper, the real images in experiment are not yet in real
time. Now we are working on calibration using images in real time.

It should be noted that our method is based on the assumption that the prin-
cipal point and the center of distortion are coincident[8]. In fact, a predominant
majority of calibration methods so far, including Tsais[3] and Zhangs[15,19], are
based on the assumption. Recently it has been pointed out that the principal
point and the center of distortion are not coincident[20]. However, for usual vi-
sion system which does not require high accuracy, the difference between the
principal point and the center of distortion can be neglected.
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Abstract. We propose a scanline energy minimization algorithm for
stereo vision. The proposed algorithm differs from conventional energy
minimization techniques in that it focuses on the relationship between
local match cost solution and the energy minimization solution. The lo-
cal solution is transformed into energy minimization solution through
the optimization of the disparity discontinuity. In this paper, disparity
discontinuities are targeted during the energy minimization instead of
the disparities themselves. By eliminating and relocating the disparity
discontinuities, the energy can be minimized in iterations of O(n) where
n is the number of pixels. Although dynamic programming has been
adequate for both speed and performance in the scan-line stereo, the
proposed algorithm was shown to have better performance with compa-
rable speed.

1 Introduction

A dense disparity map is obtained by finding the correct corresponding pixels
from two images of same scene. Various different techniques and their perfor-
mances were evaluated by Scharstein and Szeliski [12]. According to their on
going survey on new stereo schemes, the energy minimization solution is one
of the common frameworks for current stereo vision techniques. And with the
introduction of such techniques as graph cuts (GC) and belief propagation (BP),
the disparity map of test images can be obtained with high accuracy [4] [13] [6].

However, the performance of the recent top ranking algorithms has become
some what saturated. This is evident with introduction of new test images with
more difficult features in the Middlebury website [1]. Although many researchers
are still looking for that small margin of improvement that enable them to rank
at top, others focused their attention on the faster algorithm with reasonable
trade off in performance. Tree dynamic programming (DP) and reliability DP
were introduced recently to CVPR and PAMI [14] [8]. Both of the techniques
emphasized the faster speed with sufficient accuracies. And like the previous
papers mentioned, in this paper, the contribution comes from faster speed and
competitive performance from the proposed energy minimization technique.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 588–597, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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1.1 Related Work

DP is most closely related to the proposed method for its scanline domain.
DP finds the minimum path across disparity image space by first finding the
minimum paths from the left, and tracing the shortest path back from other
side [3] [7] [10]. DP is one of the older techniques and, other than the fast
computational time, the performance is ranked among lowest.

However, recently DP has shown to be highly accurate if the matching cost
can be aggregated properly. Kim et al. showed that by using rotational rod filter,
a top ranking disparity map can be obtained, comparable to many of the global
methods [11]. Although their method was fast by applying DP, the complicated
match cost aggregation still hindered over all speed, going over few seconds.

Contrast, tree DP and reliability DP performs noticeably worse than [11], but
they were able to keep the computation time to a fraction of second. Vecksler et
al. organized the image into a tree path and minimized the energy using DP. By
enhancing the unambiguous match points, Gong et al. came up with reliability
DP, that computes disparity map in semi-real time with help of add on hardware.
And 5 state DP takes in account of the slanted surface also improved the original
DP significantly awhile keeping the computational time small [1] [10]. Semi-
global technique is also very closely related to DP, where the disparities are
obtained according to the shortest multiple paths [9]. Although forementioned
algorithms are additions to DP, they are most resembling to the proposed method
in speed and performance

2 Disparity Discontinuity Optimization and Energy
Function

The proposed algorithm can be described in two steps. First the initial disparity
map is obtained without incorporating the discontinuity cost. Second, the dispar-
ity map is optimized iteratively according to the energy function. In this section,
we will explain how the energy is minimized for each disparity discontinuity.

2.1 Energy Function

We start with the formulation of the energy function using the same notation
from [4] and [6].

E(f) =
∑

(p,q)∈N

V (fp, fq) +
∑
p∈P

Dp(fp). (1)

As mentioned before, this is a scan line algorithm; therefore, the neighborhood
N will consists only of adjacent pixels left and right. V (fp, fq) is the disparity
discontinuity between point p and q. D(fp) is the matching cost of labeling f on
point p.
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(a) (b)

(c) (d)

Fig. 1. An example of scanline disparity map, discontinuity, and local range during
optimization process are shown. (a) shows the initial disparity map, and (b), (c), and
(d) show next possible discontinuity position. (a) An initial disparities are indicated by
integers. The targeted discontinuity and effected pixel ranges are shown with arrows.
(b) A different disparity discontinuity position might yield smaller energy value. The
disparity value changes as the discontinuity position changes. (c) Another possible
discontinuity position. In this figure, the discontinuity is effectively eliminated. (d)
Another discontinuity position that can eliminate the discontinuity. The new position
might result in smaller energy value calculated within the boundary indicated by the
arrows.

The complication for energy minimization comes from the discontinuity cost.
Now, for simplicity, let us examine the data term in (1) only.

Ed(f) =
∑
p∈P

Dp(fp). (2)

The minimum of the above equation is trivial, since the local minimum is
also the global minimum. An apparent observation is that the minimization of
equation (2) will have more disparity discontinuity than the minimum solution
of equation (1). From this simple and obvious apprehension, we can make a
following assertion; the minimum solution to equation (2) can approximately
be transformed into the minimum solution of equation (1) by the elimination
and relocation of disparity discontinuity. And for the 1-D image, finding the local
optimal discontinuity position becomes a trivial task as will be shown in following
sections. And for the clarification, from now on, the global minimization in this
paper will be referring to the minimum energy function along a single scanline
image, and not the whole image.

2.2 Disparity Discontinuity Optimization (DDO)

When we approach the stereo problem as the optimization of discontinuity in-
stead of disparity, discontinuity, in all likeliness, will have fewer number than the
disparities at each pixels. Nevertheless, the reduced range will not help the com-
putational speed when the global minimization still remains NP hard. Therefore,
the local disparity discontinuity optimization will be adopted, and in practice
local optimization works very well.
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Given a particular disparity discontinuity to optimize, the local boundary
is defined by the two closest discontinuities in the left and right side of the
discontinuity at question. A local boundary can be defined for a discontinuity
between (p, q), where p and q are adjacent pixels. Let Ap be the group of pixel
position including pixel p having same disparity values and within discontinuity
borders and same for Aq. For a discontinuity at (p, q), the local boundary can
be defined as Ap ∪Aq. And example is shown on Fig. 1. We also define r and s
as the minimum and maximum 1D positions.

r ≤ Ap ∪Aq ≤ s. (3)

The size of local boundary is dynamically changing from each discontinuity,
but the locality size is inversely proportional to the number of the disparity
discontinuities and so computational work remains steady across the scan line.

Finding the local optimal position/elimination of a discontinuity as mentioned
before becomes a trivial task in 1D. Exact energy value can be calculated for
each possible new discontinuity position within the local boundary.

Fig. 1 gives an general idea of the method. Initially, Ap will have same disparity
values, which is numerically indicated as constant L. Aq will have disparity value
R also constant. Let Dx(L) represent the matching cost at pixel position x with
disparity value L. V (fx, fx+1) will denote a discontinuity cost at points x and
x + 1. If a discontinuity is found on pixels pi and pi + 1, the next discontinuity
position between pi+1 and pi+1 +1, with smaller energy cost, can be found with
following equation.

pi+1 = argmin
r+1≤k≤s

(
k∑

x=r

Dx(L) +
s∑

x=k+1

Dx(R) +
s∑

x=r−1

V (fx, fx+1)

)
. (4)

The k with smallest energy cost is chosen as the next discontinuity position. But,
the discontinuity is effectively eliminated when the, new position pi+1 becomes
r + 1 or s. The equation (4) is simply the local minimum of the energy equation
of (1).

2.3 Computational Work and Heuristics

For each discontinuity at pi, the energy value at each position along Ap ∪ Aq

are being calculated. And as mentioned before, the size of Ap ∪Aq decreases as
the number of discontinuity increases and vice versa. Thus the total number of
next possible position on a scanline, regardless of the number of discontinuities,
will be 2n, where n is the number of pixels. The optimization or reposition
of all the discontinuity in a scanline is counted as single iteration and such
process was shown to be O(n). The physical computational time is shown in
Table 1.

Although it may be somewhat trivial, we will go over the sequential calculation
of the equation (4) over the range Ap ∪ Aq. E(i) stands for the local energy
function with discontinuity between pixel position i and i+1. Except for special



592 H.Y. Jung, K.M. Lee, and S.U. Lee

(a) (b) (c)

(d) (e) (f)

Fig. 2. The disparity discontinuity optimization on Venus image after (a) 0 iteration
(b) 5 iteration (c) 10 iteration (d) 18 iteration (e) 25 iteration (f) 50 iteration

cases where i is equal to r + 1 or s − 1, we can easily see that E(i + 1) can be
obtain from E(i) as shown in the equation below.

E(i + 1) = E(i)−Di+1(L) + Di+1(R). (5)

In practice, however, the optimization was proceeded incrementally to prevent
the possible early eliminations of the correct disparity. Given the old disconti-
nuity position at pi and the new position at pi+1, obtained by equation (4), the
incremental position can be written as

pi+1
incremental = arg min

k=pi+1,pi−1,pi

∣∣k − pi+1
∣∣ . (6)

The new discontinuity position will be either pi+1, pi−1, or pi, which is one/zero
pixel toward the calculated minimum energy position from the old position. The
incremental optimization is shown in Fig. 2.

Additionally, the initial matching cost for equation (2) was calculated differ-
ently from the matching aggregation for energy minimization equation (1). A
tall window was used to degrade the streaking effect during energy minimiza-
tion steps, but a wide window was used for initial disparity map to eliminate
the vertical errors that may be present if the same tall window were to be used
initially. The details of match cost aggregation will be presented in the next
section.
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Tsukuba (a) Tsukuba (b) Tsukuba (c)

Sawtooth (a) Sawtooth (b) Sawtooth (c)

Venus (a) Venus (b) Venus (c)

Map (a) Map (b) Map (c)

Fig. 3. Disparity maps produced by the proposed method are shown for Tsukuba,
Sawtooth, Venus, and Map image. (a) Reference image (b) Ground truth (c) Disparity
map after energy convergence.

3 Experiments

3.1 Parameters

The proposed algorithm was evaluated on 6 test images proposed by Scharstein
and Szeliski, provided on the web [12] [1]. The percentages of wrong disparity
with greater than the difference of 1 were used as the metric for evaluation.

The discontinuity cost between point p and q were found with following
equation, taking c = 2.0.

V (fp, fq) = |fp − fq| · c. (7)
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Teddy (a) Teddy (b) Teddy (c)

Cones (a) Cones (b) Cones (c)

Fig. 4. Disparity maps produced by the proposed method are shown for Teddy and
Cones image. (a) Reference image (b) Ground truth (c) Disparity map after energy
convergence.

The initial disparity map was obtained by averaging the Birchfield matching
cost [2] over 11×3 window. Dinitial

(x,y) (f) denotes the matching cost at point (x, y)
with disparity f when obtaining the initial map. wx and wy are window size.

Dinitial
(x,y) (f) =

1
wx · wy

x+wx
2∑

s=x−wx
2

y+
wy
2∑

t=y−wy
2

B(s,t)(f), (8)

where B(s,t)(f) represents the Birchfield cost at point (x, y). Above equation was
used to find the initial disparity map.

For the energy minimization function, shiftable 3×9 window was used similar
to [3].

D(x,y)(f) = min
k=−wy

2 ,0,
wy
2

⎛⎝ 1
wy · wx

x+wx
2∑

s=x−wx
2

y+
wy
2∑

t=y+
wy
2

B(s,t+k)(f)

⎞⎠ . (9)

3.2 Evaluation

The computational time is shown in the Table 1. For all calculation Pentium IV
3.4G PC was used. The advantages of proposed method is that the minimiza-
tion time is independent of the size of disparity range, O(n) iterations. And so,
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Table 1. The computational time in seconds. Iterations were performed until the
convergence.

Tsukuba Sawtooth venus map teddy cones
Image Size 384x288 434x380 434x383 286x216 450x375 450x375
Max Disparity 15 21 19 28 59 59
time(match cost) 0.40 0.70 0.77 0.41 2.48 2.48
time(DDO) 0.13 0.11 0.18 0.09 0.43 0.40
total time 0.53 0.81 0.95 0.50 2.91 2.88

Table 2. The percentages of error where the disparities are off by more than one on
various images; tsukuba, sawtooth, venus, map, teddy, and cones [1]

Techniques Tsukuba Sawtooth venus map teddy cones
Proposed(DDO) 2.26% 1.63% 0.88% 0.35% 14.0% 11.9%
Reliability-DP [8] 1.36% 1.09% 2.35% 0.55% 9.82% 12.9%
Semi Global [9] 3.26% NA 0.25% NA 5.14 % 2.77%
Tree DP [14] 1.99% 1.41% 1.41% 1.45% 15.9% 10.0%
4-State DP [1] [5] 4.70% 1.32% 1.53% 0.81% NA NA
Sanl. Opt [12] 5.08% 4.06% 9.44% 1.84% 19.9 13.0
DP [12] 4.12% 4.84% 10.10.7% 3.33% 14.0% 10.5%

the majority of time was devoted to aggregating the matching cost. Incremental
iteration was performed until the energy function eases to be minimized. Typi-
cally, each scanline had less than 100 iterations, and the minimization time itself
was semi-real time, but the total computational time is within 1 second for all
images, except for Teddy and Cones images. It is worthwhile to note that the
program was written with typical C++ without using SIMD (Single Instruc-
tion Multiple Data) techniques. We believe that a realtime application of the
proposed technique is also possible.

The details of performance is shown on Table 2. The proposed method was
compared with DP and the recent variants of DP that emphasized speed of their
algorithm. Compared to the scanline DP, disparity discontinuity optimization
had clearly better performance, while reliability DP, tree DP, and 4-state DP
had a similar performance, although the proposed method ranked highest as in
the Table 2 according to [1]. The qualitative performances and ground truth
are shown in Fig. 3 and 4.

Unfortunately, in the images with larger maximum disparity, such as Cones
and Teddy, the proposed method shows its weakness. The discontinuity opti-
mization rely heavily on the initial conditions. And for a larger disparity range,
the good initial disparity map is harder to obtain.

The disparity discontinuity optimization’s only fair comparison would DP,
since all others are the extension of DP. Reliability DP, tree DP, and 4-state DP
can be approached with proposed method. And it is shown that the disparity
discontinuity optimization have superior performance than DP, at least for the
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test images. Although the speed could be an argumentative case, in all practical
programming they are equivalent.

4 Conclusion and Future Work

The initial disparity map and the nature of the proposed algorithm, seek the
same goal as the Bobick’s GCP; they provide additional constraints during en-
ergy minimization. But unlike GCP, the initial disparities can extend, shrink, or
replaced with DDO iteration when a smaller energy function is found, making
it more flexible. The proposed algorithm, thus naturally eliminates of most of
disparity candidates and the unrealistic combinations of disparities. For single
iteration, a pixel is assumed to have only two possible disparities; its current
value or the one of the disparity across the first discontinuity. The propose al-
gorithm also prevents the creation of new discontinuities thus allowing fewer
combinations. The evaluation from test images shows that the proposed tech-
nique is fast with comparable performance with recent variants of DP. For the
future study, we believe that the proposed method can be optimized so that it
can be done in real or semi-real time. And extending the idea into 2D is also
feasible, even though it is indeterminable whether 2D discontinuity model will
have same advantages in speed as 1D.
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Abstract. There have been many progresses in the stereo matching
problem. However, some remaining problems still make stereo matching
difficult. Occlusion is one of such problems. In this paper, we propose a
new stereo matching model that addresses this problem by using an effec-
tive visibility constraint. By considering two images simultaneously, com-
plex geometric configurations regarding the visibility of a pixel becomes
simplified, so that the visibility constraint can be modeled as a pairwise
MRF. Also since the proposed model enforces the consistency between
two disparity maps, the final results become consistent with each other.
Belief propagation is employed for the solution of the modeled pairwise
MRF. Experimental results on the standard data set demonstrate the
effectiveness of our approach.

1 Introduction

Occlusion is one of the major problems in stereo matching, so recently many
works have been proposed for handling occlusion [1] [2] [3]. In general, in order
to solve the occlusion problem, most researchers tried to impose some constraints
to the conventional stereo matching model. And, these constraints can be classi-
fied into three classes; ordering constraint, uniqueness constraint, and visibility
constraint.

The ordering constraint enforces the order of correspondences to be preserved
along the scanlines in both images. Then, a half-occluded region in one scanline
can be modeled as pixels that are matched to only one pixel in the other scan-
line. Conventionally, this ordering constraint has been applied to each scanline
independently, and dynamic programming has been used for 1-D optimization
problem in each scanline. This inter-scanline independency makes the resultant
disparity map have a streaking effect. Recently, Williams et al. [3] imposed the
smoothness constraint between scanlines, and applied belief propagation to the
resulting 2-D MRF. However, the ordering constraint is not always valid in gen-
eral setting. Scenes that contain thin foreground objects or narrow holes do not
satisfy this property.

The uniqueness constraint [4] enforces a one-to-one correspondence between
pixels in two images. Then, a half-occluded region is defined by pixels that do
not have corresponding points in the other image. Zitnick and Kanade [5] applied
this constraint to an iterative updating scheme for a 3-D match value array in the

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 598–609, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) (b) (c) (d) (e) (f)

Fig. 1. Synthetic occlusion test example: (a) and (b) are the left and right input images,
(c) and (d) are the left and right disparity results produced by symmetric stereo model
[1],(e) and (f) are the results by our method

cooperative stereo framework. Kolmogorov and Zabih [6] imposed this constraint
on a conventional energy model as a hard constraint of possible assignments and
used graph cuts for energy minimization. However, as pointed out in [1] [7], this
constraint becomes no longer valid when the scene contains horizontally slanted
planes.

The visibility constraint is usually imposed not to enforce the color (inten-
sity) consistency for occluded pixels. However, the occlusion of a pixel depends
on many other pixels that can occlude it, so it is not obvious to determine
whether a pixel is occluded or not. In the symmetric stereo model, Sun et al. [1]
proposed a novel method of inferring the occlusion map in one view by consid-
ering the disparity map of the other view. In their work, consistency between
the occlusion in one image and the disparity in the other is enforced. By using
this constraint, occlusion of scenes that contain thin foreground objects, narrow
holes, and horizontally slanted surfaces can be handled appropriately. However,
the symmetric stereo model ignores the consistency between two disparity maps.
It can be problematic in some scenes as shown in Fig. 1 (a) and (b). This is be-
cause the occlusion map in each image is badly inferred by the disparity map of
the other image at first iteration. It is obvious that there is lack of consistency
between the final two disparity maps obtained by [1] as in Fig. 1 (c) and (d).

In this paper, we propose a new stereo matching model that employs a more
effective visibility constraint. If we consider only one image, whether a pixel
with a specific disparity is occluded or not depends on many other pixels that
can occlude it. However, if both images are considered together, occlusion of a
pixel with a specific disparity depends on only one pixel in the other image. So
by using the left and right images symmetrically, our new stereo model can be
formulated by a pairwise MRF. And the two disparity maps and two occlusion
maps are estimated consistently by belief propagation at one step. Fig. 1 (e) and
(f) shows the disparity map results by our method for the synthetic test images
in Fig.1 (a) and (b).

2 Proposed Stereo Matching Model

Suppose we are given two rectified images. Let L be the set of pixels in the left
image, and let R be the set of pixels in the right image. In the binocular stereo,
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(a) (b)

Fig. 2. (a) Solid arrows represent true disparities. But, due to color consistency, pixel
i, j, k will have dotted arrow disparities (fattening effect). (b) Suppose that pixel p is
matched to pixel q. Then, whether pixel p is occluded or not depends on pixel q. If pixel
q is consistently matched to pixel r, pixel p is occluded by pixel r. Pixel q cannot have
consistent dotted matching. It is because occluding pixel must have larger disparity
than occluded pixel.

our goal is, given stereo image pair IL and IR, to compute the disparity map
pair fL and fR. The disparity map fL : IL → F is a function that is defined at
all pixels of the reference image (in this case, the left image). And, F is a set of
discrete disparity values.

As most global stereo algorithms do, in this paper, we adopt the general energy
minimization framework where the disparity map is determined by minimizing
the following energy function.

E(fL) =
∑
p∈L

Dp(fL
p ) +

∑
{p,q}∈N

V (fL
p , fL

q ), (1)

where p ∈ L is a pixel in the left image and N ⊂ {{p, q}|p, q ∈ L ∪R} is
the neighborhood system. 4-neighborhood system is used in which pixels p =
(px, py) and q = (qx, qy) are neighbors if they are in the same image and
|px− qx|+ |py − qy| = 1. The first term is called as the data term, and measures
how well the disparity map fits given images (color-consistency). The second
term is the smoothness term which encodes the smoothness constraint for the
disparity map.

In this paper, we mean the visibility constraint that the occluded pixels should
not be involved in stereo matching by eq. (1). For example, let us consider Fig.
2(a). The solid arrows represent the true disparity values for the left image. We
can see that in the right image, points i, j, k of the white object are occluded
by points l, m, n of the grey object. Unless occluded pixels i, j, k are treated
separately, the data terms of those pixels may bring false matches. For the case
of Fig. 2(a), because of the color (intensity) consistency and the smoothness
constraint, pixels i, j, k have disparities corresponding to dotted arrows, causing
the fattening effect.

Therefore, modification of the data term is necessary for handling the oc-
cluded pixels properly. Imposing zero or some small constant to the data terms
corresponding to the occluded pixels is a common method to exclude the effect
of occluded pixels in matching. Detecting whether a pixel is occluded or not is
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another important problem, and generally it depends on the disparity of that
pixel as well as the disparities of all pixels that may occlude that pixel. Without
loss of generality, let us assume F = {0, 1, ..., n− 1}. Then, pixel p = (px, py) in
the left image can be occluded by (n − 2) pixels, that is, p + 1 = (px + 1, py),
p + 2 = (px + 2, py),..., p + n− 2 = (px + n− 2, py). Thus, a function indicating
whether a pixel p is occluded or not can be represented by the visibility function,
V isp(fp, fp+1, fp+2, ..., fp+n−2). Suppose that V isp is defined by 0 if pixel p is
occluded, and 1 otherwise. Then, the modified data term that can eliminate the
influence of the occluded pixels can be defined by

∑
p

V isp(fp, fp+1, fp+2, ..., fp+n−2)Dp(fp). (2)

Recently, most successful global stereo algorithms use the graph cuts [6] [8]
[9] [10] or belief propagation [1] [11] for minimizing energy. However, applying
such algorithms directly to the minimization of our modified energy function
is not easy. This is because the modified energy does not satisfy the regular-
ity condition that is the necessary and sufficient condition for using the graph
cuts [12]. And also the modified energy function is no longer in pairwise form,
so that it cannot be modeled by pairwise MRF. Actually, the data term in eq.
(2) corresponds to the Gibbs energy of (n − 1)-wise MRF. Hence, belief prop-
agation is not directly applicable to the minimization of our modified energy
function.

Note that according to the result in [13], any MRF with higher order cliques
can, in principle, be converted to a pairwise MRF defined on an augmented
graph. And the augmented graph can be obtained by suitable clustering of nodes
into large nodes. However, in the case of our modified energy, since the number
of possible states that the clustered nodes can have is too large, applying this
method is not practical too.

Therefore we devise a new stereo energy model that is practically tractable,
and it is inspired by the following observation. Let us consider the situation in
Fig. 2(b). Assume that pixel p in the left image is matched to pixel q in the
right image. Then, how can we know whether pixel p is occluded or not? Let us
introduce a new auxiliary variable cL : IL → {true, false} defined at all pixels
in the left image. This new boolean variable represents whether the disparity of
a pixel is consistent or not. That is, in Fig. 2(b), if pixel q has the solid arrow
disparity and its boolean variable is true, pixel r also must have the solid arrow
disparity (consistency). However, if the boolean variable of pixel q is false, the
disparity of pixel r cannot be the solid arrow (inconsistency). Now whether pixel
p is occluded or not is determined by variables of pixel q, that is, its disparity and
boolean variable. Suppose that pixel q has the solid arrow disparity and true.
Then, because not only pixel p but also pixel r are matched to pixel q, we can
think that pixel p is occluded by pixel r. By using this idea, we can impose the
visibility constraint on the existing energy function by pairwise form. Detailed
equations will be presented in Section 2.1.
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Note that the disparity maps and new boolean variable maps of both images
must satisfy several restricted configurations. For example, in Fig. 2(b), let us
assume that pixel p has solid arrow disparity and false. Then, the boolean
variable of pixel q have to be true. It is because for pixel p to be occluded,
one non-occluded pixel in the left image must be consistently matched to pixel
q in the right image. And the disparity of pixel q have to be larger than that
of pixel p. It is because the occluding object must be more closely than the
occluded object, and the depth is inversely proportional to the disparity. These
restrictions of possible configurations for disparity maps and boolean variable
maps in two images enforce consistency between two disparity maps. This is a
new feature that is distinct from the symmetric stereo matching model in [1].
In order to constrain possible configurations, the new model should includes an
additional consistency energy term, and more complete description about this
will be given in Section 2.1.

2.1 A New Energy Function

Now our new energy function can be formulated by

E(cL, fL, cR, fR) = DataL(cL, fL) + DataR(cR, fR)
+SmoothL(cL, fL) + SmoothR(cR, fR)
+V is(cL, fL, cR, fR) + Con(cL, fL, cR, fR).

(3)

The first and second terms are the data terms, and the third and forth terms are
the smoothness terms. The fifth term is the visibility term where the visibility
constraint is encoded, and the last term is the consistency term that enforces
the consistency between the left and right disparity maps.

The data term imposes color (intensity)-consistency. For the left image,

DataL(cL, fL) =
∑
p∈L

Dp(fL
p ), (4)

where Dp(fp) measures the degree of color (intensity)-consistency between pixel
p and its corresponding pixel when the disparity of pixel p is fp. For DP (fp),
we can use various matching functions such as SD (Squared Difference), AD
(Absolute Difference), and the Birchfield measure [14]. In this paper, according
to [1], the following truncated L1 norm function that is robust to noise and
outliers is used:

Dp(fp) = −ln((1− ed)exp(−‖IL
p − IR

q ‖/σd) + ed), (5)

where pixel q ∈ R is the matched point of pixel p whose disparity is fp. The
data term for the right image, DataR(cR, fR) can be defined symmetrically.

The smoothness term encodes the smoothness constraint. For the left image,
we define the smoothness term as follows:

SmoothL(cL, fL) =
∑

{p,q}∈N

V{p,q}(fL
p , fL

q ). (6)
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For V{p,q}(fp, fq), we use following robust L1 distance:

V{p,q}(fp, fq) = min(λ|fp − fq|, λ · μ), (7)

where λ is the rate of increase in the cost, and μ controls the limit of the cost.
Employing this robust function has several advantages. First, as a discontinuity
preserving constraint, this function can recover discontinuous features of true
disparity map very well. Furthermore, according to [15], the implementation of
belief propagation for minimizing the energy function containing this smoothness
term can be done efficiently by using distance transform. The smoothness term
for the right image, SmoothR(cR, fR) can be defined symmetrically. And, we can
observe that for the data terms and smoothness terms, the boolean variables cL,
cR have no influence on the energy.

The visibility term where the visibility constraint is encoded can be repre-
sented by sum of two terms for occlusion in the left and right images as follows:

V is(cL, fL, cR, fR) =
∑

p∈L,{p,q}∈N V
L

{p,q}(cL
p , fL

p , cR
q , fR

q )

+
∑

p∈R,{p,q}∈N V
R

{p,q}(c
R
p , fR

p , cL
q , fL

q ).
(8)

N ⊂ {{p, q}|p, q ∈ L ∪R} is a new neighborhood system to describe the interac-
tions between two images. In this new neighborhood system, a neighborhood of
a pixel p is defined by all pixels in the other image that pixel p can correspond
to. For example, if we suppose the possible disparity range of the left image to be
{0, 1, ..., n−1}, then the neighbors of pixel (px, py) in the left image become pixels
(px, py), (px−1, py),...,(px−(n−1), py) in the right image. V

L

{p,q}(c
L
p , fL

p , cR
q , fR

q )
is an occlusion function of pixel p in the left image by pixel q in the right image,
defined by

V
L

{p,q}(c
L
p , fL

p , cR
q , fR

q )=
{−Dp(fL

p ) + k, if px + fL
p =qx ∧ cR

q = true ∧ fL
p <fR

q ;
0, otherwise.

(9)

As shown in Fig. 2(b), when pixel p in the left image corresponds to pixel q in
the right image (px + fL

p = qx), if pixel q is consistent (cR
q = true) and disparity

of pixel q is larger than that of pixel p (fL
p < fR

q ), then pixel p is occluded by
pixel q. Thus, we subtract the data term of pixel p for its disparity fL

p from
the energy function, and instead add a small constant k to it. Otherwise, the
visibility term has no effect on the energy function. V

R

{p,q}(c
R
p , fR

p , cL
q , fL

q ) can
be defined analogously.

The last term, that is, the consistency term enforces the consistency between
the left and right disparity maps. This term can be written by

Con(cL, fL, cR, fR) =
∑

{p,q}∈N

C{p,q}(cL
p , fL

p , cR
q , fR

q ), (10)
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Assume that pixel p is in the left image, pixel q is in the right image, and
px + d = qx. Then, valid configurations of two pixels classified by variable of right
image pixel q: (a) cR

q = true, fR
q = d; (b) cR

q = true, fR
q > d; (c) cR

q = true, fR
q < d;

(d) cR
q = false, fR

q = d; (e) cR
q = false, fR

q > d; (f) cR
q = false, fR

q < d.

where C{p,q}(cL
p , fL

p , cR
q , fR

q ) constrains possible configurations of two pixels p

and q that belong to the new neighborhood system N , and has the following
form:

C{p,q}(cL
p , fL

p , cR
q , fR

q ) =
{

0, if {cL
p , fL

p , cR
q , fR

q } is valid configuration;
∞, otherwise. (11)

This function inhibits invalid configurations of two pixels p and q by imposing
infinity on the energy function. Since the complete description of all the valid
configurations is too complicated, instead we present a pictorial description as
in Fig. 3. In Fig. 3, we assume that pixel p is in the left image, pixel q is in the
right image, and px + d = qx. Then, valid configurations of two pixels can be
classified by variables of pixel q in the right image, that is, cR

q and fR
q . Firstly, if

cR
q = true and fR

q = d, it means that pixel q is consistently matched to pixel p,
so pixel p also have to be consistently matched to pixel q (cL

p = true, fL
p = d).

Other values of cL
p and fL

p are invalid. Secondly, if cR
q = true and fR

q > d, then,
only cL

p = true and fL
p = d is forbidden. But, when cR

q = true and fR
q < d,

then cL
p = false and fL

p = d is additionally forbidden. Otherwise, farther pixel
q occludes closer pixel p. And, if cR

q = false and fR
q = d, it means that pixel q

is occluded by pixel p, so pixel p must be consistently matched and have larger
disparity than pixel q (cL

p = true, fL
p > d). Finally, if cR

q = false and fR
q �= d,

then pixel p cannot have cL
p = true, fL

p = d. Moreover pixel p cannot have
cL
p = false, fL

p = d, too. It is because an occluded pixel (cL
p = false) cannot

correspond to another occluded pixel (cR
q = false).
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3 Optimization Using Belief Propagation

The new energy model in eq. (3) can be written in the following pairwise form:

E(l) =
∑
p∈P

θp(lp) +
∑

{p,q}∈N

θ{p,q}(lp, lq), (12)

where lp is {cp, fp}, P is L∪R, Ñ is N∪N , θp(lp) is a unary data penalty function,
and θ{p,q}(lp, lq) is a pairwise interaction potential. we note that similar form
of energy function has been derived in the context of MRF [16], and applied to
many early vision problems. And a minimum of this energy corresponds to a
maximum a-posteriori (MAP) labeling.

In general, minimizing a pairwise energy function is an NP-hard problem, so
researchers have focused on approximate minimization algorithms. Two success-
ful algorithms are graph cuts [8] [12] [17] [18] and belief propagation [11] [15] [19]
[20]. To our knowledge, graph cuts are known to be able to reach lower energy
than belief propagation [21]. But since our energy model does not satisfy the
regularity condition, we cannot apply graph cuts to it. Therefore, in this paper,
we use belief propagation to minimize the proposed energy.

4 Experimental Results

In our algorithm, the parameter λ is automatically determined by using a similar-
ity based technique as in [1], in which the similarity between pixels is computed
via the Kullback-Leiber (KL) divergence, and λ of an image is set to be propor-
tional to the average similarity in the image. We used 0.25 as the proportional
constant. Analogously, the parameter μ inside an image is determined differently
according to the color (intensity) similarity between pixels as follows:

μ{p,q} =
{

2, if p and q belong to different segments;
3.8, otherwise. (13)

The mean-shift algorithm was used for classifying pixels into segments [22]. Other
parameters are fixed as σd = 4.0, ed = 0.01, and k = 3.0.

We evaluate the proposed algorithm using four standard datasets, Tsukuba,
Sawtooth, Venus, and Map in [23]. In [23], a pixel is considered erroneous if its
absolute disparity error is greater than one. And the percentages of bad pixels
are computed in all region (all), textureless region (untex.), and discontinuity
region (disc.). Notice that only nonoccluded pixels are considered in these all
computations.

Fig. 4 shows the disparity maps and bad pixel results by our method. We
can observe that very good performances have been achieved in the occluded
region as well as other areas. Table 1 presents the overall performance of our
algorithm and quantitative comparison with other algorithms. Our algorithm
ranked the third out of 36 algorithms, and has little difference from the top-
ranked algorithm. Note that our method produced the best performances (in ’all’
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Fig. 4. Results of the proposed algorithm on Middlebury datasets. From top to down
order: Tsukuba, Sawtooth, Venus, Map. From left to right order: reference images,
extracted disparity maps, bad pixel images, and the ground truth disparity maps.

and ’untex.’ regions) for the Tsukuba images. However, for other test images,
especially for the Sawtooth images, there is still some rooms for improvement.
As can be seen from the bad pixels result of the Sawtooth images in Fig. 4, errors
are occurred mainly in the inner region of the slanted plane. So, we expect that
robust plane fitting and subsequently using the fitting result as soft constraint
in [1] can reduce those errors significantly.

To demonstrate the performance of the proposed stereo model on occlusion,
we presents our occlusion results in Fig. 5 and compare them quantitatively
with those of the other state of the art algorithms in Table 2. The percent-
ages of false positives, false negatives, and bad pixels in the occluded region
are listed for the Tsukuba images. For the false positive and false negative
results of other algorithms, we referred to [1] [24]. And we downloaded the
disparity results of other algorithms from the Middlebury stereo vision page
(http://www.middlebury.edu/stereo), and computed the percentages of bad pix-
els over the occluded regions. We can see that our algorithm ranked 2nd in all
categories, and produced excellent results.
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Table 1. Evaluation table of different stereo algorithms

Algorithms Tsukuba Sawtooth Venus Map
all untex. disc. all untex. disc. all untex. disc. all disc.

Sym.BP [1] 0.97 0.28 5.45 0.19 0.00 2.09 0.16 0.02 2.77 0.16 2.20
Patch-based [24] 0.88 0.19 4.95 0.29 0.00 3.23 0.09 0.02 1.50 0.30 4.08
Our method 0.87 0.14 5.07 0.80 0.04 5.11 0.15 0.02 2.35 0.29 4.05
Seg.GC [10] 1.23 0.29 6.94 0.30 0.00 3.24 0.08 0.01 1.39 1.49 15.46
Graph+segm. 1.39 0.28 7.17 0.25 0.00 2.56 0.11 0.02 2.04 2.35 20.87
Segm.+glob.vis. 1.30 0.48 7.50 0.20 0.00 2.30 0.79 0.81 6.37 1.63 16.07
Layered [25] 1.58 1.06 8.82 0.34 0.00 3.35 1.52 2.96 2.62 0.37 5.24
Belief prop. [11] 1.15 0.42 6.31 0.98 0.30 4.83 1.00 0.76 9.13 0.84 5.27
Region-Progress. 1.44 0.55 8.18 0.24 0.00 2.64 0.99 1.37 6.40 1.49 17.11
2-pass DP 1.53 0.66 8.25 0.61 0.02 5.25 0.94 0.95 5.72 0.70 9.32

Fig. 5. Occlusion results on Middlebury datasets. From top to down order: extracted
occlusion maps, and the ground truth occlusion maps. From left to right order:
Tsukuba, Sawtooth, Venus, Map.

Table 2. Occlusion evaluation for Tsukuba dataset

Algorithms False positives False negatives Errors in occl.
rate rank rate rank rate rank

Our method 0.87 2 29.58 2 22.10 2
Sym.BP [1] 0.7 1 29.9 3 31.62 4
Patch-based [24] 1.05 3 30.16 4 39.41 5
Seg.GC [10] 1.19 4 32.51 5 18.95 1
Layered [25] 2.28 5 25.42 1 29.36 3

5 Conclusions

In this paper, we presented a new stereo matching model using an effective
visibility constraint. The main contributions of this paper are as follows. By
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using two input images simultaneously, the visibility constraint is modelled by
a pairwise MRF. And by enforcing the consistency between two disparity maps,
consistent and more accurate results could be obtained. Finally, our results on
real data demonstrated the effectiveness of proposed method on occluded areas.
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Abstract. Stereo correspondence is one of the basic and most impor-
tant problems in computer vision. For better correspondence, we need
to determine the occlusion. Recently dynamic programming on a mini-
mal span tree (mst) structure is used to search for correspondence. We
have extended this idea. First, mst is generated directly based on the
color information in the image instead of converting the color image
into a gray scale. Second, have treated this mst as a Bayesian Network.
Novelty is attained by considering local variances of the disparity and
intensity differences in the conditional Gaussians as unobserved random
parameters. These parameters are iteratively inferenced by alternate es-
timation along the tree given a current disparity map. It is followed by
dynamic programming estimation of the map given the current variance
estimates thus reducing the overall occlusion. We evaluate our algorithm
on the benchmark Middlebury database. The results are promising for
modeling occlusion in early vision problems.

1 Introduction

Occlusion is one of the major challenges in stereo vision. In stereo, occlusion
corresponds to a specific situation, that some points in the scene are visible to
one camera but not the other due to the scene and camera geometries [12]. But
in this work, we refer to the occlusion as if a point in left image (L) could not
find its correspondence in the right image (R). Detection of these occluded pixel
is ambiguous, so prior constraints need to be imposed e.g. ordering constraint
[4] is exploited in dynamic programming framework [11] as it reduces the search
space. These occluded pixels are excluded based on the threshold [14],[3] and
the scene is assumed as free of occlusion. This naturally entails the piecewise
smoothness of the recovered stereo correspondence map or disparity map [4].

Motivation for this work is to develop a stereo corresponding algorithm, which
can model occlusion and later can reduce it with possible low computational
cost. These goals are achieved by modeling occlusion using bayesian network
and achieved low computation cost by utilizing dynamic programming (DP) on

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 610–619, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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tree network. The bayesian methods (e.g.,[8],[9],[6], [1],[2]) globally model dis-
continuities and occlusion. These methods can be be classified into two categories
[13] based on their computational model i.e. dynamic programming-based and
MRFs-based. Keeping in view the scope of this work, we will cover the former
category in detail.

Geiger et al. [8] and Ishikawa, Geiger [9] derived an occlusion process and a
disparity field from a matching process. The matching process is transformed to
a path-finding problem by assuming order constraint and uniqueness constraint,
where the global optimum is obtained by dynamic programming. Belhumeur
[1] used a simplified relationship between disparity and occlusion to solve scan
line matching by dynamic programming and by defining a set of priors from a
simple scene to a complex scene. Contrary to above where a piecewise-smooth
constraint is imposed, Cox et al.[6] and Bobick and Intille [2] did not require the
smoothing prior. They assumed a normal distribution of corresponding features
and a fixed cost for occlusion, and using only the occlusion constraint and order-
ing constraints, they proposed a dynamic programming solution. The work of
Bobick and Intille focused on reducing the sensitivity to occlusion cost and the
computation complexity of Cox’s method, by incorporating the ground control
points constraint. These dynamic programming methods are employed with the
assumption of same occlusion cost in each scan line. Ignoring the dependence
between scan lines, results in the characteristic streaking in the disparity maps.
State of art results can be achieved by 2D, but at the cost of time.

In comparison, our approach is much simpler, but also much more efficient.
To seek global optimum with linear degree of search, we have taken advantage
of mini-mal span tree (mst) network. The contribution by this paper is to treat,
first time in known literature, mst as a Bayesian Network. To deal with occlusion
and for controlling smoothness in disparity space, two random parameters are
introduced in the network. Instead of exact inference, posterior distribution is
approximated by computing Helmholtz free energy using EM on each node of
tree. These energies are minimized by using dynamic programming. In this way
we have fused mst, bayesian network and dynamic programming into one method
to find the optimal disparity in the image. The algorithm is tested on Middlebury
stereo database and the results in comparison to state of art algorithms are
promising.

The paper is organized as follows: Section II explains details of general frame-
work of the problem along extraction of mst based on the color information in-
stead of gray scale values as been done by recent works [14],occlusion modeling,
computation of free energies and minimization of energies using DP. Compar-
ison with other algorithms and experimental results are shown in Section III.
Conclusion forms the last section.

2 Occlusion Modeling

In this section, we will first introduce general framework of problem, later the
concept of treating mst as a bayesian network is explained. Local variances of the
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disparity and intensity differences in the conditional gaussians are introduced as
unobserved random parameters. In order to approximate the posterior probabil-
ity Helmholtz Free Energy is calculated at every node and is explained in next
subsection. These parameters are iteratively inferenced by applying expectation
maximization while the current disparity map is given. A new optimal disparity
map is attained by minimizing energy through dynamic programming on tree
and forms the last subsection.

2.1 General Framework

In this subsection, we have explained the general framework of our problem. The
notations used are borrowed from [14]. Let G(V,E) be a grid connected graph
with vertices V and edges E. All pixels of the left image form the vertices in V .
For the edges E, every pixel p is connected with his 4-connected neighbors. We
want to convert this into a tree graph G′(V,E′) by choosing the most valueable
edge E′ of each pixel. The definition of most valueable edges out of 4-connected
edges, remained under investigation. We exploited the fact, that disparity dis-
continuities align with intensity discontinuities. It means that if the neighboring
pixels i and j have similar intensity values i.e. Z(i) and Z(j), then they are more
likely to have same disparity a priori. The gray intensity information provided
by the left image is used to assign different weights to edges in G(V,E) [14]. The
intensity information provided in shape of gray level is not sufficient to decide the
strength of the edges in between pixels. The conversion of color pixel into gray
scale is as mapping from many to one problem. In this way, the distance achieved
between pixels is not a true distance. Instead in our case we have we have used
the distance among the pixels based on the definition of color components.

d2(v1, v2) > 0⇔
⎡⎣r1

g1

b1

⎤⎦−
⎡⎣r2

g2

b2

⎤⎦ (1)

G(V,E) is converted into tree graph i.e. mst by using standard Kruskal’s
Algorithm[5]. Since edge weights are integers in small range, the edge sorting can
be performed in linear time, therefore the mst can be computed in basically linear
time. Later, experimental results have proved that mst extracted using the color
information, provides much better results. These results does not depend upon
the specific data but represents that color images provide better smoothness as
compared to the gray scale images.

2.2 Formulation of Problem in Bayesian Approach

Bayesian networks are used for modeling uncertainties in the parametric form.
Fig.1 shows the Bayesian network (i.e. based on the mst network) used for the
current problem. Node di is an optimal displacement for pixel i in L Image.
τi,j is variance in disparity between child i and parent j nodes and controls the
smoothness in disparity space. Zi represents the intensity of each pixel and σi is
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Fig. 1. Occlusion modeling using Bayesian network: τ is local variance of the disparity
and σ is variance of the intensity difference

variance between ZL(i) and ZR(i + d) respectively. In the network di, j, τi,j , σi

are hidden and Zi is visible node. Based on the model, joint distribution is given
by the following product of distributions model,

p(σi, τi,j , dj ,Zi) =
{( n∏

i=1

p(σi)
)
.

( n∏
i=1

p(τi,j)p(droot)
)
.

( n−1∏
(i,j)∈E

p(di|di, τi,j)
)}

.

{ n∏
i=1

p(zi|di, σi)
} (2)

Where n are total numbers of nodes in the tree and droot represents the root
node (since root does not have parent so for ease of understanding it is expressed
as a separate term). Exact inference requires the computation of posterior dis-
tribution, over all hidden variables given the visible, which is often intractable.
So we turn to approximation methods which estimate a simple distribution that
is close to the correct posterior distribution.

2.3 Computation of Helmholtz Free Energies

The idea is to approximate the true posterior distribution p(h|v) by a simpler
distribution Q(h) while h, v represents hidden and visible nodes respectively. A
natural choice for a measure of similarity between the two distributions is the
relative entropy (a.k.a. Kullback-Leibler divergence), which can be formulated
as [7]

F (Q, P ) =
∫

h

Q(h) logQ(h)−
∫

h

Q(h) log p(h, v) (3)

Where F (Q, P ) is Helmholtz free energy or the Gibbs free energy, or just the
free energy between Q and P . Intuitively , minimum of the energy can be
achieved only once p(h, v) will have same value as Q(h). For ease in display and
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understanding above expression is replicated in two parts. F (Q, P ) = T1 − T2.
Point inference searching techniques looks for a single configuration happrox of
the hidden variable. By befitting a problem as mentioned above, transforms it
to minimizing cost problem. We have also adopted the same way. σ and τ are
estimated by point estimation and the Q-Distribution for the entire model is:

Q(h) =
( n∏

i=1

δ(σi − σ̂i)
)
.

( n∏
i=1

δ(τi,j − τ̂i,j)
)

(4)

δ is a dirac delta function and for distribution Q(h) is an infinite spike of the
density at ĥ. For detail properties of δ function please see [7]. By replacing Eq.4
in T 1 of Eq.3 and after rearranging

T1 =
∫

τ

Q(τ̂ ).
[∫

droot

Q(droot|τ̂ ). logQ(droot|τ̂ ) +
{ ∑

ih∈Cdin−1

∫
di1

Q(di1|droot, τ̂ ).

logQ(di1|droot, τ̂ ) + [... +
∑

ih∈Cdin−1

∫
din

Q(din|dn−1, τ̂ ).

logQ(din|dn−1, τ̂ )]...
}]

+
∫

σi

Q(σ̂i) logQ(σ̂i) +
∫

τ

Q(τ̂i,j) logQ(τ̂i,j)

(5)

The last two terms are the entropy of the delta-functions i.e. Hδ, and is
constant w.r.t. the optimization. Since we intend to use tree structure, and want
to apply recursive programming so by rearranging T 1 in recursive fashion.

FQ,Q(di, dj) =
∫

di

{
Q(di|dj , τ̂i,j). logQ(di|dj , τ̂i,j) +

∑
k∈C

FQQ(dk, di)
}

(6)

Where, C is set of child nodes. For every node i, Q is a matrix of order lxl, for
all possible values of di and dj where l is total search area for every pixel. For
ease of understanding, Eq.2 is mainly divided into two parenthesis i.e. p1 and
p2. By going through the same procedure as above, for T 2 in Eq. 3, below are
two outcomes of equations p1 and p2 from Eq.2 respectively.

FQPQ(di, dj) =
∫

di

{
Q(di|dj , τ̂i,j) +

∑
k∈C

FQPQ(dk, di)
}

+∫
σi

Q(σ̂i) logQ(σ̂i) +
∫

τ

Q(τ̂i,j) logQ(τ̂i,j)
(7)

FQPZ(di, dj) =
∫

di

{
Q(di|dj , τ̂i,j). log p(Zi|dj , τ̂i,j) +

∑
k∈C

FQPZ (dk, di)
}

(8)

The generalized recursive expression for the total free energy can be written
as

F (Q, P ) =
{

FQQ(droot, d−1)−FQPQ(droot, d−1)−FQPZ (droot, d−1)+Hδ

}
(9)
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d−1 is a dummy node i.e. root node of the root and is shown for simplicity in
expression. All terms related with the entropy of the delta function are ignored
as they do not take part in optimization. The total free energy can be viewed as
the summation of energies at all nodes over the tree.

2.4 Expectation Maximization

Various inference approximation techniques may be applied to compute the ap-
proximate value for the Q function. To avoid local minimum problem, we have
preferred EM on ICM. By considering this distribution as Gaussian,

log p(di|dj , τ̂i,j) = −1
2

log 2π − log τ̂i,j − |di − dj |2
2τ̂2

i,j

(10)

log p(zi|dj , σ̂i) = −1
2

log 2π − log σ̂i − |ZR(i)− ZL(i + di)|2
2σ̂2

i

(11)

Free energy is a lower bound on the posterior distribution which is same as
minimizing Q(h). In order to minimize energy of Q function, replace values of
equation Eq.10),11 in Eq.9 and by equalizing the derivative to zero,

∂F (di, dj)
∂Q(di = a|dj = b, τ̂i,j)

= 0 (12)

Q(di|dj , τ̂i,j) ∝ exp
|di−dj |2

2τ̂2
i,j

− |ZR(i)−ZL(i+di)|2
2σ̂2

i (13)

The restriction placed on the Q function is
∫

di
Q(di|dj , τ̂i,j) = 1 (all the con-

stant terms which do not participate in the optimization are not taken into
consideration). Uncertainties calculated from Q will decide the significance of
the pixel. Intuitively the efficiency of σi and τi,j can be visualized as competing
parameters. For any occluded pixel and its matched pixel, their difference of
intensity is a high value. Their variance is also high resulting the weight of the
pixel as a low value. Likewise, if the difference of disparities of i and j is high,
its influence will be controlled by τi,j . To minimize σi and τi,j , take derivative
of the free energy F (Q, P ) and place it equal to zero. Minimum values for the
parameters can be found by taking derivative of free energy with respect to them
and equating it with zero.

τ̂2
i,j =
∫

dj

Q(dj)
∫

di

Q(di|dj , τ̂i,j)|di − dj |2

σ̂2
i =
∫

di

Q(di)|Zt(i)− Zt−1(i + di)|2
(14)

While the constraint placed on Q(di) is defined as:

Q(di) =
∫

dj
Q(dj)Q(di|dj , τ̂ i, j, σ̂i) .
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2.5 Dynamic Programming on Tree

Energy for Q function at node di can be expressed as:

EQ(di|dj , τ̂i,j) = Q(di|dj , τ̂i,j)
∏
k∈C

Q(dk|dj , τ̂k,j) (15)

Minimum energy can be achieved by minimizing log of above expression. Optimal
disparity assignment for node can be determined by using:

EQ(di|dj , τ̂i,j) = argmin
di∈D

{
s(di, dj) + m(di)

∑
k∈Ci

EQ(dk|dj , τ̂i,j)
}

(16)

Where s(di, dj) is the disparity mismatch and m(di) is the matching penalty
for assigning disparity di to pixel i. Eq. 16 is a standard expression for the
optimization [14] problem and can find the optimal places for the minimum
energies at each node. Total computation cost for these terms is O(l2n) each
where n is number of nodes and l is max possible disparity vector. Including
free energy, total computation cost is (2m + 1)O(l2n) where m is number of
iteration. While implementing this algorithm, the hardest problem is memory
consumption. Finding disparity value for each pixel for l different places is hard
on memory.

 
Ground Truth       Our Result  Results[2] Results[14] Results[15] 

Fig. 2. Comparison Results: Occlusion results for ”tsukuba”

3 Experiment Results and Discussion

To check the performance in modeling and detection of occlusion, we test our
results against Middlebury test bed [11] dataset. We tested Tsukuba, Sawtooth,
Venus and Map image pairs and their results are shown in Fig 2. As compared to
other approaches, our results lay in range of position 8 to 10 out of 36 competi-
tors for various images. Although the ranking looks odd, but it’s a bit unfair to
compare our results straight with other state of art algorithms. Since they em-
ployed 2D optimization, while in our case, we are trying to achieve the efficiency
of 2D using a tree structure which is neither 2D nor 1D. Its straight compari-
son can be made either with 1D optimization algorithms or with Dynamic Tree
Optimization algorithm [14]. There are 4 methods based on 1D optimization in
the evaluation table, and by a coincidence they have consecutive ranks 25 to
28, which is almost at the 3rd quarter of the table. Tree Optimization method
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[14] lies a bit high of these algorithms. Further we have incorporated occluded
pixels in our results while other results are based on non occluded pixels present
in the image pairs. These methods isolate all occluded pixels by using a fix
threshold or a threshold based on the neighboring pixels. To look into deep ,
we tried to find equal footings to compare our occlusion results with several
recent approaches: ”GC+occl” algorithm by Kolmogorov and Zabih [10] which
is a pixel-based approach using a symmetric graph-cut framework to handle oc-
clusion, ”Seg+GC” algorithm by Hong and Chen [12] which is a segment-based
asymmetric graph-cut approach that does not explicitly detect occlusion, and
”Layer” algorithm by Lin and Tomasi [4] which is a combination of pixel-based
and segment-based approaches. Results of two images i.e. ”tsukuba” and ”venus”
are presented from[11] dataset. Same parameters are selected for both data sets.
The occlusion result is computed by check-ing the visibility of each point in the
non-occlusion result. Result of ”Layer” is from the authors’ website. The results
are shown and compared in Fig.3. 1 gives the error statistics for ”tsukuba” and
”venus” respectively. They are quantitatively evaluated by 3 criteria, which are
the percentages of: false positive, false negative and the bad points near the
occlusion. A bad point is a point whose absolute disparity error is greater than
one [11]. We make a near occlusion model by dilating the occlusion area to 20
pixels and excluding the occlusion area. Figure 3 are our results.

Table 1. Error Statistics of Two images with respect to our technique

Methods False Pos False Neg Near Occl
Tsukuba

Our Results 2.21 31 8.75
GC+Occl 1.49 31.8 6.34
Seg+GC 1.23 30.4 8.12
Layered 2.25 24.2 9.01

Venus
Our Results 1.2 21 7

GC+Occl 1.91 32.88 13.12
Seg+GC 0.51 16 0.89
Layered 0.32 51 1.01

4 Conclusion

In this work, we have extracted mst based on the color information. We have
treated this mst as a bayesian network and inferred two random parameters for
occlusion modeling and smoothness in disparity space. For inference, Helmholtz
free energies equations are reshaped to suit our framework i.e. the equations are
transformed in a recursive manner to fit in for DP. EM algorithm is used to
approximate these energies, and then these are minimized to find the optimal
disparity using DP. The ultimate goal achieved is minimum occlusion.
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Fig. 3. Comparison Results: Middlebury datasets. First row are the left images, second
row are the ground truth third row is our results.
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Abstract. Many industrial applications involve rotations. Different from
traditional measurements, we propose a novel vision method based on im-
age motion blur to estimate angular velocity and angular displacement in
this paper. First, we transform 2D rotation to 1D translational motion by
sectoring rotation blurred image. Then we use mathematical models in
spatial and frequency domain to analyze translation blurred images. Ac-
cording to mathematical models in frequency domain, there is a series of
dark parallel lines on the spectrum of the translation blurred image. These
dark lines are exactly related to the velocity of translation and exposure
time. Furthermore, based on the geometric relationship between rotation
and translation, these dark lines are also related to angular velocity. Both
simulation results and real experimental results, based on the proposed
method in this paper, are provided. These results demonstrate the feasi-
bility and efficiency of proposed method.

1 Introduction

Investigation of a rotating machinery and the equivalent rotational vibration of
systems are very important for control systems in industry [1]. Traditional angu-
lar and rotary velocity sensors are contact-type tachometers or speed sensors that
mount on a shaft or contact a moving surface, such as mechanical tachometers,
electrical tachometers [2,3], etc. Because classical methods are usually based on
mechanical contact, they are easily affected by the target’s motion. Over the past
decade, non-contact methods have been developed for industrial applications [4].
The non-contact sensors available today use circular Moire gratings [5], tomogra-
phy [4], magnetic method, ultrasound, laser, etc. Although non-contact sensors
overcome these disadvantages of conventional contact measurements, most of
them require particular additional equipments, such as laser sources and reflec-
tors. For measurement tasks, these additions may make a measuring system very
complicated and expensive.

In recent years, some researchers have begun to investigate angular veloc-
ity estimation based on digital image processing techniques. Yamaguchi [6,7]
proposed a gaze control active vision system integrated with angular velocity
sensors to extract the velocity. The velocity is obtained from a continuous series
of images acquired by a visual system.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 620–631, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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For real image system, due to the relative motion between a camera and an ob-
ject within finite exposure time, such images are degraded by well-known degra-
dation factor called motion blur. In previous researches, identification of blur pa-
rameters from motion blurred images was used to restore image [8,9,10,11,12,13].
It makes sense to note that certain motion information can be involved in a motion
blurred /rotation blurred image. It is natural to use this ”blur” knowledge to esti-
mate rotation parameters from blurred images recorded by the camera. Although
motion blur is generally considered as extra source of noise and most researchers
try to avoid it in conventional motion estimated method, some re-searchers esti-
mated the motion using blurred images. Chen [14] established a computational
model in the frequency domain to estimate image motion from motion blur in-
formation, which involved a special sensor system to avoid zeros of Point Spread
Function (PSF) in the frequency domain.

In this paper, we investigate the important visual information– translation
and rotation blur–for the parameter estimation of rotation and propose a novel
non-contact method of angular velocity and the angular displacement estimation
with sin-gular blurred image. Compared with Chen [14], our method does not
need to avoid zeros of PSF; on the contrary, we utilize these zeros to achieve the
purpose. In order to reveal the relationship between rotation and image blur, we
give the geometric relations between the rotation and the translation, and then
transform the 2D rotation to a 1D translational motion by sectoring the rotation
blurred image. After establishing mathematical models in the spatial and fre-
quency domain of translation blurred images, we found there is a series of dark
parallel lines on the spectrum of it, which was sectored from the rotation blurred
image. According to the geometric relationship, these dark lines are exactly re-
lated to the angular velocity of rotation. By extracting the lines’ information
with image processing techniques, we estimated the angular velocity.

2 Rotation Blurred Image Analysis

Estimation of rotation parameters from a blurred image are extracted in three
steps. First, we transform rotations to translations. Second, the mathematic
model of translations in the spatial and frequency domain is established. Next,
the direct relation between blur information and motion parameters is extracted.

2.1 Transform Rotation to Translation

We introduce a polar coordinate system (Fig. 1(a)) to represent the image plane.
The polar coordinate of image point is (r, θ). Then we transform the polar lattice
of image plane to a rectangular lattice (x, y) (Fig. 1(b)) by introducing radial
pixels, where θ is the angular resolution and r is the resolution along the radius.
Let us introduce the polar system whose origin O lies on the rotary center of
target object. The largest radial pixel determines the sampling step of a rectan-
gular system. According to Fig. 1, these positions of pixels in polar and rectan-
gular lattices do not match. So we used bilinear interpolation to determine the
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gray-level of radial pixels. The gray level for a rectangular pixel f(i, j) is calcu-
lated from the gray level of its four neighboring polar pixels as:

f(i, j) = (1− t)(1 − u)f(x, y) + t(1 − u)f(x + 1, y)
+ (1− t)uf(x, y + 1) + tuf(x + 1, y + 1)

(1)

where:

x = floor(i) t = i− x (2)
y = floor(j) u = j − y (3)

As well known bilinear interpolation (zoom) is one of the most common algo-
rithms used in image processing. It is a fractional zoom calculation and used to
change the size of an image while retaining good image quality.

So, to ease the estimation of rotary motion based on the blurred image, we
transform the rotary motion blurred image to polar lattice. Thus we sector it
at the rotary center. After sectoring, the image on polar coordinates is opened

Fig. 1. Polar-to-rectangular lattice transformation. (a) Polar lattice system. (b) Rec-
tangular lattice system.
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as a sector. For rotary motion, the angular displacement related to the static
position is approximately expressed as:

θm(t) = ϕ0 + ω(t) (4)

where ω is the angular velocity, ϕ0 is the angular displacement at the beginning
of exposure time from the static position.

Assuming r is the rotary radius, the linear velocity is expressed as:

υ = rω(t) (5)

here, points on the blurred image are defined by velocity (υi,j).
So the movement of points on the moving object with the same rotary radius

is considered as a linear uniform motion. If we sector the motion blurred image
along the normal direction by the method we discussed before, the obtained
image is the translation blurred image. The 2D problem is thus reduced to a 1D
problem. The velocity is measured by detecting the linear velocity of obtained
image. In the next part, we will discuss how to estimate the translation based
on the motion blurred image.

2.2 The Fundamental Assumption

An image is formed when an image detector integrates light energy over a time
interval [8]. If illumination is stable and target objects are diffused and reflective
surface, we assume that the light intensity Is projected from the same physical
point of object to the CCD image plane will not change whether it is in motion
or not. The beginning exposure time is defined as the starting time, and the
position (x, y) of a point at that time is defined as the initial static position. In
case of arbitrary motion during exposure time t, displacements related to the
initial static position are expressed as (x0(t), y0(t)),along the x-direction and y-
direction, respectively. When the point moves from (x, y) to (x0(t), y0(t)) during
the exposure time t, the light intensity can be expressed as:

I(x + xo(t), y + y0(t), t) = I(x, y, t0) (6)

By variables transforming (x, y), Equation(6) can be expressed as follows:

I(x, y, t) = I(x− xo(t), y − y0(t), t0) (7)

Defining I(x, y, t0) as the light intensity Is(x, y) of static image, we have

I(x, y, t) = Is(x− xo(t), y − y0(t)) (8)

2.3 The Motion Blurred Image in Spatial Domain

The gray level of any point on the image recorded by CCD is proportional to
the integral of light intensity at this point during the exposure time. So the gray
level of static image is:

f(x, y) = k

∫ te

0

Is(x, y)dt = kIs(x, y)te (9)
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where k is the photoelectric transformation coefficient of CCD, and te is the
exposure time.

According to the linear integral character of CCD, the motion blurred image
g(x, y) can be regarded as the superposition of motion object at every instant
position on an image plane. Within an interval in exposure time [ti, ti + dt], the
motion object is considered as quiescent condition. So the small increment of
gray level is dg(x, y):

dg(x, y) = kI(x, y, t)dt = kIs(x− x0, y − y0(t))dt (10)

Substituting (9) for (10) yields

dg(x, y) =
1
te

f(x− x0(t), y − y0(t))dt (11)

By integrating two sides of (11) during the exposure time, the relationship
between the static image and its blurred version can be expressed as:

g(x, y) =
1
te

∫ te

0

f(x− x0(t), y − y0(t))dt (12)

2.4 Translation of Motion Blurred Image in Frequency Domain

Assuming xt(t) and yt(t) as translation components along x and y direction,
from (12), the relationship between the linear uniform motion image and the
static image in the spatial domain is:

g(x, y) =
1
te

∫ te

0

f [x− xt(t), y − yt(t)]dt (13)

After the Fourier transform:

G(u, v) =
1
te

F (u, v)
∫ te

0

e[−i2π(uxt(t)+vyt(t))]dt (14)

We define H(u, v) as:

H(u, v) =
1
te

∫ te

0

e[−i2π(uxt(t)+vyt(t))]dt (15)

Then, Equation (14) can be simplified to (16):

G(u, v) = F (u, v)H(u, v) (16)

If there is motion just in the x direction, the velocity is vx(t) = a/te, vy = 0
then the displacement is xt(t) = at/te, yt(t) = 0. When t = te, the displacement
of image is a. So Equation (15) becomes:

H(u) =
1
te

∫ te

0

e(−i2πuat/te)dt =
1

πua
sin(πua)e(−iπua) (17)
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H(u) is the point spread function (PSF) of motion. The zeroes of PSF can be
written as:

μi = πua (18)

These standard values of zeroes μi can be known by their sinusoidal function,
that is ni = ua, ni = 1, 2, . . . , n. Based on this analysis, there is a series of
darkness parallel lines on the spectrum that relate to these zeroes of H(u). These
lines are extracted by Radon transformation of image processing in this paper.
Meanwhile, these lines are vertical in the motion direction. So the displacement is
calculated by H(u)’s zeroes. The mathematical expression shows that increasing
the displacement of motion creates more lines in the frequency domain, and
decreasing the displacement of motion decreases the number of these lines. Based
on the geometric relationship between translation and rotation, we obtained
relation between the displacement of translation and the angular velocity, and
the exposure time.

ω(t) = a/rte (19)

Where, r is the radius of geometric transformation. The angular velocity can be
obtained by (19).

2.5 The Method for Simulating Blurred Image

For the translational motion with vx(t) and vy(t) as motion components along
x and y direction, from the (13), we get:

g(x, y) =
1
te

∫ te

0

f(x− xt(t), y − yt(t))dt

∼= 1
ten$T

(n−1)�T∑
i=0

f(x− vxi$T, y − vyi$T )
(20)

Where the time interval [0, te] is divided into n steps, and every time step is $T .
So the translation blurred image g(x, y) is simulated by summing up unblurred
images f(x− xt(t), y − yt(t)).

For the rotation blurred image, we represent the image plan by polar coor-
dinates system. The polar coordinate of image point is (r, θ), where the polar
center is located in the center of blurred image, and r = (x2 +y2)1/2, (x, y) is the
Cartesian coordinate of image point. Then, let the rotational center of blurred
image locate at the point of polar center. The simulated image of rotation blur
is deduced using the same procedure in (20).

g(r, θ) =
1
te

∫ te

0

f(r, θ − θ(t))dt

∼= 1
ten$T

(n−1)�T∑
i=0

f(r, θ − iω$T )
(21)

Where the time interval [0, te] is divided into n steps, and every time step is $T .
So summing up unblurred images simulates the rotation blurred image f(r, θ) .
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3 Experimental Results

We evaluate the method’s ability to estimate the angular velocity and the angular
displacement from the blurred image with simulated images and real images.

3.1 Simulation

In this section, two simulated experiments are carried out to verify the proposed
estimation of translation displacement and the angular displacement, using the
procedure in (20) and (21).

In first experiment, based on the procedure in (20), the simulated exposure
time te is 1s, and then we let vx$T = 1 pixel, and vy$T = 0. Binary English
character images at a resolution of 165×165 pixels and at a resolution of 320×320
pixels, as shown in Table 1., are used. Meanwhile, Table 1. shows estimation
results for English characters with n = 25, n = 30, n = 40, respectively. That
is, displacements of them are 25pixels, 30pixels, 40pixels and velocities are
25pixel/s, 30pixel/s and 40pixel/s respectively.

These results of the first experiment are given in Table 1. From Table 1, we
found that the maximum angular relative error is 0.093. When we increased the
resolution of blurred image, the relative error decreased to 0.004. This proves
that our algorithm has good accuracy.

In the second simulated experiments, an IC element image at a resolution
of 320 × 320 pixels in electronic manufacture is applied to obtain a rotation
blurred image. In this experiment, the simulated exposure time te is 1s, and
ω$T = 1◦ . Table 2 shows estimation results for IC image with n = 20. The
angular displacement is 20◦ and the angular velocity is 0.349 rad/s. Figure 2
shows the simulated rotation blurred image and sectored image of it. Figure 3
shows the spectrum of sectored image.

The steps to estimate the angular displacement are as follows:

1. Rotation center detection. We extracted the rotation center by traditional
circles detection algorithms. Two-steps algorithm has been used to detect
the circle from pairs of intersecting chords using Hough transform (HT),
which is robust against object defects and shape distortions. In the first
step, we applied the Sobel edge detection algorithm to find circles’ edges in
the rotation blurred image. Then, the 2D HT is used to compute the centers
of the circles. The points computed from chords are being voted to the 2D
accumulator array, the significant peak is detected as the center.

2. Sectoring the rotation blurred image. We sector the rotation blurred image
along the normal direction at the rotary center based on the algorithm in
Sect 2.1.

3. Lines Detection. We extract these parallel lines on spectrum using the Radon
transformation. The Radon transform is a standard tool to extract parame-
terized straight lines from images.

4. Calculating results. After positions of parallel lines are found, the angular
displacement or angular velocity is obtained by (18) and (19).
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Table 1. Experimental results of translation velocity estimation

Blurred Image Sectored Image Velocity Results Relative Error

25pixel/s 27.333pixel/s 0.093

30pixel/s 32.8pixel/s 0.093

40pixel/s 41pixel/s 0.025

30pixel/s 30.12pixel/s 0.004

40pixel/s 40.02pixel/s 0.0005
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Fig. 2. Original IC element Image and Simulated rotation blurred image with displace-
ment of 20 degree

Table 2. Experimental results of translation velocity estimation

Lines No. 1 2 3 4

Angular displacement (◦) 19.15 18.80 19.15 19.15

Lines No. 5 6 7 8

Angular displacement (◦) 19.15 19.15 18.80 19.15

Results of second experiment are given in Table 2. These results of angular
displacement are calculated by the position information, which is detected by
image processing methods. The average of these calculated results is 19.06◦ and
the relative error is 0.042. And the angular velocity is 0.33rad/s and the relative
error is 0.048. These results show that our method is quite accurate when applied
to rotation.

3.2 Real Experiment

In this section, we demonstrate the feasibility of the novel method for a real-
world image taken by a camera.

The schematics for this rotation estimation and part of real experiment equip-
ment are shown in Fig. 4.

An axle head of servomotor is applied to generate a blurred image. The expo-
sure time of camera is controllable by software, so here, we set the exposure time
as 0.01618s. First, we keep the servomotor rotated, the revolution number of it
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Fig. 3. Sectored blurred image of simulated rotation-blur image and Spectrum of sec-
tored blurred image

Fig. 4. The schematics for rotation estimation and part of real experiment equipment

is 400r/min that is correspond to the feedback value measured by photoelectric
encoder in the servomotor. And then the camera acquires the blurred image.
The blurred image at a resolution of 479× 479, the sectored blurred image and
its spectrum are all shown in Fig.5.

These results of revolution number are calculated by the position information,
which is detected by image processing methods. The average of these calculated
results is 387.06r/min and the relative error between calculated value obtained
from the vision method in this paper and the measured value obtained from
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Fig. 5. Real experiment revolution number is 400r/min

photoelectric encoder is 0.032. These results show that our method is efficiency
when applied to rotation.

4 Conclusions

We have presented a new method for rotation analysis from singular blurred
image using“motion blur” information. We utilize the motion blur of the motion
image rather than consider it as degradation on image. This method calculated
the angular velocity and angular displacement from singular blur image. Further,
our algorithm decomposes a 2D rotation analysis problem into a 1D translation
problem, which simplifies the rotation analysis. The agreement between proposed
method and experimental results demonstrates the feasibility and efficiency of
this method.
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Abstract. In this paper we propose a new segment-based stereo match-
ing algorithm using scene hierarchical structure. In particular, we high-
light a previously overlooked geometric fact: the most foreground objects
can be easily detected by intensity-based cost function and the farer ob-
jects can be matched using local occlusion model constructed by former
recognized objects. Then the scene structure is achieved from foreground
to background. Two occlusion relations are proposed to establish occlu-
sion model and to update cost function. Image segmentation technique
is adopted to increase algorithm efficiency and to decrease discontinuity
of disparity map. Experiments demonstrate that the performance of our
algorithm is among the state of the art stereo algorithms on various data
sets.

1 Introduction

Stereo matching is one of the most active research areas in computer vision.
It serves as an important step in a wide range of applications such as view
synthesis, image based rendering and modeling and robot research, etc. Given
a pair of horizontal registered images from the same scene, the goal of stereo
matching is to determine the dense disparity map. For every 3D point P in the
scene, if it is not occluded in both images, we can find a pixel p in the left image
which corresponds to P , and a pixel q in the right image too. The two pixels lie
on the same horizontal scanline since the images are rectified. The difference in
the horizontal position of p and q is termed as disparity, which is in inverse ratio
with P ’s depth [1,2]. Disparity map consists of all pixels’ disparities.

1.1 Previous Work

There exists a considerable body of work on the dense stereo correspondence
problem. [1,2] have provided an exhaustive comparison of dense stereo corre-
spondence algorithms. In general, stereo algorithms can be categorized into two
major classes: the methods based on local constraints and the methods based
on global constraints. Block matching methods seek to estimate disparity at a
point in one image by comparing a small window about that point with a series

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 632–643, 2006.
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of small windows extracted from the other image. Different methods use differ-
ent windows, like solid windows [3], multiple windows [4,5], adaptive windows[6].
Local methods can be very efficient, but they are sensitive to locally ambiguous
regions in images (e.g., textureless regions, disparity discontinuous boundaries
and occluded portions).

Global methods can be less sensitive to ambiguous regions since global con-
straints provide additional support for regions difficult to match locally. Dynamic
programming is a mathematical method that reduces the computational com-
plexity of optimization problems by analyzing the corresponding scanlines and
constructing appropriate occlusion model [7,8,9]. The most significant limitation
of dynamic programming for stereo matching is its inability to strongly incorpo-
rate both horizontal and vertical continuity constraints. An alternative approach
that exploits these constraints is to cast the stereo matching problem as that of
finding the maximum flow [10] in a graph [11,12,13,14]. Graph cut methods have
been shown to be among the best performers in [1]. However, these methods are
more computationally expensive because of too many iterations.

A lot of segment-based stereo algorithms arise recently [15,16,17], which are
based on the assumption that there are no large disparity discontinuities in-
side homogeneous color segments. Image segmentation representation is used
to reduce the high solution space and enforce disparity smoothness in homo-
geneous color regions. Usually the segmentation technique is integrated within
other frameworks and achieves strong performance. The approach we propose is
also segment-based.

1.2 Overview of Our Approach

The proposed algorithm is inspired upon two facts: dynamic programming and
image segmentation. Dynamic programming is well known for its efficiency and it
can take advantage of all knowledge of the occlusion geometry in one scanline to
model occlusion relation for later correspondence. Image segments contain much
richer information than one single scanline, and the possibility of making a wrong
decision upon a segment could be greatly reduced. The two facts motivate us
to model an accurate occlusion relation based on image segment then to offer a
better algorithm.

In our approach, the scene structure is divided into a set of disparity levels.
The stereo matching problem becomes assigning the corresponding disparity to
each level, which can be easily formalized as an cost minimization problem in
the segment domain. Specifically, the cost function contains two levels: pixel
matching cost eliminates sampling errors, and segment matching cost measures
the disagreement of segments.

In the hierarchical scene structure, the nearest objects can be first matched
because they are never occluded, then an accurate local occlusion model is con-
structed by the detected foreground for the farer objects’ matching process.
Once one level is identified, the pixels in this level are termed as ground con-
trol points(GCPs) [8,9,16]. When we finished matching process from foreground
to background, the dense disparity map is obtained and invalid disparities are
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eliminated. For scenes composed of several planes we also recognize each plane
by segment coalition method and plane fitting equation. It is worth to notice that
while the algorithm computes disparity map for each image using consistency
constraint, the generalization for multiple input images is straightforward.

The rest of the paper is organized as follows: First some stereo constraints
(section 2) and image segmentation technique (section 3) are briefly described.
Then the proposed algorithm is presented in detail mainly focus on how to
define cost function (section 4) and how to apply occlusion relation to assign
the corresponding disparity to each scene disparity level (section 5). We provide
various experimental results in Section 6 to demonstrate the algorithm’s strong
performance for traditional challenging image regions. Finally, we conclude in
Section 7.

2 The Definitions of Constraints

Here we introduce three consistency constraints. These constraints serve two
purposes: they facilitate a reasonable search of possible match, and they disallow
certain types of unlikely match. First of all, several concepts in stereo vision are
re-formulated and generalized to facilitate the definitions of the constraints. The
definitions of constraints are given later.

We use a pair of horizontally rectified stereo images to ease the description
of the algorithm through out the paper. Let Il denote the left image and Ir the
right image. Let Dl denote the disparity map of Il and Dr of Ir. Dl is a function
that assigns each pixel p in Il a disparity d, a horizontal displacement vector:
Dl(p) = d, such that d is the disparity of q = p + d in Ir: Dr(p − d) = d. Let
Il(p) denote the intensity of the left image pixel p and Ir(q) the intensity of the
right image pixel q. At the beginning, Dl and Dr are both empty. A pair (p, d)
is termed as a match, which could be considered as a 3D point.

Definition 1 (Uniqueness Constraint). Every pixel has one and only one
disparity: Dl(p) = d1 ∧Dl(p) = d2 =⇒ d1 = d2.

Definition 2 (Ordering Constraint). The ordering of two pixels of a scanline
in one image is kept in the other image: pl < pr =⇒ pl −Dl(pl) < pr −Dl(pr).

Definition 3 (Consistency Constraint). Corresponding pixels share the
same disparity: Dl(p) = d =⇒ Dr(p− d) = d.

It can be shown that the above constraints hold for most of the previously used
stereo datasets [1,3,7,8]. A detailed discussion is outside the scope of this paper.

3 Segmentation

Our approach is built upon the assumption that large disparity discontinuities
only occur on the boundaries of homogeneous color segments. Therefore any
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image segmentation algorithm that decomposes an image into homogeneous im-
age segments will work for us. In our current implementation, mean-shift image
segmentation algorithm [18] is used.

We assume that pixels inside the same segment have the same disparity and
our algorithm actually assigns each segment a disparity. This assumption makes
our method very simple and efficient. The assumption seems quite restrictive
since it is only valid for fronto-parallel surfaces and becomes problematic when
a segment represents a pronounced slanted surface or crosses surface bound-
aries. However, we claim that, the limitation could be significantly alleviated
and the assumption becomes a very good approximation in practice by taking
over-segmentation. In fact in slant plane cases we will incorporate all segments
on the same plane to improve smoothness as discussed in subsection 5.5. Fig.1
shows segment result of standard dataset Tsukuba [1].

Except for image segmentation, we take an additional segment splitting me-
thod that assigns individual pixel special disparity and splits it from the segment
dynamically. The splitting method helps capturing object boundaries missed by
color segmentation and decomposes a pronounced slanted surface into small
regions, therefore making the constant disparity assumption a good approxi-
mation and making our algorithm more flexible. Such method is described in
subsection 5.3.

Fig. 1. The Tsukuba image. Left column is the reference view. Middle column is
the segment result. Right column is initial disparity map computed by segment cost
function.

4 Cost Function

Cost function is used for disparity estimation and is usually based on pixel inten-
sity. The cost function of the proposed algorithm contains two levels: pixel match-
ing cost which eliminates sampling errors and segment matching cost which
measures the disagreement of segments.

4.1 Pixel Matching Cost

The simplest cost function is as the absolute difference of intensity between two
pixels. Given a possible match (p, d):

Costβ(p, d) = |IL(p)− IR(p− d)| (1)
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However, this measure is inadequate for discrete images, because image sam-
pling can cause this difference to be large wherever the disparity is not an integral
number of pixels and in this case every 3D point’s intensity is distributed over
several pixels. Typically, the sampling problem is alleviated by using some lin-
early interpolated intensity functions in a method that are insensitive to sampling
(Birchfield and Tomasi, [7]).

In practice, we found Birchfield’s method just alleviated sampling error on
one side, but failed when sampling error occurred on both sides especially in
textureless regions. We improved their method and achieved better effects. Con-
sider three pixels ql, q, qr in right image: ql = p−(d+1), q = p−d, qr = p−(d−1).
We believe that sampling error occurs if and only if the dissimilarity between p
and ql, q, qr is not greater than a predefined threshold λ:

Cost(p, d) =
1

|{qi}|
∑

qi∈{qi}
Costβ(p, p− qi) (2)

where {qi} = {qi|qi ∈ {p− (d+1), p−d, p− (d−1)}∧Costβ(p, p− qi) ≤ λ}, and
|{qi}| denotes the element count of {qi}.In our current implement we set λ = 1.

It is worth pointing out here that our cost function make no use of any type
of local window because the segment cost function to be introduced in the next
subsection is more effective than any window-based cost function.

4.2 Segment Matching Cost

Segment cost is defined as an average of all pixels’ costs. Consider segment S
and let |S| denote the pixel count, so we can write:

Costβ(S, d) =
1
|S|
∑
p∈S

Cost(p, d) (3)

Just as window-based cost functions, (3) is also a kind of local constraint.
However, window-based measurements usually make large errors in the disparity
discontinuous boundaries because of occlusion and intensity break [3,4,5,6]. On
the contrary in image segment since pixel intensities are all similar, the disparity
break is prohibited, so (3) is much more robust than previous window-based cost
functions.

When all pixels in S are not occluded, (3) is the standard segment cost func-
tion. In subsection 5.2 we give a modified version which concerns the occurrence
of occlusion.

5 Hierarchical Stereo Algorithm

In this section we describe the disparity map estimating algorithm in detail.
In general our algorithm perform the following four steps. First we obtain the
initial disparity map. We then assign the corresponding disparity to each level
from foreground to background by modeling proper occlusion relation. Thirdly,
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undetermined segments’ disparities are identified using GCPs. Finally, if there
exist slant planes in the scene we incorporate all segments on the same plane
using segment coalition method and plane fitting equation.

5.1 Initialization

Computing the initial disparity map is trivial: compute cost values for all pos-
sible matches (S, d) using (3) and simply choose for each segment the disparity
associated with the minimum cost and fill in Dl and Dr respectively. Here we
assume that all image segments are unoccluded. As shown in Fig.1, our segment
cost function gains good initial results.

5.2 Occlusion Relation

In this paper, we emphasize particularly on the occlusion relation for the modi-
fication of segment cost function (3). At first, two important occlusion relations
in left image are introduced. The corresponding relations in right image can be
easily obtained by symmetry.

Definition 4 (Strong Occlusion Relation). Given two adjoining pixels pl

and pr of the same scanline in left image, and their corresponding pixels ql =
pl − Dl(pl) and qr = pr − Dl(pr) in the right image, if the disparity of pl is
greater than that of pr, then the pixels between ql and qr are all occluded and their
disparities are all less than or equal to the pr’s: pl = pr−1∧Dl(pl) > Dl(pr) =⇒
∀q, ( q > ql ∧ q < qr =⇒ q is occluded ∧Dr(q) ≤ Dl(pr) ).

Definition 5 (Weak Occlusion Relation). Given two adjoining pixels pl and
pr of the same scanline in left image, and their corresponding pixels ql = pl −
Dl(pl) and qr = pr −Dl(pr) in the right image, if the disparity of pl is greater
than that of pr, then the pixels between ql and qr are all occluded and their
disparities are all equal to the pr’s: pl = pr − 1 ∧Dl(pl) > Dl(pr) =⇒
∀q, ( q > ql ∧ q < qr =⇒ q is occluded ∧Dr(q) = Dl(pr) ).

Strong occlusion relation describes the inter-occlusion situation of objects con-
taining more than two kinds of depth, and weak occlusion relation only applies
to the case of two kinds of depth. The principle hidden behind both relations
is the same: when occlusion occurs, background is occluded by foreground. Or
in other words, the larger disparity pixels occlude the smaller ones. Fig.2 shows
the two occlusion relations.

In the initialization phase we assume the lackness of occurrence of occlusion.
Such assumption would easily bias segment matching cost in occluded portions,
but in unoccluded areas it is credible. Obviously the foreground is doubtless
unoccluded. Since we represent the scene structure as a set of disparity levels,
once a level with larger disparity is recognized, all possible cost values of the
segments adjacent to that level should be re-computed. Refer to the two occlusion
relations, the occluded pixels in a segment can be decided by GCPs and the given
disparity d.
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Fig. 2. The occlusion relations. Two horizontal lines are corresponding scanlines of two
images. Well-matched pixel(GCP) pairs are in red and linked by red lines. The blue
pixels on right scanline is occluded, and their disparities are equal to that of qr under
weak occlusion relation.

Fig. 3. Occluded pixels. The horizontal line are considered scanline of left image. The
red pixel is GCP pgcp with disparity dgcp. the (dgcp − d) blue pixels on the left side of
pgcp are occluded.

Definition 6 (Occluded Pixels). To compute cost value of segment S under
a given disparity d in left image, for every scanline S strides, we denote the first
GCP on the right side of S as pgcp with disparity dgcp. If (dgcp − d) is positive,
the (dgcp − d) pixels on the left side of pgcp are occluded. Refer to Fig.3.

It is easy to see that the occluded pixels in segment S is a function of the
given disparity d and denoted as Socc(d). Accordingly, the unoccluded pixels
are denoted as Sunocc(d), and S = Socc(d) + Sunocc(d). The modified version of
segment cost function that concerns the occlusion situation is:

Cost(S, d) =
1

|Sunocc(d)|
∑

p∈Sunocc(d)

Cost(p, d) (4)

5.3 Hierarchical Stereo Matching

Hierarchical stereo matching processes disparity level from foreground to back-
ground. Once a disparity level is recognized, the corresponding disparities in
Dl and Dr are updated. Let dcur denote the disparity of current processing
level and dmin(S) denote the disparity that gives the minimum matching cost
using (4) for segment S. Consider current depth level’s candidate segment set
Scandi(dcur) = {S|dmin(S) = dcur}. We claim that the element S in Scandi(dcur)
belongs to the dcur level if and only if S satisfies consistency constraint. The
consistency constraint of pixel is trivial, as defined in section 2. In the case of
segment, the situation is a little more complex.

Definition 7 (Segment Consistency Constraint). Thinking of the ratio of
a segment S between the count of unoccluded pixels satisfying pixel consistency
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Algorithm 1: The matching algorithm for one disparity level
Input: The current disparity level
Output: The segments corresponding to the current disparity level

DealWithDisparityLevel(dcur)1

{2

Start from left image, find the set Scandi(dcur) = {Sl|dmin(Sl) = dcur};3

If there is no appropriate segment Sl in Scandi(dcur) satisfying the consistency4

constraint, then:
Mark dcur as invalid disparity; return;5

For every Sl in Scandi(dcur):6

If Sl satisfies the consistency constraint, then:7

DealWithSegment(Sl);8

}9

DealWithSegment(S)10

{11

Let I denote left or right image S belongs to and J denote the other image;12

For every pixel p in S: Set DI(p) = dcur;13

Find the set Scorr(S) = {SJ} in the other image;14

For every SJ in Scorr(S):15

If SJ satisfies the consistency constraint, then:16

DealWithSegment(SJ);17

Else:18

Split the pixels {q} corresponding to S from SJ ;19

For every q in {q}: Set DJ (q) = dcur;20

}21

constraint and the total count of unoccluded pixels, we denote it as consistent
ratio and define a threshold γ. We claim that the segment satisfies consistency
constraint if and only if it’s consistent ratio is greater than γ. Denote p as the
pixel of left image, q = p − dcur as the pixel of right image, and S(q) as the
segment pixel q belonging to, we formulate segment consistency constraint as:
|{p|p ∈ Sunocc(p) ∧ dmin(S(q)) = dcur}| / |Sunocc(p)| > γ.

As described in the previous section, the foreground which has the maximum
disparity is doubtless unoccluded. When initialization, the scene structure kept
unknown, dcur is set to be the maximum disparity, and segments which have
the largest initial disparity and correspond with the consistency constraint are
seemed as correct foreground. In the successive process dcur is decreased by 1
each time until it is equal to the minimum disparity.

For every disparity level, if segment Sl in Scandi(dcur) of left image corre-
sponds with the consistency constraint we set dcur as disparity of Sl. In general,
the pixels corresponding to Sl in the right image belongs to several segments,
which we denote as Scorr(Sl) = {Sr}. If Sr in {Sr} satisfies the consistency con-
straint we set dcur as it’s disparity, otherwise, split the pixels corresponding to
Sl from Sr and set their disparities dcur. It is obviously that this process is left-
right iterative. When candidate segments in both images satisfy the consistency
constraint, the dcur level process stops.
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Especially if there is no appropriate segment S in Scandi(dcur) satisfying con-
sistency constraint the current disparity dcur is invalid and should be eliminated.
The matching algorithm for one disparity level is given in Algorithm. 1.

5.4 Undetermined Segments

There are still some undetermined segments after the step described in subsection
5.3 finished mainly due to ambiguous match. Consider the envelope composed
of GCPs around the undetermined segment, it confines the possible disparities
of the undetermined segment, which comprise of disparities of GCPs’ on the
envelope. When the disparity range is determined, a little more computation
helps to resolve the remained problem.

For single undetermined pixel we offer a more quick method. Consider the
GCPs on 8-neighbor direction. Among those eight disparities if some d’s count
is greater than a threshold and the positions correspond to some distribution,
we can set the undetermined pixel disparity d directly. Fig.4 demonstrates three
valid distributions. There are 12 valid distributions by symmetry.

Especially, if the undetermined segment is surrounded by several segments
on the same plane, we can compute each pixel’s disparity on the undetermined
segment directly using plane equation, as discussed in the next subsection.

Fig. 4. Determining single undetermined pixel’s disparity directly by 8-neighbor di-
rection GCPs. GCPs with the same disparities are marked in red and undetermined
center pixel in blue. Center pixel’s disparity can be set as the red pixels’ in the three
cases.

5.5 Plane Fitting

For scenes in which there exist several planes such as ”Venus” and ”Sawtooth” in
the Middlebury database[1], we tried fitting the planes to improve scene smooth-
ness using plane equation (5) as [15,17] did:

d = ax + by + c (5)

where x and y are pixel p’s image coordinates, a, b and c are plane parameters.
Disparities of pixels on the slant plane are changed gradually and integral

disparities are no more fit here. In such cases we use semi-disparity cost function
(6) to get the proper disparities. When the hierarchical algorithm processes dcur

is decreased by 1/2 each time.

Cost(S, d +
1
2
) =

1
2
(Cost(S, d) + Cost(S, d + 1)) (6)
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Here we propose an efficient way to find segments on the same plane and
to determine scene planes. When most segments are designated disparities, we
random select a segment as seed segment and examine the neighboring segments’
disparities. If the difference between two disparities of the seed segment and the
neighboring segment is not greater than 1/2, we mark the two segments a same
plane ID. Then the marked neighboring segments are treated as seem segment
individually and such operation repeats. If undetermined segment is surrounded
by several segments marked as the same plane ID we set the undetermined
segment that ID too. For each plane, the parameters a, b and c can be resolved
by the least square solution from the linear system

A[a, b, c]T = B (7)

where each row of A is the [x, y, 1] vector for all pixels in the plane, and each
row of B is pixel’s corresponding disparity d. Conversely, disparity of each pixel
can be redesignated using (5) to improve smoothness.

6 Experimental Results

In this section we present experimental results on the Middlebury database [1].
They provide stereo images with ground truth, evaluation software, and compar-
ison with other algorithms(http://cat.middlebury.edu/stereo/). This database
has become a benchmark for dense stereo algorithm evaluation.

For all the experiments, we set λ = 1 and γ = 0.8. Fig.5 shows the result on
four stereo pairs from the Middlebury database. Table 1 summarizes the results
of evaluation. The algorithms are listed roughly in decreasing order of overall
performance, and the minimum (best) value in each column is shown in red. We

Table 1. Middlebury stereo evaluation table. The first column lists algorithm name.
The next 4 columns give percentage errors on the four scenes. Each of these four
columns is broken into 2 or 3 subcolumns: the all, disc, and untex columns give the
total error percentage everywhere, in the untextured areas, and near discontinuities,
respectively.

Tsukuba Sawtooth Venus MapAlgorithm
all untex disc all untex disc all untex disc all disc

Sym.BP+occl. 0.97 0.28 5.45 0.19 0.00 2.09 0.16 0.02 2.77 0.16 2.20
Patch-based 0.88 0.19 4.95 0.29 0.00 3.23 0.09 0.02 1.50 0.30 4.08
Segm.-based GC 1.23 0.29 6.94 0.30 0.00 3.24 0.08 0.01 1.39 1.49 15.46
Graph+segm. 1.39 0.28 7.17 0.25 0.00 2.56 0.11 0.02 2.04 2.35 20.87
Proposed 1.07 0.38 6.43 0.25 0.00 2.58 0.29 0.03 4.87 0.66 9.21

GC + mean shift 1.13 0.48 6.38 1.14 0.06 3.34 0.77 0.70 3.61 0.95 12.83
Segm.+glob.vis. 1.30 0.48 7.50 0.20 0.00 2.30 0.79 0.81 6.37 1.63 16.07
Belief prop. 1.15 0.42 6.31 0.98 0.30 4.83 1.00 0.76 9.13 0.84 5.27
Layered 1.58 1.06 8.82 0.34 0.00 3.35 1.52 2.96 2.62 0.37 5.24
2-pass DP 1.53 0.66 8.25 0.61 0.02 5.25 0.94 0.95 5.72 0.70 9.32
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Fig. 5. Results on Middlebury datasets. From left to right order: Tsukuba, Sawtooth,
Venus, Map. From top to down order: reference images, our result maps, the ground
truth maps.

list only top 10 results(at the submission time, including all published methods).
In fact the ranking gives just a rough idea of the performance of an algorithm
and there is actually little difference between those algorithms. It is hard to come
up with a ”perfect” ranking function since no algorithm shows best performance
on all four images. Our algorithm is in the bold and black face.

Besides the strong numerical and visual performance, another distinct advan-
tage of the proposed algorithm is memory saving performance. When initial-
ization, we allocate memory for all possible matches (p, d) and (S, d) to save
corresponding costs. Whenever a disparity level is identified or an invalid dis-
parity is eliminated, the memories allocated for this disparity are released. The
total memory space our algorithm holds decrease dynamically with the process
running until terminated.

7 Conclusions

In this paper, we present a new segment-based stereo method that handles oc-
clusion and obtains disparity map from foreground to background. A robust,
efficient and flexible hierarchical matching algorithm is developed. Experiments
demonstrate that the performance of our approach is comparable to the state-
of-the-art stereo algorithms on various datasets.
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Abstract. This paper introduces a novel Gabor-based supervised local-
ity preserving projection (GSLPP) method for face recognition. Locality
preserving projection (LPP) is a recently proposed method for unsuper-
vised linear dimensionality reduction. LPP seeks to preserve the local
structure which is usually more significant than the global structure pre-
served by principal component analysis (PCA) and linear discriminant
analysis (LDA). In this paper, we investigate its extension, called super-
vised locality preserving projection (SLPP), using class labels of data
points to enhance its discriminant power in their mapping into a low
dimensional space. The GSLPP method, which is robust to variations of
illumination and facial expression, applies the SLPP to an augmented
Gabor feature vector derived from the Gabor wavelet representation
of face images. We performed comparative experiments of various face
recognition schemes, including the proposed GSLPP method, principal
component analysis (PCA) method, linear discriminant analysis (LDA)
method, locality preserving projection method, the combination of Ga-
bor and PCA method (GPCA) and the combination of Gabor and LDA
method (GLDA). Experimental results on AR database and CMU PIE
database show superior of the novel GSLPP method.

1 Introduction

In the past decades, there have been many methods proposed for dimensionality
reduction ([1]-[7] and [15]). Two canonical forms of them are principal com-
ponent analysis (PCA) and multidimensional scaling (MDS). Both of them are
eigenvector methods aimed at modeling linear variability in the multidimensional
space.

Recently, an unsupervised linear dimensionality reduction method, locality
preserving projection (LPP), was proposed and applied to real datasets ([8]-
[13]). LPP aims to preserve the local structure of the multidimensional structure
instead of global structure preserved by PCA. In addition, LPP shares some
similar properties compared with LLE such as a locality preserving character.
However, their objective functions are totally different. LPP is the optimal linear
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approximation to the eigenfunctions of the Laplace Beltrami operator on the
manifold ([26]). LPP is linear and can deals with new data easily. In contrast,
LLE is nonlinear and unclear how to evaluate test points.

In this paper, we describe a supervised variant of LPP, called the supervised
locality preserving projection (SLPP) algorithm. Unlike LPP, SLPP projects
high dimensional data to the embedded low space taking class membership re-
lations into account. This allows obtaining well-separated clusters in the em-
bedded space. It is worthwhile to highlight the discriminant power of SLPP by
using class information besides inheriting the properties of LPP. Therefore, SLPP
demonstrates powerful recognition performance when applied to some pattern
recognition tasks. The GSLPP method for face recognition, which is robust to
variations of illumination and facial expression, applies the SLPP to an aug-
mented Gabor feature vector derived from the Gabor wavelet representation of
face images. We performed comparative experiments of various face recognition
schemes, including the proposed GSLPP method, principal component analysis
(PCA) method, linear discriminant analysis (LDA) method, locality preserving
projection method, the combination of Gabor and PCA method (GPCA) and
the combination of Gabor and LDA method (GLDA).

2 Locality Preserving Projection

We can conclude that both PCA and LDA aim to preserve the global structure.
In fact, the local structure is more important in many real cases. Locality pre-
serving projection (LPP) is a linear approximation algorithm of the non-linear
Laplacian Eigenmap for learning a locality preserving subspace ([26]). LPP aims
to preserve the intrinsic geometry of the data and local structure. The objective
function of LPP is defined as:

min
∑
ij

‖yi − yj‖2Sij (1)

where S is a symmetry similarity measure matrix. A possible way of defining
such S is:

Sij =
{

exp(−‖xi − xj‖2/t), ‖xi − xj‖2 < ε
0, otherwise

(2)

where ε > 0 defines the radius of the local neighborhood. Here the selection
of ε is somewhat like that of in LLE algorithm ([6]). The imposed constraint
is yT Dy = 1 ([9]). Finally, the minimization problem reduces to the following
form:

arg min
W

WTXLXT W

with WTXDXT W = 1
(3)

where D is a diagonal matrix, Dii =
∑

j Sij . And L = D − S is the Laplacian
matrix ([3]). The the transformation vector WLPP is determined by the minimum
eigenvalue solution to the generalize eigenvalue problem:

XLXTW = λXDXT W (4)

For more detailed information about LPP, please refer to [9][10][11][26].
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3 Supervised Locality Preserving Projection

It is our motivation to combine locality preserving property with discriminant
information to enhance the performance of LPP in pattern analysis ([14], [16]-
[19], [26]). Being unsupervised, the original LPP does not make use of class
membership relation of each point to be projected. To complement the original
LPP, a supervised LPP has been proposed in the paper, called SLPP.

Let’s rearrange the order of samples in the original dataset which will not
affect the procedure of the algorithm. Suppose that the first M1 columns of X
are occupied by the data of the first class, the next M2 columns are composed
of the second class, etc., i.e. data of a certain class are compactly stored in
X . This step is of benefit to simplify the explanation of SLPP algorithm. As a
consequence, X is changed to be an orderly matrix which is composed of sub-
matrices Ai of size n×Mi, i = 1, . . . , c, where c is the number of classes. In the
same manner, B2, . . . , Bc are generated by repeating the same process. Then
the nearest neighbors for each xj ∈ A1 are sought in A1 only. When applied
to all x

′
js ∈ A1, the procedure leads to a construction of the matrix B1. When

obtained B1, . . . , Bc, the similarity measure matrix S is constructed by taking
Bi as its diagonal structural elements, i.e.:

S =

⎡⎢⎢⎣
B1

B2

. . .
Bc

⎤⎥⎥⎦ (5)

To simplify the similarity computation between different points, we just set the
weight equal to 1 if the two points belong to the same class. Therefore, Bi takes
the following form:

Bi =

⎡⎢⎢⎢⎢⎣
0 1 · · · 1
1 0 1

...
... 1

. . . 1
1 · · · 1 0

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Mi

(6)

The algorithmic procedure of SLPP is then stated as:

(1) Order Rearrangement. As we have described in paragraph 4 of this section,
samples of a certain class are stored compactly in original samples matrix X
after order rearrangement.

(2) PCA Projection. For the sake of avoiding singularity of XDXT and of re-
ducing noise, we project X to its PCA subspace. X is still used to denote
samples in PCA space, and the transformation matrix is denoted by WPCA.

(3) Computing Similarity Measure Matrix S. Because we have finished the or-
der rearrangement of samples, Bi in Eq6 is easily computed. Then S is
constructed by taking Bi as its diagonal structural elements.
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(4) Eigenmap. Solve the generalized eigenvector problem:

XLXT W = λXDXT W (7)

Then the final transformation matrix from original sample space to the em-
bedded feature space is:

WSLPP = WPCAW (8)

where W is the solution of Eq7.

4 Gabor Wavelets

Marcelja and Dauman discovered that simple cells in the visual cortex can be
modeled by Gabor functions ([28]). The 2D Gabor functions proposed by Daug-
man are local spatial band-pass filters that achieve the theoretical limit for con-
joint resolution of information in the 2D spatial and 2D Fourier domains, that
is, Gabor wavelets exhibit desirable characteristics of spatial locally and orienta-
tion selectivity. Donato et al. had recently shown through experiments that the
Gabor wavelet representation gives better performance than other techniques
for classifying facial actions ([27]).

The Gabor wavelets (kernels, filters) can be defined as:

Ψα,β(z) =
‖kα,β‖2

σ2
e(−‖kα,β‖2‖z‖2/2σ2)(eikα,βz − e−σ2/2) (9)

where α and β define the orientation and scale of the Gabor kernels, ‖·‖ denotes
the norm operator, z = (x, y), and the wave vector kα,β is defined as:

kα,β = kβeiφα (10)

where kβ = kmax/f
β and φα = πα/8. kmax is the maximum frequency, and f is

the spacing factor between kernels in the frequency domain.
Let f(x, y) be the gray level distribution of the image. The Gabor wavelet

representation of the image is the convolution of f(x, y) with a series of Gabor
kernels at different scales and orientation:

Yα,β(z) = f(z) ∗ Ψα,β(z) (11)

where ‖ ∗ ‖ denotes the convolution operator, Yα,β is the corresponding convo-
lution result related to different orientation α and β. Applying the convolution
theorem, it gives:

Yα,β(z) = F−1{F{f(z)}F{Ψα,β(z)}} (12)

where F denoted the Fourier transform.
In order to encompass all frequency and locality information as much as pos-

sible, this paper, same as Liu [29], concatenated the all Gabor representations at
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the five scales and eight orientations. Before the concatenation, Yα,β(z) is down-
sampled by a factor ρ to reduce the space dimension, and normalized to zero
mean and unit variance. We then construct a vector out of the Yα,β(z) by con-
catenating its rows (or columns). Now let Y ρ

α,β(z) denote the normalized vector
constructed from Yα,β(z), the augmented Gabor feature vector Y ρ is defined as:

Y ρ = (Y ρ
α,β |α = 0, ..., 7; β = 0, ..., 4) (13)

5 Experimental Results of GSLPP

In this section, we applied the proposed GSLPP to the face recognition task,
together with PCA, LDA, LPP, GPCA and GLDA. Before carrying out the
experiments, each image will be transformed into its Gabor representation in
Eq13 both in training process and in testing process. The face data sets include
the well known AR data set and CMU PIE data set.

5.1 AR Face Dataset

AR face data set consists of 26 frontal images with different facial expressions,
illumination conditions, and occlusions (sunglass and scarf) for 126 subjects (70
men and 56 women). Images were recorded in two different sessions separated
by two weeks ([20]). Thirteen images were taken at the CVC under strictly
controlled conditions in each session. The images taken from two sessions of one
specific person are shown in Fig.1.

Fig. 1. Some samples of AR face data set

The size of the images in AR data set is 768×576 pixels, and each pixel is
represented by 24 bits of RGB color values. We select 80 individuals (50 men
and 30 women) for our experiment. 13 images in each session were all chosen for
every subject. That is, there are 26 images per subject in our database. Totally,
our database includes 2,080 images. Then these images were the input of a
face detection system which combines skin-based method and boosting method
([30][31]). After face detection, the detected face images are converted to gray-
scale and resized to 40×40. In fact, there are still a very small number of faces not
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Fig. 2. Face detection and preprocessing of AR

detected by the detection system although it achieves over 98% detection rate
on our database. For the purpose of experiment, these undetected face images
were cropped manually. The flow chart of detection process is shown in Fig.2.

The face images wearing glasses and scarf in the first session and second ses-
sion are contained in the training set and testing set, respectively. The left 14
images are divided randomly into two parts: 7 images for training and the other 7
for testing. That is, there are 1,040 images in the training set, and 13 images per
subject. It is the same to the testing set. In terms of theoretical analysis, differ-
ent method (PCA, LDA, and LPP) would result in different embedding feature
space. In fact, the basis of the feature space is the eigenvectors of the correspond-
ing method. Furthermore, we can display these eigenvectors as images. Because
these images look like human faces, they are often called Eigenfaces, Fisherfaces,
Laplacianfaces ([10][14][20]). For the eigenvectors of our SLPP, it may be called
S-Laplacianfaces.

The S-Laplacianfaces derived from the training set are shown in Fig.3, to-
gether with Eigenfaces, Fisherfaces and Laplacianfaces. The nearest neighbor
classifier is employed for classification. The recognition rates reach the best re-
sults with 121, 101, 79, 79, 109, 82 dimensions for PCA, GPCA, LDA, GLDA,

Fig. 3. Feature-faces of different algorithms on AR
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(a) the best recognition rates
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(b) recognition rates vs. dimensions

Fig. 4. Experimental results on AR face data set

LPP and GSLPP, respectively. Fig.4 shows the recognition rates versus dimen-
sionality reduction.

GSLPP method achieves the best recognition rate comparing with the other
five methods, though the recognition accuracy obtained by all these methods is
relatively low. One possible reason is that there are some occluded images in
training set and testing set. These images severely deteriorate the determinant
power of theses methods besides the exaggerated expression of non-occluded
images. But the most important we want to demonstrate is that GSLPP is
more effective than the other five methods. And the experiment proves its good
performances.

5.2 CMU PIE Face Dataset

The CMU PIE face dataset consists of 68 subjects with 41,368 face images as a
whole. The face images were captured by 13 synchronized cameras and 21 flashes,
under varying pose, illumination, and expression ([32]). In this subsection, we
selected 40 subjects in the database and used 140 face images for each individual.
70 images are for training, and the other 70 images for testing. Still, faces are
detected by the face detection system stated in section 5.1. The detected faces
are converted to grayscale and resized to 40×40, no other preprocessing. Some
samples are shown in Fig.5. Totally, there are 2,800 images in the training set
and the testing set, respectively.

For the sake of visualization, we illustrate S-Laplacianfaces derived from
the training set, together with Eigenfaces, Fisherfaces and Laplacianfaces in
Fig.6. Still, nearest neighbor classifier was adopted to perform the recognition
task for its simplicity, though there are other classifiers for pattern recogni-
tion such as Neural Network [23], Bayesian [21], Support Vector Machine [22],
etc.

The recognition rates approach the best with 115, 95, 39, 39, 107 and 77
dimensions for PCA, GPCA, LDA, GLDA, LPP and GSLPP, respectively. Fig.7
illustrates the recognition rates versus dimensionality reduction.
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Fig. 5. Some samples of CMU-PIE face data set

Fig. 6. Feature-faces of different algorithms on CMU-PIE
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Fig. 7. Experimental results on CMU-PIE face data set

6 Discussion and Future Work

It is worthwhile mentioning that GSLPP takes advantage of more training sam-
ples, which is important to learn an efficient and effective embedding space rep-
resenting the non-linear structure of original patterns. Sometimes there might
be only one training sample available for each class. In such a case, GSLPP can
not work since the similarity matrix is a nought matrix. How to overcome such
problem is one of our future works.

In fact, it is not always the case that we can obtain all the class information in
pattern analysis. Sometimes we only have unlabeled samples or partially labeled
samples. Therefore, another extension of our work is to consider how to use these
unlabeled samples for discovering the manifold structure and, hence, improving
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the classification performance ([10][25]). We are now exploring these problems
with full enthusiasm.
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Abstract. In fuzzy clustering, the fuzzy c-means (FCM) algorithm is the best 
known and most used method. Although FCM is a very useful method, it is sen-
sitive to noise and outliers so that Wu and Yang (2002) proposed an alternative 
FCM (AFCM) algorithm. In this paper, we consider the AFCM algorithms with 
L1-norm and fuzzy covariance. These generalized AFCM algorithms can detect 
elliptical shapes of clusters and also robust to noise and outliers. Some numeri-
cal experiments are performed to assess the performance of the proposed algo-
rithms. Numerical results clearly indicate the proposed algorithms to be supe-
rior to the existing methods. 

1   Introduction 

Cluster analysis is a tool for clustering a data set into groups of similar characteristic. 
The conventional (hard) clustering methods restrict each point of the data set to ex-
actly one cluster. Since Zadeh [12] proposed fuzzy sets, which produced the idea of 
partial membership described by a membership function, fuzzy clustering has been 
successfully applied in various areas (see Bezdek [1], Yang [10] and Hoppner et al. 
[5]). In the literature on fuzzy clustering, the fuzzy c-means (FCM) algorithm is the 
most well-known and used method. 

Although FCM is a very useful clustering method, it has some drawbacks. For 
example it is sensitive to noise and outliers. To overcome the drawbacks of FCM, Wu 
and Yang [9] proposed an alternative FCM (AFCM) clustering algorithm. Because 
there are many varieties of generalized FCM algorithms, Yu and Yang [11] had 
recently unified these FCM varieties into a generalization model.  

In this paper, we only focus on generalizing AFCM with L-1 norm and also with a 
covariance matrix. We know that the FCM clustering algorithm had been extended 
with L-1 norm by Jajuga [6], Bobrowski and Bezdek [2] and Hathaway et al. [4] and 
also extended with a covariance matrix by Gustafson and Kessel [3] and 
Krishnapuram and Kim [8].  

The remainder of this paper is organized as follows. In Section 2, the FCM 
clustering algorithm with L-1 norm is reviewed. We then proposed the AFCM 
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algorithm with L-1 norm. In Section 3, the FCM clustering algorithm with a 
covariance matrix is reviewed. We then proposed the AFCM algorithm with a 
covariance matrix. Numerical examples are given and comparisons are made between 
the proposed algorithms and the existing methods in Section 4. Conclusions and 
remarks will be stated in Section 5. 

2   AFCM with L1-Norm 

Let { }nxxX ,,1=  be a data set in an s-dimensional Euclidean space sR  with its 

norm denoted by ⋅ . For a given c, nc <≤2 , 1 2{ , , , }ca a a a= denotes the 

cluster centers where s
ia R∈ . Let { }ij c n×μ = μ fcnM∈  be fuzzy c-partitions, where  

1 1

, , 0, 1, 0
c n

fcn ij ij ij ijcn
i j

M i j n
= =

= μ= μ ∀ ∀ μ ≥ μ = > μ >     (1) 

Then the FCM objective function is defined as follows: 

2

1 1

( , ) ( )
n c

m
FCM ij j i

j i

J a x a
= =

μ = μ −       (2) 

where the weighting exponent 1>m  presents the degree of fuzziness. Thus, the 
FCM algorithm is iterated through the necessary conditions for minimizing 

( , )FCMJ aμ  with the following update equations: 

1 1

n n
m m

i ij j ij
j j

a x
= =

= μ μ ,   i=1,2,…,c     (3) 

2 2

1 1

1

c
m m

ij j i j i
k

x a x a
− −
− −

=

μ = − − ,  i=1,2,…,c ; j=1,2,…,n. (4) 

Jajuga [6] first replaced the 2L norm j ix a−  with 1L  norm by creating the fol-

lowing FCM-L1 objective function: 

1
1 1

( , )
n c

m
FCM L ij ij

j i

J a dμ μ−
= =

=   with   
1
| |

s

ij jk ikk
d x a

=
= − . (5) 

Bobrowski and Bezdek [2] and Hathaway et al. [4] then extended to pL  and L∞  

norms. Kersten [7] proposed the so-called fuzzy c-medians that had a similar  
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algorithm as Bobrowski and Bezdek [2]. To present the algorithm, we only con-

sider 1s = . That is, 
1

1 1

( , )
n c

m
FCM L ij j i

j i

J a x aμ μ−
= =

= − . By Lagrangian method, 

we can get the update equation for the fuzzy c-partitions as follows: 

1 1

1 1

1

c
m m

ij j i j i
k

x a x a
− −
− −

=

μ = − − ,  i=1,2,…,c ; j=1,2,…,n. (6) 

However, the update equation for the cluster center ia  needs to take the derivative of 

the absolute value j ix a− . In this case, we may order the data set as 

)()2()1( nqqq xxx ≤≤≤  with an ordering function nllq ,,1),( =  so that 

the FCM-L1 objective function becomes
1 ( ) ( )

1 1

( , )
n c

m
FCM L iq l q l i

l i

J a x aμ μ−
= =

= − . 

Thus, the derivative of 
1
( , )FCM LJ aμ−  with respect to ia  will be as follows: 

( ) ( )
=

+
− −−=

n

l
ilq

m
liqLFCM axsigndJ

1
)()(1 μ   with  

<−
≥

=+

0,1

0,1
)(

z

z
zsign .  

To solve the equation 01 =−LFCMdJ , i.e., ( ) ( )
=

+ −
n

l
ilq

m
liq axsign

1
)()(μ = 0, 

we need to find an optimal r such that ( ) ( ) 0
1

)(
1

)( =−
+==

n

rl

m
liq

r

l

m
liq μμ . We can get 

the update form for the cluster center ia  as follows: Let 
=

−= n

l

m
ilS

1
μ  and 

0=r . If 0<S , we set 1+= rr  and let m

liq
SS

)(
2μ+= . If 0≥S , then stop. 

According to this method, we give the FCM-L1 clustering algorithm as follows: 

FCM-L1 Algorithm 

Step 1: Fix nc ≤≤2  and 0>ε , and let 1=k . 

        Give initials (0) (0) (0)
1{ , , }ca a a= . 

Step 2: Compute the fuzzy c-partitions ( )kμ with ( 1)ka −  using Eq. (6).  

Step 3: Order the data set  with )()2()1( nqqq xxx ≤≤≤ . 

Let 
=

−= n

l

m
ilS

1
μ  and 0=r . 
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Step 4: Using m

liq
SS

)(
2μ+=  and 1+= rr .  

IF 0<S ,  update )(ka = )(rqx . 

Step 4: Compare ( )ka  to ( 1)ka −  in a convenient norm ⋅ . 

     IF the norm of  ( )ka  and ( 1)ka −  is less than ε , STOP 
        ELSE 1+= kk  and return to step 2. 

To consider a robust metric measure based on the robust statistic and the influence 
function, Wu and Yang [9] proposed an exponential distance 

2 1/2( , ) (1 exp( ))j i j id x a x aβ= − − −  to replace the Euclidean distance j ix a−  in 

the FCM objective function and called it an alternative FCM (AFCM) clustering algo-
rithm. The AFCM objective function was defined as 

2

1 1

( , ) ( ) (1 exp( ))
n c

m
AFCM ij j i

j i

J a x aμ μ β
= =

= − − − . The necessary conditions for 

minimizing ( ),AFCMJ aμ  are the following update equations: 

( ) ( )
1 1

2 21 1

1
1 exp 1 exp

m c m

ij j i j ik
x a x aμ β β

− −
− −

=
= − − − − − −  (7) 

( )
( )

2

1

2

1

exp 1, , ,
,

1, , .exp

n m
ij j i jj

i n m
ij j ij

x a x i c
a

j nx a

μ β

μ β

=

=

− − =
=

=− −
        (8) 

We now consider the AFCM-L1 algorithm by replacing the exponential distance 
2 1/2( , ) (1 exp( ))j i j id x a x aβ= − − −  with ( , ) (1 exp( ))j i j id x a x aβ= − − − . Thus, we 

have the following AFCM-L1 objective function: 

1
1 1

( , ) ( ) (1 exp( ))
n c

m
AFCM L ij j i

j i

J a x aμ μ β−
= =

= − − −  . (9) 

The update equation for the fuzzy c-partitions as follows: 

( )( )[ ] ( ) ( )( )[ ] ( )

=

−−
−−−−−−=

c

k

m

kj

m

ijij axax
1

1111
exp11exp11 ββμ

 

(10) 

Similarly, we order the data set as )()2()1( nqqq xxx ≤≤≤  for an ordering 

function nllq ,,1),( =  so that  
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( ) ( ){ }
= =

− −−−=
c

i
ilq

n

l

m
liqLAFCM axJ

1
)(

1
)(1 exp1 βμ .  Thus, 

( )1 ( ) ( ) ( )
1 1

( , ) exp( ) ( )
c n m

AFCM L iq l q l i q l i
i l

dJ a x z sign x zμ μ β β +
−

= =

=− − − − w  with 

<−
≥

=+

0,1

0,1
)(

z

z
zsign  . The AFCM-L1 algorithm is given as follows: 

AFCM-L1 Algorithm  

Step 1: Fix nc ≤≤2  and 0>ε , and let 1=k . 

         Give initials (0) (0) (0)
1{ , , }ca a a= . 

Step 2: Compute the fuzzy c-partitions ( )kμ with ( 1)ka −  using Eq. (10).  

Step 3: Order the data set  with )()2()1( nqqq xxx ≤≤≤ . 

Let ( )
= =

−−=
c

i

n

l
ilq

m
liq axS

1 1
)()( )exp( ββμ  and 0=r . 

Step 4: Using ( ) ))exp(2 )()( ilq
m

liq axSS −−+= ββμ  and 1+= rr .  

IF 0<S ,  update )(ka = )(rqx . 

Step 4: Compare ( )ka  to ( 1)ka −  in a convenient norm ⋅ . 

     IF the norm of  ( )ka  and ( 1)ka −  is less than ε , STOP 

        ELSE 1+= kk  and return to step 2. 

3   AFCM with a Covariance Matrix 

Gustafson and Kessel [3] considered the effect of different cluster shapes except for 

spherical shape by replacing the Euclidean distance ( ),j i j id x a x a= −  in FCM 

with the Mahalanobis distance ( ) 2
, ( ) ( )

i

T
j i j i j i i j iA

d x a x a x a A x a= − = − −  

where iA  is a positive definite s s×  covariance matrix and its determinate 

det( )i iA ρ=  is a fixed constant. We call this extension as FCM-cov. Thus, the 

FCM-cov objective function is given as 

2

cov
1 1

( , , )
i

n c
m

FCM ij j i A
j i

J u a A x aμ−
= =

= −     (11) 
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where , 1( , , ) cs
fcn cM a a a Rμ ∈ = ∈  and { }1, , cA A A=  for which iA  is 

positive definite with det ( )i iA ρ= . The necessary conditions for minimizing 

cov ( , , )FCMJ u a A−  are the following update equations: 

1 1
,

n nm m
i ij j ijj j

a xμ μ
= =

=     (12) 

1
2 ( 1) 2 ( 1)

1

1, , ,
,

1, , ,i k

c m m

ij j i j kA A
k

i c
x a x a

j n
μ

−
− −

=

=
= − −

=
      (13) 

with 1 1

1
( det( )) , ( )( ) , 1, , .

ns m T
i i i i i ij j i j ij

A S S S x a x a i cρ μ−
=

= = − − =  

Therefore, the FCM-cov algorithm is summaried as follows: 

FCM-cov Algorithm 

Step 1: Fix nc ≤≤2  and 0>ε , and let 1=s . 

        Give initials (0) (0) (0)
1( , , )cμ μ μ= . 

Step 2: Compute the cluster centers )(sa  with ( 1)sμ −  using Eq. (12).  

Step 3: Update ( )sμ  with )(sa  using Eq. (13). 

Step 4: Compare ( )sμ  to ( 1)sμ −  in a convenient matrix norm ⋅ . 

     IF ( ) ( 1)s sμ μ ε−− < , STOP 

        ELSE s=s+1 and return to step 2. 

We mention that the FCM-cov algorithm became an important extended type of 
FCM. Krishnapuram and Kim [8] discussed more about the FCM-cov algorithm with 
a new variation. 

Next, we consider the AFCM-cov by replacing the distance 

( ) 2
, ( ) ( )

i

T
j i j i j i i j iA

d x a x a x a A x a= − = − −  with the exponential distance 

( ))()(exp1),( jij
T

ji yxAyxyxd −−−−= β . Thus, the AFCM-cov objective 

function is ( ) ( ){ }
= =

− −−−−=
c

i
iji

T
ij

n

j

m
ijAFCM zxAzxJ

1 1
cov )()(exp1 βμ . 

Similarly, the necessary conditions for minimizing cov ( , , )AFCMJ u a A−  are the  

following update equations: 
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( ) ( )( )( )[ ] ( )

( ) ( )( )( )[ ] ( )

=

−

−

−−−−

−−−−
=

c

k

m

iji
T

ij

m

iji
T

ij
ij

axAax

axAax

1

11

11

exp11

exp11

β

β
μ     (14) 

( ) ( )

( ) ( ))()(exp

)()(exp

1

1

iji
T

ij

mn

j
ij

iji
T

ijj

mn

j
ij

i

axAax

axAaxx

a

−−−

−−−
=

=

=

βμ

βμ
      (15) 

where ( ) ppAA n
ii

1
11 −− =  and 

( ) ( )( ) ( ) ( )[ ]
=

−−−−−=
n

j
iji

T
ij

T
ijij

m
ij axAaxaxaxp

1

exp ββμ  

Note that, since ia  in Eq. (15) cannot be directly solved we need to use an iterative 

method to achieve it. Therefore, the AFCM-cov algorithm can be described as fol-
lows: 

AFCM-cov Algorithm 

Step 1: Let ),( μah be the right term of Eq. (15). 

Fix nc ≤≤2  and 0>ε , and let 1=s . 

        Give initials (0) (0) (0)
1{ , , }ca a a= . 

Step 2: Compute the fuzzy c-partitions ( )sμ  with ( 1)sa −  using Eq. (14).  

Step 3: Update )(sa  with ),( )()1()( sss aha μ−=  using Eq. (15). 

Step 4: Compare ( )sa  to ( 1)sa −  in a convenient matrix norm ⋅ . 

     IF ( ) ( 1)s sa a ε−− < , STOP 

        ELSE s=s+1 and return to step 2. 

4   Numerical Examples and Comparisons 

To assess the performance of AFCM-L1, FCM, AFCM and FCM-L1, the mean-
squared error (MSE) and CPU time are calculated from the Monte Carlo experiments 
from 1000 replications of the sample for each case. We consider the mixture normal 
and Cauchy models in order to examine the effect of tail probability on the MSE and 
CPU time. Note that all implemented algorithms have the same initials in each 
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experiment. The fuzziness index m for all algorithms are chosen with 2=m . We 
mention that Yu and Yang [11] have recently investigated the theoretical selection of 
m for different fuzzy clustering algorithms such as FCM and AFCM. 

Table 1. MSE and CPU time of FCM, AFCM, FCM-L1 and AFCM-L1 

Algorithms (a) Normal mixture (b) Cauchy mixture 

MSE 0.020 0.006 
AFCM-L1 

CPU 2.978 second 3.744 second 

MSE 0.050 4.358 
AFCM 

CPU 0.739 second 0.910 second 
MSE 0.089 0.031 

FCM-L1 
CPU 2.118 second 3.080 second 
MSE 0.088 96.624 

FCM 
CPU 0.615 second 1.680 second 

Example 1. We generate a sample of size 500 from (a) the normal mixture 
),1,5(5.0)1,0(5.0 NN +  and (b) the Cauchy mixture 

)5.0,5(5.0)5.0,0(5.0 CauchyCauchy + . The results are shown in Table 1. In the 

normal mixture case, AFCM-L1 has good accuracy but it needs more CPU time. 
AFCM has better MSE and CPU time than FCM-L1. On the other hand, the accuracy 
of AFCM-L1 performs very well in the Cauchy mixture case. However, FCM-L1 has 
better MSE than AFCM. It illustrates that the accuracy of AFCM is affected by the 
tail probability. 

Table 2. MSE of FCM, AFCM, FCM-L1 and AFCM-L1 

r  (scale) 0.3 0.5 0.7 0.9 1 
AFCM-L1 0.002 0.006 0.013 0.028 0.148 
AFCM 0.034 4.194 19.39 69.04 125.2 
FCM-L1 0.010 0.031 0.062 0.111 0.212 
FCM 28.28 96.12 120.1 164.8 311.2 

Example 2. To see the effect of heavy tail on FCM, AFCM, FCM-L1 and AFCM-L1, 
we generate a sample of size 500 from a mixture of Cauchy distribution 

),5(5.0),0(5.0 rCauchyrCauchy + with a scale parameter r . The results are 

shown in Table 2. From Table 2, we see that MSEs are increasing as r  being increas-
ing. The reason is that data clusters are more separate when r  is small. Furthermore, 
AFCM-L1 produces the smallest MSE. It reflects that AFCM-L1 is able to tolerate 
the heavy tail distributions. But the performance of FCM is heavily affected by the 
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heavy tail distributions. It is interesting that the performance of AFCM and FCM-L1 
is similar as r =0.3. But r  becomes large, there is an inordinate difference in MSE. It 
also means that the heavy tail distributions have heavily disturbed the accuracy of 
AFCM.  

Next, we consider the effect of different cluster shapes on FCM, AFCM, FCM-cov 
and AFCM-cov.  

Example 3. We consider a sample of size 100 from a 2-variate normal mixture 

),(5.0),(5.0
2211 ΣΣ + μμ NN  with 1μ =(0,0), 2μ =(5,0), =Σ 10

05.0
1

 and 

−
−

=Σ 11

12
2

. The clustering results are shown in Fig. 1. In this figure, the “o” 

represents cluster 1 and the “+” represents cluster 2. From Fig. 1, we see that FCM-
cov and AFCM-cov classified these two clusters without any misclassified data. But 
FCM and AFCM have an inaccurate clustering result with 2 misclassified data. 
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Fig. 1. Clustering results of FCM, AFCM, FCM-cov and AFCM-cov 

Example 4. In this example, we generate a sample of size 100 from a 2-variate  

normal mixture ),(5.0),(5.0 2211 Σ+Σ μμ NN  with 1μ =(0,0), 2μ =(4,0), 

=Σ 3.00

03.0
1

 and
−

−
=Σ 11

12
2

. The clustering results are shown  

in Fig. 2. From Fig. 2, we see that AFCM-cov classified these two clusters with- 
out any misclassified data. But FCM, AFCM, FCM-L1 have an inaccurate  
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Fig. 2. Clustering results of FCM, AFCM, FCM-cov and AFCM-cov 
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Fig. 3. Clustering results of FCM, AFCM, FCM-cov and AFCM-cov 

clustering result. Compared with Example 1, we see that these two clusters are more 
close than Example 3. However, AFCM-L1 also bears the correct clustering results. 
But, FCM-L1 fails. 
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Example 5. To see the effect of outliers on FCM-cov or AFCM-cov, we add an outly-
ing point (200,0) to the data set in Example 3. We then run both FCM-cov and 
AFCM-cov with 2=c . The clustering results are shown in Fig. 3. Compared with 
the results of Example 3 without outliers, we find that the FCM and FCM-cov cluster 
this outlier to a single cluster and all the rest have been grouped together into a sepa-
rate cluster. It means that this outlier has heavily disturbed the original clustering of 
the data set in Example 3 when we implemented the FCM and FCM-cov clustering 
algorithms. However, AFCM-cov gives a perfect clustering result. Thus, the perform-
ance of AFCM-cov is the best among FCM, FCM-cov and AFCM in a noisy envi-
ronment.  
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Fig. 4. Clustering results of FCM, AFCM, FCM-cov and AFCM-cov 

Example 6. In this example, we consider a well-known clustering problem where 
there is an inordinate difference in the number of members in each sample cluster. 
The data set (sample size is 100) is generated from a 2-variate normal mixture 

),(7.0),(3.0
2211 ΣΣ + μμ NN  with 1μ =(0,0), 2μ =(5,0), =Σ 10

05.0
1

 and 

−
−

=Σ 11

12
2

. We run FCM, AFCM, FCM-cov and AFCM-cov with 2=c . 

The clustering results are shown in Fig. 4. According to Fig. 4, we find that several 
data points represented as “ ” move toward cluster 2 represented as “+” for FCM, 
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FCM-cov and AFCM. It means that FCM, FCM-cov and AFCM have inaccurate 
clustering result when the data set includes large numbers of different cluster sample 
sizes. However, AFCM-cov classified these two clusters without any misclassified 
data.  

5   Conclusions 

Cluster analysis is an unsupervised approach to pattern recognition. The FCM is the 
most used clustering algorithm. Because real data varies considerably, it is impossible 
for a clustering algorithm to fit all real cases. Therefore, there are many generalized 
types of FCM algorithms that have been recently unified into a generalized model. In 
this paper, we proposed AFCM-L1 and AFCM-cov clustering algorithms to have 
better fitting to varieties of data sets. According to comparisons, the proposed algo-
rithms have better accuracy and effectiveness than the existing methods. 
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Abstract. In this paper, we propose an ownership identification scheme for 
digital images with binary and gray-level ownership statements. The proposed 
method uses the theories and properties of sampling distribution of means to 
satisfy the requirements of robustness and security. Essentially, our method will 
not really insert the ownership statement into the host image. Instead, the 
ownership share will be generated by the sampling method as a key to reveal 
the ownership statement. Besides, our method allows ownership statements to 
be of any size and avoids the hidden ownership statement to be destroyed by the 
latter ones. When the rightful ownership of the image needs to be identified, our 
method can reveal the ownership statement without resorting to the original 
image. Finally, several common attacks to the image will be held to verify the 
robustness and the security is also analyzed. 

1   Introduction 

In recent years, more and more digital data such as image, audio, and video are 
transmitted and exchanged via Internet. However, in the cyberspace, the availability 
of duplication methods encourages the violation of intellectual property rights of 
digital data. Therefore, the protection of rightful ownership of digital data has become 
an important issue. Nowadays, many techniques have been developed to protect the 
rightful ownership of digital images. Digital watermarking, a kind of such techniques, 
is a method that hides a meaningful signature, or the so-called digital watermark, in 
an image for the purpose of copyright protection, integrity checking, and captioning. 
When the rightful ownership of the image needs to be identified, the hidden 
watermark can be extracted for the ownership verification. Digital watermarks can be 
either visible [1] or invisible [2–4]. In this paper, we shall focus on the invisible 
watermarks. In general, an effective watermarking scheme should satisfy certain 
requirements including imperceptibility, robustness, unambiguousness, security, 
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capacity, and low computational complexity [2, 5]. Some of these requirements may 
conflict each other and thereby introducing many technical challenges. Therefore, a 
reasonable compromise is required to achieve better performance for the intended 
applications.  

Based on the taxonomy found in many literatures, we can group watermarking 
techniques into two categories: one is the spatial-domain approach [3, 4, 6], and the 
other is the transform-domain approach [2, 7–8]. During the watermark detection 
process, the original image may or may not be used. As the availability and 
portability are considered, those techniques that can reveal watermarks without 
resorting to the original image are preferred. Usually, the data of the host image 
should be adequately adjusted or altered for embedding the digital signature. Most 
related techniques use many pixels or transform coefficients to conceal one bit of 
information. Thus, the watermark should be much smaller than the host image so 
that the requirements of imperceptibility and robustness can be satisfied. Such 
property makes it impossible to embed a larger watermark into a smaller host 
image. Besides, if multiple watermarks need to be registered for a single digital 
image, it is also impossible for such methods to embed the latter watermark without 
destroying the former ones.  

Recently, Chang et al. [7] proposed a copyright protection scheme which utilized 
visual cryptography concept and discrete cosine transformation (DCT) to satisfy the 
requirement of security and robustness. In their research, the DC coefficients of all 
DCT blocks are first extracted from the host image to form a master share; then an 
ownership share obtained by combining the master share and the watermark is 
constructed as a key to reveal the watermark without resorting to the original image. 
Their method requires the size of the watermark to be much smaller than that of the 
host image. For example, if the size of the original image is M1 × M2, then the size of 
watermarks should be at most M1/92 × M2/92 for gray-level and 256 colors. 
Therefore, it is quite impractical for their method to deal with gray-level watermarks. 
This method is quite different from the traditional watermarking schemes since 
nothing is inserted into the host image. Thus, we shall call the hidden images 
“ownership statements” instead of “watermarks” in the following. 

In this paper, a copyright protection scheme without restricting the size of 
ownership statements is proposed. Our method does not need the image to be 
transformed between the spatial and frequency domains. Instead, the theories and 
properties of sampling distribution of means (SDM) are used to satisfy the 
requirements of security and robustness. This scheme has all the advantages of 
Chang’s method. For example, it does not need to alter the original image and can 
identify the ownership without resorting to the original image. Multiple ownership 
statements are allowed to be registered for a single image without causing any 
damage to other hidden ownership statements. In addition, it allows ownership 
statements to be of any size regardless of the size of the host image. Finally, we will 
prove that the proposed scheme is secure. Altogether, our method has more 
applications than copyright protection. For example, it can be applied to cover the 
transmission of confidential images. 
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2   Sampling Distribution of Means 

According to the theory of sampling distribution in statistics, the sampling 
distribution of means (SDM) from a set of normally distributed data is also a normal 
distribution [9]. The arithmetic mean from a normally distributed population has 
several important mathematical properties, such as unbiasedness, efficiency, and 
consistency. The unbiased property says that the average of all the possible sample 
means of a given sample size n will be equal to the population mean μ. Note that the 
above properties are based on the assumption that the population itself is normally 
distributed. However, in many cases, the distribution of a population is unknown. In 
this case, the central limit theorem can be employed. According to the central limit 
theorem, as the sample size gets large enough, the sampling distribution of means can 
be approximated by the normal distribution. Statisticians have found a general rule 
that, for many population distributions, once the sample size is at least 30, the 
sampling distribution of the mean will be approximately normal. 

Let −∞ < X < +∞ be a normal random variable, denoted by X ~ N(μ, σ2), which has 
a population mean μand a standard deviationσ. We are able to transform all the 
observations of X to a new set of observations of a normal random variable Z with 
zero mean and standard derivation 1. This can be done by means of the transformation  

σ
μ−= X

Z . (1) 

If samples of size n are drawn randomly from a population that has a mean of μ 
and a standard deviation of σ, the sample mean X , −∞ < X  < +∞, are approximately 
normally distributed for sufficiently large sample sizes regardless of the shape of the 
population distribution. From mathematical expectation, it can be shown that the 
mean of the sample means is the population mean:  

Xμ  = μ (2) 

and the standard error of sample means is the standard derivation of the population 
divided by the square root of the sample size:  

nX

σσ =  (3) 

By the same token, X  can also be standardized to  

n

XX
Z

X

X
σ

μ
σ
μ −=

−
=  

(4) 

Theoretically, normal distribution is bell-shaped and symmetrical in its appearance, 
and the probability density function for Z is given by  

2
2

2

1
)(

Z
eZ
−

=
π

φ . (5) 
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Thus, for a fixed z, the probability of Z ≤ z, denoted by Pr(Z ≤ z) = α, can be 
computed by  

dZe
Zz 2

2

2

1 −

∞−
=

π
α . (6) 

Inversely, for a given probability α, we define Inv_NCD(α) to be an inverse normal 
cumulative density function that can be used to find the corresponding z that satisfies 
Eq.(6). Therefore, using Inv_NCD(α), we can easily find λ − 1 partition points zr = 
Inv_NCD(r/λ) for r = 1, 2, …, λ − 1, which can partition the Z scale into λ equal-
probability segments. For the extreme case λ = 2, z1 = 0 can be used to partition the Z 
scale into two equal-probability segments Z < 0 and Z ≥ 0. For further understanding 
the inverse normal cumulative density function Inv_NCD(α), interested readers may 
refer to [10–11]. 

3   The Proposed Scheme 

3.1   Ownership Registration Phase 

Assume that a copyright owner wants to cast a gray-level ownership statement W 
with N1 × N2 pixels into a gray-level host image of any size for protecting his/her 
ownership. We also assume that the number of gray-levels is 256. Before we start to 
construct the ownership share O, the population mean μ and standard deviation σ of 
the pixel values of the host image should be calculated in advance. Besides, a random 
key L is used to generate the location of a pixel in the host image for sampling. For 
example, the first n elements are used to compute the first sample mean, the next n 
elements are used to compute the second sample mean, etc. Then, according to the 
central limit theorem and the unbiased property of SDM, we can form a normal 
distribution with the random variable X  which has the mean of μ and the standard 
error of σ/n1/2 by sampling from the host image if the sample size is large enough. 
Then, the ownership share is generated by the following algorithm:  

Algorithm Ownership Share Construction Procedure 

Input.  A gray-level host image H with any size, a gray-level ownership statement 
W with N1 × N2 pixels, and a random key L. 

Output.  A gray-level ownership share O of size N1 × N2 pixels. 
Step 1.  Compute the population mean μ and the standard deviation σ of the pixel 

values of the host image H. 
Step 2.  Generate 255 partition points z1, z2, …, z255 by zr = Inv_NCD(r/256) for r = 

1, 2, …, 255. Then, the partition points are used to partition the Z scale 
into 256 equal-probability segments numbered from 0 to 255.  

Step 3.  Randomly select n ≥ 30 pixel values x1, x2, …, xn from the host image H 
(according to L) to form a sample mean x , and then standardize the 
sample mean x  to )//()( nxz σμ−= .  
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Step 4.  If z falls in the segment g of the Z scale where g ∈ {0, 1, …, 255}, then the 
pixel gray-level mi,j of the master share M is mi,j = g.  

Step 5.  For the pixel gray-level wi,j of the ownership statement W, determine the 
corresponding pixel gray-level oi,j of the ownership share O according to 
oi,j = wi,j ⊕ mi,j, where ⊕ denotes the bit-wise XOR operation. 

Step 6.  Repeat Step 3 to Step 5 until all pixels of the ownership statement are 
processed. 

Finally, the random key L must be kept secretly by the copyright owner, and the 
ownership share O should be registered with a trusted third party for further 
authentication. 

3.2   Ownership Identification Phase 

In the ownership identification phase, the copyright owner should provide the same 
secret key L used in the ownership registration phase so that the correct sequence of 
pixel locations can be obtained during the sampling process. Then, the hidden 
ownership statement is recovered by the following algorithm:  

Algorithm Ownership statement Revelation Procedure 

Input.  A gray-level host image H′ with any size, a gray-level ownership share O 
with N1 × N2 pixels, and a secret key L.  

Output.  A recovered ownership statement W′ of size N1 × N2 pixels. 
Step 1.  Compute the population mean μ′ and the standard deviation σ′ of the pixel 

values of the host image H′.  
Step 2.  Generate 255 partition points z1, z2, …, z255 by zr = Inv_NCD(r/256) for r = 

1, 2, …, 255. Then, the partition points are used to partition the Z scale 
into 256 equal-probability segments numbered from 0 to 255.  

Step 3.  Randomly select n ≥ 30 pixel values x′1, x′2, …, x′n from the host image H′ 
(according to L) to form a sample mean x′ , and then standardize the 
sample mean x′  to )//()( nxz σμ ′′−′= .  

Step 4.  If z falls in the segment g of the Z scale where g ∈ {0, 1, …, 255}, then the 
pixel gray-level m′i,j of the master share M is m′i,j = g.  

Step 5.  For the pixel gray-level oi,j of the ownership share O, determine the 
corresponding pixel gray-level w′i,j of the ownership statement W′ 
according to w′i,j = oi,j ⊕ m′i,j, where ⊕ denotes the bit-wise XOR 
operation. 

Step 6.  Repeat Step 3 to Step 5 until all pixels of the ownership share are 
processed. 

Note that the controversial image H′ may be altered or modified by the image 
processing filters or compression techniques. Consequently, the recovered ownership 
statement W′ may be different from the original ownership statement W to some 
extent.  
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4   Results and Analysis 

In this section, the robustness of our scheme against several common attacks is 
examined. Besides, the security is also analyzed. In the following experiments, the 
sample size n = 30 is used to proceed the sampling process. The gray-level host image 
with 512 × 512 pixels is shown in Fig. 1(a), and the binary and gray-level ownership 
statements with 400 × 400 pixels are shown in Fig. 1(b) and 1(c), respectively. Besides, 
the corresponding binary and gray-level ownership shares, generated from the original 
host image (Fig. 1(a)), are shown in Fig. 2(a) and 2(b), respectively. The similarity 
between two binary images is measured by the normalized correlation (NC) and that 
between two gray-level images is measured by the peak signal-to-noise ratio (PSNR). 

   
(a) (b) (c) 

Fig. 1. (a) The gray-level host image (512 × 512 pixels); (b) the binary ownership statement 
(400 × 400 pixels); (c) the gray-level ownership statement (400 × 400 pixels) 

  
(a) (b) 

Fig. 2. (a) The binary ownership share; (b) the gray-level ownership share (400 × 400 pixels) 

4.1   Security Analysis 

According to the central limit theorem and the unbiased property of SDM, we have that 
Pr( x  ≥ μ) = Pr( x  < μ) = 0.5 if the sample size n is large enough. Thus, the ratios of 
black and white pixels on the binary master share will be approximately 50% to 50%. In 
other words, we can expect that the probability of a pixel on the binary master share is 
black will be 0.5. Therefore, on the ownership share, the expected ratio of black pixels 
is also 0.5. In Fig. 3, we show the ratios of black pixels of ownership shares for several 
well-known images under the sample size n = 30. The result shows that the ratios of 
black and white pixels of the ownership shares are approximately 50% to 50%. Fig. 4 
shows the histograms of the gray-level ownership shares under the sample size n = 200. 
As we can see from Fig. 4, the ratios of all of the gray-levels are nearly the same. Thus, 
we can conclude that the central limit theorem and the unbiased property of SDM hold 
and the security of the proposed scheme is ensured. 
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Fig. 3. Ratios of black and white pixels of the ownership shares 

Fig. 4. Histograms of the gray-level ownership shares 

4.2   Robustness Analysis 

Several experiments are performed to demonstrate the robustness of the proposed 
scheme against several common attacks, including JPEG lossy compression, 
sharpening, lightening, darkening, noising, cropping, blurring, distorting, rescaling, 
and jitter attacks. Note that the noised image is with 10% monochromatic noises. The 
compression ratio of the JPEG attack is 5:1. The cropped attack is to erase the top left 
area (about 1/3 × 1/3) of the image. The rescaled image is obtained by first 
downscaling the image by a factor of 2 in each direction and then upscaling the 
downscaled image to the original size. Besides, the jitter attack is used to remove two 
distinct columns (with the width of five pixels each) on the left half of the image and 
then insert them into the other positions on the right half. 

Table 1. Robustness analysis of the proposed scheme 

Attacks PSNR(H) (dB) NC (%) PSNR(W) (dB) 
JPEG (compression ratio = 5:1) 38.90 98.18 20.66 

Sharpening 26.42 94.78 16.31 
Lightening 18.59 100.0 +∞ 
Darkening 18.59 98.63 21.85 

10% noising 24.44 90.92 14.00 
11% cropping 18.84 76.1 10.68 

Blurring 26.71 93.96 15.63 
Distorting 21.93 88.33 13.19 
Rescaling 32.91 97.71 19.58 

Jitter 20.56 83.51 11.92 
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In Table 1, PSNR(H) is the similarity of the attacked host image, and NC and PSNR(W) 
are the similarities of the recovered binary and gray-level ownership statements, 
respectively. According to the experimental results shown in Table 1, Fig.5, and Fig. 
6, we can find that JPEG, sharpening, lightening, darkening, rescaling, and blurring 
attacks cause little damage to the revealed ownership statements. Although some of 
the attacks, such as lightening, darkening, cropping, distorting, and jitter attacks, may 
lead to low PSNR(H) values of the attacked images, it seems that the recovered 
ownership statements can also be clearly identified by human eyes. Besides, it can be 
seen from the results that the proposed method can effectively resist the lightening 
and darkening attacks. Totally speaking, we can conclude that our scheme meets the 
requirements of unambiguousness and robustness against several common attacks. 

     
JPEG Sharpening Lightening Darkening Noising 

     
Cropping Blurring Distorting Rescaling Jitter 

Fig. 5. The recovered binary ownership statements (400 × 400 pixels) upon different attacks 

     
JPEG Sharpening Lightening Darkening Noising 

     
Cropping Blurring Distorting Rescaling Jitter 

Fig. 6. The recovered gray-level ownership statements (400 × 400 pixels) upon different attacks 

5   Conclusions 

In this paper, a method that can use binary and gray-level ownership statements to 
protect the rightful ownership of digital images was proposed. Our scheme employed 
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the sampling distribution of means to satisfy the requirements of robustness and 
security. Based on the sampling method, it is possible to deal with binary and gray-level 
ownership statements of any size. Since the scheme does not really insert the ownership 
statement into the image to be protected, the image will not be altered and the rightful 
ownership can be identified without resorting to the original image. Moreover, it also 
allows multiple ownership statements to be cast into a single host image without causing 
any damage to other hidden ownership statements. As shown in the experimental 
results, we could conclude that the proposed scheme can resist several common attacks. 
Besides, without the correct secret key, no one can recover any meaningful ownership 
statements from the host image. Thus, the proposed scheme is secure. Since security is 
ensured, the proposed scheme is also suitable to cover the transmission of secret images. 
In the future, the issue of color ownership statements will be studied.  
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Abstract. Accurate rigid and non-rigid tracking of faces is a challenging task
in computer vision. Recently, appearance-based 3D face tracking methods have
been proposed. These methods can successfully tackle the image variability and
drift problems. However, they may fail to provide accurate out-of-plane face mo-
tions since they are not very sensitive to out-of-plane motion variations. In this
paper, we present a framework for fast and accurate 3D face and facial action
tracking. Our proposed framework retains the strengths of both appearance and
3D data-based trackers. We combine an adaptive appearance model with an on-
line stereo-based 3D model. We provide experiments and performance evaluation
which show the feasibility and usefulness of the proposed approach.

1 Introduction

The ability to detect and track human heads and faces in video sequences is useful
in a great number of applications, such as human-computer interaction and gesture
recognition. There are several commercial products capable of accurate and reliable
3D head position and orientation estimation (e.g., the acoustic tracker system Mouse
[www.vrdepot.com/vrteclg.htm]). These are either based on magnetic sen-
sors or on special markers placed on the face; both practices are encumbering, causing
discomfort and limiting natural motion. Vision-based 3D head tracking provides an at-
tractive alternative since vision sensors are not invasive and hence natural motions can
be achieved [1]. However, detecting and tracking faces in video sequences is a chal-
lenging task due to the image variability caused by pose, expression, and illumination
changes.

Recently, deterministic and statistical appearance-based 3D head tracking methods
have been proposed and used by some researchers [2, 3, 4]. These methods can suc-
cessfully tackle the image variability and drift problems by using deterministic or sta-
tistical models for the global appearance of a special object class: the face. However,
appearance-based methods dedicated to full 3D head tracking may suffer from some
inaccuracies since these methods are not very sensitive to out-of-plane motion varia-
tions. On the other hand, the use of dense 3D facial data provided by a stereo rig or a

� This work was supported by the MEC project TIN2005-09026 and The Ramón y Cajal
Program.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 675–686, 2006.
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range sensor can provide very accurate 3D face motions. However, computing the 3D
face motions from the stream of dense 3D facial data is not straightforward. Indeed,
inferring the 3D face motion from the dense 3D data needs an additional process. This
process can be the detection of some particular facial features in the range data/images
from which the 3D head pose can be inferred. For example, in [5], the 3D nose ridge
is detected and then used for computing the 3D head pose. Alternatively, one can per-
form a registration between 3D data obtained at different time instants in order to infer
the relative 3D motions. The most common registration technique is the Iterative Clos-
est Point (ICP) [6] algorithm. This algorithm and its variants can provide accurate 3D
motions but their significant computational cost prohibits real-time performance.

The main contribution of this paper is a robust 3D face tracker that combines the
advantages of both appearance-based trackers and 3D data-based trackers while keeping
the CPU time very close to that required by real-time trackers. In our work, we use
the deformable 3D model Candide [7] which is a simple model embedding non-rigid
facial motion using the concept of facial actions. Our proposed framework for tracking
faces in videos can be summarized as follows. First, the 3D head pose and some facial
actions are estimated from the monocular image by registering the warped input texture
with a shape-free facial texture map. Second, based on these current parameters the
2D locations of the mesh vertices are inferred by projecting the current mesh onto the
current video frame. Then the 3D coordinates of these vertices are computed by stereo
reconstruction. Third, the relative 3D face motion is then obtained using a robust 3D-
to-3D registration technique between two meshes corresponding to the first video frame
and the current video frame, respectively. Our framework attempts to reduce the number
of outlier vertices by deforming the meshes according to the same current facial actions
and by exploiting the symmetrical shape of the 3D mesh.

The resulting 3D face and facial action tracker is accurate, fast, and drift insensitive.
Moreover, unlike many proposed frameworks (e.g., [8]), it does not require any learning
stage since it is based on online facial appearances and online stereo 3D data.

The remainder of the paper proceeds as follows. Section 2 introduces our deformable
3D facial model. Section 3 states the problem we are focusing on, and describes the on-
line adaptive appearance model. Section 4 summarizes the appearance-based monocular
tracker that tracks in real-time the 3D head pose and some facial actions. It gives some
evaluation results. Section 5 describes a robust 3D-to-3D registration that combines the
monocular tracker’s results and the stereo-based reconstructed vertices. Section 6 gives
some experimental results.

2 Modeling Faces

In this section, we briefly describe our deformable face model and explain how to pro-
duce a shape-free facial texture map.

A Deformable 3D Model. As mentioned before, we use the 3D face model Candide.
This 3D deformable wireframe model was first developed for the purpose of model-
based image coding and computer animation. The 3D shape of this wireframe model is
directly recorded in coordinate form. It is given by the coordinates of the 3D vertices
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Pi, i = 1, . . . , n where n is the number of vertices. Thus, the shape up to a global scale
can be fully described by the 3n-vector g; the concatenation of the 3D coordinates of
all vertices Pi. The vector g is written as:

g = gs + A τ a (1)

where gs is the static shape of the model, τa the animation control vector, and the
columns of A are the Animation Units. In this study, we use six modes for the facial
Animation Units (AUs) matrix A. Without loss of generality, we have chosen the six
following AUs: lower lip depressor, lip stretcher, lip corner depressor, upper lip raiser,
eyebrow lowerer and outer eyebrow raiser. These AUs are enough to cover most com-
mon facial animations (mouth and eyebrow movements). Moreover, they are essential
for conveying emotions.

In equation (1), the 3D shape is expressed in a local coordinate system. However, one
should relate the 3D coordinates to the image coordinate system. To this end, we adopt
the weak perspective projection model. We neglect the perspective effects since the
depth variation of the face can be considered as small compared to its absolute depth.
Thus, the state of the 3D wireframe model is given by the 3D head pose parameters
(three rotations and three translations) and the internal face animation control vector
τa. This is given by the 12-dimensional vector b:

b = [θx, θy, θz, tx, ty, tz , τT
a ]T (2)

Shape-free Facial Texture Maps. A face texture is represented as a shape-free texture
(geometrically normalized image). The geometry of this image is obtained by projecting
the static shape gs using a centered frontal 3D pose onto an image with a given resolu-
tion. The texture of this geometrically normalized image is obtained by texture mapping
from the triangular 2D mesh in the input image (see figure 1) using a piece-wise affine
transform,W . The warping process applied to an input image y is denoted by:

x(b) =W(y, b) (3)

where x denotes the shape-free texture map and b denotes the geometrical parameters.
Several resolution levels can be chosen for the shape-free textures. The reported results
are obtained with a shape-free patch of 5392 pixels.

(a) (b)

Fig. 1. (a) an input image with correct adaptation. (b) the corresponding shape-free facial map.
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3 Problem Formulation and Facial Texture Model

Given a monocular video sequence depicting a moving head/face, we would like to
recover, for each frame, the 3D head pose and the facial actions encoded by the control
vector τ a. In other words, we would like to estimate the vector bt (equation 2) at time
t given all the observed data until time t, denoted y1:t ≡ {y1, . . . , yt}. In a tracking
context, the model parameters associated with the current frame will be handed over
to the next frame. For each input frame yt, the observation is simply the shape-free
texture map associated with the geometric parameters bt. We use the HAT symbol for
the tracked parameters and textures. For a given frame t, b̂t represents the computed
geometric parameters and x̂t the corresponding shape-free texture map, that is,

x̂t = x(b̂t) =W(yt, b̂t) (4)

The estimation of b̂t from the sequence of images will be presented in the next
Section.

By assuming that the pixels within the shape-free patch are independent, we can
model the facial appearance using a multivariate Gaussian with a diagonal covariance
matrix Σ. The choice of a Gaussian distribution is motivated by the fact that this kind
of distribution provides simple and general model for additive noises. In other words,
this multivariate Gaussian is the distribution of the facial texture maps x̂t. Let μ be the
Gaussian center and σ the vector containing the square root of the diagonal elements
of the covariance matrix Σ. μ and σ are d-vectors (d is the size of x). Although the
independence assumption may be violated, at least locally, we adopt it in our work in
order to keep the problem tractable. In summary, the observation likelihood at time t is
written as

p(yt|bt) = p(xt|bt) =
d∏

i=1

N(xi; μi, σi)t (5)

where N(xi; μi, σi) is a normal density:

N(xi; μi, σi) = (2πσ2
i )−1/2 exp

[
−ρ

(
xi − μi

σi

)]
, ρ(x) =

1
2

x2 (6)

We assume that the appearance model summarizes the past observations under an
exponential envelope, that is, the past observations are exponentially forgotten with
respect to the current texture. When the appearance is tracked for the current input
image, i.e. the texture x̂t is available, we can compute the updated appearance and use
it to track in the next frame.

When the appearance is tracked for the current input image, i.e. the texture x̂t is
available, we can compute the updated appearance and use it to track in the next frame.

It can be shown that the appearance model parameters, i.e., the μi’s and σi’s can be
updated from time t to time (t + 1) using the following equations (see [9] for more
details on OAMs):

μi(t+1) = (1− α)μi(t) + α x̂i(t) (7)

σ2
i(t+1)

= (1 − α)σ2
i(t)

+ α (x̂i(t) − μi(t))
2 (8)
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This technique, also called recursive filtering, is simple, time-efficient and therefore,
suitable for real-time applications. The appearance parameters reflect the most recent
observations within a roughly L = 1/α window with exponential decay. Note that
μ is initialized with the first patch x̂0. In order to get stable values for the variances,
equation (8) is not used until the number of frames reaches a given value (e.g., the first
40 frames). For these frames, the classical variance is used, that is, equation (8) is used
with α being set to 1

t .

4 Tracking by Aligning Facial Texture Maps

We consider the state vector b = [θx, θy, θz, tx, ty, tz, τ
T
a ]T encapsulating the 3D head

pose and the facial actions. In [10], we have developed a fast method to compute this
state from the previous known state b̂t−1 and the current input image yt. An overview
of this method is presented here.

The sought geometrical parameters bt at time t are estimated using a region-based
registration technique that does not need any image feature extraction. For this purpose,
we minimize the Mahalanobis distance between the warped texture and the current
appearance mean - the curent Gaussian center μt

min
bt

D(x(bt), μt) = min
bt

d∑
i=1

(
xi − μi

σi

)2

(9)

The above criterion can be minimized using iterative first-order linear approximation
which is equivalent to a Gauss-Newton method where the initial solution is given by the
previous known state b̂t−1. It is worthwhile noting that the minimization is equivalent to
maximizing the likelihood measure given by (5). In the above optimization, the gradient

matrix ∂W(y
t
,bt)

∂bt
= ∂xt

∂bt
is computed for each frame and is approximated by numerical

differences similarly to the work of Cootes [11].
On a 3.2 GHz PC, a non-optimized C code of the approach computes the 3D head

pose and the six facial actions in 50 ms. About half that time is required if one is only
interested in computing the 3D head pose parameters.

Accuracy evaluation. In [12], we have evaluated the accuracy of the above proposed
monocular tracker. To this end, we have used ground truth data that were recovered by
the Iterative Closest Point algorithm [6] and dense 3D facial data. Figure 2 depicts the
monocular tracker errors associated with a 300-frame long sequence which contains
rotational and translational out-of-plane head motions. The nominal absolute depth of
the head was about 65 cm, and the focal length of the camera was 824 pixels. As can
be seen, the out-of-plane motion errors can be large for some frames for which there
is a room for improvement. Moreover, this evaluation has confirmed the general trend
of appearance-based trackers, that is, the out-of-plane motion parameters (pitch angle,
yaw angle, and depth) are more affected by errors than the other parameters. We point
out that the facial feature motions obtained by the above appearance-based tracker can
be accurately recovered. Indeed, these features (the lips and the eyebrows) have specific
textures, so their independent motion can be accurately recovered by the appearance-
based tracker.



680 F. Dornaika and A.D. Sappa

One expects that the monocular tracker accuracy can be improved if an additional
cue is used. In our case, the additional cue will be the 3D data associated with the mesh
vertices provided by stereo reconstruction. Although the use of stereo data may seem
as an excess requirement, recall that cheap and compact stereo systems are now widely
available (e.g., [www.ptgrey.com]). We point out that stereo data are used to refine
the static model gs in the sense that the facial mesh can be more person-specific.
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Fig. 2. 3D face motion errors computed by the ICP algorithm associated with a 300-frame long
sequence

5 Tracking by Aligning Texture Maps and Stereo-Based 3D
Models

In this section, we propose a novel tracking scheme that aims at computing a fast and
accurate 3D face motion. To this end, we exploit the tracking results provided by the
appearance-based tracker (Section 4) and the availability of a stereo system for recon-
structing the mesh vertices. The whole algorithm is outlined in Figure 3. Note that the
facial actions are already computed using the technique described in Section 4.

Our approach to 3D face tracking is simple and can be stated as follows: If the 3D
coordinates of the 3D mesh vertices at two different time instants are given in the same
coordinate system, then the rigid transform corresponding to the 3D face motion can
easily be recovered using a robust 3D point-to-point registration algorithm. Without
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Fig. 3. The main steps of the developed robust 3D face tracker

loss of generality, the 3D face motion will be expressed with respect to the head coor-
dinate system associated with the first video frame1. In order to invoke the registration
algorithm one has to compute the 3D coordinates of the vertices associated with the two
different video frames: the initial video frame and the current one (see Figure 4). This is
carried out using stereo-based data associated with the first frame and the current frame.
Recall that the first 3D head pose can be inferred using a classical model-based pose
estimation algorithm. The proposed algorithm can be summarized as follows.

1. Invoke the appearance-tracker to recover the current 3D head pose and facial ac-
tions (Section 4).

2. Based on the estimated 3D head pose and facial actions, deform the 3D mesh and
project it onto the current frame.

3. Reconstruct the obtained image points (stereo reconstruction of the mesh vertices).
4. Deform the initial mesh (first frame) according to the current estimated facial ac-

tions.
5. Eliminate the vertices that are not consistent with the 3D symmetry test. Recall that

the Euclidean distance between two symmetrical vertices is invariant due to the
model symmetry.

6. Invoke a robust registration technique that provides the rigid displacement corre-
sponding to the actual 3D face motion between the initial frame and the current
frame. This step is detailed in Figure 5.

As can be seen, the recovered 3D face motion has relied on both the appearance
model and the stereo-based 3D data. Steps 4 and 5 have been introduced in order to
reduce the number of outlier vertices. Since in step 4, the initial mesh is deformed ac-
cording to the current facial expression, a rigid registration technique can be efficiently
applied. Recall that for a profile view the vertices associated with the hidden part of the
face may have erroneous depth due to occlusion. Thus, step 5 eliminates the vertices
with erroneous depth since they do not satisfy the symmetry constraint. Reducing the
number of outliers is very useful for obtaining a very fast robust registration in the sense
that a very few random samples are needed. Note that although the appearance-based
tracker may provide slightly inaccurate out-of-plane parameters, the corresponding pro-
jected mesh onto the current image is still useful for getting the current stereo-based 3D
coordinates of the mesh vertices (steps 2 and 3).

1 Upgrading this relative 3D face motion to a 3D head pose that is expressed in the camera
coordinate system is carried out using the 3D head pose associated with the first video frame
that can be inferred using a classical 3D pose estimation algorithm.
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Fig. 4. The relative 3D face motion is recovered using a robust 3D-to-3D registration

We stress the fact that the proposed approach is not similar to a classical stereo-based
3D tracker where feature points are tracked across the image sequence. In our method,
there is no feature matching and tracking across the image sequence. Instead, the whole
face appearance is tracked in order to accurately locate the facial features (the projection
of the mesh vertices) from which the 3D coordinates are inferred.

Robust 3D registration methods have been proposed in recent literature (e.g., see
[13, 14]). In our work, we use a RANSAC-like technique that computes an adaptive
threshold for inlier/outlier detection.

Inlier detection. The question now is: Given a subsample k and its associated solution
Dk, How do we decide whether or not an arbitrary vertex is an inlier? In techniques
dealing with 2D geometrical features (points and lines) [15], this is achieved using the
distance in the image plane between the actual location of the feature and its mapped
location. If this distance is below a given threshold then this feature is considered as
an inlier; otherwise, it is considered as an outlier. Here we can do the same by man-
ually defining a distance in 3D space. However, this fixed selected threshold cannot
accommodate all cases and all noises. Therefore, we use an adaptive threshold distance
that is computed from the residual errors associated with all subsamples. Our idea is to
compute a robust estimation of standard deviation of the residual errors. In the explo-
ration step, for each subsample k, the median of residuals was computed. If we denote
by M the least median among all K medians, then a robust estimation of the standard
deviation of the residuals is given by [16]:

σ̂ = 1.4826
[
1 +

5
N − 3

] √
M (10)

where N is the number of vertices. Once σ̂ is known, any vertex j can be considered as
an inlier if its residual error satisfies |rj | < 3 σ̂.

Computational cost. On a 3.2 GHz PC, a non-optimized C code of the robust 3D-to-
3D registration takes about 10ms assuming that the number of random samples K is set
to 8 and the total number of the 3D mesh vertices, N , is 113. This computational time
includes both the stereo reconstruction and the robust technique outlined in Figure 5.
Thus, by appending the robust 3D-to-3D registration to the appearance-based tracker
(described before) a video frame can be processed in about 60 ms.
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Random sampling: Repeat the following three steps K times

1. Draw a random subsample of 3 different pairs of vertices. We have three pairs of 3D
points {Mi ↔ Si}, i = 1, 2, 3. Mi denotes the 3D coordinates of vertex i associated
with the first frame, and Si denotes the 3D coordinates of the same vertex with the current
frame t. Mi and Si are expressed in the same coordinate system.

2. For this subsample, indexed by k (k = 1, . . . , K), compute the 3D rigid displacement
Dk = [Rk|Tk], where Rk is a 3D rotation and Tk a 3D translation, that brings these
three pairs into alignment. Rk and Tk are computed by minimizing the residual error∑3

i=1 |Si − Rk Mi − Tk|2. This is carried out using the quaternion method [17].
3. For this solution Dk , compute the median Mk of the squared residual errors with respect

to the whole set of N vertices. Note that we have N residuals corresponding to all vertices
{Mj ↔ Sj}, j = 1, . . . , N . The squared residual associated with an arbitrary vertex
Mj is |Sj − Rk Mj − Tk|2.

Solution:

1. For each solution Dk = [Rk|Tk], k = 1, . . . , K, compute the number of inliers among
the entire set of vertices (see text). Let nk be this number.

2. Choose the solution that has the largest number of inlier vertices.
3. Refine the corresponding solution using all its inlier pairs.

Fig. 5. Recovering the relative 3D face motion using online stereo and robust statistics

6 Experimental Results

We use the stereo system Bumblebee from Point Grey [www.ptgrey.com]. It con-
sists of two Sony ICX084 color CCDs with 6mm focal length lenses. The monocular
sequence is used by the appearance-tracker (Section 4), while the stereo sequence is
used by the 3D-to-3D registration technique (Section 5). Figure 6 (Top) displays the
face and facial action tracking results associated with a 300-frame-long sequence (only
three frames are shown). The tracking results were obtained using the proposed frame-
work described in Sections 4 and 5. The upper left corner of each image shows the
current appearance (μt) and the current shape-free texture (x̂t). In this sequence, the
nominal absolute depth of the head was about 65 cm.

As can be seen, the tracking results indicate good alignment between the mesh model
and the images. However, it is very difficult to evaluate the accuracy of the out-of-plane
motions by only inspecting the projection of the 3D wireframe onto these 2D images.
Therefore, we have run three different methods using the same video sequence. The
first method is given by the appearance-based tracker (Section 4). The second method
is given the proposed method (Sections 4 and 5). Note that the number of random sam-
ples used by the proposed method is set to 8. The third method is given by the ICP
registration between dense facial surfaces where the facial surface model is set to the
one obtained with the first stereo pair [12]. Since the ICP registration results are accu-
rate we can use them as ground-truth data for the relative 3D face motions.
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Fig. 6. Top: Tracking the face and facial feature in a 300-frame long sequence using the proposed
tracker. Only frames 22, 179, and 255 are shown. Bottom: The relative 3D face motion obtained
with the three trackers. The dotted curves correspond to the appearance-based tracker, the dashed
ones to the proposed framework, and the solid ones to the ICP algorithm.

Figure 6 (Bottom) displays the computed relative 3D face motions obtained with
the three methods. This figure displays the three angles and the in-depth translation.
The dotted curves correspond to the appearance-based tracker, the dashed ones to the
proposed framework, and the solid ones to the ICP algorithm.

From these curves, we can see that the proposed framework has outperformed the
appearance-based tracker since the curves become close to those computed by the ICP
algorithm - the ground-truth data. In this case, the first facial surface used by the ICP
algorithm contained about 20000 3D points. Figure 7 displays the computed relative 3D
face motions (pitch and yaw angles) obtained with another video sequence.

Since the ICP algorithm works with rigid surfaces the faces depicted in the sequences
of Figures 6 and 7 were somehow neutral. Figure 8 displays the computed relative 3D
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Fig. 7. The relative 3D face motion associated with another video sequence
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Fig. 8. The relative 3D face motion associated with a video sequence depicting simultaneous head
motions and facial expressions

face motions (the three out-of-plane parameters) obtained with another video sequence
depicting simultaneous head motions and facial expressions. For this sequence we have
not used the ICP algorithm since the facial surface undergoes a rigid and large non-rigid
motion. As can be seen, the motion parameters have been improved by using online
stereo data.

7 Conclusion

In this paper, we have proposed a robust 3D face tracker that combines the advantages of
both appearance-based trackers and 3D data-based trackers while keeping the CPU time
very close to that required by real-time trackers. Experiments on real video sequences
indicate that the estimates of the out-of-plane motions of the head can be considerably
improved by combining a robust 3D-to-3D registration with the appearance model. Al-
though the joint use of 3D facial data and the ICP algorithm as a 3D head tracker could
be attractive, the significant computational cost of the ICP algorithm prohibits real-time
performance.
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Abstract. For the robust face detection, illumination is considered as
one of the great challenges. Motivated with the adaptation of the hu-
man vision system, we propose the curve mapping (CM) function to
adjust the illumination conditions of the images. The lighting parameter
of CM function is determined by the intensity distribution of the images.
Therefore the CM function can adjust the images according to their own
illumination conditions adaptively. The CM method will abandon no in-
formation of the original images and bring no noises to the images. But
it will enhance the details of the images and adjust the images to the
proper brightness. Consequently the CM method will make the images
more discriminative. Experimental results show that it can improve the
performance of the face detection with the CM method as a lighting-
filter.

1 Introduction

Face detection has been well regarded as challenging problem in the vision com-
munity. Due to variations caused by pose, expression, occlusion, illumination or
lighting the distribution of face subject is highly nonlinear, and thus makes the
detection tasks extremely difficult. Among these variations, illumination and
pose changes are regarded as most critical factors for robust face detection.
Recently, view-based framework has been widely used to reduce the variances
caused by pose changes [1,2,3].

The methods to deal with the illumination variance can be divided into three
types. The first type is to enhance the image. This type of method is focused
in adjusting the images to reduce the influence of illumination variance, e.g. the
histogram equalization (HE) method. In Rowley’s face detection system [1], he
proposed a linear model as well as the HE method to do de-lighting work for
the images. The second type is to extract the illumination invariant features
from images. Through a series of face recognition experiments, Adini [4] proved
the high-frequency features which are traditionally considered to be illumination
invariant are not enough to represent images across illumination. The quotient
image (QI) based methods [5,6] extract the albedo information from images as-
suming the low-frequency information of the images is a good approximation of
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c© Springer-Verlag Berlin Heidelberg 2006
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the illumination conditions. However, the assumption is not valid. The reflected
light from a subject always contains some abrupt changes (e.g. the edge of shad-
ows or highlight parts) due to the shape of the subject or the character of the
light source. The third type method is to model the variance of the images under
different illumination conditions. Belhumeur and Kriegman [7] prove the set of
images of a convex subject with a Lambertian surface, illuminated by an arbi-
trary number of point light sources at infinity, forms a convex polyhedral cone
called illumination cone. The dimension of the cone is equal to the number of
distinct surface normals. The high dimensionality limits the application of illumi-
nation cone. Usually the low dimensional approximation for the cone is applied.
With a set of images taken with different lighting conditions Georghiades, et
al[8] constructs a 3D illumination subspace. With the spherical harmonic bases
to represent the reflection function Ramamoorith[9] and Barsi[10] construct a
9D illumination subspace independently. The spherical harmonic is the function
about the surface normal. And from an image to recover the surface normal of
the subject is till an open problem. Therefore it constrains the application of the
spherical harmonic based methods.

In the face detection task, the face should be separated from all the non-face
subjects. And always there are no training samples for the faces to be detected.
Then the de-lighting methods based on training models from sample images are
not suitable for detection. Therefore the image enhancement based de-lighting
work will be more effective for detection.

For a certain subject with a certain pose, the direction and intensity of the
incident light determines the appearance of the images. The light serves as the
amplifier for the subject’s surface character. Too dim light will make the images
dark and lacking details. But too bright light will also make the image losing its
details. Therefore the correction for the images taken under unsuitable illumina-
tion conditions is to adjust the intensity of the incident light so that the image
will be rich of details and in the proper brightness. Human vision system (HVS)
is a precise system that can adapt to the huge variance of the environment il-
lumination. Then based on the mechanics of HVS adaptation, a curve mapping
function is proposed to adjust the illumination conditions of the images.

In section 2, we will first briefly review the adaptation of HVS and introduce
the curve mapping functions derived from it. Then how to decide the lighting
parameters in the mapping function is explained. In section 3 we combine differ-
ent de-lighting methods with the face detector and compare their effect on the
face detection. At last the conclusion is drawn in section 4.

2 Curve Mapping Function

In the reflection function, the incident light can be considered as the amplifier
for the reflectance character. Then the elimination of the illumination influence
can be transferred to a mapping question. If we can find a suitable mapping
function that can adjust the intensity of the incident light, then the influence
of the illumination will be alleviated greatly. The human visual system (HVS)
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is the best and the most complicated vision system. The system can adjust
itself according to the current illumination conditions. We propose a mapping
function based on the adaptation of HVS to do the de-lighting work for the
images, where the parameter of mapping function is decided according to the
illumination conditions of the image itself.

2.1 Adaptation of HVS

The accurate adaptation of HVS is achieved through the cooperation of me-
chanical, photochemical, and neural processing in the vision system. The pupil,
the photoreceptor (rod and cone) systems, bleaching and regeneration of recep-
tor photopigments, and the changes in neural processing all play a role in visual
adaptation[11]. According to the results from electro-physiology, the photorecep-
tor take the main charge in the procedure of adaptation and the photoreceptor
can be modeled as the function of input intensity[12]

V =
I

αI + β
Vmax (1)

where V is the potential produced by cones; parameter α > 0 and β > 0;
Vmaxdetermines the maximum range of the output value. The semi-saturated
parameter λ is an important hidden parameter in Eq.1. It decides the value of
I at which the output of the function gets the value V = Vmax/2 . Then the
semi-saturated parameter λ is

λ =
β

2− α
(2)

For the semi-saturated parameter, it should satisfy λ ≥ 0, then we have α <
2.Specially when α = 1 , the semi-saturated parameter λ = β, i.e. when I = V ,
gets the value of Vmax/2.

2.2 Mapping Function

Applying the photoreceptor model to adjust the illumination conditions of im-
ages, we need to add some constraints to the original formula so that the mapping
function can meet the requirement to show images.

The input images is in the range of [0, 255], and the output mapped image
should also be in the range of [0, 255]. Therefore we set the maximum range
Vmax = 255. For the pixels with the value of 0 or 255 in the original image,
we will keep their value in the corrected image. The reason is that these pixels
represent the darkest and brightest points in the image respectively. And the cor-
rected image should show the details in the largest range, i.e.[0, 255]. Therefore
the transform function f(I) = I/(αI + β) ⊂ [0, 1] should satisfy the following
equations

f(0) = 0 (3)
f(255) = 1 (4)
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Then we can get the relationship between α and β, that is

β

1− α
= 255 (5)

The pixels in the original image are in the range of [0, 255], i.e.I ∈ [0, 255] , then
we have

I − 255 ≤ 0 (6)

Based on Eq.6, we can deduce

α(I − 255) + 255 ≤ 255 (7)

Then Eq.7 can be rewritten like

αI + 255(1− α) ≤ 255 (8)

with Eq.5 and Eq.8, we get
αI + β ≤ 255 (9)

from Eq.9 and I ∈ [0, 255], we have

0 < β ≤ 255 (10)
0 ≤ α < 1 (11)

we let β = 255/k(1 ≤ k) then parameter α can be (k − 1)/k, therefore we unify
these two parameters and we can rewrite the mapping function as following

Fd(I) =
I

kd−1
kd

I + 255
kd

× 255 (12)

where the lighting parameter kd ≥ 1. Fig.1 gives out the curves of mapping
function Fd(I) with lighting parameter kd getting different value. When kd = 1,
the mapping function does not change the original images. While kd > 1, the
mapping function will enhance the darker part of original images. The mapping
function reaches to the inflexion point when I gets the value of 255/(

√
kd + 1).

That is to say when I ∈ [0, 255/(
√

kd + 1)), the slope of the mapping function
is larger than 1 and when I ∈ (255/(

√
kd + 1), 255] , the slope is smaller than 1.

When the illumination is too dim or too bright, the image will be under-
exposure or over-exposure. In the under-exposure situation, the image is darker
and the details are lost. The character of the subject is suppressed in the image
due to the less amount of light. To recover the information in the darker part, a
suitable amount of lighting should be added to that part so that the character
of the subject can be represented in a suitable scale. The slope of the mapping
function Fd(I) is larger than 1 in the darker domain, therefore the relative value
between pixels and the absolute value of every pixel in that region will be en-
larged. As a result the contrast and brightness of the darker region are both
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Fig. 1. the curves of mapping function Fd(I)

enhanced. The mapping function Fd(I) can take the role to adjust the illumi-
nation of under-exposure condition. For the over-exposure situation,the lighting
magnifies the character of the subject too large to display. That is the pixels in
the brighter region have larger absolute value, but the differences between pixels
are suppressed in images. Therefore the correction function should reduce the
light amount and at same time enlarge the differences between pixels. Then we
can apply the mapping function Fd(I) to map the inverse image, i.e. (255− I),
and get the mapping function in the over-exposure situation,

Fb(I) = 255− Fd(255− I)

= 255− 255− I
kd−1

kd
(255− I) + 255

kd

× 255 (13)

where the lighting parameter kb > 1.The mapping function Fb(I) can reduce the
brightness of the images and enhance the contrast of the brighter parts.

2.3 Lighting Parameter Decision

In the mapping functions, the parameter kd and kb can be decided according
to the illumination conditions of the images. Considering of the semi-saturated
parameter λ , it decides the point at which the input value of I will be mapped
to the middle of the output range, i.e. Vmax/2 . In the mapping function Fd(I),
the semi-saturated parameter is

λd =
β

2− α
=

255
kd + 1

(14)

Similarly the semi-saturated parameter of the mapping function Fb(I) is

λb =
255

kb + 1
(15)
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Fig. 2. The value of lighting parameter kd, kb for the images under different lighting
conditions. (c), (d) are the curves of lighting parameters for the set of images in (a)
and (b), respectively.

If an image is rich of detail, it should take use of all the value from 0 to 255 to
express all the information. An image whose intensity values concentrate only in
a little subset of [0, 255] cannot show out many details of the subject. Therefore
we should make the image take as many as possible values to express its details.
Then 50% of all the pixels should take at least half of [0, 255] to represent the
information. Consequently we can find out an input value Ih ∈ [0, 255] that
satisfies the following equation,

min
Ih

(
Ih∑

i=0

h(i) ≥ N

2
) (16)

where h(i) is the number of pixels in the ith bin of the histogram, N is the total
number of the pixels in an image. And if we let Ih equal to the semi-saturated
parameter λd, the mapping function will map Ih to 128 and stretch the denser
part of the image histogram. Then the parameters can be decided as

kd =
255
Ih
− 1 (17)

kb =
255
I ′h
− 1 (18)

where I ′h is decided through counting the histogram of the inverse image with
Eq.16. Due to the constraints for kd and kb, Ih and I ′h should be smaller than 128.
If Ih > 128 , the image is over-exposure and we get kd < 1 and kb > 1. Therefore
we apply the mapping function Fb(I) to adjust the image. Correspondingly if
I ′h > 128, function Fd(I) is applied. Then the mapping function can be written as
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F (I) =

⎧⎨⎩
Fd(I) if kd > 1
Fb(I) if kb > 1

I if kb = kd = 1
(19)

The parameter kd and kb have their physical meaning for the image. They rep-
resent the uniformity of the illumination conditions. We choose a set of images
from PIE database[14]. From left to right Fig.2(a) are the images taken with no
ambient light and the flash No.2 to No.22 firing one by one. From left to right
Fig.2(b) are the images taken with ambient light on and flash No.2 to No.22
firing one by one. From the parameter curves, we can see that the more obvi-
ous the side illumination is, the larger the parameter value is. With the larger
parameter kd or kb, the mapping function will have larger slope in the region of
[0, 255√

kd+1
) or (255

√
kb√

kb+1
, 255]. As a result the correction for the image will be

greater. Also we can find that when kd > 1, the image is under-exposure; when
kb > 1, the image is over-exposure. Therefore the adjustment for the image can
be done according to the image’s own illumination conditions.

3 Experiments

In the experiment, we first compare the illumination adjustment results from
the view of image appearance. Then we put different de-lighting methods into
the face detector and compare the contribution of these de-lighting methods for
face detection.

3.1 Illumination Corrected Images

In Fig.3(a), we give out some results of different de-lighting methods which are
the histogram equalization (HE), Rowley’s linear de-lighting method (RLD),
quotient image (QI) method, and the proposed curve mapping (CM) method.
In order to compare these results more objectively, we also give out the his-
togram and edge image for every image. HE method can stretch the denser
part of the histogram according to its intensity distribution; however, it leaves
much great noise in the image. In RLD method the illumination condition is
estimated by a linear model and then the estimated illumination is subtracted
from the original image, at last HE is applied to enhance the contract. The
subtraction does not satisfy the reflection theory therefore RLD cannot remove
the lighting influences completely. Although QI method can remove the lighting
influence, it is at the cost of losing the low frequency information and enhanc-
ing some noises. In the result of QI method only leave some edges that contain
the original edges of the face as well as those caused by the light. Seen in the
CM result, the image is brightened and the contrast is enhanced. Moreover CM
does not introduce much great noise like HE or QI method. From the CM re-
sults in Fig.3(b), we can see that the CM method adjusts the images based
on their own illumination condition. CM can adjust the images to the suitable
brightness and enhance their details. Then the corrected images will be more
discriminative.
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Fig. 3. (a) some results of different illumination correction method. (From up to down
are the image, histogram and edge image respectively); (b) CM illumination corrected
result of Fig2 (a), (b).

3.2 Detection Results

The face detector is Gabor feature based boosting chain detector. We first extract
the Gabor features from images, and then apply the boosting chain method[13]
to select the most discriminative features and at the same time construct the
classifier based on the selected features. The de-lighting methods are combined
with the detector as the pre-filter. That is all the image is processed with the
de-lighting method first and then put to the detector.

More than 12000 images without faces and 10000 faces images are collected by
cropping from various sources, such as AR[15], Rockfeller, FERET[16], BioID
and from WEB. Most face in the training set have the variation of pose and
lighting. A total number of about 80000 face samples with size of 32×32 are gen-
erated from the 10000 face images by following random transformation: mirror,
four-direction shift with 1 pixels, in-plane rotation within 15 degrees and scaling
within 20% variations. We randomly select 20000 face samples and 20000 non-
face for training. Altogether we train out 5 detectors with different de-lighting
methods as pre-filter, they are the raw (no de-lighting), HE, RLD, QI and CM.

We first probe these detectors on PIE database[14]. We separate the PIE
database into 4 subsets according to the illumination conditions of the images.
Subset1 are the images taken under extreme lighting condition. Subset2 are im-
ages taken under the ambient light. Subset3 are images taken with only different
flashes. Subset4 are images taken with different flashes and the ambient light.
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Fig. 4. The samples of PIE subsets

Table 1. Illumination condition of every PIE subset

Ambient Light Flash No.
Subset1 Yes 2,3

No 2∼4 and 19∼22
Subset2 Yes None
Subset3 No 5∼18
Subset4 Yes 4∼22

The sample images of every subset are given in Fig.4. The details of every subset
are listed in Table1. The detection results are given in Table 2.

From the detection result, we can see that with the influence of illumination
become greater the detection rate is reduced. The illumination for the images
in subset 2 is the ambient light, and the detection result on subset 2 is better
than that on other subset. On images of subset 1 which are influenced by illu-
mination most badly, the detection rate is lowest whatever the lighting filter is.
HE, RLD and QI methods can alleviate the influence of illumination in certain
degree. However, HE method introduces some great noise; RLD cannot remove
the illumination influence completely and at the same time brings much great
noise due to the limitation of HE. QI adjusts the illumination at the cost of
abandoning much low frequency information. Consequently the detection rates
of the detectors with these pre-filters have no great improvement. CM method
can adjust the images according to the lighting condition of their own. It can
enhance the contrast and enrich the details without introducing much noise.
Therefore an image taken under extreme illumination conditions can be recov-
ered to a normal illumination condition by CM method. And in the detection
result the improvement is shown.

From the detection result, we can see that with the influence of illumination
become greater the detection rate is reduced. The illumination for the images
in subset 2 is the ambient light, and the detection result on subset 2 is bet-
ter than that on other subset. On images of subset 1 which are influenced by
illumination most badly, the detection rate is lowest whatever the lighting fil-
ter is. HE, RLD and QI methods can alleviate the influence of illumination in
certain degree. However, HE method introduces some great noise; RLD can-
not remove the illumination influence completely and at the same time brings
much great noise due to the limitation of HE. QI adjusts the illumination at the
cost of abandoning much low frequency information. Consequently the detec-
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Table 2. Detection rate on the PIE datasets

Subset1 Subset2 Subset3 Subset4
Raw 535/63 436/2 887/28 1260/32
HE 563/35 437/1 898/17 1274/18
RLD 537/61 436/2 891/24 1262/30
QI 575/23 433/5 902/13 1273/19
CM 597/2 438/0 914/1 1291/1

Fig. 5. (a), (c) some face and non-face samples of probe set; (b), (d) the CM result of
(a), (c)

tion rates of the detectors with these pre-filters have no great improvement. CM
method can adjust the images according to the lighting conditions of their own.
It can enhance the contrast and enrich the details without introducing much
noise. Therefore an image taken under extreme illumination conditions can be
recovered to a normal illumination condition by CM method. And in the detec-
tion result the improvement is shown.

Then we test these detectors on more general images which are taken in more
natural situations. We randomly select 9024 positive samples and 9315 negative
samples from the 80000 face images and 12000 non-face images that have just
introduced In Fig.5 we give some face and non-face samples of the probe set
and their results of CM adjustment. Seen from the results, the CM method is
independent from the content of the images. It adjusts the images only according
to the illumination of the images. We give out the ROC curves of the detectors
with different pre-filter in Fig.6. We can see that the performance of the detector
with the CM method as the pre-filter is better than the others. It is because the
CM method will not abandon some information of the original image or bring
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Fig. 6. The ROC curves of detectors with different de-lighting methods as pre-filter

some noises to the images, but enhance some information in the image. As a
result, the CM method will adjust the images to be more discriminative.

4 Conclusion

There are three different approaches to deal with the illumination variance. For
the detection task, the image enhancement based method is the most suitable
one. It is because there are no training images for what will be detected. Accord-
ing to the reflection theory, the incident light can serve as the amplifier for the
character of the subject. Then adjusting the images is turn to adjust the inci-
dent light. Motivated with the adaptation of HVS, we proposed a curve mapping
function. This mapping function can adjust the images to a more normal illu-
mination condition and enrich their details which are suppressed in the original
images. The adjustment is done according to the illumination situation of the
image its own. With suitable brightness and abundant details, the adjusted im-
ages are more discriminative. In the experiments, the performance of CM filter
is much better than the others.

The illumination variance is only one of the factors that make the robust face
detection difficult. To achieve more robust face detection, we need to consider
of the pose, expression variance and so on.

References

1. Rowley, H. A., Baluja, S., and Kanade, T: Neural network-based face detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 1,
(1998) 22-38

2. Schneiderman, H. and Kanade, T: A Statistical Method for 3D Object Detection
Applied to Faces and Cars. Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, (2000)



698 X. Jiang, T. Zhao, and R. Zhao

3. Li, S. Z., Zhu, L., Zhang, Z. Q., et al: Statistical Learning of Multi-View Face
Detection. Proc. of the 7th European Conf. on Computer Vision. (2002)

4. Adini, Y., Moses, Y. and Ullman, S.: Face recognition: the problem of compensating
for changes in illumination direction. IEEE Tran. Pattern Recognition and Machine
Intelligence, vol.19, no.7, (1997)721-732

5. Shashua, A., and Riklin-Raviv, T.: The Quotient Images: Class-based Re-
Rendering and Recognition with Varying Illuminations. IEEE Tran. Pattern Recog-
nition and Machine Intelligence, vol.23, no.2, (2001)129-139

6. Wang, H., Li, S. Z., and Wang, Y.: Generalized quotient image. IEEE Conference
on Computer Vision and Pattern Recognition, (2004)

7. Belhumeur, P. and Kriegman, D., ”What is the set of images of an object un-
der all possible lighting conditions?” IEEE Conf. Computer Vision and Pattern
Recognition, pp.270-277,1996

8. Georghiads, A., Belhumeur, P. and Kriegman, D.: From few to many: illumination
cone models for face recognition under variable lighting and pose. IEEE Tran.
Pattern Recognition and Machine Intelligence, vol.23, no.6, (2001)643-660

9. Ramamoorith, R. and Hanrahan, P.: A signal-processing framework for inverse
rendering. SIGGRAPH, (2001)117-128.

10. Basri, R. and Jacobs, D. : Lambertian reflectance and linear subspace. IEEE Tran.
Pattern Analysis and Machine Intelligence, vol. 25, no. 2, (2003)218-233

11. Ferwerda, J. A., Pattanaik, S. N., Shirley, P., and Greenberg, D. P.:A model of
visual adaptation for realistic image synthesis. Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques (1998)

12. Reinhard, E., Stark, M., Shirly, P., and Ferwerda, J.: Photographic tone reproduc-
tion for digital images. ACM Transactions on Graphics, vol. 21, no. 3, (2002)267-
276

13. Xiao, R., Li, M., Zhang, H.: Robust multipose face detection in Images. IEEE
trans. on Circuits and Systems for video technology, vol. 12 no.1, (2004) 31-41

14. Sim, T., Baker, S., and Bsat, M.: The CMU Pose, Illumination, and expression
(PIE) database. Processing of the IEEE International Conference on Automatic
Face and Gesture Recognition, (2002)

15. Martinez, A.M. and Benavente, R: The AR Face Database. CVC Technical Report
#24, (1998)

16. Phillips, P.J., Wechsler, H., Huang, J., and Rauss, P.J.: The FERET database and
evaluation procedure for face-recognition algorithms. Image and Vision Computing,
16(5), (1998) 295-306



Common Image Method(Null Space + 2DPCAs)
for Face Recognition

Hae Jong Seo, Young Kyung Park, and Joong Kyu Kim

School of Information and Communication Engineering, SKKU
300, Cheon-Cheon, Jang-An, Suwon, Kyung-Ki, Korea 440-746

rokaf539@skku.edu

Abstract. In this paper, we present a new scheme called Common Im-
age method for face recognition. Our method has a couple of advantages
over the conventional face recognition algorithms; one is that it can deal
with the Small Sample Size(SSS) problem in LDA, and the other one is
that it can achieve a better performance than traditional PCA by seeking
the optimal projection vectors from image covariance matrix in a recog-
nition task. As opposed to traditional PCA-based methods and LDA-
based methods which employ Euclidean distance, Common Image meth-
ods adopted Assemble Matrix Distance(AMD) and IMage Euclidean Dis-
tance(IMED), by which the overall recognition rate could be improved.
To test the recognition performance, a series of experiments were per-
formed on CMU PIE, YaleB, and FERET face databases. The test results
with these databases show that our Common Image method performs
better than Discriminative Common Vector and 2DPCA-based methods.

1 Introduction

Principle Component Analysis(PCA) and other PCA-based techniques are well-
known schemes for image representation and recognition. Recently, Eigenface for
recognition [2] based on PCA was also proposed by Turk and Pentland in 1991,
and since then, Eigenface-based face recognition schemes have been extensively
investigated. The key idea behind the Eigenface method is to find the optimal
directions in the sample space that will maximize the total scatter across all
images. More recently, a novel image representation and recognition technique,
two-dimensional PCA(2DPCA) [1] has been proposed by Yang et.al.(2004). The
2DPCA is based on 2D image itself without the need to be transformed into
a vector, i.e., the so-called image covariance matrix is constructed directly us-
ing the 2D image matrices. Hui Kong et.al.(2005) [17] theoretically proved that
2DPCA should always outperform the PCA. Although 2DPCA performs better
than conventional PCA, the shortcoming of it is that it only reflects variations
between rows of images, not including the columns. In 2005, a novel method
called diagonal principal component analysis(DiaPCA), which is capable of tak-
ing account of variations of rows as well as those of columns of images, was
proposed by Daoqiang Zhang et.al. [18]. While the above-mentioned PCA-based
methods are efficient for feature extraction, they have an intrinsic limitation that
they do not reflect the within-class scatter of subjects.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 699–709, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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On the other hand, there have been other developments for feature extraction
and recognition such as Linear/Fisher Discriminant Analysis(LDA/FDA) [3, 4]
scheme. This method can overcome the above-mentioned limitation of the PCA-
based methods by finding out the best projection space so that the ratio of the
between-class scatter to the within-class scatter is maximized. Even though it
can solve the problem PCA-based methods have, it also has its own intrinsic limi-
tation that the within-class covariance must be nonsingular when we do not have
enough images for training, i.e., when the “Small Sample Size(SSS)problem or
singularity problem [12]” arise. In order to solve this problem, many approaches
extending LDA have been proposed in recent years. These are PCA+LDA [6],
N-LDA [7], PCA+Null Space [3], Direct-LDA [8], Random sample LDA [9],
and Dual-space LDA [10]. Among these LDA extensions, N-LDA(NullSpace-
LDA), PCA+NullSpace, and Direct LDA incorporate the idea of nullspace of
the within-class scatter. Lately, a novel method which is called Discriminative
Common Vector(DCV) method [5] was proposed. It is a nullspace-based method
which can efficiently extract discriminative common vectors which well represent
each subject by projecting the original sample vector directly into the optimal
projection space. Since this method incorporates PCA in order to obtain the op-
timal projection space, it can not avoid the disadvantage that the 2D face image
matrices must be transformed into 1D image vectors [1]. This disadvantage, as
mentioned above, can be overcome by applying two-dimensional PCAs(2DPCA,
DiaPCA, and DiaPCA+2DPCA).

In this paper, a framework of Common Image method, which simultaneously
incorporates advantages of the nullspace method and two-dimensional PCAs, is
proposed for face recognition. The proposed framework consists of three differ-
ent types of scheme: Nullspace+2DPCA, Nullsapce+DiaPCA, and Nullspace+D
iaPCA+2DPCA. By applying these proposed schemes, the existing limitations
of both LDA and PCA based methods are simultaneously resolved, thus the
performance is expected to improve to a substantial extent. We adopt the IMage
Euclidean Distance(IMED) [11] and Assembled Matrix Distance(AMD)metric [14]
instead of traditional Euclidean distance as a similarity measure. Moreover, since
almost all face recognition methods encounter difficulties under varying lighting
conditions, the SSR (Single Scale Retinex) [19] as a pre-processing step is addi-
tionally employed in order to minimize the effect of illumination.

The rest of this paper is organized as follows. In Section 2, three types of
Common Image methods for face recognition are described. Pre-processing step
is presented in Section 3. In Section 4, the experimental results are provided
using images in the CMU PIE [13], YaleB [15], and FERET [16] databases.
Finally, a conclusion is given in Section 5.

2 Common Image Analysis

The method we propose is based on Discriminative Common Vector(DCV)
method [5] and two-dimensional PCA(2DPCA) methods [1, 18]. Discriminative
common vector is a common feature extracted from each class in the training set
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by eliminating the differences of the samples in each class. In order to obtain the
common vectors, the within-class scatter matrix of all classes is used instead of
given class’s own scatter matrix. In our case, after obtaining common vectors of
each class, we transform vectors into matrices so that two-dimensional PCAs can
be applied afterwards. Two-dimensional PCAs can directly extract optimal fea-
ture matrices of each class from images, thus has many advantages over classical
PCA. We introduce three approaches for obtaining optimal features according
to the variations of two-dimensional PCA after projecting the training set onto
the null space of within-scatter matrix.

2.1 NullSpace + 2DPCA(N-2DPCA)

Let a training set consists of C classes, where each class includes N samples,
and let Ai be a d -dimensional column vector(d = m(height)× n(width)). Now
that this method relies on the NullSpace method, it is required to satisfy that
d > NC. In this case, the within scatter matrix SW , the between scatter matrix
SB, and, the total scatter matrix ST are defined as

SW =
C∑

j=1

N∑
i=1

(Aj
i − μj)T (Aj

i − μj), SB =
C∑

j=1

N(μj − μ)T (μj − μ) (1)

ST =
C∑

j=1

N∑
i=1

(Aj
i − μ)T (Aj

i − μ) = SW + SB (2)

where, μ is the mean of all samples, and μj is the mean of N samples in the jth
class.

In order to obtain common vectors of each class, we project the face samples
onto the null space of SW and use orthogonal complement of the null space of
SW . Let Rd be the sample space, V be the range space of SW , V ⊥ be the null
space of SW . Then, since Rd = V

⊕
V ⊥, every training image Aj

i ∈ Rd can be
decomposed into a unique form.

Aj
i = PAj

i + P̄Aj
i (3)

In (3), the P and P̄ are the orthogonal projection operators onto V and V ⊥,
respectively.

When any sample from the training set is projected onto the null space of
SW , we can obtain a unique common vector.

Aj
com = Aj

i − PAj
i = P̄Aj

i , i = 1, · · ·, N., j = 1, · · ·C. (4)

Now, we transform the common vectors of all class into m×n images in order to
apply 2DPCA. Based on the transformed common images, the so-called image
covariance matrix [1] is defined as

GT (Icom) =
1
C

C∑
j=1

(Ij
com − Īcom)T (Ij

com − Īcom) (5)
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where Ij
com is the common image from Aj

com and Īcom = 1/C
∑

j Ij
com is the

mean common image.
By maximizing the image scatter criterion,

J(X) = XTGTX (6)

we finally obtain the optimal projection space Xopt. The optimal projection
vectors, Xopt = [X1,X2, · · ·,Xd] is the eigenvectors of GT corresponding to the d
largest eigenvalues. These projection vectors are also subject to the orthonormal
constraints. Now, Xopt are used for the extraction of the following features.

Yj = Ij
comXopt, j = 1, 2, · · ·, C. (7)

We call the features Yj

′
s the discriminative common matrices and they will be

used for identification of test images.
To recognize a test image Atest, it is first transformed into d -dimensional

column vector. Then this column vector is projected onto the null space of SW

of the training set.

Aprojected = Atest − PAtest = P̄Atest (8)

The vector projected onto the null space of SW of the training set is now re-
transformed into the m × n image in order to extract the feature matrix of a
test image. The feature matrix of the test image is found by

Ytest = ItestXopt (9)

where, Itest is the image from Aprojected.

2.2 NullSpace + DiaPCA(N-DiaPCA)

We now apply DiagonalPCA [18] into our Common Image method. Let us con-
sider that we obtained the Common Images from each class by projecting the
null space of SW as in (4). Then, common images are transformed into corre-
sponding diagonal face images. Suppose that there is a m×n image and usually
m(height) is greater than n(width). In this case, we use the method as illus-
trated in Fig.1 to generate the diagonal image Dcom for the original common
image Icom. Then, we define the diagonal image covariance matrix as

GT (Dcom) =
1
C

C∑
j=1

(Dj
com − D̄com)T (Dj

com − D̄com). (10)

where Dj
com is the diagonal image from Ij

com and D̄com = 1/C
∑

j Dj
com is the

mean diagonal image.
Using (6) and (7), discriminative common matrices Yj

′
s are obtained. This

method can overcome the intrinsic problem of 2DPCA, which is a unilateral-
projection-based scheme, by reflecting information between rows and those be-
tween columns.

Given a test image, the rest of the recognition procedure is same as in section
2.1, which is described in (8) and (9).
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Fig. 1. Illustration of the ways for deriving the diagonal face images [18]

2.3 NullSpace + DiaPCA + 2DPCA(N-DiaPCA+2DPCA)

In this section, DiagonalPCA and 2DPCA are applied in a row. As mentioned in
Section 2.2 that m(height) is greater than n(width), diagonal image covariance
matrix is first calculated according to the method described in Fig.1 and (11).
After obtaining the discriminative common matrix Xopt from diagonal PCA,
another projection matrix Wopt = [W1, · · ·, Wq] of 2DPCA is computed from
the q eigenvectors corresponding to the q biggest eigenvalues of the alternative
covariance matrix

GT (Icom) = 1/C
C∑

j=1

(Ij
com − Īcom)(Ij

com − Īcom)T . (11)

We first project m×n common images Ij
com onto the n×d projection space Xopt,

and then m × q projection space Wopt is used in a next step to finally acquire
the q × d feature matrices,

Y j = WT
optI

j
comXopt, j = 1, 2, · · ·, C. (12)

Given a test image, by projecting it onto two feature spaces from 2DPCA and
DiaPCA in a row, the feature matrix of a test image is given by

Y test = WT
optI

j
testXopt (13)

2.4 Classification Method

For each of the Common Image method described in Section 2.1, 2.2, and 2.3,
which is also summarized in Table 1, the feature matrix of test image Ytest is then
compared with the discriminative common matrix Yj of each class. As mentioned
in Section 1, unlike the conventional face recognition scheme, we adopted the
Assembled Matrix Distance(AMD) [14] metric as a similarity measure. Here, the
distance between two feature matrices, Yj = (wj

xy)m×d and Ytest = (wtest
xy )m×d is

dAMD(Yj , Ytest) = (
d∑

y=1

(
m∑

x=1

(wj
yx − wtest

yx )2)1/2p)1/p(p > 0) (14)
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Table 1. Common Image mehtods(NullSpace+2DPCAs) for face recognition

3 Pre-processing

In order to make images suitable for recognition tasks, images are needed to
be made as smooth and noiseless as possible. For this purpose, we adopted the
Standardizing Transform as a pre-processing method. Suppose there are two
m× n images, then two images can be represented as A = (a1, a2, · · ·, amn) and
B = (b1, b2, · · ·, bmn), and the Image Euclidean distance between two images A
and B is expressed as

D2
IME(A, B) =

mn∑
i,j=1

gij(ai − bj)(ai − bj) = (A−B)TG(A−B) (15)

where, the metric matrix G = (gij)mn×mn can efficiently be embedded into two
images applying Standardizing transform(ST) [11] directly as:

(A−B)TG(A−B) = (A−B)TG
1
2 G

1
2 (A−B) = (U − V )T (U − V ) (16)

where, U = G
1
2 A and V = G

1
2 B

The ST-processed images U or V are described as Fig.2.(b). Once transformed
into smooth and noiseless images, we further get rid of the illumination effects
by applying SSR [19] as in (17).

I(x, y) = (logU(x, y)− log[F (x, y) ∗ U(x, y)]) (17)

In(17), “∗” denotes the convolution operator, F (x, y) is the gaussian smoothing
function, and U(x, y) is the ST-processed image. By removing the smoothed im-
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Fig. 2. (a) Original image, (b) the image smoothed by the ST(IMED), (c) the SSR-
processed image after ST [19]

age by F (x, y) from the ST-processed image, we finally obtain the SSR-processed
image as shown in Fig.2.(c).

4 Experimental Results

The FERET [16], CMU PIE [13], and YaleB [15] databases were used to test
our proposed methods.

4.1 Expriments with the FERET Database

The subset that we collected from the FERET face database comprises 612
gray-level frontal view face images from 153 persons. Each person has 4 images
(fa, fb, fa1, fb1) with different facial expressions in different sessions. We pre-
processed these images by cropping and normalizing to a size of 92×84, and
aligned the images based on the positions of the eyes. The examples of pre-
processed images from FERET databases are shown in Fig.3. In addition to our
proposed methods, we also tested the performance of DCV, 2DPCA, DiaPCA,
and DiaPCA+2DPCA methods for comparison. The recognition rates were com-
puted by the k-fold strategy [20]: i.e., k(2≤ k ≤3) images of each subject are
selected for training and the remaining(4−k)images of each subject are selected
for test. The nearest-neighbor algorithm was employed using AMD(Assemble
Matrix Distance) for our proposed methods and other two-dimensional PCAs,
whereas Euclidean distance has been used for DCV. This process was repeated
(4 − k + 1)times and the final recognition rate was computed by averaging the
recognition rates from each run. The results are summarized in Table 2. To
demonstrate the effect of IMED and AMD, we included the test results, with
and without these procedures.

Fig. 3. Sample images for one subject on FERET database

4.2 Expriments with the CMU PIE and YaleB Databases

The CMU PIE database contains 41,368 images obtained from 68 individuals.
The database contains image variations according to the illumination, pose, and
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Fig. 4. Sample images for one subject on YaleB and CMU PIE databases

Fig. 5. Performance of proposed methods compared with the state-of-art methods on
CMU PIE and YaleB database

Fig. 6. Performance of proposed methods according to whether they employed AMD
and IMED or not on CMU PIE and YaleB database (N=2)

facial expressions. We took images of frontal faces with 21 different illumination
conditions. Among 68 subjects, we removed one subject because it was not a
frontal image. Thus, the total number of images we used for our test is 1,407.
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YaleB database contains 5,760 images taken from 10 individuals under 576 view-
ing conditions(9 poses × 64 illumination conditions). Here, we used 640 images
for 10 subjects representing illumination conditions under the same frontal pose.

We followed the same procedure previously described in the FERET database
experiment. Some examples of preprocessed images from CMU PIE and YaleB
databases are shown in Fig.4.

In this experiment, the same process as in the experiment in the FERET
database was applied except that k(2≤ k ≤5) images are selected for training
and the remaining(N − k) images of each subject (CMU PIE: N=21, YaleB:
N=6) are selected for test. The experimental results are depicted in Fig.5 and
Fig.6.

4.3 Comparison and Discussion

The dimension of the feature vector in DCV for classification is all reserved
to at most C-1(FERET(C=153), CMU PIE(C=67), and YaleB(C=10), where
C represents the number of classes as mentioned in Section 2.1). For 2DPCA,
DiaPCA, and DiaPCA+2DPCA, the dimensions of reserved feature matrices are
94×15, 94×16, and 15×16 respectively. The dimensions of the feature matrices
in our proposed methods in this paper are tantamount to those of 2DPCA,
DiaPCA, and DiaPCA+2DPCA.

From Table 2 and Fig.5, it is clear that the proposed methods outperform DCV
and two-dimensional PCAs, especially when there are few training samples for

Table 2. Comparison of the state-of-art methods on FERET database

Table 3. Recognition rates on FERET database with and without the IMED and
AMD processing
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each subject. The underlying reason is that our proposed methods, by efficiently
combining the nullspace and two-dimensional PCAs, can extract the optimal
feature matrices. Notice that the proposed methods consistently keep higher
recognition rates than DCV and two-dimensional PCAs on all of the YaleB,
FERET, and CMU PIE databases. One exception is observed when we apply the
YaleB database with N=2, in which case the recognition rate of DCV is better
than our proposed methods. This seems to be due to the fact that the nullspace
size of the SW for YaleB(C=10) database is comparatively larger than those of
the other two FERET(C=153) and CMU PIE(C=67) databases. It is known that
DCV performs better when the number of classes is smaller, or equivalently when
the nullspace size of SW is larger. For the rest of cases, our proposed methods
perform better than DCV, since we take full advantage of two-dimensional PCAs
making our algorithm be less sensitive to the size of the nullspace of SW . On
the other hand, the recognition accuracy could not be improved any further,
which is an opposing result to Daoquiang Zhang et.al. [18]. Nevertheless, it is
clear that N-DiaPCA+2DPCA is more efficient than N-2DPCA and N-DiaPCA
when computing eigenvectors because it has a smaller dimension than others.
And, this might be an important issue when we consider real-time applications.

Finally, Table 3 and Fig.6 show that the recognition performances of our
Common Image methods consistently yield better performance when we applied
the AMD and IMED processings, regardless of the databases. This accords with
the experimental results of Liwei Wang et.al. [11] and Wangmeng Zuo.et.al [14].
There is, thus, no doubt that the AMD and IMED play significant roles in
improving the average recognition rate.

5 Conclusion

In this paper, a framework of Common Image method is proposed for face recog-
nition. The essential idea of the proposed method is to incorporate the idea of the
nullspace and two-dimensional PCAs; thus, it not only deals with SSS problem in
LDA, but also performs better than the traditional PCA. Experimental results on
CMU PIE, YaleB, and FERET databases verify that our proposed methods(N-
2DPCA, N-DiaPCA, and N-DiaPCA+2DPCA) are much more accurate than
the state-of-art methods(DCV, 2DPCA, DiaPCA, and DiaPCA+2DPCA), es-
pecially when there are only small amounts of training images available. We are
currently working on simultaneous face identification/authentication problems
by a way of applying our Common Image method.
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Abstract. In this paper we propose the use of Discrete Choice Analysis (DCA)
for static facial expression classification. Facial expressions are described with
expression descriptive units (EDU), consisting in a set of high level features
derived from an active appearance model (AAM). The discrete choice model
(DCM) is built considering the 6 universal facial expressions plus the neutral one
as the set of the available alternatives. Each alternative is described by an util-
ity function, defined as the sum of a linear combination of EDUs and a random
term capturing the uncertainty. The utilities provide a measure of likelihood for
a combinations of EDUs to represent a certain facial expression. They represent
a natural way for the modeler to formalize her prior knowledge on the process.
The model parameters are learned through maximum likelihood estimation and
classification is performed assigning each test sample to the alternative show-
ing the maximum utility. We compare the performance of the DCM classifier
against Linear Discriminant Analysis (LDA), Generalized Discriminant Analy-
sis (GDA), Relevant Component Analysis (RCA) and Support Vector Machine
(SVM). Quantitative preliminary results are reported, showing good and encour-
aging performance of the DCM approach both in terms of recognition rate and
discriminatory power.

1 Introduction

Facial expressions are probably the most visual method to convey emotions and one of
the most powerful means to relate to each other. An automatic system for the recogni-
tion of facial expressions is based on a representation of the expression, learned from
a training set of pre-selected meaningful features. For unseen expressions, the corre-
sponding representation has to be associated with the correct expression. In this process,
two are the key tasks: the choice of the set of features representing the expression and
the choice of the classification rule. In [1] the author focuses on optical flow analysis
for feature extraction, in order to model muscle activities and estimating the displace-
ments of salient points. This is a dynamic approach, where temporal information is
used both in the feature extraction and classification steps, the last performed through
an Hidden Markov Models (HMM) scheme. Gabor wavelet based filters have been used
in [2], in order to build templates for facial expressions, over multiple scales and dif-
ferent orientations. Template-based matching is used in order to associate an observed
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feature vector with the corresponding expression, in a static context. Statistical genera-
tive models such as principal and independent component analysis (PCA, ICA) are used
in [3] and [4], in order to capture meaningful statistics of face images. Neural Networks
(NN) and HMMs are used for the classification step, respectively in static and dynamic
frameworks. Recent years have seen the increasing use of feature geometrical analysis
([5,6]). The Active Appearance Model (AAM, see [7]) is one of these techniques which
elegantly combines shape and texture models, in a statistical framework, providing as
output a mask of face landmarks.

The contribution of this work is twofold. First, we propose Discrete Choice Mod-
els for expression classification. These models have been recently introduced in the
computer vision community by [8], in the context of pedestrian modeling and track-
ing. DCMs are econometric models designed to forecast the behavior of individuals in
choice situations, when the set of available alternatives is finite and discrete. In this
context, the logic behind the use of DCMs is to model the choice process representing
the human observer labelling procedure. The DCM classifier is compared with several
other classification methods: LDA, GDA, RCA and SVM. The LDA is a supervised dis-
criminative method to produce the optimal linear classification function. It transforms
the data into a lower-dimensional space where it is decided, according to some chosen
metric, to which class a given sample x belongs. The GDA is the kernel-based version
of the LDA. RCA is a method that seeks to identify and down-scale global unwanted
variability within the data. The method performs a projection of the input data into a
feature space by means of a linear transformation. In the transformed space, a nearest
neighbor classification based on the Euclidean distance is used, in order to assign the
new sample to a class (see [9]). Second, we propose a set of Expression Descriptives
Units (EDU) for static expression representation. They are derived from a set of 55 face
landmarks, obtained using an AAM model. The EDUs represent intuitive descriptors
of the facial components (eyebrows, eyes, nose and mouth) and the mutual interactions
between them. They have been derived taking inspiration from the Facial Action Unit
Coding System (FACS) [10] which is a human-observer based system designed to detect
subtle changes in facial features. FACS itself is purely descriptive, uses no emotion or
other inferential labels and provides the necessary ground-truth with which to describe
facial expression. On the other hand, FACS require a huge set of salient facial points,
and for most of them a tracking step is required, in order to capture variations over time.
EDUs can be considered as a more compact and static counterpart of the FACS.

The paper is structured as follows: in Section 2 we review the AAM and introduce the
DCM theory. In Section 3 a detailed description of the utility functions is given along
with the EDU description and the results of the learning process. We finally report the
experiments and a description of the data used to compare the different classifiers with
our approach in Section 4. Conclusions and future works are finally reported in Section 5.

2 Background

2.1 Active Facial Appearance Model

The AAM is a statistical method for matching a combined model of shape and tex-
ture to unseen faces. The combination of a model of shape variation with a model of
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texture variation generates a statistical appearance model. The model relies on a set of
annotated images. A training set of images is annotated by putting a group of landmark
points around the main facial features, marked in each example. The shape is repre-
sented by a vector s brought into a common normalized frame -w.r.t. position, scale and
rotation- to which all shapes are aligned. After having computed the mean shape s̄ and
aligned all the shapes from the training set by means of a Procrustes transformation, it is
possible to warp textures from the training set onto the mean shape s̄, in order to obtain
shape-free patches. Similarly to the shape, after computing the mean shape-free texture
ḡ, all the textures in the training set can be normalized with respect to it by scaling and
offset of luminance values. PCA is applied to build the statistical shape and textures
models:

si = s̄ + Φsbsi and gi = ḡ + Φtbti (1)

where si and gi are, respectively, the synthesized shape and shape-free texture, Φs and
Φt are the matrices describing the modes of variation derived from the training set,
bsi and bti the vectors controlling the synthesized shape and shape-free texture. The
unification of the presented shape and texture models into one complete appearance
model is obtained by concatenating the vectors bsi and bti and learning the correlations
between them by means of a further PCA. The statistical model is then given by:

si = s̄ + Qsci and gi = ḡ + Qtci (2)

where Qs and Qt are the matrices describing the principal modes of the combined vari-
ations in the training set and ci is the appearance parameters vector, allowing to control
simultaneously both shape and texture. Fixing the parameters ci we derive the shape
and the shape-free texture vectors using equations (2). A full reconstruction is given by
warping the generated texture into the generated shape. In order to allow pose displace-
ment of the model, other parameters must be added to the appearance parameters ci:
the pose parameters pi. The matching of the appearance model to a target face can be
treated as an optimization problem, minimizing the difference between the synthesized
model image and the target face [7].

2.2 Discrete Choice Models

Discrete choice models are known in econometrics since the late 50’s. They are defined
to describe the behavior of people in choice situations, when the set of available alter-
natives is finite and discrete (choice set). They are based on the concept of utility maxi-
mization in economics, where the decision maker is assumed to be rational, performing
a choice in order to maximize the utilities she perceives from the alternatives. The al-
ternatives are supposed to be mutually exclusive and collectively exhaustive, while the
rationality of the decision maker implies transitive and coherent preferences.1 The util-
ity is a latent construct, which is not directly observed by the modeler, and is treated as

1 Transitive preferences means that if alternative i is preferred to alternative j which is preferred
to alternative k, then alternative i is also preferred to k. Coherent preferences means that the
decision maker will make the same choice in exactly the same conditions.
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a random variable. The discrete choice paradigm well matches the labelling assignment
process in a classification task. This approach can be interpreted as an attempt to model
the decision process performed by an hypothetical human observer during the labelling
procedure for the facial expressions.

Given a population of N individuals, the (random) utility function Uin perceived by
individual n from alternative i, given a choice set Cn, is defined as follows:

Uin = Vin + εin (3)

with i = 1, ..., J and n = 1, ..., N . Vin represents the deterministic part of the utility,
which is a function of alternatives’ attributes and socio-economic characteristics of the
decision maker. In the context of this paper, we only deal with attributes of the alter-
natives, represented by combinations of the chosen features. The εin term is a random
variable capturing the uncertainty. Under the utility maximization assumption, the out-
put of the model is represented by the choice probability that individual n will choose
alternative i, given the choice set Cn. It is given by:

Pn(i|Cn) = Pn(Uin ≥ Ujn, ∀j ∈ Cn, j �= i) =∫
εn

I(εn < Vin − Vjn, ∀j ∈ Cn, j �= i)f(εn)dεn (4)

where εn = εjn − εin and I(.) is an indicator function which is equal to 1 when
its argument is satisfied, zero otherwise. Based on Equation 4, in order to define the
choice probability, only the difference between the utilities matters. The specification
of the utility functions represents the modeler’s mean to add her prior knowledge on the
choice process (a similar interpretation of the decision theoretic approach can be found
in [11]). In this sense, the DCM approach is similar to graphical probabilistic mod-
els, such as belief networks and random fields, where the graph topology embeds the
prior knowledge, helping designing causal relationships. Different DCMs are obtained
making different assumptions on the error terms. A family of models widely used in
litterature are the GEV (Generalized Extreme Value) models, introduced by [12]. GEV
models provide a closed form solution for the choice probability integral, allowing at
the same time for a certain flexibility in designing the variance/covariance structure of
the problem at hand (i.e., several correlation patterns between the alternatives can be
explicitly captured by these models). Assuming the error terms being multivariate type
I extreme value distributed2, the general expression of the GEV choice probability for
a given individual to choose alternative i, given a choice set C with J alternatives, is as
follows:

P (i|C) =
eVi+logGi(y1,...,yJ)∑J

j=1 eVj+logGj(y1,...,yJ)
(5)

where yi = eVi and Gi = ∂G
∂yi

. The function G is called generating function and it cap-
tures the correlation patterns between the alternatives. Details about the mathematical

2 The main reasons for the choice of this kind of distribution derive from its good analytical
properties. More details can be found in [13].
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(a) (b) (c)

Fig. 1. a)Facial landmarks (55 points);b)Facial components descriptors;c)Expressions Descrip-
tive Units

properties of G are reported in [12] (differentiable and homogeneous of degree μ > 0,
among the others). Several GEV models can be derived from Equation 5, through differ-
ent specifications of the generating function. In this paper we use a Multinomial Logit
Model (MNL), which is largely the simplest and most used discrete choice model in lit-
erature. It is obtained assuming the following G function, which implies no correlations
between the alternatives:

G(y1, ..., yJ) =
∑
j∈C

yμ
j (6)

where μ is a positive scale parameter. Under these assumptions, the MNL choice prob-
ability is given by the following expression

P (i|C) =
eμVi∑

j∈C eμVj
(7)

3 DCM and Facial Expression Classification

3.1 Expressions Descriptive Units

The use of AAM allows to detect facial components in a face (an example is shown
in Figure 1(c)). Figure 1(a) shows the 55 landmarks used to build the AAM model,

Table 1. Expressions Descriptive Units

EDU1 lew+rew
leh+reh

EDU8 leh+reh
lbh+rbh

EDU2 lbw
lbh

EDU9 lew
nw

EDU3 rbw
rbh

EDU10 nw
mw

EDU4 mw
mh

EDU11 EDU2 / EDU4
EDU5 nh

nw
EDU12 EDU3 / EDU4

EDU6 lew
mw

EDU13 EDU2 / EDU10
EDU7 leh

mh
EDU14 EDU3 / EDU10
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Table 2. Utility functions: each row corresponds to an expression while the columns are the EDUs
included in the utilities

Expressions edu1 edu2 edu4 edu5 edu6 edu7 edu8 edu10 edu11 edu13 edu14

anger � � � � �
disgust � � � � �

fear � � � � �
happiness � � � � �

neutral �
sadness � �
surprise � �

while Figure1(b) shows the descriptors we use for the facial components: eyes, eye-
brows, nose and mouth. These descriptors represent the width and the height of each
facial component. In order to give a useful representation of the expression in terms of
interactions among those descriptors, we define a set of EDUs, reported in Table 1. The
first 5 EDUs represent, respectively, the eccentricity of eyes, left and right eyebrows,
mouth and nose. The EDUs from 7 to 9 represent the eyes interactions with mouth
and nose, while the 10th EDU is the nose-mouth relational unit. The last 4 EDUs re-
late the eyebrows to mouth and nose. Differently from other approaches [14,9] that
use the combined AAM vector parameters as facial features, in our framework the 14
EDUs represent the features describing the face. The intuitive interpretation and the
reduced number of dimensions make of the EDUs a valid set of descriptors for facial
expressions.

3.2 The Model

The utility functions are specified using a linear-in-parameters form, combining the
expression descriptive units. Each EDU in each utility is weighted by an unknown de-
terministic coefficient, that has to be estimated. The choice for a linear form is based
purely on simplicity considerations, in order to reduce the number of parameters in the
estimation process. The general form of the utilities is given by:

Ui = αi +
K∑

k=1

IkiβkiEDUk (8)

where i = 1, ..., C with C = 7 is the number of expressions, K = 14 is the number of
EDUs, Iki is an indicator function equal to 1 if the k-th EDU is included in the utility for
expression i and 0 otherwise, βki is the weight for the k-th EDU in alternative i and αi

is an alternative specific constant. The αi coefficients represent the average value of the
unobserved part of the corresponding utility and one of them has to be normalized to 0,
in order to be consistent with DCM theory (see [13]). In our case, we normalize with re-
spect to the neutral expression. We summarize in Table 2 what are the EDUs included in
the different utilities, i.e. when the Iki = 1. Table 2 shows how, during the model spec-
ification step, we are free to customize the utilities of the different expressions. This
flexibility represents the strength of DCMs; note that the utility expressions reported
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here are the result of a strong iterative process, where several hypothesis have been
tested and validated, starting from a uniform expression for every alternative, including
all the EDUs. In the final utility functions, only the EDUs corresponding to statistically
significant parameters (t-test statistic against the zero value) are reported, resulting in a
final model with 31 unknown parameters (6 αi and 25 βki). The parameters have been
estimated by maximum likelihood estimation, using the Biogeme package [15]. Bio-
geme is a freeware, open source package available from roso.epfl.ch/biogeme. It per-
forms maximum likelihood estimation and simulated maximum likelihood estimation
of a wide class of random utility models, within the class of mixtures of Generalized
Extreme Value models (see [16] for details ). The maximization is performed using the
CFSQP algorithm (see [17]), using a Sequential Quadratic Programming method. Note
that such nonlinear programming algorithms identify local maxima of the likelihood
function. We performed various runs, with different starting points (a trivial model with
all parameters to zero, and the estimated value of several intermediary models). They
all converged to the same solution. Most of the estimated utility parameters are signifi-
cantly different from zero. Classification is performed running the learned model on the
test set, using the BioSim package (available at the same address as Biogeme). BioSim
performs a sample enumeration on the test data, providing for each of them the utilities
and the choice probabilities for each expression in the choice set. The classification rule
consists in associating each sample with the alternative having the maximum probabil-
ity, whose equation is reported in (7). We can state the classification rule used here as
a soft max principle based on an entropy maximization criterion ([18]). However, such
a (only formal) ’equivalence’ arises on the base of the specific form of the GEV prob-
ability equation. Other discrete choice methods exist (Probit, Logit Kernel, [16,19])
whose choice probabilities cannot be expressed by an analytical solution, leading to a
more general soft max classification scheme, not related with the maximum entropy
principle.

Learning results. The learned parameters show important consistencies with the com-
mon reading of facial expressions in terms of facial component modifications. For space
reasons, we report in Table 3 only a subset of βki estimates.

The parameters β5a represents the coefficient of the 5th EDU (nose eccentricity) for
the anger alternative. Its positive value shows a positive impact on the respective utility.
It means that increasing nose eccentricity corresponds to higher utilities for the anger
alternative. Looking at the definition of this EDU, this is in line with our expectations,
showing that for an anger expression the nose width increases while its height decreases,
with respect to the neutral expression (the reference one in our model). The parameters
β1a represents the eye eccentricity (1st EDU) for the anger expression. A similar inter-
pretation holds for this coefficient, in line with observations: the eye movement leads
to a lower eye’s height and a higher eye’s width, with respect to the reference alter-
native. The other two parameters relate the nostrils width with the mouth width. Their
negative sign induces a negative impact on the utilities of fear and happiness. This is
coherent with the data, where for these two expressions we note a characterizing in-
crease in the mouth width, leading to a decreasing nostril-mouth interaction parameter.
The coefficient estimates are significantly different from zero at 95%, with the excep-
tion of the β10f (significant at 90%). We finally report some interesting statistics. The
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Table 3. MNL Part of the estimation results

βki estimate t test 0

β5a + 1.238 + 4.298
β1a + 2.067 + 2.018
β10f - 14.69 - 1.871
β10h - 42.64 - 3.440

Sample size = 143
Number of estimated parameters = 30
Null log-likelihood = - 278.265
Final log-likelihood = - 88.317
Likelihood ratio test = 379.896
ρ̄2 = 0.575

Table 4. Number of images in the classification
training and test set

Expressions Training images Test images
Neutral 26 15

Happiness 20 18
Surprise 21 20

Fear 18 11
Anger 18 17

Disgust 22 17
Sadness 18 17

Table 5. Classification rates

Classifiers Classification Rate(%)
DCM 78.261
SVM 76.522
RCA 70.435
LDA 49.565
GDA 62.609

log-likelihood corresponding to a trivial model (all the coefficients equal to zero) is
consistently increased after the estimation process, rising its value from -278.265 to -
88.317. The likelihood ratio test and the ρ̄2 coefficient are also reported, showing the
good fitting of the estimated model.

4 Experiments

In order to test the proposed approach we use the Cohn-Kanade Database [20]. The
database consists of expression sequences of subjects, starting from a neutral expression
and ending most of the time in the peak of the facial expression. There are 104 subjects
in the database, but only for few of them the six expressions are available. From the
database we extrapolate 3 data sets:

– AAM training set: it consists of 300 images from 11 different subjects; it is com-
posed by 48 neutral images and 42 images for each of the 6 primary emotions.

– Classifiers training and test set: they consist respectively of 143 and 115 appear-
ance masks, as reported in Table 4.
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Table 6. DCM and SVM confusion matrices

DCM/SVM happiness surprise fear anger disgust sadness neutral Overall(%)
happiness 16/16 0/0 2/1 0/0 0/1 0/0 0/0 88.88/88.88
surprise 0/0 19/19 0/0 1/0 0/0 0/0 0/1 95.00/95.00

fear 1/4 0/0 7/4 2/2 0/0 1/0 0/1 63.64/36.36
anger 0/0 0/0 1/2 10/9 3/1 2/3 1/2 58.82/52.94

disgust 0/1 0/0 0/0 2/2 12/12 0/1 3/1 70.58/70.58
sadness 0/0 0/0 0/0 2/0 0/1 15/14 0/2 88.24/82.35
neutral 0/1 0/0 2/0 1/0 0/0 1/0 11/14 73.34/93.33

The appearance model is built using 49 shapes modes and 140 texture modes leading
to 84 appearance modes, capturing the 98% of the combined shape and texture varia-
tion. The shape-free texture vector g is compose of 38310 pixels and the shape vector
dimension is 55. Concerning the implementation, we use the AAM C++ code available
at http://www2.imm.dtu.dk/∼aam/. The classifiers used in the comparison procedure
all share the same training and test sets. Their input consists in the EDUs built on the
matched appearance masks. For the other classifiers we implemented the related state
of the art. The SVM (using libsvm with radial basis functions) and DCM classifiers
have been tuned on the common training set. The test experiments reported in Table
5, although preliminaries, could be interpreted as a better transferability of the learned
DCM model over unseen samples. The intuition explaining this behaviour could lie on
the more flexible hypotheses at the base of the DCM approach. The verification of this
intuition will be part of our further investigations.

With the exception of RCA, the performance of the other nearest neighbor classifiers
are significantly lower than SVM and DCM. For this reason we report in Table 6 only
the confusion matrices for the two best performing methods.

A second empiric measure for classifiers performance comparison, related only to
their discriminatory power and not to the recognition rates, has been computed. It is
described in [21] and we report here a short explanation. For the various methods to
be compared, let m(wc) the mean probability assigned to well classified samples and
std(wc) the relative standard deviation. Similarly, let m(bc) and std(bc) the same values
for the bad classified samples.3 Good classification and bad classification thresholds are
defined as:

gctr = m(wc) + std(wc) bctr = m(bc)− std(bc)

Based on these values, an overall performance parameter is defined as:

opp =
gctr − bctr

m(bc)−m(wc)
(9)

measuring how well a classifier discriminates. For a robust method we expect an opp
value as low as possible. If the value of opp is negative, the gctr and bctr thresholds
are well separated. In Table 7 we report the opp values for the tested classifiers. In

3 For the nearest neighbor classifiers the sample distances from the classes have been normal-
ized, in order to sum up to one.
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Table 7. opp values for the compared classifiers

Classifiers opp
DCM - 6.92
SVM - 3.60
RCA - 3.64
LDA - 4.51
GDA - 3.27
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Fig. 2. Mean class probabilities for correct classification
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order to visualize the discriminatory power for DCM and SVM, it is worth to show, for
each set of correctly classified samples, the mean values of the probabilities assigned
to each of the other classes, as shown in Figure 2. The plots confirm the better class
discrimination performed by the DCM classifier, resulting in a sharper shape of the
output probabilities.

5 Conclusions and Future Works

In this paper we propose a new classifier based on discrete choice analysis and a set
of expression descriptive units for facial expression representation. Both the feature set
and the modeling approach are motivated by the research of methods able to bring into
the process the modeler prior knowledge. The set of the proposed EDUs is suitable be-
cause intuitively related to static expressions, describing the salient facial components
and their mutual interactions. The DCM modeling approach redefines facial expres-
sion classification as a discrete choice process, which well matches the human observer
labelling procedure. Prior knowledge can be included in the process customizing the
utilities. The result of the DCM is a set of probabilities assigned to the alternatives, rep-
resented by the possible expressions. The one with the maximum probability is chosen
for classification. We compared the DCM classifier with several other methods, finding
that only the SVM has comparable performance. However, the more flexible properties
of DCM lead to better results of this approach both in terms of classification rate on new
data and discriminatory power. We are currently working to include in the model both
the expression dynamics and the variation in a population of individuals performing the
labelling task. Based on our experience, we think that a subjective component biases the
labelling process, requiring a detailed statistical analysis on collected data from an het-
erogeneous population of human observers. DCMs, coming from econometric, provide
a strong statistical framework to include such a heterogeneity.
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Abstract. This paper considers the design of an optimal joint source-channel 
coding system employing scalable wavelet-based source coders and unequal er-
ror protection for error-resilient transmission over binary erasure channels. We 
theoretically show that the expected average rate-distortion function in the sepa-
rately encoded subbands is convex with monotonically decreasing slopes and 
use this fact to propose a new algorithm which minimizes the end-to-end distor-
tion. This algorithm is based on a simplified Viterbi-search followed by La-
grangian-optimization. We show that our proposed solution results in signifi-
cant complexity reductions while providing very near-to-optimal performance. 

1   Introduction 

The transmission of images over heterogeneous, error-prone networks to a large vari-
ety of terminals requires scalable image coding and efficient error control mecha-
nisms. Many of the state-of-the-art scalable image coders rely on a global wavelet-
transform followed by embedded bitplane coding and entropy coding [1], [2], [3]. 
These source coders are attractive because they offer very competitive rate-distortion 
performances together with resolution and quality scalability, such that progressive 
transmission and bandwidth adaptation can be realized with one single encoded bit 
stream. However, the nature of the entropy coding techniques used in these image 
coding schemes, causes the produced bitstreams to be very sensitive to transmission 
errors; i.e. even a single bit-error may propagate and cause the decoder to lose syn-
chronization and eventually collapse. Error control coding is therefore of vital impor-
tance when transmitting the generated bit streams over error-prone channels.  

Error protection in packet-based systems is typically enabled by means of forward 
error correction (FEC) codes. The last decade has been marked with exciting devel-
opments in this field with the introduction of iteratively decodable and capacity-
achieving codes like turbo codes in 1993 by Berrou and Glavieux [4] and the inde-
pendent re-discovery of the low-density parity-check (LDPC) codes, originally intro-
duced by Gallager in the early 1960's [5], by MacKay [6] in 1995. Driven by these 
results other similar codes have recently been proposed [7], [8], [9]. 

Shannon's separation theorem [10] states that source and channel coding can be 
performed independently, while maintaining optimality. However, this is only true 
under the assumption of asymptotically long block lengths of data and unlimited com-
plexity and delay. In many applications, these conditions neither hold, nor can they be 
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used as a good approximation. It has been shown in the past [11] that a joint design, 
allowing for the optimal allocation of the available bits between the source and chan-
nel codes, leads to significantly improved coding results. 

In this paper we focus on the joint source and channel coding (JSCC) problem, 
wherein the source is encoded by a scalable codec producing layers with different 
levels of importance. We will follow a JSCC-design that accounts for the scalability 
of the source coder by incorporating unequal error protection (UEP) [12] of the source 
packets. This leads to a better performance than an equivalent JSCC-design which 
performs equal error protection [13]. In the context of the packet-based transmission 
of embedded sources, JSCC-algorithms with UEP were recently proposed in [13], 
[14], [15] for the case of fixed-size channel-packets and in [13], [15] for the case of 
variable-length channel-packets. In [14], a distortion-based rate-allocation method 
was presented for protecting JPEG2000 bitstreams with turbo codes. It employs a 
complete list Viterbi-search and its complexity grows quadratically with the number 
of transmitted packets. The performance of the algorithm approaches the one obtained 
by using exhaustive search. A Lagrangian optimization-based JSCC-approach that 
iteratively computes the source rates and protection levels for a JPEG2000-bitstream 
is designed in [13]. In [15] a distortion-optimal solution that first performs a sub-
optimal rate-based search [16] followed by a distortion-based local search is pro-
posed.  

In this paper, we propose a Lagrangian optimization-based JSCC-algorithm with 
UEP which minimizes the end-to-end distortion. In contrast to [13], the proposed 
algorithm constructs unique optimal rate-distortion curves for each code-block (sub-
band), and based on them, performs optimum joint source-channel rate-allocation. 
Unlike the algorithms described in [13], [14], [15], we focus on transmission over 
packet-erasure channels instead of binary symmetric channels. The erasure channel is 
a better model for modern packet-based networks, since packets either arrive at the 
destination or get lost due to congestion or corruption [17]. The proposed JSCC ap-
proach assumes that an interleaver is used in the transmission scheme, so that the 
packet-loss model can be translated into a binary-erasure channel (BEC) model. The 
coding system employs punctured regular LDPC-codes and fixed-length channel 
packets, since this provides the advantage of an easier cross-layer design [18].  

This paper is structured as follows. Section 2 formulates the problem under inves-
tigation as a constrained-optimization problem. Section 3 presents our solution and 
gives the complete derivation of our JSCC-methodology with UEP. Section 4 high-
lights the specifics of our source and channel coder. Section 5 reports the simulation 
results. Finally, section 6 draws the conclusions of our proposed methodology. 

2   Problem Formulation 

We consider an image decomposed into L  wavelet subbands which are progressively 
encoded and focus on the transmission of fixed-length packets over a binary erasure 
channel with parameter ε  and total channel rate totR  (capacity of the channel). The 
JSCC has to allocate the total rate totR  across all L  subbands and between the source 
and channel coders in such a way that the overall distortion is minimized.  
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The total expected distortion of the transmitted image can be expressed as a sum of 
the separate subband-distortions lD  as: ( ), ,1

,
L

tot l s l c ll
D D R R== . The problem is to 

find for every subband l  the optimum source and channel rates ,s lR  and ,c lR  respec-
tively as well as the corresponding number of packets lM . Additionally, for every 
given subband, the optimal rate distribution between the source and channel coders at 
the level of every packet needs to be determined. Denote by ,is lR , ,ic lR  the source and 
channel rates respectively used in packet i  of subband l . The global rate is given by:  

, , , ,
1 1 1 0 0

( )
l l

i i

M ML L L

tot l l l s l c l l s l c l
l l l i i

R w R w R R w R R
= = = = =

= = + = + . (1) 

The weights lw  reflect the subband contribution in the total rate, which is propor-
tional to the relative subband size, i.e. l lw S S= , where ,lS S  are the areas of the 
subband and original image respectively. In our approach, we define a number of 
protection levels totd  and impose the constraint of UEP, i.e. the source rate in the lM  
packets has to be non-decreasing: 

1 2, , ,...
Ml

s l s l s lR R R≤ ≤ ≤ .  
The JSCC problem can thus be formulated as a constrained-optimization problem 

wherein one has to minimize the expected distortion:  

, ,
1

min ( , )
L

tot l s l c l
l

D D R R
=

=  (2) 

subject to the constraint that the target rate is closely met: 

, , target
1 1

( )
L L

tot l l l s l c l
l l

R w R w R R R
= =

= = + ≤ . (3) 

3   Solution Methodology 

The proposed JSCC approach is presented next. We first derive a recursive formula 
for the average subband distortion. Thereafter, we prove that the JSCC solution can be 
found via Lagrangian optimization. We also show that it is computationally impossi-
ble to create all possible protection combinations for all subbands and propose a novel 
strategy to find a close-to-optimal solution for the constrained-optimization problem.  

3.1   Recursive Formula for the Average Expected Subband-Distortion 

Denote by ( )fp ε  the probability of losing a packet that is transmitted over a BEC 
with parameter ε . The expected subband-distortion , ,( , )l s l c lD R R  when receiving all 
packets up to packet m  (with 0 lm M≤ ≤ ) and losing packet 1m + is of the form:  

1, , , , ,
0 0 0 0

( , ) ( , ) (1 ( )) ( ) ( )
i i m i

m m m m

l s l c l l s l c l f f l s li
i i i i

D R R D R R p p D Rε ε
+

= = = =
= = − ⋅ ⋅∏ , (4) 

where lD  is the source distortion, 
0

0fp = , 
1
( ) 1

Ml
fp ε

+
=  and 

0 0, , 0s l c lR R= = . Hence, 
the average expected distortion of subband l  when transmitting lM  packets is: 

1, , , , ,
0 0 0 0 0 0

( , ) ( , ) (1 ( )) ( ) ( )
l l

i i i m i

M Mm m m m

l s l c l l s l c l f f l s l
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+

= = = = = =
= = − ⋅ ⋅∏ . (5) 
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Next, we define the code rate r  of the error correction codes as:  

k
r

N
 (6) 

where k  is the number of source bits and N  is the total number of bits in the channel 
packet. In our transmission scenario, N  is fixed. Hence, ,0

( )
i

m

l s li
D R=  can equiva-

lently be formulated as a function of the set of code rates ,l ir  used in packet 
, 0 li i M≤ ≤ , of subband l  as ,0

( )
m

l l ii
D r= . Equivalently, , ,( , )l s l c lD R R  can be ex-

pressed as ,0 ,1 ,( , ,..., )
ll l l l MD r r r . Therefore, (5) can be written as: 
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where ,( , ) ( )
if l i fp r pε ε≡ . We denote: , ,0

(1 ( , ))
m

l m l ii
p rα ε== −∏  and , ,0

k

l k l mi
r r== . 

Together with the conventions ,0 1lα = , ,0 0lr =  and , 1( ) 1
ll Mp r + = , we can write: 

, 1 , , 1 , , 1 , , 1.(1 ( , )) . ( , ) ( )l m l m l m l m l m l m l mp r p rα α ε α ε α α+ + + += − ⇔ = − , (8) 

for ,1 lm m M≤ < . Using (7) and (8), a recursive formula can now easily be derived: 

1
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The code rates ( ),0 ,1 ,, ,...,
ll l l Mr r r  assigned to the lM  packets of subband l  have to 

be chosen such that a minimal end-to-end distortion is achieved. We call the set of 
code rates ( ),0 ,1 ,, ,...,

ll l l Mr r r  the path 
lMΠ . Our final recursive formula is then: 

( )
1 ,

1 , 1 , , , 1
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l l l
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l M l M l M
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3.2   Optimal Rate-Allocation with Lagrangian Optimization 

In the following we prove that the average expected distortion ( )
ll MD Π  of a subband 

is always convex with monotonically decreasing slopes, no matter what path is taken. 
Also, we prove that a similar conclusion with bounds on the allowable code rates can 
be drawn when transmitting an increasing number of fixed-length packets. 

Lemma 1: Define 1

,

( ) ( )
( )

l

k k
kD

l k

D D

r
λ −Π − ΠΠ = . If ,( )l l kD r  is convex with monotoni-

cally decreasing slopes, then 1( ) ( )
l lk kD D

λ λ−Π > Π  for any ,1 lk k M≤ ≤ .  
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Proof: 
Using our recursive formula (10) we can state: 

, 1 ,1
, 1 ,

, , , 1

, 1 , , , ,

( ) ( )( ) ( )
( ) (1 ( , ))

( ) (1 ( , )) ( ) ( ) ( )

l

l ll l

l l k l l kl k l k
k l k f l kD

l k l k l k

k l k f l k D l k k l k D l kD D

D r D rD D
p r

r r r

p r r r

λ α ε

λ α ε λ λ α λ

−−
−

−

−

−Π − ΠΠ = = ⋅ − ⋅
−

⇔ Π = ⋅ − ⋅ ⇔ Π = ⋅

 

Since , ,1 ( , ) 1,f l k l kp r rε− ≤ ∀ , it implies , , 1 , , 1.(1 ( , ))l k l k f l k l kp rα α ε α− −= − ≤  and be-

cause ,( )l l kD r  is convex with monotonically decreasing slopes: 

, , 1 , , 1( ) ( ) ( )
l l lD l k D l k l k D l kr r r rλ λ λ− −= + < . We obtain that 1( ) ( )

l lk kD D
λ λ−Π > Π . Q.E.D. 

In our transmission scheme we assume that the source is distributed in fixed-length 
packets. The next lemma derives the sufficient condition on the code rates such that 
the distortion is monotonically decreasing with the number of transmitted packets. 

Lemma 2: Define 1( ) ( )
( )

( 1)l

k k
kD

D D

k k
γ −Π − ΠΠ =

− −
, which is the slope of the distortion 

when sending packet k  after packet 1k − . Assume that ,( )l l kD r is convex and of the 

form ,22
,( ) 2 l kr

l l kD r εσ −= . A sufficient condition for ( )
l

kD
γ Π  to be monotonically 

decreasing with k  is , 4log 0.2654l kr e e> , for all ,1 lk k M≤ ≤ . 

Proof: 

We observe that ,( ) ( )
l l

k k l kD D
rγ λΠ = Π ⋅ . Hence, 

1 1 , 1

,

( ) ( )

( ) ( )
l l

l l

k kD D l k

k k l kD D

r

r

γ λ

γ λ
− − −

Π Π
= ⋅

Π Π
. 

From the proof of lemma 1 we know that , 1 , ,( ) .(1 ( , )) ( )
ll k l k f l k D l kD

p r rλ α ε λ−Π = − ⋅ , 

which implies that: 
1 , 1 , 1

, ,,

( ) ( ) 1

( ) 1 ( , )( )
l l

ll

kD D l k l k

k l k f l kD l kD

r r

r p rr

γ λ
γ ελ

− − −
Π

= ⋅ ⋅
Π −

. Also, the slope 

,( )
lD l krλ  can be approximated by the derivative of ,( )l l kD r . If ,22

,( ) 2 l kr
l l kD r εσ −= , 

then its derivative is given by: ,22
,'( ) 2 2 ln(2)l kr

l l kD r εσ −= − , implying that: 

( ), , 1 ,1 2 2, 1 , 1

, , , ,

( ) 1 1
2 2

( ) (1 ( , )) 1 ( , )
l k l k l kl

l

k r rD rl k l k

k l k f l k l k f l kD

r r

r p r r p r

γ

γ ε ε
−− − − −

Π
= ⋅ ⋅ = ⋅

Π − −
 (11) 

From (11), a sufficient condition such that ( )
l

kD
γ Π  is monotonically decreasing with 

k  is ,2 , 1

,

2 1l kr l k

l k

r

r
− ≥ . Let , , 1l k l kr rβ −= . This implies:  

, , 1, 4
, 1

, 1

log
4 4 ( )l k l kr rl k

l k
l k

r
f r

r
β ββ β β

β
−⋅

−
−

> = ⇔ > ⇔ = <  (12) 
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A simple derivation shows that the maximum of ( )f β  is achieved when eβ = . 

This means that , 4log 0.2654l kr e e>  which ends the proof.               Q.E.D. 

Based on the above lemmas we are now able to develop our JSCC rate-allocation 
mechanism. As an example we sketch three possible (convex) paths of the subband 
distortion evolution when different combinations of code rates are assigned to four 
packets (see Fig. 1). This example illustrates that one cannot assume the existence a 
single path out of all the convex paths which delivers the best protection for any num-
ber of transmitted packets. We conclude that depending on the number of packets we 
transmit for each subband, different code rate combinations (different paths) should 
be considered to find the minimal expected average subband distortion.  

# packets1 2 3

Distortion

D(0)

1

2

4

3

# packets1 2 3

Distortion

D(0)

1

2

4

3

 

Fig. 1. Example of the subband-distortion paths which can be achieved when subsequent pack-
ets are transmitted with different protection levels  

With this knowledge, we propose to solve the global optimization problem given 
by (2) and (3) as follows. For each subband in the wavelet-decomposition we retain 
from the constructed convex hulls, the paths which result in a minimal distortion at 
each subsequent packet. Thereby we construct a “virtual” envelope of the convex 
hulls (see Fig. 2) where each point on the virtual envelope can be achieved through a 
real path. Based on the two lemmas, it can be proven using simple geometry that this 
virtual envelope is convex, with monotonically decreasing slopes. Hence, we can 
perform an optimal rate-allocation in between the subbands by means of classical 
Lagrangian optimization applied on the virtual hulls computed for each subband. 

# packets1 2 3

Distortion

D(0)

1: path 1

2: path 2

3: path 3
Envelope

4 # packets1 2 3

Distortion

D(0)

1: path 1

2: path 2

3: path 3
Envelope

4  

Fig. 2. Example of the derivation of the virtual convex hull of a subband from the real convex 
hulls of that subband  
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3.3   Construction of the Convex Hulls: A Computational Analysis 

3.3.1   Exhaustive Search with UEP 
One way to construct all possible convex hulls under the constraint of UEP is to gen-
erate for each subband all possible code rate combinations. From Fig. 3 it can be no-
ticed that this results in an explosive growth of the search space. 

The number ( )my d  of different paths to follow in order to achieve protection d  at 
packet m  can easily be derived. Let totd  be the number of different code rates and m  
the number of packets transmitted. Each packet can be protected with a different code 
and we make the convention that 1d =  and totd d=  correspond to the strongest and 
weakest protection codes respectively.  

Protection level 1 (strongest)

Protection level 3 (weakest)

Protection level 2 (average)

# packets

1

2

3

4

Protection level 1 (strongest)

Protection level 3 (weakest)

Protection level 2 (average)

# packets

1

2

3

4

 

Fig. 3. Example of the explosive growth of the search space when using exhaustive search 

It can be shown that: 

1
1

( ) ( )
d

m m
i

y d y i−
=

=  (13) 

2
1

2
1

( 1)( 2)....( 2)
( )

( 1)!

d m
d

m d m
d

d d d d m
y d C

m

+ −
−
+ −

−

+ + + −= = =
−

 (14) 

Proof: 
In order to facilitate the proof, we provide an alternate view for all possible paths that 
are allowed under UEP in Fig. 4. The first packet can be assigned any code rate: 

1( ) 1y d = . The number of paths to follow when 2 packets are transmitted is depend-
ent on the protection of packet 1 and is given by: 2 ( )y d d= , with 1 totd d≤ ≤ . 

2

d

2

d

m m m

d

1 1 1 3

1

2

3

4

1

2

3

4

1

2

3

4

2

d

2

d

m m m

d

1 1 1 3

1

2

3

4

1

2

3

4

1

2

3

4

 

Fig. 4. Example of exhaustive search method with UEP with 4 protection levels and up to 3 
transmitted packets  
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For packet 3, the number of paths depends on the protection of packet 2: 

3 2
1 1

( 1)
( ) ( )

2

d d

i i

d d
y d y i i

= =

+= = = , 

which corresponds to (14) for 3m = . Recursively, 11
( ) ( )

d

m mi
y d y i−== . Assume by 

induction that ( )2
1( ) d m

m dy d + −
−=  and let us prove that ( )1

1 1( ) d m
m dy d + −
+ −= . One writes: 

( )2
1 11 1
( ) ( )

d d i m
m m ii i

y d y i + −
+ −= == = , which is the form of a known combinatorial sum 

[19]: ( ) ( )1

0

k i p p k
i ki

+ + +
= = . With ' 1i i= − :  

( ) ( ) ( ) ( )
1

2 ' 1 1 1 1 1
1 1 ' 1 1

1 1 ' 0

( ) ( )
d d d

i m i m m d m d
m m i i d d

i i i

y d y i
−

+ − + − − + − + + −
+ − − −

= = =
= = = = = , (15) 

which ends the proof.                   Q.E.D. 

Practically, the above means that for the transmission of, for example, 20 packets with 
8 protection levels, 888030  paths should be computed to find the minimal path for 
one subband. This is computationally much too intensive. 

3.3.2   Proposed Simplified Viterbi Search with UEP 
In order to significantly reduce the computational burden involved by an exhaustive 
search approach as described in Section 3.3.1, we propose to continuously eliminate 
paths that lead to the same protection level for the packet under consideration and let 
the single path that results in the minimal expected distortion survive. We illustrate 
our approach in Fig 5. The average expected distortion for each protection path is 
computed with our recursive formula (10). 

2

d

2
m m m

d
d

11 31

1

2

3

4
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2

3

4
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2

3

4

2
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2
m m m

d
d

11 31
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4
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Fig. 5. Proposed approach with limited complexity for the construction of the rate-distortion 
hulls of a subband. Thin lines represent the computed paths under UEP. Bold lines represent the 
survivor paths that lead to the minimal distortion for a certain protection level and number of 
packets transmitted. 

The number of additional paths mY  that need to be computed for the protection of 
each extra packet with totd  possible protection levels is then given by: 

1

.( 1)
, ... ,

2
tot tot

tot m

d d
Y d Y

+= =  
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The total complexity in terms of the total number of paths to compute when trans-
mitting lM  packets is therefore: 

1
( 1) .( 1) 2lM

m tot l tot totm
Y Y d M d d== = + − ⋅ + , which 

is only of order 2( . )lO d M . Compared with the algorithm proposed by Banister [14] 
which presents a complexity of the order of 2( . )lO d M , our algorithm provides a 
significant reduction in complexity since lM  is typically much larger than d .  

4   Coding System Description 

4.1   Source Coder 

Our source coder consists of a global wavelet transform followed by successive ap-
proximation quantization and non-adaptive arithmetic coding. In order to combat the 
dramatic effect of synchronization loss of the arithmetic coder when an error occurs, 
we code each subband separately and reset the arithmetic coding process after each 
bitplane. This results in a small reduction in compression performance but increases 
the robustness to transmission errors effectively. 

The coding process basically consists of a succession of significance and refine-
ment passes [20] performed at each bit-plane. Similar to JPEG-2000, the rate-
distortion characteristics of each subband are computed while encoding. With this 
respect, it can be shown [20] that the reduction in the total distortion, resulting from 
decoding a wavelet coefficient during the significance pass at bitplane k  is given by: 

( ) 227 2 12k
SD kΔ = ⋅ .The distortion reduction for the refinement pass of bit-plane k  

is calculated as: ( )2 12 k
RD −Δ = . Finally, the rates spent at each bit-plane and coding 

pass are the actual rates produced by arithmetic coder.  

4.2   Channel Coder 

For the protection of the source packets of size x1K  we use regular LDPC-codes 
over GF(2) [21]. An LDPC code is a linear block code defined by a sparse parity-
check matrix H  of dimension xN M  with M N K= − . The parity-check matrix H  
of a regular LDPC-code contains a low and fixed number of ones in the rows (also 
called left or variable degree vd ) and a low and fixed number of ones in the columns 
(also called right or check degree cd ). In order to create regular ( , )v cd d  LDPC-codes 
which exhibit good performance, we implemented the Progressive Edge Growth 
(PEG) algorithm of [22]. This algorithm presents good properties in terms of girth and 
minimum distance which are dominant criteria to achieve performant codes. 

Encoding of the source packets is performed with the dual of the parity-check ma-
trix, called the generator matrix G . We construct the matrix G  in systematic form, 
meaning that the output after encoding includes the original source data. Iterative 
decoding is performed using a log-domain sum-product algorithm [21]. Since we 
focus here on fixed-length packets we construct for each different protection level 
new parity-check and generator matrices with different dimensions and puncture the 
last redundant bits such that packets of fixed-length n  are achieved (with n N< ).  
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5   Experimental Results 

In our experiments we consider the transmission of embedded image codes in packets 
of exactly 256 bytes over BECs with 5%, 10%, 20% and 30% of bit erasures. For the 
channel coding we employ punctured regular (3,6)-LDPC codes of which we meas-
ured the performance off-line (see Table 1). The iterative decoding allows up to 100 
iterations. 

Table 1. Average probability of packet loss for the punctured regular (3,6) LDPC-codes. N is 
the total number of bytes of the codeword. K is the number of source bytes in the codeword and 
P is the number of redundant bytes punctured from the codeword. 

N K P 
Probability 
of Packet 

loss
N K P 

Probability 
of Packet 

loss
N K P 

Probability 
of Packet 

loss
N K P 

Probability 
of Packet 

loss

256 128 0 0.00E+00 256 128 0 0.00E+00 256 128 0 0.00E+00 256 128 0 0.00E+00
414 207 158 0.00E+00 388 194 132 0.00E+00 334 167 78 0.00E+00 284 142 28 0.00E+00
418 209 162 1.00E-06 396 198 140 4.84E-05 342 171 86 4.57E-05 292 146 36 3.12E-05
422 211 166 2.83E-04 400 200 144 1.21E-03 346 173 90 4.12E-04 296 148 40 6.19E-04
426 213 170 3.24E-02 404 202 148 3.63E-02 350 175 94 7.30E-03 300 150 44 6.33E-03
430 215 174 1.84E-01 408 204 152 1.49E-01 356 178 100 1.22E-01 304 152 48 4.04E-02

BEC with 5% losses BEC with 10% losses BEC with 20% losses BEC with 30% losses

 

Table 2. Average performance comparison of (1) exhaustive search, our proposed Viterbi-
search with (2) three and (3) all available protection levels for the 512x512 grayscale-images 
Lena (left) and Goldhill (right) 

Rtarget 

(bpp)
Rreal 

(bpp)
Rs 

(bpp)
PSNR 
(dB)

Rreal 

(bpp)
Rs 

(bpp)
PSNR 
(dB)

Rreal 

(bpp)
Rs 

(bpp)
PSNR 
(dB)

Rreal 

(bpp)
Rs 

(bpp)
PSNR 
(dB)

Rreal 

(bpp)
Rs 

(bpp)
PSNR 
(dB)

Rreal 

(bpp)
Rs 

(bpp)
PSNR 
(dB)

0.25 0.25 0.205 31.16 0.25 0.205 31.16 0.25 0.205 31.16 0.26 0.211 30.16 0.26 0.211 30.15 0.26 0.211 30.15
0.5 0.50 0.410 34.38 0.50 0.409 34.37 0.50 0.409 34.37 0.50 0.410 32.68 0.51 0.415 32.73 0.51 0.415 32.73
1 1.02 0.833 37.80 1.02 0.833 37.80 1.02 0.834 37.81 1.01 0.826 36.28 1.01 0.825 36.27 0.99 0.812 36.18

0.25 0.25 0.193 30.85 0.25 0.193 30.85 0.25 0.193 30.85 0.25 0.193 29.89 0.25 0.193 29.89 0.25 0.193 29.89
0.5 0.50 0.386 34.10 0.51 0.392 34.16 0.51 0.392 34.16 0.50 0.386 32.33 0.50 0.386 32.33 0.50 0.386 32.33
1 1.07 0.827 37.79 1.07 0.826 37.78 1.08 0.828 37.78 1.02 0.790 36.04 1.02 0.790 36.04 0.99 0.761 35.77

0.25 0.25 0.167 30.36 0.25 0.167 30.36 0.25 0.168 30.36 0.25 0.167 29.44 0.25 0.167 29.44 0.25 0.167 29.44
0.5 0.50 0.335 33.54 0.50 0.334 33.53 0.50 0.334 33.54 0.52 0.346 32.03 0.52 0.346 32.03 0.52 0.346 32.03
1 1.00 0.668 36.83 1.01 0.670 36.85 1.01 0.670 36.85 1.03 0.690 35.29 1.04 0.692 35.29 1.04 0.693 35.29

0.25 0.25 0.143 29.71 0.25 0.143 29.71 0.25 0.143 29.69 0.25 0.143 28.87 0.25 0.143 28.87 0.25 0.143 28.87
0.5 0.50 0.286 33.14 0.50 0.287 33.13 0.50 0.287 33.14 0.50 0.286 31.53 0.50 0.285 31.53 0.50 0.286 31.53
1 1.00 0.571 36.17 1.02 0.581 36.23 1.02 0.581 36.23 0.99 0.567 34.62 0.99 0.567 34.62 0.99 0.567 34.63

BEC 30% BEC 30% 

Lena 512x512 Goldhill 512x512

BEC 10% BEC 10%

BEC 20% BEC 20%

VITERBI, UEP 
SEARCH & 3 

PROTECTION 
LEVELS

VITERBI, UEP 
SEARCH ALL 
PROTECTION 

LEVELS

BEC 5% BEC 5%

EXHAUSTIVE, UEP 
SEARCH & 3 
PROTECTION 

LEVELS

VITERBI, UEP 
SEARCH & 3 
PROTECTION 

LEVELS

VITERBI, UEP 
SEARCH ALL 
PROTECTION 

LEVELS

EXHAUSTIVE, UEP 
SEARCH & 3 

PROTECTION 
LEVELS

 

In contrast to other JSCC coding approaches [13], [14], [15], we do not include ex-
tra CRC-bits to detect errors. This is because the LDPC-codes are linear block codes 
which present a probability of error detection of practically 100% and which decode 
the received codewords with a simple matrix multiplication. All our experiments 
confirm this, since the LDPC-decoder never made false error detection decisions, as 
this would have led to a de-synchronization of the arithmetic decoder.  
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We use a five-level (9,7) wavelet-transform and apply embedded coding as de-
scribed in Section 4.1. The embedded source coding is performed only once and the 
rate-distortion characteristics of the embedded subband sources are stored as look-up 
tables. We do not consider the (small) amount of rate used by the header-information 
in our algorithm and assume that this information reaches the decoder intact.  

After source coding, the proposed JSCC-approach determines for given channel 
characteristics how the subbands should be packetized, i.e. how many packets of each 
subband are necessary and how each packet should be protected. 

Table 2 presents the simulation results when applying (1) an exhaustive search 
with UEP with three protection levels, (2) our proposed algorithm with three protec-
tion levels and (3) our proposed algorithm with all available protection levels on the 
classical “Lena” and “Goldhill” images (size 512x512 pixels, 8bpp).  

The three chosen LDPC-codes are always the three first punctured codes from Ta-
ble 1, i.e. those for which the number of punctured bytes P is different from zero. In 
order to have comparable results, the transmission (insertion of random bit erasures) 
is performed identically for each search method. We repeated the transmission of the 
packets 5000 times and averaged the resulting PSNRs. This means that equivalent 
packets in the different search methods are corrupted identically. These results show 
that our proposed solution yields very near-to-optimal compression performance. 

6   Conclusion 

In this paper we have introduced a JSCC-system with UEP for the transmission of 
embedded wavelet-based image codes over binary erasure channels. Our proposed 
methodology relies on novel proofs concerning the convexity of the distortion evolu-
tion in separately encoded subbands. Globally, our proposed approach consists of a 
simplified Viterbi-search method to define the rate-distortion characteristics of the 
subbands followed by a global Lagrangian optimization over all subbands. We have 
showed that our system results in significant complexity reductions while at the same 
time providing very near-to-optimal compression performance.  
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Robust Analysis of Silhouettes by Morphological
Size Distributions
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Abstract. We address the topic of real-time analysis and recognition of
silhouettes. The method that we propose first produces object features
obtained by a new type of morphological operators, which can be seen as
an extension of existing granulometric filters, and then insert them into
a tailored classification scheme.

Intuitively, given a binary segmented image, our operator produces
the set of all the largest rectangles that can be wedged inside any con-
nected component of the image. The latter are obtained by a standard
background subtraction technique and morphological filtering. To clas-
sify connected components into one of the known object categories, the
rectangles of a connected component are submitted to a machine learn-
ing algorithm called EXtremely RAndomized trees (Extra-trees). The
machine learning algorithm is fed with a static database of silhouettes
that contains both positive and negative instances. The whole process,
including image processing and rectangle classification, is carried out in
real-time.

Finally we evaluate our approach on one of today’s hot topics: the
detection of human silhouettes. We discuss experimental results and show
that our method is stable and computationally effective. Therefore, we
assess that algorithms like ours introduce new ways for the detection of
humans in video sequences.

1 Introduction

During the recent years, the rising of cheap sensors has made of video surveillance
a topic of very active research and wide economical interest. In this field, one of
the expected major breakthrough would be to design automatic image processing
systems able to detect, to track, and to analyze human activities. Unfortunately
the amount of data generated by cameras is prohibitively huge, although the
informative part of such signals is very tight with respect to their raw content.

Several algorithms in computer vision have been developed to summarize
such informative patterns as a set of visual features. These algorithms generally
rely on the detection of discontinuities in the signal selected by interest point
� Olivier Barnich has a grant funded by the FRIA, Belgium.
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detectors [1]. Then, a local description of the neighborhood of the interest points
is computed [2] and this description serves to track a feature in successive frames
of a video sequence. Methods like this, referred to as local-appearance methods,
have been used with some success in computer vision applications such as image
matching, image retrieval, and object recognition (see [3,4]).

From current literature, it is still unclear whether such local-appearance de-
scriptors are appropriate for tracking human silhouettes, or more specifically for
gait analysis. Indeed, they are rather computationally expensive, and as they
are inherently local, it is impossible for them to represent the overall geometry
of a silhouette. There are two potential solutions to this problem: (1) introduce
higher-level descriptors able to represent the relative spatial arrangements be-
tween visual features [5], or (2) take global appearance (such as contours) into
consideration instead of local appearance.

Gait analysis techniques based on the global geometry of the objects have
been discussed by Boulgouris et al. [6]. According to them, techniques that
employ binary images are believed to be particularly suited for most practical
applications since color or texture informations might not be available or appro-
priate. The contour of a silhouette is probably the most sensible visual feature
in this class. A direct use of it is possible, or it can be transformed into a series
of Fourier descriptors as common in shape description. Alternatively the width
of silhouette, horizontal and vertical projections, and angular representation are
other candidates that have been proposed.

In this paper, we propose a novel approach that is at the crossroad between
local- and global-appearance techniques. Our approach innovates in that we
propose a new family of visual features that rely on a surfacic description of
a silhouette. Intuitively, we cover the silhouette by the set of all the largest
rectangles that can be wedged inside of it. More precisely, each (local) position
in the silhouette is linked to the subset of the largest rectangles that cover it
and that are entirely included in the (global) silhouette.

Surfacic descriptors, like the morphological skeleton [7], have already been
studied in the scope of shape compression whose goal is to reduce the amount of
redundant information. In general, they require large computation times, which
makes them less suitable for real-time applications. This contrasts with our fea-
tures, as it is possible to compute them in real-time, if enough care is taken in
the implementation.

This paper describes an attempt to take advantage of such novel features.
To illustrate our approach, we focus on the detection of human bodies in a
video stream, like in [8,9]. Basically, we apply machine learning algorithms on
the rectangles of a silhouette to decide, in real-time, whether this silhouette
corresponds to that of a learned instance of a human silhouette. This decision is a
compulsory step for any gait recognition task, and improvements in this area will
impact on the overall performances of algorithms that deal with the automatic
analysis of human behavior. Our results show how promising an approach like
ours can be.
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The paper is organized as follows. We start by describing the architecture
of our silhouettes detection and analysis technique in Section 2, which mainly
consists in three steps (silhouettes extraction, description, and classification)
respectively detailed in Sections 3, 4, and 5. Experimental results, which consist
in the application of our method for the detection of human people in video
sequences, are discussed in Section 6.

2 Overall Architecture

The overall architecture of our silhouettes detection, analysis and classification
system is depicted in Figure 1. It comprises three main modules.

Extra−Trees

Classification

Class Label 1 (e.g. non−Human)Class Label 0   (e.g. Human)

Silhouettes Description:

Rectangle Extraction

......

Silhouettes Extraction:

Background Subtraction

Fig. 1. Overall architecture

1. The first module consists in extracting the candidate silhouettes from the
video stream. It is described in Section 3.

2. One of the major difficulties in classification lies in finding appropriate fea-
ture measures. In the second module, we use our new granulometric operator
to produce a set of features (largest wedged rectangles) describing the ex-
tracted silhouettes.

3. The task of the third module is to classify rectangle features to decide
whether or not the silhouettes belong to the class of interest. The clas-
sification is achieved by the means of an extra-tree learning algorithm as
explained in Section 5.

3 Extraction of Silhouettes

The first step of our system consists in the segmentation of the input video stream
in order to produce binary silhouettes, which will be fed into the silhouettes
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description module. We achieve this by a motion segmentation based on an
adaptive background subtraction method.

Background segmentation methods are numerous. The method we have chosen
is based on an adaptive modeling of each pixel as a mixture of Gaussians, each
of which corresponds to the probability of observing a particular intensity or
color for this pixel. In each Gaussian cluster, the mean accounts for the average
color or intensity of the pixel, whereas the variance is used to model illumination
variations, surface texture, and camera noise. The whole algorithm relies on the
assumptions that the background is visible more frequently than the foreground
and that its variance is relatively low, which are common assumptions for any
background subtraction technique. Extensive description of the algorithm can
be found in [10,11] and a tutorial is available at [12]. The technical description
is given hereafter.

If Xt is the color or intensity value observed at time t for a particular pixel
in the image, the history {X1, . . . ,Xt} is modeled as a mixture of K Gaussian
distributions. The probability of observing a particular color or intensity value
at time t is expressed as

P (Xt) =
K∑

i=1

ωi,tη(Xt, μi,t, Σi,t), (1)

where

– K is the number of Gaussian clusters used to model the history of the pixel,
– ωi,t is the weight associated with the ith cluster at time t –it models the

amount of data represented by the ith Gaussian–,
– μi,t and Σi,t are the mean and covariance matrix of the ith Gaussian, and
– η is a Gaussian probability density function.

For computational efficiency reasons, the covariance matrix Σi,t is assumed to
be isotropic and diagonal

Σi,t = σ2
kI. (2)

The Gaussian distributions are sorted in decreasing order of the ratio ωi,t

σi,t
. The

j first Gaussians are considered to account for the background, while the rest
of them accounts for the foreground. The j factor is dynamically estimated by
accumulating the ωi,t values, according to the computed order of the Gaussians,
until a given threshold value T is reached. For this to work we assume that the
background is visible more often than the foreground and that its variance is
relatively low.

Every new pixel value is checked against the K distributions until a match is
found, in which case the pixel receives its class label (background or foreground)
according to that of the matched distribution. A match is defined as a pixel
value within 2.5 times the standard deviation of a distribution. If no match is
found, the pixel is considered as belonging to the foreground. In this case, a new
distribution, centered on the pixel color or intensity, is initialized to replace the



738 O. Barnich, S. Jodogne, and M. Van Droogenbroeck

Fig. 2. Examples of extracted silhouettes with the Gaussian mixture model background
subtraction technique

weakest distribution present in the mixture model. This new distribution is of
high initial variance and low prior weight.

Once the new pixel value is classified, the model has to be updated. A standard
method would be to use the expectation maximisation algorithm. Unfortunately,
that would be prohibitively computationally expensive. In [10,11], Stauffer
and Grimson give an on-line K-means approximation efficient enough to be
performed in real-time on a standard VGA image (640× 480 pixels).

After the foreground has been computed, foreground pixels are aggregated
by a 8-connected component algorithm. This guarantees that a unique label is
assigned to each connected region. Then each connected region is considered as
a distinctive input for both the silhouettes description and silhouettes classifi-
cation modules. Examples of extracted candidate silhouettes by the mixture of
Gaussians algorithm are shown on Figure 2.

In the silhouettes description module, each candidate silhouette will be han-
dled as if it was the unique region in the image. There are thus as many silhou-
ettes as connected regions for which an algorithm has to decide whether or not
it belongs to a known shape pattern.

4 Features Based on a Granulometric Description by
Rectangles

Most surfacic descriptors can be described in terms of the theory of mathematical
morphology. Therefore we will use this framework to describe our new feature
set.

After a brief introduction to some notations, we will present the framework
of granulometries that proved to be the starting point of our development. Then
we provide a formal description of our new operator.

4.1 Morphological Operators on Sets

Hereafter we briefly recall some definitions and notations used in mathemati-
cal morphology that serves as the framework to define our new feature space.
Consider a space E , which is the continuous Euclidean space Rn or the discrete
space Zn, where n ≥ 1 is an integer. Given a set X ⊆ E and a vector b ∈ E , the
translate Xb is defined by Xb = {x + b|x ∈ X}.

Let us take two subsets X and B of E. We define the X ⊕ B and X 

Brespectively as
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X ⊕B =
⋃
b∈B

Xb =
⋃

x∈X

Bx = {x + b|x ∈ X, b ∈ B} (3)

X 
B =
⋂
b∈B

X−b = {p ∈ E|Bp ⊆ X}. (4)

where B is referred to as the structuring element.
When X is eroded by B and then dilated by B, one may end up with a smaller

set than the original set X . This set, denoted by X ◦ B, is called the opening
of X by B and defined by X ◦B = (X 
B)⊕ B. The geometric interpretation
of an opening is that it is the union of all translated versions B included in
X , or in mathematical terms, X ◦ B = {Bp| p ∈ E , Bp ⊆ X}. Note that this
geometrical interpretation is valid for a given set of fixed size. We have to enlarge
it to encompass the notion of size or family of structuring elements, which leads
us to granulometries.

4.2 Granulometries

The concept of granulometry, introduced by Matheron [13], is based on the
following definition.

Let Ψ = (ψλ)λ≥0 be a family of image transformations depending on a pa-
rameter λ. This family constitutes a granulometry if and only if the following
properties are satisfied:

∀λ ≥ 0, ψλ is increasing (5)
∀λ ≥ 0, ψλ is anti-extensive (6)

∀λ ≥ 0, μ ≥ 0, ψμψλ = ψλψμ = ψmax(λ,μ). (7)

The third property implies that, for every λ ≥ 0, ψλ is an idempotent trans-
formation, that is: ψλψλ = ψλ. As these properties reflect those of an opening,
openings fit nicely in this framework as long as we can order the openings with
a scalar. For example, assume that X ◦ rB is the opening by a ball of radius r.
Then Ψ = (ψr)r≥0 = (X ◦ rB)r≥0 is a granulometry. Of particular interest are
granulometries generated by openings by scaled versions of a convex structuring
element.

Granulometries, and some measures taken of them, have been applied to prob-
lems of texture classification [14], image segmentation, and more recently to the
analysis of document images [15].

4.3 Granulometric Curves and Features

Maragos [14] has described several useful measurements for granulometries de-
fined by a single scale factor: the size distribution and the pattern spectrum. The
size distribution is a curve that gives the probability of a point belonging to an
object to remain into that object after openings with respect to a size factor. The
pattern spectrum is defined likewise as the derivative of the size distribution. All
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Fig. 3. Examples of largest wedged rectangles contained in a human silhouette

these measures are taken on operator residues driven by a one-dimensional cri-
terion. They are not applicable to a family of arbitrary structuring elements nor
are they capable to produce uncorrelated multi-dimensional features. Therefore
we define a new operator that produces a cover.

Definition 1. [Cover] Let S be a family of I arbitrary structuring elements
S =
{
Si∈I
}
. A cover of a set X by S is defined as the union of translated

elements of S that are included in X such that

C(X) =
{
Sj

z | z ∈ E and Sj ∈ S} (8)

where, if Sj′
z′ and Sj′′

z′′ both belong to C(X), none of them is totally included in
the other one.

As a consequence of this definition, any element of C(X) comprises at least one
pixel that uniquely belongs to it. But the upper bound of uniquely covered pixels
can be as large as the area of element Sj .

In our application we consider the simplest two-dimensional opening which
is of practical interest and practically tractable: an opening by a rectangular
structuring element B = mH ⊕ nV where mH , nV respectively are m-wide
horizontal and n-wide vertical segments. Based on the family B of all possible
rectangle sizes, C(X) will be the union of all the largest non-redundant rectangles
included in X . Such rectangles are shown in Figure 3. A fast algorithm for
computing this cover is given in [16].

The main advantage of using a cover is that we have a family of structuring
elements, describing the surface of an object X , whose members might overlap
but all of them uniquely fit somewhere inside of X .

The next step is to extract features from the cover. Since B are rectangles,
features like width, height, perimeter, and area spring to mind. For classification
purposes however care should be taken to avoid redundant features because it
would not increase the performances and could even be counterproductive. For
example, Hadwiger [17] has shown that any continuous, additive, and transla-
tion and rotation invariant measure on a set X must be a linear combination of
the perimeter, area, and Euler-Poincar number of X .
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Fig. 4. Examples of rectangles size distributions for human shaped silhouettes. The
pixel intensities account for the number of overlapping rectangles that cover each lo-
cation in the image.

Since translations and scales have some significance in the analysis of silhou-
ettes we reintroduce them by taking the position of elements of C(X) relative
to the center of X . Finally we select 5 features on any elements of C(X): width,
height1, 2 relative coordinates of its center, and the percentage of uniquely cov-
ered pixels to its area. This last feature is a consequence of taking the cover
C(X) to describe X .

5 Silhouettes Classification

Once the set of all the features describing a silhouette has been extracted (see
Figure 4 for an illustration of the density of covered pixels), it becomes possible
to exploit a machine learning algorithm to map this set into a class. Indeed,
such mappings are especially hard to derive by hand and should be learned by
the system. In our framework, as we are interested in the detection of human
silhouettes, only two classes of interest are considered: the class of the human
silhouettes, and the class of any other silhouette.

The machine learning approach requires to take two difficulties into account:
(1) there is a need of a classifier with excellent generalization abilities not subject
to overfitting, and (2) we must define a way to apply this classifier on a set of
rectangles, the number of which may widely vary between silhouettes.

To this aim, we propose to use EXTremely RAndomized trees (Extra-trees),
a fast, yet accurate and versatile machine learning algorithm [18]. Reasons for
using extra-trees in our context are threefold: (1) extra-trees have proven suc-
cessful for solving some color image classification tasks [19], (2) they form a non-
parametric function approximation architecture, which do not require previous
knowledge, and (3) they have low bias and variance, as well as good performances
in generalization.

5.1 Classification Based on Extremely Randomized Trees

We first describe how extra-trees can be used to map a single rectangle to a class.
Then we will explain how to map a set of rectangles to a class. We will restrict
1 Note that the perimeter and area derive from the width and height of a rectangle so

that it is unnecessary to add them the list of features.
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our study of extra-trees to the case where all the input attributes are numerals,
which is obviously the case of our rectangular features. Indeed, as mentioned
earlier, the input attributes for the rectangles are their width, height, relative
positions, and information about the cover.

Intuitively, extra-trees can be thought of as a crossover between bagging [20]
and random forests [21]. They consist of a forest of M independent binary de-
cision trees. Each of their internal nodes is labeled by a threshold on one of the
input attributes, that is to be tested in that node. As for the leaves, they are
labeled by the classification output. To classify a rectangle through an extra-tree
model, this rectangle is independently classified by each tree. This is achieved
by starting at the root node, then progressing down the tree according to the
result of the tests on the threshold found during the descent, until a leaf is
reached. Doing so, each sub-tree votes for a class. Finally, the class that obtains
the majority of votes is assigned to the rectangle.

The sub-trees are built in a top-down fashion, by successively splitting the
leaf nodes where the output variable does vary. For each input variable, the
algorithm computes its variation bounds and uniformly chooses one random
threshold between those bounds –this is similar to the case of random forests.
Once a threshold has been chosen for every input variable, the split that gives
the best information-theoretic score on the classification output is kept –this is
similar to bagging. This will guarantee that the variance in the model is reduced
(thanks to the presence of a forest of independent sub-trees), as well as bias
(thanks to the random selection of the thresholds), while taking advantage of an
information measure that guides the search for good splits.

5.2 Classification of Silhouettes

We have just described the process of classifying one rectangle. But we describe
a silhouette X by its cover C(X) which is a set of rectangles. Furthermore, two
distinct silhouettes can have a different number of rectangles inside them. We
must therefore introduce a meta-rule over the extra-trees for mapping a set C(X)
to a class. In this work, we exploit an idea that is similar to that of Mare et
al., which was used in the context of image classification [19].

Let M be a fixed positive integer. Given the set C(X) of rectangles that shapes
the silhouette X , we select the first M rectangles inside this set, which induces
a subset CM (X) ⊆ C(X). Then, we apply the extra-trees model onto each rec-
tangle inside CM (X). This process generates one vote per rectangle. Finally, the
silhouette X is mapped into the class that has obtained the majority of the votes.

6 Experimental Results

6.1 Dataset Collection

As mentioned in the introduction, we have focused our experiments on the detec-
tion of human silhouettes in a video stream. The extra-trees have been trained
2 This line determines the strength of the attribute selection process. The choice of√

n is discussed in [18].
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Fig. 5. A few examples of negative instances contained in the training dataset

Fig. 6. Subset of positive instances contained in the training dataset

on a dataset of silhouettes that contains both silhouettes of human bodies and
silhouettes of other kind of objects. We have fed the learning set with a large
number of instances for each of those two classes.

Some instances of non-human silhouettes, called negative instances, are dis-
played in Figure 5. The negative samples are the union of non-human silhouettes
that were extracted from a live video stream by the background subtraction tech-
nique presented in Section 3, and of images that were taken from the COIL-100
database [22]. There are about 12,000 images in this dataset. As for the positive
instances, we have about 3,000 human silhouettes. Some of them are represented
in Figure 6. Those two datasets have been converted to a database that has been
fed into the extra-trees learning algorithm (cf. Section 5).

6.2 Tests on Real-World Images

We have tested our algorithms on a color video stream of 640×480 pixels that was
captured with a FireWire CCD camera. The whole process (including silhouettes
extraction, description, and classification) was carried out at approximately five
frames per second on a Pentium IV computer at 3.4 GHz.

Fig. 7. Examples of silhouettes classified correctly. A white frame around an object
indicates that the system classifies it as a human silhouette.

The detection of human silhouettes is very robust since the number of correct
classifications largely outnumbers misclassifications, although we ignored any
correlation between successive frames. Example images of correct (resp. wrong)
classifications are shown in Figure 7 (resp. in Figure 8). Our method might
be subject to improvements, one of them being the use of a prediction scheme
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Fig. 8. Examples of misclassified silhouettes

between successive frames, but these first results demonstrate that on single
images our system is capable to recognize specific silhouettes in a semi-controlled
environment.

7 Conclusions

In this paper we propose a new system for the real-time detection and classifi-
cation of binary silhouettes. The silhouettes are extracted from an input video
stream using a standard background subtraction algorithm. Then, each silhou-
ette is treated by a new kind of granulometric filter that produces a morpho-
logical cover of the silhouette and characterizes it as the set of all the largest
rectangles that can be wedged inside of it. One of the major achievements is
that we managed to implement the feature extraction step in real-time, which
is uncommon for surface-based descriptors. The rectangle features are then fed
into an extra-trees classifier that assigns a class label to each detected silhouette.
Thanks to the simple tree-based structure of extra-trees, the classification step
is also very fast. As a consequence, the whole process that consists of silhou-
ettes detection, analysis and classification can be carried out in real-time on a
common computer.

Empirical results that consisted in the application of our method to images
captured with a CCD camera put in an environment unknown to the learn-
ing process show that our method manages to detect human silhouettes with a
high level of confidence. Future work will feature a systematic evaluation of the
performances of our approach. We will also investigate its exploitation in more
complex tasks such as gait recognition, human tracking, or even general object
tracking.
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Abstract. This paper proposes a new approach in digital watermarking
applications that can be adapted for embedding either fragile or robust
watermarking in a digital image in the spatial domain or in the fre-
quency domain. The main objective of the proposed scheme is to explore
the amount of texture or edge pixels belonging to the host image in order
to insert more information while preserving the robustness of the scheme
without degrading the visual quality of the watermarked image. The host
image is divided into blocks and each block can be subdivided into sub-
blocks according to its texture analysis. The number of sub-blocks that
each block will be divided into depends on the amount of texture or edge
pixels presented by it. The numerical results show that the proposed
scheme is better in JPEG compression attacks, and far exceeds others in
watermark size capacity.

Keywords: Watermarking, Texture Analysis, Copyright Protection, Au-
thentication.

1 Introduction

Digital technologies are ever more present in society. The Internet provides a
cost effective way of exchanging information, however the security concerned
with data authenticity and copyright are not always guaranteed. The digital
watermarking techniques emerge as an effective means for protecting intellectual
property.

According to Cox et al [4], “watermarking is the practice of changing some-
one’s work, in an imperceptive way, by introducing a message into it”.

Digital watermarking methods can be separated into two different groups:
robust and fragile; and the procedure of watermark encoding can be carried out
in the spatial domain [6], [8], or in the frequency domain [5], [2].
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In the spatial domain, the watermark embedding into the host image can be
done by simply changing its LSB’s (Least Significant Bit) when dealing with
binary watermarks; these modifications can be easily detected by some kind of
image processing operations [7]. These techniques are commonly used for fragile
watermark “authentication” [3].

The watermarking embedding into the frequency domain shows, a more robust
watermarked image result than that of the usual image processing operations
which use fragile ones, and, for this reason, they are generally used for copyright
protection. One of the main drawbacks is that the watermark to be inserted has
restrictions on its size in order to preserve the visual quality of the watermarked
image.

To solve this problem, a method is presented. This method is able to insert
binary watermarks containing more information than the original method, and
preserves the visual quality of the watermarked image, maintaining its robust-
ness.

A texture image analysis was considered and introduced in the Wu and Shih
scheme [9], with the objective of increasing the amount of information to be
inserted without the degradation of the watermarked image visual quality. In
the proposed technique, watermark is embedded into significant areas according
to the amount of information presented by each area.

This paper is organized as follows: Section 2 presents some correlated methods,
section 3 presents the proposed method, and the obtained results are presented
in section 4. The conclusion is presented in section 5.

2 Correlated Work

The Wu and Shihs scheme [9] uses as its inspiration two well known methods in
the watermark area, when dealing with binary watermark. The Wong’s method
[8] has the objective of inserting watermarks for authentication, and the Cox’s
method [2] uses the watermark to protect copyrights.

The Wong scheme [8] presents a block-based fragile watermarking technique
by adopting the RSA (Rivest-Shamir-Adleman) public key encryption algorithm
and Message-Digest-5 for the hashing function.

The Cox technique [2], proposed embedding a watermark into the frequency
domain of the host image, inserting the watermarking into the highest coefficients
of the host image.

The method proposed by Wu and Shih [9] has as its main objective the ca-
pacity to embed a fragile watermark or robust watermark in a unique system.

The authors used two parameters, a matrix QF (Quantify Factor) and V STW
(Varying Sized Transform Window) to reach their integration purpose. The ma-
trix QF determines if the process will be fragile or robust, and the V STW pa-
rameter determines if the process will be performed in the spatial or frequency
domain.

Following the ideas presented in Wu and Shih’s method [9], and trying to
increase the quantity of information embedded in the host image while preserving
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the visual quality of the watermarked image and the robustness a new technique
is proposed.

3 The Proposed Watermarking Scheme

The proposed method is an improvement to the Wu and Shih’s method, which
takes into account the texture analysis in order to sub-divide the initial block
image division. For the understanding of the proposed scheme some details will
follow.

In Wu and Shih’s method [9], the watermark is embedded at the most signif-
icant point of each block.

The insertion into the most significant points makes the watermark size lim-
ited to the number of blocks that the host image was divided.

If we have a host image H of size 256× 256 pixels and divide it into blocks of
size 16× 16, the information to be embedded will be of size at most 256 pixels.
If the host image H is divided in smaller blocks, the watermarked image visual
quality can deteriorate. We can solve this problem; by lowering some values of
the matrix QF but this procedure will diminish the robustness of the method.

Each block of the host image has one QF which is a matrix of the same size
as the block size. Each position of the matrix QF informs the pixel what will be
changed. The value belonging to this position indicates the bit which will store
the information. The possible values for the QF position are 2k, k ∈ N.

The host image is divided into blocks and each block is subdivided taking
into consideration its entropy and/or edge pixels. As entropy (or edge pixels)
increase the number of sub-block can be increased, allowing an increase in the
amount of information to be inserted.

The encoding and decoding procedure of the proposed method are described
below.

3.1 Embedding Algorithm

Let H be a gray-level host image, and let W be a binary watermark image of
size M×P . Let H B be the block-based image obtained by splitting H into non-
overlapping blocks. The entropy (or the edge point’s quantity) will be used for
the block division decision and for the amount of information that each sub-block
will receive. Let HBk the kth sub-block and QFk be the matrix correspondent
quantify factor.

As in the Wu and Shih’s scheme, in order to increase the security of the
process, a composition of the watermark with the pixel based (PB) features
of H will be used which will be inserted into the host image H . The PB is
a matrix pixel-based feature extracted from H using morphological operations,
and is used the moment that the original image and the watermarked image
have almost the same PB, in general [9].
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The algorithm proceeds as follows:

Step 1 - Obtaining PB from H :
Create a structure element S as in [9];
Obtain HD, as a dilation of H by S;
Obtain HE , as an erode of H by S;
For each (i, j),
If (

0 ≤ H(i, j)−HE(i, j)
HD(i, j)−HE(i, j)

≤ T1

)
or (

T2 ≤ H(i, j)−HE(i, j)
HD(i, j)−HE(i, j)

≤ 1
)

then PB(i, j) = 1;
else PB(i, j) = 0.
Note: The values of T1 and T2 used in the experiments were 0.1 and 0.9, re-

spectively.

Step 2 - By joining the original watermark W with the PB in order to obtain
FW :

For i = 1, ...,M and j = 1, ..., P do
FW (i, j) = PB(i, j) XOR W (i, j).

Step 3 - Obtaining the blocks H B:
Split H into non-overlapping blocks H B.

Step 4 - Defining HB set:
An edge detector and/or the image entropy calculus of each block H B is per-

formed and, if the result of edge/texture level is greater than a given threshold
T , this block is sub-divided defining at the end of this step, the HB set.

Step 5 - Obtaining HBDCT
k :

Compute the DCT of each block HBk.

Step 6 - Obtaining HBQ
k :

In each HBk execute:
For each position (i, j) of H calculated
HBQ

k (i, j) = HBDCT
k (i,j)

QFk(i,j) .

Step 7 - Insertion of FW :
Let (m, p) = (1, 1)
For each k execute:

For each position (i, j) of HBk, calculate
HBWF

k (i, j) = HBQ
k (i, j)

If QFk(i, j) > 1 do:
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LSB {HBWF
k (i, j)} = FW (m, p)

p = p + 1
If p > P , do
p = 1
m = m + 1.

Step 8 - Obtaining HBWMF :
For each HBk do

For each position (i, j) of H calculate
HBWMF

k (i, j) = HBWF
k (i, j) QFk(i, j).

Step 9 - Obtaining HBWS
k :

Compute the IDCT of each HBWMF
k .

Step 10 - Obtaining the watermarked image HW :
HW will be formed with all the sub-blocks HBWS

k distributed in the same
position as the correspondent block HBk as occupied in H .

In the extraction process, some input variables are used. Which are: The
watermarked image HW , the same S structure element, the same QF matrix,
and the same threshold T1 and T2 used in the insertion process.

3.2 Decoding Algorithm

Step 1 - Obtaining PB from HW :
Use the same structure element S from the insertion process;
Obtain HWD, as a dilation of HW by S;
Obtain HWE, as an erode of HW by S;
For each (i, j),
If (

0 ≤ HW (i, j)−HWE(i, j)
HWD(i, j)−HWE(i, j)

≤ T1

)
or (

T2 ≤ HW (i, j)−HWE(i, j)
HWD(i, j)−HWE(i, j)

≤ 1
)

then PB(i, j) = 1;
else PB(i, j) = 0.

Step 2 - Obtaining the blocks HW B:
Split HBWS into non-overlapping blocks.

Step 3 - Defining HWB set:
An edge detector and/or image entropy calculating of each block HW B is

performed and if the result of edge/texture level is greater than a given threshold
T , this block is sub-divided. This procedure define, at the end of this step, the
HWB set.
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Step 4 - Obtaining HWBDCT
k :

Compute the DCT of each HWBk.

Step 5 - Obtaining HWBQ
k :

For each HWBk do
For each position (i, j) of HWB calculate
HWBQ

k (i, j) = HWBDCT
k (i,j)

QFk(i,j) .

Step 6 - Obtaining HWBLSB:
Let (m, p) = (1, 1)
For each k do

For each position (i, j) of HWBQ
k , do

If QFk(i, j) > 1 do:
HWBLSB(m, p) = LSB {HWBQ

k (i, j)}
p = p + 1

If p > P , do
p = 1
m = m + 1.

Step 7 - Compound the image HWBLSB with the PB in order to obtain W ′:
For i = 1, ...,M and j = 1, ..., P
W ′(i, j) = PB(i, j) XOR HWBLSB(i, j).

4 Experimental Results

To test the proposed scheme a system for the embedding and detection of a
watermark W was implemented. Some tests were (executed) to compare the
proposed method with Wu and Shih’s method performance.

The value of QF (1, 1) which determines the watermark’s robustness, in gen-
eral receives the value 2k. The best choice is always the highest k which does
not cause image degradation.

The same k value applied to different images, does not necessarily produce
the same robustness, or be it, the choice of a k constant, which is effective in
the balance of robustness of the technique versus visual degradation, depends
entirely upon the image’s properties, such as edges, textures, etc.

In the two reported experiments, the highest k possible was chosen which did
not visual deteriorate the host image.

In the first experiment Lenna’s picture (size 256× 256) was split into blocks
of size 8 × 8. In Wu and Shih’s method the watermark W , with size 16 × 64,
was embedded at the 6th LSB, i.e., QF (1, 1) = 32 and QF (i, j) = 1 for all
(i, j) �= (1, 1) . In the proposed scheme, the host image Lenna was first split
into blocks of size 8× 8 and, after an entropy image analysis, some blocks were
sub-split into blocks of size 4 × 4, then the inserted watermark could be larger
than that used in Wu’s method. The size used was 17× 77, i.e; with 1309 pixels
of information, which were embedded at the 6th LSB.
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In the second experiment, another test was performed with both methods. A
fruit picture (size 256×256) was split into blocks of size 8×8 and the watermark
of size 16×64 was embedded at the 5th LSB, i.e., QF (1, 1) = 16 and QF (i, j) = 1
for all (i, j) �= (1, 1), in the Wu’s technique. Using the same QF in the proposed
scheme, the fruit picture (size 256× 256) was split into blocks and sub-blocks of
size 8× 8 and 4× 4, respectively. A watermark of size 20× 71, with 1420 pixels
of information, was inserted at the 5th LSB in the host image.

Fig. 1 illustrates the results obtained when the compression JPEG were ap-
plied in the robust watermark insertion.

Fig. 1(a) and 1(b) are images of size 256×256, watermarked by Wu and Shih’s
method and the proposed method, and which were given a JPEG compression
attack of 40%, respectively, figure 1(c) is the original watermark of size 16× 64
and figures 1(e), 1(f) and 1(g) are extracted watermarks of the watermarked
images by Wu and Shih’s method and which suffer JPEG compression of 90,
70 and 40%, respectively, when the Lenna picture was used. Fig. 1(d) is the
original watermark of size 17× 77 and figures 1(h), 1(i) and 1(j) are extracted
watermarks of the watermarked images by the proposed method and which suffer
JPEG compression of 90, 70 and 40%, respectively, when the Lenna picture was
used. Figure 1(n) is the original watermark of size 16× 64 and figures 1(p), 1(q)
and 1(r) are extracted watermarks of the watermarked images by Wu and Shih’s
method and which suffer JPEG compression of 90, 70 and 40% respectively, when
the Fruits picture was used. Fig. 1(o) is the original watermark of size 20× 71
and figures 1(s), 1(t) and 1(u) are extracted watermarks by of the watermarked
images by proposed method and which suffer JPEG compression of 90, 70 and
40% respectively, when the Fruits picture was used.

To measure the similarity between the original watermark W and the ex-
tracted ones W ′ a normalized correlation coefficient was used.

NC(W, W ′) =
∑N

i=1 WiW
′
i√∑N

i=1 W 2
i

√∑N
i=1 W ′2

i

(1)

where W = (W1, W2, ..., WN ) and W ′ = (W ′
1, W ′

2, ..., W ′
N ).

The results illustrate that the proposed method has almost the same robust-
ness of the Wu and Shih’s method, even when the watermark has around 30 to
40% more information pixels than the prior watermark keeping the same visual
quality.

Table 1 presents the correlation values obtained using the extracted water-
marks obtained by both schemes, and are shown in Fig. 1.

In experiment 1 where the Lenna picture was used, the similarity between the
original watermark and the watermark extracted from the image which suffered
JPEG compression of 90% it was 0.8346 in the Wu and Shih’s method and was
0.8573 in the proposed method. When the watermarked image suffers JPEG
compression of 40% the similarity was 0.5880 in the Wu and Shih’s method and
was 0.6490 in the proposed method.

In experiment 2 where the Fruits picture was used, the similarity between the
original watermark and the watermark extracted from the image which suffered
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Fig. 1. (a) and (l) are watermarked images by Wu and Shih’s method, (c) and (n) are
watermark used by Wu and Shih’s method, (b) and (m) are watermarked images by
proposed method, (d) and (o) are watermark used by proposed method, (e) (f) (g) (p)
(q) and (r) are extracted watermarks by Wu and Shih’s method, (h) (i) (j) (s) (t) and
(u) are extracted watermarks by proposed method
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Table 1. The correlation values between extracted and original watermarks

Wu and Shih’s Method Correlation Value

Original Watermark (c) X Extracted Watermark (e) 0.8346
Original Watermark (c) X Extracted Watermark (f) 0.7381
Original Watermark (c) X Extracted Watermark (g) 0.5880
Original Watermark (n) X Extracted Watermark (p) 0.8797
Original Watermark (n) X Extracted Watermark (q) 0.6844
Original Watermark (n) X Extracted Watermark (r) 0.2577

Proposed Method Correlation Value

Original Watermark (d) X Extracted Watermark (h) 0.8573
Original Watermark (d) X Extracted Watermark (i) 0.7543
Original Watermark (d) X Extracted Watermark (j) 0.6490
Original Watermark (o) X Extracted Watermark (s) 0.8924
Original Watermark (o) X Extracted Watermark (t) 0.7049
Original Watermark (o) X Extracted Watermark (u) 0.3155

Fig. 2. (a) Watermarked image, (b) Watermark, (c) Attacked image and (d) Extracted
watermark
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JPEG compression of 90% it was 0.8797 in the Wu and Shih’s method and was
0.8924 in the proposed method. When the watermarked image suffers JPEG
compression of 40% the similarity was 0.2577 in the Wu and Shih’s method and
was 0.3155 in the proposed method.

The robustness was less in the second experiments as the alterations were
realized in the 5th LSB and not in the 6th as in experiment 1, this is because
the original image used in the second experiment possess a very large homoge-
neous area, in this manner if the insertions were to be realized in the 6th LSB,
the visual quality of the image would suffer a considerable visual degradation.
The insertions in the 5th and 6th LSB determine if the watermark is going to
be more or less robust. The greater the robustness of the method, the higher
the visual quality degradation of the watermarked image, therefore, the lower
the robustness of the method the higher the visual quality of the watermarked
image, in this way each image should be analyzed so that desired values between
robustness and visual quality can be obtained.

Fig. 2, shows a watermarking application to illustrate that the proposed
method can also be used for fragile watermarking purposes. The Lenna’s picture,
presented in figure 2(a), was divided into blocks of size 1 × 1 and QF (i, j)=1,
for all (i, j). The watermark Federal University of Uberlândia Logotype of size
256 × 256, presented in figure 2(b), was inserted. The obtained results are the
same in both of the methods once that, there are no differences between them.

5 Conclusion

An enhanced watermarking scheme based on texture analysis is proposed in this
paper. The scheme can be seen as a modification of the Wu’s method. A texture
analysis followed the sub-splitting of each Wu’s block which makes the proposed
scheme more robust when compared with Wu’s scheme once it allows for the
insertion of a larger watermark with the same visual quality and same JPEG
attack resistance.

When dealing with fragile watermarking both schemes have the same perfor-
mance The proposed scheme can be adjusted to fragile or robust watermarking,
as desired by the user, choosing the constant V STW and the matrix QF , this
means, taking into account the number of the blocks used to split the host image,
and the choice of the position and the intensity of the pixel to be modified in
the watermark insertion process.
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Abstract. In this paper we propose a method that analyzes attack patterns and 
extracts watermark after restoring the watermarked image from the geometric 
attacks. The proposed algorithm consists of a spatial-domain key insertion part 
for attack analysis and a frequency-domain watermark insertion part using dis-
crete wavelet transform. With the spatial-domain key extracted from the dam-
aged image, the proposed algorithm analyzes distortion and finds the attack pat-
tern. After restoring the damaged image, the algorithm extracts the embedded 
watermark. By using both spatial domain key and frequency domain water-
mark, the proposed algorithm can achieve robust watermark extraction against 
geometrical attacks and image compressions such as JPEG. 

1   Introduction 

Digital watermarking is a digital content copyright protection technique against unau-
thorized uses of multimedia contents such as illegal copy, distribution, and forgery. 
Digital watermarking inserts and extracts copyright information called watermark into 
the digital contents to prove the ownership of the copyright holder. The watermarking 
techniques slightly modify the original data during the watermark insertion. The wa-
termark can be either visible or invisible. In case of invisible watermarking, the wa-
termarked image should be indistinguishable from the original image. The watermark-
ing are also divided into fragile watermarking to show the existence of illegal modifi-
cation (often called attack) and robust watermarking that the watermark endures at-
tacks and noise.  

Watermark insertion can be done in spatial domain or in frequency domain. The 
spatial watermark insertion manipulates image pixels, especially on least significant 
bits that have less perceptual effect on the image. Although the special watermark 
insertion is simple and easy to implement, it is weak at attacks and noise. On the other 
hand, the frequency domain watermark insertion that is robust at attacks is performed 
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to the frequency coefficients of the image. DFT (discrete Fourier transform)[1,2], 
DCT (discrete cosine transform), and DWT (discrete wavelet transform) are used in 
the frequency domain watermark insertion[3-5].  

Although some significant progresses have been made recently, one of major prob-
lems in the practical watermarking technology is the insufficient robustness of exist-
ing watermarking algorithms against image compression such as JEPG2000 and h.264 
[6, 7] and geometrical distortions such as translation, rotation, scaling, cropping, 
change of aspect ratio, and shearing. These geometrical distortions cause the loss of 
geometric synchronization that is necessary in watermark detection and decoding [8]. 
There are two different types of solutions to resisting geometrical attacks: non blind 
and blind methods [9]. With the nonblind approach, due to availability of the original 
image, the problem can be resolved with a good solution by effective search between 
the geometrically attacked and unattacked image [10, 11]. The blind solution that 
extracts watermark without the original image has wider applications but is obviously 
more challenging. 

In this paper, we propose a watermarking algorithm that is robust at various attack 
patterns by using both a spatial domain key and a DWT domain watermark. In addi-
tion, the proposed algorithm provides the ability to find attack patterns in the water-
marked image. We evaluate the performance of the proposed algorithm in aspects of 
image quality, robustness, and attack analysis. In Section 2, a brief introduction of 
wavelet transform and the proposed watermarking algorithm is presented. The per-
formance of the proposed algorithm is evaluated in Section 3. We conclude the paper 
in Section 4.  

2   Proposed Watermarking Method 

The proposed algorithm first transforms the original image into the DWT domain. 
Watermark is specially designed user information that is represented by images, text 
characters, sound data, and so on. In this paper, we used a watermark image because 
of the convenience of visual analysis and evaluation. The watermark is inserted in the 
lowest frequency region of the 3-level DWT. After inverse DWT of the watermarked 
DWT coefficients, an attack analysis key is inserted in the spatial domain. Figure 1 
shows the overview of the proposed algorithm. 

Forward DWT Inverse DWT

Logo Image

Watermarked
Image

Key
Embedding

��

Original Image

 

Fig. 1. Overview of watermark embedding procedure using wavelet filters 
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2.1   Wavelet Transform 

Wavelet transform has been independently developed in many areas such as mathe-
matics, electrical engineering, medical imaging, and communication. Especially, 
wavelet transform in JPEG2000 image compression standard provides high compres-
sion ratio and high image quality comparing to existing JPEG compression.  

A single level DWT divides an image into 4 coefficient images. Each coefficient 
image contains one of low frequency bands and high frequency bands. With an M×N 
image, 2-D DWT generates four M/2×N/2 coefficients: LL, LH, HL, and HH, where 
LL represents a low frequency band, LH a horizontal high frequency band, HL verti-
cal high frequency band, HH a diagonal high frequency band. The low frequency 
band is utilized to the next level of DWT. The sub-band structure of a 3-level DWT is 
shown in Figure 2. The watermark insertion in the proposed algorithm is performed in 
the LL3 that is the lowest frequency band in the 3-level DWT. 

 
(a) 

LL3 HL3

HH3LH3

HL2

HH2LH2

HL1

HH1LH1

 
(b) 

Fig. 2. (a) 3-Level wavelet decomposed image and (b) its convention 

2.2   Watermark Embedding Algorithm 

The proposed algorithm consists of a frequency-domain watermark insertion part 
using DWT and a spatial-domain key insertion part for attack analysis. The low fre-
quency band remains robust to attacks. Thus, the watermark insertion in the proposed 
algorithm is carried out in the LL3 band for a 3-level DWT. It should be noted that 
watermark insertion should be carefully designed since the coefficients of LL3 band 
have strongest signal energy. Strong watermark could be visible at the LL3 band. 
After inverse DWT of the watermarked DWT coefficients, a specially designed key is 
inserted in the middle of the image. The key helps to estimate the geometric transfor-
mation due to attacks. Figure 3 shows the block diagram of watermark and key inser-
tion in the proposed algorithm.  

The algorithm for embedding 2-bit gray scale logo is formulated as follows: 

Step 1: Apply a 3-level DWT to an input original image f(x,y)(512×512×8bits) with 
the Daubechies D4 wavelet filters, which generates 9 subbands of high fre-
quency(LHi, HLi, HHi, i=1~3) and one low-frequency subband(LL3). 
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Original Image
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Watermarked
in LL3 Subband
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Fig. 3. The block diagram of watermark embedding procedure 

Step 2: Check the magnitude of LL3 coefficients and find the location of bits where 
the 2-bit logo image will be inserted. Taking in to account the visual response 
curve (VRC) of human eye, the proposed method inserts bit patterns of wa-
termark using a pre-specified threshold. 

for( i, j is 0 to N/8 ) { 
if  (Ci,j >= T) then { 

 Ci,j >> 5, Ci,j << 5 
 Ci,j = Ci,j + Wi,j×24 

} 
Else { 

Ci,j >> 4, Ci,j << 4 
 Ci,j = Ci,j + Wi,j×23 

} 
} 
Where, C is a wavelet coefficient of original image, 
    T is coefficient threshold, 

W is a logo image( Wi,j {0,1}, i,j=0~63). 

Step 3: After obtaining f´(x,y) using inverse DWT, insert a 64×64 3-bit key pattern 
shown in Figure 3 at center of f´(x,y). 

2.3   Watermark Detection Algorithm 

Watermark detection algorithm consists of the key extraction part in spatial domain 
and watermark extraction part in LL3 of DWT domain. Geometrical transformation 
is analyzed by checking the spatial domain key followed by image restoration proc-
essing. The watermark is, then, extracted in the LL3 of DWT coefficients. Dong et 
al. [12] proposed an image normalization technique to make the blind extraction 
robust.  The proposed algorithm does not replace the existing techniques. On the 
contrary, the proposed algorithm in conjunction with existing techniques can further 
improve the robustness of watermarking. It should be noted that the performance 
improvement of the proposed algorithm with existing techniques will be evaluated in 
the future study. 
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Fig. 4. The block diagram of watermark detection procedure 

The detection algorithm shown in Figure 4 has the following procedures. 

Step 1: Find the key in the image modified by attacks and analyze geometrical attacks 
such as translation, scaling, etc. by comparing the extracted key with the 
original key. 

Step 2: Restore the modified image to the original watermarked image by reversing 
geometrical transformation found in step 1.  

Step 3: Apply the 3-level DWT to the restored image. The following pseudo codes 
represent the watermark extraction procedure in the LL3 band. 

for( i, j is 0 to N/8 ) { 
if  (C´i,j >= T) then { 

if  C´i,j mod 25  > 24+22 then W´i,j =1 
    else W´i,j =0 
} 

Else (C´i,j < T) { 
if C´i,j mod 24  > 23+21 then W´i,j =1 
else W´i,j =0 

} 
} 
Where, C´ is a wavelet coefficient of watermarked image, 
    T is coefficient threshold, 

W´ is a extracted watermark. 

3   Experimental Results  

The performance of the proposed algorithm is tested on various types of images. The 
test image is a grayscale 8-bit Lena image whose size is 512×512. The logo used for 
watermarking is a 64×64 2-bit grayscale image. The original Lena image, a key image 
and a logo images are shown is Figure 5(a), (b) and (c) respectively. Daubechies D4 
filter coefficients are used for 3-level wavelet decomposition. Performance evaluation 
of the proposed algorithm on test images with various characteristics was studied. 

PSNR (Peak Signal-to-Noise Ratio) is used to analyze the quality of the water-
marked image. PSNR is defined as  
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where I represents the original image, I´ the modified image and M and N represent 
image size. The number of mismatched data between the inserted watermark and the 
extracted watermark is used to represent the similarity of watermarks. NC (normal-
ized correlation) for valid watermarks, which represents the characteristics of the 
extracted watermark, is defined as  
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Where w represents the inserted watermark, w´ the extracted watermark. The experi-
mental results are rounded to the fourth decimal place. The NC for random noise is 
about 0.5 and possibility of distinguishing extracted logo more than 0.7~0.8 NC. 

 
(a) 

 

 
(b) 

 

 
(c) 
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Fig. 5. (a)Original image, (b)key, (c)logo image, (d)watermarked image, (e)extracted key and 
(f)extracted logo image 

The watermarked Lena image with PSNR 42.11db is shown in Figure 5(d). There 
is no perceptual degradation in the watermarked image. The extracted key and logo 
from the watermarked image are shown in Figure 5(e) and (f) respectively.  

3.1   Non-geometric Attacks 

We classify the attack patterns into non-geometric attacks and geometric attacks. 
Watermarked images are first tested for non-geometric attacks such as Gaussian filter-
ing, median filtering and compression. The proposed algorithm can easily cope with 
wavelet-based JPEG2000 and DCT-based JPEG standard as shown in Table 1 and 2.  

Table 1 shows the performance of the proposed algorithm against JPEG2000 com-
pression attacks. JPEG2000 compression rates are set in between 0.1 and 0.45 bpp. 
The step size of the compression rate is 0.05. The extracted  watermarks  are  seriously 
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Table 1. PSNRs and NCs of watermark embedded images at JPEG2000 compression  

Lena Lake Boat JPEG2000 
Rate PSNR NC PSNR NC PSNR NC 
0.45 - 0.998 48.13 0.974 48.13 0.999 
0.40 48.13 0.997 45.12 0.972 48.13 0.973 
0.35 48.13 0.968 43.36 0.961 45.12 0.978 
0.30 45.12 0.969 41.14 0.973 42.11 0.894 
0.25 43.36 0.968 39.68 0.858 40.35 0.892 
0.20 41.14 0.903 37.34 0.773 38.59 0.857 
0.15 39.68 0.854 35.58 0.692 36.99 0.731 
0.10 37.72 0.773 33.36 0.601 34.91 0.667 

 
Goldhill Drop Peppers JPEG2000 

Rate PSNR NC PSNR NC PSNR NC 
0.45 48.13 0.999 - 1 - 0.998 
0.40 48.13 0.977 - 1 48.13 0.990 
0.35 45.12 0.981 - 0.998 45.12 0.971 
0.30 41.14 0.885 - 0.997 45.12 0.975 
0.25 41.14 0.885 48.13  0.994 42.11 0.908 
0.20 37.34 0.796 46.93 0.937 40.35 0.871 
0.15 37.34 0.796 45.12 0.923 38.59 0.814 
0.10 34.91 0.681 43.36 0.894 36.99 0.718 

Table 2. PSNRs and NCs of watermark embedded images at JPEG compression  

Lena   Lake Boat JPEG 
Quality PSNR NC PSNR NC PSNR NC 

10 43.36 1 42.11 1 42.11 1 
8 39.68 0.998 36.67 0.999 37.72 0.992 
6 39.10 0.988 35.58 0.989 36.99 0.991 
4 36.67 0.915 33.51 0.917 34.71 0.917 
2 34.15 0.832 30.97 0.830 31.80 0.823 
0 32.11 0.622 29.27 0.614 30.00 0.622 

 
Goldhill Drop Peppers JPEG 

Quality PSNR NC PSNR NC PSNR NC 
10 43.36 1 48.13 1 42.11 1 
8 38.59 0.999 43.36 0.999 38.13 0.999 
6 37.34 0.990 43.36 0.988 37.34 0.992 
4 34.71 0.913 40.35 0.90.4 35.58 0.922 
2 31.80 0.827 37.72 0.814 33.51 0.826 
0 30.00 0.613 35.58 0.597 32.00 0.609 

damaged below the rate 0.1. JPEG compression is also evaluated over various 
compression rates. Table 2 presents the PSNRs and NCs according to JPEG quality 
factors. 
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Table 3. PSNR and NC of watermark embedded images for different attacks 

Lena   Lake Boat 
Attack 

PSNR NC PSNR NC PSNR NC 
Gaussian 26.52 0.808 26.99 0.854 25.80 0.892 

sharpnening 18.67 0.735 15.13 0.639 16.23 0.671 
Median(3×3) 26.23 0.873 26.28 0.811 25.19 0.854 
Median(5×5) 22.40 0.738 21.81 0.710 21.27 0.696 

 

Goldhill Drop Peppers 
Attack 

PSNR NC PSNR NC PSNR NC 
Gaussian 25.39 0.906 29.81 0.940 26.83 0.919 

sharpnening 17.31 0.658 20.56 0.815 16.59 0.727 
Median(3×3) 24.95 0.873 29.50 0.927 26.49 0.882 
Median(5×5) 21.57 0.692 24.29 0.828 21.60 0.760 

We also include non-geometric attacks such as Gaussian, sharpening, and median 
filter. The PSNR of the attacked images are shown in Table 3. The attack patterns 
used in the experiment are from the Korean Watermarking Certification [13]. 

3.2   Geometric Attacks 

The geometric attacks are further divided into translation, cropping, rotation, flip, and 
scale. The performances of key extraction  and  watermark  extraction are  individually  

  
Translation 

(x, y) 

 
Flip 

(vertical) 

 
Rotation 

(90) 

 
Scale 
(99%) 

 
Scale 

(width 105%) 

Fig. 6. Extracted key of attacked image 

Table 4. Experimental results for the geometric attacks 

geometric attacks Lena Lake Boat Goldhill Drop Peppers 
Translation (0.5) 0.978 0.993 0.963 0.981 0.987 0.994 
Translation (1) 0.988 0.987 0.989 0.992 0.989 0.988 

Translation (10) 0.977 0.981 0.976 0.979 0.986 0.980 
Translation (0.05%) 0.941 0.954 0.937 0.942 0.961 0.953 

Flip(horizontal) 0.989 0.988 0.997 0.987 0.990 0.986 
Flip(vertical) 0.981 0.976 0.986 0.992 0.995 0.972 
Rotation(90) 0.988 0.965 0.968 0.979 0.986 0.963 

Rotation(180) 0.970 0.975 0.984 0.973 0.984 0.986 
Cropping(0.1) 0.903 0.891 0.908 0.846 0.829 0.834 
Cropping(0.2) 0.839 0.827 0.837 0.768 0.752 0.760 
Cropping(0.3) 0.791 0.656 0.802 0.669 0.654 0.659 
Cropping(0.4) 0.746 0.567 0.751 0.578 0.573 0.572 
Cropping(0.5) 0.727 0.512 0.723 0.524 0.518 0.517 
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tested. Once the key pattern is detected, the attacked image can be restored. The re-
sults of the key extraction are shown in Figure 6. The watermark extraction follows 
the key extraction. 

The geometric parameters are evaluated to determine the geometric attack pattern, 
and the performance of the watermark extraction is listed in Table 4. 

The proposed watermarking algorithm can endure translation attacks if the transla-
tion is more than 0.05%, horizontal or vertical flip attacks, and 90 degree rotation 
attacks. The watermark can be identified with cropping attacks up to 0.5%.  

4   Conclusion 

In this paper, we propose a novel blind watermarking technique that has a spatial 
domain key and a DWT domain watermark. The proposed technique utilizes a spatial 
domain key to analyze various attack patterns. By restoring the geometrical attacks, 
we can improve the robustness of the proposed watermarking algorithm. The DWT is 
also utilized to make the watermark survive various attacks. 

We evaluate the performance of the proposed watermarking technique against 
various attacks including geometric transformation and image compression such as 
JPEG and JPEG2000. The experimental results show that the proposed technique has 
the improved performance compared to the conventional DWT-based watermarking 
technique. 

Further research will include a study on an enhanced key pattern to make the pro-
posed algorithm analyze and endure more complicated attacks. 
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Abstract. Skin detection consists in detecting human skin pixels from
an image. In this paper we propose a new skin detection algorithm based
on approximation of an image patch joint distribution, called Best-Tree
distribution. A tree distribution model is more general than a bayesian
network one. It can represent a joint distribution in an intuitive and
efficient way. We assess the performance of our method on the Compaq
database by measuring the Receiver Operating Characteristic curve and
its under area. These measures have proved better performances of our
model than the baseline one.

1 Introduction

Skin detection plays an important role in various applications such face detection
[1], searching and filtering image content on the web [2], . . .. Research has been
performed on the detection of human skin pixels in color images by the use of
various statistical color models [3]. Some researchers have used skin color models
such as Gaussian, Gaussian mixture or histograms [4]. In most experiments, skin
pixels are acquired from a restricted number of people under a limited range of
lighting conditions.

Unfortunately, the illumination conditions are often unknown in an arbitrary
image, thus the variation in skin colors is lesser constrained in practice. How-
ever, given a large collection of labeled training pixels including all human skin
(Caucasians, Africans, Asians, . . .), we can still model the distribution of skin
and non-skin colors in the color space.

Recently Jones and Rehg [5] proposed some techniques for skin color detection
by estimating the distribution of skin and non-skin colors using labeled training
data. The comparison results of histogram and Gaussian mixture density mod-
els estimated with EM algorithm found that the histogram models is slightly
superior in terms of skin pixel classification performance for the standard 24-bit
RGB color space.

Even if different criteria are used for evaluation, a skin detection system is
never perfect. General appearance of the detected skin-zones, or other global
criteria might be important for further processing.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 767–775, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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For quantitative evaluation, we will use false positives and detection rates.
False positive rate is the proportion of non-skin pixels classified as skin whereas
detection rate is the proportion of skin pixels classified as skin. The user might
wish to combine these two indicators in his own way depending on the percentage
of error he can afford. Hence we propose a system in which the output is not
binary but floating number between zero and one, where the larger value is
considered as the larger belief of a skin pixel. Thus a user can apply a threshold
to obtain a binary image, then the error rates for all possible thresholding will
be summarized in the Receiver Operating Characteristic (ROC) curve.

The aim of this paper consists in learning the dependencies between the pixels
within an image patch, to classify skin and non-skin textures. To achieve this
goal, we draw the inspiration from a tree distribution method developed in [6],
which we assume that is more general than a bayesian network [7].

The tree representation of an object allows an efficient search, and simple
learning. In the case where the tree represents only one class, the learning prob-
lem solution is an algorithm developed by Chow and Liu[8]. This algorithm
minimizes the Kullback-Leibler divergence [9] between the true distribution and
the tree approximated distribution.

Our main contribution will be to construct one tree distribution representing
two probability mass functions corresponding to two different classes.

The paper is organized as follows: in section 2, we introduce the notations
that will be used throughout the paper, and present the features used. Section 3
details our tree distribution classifier model. Section 4 is devoted to experiments
and comparisons with an alternative method. Finally, in section 5 conclusions
and perspectives are drawn .

2 Notations and Methodology

In this section, we introduce the notations that will be used in this paper. We
note s a pixel, and S the set of image pixels. (is, js) is the coordinate of s. We
consider the RGB color space, the color of s is xs. The ”skinness” of a pixel s,
is ys with ys = 1 if s is a skin pixel and ys = 0 if not. The color image, which is
the vector of color pixels, is notated x and the binary image made up of the ys’s
is notated y. In order to take into account the neighboring influence between
pixels, we define the following neighborhood system :

V r
s = {(i, j)/|i− is| < r, |j − js| < r} \ {(is, js)} (1)

where the parameter r takes an integer value.
The figure 1 shows different orders neighborhood system in which s denotes

the considered site and the gray boxes its neighbors. In Fig.1(a) the value of r is 1
and the cardinal of V 1

s is | V 1
s |= 0. Fig.1(b) gives the second order neighborhood

system. There are eight neighbors of s (| V 2
s |= 8). The third order neighborhood

system is shown in Fig.1(c) and | V 3
s |= 24.

Thus, we consider a vector of observations X which stands for an image patch
(k×k, k = 2r−1). The elements of the patch are decomposed until a low-level, the
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Fig. 1. The neighboring sites in the n-th order neighborhood system

resultant vector is X = (x1, x2, . . . , xn) where n = 3k2. For each xl component
of X , V r

l refers to the set of xl neighbors (l ∈ {1, 2, . . . , n}).
Let us assume for a moment that we knew the joint probability distribution

Pro(X, ys) of the vector (X, ys), then Bayesian analysis tells us that whatever
cost function the user might think of, all what is needed is the a-posterior dis-
tribution Pro(ys|X).

From the user’s point of view, the useful information is contained in the one
pixel marginal of the a-posterior probability, that is for each pixel, the quantity
Pro(ys = 1|X) quantifies the skinness belief. In practice the model Pro(X, ys)
is unknown, instead we have the segmented Compaq Database which it is a
collection of samples {(x(1), y(1)), . . . , (x(N), y(N))}. For each 1 ≤ i ≤ N , x(i) is
a color image, and y(i) is its binary skinness image associated. We suppose that
the samples are independent of each other with the distribution Pro(X, ys). The
collection of samples will be referred as the training data.

Our objective is to construct a probabilistic classifiers that represent the pos-
terior probabilities (Pro(ys = 1|X) and Pro(ys = 0|X)) of skinness at pixel s
given its neighbors, and using a single tree distribution.

In the next, we will use Pro(X |ys = 1) = p(X) and Pro(X |ys = 0) = q(X)
to simplify notations.

To find a non-oriented acyclic graph (tree) modelling Pro(X, ys), we consider a
non-oriented graph G(V,E) corresponding to X . Each element xu of X is viewed
as a vertex (xu ∈ V ). The set of the edges E encloses all relationships between
two elements of V r

l ∪ {(il, jl)} where l = 1, 2, . . . , n. Two neighbor vertices xu

and xv are noted u ∼ v.

3 The Tree Distribution Model

We consider a probabilistic classifier that represents the a-posteriori probability
by using tree models. Thus, we suppose that the graph G is a tree: G(V,E) is
a connected graph without loops, noted T . In this case [10], we can proof that
the probability approximated by the tree T is :

ProT(x) =
∏

(u∼v)∈T

Prouv(xu, xv)
Prou(xu)Prov(xv)

∏
xu∈V

Prou(xu) (2)
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where Prou(xu) is one-vertex marginal of Pro and Prouv(xu, xv) is its two-vertex
marginal, defined as:

Prou(xu) =
∑

xv∈V;v �=u

ProT(x) (3)

Prouv(xu, xv) =
∑

xu∈V;u �=u,v

ProT(x) (4)

∑
xu∈V

ProT(x) = 1 (5)

3.1 Learning of Tree Distribution

The learning problem is formulated as follows: given a set of observations X =
(x1, x2, . . . , xn), we want to find one tree T in which the distribution probability
is optimum for two different classes: skin and non skin. We mean by optimum
that the distance between two probabilities of the classes is maximum, and we
give the following definition:

Definition 1. The Best-Tree skin classifier is a system based on a tree in which
the distribution probability is optimum for Skin and NON-Skin classes.

To deal with the learning problem, we propose to maximize the Kullback-Leibler
divergence (KL) between two probability mass functions p(X) and q(X) corre-
sponding to two different classes. Therefore, we give the following statement:

Statement 1. Probability distributions of dependence tree, pT (x) and qT (x)
are respectively the optimum approximations to the true probabilities p (x) and
q (x) if and only if their dependence tree T has the maximum weight defined by :∑

(u∼v)∈T

{KL(puv, quv)−KL(pu, qu)−KL(pv, qv)} (6)

where pu and qu are respectively one-vertex marginal of p and q, and puv and
quv are theirs two-vertex marginal.

The proof of our statement is postponed to the appendix 5.
In order to give detailed description of our model, we present the following

procedure (1):

Procedure 1. Best-Tree distribution processing

– Input : Dataset
{(

x(1), y(1)
)
, · · · , (x(n), y(n)

)}
.

– Steps :

1. Fix r ∈ N to define the neighborhood system as :

V r
s = {(i, j)/|i− is| < r, |j − js| < r} \ {(is, js)} ; s ∈ S
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2. Consider a patch (k× k, k = 2r− 1) centered in s. Determine V r
b the set of

the neighbors of each b in the patch. Decompose each element of V r
b until a

low-level and construct V r
bl (l = 1, 2, 3), where bl is a component of b in the

RGB space.
3. Build X, where each element is obtained from

⋃
bl V r

bl .
4. Build a non-oriented graph G(V,E) corresponding to X; each element of X

is a vertex. E is the set of edges corresponding to the relationship between
two elements of V r

l , (l = 1, 2, . . . , n).
5. Let xu and xv be two different vertices. Use the empirical estimators to

compute the two-vertex marginal puv(xu, xv) and quv(xu, xv) of pT and qT

as :
puv(xu = i, xv = j) = f1

ij(xu, xv)

quv(xu = i, xv = j) = f0
ij(xu, xv)

Where for m ∈ {1, 0}, fm
ij (xu, xv) is the sample joint frequency of xu = i

and xv = j such as theirs labels are 1 or 0.
6. Compute the cost defined by the expression :

KL(puv, quv)−KL(pu, qu)−KL(pv, qv) ∀u ∼ v

7. Apply a Chow and Liu algorithm to build a maximum weighted spanning tree
(MWST)[8].

– Output : Best-Tree distribution T .

3.2 Inference

We would like to compute the state of the pixel ys given the observation vector
X . By applying the Bayes’ rule, we obtain:

Pro(ys = j|X) =
Pro(ys = j)Pro(X |ys = j)

Pro(X)
, j = 0, 1. (7)

Moreover,

Pro(X) =
1∑

ys=0

Pro(X, ys) =
1∑

i=0

Pro(X |ys = i)Pro(ys = i)

Where

Pro(X |ys = 0) ≈ qT(X) =
∏

(u∼v)∈T

quv(xu, xv)
qu(xu)qv(xv)

∏
xu∈V

qu(xu) (8)

Pro(X |ys = 1) ≈ pT(X) =
∏

(u∼v)∈T

puv(xu, xv)
pu(xu)pv(xv)

∏
xu∈V

pu(xu) (9)

Pro(ys = 0) ≈ qT(ys = 0) (10)
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Pro(ys = 1) ≈ pT(ys = 1) (11)

All the elements of eq. (8), eq. (9), eq. (10), and eq. (11) are previously computed
in step (5) of our processing (procedure 1).

4 Skin Detection Experiments

All experiments are made by using the following protocol. The Compaq database
[5] contains about 18,696 photographs. It is randomly split into two almost equal
parts. The first part, containing nearly 2 billion pixels, is used as training data;
while the other one, the test set, is left aside for ROC curve and the Area Under
the Curve (AUC) computations.

In our skin detection application we consider a (3×3) image patch . However,
we use RGB color space, therefore the size of the observation vector X is 27.
The Compaq Database is large enough; so the crude histograms, made with 512
color value per bin uniformly distributed, do not over-fit. Each histogram is then
made of 32 bins. Experiments with this model are presented in figures 2 and 3.

Fig. 2. Best-Tree distribution model inputs and outputs

The top of figure 2 shows the original color images, and its bottom represents
the result of our skin detection model.

The curves of figure 3 compare the performance of the Baseline model, which
is an independent model[4], with the Best-Tree distribution performance. The
x-axis represents the false positive rate, while y-axis corresponds to the true pos-
itive rate (the detection rate). The Baseline model is shown with blue triangles
and the Best-Tree distribution with read stars.

Bulk results in the ROC curve of Figure 3 show an improvement of the per-
formance around 6.5%. At 6.5% of false positive rate, the Baseline permits to
detect 65.5% of skin pixels while the Best-Tree distribution model detects 71.8%.

Figure 4 shows some cases where our detector failed. The first row represents
the original images, and the second one shows their corresponding skin maps
obtained by the Best-Tree distribution. In the two first columns, examples of the
non-skin pixels detected as skin pixels are given; succeeded by the skin pixels
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Fig. 3. The Baseline and the Best-Tree distribution ROC curves

Fig. 4. Examples where the Best-Tree distribution model fails

detected as a non-skin pixels examples. This fail is due to over-exposure, or to
skin-like color.

Another way to compare classification algorithms over multiple thresholding
values is to compute the area under the ROC curve (AUC). Using [0; 0.15] for
integration interval, the normalized AUC, which equals to 0.0539 for the Baseline
model and 0.1203 for our approach, confirms the obtained results for a single
false positive rate.

5 Conclusion

In this paper, we have presented a new skin detection algorithm based on approx-
imation of the image patch joint distribution. By making some assumptions, we
propose The Best-Tree distribution model which maximizes a Kullback-Leibler
divergence between two different probability distributions of classes : skin and
non skin. Performance measured by the ROC curve on the Compaq database
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shows an increase in detection rate from 3% to 15% for the same false positive
rate of the Best-Tree distribution compared to the Baseline model, furthermore
the AUC measures prove that.

In further work, we propose to apply the Best-Tree distribution for skin de-
tection to block the Web adult images. Moreover, we constat that our approach
could be used to classify other binary textures.
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Appendix: Proof of the Statement 1

Proof. We assume that it exists a tree T in which each vertex is an X variable;
T models two distributions p and q respectively approximated by pT and qT

referenced on eq.(2).
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The Kullback-Leibler divergence between pT and qT is :

KL (pT, qT) =
∑
x∈V

pT (x) log
pT(x)
qT(x)

=
∑
x∈V

pT (x) log pT(x) −
∑
x∈V

pT (x) log qT(x) (12)

∑
x∈V

pT (x) log pT(x) =
∑
x∈V

pT (x)
∑

xu∈V

log pu(xu)

+
∑
x∈V

pT (x)
∑

(u∼v)∈T

(log puv(xu, xv)− log pu(xu)pv(xv)) (13)

∑
x∈V

pT (x) log qT(x) =
∑
x∈V

pT (x)
∑

xu∈V

log qu(xu)

+
∑
x∈V

pT (x)
∑

(u∼v)∈T

(log quv(xu, xv)− log qu(xu)qv(xv)) (14)

From (13) - (14), Eq. (12) becomes

KL (pT, qT) =
∑
x∈V

pT (x)
∑
xu∈V

log
pu(xu)
qu(xu)

+
∑
x∈V

pT (x)
∑

(u∼v)∈T

(log
puv(xu, xv)
quv(xu, xv)

− log
pu(xu)pv(xv)
qu(xu)qv(xv)

) (15)

Thus, we obtain :
KL(pT, qT) =

∑
xu∈V

KL(pu, qu)+

∑
(u∼v)∈T

{KL(puv, quv)−KL(pu, qu)−KL(pv, qv)} (16)

Since, for all xu ∈ V , the KL(pu, qu) are independent of the dependence
tree, and KL divergence is non-negative. Maximizing the closeness measure
KL(pT, qT) is equivalent to maximizing the total branch weight eq. (6).
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Abstract. We propose a new fusion method to evaluate fingerprint quality by 
combining both spatial and frequency features of a fingerprint image. In fre-
quency domain, a ring structure of DFT magnitude and directional Gabor fea-
tures are applied. In spatial domain, black pixel ratio of central area is taken 
into account. These three features are the most efficient indexes for fingerprint 
quality assessment. Though additional features could be introduced, their slight 
improvement in performance will be traded off with complexity and computa-
tional load to some extent. Thus in this paper, each of the three features are first 
employed to assess fingerprint quality, their evaluation performance are also 
discussed. Then the suggested fusion approach of the three features is presented 
to obtain the final quality scores. We test the fusion method in our public secu-
rity fingerprint database. Experimental results demonstrate that the proposed 
scheme can estimate the quality of fingerprint images accurately. It provides a 
feasible rejection of poor fingerprint images before they are presented to the 
fingerprint recognition system for feature extraction and matching. 

1   Introduction 

Fingerprint recognition system is widely used in criminal identification, ATM card 
verification and access control, due to its feature’s individual uniqueness and age 
invariability. But the performance of an Automatic Fingerprint Identification System 
(AFIS) depends heavily on fingerprint quality which mainly concerned with skin 
humidity, impressing pressure, dirt, sensing mechanism, scar and other factors. A 
fingerprint of good quality should have clear ridge and valley patterns, and could 
guarantee a high performance of recognition. Therefore, an efficient criterion for 
fingerprint quality evaluation will be of benefit to practical applications, such as qual-
ity control of fingerprint acquisition, quality distribution analysis of fingerprint data-
base, and threshold decision for modification of low quality images. If the fingerprint 
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quality is assessed at first, the images of poor quality could be discarded and the fin-
gerprint acquisition repeated, the AFIS performance will finally be greatly improved. 

Some methods have been proposed to evaluate fingerprint quality in the past few 
years. Hong et al [1] quantified the quality of a fingerprint image by measuring the 
block variance of gray levels, which was computed in directions orthogonal to the 
orientation field. The variance was then used to decide the fingerprint quality in terms 
of the contrast of a considered block. However, this method had to be carried out in a 
precise orientation field which may not be correctly obtained in heavy noise situation. 
In addition, it is computational expensive. Ratha and Bolle [2] proposed another 
method for quality estimation in wavelet domain for Wavelet Scalar Quantization 
(WSQ) images. But WSQ is not a necessary step for uncompressed fingerprint images 
in AFIS. Shen et al [3] described a Gabor feature based approach to quality measure-
ment, it also suffers from the parameter setting and excessive computation load of 
Gabor transform. Lim et al [4] employed the ratio of eigenvalues of the gradient vec-
tors to estimate local ridge and orientation certainty, and determined the quality with 
the orientation flow. This can indicate the confidence of orientation estimation, pro-
vided the noise is not directional distributed. Other quality assessments include the 
Fourier spectrum based method [5] and the gradient oriented scheme [6], all these 
methods utilized only the partial information which is not sufficient to measure a 
fingerprint image. Hence, Global and local information should be combined together 
to accomplish the evaluation task. A hybrid method joined seven local and global 
features of fingerprint [7] to assess quality was reported in 2005. But it is difficult to 
balance the quality weight of each feature, its linear weighting does not regard the 
nonlinear contributions of some features. 

In this paper, our research is focused on an accurate and feasible method for fin-
gerprint quality measurement. A new nonlinear fusion method for quality scoring is 
suggested based on the combination of three efficient quality features: ring structures 
in frequency spectrum, Gabor features denoted directional information, and the black 
pixel ratio of central region which reflects the contrast and the integrity of the ridge 
and valley patterns. Since the central region around a core point is vital to fingerprint 
quality evaluation, all the calculation is performed on the central region of a core with 
the background region removing. 

The remainder of this paper is organized as follows. Different quality features and 
their evaluation performance are presented in Section2. The new fusion criterion and 
the quality scoring principle are proposed in Section 3. Experimental results are 
shown in Section 4 to demonstrate the validness of our method. Finally, the conclu-
sions and discussions are given in Section 5. 

2   Features and Evaluation 

The fingerprint quality could be examined by many features. Three most important 
ones to quantity the fingerprint image quality include black pixel ratio of central area, 
ring structure of frequency spectrum, and directional Gabor Feature. In this section, 
we define three quality scoring functions with corresponding respect to these three 
features. The quality evaluation performances of each feature are compared as well. 
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2.1   Black Pixel Ratio of Central Area 

Gray level distribution of the region around a core point is an essential index for fin-
gerprint quality evaluation. Fingerprint images with high contrast relate to the well 
separated ridges and valleys. The smearing of wet fingerprint, the disconnected ridges 
in dry images and the background pixels introduced in a fingerprint will bias the 
ridge-valley contrast, thus a good quality image will have high contrast between 
ridges and valleys, while a poor quality image has low pattern contrast, and its ridge-
valley structures are usually corrupted to some extent. 

To quantify the ridge-valley contrast, let the black pixel ratio be RB and the number 
of black pixels be NB, w  is the region length and width. 
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Where Gij is the intensity of pixel (i,j). Gmean denotes the average intensity of the 
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For comparison, the original image and its central region are shown in Fig.1.  
This scoring function is derived from RB statistical analysis of the three categories 

fingerprint images as shown in Fig.2. We could observe from Fig.2 that a wet image 
with a lower RB, the better quality is. In contrast, the lower the black pixel ratio is, and 
the worse a dry image will be. On the other hand, good quality fingerprint has an 
around constant RB and Gmean is valued between Thl and Thh. Thl and Thh are deter-
mined empirically. When RB is far from the constant, the fingerprint quality declines 
quickly. Based on the above ideas, the quality score Q1 is given as the afore men-
tioned equation (2). 

The steps of fingerprint image quality evaluation by Q1 are described below. 

1)  Locate the core point of a fingerprint image [8]. If no core point was detected, the 
image center is taken as a core point. 

2)  Compute the average gray level of the 32 ×320 central region, whose center is 
located at the core point. 
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3)  Classify the fingerprint images into three categories based on Gmean automatically: 
wet, good, and dry. To each category, different thresholds are used to binarize the 
320×320 region. 

4)  Compute the quality score  Q1 using equation (2). 

Q1 can detect dry and wet fingerprint images easily and the scores of good quality 
fingerprints are ranged in a certain extent. However, it fails to measure the quality of 
image whose fingerprint area is far less than 320×320 pixels, because in such case 
the 320× 320 central area consists of background pixels whose contrast are much 
smaller than the foreground pixels. 

                    
(a)                                                           (b) 

Fig. 1. Central region segmentation (a) the original fingerprint image (640× 640); (b) the cen-
tral region (320× 320) 

 

Fig. 2. The black pixel ratio of the three categories (good, dry and wet) fingerprint image 

2.2   Ring Structure in Frequency Domain 

Fourier transform is a useful analysis tool for distinguished global directional and 
frequent structures. Since ridges and valleys of fingerprint appears a distinct pattern in 
frequency domain, it could be applied to illustrate the fingerprint quality. 
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The DFT image of a good quality fingerprint image shows a ring around the origin 
of the frequency coordinate, because the ridge-valley patterns are quasi-periodic 
structures and presents a dominant frequency in most directions with an almost uni-
form modulus. In contrast, fingerprint images of bad quality do not appear an obvious 
ring in the spectrum plane, for they contain smear points, blurred edges, disconnected 
ridges and so on which occupy a wide range of frequency. 

Making use of the above frequency characteristic of ridge-valley structures, we 
could modify the scoring function Q2 firstly defined [5]: 
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where C2 is a constant normalizing the quality score in the range [0,1].  
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In this paper, we detect the maximum spectrum ring first to retain an accurate qual-

ity score before the calculation of equation (4). This modification is based on the fact 
that the variation of ridge-valley distance in different fingerprints will result in a nega-

tive θF  if we compute equation (5) directly. The detection is performed by selecting 

the  ith ring with the following equation: 
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where ),( yxPθ  denotes the frequency band, and ),( yx  is its coordinate. The integer 

i is the radius of the maximum spectrum ring.  

The ),( yxPθ band located at 30 to 40 pixels from the origin along the angleθ , be-

cause the central area of the fingerprint image is 320×320 region of interest, its aver-
age ridge and valley distance is around 9 pixels, thus the corresponding ring of high 
spectrum magnitudes will appear in the frequency band located at 30 to 40 pixels 
away from the origin in the spectrum image. 

Our algorithm can be briefly stated as follows:  

1) Locate the core point of a fingerprint image. 
2) Perform FFT on the 320×320 central region. 
3) Find the largest ring in frequency plane using equation (6). 
4) Compute the score Q2 with regard to the largest spectrum ring using eq. (4). 

Since Fourier transform is calculated on the whole central region, Q2 is a global es-
timate to fingerprint quality. Even if the fingerprint is partially bad, its quality score 
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remains low. This global frequency feature takes on advantage of accurate assessment 
of the whole region, but it lacks of the characteristic of local pattern measurement. 

2.3   Directional Gabor Features 

Gabor filter has both orientation and frequency selective properties, Fingerprint im-
ages of good quality have a strong orientation tendency and a well-defined spatial 
frequency. For blocks of good quality, Gabor feature of one direction or several an-
gles are lager than those in others direction; while for bad quality blocks, the Gabor 
features become close to each directions. Hence the standard deviation of Gabor fea-
tures of different orientations can be used to judge the fingerprint quality. 

The general form of a 2D Gabor filter is defined by  

)2cos()}(
2

1
exp{),,,( 02

2

2

2

0 k
xf

yx
fyxh

yx
k θ

θθ π
σσ

θ +−=    k=1,…,m. (7) 

kk yxx
k

θθθ sincos += . (8) 

kk yxy
k

θθθ cossin +−= . (9) 

where kθ  is the thk  orientation of the filter bank ),,,( 0fyxh kθ , 0f  is the fre-

quency of a sinusoidal plane wave, m denotes the number of orientations, and xσ  and 

yσ  are the standard deviation of the Gaussian envelope along the x and y axes, re-

spectively. 
The magnitude Gabor feature at each w×w block centered at (X,Y) can be defined 

as: 
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where I(x,y) denotes the intensity of the pixel (x,y), w is the size of a block. 

mkmkk ,...,1,/)1( =−= πθ . In our study, we still mainly focus on the central 

320×320 region.  
The blocked standard deviation of Gabor feature G is calculated as follows: 
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Since the central region consists of only the foreground blocks, we needn’t perform 
fingerprint segmentation before Gabor filtering. The quality score of a fingerprint can 
be computed by summing the standard deviation of all the blocks. 
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where C3 is also a normalizing constant ranging the quality score form 0 to 1. 
In summary, Q3 is aimed at assessing the orientation properties of fingerprint, 

strong orientation relates to good quality. The quality estimation by Q3 can also be 
depicted as follows: 

1) Locate the core point of the fingerprint image. 
2) Divide the 320×320 central region into N blocks of size w×w. 
3) For each block centered at pixel (i,j), compute the m Gabor features and stan-

dard deviation value G by equations (10) and (11) respectively. 
4) Obtain the quality score Q3 by summing standard deviation value G of all the 

blocks using equation (12). 

3   Fusion Criterion and Quality Scoring 

In this section, we will present a novel fusion criterion combined the three evaluation 
results mentioned before. Since each method has its advantages and drawbacks, our 
research mainly aims at finding an optimal fusion criterion making benefits of the 
above assessment. 

We define a fusion criterion which calculates a quality score Q according to: 
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where C is a normalizing constant which ranges the quality score in [0,1], iw  denotes 

the weight of each quality score Qi, and  ki is a power factor of each quality score Qi. 
The above three features contribute differently to fingerprint quality evaluation. 

The fingerprint images of three categories are labeled as two kinds good quality and 
bad quality images merging the original wet and dry fingerprints. The values of Fou-
rier and Gabor features are large to good fingerprint images. While, the value of RB of 
central region is abnormal to bad fingerprint images, Q1 can efficiently detect the bad 
quality images, so the weight of Q1 will be bigger to bad quality images than others, 
and k1 k2 and k3 are set to 1,2 and 2 respectively, while Q2 and Q3 can quantify the 
good quality images very well, the weights of these two scores are bigger than Q1, and 
k1 k2 k3 are set to 2,1 and 1 respectively. Based on the above analysis, the fusion qual-
ity score Q is defined as equation (13). 

As the contribution of each feature to the final quality score is nonlinear, the above 
equation can perform a better classification of good and bad images than the linear 
method, which will be given in section 4. 

4   Experimental Results 

The fingerprint database used in this experiment consists of 62 fingerprint images. 
The size of each fingerprint image is 640×640 pixels with the resolution of 500dpi 
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and 256 gray levels. And our research focuses on the 320×320 central region, the 
size of each block is 16× 16 pixels. We verify the evaluation performance of our 
method on this public security fingerprint database using black pixel ratio of central 
area, directional Gabor feature and ring structures of spectrum.  Fig. 3 shows the im-
age score distribution of the three different feature evaluation methods and the score 
distribution of the fusion approach. 

As shown in Fig. 3, the Gabor feature method and Fourier spectrum method can 
easily classify the fingerprint images into two groups: good and bad quality. The cen-
tral area black white pixel ratios method is able to detect bad fingerprint images whose 
black pixel ratio of central area is abnormal. To some images, though the Gabor feature 
score and Fourier spectrum score are high, the central area score is low. Under this 
similar circumstance, the fusion method is needed for getting a reasonable score. 

Fig. 3 demonstrates that the fusion method can find the poor quality images easily. 
After observing the images, we find that those fingerprint images whose final score are 
less than 0.1 have very bad quality. In order to test our proposed fusion method, we 
have sent these images to fingerprint classification system [8]. With ten percents finger-
print images of poor quality rejected, the five-classification (whorl, right loop, left loop, 
arch and tented arch) accuracy can be increased from 90.6 percent to 94.3 percent.  

Fig. 4 show the score distribution of our nonlinear fusion method and the linear 
method [7]. From the figure, we can find that nonlinear method show better perform-
ance of distinguishing good and bad fingerprint images as described in section 3. In 
order to compare with the results of linear method, we have also sent these images to 
fingerprint classification system [8]. Based on the linear method, we reject ten per-
cents fingerprint images of poor quality, the five-classification accuracy can be in-
creased from 90.6 percent to 92.5 percent. We can get the conclusion that fingerprint 
classification based on our fusion method shows 1.8 percent better classification accu-
racy than the linear method. 

By rejecting 25 percent images of bad quality according to our fusion method of 
fingerprint quality evaluation, the fingerprint classification accuracy will be increased 
to 96 percent. 

 

Fig. 3. Fingerprint image quality score distribution of different methods 
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Fig. 4. Fingerprint image quality score distribution of nonlinear and linear methods 

   
(a)                                       (b)                                       (c) 

Fig. 5. Typical Fingerprint images: (a) good fingerprint; (b) dry fingerprint; (c) wet fingerprint  

Fig.5 shows three typical fingerprint images. Based on our fusion method of fin-
gerprint quality evaluation, fingerprint Fig.5 (a) whose contrast between ridges and 
valleys is high has the best score of all the fingerprints, fingerprint Fig.5 (b) with 
largely corrupted ridge structure and low contrast between ridges and valleys is the 
worst of all the dry fingerprints, and fingerprint Fig.5 (c) with low gray-level and low 
contrast ridges and valleys has the lowest score of the wet fingerprints. 

5   Conclusions 

We have developed a fusion method combining three features for quality evaluation 
of fingerprint image, which gives better performance than linear methods. Our ex-
perimental results demonstrate that the three features were sufficient for detecting 
poor quality fingerprint images. However, the proposed method relies on the correctly 
located core point and the foreground central 320× 320 region. Further researches 
will emphasize on a more accurate core point detection for fusion method to improve 
the performance of the fingerprint image quality evaluation. 
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Abstract. This paper presents a new approach to automatic 3D face recognition 
using a model-based approach. This work uses real 3D dense point cloud data 
acquired with a scanner using a stereo photogrammetry technique. Since the 
point clouds are in varied orientations, by applying a non-iterative registration 
method, we automatically transform each point cloud to a canonical position. 
Unlike the iterative ICP algorithm, our non-iterative registration process is scale 
invariant. An efficient B-spline surface-fitting technique is developed to 
represent 3D faces in a way that allows efficient surface comparison. This is 
based on a novel knot vector standardisation algorithm which allow a single B-
Spline surface to be fitted onto a complex object represented as a unstructured 
points cloud. Consequently, dense correspondences across objects are 
established. Several experiments have been conducted and 91% recognition rate 
can be achieved.  

1   Introduction 

Recent theoretical and technical advance in 3D data capture opens up the possibility 
of 3D face recognition to overcome the difficulties in 2D face recognition systems, 
e.g. pose and illumination variations, as the 3D shape of a facial surface represents the 
anatomical structure of a face rather than the appearance. Whereas most of previous 
works use 2.5D face images (range data) [1,2,3,4], this work uses real 3D data 
acquired through a scanner based on the stereo photogrammetry technique, which 
captures the full frontal face in a single scan. However, 3D data (dense point clouds in 
this case) cannot be used directly for object recognition or shape analysis. First, the 
objects are in varied orientations and sizes. Second, the surface captured varies 
significantly across subjects and often includes neck or shoulders. There are often 
holes in the point clouds. Third, a 3D scan has about 30,000 vertices. So it is not very 
feasible to match a probe scan to every scan in the database using the Iterative Closest 
Point algorithm (ICP) [5,6].  

Although ICP is a widely accepted method of registering unstructured point clouds 
without prior knowledge about topology, its scale and shape sensitivity make it 
impractical for face recognition. Thus, one of the motivations of this research is to 
explore a new registration method for 3D face recognition, which is scale and shape 



 3D Face Recognition Based on Non-iterative Registration 787 

 

invariant. On the other hand, how to establish dense correspondences across objects in 
an efficient and automatic way is another main motivation driving our research into 
investigating efficient 3D representation methods.  

Besides an efficient registration method aiming for face recognition, the 
contribution of this paper also includes a new approach to face recognition based on 
3D modelling which provides: 1) automatic dense correspondences establishment, 2) 
compact data representation.   

The paper is organised as follows. In Section 2, related works are briefly reviewed. 
Section 3 describes our algorithm of scale invariant pose estimation. Section 4 
presents an efficient single B-spline surface reconstruction method, based on which 
dense correspondences across objects are established. Experimental results are given 
in Section 5. Finally, a conclusion is made in Section 6. 

2   Previous Work 

In the past, several efforts have been made for the registration of 3D point clouds. 
One of the most popular methods is the iterative closest point (ICP) algorithm 
developed by Besl and McKay [5]. The ICP searches a pair of nearest points in two 
data sets, and estimates a rigid transformation which aligns the two points. The rigid 
transformation is then applied to all the points of one data set to try to match those of 
the second, and the procedure is iterated until some optimisation criteria is satisfied. 
Several variations of the ICP method have been proposed. Chen and Medioni [7] 
evaluated the registration function using point-to-plane distance. In Zhang [8], a 
robust statistic threshold was introduced to determine the matching distance 
dynamically. Iterative methods such as this are obviously time consuming. When the 
assumption of one data set being a subset of the other is not valid, false matches can 
be created [9]. Moreover, they rely on a good estimate of the initial transformation. 
Another deficiency of the ICP method is scale sensitive. There are other alternative 
approaches. For example, some feature-based registration methods were presented in 
[10,11,12]. More detailed reviews on registration can be found in [13,14]. 

In face recognition, we have to register face scans of varied sizes due to either the 
distinct characteristics of each individual, e.g. faces between child and adult, or the 
scale change of a scanner. Moreover, the face surface varies significantly across 
subjects and often includes neck or shoulders. Finally, no transformation can be 
reasonably estimated to pre-align two face scans. Therefore, a non-iterative 
registration method addressing on those shortcomings is necessary. On the other hand, 
B-Spline surface fitting techniques provide potential solutions to our considerations of 
having compact data representation. 

However, although there has been considerable work on fitting B-spline surfaces to 
3D point clouds, most research is aimed at CAD or computer graphics applications, 
which have a different set of requirements from object recognition. Complex surfaces 
are often reconstructed using a network of surface patches [15,16]. Due to the 
uncertainty in the division of surface patches, it is difficult to establish 
correspondences between objects. Research on single patch surface reconstruction 
mostly uses structured or grid data sets with simple topology, e.g. a deformed 
quadrilateral [17] or a deformed cylinder [18]. The main contribution of our approach 
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is to have complex 3D object represented in a compact and unique way while 
allowing dense correspondences being established efficiently and automatically. 

3   Registration 

Instead of registering a probe face to a template face, our approach is to find a 
transformation, which takes a probe face of an arbitrary view to a canonical position 
(in the world coordinates system). In another word, all point clouds are in same 
orientation after this stage. The transformation can be written as: 

DRRDRD *** 12==′  .    (1) 

where D and D’ are the point cloud before and after transformation, respectively. R is 
a 3×3 rotation matrix which is the composite of coarse rotation matrix R1 and refined 
rotation matrix R2. The rotation matrix represents the pose estimate of the original 
data set. D’ is in the canonical position where the following conditions have been 
satisfied: 

• The line linking two inner eye corners (Eleft, Eright) is perpendicular to the y-z 
plane after registration, Figure 1(left). 

• The facial symmetry plane P is perpendicular to both the x-y plane and the x-z 
plane while passing through nose tip Ntip, nose bottom Nbottom and top Ntop, Figure 
1(left). 

• The line linking the nose top Ntop and nose bottom Nbottom is perpendicular to the 
x-z plane, Figure 1(right).  

Ntop is defined as the intersection of the line linking Eleft and Eright and plane P.  

  

Fig. 1. Face in the canonical position after the registration 

The only prior-knowledge we have before the registration stage is the location of 
the nose tip1. All rest features points, i.e. inner eye corners, top and bottom point of 
nose, are located simultaneously with the process of pose estimation. 
                                                           
1 The nose tip can be automatically located at the stage of raw data generation (via stereo 

matching process). 
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Two stages are involved to obtain the rotation matrix R and facial features. The 
first stage is to estimate the initial rotation matrix (head pose) based on the 
symmetryproperty of a face. We start from locating the plane P (Figure 2a1) which is 
perpendicular to both the x-y plane and the x-z plane while passing through nose tip 
Ntip. The facial profile is then extracted by the intersection of the surface and plane P, 
in the form of a set of scattered points, on which a B-spline curve is fitted (Figure 
2b1). The candidate nose saddle point and nose bottom point can be located via 
calculating the first and second curve derivatives. RX1 is estimated by the angle 
between the line linking the candidate nose saddle and bottom points and the x-y 
plane (Figure 2b1). Figure 2c1 (side view) and Figure 2a2 (frontal view) show the 
result after applying the rotation matrix RX1 on the original data D, i.e. 

DRD X *11 =     (2) 

Similar technique is employed to estimate RY1 and RZ1. Briefly, plane M in Figure 2a2 
is defined as being perpendicular to both the x-y plane and the y-z plane and passing 
through nose tip Ntip. The extracted facial profile is described by a B-Spline curve on 
which symmetric analysis is applied.  Then RY1 (Figure 2b2) and RZ1 (Figure 2a3) are 
calculated. The result after applying rotation matrix RY1 on D1 is illustrated in Figure 
2c2 (profile view) and Figure 2a3 (frontal view): 

DRRDRD XYY *** 11112 ==     (3) 

The final result of stage 1 shown in Figure 2b3 (profile view) and 2c3 (frontal view) 
is calculated by: 

DRDRRRDRD XYZZ ***** 1111213 ===     (4) 

Now the probe face D is near frontal after being transformed by R1 (Figure 2c3). 
Next, since human faces are not perfect symmetric objects, and facial expressions also 
affect the symmetric measurement, the initial pose estimations need to be refined. 
Pose refinement uses the following rotation matrix: 

2222 ZYX RRRR ⋅⋅=     (5) 

where RX2, RY2 and RZ2 are the compensation rotation matrices around x, y and z axes.  
The key idea of pose refinement is to evaluate RX2, RY2 and RZ2 using facial feature 

points. Since the coordinates of these features are directly related to pose, refining 
process must be done in parallel with facial features detection. With the candidate 
nose saddle point estimated from stage 1, possible areas containing inner corners of 
the eyes can then be decided upon, as shown in Figure 3a. For each area, eight 
candidates of the inner eye corners are obtained for further consideration (Figure 3b). 
The pair of points with the highest priority value is chosen as the inner eye corners 
(Figure 3c). The calculation of the priority is conducted under the constrains which 
features points must satisfy when the face is in the canonical position.  

Eleft
i and Eright

i denote ith pair of inner eye corners from 2×8 candidates. 
Corresponding Ntop

i is calculated as: 
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(a1) (b1) (c1) 

   
(a2) (b2) (c2) 

   
(a3) (b3) (c3) 

Fig. 2. Pose estimation 
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The smaller the Pi, the higher priority the ith pair has. After Eleft and Eright have been 
decided, Ntop is to be calculated based on the constrains of 1) having the same y- value 
as Eleft and Eright; 2) locating on the facial profile created by the intersection of the 
symmetric plane P and the surface, which is represented by B-Spline curve; 3) x- 
value is the mean of x- values of Eleft and Eright. 
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, )( represents the face profile inferred from the facial symmetry plane. 

   
(a) (b) (c) 

Fig. 3. Pose estimation and facial features detection. (a) Output from the first stage of pose 
estimation. Possible areas containing the inner corner of eyes are decided upon. (b) Candidates 
of the inner eye corners chosen from the areas marked in (a). (c) Detected facial features and 
the final output from the pose estimation algorithm. 

More experimental results of comparing our 3D registration methods with the ICP 
algorithm are given in Section 5. Two typical examples of ICP registration are shown 
in Figure 4b1 and 4b2. Figure 4c1 and 4c2 are the results using our approach.  

Fig. 4. Comparison between ICP method and our proposed method. (a1) First pair of point 
clouds to be registered. (b1) Positive result from ICP method. (c1) The registration result using 
our approach. (a2) Second pair of input point clouds. (b2) Negative result from ICP algorithm. 
(c2) Our result. 
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4   3D Modeling 

As mentioned in the previous section, we aim to represent a complex object, e.g. a 
face, by a single B-Spline surface patch. This problem can be restated as follows: given 
an unstructured point cloud P: pi (xi, yi, zi), find a single B-Spline surface Γ which fits 
the point cloud best. A B-Spline surface is defined as the set of points that can be 
obtained by evaluating the following equation for all the parameter values of s and t:  

cd

n

j
jihi

m

i
gj pCtNsBts ==Γ

= =0
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0
, )()(),(   (16) 

C is a set of control points. Bj,g(s) is the B-Spline basis functions of degree g in the s- 
direction, defined over a sequence of distinguished values, known as the knot vector 
U={u0, u1, …, ul}: 
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Similarly, Ni,h(t) is defined over the knot vector V={v0, v1, …, vk} in the t-direction 
with degree h.  

4.1   Single Patch B-Spline Surface Fitting 

For grid data, it is straightforward to have a B-Spline surface defined on a pair of 
uniform knot vectors. However, in most cases, grid data are only sufficient to 
represent objects with simple topology, e.g. a deformed quadrilateral or a deformed 
cylinder. Thus, a common approach for non-grid data representing a complex object 
is to divide the object surface into small patches. Each has a simple topology and can 
be re-gridded, on which the calculation of a pair of knot vectors is conducted and then 
a B-Spline patch is fitted. However, the uncertainty in the division of surface patches 
is the main obstacle to establish correspondences between objects. 

To overcome the shortcomings above, we develop a knot vector standardisation 
algorithm to enable one pair of common knot vectors defined over the whole complex 
object surface on which a single underlying B-Spline surface can be found. Neither is 
the re-girding algorithm required.  The knot vector standardisation algorithm is briefly 
illustrated by a simplified example below.  

Suppose F and L are two distinctive B-Spline curves. F is defined on knot vector 
X=[x0, x1, …, xnx+g+1] by nx+1 control points f: [f1, f2, …, fnx]; L is defined on knot 
vector Y=[y0, y1, …, yny+g+1] by nY+1 control points l: [l1, l2, …, lny].  
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if uj ≤  s<uj+1 

otherwise 
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To have X’=Y’ (standardised knot vectors of X and Y respectively), we standardise X 
and Y to a pre-defined knot vector U=[u0, u1, …, un+g+1]. For each element in U and 

X, if xi ∈ U, xi is untouched; If ∃k. (uk ∈ U) ∩ (uk ∉ X), insert uk into X; The control 
points f is re-calculated as f’=[f’1, f’2, …, f’n]

T and the basic function becomes: 
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The original curve is thus equal to: 
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Similarly, control points l is re-calculated as l’=[l’1, l’2, …, l’n]
T, and the basic 

function is re-defined on U: 
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Equation 23 and 25 can be generalised in the same form: 
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Consequently, Equation 24 and 26 can be rewritten as:   
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where A(s)=[Q0,g(s) Q1,g(s) … Qn,g(s)]. In anther word, an arbitrary B-Spline curve 
after standardising to the common knot vector U can be represented as a vector 
product of A and its control points. Same technique can be applied on the pairs of 
knot vectors standardisation. With a common pair of knot vectors U and V defined, a 
single B-Spline surface Γ can be fitted on the non-grid data, which is analogously 
represented as: 

CA tsts •=Γ ),(),(      (30) 

4.2   Correspondence 

Since A(s, t) is same across objects, vector C defines the unique shape of a surface, 
i.e. C is shape descriptors. Thus, we have established a direct mapping between the 
parameter domain (s, t) ∈ Ω: [0,1]×[0,1] and the object space Γ ∈ R3 via C. Shape 
descriptors have several important properties, including: 
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• Establishing direct one-to-one mapping from the parameter domain to the object 
space. For each pair of parameter value (s, t), we have a unique corresponding B-
Spline surface point in the object space.  

• Affine-invariance. The same result will be obtained transforming a B-Spline 
surface itself or its shape descriptors.  

• Shape descriptors C contain only object’s geometrical properties, i.e. filtering out 
all the information such as location, scale and rotation attached on the object. 

• Compact representation for 3D objects. The approach can achieve over 90% 
compression rate with similar rendering result to polygon representation. For 
example, the polygon representation shown in Figure 5c1 is composed of 18,649 
polygons, while all the information required to rendering the smooth surface 
shown in Figure 5c1 is a set of shape descriptor C with the size of 616 points. 

The examples of reconstructed single B-Spline representation are shown in Figure 
5c1, 5c2. For comparison, we also applied the multiple B-Spline patches fitting 
algorithm on the same data set, Figure 5b1 and 5b2. 

    
(a1) (b1) (c1) (d1) 

    
(a2) (b2) (c2) (d2) 

Fig. 5. Comparisons between a single B-Spline patch fitting and multiple B-Spline patches 
fitting. (a1) and (a2) Original data generated from different scans of the same person. (b1) 
Reconstructed face from (a1) composed of 140 B-Spline patches. (b2) Reconstructed face from 
(a2) composed of 207 B-Spline patches. (c1) and (c2) are reconstructed single B-Spline 
surfaces from (a1) and (a2) respectively. (d1) Polygons representation of (a1) includes 18649 
polygons. (d2) Polygons representation of (a2) includes 20370 polygons. 

With the one-to-one mapping from the parameter domain to the object space, the 
corresponding surface points between models can then be generated. Since for each 
pair of parameters (s, t), each face model has a unique corresponding B-spline surface 
point:  

),(),( tsts kΓ   and ),(),( 1 tsts k+Γ    (31) 
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Therefore, B-Spline surface points Γk(s, t) and Γk+1(s, t) are uniquely mapped, i.e.  

),(),( 1 tsts kk +ΓΓ     (32) 

By sampling the parameter domain, e.g. uniform sampling, we obtain a set of 
corresponding B-Spline surface points across face models. The experimental proving 
is given in Section 5. 

5   Experiments 

5.1   3D Data Capture 

All data used in our experiments were collected using a scanner based on the stereo 
photogrammetry technique. Currently, there are 65 subjects in our database. For each 
subject, 3 scans are captured. Since for a few subjects, there are fewer than 3 scans 
acquired, a total of 187 scans are available for conducting face recognition 
experiments. One in three scans of each person is used to construct the 3D face gallery 
whilst rest scans are used as probe face to test our face recognition system. Amongst 
the 65 people there are 14 females and 51 males of various ethic background and ages. 
Since we were not strict on people’s expression at the data collection stage, there are 
expressions changing from neutral to smiling among scans of individuals. The size of 
raw data output from the scanner is varied from 20,000 to 33,000 vertices. After the 
registration, the data size is reduced to average 10,000 vertices since unwanted parts, 
e.g. neck, shoulder etc. have been trimmed automatically. 

5.2   Face Recognition Scheme 

Since our face recognition experiments are conducted based on registered 3D face 
models, both the probe face and faces in gallery database are registered and modelled 
by applying the methods presented in previous sections. The procedure is briefly 
reviewed as follows with a gallery scan as an example. The gallery scan of unknown 
orientation is first automatically registered to a canonical position using the method 
presented in section 3. Second, the detected facial features are instinct to each subject 
and are taken as criterions to define the area of the frontal part of face which is then 
automatically separated from the unwanted part, e.g. shoulder, hair etc. Third, the 
modelling algorithm in section 4.1 is applied on the separated frontal part of face. 
Same procedures are applied to every other gallery faces, which can be done once in 
advance, and probe faces as well. After dense correspondences across the probe face 
model and the gallery models are established as proposed in section 4.2, we compare 
each probe face model with all the 3D face models stored in the gallery database 
using Euclidean distance as a matching metric. The gallery face having the smallest 
Euclidean distance to the probe face is identified as the best match.  

With the face recognition scheme presented above, there are two main factors that 
may affect the recognition rate, e.g. registration error, correspondence error. We study 
these factors separately before we arrive at the final conclusion. 
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5.3   Experiments on Correspondences Establishment 

The method of automatically establishing dense correspondences has been proved 
theoretically in section 4.2. In this section, we evaluate its errors through recognition 
rates. The face recognition scheme described in section 5.2, basing on the database 
including total 187 scans of 65 subjects is applied. However, to pinpoint the errors 
introduced into the face recognition system only by the corresponding method, we 
must rule out errors produced by other factors, e.g. registration errors, the chosen of 
the 65 gallery scans from 187 scans, etc. As indicated by later experimental results, 
constructing gallery database with scans in neutral expressions has higher recognition 
rates than gallery scans with other expressions. We set up the gallery database in this 
experiment using scans with neutral expressions. To minimise the registration errors, 
we manually registered every probe face to its genuine face in the gallery database in 
this experiment.  

121 out of 122 probe faces have been correctly recognised from the gallery 
database of 65 subjects, i.e. the recognition rate is 99.18%. This experiment gives 
proofs on the correctness of our establishing correspondences approach on the 
practical ground. 

5.4   Experiments on Registration 

In this section, we conduct three experiments. While the first one focuses on testing 
our registration method, the other experiments using the ICP method instead are for 
comparison purposes. The same face recognition scheme as in Section 5.3 is adopted.  

Gallery database construction: three gallery databases are available in this part of 
the experiments. First we construct the gallery database using scans with neutral 
expressions (DB1). Then the rest two of the three scans are randomly picked up to 
make the gallery database, DB2 and DB3 respectively. 

First experiment is carried out using our non-iterative registration method in the 
recognition scheme. The recognition rate is 90.98% with DB1, i.e. 111 out of 122 
probe faces have been correctly recognised from the gallery database of 65 subjects. 
Alternatively, 106 out of 122 probe faces are correctly recognised using the gallery 
database DB2, corresponding to the recognition rate of 86.88%; while 109 out of 122 
probe faces are correctly recognised with the gallery database DB3, achieving 
recognition rate of 89.34%. 

Two comparative experiments are conducted using ICP as the registration method 
in our recognition scheme. One is to register every probe face to a generic face 
(ICP#1), while the other is to register each probe face to its own genuine gallery face 
(ICP#2). The latter is merely served for a comparison purpose. To compromise that 
ICP method is a local method and needs a good initialisation, both processes are 
under careful inspection. In other words, the two ICP registrations are semi-automatic 
since human intervention is required to set parameters depending on individuals. Both 
experiments are based on the gallery database DB1. For the case of ICP#1, 59.84% 
recognition rate is achieved. For ICP#2, 117 out of 122 probe faces have been 
correctly recognised from the gallery database of 65 subjects, i.e. with recognition 
rate of 95.9%. 
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Table 1. Recognition rates under different registration methods 

Registration 
Method 

Gallery 
(DB1) 

Gallery  
(DB2) 

Gallery 
(DB3) 

Status 

Non-iterative 90.98% 86.88% 89.34% Automatic 
ICP#1 59.84% --- --- Semi-automatic 
ICP#2 95.9% --- --- Semi-automatic 

6   Conclusion and Future Works 

We have developed a new automatic model-based face recognition system, which 
includes both non-iterative registration and the representation of 3D face models by 
shape descriptors. By registering point clouds to a canonical position, we overcome 
the pose-variation problem. Unlike ICP algorithm, this non-iterative registration 
process is scale invariant. An efficient B-spline surface-fitting technique is developed 
to reconstruct underlying surface for the registered data set. A new knot vector 
standardisation technique is proposed to allow a direct one-to-one mapping 
relationship from the object space to a parameter space. Subsequently, a compact 
parametric representation of 3D objects is obtained. The system has been tested on a 
personal computer (Pentium 4/512M RAM). The registration process is measured on 
an average sized points cloud (about 30,000 vertices), taking about 1.7 seconds. 3D 
modelling process takes about 0.58 seconds. Matching a probe face against 65 gallery 
faces can be finished within 0.02 seconds which includes the process of online 
correspondences establishment across the probe face and every face in the database. 

Although surface distance can be used as a metric for face recognition, it may 
not be very sufficient since no explicit geometric information is employed. Our future 
work is to integrate geometric information into recognition methods. For example, 
with the proposed surface representation, it is possible to analyse facial component 
separately. As the geometry of B-spline surface can be inferred from the shape 
descriptors, we can delineate facial areas, e.g. forehead, nose, mouth, chin, from the 
parameter space, and weigh each part separately in the recognition metric to reduce 
the influence of facial expression. The areas potentially affected by facial expression 
will be given lower weight. 

References 

[1] Lee, Y. and Shim, J. (2004) Curvature-based Human Face Recognition Using Depth-
weighted Hausdorff Distance. International Conference on Image Processing (ICIP), pp. 
1429-1432. 

[2] Lu, X., Colbry, A and Jain, K. (2004) Matching 2.5D Scans for Face Recognition. 
International Conference on Pattern Recognition (ICPR), pp. 362-366. 

[3] Bowyer, K., Chang, K and Flynn, P. (2006) A Survey of Approches and Challenges in 
3D and Multi-modal 3D+2D Face Recognition. Computer Vision and Image 
Understanding, 101, 1-15. 

[4] Campbell, R. and Flynn, P. (2001) A Survey of Free-form Object Representation and 
Recognition Techniques. Computer Vision and Image Understanding, vol. 81, pp. 166-210. 



798 Y. Song and L. Bai 

 

[5] Besl, P.J., and McKay, N.D. (1992) A Method for Registration of 3D Shapes. IEEE 
Pattern Analysis and Machine Intelligence, vol. 14, No. 2, 239-256. 

[6] Medioni, G. and Waupotitsch, R. (2003) Face Recognition and Modelling in 3D. IEEE 
International Workshop on Analysis and Modelling of Faces and Gestures (AMFG), pp. 
232-233. 

[7] Chen, Y., and Medioni, G. (1992) Object modelling by registration of multiple range 
images. Image and Vision Computing, vol. 10, No. 3, 145-155. 

[8] Zhang, Z. (1994) Iterative Point Matching for Registration of Free-form Curves and 
Surfaces. International Journal of Computer Vision, vol. 13, No. 2, pp.119-152. 

[9] Fusiello, A., Castellani, U., Ronchetti, L., and Murino, V. (2002) Model Acquisition by 
Registration of Multiple Acoustic Range Views, Computer Vision, ECCV2002, Springer, 
pp. 805-819. 

[10] Godin, G., Rioux, M. and Baribeau, R. (1994) Three-dimensional Registration Using 
Range and Intensity Information, SPIE, vol. 2350, Videometrics III, pp. 279-290. 

[11] Godin, G. and Boulanger, P. (1995) Range Image Registration Through Viewpoint 
Invariant Computation of Curvature, IAPRS, 30 (5/W1), pp. 170-175. 

[12] Godin, G., Laurendeau, D. and Bergevin, R. (2001) A Method for the Registration of 
Attributed Range images, International Conference on 3D Imaging and Modeling, 
Quebec, pp. 179-186. 

[13] Campbell, R., Flynn, P. (2001) A Survey of Free-form Object Representation and 
Recognition Techniques, Computer Vision and Image Understanding, vol. 81, pp. 166-210. 

[14] Flusser, J. and Zitova, B. (2003) Image Registration Methods: A Survey, Image and 
Vision Computing, vol. 21, pp. 977-1000. 

[15] Eck, M., and Hoppe, H. (1996) Automatic Reconstruction of B-Spine Surfaces of 
Arbitrary Topological Type. Proc. 23rd Int'l. Conf. on Computer Graphics and Interactive 
Techniques SIGGRAPH '96, ACM, New York, NY. pp. 325-334. 

[16] Krishnamurthy, V. and Levoy, M. (1996) Fitting Smooth Surfaces to Dense Polygon 
Meshes, ACM-0-89791-746-4/96/008. 

[17] Sarkar, B. and Menq, C. (1991) Parameter Optimization in Approximating Curves and 
Surfaces to Measurement Data, Computer Aided Geometric Design, vol. 8, pp. 267-290. 

[18] Forsey, D. and Bartels, R. (1995) Surface Fitting with Hierarchical splines, ACM 
Transactions on Graphics, vol. 14, no. 2, pp. 134-161. 



J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 799 – 809, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Automatic Denoising of 2D Color Face Images Using 
Recursive PCA Reconstruction 

Hyun Park and Young Shik Moon 

Department of Computer Science and Engineering, Hanyang University, 
1271 Sa-Dong, Ansan, Kyunggi-Do 425-791, Korea 
{hpark, ysmoon}@cse.hanyang.ac.kr 

Abstract. In this paper, we propose a denoising method based on PCA recon-
struction for removing complex color noise components on human faces, which 
is not easy to remove by using vectorial color filters. The proposed method is 
composed of the following six steps: training of canonical eigenface space us-
ing PCA, automatic extraction of facial features using active appearance model 
and alignment of the input face to mean shape, reconstruction of an initial noise 
free face, relighting of reconstructed face using a bilateral filter, extraction of 
noise regions using the variances of skin color of training data, and reconstruc-
tion using partial information of input images (except the noise regions) and 
blending of the reconstructed image with the original image. Experimental  
results show that the proposed denoising method maintains the structural char-
acteristics of input faces, while efficiently removing noise components with 
complex colors. 

1   Introduction 

Denoising and reconstruction of color images have been extensively studied in the 
field of computer vision and image processing. There have been some attempts to 
remove noises on color images. Early attempts removed noises on color images 
through independent smoothing of RGB channels. Generally, almost all approaches 
focus on a variety of filtering processes applied appropriately to the color vectorial 
data. The color filters such as vector median and directional filters are used for re-
moving Gaussian white noise or impulse noise in the field of computer vision and 
image processing [1], [2], [3]. The nonlinear color filters such as WMF (weighted 
median filter) and CWMF (center weighted median filter) efficiently remove impulse 
and salt & pepper noises [4], [5]. The decomposition using PCA (principal component 
analysis), kernel PCA, ICA (independent component analysis) and wavelet transform 
is also applied to denoising [6], [7], [8]. In spite of these efforts, many of denoising 
methods have been performed on gray images and they removed mostly simple noises 
such as gaussian noises or impulse noises. Moreover, complex color noise compo-
nents on human faces are difficult to remove by general color filtering processes.  

Therefore, we propose a new denoising method based on recursive PCA recon-
struction, which maintains the structural characteristics of input face and efficiently 
removes complex color noise components on input faces. The proposed method is 
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composed of the following four steps. First, we construct a canonical eigenface space 
using PCA. Next, we automatically extract facial features of an input face using the 
multi-level active appearance model (MAAM). To minimize the reconstruction error 
by geometric misalignment, we align the input face to the reference shape using the 
extracted facial feature points. Next, we reconstruct an initial noise free face by pro-
jecting the input face onto constructed canonical eigenface space. We carry out the 
proposed relighting method so that both the reconstructed face and the input face have 
the same illumination condition. Then, we extract noise regions using the variances of 
vector magnitude and vector angle of the skin color at the each pixel position of the 
training data. Finally, if the extracted noise regions are less than 40% of the total face 
region, we reconstruct the noise free face once again using partial information of the 
input image (except the noise regions), and the reconstructed noise free face is 
blended appropriately with the original image. 

2   Training of Canonical Eigenface Space Using PCA 

Generally, the original eigenface space is effective for recognition and reconstruction, 
but it is not robust against various illumination changes and geometric misalignments. 
In this paper, complex color noise components on training faces are manually re-
moved, then training images are aligned to the mean shape of AAM and normalized 
to ‘zero mean and unit length’, as in equation (1).  

We refer to this training face as the normalized canonical face. The training data 
consists of still images of 100 different frontal-view human faces, all without glasses 
and with a neutral expression. We construct a canonical eigenface space using PCA 
and normalized canonical training faces. Finally, the canonical eigenface space is 
constructed by removing the rest of complex color noises that have not been removed 
manually, which is performed by selecting only 95% of the principal components.  
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where x is the normalized face of original face X, x  is the mean vector, Σ  is the co-
variance matrix, N is the number of faces in the training set. 
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In equation (2),  is a diagonal matrix in which diagonal terms are eigenvalues of , 
and σi

2 is the variance of training faces in the direction of ith eigenvector.  is an 
eigenvector matrix, α is a principal component vector, m is the number of eigenvec-
tors, and x* is the reconstructed face by projection onto the canonical eigenface space 
[6], [9]. If we use partial information of the input face and the scaled eigenvectors σiφ 

i as a basis, reconstructed face x* is defined by equation (3) [9]. 
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3   Automatic Extraction of Facial Feature Points Using AAM  

In order to improve the efficiency and robustness of the matching algorithm, a facial 
feature template is matched by using the MAAM (Multi-level active appearance 
model) based on color images. The training method for AAM uses the Jacobian learn-
ing scheme. As in the original AAM method, these AAMs are built at each level of a 
scale-pyramid for coarse-to-fine fitting based on multi-resolution [10], [11]. 

 

Fig. 1. Face textures and shapes (landmarks) for training the AAM 

 

Fig. 2. Search-based initialization of deformation templates using multi-level AAM. (a) Origi-
nal image. (b) Search result in level 2 (50 % scaled down of level 1). (c) Search result in level 1 
(50 % scaled down of  level 0). (d) Final search result in level 0 (not scaled down). 

The training faces are acquired in 1187 x 1190 bitmap color format. As shown in 
Figure 1(b), the facial structures are manually annotated using 94 total landmarks of 
eyebrows, eyes, nose, mouth, and jaw. As shown in Figure 2, a multi-resolution 
pyramid is scaled into three levels. Figure 2(d) is the final search result in which pa-
rameters of the combined model for AAM are optimized (translation, scaling, rota-
tion, texture model parameters, and shape model parameters). 

4   Reconstruction of Noise Free Face Reflecting Various Facial 
Colors 

In the PCA reconstruction in color domain, the difference between the color distribu-
tion of input face and that of training faces causes PCA reconstruction error. Espe-
cially, the reconstruction error becomes larger as the illumination condition changes. 
Therefore, the direct projection of color face onto the canonical eigenface space, using 
x* of equation (2), may not be robust. We solve this problem by using the polynomial 
regression approximation.  
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Fig. 3. PCA reconstruction reflecting various facial colors 

As shown in  of Figure 3, in order to minimize the difference of facial color 
between the input face and the training faces, we convert the facial color of input 
face to the facial color of the mean face using the Polynomial-Least Squares Fit-
ting (PLSF) that is carried out by equation (5) and (6). Next, by projecting the 
input face onto the canonical eigenface space, the initial noise free face is recon-
structed, as in ,  of Figure 3. Finally, we convert the facial color of recon-
structed face to the facial color of the input face.  
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where xfacial color A is a reference face with facial color A, yfacial color B is an input face 
with facial color B, yfacial color A is a converted input face. 

5   Relighting of Reconstructed Face 

We can not always assume that both the reconstructed face and the input face are 
on the same illumination condition. To compensate the difference of illumination 
conditions, we propose a relighting method using the bilateral filter in HSV color 
domain [12]. Our relighting method is composed of the following two steps: initial 
relighting of reconstructed face using the bilateral filter, compensation of the ini-
tial relighting to exclude noise influences. 
5.1   Relighting of Reconstructed Face Using Bilateral Filter 

The bilateral filter combines a classic low-pass filter with an edge-stopping function 
that attenuates the filter kernel weights when the intensity difference between pixels is  
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Fig. 4. Relighting of reconstructed face image 

large. As shown in Figure 4, the bilateral filter separates a color face image into the 
small scale and the large scale. The small scale represents the detailed shape of image 
and the large scale represents the illumination of image. We apply the bilateral filter 
to each RGB color channel separately with the same standard deviation parameters 
for all three channels. The output of bilateral filter using equation (7) and (8) is the 
large scale. The small scale is computed to divide color image by its large scale. By 
combining the saturation and value (brightness) of the large scale input face, the hue 
of large scale reconstructed face, and the small scale reconstructed face, we perform 
the relighting of the reconstructed face. The computation is done in the log domain to 
take the intensity ratios in account. Spatial variance σf is equal to 2% of the image 
diagonal and variance σg is equal to 0.4 for intensity influence [13], [14].  
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Here p and s are pixel positions, Ip and Is are pixel values (or each color channel 
values) at p and s pixel positions respectively, k(s) is normalization term and  is 
the size of filter mask. 

5.2   Compensation of Relighting Using Extracted Noise Region Information 

The large scale representing the illumination of color face is affected by complex 
color noise components that are difficult to remove by Gaussian filtering of the  
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bilateral filter. Therefore, the result of relighting might have a little noise effects. To 
prevent these noise effects occurred by the initial relighting, we propose the modified 
joint bilateral filter using noise region such as equation (9), (10) and (11). 
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6   Extraction of Noise Regions Using the Variance of Skin Color 

In order to extract complex color noise regions automatically, we propose a noise 
detection method based on the vector magnitude map (VMM) and vector direction 
map (VDM) of training data that is computed by equation (12) and (13) [2], [3]. The 
vector magnitude represents the distance and the vector direction represents the angle 
between two vectors at the same pixel position. As in equation (14), we use the stan-
dard deviation of VMM and VDM at each pixel position as the threshold value. The 
threshold value for noise extraction is determined by experiments for over detection 
of color noise regions. So the threshold value has been empirically selected to 2 times 
standard deviation of VMM and VDM, based on noise detection rate. 
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Here x  is the mean vector of the training set, N is the number of data in the training 
set, D(a,b) is the distance between two vectors, A(a,b) is the angle between two  
vectors, a and b are pixel vectors, k is the dimension of a pixel vector, VM  i is the 
standard deviation of VMM at i th position and VD  i is the standard deviation of 
VDM at i th position. 

7   Reconstruction Using Partial Information and Blending 

Generally, the least squares minimization (LSM) method using orthogonal projection 
and the original PCA reconstruction are not robust when input images have  
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intra-sample outliers. We can regard complex color noise components on facial im-
ages as intra-sample outliers. Therefore, we reconstruct the optimal noise free face 
using the robust PCA based on the singular value decomposition (SVD). The robust 
PCA computes the optimal principal components by using the partial information of 
input images (except the noise regions), and then we construct the noise free face by 
using the optimal principal components [9], [15]. If the area of the extracted noise 
region is more than 40% of the total face region, we use the reconstructed noise free 
face by orthogonal projection.  

We define an error function E(α) such as equation (16), as the sum of square errors 
which are the difference between pixel values in non-noise regions and its recon-
structed ones. Our goal is to find the optimal α* so as to minimize the error.  
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Here x~ (j) are pixels of the input image except the noise regions, p is the number of pixels 
in the non-noise regions. If qi = σiφ i, the equation (16) is replaced by equation (17).  
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We can get the optimal α* by using the pseudo-inverse of Q that is computed by 
SVD. As the reconstructed face by orthogonal projection, we apply the facial color 
transfer and the relighting to the reconstructed face by equation (21). Finally, we 
blend the reconstructed noise free face with the original face by equation (22). In 
equation (22), b is a blending ratio. In this paper, we use 0.9 as the blending ratio. O is 
the original face, and R is the final reconstructed face. 
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Fig. 5. Denoising process based on recursive PCA reconstruction 

8   Experimental Results 

We evaluate the performance of the proposed denoising method by removing noise 
components on the frontal face. For this experiment, we manually insert complex 
color noise components such as pockmarks, pimples and blotches on a clear face. 
As shown in Figure 6, the proposed denoising method maintains the structural char-
acteristics of input face, while efficiently removing complex color noise compo-
nents. As we carry out the denoising process repeatedly, more detailed information 
on the face is blurred. However, this blurring is negligible. As shown in Figure 7, 
we also evaluate the performance of the proposed denoising method by comparing 
with multilevel inpainting method, TV inpainting method, 7x7 WMF and 7x7 
CWMF. Experimental results show that the proposed denoising method is more 
efficient in terms of smoothness, visual impression and denoising effect than the 
other methods. 
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Fig. 6. Noise removal results by using recursive PCA reconstruction (a) noise free input face, 
(b) input face with arbitrary noise components, (c) reconstructed results when the removal is 
performed once, (d) reconstructed results when the removal is performed three times 

9   Conclusions 

In this paper, we propose a denoising method based on PCA reconstruction for removing 
complex color noises on human faces, which is difficult to remove by using general color 
filters. The proposed method maintains the structural characteristics of input faces, while 
efficiently removing complex color noises on input faces. Experimental results show 
that the proposed denosing method efficiently removes complex color noise compo-
nents on input face images. 
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Fig. 7. Comparison of original face with noise removed results by proposed method, inpainting 
methods and spatial filer methods (a) noise free input face, (b) input face with arbitrary noise 
components, (c) result by the proposed method (executed once), (d) result by the proposed 
method (iterated three times), (e) result by multilevel inpainting method, (f) result by TV  
inpainting method, (g) result by 7x7 WMF, (h) result by 7x7 CWMF 
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Abstract. We developed an algorithmic scheme to extract the semanti-
cal description of the face and the face motion from an image sequence,
and to re-play this action in a 3-dimensional (3D) virtual world. The pre-
sented Facial Analysis and Synthesis Scheme combines new methods for
detection and tracking of the face and facial features, for estimating the
3D face movements and the nonrigid facial expressions, and for extract-
ing the MPEG4 facial animation parameters. In the scheme, the face is
treated either as a 2D object that has specific color, shape and motion
characteristics, either as a 3D model that is calibrated and moved using
a natural displacement-based deformation model. A dynamic MPEG4
displacement table takes care of the semantical controls of the anima-
tions of the face model. As a result, this virtual face model mimics well
the gestures of the person in the video.

1 Introduction

The communication of the non-verbal face gestures is used in a wide range of
applications as tele-presence and surveillance, and as an element in the upcom-
ing new media in games and intuitive user-interfaces with virtual actors. The
corresponding digital content contains a large amount of data, namely natural
recordings and/or synthetic data, which have to be stored or sent efficiently.
This paper addresses analysis techniques which allow to replace the raw video
recording of a person by a ’high level’ semantical representation and to drive a
face model according to the face appearance.

1.1 The Problem Formulation

The goal of the Facial Analysis and Synthesis Scheme (FASS) is to estimate the
static and dynamical parameters that respectively correspond to the structure
and motion of the face. What makes this problem challenging is that 2D and
3D information have to be extracted from a single 2D image sequence. Both the
rigid motion and the expressions of the face in the image sequence are extracted
to control a virtual face model. To this end, several restrictions are imposed on
the scheme: only natural, mechanical motion models can be used which allow to

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 810–820, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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explain the face motions; a physical face model based upon biological evidence
has to be used; the final face motion representation needs to be conform to
the MPEG4 video compression standard [1,2]; and the algorithms have to work
as automatic as possible. Therefore the 3D model animation is preferred as
framework over the image-based performance-based animation techniques [3].

The remainder of this paper is organized as follows. In section 2 all the building
blocks of the FASS are discussed, and in section 3 conclusions are drawn.

2 Scheme

An entire scheme is proposed to study the face motions recorded in a (color)
image sequence and to render them in a virtual world. Its building blocks, given
in Figure 1, combine techniques from computer vision, computer graphics and
mechanics as explained in the following sections.

Visual InputVisual Input Output
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Fig. 1. Functional blocks of the FASS

2.1 Face Extraction

The localization of the face in the first image is performed by an automatic seg-
mentation and verification using both the face color and spatial characteristics
[4]. A pixel is initially labeled as skin if its color falls inside the boundary of the
delimited skin color region in the Y CbCr space. Because of each person’s individ-
ual skin color, that initial segmentation is personalized by selecting all regions
of skin segments with high skin probability as face candidates. This probability
is the value of a CbCr Gaussian fitted on the initial detected skin chromaticity
and skewed towards reddish (small Cb, large Cr), as depicted in Figure 2a.
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(a) (b) (c) (d)

Fig. 2. (a) Skin color region in the Y CbCr space, where the highest skin probabilities
are found inside the threshold ellipse of the skewed Gaussian fit; (b-d) Localized faces

A global face cue measure is then estimated for each candidate region. It is
the sum of the z-scores of the shape cues, derived from an ellipse fit on each
region, and the gray-tone cues that express smoothness and the existence of
facial feature corners in a face region. The face candidate that has the maximal
measure localizes the face in the image. The construction of that measure allows
it to be easily extendible with other cues and to be adapted towards the face in
the input image. Experiments on a database (of [5]) resulted in 92% of good face
detections, which is quite powerfull compared to the 93% of the state-of-the-art
face detection (using appearance training) of Viola [6]. Some examples of our
face extraction algorithm are shown in Figure 2b-d

2.2 2D Head Tracking

The tracking of the detected head in the subsequent image frames is performed
via a kernel-based method wherein a joint spatial-color probability density char-
acterizes the ellipse head region [4]. The parameterized motion and the illumi-
nation changes affecting the target are estimated by minimizing a distance mea-
suring the adherence of the samples of the head candidate to the density of the
head model. This kernel-based approach proved to be robust to the 3-dimensional
motion of the face, and lets the tracked region remain tightly around the face
as shown in Figure 3. Moreover, incorporating an illumination model into the
tracking equations enables us to cope with potentially distracting illumination
changes. The proposed algorithm achieves reliable tracking results compared to
the best spatially-weighted color histogram trackers [7,4]. The robustness of the
joint spatial-color tracker against a background of the same histogram is illus-
trated in Figure 4.

2.3 Facial Feature Motion

Facial features play a special role in recognizing a specific face, but also in fol-
lowing the motion of the face. Although it is hard to extract individual face
feature points, the shape of the eye can be analyzed in local windows of the in-
tensity images obtained by an eye detection algorithm of template matching. By
using morphological scale-space, information about edges and regions of the eye
is extracted from these images. Starting from the approach of Matthews [8], we
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Fig. 3. Joint spatial color tracker on a face image sequence

Fig. 4. Joint spatial color tracker of a target on a background with same histogram,
changing its illumination in the fourth frame

proposed modifications to incorporate additional information about the spatio-
temporal nature of an eye gesture [9]. Namely, for the estimation of the eye
opening/closing animation parameters, we introduced a gesture observation mea-
sure that depends both on the scale of the eye region details and on the eye
blink timing. In a typical newsreader sequence, we can automatically detect the
eyes regions and estimate eyes gestures states, as shown in Figure 5. This algo-
rithm also allows estimating the mouth opening of the person in the face image
sequence.

2.4 Calibration in 3D

A 3D wire-frame face model provides depth and topology information that aids
the 3D face analysis. In our work we use a generic face model that has a topology
for handling face motion, and the calibration ensures that this model has the
looks and 3D position of the face in the first frame of the image sequence. While
Pighin et al. [10] aimed at photorealistic face reconstruction, using a dense laser-
scanned face model and multiple views of a person, we employ the calibration
as a preprocessing step for the natural motion estimation of section 2.5.

Based upon the semantical correspondence between the face feature’s pix-
els and vertices, the camera and initial positioning parameters are assigned,
as well as the initial structure deformation. All visible model vertices {Xn =
(xn, yn, zn)}N

n=1 are mapped on the image pixels {xn = (in, jn)}N
n=1 by a perspec-

tive projection with fixed focal length f . The projected face is correctly placed
on the image face region by changing the image center of projection c, while
its orientation and scale are provided by a rigid motion of the face model which
consists of a small rotation with vector (0, 0,ωz) and a depth translation (0, 0, tz)
relative to the axes of projection. These parameters are estimated such that M
feature correspondences (with M < N) are fulfilled in least-squares sense:
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(a) (b) (c)

Fig. 5. Face feature gesture analysis: (a) the newsreader, (b) the eye and mouth win-
dows with gesture state bars (fully black means a closed feature), and face tilt angle
in the double bar, (c) the mimic of the virtual model

(ĉ, ω̂z, t̂z) = arg
(c,ωz,tz)

min
M∑

m=1

∥∥∥∥ ( im
jm

)
− f

zm + tz

(
xm − ωzym

−(ωzxm + ym)

)
+ c
∥∥∥∥2 (1)

Volume morphing adjusts the face model’s geometrical structure to the ap-
pearance of the frontal looking person in the image. To create a face model of
that person, a tri-variate 3D radial basis function (r.b.f.) interpolation [11] dis-
places the vertices which are not given by the feature correspondence. Depth
information is either copied from the original 3D model, or selected from a side
view of the person. A sensitivity study of the influence of the new feature point
position on all calibrated face model vertices has shown that the linear r.b.f.
acts upon a local region around the feature point, lets the face surface remain
smooth after morphing and does not distort the face model topology. The dis-
placed model vertices {Yn}N

n=1 and its given feature point subset {Lm}k
m=1 are

described in terms of their original positions, given by respectively {Xn}N
n=1 and

{Km}k
m=1, as

Y =
(
L1 . . . Lk

)⎛⎜⎜⎝AT

⎛⎜⎜⎝
‖X−K1‖2

σ1
...

‖X−Kk‖2
σk

⎞⎟⎟⎠+ BT

⎞⎟⎟⎠ (2)

where A is a k × k and B is a 1 × k matrix constructed from the symmetric
r.b.f. kernel matrix H = {Hml � ‖Km−Kl‖2

σl
}k

m,l=1 with shape parameters σl =
min

r=1,...,k r �=l

1
2 ||Kr −Kl||2; more details can be found in [12].

A result of the 3D scene calibration, including the camera and r.b.f. structure
calibration is depicted in Figure 6a.

2.5 3D Motion Estimation

Facial expressions are 3-dimensional as they are produced by 3D deformation
of the skin, the face shape (due to articulation) as well as the head movements
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(3D rigid motion of the head). Extracting these 3D deformation parameters is an
ill-posed problem. Indeed, due to the perspective projection only the apparent
2D motion could be recovered, as the third dimension of the motion and struc-
ture has been lost after projection. Without the knowledge of the face surface
from range or stereo information [13], or without a coarse face structure and an
accompanying motion model these 3D motions cannot be estimated.

Describing 3D face motion has its roots in computer graphics. Parke et al.
[14] pioneered the modeling of face gestures by parameterizing a 3D human face
model. This is done by introducing parameters that each move a group of ver-
tices. The knowledge about the human face movements is thus contained in the
specification of the face model. This direct parametrization of the geometry of
the face model is used as a constraint in extracting face motion from an im-
age sequence [15]. The estimation method considers the amount of adherence
to the brightness constraint equation (related to optical flow) as a discrepancy
measure between the observed image irradiance changes and the projected face
model changes. That measure is minimal for the true motion model’s parameters.
This automatic tracking of the face and facial features yields information that
can also be used for describing facial expressions by MPEG4 video compression
standardization’s Facial Animation Parameters (FAP). Within the video cod-
ing framework, many researchers followed the optical-flow-based FAP extraction
approach [16] [17].

Instead of estimating directly the face geometry, the underlying physical mech-
anisms of the deformations can be extracted. A mass-spring model is built by
replacing the connections between the vertices of the wire-frame by springs and
by appointing a point mass to each vertex. Waters [18] modeled face muscles as
geometric deformations of a face model with a nonlinear geometric interpolation
method to approximate the mass-spring behavior. In facial animation systems
that employ morphing of 3D models, the layered animation approach is still be-
ing improved [3]. Lee, Terzopoulos, and Waters [19] were the first researchers to
apply the dynamic mass-spring system to facial modelling. The amount of 2D
movements (with respect to a neutral face) of highlighted eyebrows and mouth
and nose furrows of a person estimated in the image sequence was used as a
weight of the 3D muscle spring contraction. Performance-driven animation was
achieved with a two-layer mass-spring skin model. Following such physics-based
approach, Essa [20] estimated a set of muscle parameters from the image motion
field. The optical flow measurements in the image sequence were coupled to the
deformations in depth of a finite element face model by using the convex nature
of the face (via a spherical wrapping). The estimation of the muscle values was
incorporated in a control framework of a dynamic system, using a continuous
time Kalman filter.

In our research, we propose to employ a mechanically-based finite element
model of face deformation inside the optical-flow-based motion estimation for-
mulation.The face structure is given as the calibrated 3D face wire-frame, and a
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rigid and nonrigid natural motion model is employed to estimate the 3D motion
of the face from a single image sequence measurement. The motion of the 3D
face model that best accounts for the entire observed flow is interpreted as the
head motion and can be used to create the gestures of a 3D virtual face. This
is done by relating the 3D apparent velocity field, called scene flow W [21], to
the optical flow u in successive images via equation (3), for which the brightness
constancy constraint (4) is valid [22]:

u = (u, v) = JXW with JX � ∂x
∂X

=
f

z

(
1 0 −x

z
0 −1 y

z

)
(3)

Ii u + Ij v + It = 0 (4)

where JX is the scene flow projection Jacobian; X = (x, y, z) are the 3D coor-
dinates; x = (i, j) are the image coordinates of a point ; and Ii, Ij , It are the
gradients of the image I in i- and respectively j- and t-direction.

The face motion will be determined as the 3D face model’s motion and esti-
mated by registering the projection of the model’s parameterized natural scene
flow W to the measured optical flow u. For details about the implementation of
the approach, we refer the reader to the PhD-thesis [12]. We will thus select the
parameters for which this projected scene flow, denoted as modeled optical flow
ũ(W), can most likely resemble the measured optical flow in the least-squares
sense, written as

Ŵ = arg
W

min

[(
m∑

k=1

‖uk − ũ(Wk)‖2
)

+ ψ

]
(5)

This parameterized flow W consists of a bulk rigid motion V, including all
apparent 3D rotations and translations of the face model, and of the nonrigid
displacements U of the soft skin face tissue caused by muscle forces. Regulariza-
tion terms ψ, required to solve the ill-posed 3D recovery problem, can now be
applied on the scene using the physical constraint of smoothly varying muscles
forces that lie tangential to the face surface.

Our approach gives several improvements to the previously mentioned state-
of-the-art methods, namely:

– The optical flow in the image to attain with the motion model is back-
projected to 3D face model motion considering the perspective projection.

– As compared to the mass-spring models in the state-of-the art [19], forces
on the face are seen as distributed muscle loads and thus no face model
muscle topology has to be determined. This is realized by implementing
the modeled optical flow using a finite element face model that is solved
for the thin shell skin surface displacement when a distributed muscle load
is applied. Furthermore, the face motions are not restricted to geometrical
transformations as in [15,16,17,23].

– Regularization of the solution is foreseen by physically-based restrictions of
the distributed muscle forces.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. (a) calibrated face model; (b) rigid motion and (c) nonrigid motion applied on
the face model; (d) measured optical flow (from the image in a to b); (e) estimated
rigid 2D flow; (f) remaining nonrigid 2D flow

Fig. 7. Peter sequence [16] projected model with applied 3D nonrigid motion from
estimation, for 4 consecutive frames
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Animating the face model with the extracted 3D displacement, results in a faith-
ful reproduction of the observed gestures. Results of the rigid and nonrigid mo-
tion estimation are shown in Figure 6b-f for the Claire sequence. The estimation
of the mouth opening in the Peter sequence is displayed in Figure 7.

2.6 MPEG4 Animation

The illusion of motion of a 3D virtual face is created by changing the shape of its
visual surface. The parameterized control of storage-efficient geometrical changes
is defined in the MPEG4 video compression standard [1,2]. A Facial Animation
Parameter (FAP) encodes the normalized magnitude of displacement of a feature
point along one axis direction and is associated with the movement of a key face
zone. Such a local face animation technique is more flexible than the ’face space’
animation in which a database of normalized face models restricts the allowed
deformations [3]. The rules of application of the FAP on a wire-frame face model
are specified by the non-normalized FacDefTables, encoding the displacements
of the vertices in each FAP’s key zone. By specifying these tables only for the
feature points, and using the 3D calibration for the other face points, all FAPs
are dynamically applied together on the face model in a linear way:

Lm = Km +
∑

a=1,...,g

FAPa · FAPUa ·Dma · posa m = 1, . . . , k

(6)

⇒Yn(FAP) = f(A,B,K,Nn) + FAP h(FAPU,D,A,B,K,Nn) n = 1, . . . , N
(7)

where g is the number of deformation FAPs working on feature point Km to
obtain Lm; the FAPU convert the displacement values to the face model’s unit
system; the displacement table D has elements Dma describing how much a fea-
ture point moves Km in an axial direction posa when FAPa is applied; and
Yn(FAP) is the new position of the n-th vertex of the model after FAP appli-
cation on the neutral face vertex Nn using (6) in the r.b.f. interpolation in (2)
to build the functions f and h.

This procedure considerably reduces the amount of data to be stored in the
rule-tables for animation, and consequently the design face animations becomes
more easy. Estimating the FAP values that best comply to the previously ex-
tracted 3D nonrigid face motion is cast as a linear least-squares problem (8)
which results in a semantical representation of the face gestures.

F̂AP = arg min
FAP

N∑
n=1

‖Yn(FAP)− (Nn + U(Nn))‖2 (8)

where U(Nn) is an estimated 3D displacement vector of a (nonrigid) expression
of the neutral face.

The integrated analysis and the synthesis provided by VRML-like viewers to
show MPEG4 scenes flexible enough to create simple to sophisticated animated
faces.
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3 Conclusion

The FASS has achieved performance-driven animation by estimating several face
parameters from a single recorded face image sequence. The integration of the
techniques of color and shape segmentation, kernel-based tracking, image filter-
ing, statistical notions, semantical descriptions, 3D to 2D projection, natural mo-
tion models, and the MPEG4 representation provide a well-founded extendible
framework that is capable to meet the specific needs of gesture communication
via faces.
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Abstract. This paper presents a practical combination of image pro-
cessing and pattern recognition techniques in order to identify pathologi-
cal and atypical cells in phase contrast cytological images. The algorithms
involved in the processing cover: oriented edge detection, ridge following,
contour grouping and ellipse fitting. The Hough Transform and other
techniques are discussed for comparison. Various pattern recognition
techniques are tested and compared. All the exploited algorithms were
customized to reflect specificity of phase contrast images and apriori–
knowledge of cytological smear. Possible applications of this algorithm
for automated screening systems are enumerated.

1 Introduction

The diagnostic cytology is an integral component of gynecological examinations.
It enables early detection of precancerous lesions in the uterine cervix. The phase
contrast (Ph) microscopy is relatively a new technology in this area. Traditional
Pap–Smear tests require staining and fixing, what usually takes several days be-
fore the diagnosis is issued [1]. Ph microscope allows for immediate diagnosis and
completes the result of colposcopic examination [2]. Computer aided processing
of Ph images can additionally improve performance and quality of examination.
The joint research conducted at Wroclaw University of Technology and Gyneco-
logical Clinic GMW in Opole is aimed at recognition and classification of objects
present in the images. It is our belief that computer image processing system
could effectively perform the preliminary screening, and provide only pathologi-
cal and atypical cells for physician’s evaluation. Interesting medical objects occur
rarely in early cancer phases, so the system could prevent from monotonous in-
specting hundreds of microscopic images by a human.

1.1 Oncologic Classification of Cells

Cervico-vaginal smears give a gynecologist a lot of information about actual
hormonal balance and vaginal biocenosis. The major benefit is the possibility of

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 821–832, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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detecting and controlling the intraepithelial squamous and endocervical neopla-
sia. A carcinogenesis on uterine cervix is a multi–step and long–lasting process,
which can be observed in morphologic cellular changes. After 50 years of evo-
lution of cyto–oncologic knowledge, symptoms of carcinogenesis were divided as
follows (Bethesda System — modification 2001) [3]:

– Atypical Squamous Cells of Undefined Significance (ASCUS);
– Low Squamous Intraepithelial Lesion (L–SIL);
– Atypical Squamous Cells — High SIL (ASC–HS);
– High Squamous Intraepithelial Lesion (H–SIL);
– Invasive Plane Carcinoma;
– Atypical Glandular Cells (AGC) and Adenocarcinoma Endocervicale in Situ

(AIS);
– Invasive Adenocarcinoma Endocervicale and Endometriale.

Through analysis of the specified features of the squamous cells the smear can
be classified as normal, atypical or pathological one.

1.2 Identification of Cell Nuclei

It is assumed that the most significant objects in Ph images are cell nuclei. The
size and the shape of a nucleus brings a lot of information about precancerous
lesions in progress. Large, irregularly outlined and not uniformly filled nuclei
are suspected to be atypical (ASCUS) or pathological ones (L–SIL, ASC–HS,
H–SIL)[2]. The goal of the algorithm is to detect cell nuclei and classify them as
normal or atypical/pathological. The cell nuclei identification algorithm is based
on the following assumptions:

– the Ph microscopy emphasizes edges of objects [4], therefore nuclei detection
is equivalent to searching for their boundaries;

– the shape of nucleus is circular or elliptic, so oval patterns are of particular
interest;

– the image magnification is known in advance, so the objects within the spe-
cific range of radii [rmin, rmax] are considered only.

2 Related Work

Many automated screening systems have been developed for stained and fixed
cytological smears. Techniques are mostly based on color and texture informa-
tion, therefore they are not applicable to Ph images. Respecting assumptions
made, the algorithm should be based on geometric features and detect objects
with oval boundaries.

The problem of detecting oval shapes has been extensively studied in litera-
ture. The Hough Transform (HT) has been recognized as a very powerful method
to detect parametric curves in images [5]. It relies on voting process that maps
image edge points into manifolds in an appropriately defined parameter space.
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Peaks in the parameter space correspond to detected curves. The direct HT
method for detecting ellipses is computationally expensive due to the multidi-
mensional parameter space. Many improvements have been proposed to make
these methods more efficient [6,7] and more robust to irregularities [8]. Improved
HT was successfully applied to detect regular cell nuclei from Ph cytological im-
ages [9], but it hardly dealt with pathological cells.

Active Contours (snakes) are designed to detect objects with boundaries not
necessarily defined by gradients [10]. The basic idea is to evolve a curve, sub-
ject to constraints from a given image. The initial curve moves governed by an
appropriately designed energy function until it stops at the local optimum. The
final curve is assumed to form the object boundary. Ray and Acton showed that
active contours can also be employed for tracking of moving objects [11]. The
energy function calculates the difference between features of object and features
of background, so it is useful for stained smears. In the case of Ph images, it is
difficult to define features that distinguish nuclei and a cytoplasm clearly.

Another group of methods relies on converting gray–scale image to binary im-
age using edge detection techniques and calculating numerical shape descriptors.
Peura and Ilvarinen studied some of Simple Shape Descriptors [12]. The descrip-
tor known as elliptic variance is especially useful for detecting ellipses. Rosin
proposed other simple descriptors (moment invariants, Euclidean distances) that
can be adapted to measure ellipticity of shapes [13]. Pilu and Fitzgibbon were
first who presented a direct method for fitting ellipses to the set of points in
the least square sense [14]. Their method is used as a part of the segmentation
algorithm presented in this work. Previous methods used a generic conic fitting
or an iterative approach to recover elliptic solutions. A variety of ’error of fit’
functions have been discussed by Rosin [15].

Low level edge detection operators do not guarantee the generation of con-
tinuous boundaries of objects. This makes many image analysis tasks difficult,
especially for noisy images. The aim of contour grouping algorithms is to con-
nect edges that are supposed to be parts of the same object. Contour grouping
techniques were concentrated mainly on detecting salient curves [16,17]. Im-
provements are concentrated on favoring closed [18] shapes rather than long
and smooth ones. A contour grouping algorithm was successfully used in [19] to
isolate irregular shape nuclei. The present work is a continuation of [19].

3 Method

The proposed image processing technique combines the idea of contour group-
ing with pattern recognition methods in order to detect cell nuclei and provide
diagnostic information. It consists of the following steps:

1. Detect edges and orientation.
2. Follow ridges and remove those with high curvature.
3. Perform grouping, extract features for each group and assign groups to

classes.
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a) b) c)

Fig. 1. Example of Ph image processing. a) original image II , b) orientation image Iϕ

encoded by gray levels, c) amplitude image IA

3.1 Edge Detection

The goal of edge detection is to transform initial gray–scale image II (Fig. 1a) to
an edge image which assigns amplitude and orientation of edge gradient to each
point. To detect an edge orientation and amplitude with a satisfactory precision,
II image is convoluted with 5× 5 horizontal and vertical Prewitt operators GX

and GY .
G

(x,y)
X = y − 3; G

(x,y)
Y = x− 3; x, y = 1 . . . 5. (1)

As the result horizontal and vertical gradient images are obtained IX , IY .

IX = II ∗GX ; IY = II ∗GY . (2)

To compute orientation and amplitude images Iϕ, IA (Fig. 1b,c), Cartesian
coordinates are transformed to polar ones.

I
(x,y)
A =

√
(I(x,y)

X )2 + (I(x,y)
Y )2; I(x,y)

ϕ = atan2(I(x,y)
Y , I

(x,y)
X ). (3)

3.2 Ridge Following Algorithm

A cytoplasm of a cell in Ph image consists of randomly placed spots and highly
curved short line segments. These shapes can be easily misclassified as nuclear
walls or cell walls. To separate real and phantom edges an algorithm was devel-
oped to extract long and smooth edges.

This algorithm finds the initial point (the point with the maximum ampli-
tude), follows the edge in both directions using edge orientation (Iϕ) and stops
eventually, where the edge amplitude drops below a given threshold tA. To avoid
side effects such as loops and adjacent ridges, it is assumed that the ridge is w = 5
pixels wide and the local neighborhood of a pixel is removed from image after
the pixel selection (Fig. 2a). The value of w corresponds to the size of edge op-
erators. Pixels that form one edge segment are removed from the image and the
process is repeated until no new starting point with amplitude larger than tA is
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a) b) c)

Fig. 2. a) A ridge following, b) ’staircase’ and smoothing, c) a segment after removing
highly curved points and inflexion points

available. The choice of the optimal value of tA is a trade–off between sensitivity
for weak and soft edges and performance of the grouping process. Experiments
shown that the best results were obtained for tA = 0.25 max I

(x,y)
A .

After all segments were created, each segment must be free of the ’staircase’
effect. To accomplish this, each quadruple of consecutive points (i,i+1,i+2,i+3)
for each edge segment is tested. In the case of inflexion (infl < 0):

Δxi = xi+1 − xi; Δyi = yi+1 − yi; (4)

infl = ((Δxi+1 ·Δyi)− (Δxi ·Δyi+1)) · ((Δxi+2 ·Δyi+1)− (Δxi+1 ·Δyi+2)) (5)

internal pixels (i+1,i+2) are smoothed linearly (Fig. 2b).

x̃i+1 = 1/3 · (xi+3 − xi) + xi; ỹi+1 = 1/3 · (yi+3 − yi) + yi; (6)

x̃i+2 = 2/3 · (xi+3 − xi) + xi; ỹi+2 = 2/3 · (yi+3 − yi) + yi. (7)

After this operation, coordinates of points have subpixel accuracy. Then the
curvature κi is calculated for each point.

Δx̃i =
Δxi√

Δx2
i + Δy2

i

; Δỹi =
Δyi√

Δx2
i + Δy2

i

; (8)

Δxi = xi+1 − xi; Δyi = yi+1 − yi; (9)

κi = (Δx̃i −Δx̃i−1)2 + (Δỹi −Δỹi−1)2. (10)

Points with curvature over the threshold value tκ are removed, therefore seg-
ments are split into smaller parts (Fig. 2c). The value tκ = 2 was choosen
experimentally and corresponds to the angle π/2. Additionally, inflexion points
and very short segments are removed in order to speed up further processing.
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a) b)

Fig. 3. a) Example of fitting an ellipse to a group of contours; b) The ellipse after
displacement

3.3 Grouping

Let us define a graph G, where vertices correspond to edge segments and arcs
connect pairs of segments placed close enough to each other. Two segments are
close to each other if the distance between their centroids is smaller than 2rmax.
A boundary of a nucleus consists of one or more segments. The goal of contour
grouping algorithm is to group segments that form the nuclear boundary, so
searching for nucleus is equivalent to searching for a path in the graph.

The search algorithm extracts all possible paths in G containing up to 4
vertices. For each tested path the ellipse–fitting algorithm [14] is executed to
form the best–fit ellipse to the edge points of the path(Fig. 3a). The boundary
of the ellipse is represented by the set E, and its interior – by the set S. Let a and
b denote major and minor semi–axis of the ellipse and α(x,y) is a vector normal to
the tangent to the ellipse at point (x, y). Because a nucleus is not ideally elliptic,
the points of E are displaced within a limited range along the direction α(x,y).
Points are attracted by the nearest pixels of the maximum amplitude (Fig. 3b).
This is a heuristic, simplified and low cost version of the active contour technique.

For each ellipse that meets the size constrains:

rmin ≤ a ≤ rmax; b/a > 0.5 (11)

numeric features collected in Table 1 are calculated. Some features were selected
to distinguish real object from phantom ones(random set of edges), when the
other features were designed to match pathologies. Features are provided to a
trained classifier that assigns the ellipse to one of two classes: abnormal nuclei
(A1) or other objects (A2). Abnormal nuclei are: ASCUS, L–SIL, ASC–HS, H–
SIL. The other objects cover normal nuclei, nuclei–like objects and phantom
objects. These classes allow to distinguish interesting objects (A1) from unin-
teresting ones(A2). When the grouping process is completed, a set of contour
groups classified as A1 is selected. Each group represents final abnormal nucleus.
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Table 1. Extracted features. Symbols ↘ ↗ denote low/high level, respectively

Name Formula Comment

major semi–axis a ↘ probably regular, ↗ probably
pathologic

avg. edge amplitude 1
|E|
∑

(x,y)∈E

I
(x,y)
I ↘ probably background, ↗ sharply

outlined object, probably nucleus
avg. misorientation 1

|E|
∑

(x,y)∈E

|α(x,y) − I
(x,y)
ϕ | ↘ elliptic object, probably nucleus,

↗ random edges

coverage
∑

(x,y)∈E

{
1, I

(x,y)
A > tA

0, otherwise
↘ random edges, ↗ elliptic object,
probably nucleus

aspect ratio b/a ↘ random edges, ↗ elliptic object,
probably nucleus

avg. level of texture t = 1
|S|
∑

(x,y)∈S

I
(x,y)
I ↘ probably nucleus, ↗ probably

granulocyte or dust
variance of texture 1

|S|
∑

(x,y)∈S

(I(x,y)
I − t)2 ↘ probably regular, ↗ probably

pathologic

Table 2. The expert classification for experimental images

Description Quantity Class
Pathological nuclei 41 A1

Atypical nuclei 16 A1

Normal nuclei 389 A2

Nuclei–like objects 178 A2

Phantom objects 1812 A2

4 Experiments

Image processing and feature extraction process was implemented in C++. Clas-
sification experiments were performed using WEKA Environment [20]. The ex-
perimental set contained 2436 vectors of features classified by a medical expert.
The expert classification is given in Table 2. The little portion of A1–class ob-
jects is caused by its rare occurrence in real images. Training and testing were
executed using cross–validation method. The experimental set was divided into
4 folds. In each pass 3 folds were used for training and 1 for testing.

Several known classification methods were examined with its standard WEKA
parameters. The following algorithms were used:

NB — Naive Bayes Classifier [21];
LR — Multinomial logistic regression model with a ridge estimator [22];
SLR — Linear logistic regression model [23];
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Table 3. Classification performed with different algorithms

Algorithm p1(%) p2(%) pt(%) pw(%)
VFI 12.28 4.58 4.76 8.43
MP 29.82 0.88 1.56 15.04
NB 29.82 2.98 3.61 16.40
NN 36.84 0.88 1.72 18.86
ADT 40.35 0.55 1.48 20.45
RIP 40.35 1.18 2.09 20.77
kNN(k=5) 43.86 0.33 1.35 22.10
NBT 43.86 0.80 1.81 22.33
LR 49.12 0.34 1.47 24.73
SLR 56.14 0.38 1.68 28.26
J48 56.14 0.71 2.01 28.43
kNN(k=10) 59.65 0.00 1.40 29.83
LMT 59.65 0.46 1.85 30.06
KS 59.65 0.50 1.89 30.08

MP — Multilayer Perceptron trained with backpropagation method (1 hidden
layer, 5 hidden nodes, 2 output nodes, Learning Rate=0.3, Momentum=0.2)
[24];

NN — Nearest Neighbour Classifier [25];
kNN — k–Nearest Neighbour Classifier [25];
KS — K–Star is an instance–based classifier, that uses an entropy-based dis-

tance function [26];
VFI — Classification by voting feature intervals [27];
ADT — Alternating Decision Tree [28];
J48 — A pruned C4.5 decision tree [29];
LMT — Logistic model tree [23];
NBT — Decision tree with naive Bayes classifiers at the leaves [30];
RIP — Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

[31];

Number of elements in sets A1 and A2 were n1 = 57, n2 = 2379. m1, m2

denotes the number of misclassified objects in A1 and A2, respectively. The
result of classification is given in Table 3. Measures for evaluating classifiers
were defined as follows: p1, p2 are the partial probabilities of misclassification,

p1 =
m1

n1
; p2 =

m2

n2
(12)

while pt is the total misclassification probability, and pw is the weighted misclas-
sification probability.

pt =
m1 + m2

n1 + n2
; pw =

p1 + p2

2
. (13)

All tested algorithms present very sharp separation for class A2, and relatively
weak separation for class A1. It means, that lots of abnormal nuclei could be
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Fig. 4. Measures p1, p2, pw, pt as the function of c12

Table 4. Cost sensitive classification for cost factor c12 = 32

Algorithm p1(%) p2(%) pt(%) pw(%)
kNN(k=5) 7.02 3.36 3.45 5.19
SLR 3.51 7.73 7.64 5.62
LR 5.26 6.73 6.69 5.99
LMT 5.26 7.10 7.06 6.18
ADT 7.02 6.56 6.57 6.79
MP 12.28 3.28 3.49 7.78
NB 7.02 8.62 8.58 7.82
kNN(k=10) 14.04 2.44 2.71 8.24
NBT 10.53 6.18 6.28 8.35
RIP 19.30 2.44 2.83 10.87
J48 26.32 2.02 2.59 14.17

missed. It is caused obviously by unbalanced training set. It is desirable to achieve
better separation for class A1, even if the separation for class A2 deteriorates.
This can be achieved by using cost sensitive classifiers or by reweighting the
training data. Let C denotes the cost matrix, and c12, c21 are the misclassification
costs for A1, A2, respectively.

C =
[

c11 c12

c21 c22

]
. (14)
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a) b)

c) d)

Fig. 5. Exemplary Ph images after processing and visualization

Note, that only a few algorithms allow to minimize weighted cost, so to ex-
amine kNN, RIP and J48 instead of minimizing weighted cost, the training data
instances are reweighted.

In the next experiments we assume c11 = c22 = 0; c21 = 1. The relationship
between measures p1, p2, pt, pw and the cost factor c12 is illustrated in Fig. 4.

It can be noticed, that due to the increase of the cost factor the separation
for class A1 increased while the separation for class A2 dropped. To minimize
the weighted misclassification probability pw, we select a constant cost factor
c12 = 32. For most classifiers this value of the cost factor minimized pw. As
one can expect c12 ≈ n2

n1
. Results of cost sensitive classification for c12 = 32 are

collected in Table 4.

5 Conclusions

In this paper the algorithm was proposed to detect pathological cells in Ph cyto-
logical images. The correctness of classification (1 − pt) is ranged between 90%
and 95% depending on the applied classifier. The lowest total misclassification pt

is achieved for kNN methods, decision trees and rules (J48, RIP). To preserve low
misclassification for class A1, the measure pw was chosen to evaluate cost sensitive
classifiers.The kNNalgorithmand linear regression algorithms are the leading ones
due to their correctness and simplicity. Other methods (LMT, MP, NB) also keep
the high correctness of classification. It means that the maximum possible class
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separation (90%–95%) is achieved for selected features. Further improvements of
the algorithm should concentrate on searching for more distinctive features.

The presented algorithm could be useful for preliminary oncological screen-
ing of cytological images because it is relatively fast and robust. Presently, the
algorithm is being tested in Gynecological Clinic GMW in Opole, Poland. An
image processing stage of one 640x480 image takes from 4 up to 6 seconds on
AMD ATHLON 1.8GHz, 512 MB RAM. A classification stage is immediate as
the model and its parameters were fixed off–line. Examples of classification using
trained SLR classifier are given in Fig. 5. Numerous edge segments resulting from
various cell structures did not influence the correctness of detection significantly.
Oncologic screening system would rely on taking series of images of microscopic
cytological smear. If any abnormal cell is detected in an image, it is exposed for
visual inspection by physician. Otherwise, the image is rejected.
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Abstract. A new general framework for shape extraction is presented, based on 
the paradigm of water flow. The mechanism embodies the fluidity of water and 
hence can detect complex shapes. A new snake-like force functional combining 
edge-based and region-based forces produces capability for both range and ac-
curacy.  Properties analogous to surface tension and adhesion are also applied so 
that the smoothness of the evolving contour and the ability to flow into narrow 
branches can be controlled. The method has been assessed on synthetic and 
natural images, and shows encouraging detection performance and ability to 
handle noise, consistent with properties included in its formulation. 

1   Introduction  

Complex shape extraction is of great interest in practical uses such as vessel detection 
in iridology. There are two popular techniques which both involve contour evolution: 
active contours or snakes, and region growing. 

Snakes evolve a parameterized curve from an initial position to the boundaries of the 
object following some rules to minimize a specified energy functional. The functional 
is defined so that the minimization can give rise to a smooth and even contour. In 
complex feature extraction, however, the classical snake is of limited use as it needs 
good initialization near the boundary and cannot handle topological changes like 
boundary concavities. Many methods have been proposed to overcome these problems. 
The balloon models [1], distance potentials [2], and gradient vector flow (GVR) field 
[3] have been introduced as the solutions of initialization and concave boundary de-
tection. Snake energy functionals using region statistics or likelihood information have 
also been proposed [4, 5]. A common premise is to increase the capture range of the 
external forces to guide the curve towards the boundaries. For more complex topology 
detection, several authors have proposed adaptive methods like the T-snake [6] based 
on repeated sampling of the evolving contour on an affine grid. Geometric active 
contours [7,8] have also been developed where the planar curve is represented as a level 
set of an appropriate 2-D surface. They work on a fixed grid and can automatically 
handle topological changes. However, many methods solve only one problem whilst 
introducing new difficulties. The balloon models introduce an inflation force so that it 
can “pull” or “push” the curve to the target boundary, but the force cannot be too strong 
otherwise “weak” edges would be overwhelmed. Region-based energy can give a large 
basin of attraction and can converge even when the explicit edges do not exist but it 
cannot yield as good localization of the contour near the boundaries as edge-based 
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methods. Level set methods detect complex shapes well at the cost of increased di-
mensionality and hence much greater complexity. 

The region growing techniques mainly rely on the assumption that adjacent pixels in 
the same object or region have similar characteristics such as intensity and texture. 
They test the statistics inside the growing region and then decide whether or not the 
adjacent pixel can be merged according to the specified homogeneity criterion. Region 
growing techniques are free of topological changes since they are pixel-wise techniques 
without smoothness constraints [9]. However, this property also tends to yield irregular 
boundaries and small holes, especially for noisy images [10]. Besides, the region sta-
tistics comparison standards on which they are based can lead to inaccurate contour 
detection. 

This paper proposes a new feature extraction method based on water flow. Unlike 
the famous watershed method, which is based on mathematical morphology and is 
often combined with snakes [11] and region growing [12], the focus is now on the 
“water” itself rather than the “landscape” of images because the properties of water, 
like fluidity and surface tension, are well suited to complex feature extraction. We first 
introduce the related physical principles and the framework of the technique, and then 
define all the analogical factors. Finally, results both for synthetic and for real iris 
images are presented, which show the resolution of problems like topological changes, 
and good noise immunity. 

2   Methodology 

Water flow is a compromise between several factors: the position of the leading front  
of a water flow depends on pressure, surface tension, adhesion/capillarity. There are 
some other natural properties like turbulence and viscosity, which are ignored here. 
Image edges and some other characteristics that can be used to distinguish objects are 
treated as the “walls” terminating the flow. The final static shape of the water should 
describe the related object’s contour.  

The flow is determined by pressure and the resistance. The relationship between the 
flow rate fr, the flow resistance R and the pressure difference, is given by: 

fr = Pi - Po (1) 

where Pi and Po are pressure of the inflow and outflow, respectively. The pressure 
difference drives the flow and 

fr = AVeffective (2) 

where A is the cross-sectional area and Veffective is the effective flow velocity. Hence the 
velocity can be related to force and resistance through equations (1) and (2).  

There are small discontinuities or weak regions existent on the contours which may 
lead to “leakage” of water. The surface tension, which can form a water “film” to 
bridge gaps, is then applied to overcome the problem. An attractive force existing 
between water and walls, named adhesion is defined as the attractive force generated by 
image edges. It is adopted in the new technique to assist surface tension to bridge edge 
gaps and allow flow into narrow braches.  
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2.1   Framework of the Operator 

The method has little dependence on the starting contour shape. The only limitation on 
initialization is that it cannot cross the target object’s boundaries. One pixel in the 
image is considered to be one basic unit of the water, and the pressure between an 
element and each of its neighbors is assumed to be the same. An adaptive source is 
assumed so that the water can keep flowing until stasis, where flow ceases. An inner 
element with symmetrical distribution of neighbors hence suffers zero resultant pres-
sure. A water contour element, however, has asymmetrically distributed neighbors (and 
possibly an additional adhesive force), thus has non-zero pressure difference which 
leads to a non-zero velocity by equations (1) and (2), and is possible to move outwards. 
Hence only boundary elements are of interest. 

The flow process is assumed to be made up of two separable steps. The first stage is 
acceleration: the contour element achieves a velocity due to the presence of the pres-
sure difference (and any adhesive force), and the ultimate value is given by equation (1) 
and (2). The next step is external movement where the moving element is now free from 
the influence from other water elements and suffers only external image forces. This is 
not consistent with a real action but is sufficient for the digital image analogy and 
greatly simplifies the algorithm. 

The water element can move outwards in any direction for which the component of 
velocity is positive. However, only if the velocity in the direction is sufficiently large, 
can the element break through the image resistant forces and reach the new position. To 
reconcile the flow velocity with forces, dynamical formulae are used. We may compute 
the displacement of a contour element on each possible direction within a fixed time 
interval, which is similar to snake techniques. However, for simplicity and avoiding the 
interpolation problem, a framework like region growing and the greedy snake is used: 
the element will flow to some positions if certain conditions or formulae are satisfied. 
Here, an equation describing the conservation of energy is employed. If assuming that 
an element, which has a positive velocity v on a particular direction and is acted by the 
force F during the process, can arrive at the direction-related position ultimately, then 
this equalization must be fulfilled: 

mvF
2/2 = FS + mv2/2 (3) 

where vF is the final scalar velocity after fixed displacement S and m is the assumed 
mass. In this equation, force F is a scalar which is positive when the force is consistent 
with velocity v, and negative otherwise. The summation on the right hand side is just 
the movement decision operator: only if F is negative, can the summation be negative 
and thus the equality above cannot be satisfied. 

2.2   Flow Driving Force with Surface Tension 

The pressure on each contour element should be outwards normal to the contour line. 
Since the flow on each possible direction will be examined separately, the related 
component of forces rather than the composition is of interest, and a simple convolution 
method is used. The force on a contour element is determined by the surface interior 
i.e., the amount and position of the adjacent elements. For a certain direction, the-re 
will be supporting and opposing elements. The property is determined by their relative 
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Fig. 1. The convolution masks for component forces on the direction of (from left to right) 90 
degrees, 0 degree, 135 degrees, and 45 degrees. The other 4 masks are the transpose of these and 
we can define the driving force on the opposite direction as negative. 

position to the flow direction. The elements located at the normal to the direction do not 
affect the movement. The ones located at the inner half exhibit positive effects on the 
flow and the opposite ones give negative forces since the interactive force between 
elements is repulsion. The 3×3 templates are shown by figure 1. A matrix W is used to 
save the water information where a water element has value one and others are all ze-
ros. Denoting the convolution template for direction i as Ti, the corresponding matrix 
saving the normalized driving force strength on direction i, FD,,i, is then calculated by 
convolution as:  

FD,i = W*Ti / SPM (4) 

where SPM is the possible maximum of the convolution sums. For each mask, the 
maximal value is achieved when water elements locate at all positions of 1’s and none 
of those of -1’s and hence SPM = 3 for the above masks. The driving force strength on 
direction i at point (x, y) is then just the (x, y)th entry of FD,i. 

The convolution mechanism allows situations of more than two adjacent contour 
elements which is common in complex shape extraction. The mask size can be ex-
panded so that more information of local water structure can be involved and the cal-
culation will be expected to give a more reasonable result. For instance, a single line 
would have smaller driving force when using 5*5 mask than that by a 3*3 one because 
the possible maximum is much larger but the convolution sum is just increased by 1. In 
addition, the method makes the application of surface tension more straightforward. 
From physics, the surface tension is decided by the temperature and the water itself. In 
this image analogy, it is defined as a constant attractive force between the contour 
elements. So in the previous convolution, we can just modify the water matrix with the 
contour position information so that the point will exhibit attractive forces. This is done 
by setting contour elements entries in W as fixed negative values, like -t. Then, re-
placing W in equation (5) with the new matrix W’ and noting that the possible maxi-
mum is now (3+2t) will give the driving force combined with surface tension. Here, we 
set t=1. 

2.3   Resistance to Flow and the Velocity 

From equation (1) and (2), the flow velocity is inversely proportional to the resistance 
of water. In a physical model, the flow resistance is decided by the water, the flow 
channel and temperature etc. Since this is a physical analogy which offers great free-
dom in selection of parameter definitions, we can assign high resistance values for 
unwanted image attributes and low values to preferred ones. For instance, in vessel 
detection in images of the retina, if the vessels have relatively low intensity, we can 
define the resistance to be proportional to the intensity of the pixel. If we couple the 
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resistance with the edge information, the process will become adaptive. That is, when 
the edge response is strong, resistance would be large and so the flow velocity would be 
weakened. According to equation (3), the movement decision will now be dominated 
by the force acting during the exterior movement. Thereby, even if the driving force set 
by users is too “strong”, the resistance would lower its influence at edge positions and 
the problem in balloon models [1], where strong driving forces may overwhelm “weak” 
edges, can be eliminated. From equations (1) and (2), the velocity is: 

Vi = Fi / AR (5) 

where Vi is the resulting flow velocity. The direction of V is the same as the force Fi. In 
this paper, A is set as a constant, and R at position (u, v) is determined by  

R(u,v) = exp{-k E(u,v)} (6) 

where E is the edge response matrix and k controls the fall of the exponential curve.  

2.4   Image Forces 

The gradient of an edge response map is often defined as the potential force in active 
contour methods since it gives rise to vectors pointing to the edge lines [3]. This is also 
used here. The force is large only in the immediate vicinity of edges and always 
pointing towards them. The second property means that the forces at two sides of an 
edge have opposite directions. Thus it will attract water elements onto edges and pre-
vent overflow. The potential force on a contour element (xc, yc) is given by: 

FP = E(xt, yt) (7) 

where E is the gradient of the edge map, and (xt, yt) are the coordinates of the flow 
target because the potential force is presumed to act during the second stage of flow 
where the element has left the contour and is moving to the target.  

Adhesion is defined as the attraction between water and adjacent vessel walls in 
physics. In the image analogy, it is determined by potential force based on an edge map 
with “flooded” positions set to zero. In this map, the edges that have been occupied by 
the water are ignored so that the edges are clipped. As water flows, vectors (forces) 
pointing from the flooded edges to the existent ones are generated iteratively and thus 
assist in flow to the reserved edge lines. It is defined as  

FA = D(x, y) (8) 

where D is the edge map eroded by the flowing water and (x, y) are the coordinates of a 
contour point. This equation effectively defines the attractive force from edges to the 
water. Therefore, even if the water has flowed onto an edge point, it can still move to 
the adjacent edges. This will thus help water flow into narrow branches, and “flood” 
small noise pixel clusters to give noise robustness. 

The forces defined above work well as long as the gradient of edges pointing to the 
boundary is correct and meaningful. However, as with corners, the gradient can 
sometimes provide useless or even incorrect information. Unlike the method used in 
the inflation force [1] and T-snake [6], where the evolution is turned off when the in-
tensity is bigger than some threshold, we propose a pixel-wise regional statistics based 
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image force. The statistics of the region inside and outside the contour are considered 
respectively and thus yield a new image force: 

FS = −(I(xt, yt)- int)
2 nint /(nint+1) + (I(xt, yt)- ext)

2 next /(next+1) (9) 

where subscripts “int” and “ext” denote inner and outer parts of the water, respectively; 
 and n are the mean intensity and number of pixels of each area, separately; I is the 

original image. The equation is deduced from the Mumford-Shah functional [5]:  

F1(C)+ F2(C)= inside(C)|I(xt, yt)- int|
2 + outside(C)|I(xt, yt)- ext|

2 (10) 

where C is the closed evolving curve. If we assume C0 is the real boundary of the object 
in the image, then when C fits C0, the term will achieve the minimum. Instead of 
globally minimizing the term as in [5], we obtain equation (9) by looking at the change 
of the total sum given by single movement of the water element. If an image pixel is 
flooded by water, the statistics of the two areas (water and non-water) will change and 
are given by equation (9). The derivation is shown in the Appendix.  

The edge-based potential forces can provide a good localization of the contour near 
the real boundaries (i.e., accuracy) but have very limited capture range and are not 
suitable for edge corners, whilst the region-based forces have a large basin of attraction 
but cannot provide good detection accuracy. The complementary properties motivate a 
unification of the two forces. A convex combination method is hence chosen and the 
combined force is given by: 

F = FP + (1− )FS (11) 

where all terms are scalar quantities, and  (0 1) is determined by the user to control 
the balance between them.  

2.5   Movement Decision Process 

Equation (3) has provided the inequality to determine the feasibility of outwards flow. 
For each contour element, we have presented equations computing driving force FD 
modified by surface tension, adhesion FA and resistance R. Flow velocity V can then be 
obtained through equation (5). If the velocity points towards the exterior of the water, 
the element is assumed to leave the original position. A unified image force F provided 
by equations (7) and (11) is then turned on. The summation in equation (3) can be 
computed and the sign determines the result of the movement. 

Defining m and S in equation (3) as constants, we can then present the new and de-
tailed expression with parameters defined before: 

J = {
(FD+ FA)

/R(x, y)}
2 + F (12) 

where  is a regularization parameter set by users which controls the tradeoff between 
the two energy terms. It can be considered to be determined by the combination of mass 
m, displacement S and area A. Its value reflects smoothing of image noise. For example, 
more noise requires larger . FA and FD are the scalar components on the movement 
direction of FA and FD, respectively. A positive direction is defined from the origin to 
the target. The movement decision can be completely made by this operator since the 
term of right hand side inside the brackets gives the velocity information and J corre-
sponds to the ultimate kinetic energy. If the velocity component is greater than zero and 
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if J is positive, the movement is said to be feasible and the target point will be flooded 
by water.  

3   Experimental Results 

The new technique is applied to both synthetic and natural images, and is evaluated 
both qualitatively and quantitatively.  

3.1   Synthetic Images  

There are two sorts of initialization for the method. The water “source” can be either inside 
or outside the target object. The former is suited to most cases, whilst the latter is useful 
when simultaneously detecting multiple objects in an image. The whole “background” 
will be flooded, thus the static water will give the targets’ shape information. An example 
is given in figure 2 with initialization from the image border. All the shapes are detected 
including the helical pipe which has boundary concavities. The result is accurate even with 
some noise contamination. 

         

Fig. 2. Multi-object detection: the image is corrupted with 10% Gaussian noise 

A 512×512 test image was generated for a performance evaluation according to certain 
criterion: a) horizontal, vertical and diagonal branches are included; b) narrow and wide 
branches are presented, respectively; c) there is a circular pipe so that we get a curve with 
smoothly changing curvature; d) each half of the object has a different intensity so that 
weak edges exist between them. The image is suited to assess the operator’s ability in 
complex feature detection, and the noise immunity is also tested by adding Gaussian and 
impulsive noise to the image. Figure 3 shows the evolutions and the final results. The de-
tection is successful in total, and the immunity to impulsive noise should be emphasized. 
It’s very difficult for snakes and region growing methods to deal with impulsive noise as 
the edge response is very strong. In figure 3(c) and (d), almost all the noise points inside 
the object are flooded, and the detected contour is reasonably accurate. The robustness 
to impulsive noise arises from the fluidity and the adhesion: water surrounds the small 
clusters of impulsive noise pixels, and the adhesive force given by the noise response 
attracts the water to flow over the noise area. So, unless the noise clusters are too large, 
the noise pixels will be flooded. 
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      (a) evolving contour                  (b) evolving contour        

   
(c) final result           (d) final result 

  
(e) one further seed added         (f) improved result    

Fig. 3. Flow progress and results for test images contaminated by 10% Gaussian noise (a and b) 
and 5% impulsive noise (c, d, e and f)  

The most significant failure shown by figure 3(d) is the incomplete detection of the 
thinnest diagonal branch in the top right corner. This is because the branch is too nar-
row and a noise cluster “blocks” the pipe. In practical applications, this kind of gap will 



 Water Flow Based Complex Feature Extraction 841 

exist and makes the contour extraction terminate early. Flow from multiple sources can 
be considered, to overcome the problem. In this simple case, as shown in figures 3(e) 
and (f), a new source is initialized inside the undetected area. It then fills the region and 
merges with the “main” part. Therefore a complete detection can be achieved. Similar 
multiple seeds methods are often incorporated with watershed and region growing 
techniques, and are not invoked here. 

The immunity to noise is also assessed quantitatively, and figure 4 shows the result. 
The mean square error is used as the criterion with a synthetic test image as the ground 
truth, which has been deliberately designed to incorporate a narrow boundary concav-
ity. Two typical sorts of noise, Gaussian and impulsive, are added on the image, and the 
operator performs well and stably for both types of noise, until severe noise contami-
nation (below 10 dB). An example of the detection result is also shown. 

 

Fig. 4. Mean square error results for impulsive and Gaussian noise in different SNR levels. 
( =0.5, 0.5 1, k=5); and an example for Gaussian noisy image (SNR=6.58, MSE=0.41). (note 
that the y-axis has been reversed for the conventional curve indication purpose). 

3.2   Natural Images 

Natural images with complex topology are also assessed. Figure 5 shows the result 
for the image of a river delta with different parameters, where the river is the target 
object. It is suited to performance evaluation since gaps and “weak” edges exist in the 
image. One example is the upper part of the river, where boundaries are blurred and 
irregular. There are also inhomogeneous areas inside the river, which are small is-
lands and have lower intensity. Our water flow based operator can overcome these 
problems. As shown in figure 5 (a), a reasonably accurate and detailed contour of the 
river is extracted. At the upper area, some very weak boundaries are also detected. 
This is achieved by using high value of k which makes the operator highly sensitive to 
edge response. The contour is relatively smooth by virtue of surface tension. The 
fluidity leading to topological adaptability is shown well by successful flow to  
the branches at the lower area. Most of them are detected except failure at several 
narrow branches. The barriers are caused either by natural irregularities inside them 
or noise. 
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(a) =0.7, =3, k=50 

 
(b) =0.5, =0.1, k=0 

Fig. 5. Water-flow detection results for delta map image with different parameters: decreased  
and  reduce the significance of edges, and smaller k makes flow less sensitive to edges, therefore 
the detail detection level is lower in (b)  

Different initializations inside the river were tried and with the same parameters 
chosen, the results are almost the same, as expected. The operator is insensitive to the 
source positions. By changing the parameters, however, some alternative results can be 
achieved. For example, figure 5(b) shows a segmentation of the whole basin of the 
river. It is analogy to a flood from the river. The water floods the original channels and 
stops at the relatively high regions. This shows the possibility of achieving different 
level of detail just by altering some parameters.  
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4   Conclusions  

This paper introduces a new general feature extraction framework. The operator suc-
cessfully implements the key attributes of water flow process: the fluidity, the surface 
tension and the adhesion. The resistance given by images is defined by a combination 
of object boundary and regional information. The problems of complex topological 
changes are solved whilst the attractive properties of snakes such as the smooth contour 
is retained. Those are approved by the results on both synthetic and real images. Good 
noise immunity is also justified both qualitatively and quantitatively. Besides, the 
complexity of the algorithm is relatively low. Therefore the method is expected to be of 
potential use in practical areas like medical imaging and remote sensing where target 
objects are often complicated shapes corrupted by noise.  
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Appendix 

The sums of integrations in equation (10) first need be modified to discrete form:  

 
(13) 
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where subscript “0” means the state before movement, and uint and uext represent pixels 
inside and outside the water region respectively. After a single pixel flow, the numbers 
become nint+1 and next-1, respectively with corresponding changes in the statistics. By 
denoting the flooded pixel as un, we can deduce the changes. For the external term, the 
new term is  

 

(14) 

Denote (un- ext0) as , then (as ), hence 

 

(15) 

The change to the external region is then [- 2next / (next-1)]. The coefficient is greater 
than 1, but for , we have: 

 

(16) 

So the maximum of  is achieved when un=1 (normalized) and uj=0 for others. The 
external change should satisfy: 

 
(17) 

Similarly, we can derive the change of the internal factor caused by the movement, 
which is given by: 
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(18) 

The sum of the two changes gives equation (10). Since the absolute values of both 
terms fall in the range [0 1) for normalized images, the value range of the regional force 
is (-1 1), which can be directly applied to the formula 
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Abstract. Human interaction is a crucial restriction of active contour
model, or snakes. In this paper we propose a fully automatic algorithm
based on gradient vector flow (GVF) field and watershed-based region
merging. Firstly a scalar force field is constructed by minimizing an en-
ergy function from the GVF force field. From the scalar field we extract a
set of seed points facilely, and get an initial segmentation without doing
curve evolution. Then a Region Adjacency Graph (RAG) based region
merging algorithm is applied to get the final result. Several experimen-
tal results demonstrate that this method is efficient to multiple objects
segmentation, and insensitive to noises.

1 Introduction

Image segmentation is one of the most important steps in image analysis and
understanding. Its main goal is to partition an image into regions with some
specific homogeneous features, such as gray scale, color, texture, etc. Gener-
ally, techniques to deal with the image segmentation problem can be catego-
rized into four types: histogram-based, edge-based, region-based and hybrid of
them. Histogram-based methods assume that homogeneous objects are mani-
fested as clusters in the feature space. Edge-based methods are based on the
abrupt changes of the feature space near object boundaries, while region-based
methods are based on some specific criteria of homogeneity. However, there is
no perfect algorithm for all image segmentation problem, and we need to select
an appropriate method according to the type of input images.

Active contour model, or snakes, was proposed as an edge-based boundary
extraction method by Kass et al. [1] in 1987. It is essentially a deformable contour
which is forced from its initial position to approach the object boundaries by
iteratively minimizing an energy function. Forces which make the contour shrink
or inflate are composed of an internal component to keep its smoothness and
an external component to attract the contour to object boundaries. A main
restriction of snakes is setting of the initial contour. In traditional snakes the
initial contour must be quite close to object boundaries, or else it may converge to
wrong results or converge too slowly. Several improvements have been developed
to reduce its sensitivity to initial contours, such as pressure forces [2], distance
potentials [3], and gradient vector flow [4]. However, human interaction is still
necessary, and in some cases it is a difficult task to set a proper initial contour.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 846–854, 2006.
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The watershed algorithm [5] is a well known automatic region-based method
for image segmentation. Region boundaries are regarded as watershed lines di-
viding individual catchment basins which can be extracted from the gradient
image. However, the original watershed algorithm usually produces an over-
segmentation result with too many catchment basins. Therefore, usually a post
process is employed to merge them into the true result, such as the Region
Adjacency Graph based method [6].

The algorithm proposed in this paper combines the GVF field and the wa-
tershed based image merging algorithm. Firstly we construct a scalar force field
to interpret the force vector field by minimizing an energy function iteratively.
The scalar force field can be regarded as the gradient image in the watershed
algorithm. As a result, we can extract a set of seeds from it and get an initial
segmentation by using a downstream region growing process. Finally we use a
RAG based region merging algorithm to get the true segmentation. Compared
with the snakes, it is fully automatic, and needs not to do curve evolution. On
the other hand, it is more straightforward to get the initial segmentation from
initial seeds than the watershed algorithm.

2 From GVF to a Scalar Force Field

2.1 Gradient Vector Flow

In traditional snakes, gradient vectors only exist near image edges. Therefore, the
initial contour must be quite close to object boundaries, or else it will converge
to wrong results or converge too slowly. Gradient vector flow [4] was proposed
to increase the capture range of image edges and force contours to boundary
concavities. It constructs a force vector field by diffusing the original gradient
vectors from near image edges to homogeneous regions, and then takes it as the
external force of a snakes.

Firstly an edge map f(x, y), which has larger values near image edges and
smaller values in homogeneous regions, is derived from the input image I(x, y).
Gradient vectors of the edge map form a vector field −→v (x, y) = [u(x, y), v(x, y)]T .
Then they are diffused by minimizing the following energy function

EGVF (u, v) =
∫∫

μ (u2
x + u2

y + v2
x + v2

y)︸ ︷︷ ︸
smoothness energy

+ |∇f |2|−→v −∇f |2︸ ︷︷ ︸
edge energy

dxdy (1)

where ux, uy, vx, vy are the spatial derivatives of the vector field and μ is a real
positive weight parameter to control the balance between smoothness energy
and edge energy.

At points near object boundaries with a large |∇f |, the edge energy is domi-
nant, which makes the vector −→v close to edge gradient ∇f . On the other hand,
at points in homogeneous regions with a small |∇f |, the smoothness energy is
dominant, which makes the vector field vary slowly. Therefore, minimizing the
energy (1) can keep the vectors near image boundaries while diffusing them away
to homogeneous regions.
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2.2 Scalar Force Field

Vectors in the GVF field indicate the moving direction of points on the contour.
At points near image edges, force vectors point to the edges in a normal direction.
Contradiction of forces from two sides makes deformable contours stop moving
along the edges. On the other hand, some so-called source points [7] whose
neighbor vectors emanate from them can be regarded as the inflating center
of deformable contours, since a contour which just contains a source point will
inflate until stabilizing. Consequently, we can select these source points as seeds
and get an initial segmentation by region growing techniques.

Several algorithms are proposed to detect source points and perform the re-
gion growing process in a vector field. In [7] the authors identify seed points by
simply checking whether all their neighbor force vectors point outward, and then
get an initial segmentation by using multiple snakes to process each seed point
separately. However, it can not deal with some regions with parallel vectors.
Moreover, it is time consuming if there are too many source points. Then in [8]
the authors further proposed a region growing method without curve evolution.
They extend the GVF field to be in four directions, two of which connect the di-
agonal neighborhoods, and then rank each point according to the corresponding
force component of the neighborhoods. After selecting points in the highest rank
as seeds, they process region growing along the four-dimensional force vectors
iteratively. In the algorithm they must eliminate the contradictious vectors and
deal with overlaps of neighbor regions. Moreover, since the rank field is discrete,
generally the initial seed points cannot grow to label all the image points, and
new seeds need to be added in the un-labeled regions iteratively.

In our study we use a continuous scalar force field D to interpret the GVF
vector force field −→v , which can simplify the seed generation and region growing
process. The scalar force field is similar to a topographic surface in the water-
shed algorithm. The gradient vector∇D(x, y) at each point is just in an opposite
direction of the force vector −→v (x, y). Therefore, values in the scalar force field
decrease along vectors in the GVF field. Consequently, a source point has a max-
imum value among its 8-connected neighborhoods since all the neighbor forces
point outward, while an edge point has a value smaller than its neighborhoods
in normal direction of the edge since the force vectors in the direction point to
itself.

Process to construct the scalar force field is just like the converse process of
the GVF field. We minimize the following energy functional

E (D) =
∫∫

λD2 + |∇D + v̂|2dxdy (2)

where v̂ = −→v /|−→v | is the normalized GVF field. The first term in the integrand
is used to restrict the field D within a limited range around zero, while the
second term is used to make the gradient ∇D close to −v̂. The constant λ is a
regularization parameter governing the tradeoff between them.
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Using the calculus of variations, we can minimize E (D) in Eqn. 2 by solving
the following Euler equation:

λD − (∇2D + ûx + v̂y) = 0 (3)

where ∇2 is the Laplacian operator.

2.3 Numerical Implementation

Eqn. 3 can be solved by considering D as a function of time t and solving

Dt(x, y, t) = λD(x, y, t)− (∇2D(x, y, t) + ûx(x, y) + v̂y(x, y)) (4)

The steady-state solution of this linear parabolic equation is the desired solu-
tion of Eqn. 3. If we simply set the spacing between pixels and the time step to
1, and take i, j and n to index x, y and t, respectively, we will get the following
iterative equation in an implicit scheme.

Dn+1 −Dn = λDn+1 − (∇2Dn+1 + ûx + v̂y) (5)

For a pixel (i, j), the partial derivative can be approximated as

∇2D = Di+1,j + Di−1,j + Di,j+1 + Di,j−1 − 4Di,j

Consequently, we get an iterative equation to the scalar force field as follows:

Dn+1
i+1,j + Dn+1

i−1,j + Dn+1
i,j+1 + Dn+1

i,j−1 − (λ + 3)Dn+1
i,j = Dn

i,j − ci,j (6)

where c = ûx + v̂y keeps constant in the convergence.
The initial condition is set to D0 = 0 for the whole field, and the energy E

decreases gradually by solving Eqn. 6 iteratively as time n increases. Since the
total energy is correlated to the pixel number M of the image, we use an average
energy Eavg = E/M to indicate the convergence of iterations. The convergence
will be reached when the average energy value varies hardly (within a threshold).

In Fig. 1 we show an example of how a scalar force field is derived from an
image. The original image and the normalized GVF field are shown in Fig. 1(a-
b). By setting λ = 0.01 and resolving Eqn. 5 iteratively, we get a scalar field
shown in Fig. 1(c) (the field is uniformly mapped to the gray-levels from black
to white). Further more, we show the scalar field with a topographic surface
plotted as a 3-D mesh in Fig. 1(d). The two source points in the object area are
indicated by two high peaks, and the object boundary is indicated by a series of
valleys. The convergence of the average energy is illustrated in Fig. 1(e).

3 Seeded Region Merging

As mentioned above, vectors in the GVF field are interpreted by a scalar force
field, and the inflating centers of deformable contours are indicated by points
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Fig. 1. From an image to a scalar force field: (a) Original image(64×64 pixels), (b)
Normalized GVF field, (c) and (d) the scalar force field, (e) Convergence of average
energy

in a local maximum. Therefore, we detect these centers by simply comparing
their values with the 8-connected neighborhoods, and take them as seed points.
Each seed grows into a region in the initial segmentation. The region grow-
ing is similar to a downstream process to simulate the curve inflation in GVF
snakes. Assume that there are N seed points Si, i = 1, 2..., N , corresponding
to N initial regions Ri, i = 1, 2, ..., N , labels are simply propagated to all lower
8-connected neighborhoods. For each region Rj , we start from the corresponding
seed point Sj by tracking it to label all the unlabeled lower neighborhoods, and
then track these new labeled members iteratively until no more points can be
labeled.

For an example of the region growing process, see Fig. 2, in which Fig. 2(a)
is a scalar force field derived from a GVF field. Two seed points are selected
and marked in bold. We start from the left-bottom seed point, and then the
other one. The tracking sequence is illustrated by the arrows shown in Fig. 2(b).
Fig. 2(c) shows the result of region growing. We note that although different
orders in which seed points are processed result in different region boundaries,
it is not important for the final result since the different boundaries are located in
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Fig. 2. An example of initial segmentation from the scalar force field. (a) A scalar force
field, (b) Tracking sequence, (c) Initial segmentation.

homogeneous regions but not object boundaries. The following process of region
merging will remove these differences and get a same result.

Since the object area may have more than one source point which leads to
multiple regions in the initial segmentation, in our study we use the algorithm
proposed in [6] to do region merging. Firstly a Region Adjacency Graph is gen-
erated from the initial segmentation, and then some adjacent regions with the
minimum dissimilarity measure are merged step by step. We get the final result
when no more region pair can be merged.

4 Experimental Results

In the following we give some examples of multi-object segmentation by our
method.

Fig. 3 demonstrates the sensitivity of our method to noises. Fig. 3(a) is a
synthetic image, and Fig. 3(b-d) are three noisy images by adding Gaussian
white noise of variance 0.1, 0.3 and 0.5, respectively. It is quite difficult to set a
proper initial contour for these objects if we use the snakes. Results of the four
images by our method are shown in Fig. 3(e-h). The GVF field is generated by
setting μ = 0.1 through 50 iterations, and the scalar force field is generated by
setting λ = 0.01 through 30 iterations. It is shown that as the image becomes
noisy, the dissimilarity between foreground and background decreases, and object
boundaries get unclear. However, our method can extract satisfied boundaries
without human interaction.

More examples are illustrated in Fig. 4. For each row the three images from
left to right are the original image, the initial segmentation and the final result,
respectively. Fig. 4(a)(272×265 pixels) is an image of multiple cells. The GVF
field is generated by setting μ = 0.1 through 40 iterations, and the scalar force
field is generated by setting λ = 0.01 through 30 iterations. There are 309 regions
in the initial segmentation which are merged into 35 regions in the final result.
Fig. 4(d)(171×200 pixels) is a magnetic resonance imaging (MRI) of a knee.
The GVF field is generated by setting μ = 0.1 through 20 iterations, and the
scalar force field is generated by setting λ = 0.01 through 30 iterations. There
are 223 regions in the initial segmentation which are merged into 7 regions in the



852 Y. He, Y. Luo, and D. Hu

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Simulation of the proposed method on noisy images. (a) Original
image(230×230 pixels), (b)-(d) Noisy images, (e)-(h) Results of the upper four im-
ages.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Two examples of the proposed method: (a)(d) Original images, (b)(e) Initial
segmentations, (c)(f) Final results



Seeded Region Merging Based on GVF for Image Segmentation 853

final segmentation. Although the initial segmentation in homogeneous regions
seems disorderly, object boundaries are detected and identified distinctly. Region
merging process can eliminate the over-segmentation and extract boundaries of
multiple objects accurately and simultaneously. Moreover, the whole process is
fully automatic.

We take n as the total number of pixels in an image, and m as the number
of regions in the initial segmentation. Normally, m is much less than n. The
time complexity of our method is composed of four components: construction of
the GVF field, construction of the scalar force field, region growing, and region
merging. The former two components can be transformed to the solution of an
n-dimensional sparse linear equation. They both take O(n) in time complexity.
In the third component, selection of initial seeds needs to compare the scaler
value with eight neighborhoods for each pixel, and then region growing process
uses a downstream process to track unlabeled lower neighbors for each labeled
pixel exactly once. Therefore, it also takes O(n) in time complexity. The time
complexity of region merging process is O(mn)[9]. Therefore, the total time
complexity of our method is O(n + n + n + mn) ≈ O(mn).

5 Conclusion

In this paper we present a new algorithm based on gradient vector flow for image
segmentation. It needs none of human interaction, and can deal with multiple
objects simultaneously. We derive a scalar force field from GVF field to avoid
curve evolution. The initial centers of deformable contours in the force field are
indicated with some peak points which can be detected facilely. They are se-
lected as seed points and grow into initial regions by using a simple downstream
algorithm. Then a RAG based region merging process is used to overcome the
over-segmentation and get the final results. The experimental results illustrate
that the proposed algorithm is efficient and insensitive to noises. Moreover, com-
pared with the snakes, it is more convenient for multi-object image segmentation.

References

1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International
Journal of Computer Vision 1-4 (1987) 321–331

2. Cohen, L.D.: On active contour models and balloons. Computer Vision, Graphics,
and Image Processing: Image Understanding 53-2 (1991) 211–218

3. Cohen, L.D., Cohen, I.: Finite-element methods for active contour models and bal-
loons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine
Intelligence 15-11 (1993) 1131–1147

4. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Transactions
on Image Processing 7-3 (1998) 359–369

5. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based
on immersion simulations. IEEE Transactions on Pattern Analysis and Machine
Intelligence 13-6 (1991) 583–598



854 Y. He, Y. Luo, and D. Hu

6. Haris, K., Efstratiadis, S.N., Maglaveras, N., Katsaggelos, A.K.: Hybrid image seg-
mentation using watersheds and fast region merging. IEEE Transactions on Image
Processing 7-12 (1998) 1684–1699

7. Yu, Z., Bajaj, C.:Normalized gradient vector diffusion and image segmentation.
Proceedings of ECCV 3 (2004) 517–530

8. Chuang, C., Lie, W.: A downstream algorithm based on extended gradient vector
flow field for object segmentation. IEEE Transactions on Image Processing 13-10
(2004) 1379–1392

9. Shih, F., Cheng, S.: Automatic seeded region growing for color image segmentation.
Image and Vision Computing 23-10 (2005) 877–886



J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 855 – 866, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

System for Reading Braille Embossed on Beverage Can 
Lids for Authentication 

Trine Kirkhus1, Jens T Thielemann1, Britta Fismen1, Henrik Schumann-Olsen1, 
Ronald Sivertsen2, and Mats Carlin3 

1 
SINTEF, PB 124 Blindern, N-0314 Oslo, Norway  
{trk, jtt, brg, hso}@sintef.no  

http://www.sintef.no/omd 
2 Tomra Systems ASA, P.O. Box 278, N-1372 Asker, 

ronald.sivertsen@tomra.no 
3 Carlin’s Algorithm Factory, Vallerveien 152 E, N-1346 Gjettum, 

mats@carlin.no 

Abstract. The paper describes a system for reading embossed Braille patterns 
on used aluminum beverage container lids. The intent of the system is to check 
whether the used containers are entitled to a refund. The lids have strong 
specular reflections. The reflections are avoided by a novel method that 
illuminates the lid alternating from two angles, and acquires two separate 
images. This illumination method is more compact than existing methods. We 
use the extended maxima algorithm to detect the Braille dots, and a cluster-
based pattern point matching algorithm to recognize a pre-defined Braille 
pattern. The algorithms are customized to increase speed using a priori 
information. The system was evaluated on a test set containing 225 images. The 
median time used for analyzing one beverage can was 1 second, and the 
recognition rate was 94 percent. 

1   Introduction 

Recycling used beverage containers is an effective way of reducing environmental 
pressure. The material used in these containers – aluminum, glass or plastic – is easily 
reused into new containers or other goods.  

Maximum environmental effect is achieved if a large proportion of the used 
beverage containers are recycled by the public. Deposit/refund systems effectively 
increase the recycled share of beverage containers. In USA the collection rate in 
deposit states are 72% and in non-deposit states 28% [1]. Germany recently 
introduced a refund system in order to achieve a higher recycled fraction of one-way 
containers.  

There is a high labor cost in manually handling such refund systems. Therefore, 
various automatic machines exist that accept material for recycling and issue deposit 
refunds. These machines use barcode reading in combination with e.g. shape 
recognition to detect the container type and issue the correct refund. 

Automatic machines increase efficiency at the cost of larger fraud problems. 
Swindlers commit fraud by tampering with containers acquired from countries 
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without deposit laws to make the machines accept them. Typical fraud strategies 
include overwriting barcodes with a corrected barcode in order to fool the machine.  

To prevent fraud it is desirable to have several authentication systems. This 
increases the cost of fraud, and may make it uninteresting. Many such authentication 
systems have been developed or proposed. Shape, fluorescent tagging, RFID, 
printing, engraving, weight or material properties are all methods that can be used for 
checking the authenticity of a beverage container.  

We suggest a set of embossed dots on the can lid as a new authentication method. 
Such dots have the benefit of being easy and cheap to include into current can 
manufacturing lines, unlike many of the alternatives. They are also suitable for 
automatic recognition by a vision system. If formed as Braille letters, such dots can 
have the added value of benefiting the visually impaired by carrying information 
about the can’s content or whether the can is entitled to a refund. 

This paper describes a system for verifying the presence of such dots, and 
recognizing one pre-defined Braille pattern. There exist numerous systems for reading 
Braille patterns using optical methods [2, 3, 4]. All of these have focused on patterns 
on paper. In this case, the dots are on highly reflective lids that require new 
illumination methods. Limited computing resources require optimized algorithms to 
facilitate recognition in real-time. The presented system is optimized to reduce cost 
and amount of space used.  

We will first describe the chosen illumination and image acquisition system used. 
Then we will present the algorithms used for reading the Braille pattern and how they 
are optimized to facilitate the implementation on the given reverse vending machine’s 
platform. The results of this experiment are summarized, and our conclusions are then 
presented. 

2   System Specification 

The image acquisition system had to fit into existing reverse vending machines due to 
backward compatibility requirements. This posed constraints on its size and 
geometry. The mean recognition time on the machine’s platform had to be less than 1 
second, and the recognition rate better than 90%.  The algorithms had to be 
implemented on a Texas TMS320C6711 DSP processor with external SDRAM  
(100 MHz). 

3   Illumination and Image Acquisition 

Our primary focus was on designing an illumination and image acquisition system to 
obtain high-quality images that were easy to analyze, rather than correcting the 
images afterwards using time-consuming image processing techniques. We optimized 
the illumination to obtain easy segmentation of the can lid from the background and 
high contrast between dots and surface. 

Beverage cans are challenging to illuminate well. Most beverage cans are produced 
from rolled aluminum sheets.  
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Fig. 1. An example 3D contour plot (measured with a white-light interferometer) of a rolled 
aluminum surface with an embossed dot of height 0.2mm and diameter 1mm  in the upper right 
corner. There is a grating-like surface structure which makes the reflection properties direction-
dependent. 

 
camera 

LED  
can 

 

Fig. 2. Schematic drawing of the image acquisition setup. Two LED arrays (shown to the left) 
illuminate the can alternatively. The camera is attached to the machine’s ceiling and captures 
images of the can lid from above. 

Rolled aluminum has difficult reflectance properties due to its surface structure. The 
major reflection is omni directional lateral to the rolling direction and specular 
longitudinal to the rolling direction, due to the grating-like structure which is formed by 
the rolling process (fig. 1). For certain orientations of the can, a specular reflection occurs 
and makes the captured image unusable for further analysis. 

Traditional methods avoid such reflections by using a diffuse illumination [5]. To get 
the illumination sufficiently diffuse, a large amount of space is required, not a possibility 
in this case. Only a small spot in the ceiling could be used along with some of the frontal 
upper interior wall. 

Instead of using one large diffuse illumination source, we propose using two smaller 
illumination sources that can be switched on and off. Fig. 2 shows the geometric 
alignment of sources and camera. This idea is similar to the illumination technique used 
in [5], where the goal is to separate Braille (3D pattern) from an uneven background (2D 
pattern).  

Two images are captured for each can: One image with only source one turned on, 
one image with only source two on. The distance between the two sources is large 
enough to ensure that any specular reflection does not happen in both images. 

The effect can be seen in fig. 3. Fig. 3a shows an image captured with illumination 
source one turned on. There is a strong specular reflection in the dot region. This 
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Fig. 3. Two alternative illumination sources used on the same lid. Left: Illumination source one. 
A strong specular reflection occurs in the dot region, making the pattern illegible. Right: 
Illumination source two. The reflection is not present using this illumination source. 

happens due to the surface structure as described above. With illumination source two 
switched on (fig. 3b), the specular reflection disappears and the image can easily be 
analyzed [6]. 

3.1   Pattern Detection Methods 

Cans are accepted only if they have the correct lid size and the reference dot pat- 
tern can be found on the lid. The reference pattern to be detected is shown in  
fig. 4. The algorithm for accepting/rejecting cans verifies this by performing three 
steps. 

First, the lid boundary in the image is robustly detected. This makes it possible to 
reduce the image size significantly and estimate the perspective distortion that  
has occurred. The lid boundary is also used to verify that the can is of acceptable 
size.  

Dot candidates are subsequently found. The candidates are found based on an 
initial thresholding followed by a subsequent dot-by-dot qualification. 

Finally, the dot candidates are searched for reference pattern presence. Dot 
candidates are clustered and subsequently filtered to increase speed. If the pattern is 
found to be present, the can is accepted.  

All these steps are first performed on the image captured with the left illumination 
source. If no match can be found here, the steps are retried on the image captured with 
the right illumination source. We do not attempt to detect the direct reflection first, as 
the frequency of direct reflexes is not large enough to warrant the extra computation 
time.  

Due to constraints on both time and computational resources, simple and fast 
algorithms had to be developed. 
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Fig. 4. Reference dot pattern. This pattern signals that the can is entitled to refund. 
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Fig. 5. The theoretical ellipses are overlaid the original image. The distance between each rim 
point to the ellipse is used to determine which ellipse corresponds to the imaged can. 

3.2   Lid Boundary Detection 

The lid is located first in order to reduce image size and verify the can size. Detecting the 
lid also allows us to correct the perspective distortion that is introduced by the imaging 
system.  

The lid’s location is found by first finding seven points defining the lid’s rim. The 
detection is based on finding rapid intensity deviations from a continuously updated local 
background model. The points are located by using a sliding window and calculating a 
local threshold level based on the mean and standard deviation within that window. We 
search for the lid starting from the side of the image. The first significant change in pixel 
intensity value is assumed to be the lid’s rim.  

This search gives us seven points that may be along the lid’s rim. After checking that 
the detected points are sound using per-point and inter-point constraints, we compare the 
points to a set of three pre-configured reference ellipses that match the three available lid 
sizes on the market (fig. 5). The ellipse parameters for these reference ellipses have been 
established using the algorithm outlined in [7]. The matching criterion is based on a 
Euclidean distance metric [8], measuring the distance between each of the seven points 
and the closest point on the reference ellipse. 

3.3   Dot Candidate Detection 

Possible dot candidates need to be located on the lid in order to facilitate recognition. 
We perform a pre-filtering using a Gaussian filter to enhance structures similar to the 
Braille spots before thresholding the cropped image [9].  
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Fig. 6. Left: Detected points and detected ellipse. Right: The points are corrected according to 
the ellipse parameters. 
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Fig. 7. Typical dot set presented to the algorithm. Crosses: Removed by the preprocessing 
steps. Hollow dots: Remaining for matching after preprocessing. Hollow dots containing solid 
dot: Dots representing the reference pattern. Solid dots: Dots in the reference pattern not found 
by previous steps. 

The filtered image is thresholded using the extended maxima transformation [10]. 
This method suppresses all maxima whose depth is lower than or equal to a given 
threshold value h. This method is somewhat sensitive to uneven illumination, but in 
this case the dots are so small that the illumination locally can be assumed even.  

The binary image is labeled into connected groups of pixels (blobs) [11]. The blobs 
are filtered using moment based blob features, and the blobs’ center of gravity is used 
as each dot’s location. 
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A final filtering of the blobs is done by applying an optimized version of the post-
processing step of Yanowitz & Bruckstein [12]. This step removes false blobs by 
assuming that the average edge steepness along each blob’s edge is less for false 
blobs than for true dots. The step is optimized by using only vertical edges, which we 
found gave equivalent results on less DSP time.  

Before point pattern matching, the ellipse parameters detected in section 3.1 are used 
for compensating the perspective distortion in the blobs’ center of gravity (fig. 6).  

3.4   Point Pattern Matching 

Point pattern matching is an old problem in computer vision, and many algorithms 
have been proposed. Li [13] summarizes and groups many existing algorithms. Many 
algorithms are unsuitable for our purposes as they are brittle (based on that angles and 
distances are preserved) or assume that no points are missing. In Li’s taxonomy of 
point pattern matching algorithms, our algorithm fits into the clustering class of 
methods. We are able to introduce some novel optimizations due to the amount of a 
priori information we can use, and because we can place strict limits on the quality of 
acceptable pattern matches.  

We have a reference pattern P containing n dots and a collection M of m dots found 
on the lid (the “lid dots”). We would like to test whether the pattern is present on the 
lid. The pattern will be assumed as present if at least n – k dots can be detected, where 
k typically is 2 or 3. 

This matching is conceptually done by selecting three dots from M, and computing 
an affine transformation from the selected dots. M is then transformed using the affine 
transform. Then we measure the maximum distance between each dot in the reference 
pattern and its closest dot in M (the Haussdorff distance). If this maximum distance is 
less than a predefined threshold for n – k of the dots, the match is accepted.  

Care is required to make such an algorithm fast. The number of dots found in the 
image will typically be quite large (fig. 7), which means that a large number of dot 
selections and affine transformations may have to be tested.  

We have therefore developed an optimized algorithm which makes some 
assumptions about the placement of the pattern regarding to the lid: 

a. The pattern will have the same size on all lids. 
b. The pattern will be placed at the same distance from the lid’s center on all 

lids. 
c. The pattern will not be rotated except from a rotation around the lid’s center. 

The algorithm proceeds in two steps: 

1. Cluster the dots into separate clusters, and use the assumptions mentioned to 
throw away clusters where it can be proven that the clusters do not contain 
the reference pattern. 

2. Match efficiently the remaining clusters against the reference pattern.  

The goal of the first step is to throw away as many dots as possible. The remaining 
dots should be clustered into as small clusters as possible. Small clusters are desirable, 
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as the matching step following this part has a complexity of O(c2n) where c is the size 
of the cluster and n is the number of dots in the reference pattern.  

We will now describe four O(n) steps and one O(n2) step  that reduce the amount of 
dots passed to step two greatly. As these steps have low computational complexity 
compared to step two, the complexity of the algorithm as a whole is reduced.  

Dot Clustering and Removal 
As the pattern has the same size, position and rotation on all lids, the maximum and 
minimum distance from the lid’s center to any dot within the reference pattern will be 
the same for all lids. This means that any dot found to be closer to the center than the 
minimum distance – or farther away than the maximum distance – can be thrown 
away.  

The other filters cluster lid dots and analyze the found clusters. In order to do this 
efficiently, we use polar coordinates (di, i) for the lid dots, and sort the lid points 
according to i.  

Feature Extraction from the Reference Pattern 
Some features are required from the reference pattern (fig. 8). These can be extracted 
beforehand to gain speed. Three features are used: 

a. cmax: The maximum angle difference between two consecutive dots given 
that up to k dots are missing 

b. max: Maximum angle difference between two arbitrary dots in the reference 
pattern given that up to k dots are missing 

c. Dmax,: Maximum Euclidean distance between two arbitrary dots in the 
reference pattern given that up to k dots are missing 

The features can be calculated efficiently by presorting the dots according to angle 
prior to calculation. 
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Fig. 8. Reference pattern (circles) and pattern properties used by the algorithm. Angle b-d: max 
indicating the maximum angle span of the pattern given that k=2 dots are missing. Angle a-c: 

cmax, maximum angle span between two consecutive dots given that k =2 dots are missing. 
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Clustering Dots Using the Angular Distance between Two Dots 
The lid dots are sorted based on , and put into one cluster. If two consecutive lid dots 
have an angular distance that exceeds cmax, then these two lid dots cannot 
simultaneously be part of the reference pattern (one of them may, though). The cluster 
thus can be split between these two dots, forming two smaller clusters. These two 
clusters can be checked subsequently for further similar split dots.  

The result of this operation will be that the single large clusters have been split into 
many smaller clusters. 

Clusters that do not contain at least n – k dots or span at least cmax can 
subsequently be removed.  

Removing Non-Dense Parts of Remaining Clusters 
The previous operations may leave clusters that are large (thus not removable based 
on the max criteria) and with sufficient number of dots. However, the dot density 
within parts of such a cluster may be too low to actually contain the pattern. Only 
those parts of the cluster where at least n – k dots can be found within max can contain 
the reference pattern. The remaining parts of the cluster can be ignored. This can be 
implemented in O(q) where q is the number of dots remaining.  

Removing Too Large Clusters 
There is a maximum distance dmax between two dots in the reference pattern. If two lid 
dots are more than dmax units apart, they cannot simultaneously match the reference 
pattern. This may mean that they can be put into two separate clusters. This 
determination can be done in O(c2l), where l is the number of remaining clusters and c 
is the number of dots within each cluster.  

Braille Pattern Recognition 
After the previous steps, only one or two dot clusters remain. We now proceed to 
check whether at least n – k dots match the reference pattern. While in our 
assumptions we have listed that the match should succeed only in the case of pure 
rotation around the lid’s center, imprecision in our previous steps does not make this 
possible. For instance, our perspective correction algorithm makes idealized 
assumptions about the box’ position within the machine.  

We therefore have to do pattern detection allowing a complete affine 
transformation.  

Our detection strategy is an optimized exhaustive search. We select three dots from 
the reference pattern and three dots from the lid dots. These dots are then used to 
build the affine transformation that transforms the lid dots into the coordinate space of 
the reference pattern. We then verify that n - k dots in the reference pattern have a 
corresponding dot close enough in the cluster dots.  

Assuming that there are d dots in the cluster, this would give a performance of 
O(d3n3) as all combinations would have to be tested. Our requirement that at least n - 
k dots need to match allows for one additional optimization. Let R be the first k + 1 
dots in the reference pattern, and N be the remaining n - k - 1 dots. If at most n - k 
dots are allowed to be missing, then at least one of the dots in R must be present in the 
cluster dots. It is thus sufficient to test k + 1 dot combinations from the reference dots. 
This brings the algorithm’s performance to O(n3). 
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Table 1. Recognition performance per illumination type. A total of 225 image pairs were used 
for testing the algorithms. 

Image Number of successful 
decodes 

Success % 

Left image 182 80,9 
Right image 195 86,7 
Both images 211 93,8 

Table 2. Number of cluster and dots per cluster before and after preprocessing. Mean and one 
standard deviation shown for all values except “max dot count”. Images where no dots were 
found have been represented as having zero clusters, thus creating an average cluster count less 
than one before preprocessing. 

 Before preprocessing After preprocessing 
Cluster count 0.996±0.07 1.3±0.6 
Dot count/cluster 20±7 11±5 
Max dot count 52 41 

In addition, we are placing strict limits on the affine transformation in order to gain 
speed and reduce the amount of false positives.  

4   Experimental Results 

4.1   Recognition Performance 

The algorithms were tested using a test set containing 15 cans, which were imaged in 15 
different positions and rotations each. Two images were captured for each position, one 
image for each illumination source. A total of 225 image pairs were used for testing the 
algorithms. 

Table 1 summarizes the recognition performance. Using only one illumination source 
gives roughly 10% less decode performance than using both illumination sources and 
combining the results. This is due to our ability to handle specular reflexes on the can 
lids. In approximately 6% of the cases both decode attempts fails. The cause is the can 
lever opener, which blocks the camera’s view of the Braille pattern. 

The system was tested with approximately 1000 cans without the embossed pattern. 
We found that the amount of false positives was less than 5%. 

4.2   Algorithm Performance 

In order to decrease the algorithm’s runtime a number of steps were performed in 
order to reduce the number of dots in each cluster.  

Table 2 summarizes the number of clusters in each image before and after the 
preprocessing step is done. On average, the number of dots in each cluster is halved, 
which makes the second step of the algorithm significantly less time-consuming. 

The time constraints were < 1 second for capturing and reading the Braille. We 
achieved a median of ~1 second analyzing time, but some images with many dot 
candidates used longer processing time.  
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5   Summary and Conclusion 

We have described a complete system for reading embossed Braille dots on aluminum 
can lids. The rolled aluminum surface is highly specular and reflections will occur 
depending on the rolling direction versus camera and illumination geometry. Our 
illumination method handles this by using less space than e.g. diffuse illumination for 
achieving the same means. 

Low cost is essential in making automatic reverse vending machines widely 
available. The cost requirement limits available computing resources. We have 
developed specific and optimized algorithms that employ a priori information to make 
this possible on the selected computing platform within the given time constraints (~1 
second). 

Refunds are one of many incentives offered to customers to begin and continue 
recycling. A positive experience when using the reverse vending machine is important 
as well. A low amount of false negatives (rejects) is critical to achieve this.  

In our experiment, the system recognized the pattern in 94% of the cases. 
However, our experiments were performed on one reverse vending machine. The 
machine and the used beverage cans were clean, the external illumination was under 
control and the variations in cans were minimal. This artificially increases decoding 
performance. For a real-life system, we expect a performance of 90% recognition rate. 
Still, we expect this to be sufficiently high to satisfy the customer. 

Fraud rates must be kept low in order to make refund systems possible. Otherwise, 
bottlers, and groceries will refrain from participating in the system. The described 
system makes refund fraud more difficult and may alleviate this concern. 
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Abstract. In this paper, we propose a segmentation method for an au-
tomated differential counter using image analysis. The segmentation here
is to extract leukocytes (white blood cells) and separate its constituents,
nucleus and cytoplasm, in blood smear images. For this purpose, a region-
based active contour model is used where region information is estimated
using a statistical analysis. The role of the regional statistics is mainly
to attract evolving contours toward the boundaries of leukocytes, avoid-
ing problems with initialization. And contour deformation near to the
boundaries is constrained by an additional regularizer. The active con-
tour model is implemented using a level set method and validated with
a leukocyte image database.

1 Introduction

A leukocyte (white blood cell) differential count as a percentage is one of the
most frequently performed blood tests and plays an important role in the di-
agnosis of diseases such as anemia. In hospital, manual differential is usually
performed by taking a drop of blood, spreading it on a slide, staining it, and
evaluating around 100 cells for quantity and quality. However, it is tedious and
time consuming to locate, classify and count leukocytes. An automated differen-
tial counter using image analysis makes it possible to replace the work, reducing
reporting time and increasing precision with the larger of number of cell counted.
The counter system is normally performed in this procedure: localization, seg-
mentation, feature extraction and classification. We here deal with the leukocyte
segmentation problem which is most difficult and error-prone.

In an attempt to solve the problem, several approaches have been presented
in the literature. Wermser et al. [1] and Cseke [2] use hierarchical thresholding
with two color features which discriminate between constituents of blood smear
images. A more sophisticated algorithm is proposed by Sinha and Ramakrish-
nan [3]. It estimates a mixed Gaussian model using Expectation-Maximization
(EM) algorithm in HSV color space, and thresholds and labels each Gaussian
component with a prior knowledge. It is obvious that the algorithm is able to
improve performance over linear thresholding, but it still does not use spatial
information and so is limited to segment leukocytes.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 867–876, 2006.
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To overcome the limitation, another approach using region information is pro-
posed. Haussman et al. [4] uses region labeling by relaxation operation. Initial
regions are obtained from split-merge method and then relaxed using relation-
ship between adjacent regions. [5] is also a similar method based on fuzzy rules.
Although this approach uses both local and global information, it is not straight-
forward to design rules (or relationship) covering various situations.

More recent literature has applied active contour models since it is useful
to detect objects in an image by evolving contours. One of the advantages of
the model is that contours can be controlled by its geometric properties and
external properties from an input image in a single framework. Furthermore
higher level information such as shape priors also can be incorporated into the
same framework. Hence we can design an active contour model using information
suitable for a specific application.

The active contours proposed in [6,7,8] are based on the gradient of an input
image. However a high gradient is often shown at the cytoplasm of polymor-
phonuclear cells (granulocytes). It means that evolving contours are likely to
be stuck at local minima and so the performance is heavily influenced by initial
contours. [9] instead uses the gradient vector flow (GVF) calculated from bound-
aries of cells including erythrocytes (red blood cells). The method relieves the
initialization problem but contours still could be stuck in the area of small GVF
force or attracted to one side of the boundary depending on initial contours

In this paper, we propose a more robust method using a region-based active
contour model. Region information here is estimated through statistical analysis
on intensity features of input images. Thanks to the regional statistics, initial
contours are placed safely on each leukocyte and propagate toward its boundary,
avoiding the local minima problem. At earlier stage, evolving contours are mainly
under influence of the region statistics, but their deformation is controlled by an
additional regularizer as they come close to the boundaries of leukocytes. The
regularizer contributes to forming the shape of a leukocyte

2 Proposed Method

The proposed method is composed of five steps as shown in Fig. 1. We first
select significant intensity features in blood smear images and estimate a finite
mixed Gaussian model using the EM algorithm where the number of components
and initial parameters are chosen with intensity priors. With the estimation,
Bayes probabilities of each constituent of a leukocyte are computed on piecewise
constant partition and then are embedded into an active contour model as region
information. In the following subsections the procedure is explained in detail.

2.1 Regional Statistics

Each constitute of blood smear images shows the characteristics discriminating
one another such as color, texture, and shape. But it seems that color informa-
tion is the most significant. Depending on color model, various combination of
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Fig. 1. Block diagram of the proposed segmentation method for leukocyte images. It is
based on region-based active contours where the region information is estimated using
a statistical analysis.

channels can be used. The experiments shows that among them grayscale and
blue intensity space (I, B) is the most promising. Fig. 2 shows the typical pattern
of the features extracted from a smoothed image with a Gaussian filter, and also
exhibits the main location of each constituent.

As can be seen in the feature pattern, it is difficult to discriminate between
different components through simple thresholding or clustering approach. For
this reason, we estimate parameters of a finite mixed Gaussian model with the
Expectation-Maximization (EM) algorithm, assuming all the components have
a Gaussian distribution.

The EM algorithm [10] consists of two steps, Expectation and Maximization.
The first step is to calculate the posterior probabilities with initial parameters
for each data point, and then update the means, the covariance matrices and
the mixing coefficients for each component in the second step. The procedure is
repeated until a variation is less than some fixed threshold.

An initial guess, however, should be carefully determined particularly for
blood smear images, because there often exit one or two more Gaussian com-
ponents in the feature space: for example, at the granule in cytoplasm or outer
boundary of an erythrocyte. At first we could assume five or six components,
but it does not work well in two reasons. (1) Additional components are likely
to have a negative effect on the estimation of the others, and (2) even not so it
is not straightforward to label to four partitions.

Therefore the number of components is set to be four and now a way of
preventing components from converging to unexpected local minima is required.
The K-means algorithm [10] are commonly used to select initial parameters.
However, it is not appropriate in our case for the same reason mentioned earlier:
existence of undesirable Gaussian components. Instead those are determined
based on the characteristics of the feature pattern and intensity priors of each
constituent. Left-lower (A) and right-upper (B) feature point are selected as
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Fig. 2. Typical example of the feature patten and the main location of each constituent:
nucleus, cytoplasm, red blood cell, and background

an initial guess of nucleus and background respectively. And an erythrocyte
takes a point (C) located the farthest from the line going through two points,
A and B. the last one (D) is decided middle point of two points, A and C.
This simple method has shown more better results than the K-means algorithm.
Furthermore, labeling is easily done by the same way with the final mean points

With the estimated and labeled Gaussian components, the posterior proba-
bilities for each constituent can be calculated using Bayes’ theorem [10]:

P (ωj |x) =
p(x|ωj)P (ωj)

p(x)
,

where

p(x) =
4∑

j=1

p(x|ωj)P (ωj)

and ωj is a jth class, namely, nucleus, cytoplasm, erythrocyte or background,
and x is a feature vector (I, B). It could be applied to each pixel itself, but we
here compute the Bayes probabilities on piecewise constant partition which is
obtained by minimizing the Mumford-Shah functional [11]:

F1(u, B) =
∫

R−B

(u − u0)2 + λ length(B),

where u0 is an input image defined on a set R and u and B are a piecewise con-
stant function and the boundaries between regions, respectively. This is useful to
avoid many isolated points and small holes, and form more accurate boundaries.
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(a) (b)

(c) (d)

Fig. 3. Regional statistics. (a) input image, (b) piecewise constant partition, (c-d)
posterior probability map of nucleus and cytoplasm. Courtesy of CellAtlas, CellaVision
AB [12] (with the following figures).

Fig. 3 shows an example of initial partition and probability map of a leukocyte.
The probability map is used in the region-based active contours framework as
region information in the next stage.

2.2 Active Contours for Leukocyte Segmentation

Active contour models [13], also called snakes, are a powerful segmentation tool
in a variety of image processing applications. Many models have been developed
based on their representation (explicit or implicit) and information (edge and/or
region) used. Hence, from the point of view of application the selection of an
appropriate model is very important.

In our case the following implicit model is applied which is based on region
information computed from the intensity features:

∂φ

∂t
= δ(φ)[α1(P − C1)2 + α2(P − C2)2] + βκ|∇φ|+ γV · ∇φ,

where φ is a implicit level set function [14,15] where the boundary (interface) is
defined by φ = 0, and α1, α2, β, and γ are positive parameters. An input image
P , here, is the posterior probability of a leukocyte P (WBC|x) computed earlier
and C1, C2 are the averages of P inside and outside of propagating contours.
After all the first two terms [16] attract contours toward the boundaries of a
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leukocyte. As shown in Fig. 3, however, part of neighboring erythrocytes also
could have a high probability and so regularization is needed.

A leukocyte is normally close to the shape of a circle but is likely to deform.
In this case, however, the deformation is “smooth”, while undesirable regions
having a high probability tend to be “rough” as shown in Fig. 3. Therefore
a regularization method for discriminating the two cases is required. First a
parameter of mean curvature term κ|∇φ| is set to be high so that the shape is
close to a circle, and then a deformation beyond that is driven by the gradient
vector flow (GVF) V (u, v) [17] obtained by minimizing

F2(V ) =
∫ ∫

μ(ux
2 + uy

2 + vx
2 + vy

2) + |∇f |2|V −∇f |2dxdy,

where an input image f is the boundaries of regions Bayes classified as a leuko-
cyte. In spite of constraint of curvature, the contour now tries to propagate to-
ward smoothly deformed boundaries thanks to this externally generated velocity
field. On the other hand, it does not try in roughly deformed regions because
the normal force of GVF is very weak at the boundary between a leukocyte and
an erythrocyte [9].

Besides this role, GVF contributes to extracting the contours with the first
two terms in the initial stages and so seems to be able to take the place of
the first two ones. However, in this case part of the contours could be stuck in
the area of small GVF force. Gradient information also causes the similar stuck
problem at the local minima and so is not used in the proposed model.

Another important factor in the use of active contours is initial contours. In
our case it is relatively insensitive to the initial contours which just need to be
located inside leukocytes. Fortunately Bayes classified nuclei are satisfactory in
the regional statistics stage. Therefore nuclei regions are extracted at the stage
and are used for selection of initial contours. We put circles at the centroid of
each nucleus, whose diameters are 0.3 times ones of circles with the same area
as each nucleus. If there are multiple nuclei in a leukocyte they are merged
automatically thanks to level set implementation. Fig. 4 shows the propagating
contours on the posterior probability map.

(a) (b)

Fig. 4. Segmentation using region-based active contours. (a) propagating contour, (b)
segmentation result.
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3 Experimental Results

The experiments were carried out on the cell image database which was provided
by CellAtlas [12]. All the images in the database were stained by the May-
Grünwald-Giemsa (MGG) method and already classified by type by experts
within the field of hematology. The types of leukocytes used in our experiments
are five: neutrophil, lymphocyte, monocyte, eosinophil, and basophil. Assuming
that leukocytes were localized, a region of interest (ROI) containing leukocytes
was extracted with 128× 128 size.

These images first were smoothed with a 3×3 Gaussian filter with a standard
deviation of 0.8 and in the Mumford-Shah functional for a piecewise constant
partition, a region-growing method [18] was applied, where the number of final
regions (1000) was used as a stopping criterion instead of a scale λ. In the
last stage, there are three important parameters which were set (α1 = α2 =
0.005, β = 4.5, γ = 0.6) as follows: (1) with γ = 0, adjust the first two parameters
such that a contour becomes similar to a circle in shape as it approaches to the
boundary of a leukocyte and then (2) γ value is chosen for the GVF force to
push the contour toward the smoothly deformed regions.

Fig. 5 shows the process of segmentation applying the proposed method under
the conditions above. The first column is the original image for each type of
leukocytes, and the second shows evolving contours on the Bayes probability
map of a leukocyte. The final segmentation results are shown in the last column.
As already expected, errors happen in parts of images in Fig. 5(b), but in the
most of cases the errors happen between cytoplasm and red blood cells because
of similarity of their intensity features (I, B). However, it is noteworthy that the
probability of errors in cytoplasm regions is very low and so true leukocytes
are mostly included in the regions having high probability P (WBC|x) like in Fig.
5(b). The used features (I, B) were selected among two channels or full channels
of RGB, HSV, L*a*b*, and L*u*v* space, not scaled, using the probability of
error in the Bayes classification. More sophisticated methods could be used for
optimal feature extraction, but it is now acceptable.

As explained earlier Bayes classified nuclei regions are satisfactory but some-
times there are undesirable small segments and holes and so we applied the
morphological operators, area opening and closing, in order to remove the unde-
sirable regions. The postprocessed nuclei were then used for initial contours. If
there are multiple nuclei the same number of initial contours are placed as shown
in Fig. 5(b). At an earlier stage these contours propagate mainly under influence
of the regional statistics, and deform under influence of the curvature and GVF
force as they come close to the boundary of a leukocyte. Fig. 5(b) shows the
process of propagation. It exhibits that a contour is able to cross small holes
inside a leukocyte and multiple ones are finally merged.

To validate the segmentation results shown in Fig. 5(c), we adopted the most
common approach. The boundaries of leukocytes were first extracted manually
and compared to the obtained results. The following metric [19] was used as
a measure of segmentation accuracy: S = 2 · n{R ∩ T }/(n{R} + n{T }). This
measure quantifies similarity S ∈ [0, 1] between two segmentations R and T .
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(a) (b) (c)

Fig. 5. Process of segmentation using the proposed method. (a) original images: neu-
trophil, lymphocyte, monocyte, eosinophil, and basophil, (b) intermediate results on
the Bayes probability of a leukocyte, (c) final segmentation results.
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Table 1. Average segmentation accuracy rates and their standard deviations (%)

Cell type Neutrophil Lymphocyte Monocyte Eosinophil Basophil

# of images 80 125 120 124 154
91.40 95.45 90.83 88.43 -

Nucleus (13.94) (2.94) (11.03) (15.26) (-)
93.60 95.10 91.82 91.41 93.02

Cytoplasm (6.85) (4.45) (10.24) (6.91) (9.92)

n{R} indicates the area of R. Table 1 provides the average segmentation accuracy
rates and their standard deviations of nucleus and cytoplasm for all the images;
the nucleus of basophil was not included in the evaluation because it is often
obscured by cytoplasmic granules and so is difficult to discern. We have obtained
the reasonable results with an overall average error less than 8%.

The major errors were caused by the following reasons. First, when touching
regions of erythrocytes have a high probability P (WBC|x) and the regions look
like part of a true leukocyte, no distinction is made between them and so a
contour propagates into the regions. Second, when cytoplasmic granules are as
dark as a nucleus or a cytoplasm as bright as a background, they are classified as
a nucleus and a background, respectively. Third, when the shape of a leukocyte
is deformed excessively, a contour fails to deform that much. The parameters
involving deformation was selected as tradeoff between this case and the first
one. In future research we should focus on these problems in order to improve
performance more accurately.

A natural extension of the proposed method is to deal with touching leuko-
cytes using a single level set representation. It is obvious that the separate leuko-
cytes one another can be segmented well and also even touching ones can be
segmented individually, but not at a time in a single level set framework. So we
are currently under investigation on this point and expect to be useful for other
applications, too.

4 Conclusion

We have proposed a segmentation method of leukocytes in blood smear im-
ages. It is based on a region-based active contour model driving initial contours
toward the boundary of a leukocyte, avoiding problem with initialization and lo-
cal minima. Region information here is estimated from intensity features which
discriminate effectively between the constituents of blood smear images. And a
regularizer has also applied in the same model to constrain excessive deformation
of a evolving contour. In the experiments with a public image database, we have
obtained the segmentation results with an overall average error less than 8%.
Although it can be more improved by decreasing the errors mentioned earlier,
the results are reasonable as an input for leukocytes classification.
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Abstract. This paper proposes an object-based, highly scalable, lossy-to-lossless
coding approach for magnetic resonance (MR) images. The proposed approach,
called OBHS-SPIHT, is based on the well known set partitioning in hierarchical
trees (SPIHT) algorithm and supports both quality and resolution scalability. It
progressively encodes each slice of the MR data set separately in a multiresolu-
tion fashion from low resolution to full resolution and in each resolution from
low quality to lossless quality. To achieve more compression efficiency, the al-
gorithm only encodes the main object of interest in the input data set, and ig-
nores the unnecessary background. The experimental results show the efficiency
of the proposed algorithm for multiresolution lossy-to-lossless MRI data coding.
OBHS-SPIHT, is a very attractive coding approach for medical image informa-
tion archiving and transmission applications especially over heterogeneous net-
works.

1 Introduction

From the coding point of view, the main features required for an efficient clinical pic-
ture archiving and communications systems (CPACS) can be highlighted as follows:
efficient lossy-to-lossless compression, object-based functionality and high degree of
scalability support.

Volumetric medical images (e.g. MR and CT) are 3D data sets which consist of a se-
quence of 2D data slices. For efficient archiving and transmission of such vast amounts
of data a high degree of compression is required. For instance, an uncompressed typi-
cal gray scale MR set of 58 slices of 512 × 512 resolution results in a data volume of
116 Mbits, and downloading such information via a 56 kbps Internet connection for a
remote diagnosis purpose will take more than 35 minutes. For medical image coding
lossy-to-lossless compression is required to enable the provision of appropriate services
for different applications according to their sensitivity to the image quality in the diag-
nosis process. Since lossless compression does not degrade the image, it facilitates more
accurate diagnosis, of course at the expense of lower compression ratios (i.e. higher bit
rates). However, lossy compression is required to significantly reduce transmission and
storage costs where the loss is not diagnostically significant.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 877–886, 2006.
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Over the past decade, wavelet-based image compression schemes have become in-
creasingly important and gained widespread acceptance. An example is the new
JPEG2000 still image compression standard [1, 2]. Due to the multiresolution signal
representation offered by the wavelet transform, wavelet based coding schemes have
a great potential to support scalability features. Among the state-of-the-art embedded
wavelet coding approaches, the Set Partitioning in Hierarchical Trees (SPIHT) algo-
rithm [3] is well known as a benchmark for its compression efficiency, full SNR scala-
bility support and very low complexity. These features have made SPIHT very attractive
for medical image coding as well [4, 5, 6]. As shown in [4], an object-based version of
SPIHT (OB-SPIHT) exhibits a very competitive PSNR performance for the compres-
sion of medical images. On the other hand, research conducted by Pearlman [7] showed
a very significant complexity reduction of SPIHT over JPEG2000. Although the SPIHT
bitstream is tailored for full SNR scalability and is progressive (by quality) coding,
which can support lossy to lossless decoding, it does not support spatial scalability to
provide a bitstream that can be parsed for multiresolution decoding by different clients
with different capabilities.

Often there are regions inside a medical image that contain the main information re-
quired for diagnostic purposes. An object-based coding is desirable to enable coding of
any region of interest with arbitrary shape in the image, separately from the other parts of
the image. This feature helps to achieve a very high compression ratio by only focusing
on the important regions in the image and discarding the non-important background that
usually takes a large area of medical images, or by encoding the background at a lower
precision with a lossy image coder [4, 8]. The region of interest (ROI) coding feature
in the JPEG-2000 standard considers the whole image for coding but it applies a higher
coding precision to the ROI [9,10,11]. On the other hand, an object-based coding makes
it possible to encode the ROI as a separate object regardless of the rest of the image.

This research proposes an object-based medical image coding system based on the
highly scalable set partitioning in hierarchical trees (HS-SPIHT) algorithm. The HS-
SPIHT, introduced by the authors of this paper in their previous works [12, 13], is a
modification of the SPIHT algorithm [3] that adds spatial scalability features to the
SPIHT algorithm without sacrificing the interesting features of the original algorithm.
The coding system proposed in this paper, called OBHS-SPIHT, extends the 2D HS-
SPIHT algorithm to object-based coding of MRI data. The OBHS-SPIHT algorithm
fulfills all the highlighted requirements for medical image information archiving and
transmission systems mentioned earlier in this section.

The rest of this paper is organized as follow. Section 2 gives an overview of the
OBHS-SPIHT coding system. In Section 3, the OBHS-SPIHT coding algorithm is pre-
sented. The scalable structure of the OBHS-SPIHT bitstream is explained in Section 4.
In Section 5, some details about the simulation of the coding system are given and ex-
perimental results for multiresolution lossless as well as lossy decoding are presented,
and finally, Section 6 concludes the paper.

2 System Overview

The proposed OBHS-SPIHT coding system is depicted in Figure 1. The system input
is volumetric MR data set which consists of various slices. On the encoder side, each
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Fig. 1. Block diagram of the OBHS-SPIHT coding system. w denotes the wavelet coefficients,
and m means the decomposed mask.

slice is first segmented to extract the medical object of interest from the background.
Each voxel in the data set is considered either inside or outside the object. The extracted
object is decomposed by a shape-adaptive integer DWT (SA-IDWT) approach which
maps integer object voxels to integer wavelet coefficients. Details on the segmentation
process and the DWT will be given in Section 5.

The decomposed object coefficients and the decomposed shape mask are then con-
signed to the OBHS-SPIHT encoder. The encoder only encodes the coefficients that
belong to the decomposed object. To recognize these coefficients it uses the decom-
posed shape mask. The bitstreams from the shape coding and object coding algo-
rithms are assembled in the bitstream organizer to generate the final encoder output
bitstream.

In a customization stage, the encoded bitstream is reordered and truncated by a parser
which provides proper bitstreams for multiscale lossy-to-lossless decoding. On the de-
coder side, the bitstream separator first extracts the mask and the object bitstreams from
the parsed bitstream. The shape mask is then reconstructed by decoding the shape bit-
stream. The decomposed mask, which is required by the OHS-SPIHT decoder, is pro-
vided by applying the same level of decomposition as used by the encoder to the shape
mask. The OHS-SPIHT decoder then decodes the object bitstream, and the inverse SA-
DWT is applied to the decoded wavelet coefficients to reconstruct the original slice
object at the requested resolution and rate.

3 Object-Based HS-SPIHT

The SPIHT algorithm of [3] considers sets of coefficients that are related through the
parent-offspring dependency depicted in Figure 2. In its bitplane coding process, the
algorithm deals with the wavelet coefficients as either members of insignificant sets,
individual insignificant pixels, or significant pixels. It sorts these coefficients in three
ordered lists: the list of insignificant sets (LIS), the list of insignificant pixels (LIP),
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Fig. 2. 2D SPIHT Parent-offspring dependency across wavelet subbands in each slice

and the list of significant pixels (LSP). The main concept of the algorithm is managing
these lists in order to efficiently extract insignificant sets in a hierarchical structure and
identify significant coefficients, which is the core of its high compression performance.
The SPIHT algorithm provides a progressive (by quality) bitstream which is fully SNR
scalable, however its bitstream does not support spatial scalability.

In [12, 13] we proposed a scalable modification of SPIHT for image coding, called
highly scalable SPIHT (HS-SPIHT), through the introduction of multiple resolution-
dependent lists and a resolution-dependent sorting pass. In general, a wavelet decom-
posed slice with N levels of 2D decomposition enables a scalable encoder to provide
at most N + 1 different spatial resolution levels. To distinguish between different res-
olution levels, we denote the lowest spatial resolution level as level N + 1. The spa-
tial resolution related to level k is 1/2k−1 of the resolution of the original data set.
The full resolution (the original sequence) then becomes level 1. The three subbands
(HLk, LHk, HHk) that need to be added to increase the spatial resolution from Level
k + 1 to Level k are grouped and called spatial subband set level k. The HS-SPIHT
algorithm encodes the different resolution subbands in the wavelet decomposed image
separately, allowing a parser or a decoder to directly access the data needed for recon-
struction of a desired spatial resolution and/or quality. To manage the scalable coding
process, for each resolution subband set, the algorithm defines a set of LIP, LSP and
LIS lists, therefore there are LIPk, LSPk, and LISk for k = smax, smax − 1, . . . , 1
where smax is the maximum number of spatial resolution levels supported by the en-
coder. To improve the algorithm to be used for coding of medical images which con-
tain objects with any arbitrary shape, we only consider and process those coefficients
that belong to the decomposed object (see Figure 3) and those sets that are at least
partially located inside the decomposed object, similar to the SA-SPIHT algorithms
in [14].
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Fig. 3. Example of a decomposed mask of an arbitrarily shaped object

Fig. 4. Structure of the OBHS-SPIHT encoder bitstream for a slice. P n
k is related to the codepart

of spatial subband set level k at bitplane level n.

4 Bitstream Structure

Figure 4 shows the structure of the bitstream generated by the OBHS-SPIHT encoder
for a slice. The scalable object bitstream is constructed of different codeparts (Pn),
where each part belongs to a bitplane level. Inside each bitplane codepart, the bits that
belong to the different spatial subband sets, Pn

k , are separable. To support bitstream
parsing, some markers are put in the bitstream to provide the information required for
identifying the different resolution and bitplane codeparts in the parsing process.

The encoder needs to encode the input object only once at a lossless rate (covering
all biplane coding levels from the maximum bitplane level to bitplane level 0). Differ-
ent bitstreams for different spatial resolutions can be easily generated from the encoded
bitstream by selecting the related resolution codeparts. The parsing process is a simple
codeparts-selection procedure and can be carried out by a server that stores the encoded
medical data sets or by an individual parser as a part of an active network. The parser
does not need to decode any part of the bitstream. As a distinct feature, the reordered
bitstreams for each spatial resolution are completely rate-embedded (fine granular at bit
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Table 1. Description of the MR data sets used as test volumetric medical images in this paper

History Age sex File name Voxel size (mm) Volume size

Congenital heart disease 1 M MR ped chest 0.78 × 0.78 × 5 256 × 256 × 77
Normal 38 F MR liver t 1.45 × 1.45 × 5 256 × 256 × 58
Normal 38 F MR liver t2e1 1.37 × 1.37 × 5 256 × 256 × 58

Left exopthalmos 42 M MR sag head 0.98 × 0.98 × 3 256 × 256 × 58

level) and can be truncated at any point up to the level of a perfect lossless reconstruc-
tion. Note that the markers in the main bitstream are only used by the parser and do not
need to be sent to the decoder.

5 Experimental Results

5.1 Simulation Details

The OBHS-SPIHT coding system were fully software implemented. As volumetric
medical data we have chosen the four gray-scale (8 bits per voxel) MR data sets that
were also used in [6,5,15]. A description of these MR sets is given in Table 1. To extract
the objects from the unimportant, very low magnitude background voxels, a two-stage
threshold-based segmentation scheme was used. In the first stage, each MR set was
compared with a threshold and all voxels that exceeded the threshold were considered
to belong to the object. In a second stage, all background areas that were surrounded by
the object were reclassified to belong to the object. The first slice of one of the MR test
set, MR sag head, and its appropriate segmentation mask is shown in Figure 5. For the
object-based wavelet decomposition, an efficient, non-expansive SA-DWT approach,
based on the method introduced in [16] was implemented. The integer I(2,2) wavelet
filter bank [17] was implemented in a lifting scheme and used for object decompositions
with symmetric extension at the boundaries of the object in each slice.

The OBHS-SPIHT encoder was set to progressively encode the decomposed objects
of all slices of each MR test set to the lossless rate with three levels of spatial scalabil-
ity support. The binary mask information for each slice was encoded by an arithmetic
binary coding scheme [18].

5.2 Results

Table 2 provides the average bits per voxel (bpv) obtained by OBHS-SPIHT for mul-
tiresolution lossless coding of the four MR object sets. As the results show for both
cases, a lossless version of the lower resolutions can be obtained at very small rates.
Figure 6 shows the lossless reconstruction of slice 9 of MR sag head data set at three
different resolutions (full, half and quarter). The average rate consumed for coding of
the binary mask information of the MR sets lies between 0.016 bpv to 0.02 bpv and
therefore negligible.

In Table 3, the OBHS-SPIHT results for lossless coding at full resolution are com-
pared with HS-SPIHT, SPIHT, JPEG2000, JPEG-LS and WinZip coding approaches.
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(a) (b)

Fig. 5. The first slice of the MR sag head data set. (a) Original data. (b) Extracted mask.

Table 2. Average bits per voxel obtained for lossless encoding of the MR data sets by OBHS-
SPIHT

Spatial lossless bits per voxel (bpv)
resolution MR ped chest MR liver t1 MR liver t2e1 MR sag head

Quarter 0.1419 0.2722 0.2605 0.1727
Half 0.4339 0.8320 0.8378 0.5435
Full 1.2550 2.3420 2.4955 1.7440

For these coding approaches, the object background in all slices was set to zero to have
a fair comparison with OBHS-SPIHT. A very small difference between the lossless
compression rates of HS-SPIHT and SPIHT is due to the extra budget consumed by
HS-SPIHT for markers in the bitstream which are required for the parsing process. The
results reported here for SPIHT, HS-SPIHT and OBHS-SPIHT were obtained without
extra arithmetic coding of the encoder output bitstreams. As shown in [3], an improved
coding performance for SPIHT and consequently for HS-SPIHT can be achieved by fur-
ther compressing the binary bitstreams with an arithmetic coder. Despite this fact, the
OBHS-SPIHT algorithm provides comparable results to JPEG2000 while it has much
less complexity [7]. As the results show, JPEG-LS outperforms the other coders, but it
does not support spatial scalability and its bitstream can not be used for lossy decoding.

To show the full scalability of OBHS-SPIHT, Table 4 presents some numerical re-
sults for multiresolution decoding of the MR test sets at a wide range of bit rates. This is
based on a scenario of one-time-encoding and multiple-times-decoding, by parsing the
encoder bitstream for various resolutions and rates, which is required for serving differ-
ent clients with different capabilities in archiving and transmission systems especially
over a heterogeneous system like the Internet. In such systems each client can request
a specific bit rate and resolution level which fits its needs.
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Fig. 6. Lossless reconstruction of slice 9 of MR sag head at full, half and quarter resolution by
OBHS-SPIHT decoder

Table 3. Comparison of average bits per voxel obtained for lossless encoding of the MR data sets
at full resolution with different coding methods

Method MR ped chest MR liver t1 MR liver t2e1 MR sag head

OBHS-SPIHT 1.2550 2.3420 2.4955 1.7440
HS-SPIHT [12] 1.5921 2.6354 2.7781 2.1772

SPIHT [3] 1.5818 2.6247 2.7677 2.1660
JPEG2000 [19] 1.4537 2.2266 2.3499 1.9029
JPEG-LS [20] 1.2183 1.9587 2.1134 1.5911

WinZip 1.8900 3.7261 3.7512 2.3571

Table 4. PSNR results for lossy decoding of the OBHS-SPIHT bitstreams at different spatial
resolutions and rates

Spatial rate PSNR (dB)
resolution (bpv) MR ped chest MR liver t1 MR liver t2e1 MR sag head

Quarter 0.0625 45.72 35.65 35.59 42.84
0.125 58.26 45.37 45.58 53.70

Half 0.0625 33.56 28.79 27.62 32.70
0.125 40.43 33.88 31.96 38.45
0.25 48.00 40.26 38.85 44.75

Full 0.125 32.42 28.13 25.67 30.55
0.25 36.72 32.96 29.90 34.33
0.5 42.23 37.03 34.89 38.43
1 47.70 43.05 40.24 43.47
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6 Conclusions

An object-based, highly scalable wavelet coding system, OBHS-SPIHT, for lossy-to-
lossless coding of MR data was presented. The object of interest in each slice of MR
data sets were segmented from the background. A reversible shape-adaptive integer
DWT was used to decompose the input objects. Each slice of the data set was encoded
separately. This not only facilitates more efficient random access to the slices, but also
requires less memory from the coding system. The OBHS-SPIHT bitstream is easily
reorderable by a simple parser for multiresolution decoding. The experimental results
for lossy and lossless cases on some MR data sets at various spatial resolution levels
showed the excellent performance of the proposed algorithm. Possessing important fea-
tures such as arbitrarily shaped object coding and full resolution and quality scalability
functionalities makes the proposed approach attractive for volumetric medical image
information archiving and transmission systems.
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Abstract. A novel multiresolution approach is presented to segment
Brain MRI images using fuzzy clustering. This approach is based on the
fact that the image segmentation results should be optimized simulta-
neously in different scales. A new fuzzy inter-scale constraint based on
antistrophic diffusion linkage model is introduced, which builds an ef-
ficient linkage relationship between the high resolution images and low
resolution ones. Meanwhile, this paper develops two new fuzzy distances
and then embeds them into the fuzzy clustering algorithm. The distances
describe the fuzzy similarity in adjacent scales effectively. Moreover, a
new multiresolution framework combining the inter- and intra-scale con-
straints is presented. The proposed framework is robust to noise images
and low contrast ones, such as medical images. Segmentation of a num-
ber of images is illustrated. The experiments show that the proposed
approach can extract the objects accurately.

1 Introduction

Multiscale or multiresolution approaches for medical image analysis, such as the
pyramid[1], stack[2] and wavelets[3], have gained considerable attention. The seg-
mentation in conventional pyramid[1] is accomplished by a downward projection
from one scale to another scale, which limits the possible number of segments
to 4i(i ∈ N). The stack is a successful multiresolution method in 2D images,
but the transition from 2D to 3D is far from trivial. Keon et al developed a new
multiscale image segmentation technique[4-6], i.e. the hyperstack. The conven-
tional (single-parent) hyperstack is characterized by the fact that a voxel at one
level of the hyperstack is connected to at most one (parent) voxel in next higher
layer. The extension, probabilistic (multiparent) hyperstacks, is introduced [6],
in which children are allowed to link to multiple parents, but its computational
cost is very expensive. In the hyperstack segmentation method, many linkage
criteria are proposed to build the most possible child-parent relationship, which
demonstrates the similarity between the voxels at adjacent level efficiently.

Some fuzzy clustering approaches based on multiresolution framework were
proposed recently[7][11-15]. Mahmoud et al proposed an efficient method [7],
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but the fuzzy clustering was only regarded as a post-processing step for the
over-segmented regions. Punya presented a multiresolution fuzzy clustering al-
gorithm[11], but the Fuzzy C-Means algorithm (FCM) was only implemented on
each scale respectively, and neglected the relationship between different scales.
A multiresolution color image segmentation approach was presented [12], where
a multiscale dissimilarity measure was proposed to measure the inter-region
relations. Reference [13] presented a new unsupervised multiresolution pyra-
midal edge detector, and a multiresolution clustering method was developed
to speed up the conventional fuzzy algorithm[14]. Reference [15] described a
multiresolution-based approach combined with wavelet analysis. A local FCM
segmentation generated an estimate of local intensity. These approaches often
apply the fuzzy clustering algorithm directly in each level of scale images re-
spectively, but they fail to introduce the inter-scale relationship for optimizing
the intra-scale segmentation. Therefore, the approaches are not enough robust
to the degraded images.

This paper develops a novel fuzzy segmentation approach based on anti-
strophic diffusion linking model. The first step of the approach is to build the
relationship of child-parent scales. The fuzzy clustering combining the inter-
scale and intra-scale constraints is then applied for image segmentation. The
paper is organized in the following way. In section 2, the multiresolution linking
model is described. In section 3, the inter-scale constraint and the multireso-
lution algorithm are presented. In section 4, experimental results are provided,
and conclusions are reported in the end.

2 Nonlinear Diffusion Linking Model

In this section, we describe the nonlinear diffusion linking model, which is con-
structed as the scale space. The nonlinear diffusion linking model is similar to
hyperstack, but root labeling and downward projection applied in hyperstack
segmentation are excluded, we only use the proposed multiresolution fuzzy clus-
tering to segment images.

2.1 Blurring and Subsampling

Perona and Malik showed that a scale-space could be represented by a progres-
sion of images computed by the heat diffusion equation[8][9][10]. When diffusion
coefficient D is defined as a constant in all locations, the diffusion equation is
equal to isotropic diffusion, i.e. Gaussian blurring. When D is a matrix, the
equation is anisotropic diffusion. The pixel values at high level may be com-
puted by successively applying diffusion equation and then subsampling. Perona
and Malik firstly introduced non-linear diffusion, i.e. PM equation [9], within
the image processing context. The original image L0 is blurred by the diffusion
equation with a specific diffusion coefficient D suitable for the image pattern,
and a coarse image is obtained. The coarse image is then subsampled, and the
higher-level image L1 is obtained. Similarly, more levels can be obtained.
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2.2 Linking

In the linking step, the parent-child relationship between any two adjacent layers
is defined. Meanwhile, the spatial relationship, between the image elements of
two successive layers of the scale space, is always known. For example: in a 2*2
subsample scale space, a pixel in higher level is the parent of four nearest image
elements (children) in lower level, so each child has only one parent and therefore
no ambiguity exists in the spatial parent-child relationship. Here, this parent is
called explicit parent, because it is exclusive. Similarly, the four children are
called explicit children.

However, this relationship is ambiguous or fuzzy in a linked model such as
hyperstack, where the children of a level can belong to different parents in upper
level. The similarity between a child image element and its possible parents is
defined to describe how similar they are. Two usual similarity criteria for link-
ing were presented [6]. The first similarity term is based on intensity proximity
between children and parents. The second similarity term encourages the con-
vergence to ever fewer parents. The parents are selected on the basis of their
affection to a given child. The potential parent with the highest affection value
is selected to be the child’s parent. This affection is defined as:

L(x, y) =
2∑

i=1

ωiSi(x, y),

where x and y are a given child and potential parent respectively, ωi is weight
values, Si(x, y) is the two similarity term.

3 Multiresolution Fuzzy Clustering

3.1 Self-similarity and Constraints of Inter- and Intra-scale

There is self-similarity in a series of images of scale space, because all of them
are the approximate representation of original image with different scales.

(1) The similarity in a scale. The similarity in a scale shows obvious clustering
features, where the children belonging to identical class are similar. The conven-
tional FCM is competent to describe the similarity, but the similarity in a scale
is very sensitive to noise.

(2) The similarity between two successive scales. The children are related to
their parents, and the children both inherit the features of their parents, and
show some new features. The inherited features include intensity, gradient, and
fuzzy clustering.

In order to better describe the relations, some mathematical symbols are
introduced. Let X(L) = {X(L)

k |k ∈ I(L)} be the image (or feature image of
the image) in level L. x

(L)
k is the image value or feature vector of the pixel k,

I(L) is the data set. The labeled image is denoted by l(L) = {l(L)
k |k ∈ I(L)},

where l
(L)
k ∈ {1, 2, . . . , c} represents the label of the pixel k, c is the number of
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clustering. The multiresolution segmentation is described as: given X(L+1) and
l(L+1) in the higher level L + 1 , the optimal estimation about l(L) should obey
the self-similarity of both inter- and intra-scale. Let P (x(L)

k ) be defined as the
parent of the pixel k in level L according to the linking model, and PS(x(L)

k )
be the explicit parent of pixel k according to the spatial relationship. P (x(L)

k ) is
defined as:

P (x(L)
k ) = argmax{L(x(L+1)

m , x
(L)
k )} m ∈ Np(PS(x(L)

k )) (1)

Where Np(PS(x(L)
k )) is defined as the neighbors of PS(x(L)

k ) , L(x, y) is the
affection value between x and y described in the above section. The equation (1)
is straightforward. The linked parent P (x(L)

k ) should be the pixel with maximum
affection value in the neighbors of the explicit parent obtained by the spatial
relationship. The neighbors decide the search volume of potential parents. For
example, the 4-neighbors or 8-neighbors is usual search volume. Similarly, the
linked child can be obtained from the linking relationship. Let S(x(L+1)

k ) be the
most possible child of pixel x

(L+1)
k :

S(x(L+1)
k ) = argmax{L(x(L+1)

k , x(L)
m )} m ∈ Nc(x

(L+1)
k ) (2)

Where Nc(x
(L+1)
k ) denotes the explicit children of pixel x

(L+1)
k . For example,

every pixel in the level L + 1 has four explicit children in the level L, if the 2*2
subsample is applied in the construction of the linking model. S(x(L+1)

k ) is the
child with the maximum affection value in the four children.

According to the self-similarity described above, the fuzzy distances should
include two parts: (1) the fuzzy distance in a scale. (2) the fuzzy distance be-
tween two adjacent scales. The intra-scale distance is defined in the conventional
FCM. The similarity between adjacent scales shows that the fuzzy clustering,
the parent and its children belong to, is similar. Moreover, the clustering centers
in two adjacent levels are also close. Therefore, two inter-scale fuzzy distances,
i.e. ‖P (x(L)

k )−v
(L+1)
i ‖ and ‖v(L)

i −S(v(L+1)
i )‖ , are introduced, where v

(L)
i is the

clustering center in Level L. In figure 1, the dashed line represents the parent-
child relationship based on the linking model. The first fuzzy distance shows the
distance between the linked parent P (x(L)

k ) of a pixel x
(L)
k and the correspond-

ing clustering center v
(L+1)
i in the higher level. The second fuzzy distance de-

scribes the distance between two corresponding clustering centers of the adjacent
levels.

Firstly, the two distances are based on the fact that the parent and child
should belong to the two clustering centers with the parent-child relationship
respectively, which shows the similarity of the parent-child pixels in different
scales. Secondly, two distances also show the fact that the center v

(L)
i in low

scale L should not be far from the child of the corresponding center v
(L+1)
i in

the higher scale, which show the similarity of clustering centers in different scales.
It is obvious that these facts are similar to the observed result in successive scale
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Fig. 1. The inter-scale fuzzy distance

by human eyes. The two distances should be minimized while the fuzzy clustering
converges in a global optimal solution. The inter-scale constraint between the
current level L and higher Level L + 1 is defined as follows:

J (L,L+1)
m (U ;V ;X) =

n∑
k=1

c∑
i=1

u
(L)m
ik [α·‖P (x(L)

k )−v
(L+1)
i ‖2+β·‖v(L)

i −S(v(L+1)
i )‖2]

(3)
Where α, β are parameters, which control the sensitivity of inter-scale constraint.
The membership value uik defines the grade of a feature point xk belonging to
the cluster center vi . m is a parameter ranging from 1 to ∞, which controls
the fuzziness of the resulting. In most cases, m is set to be 1.5. L and L + 1
denote the adjacent levels in the scale space. n and c are the number of feature
points and fuzzy clustering in the image respectively. According to FCM, the
intra-scale constraint in Level L is defined as follows:

J (L)
m (U ;V ;X) =

n∑
k=1

c∑
i=1

u
(L)m
ik · [ω‖x(L)

k − v
(L)
i ‖2] (4)

Where ω is a parameter. Integrate (3) and (4), the multiresolution energy func-
tion combining the inter- and intra-constraint is defined as:

E(U (L),V (L)|U (L+1),V (L+1)) = J (L)
m + J (L,L+1)

m (5)

3.2 Multiresolution Fuzzy Segmentation Algorithm

The segmentation begins from the top level, where the pre-segmentation is per-
formed by a conventional clustering method, such as FCM. The result is used
to the segmentation in the lower level. The optimal problem in every level is to
minimize the energy function described above:

(U (L),V L) = argminE,

c∑
i=1

u
(L)
ik = 1 for all xk (6)
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From Lagrange method, let J = E−λ · (∑c
i=1 u

(L)
ik −1). The optimal solution

is obtained from the equations: ∂J/∂u
(L)
ik = 0 and ∂J/∂v

(L)
i = 0:

u
(L)
ik =

( 1
H )

1
m−1∑c

i=1(
1
H )

1
m−1

(7)

where H = [ω‖x(L)
k − v

(L)
i ‖2 + α · ‖P (x(L)

k )− v
(L+1)
i ‖2 + β · ‖v(L)

i − S(v(L+1)
i )‖2]

v
(L)
i =
∑n

k=1[u
(L)m
ik · (ω · x(L)

k + β · S(v(L+1)
i ))]∑n

k=1[u
(L)m
ik · (β + ω)]

(8)

The equation (7) and (8) are the iteration equations of multiresolution fuzzy
clustering in level L. After several iterations, u

(L)
ik and v

(L)
i are the optimal esti-

mation of membership value and fuzzy clustering center in level L respectively.

4 Experiments

We designed two groups of experiments in this section, one for synthetic exper-
iment and the other for MRI brain images. We build the linking model by the
conventional PM diffusion equation before the segmentation. In the first group,
a 123*112 synthetic image is drawn, where a target and background represent
conventional 2-class segmentation. The gray value of target is 186 and the back-
ground is 125, and 30% Gaussian noise is added to the image.

a b c d

Fig. 2. The segmentation of image with serious noise. (a) is the original image. (b) is
the blurred image in high scale, (c) is the segmentation result in the high scale. (d) is
the result in the original image by the proposed model.

Figure2 is the experiment result with serious noises. The segmentation result is
described by two colors, white and black. From Figure2(d), the target is extracted
from the background successfully by our model, only the boundary has a little
drawback, because the serious noise spoiled it.

The MRI images are obtained from the Mcgill Brain Web Database, where the
different slices of brain images with different noises are provided. The noise in
these datasets varies from 0% to 9%. We downloaded the datasets and segmented
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a b c d

e f g h

Fig. 3. The segmentation of slice 91 and 100 with 5% noise. (a) slice 91, (e) slice 100.
(b) , (f) are the coarse images in the high scale. (c), (g) are the segmentation in coarse
images. (d) and (h)are the final segmentation results.

the slices for extracting three matters, i.e. brain gray matter, white matter and
cerebrospinal fluid.

Figure 3 describes the segmentation of MRI images with 5% noise, where gray
matter, white matter and cerebrospinal fluid are extracted successfully. Figure
3(d) and (h) demonstrate the performance of our model in the low contrast
medical images.

Figure 4 describes the segmentation of MRI images with 9% noise, which is
also the biggest noise in the brain databases. The results of Figure4 (d) and (h)
are similar to those of Figure3 (d) and (h), but a little gray matter is wrongly
classified as whiter matter, and a little cerebrospinal fluid is assigned to gray
matter. Even so, the segmentation has a satisfying result as to these degraded
MRI images.

The selection of parameters is described in table 1, where the parameters
should be chosen according to the noise degree. Usually, the parameter ω is fixed
to 1, while other parameters are proportionally chosen to control the weights
between the inter- and intra-scale constraints.



894 G. Yu et al.

a b c d

e f g h

Fig. 4. The segmentation of slice 91 and 100 with 9% noise. (a) slice 91, (e) slice 100.
(b) , (f) are the coarse images in the high scale. (c), (g) are the segmentation in coarse
images. (d) and (h)are the final segmentation results.

Table 1. The selection of parameters in the experiments

Noise ω α β

5% 1 0.5 1
9% 1 1 1
15% 1 5 2
30% 1 8 2

Where α ∈ [0.5, 10], β ∈ [1, 3] represent the confidence in the inter-scale con-
straints. When the noise in the images becomes more serious, α,β should increase
accordingly. After many experiments, we find that α, β are not sensitive to the
segmentation results because a little change of the parameters hardly influences
the final results. In most cases, the value of α, β can be set as an integer, where
the increment is 1. The selection of parameters refers to the Table 1.

The computation efficiency of proposed model is very desirable, which is close
to conventional FCM, because the re-sampling in the high scale reduces the
datasets evidently. Meanwhile, the segmented clustering centers in high scale
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can be used as the initial condition of low scale image according to the linkage
relationships, which also reduces the iteration times for the final convergence.
Every computation time of the above experiments approximates to 1 second,
where our model is programmed by Matlab 6.5 in the computer with CPU P4-
1.6GHz and 256M memory.

5 Conclusion

This paper proposed a novel multiresolution fuzzy method for MRI image seg-
mentation. This proposed approach is based on the fact that the image seg-
mentation results should be optimized simultaneously in different scales. In this
approach, the similarity between adjacent scales was built by a nonlinear linking
model. A new inter-scale fuzzy constraint was then introduced. The constraint
described an efficient fuzzy linkage relationship between the high scale and low
scale. Two fuzzy distances defined based on the constraint showed the similarity
of parent-child pixels and clustering centers in successive scales. We developed
a new energy function and then embedded it into the conventional fuzzy clus-
tering. Meanwhile, new fuzzy clustering iteration equations were derived, which
was utilized for computing the fuzzy partition matrix at different resolutions.

The approach is robust to noise images and low contrast ones, because the
optimization is applied in different scale. We segmented several images includ-
ing synthetic image and Brain MRI images with different noise. Segmentation
results showed that the proposed approach is accurate for extracting the ob-
jects. Moreover, the approach is not only used to segment MRI images, but also
for usual pattern classification. Besides, the computation time is very desirable,
which is competent to high performance of real application.
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Abstract. This work takes is part of a medical research project which
intends to induce and study cardiac hibernation in rats. The underlying
goal is to understand the physiology of heart disease. We present here a
novel method to compute the 2D-deformation field of the heart (rat or
human) from tagged MRI. Previous work is not suitable for wide clinical
use for different reasons, including important computing time and lack of
robustness. We propose an original description of tags as local minima
of 1D signals. This leads us to a new formulation of the tag tracking
problem as an Extrema Temporal Chaining (ETC) and a 2D-rendering.
2D-displacements are then interpolated on a dense field. The developed
method is fast and robust. Its performances are compared to those of
HARP, a leading method in this field.

Introduction

The present work is part of a medical research project that is carried out in
the department of radiology of the GUH2. It attempts to induce and study the
cardiac hibernation phenomenon in rats. For this purpose, the analysis of the
heart’s inner-wall motion is fundamental.

Among the noninvasive methods available for studying the heart motion,
tagged magnetic resonance imaging techniques [3,4] enable the visualization of
inner-wall motion : it consists of adding a regular pattern at the beginning of
a normal cine-MRI (Magnetic Resonance Imaging) sequence. The CSPAMM
(Contrast enhanced SPAtial Modulation of Magnetization [3,5]) tagging tech-
nique produces the most usual pattern : 2 orthogonally tagged sequences with
a sinusoidal-like profile, yielding alternating white and black stripes (see Fig.1).
During the acquisition, the tag pattern deforms with the tissue, allowing the
tracking of motion of points within the myocardium. The dark lines are called
tags or tag lines. An example of tagged MRI sequence in the case of a human
heart is presented in Fig. 1. The same imaging acquisition process was success-
fully adapted to rat imaging on a Philips 1.5 T scanner, but with a lower quality
due to physical limitations.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 897–908, 2006.
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Fig. 1. 4 images of a human heart, from a tagged MRI CSPAMM sequence in both
tagging directions, frames 1, 3, 5, 7. The image size is 71 × 62 pixels, the tag spacing
equals 6 pixels, and the inter-image delay is about 36 ms. To overcome the visual effect
of the fading in the figure, the contrast has been linearly enhanced.

Beyond the medical qualitative analysis, clinicians wish to measure precisely
the displacement of the myocardium points, including points at the border of
the cardiac muscle where the signal is noisiest. This is especially important to
extract myocardial strains that accurately measure cardiac motion. A manual
exploitation of the tagged images is not desirable since it would take many hours
per sequence [4].

Several estimations of the myocardium motion have been proposed in the
literature during the past twenty years. They are based on ideas such as tag
tracking, optical flow computing, or signal phase analysis. Two softwares are
most prominent : FindTags [9] developed by M.A.Guttman, J.L. Prince and
E.R.McVeigh, and HARP [27] developed by N.Osman.

Why not work with one of the existing softwares ? Because none of the meth-
ods developed until now in the tagged MRI field has been extensively validated
in clinical context. The HARP method is certainly the most advanced in that
sense, but it is not yet operational : in particular, it suffers from coarse tag jump
errors and some local instabilities near the myocardium boundaries. Findtags,
in turn, is difficult to use and not widely available.

One major difficulty when analyzing tagged MRI is the poor resolution and
contrast present in the images. In our context this is accentuated for the rat
studies. Thus the goal of our work is to build a robust, accurate, fast and fully
automatic procedure of analysis and to validate it in a clinical context.

The paper is organized as follow: predominant works on tagged MRI are
recalled in section 1. The extrema temporal chaining method is described in
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section 2. Section 3 deals with the 2D deformation field. Section 4 is devoted to
a comparison of the results obtained with our ETC method and with the HARP
method.

1 Previous Work on Tagged MRI

Previous work on tagged MRI is of two types : solutions based on tag detection
and tracking (the oldest ones), and solutions based on derivatives calculation.
We describe some of them in the 2 next paragraphs.

Many tag detection methods have been presented in the literature [6,12,9,8,7].
The three most popular ones are the following ones : that of Fisher [6], based on
a 2D-correlation of the grid nodes (intersections). A dynamic post-processing is
then used to track the tag nodes through time [17]. The FINDTAGS method of
Guttman [9,10] allows to find and track tags through time via a template matching
of the physical expected tag profile. These two methods require a priori knowledge
on the tagging sequence, and lead to errors near the myocardium boundaries. Fi-
nally, we mention the snake tracking of the tag lines, first proposed by Young [12],
Amini [13], and Kumar [11]. Major drawbacks of the snake-based solutions are that
they require a prior initialization of the tag position in the first frame, and that
they are often time consuming. These three methods are highly parameterized, es-
pecially due to the fading effect which leads to parameter variations.

Tag tracking is not a goal in itself but a way to compute a dense deforma-
tion vector field. Most currently, only the tags intersections are used [30] since
the velocity may be directly computed on those points with analytical [31] or
stochastic multidimensional models [32]. But it is also possible to use the plain
tracked shapes information [14].

The second category of methods propose a direct calculation of the defor-
mation vector field. In comparison with the precedent ones, based on the tags
detection, the plain information of the image is used (and not only the subset
of the image corresponding to the tags). As a consequence, these methods have
fewer parameters. These methods are of three types :

1. the optical flow methods, which have to deal with the fading effect in different
manners [22,21,25,23,24]. In these methods, only the grid images are used.
It means that the computation is precise only at points on the grid, which
implies a weak precision of the values. A direct calculation without any model
could be derived from 2 CSPAMM sequences.

2. the phase constancy based method, known as HARP (HARmonic Phase im-
ages). The HARP method [27] uses the phase invariance of a material point.
The phase map is computed via a simple Fourier filtering followed by an un-
wrapping procedure. HARP uses the two orthogonally tagged sequences [26]
for a direct calculation of the velocity field. The results are visually good
and very close to FINDTAGS for the tag lines, but tag-jumping can occurs
in the tracking process, due to the local nature of the method.

3. the mutual information based methods. This very recent group of methods
works on the deformation itself, and maximizes mutual information [28] or
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other similarity image information values [29]. It is computed with the grid
image, but yields visually good results. No clear validation is available.

When comparing the different methods, tha tracking of HARP is better since
it is designed specifically for this application, but even HARP does not gives
acceptable results near the boundaries of the myocardium. For further applica-
tions, the useful part of the myocardium is thus limited.

2 Extrema Temporal Chaining (ETC)

Our strategy is mainly built on two elements. First of all, we want our method
to be as robust and precise as possible, while being automatic and fast. The
robustness demands a non-local approach. And we wish to have immediate post-
processings once the tracking is done for the whole image. Both conditions can be
fulfilled by matching points. We chose to achieve a geometric registration as it is
the case in the first type of methods described above. These methods often pro-
pose a prior segmentation of the tag and/or of the myocardium. But segmenting
shapes on MRI images (tagged or not) is a problem of very high complexity, often
requiring user interaction [9,11,14]. Moreover, myocardium contours are badly
defined due to the movement of the heart through the imaging plane. However,
the 2D-displacement field estimation may be done without any segmentation.
Therefore, to obtain an automatic computation, we choose a geometric match-
ing of tags through time rather than their direct spatial localization. Next 4
sections describe how this matching is done.

Secondly, tagged data consist of a set of two sequences of images with orthog-
onal tags as presented in Fig. 1. Rather than working on a grid image where
both directions are mixed (and where signal information is lost), each direction
is treated separately. Then, the results obtained in each case are combined.

2.1 Minima Chaining

One advantage of the CSPAMM tagging technique is that it produces very thin
tags (1 pixel wide). They correspond to local directional minima, when consid-
ering the orthogonal direction of the tag lines. If one extracts the 1D-signals in
this direction (that is orthogonally to the tags), then local directional minima
become local minima. This is illustrated in Fig. 2.

As the heart never rotates more than 45 degrees, this extraction is made for
the entire sequence, and the intersection of each persistent tag line with the
extracted fixed line still corresponds to a local minimum. If tagging in the main
directions of the image, the 1D-signal extraction simply corresponds to a row
and column extraction.

We notice that the corresponding minima positions are very precise and close
to each other between two consecutive time frames. So we achieve a temporal
chaining of those minima (see Fig.2) in a very simple manner. All the minima
are extracted at frame 1. They define the origins of the chains. Throughout
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Fig. 2. Signal extraction and extrema chaining. Successive 1D-signals (right) are lo-
cated at a fixed position in the tagged sequence. The extrema temporal chaining is
represented with arrows.

the time, two minima on two successive images are linked if they have close
spatial positions : if no minimum is found at frame t + 1 at the location where
a chain ends at frame t, then the search extends to a neighborhood of size 1,
2, then 3 pixels. Each pixel is chained only once. This guarantees that there is
no crossing between the different matchings. If one pixel at frame t + 1 may be
associated with two different chains with the same shift, then the chain without
other possible extremity is chosen. Otherwise the choice is made on a contrast
criterion as defined in Sec. 2.3. At the end of the chaining procedure, every
chain terminating before the end of the sequence is removed : this provides a
kind of robustness by ensuring that remaining chains have a spatio-temporal
meaning.

According to the tag orientation, rows and columns are successively consid-
ered. Results obtained by this temporal chaining procedure are promising : a
good detection of the tag lines through the myocardium is achieved (see Fig. 3).
There still remain some chains in the background, but they do not disturb further
processing.

2.2 Spatial Smoothness Assumption of Displacements

As presented on Fig. 3, a few matching errors occur, though the false detections
are isolated in space and time. These errors may easily be corrected by adding
a spatial smoothness assumption of the deformation field, which comes from
the elasticity of the myocardium [1,32]. To incorporate this, instead of choosing
the closest minima like in section 2.1, we shift the prospection according to
neighboring predicted displacements. Considering the lines sequentially, we may
predict displacements on line number n from frame t to t+1 using chains built up
at the preceding steps (lines n−1 to n−3). This is possible because when handling
line n, chains on the 3 previous lines have been treated and their position at
frame t + 1 is known. Thus we may compute their coarse displacements from t
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Fig. 3. Vertical-temporally chained minima on frames 1, 5, 10 and 14 in white, resulting
from the columns extraction of a horizontal-tagged sequence

to t + 1 via a linear interpolation from the minima locations. This is computed
in parallel with the minima chaining and used to shift the expected locations of
chains.

2.3 Proximity to Myocardial Boundaries

Let us now focus on what happens near the boundaries of the myocardium.
Due to the tissue properties and to the through-plane motion of the heart, the
boundaries are much noisier than the inner-wall. Consequently, those points are
critical locations where motion estimation is often least reliable.

We want our minima chainings to stick to the myocardium. However, near
the boundaries the chain might be lost in the noisy background which presents
many irrelevant minima. The critical situation that has to be avoided is when
a minimum just beside the myocardium jumps to a background minimum. In
such cases, there is a huge loss of ”dynamics”, which can be easily detected.
We choose a symmetrical definition of the dynamics of a minimum by the
formula

M+1 + M−1 − 2×m

2
where M+1, M−1 are the luminous intensity values of the 2 surroundings
maxima and where m is the value of the minimum for which we calculate the
dynamics.

How is the dynamics criterion incorporated in our procedure? Instead of se-
lecting only one minimum as in section 2.2, the two best candidates are selected.
The second is preferred if its dynamics is twice as great as the first one. A
coefficient value of 2 avoids a possible confusion between two inner tags.

2.4 Including Maxima and Sub-pixel Accuracy

For instance, only the minima of lines are chained. A similar minima chaining
is obtained when considering the horizontal tags and the image columns. Fur-
thermore, the same procedure may be applied on the maxima since the problem
is dual. Tags being fine lines, the minima chaining is accurate. White areas being



ETC: A New Method for Computing the 2D-Displacement Field 903

wider, false chaining may occur : maxima chains may cross minima chains. In that
case, the maxima chain is removed and the procedure is continued (the maxima
chaining is supposed to be less robust than the minima chaining). At the end of the
chaining procedure, we have four sets of chains corresponding to two directions of
tags and two types of extrema (minima and maxima). The displacement field can
now be estimated using all this information and not only the minima chaining.

Before computing the 2D-displacement field, the position of each extremum is
refined by a polynomial interpolation using the 2 surrounding pixels. We obtain a
sub-pixel accuracy and remove the discontinuity between ”no displacement” and a
1-pixel displacement. However, the sparse displacement information directly avail-
able from those chainings corresponds to an apparent displacement of the tag lines
along their orthogonal direction. It is not a component of the real displacement :
similarly to the through-plane effect, the signal extraction step creates a through-
line effect due to the motion of the heart across the extracted line.

There still remain two tasks to accomplish : retrieve the real components of
the 2D-displacements of extrema, and interpolate those sparse measurements.
Next section is devoted to these goals.

3 2D Deformation Field Computation

3.1 2D Displacements Real Components Retrieval

We know that when a point of the image at frame t lies on a tag (resp. crest)
line, its material matching lies on the same tag (or crest) line at frame t+1. This
is used to retrieve the real 2D displacements components. For the moment, the
extrema (the minima as well as the maxima) have been chained through time. We
now need to chain them spatially in order to define the tags and the crest lines.
Thanks to the temporal chaining, a unique spatial chaining may be conserved for
all the frames. There is indeed a one-to-one association of the extracted points
of the tags. Furthermore, the spatial chaining may be very easily and robustly
computed on the first image of the sequence since for this image tags are less
deformed and quite close to lines and columns of the image.

Now, the computation of the real 2D-displacements requires a correction of
the trajectory of the chained extrema (Fig. 4). The target point is shifted from
its initial to another extracted line, according to its orthogonal displacement,
following the tag or crest line. In this manner, the displacement map of all
horizontal chains points is updated using the vertical displacement components
and conversely for all the vertical chains using the horizontal displacements.
One component of the 2D-displacement being used to update the other one, the
procedure is not symmetrical and hence must be iterated. In practice, due to
the low values of the components, two or three iterations are sufficient.

3.2 Interpolation Using the Laplacian Equation

Obviously, the myocardium motion being continuous, the interpolation scheme
has to respect some smoothness conditions. We work on each component of the
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Fig. 4. True and apparent V x components on a horizontal chain. Vertical lines along
y represent the same tag line at frames 0, t, and t + dt, of which points have been
temporally chained on the dashed extracted lines. The gray vector Vxtrue is closer to
the real x-component of the 2D-displacement.

vector field separately since their continuity will induce the continuity of the
entire vector field.

In order to prevent the apparition of artificial velocity values, we reject meth-
ods like splines or polynomial approximations, since they create extrema. Ac-
cording to the locations where displacement values are well-known, a bilinear
interpolation is not well-adapted. Therefore, we use an iterative interpolation
according to the Laplacian equation with Dirichlet limit conditions1 :

ΔDx(x, y) = 0 et ΔDy(x, y) = 0

where (Dx, Dy) is the displacement vector field. It has 3 advantages over other
methods. Firstly, it does not create any new extremum. Secondly, it does not
propagate erroneous values : they are stopped by the surrounding conditioning
points, and induce a Dirac-like result. And thirdly it is very easy to perform,
since it is the limit state of a recursive mean scheme. Thanks to this interpola-
tion behavior, erroneous values remain do not propagate. Hence we can detect
them very easily by computing and thresholding the gradient. Finally the reverse
displacements are interpolated in the same way.

4 Results and Validation

4.1 Results

As presented in the two preceding sections, we dispose of a fully automatic
procedure for computing the dense 2D displacement field from a couple of tagged
MRI sequences. It has to be pointed out that the proposed Extrema Temporal
Chaining (ETC) method does not rely on the fading effect and does not use any
physical value nor any variable parameter. The ETC algorithm was implemented
using Matlab7.0, the MathWork, Inc. script on a Dell Latitude, 1.39 GHz, 1.00
1 Δ designs the Laplacian operator.
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Fig. 5. Visually unacceptable points (%) tracked with HARP and ETC methods. The
different zones are defined by curves set on the midwall (plain), sub-endocardium, and
sub-epicardium (dash-dotted), endocardium, and epicardium (dashed). The percentage
of obvious false matching are given for HARP, of which tag jumps, and for ETC. The
results are based on 16 sequences from 3 rats and 27 sequences from 5 patient studies.

Go, pentium 4. The mean computing time varies from 20 seconds for rat hearts
(size around 60 × 60 pixels, tag spacing of 4 pixels, and image delay of 13 ms)
to 50 seconds for humans (size : 70 × 70, tag spacing : around 7 pixels, image
delay : 30 ms).

Another major advantage of our method may be noted : the post-processing
is immediate. For example, to track any point within the myocardium, we only
have to add its 2D displacements to its coordinates (with bilinear interpolation
for sub-pixel accuracy). The results are visually good even near the boundaries,
for rats and patients alike. But they are a bit more robust and more precise for
humans than for rats, due to the limitation of acquisition parameters for imaging
rat hearts (10 times smaller with a 5 times faster beating).

A limitation comes however from the acquisition parameters. A visually bad
(blurred or noisy) sequence gives more doubtful results. Diminishing the tag
spacing without sufficiently diminishing the temporal imaging delay may cause
some errors such as tag jumping. But this compromise also has to be taken into
account for other image processing methods. When working with adapted (and
common) conditions, we can assume that the method works for every sequence.

4.2 Comparison to HARP

As a validation step, we compared ETC results with those of HARP tracking[27],
because HARP happens to be a validated method which is largely used in re-
search laboratories. HARP results are known to be good and accurate, except
for some tag jumping occurring mainly near the boundaries. In addition to that
phenomenom, some points near the boundaries may be lost in the background.
HARP tracking of points on the myocardium is about 20 times longer than with
our method. This is a useful advantage for ETC if we wish to track many points,
such as needed in a grid visualization of the deformation for example.
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We compared the tracking of both methods essentially on short axes (SA)
sequences. We placed 5 curves near 5 locations : midwall, sub-epicardium, sub-
endocardium, epicardium, and endocardium (see Fig.5, left image). The ini-
tial curves were set identical on the first frame, and the number of visual non-
acceptable points was checked manually through the sequence for both methods.
This means that we only rejected evident errors. For HARP, we distinguished
classical tag jump errors from others like points lost in the background. This
is recorded in Fig.5. The mean quadratic distance between HARP and ETC
tracking at the final frame is about 1

4 pixel in the midwall and 1
2 pixel in the

sub-epicardium and sub-endocardium areas when no visual error occurs. It raises
to more than 1 and 2 pixels for epicardium and endocardium respectively (taking
the erroneous points), corresponding to very irregular HARP outlines.

ETC appears to be more robust than HARP in each region, and the benefit is
especially big for boundaries zones. Due to the imaging quality, rat heart series
give somewhat worse but acceptable results.

5 Conclusion

The goal of this work was to propose a fast and automatic algorithm to compute
the 2D apparent velocity field from two CSPAMM tagged MRI sequences. We
ran the ETC algorithm on mainly 22 patients and 10 rats, accumulating 280
sequences. 200 of them concern patients, and are divided into 150 SA (Short
Axes) views and 50 LA (long axes) views. The 80 others are composed of 70
SA and 10 LA of rat hearts. The results depend on the quality of the acquired
cine, but are overall satisfactory. Moreover, ETC happens to have an accuracy
close to HARP and to be much more robust on the boundaries. It might be used
either alone to analyze tagged MRI, or as an intelligent initialization of target
points for HARP tracking.

We are currently validating ETC results on every sequence with a blind mark-
ing of tag line crossings. The marking is done by 4 different people, including 3
clinicians. Next step is to include ETC to a medical imaging tool already widely
in use at the GUH2 for clinicians use.

We then intend to make a large use of it to compute meaningful suitable
measures on the heart, such as strains, divergence, or movement modeling. More
specifically, further research will attempt to better characterize abnormal zones
of contraction resulting from infarction induced in rats.
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Abstract. Symptoms of Parkinson’s disease can be relieved through
Deep Brain Stimulation. This neurosurgical technique relies on high pre-
cision positioning of electrodes in specific areas of the basal ganglia and
the thalamus. In order to identify these anatomical targets, which are
located deep within the brain, we developed a semi-automated method
of image analysis, based on data fusion. Information provided by both
anatomical magnetic resonance images and expert knowledge is man-
aged in a common possibilistic frame, using a fuzzy logic approach. More
specifically, a graph-based virtual atlas modeling theoretical anatomical
knowledge is matched to the image data from each patient, through a
research algorithm (or strategy) which simultaneously computes an es-
timation of the location of every structures, thus assisting the neuro-
surgeon in defining the optimal target. The method was tested on 10
images, with promising results. Location and segmentation results were
statistically assessed, opening perspectives for enhancements.

1 Introduction

Deep brain stimulation (DBS) is widely accepted to alleviate movement dis-
orders. This neurosurgical technique is mainly used to treat severe idiopathic
Parkinson’s disease[1]. DBS is performed under stereotactic conditions (i.e. with
a stereotactic frame fixed to the skull) and consists in the implantation of two
electrodes (one per hemisphere) into an anatomical target. The electrodes are
connected to a neuro-pacemaker, placed at the trunk, and used to control the
stimulation parameters. This control device allows to manually adjust the stimu-
lation parameters according to the reduction of antiparkinsonian drugs, in order
to optimize clinical benefit against adverse effects. Various anatomical struc-
tures, located in the general area of the central gray nuclei, can be targeted:
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e.g. the subthalamic nucleus (STN), the globus pallidus internus (GPi) and the
ventral intermediate nucleus of the thalamus (Vim). The exact location of the
optimal target remains unknown, as the biological mechanisms involved in DBS
have yet to be fully understood. The chronic stimulation of these targets acts
as a lesion (or ”-tomy”, as in ”pallidotomy”), but with a dramatic reduction of
the drawbacks (mainly irreversibility, low control of lesion volumes, and severe
adverse effects in case of bilateral lesions).

Beyond the clinical aspects, the implantation technique itself is still a matter
of debate. Two main methods are proposed to define a surgical target. The classi-
cal stereotactic approach, historically based on ventriculography and stereotactic
atlas [2][3], uses a proportional indirect method, i.e. the coordinates of the target
are computed relatively to internal landmarks (the anterior and posterior white
commissures, called AC/PC). A more recent approach, called direct targeting,
relies on magnetic resonance imaging (MRI), which allows the direct visualiza-
tion of the target[4][5][6]. Both indirect and direct methods having limitations
(as the former struggles to take into account inter-individual variability, while
the latter depends mainly on image quality), clinical protocols applied worldwide
are still not standardized.

The clinical protocol routinely applied in our institution is based on direct
targeting[7][8], and unfolds in two steps. The pre-implantation phase starts with
the acquisition of tridimensional anatomical data under stereotactic conditions:
namely, T2 weighted MRI sequences 1 resulting in three orthogonal anisotropic
images (1 voxel = 0.52 × 0.52 × 2mm3) Using anatomical databases[2][3][9][10]
as a reference, the neurosurgeon carries out a visual analysis of the images,
in order to estimate the location of anatomical structures of interest, i.e. the
stereotactic target and its surroundings. The manual labeling of the central gray
nuclei area allows to determine an optimal implantation trajectory 2 for the
DBS electrodes. At implantation stage, the stereotactic system 3 is used as a
fixed referential to insert the electrodes and reach the previously computed co-
ordinates. Since surgery is performed under local anesthesia, the positioning of
each electrode along the insertion axis can be optimized according to the clinical
effects noticed during acute stimulation tests. Clinical results have been already
reported [8][11].

The manual labeling step required at pre-operative stage is relatively time
consuming, (about one hour for two sides) demands a high level of expertise, and
(being operator dependent) raises reproducibility issues. In order to assist the
practitioner in defining an optimal trajectory, we proposed to design a computer
process for image analysis, able to automate the extraction of areas of interest
(i.e. relevant anatomical structures such as the stereotactic targets and their
neighborhood) from MRI. We focused on the STN as this target, which is the
reference in DBS for Parkinson’s disease, is also difficult to identify due to its
small size and its complex anatomical surroundings.

1 Sonata 1.5 Tesla, Siemens, Germany.
2 iPlan, BrainLab, Germany.
3 Leksell G frame, Elekta, Sweden.
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2 Method

2.1 General Framework

It has been reported that recognition of brain structures in MRI could be
achieved through a data fusion method based on fuzzy logic[12], where every
sources of information (i.e. patient data and expert knowledge) are modeled in
the same possibilistic frame. Indeed, fuzzy sets and the possibility theory frame-
work appear suitable to account for the inter-individual variability observed in
living tissues and anatomical structures. Particularly, encouraging preliminary
results were obtained for the segmentation of the subthalamic nuclei[13].

A fuzzy membership map is an image mapping every voxel to a membership
degree μ ∈ [0, 1], which quantifies how much the voxel belongs to a particular
fuzzy set. Fuzzy tissue maps are extracted from the patient’s MRI through a
clustering step. Prior expert knowledge on the spatial relationships (e.g. relative
distance or direction) between anatomical structures of interest (i.e. landmarks
and the targeted structure itself) can also be expressed through fuzzy member-
ship maps.

The complementary fuzzy maps are then fused, by means of suitable possi-
bilistic operators, in order to achieve a segmentation of the targeted structures.
The fusion process relies on the definition of a research route, or scenario: a pre-
determined list of intermediate landmarks, linked by spatial relationships, which
are to be segmented successively in order to reach the target.

This method requires the expert to devise a specific single route for each
potential target. Furthermore, each intermediate structure has to be segmented
accurately: otherwise, errors would be propagated along the research route, down
to the final structure. Consequently, additional processings ensuring shape con-
straints (e.g. region growing, fuzzy shape maps, or edge detection) have to be
introduced systematically, in order to refine the segmentation obtained by simply
fusing the spatial relationships and tissue maps.

2.2 From scenario to strategy : Toward a Global Research Scheme

It appeared to us the fusion process could instead be guided entirely by a ”virtual
atlas”, i.e. a model formalizing expert knowledge by describing every structure
in relation to the others within a graph. The use of a relational graph to model
prior anatomical knowledge has been suggested in other recent works, through
either global or progressive approaches[14].

The global approach consists in matching a relational graph, extracted from
an anatomical atlas, with a similar graph, extracted from previously segmented
patient data. However, the over-segmentation of those images results in a diffi-
cult problem of inexact graph-matching. The progressive approach is based on
a graph model containing both iconic (i.e. extracted from a digital atlas) and
symbolic (i.e. expressed through linguistic descriptors) knowledge. Yet the as-
sociated recognition method still relies on a sequential research route which has
to be predefined specifically for each targeted structure.
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Instead of relying on predefined research sequences (or scenario), we aimed
to design a recognition process (or strategy) leading to the simultaneous ex-
ploration of several research paths, resulting in the progressive segmentation of
every structure defined in the model. While a research scenario depends on its
target, such strategy, guided solely by prior expert knowledge, depends on the
nature of the information contained in the graph-based model.

2.3 Graph-Based Model for Prior Expert Knowledge

The expert model is based on a graph, i.e. a list of vertices linked by edges.
Each vertex represents an anatomical structure of interest (i.e. a target or land-
mark) and contains relevant information such as tissue composition. Each edge
represents a spatial relationship between two structures, such as their relative di-
rections. This generic model leaves much freedom concerning the exact nature of
the data it contains: it is possible to add complementary types of information to
both the vertices (e.g. morphology) or the edges (e.g. distance). A specific kind
of information such as directions can also be represented relatively to points, or
to whole objects, through various models.

These modeling choices partly depend on the available sources of information.
Prior knowledge can be provided directly by the expert, expressing qualitative
information by means of semantic descriptors (e.g. ”above” or ”anterior to”).
Such formal descriptions are often imprecise and unexhaustive, but supposedly
reliable and relevant. Conversely, precise quantitative information on every struc-
tures and relationships can be extracted from a set of pre-labeled images, but
the relevance and statistical representativity of the data remains uncertain.

In our feasibility study, we chose to focus on reliable information which could
be obtained either from the expert or from images: tissue composition and rela-
tive direction. Actually, direction is a complex information, involving angle and
distance relationships, as well as the shape of the objects. We settled for a simple
representation method requiring little prior knowledge, and taking little time to
compute. Structures are assimilated to their center of gravity, and directional
relationships between these single points are defined according to their pro-
jections along three orthogonal axis: ”above/below”, ”anterior/posterior” and
”left/right”.

2.4 Research Strategy

We designed a simple automated fusion algorithm which uses the information
contained in the virtual atlas to guide the whole segmentation process. This par-
ticular method takes advantage of a specific property of our model: directional
relationships between lined up points translate into partial order relations, al-
lowing us to sort structures along each main axis.

The very first step consists in a tissue classification[15] of the patient’s MRI.
Each structure’s membership map is then initialized with the fuzzy map of the
tissue it belongs to. Throughout the whole process, these membership maps are
used to estimate a structure’s location by computing its center of gravity.
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The next step of the algorithm consists in roughly separating structures be-
longing to the same tissue class. Spatial relationships are propagated from the
most central structures (as the initial location of their center of gravity is as-
sumed to be closer to the solution) toward the most outer ones, then back from
the border toward the center (in order to constrain the central structures). ”Cen-
tral” and ”outer” refer to the relative position of the structure’s projection on
a given axis. This whole separation step relies on the hypothesis that the struc-
tures’ repartition is quite homogeneous, and that the image contains every struc-
ture described in the model: discrimination between structures of the same tissue
is based on their relative spatial characteristics.

The final step of the process consists in an iterative refinement of that first
solution, in order to ensure that every spatial constraint is respected: all re-
lationships in the model are propagated simultaneously and iteratively, until
convergence toward a stable solution is achieved (i.e. when the difference be-
tween the maps computed at step n, and the maps computed at step n+1, is
close to zero). The fuzzy membership map obtained for every structure can then
be interpreted as crisp segmentation results, once a defuzzification threshold (set
to 0.5 by default) has been applied: membership degrees are set to 1 when above
the threshold, and set to 0 when below.

Propagating a relationship from a S1 structure toward a S2 structure means
redefining the membership map of the S2 structure by fusing it with the direc-
tional map obtained from the S1 structure. But there is no unique method for
computing a fuzzy directional map, even from a single point. We used a simple
function projecting coordinates along the direction axis, then setting the mem-
bership degree to 1 when the directional constraint was respected (for instance,
y1 > y2 when the models said ”S1 is above S2”), or to 0 when it was not.

3 Results

3.1 Test Protocol

First preliminary tests were performed on simulated data, i.e. randomly gen-
erated 3D images on which structures were represented by spheres of various
random radius. The spheres were colored in various gray scales (with Gaussian
noise added) in order to simulate structures belonging to a specific tissue class.
A graph model was generated along with the simulated image, then used to seg-
ment it. Right after the first step of the algorithm, each structure was already
correctly identified: the computed center of gravity was located within the cor-
responding sphere, though small segmentation errors (underestimation) could
occur in case of close structures.

More realistic tests were performed afterward on a sample of ten images from
parkinsonian patients. The MRI sets were composed of 512× 512× 24 voxels of
0.52×0.52×2mm3. An appropriate coronal slice containing the STN was selected
for each patient and pre-labeled by the expert for further comparison. We used
a 2D anatomical model containing seven structures of interest. Every structure
was allocated to a specific tissue class among the three taken into account, i.e.
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# Structure Tissue
1 Lateral Ventricle CSF
2 Third Ventricle CSF
3 Thalamus GM
4 Caudate Nucleus GM
5 Pyramidal Tract WM
6 Lenticular Nucleus GM
7 STN + Substentia Nigra GM

Fig. 1. Anatomical model

cerebrospinal fluid (CSF), white matter (WM) and gray matter (GM). Direction
relationships were defined based on directional invariants observed on a few pre-
labeled images (classical anatomical atlases, as well as four patients not used in
the evaluation ; c.f. Figure 1) and validated by the expert. The model, defined for
the right hemisphere, can easily be adapted for the left hemisphere by reversing
the ”left/right” relationships.

A rectangular Region of Interest (ROI) containing every structure defined
in the model was defined manually in order to constrain the fusion algorithm
to that particular region. This was the only non-automated step of the process.
Preliminary tissue clustering was performed on each slice, resulting in four tissue
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Fig. 2. Tissue classification, followed by segmentation and location results. The first
image on the top, labeled ”ROI”, refers to the original region of interest. The 3 other
images are the tissue membership maps obtained through the classification step, and
used to initialized our algorithm. The bottom part features segmentation and loca-
tion results. Seven of the images on the left part refer to the fuzzy membership maps
obtained for every structure in the model. The 8th image, labeled ”segmentation”,
represents the defuzzified segmentation results. On the right part, the image labeled
”location” features the computed center of gravity for every structures. The last image,
labeled ”comparison”, represents the expert’s segmentation, along with the correspond-
ing centres of gravity (gray crosses), while the black crosses refers the centres of gravity
computed with our method (also featured on the ”location” picture).

maps: CSF, WM, GM and background (not used in our model). The first three
tissue maps (cropped to fit the ROI) were then used to initialize the fusion algo-
rithm. For each image, the final step of the fusion algorithm converged after two
or three iterations. The whole process (tissue clustering and fusion algorithm)
took about 30 seconds. Figure 2 illustrate results obtained for one patient.

The expert assessed the location results as satisfactory. Every structure, ex-
cept for the CN, was correctly located: when compared with the expert’s labeled
image, the computed center of gravity was always located within the correspond-
ing structure. However, the membership maps contain holes and unconnected
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Table 1. Statistical analysis of the results on every patients, for every structures

Structure ICC on X ICC on Y average TC standard deviation on TC
LV .89 .99 .67 .11
TV .97 .95 .34 .16
TH .96 .98 .33 .14
CN .49 .91 .15 .13
PT .89 .94 .24 .05
NL .93 .97 .31 .06
STN .74 .98 .27 .06

Mean value .84 .96 .33 .10

parts, and some of them tend to differ significantly from the expert’s labeling:
small structures such as the STN/SN group tend to be overestimated, at the
expense of larger structures such as the thalamus, which seems underestimated.

3.2 Statistical Analysis

For every structure, over the ten patients, results have been statistically ana-
lyzed in term of location and segmentation, by comparing them with the results
obtained with the reference method, i.e. expert labeling. Location results (the
coordinates of the center of gravity) were assessed using intraclass correlation
coefficients (ICC) between the computed values and the reference values, while
segmentation results were assessed using the Tanimoto coefficient[16]:

TC(Sresult, Sreference) =
|Sresult ∩ Sreference|
|Sresult ∪ Sreference|

The impact of the defuzzification threshold has also been studied.
The statistical analysis confirmed our first visual estimations (Table 1). The

ICC, with an overall average value of 90%, showed almost perfect concordance for
the location of most structures, the only notable exception being the abscissa of
the caudate nucleus (49%). On the other hand, the TC, with an average value of
33%, emphasized the mediocre overall quality of the segmentation, which would
differ greatly among structures (from 15% for the caudate nuclei to 67% for the
lateral ventricule).

Our tests also revealed some structures exhibited significantly different re-
actions to the setting of the threshold parameter. Two groups could be distin-
guished: the LV, Thalamus, LN, and PT (or ”large structures”), on the one hand,
and the TV, CN, and STN/SN (or ”small structures”), on the other hand. The
large structures reacted favorably to a very low threshold value, while the small
structures required a higher one.

4 Discussion

The statistical concordance of the location results is encouraging, especially con-
sidering the mediocre quality of the segmentation itself: it proves the structures
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do not have to be perfectly segmented in order to be properly located. The
inaccuracies observed in the segmentation are not surprising: holes and uncon-
nected parts were to be expected since the model did not define any morphologic
constraints. Nevertheless, naturally connected structures belonging to the same
tissue class, such as the lateral ventricle and the third ventricle, could still be
correctly set apart. This result demonstrates that directional relationships alone
can be powerful tools, when used concurrently, for guiding the identification and
segmentation of anatomical structures. In order to refine the initial segmentation
(and correct small tissue clustering errors in the process), the current results may
be used to initialize a method of competitive region growing or edge detection.
Preliminary tests involving connected component labeling have already shown
promising results.

Errors in the segmentation (and location, in the particular case of the cau-
date nucleus) seem mostly due to a size difference between the various struc-
tures. As the simple model used in this preliminary study represents structures
by their center of gravity, with no complementary information on their relative
size, all the resulting segmented structures tend to be roughly of the same size
(this is also a consequence of the separation algorithm used, which assumes an
homogeneous repartition of these centres of gravity). Consequently, large struc-
tures are often underestimated while small structure are overestimated. This is
why we chose to consider the subthalamic nucleus and substantia nigra (which
are both relatively small, and very close) as a single structure. This result em-
phasizes the need for a multiscale approach. The scale of the model could be
adjusted to take into account different layers of details: a set of small neighbor-
ing structures could be gathered to define a super-vertex, while a single huge
structure could be split into several sub-vertices. The resulting inclusion rela-
tionships between these new vertices could be expressed quite easily by simply
adding corresponding inclusion edges to the graph. The inclusion edges would
form a tree between the various layers of detail, resulting in a multiscale atlas.
Of course the whole process would have to be adjusted to factor in the various
scales. For instance, the fusion algorithm could be used successively for each
layer.

The method should also be evaluated on real 3D images. Actually, preliminary
tests have already been performed, showing results similar to those observed on
the 2D ROI, but which could not be formally assessed as the expert had not
yet labeled the area. Moreover, the low depth resolution of the images used in
the clinical protocol (c.f. 3.1) is a source of imprecision in the location along
the z axis. This is why we are currently working on a process for fusing the
complementary information provided by the three complementary perpendicular
anisotropic images, into a single isotropic image. Such a 3D reconstruction at a
higher resolution implies solving an inverse problem similar to the one involved
in computed tomography.

Concerning the future clinical validation of the process, we obtained a high-
resolution post mortem MRI (4.7 Tesla) from a histologic slice[10]. This data
will be used as a reference for evaluating segmentation results computed from a
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standard MRI acquired from the same individual. The neurosurgical department
of our institution has also granted us access to a large database of patients who
have already been treated through DBS and can be studied a posteriori.

Once perfected and validated, our method should relieve the physician from
the time-consuming process of manual labeling, providing him with useful as-
sistance for the positioning of electrodes. By precisely identifying the optimal
area for DBS, it could lead to a better understanding of the clinical phenomena
involved. In the long run, the approach might also be extended to guide robotic
surgery.
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Abstract. Understanding behavior of migrating cells is becoming an emerging
research area with many important applications. Segmentation and tracking con-
stitute vital steps of this research. In this paper, we present an automated cell
segmentation and tracking system designed to study migration of cells imaged
with a phase contrast microscope. For segmentation the system uses active con-
tour level set methods with a novel extension that efficiently prevents false-merge
problem. Tracking is done by resolving frame to frame correspondences between
multiple cells using a multi-distance, multi-hypothesis algorithm. Cells that move
into the field-of-view, arise from cell division or disappear due to apoptosis are
reliably segmented and tracked by the system. Robust tracking of cells, imaged
with a phase contrast microscope is a challenging problem due to difficulties in
segmenting dense clusters of cells. As cells being imaged have vague borders,
close neighboring cells may appear to merge. These false-merges lead to incor-
rect trajectories being generated during the tracking process. Current level-set
based approaches to solve the false-merge problem require a unique level set per
object (the N-level set paradigm). The proposed approach uses evidence from
previous frames and graph coloring principles and solves the same problem with
only four level sets for any arbitrary number of similar objects, like cells.

1 Introduction

Understanding behavior of migrating cells is becoming an emerging research area with
many important applications. Behavior of migrating cells are important parameters of
interest in understanding basic biological processes such as tissue repair , metastatic
potential , chemotaxis , differentiation or analyzing the performance of drugs. Accurate
segmentation and tracking of cells are vital steps in any cell behavior study.

In this paper, we present an automated cell segmentation and tracking system de-
signed to study migration of cells imaged with a phase contrast microscope. Segmen-
tation is performed using active contour level set methods with a novel extension that
efficiently prevents false-merge problem. Tracking is done by resolving frame to frame
correspondences between multiple cells using a multi-distance, multi-hypothesis algo-
rithm. Cells that move into the field-of-view, arise from cell division or disappear due
to apoptosis are reliably segmented and tracked by the system.

Simultaneous tracking of multiple cells imaged with a phase contrast microscope is
a challenging problem due to difficulties in segmenting dense clusters of cells. As cells

� This work was supported by a U.S National Institute of Health NIBIB award R33 EB00573.
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being imaged have vague borders, close neighboring cells may appear to merge. These
false-merges lead to incorrect trajectories being generated during the tracking process.
Other challenges for tracking include high number of cells, non-linear motion, lack of
discriminating features, mitosis (cell division), and fragmentation during segmentation.
In [1], Chan and Vese presented an algorithm to automatically segment an image I(y)
into two distinct regions (or phases) by minimizing a minimal partition Mumford-Shah
functional. A multiphase variant of the same algorithm was also proposed to handle 2n

unique phases [2]. However, as observed by Zhang et al., [3], Dufour et al., [4] and,
Zimmer and Olivo-Marin [5], the two variants of the Chan and Vese algorithm are un-
suitable for reliable cell segmentation due to the problem of apparent merges in cells.

Zhang et al., proposed a N− level set framework with an implicit coupling con-
straint to reliably segment cells in an image sequence [3]. While this alleviates the
problem of apparent merging of cells, it is computationally expensive to implement.
The approach we propose uses evidence from previous frames and graph coloring prin-
ciples and solves the same problem with only four level sets for any arbitrary number
of similar objects.

The organization of this paper is as follows. Section 2 describes the segmentation
module. Salient features of our four-color level set segmentation algorithm are pre-
sented along with the related work, variants of the Chan and Vese level set algorithms
and N−level set variant of Zhang et al., algorithm [3]. Section 3 describes the track-
ing module. Comparative results and a discussion are presented in Section 4, while a
conclusion is presented in Section 5.

2 Cell Segmentation Using Active Contour Level Set Methods

Accurate segmentation of individual cells is a crucial step in robust tracking of mi-
grating cells as both over-segmentation (fragmentation) and under-segmentation (cell
clumping) produce tracking errors (i.e., spurious or missing trajectories and, incorrect
split and merge events). In this section, we describe three different level set segmenta-
tion methods and compare their performance for separating closely adjacent and touch-
ing cells in a dense population of migrating cells. The three techniques described in
this section are all based on the “active contour without edges” energy functional with
appropriate extensions, and include multi-phase Chan and Vese [2] (CV2LS), N-level
sets with energy-based coupling by Zhang et al., [3] (ZZNLS), and our novel four-color
level sets with energy-based and explicit topological coupling [6] (NBP4LS-ETC). The
latter two techniques use coupling constraints in order to prevent the merging of adja-
cent cells when they approach or touch each other.

– CV2LS: In order to segment multiple (i.e., N distinct) objects, Vese and Chan ex-
tended their previous 2-phase algorithm [1] by using +log2N, level sets [2]. The
corresponding energy functional Epc(c,Φ)

Epc(c,Φ) =
∑

1≤i≤N

μi

∫
Ω(y)

(I (y)−ci)2 χi dy+
∑

1≤i≤�log2N�
νi

∫
Ω(y)

|∇H(φi)| dy

where, N is the number of phases (i.e., regions in the image) associated with
+log2N, level set functions, I is the gray-level image being segmented, Φ is a
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vector of level set functions, c is a vector of mean gray-level values (i.e., ci =
mean(I ) in the class i), χi is the characteristic function for each class i formed by
associated Heaviside functions H(φi), and (μi, νi) are constants associated with
the energy and length terms of the functional, respectively.

The +log2N, level set formulation improves on the performance of a single level
set function, as more number of objects with varying intensities can be efficiently
classified. But does not prevent under-segmentation (i.e. incorrect merges), when
the objects have similar intensities (i.e. cells).

– ZZNLS: To overcome the drawbacks of classical Chan and Vese level set formu-
lations, while at the same time solving the problem of apparent merging of cells
during tracking, Zhang et al., [3] proposed a new model using N−level sets for
segmenting cells. Here N is the number of cells at a given time instance. An a
priori knowledge that cells do not merge during the evolution process was used
to guide the segmentation process. This was achieved by a pair-wise energy-based
coupling constraint on the level sets evolution process. A similar formulation was
used by Dufor et al., in 3D cell segmentation [4].

The energy functional,Enls(cin , cout,Φ), used to solve the evolution of N−level
sets is given by [3]:

Enls(cin , cout,Φ) = γ

N∑
i=1

N∑
j=i+1

∫
Ω

H(φi)H(φj) dy + ν

N∑
i=1

∫
Ω

|∇H(φi)| dy

+ μin

N∑
i=1

∫
Ω

(I − ci
in)2 H(φi) dy + μout

∫
Ω

(I − cout)2
N∏

i=1
∀ i:H(φi)<0

(
1−H(φi)

)
dy

(1)

Here, Φ = [φi: i=1...N ] represents N−level sets associated with N cells in the
image; cin represents average intensities of cells for H(φi) ≥ 0 while cout is the
average intensity of the background1. The first term of the functional penalizes pair-
wise couplings between level sets, while the second term controls the length of φi.
μin, μout, γ, ν are constants associated with the functional.

– NBP4LS-ETC: The N−level set formulation described previously is able to over-
come the apparent merging of neighboring cells. However this approach is not very
scalable and is computationally expensive since for N objects it requires N2/2
couplings. To overcome the computational cost, while still preventing the incorrect
merges, we propose an optimized version of the N−level set algorithm described
previously.

Our optimization is based on the fact that only neighboring cells can potentially
merge. Through Delaunay triangulation the cell-to-cell neighborhood relationships
are identified and represented in a graph where vertices represent the cells and
edges represent the neighborhood relations.

The four-color theorem [7, 8, 9] states that any planar graph is four-colorable
such that no two neighboring vertices have the same color. Thus, four rather than

1 The region exterior to all level sets indicates the background.
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N− level sets would suffice to classify N−objects (i.e., cells) in an image while
insuring that neighboring objects do not share the same level set.

In order to evolve the four level sets we propose minimizing an energy func-
tional, Efc(cin , cout,Φ), shown in Eq. 2. The first two terms of the right-hand
side of Eq. 2 are used to compute average intensities (cin , cout) within each level
set, and outside all level sets, respectively. Using an a priori assumption that all
the foreground objects (i.e., cells) in the image have very similar characteristics,
we use a single average intensity cin (i.e., ∀ i, ci

in = cin). Whereas Zhang et al.,
model of computing average intensities for each cell (Eq. 2). The third term helps
in minimizing the length of all level sets; the fourth term is the energy-based cou-
pling constraint, used previously, in Eq. 2. The last term enforces the constraint of
|∇φi| = 1, thus helping us avoid explicit redistancing of level sets during the evo-
lution process [10]. Regularized Heaviside and Dirac-delta functions, proposed by
Chan and Vese in [1], are also used in our energy functional. μin, μout, ν, γ, η are
constants associated with the functional.

Efc(cin , cout,Φ) = μin

{ 4∑
i=1

∫
Ω

(I − ci
in)2 H(φi)

}
dy +

μout

∫
Ω

(I − cout)2
4∏

i=1
∀ i:H(φi)<0

(
1−H(φi)

)
dy + ν

{ 4∑
i=1

∫
Ω

|∇H(φi)| dy
}
+

γ
4∑

i=1

4∑
j=i+1

∫
Ω

H(φi)H(φj) dy + η
{ 4∑

i=1

∫
Ω

1
2
(|∇φi| − 1)2 dy

}
(2)

The four Euler-Lagrange evolution equations associated with the minimization of
Eq. 2 are as follows (i = 1, 2, 3, 4):

∂φi

∂t
= δ(φi)

{
μin(I − ci

in)2 − μout(I − cout)2
4∏

j=1
∀ j:H(φj )<0,j �=i

(
1−H(φj)

)

− ν div
( ∇φi

|∇φi|
)

+ γ

4∑
j=1;j �=i

H(φj)

}
+ η

{
Δφi − div

( ∇φi

|∇φi|
)}

(3)

where, Δ is the Laplacian operator.
In addition to the energy-based coupling technique of ZZNLS [3] to penalize

overlaps between level sets, we use an explicit topological coupling technique. First,
we compute δ(φi); i ∈ [1, 4]. As we use a narrow-band approach (i.e., δ(φi) >
sthresh) to update the level set curves we check the saliency of δ(φi) i.e., δ(φi) >
δ(φj); j �= i. This helps us identify pixels on the front of the current level set that
may lie on narrow-band fronts of other level sets. A pixel on the front of a current
level set is updated only if this saliency test is satisfied. If however a “collision” is
detected between cells, then the evolution of level sets near the “collision” region
stops. To speed up convergence as in [11] and [12] we use level set segmentation
from a previous frame as an initial estimate for a current frame.
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For details on implementing the four-level set algorithm, we direct the reader
to [6].

3 Multiple Cell Tracking Using Correspondence Graphs

Tracking is a fundamental step in the analysis of long term behavior of migrating cells.
In this section we present a detection based cell tracking algorithm that extends our
previous work in [13]. Tracking is done by resolving frame to frame correspondences
between multiple cells segmented using active contour level set methods as described
in Sec.2.

3.1 Summary of Tracking Algorithm

1. For each frame I(y , t) at time t, the tracking module receives four foreground mask
layers, Ωk(t), that correspond to level sets from the “four-color” segmentation al-
gorithm. In order to refine cell boundaries and remove spurious regions, morpho-
logical operations (e.g., opening, closing) may be performed on these foreground
layers.

2. Connected component analysis is performed on all refined foreground layers such
that each Ωk(t) is partitioned into nk disjoint regions

Ωk(t) = {Ωk,1(t), Ωk,2(t), . . . , Ωk,nk(t)}

that ideally correspond to nk individual cells.
3. For each disjoint region Ωk,i, features such as bounding box, centroid, area, and

support map are extracted. Region information from all four layers are combined
and relabeled as

Ωi(t), i ∈ [1 . . .n], and n =
4∑

k=1

nk

without merging connected regions from different foreground layers. Keeping re-
gions from different foreground layers distinct, even when they are spatially con-
nected, preserves the identities of previously disjoint cells, thus preventing false
trajectory merges.

4. Relabeled region information is arranged in an “Object-Match” graph structure
OGR that is used in tracking (Fig. ??). Nodes in the graph represent objects Ωi(t),
while edges represent object correspondences.

5. Correspondence analysis searches for potential object (cell) matches in consecutive
frames.OGR is updated by linking nodes corresponding to objects in frame I(y , t)
with nodes of potential corresponding objects in frame I(y , t− 1). The confidence
value CM(i, j) for each match is stored with each link. This is explained further in
the following sub-section.

6. The trajectory generation and validation module analyses the OGR graph and gen-
erates valid cell trajectories.
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Fig. 1. An Object-Match graph structure, OGR used
in cell tracking. Nodes represent detected cells and
associated cell features, while links represent frame-
to-frame cell correspondences and associated match
confidence values.

+

+
+

*

*

*
+

B(t − 1)

A(t − 1)

B(t)

A2(t)

C(t)
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A1(t)

Fig. 2. Centroid distances during cell
division. Cell A at time t − 1 divides
into cells A1 and A2 at time t. Cen-
troid distances from the parent A to its
children AA1 and AA2 are compara-
ble in magnitude to centroid distances
to its neighbors AB and AC resulting
in ambiguities.

3.2 Cell-to-Cell Correspondence

Cell-to-cell matching (correspondence) is performed using a multi-stage overlap dis-
tance DMOD, which consists of three distinct distance functions DBBX , DMSK, and
DOLP for three different ranges of cell motion.

– The inter-bounding-box distance DBBX quantifies the long-range displacement be-
tween two regions (cells) in consecutive frames, by the distance between their
bounding boxes defined as the minimum Euclidean distance between corner pairs
of the two bounding boxes.

Let Λ[BBX (Ωi(t)), k] and Λ[BBX (Ωj(t-1)), l], indicate the kth and lth cor-
ners of the bounding box covering Ωi(t) and Ωj(t-1). DBBX can then be defined as

DBBX (Ωi, Ωj) = ηb min
k,l

{∣∣∣∣∣∣Λ[BBX (Ωi), k] − Λ[BBX (Ωj), l]
∣∣∣∣∣∣} (4)

where, ηb is a constant.
– The inter-mask distance DMSK quantifies the mid-range displacement between

two regions (cells) in consecutive frames, by the minimum contour to contour dis-
tance. This distance is computed in terms of the minimum number of dilations
needed to overlap the two regions as

DMSK(Ωi, Ωj) = ηm arg
mink

{
( Ωi ⊕ksI) ∩ Ωj �= 0

}
(5)

where, ⊕k denotes k-times dilation, sI denotes unit structuring element, and ηm is
a constant.
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– The tonal-weighted overlap distance DOLP quantifies the small-range displace-
ment between two regions (cells) by the degree of their overlap, in terms of shape
and tonal dissimilarities. In order to emphasize overlap in nuclei (i.e., dark re-
gions with low intensity values), and to de-emphasize cytoplasm overlap (i.e., light
regions with high intensity values), overlapping and non-overlapping regions are
weighted by local tonal differences between two regions as

DOLP(Ωi, Ωj) = ηo

{∫
Ωi�Ωj

(1 − Ii(y)) dy +
∫

Ωj�Ωi

(1 − Ij(y)) dy+∫
Ωi∩Ωj

|Ii(y) − Ij(y)| dy
}/{∫

Ωi

Ii(y)dy +
∫

Ωj

Ij(y)dy
}

(6)

where, the intensity images Ii(y) = Ii(y , t) and Ij(y) = Ij(y , t − 1), and are
scaled such that I ∈ [0, 1]. ηo is a constant. The first two terms in the numerator of
Eq. 6 account for the distance due to uncovered regions in frames at time instants
t and t − 1, respectively. The complement of intensity images are used to obtain
higher distances for uncovered low intensity regions (i.e., nuclei). The third term in
the numerator accounts for the intensity dissimilarity within the overlapping region.
The denominator is used to normalize the distance by the area of the two cells being
compared.

DMOD can be assigned any of the three distance measures described above, as per the
following rules,

DMOD(Ωi, Ωj) =

⎧⎨⎩
DBBX if BBX (Ωi) ∩ BBX(Ωj) = ∅
DMSK if Ωi ∩Ωj = ∅
DOLP otherwise

(7)

The proposed multi-stage distance measure depends on size and shape similarity of the
compared regions, besides their proximity, and thus have several advantages over the
widely used centroid distance measure.

A particularly important case for cell tracking is mitosis (i.e., cell division). Dur-
ing mitosis, epithelial cells often become elongated, subsequently splitting across the
minor axis. This produces a big increase in the centroid distance and the distances be-
tween a cell and its children become comparable to the distances between a cell and
its neighboring cells (Fig. 2). In such a scenario, a low gating threshold would result in
parent-to-children matches being discarded, resulting in discontinuities in cell trajecto-
ries. However, if a high gating threshold is used, correspondence ambiguities may arise.
The proposed multi-stage overlap distance measure overcomes these problems.
In addition to object separation based measures, shape (contour) similarity metrics can
also be added to the distances described above as additional matching criteria. Since for
cell tracking we are primarily interested in the displacement parameter, those metrics
are not used in this study but they will be considered in future.

During tracking a match matrix M and a confidence matrix CM for each frame,
I(y , t), are produced. M(Ωi, Ωj) indicates whether the ith object in I(y , t), corre-
sponds to the jth object in I(y , t − 1). CM(Ωi, Ωj) indicates the confidence of this
match and consist of two components,
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– Similarity confidence, CSIM(Ωi, Ωj), is a measure of the similarity between the
matched objects and is defined as

CSIM(Ωi, Ωj) = 1 − DMOD(Ωi, Ωj)
Dmax

MOD
(8)

where, Dmax
MOD is a user defined constant used to normalize DMOD.

– Separation confidence, CSEP(Ωi, Ωj), measures the competition between possible
matches for the current object and is defined as

CSEP(Ωi, Ωj) =

⎧⎪⎪⎨⎪⎪⎩
1 no competitor,

0.5

{
1 −
(
DMOD(Ωi,Ωj)−DMOD(Ωi,Ω

*
j )

)
max

(
DMOD(Ωi,Ωj),DMOD(Ωi,Ω*

j )

)} otherwise
(9)

where, Ωj indicates the current candidate being compared with Ωi, and Ωj* is its
closest competitor in terms of distance. This measure favors matches without com-
petitors, and matches with competitors having higher distances.

Unfeasible correspondences are eliminated using confidence values. Absolute pruning
eliminates matches whose confidence values are below a certain threshold, while rela-
tive pruning eliminates matches whose confidence values are below a percentage of the
confidence for the best match.

3.3 Trajectory Generation and Validation

Trajectory segments are generated fromOGR using a multi-hypothesis testing approach
with delayed decision. Besides one-to-one object matches, the proposed tracking algo-
rithm supports many-to-one, one-to-many, many-to-many, one-to-none, or none-to-one
matches that may result from false detections or associations, segmentation errors, oc-
clusion, entering, exiting, or division of cells.

The segment generation module analyzes match information by classifying the nodes
ofOGR (cells) into nine types; single, source, source-split, sink, inner, split, sink-merge,
merge-split, merge, based on the number of parent and child objects.

A data structure (Segment-List) is formed by identifying and organizing a linked
list (Trajectory-Segments) of inner objects starting with a source or split type
cell and ending with a merge or sink type cell. Extracted segments are labeled using a
method similar to connected component labeling.

Not all the detected segments correspond to actual cell trajectories. Trajectory valida-
tion unit checks the validity of each segment based on criteria such as duration, length,
linearity, size of the corresponding object, parent and children segments etc. and filters
out invalid segments. Trajectories are formed by linking unfiltered segments sharing
the same label. Discontinuity resolution is also done in this unit using Kalman filter
prediction.

4 Results and Analysis

The proposed cell segmentation and tracking system has been tested on a wound heal-
ing image sequence consisting of 136 frames of dimensions 300×300 (40μm×40μm)
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Fig. 3. Segmentation mask obtained using our
four-level set formulation with an explicit topo-
logical coupling constraint and the associated
Delaunay graph for frame #136

Fig. 4. Trajectories obtained using the de-
scribed tracking algorithm on masks from our
four-level set formulation with an explicit topo-
logical coupling constraint

Table 1. Tracking results, when using
three different segmentation algorithms. The
number of frames in the sequence = 136,
with dimensions of each frame equal to
300×300.

R-P T-O T-S T-M T-A T-D

CV2LS 85% 16748 44 16 14 23

NBP4LS-EC 85% 16732 33 2 29 33

NBP4LS-ETC 85% 17161 22 0 25 20

Split

Split

Merge

Merge

Fig. 5. False splits and merges that result
from fragmentation in cells

with image intensities I ∈ [0, 255]. The sequence has been obtained using a monolayer
of cultured pig epithelial cells, as described by Salaycik et al., in [14]. Images were
sampled uniformly over a 9:00:48 hour period and acquired using a phase contrast mi-
croscope, with a 10× objective lens, and at a resolution of approximately 0.13μm per
pixel.

Three segmentation algorithms have been implemented: a multi-phase Chan and
Vese level set algorithm (CV2LS); our four-level set algorithm with only energy-based
coupling (NBP4LS-EC); and our four-level set algorithm with energy-based and ex-
plicit topological coupling NBP4LS-ETC. The tracking algorithm described in Sec.
3 has been applied to the three sets of masks obtained from these segmentation algo-
rithms, and the results have been compared. For all three segmentation algorithms the
following parameters have been used: μin = 1, μout = 1, ν = 1.0/(255.0)2 and the
number of iterations for each frame has been set to a fixed number K = 15. For the
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Fig. 6. Evolution of three cells labelled as A,B, and C. First row: Original frames #78,#103, and
#111. Second and third rows: segmentation results for CV2LS and NBP4LS-ETC algorithms re-
spectively. Segmentation results are zoomed to the region of interest ([70,10]-[170,110]) marked
on the original frames. In row 3, contour colors associated with each object are changing from
frame to frame due to re-coloring of the neighborhood graph in order to reflect changes in the
neighborhood relationships.

segmentation algorithms with energy-based coupling constraint γ has been set to 0.1.
During tracking, a relative pruning rate of 85% has been used and matches with con-
fidence values below 85% of CBST have been pruned. (CBST indicates the confidence
of the best match for the current object). The tracking results have been filtered by ob-
ject size and segment length. Size threshold Tos has been set to 30 pixels, and duration
threshold Tsl has been set to 5 frames. Incomplete objects at the image borders (i.e.,
within 20 pixels from each side) have been excluded from the statistics.

Representative results for our segmentation (NBP4LS-ETC) and tracking algorithms
are given in Figures 3 and 4. Figure 3 shows segmented cells and their neighborhood
relationships in the form of a Delaunay graph. Figure 4 shows the cell trajectories ob-
tained after tracking. Table 1 shows tracking results obtained using the tracking al-
gorithm described in Section 3, on masks produced by three different segmentation
algorithms, CV2LS, NBP4LS-EC and NBP4LS-ETC. T-O indicates the total number
of disjoint objects (i.e., cells) detected in all frames of the image sequence. T-S in-
dicates the number of trajectory segments that split from another trajectory segment.
Such splits may result from cell division, or fragmentation during segmentation. T-M
indicates number of trajectory segments that merge with other trajectory segments. T-A
and T-D indicate numbers of trajectory segments that appear or disappear, unexpect-
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Fig. 7. Segmentation results for the frames #72, #79, #110, #113 and #118, zoomed to the region
of interest ([256,13]-[295,110]). First row: original sequence. Second row: segmentation using
NBP4LS-EC algorithm. Third row: segmentation using NBP4LS-ETC algorithm (contours
shown without level set color).

edly. These may occur when no evidence of cells in the current frame exists in previous
frames, or when no match exists in future frames for cells present in the current frame.
The NBP4LS-ETC algorithm does a better job than either the NBP4LS-EC or the
CV2LS algorithm in preventing false-merges of cells. Fragmentation is a problem with
both the NBP4LS-ETC and NBP4LS-EC algorithms. But as shown in Table 1, the
NBP4LS-ETC results in a smaller number of splits than either NBP4LS-EC or CV2LS
algorithms. As shown in Fig. 5, false splits and merges may arise when a cell is frag-
mented in the current frame, or becomes fragmented in a future frame. Proposed method
removes fragments at the image level through post-processing of small objects using
morphology and at the trajectory level through filtering short segments.

Figures 6 and 7 show two cases that demonstrate the advantage of our NBP4LS-ETC
method. Figure 6 shows the evolution of three cells labeled as A,B, and C. In the se-
quence from frame #78 to #111 two of the cells undergo mitosis (cell division). Cell
C divides first followed by B; between frames #78 and #103 cell C splits into children
cells C1 and C2; between frames #103 and #111 cell B splits into children cells B1 and
B2. Both algorithms CV2LS (2nd row), and NBP4LS-ETC (3rd row) correctly iden-
tify the mitosis event of cell C. But only NBP4LS-ETC correctly identifies the mitosis
event of cell B. Using the CV2LS method, at frame #103 cell B that is clearly distinct in
frame #78, gets falsely merged with cell A, because cell B becomes indistinct (the nu-
cleus is not as thick as preparation for DNA replication) and at the same time the region
between cells A and B gets darker as these cells move closer together. This false merge
causes additional tracking complications when cell B undergoes subsequent mitosis. As
seen in frame #111, cell A appears to undergo mitosis and is incorrectly associated with
the children A1 and A2. Cell A2 is associated with parent cell A instead of parent B
due to a correspondence error; it should be labeled as cell B2. Object A1 is associated
with parent object A due to both correspondence and segmentation errors; the segmen-
tation of object A1 merges two actual cells (labeled A and B1 in row 3) which leads to
the association error during tracking. However using the NBP4LS-ETC algorithm the
explicit topological coupling constraint prevents cells A and B from merging and the
mitosis of cell B is correctly detected and tracked. Effects of fragmentation such as the
small region above cell A in frames #103 and #111 are handled by postprocessing and
trajectory filtering and did not cause any tracking errors.

Figure 7 depicts an “absorption event” where one level set pushes a neighboring
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level set out of its own path of evolution. Using only an energy-based coupling term
(2nd row - NBP4LS-EC) leads to the shifting of the boundary between adjacent ob-
jects. Ultimately one object “ absorbs” the other without a merge event (where adjacent
level sets merge together during contour evolution). Using the proposed additional ex-
plicit topological coupling term as described, the location of the boundary is maintained
which prevents absorption. The absorption process may be order dependent but we have
found that randomization of level set processing order is not sufficient to prevent ab-
sorption.

5 Conclusion

We have presented an automated cell segmentation and tracking system designed to
study migration of cells imaged with a phase contrast microscope. Cells that move into
the field-of-view, arise from cell division or disappear due to apoptosis are reliably
segmented and tracked by this system. The novel four-color level set formulation in-
troduced to deal with the false-merge problem in segmentation and tracking of dense
cell clusters, is very scalable and significantly reduces the computational complexity of
N−level set formulation of Zhang et al., [3]. Experimental results show that segmenta-
tion with the proposed four-level set formulation, with an explicit topological coupling
constraint, greatly improves accuracy of trajectories obtained during cell tracking. Fur-
ther research on trajectory validation and behavior analysis is currently in progress.
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Abstract. The cropping of image is one of most popular functions in current 
image editing software for general digital camera users. And image-based iden-
tifier system is needed for wide distribution of digital image products. In this 
paper, we propose new concept of visual identifier for digital photos and visual 
identifier system structure robust against especially cropped natural photos. 
Visual identifier is new concept with different ground truth rather than retrieval. 
In the proposed identifier system, local corner is used as main co-location posi-
tion and local gradient histogram is applied to describe feature in each position. 
And for robust matching we use simple random sample consensus method. 
Since image cropping can be considered as a kind of translation, linear model is 
sufficient as geometric transform model. For experiment we make 11 kinds of 
modifications of original images and evaluate performance of the proposed al-
gorithm. From experiment results, our proposed algorithm shows better per-
formance relative to previous MPEG-7 visual descriptors.  

1   Introduction 

As more and more multimedia contents are available, efficient and effective manage-
ment of multimedia contents are required. As the result of recent many years of work, 
MPEG-7 visual standard now has many visual descriptors on the basis of color, tex-
ture, shape and motion [1]. 

A visual data can be modified by editing, transcoding, etc. through its life publish-
ing many versions with or without intention for legal or illegal purposes. There is 
wide usage of visual identifier descriptor which will identify these versions of one 
visual data from other visual data.  

One important application is for illegal usage tracking. The rights owner of a photo 
wants to track where at the Internet his photo copies are. One possible scenario is that 
an automatic illegal usage tracking agent will gather visual data from the Internet and 
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extract each visual identifier for a visual content and compare it with already  
extracted its visual identifier descriptor at its hand. 

Current visual descriptors based on MPEG-7 elements are may be used for a visual 
identifier descriptor, however, the test conditions for the conventional MPEG-7 visual 
descriptors are set for only image and video retrieval, not for identifier. For the 
ground truth, similar visual data are used even they are not from the same original 
video data. 

In this paper, we propose visual identifier system robust against especially photo 
cropping modification. Cropping of image or natural photo is one of the most popular 
and frequent functions used in general imaging software like Adobe Photoshop [2]. 
Therefore cropped image is created easily by not only its owner, but also the others. 
Hence cropped version of original photo can be first candidate of various modifica-
tion possibilities. 

This paper is organized as following; section 2 describes visual identifier and hit 
ratio for evaluation of performance. And section 3 explains feature extraction and 
section 4 explains similarity matching process. In section 5 experiment results are 
depicted and section 6 leads discussion for this paper and finally section 7 concludes. 

2   Visual Identifier and Hit Ratio 

In this paper, visual identifier is extended concept of visual retrieval. So the proposed 
concept of visual identifier can be described from conventional visual retrieval [3]. 
Fig. 1 shows the concept of visual identifier. 

 

Fig. 1. Test database and ground truth for visual identifier 

In general image retrieval system, test database has a lot of image data which is in-
dependent ground truth as itself. As some query image is asked to retrieval system 
ideal system must retrieve images in according to minimum similarity distance of  
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specific criteria. For this purpose MPEG made international standard and its current 
output is MPEG-7 [1]. MPEG-7 has several audio and visual descriptors for retrieval 
system and its descriptor has individual criteria and classification in accordance with 
feature [1], [4]. For example, as using MPEG-7 dominant color system retrieves im-
ages which have dominant color similar to query image even if they are actually not 
related with query image. If there is modified version of original data in test database 
pool, it become individual ground truth not related with original one. On the contrary 
visual identifier system has difference in the composition of ground truth. What ‘Iden-
tifier’ means is to discriminate if there is original or modified versions of query data 
in test database. So ground truth includes original version as well as its modified ones.  

The performance is estimated with average hit ratio [5]. For a query i, only the 
(N+1) with the highest similarities are counted for the performance evaluation where 
N is the number of modified versions. The hit number hi is the number of ground truth 
contents that are retrieved. The hit ratio Ri for the query is calculated as Ri = hi 
/(N+1). The average hit ratio for all the queries are calculated as its performance  
index. 

3   Feature Extraction 

In this paper, the proposed visual identifier system consists of two parts, feature ex-
traction and similarity matching. In feature extraction part, co-location position is set 
up and features are extracted from each image and extracted features are encoded into 
binary type file. Fig. 2 shows the simple block diagram for feature extraction process. 
To evaluate performance of the proposed visual identifier, we make test image data-
base which includes original version and several kind of modifications. 

Establishment of Synchronization 
Position

Determination of Local Region

Extraction of Local Feature

Binary File Encoding

Input Image Database

 

Fig. 2. Overall block diagram of feature extraction process 
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3.1   Establishment of Co-location Position 

In ideal visual identifier system, modified version like cropping must be considered 
as query or reference image data. For example, cropped image has limited informa-
tion relative to original version. Consequently it is necessary to co-locate same 
positions to identify the correlation between original and modified versions. In this 
paper, interesting points are used to determine co-location position to be described 
and to obtain corner as interesting point Harris corner point detection method is 
used [6]. Harris corner points are able to be obtained from corner response equation 
of Eq. (1). 
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where R is Harris corner response, Ix and Iy is first-derivative of input image I. And w 
is Gaussian kernel. 

In input image, pixels having corner response value R over threshold are  
classified into candidate interesting points. And final Harris corner points are de-
tected by selecting spatial local maxima pixels from candidate points. The number 
of interesting points may be controlled by threshold of corer response value. In 
generally, trade-off exists between number of interesting points (or data size) and 
performance. 

3.2   Determination of Local Region 

After obtaining interesting points as co-location positions, we need to determine the 
size of local region. Real image descriptor is computed from just this limited local 
region. Other regions not selected as synch position are excluded from description 
range. Using this value, rectangular local regions are set. And several regions may be 
overlapped if distance between points is less than region size. 

3.3   Extraction of Local Feature 

In this contribution, we use local gradient histogram as real descriptor. In prior to real 
description, local region should be normalized. Local region is smoothed by using 
Gaussian smooth function. And then gradient amplitude and phase for every normal-
ized pixel is calculated. Eq. (2) represents the calculation of amplitude and phase of 
each gradient.  
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where m(x,y) is the amplitude of gradient, (x,y) is phase of gradient and L(x,y) is 
pixel in (x,y) location of local region. 

To compute gradient histogram as descriptor, all angles are divided into 36 bins 
and each bin represents 10 degree of gradient phase. Therefore number of bins of 
gradient histogram is 36 and amplitude of each bin is the weighted sum of gradient 
amplitude in according to its phase. In this process, Gaussian function is used as 
weighted function. Eq. (3) is gradient histogram equation considering weight on cen-
ter position of local region.  
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where GH(i) is weighted gradient histogram for phase index i, wg is Gaussian weight-
ing function when center position of local region is (cx,cy). And (x,y) is gradient 
phase in (x,y) position. 

4   Similarity Matching 

The ideal visual identifier must determine whether there are original or modified 
versions of query in target database. In above feature extraction section, features for 
all images of test database extracted and stored as one binary format. The proposed 
visual identifier extracts feature from query image and measure distance between 
query and each reference in database. From distance measure, visual identifier con-
cludes whether ground truth or query exists in database. 

In this paper, additional processes including correspondence matching and Random 
Sample Consensus (RANSAC) are needed to get matching positions between both 
descriptors [7]. Firstly, the correspondence matching using only spatial pattern of 
local region finds candidate matching pairs using simple Euclidean distance between 
gradient histograms. As a next step, RANSAC removes outlier pairs from candidate 
matching pairs derived in the previous step by considering relation of geometric trans-
form. Finally, we can obtain similarity between two images using distance measure. 
Fig. 3 represents overall similarity matching process. 
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Feature Extraction

Corresponding Matching

RANSAC

Final Distance Measure

Input Query Image

Reference Feature Selection

Feature Database

 

Fig. 3. Block diagram of similarity matching process between query and reference images 

4.1   Feature Extraction 

For similarity matching, all features is extracted from only query image with same 
method explained above section and it is not necessary for reference images in data-
base because all features are already extracted and stored as binary format . From 
feature extraction, co-location positions are obtained and local region size is fixed the 
same as given in the above section. And in each local region, gradient histogram is 
extracted as main descriptor. 

4.2   Correspondence Matching 

For one image, several descriptors are extracted in according to the number of co-
location positions and therefore for similarity matching it is necessary to set up 
matching pairs between descriptor groups in both images. In the proposed method, 
many local co-location positions utilizing image characteristics are used as 
corresponding matching positions between both images instead that overall image 
resolution is not used as matching position for descriptors. Initial matching pairs are 
obtained by correspondence matching process which is first one of two steps for 
fixing matching positions. Pseudo code is depicted as following; 

For (i; all local feature in reference) 
   For (j; all local feature in query)          
Dist = Euclidean distance(i,j); 
If (Dist < threshold) 
     Add (i,j) to initial matching pairs 
   End 
End 

As seen in the above pseudo code, initial matching pairs are constructed using  
individual similarity of local region texture information. It considers neither location 
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of local regions nor geometric relation. Therefore, in initial matching pairs, we can 
get not only 1:1 but also 1:n matching pairs. 

4.3   RANSAC 

RANSAC is the algorithm which predicts the model from the observed data. 
Throughout RANSAC, we can obtain the relational motion model, especially in im-
age matching. In this paper, we use the correspondence of motion vectors. Pseudo 
code is represented following; 

For (i; all motion vectors){ 
  initialize inlier_index[n]  
  For (j; all motion vectors){ 
     dist =distance (motion vector i– motion vector j); 

If (dist < threshold_dist) 
Ninlier ++; 

     inlier_index[j]=1; 
  } 
     If (Ninlier > Nmv /2 ) 
       Goto end; 
} 
 
//Outlier rejection 
For (i; all motion vectors){ 
  If (inlier_index[i]!=1) 
     remove motion vector i; 
} 

In general, inlier is the sample corresponded to model and outlier is the sample not 
corresponded to model. From RANSAC with initial matching pairs, outlier pairs 
which may decrease the similarity performance in final matching are removed. 

4.4   Final Distance Measure 

From final matching pairs, we can calculate the final distance between query and 
reference. In this contribution, the average Euclidean distance in Eq. (4) is used as the 
final similarity measure. 
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where GHref(i) and GHqur(i) are ith gradient histogram vector of reference and query 
and Np is total number of matching pairs between reference and query. 

5   Experiment Results 

The performance of the proposed descriptor and matching process is measured by 
average hit ratio. Total number of ground truth is 12 since 11 kinds of modification 
are used. Table 1 shows various modifications used in this contribution.  
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Table 1. Image modifications for visual identifier test 

No. Modification 
O Original 

M1 Brightness (+5) 
M2 Brightness (-5) 
M3 monochrome 
M4 JPEG compression (QF:95%) 
M5 Color reduction (16bit color) 
M6 Blur 3x3 
M7 Histogram equalization  
M8 Crop 90 % 
M9 Crop 70 % 
M10 Crop 50 % 
M11 Flexible crop 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Matching pairs results between original and cropped images. (a) Original image, (b) 
cropped image(70%), (c) matching pairs before RANSAC and (d) matching pairs after RANSAC. 
White line means connection of matched points between reference and query images. 

 
We use 200 original images. Therefore, the total number of test image set includ-

ing the modified is 3,000. Feature extraction process uses all 3000 images and the 
matching process uses 750 (50×15=750) as query images. Fig. 4 represents our  
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experimental results with the performance of edge histogram descriptor. The proposed 
visual identifier system is implemented by modifying MPEG-7 reference software 
based on Pentium 2.8GHz Windows XP system. 

Simple result of the proposed method is depicted in Fig. 4. Fig. 4(a) is original  
image and Fig. 4(b) is its cropped image by 70% size of original one. Through feature 
extraction and similarity matching in both sides, we obtain matching pairs to calculate 
similarity distance. In Fig. 4(c) which is the output of correspondence matching, 
wrong matching pairs exist since correspondence matching is based on only local 
descriptor. After applying RANSAC while considering geometric transform, just 
correct matching pairs remains and outlier is removed.  

 

Fig. 5. Average hit ratio of edge histogram descriptor and the proposed method 

For generic image processing such as blurring and color changing as seen in Fig. 5, 
the proposed method and edge histogram descriptor show high performance together 
and the proposed one is higher. However for cropping operation performance of edge 
histogram decreases and as cropping rate increases, its decreasing rate is higher. 

6   Discussion 

In this paper, the visual identifier system robust against especially image cropping is 
proposed as a new concept. The identifier system consists of two parts which are 
feature extraction and similarity matching. As a main feature of identifier, local gradi-
ent histogram centered in feature point in input image is extracted and local corner 
points based on Harris corner point detection method are used for feature points. In 
similarity matching process, Euclidean distance between gradient histograms between 
reference and query is used as similarity criteria. To complement matching pairs for 
the measurement of distance, RANSAC based on simple geometric transform like 
vector is used. 
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Visual identifier system is needed to be considered differently rather than retrieval 
since their objects are different each other. In this paper, new concept of visual identi-
fier is proposed and especially it is focused on identifier of image cropping since for 
recent users cropping of digital images and photos is one of most frequent functions. 
In cropped image, the amount of information is smaller that original one so that local 
region based co-location concept is needed to compare characteristics of images. Like 
edge histogram global region based matching method is not good for cropped image 
because descriptors between two images are not matched correctly even if its descrip-
tor is powerful and its performance in generic distortion is very good. 

As seen Fig. 4, cropped image has limited information and therefore its description 
is also limited rather than original image. It is different to generic distorted cases like 
image blurring or color change. In these cases, robust descriptor can extract similar 
information even if base image is distorted. But, in cases of cropped image, robust 
descriptor cannot extract any information since base image is removed. From feature 
information point of view, information of cropped image is subset of one of original 
image. Therefore co-location between full information and limited one is very impor-
tant factor in similarity matching.  

Main co-location positions exist locally in image and to make matching pairs be-
tween several points geometric relation must be concerned. RANSAC is typical 
method to estimate geometric relation between datasets. In this paper, simple geomet-
ric transformation considering only cropping is used for RANSAC because image 
cropping is one of translation of a part of original data so that geometric transform is 
just simple translation. If geometric relation is not considered like Fig. 4(c), incorrect 
matching pairs may exist and final distance is wrong. By the composition of individ-
ual components commented above, the proposed visual identifier shows very high 
performance rather than edge histogram which is best descriptors in conventional 
MPEG-7 visual descriptors. For cropped images, edge histogram shows very low 
performance while the proposed method shows high performance for all cases. Espe-
cially for cropped by 50% of the original, its resolution is downsized by 1/4 and its 
image information decrease by 1/4. Even if it has very limited information, the pro-
posed method identifies its ground truth. 

7   Conclusions 

In this paper, new visual identifier concept and system robust especially cropped 
image are proposed. For image cropping as frequent image modification, local region-
based description method is proposed and correct co-location of features using simple 
RANSAC leads high performance in identifying ground truth. In conclusion, the pro-
posed method can support the basement of the visual identifier for especially cases of 
distorted image with limited information. 

Acknowledgment 

The presented research is supported by Electronics and Telecommunication Research 
Institute (ETRI). 



 Robust Visual Identifier for Cropped Natural Photos 943 

References 

1. ISO/MPEG N4358, Text of ISO/IEC Final Draft International Standard 15938-3 Informa-
tion Technology - Multimedia Content Description Interface - Part 3 Visual, MPEG Video 
Group, Sydney, July 2001. 

2. http://www.adobe.com/photoshop/  
3. Weon-Geun Oh, IK-Hwan Cho, A-Young Cho, Hyun-Mi Kim, Dong-Seok Jeong, Hae-

Kwang Kim, Sung-Phil Heo(KT), "Feasibility Test of MPEG-7 Visual Descriptors as a Vis-
ual Identifier Descriptor", MPEG Doc. No. M12202, Pozan, July 2005. 

4. ISO/MPEG N4224, Text of ISO/IEC Final Draft International Standard 15938-4 Informa-
tion Technology - Multimedia Content Description Interface - Part 4 Audio, MPEG Audio 
Group, Sydney, July 2001. 

5. Jae-Gwi Choi, Weon-Geun Oh, A-Young Cho, Ik-Hwan Cho, Hyun-Mi Kim, Dong-Seok 
Jeong, Hae-Kwang Kim, " Proposed test conditions for MPEG-7 Visual Core Experiments 
6", MPEG Doc. No. M12841, Bangkok, January 2006. 

6. C. Harris and M. Stephens, "A combined corner and edge detector", Proc. Alvey Vision 
Conf., Univ. Manchester, pp. 147-151, 1988. 

7. M. A. Fischler and R. C. Bolles, "Random sample consensus: A paradigm for model fitting 
with applications to image analysis and automated cartography," Comm. ACM,  
24-6 (1981), 381.395. 



Affine Epipolar Direction from Two Views
of a Planar Contour�
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Abstract. Most approaches to camera motion estimation from image
sequences require matching the projections of at least 4 non-coplanar
points in the scene. The case of points lying on a plane has only recently
been addressed, using mainly projective cameras. We here study what
can be recovered from two uncalibrated views of a planar contour under
affine viewing conditions. We prove that the affine epipolar direction
can be recovered provided camera motion is free of cyclorotation. The
proposed method consists of two steps: 1) computing the affinity between
two views by tracking a planar contour, and 2) recovering the epipolar
direction by solving a second-order equation on the affinity parameters.
Two sets of experiments were performed to evaluate the accuracy of the
method. First, synthetic image streams were used to assess the sensitivity
of the method to controlled changes in viewing conditions and to image
noise. Then, the method was tested under more realistic conditions by
using a robot arm to obtain calibrated image streams, which permit
comparing our results to ground truth.

1 Introduction

Recovering camera motion from image streams is an important task in a range
of applications including robot navigation and manipulation. This requires a
measure of the visual motion on the image plane and a model that relates this
motion to the real 3D motion. Most of the existing work on motion recovery
relies on a set of point matches to measure visual motion, and, depending on
the acquisition conditions, different camera models have been used to emulate
the imaging process [1,2]. The full perspective model (the pinhole camera), in
� This work is partially funded by the EU PACO-PLUS project FP6-2004-IST-4-27657.
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either its calibrated (perspective camera) or uncalibrated (projective camera)
versions, has proved to be too general when perspective effects diminish. Under
weak-perspective viewing conditions (small field of view, or small depth variation
in the scene along the line of sight compared to its average distance from the
camera), simplified camera models, such as orthographic, scaled-orthographic or
their generalization for the uncalibrated case, the affine camera model, provide
an advantageous approximation to the pinhole camera, which avoids computing
ill-conditioned parameters by explicitly incorporating the ambiguities due to
weak perspective into the model.

This paper addresses the motion estimation problem in the context of an
affine camera using active contours to measure visual motion. There are several
previous motion estimation methods based on affine cameras [3,4]. A common
feature of these algorithms is that they require the matching of at least four non-
coplanar points and fail for planar structures [5]. The particular case of features
lying on planes has not been analyzed in detail thus far. The formulation of this
problem is the core of the present paper.

It is well known that two views of a plane are related by a collineation under
full perspective projection. Several authors have used this fact to propose algo-
rithms for camera calibration [6], self-calibration [7,8], or extraction of structure
and motion from uncalibrated views of points on planes [9] or of planar curves
[10]. However, when perspective effects diminish, the relationship between two
views of a planar structure becomes an affinity, which invalidates the methods
based on collineations.

Following the stratified analysis of motion for affine viewing conditions intro-
duced by Koenderink and van Doorn [3] and revisited by Shapiro et al. [4], we
first explore what information of the affine epipolar geometry can be inferred
from the affine deformation of the projection of a rigid and planar contour in
two weak-perspective views. This sets the basis to derive the motion parameters
in a second stage. We show that, under a 3D motion free of cyclorotation, the
epipolar direction can be recovered by relating the two affine views of the con-
tour. A series of experiments is performed to test the sensitivity of the method
to the different conditions imposed.

The paper is organized as follows. Section 2 contains the analytic study of two
weak-perspective views and provides the basis for the recovery of the epipolar
direction. Section 3 explains how the parameters of the affinity relating the two
views are extracted in our implementation, based on a contour tracker. Section
4 is devoted to experimentation, using both synthetic and real image streams.
Finally, Section 5 summarizes our contribution and gives some prospects for
future work.

2 Analytic Study of Two Weak-Perspective Views

2.1 The Camera Model

We assume that the scene object is stationary and that the camera translates
by T and rotates by R around the object, and possibly zooms. A new affine
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coordinate frame associated with a second camera is given by the rows of R and
the new origin lies at −R�T thus a point in this second camera is given by the
expression [

x′

y′

]
=

f ′

Z ′
ave

[
X ′

Y ′

]
, (1)

where [X, Y, Z]� = R[X ′, Y ′, Z ′]� + T, f ′ is the new focal length, and Z ′
ave is

the average distance to the object from the second camera.
Consider the equation aX + bY + c = Z of a world plane S. Then the two

views of the coplanar scene are related by the affinity given by[
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and where s = Zave/Z
′
ave is the scale factor that accounts for depth variation

(s > 1 if the second camera approaches the scene object, and s < 1 if it departs
from it), and Ri,j are the elements of the rotation matrix R.

A direction v = [x, y]� of the first image R is mapped by the above affinity to
the direction Mv of the second image R′. Since the affine references chosen in
the two cameras match by the displacement, we can superpose the two images
and it has sense to consider directions invariant by M.

2.2 Recovery of the Epipolar Direction

Consider an orthonormal coordinate frame associated to the first image (for
instance, normalized pixel coordinates, when aspect ratio and skew are known).
The rotation matrix about the unit axis [cosα, sin α, 0]� and angle ρ has the
form

R =

⎡⎣(1 − cos ρ) cos2 α + cos ρ cosα sin α(1 − cos ρ) sinα sinρ
cosα sin α(1 − cos ρ) (1 − cos ρ) sin2 α + cos ρ − cosα sinρ

− sinα sin ρ cosα sin ρ cos ρ

⎤⎦ . (5)

Hence, the matrix M is

M = s
f ′

f

⎡⎢⎢⎢⎢⎣
(1 − cos ρ) cos2 α

+ cosρ + a sin α sin ρ
cosα sin α(1 − cos ρ)

+b sinα sin ρ

cosα sin α(1 − cos ρ)
−a cosα sin ρ

(1 − cos ρ) sin2 α
+ cosρ − b cosα sinρ

⎤⎥⎥⎥⎥⎦ , (6)
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Fig. 1. Graphic illustration of Theorem 1. See text for details.

where a = [cos α, sin α]� is the direction of the rotation axis. The orthogonal
vector e = [− sinα, cosα]� = a⊥ is the epipolar direction. A straightforward
computation shows that

Me = s
f ′

f
(cos ρ + sin ρ(a sinα − b cosα))e , (7)

thus giving an analytic proof of the following result:

Theorem 1. If the rigid motion between two weak-perspective cameras is as-
sumed to be free of cyclorotation, then the epipolar direction e can be recovered
as one of the two eigenvectors of the vectorial part M of the affinity that relates
two views of a planar scene.

As a consequence, the direction a = e⊥ of the axis of rotation can also be
recovered.

Figure 1 illustrates the above result. Two views R and R′ of a planar H-
shaped object are shown, which are related by a rotation about an axis parallel
to the image plane (i.e., free of cyclorotation). For simplicity of illustration, a
basis {r1, r2} is chosen aligned with the main axes of the H, and the axis of
rotation is taken to be parallel to r2. Thus, the gray plane swept by r1 is left
invariant by the rotation. Note, then, that the epipolar direction is that of r1
in R and that of Mr1 in R′, and its perpendicular within each image is the
direction of the rotation axis.

A geometric proof of Theorem 1 is included in [11]. Within the same geomet-
rical framework, this result is generalized to the affine camera model leading to
Theorem 2. Let us sketch the main ideas of this generalized result; the reader
is referred to [11] for the details of the proof. The main advantage of this gen-
eralization is that, within the affine camera model, the projected target does
not need to be centered in the image (assuming that the image center is a good
approximation to the principal point). This enables us to handle a broader range
of situations where the condition of small field of view is satisfied but the con-
dition of being centered is relaxed. The affine camera model, which encloses the
weak-perspective one, projects a scene point first under a fixed direction (which
corresponds to a point O lying on the plane at infinity Π∞) onto the average
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depth plane RC (the plane parallel to the image plane R containing the centroid
C of the scene object), and then perspectively from this fronto-parallel plane RC

onto the image R. When O equals the direction O orthogonal to the image plane,
the affine camera becomes a weak-perspective camera. By this projection proce-
dure it is inferred that the affine camera, as well as the weak-perspective camera,
preserves parallelism.

While in the weak-perspective camera model the improper optical center O is
determined by the orientation of the image plane (i.e., O is the pole with respect
to the absolute conic Ω of the improper line r of R), in the affine camera model
the improper optical center O may be any point in Π∞. In fact, the direction of
parallel projection, i.e., the improper optical center, depends on the position of
the projected target within the image plane. This implies, on the one hand, that
the same (pinhole) camera under affine viewing conditions can take two affine
views with different improper optical centers (but keeping the same image plane).
On the other hand, this also implies that, while the orientation of the image plane
(and hence the improper optical center in case of a weak-perspective camera) is
determined by the displacement performed by the camera, the improper optical
center is not determined by the camera motion in the more general case of an
affine camera. This is one of the reasons that makes the affine camera model
more difficult to handle than the weak-perspective one.

Since the improper optical centers lie at infinity, the epipoles (of the first
and second affine cameras) are also located at infinity in the image planes, i.e.,
the epipolar lines in both views are parallel. But, while in the weak-perspective
cameras the epipoles coincide with the orthogonal direction (in the image plane)
of the axis of rotation, in the general affine cameras the epipoles are no more
related to this distinguished direction and, thus, a priori, they do not provide
information about the rigid motion between the two affine cameras. This explains
why most of the literature about the general affine camera model switches to the
weak-perspective camera model when the question of inferring camera motion is
addressed. Let us state the announced generalization result:

Theorem 2. Assume that the rigid motion between two affine cameras is free of
cyclorotation and that the target projections are shifted (from the center of the
image) along the direction orthogonal to the axis of rotation. Then the epipolar
direction can be recovered as one of the two eigenvectors of the vectorial part
M of the affinity that relates the two affine views of a planar scene.

2.3 Computing the Epipolar Direction from the Affinity Parameters

Fix any coordinate frame in the image (for instance pixel coordinates, since
orthonormality is not required) and assume that the affinity that relates the two
views has the expression

x′ = Mx + t =
[
M1,1 M1,2

M2,1 M2,2

] [
x
y

]
+
[
tx
ty

]
. (8)
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In virtue of Theorem 1, the epipolar direction is one of the eigenvectors of M.
An eigenvector [1, w]� of M satisfies the equation

M1,2w
2 + (M1,1 − M2,2)w − M2,1 = 0 . (9)

If the motion is under the hypothesis of Theorem 1, then (9) must have two real
solutions w1, w2, and the epipolar direction is e = [1, wi]�, for some i ∈ {1, 2}
(or [0, 1]�, in case M1,2 = 0).

3 Extracting the Affinity Parameters in Our
Implementation

The affinity that relates two affine views is usually computed from a set of
point matches. However, point matching is still one of the key bottlenecks in
computer vision. In this work an active contour [12] is used instead. The active
contour is fitted to a target object and the change of the active contour between
different views is described by a shape vector deduced as follows. The contour
is first represented as a parametric spline curve as it is common in Computer
Graphics [13]. It has previously been shown [12] that the difference in control
points Q′ − Q may be written as a linear combination of six vectors. Therefore,
using matrix notation,

Q′ − Q = WS , (10)

where

W =
([

1
0

]
,

[
0
1

]
,

[
Qx

0

]
,

[
0

Qy

]
,

[
0

Qx

]
,

[
Qy

0

])
, (11)

and S is a vector with the six parameters of the linear combination, the shape
vector

S = [tx, ty, M1,1 − 1, M2,2 − 1, M2,1, M1,2]� , (12)

which encodes the relation between different affine views of the planar contour.
Note that the dimension of the shape vector can be reduced if robot motion

is constrained, for instance to lie on a plane [14].
Once the compact representation of the contour in terms of control points

and knots is obtained, a Kalman filter is used to track the contour along the
sequence [12], and the shape vector is updated at each frame.

In previous works [15,16], the continuously updated shape vector was used to
estimate robot egomotion in practice, provided data from other sensors (such
as an inclinometer) or scene information (such as depth) were supplied. Here
we focus on the extraction of epipolar direction from the shape vectors of just
two views, and the analysis of the attainable accuracy in the different possible
working conditions.

4 Experimentation

Two sets of experiments were performed to evaluate the accuracy of the pro-
posed method. The first set uses synthetic image sequences generated by simul-
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ating camera motion and computing projections under a full perspective camera
model. Using this set, the sensitivity of the proposed algorithm to perspectivity
effects is assessed by changing the distance of the target to the camera. A com-
plete study involving the relaxation of all weak-perspective hypotheses can be
found in [11].

The affine epipolar geometry is usually estimated using the Gold Standard
algorithm [5]. This technique requires image correspondences of at least 4 non-
coplanar points. Using also our synthetic experimental testbed, we show the
effects of approaching coplanarity for this configuration, and compare the results
with those of our method.

The second set of experiments uses real images taken by a robot arm moving
along a calibrated path, showing the performance of the approach under real-
istic imaging conditions. In this setting, a comparison with the Gold Standard
algorithm is also provided.

4.1 Simulations

When synthetic images are generated using an affine camera model (i.e., as-
suming perfect weak-perspective conditions), the epipolar direction is exactly
recovered with the proposed method. However, we would like to assess the va-
lidity of the method under more general conditions. To this end, we generate
the test set of synthetic images using a full perspective camera model. Then, of
course, perspectivity effects affect the recovery of the epipolar direction in the
ways that will be analysed in the following.

In the first experiment we analyse how a decrement of the distance Zave

from the camera to the target affects the computation of the epipolar direction.
Decreasing the distance enlarges perspective effects, and consequently, should
increase the error in epipolar direction recovery. For this experiment we consider
distances of 500, 750, 1000, 1250, 1500, 1750 and 2000mm. The smallest of these,
500mm, corresponds to an extreme situation for the weak-perspective model,
in which important unmodelled distortions in the projected control polygon are
present. For larger depth values, the affine conditions are better satisfied, thus
reducing the error, as shown in Figure 2. It is worth noting that even under
these unfavourable conditions the recovery error stays below 0.6◦.

The effects of relaxing other assumptions, such as lateral translations leading
to uncentered targets, introducing depth relief, or having cyclorotation have also
been explored and the results are given in [11], where the sensitivity to contour
shape is also analysed.

Next we describe a comparison with a standard technique for computing the
affine epipolar geometry, namely the Gold Standard (GS) algorithm [5]. This al-
gorithm, contrary to our procedure, needs non-coplanar point correspondences
in order to compute the maximum likelihood estimate of the affine fundamental
matrix. While in theory, only four non-coplanar points would suffice for comput-
ing the affine epipolar geometry using the GS algorithm, its performance is af-
fected by the amount of non-coplanar information provided, both in terms of de
pth range and in the number of points used. The idea is to establish experimen-
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tally the amount of depth information required by GS algorithm for it to provide
equivalent epipolar direction recovery results to our procedure.

To this end, we set first an experiment in which we add a range from two to
twelve extra points to the H-shaped contour, varying their distance with respect
to the contour plane. Camera parameters are fixed at: 500 mm distance to target
and a focal distance of 767 pixels. As before, camera motion is achieved via a
rotation of 40◦ about an axis placed at an orientation of 45◦ on the target
plane. The results are shown in Figure 3. It can be seen how as the depth of
these points is increased, the error in the computation of the epipolar direction
decreases. Moreover, it turns out that the number and xy location of these
points have little effect in the computation of the epipolar direction. The figure
contains plots of the resulting errors in the computation of the affine epipolar
direction with the GS algorithm for different numbers of out-of-plane points, and
a threshold indicating the error in the recovery of the epipolar direction using

(a) Init (b) 15◦ (c) 30◦ (d) 45◦ (e) 60◦ (f) 75◦

Fig. 4. The first experiment with real images entails pairs of views consisting of the
initial one plus each of the other five, corresponding to camera rotations of 40◦ about an
axis on the target with inclinations sampled at intervals of 15◦. The epipolar direction
computed by the proposed technique is displayed as a line passing through the target
center, while the thin lines are the epipolar lines obtained with GS.
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Table 1. Mean and standard deviation in degrees of the epipolar direction computed
by the proposed technique and the GS algorithm from real images

epipolar direction -15 -30 -45 -60 -75

θ̄ -16.63 -31.01 -45.00 -57.63 -72.04

σ 0.14 0.09 0.14 0.19 0.13

θGS -18.53 -34.25 -49.46 -62.53 -76.36

our proposed technique under the same experimental conditions (the additional
points out of the contour plane are evidently not used in this case). As shown
in the figure, for the given experimental conditions, the results of our technique
are comparable to those of the Gold Standard algorithm when the extra points
are placed roughly at a distance equal to the target size (120 mm in our case).

Note the importance of parallax in the computation of the affine fundamental
matrix with the Gold Standard algorithm. As the target points approach copla-
narity, the parallax vector, which determines the epipolar direction, is mono-
tonically reduced in length. Consequently, the accuracy of the line direction is
also reduced, and the covariance of the estimated affine fundamental matrix in-
creases. This situation does not occur in our procedure, as it has been devised
precisely to compute the affine epipolar direction from two views of a plane.

4.2 Experiments Using Real Images

We present now results on image sequences in a controlled setting of our tech-
nique for computing the affine epipolar direction from pairs of views of a plane
only. The goal of this work is not tracking, but computing the affinity from an
active contour deformation, and using it to estimate the epipolar direction in-
duced by the two views. To this end, we facilitate the tracking phase by moving
a simple target placed on a manipulator end-effector, and focus on evaluating
the accuracy of the direction recovered in different situations, compared to robot
motion ground truth.

The experimentation setup consists of a Stäubli RX60 manipulator holding
the target pattern on its end-effector. This target is a planar artificial H-shaped
figure with corners and curved edges, which can be easily tracked with our active
contour tracker. We are interested in using such setup in order to obtain a precise
ground truth for the experiment. The initial distance from camera to target
has had to be set to 500 mm. This corresponds to the extreme case discussed
in Section 4.1, Fig. 2, and, therefore, we are testing the proposed approach
under relaxed weak-perspective conditions. The acquired images have evident
perspective effects, as shown in Figures 4 and 5, which make our algorithm
work under extreme conditions. In order to provide depth information to the GS
algorithm, the endpoints of two 20 mm screws placed at both sides of the contour
are used as matching features in junction with the eight corners of the contour.
Note that these are also extreme conditions for the GS algorithm to work, since
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(a) Init (b) Tx + 40◦ (c) 20◦ (d) 40◦

Fig. 5. Experiments with real images further relaxing weak-perspective conditions. The
first sequence, entailing an uncentered target, starts at (a) and ends at (b). The next
one departing from a non-frontoparallel target position starts at (c) and ends at (d).

Table 2. Mean and standard deviation of the epipolar direction computed over real
images when weak-perspective conditions are further relaxed

Frames θ̄ σ θGS

Not Centered -34.65 0.13 -56.29

Not Frontoparallel -43.89 0.09 -49.78

very little depth information is provided: only two out-of-plane points. Thus,
due to the setup we currently have, we are comparing both algorithms at the
limit of their respective working conditions.

The first experiment entails camera motion induced by a rotation of 40◦ about
an axis on the target at various inclination angles sampled at intervals of 15◦.
This, thus, relates to Fig. 2 with distance equal to 500 mm. Starting from the
fronto-parallel position shown in Figure 4(a), the contour is tracked to each of the
final views shown in the remaining frames of the figure. The epipolar direction
computed by the proposed algorithm in each case is displayed as a line passing
through the target center. Thin lines passing through the points correspond to
the epipolar direction computed with the GS algorithm.

Table 1 presents the numerical values obtained in the computation of the
epipolar direction. Standard deviation is computed by acquiring 300 images in
the final position, estimating the shape vectors and then computing the cor-
responding epipolar directions. Note that the standard deviations are all very
similar, and the mean values deviate more from ground truth as the angle de-
parts from the 45◦ inclination. This should be interpreted in the light of Fig. 2
as meaning that the tracker amplifies the recovery error due to perspectivity
effects unmodelled by the weak-perspective camera. Consequently, under true
weak-perspective conditions, the errors should be much lower as indicated by
the shrinking of the error curves in Fig. 2 when the distance Zave from the cam-
era to the target increases. Results using the GS algorithm are sightly worse than
those obtained with the proposed algorithm. This is due to perspective effects
as well as to the poor depth information provided with the point matches used.

Two additional sequences were analyzed after further relaxing weak-perspecti-
ve conditions. The first such sequence, labelled “Not centered”, starts at the
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fronto-parallel initial position (Fig. 5(a)) and finishes at an uncentered position,
after a translation of 100 mm along the x axis of the robot coordinate frame
and a rotation of 40◦ about an axis at 45◦ inclination (Fig. 5(b)). Consistent
with our simulated results [11], this lateral camera translation is by far the
violation of weak-perspective conditions that has the most pervasive effect on
the computation of the epipolar direction. See the numbers in Table 2, first row,
which is far from the motion assumption of Theorem 2. This pervasive effect
appears also in the computation with the GS algorithm, yielding the largest
error in the experiments.

The second experiment, labelled “Not Frontoparallel”, corresponds to the
same rotation described above, but the initial frame is not frontoparallel. The
sequence starts with the target already rotated 20◦ as shown in Fig. 5(c) and,
after a further rotation of 20◦, finishes at 40◦ (Fig. 5(d)), all rotations about an
axis at 45◦ inclination as before. Observe that the result is only a bit worse than
that of the initial experiment, but with a similar standard deviation. The result
with the GS algorithm here is similar as before.

5 Conclusions

The recovery of camera motion and scene structure from uncalibrated image
sequences has received a lot of attention lately due to its numerous applications,
which range from robot localization and navigation, to virtual reality and arche-
ology, to name just a few. Most works rely on detecting a set of non-coplanar
points in the scene and matching their projections on the different views. In
this paper we have departed from this main stream, by dealing with a less in-
formative situation, namely features lying on a plane, and recurring to contour
tracking instead of point matching.

Our main result is that, under weak-perspective conditions and assuming a
camera motion free of cyclorotation, the epipolar direction can be recovered from
the affinity relating two views of a planar scene.

Synthetic images were used to evaluate the results in a noise-controlled en-
vironment, and then to compare the accuracy of our method with that of the
Gold Standard algorithm, which relying on matches of non-coplanar points falls
in the main stream mentioned above.

The outcome of the comparison has been very encouraging, since with less
scene information (only from a plane) and with a much simpler processing (solv-
ing a single second-order equation), we are able to obtain the epipolar direction
with similar accuracy. It is worth reminding, however, that our method is less
general in that it requires a camera motion free of cyclorotation.

The second experimental set consisted of image sequences that were used
to validate the proposed approach under real imaging conditions. Note that
the objective of the paper is to show what can be obtained from the affine
deformation of two views of a contour, and not to validate the robustness of the
contour tracker used. For this reason, simple and well-calibrated image sequences
were used in order to have a good basis for ground truth comparison.
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Future work will include an error analysis that involves positional errors on the
contours due to the image acquisition process. Moreover, we will try to unravel
under what circumstances additional information on camera motion and scene
structure can be recovered from two (or more) uncalibrated views of a planar
object. Along the same line, we will tackle the recovery of the orientation of
the scene plane, as well as what occurs in degenerate situations in which such
orientation is the same as that of the image plane, or when both planes have a
common direction.
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Abstract. The analysis of the events taking place in a crossroads offers
the opportunity to avoid harmful situations and the potential to increase
traffic efficiency in modern urban areas. This paper presents an automatic
visual system that reasons about the moving vehicles being observed and
extracts high-level information, useful for traffic monitoring and detec-
tion of unusual activity. Initially, moving objects are detected using an
adaptive background image model. Then, the vehicles are tracked down
by an iterative method where the features being tracked are updated
frame by frame. Next, paths are packed into routes using a similarity
measure and a sequential clustering algorithm. Finally, the crossroads
activity is organized into states representing the underlying mechanism
that causes the type of motion being detected. We present the experi-
mental evidence that suggests that the framework may prove to be useful
as a tool to monitor traffic-light-controlled crossroads.

1 Introduction

Nowadays, the protection of people and property is a major concern. This has
resulted in a large number of cameras being installed to perform surveillance
and monitoring tasks in places such as banks, offices, houses, and streets. The
question which now arises is what will it be the best method to process all this
information. While there have been numerous cases where the video footage was
helpful in the retrospective analysis of an event, nonetheless, as [3] point out,
all this stream of information may have better uses than just as a forensic tool
to reconstruct past events. Although stored video may prove helpful in many
situations, it is worth trying to use video monitoring systems as proactive tools
that provide information which may prove useful in preventing harm.

In our research, we aim to develop automatic image analysis tools with the
capacity to infer high-level descriptions of the scene being monitored. This is an
area where one can expect major advances in the near future. It may require
the interpretation of long spatio-temporal image sequences by agents focused on
particular actions or multiple agents interacting. It seems that Hidden Markov
Models (HMM) are particularly suited for this task. For instance, Oliver et al.
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used them to detect and classify interactions between people[16]. Interesting in-
teractions include following people and unusual changes in trajectories. Also,
Wada and Matsuyama[24] use HMM to recognize the behavior of multiple mov-
ing objects. In their approach, feasible assumptions about the present behavior
consistent with the input image and behavior models are dynamically gener-
ated and verified. In our work, we recognize the importance of computing the
relation, and the strength, between the states that cause the motions and the
trajectories being observed. The task of delivering high-level descriptions seems
to demand the construction of elaborate abstractions. In this vein, Mark and
Ellis[13] group together paths into routes and then give semantic meaning to
motion activities within the routes. A possible way to represent this hierarchy
of knowledge is through the use of graph or tree data structures. For instance,
Lou et al.[11] represent the set of routes as the root. Then, the branches may
represent subsets of routes. At the leaves, they represent the individual paths.
This is very similar to the model that we use. However, since our focus is on
the structured scenario of periodic changes existing in a traffic-light-controlled
crossroads, our model gravitates around the different states of activity.

In the present study, we center our attention on the identification of the set of
routes that are present in each state of activity in a crossroads. Studying what
happens in this type of location has important implications for modern urban
areas. For instance, as Mussone and Sala[15] point out, up to one third of the
collisions take place at crossroads. In our model, the type of motions that we
observe represent meaningful states that have a causal function, i.e., a particular
configuration of traffic light motivates certain trajectories while inhibiting others.
This cause-effect relationship repeats itself into cycles of activity. There have
been numerous studies for specific types of situations that arise at vehicular
intersections, like incident detection [6], vehicle classification [7], vehicle counting
[14], and vehicle speed [4]. In this paper, we advance a methodology to identify
the different states that constitute a process.

The rest of the document develops as follow. In §2, we discuss how a moving
object is tracked to compute a vehicle path. Then, in §3, paths are packed
together into routes using a similarity measure. Next, in §4, the activity in the
crossroads is organized into the states provided by the traffic-light combinations.
In §5, we provide some results from experimentation. Finally, we present our
conclusion.

2 Computing a Vehicle’s Path

Reliably computing vehicle trajectories is an important step which forms the
basis for the rest of the analysis. It implies detecting the moving elements and
tracking them along their trajectory.

2.1 Detecting Moving Vehicles

In this study, we center our attention on fixed cameras looking at dynamic scenes
where there are some objects that remain static and some others that move. A
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primary tool to extract information about moving objects is background sub-
traction [19]. However, it has become clear that for vision systems to work for
extended periods of time, the background model should be updated dynami-
cally. In a seminal work, Stauffer and Grimson[20] suggested to use a mixture
of Gaussian distributions to describe the changes in the dynamic behavior of
a pixel. Nonetheless, in particular for an object passing in front of another, it
is not clear that the variations observed can be modeled well by a parametric
distribution. This was recognized by Elgammal et al.[5]. Other researchers, like
Rigoll et al.[17], used adaptive state estimation in the form of Kalman filters
to obtain reliable results even in cases with considerable process variation and
observation uncertainties.

In the context of stereovision, Tomasi and Manduchi[22] proposed to char-
acterize the lines of each individual image in terms of both its intensity and
gradient. They noted that in the presence of occlusions corresponding scanlines
showed an obvious deviation with respect to one another. In [18], this observa-
tion is made effective by detecting when, in the temporal axis, both accretions
and occlusions occur. In general, a particular pixel value that belongs to a static
background tends to stabilize around a certain value. The differences with re-
spect to this value can be described in terms of a statistical model. However,
background occlusion due to a foreground object passing by is a random process
that is difficult to describe using a parametric model. Under these circumstances,
the phenomenon observed seems to be present in two forms. In one of them, the
values remain stable until an object occludes the background. When the object
has passed by, the trajectory described by the curve returns to its attraction
point. A second case is when the foreground objects integrates into the back-
ground. In that case, the attraction point assumes a new position from then on.

2.2 Tracking Vehicles

Correspondence is a basic problem that has received much attention from re-
searchers. For instance, Coifman[2] proposed a method to track vehicles where

Fig. 1. The camera is placed on top of this 28-meter tower
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occlusion may be present. In a seminal work, Lucas and Kanade[12] studied
the problem of tracking a bidimensional feature over consecutive frames using
a Newton-Raphson type of technique. In their formulation, the feature experi-
ences transformations such as translations. In principle, it is possible to include
a search for rotations. However, as Tomasi and Shi[23] observed, this may be
error prone. In the present study, once the feature under consideration has been
found it is replaced by the current feature view. On the one hand, if the frames
are close enough to each other in time, the feature will not change excessively.
On the other, updating the feature after each frame allows to the system to
handle changes in the vehicles’ appearance beyond bi-dimensional image trans-
formations.

3 From Paths to Routes

Paths that are similar to each other can be packed into routes. This is done
throughout a non-supervised clustering algorithm [21]. That is, the labeling for
the set of paths used for learning is not available. Hence, the prime problem is
to unveil the organization pattern of the routes with the aim to obtain relevant
conclusions. In our case, let X = {x1, . . . , xa} , the set of trajectories. Our
objective is to define m clusters C1, . . . , Cm such that the following conditions
are meet

– Ci �= ∅, i = 1, . . . , m; there is no empty set.
–
⋃m

i=1 Ci = X ; the set of routes is the set of paths.
– Ci

⋂
Cj = ∅, i �= j; i, j = 1, . . . , m; the routes do not have paths in common.

In order to compute the similarity between paths, we use the Hausdorff dis-
tance. Once similarity is computed, a sequential clustering algorithm is used.

3.1 Dissimilarity Between Paths

The Haussdorff distance allows us to compare two sets of points. It has been
used with success in applications as diverse as face recognition [1] and people
localization within an image [8]. Among other advantages, the Hausdorff dis-
tance does not require the cardinality of the sets to be the same. Indeed, it has
been shown that the algorithm complexity of the direct implementation can be
reduced by interpreting it in the Voronoi space of the points layout [9]. In this
manner, given two sets of points A = {a1, . . . ,ap} and B = {b1, . . . ,bq}, the
Hausdorff distance is defined as

H(A, B) = max(h(A, B), h(B, A)), (1)

with
h(A, B) = max

ai∈A
min
bj∈B

ρ(ai,bj). (2)

The above equation is known as the direct Hausdorff distance. There, ρ(:, :) mea-
sures the distance between two points. This is similar to the approach followed
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(a) Objects in motion. (b) Background image model.

Fig. 2. Building the background model

(i) 1st (ii) 10th

(iii) 20th (iv) 31th

(a) Curvilinear path. (b) Vehicle detection over individual frames.

Fig. 3. Tracking vehicle paths. The sought feature is refreshed after each iteration,
making it possible to adjust for changes in appearance.

by Junejo et al.[10]. They represent a trajectory by a node in a graph. Each
node is connected with each other and the weight of an edge is the distance of
comparing two trajectories using the Hausdorff distance. In this study, we are
using the Euclidian distance defined as

ρ(a,b) =|| a − b || . (3)

3.2 Inferring Routes

It is assumed that the number of routes in not known in advance. The basic idea is
to find those paths that are similar to each other. Thus, given X = {x1, . . . , xn},
the set of paths, the objective is to compute the set of routes C = {C1, . . . , Cm}.
We start this by computing Dn×n = {H(xi, xj)} , a matrix that express the
dissimilarity between paths xi and xj , as dictated by Eq. (1).

Firstly, every path is initially set as non-visited. So for every non-visited path
xp, we mark it as visited and compute the set U = {u1, . . . , us} of non-visited
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paths such that the dissimilarity measure, H(xi, uk) for k = 1 . . . , s, is less than
a predefined threshold γ. As a result, the route Ct is formed by the union of xp

and the paths in U . This procedure of selection and expansion is repeated for
every member of U and subsequent adjoint sets are combined into Ct. The route
is defined when no more paths can be incorporated. If there are non-visited paths
then there is space for another route and the procedure should be repeated again.

4 Crossroads Activity

Now, the problem is to organize routes into states of a process defined by the
traffic-light changes. That is, our task is to to organize the routes based on the
limits imposed by the traffic lights. Each path has associated a time stamp for
each of the frames where the object was detected. We term the routes exclusive
and inclusive depending on whether they are present only in a certain state or
in several of them, respectively. In principle, exclusive routes may be uncovered
by a frequency analysis because no matter how long they last, they repeat pe-
riodically. Subsequently, we may use these routes as a base to organize the rest
of them. However, in the process we may miss important information about the
transition between observations and states. Let Sn×n be an adjacency matrix
whose rows and columns are the discovered routes. As time passes, S(i, j) in-
creases by one each time a transition between route Ci and route Cj occurs.
That is, if a path belonging to Ci was detected at time k and a path belonging
to Cj was detected at time k+1 , then S(i, j) is increased by one. The adjacency
matrix S becomes the transition matrix (in HMM terminology), T , by comput-
ing the sum over the elements in a particular row and then dividing each element
by that sum. Thus, T represents, in its rows, the states of the process and, in
its columns, the routes that appear in it. The next step is to identify which one
corresponds to the underlying causal mechanism. Suppose that we know N , the
number of independent states in the process. In most cases, this is a trivial num-
ber to obtain because it corresponds to the different traffic-light combinations
that occur in an intersection. What we want is to compute the combination of
N rows of T , from the n available, that correspond to the independent states
of the process. Let T = {1, 2, . . . , n} be the enumeration of states in T and let
R = {r1, . . . , rN} be a set of N numbers such that ri ∈ T , we want to estimate
the set of N numbers of T that are the indices to the states that maximize the
following expression

q =
n∑

i=1

max
rj∈R

T (rj, i). (4)

At the end, the set R associated with the maximum q corresponds to the indices
of the states of the routes of the transition matrix.

5 Experimental Results

The exposed model was implemented through the development of diverse visual
routines. For experimentation a set of 20,000 images with a resolution of 320
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(a) Motion from left to right. (b) Motion from right to left.

(c) Motion up and down and vice
versa.

Fig. 4. Paths organized by states

rows times 240 columns was used. In our data set, there are approximately 10
complete traffic-light cycles . Each cycle is composed of three states.

The moving-object detection algorithm processes about five frames a second.
When an object stops for about ten frames, it is incorporated as part of the
image background model. The procedure has been tested under diverse weather
and illumination conditions, including cloudy, sunny, and rainy days. For all
conditions, the operational parameters were maintained unchanged. Fig. 2 shows
a typical example of the current image, the background model, and the moving
objects detected.

Path detection is largely based on the motion-detection stage. When an object
in motion is detected, a small 11 x 11 pixel window around the object centroid
is selected. This window is tracked until it is missed. This normally occurs when
the feature leaves the camera’s field of view. In each frame, the window’s contents
is refreshed with the current object appearance. After tracking down the object,
there is a set P = {p1, . . . ,pn} containing information about the position and
time of the detected object. In Fig. 3, we show an example of the path traced
by a vehicle performing a U-turn. This example is important since it shows
that features are tracked successfully even when the object appearance changes
between the beginning and the end of its path. As long as the time span between
images is not too long and the velocity of the object is not too large, the tracking
algorithm will work satisfactorily.
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Similar paths are clustered together into routes, using the algorithm described
previously. Only paths larger that 40 pixels are considered. Two paths are packed
together whenever their dissimilarity, using the Hausdorff distance, is below a
certain threshold. After experimenting, we arrive at a value of γ = 30 pixels. For
the 20,000 frames, 1,305 paths were detected. Thereafter, only routes with more
that 10 paths were considered. We obtained 18 routes out of the 1,305 paths.

In fact, each path detected has time stamps associated with all the points
along its trajectory. So at this point, we can organize how paths occur throughout
time and we can organize this information by the route to which each path
belongs. From these path-route-time relationships, we build the transition matrix
T that represents the possible states of the process. Using the a priori knowledge
that there are three states, we maximize Eq. (4) to select which states of T are
more exclusive. This gives the result shown in Fig. 4. Perhaps, a most important
piece of information may be the transition matrix T . It expresses the observed
frequency of transition between routes.

6 Conclusion

In this document, we advance toward the construction of a visual system capa-
ble of automatically inferring the activity causal underlying control mechanism.
In order to study the problem, gather data and unveil the prime variables, a
structured scenario, such as the light-controlled vehicular intersection, provides
a rich testbed for analysis and development. In this document, a strategy to as-
sign the observed activities to existing states is developed. The model adapts to
changes in lighting conditions. Consistent tracking is achieved by refreshing the
object being observed in each new frame. Tracking works even in the presence
of L-turns or U-turns. Paths are packed into routes which in turn are analyzed
based on their time occurrence to determine the set of them which make up
each state.

In this high-level view, the process is divided into states. Each state is in-
tegrated with non-exclusive routes, which in turn are made up from paths. In
the process, the model learns routes and assigns occurrence probabilities to each
of them. The results presented here pertain to a well structured process. In
the future, we plan to study other environments where the underlying causal
mechanism presents more subtle facets.
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Abstract. This paper proposes a method for detecting frontal pedestrian cross-
ings and estimating its length from image data obtained with a single camera as
a travel aid for the blind. It is important for the blind to know whether or not a
frontal area is a crossing. The existence of a crossing is detected in two steps. In
the first step, feature points for a crossing is extracted using Fisher criterion. In
the second step, the existence of a crossing is detected by checking on the peori-
odicity of white stripes on the road using projective invariants. Next, we propose
a method for estimaing crossing length using extracted feature points. From the
experimental results for evaluation, it is found that the existence of a crossing
is successfully detected for all 173 real images which include 100 images with
crossings and 73 images without crossing. The rms error of crossing length esti-
mation for the 100 images is found 2.29m.

1 Introduction

An effective navigation system is an ultimate necessity to improve the mobility of mil-
lions of blind people all over the world. This paper addresses an application of computer
vision as a travel aid for the blind. Since the range of detection of obstacles using a white
cane, which is a usual travel aid for the blind, is very narrow, various devices have been
developed such as the SONICGUIDE[1], the Mowat sensor[2], the Laser cane[3] and
the Navbelt[4]. However, these devices are not able to assist the blind at a pedestrian
crossing where information about the existence of a crossing and its length are impor-
tant. There is a type of traffic light with particular equipment which notifies the blind of
a safe direction at a crossing by sounds. An equipment using infrared[5] has been devel-
oped. The equipment is installed around the intersection to provide visually impaired
with voice information and directions to go. But such equipments are not available at ev-
ery crossing and it would take too long for such equipment to be put in everywhere. The
“vOICe”[6] is commercially available which is a vision based travel aid for the blind
using conversion of an image pixel information to sound. Although it can recognize
walls, doors etc., its technique does not include the detection of pedestrian crossing.

Stephen Se[7] first addressed a pedestrian crossing detection by grouping lines in
an image and checking on concurrency using the vanishing point constraint. However,
a thorough evaluation of this technique is not performed yet and also the technique is
working slow and far from real time.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 966–977, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We have aimed to develop a device with which the blind would be able to au-
tonomously detect important information for safely negotiating a pedestrian crossing.
In our previous paper[8] for the purpose of achieving such an objective using image
data observed with a single camera, we proposed a method for image analysis of a
crossing to measure the crossing length and to detect the state of the traffic lights. That
method is based on an assumption that the area in front of the blind is a crossing. There
has been a residual problem to detect whether or not the area in front of the blind is
a crossing. In our previous paper[9] we proposed a method for detecting the existence
of a crossing in the frontal area of the blind using image data observed with a single
camera. The process of detecting the existence of a crossing is a pre-process followed
by the process for measuring its length. In this paper we propose a unified method for
detecting a crossing and measuring crossing length based on a new idea.

In the present method, at first, feature points for a crossing are extracted by using
Fisher criterion. Next, the existence of a crossing is detected by checking on the peri-
odicity of white stripes painted on the road using projective invariants[10] constructed
from the feature points. The projective invariants are invariant even when the geometric
shape of crossing observed in an image varies due to change in viewing direction. After
detecting a pedestrian crossing, we find the feature point at the half crossing length,
estimate a camera rotation angle by using four feature points at the half crossing length
and measure the crossing length by using number of white bands between the nearest
feature point and the feature point at the half crossing length.

In our previous paper[11], we developed a method for measuring the length of cross-
ing by using number of white bands on a road and the band width, to improve the
method of our previous paper[8] which is complicated, computationally inefficient, and
needs many parameters to adjust. However it is based on an assumption that an opti-
cal axis of a camera is horizontal. In the present paper, we develope the method for
measuring the length in the case where the optical axis is not always horizontal.

In order to evaluate the performance of the present method, experimental results are
presented for detection of crossing and measurment of its length from real image data.

2 Detection of Pedestrian Crossing

We detect a pedestrian crossing using projective invariant derived from four colinear
feature points. In this section, we represent the principle and method of pedestrian
crossing detection.

2.1 Projective Invariant

We consider a one-dimensional coordinate x on a straight line in a three-dimensional
(3D) space. We denote by x̃ a homogeneous coordinate (x, 1)t for a coordinate x where
the symbol “t” denotes the transpose operator. When we observe a point with homo-
geneous coordinate x̃ on an image plane, the point x̃ can be written according to a
projective transformation[10] as follows:

x̃′ = λ(x̃)T x̃, (1)
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where T is a 2×2 dimensional matrix and λ(x̃) is a parameter depending on x̃. When
we consider four colinear point xi, i = 1, 2, 3, 4, as illustrated in Fig.1, the Euclidean
distance 
ij between xi and xj is given by


ij =| x̃i x̃j |, (2)

here | x̃i x̃j | is a determinant of a matrix [x̃i x̃j ] which is constructed with two column
vectors x̃i and x̃j . Hence under a projective transformation, 
ij is transformed in the
following:


′ij = λ(x̃i)λ(x̃j) | T | 
ij . (3)

The cross-ratio of the Euclidean distances 
ij :

I ≡ 
12
34


13
24
(4)

is invariant under the projective transformation because all λ(x̃i), i = 1, 2, 3, 4, and
| T | are cancelled out[10].

4

x

x

x

x

1

2

3

Fig. 1. Four collinear points

2.2 Pedestrian Crossing Detection with Projective Invariant[9]

In a pedestrian crossing, there are periodical white stripes, which are painted on a road
surface. Inter-white striped distance is the same as the band width of a white stripe.
Let b be the band width of a white stripe. We consider feature points, which are edge
points of white stripes on a road surface. For four consecutive collinear feature points
as illustrated in Fig.2, the projective invariant Iof equation (4) is given by[10]

I =

12
34


13
24
=

b · b
2b · 2b

= 0.25. (5)

The value of I is constant for four colinear consecutive feature points on a line with
any direction. Hence the value of I obtained from four consectutive feature points in an
observed image is equal to the value of I in equation (5). By using this invariant I , we
can detect a pedestrian crossing in an observed image.

2.3 Feature Point Extraction by Fisher Criterion

At a feature point on an edge line of white stripe, which is usually observed as almost
horizontal line, we set a vertical window with size of (2 × win + 1, 1) whose center
coincides with a considered point as illustraed in Fig.3. The win is the size of the half
window in pixel. The class 1 is defined as a set of intensities of grayscale image at pixels
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Fig. 2. Feature points in a crossing

in the upper side of the window. The class 2 is defined in the same manner as the class
1 for the lower side of the window.

The Fisher criterion fc is defined as the ratio of a “between class variance” varb to a
“within class variance” varw . Maximizing fc implies maximizing the distance between
the means of the two classes while minimizing the variance within each class:

fc = varb/varw, (6)

where

varb = p1p2(m1 − m2)2,
varw = p1var1 + p2var2,

mi = the mean intensity in the class i, i = 1, 2,

vari = the variance of intensity in the class i, i = 1, 2,

pi = the probability of class i, i = 1, 2.

win

white

black

win

Fig. 3. Window at a feature point

The mean mi, i = 1, 2, has a high value if class i is corresponding to white region,
and it has a low value if the class is corresponding to black region. When the center of
the window coincides with a feature point, the Fisher criterion fc is considered to be
high value. On the other hand, when the center of the window is different from a feature
point, the fc is considered to be low value. The Fisher criterion fc is assigned to the
center pixel of the window. By scanning the window in vertical direction, we can find
feature points with local maximum fc.

2.4 Method for Extracting Feature Points

At first, we search two adjacent parallel vertical lines at the center of an image for
feature points as illustrated in Fig.4. If we cannot find appropriate feature points, we
search another left or right two adjacent parallel vertical lines whose x-coordinate are
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Fig. 4. The extracted feature points

Fig. 5. The extracted feature points on left line

w/4 or 3w/4, respectively, for feature points where w is the x-size of an image. Fig.5
shows the extracted feature points on the center and left lines, where the feature points
on the left line are searched because the extracted feature points on the center lines
do not satisfy the conditions (7), (8) for detection of crossing, that is, the projective
invariants calculated from these extracted feature points are different from the projective
invariant for crossing.

2.5 Method for Detecting Pedestrian Crossing

From n extracted feature points, we can calculate (n−3) projective invariants by equa-
tion (4). For each projective invariant I(i), i = 1, 2, ..., n − 3, we check on whether it
satisfies the following condition or not:

| I(i) − 0.25 |< 0.1 × 0.25. (7)

Denote by cnt the number of invariants satisfying the condition (7). We decide that
there is a crossing if the following condition is satisfied:

cnt ≥ max{[(nc − 3)/5], 1}, (8)

where [x] denotes the maximum integer less than x and max{a1, a2} denotes the larger
value among a1 and a2. nc denotes the number of feature points from the nearest feature
point to the one at the half crossing length in the image.

On detection for crossing, we extract feature points on two adjacent parallel vertical
lines. We denote by I1(i), i = 1, ..., n1, I2(i), i = 1, ..., n2 the projective invariants
calculated from the extracted feature points on the two adjacent parallel vertical lines.
Let cntk and nkc, k = 1, 2 be cnt and nc for Ik(i), i = 1, ..., nk, k = 1, 2, respectively.
We decide that there is a crossing only when both Ik(i), i = 1, ..., nk, k = 1, 2 satisfy
the conditions (7) and (8).
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3 Crossing Length Estimation

3.1 Estimation of Camera Rotation Angle

In fact, the camera optical axis may be not exactly horizontal. In this subsection, we
describe the method for estimating the camera rotation angle using the four consecutive
feature points in a crossing image. We assume that the camera rotates with angle θ
around the Xo-axis of the camera coordinate system (Xo, Yo, Zo) where the optical
axis Zo-axis and the Xo-axis are horizontal. It is assumed that the camera does not
rotate around the optical axis. The θ is defined as the clockwise angle from the Zo-axis.
We also assume that the road surface is flat and horizontal. In this case, with rotated
camera coordinate system, the road surface normal (i.e. the unit vector perpendicular to
the road surface) n is given by

n = (nx, ny, nz) = (0, cosθ,−sinθ). (9)

We denote by (X, Y, Z) the rotated camera coordinate system. We use the four con-
secutive feature points extracted in a crossing image. We denote by yi the image y-
coordinate of the i-th feature point for the rotated camera coordinate system (X, Y, Z)
where the image plane is given by Z = f , by Z1 the horizontal distance from the camera
center O to the first (nearest) feature point among the considered four consecutive points,
by d the height of the camera center from the road surface and by Z the Z-coordinate of
the first feature point in the rotated camera coordinate system (X, Y, Z) as illustrated in
Fig.6. Then we have the following relation under the perspective projection:

Z = Z1cosθ + dsinθ, (10)

yi = f
−(Z1 + (i − 1)b)sinθ + dcosθ
(Z1 + (i − 1)b)cosθ + dsinθ

, i = 1, .., 4. (11)

From these relation, we can eliminate Z , b and d as follows:

1 = (g2(θ) − g1(θ))/(g4(θ) − g3(θ)), (12)

gi(θ) ≡ (f − yitanθ)/(ftanθ + yi), i = 1, .., 4. (13)

For small θ, we can have an approximate relation in the following:

gi(θ) =
f

yi
(1 − yi

f
tanθ)/(1 +

f

yi
tanθ)

	 f

yi
(1 − yi

f
tanθ − f

yi
tanθ) (14)

Then we obtain the following approximate relations:

tanθ 	 1
f(η4 + η3)

η2−η1
η4−η3

− 1
η2−η1
η4−η3

η1+η2
η3+η4

− 1
, (15)

ηi ≡ 1/yi. (16)

From this relation, we can estimate the angle θ.
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Fig. 6. The camera rotation angle θ

3.2 Extracting a Feature Point at the Half Crossing Length

In case of real pedestrian crossings, the road surface is not horizontal flat plane but has
a gradient to drain away water due to rain. The road surface has the larger curvature at
the farther point from the center of crossing corresponding to the half crossing length as
illustrated in Fig 7. Hence at the half crossing length, the curvature of the road surface is
considered to be minimal and the gradient of road surface is zero. We adopt the feature
point with minimal curvature as the feature point at the half crossing length.

a feature point at
the half crossing lengthroad

surface

Fig. 7. The cross section of real road surface: the symbol “o” denotes a feature point

In case where there is a gradient of road surface, the θ estimated with equation (15)
from four feature points on the road surface is the sum of the angle of camera θc and
the angle of the road θr because the θ is the relative angle of the camera optical axis
to the tangential plane of road surface where the four feature points exist as illuatrated
in Fig 8. It is assumed that the tangential plane of road surface is rotated by the angle
θr around the Xo-axis. The angle of road θr is defined as the counter clockwise angle
from the horizontal direction and the angle of camera θc is defined as the clockwise
angle from the horizontal direction. Here, the angle θ is defined as the clockwise angle
from the crossing direction in the tangential plane of the road surface as illustrated in
Fig. 8. In case where the θc and θr are small, the derivative of tan θ approximately
coincides with the derivative of tan θr because θc is constant with respect to position in
road. The derivative of tan θ with respective to length s on surface line in the crossing
direction approximately coincides with the curvature Δθr

Δs of road surface in the crossing
direction:

Δtanθ

Δs
	 Δtanθr

Δs
	 Δθr

Δs
. (17)

Hence the feature point at the half crossing length is obtained by finding the feature
point with the minimum derivative of tan θ. The θ calculated with equation (15) from
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d
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4

1
y

f

O

plane
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θ=θr+θc

tangential plane
of road surface

Fig. 8. The angle θ = θr + θc between the camera optical axis and the tangential plane of the
road where the four feature points exist in case where there is a gradient of the road surface

four feature points at the half crossing length is the camera angle because the gradient
of the road surface at the half crossing length is considered zero i.e. horizontal. The
derivative of tan θ is calcurated from tan θ’s at adjacent feature points.

We adopt the more distant point among the two points corresponding to n1cth and
n2cth feature points as the feature point at the half crossing length. Then we calculate
the tan θ of camera angle from the four consecutive feature points at the half crossing
length and obtain the crossing length by the method described in the next subsection.

3.3 Crossing Length Estimation

Denote by ymax the y-coordinate of the feature point at the half crossing length in an
observed image taken by a camera, which is rotated with an angle θ from the horizontal
direction, and by y1 the y-coordinate of the first (nearest) feature point in the image.
Denote by n the number of white or black bands between y1 and ymax and by h the
horizontal distance to the half crossing length. Then we have the following relations:

y1 = f
−(h − nb)sinθ + dcosθ

(h − nb)cosθ + dsinθ
,

ymax = f
−hsinθ + dcosθ

hcosθ + dsinθ
,

y1 − ymax = f
nbd(1 + tan2θ)

(h + dtanθ)(h + dtanθ − nb)
,

h = 0.5{nb(1 + tan2θ) +

√
(nb)2(1 + tan2θ)2 +

4nb(1 + tan2θ)fd

y1 − ymax

} − dtanθ.

The crossing length 
 of the present method is given by


 = 2 × h.

It is assumed that an observer stands immediately before a pedestrian crossing. The
distance without considering a camera angle was given by [11]. However, the present
method considers the angle.
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4 Experimental Results

To evaluate the performance of the proposed method for the detection of crossings and
for measuring crossing length, we used 173 real images which include 100 images with
crossings and 73 images without crossing, recorded by a digital camera. The digital
camera was a Sony DSC-F707 with specifications of 1/3 in (8.47mm) CCD and 9.7mm

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10)

Fig. 9. Some images of frontal crossings with nc extracted feature points. The ncth point is the
farthest point and is treated as the point at the half crossing length.
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(724 pixels in case of 640×480 pixel image) focal length. For observation, the centre of
the camera was set at the height of an observer’s eye (1.65m) and images were obtained
under various illumination conditions by observing in various weathers (except rain).

Some of images with crossings used for experiment are shown in Fig.9. In Fig.9, the
extracted feature points are shown from the nearest point to the point at the half crossing
length which is the ncth feature point. The experimental results of Ik, k = 1, 2 defined
by equation (5) are shown in Table 1 corresponding to Figs.9(1)∼(10). In Table 1, the
results satisfying relation (7) are shown in bold face. The proposed method is successful
in detecting crossing for all 173 images.

Some of results for estimating the crossing length among the 100 images with cross-
ings are shown in Table 2. The rms error of the estimated crossing lengths is 2.29m for
100 images with crossings. The maximual error is 6.58m. The reason for large errors
in the estimated crossing length is that if the curvature of road surface is not symmetric
or there is a local flat area which is different from area at the half crossing length then
there occurs a local minimal curvature at a point different from the half crossing length
and the feature point at the half crossing length is extracted at a different point from the
true point as illustrated in Fig.9(3) which corresponds to the maximal error.

The cpu time of the proposed method in the present paper is 0.1s for detecting cross-
ing and is 0.1s for measuring the crossing length by Pentium(R)M with 1.7GHz. On the
other hand, by the method of [11], the cpu time is 1.3s for measuring the crossing length
by Pentium M with 1.6GHz. In [11], the rms error is 2.28m for 32 images which are
different from the 100 images with crossings in the present paper, but in the experiment

Table 1. Some of results for projective invariants, I1(i), i = 1, 2, ..., n1 − 3,, I2(i), i =
1, 2, ..., n2 − 3, where n1 and n2 denote the numbers of extracted feature points on the two
adjacent parallel vertical lines: Table numbers correspond to the numbers in Fig.9

i I1 I2
1 0.237 0.237
2 0.265 0.265
3 0.249 0.249
4 0.235 0.235
5 0.241 0.241

n1c=8 n2c=8

i I1 I2
1 0.237 0.237
2 0.253 0.253
3 0.244 0.244
4 0.289 0.289
5 0.195 0.195
6 0.294 0.294
7 0.231 0.231
8 0.482 0.480
9 0.016 0.018

n1c=7 n2c=7

i I1 I2
1 0.253 0.286
2 0.234 0.212
3 0.267 0.274
4 0.248 0.233
5 0.248 0.277
6 0.247 0.250
7 0.246 0.214
8 0.498

n1c=10 n2c=9

i I1 I2
1 0.263 0.249
2 0.246 0.242
3 0.253 0.269
4 0.224 0.229
5 0.288 0.266
6 0.225 0.220
7 0.220 0.270
8 0.542 0.474

n1c=10 n2c=10

i I1 I2
1 0.220 0.235
2 0.307 0.259
3 0.206 0.227
4 0.260 0.308
5 0.491 0.412
6 0.024 0.010
7 0.348 0.705
8 0.234 0.111
9 0.365

n1c=5 n2c=7

(1) (2) (3) (4) (5)

i I1 I2
1 0.247 0.264
2 0.233 0.226
3 0.268 0.283
4 0.230 0.222
5 0.281 0.238
6 0.446 0.521
7 0.017 0.011
8 0.675 0.725
9 0.020

n1c=8 n2c=8

i I1 I2
1 0.236 0.236
2 0.278 0.278
3 0.214 0.214
4 0.286 0.286
5 0.219 0.219
6 0.525 0.513
7 0.022

n1c=8 n2c=8

i I1 I2
1 0.240 0.244
2 0.274 0.259
3 0.240 0.247
4 0.235 0.235
5 0.280 0.267
6 0.211 0.248
7 0.270 0.230
8 0.509

n1c=10 n2c=10

i I1 I2
1 0.270 0.270
2 0.239 0.231
3 0.250 0.274
4 0.253 0.229
5 0.258 0.266
6 0.235 0.235
7 0.259 0.259
8 0.247 0.247
9 0.246

n1c=12 n2c=11

i I1 I2
1 0.242 0.254
2 0.253 0.249
3 0.242 0.242
4 0.249 0.249
5 0.265 0.265
6 0.236 0.236
7 0.258 0.273
8 0.248 0.206
9 0.247 0.294

n1c=12 n2c=10

(6) (7) (8) (9) (10)
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Table 2. Some of results for crossing length estimation

no true length[m] estimate[m] error[m]

716 − 1 14.22 15.92 1.70
716 − 2 14.22 16.94 2.72
716 − 3 16.92 18.70 1.78
716 − 4 19.57 18.47 -1.10
716 − 5 14.69 16.63 1.94
716 − 6 18.36 17.89 -0.47
716 − 7 18.36 17.96 -0.40
716 − 8 22.40 17.44 -4.96
716 − 9 17.68 18.13 0.45
716 − 10 17.70 15.76 -1.94
716 − 11 19.57 15.64 -3.93
716 − 12 14.18 17.97 3.79
716 − 13 14.20 16.66 2.46
716 − 14 16.05 18.74 2.69
716 − 15 11.93 18.51 6.58
716 − 16 15.23 15.84 0.61
716 − 17 16.92 17.95 1.03
716 − 18 14.26 16.21 1.95
716 − 19 16.71 17.77 1.06
716 − 20 15.28 16.23 0.95
716 − 21 17.55 17.30 -0.25
716 − 22 17.70 18.48 0.78
716 − 23 9.73 15.97 6.24
716 − 24 14.22 16.07 1.85
716 − 25 20.69 18.55 -2.14

no true length[m] estimate[m] error[m]

716 − 26 20.41 18.61 -1.80
716 − 27 20.47 19.29 -1.18
716 − 28 14.23 17.45 3.22
716 − 29 12.75 17.16 4.41
716 − 30 14.78 17.29 2.51
716 − 31 21.52 18.29 -3.23
716 − 32 14.22 17.70 3.48
716 − 33 14.01 16.73 2.72
716 − 34 14.00 14.55 0.55
716 − 35 11.17 17.16 5.99
716 − 36 14.32 17.05 2.73
716 − 37 14.08 15.53 1.45
716 − 38 14.23 17.94 3.71
716 − 39 18.87 18.36 -0.51
716 − 40 17.80 18.57 0.77
716 − 41 19.55 17.82 -1.73
716 − 42 17.50 18.22 0.72
716 − 43 15.05 16.61 1.56
716 − 44 14.75 15.92 1.17
716 − 45 14.80 17.11 2.31
716 − 46 21.00 18.55 -2.45
716 − 47 19.20 16.30 -2.90
716 − 48 17.73 17.86 0.13
716 − 49 17.72 17.77 0.05
716 − 50 17.45 17.14 -0.31

for the 100 images in the present paper the method of [11] fails to extract necessary
features and can not estimate the crossing length for one image among the 100 images.

5 Conclusion

We have proposed a method for detecting frontal pedestrian crossings and estimating its
length from image data obtained with a single camera as a travel aid for the blind. The
method has been successful in detecting a pedestrian crossing for all 173 real images
which include 100 images with crossings. The rms error in estimating the crossing
length is 2.29m for the 100 images with crossings.
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Abstract. In this paper, we propose a novel stochastic attributed rela-
tional graph (SARG) matching algorithm in order to cope with possible
distortions due to noise and occlusion. The support flow and the corre-
spondence measure between nodes are defined and estimated by analyz-
ing the distribution of the attribute vectors in the relation vector space.
And then the candidate subgraphs are extracted and ordered accord-
ing to the correspondence measure. Missing nodes for each candidates
are identified by the iterative voting scheme through an error analysis,
and then the final subgraph matching is carried out effectively by ex-
cluding them. Experimental results on the synthetic ARGs demonstrate
that the proposed SARG matching algorithm is quite robust and efficient
even in the noisy environment. Comparative evaluation results also show
that it gives superior performance compared to other conventional graph
matching approaches.

1 Introduction

Object recognition has been one of the most challenging problems in computer
vision for several decades. Since an object can be distinguished from other ob-
jects by its own structure, the description of a structured object in terms of its
primitives pats and mutual relations between them, has been an important issue
in artificial intelligence. Due to its representational power, the graph models has
been widely used for formulating such structured abstract pattern. Among var-
ious kinds of graphs, attributed relational graph (ARG) has been considered as
the most effective data structures, which consists of nodes and attribute vectors
for encoding unary properties and mutual relations [6] [9].

So far, a great deal of works have been reported in the literature for de-
veloping efficient and robust graph matching techniques. According to [8], the
graph matching algorithms can be categorized into two classes: Search-based ap-
proach and optimization-based approach. Search-based approaches [6][7][9][10]
construct the states-spaces representing graph matching status, which are
searched with techniques similar to the tree search [6] in order to find the
optimal solution satisfying some criteria. In general, most of them have the

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 978–989, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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exponential complexity in the worst case, although a few methods [9] showed a
high-order polynomial complexity with the help of heuristics. On the other hand,
optimization-based approaches including relaxation labeling [4] [5], simulated an-
nealing [11], genetic algorithms [12], and interpolator-based algorithms [15] [16]
consider the graph matching as one of the energy minimization problems. Most
of them try to find the sub-optimal solution in a continuous state space based on
heuristic methods, that usually take polynomial time [4] [5]. In real applications,
however, the graph representation that exhibits the morphology of the graph and
the attributes is often corrupted by noise or imprecise abstraction. In order to
cope with these uncertainties in the graph structure and attributes, probabilis-
tic graph models have been introduced [1] [4] [5]. Wong et al. [1] interpreted an
ensemble of ARGs as the outcomes of a random graph, in which nodes, edges,
and all attributes were random variables with the probability density function
trained from sample graphs by using supervised learning. Sanfeliu et al. [2] [3]
presented the function-described graph (FDG) as the extension of the random
graph, which is the compact representation of a set of ARGs. In order to alleviate
the statistical independence of nodes and edges, some qualitative knowledge of
the second-order probabilities of the elements was incorporated into FDGs. Re-
cently, a new partial ARG matching approach was proposed that introduced the
relation vector space concept to cope with large variation of attributes and par-
tial matching [18]. However, since it can not incorporate the unary information
into the model, its performance and the applications are very limited.

In this paper, we propose a new robust stochastic partial ARG matching tech-
nique which utilizes both the binary relation and unary attribute information in
the relational vector space. The proposed graph matching algorithm consists of
two phases: In the first stage, the candidate subgraphs are extracted and sorted
according to the correspondence measure, which are based on the stochastic anal-
ysis in the relation vector space. This process significantly reduces the number of
possible matches, and in the result the proposed algorithm has the polynomial
computational complexity. Then, missing nodes for each candidates are identi-
fied by the iterative voting scheme through the error analysis until no more node
is found to be missed, and the final subgraph matching is carried out effectively
by excluding them.

2 Attributed Relational Graph

2.1 Definition of ARG

Let us define an ARG with N nodes as

G = (V , E ,U ,B,F), (1)
V = {v1, . . . , vN}, E = {eij |i = 1, . . . , N, j = 1, . . . , N, i �= j},
U = {ai|i = 1, . . . , N}, B = {rij |i = 1, . . . , N, j = 1, . . . , N, i �= j},
F = {Ri|Ri = {rij |vi, vj ∈ V , i �= j}, i = 1, . . . , N},
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where V and E are the sets of nodes and edges in the graph, respectively. If the
edge between node vi and vj exists, eij is equal to 1, otherwise, it is 0. And
ai is an NU -dimensional unary attribute vector of the node vi, and rij denotes
the NB-dimensional binary attribute vector of the edge connecting node vi and
vj . F is the set of relation vector spaces that encode the structural information
centered at each node [18].

2.2 Preliminaries of ARG Matching

Definition 1 (Attribute matrices). The unary attribute matrices Ui∈RN×1

and the binary attribute matrices Bj ∈ RN×N of a graph G with N nodes are
defined by

Ui = [a1(i) · · ·aN (i)]T , i = 1, . . . , NU , (2)

Bi =

⎡⎢⎣ r11(i) · · · r1N (i)
... rlm(i)

...
rN1(i) · · · rNN (i)

⎤⎥⎦ , i = 1, . . . , NB, (3)

where ai(k) and rij(k) represent the k-th elements of ai and rij , respectively.

Assume that two ARGs, G and G′, are given. Messmer et al. [7] rigorously defined
the graph isomorphism and the subgraph isomorphism by establishing the linear
relation between the attribute matrices of two graphs through the permutation
matrix. However, they only considered the ideal case, that is, without noise.
Thus, in this section, we generalize the graph isomorphism and the subgraph
isomorphism to cope with the corruption due to noise.

Definition 2 (Graph isomorphism). Two graphs G′ and G are called iso-
morphic if there exists an N ′ × N permutation matrix P such that

U′
i = PUi + εCU

i NU
i , (4)

B′
i = PBiPT + ε

⎡⎢⎢⎣
. . .

Sum(CB
lm ∗ NB

i )
. . .

⎤⎥⎥⎦ ,

where NU
i ∈ RN ′×1 and NB

j ∈ RN ′×N ′
are the noise matrices of which compo-

nents are statistically independent. CU
i ∈ RN ′×N ′

and CB
lm ∈ RN ′×N ′

are the
noise correlation matrices.

In (4), operator ′∗′ represents the component-wise multiplication operation, and
the function ′Sum(·)′ is the sum of all elements of the matrix ·.
Definition 3 (Subgraph isomorphism). Two graphs G′ and G are called sub-
graph isomorphic if there exist two sub-graphs, Ĝ = (V̂ , Ê , Û , B̂, F̂) ⊂ G and
Ĝ′ = (V̂ ′, Ê ′, Û ′, B̂′, F̂ ′) ⊂ G′ that are isomorphic.
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From the above definitions, the ARG matching problem can be thought as the
ARG matching by the subgraph isomorphism, that is the extraction of sub-
graphs and the inference of P satisfying (4). In other words, it can be termed as
“correspondence problem” between two ARGs [10] [16].

3 Proposed SARG Matching Algorithm

3.1 Correspondence Measure

As stated in Section 2, the graph matching problem can be transformed into the
correspondence problem. So, let us define some basic concepts related to the cor-
respondence. Assume that a reference graph GM = (VGM , EGM ,UGM ,BGM ,FGM )
and an input graph GI = (VGI , EGI ,UGI ,BGI ,FGI ) are given.

Definition 4 (Correspondence). If i-th node of GM and the l-th node of GI

match by each other, then there exist a correspondence between them, and it is
denoted by

vGM

i ↔ vGI

l or vGI

l = Cor(vGM

i ) or l = Cor(vGM

i ). (5)

Definition 5 (Stochastic neighborhood). The stochastic neighborhood of bi-
nary attribute vector rGM

ij in the relation vector space RGI

l under the assumption
of vGM

i ↔ vGI

l is defined by

NRGI
l

(rGM
ij ) = {vGI

m |||rGI
lm − rGM

ij ||prob < Δ}, (6)

= {vGI
m |p(rGI

lm − rGM
ij ) × p(aGI

m − aGM
j ) < Δ}.

Definition 6 (Support flow). The support flow from vGM

j to vGM

i under the
assumption of vGM

i ↔ vGI

l is defined by

Fsup(vGM
j |vGM

i , vGI
l ) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
v

GI
m ∈

N
RGI

l

(r
GM
ij

)

p(r
GI
lm

−r
GM
ij )·Mcor(v

GM
j ,v

GI
m )

|N
RGI

l

(r
GM
ij )|

if NRGI
l

(rGM
ij ) �= ∅,

Max p(rGI
lm − rGM

ij ) · Mcor(vGM
j , vGI

m ) if NRGI
l

(rGM
ij ) = ∅,

(7)

where Mcor(vGM

j , vGI
m ) is a correspondence measure between vGM

j and vGI
m

The support flow in (7) represents how much a neighboring node supports the
given node correspondence. Fig. 1 shows an example of the stochastic neighbor-
hoods and support flows. Provided that i-th node of GM corresponds to the l-th
node of GI , RGI

l must be similar to RGM

i . From the definition in (7), it is noted
that as the similarity between two relation vector spaces of the corresponding
nodes increases, the sum of the support flows from other nodes also increases. As
a result, the sum of the support flows can be used as an indication for the cor-
respondence between two nodes. Based on this observation, the correspondence
measure is defined as the average of the support flows from other nodes.
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Fig. 1. Graphical representation of stochastic neighborhoods and support flows. Cor-
responding neighborhoods are represented by the colored regions, and the arrows show
the support flows from neighbor nodes to the specific node in a reference graph.

Definition 7 (Correspondence measure). The correspondence measure be-
tween vGM

i and vGI

l is defined by

Mcor(vGM
i , vGI

l ) =
NGM∑

j=1,j �=i

Fsup(vGM
j |vGM

i , vGI
l ) · Mcor(vGM

i , vGI
l )

(NGM − 1)
. (8)

Note that in order to embed the structural consistency, the actual correspondence
measure is calculated iteratively through an updating process using (7) and (8)
as follows.

1) Initialize: k = 0

M(0)
cor(v

GM
i , vGI

l ) = p(aGI
l − aGM

i ). (9)

2) Updating process: k ≥ 1

F(k)
sup(v

GM
j |vGM

i , vGI
l ) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
v

GI
m ∈

N
RGI

l

(r
GM
ij

)

p(r
GI
lm

−r
GM
ij )·M(k−1)

cor (v
GM
j ,v

GI
m )

|N
RGI

l

(r
GM
ij )|

if NRGI
l

(rGM
ij ) �= ∅,

Max p(rGI
lm − rGM

ij ) · M(k−1)
cor (vGM

j , vGI
m ) if NRGI

l

(rGM
ij ) = ∅,

(10)

M(k)
cor(v

GM
i , vGI

l ) =
NGM∑

j=1,j �=i

F(k)
sup(vGM

j |vGM
i , vGI

l ) ·M(k−1)
cor (vGM

i , vGI
l )

(NGM − 1)
. (11)
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3.2 Selection of Candidate Sub-graphs

In the combinatorial graph matching methods, constructing meaningful candi-
date subgraphs and ordering them are important issues. The proposed SARG
matching algorithm extracts and sorts candidate subgraphs by measuring corre-
spondence stochastically in the relation vector space.

Provided that i-th node of GM corresponds to the l-th node of GI , the subspace
of RGI

l that is similar to RGM

i can be constructed as

R̂l
GI = {rGI

lm|vGI
m ∈ NRGI

l

(rGM
ij ), j = 1, . . . , NGM , j �= i}. (12)

Then, a set of initial candidate subgraphs subject to vGM

i ↔ vGI

l can be
constructed by selecting one node in each neighbor NRGI

l

(rGM

ij ) as

A(vGM
i , vGI

l ) = {(vGI
k1

, . . . , vGI
ki−1

, vGI
l , vGI

ki+1
. . . , vGI

k
NGM

)|
vGI

kj
∈ NRGI

l

(rGM
ij ), j = 1, 2, . . . , NGM , j �= i}. (13)

Once allA(vGM

i , vGI

l ), for i = 1, . . . , NGM , and l = 1, . . . , NGI , are obtained, the
total initial candidate subgraphs are given by the union of all sets A(vGM

i , vGI

l );

AT =
⋃
i,l

A(vGM
i , vGI

l ). (14)

Now, meaningless initial subgraphs can be excluded out from (14) by ordering
them according to the correspondence measure defined in (8), and the final
candidate subgraphs with high priority are given by

ÂT = {A(vGM
i , vGI

l )|Mcor(vGM
i , vGI

l ) ≥ α}. (15)

3.3 Missing Node Detection and Correction

Assume that a candidate subgraph GC ∈ ÂT and a reference graph GM are given.
Each node in GC has one-to-one correspondence to a node with same index in
GM , and this relation is denoted by vGC

i ↔ vGM

i or vGC

i = Cor(vGM

i ).
Then the missing nodes can be detected by constructing and analyzing the

node loss vector given by,

L = [l(1) · · · l(NGM )]T , (16)

where l(i) is the number of nodes that satisfies the inequality p(rGC

ij − rGM

ij ) <

pthres. Each detected missing node has the correspondence to NULL node (vGM

i ↔
v0 ).

For example, after detecting missing nodes from one of the candidate sub-
graphs in Fig. 2 (a), VGM is partitioned as two sets as VGM

C and VGM
0 ={vGM

1 , vGM
2 }

as shown in Fig. 2 (b), where dark circles connected by the arrow represent the
corresponding node pair and the dotted circles mean the detected missing nodes.
However, it is certain that vGM

1 has the correspondence to one node in GI instead
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of the NULL node. Thus, we propose the additional procedure to correct wrong
correspondence to the NULL node as vGM

1 .
Now, the node set of GM , VGM can be partitioned into two sets as

VGM = VGM
C + VGM

0 , (17)

where all nodes in VGM
0 have the correspondence to the NULL node, v0. In order

to reduce the false detection and make as many correspondences as possible, we
recompute the correspondence measures for the nodes in VGM

0 again by using

Mcor(vGM
i , vGI

l ) =
∑

v
GM
j ∈VGM

C
,j �=i

p(rGM
ij − rGM

lCor(v
GM
j )

) (18)

·p(aGM
i − aGI

l ) · p(aGM
j − aGI

Cor(v
GM
j )

), for vGM
i ∈ VGM

0 .

Then, we determine the final correspondence for each node in VGM
0 by

vGM
i ↔ (19)⎧⎨⎩vGI

l if vGI
l = arg max

v
GI
k

Mcor(vGM
i , vGI

k ) and Mcor(vGM
i , vGI

l ) ≥ β ,

v0 otherwise.

Fig. 2 shows an example. By recomputing the correspondence measure based
on the strong correspondences as described above, missing nodes are detected
and the final correct correspondences can be obtained as in Fig. 2 (c).

3.4 Matching

Once all the candidate subgraphs are corrected, we can find the subgraph that
best matches the model using the similarity measure given by

S(GM ,GC) =
NGM∑
i=1

D(Ri) · p(aG1
i − aG2

i ) · ωi (20)

=
NGM∑
i=1

ωi · p(aG1
i − aG2

i ) · [
NGM∏

j=1,j �=i

p(rGC
ij − rGM

ij ) · γij ],

where D(Ri) is a function to measure the difference between the relation vector
space RG1

i of G1 and RG2
i of G2, and ωi and γij are the weighting for the i-th

node and the binary relation between node vi and vj , respectively.
Then, the best matched subgraph is selected as follows.

Matched Graph = arg max
GC∈ÂT

S(GM ,GC). (21)

4 Computational Complexity

In this section, the computational complexity of the proposed SARG match-
ing algorithm is analyzed. The computation of the proposed SARG matching
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Fig. 2. Missing node detection and correcting process. (a) One of the candidate sub-
graphs are selected and (b) missing nodes are detected by analyzing the node loss
vector, where the corresponding node pair is connected by the arrow and the dotted
circles mean missing nodes. By recomputing the correspondence measure based on the
strong correspondence, (c) the final correspondences are obtained.

algorithm consists of two parts: (1) Selecting the candidate subgraphs and (2)
identifying missing node and matching. In the first stage, the stochastic neigh-
borhoods should be constructed before computing the correspondence measures,
and it needs iterative calculation. Then the candidate subgraphs are extracted
and sorted according to the correspondence measure. Assume that a reference
graph GM with NGM nodes and an input graph GI with NGI nodes are given, and
K iterations are performed to update the correspondence measure. Construction
of the stochastic neighborhoods for all node pairs is proportional to the square of
the total possible number of correspondences, NGM NGI , that is approximately
equal to O(NGM

2
NGI

2). And since, at each iteration step, NGM support flows
in (7) should be evaluated per each correspondence pair, the cost of computing
the correspondence measures becomes O(K · NGM

2
NGI ). And, the total cost

for extracting and sorting the candidate subgraphs is proportional to the total
number of correspondences,i.e., O(NGM NGI ). In the result, the computational
complexity of the first part is

T1 = Tneighbor + Tcorrespondence + Tcandidate

= O(NGM
2
NGI

2
) + O(K · NGM

2
NGI ) + O(NGM NGI ) = O(NGM

2
NGI

2
).

In the second stage, for each candidate subgraph, the missing node detection
and correction processes are carried out first, and then matching is done by
evaluating the similarity between two ARGs. Therefore the computational com-
plexity of the second part is proportional to the product of the number of candi-
date subgraphs and the computational cost required for one candidate subgraph.
Note that for a given candidate subgraph, the costs for detecting missing nodes
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Fig. 3. Graph matching results under the independent noise condition with
(NGM , NGI , NU , NB) = (a) (10, 10, 3, 3), (b) (30, 30, 3, 3), (c) (15, 5, 5, 5), and (d)
(NGM , NGI , 3, 3), where NGM = NGI = 50, 100

and matching are all O(NGM
2), while that of correcting process is O(NGM NGI ),

since it only requires the recomputation of NGM NGI correspondence measures
and the selection of the node having the maximum correspondence measure. And
the number of candidate subgraphs denoted by n(ÂT ) is less than the product
of the numbers of nodes in two graphs, that is, n(ÂT ) ≤ ζ ·NGM NGI , where ζ is
a constant that typically varies between 0.01 and 0.2. Thus the computational
cost for the latter part is

T2 = Tdetection + Tcorrection + Tmatchnig

= O(ζ · NGM
3
NGI ) + O(ζ · NGM

2
NGI

2
) + O(ζ · NGM

3
NGI ) = O(NGM

3
NGI ).

In summary, the total computational cost required for the proposed SARG
matching algorithm is

Ttotal = T1 + T2 = max[O(NGM
2
NGI

2
), O(NGM

3
NGI )]. (22)

5 Experimental Results

To evaluate the matching performance of the proposed algorithm, we have tested
it on synthetic ARGs as in [16]. Synthetic ARGs were generated by the following
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Table 1. The computational complexity of each graph matching algorithm in terms
of the processing time for one pair graph matching

(NGM , NGM , NU , NB) (15, 5, 5, 5) (10, 10, 3, 3) (30, 30, 3, 3) (50, 50, 3, 3) (100, 100, 3, 3)
nEMD 0.007s 0.009s 0.990s 10.24s 262.1s
CKPR 0.004s 0.005s 0.249s 4.34s 63.3s
SARG 0.001s 0.002s 0.145s 1.21s 14.9s

procedures: First, given fixed (NGM , NGI , NU , NB), a reference graph GM was
randomly generated, in which all attributes had a random number between 0 and
1. Then, an input graph was constructed using randomly generated permutation
matrix P. Next, independent noise matrices NU

i ’s and NB
i ’s were obtained by

multiplying a uniformly distributed random variable on the interval [− 1
2 , 1

2 ] by
the noise power ε ∈ [0, 1.0].

5.1 Independent Noise

In order to generate the independent noise, we fixed all noise correlation ma-
trices such that ∀CU

i = I and ∀CB
lm = Δlm. For the benchmarks, we have

selected GAGM [8], SAGM [13], LSGM [14], RIGM [15] and IBKPGM [16] algo-
rithms among various ARG matching algorithms in [16], since they showed better
matching performance than others. Moreover, the performance was compared to
CKPR [5] and nEMD [19]. The estimated probability of correct node-to-node
matching was evaluated as a function of the noise magnitude ε. To reflect the
graph matching performance in term of probability, for a given value of ε, we
have done 300 trials for each graph matching algorithm.

Fig. 3 (a) and (b) summarize the matching results for the full graph matching
when (NGM , NGI , NU , NB) = (10, 10, 3, 3) and (30, 30, 3, 3), respectively. It is
noted that SARG outperforms other graph matching algorithms especially for
large values of ε. And, generally, since nEMD, CKPR and SARG consider the
NULL node explicitly, they showed superior subgraph matching performances
than the others. However, as the noise power increased, the matching rate of
nEMD decreased, while those of CKPR and SARG remained almost constant. In
Fig. 3 (d), the performances of some algorithms are shown for NGM = NGI = 50
and 100. Due to the limitations on the computational cost and the memory,
some algorithms were excluded for comparison. Actually, as the number of nodes
increased, the graph matching performance became severely degraded. However,
nEMD and SARG were very robust to the increase of the number of nodes, and
SARG performed best.

5.2 Complexity Analysis

We have analyzed and compared the computational complexity of the proposed
algorithm with those of nEMD and CKPR in terms of the processing time for
one pair graph matching. We measured the processing time for one pair graph
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matching by varying the number of nodes and the number of attributes of graphs,
and calculated the average processing time after 500 trials per each condition.
The results are presented in Table 5.2, where the processing time was evaluated
in seconds. It is noted that the proposed algorithm is much faster than the others,
especially for the graphs with a large number of nodes.

6 Conclusion

In order to match ARGs by subgraph isomorphism efficiently, in this paper,
we proposed a novel stochastic attributed relational graph (SARG) matching
technique using the stochastic analysis in the relation vector space, which embeds
the global structure as well as the local structure centered at a specific node. The
new concepts related to the correspondence, such as the stochastic neighborhood,
the support flow, the correspondence measure and the similarity were defined in
terms of the probability and the geometrical distribution of the attribute vectors
in the relation vector space. The proposed SARG matching algorithm consists of
2 step procedures. In the first stage, a finite number of subgraphs were extracted
from the test graph and ordered according to the correspondence measure to the
model graph. Then, missing nodes for each candidate subgraphs were detected
and the correspondences are reestablished by eliminating the effects of them.
Finally, the refined subgraphs are matched to the model graph by measuring the
similarity between them.

Experimental results on the synthetic ARGs demonstrated the robustness and
efficiency of the proposed SARG matching algorithm. And it was also verified
empirically that the proposed SARG matching algorithm was much faster than
conventional graph-based algorithms.
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Abstract. In most content-based image retrieval systems, the low level
visual features such as color, texture and region play an important role.
Variety of dissimilarity measures were introduced for an uniform quanti-
zation of visual features, or a histogram. However, a cluster-based repre-
sentation, or a signature, has proven to be more compact and theoretically
sound for the accuracy and robustness than a histogram. Despite of these
advantages, so far, only a few dissimilarity measures have been proposed.
In this paper, we present a novel dissimilarity measure for a random signa-
ture, Perceptually Modified Hausdorff Distance (PMHD), based on Haus-
dorff distance. In order to demonstrate the performance of the PMHD, we
retrieve relevant images for some queries on real image database by using
only color information. The precision vs. recall results show that the pro-
posed dissimilarity measure generally outperforms all other dissimilarity
measures on an unmodified commercial image database.

1 Introduction

With an explosive growth of digital image collections, Content-Based Image
Retrieval (CBIR) has been one of the most active and challenging problems
in computer vision and multimedia applications [22][23]. There have been lots
of image retrieval systems, which are based on the query-by-example scheme,
including QBIC [20], PhotoBook [24], VisualSEEK [25], and MARS [26] etc.
However, closing the gap between human perceptual concepts and low-level vi-
sual contents extracted by computer, is still one of ongoing problems. In order to
deal with the semantic gap, many techniques have been introduced to improve
visual features and similarity measures [22][4][27][28].

In most image retrieval system based on visual features, a histogram (or a
fixed-binning histogram) is widely used as a visual feature descriptor due to its
simple implementation and insensitivity to similarity transformation [4]. How-
ever, in some cases, the histogram based indexing methods fail to match percep-
tual dissimilarity [1]. The performance of retrieval system employing a histogram
as a descriptor severely depends on the quantization process in feature space be-
cause a histogram is inflexible under various feature distribution representations.
To overcome these drawbacks, a clustering based representation, signature (or

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 990–1001, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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adaptive-binning histogram) has been proposed [1][3][15]. A signature compactly
represents a set of clusters in feature space and the distribution of visual fea-
tures. Therefore, it can reduce the complexity of representation and the cost
of retrieval process. Once two sets of visual features based on a histogram or a
signature, are given, it needs to determine how similar one is from the other. A
number of different dissimilarity measures have been proposed in various areas of
computer vision. Specifically for histograms, Jeffrey divergence, histogram inter-
section, χ2-statistics and so on have been known to be successful. However, these
dissimilarity measures can not be directly applied to signatures. Rubner et al. [1]
proposed a novel dissimilarity measure for matching signatures called the Earth
Mover’s Distance (EMD), which was able to overcome most of the drawbacks
in histogram based dissimilarity measures and handled partial matches between
two images. Dorado et al. [3] also used the EMD as a metric to compare fuzzy
color signatures. However, the computational complexity of the EMD is very
high compared to other dissimilarity measures. And Leow et al.[15] proposed a
new dissimilarity measure, Weighted Correlation (WC) for signatures, which is
more reliable than Euclidean distance and computationally more efficient than
EMD. The performance of WC was generally better than EMD and comparable
to other dissimilarity measures for image retrieval and image classification, but,
in some cases, it was worse than the Jeffrey divergence (JD) [14].

In this paper, we propose a novel dissimilarity measure for comparison of
random signatures, which is based on the Hausdorff distance. The Hausdorff
distance is an effective metric for the dissimilarity measure between two sets
of points [6][7][8][10], while insensitive to the characteristics changes of points.
In this paper, we modify the general Hausdorff distance into the Perceptually
Modified Hausdorff Distance (PMHD) in order to evaluate the dissimilarity be-
tween random signatures and to satisfy human perception. The experimental
results on a real image database show that the proposed metric outperforms
other dissimilarity measures.

2 A Visual Feature Descriptor: A Random Signature

In order to retrieve visually similar images to a query image using visual infor-
mation, a proper visual feature descriptor should be extracted from an image. It
has been proven that a signature can describe the feature distribution more effi-
ciently than a histogram [1][3][15]. And a signature is appropriate for describing
each image independently to other images in an image database.

In this paper, we represent an original image as a random signature, defined
as

S = {(si, wi,Σi)|i = 1, . . . , N}, (1)

where N is the number of clusters, si is the mean feature vector of i-th cluster, wi

is the fraction of the features that belong to i-th cluster and Σi is the covariance
matrix of i-th cluster. Variety of different clustering methods can be used to
construct a random signature from a color image. In this paper, we used K-
means clustering [12] to cluster visual features.
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(a)

(b) (c)

Fig. 1. Sample images quantized using K-mean clustering : (a) Original image with
256,758 colors, and quantized images based on a random signature with (b) 10 colors,
and (c) 30 colors

Fig. 1 shows two sample images quantized by using a random signature with
color information as a visual feature.

3 A Novel Dissimilarity Measure for a Random Signature

3.1 Hausdorff Distance

It has been shown that the Hausdorff distance (HD) is an effective metric for the
dissimilarity measure between two sets of points in a number of computer vision
literatures [6][7][8][9], while insensitive to the characteristics changes of points.

In this section, we briefly describe the Hausdorff distance(HD). More details
can be found in [6][7][8][9]. Given two finite point sets, P1 = {p1

1, . . . , p
1
N} and

P2 = {p2
1, . . . , p

2
M}, the HD is defined as

DH = (P1,P2) = Max{dH(P1,P2), dH(P2,P1)}, (2)

where

dH(P1,P2) = max
p1∈P1

min
p2∈P2

||p1
1 − p2

2||, (3)

and the function dH is the directed HD between two point sets.

3.2 Perceptually Modified Hausdorff Distance

In this paper, we propose a novel dissimilarity, called Perceptually Modified
Hausdorff Distance(PMHD) measure based on HD for comparison of random
signatures.
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(a) (b)

Fig. 2. An example of perceptual dissimilarity based on the densities of two color
features

Given two random signatures S1 = {(s1
i , w

1
i ,Σ

1
i )|i = 1, . . . , N}, and S2 =

{(s2
j , w

2
j ,Σ

2
j)|j = 1, . . . , M}, a novel dissimilarity measure between two random

signatures is defined as

DH(S1,S2) = Max{dH(S1,S2), dH(S2,S1)}, (4)

where dH(S1,S2) and dH(S2,S1) are directed Hausdorff distances between two
random signatures.

The directed Hausdorff distance is defined as

dH(S1,S2) =

∑
i

[w1
i × min

j

d(s1i ,s2j )

min(w1
i ,w2

j )
]∑

i

w1
i

, (5)

where d(s1
i , s

2
j) is the distance between two visual features of the same type, s1

i

and s2
j , which measures the difference between two features.

In (5), we divide the distance between two feature vectors by the minimum of
two feature vectors’ densities. Let’s consider an example in Fig. 2(a). There are
two pairs of feature vectors represented as circles centered at mean feature vec-
tors. The size of each circle represents the density of the corresponding feature.
If we compute only the geometric distance without considering the densities of
two feature vectors, two distances d1 and d2 are equal. However, perceptually d2

must be smaller than d1. Another example is given in Fig. 2(b). There are three
feature vectors. d1 is smaller than d2 if we consider only the geometric distance
regardless of the densities, however, it is perceptually justified that d2 is smaller
than d1. The desired distance should imply these observations. Therefore, we
divide the geometric distance by the intersection of two feature vector’s volume
to match perceptual dissimilarity.

In the result, PMHD is insensitive to the characteristics changes of mean
features in a signature and theoretically sound for involving human intuition
and perception in the metric.
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(a) (b)

Fig. 3. Example query images from four categories in the Corel database. (a) Eagle,
(b) Cheetah.

3.3 Partial PMHD Metric for Partial Matching

If a user is interested in only a part of images or requires to retrieve partially sim-
ilar images, a global descriptor is not appropriate for such task. Like a histogram,
a signature is also a global descriptor of a whole image. And the proposed dis-
tance for random signatures in (4) can include possible outliers by employing
the summation operator over all distances. As indicated in [1][5][9], this kind
of distance can not cope with occlusion and clutter in image retrieval or object
recognition. In order to handle partial matching, Huttenlocher et al. [6] proposed
partial HD based on ranking, which measures the difference between portion of
sets of points. And Azencott et al. [8] further modified rank based partial HD
by order statistics. But, these distances were shown to be sensitive to the pa-
rameter changes. In order to address these problems, Sim et al. [9] proposed
two robust HD meausres, M-HD and LTS-HD, based on the robust statistics
such as M-estimation and Least Trimmed Square(LTS). Unfortunately, they are
not appropriate for image retrieval system because they are computationally too
complex to search a large database.

In this section, we explicitly remove outliers in the proposed distance to ad-
dress partial matching problem. Let us define outlier test function as

f(i) =

⎧⎨⎩ 1, min
j

d(s1i ,s2j )

min(w1
i ,w2

j )
< Dth, (6a)

0, otherwise, (6b)

where Dth is a pre-specific threshold for the outlier detection.
Then we compute two directed Hausdorff distance, da

H(S1,S2) and dp
H(S1,S2),

defined as

da
H(S1,S2) =

∑
i

w1
i × min

j

d(s1i ,s2j )

min(w1
i ,w2

j )∑
i

w1
i

,

dp
H(S1,S2) =

∑
i

w1
i × min

j

d(s1i ,s2j )

min(w1
i ,w2

j )
× f(i)∑

i

w1
i × f(i)

. (7)
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Now, let us modify the directed Hausdorff distance in (5) as

dH(S1,S2) =

⎧⎪⎨⎪⎩ da
H(S1,S2),

∑
i

w1
i ×f(i)∑

i
w1

i
< Pth, (8a)

dp
H(S1,S2), otherwise, (8b)

where Pth is a pre-specific threshold for the control of a faction of information
loss.

4 Experimental Results

4.1 The Database and Queries

To evaluate the performance of the proposed metric, several experiments have
been conducted on a real database with a color feature as a visual feature.
We used 5,200 images selected from commercially available Corel color image
database without any modification. There are 52 semantic categories, each of
them containing 100 images. Among those, we have chosen four sets of query
data, Cheetah, Eagle, Pyramids and Royal guards. Some example images in
the queries are given in Fig. 3. In this experiment, we used all images in these
four categories as a query. As we note in Fig. 3, grouping of images to different
categories were not based on the color information. Nonetheless, in wide sense,
it was considered that all images in the same category were considered as the
relevant images or correct answers based on the color information. We computed
a precision and recall pair to all query categories, which is commonly used as the
retrieval performance measurement [11]. Precision P and recall R are defined as

P = r/n, R = r/m, (9)

where r is the number of retrieved relevant images, n is the total number of
retrieved images, and m is the total number of relevant images in the whole
database. Precision P measures the accuracy of the retrieval and recall R mea-
sures the robustness of the retrieval performance.

In this paper, we used only color feature as a visual feature. Thus we con-
sider three different distances for d(s1

i , s
2
j) in (5) : the Euclidean distance, the

CIE94 color difference, and the Mahalanobis distance. In order to guarantee
that the distance is perceptually uniform, the CIE94 color difference equation
is used instead of the Euclidean distance in CIELab color space [17]. And the
Mahalanobis distance explicitly considers the distribution of color features after
clustering process [16]. Three distances are defined as follows.

(i) Euclidean distance :

dE(s1
i , s

2
j) =

3∑
k=1

[s1
i (k) − s2

j (k)]1/2, (10)

where si(k) is the k-th element in the feature vector si.
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(a) (b)

(c) (d)

Fig. 4. Precision-recall curves for various dissimilarity measures on four query cate-
gories : (a) Eagle, (b) Cheetah, (c) Pyramids, and (d) Royal guards

(ii) CIE94 color difference equation :

dCIE94(s1
i , s

2
j ) = [(

ΔL∗

kLSL
)2 + (

ΔC∗

kCSC
)2 + (

ΔH∗

kHSH
)2]1/2, (11)

where ΔL∗, ΔC∗ and ΔH∗ are the differences in lightness, chroma, and hue
between s1

i and s2
j .

(iii) Mahalanobis distance :

dM (s1
i , s

2
j ) = (s1

i − s2
j )

T Σ−1
i (s1

i − s2
j). (12)

4.2 Retrieval Results for Queries

The performance of the proposed PMHD was compared with five well-know dis-
similarity measures, including Histogram Intersection(HI), χ2−statistics, Jeffrey-
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Divergence(JD) and Quadratic Form(QF) distance for the fixed binning his-
togram, and EMD for the signature. Let H1 and H2 represent two color his-
tograms or signatures. Then, these dissimilarity measures are defined as follows.

– Histogram Intersection(HI) [18] :

d(H1, H2) = 1 −
∑

i

min(h1
i , h

2
i )/
∑

i

h2
i , (13)

where hj
i is the number of elements in i-th bin of Hj .

– χ2−statistics :

d(H1, H2) =
∑

i

(h1
i − mi)2/mi, (14)

where mi = (h1
i + h2

i )/2.
– Jeffrey-Divergence(JD) [14] :

d(H1, H2) =
∑

i

(h1
i log

h1
i

mi
+ h2

i log
h2

i

mi
), (15)

where again mi = (h1
i + h2

i )/2.
– Quadratic Form(QF) distance [19][20] :

d(H1, H2) =
√

(H1 − H2)T A(H1 − H2), (16)

where A is a similarity matrix. A encodes the cross-bin relationships based
on the perceptual similarity of the representative colors of the bins.

– EMD [1] [13] :

d(H1, H2) =
∑
i,j

gijdij/
∑
i,j

gij , (17)

where dij denotes the dissimilarity between i-th bin and j-th bin, and gij

is the optimal flow between two distributions. The total cost
∑
i,j

gijdij is

minimized subject to the constraints,

gij ≥ 0,
∑

i

gij ≤ h2
j ,
∑

j

gij ≤ h1
i ,∑

i,j

gij = min(
∑

i

h1
i ,
∑

j

h2
j). (18)

As reported in [13], EMD yielded very good retrieval performance for the
small sample size, while JD and χ2 performed very well for the larger sam-
ple sizes. Leow et al. [15] proposed the novel dissimilarity measure, Weighted
Correlation(WC) which can be used to compare two histograms with different
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(a) (b)

(c) (d)

Fig. 5. Comparison of the retrieval performance for varying the number of color fea-
tures in a signature : (a) Eagle, (b) Cheetah, (c) Pyramids, and (d) Royal guards

binnings. In the image retrieval, the performance of WC was comparable to
other dissimilarity measures, however, JD always outperform WC. And, in this
paper, we evaluated only the performance of JD. In order to represent a color
image as a fixed histogram representation, the RGB color space was uniformly
partitioned into 10 × 10 × 10 = 1000 color bins. And a color was quantized to
the mean centroid of the cubic bin. While, as mentioned in Section 2, a random
signature was extracted by applying K-means clustering. To compare the per-
formance of the signature based dissimilarity with other fixed histogram based
ones, the quantization level was matched by clustering a color image into only 10
color feature clusters. The mean color quantization error of the 10× 10× 10-bin
histogram is 5.99 CIE94 units and that of quantized image based on a random
signature containing 10 color feature vectors was 5.26 CIE94 units. It is noted
that the difference between two quantized image errors are smaller than the per-
ceptibility threshold of 2.2 CIE94 units [21], where two colors are perceptually
indistinguishable [15].
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The retrieval performance results of the proposed metric and other dissimilar-
ity methods are summarized by the precision-recall in Fig. 4. It is noted that the
proposed PMHD dissimilarity measure significantly outperformed other dissim-
ilarity measures for all query images. The performance of PMHD is, on average,
20−30% higher than the second highest precision rate over the meaningful recall
values. And the performance of PMHD with Euclidean distance is almost the
same as that of PMHD with CIE94, and usually performed best in the image
retrieval. It is somewhat surprisingly noted that EMD performed poorer than
other dissimilarity measures in all query categories except “Eagle” query cate-
gory. This performance is not coincident with the results reported in [13] and
[1], wehre EMD performed very well for the small sample sizes and the compact
representation but not so well for large sample sized and wide representation. As
indicated in [15], the image size, the number of color features in a signature and
the ground distance may degrade the whole performance of EMD. However, as
mentioned before, we only used a signature with 10 color features in this experi-
ment, which is a very compact representation. We note that the large image size
of 98,304 pixels or so and the Euclidean ground distance may severely degrade
the performance of EMD.

4.3 Dependency on the Number of Color Features in a Signatures

In general, the quantization level of a feature space, that is, the number of
clusters in a signature or the number of bins in the fixed histogram, has an im-
portant effect on the overall image retrieval performance. In order to investigate
the retrieval performance dependency on the quantization level, we compared
the retrieval performance of the proposed method according to the number of
color features in a signature, which varied for 10 and 30. The mean color error
of the quantized image based on a random signature with 30 color feature vec-
tors is 3.38 CIE94 units, which is significantly smaller than 5.26 CIE94 units
in the case of a random signature with 10 color feature vectors. Fig. 1 shows
two sample images quantized using K-means clustering, which were quantized
by 10 colors and 30 colors each. It is noted that the quantized image based on
a random signature with 30 color features is almost indistinguishable from the
original image, which contains 256,758 color features.

Fig. 5 plots the precision-recall curves of the image retrieval results for vary-
ing the number of color features in a signature. We compared the retrieval per-
formance of the proposed PMHD with EMD, since it is the only dissimilarity
measure applicable to signatures. The precision rate of EMD does not vary sig-
nificantly as the number of color features of a signature increased, as depicted
in Fig. 5. However, the precision rate of PHMD with 30 color features is slightly
higher than that of PMHD with 10 color features. From this result, it can be
expected that the performance of the proposed PMHD becomes higher as the
quantization error decreases. Moreover, this implies that PMHD performs best
for the large sample sizes as well as the compact representation.
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5 Conclusion

In this paper, we proposed a novel dissimilarity measure for random signatures,
Perceptually Modified Hausdorff Distance(PMHD) based on Hausdorff distance.
PMHD is insensitive to the characteristics changes of mean features in a signa-
ture and theoretically sound for human intuition and perception of the metric.
The extensive experimental results on a real database showed that the pro-
posed PMHD outperformed other dissimilarities. The retrieval performance of
the PMHD is, on average, 20−30% higher than the second highest precision rate.
In this paper, we used only color information, which was shown to be inappropri-
ate to close the sematic gap without using texture information, multi-resolution
representation, relevance feedback, and so on. Thus, combining texture informa-
tion and representing signature in multi-resolution framework will be our future
work.
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Tracking of Linear Appearance Models Using
Second Order Minimization
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Abstract. The visual tracking of image regions is a research area of
great interest within the computer vision community. One issue which
has received quite attention in the last years has been the analysis of
tracking algorithms which could be able to cope with changes in the
appearance of the target region. Probably one of the most studied tech-
niques proposed to model this appearance variability is that based on
linear subspace models. Recently, efficient algorithms for fitting these
models have been developed too, in many cases as an evolution of well
studied approaches for the tracking of fixed appearance images.

Additionally, new methods based on second order optimizers have
been proposed for the tracking of targets with no appearance changes.
In this paper we study the application of such techniques in the design
of tracking algorithms for linear appearance models and compare their
performance with three previous approaches. The achieved results show
the efficiency of the use of second-order minimization in terms of both
number of iterations required for convergence and convergence frequency.

1 Introduction

Visual object tracking is a key element in many important applications of com-
puter vision such as face analysis, mosaic reconstruction, augmented reality or
advanced interfaces for human computer interaction. For many applications the
computational simplicity of working with 2D patches makes it an interesting
option before other alternatives as recovering the motion of 3D models.

In the majority of real world applications, the target region will suffer from
changes in its appearance due to several factors: changes in the illumination,
occlusions or the possibility of within-class object aspect variations itself (e.g,
facial expressions). When this variability is not relevant for the applications (e.g.,
face pose estimation), we can employ algorithms which use invariant descriptions
or robust metrics to make the tracking performance independent from aspect
changes. However, if the appearance information needs to be used (e.g., face
expression analysis) then algorithms capable of modeling aspect changes must
be used. These algorithms must contain enough information to represent the
underlying degrees of freedom of the appearance of the imaged object.

Linear models are a well known method for representing appearance due
its computational efficiency and simplicity. They consist in a basis of tem-
plate images whose linear combination can be used to approximate the object
viewed under different conditions (e.g. illumination, expressions). In general, the

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1002–1013, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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relationship between the image and the subspace which contains all the possible
instances of the target region is not linear; when constructing the image basis,
we will look for a linear approximation of this subspace, using tools as Prin-
cipal Component Analysis (PCA). PCA provides a efficient way to reduce the
dimensionality of the input training data.

The process of tracking consists of moving, deforming and adapting the ap-
pearance of the target representation to fit it in a image, minimizing the pixels
difference. Traditional tracking approaches include techniques such as normalized
correlation or template matching. In particular, we will focus here on template
matching based algorithms using sum-of-squares (SSD) differences because they
have received a big amount of attention in the last years and efficient approaches
have also been developed [6,7,9].

Recently, Benhimane and Malis [2] developed an optimization scheme for tem-
plate matching which works with a second order approximation.

In this paper, we have reformulated the second order optimization within an
iterative tracking process where the role of image and template are clearly estab-
lished and the incremental characteristic of the tracking is explicitly shown. In
addition, we have applied the second order optimization approach to the tracking
of linear models of appearance. This is achieved by introducing the second order
formulation in three first order tracking algorithms: independent optimization
of pose and appearance, simultaneous pose and appearance optimization, and
projected out optimization.

The paper is organized as follows. In the next section we introduce a new
formulation for the tracking problem with fixed appearance using second order
minimization. In Section 3, several well known approaches for tracking of images,
using linear optimization and variable appearance are shown. In Section 4 second
order minimization is applied to the techniques presented in previous section. In
Section 5 we describe some experiments that show the efficiency of the second
order optimization to track linear appearance models. Finally, in Section 6 some
conclusions and directions of future work are given.

2 Tracking Fixed Appearance Images

Let I(x, t) denote the brightness value at the location x = (x, y) in an image ac-
quired at time t and R = (x1, x2, ..., xN ) the set of N image locations which define
a target region. The relative motion between object and camera in the track-
ing process causes a transformation in the target region. We can represent this
deformation by a motion model W (x, p) parametrized by p = (p1, p2, ..., pn)T ,
with W differentiable both in x and p.

If we assume that variations in brightness values are only caused by the target
motion (the image constancy assumption holds for all pixel in R), the tracking
process can be formulated as minimizing the following least squares function
with respect to p: ∑

x

‖T (x) − I(W (x, p))‖2 (1)
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In general, optimizing this expression is a difficult task, which cannot be lin-
early solved; however, in the case of tracking applications we have the possibility
of using the continuity of motion to estimate a starting point for the minimiza-
tion and develop smart iterative approaches to find the optimal parameters [5].
Furthermore, low computational cost schemes have been developed, reformulat-
ing the image alignment process in such a way that a great part of the needed
computations can be done offline [4].

2.1 Inverse Compositional SSD Image Tracking

Inverse compositional algorithm [3] is one of the most used approaches to image
tracking due to its simplicity, generality and efficiency. It iteratively minimizes
an expression similar to equation (1):∑

x

‖T (W (x, Δp)) − I(W (x, p))‖2 (2)

and then updates the warp parameters as:

W (x, p) ← W (x, p) ◦ W (x, Δp)−1 (3)

Making a Taylor series expansion of order 1 of (2) about p = 0 we have:∑
x

‖T (W (x, 0)) + ∇T
∂W

∂p
Δp − I(W (x, p))‖2 (4)

Assuming that W (x, 0) is the identity warp, the solution to this least-squares
problem is:

Δp = −H−1
∑

x

J(x)e(x), (5)

with:

– e(x) = T (W (x, 0)) − I(W (x, p)) the captured image error.
– J = ∇T ∂W

∂p the so called ”steepest-descent” images, which represent ”mo-
tion modes” as they relate the changes in brightness induced by the motion
represented by the corresponding motion parameters. ∇T is the image tem-
plate spatial gradient and ∂W

∂p the warp function Jacobian.
– H =

∑
x JT (x)J(x) the newton approximation of the Hessian matrix.

As we can see, the J and H terms can be precomputed and only the shown
matrix multiplication must be done in each iteration.

2.2 Second Order SSD Image Tracking

Recently, Benhimane and Malis, [2], proposed a efficient second-order minimiza-
tion method applicable to image tracking, reporting some improvements over
previous approaches. In this section a new formulation of this technique more
suitable to be applied to an inverse compositional algorithm is shown.



Tracking of Linear Appearance Models Using Second Order Minimization 1005

The problem formulation is the same we have seen for the inverse composi-
tional algorithm. That is, expression 2 must be minimized in order to get the
deformation parameters which align the reference template with the input image.
However, to achieve a higher convergence order, a second order approximation
of the deformed template is developed:

T (W (x, Δp)) ≈ T (W (x, 0)) +
∂T (W (x, p))

∂p p=0

Δp+

+
1
2
ΔpT ∂2T (W (x, p))

∂p2
p=0

Δp

(6)

If this expression were substituted in (2), then the second order partial deriva-
tive should be calculated during the minimization process. However, this com-
putation can be avoided using the Taylor series of the Jacobian of T (W (x, p))
at p = 0 and evaluated at Δp:

∂T (W (x, Δp))
∂p

≈

≈ ∂T (W (x, p))
∂p p=0

+
∂2T (W (x, p))

∂p2
p=0

Δp

(7)

Working out ∂2T (W (x,p))
∂p2 Δp and substituting in (6):

T (W (x, Δp)) ≈ T (W (x, 0))+

+
1
2
(
∂T (W (x, p))

∂p p=0

+
∂T (W (x, Δp))

∂p
)Δp

(8)

In this last expression, a term, ∂T (W (x,Δp))
∂p , needs to be evaluated at the

unknown point Δp (that is precisely the value to be obtained as result of the
iteration). This calculation can be approximated by decomposing the partial
derivative in the following way:

∂T (W (x, Δp))
∂p

=
∂T (W (W (x, Δp−1 ◦ p), Δp))

∂p
=

= ∇xT (W (x, Δp))
∂W (x, Δp−1 ◦ p)

∂p p=Δp

=

= ∇xT (W (x, Δp))
∂W (x, p)

∂p p=0

∂(Δp−1 ◦ p)
∂p p=Δp

(9)

where

– ∇xT (x, Δp) is the spatial gradient of the template image. In the inverse
compositional formulation Δp is the deformation that aligns the template
image with the current input image (2). Then

T (W (x, Δp)) ≈ I(W (x, pc))
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and the following approximation can be carried out:

∇T (W (x, Δp)) ≈ ∇I(W (x, pc))

– ∂W (x,p)
∂p p=0

is the warping Jacobian function evaluated at the identity.

– The term ∂(Δp−1◦p)
∂p p=Δp

can be approximated by the identity matrix Inxn for
several parametrization. Thus, in Lie Algebra Parametrization a first order
approximation of the exponential parameters composition is p−1◦p ≈ p−1+p

[2], from where ∂p−1◦p
∂p ≈ Inxn. We have checked that this approach is also

true for the linear parametrization proposed in [3].

Therefore, when using a valid parametrization, we can choose a better linear
approximation for T (W (x, Δp)), instead of the Taylor expansion of first order,
given by:

T (W (x, Δp)) ≈ T (W (x, 0)) +
1
2
(∇xT + ∇xI(W (x, p)))

∂W (x, p)
∂p p=0

Δp (10)

Finally, substituting this approximation in (2):

E(Δp) ≈
∑

‖T (x) − I(W (x, pc))+

+
1
2
(∇xT + ∇xI(W (x, p)))

∂W (x, p)
∂p p=0

Δp‖
2 (11)

The resulting optimal parameter can be obtaining by applying:

Δp = H−1
esm

∑
x

JT
esm ∗ eesm(x) (12)

where:

– eesm(x) = T (x) − I(W (x, pc))
– Jesm = 1

2 (∇xT (x) + ∇xI(W (x, pc)))
∂W (x,p)

∂p p=0

– Hesm = JT
esm ∗ Jesm

3 Linear Image Models Tracking Formulation

In this section, several previous algorithms for the tracking process of images
with variable appearance using linear models are presented. Now, the target
appearance is represented using a reference template T (x) and a linear basis of
images {Ai} , i = 1, ..., m modeling the changes which can occur in the object
appearance. The tracking process can be expressed as:∑

x

‖T (x) +
∑

i

λiAi − I(W (x, p))‖2 (13)
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where p and λ = (λ1, λ2, ..., λm)T are the pose and appearance parameter vectors
respectively.

Hager and Belhumeur implemented this approach for the robust tracking of
targets under variable illumination [6]; Black and Jepson used this algorithm for
general appearance variation [7].

In the following we will compare three different approaches to optimize this
expression.

3.1 Independent Optimization of Pose and Appearance

This solution tries to optimize separately warp and illumination parameters.
Based on this idea several algorithms can be found in the bibliography, as the
proposed in [8], that implements the inverse additive paradigm. However, in
this paper an inverse compositional approach has been used. Then, the error is
calculated as follows:

E(Δλ, Δp) =
∑

x

‖T (W (x, Δp)) +
∑
m

ΔλiAi(W (x, Δp))

−I(W (x, p)) −
∑

i

λiAi(W (x, p))‖2
(14)

The method assumes λ constant and compute the minimum of E(Δλ, Δp)
w.r.t Δp, using the approximate expression obtained from the Taylor expansion
on T (W (x, p)):

E(Δp) =
∑

x

‖e(x) −∇T
∂W

∂p
Δp‖2 (15)

resulting the following pose parameter increment:

Δp = H−1
iic

∑
x

JT
iiceiic(x),

where:

– eiic(x) = T (x) − I(W (x, p)) −∑i λiAi(W (x, p))
– Jiic = ∇T ∂W

∂p

– Hiic =
∑

x JT
iic(x)Jiic(x)

This expression of pose computing is similar to that with no appearance changes,
except for the compensation of appearance changes introduced in the error value
eiic(x).

Now, minimizing over Δλ and assuming p constant:

E(Δλ) =
∑

x

‖e(x) +
∑

i

ΔλiAi(x)‖2 (16)

from where we get:
Δλ = (AT A)−1

∑
x

AT e(x)
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using the same expression error as above. If {Ai}, i = 1, ..., m is an orthonormal
basis it can be simplified as AT A = I.

Finally, we compose the parameters as: p = p ◦ Δp−1, λ = λ − Δλ

3.2 Simultaneous Pose and Appearance Optimization

Accurate optimization requires to find the point where pose and appearance
parameters make zero the derivative of the registration error:

E(Δλ, Δp) =
∑

x

‖T (W (x, Δp))+

+
∑

i

(λi + Δλi)Ai(W (x, Δp)) − I(W (x, p))‖2
(17)

Now, optimization is carried out simultaneously with respect to both Δp and
Δλ at each iteration. Performing a first order Taylor expansion on T (W (x, Δp))
and Ai(W (x, Δp)) in (17) and assuming that W (x, 0) is the identity warp, we
have:

E(Δλ, Δp) =
∑

x

‖T (x) + ∇T
∂W

∂p
Δp+

+
∑

i

(λi + Δλi)(Ai(x) + ∇Ai
∂W

∂p
Δp) − I(W (x, p))‖2

(18)

Neglecting second order terms, the above expression simplifies to:

E(Δλ, Δp) =
∑

x

‖T (x) +
∑

i

λiAi − I(W (x, p))+

+(∇T +
∑

i

λi∇Ai)
∂W

∂p
Δp
∑

i

AiΔλi‖2
(19)

Considering the composed parameters vector q =
(

p
λ

)
and Δq =

(
Δp
Δλ

)
, the

optimal can be obtained by

Δq = −H−1
sic

∑
x

JT
sic(x)esic(x),

where:

– esic(x) = T (x) +
∑

i λiAi − I(W (x, p))
– Jsic(x) = ((∇T +

∑
i λi∇Ai)∂W

∂p1
, ..., (∇T +

∑
i λi∇Ai) ∂W

∂pn
, A1(x), ..., Am(x))

– Hsic =
∑

x JT
sicJsic
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3.3 Projected Out Optimization

The last method we analyze is the project out algorithm, based in a idea from
Hager and Behumeur [6] to decompose the optimization in two steps. It was
reformulated later in [1] using the inverse compositional scheme.

Representing the linear subspace spanned by the vectors Ai by span(Ai) and
its orthogonal complement by span(Ai)⊥, the equation (13) can be rewritten as:

‖T (x) +
∑

i

λiAi(x) − I(W (x, p))‖2
span(Ai)

+‖T (x) +
∑

i

λiAi(x) − I(W (x, p))‖2
span(Ai)⊥

(20)

In previous expression, two terms appear:

– The first term is a non-linear optimization with respect to the warp param-
eters, but performed in a subspace in which the appearance variation can be
ignored (projected out).

– The second step is a closed form linear optimization with respect to the
appearance parameters.

The second term can be simplified taking into account that the norm in the
second term only considers the component of the vector in the orthonormal
complement of span(Ai). Then, component in span(Ai) can be dropped. Then,
the resulting expression for minimization is as follows:

‖T (x) +
∑

i

λiAi(x) − I(W (x, p))‖2
span(Ai)

+‖T (x) − I(W (x, p))‖2
span(Ai)⊥

(21)

The second of these two terms does not depend upon λ. For any p, the min-
imum value of the first term is always exactly 0 because the term

∑
i λiAi(x)

can represent any vector in span(Ai). As a result, the simultaneous minimum
over both p and λ can be found sequentially by first minimizing the second term
with respect to p alone, and then treating the optimal value of p as a constant
to minimize the first term with respect to λ.

The optimal pose obtained from the second term can be expressed as:

Δp = −H−1
po

∑
x

JT
po(x)epo(x)

where:

– epo(x) = T (x) − I(W (x, p))
– Jpo(x) = ∇T ∂W

∂p (x, 0) −∑i

∑
y Ai(y)∇T ∂W

∂p (y, 0)Ai(x)
– Hpo(x) =

∑
x JT

po(x)Jpo(x)
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Computation of Jpo is carried out by projecting ∇T ∂W
∂p (x, 0) vectors into

span(Ai)⊥ by removing the component in the direction of Ai, for i = 1, ..., m in
turns. See [1] for more details about computing the span(Ai).

The optimal appearance parameters are given from the first term as:

λ = (AT ∗ A)−1 ∗
∑

x

AT epo(x)

4 Second Order SSD Linear Appearance Models Tracking

In this section the second order formulation is applied to the optimization algo-
rithms of the previous section.

4.1 Independent Optimization of Pose and Appearance

The approximation (10) must be used instead of the first order approximation
in (15), originating these new equations for the Δp parameters computing:

Δp = H−1
iic−esm

∑
x

JT
iic−esmeiic−esm(x),

where:

– eiic−esm(x) = T (x) − I(W (x, p)) −∑i λiAi(W (x, p))
– Jiic−esm = 1

2 (∇xT + ∇xI(W (x, p)))∂W
∂p

– Hiic−esm =
∑

x JT
iic−esm(x)Jiic−esm(x)

As result, the Jacobian Jiic−esm (and Hiic−esm) depends on p parameters, so
it has to be computed at each iteration.

4.2 Simultaneous Pose and Appearance Optimization

In (17), the approximation (10) can be performed, giving the following solution

Δq = −H−1
sic−esm

∑
x

JT
sic−esm(x)esic−esm(x),

with:

– esic−esm(x) = T (x) +
∑

i λiAi − I(W (x, p))
– Jsic−esm(x) = (1

2 (∇xT + ∇xI(W (x, p))) +
∑

i λi∇Ai)∂W
∂p1

, ...,

(1
2∇T + ∇I(W (x, p)) +

∑
i λi∇Ai) ∂W

∂pn
, A1(x), ..., Am(x))

– Hsic−esm =
∑

x JT
sic−esmJsic−esm

Please note that the Jacobian Jsic−esm(x) also has terms coming from the
linear approximation of A(W (x, Δp)). As no ”second order” approximation is
implemented for that expression, the whole algorithm does not reach a ”second
order” convergence but a lower one.
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4.3 Projected Out Optimization

Again, using the approximation (10) in the second term of (21), it can be written:

Δp = −H−1
po−esm

∑
x

JT
po−esm(x)epo−esm(x),

with:

– epo−esm(x) = T (x) − I(W (x, p))
– Jpo−esm(x) = 1

2 (∇T + ∇I(W (x, p)))∂W
∂p (x, 0)

−∑i

∑
y Ai(y)1

2 (∇T + ∇I(W (x, p)))∂W
∂p (y, 0)Ai(x)

– Hpo−esm(x) =
∑

x JT
po−esm(x)Jpo−esm(x)

5 Experimental Results

In this section the empirical validation of the proposed algorithms is performed
by comparing the obtained results. In the experiments, in order to have a ground
truth, the algorithms have been tested by warping a static image; homographies
(eight parameters warps) were generated by randomly perturbing the four cor-
ners of the target region previously aligned with its instance in the tracked image.
Then the different tracking algorithms were executed trying to recover the initial
pose. Two magnitudes were measured: the average frequency of convergence and
the average rate of convergence. We perform as much experiments as needed to
let all the algorithms converge at least 10 times, and 20 iterations per experiment
were used. We have used several sets of images to check the consistency of the
results across different tests.1

5.1 Image Tracking Algorithms Without Appearance Variation

The first experiment compares the results obtained with two image tracking al-
gorithm without appearance variation: inverse compositional alignment (ic) and
our implementation of second order inverse compositional alignment (esm ic).

Figure 1 plots the convergence rate obtained from both algorithms using three
different magnitudes for point displacement. As it can be seen, the speed of
convergence of the esm algorithm is higher; that means we can use less iterations
to converge, saving computational cost. It also shows the mean frequency of
convergence (% over the total number of tests) showing how the frequency of
convergence of the inverse compositional algorithm decays quicker than the esm.

5.2 Lineal Models Tracking Algorithms

Several experiments were carried out to test the behavior of the proposed second
order minimization algorithms with respect to their linear order version. It has
1 More experimental results and tracking video sequences can be obtained at

http://www.ac.uma.es/ jgmora/acivs06
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Fig. 1. SSD Image Tracking Results

Fig. 2. SSD Linear Model Tracking Convergence rate

been employed a linear basis obtained from three images from different faces
and PCA analysis was applied. A maximum spatial error of one pixel is given as
criterion for convergence. Figure 2 represents the convergence rate corresponding
to the point perturbation (σ = 20), showing a better behavior of the second order
minimization algorithm that require a short number of iterations for convergence.
It also includes the convergence frequency for linear models tracking and it
illustrates that quadratic algorithms converge, in general, in more occasions.

6 Conclusions

In this paper an analysis of the second order minimization technique has been
carried out. As a result a family of algorithms for linear model tracking have
been developed following the inverse compositional approach. These techniques
have been successfully employed in the tracking of changing appearance targets,
showing a better behavior than traditional first order based approximations.
This is illustrated in the experimental results, with high convergence rates and
improved convergence domain.
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As seen in the problem formulation, second order approach results in higher
complexity at each iteration because some steps cannot be computed offline
as in first order algorithms. However, as pointed out in [2], the quicker con-
vergence of the second order minimization algorithm (in terms of the required
steps to converge) can be used to compensate the additional computational cost
of each iteration due to the new elements computed. In addition, in the linear
model tracking case for algorithms as Simultaneous Inverse Compositional align-
ment is necessary to recalculate different expressions (section 3.2) even for the
first order inverse compositional approach because of its dependency from the
appearance parameters computed at each iteration. Thus, the new calculations
carried out by the second order approach do not have a big impact on the overall
computation. In this subject, our current aim is the development of an efficient
implementation of the algorithms to achieve real-time execution similar to that
obtained from some linear approximations with the improved behaviour (conver-
gence frequency) of the second order approach. At this moment we are evaluating
the use of GPUs exploiting the parallelism that appears in the operations.

Future works will also involve a more in deep study of other related param-
eters as robustness to corrupting noise and occlusions. We will also study the
applicability of these techniques to the shape deformation handling.
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Abstract. We present an algorithm for interpolating the visible por-
tions of a point cloud that are sampled from opaque objects in the envi-
ronment. Our algorithm projects point clouds onto a sphere centered at
the observing locations and performs essentially non-oscillatory (ENO)
interpolation to the projected data. Curvatures of the occluding objects
can be approximated and used in many ways. We show how this algo-
rithm can be incorporated into novel algorithms for mapping an unknown
environment.

1 Visibility

The problem of visibility involves the determination of regions in space visible
to a given observer when obstacles to that sight are present. When the observer
is replaced by a light source in the simplified geometrical optics setting with
perfectly absorbing boundary condition at the obstacles, the problem translates
to that of finding illuminated regions. In this regard, the visibility problem is
highly related to the high frequency wave propagation problems and is needed in
many computational high frequency wave approaches [2]. We will interchange the
term visibility with illumination, and occlusion with shadow freely in this paper.

In visualization, visibility information can be used to make complicated ren-
dering processing more efficient by skipping over occlusion. In robotics mission
planning, achieving certain visibility objectives may be part of the mission. Video
camera surveillance design is one such example.

Visibility problems have also been studied by geometers. For example, H.
Wente asked if connectedness of the on surface shadow is sufficient to imply
convexity of the occluding surface [4].

In general, one may consider the following classes of visibility problems:

1. Given occluders, construct shadow volume and its boundary;
2. Given a projection of visible regions, construct the occluders;
3. Find location(s) that maximize visibility using certain predefined metric.

In many visualization applications, (1) is solved by projecting triangles. Wente’s
question can be viewed as in category (2). Problems related to surveillance is

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1014–1025, 2006.
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related to (2). We will present an algorithm for a problem related to both (1),
(2), and (3).

1.1 Representations of Visibility

Today computational geometry and combinatorics are the primary tools to solve
visibility problems [5][18],[3]. The combinatorial approach is mainly concerned
with defining visibility on polygons and more general planar environments with
special structure. All the results are based on an underlying assumption of
straight lines of sight. The simplified representation of the environment is a
major limitation of this methodology. Furthermore, the extension of these algo-
rithms to three dimensional problems may be extremely complicated.

Our goal is to define such a representation of visibility as to be able to solve
the problems considered in computational geometry [5] on general environments
in two or three dimensions, independent of the integral field defining the lines of
sight, utilizing minimum information about the environment.

One attempt was to introduce the level set representation of the occluding
objects and the visibility function, defined in [16]. While this algorithm can be
applied to general types of environment, easily extended to three dimensions,
and curved lines of sight, it requires a priori knowledge of the occluding objects
to construct the level set representation of the environment. This information
may not be available in some important real life applications, e.g. navigation in
an unknown environment, or if the occluding objects are represented by open
surfaces.

Another method for visibility representation was introduced by LaValle et al
in [6], [14]. This is a rather minimal framework based on detecting discontinu-
ities in depth information (called gaps) and their topological changes in time
(referred to as gap critical events). The “visible” environment is represented by
a circle centered at the vantage point, with gaps marked on the circumference
in the order of their appearance to the observer. Note that no distance or angu-
lar information is provided. As with most combinatorial approaches, LaValle’s
method works only on regions having special geometries.

In [19], an algorithm extracting planar information from point clouds is intro-
duced and used in mapping outdoor environment. In [11], depth to the occluders
is estimated by a trinocular stereo vision system and is then combined with a
predetermined “potential” function so that a robot can moved to the desired
location without crashing into obstacles.

Here we introduce a new model which, similarly to the level set representa-
tion, can handle complicated geometries and curved lines of sight. In contrast to
LaValle’s representation, we utilize distance and angular information, which, in
practice, can be easily provided by the sensor.

2 Visibility Interpolation and Dynamics

Assume we have a set of points P that are “uniformly” sampled from the occlud-
ing surfaces. In practice this data could be obtained from sensors such as LIDAR
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or even from triangulated surfaces (here P would be the set of vertices). Given a
vantage point, our algorithm would produce a subset of visible data points and a
piecewise polynomial interpolation of the visible portions of the surfaces. Unlike
the level set representation [16], our algorithm can handle open surfaces and
does not require a priori knowledge of occluding surfaces to construct visibility.

2.1 Basic Formulation

Let us begin by introducing some notations. Let x0 denote the vantage point
(always assume x0 outside of the objects). Consider Ω ⊂ IRd (d = 2, 3) – a set
of objects in question, Γ = ∂Ω, and Γ ∗

x0
– visible portion of Γ with respect to

x0. Denote by φ the signed distance function to Γ . We define the view direction
from x0 to x by ν (x0, x) := (x − x0) /|x − x0|. For any two points in space x1

and x2, we say that x1 ≤ x2 (x1 is “before” x2) if ν (x0, x1) = ν (x0, x2) and
|x1 − x0| ≤ |x2 − x0|. Also, a point y ∈ Γ is called a horizon point if and only
if ν (x0, y) · n(y) = 0, where n(y) is the outer normal of Γ at y. Lastly, a point
y ∈ Γ is called a cast horizon point if and only if there is a point y∗ such that
y∗ ≤ y and y∗ is a horizon point.

Observe that the visibility status of points sharing the same radial direction
with respect to the vantage point satisfies a causality condition. That is, if x1 is
occluded and x1 ≤ x2, then x2 is also occluded. We set

ρx0(p) :=
{

minx∈Ω̄{|x − x0| : ν (x0, x) = p}, if exists
∞, otherwise (1)

Define the visibility indicator Θ(x, x0) := ρ(ν(x, x0))−|x−x0| such that {Θ ≥ 0}
is the set of visible regions and {Θ < 0} is the set of occluded regions. See Fig. 1
for an example.

Assume, in addition, that the sampling of points is “uniform”. That is, we
can find an ε > 0, such that ε-balls centered at each sampled point on Γ connect
the connected components and do not connect disconnected components of Γ .

Let P ⊂ IRd be the sampled data set. Enumerate all the points yi ∈ P .
Define the projection operator πx0 : IRd �→ Sd−1, mapping a point onto the unit
sphere centered at x0. Then we can construct the following piecewise constant
approximation to the surface on a sphere:

ρ̃x0(z) = min (ρx0(z), |x0 − yi|) , for every z ∈ πx0B (yi, ε) . (2)

In addition we can define an auxiliary function Rx0 : Sd−1 �→ P , which records
P̃ ⊂ P – a subset of all points in P visible from x0:

Rx0(z) :=
{

yi, if ρx0(z) > |x0 − yi|
value unchanged, otherwise (3)

In case the surface normals are available for each data point, we can use ellipse
instead of a ball in the above construction. In [12], a similar projection approach
is proposed for rendering purposes.
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Fig. 1. Demonstration of visibility

2.2 Smoother Reconstruction by ENO Interpolation

Note that analytically the visibility function ρ is piecewise continuous with jumps
corresponding to the locations of horizons. Smoothness of ρ in each of its con-
tinuous pieces relates to the smoothness of the corresponding visible part of Γ ,
i.e. Γ ∗

x0
. In the previous section we obtained a piecewise constant approximation

ρ̃x0 of the visibility function and recorded an auxiliary function Rx0 which keeps
track of the visible data points serving as “originators” of the constant values of
ρ̃x0 . We will use Rx0 to construct a piecewise polynomial approximation ρint to
the visibility function which would preserve the jumps. ENO (Essentially Non-
Oscillatory) interpolation introduced by Harten et al [7] is used to compute such
a ρint.

For example, consider a two dimensional reconstruction on S1. First, pa-
rameterize S1 by angles θ ∈ [−π, π). Then sort the visible points pi ∈ P̃ in
the increasing order of the angle they form with respect to the vantage point:
ρ−1

x0
(pi) = arg(pi−x0). To construct a piecewise linear interpolation ρ

ENO(1)
x0 use

the values of ˜ρx0(θ), where θ ∈ I[ρ̃−1(pi), ρ̃−1(pi+1)). Similarly, we can obtain
ρ

ENO(p)
x0 – a piecewise p-th order interpolation. See Fig.2 for an example.
ENO interpolation can be applied in two steps to compute an approximation

on S2 for organized data clouds. Let θ1 and θ2 parameterize S2. We first ENO-
interpolate ρ

(0)
x0 (·, θ2) in the θ1 direction to obtain ρ

ENO(p,∗)
x0 . Then use ρ

(0)
x0 (θ1, ·)

and ρ
ENO(p,∗)
x0 to interpolate in θ2 direction to obtain ρ

ENO(p,q)
x0 . Figures 3 and

4 are examples in three dimensions.
We shall use the piecewise p-th order approximation ρ

ENO(p)
x0 to compute

derivatives on the occluding surfaces (away from the edges) and easily extract
various geometric quantities.
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Fig. 2. Points visible from (0.5,−0.5), corresponding visibility function ρ(θ), and the
edges (horizon points)

θ
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θ 2∈
[−
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π)

Fig. 3. Visible points from a vantage point marked by red star, corresponding visibility
function ρ(θ1, θ2), and the reconstructed visible surface

2.3 Curved Lines of Sight

To demonstrate the flexibility of our formulation, consider the case when the
lines of sight are no longer straight. Then we can not use the relation ν(x, x0) =
(x − x0)/|x − x0| in the definition of the visibility function (1). As in [16], we
consider instead the flow lines connecting x0 to the data points p ∈ P . The
construction of the visibility function is done as follows. First, we construct the
distance function ϕ on the whole domain D by solving the eikonal equation

|∇ϕ(x)| = r(x), in D, ϕ(x0) = 0, (4)

where r(x) > 0 is the variable index of refraction. We use the fast sweeping
technique from [17] to solve (4). To determine the polar coordinates (θ, ρ(θ))
corresponding to the point p on the occluding surface we then solve

∂x
∂t = −∇ϕ(x),
x|t=0 = p,

(5)

to trace point p back to x0 along the line of sight connecting them. Then θ is
the angle made by ∇ϕ at x0, and ρ(θ) = ϕ(p). The visibility function can be
constructed using the causality condition with respect to ϕ. See Figure 5.
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θ
1
∈[−π,π)

θ 2∈
[−
π,
π)

Fig. 4. Visible points on Michelangelo’s statue [10] from two vantage points, one of the
corresponding visibility maps ρ(θ1, θ2), and a reconstruction of portion of the visible
surface

Such computations may be useful when determining visibility in regions with
variable refraction such as water or fog, or in anisotropic medium (in this case,
one needs to solve more general Hamilton-Jacobi equations as considered in [16]).

2.4 Dynamics

When the lines of sight are straight, we can derive how the visibility changes
along with a moving vantage point x0. In two dimensions let us consider a coor-
dinate system centered at x0 with the visible portions of the occluding surfaces
parameterized by polar coordinates. A point z on the occluder is visible from
x0. Assume the observer moves with the velocity v = (v1, v2). The value of the
visibility function is ρx0(θ) = |z − x0|. Suppose during the period of time Δt
the observer has moved to a new location x0 + vΔt. The corresponding value
of the visibility function is ρ̃x0+vΔt(θ̃) = |z − (x0 + vΔt)|. The angle between
the velocity vector v and the x-axis is φ = tan−1 v2

v1
. The angle between z − x0

and the velocity vector v is ψ. Then, the angle between z − x0 and the x-axis is
θ = φ + ψ.

We can obtain the following expressions:

dθ

dt
= |v| sin ψ, (6)

d

dt

(
ρ(θ(t), t)

)
= ρt + ρθθt =

d

dt
|x0(t) − z|. (7)

Now we can put (6) and (7) together to get

ρt + |v(t)| sin ψρθ = v(t) ·
(

cos θ
sin θ

)
. (8)
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−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

r(x) = 1 

r(x) = 2 

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

θ∈[−π,π)

ρ(
θ)

Visibility function ρ

Fig. 5. Left: non-straight lines of sight; Right: corresponding visibility function ρ(θ)

Now let us consider the motion of horizon points e1 and e2. Note that (ei −
x0) · nei = 0, where nei is the outer unit normal to the occluding surface at
the point ei for i = 1, 2. That is, ei − x0 is tangent to the occluding surface at
the horizon point. Without loss of generality, in all future computations we will
consider just e1.

In the coordinate system centered at x0, θ = φ+ψ is the angle between e1−x0

and the x-axis. The value of the visibility function is ρx0(θ) = |e1 − x0|. Now
suppose the observer moves to a new position x0+vΔt, moving with the velocity
v = (v1, v2). For this new location, the position of the edge has changed to ẽ1 and
the corresponding value of the visibility function is ρ̃x0+vΔt(θ̃) = |ẽ1−(x0+vΔt)|.
Here θ̃ = φ + ψ̃ is the angle between ẽ1 − (x0 + vΔt) and the x-axis in the
coordinate system centered at x0 + vΔt. Our goal is to find the change in the
position of horizon, i.e. d

dte1.
First, note that the curvature of the occluding surface at the point (ρ(θ), θ)

is given by

κ =
ρ2 + 2ρ2

θ − ρρθθ

(ρ2 + ρ2
θ)

3
2

. (9)

Also, since e1 − x0 is tangent to the occluder at e1, we obtain

n⊥(e1) =
e1 − x0

|e1 − x0|
n(e1) =

(
n⊥(e1)

)⊥
=
( e1 − x0

|e1 − x0|
)⊥

. (10)

Now we can plug in the above into the formula for horizon dynamics from [16]
to get

de1

dt
=

1
κ

v · n(e1)
|e1 − x0|n

⊥(e1), (11)
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or, using the fact that v · n(e1) = |v| cos(ψ + π
2 ),

de1

dt
=

|v| cos (ψ + π
2 )

κρ2
(e1 − x0). (12)

Remember that in all of the above ψ = θ − φ = θ − tan−1 v2
v1

.
Therefore, from (8) and (12) we obtain full description of the change in the

visible portion of the occluder with respect to the observer’s motion.
The corresponding expressions can also be derived in three dimensions, see

[16].

3 Applications of Visibility Interpolation to Navigation
Problems

Let us consider the application of visibility to navigation in an unknown envi-
ronment, for example exploring the environment, object finding, and pursuit-
evasion. LaValle et al have addressed these problems in [6], [14], [15], [13],
[9]. Their algorithms only work on polygonal domains or curved regions whose
boundary may be represented as a set of solutions to an implicit polynomial
equation of the form f(x1, x2) = 0 (see [9]). Our algorithms work on general
types of environments using point cloud data that is either presampled or sam-
pled in action by some hardware.

3.1 Problem: Seeing the Whole Environment

Here we consider the problem of exploring the unknown bounded region with
obstacles. The objective is to map the whole environment. We set the following
restrictions on the path traveled by the observer:

1. The path should be continuous and consist of discrete steps;
2. The number of steps should be finite;
3. The total distance traveled must be finite.

These restrictions ensure that the algorithm would be practical in real life ap-
plications. Consider first simple, but non-practical examples of navigation in a
bounded region with a single occlusion in shape of a circle. One strategy to ex-
plore the environment around the occlusion would be to approach the circle’s
boundary and travel along it until we return to the same point. This strategy
does not satisfy our restrictions since it would require an infinite number of steps
to travel along the boundary. Another strategy would be to proceed to infinity
to see half a circle at once, then jump to infinity at the opposite side of the circle
to see the other half. Such a strategy does not satisfy our restrictions either,
since the path would be infinite and not continuous.

Our algorithm was inspired by LaValle et al. In this method the observer
randomly chooses a gap marked on the visibility plot and approaches it. The
visibility map is then updated and the process is repeated until the whole region
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is explored. Critical events such as appearance and disappearance of gaps are
tracked by the dynamic data structure. Since the visibility map has no distance
or angular information, the algorithm is not optimal with respect to the total
distance traveled. In particular, if this algorithm is applied to cases that contain
fine polygonalization of curved objects, the computational cost of this algorithm
may become too large.

Our visibility representation includes distance and angular information, and
our algorithm is designed with the consideration of handling basic smooth geome-
tries. In essence, the visibility of any bounding disk of a convex object guarantees
the visibility of that object. If a set of separated, non-overlapping bounding disks
exists for a collection of disjoint convex objects, we may consider the visibility
problem of each convex object independently. Furthermore, if a non-convex ob-
ject can be decomposed by the set difference of a finite number of convex sets,
then one can treat it “almost” like a convex object. We see that the signed
curvature, a notion of local convexity, is rather essential in applying the above
arguments. We obtained formulas for the upper bounds of the number of observ-
ing locations in these situations as functions of the sign changes in the curvatures
as well as the number of disconnected components, and would report our finding
in a forthcoming paper.
Algorithm 1

1. For the given x0 outside the occluding objects; construct the visibility func-
tion ρ(θ);

2. Find all the edges on the (θ, ρ(θ)) map and proceed to the nearest edge;
3. Find edges;

If no edges are found, we are on the boundary of an obstacle at the horizon
point. Thus we need to “overshoot” x0 along the tangent line to see
where to proceed next. We choose the following overshooting step size

r = λ tan
(π

3

) 1
κ

, (13)

where κ is the curvature of an edge defined by (9) and λ is a parameter.
This way we have a minimal number of steps to travel around the obsta-
cle, e.g. for a circle, r = 1/2 the side of the equilateral triangle enclosing
the circle. In case κ = 0 we shall shift the position by a small amount to
see the next edge.

If the edges are found, move x0 to the nearest edge. Store the unexplored
edges in a list;

4. Finish when the change in total visible area is less then the desired tolerance
and all the edges are are “removed” from the list. Otherwise go to 1 with
the current location of x0.

Figure 6 illustrates the steps of the above algorithm with one and two circles
as obstacles. The pink arcs correspond to the portions of the circles that are
reconstructed. Figure 7 depicts final paths for different test cases. As one can
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be defined by the user in step 3. To proceed further from the edge we follow the
line of sight passing through this edge by solving

dx

dt
= ∇φ(x), x(0) = xe, (14)

where xe is the position of the edge. Consider Fig.8 for a sample step-by-step
path.

4 Conclusion

We present an essentially non-oscillatory algorithm for interpolating point cloud
visibility information in polar coordinates. This algorithm is capable of approx-
imating higher order derivatives of the surface so that curvatures can be com-
puted. We also present a new path planning algorithm using our point cloud
visibility interpolation. Our future work lies in optimizing the above algorithm.
We desire a better performance with respect to the distance traveled and/or the
number of steps.
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Abstract. In adjusting for discrepancies between adjacent airborne laser
scanning (ALS) data strips, previous studies generally used conjugate
features such as points, lines, and surface objects; however, irrespective
of the types of features employed, the adjustment process relies upon
the existence of suitable conjugate features within the overlapping area
and the ability of the employed method to detect and extract the fea-
tures. These limitations make the process complex and sometimes limit
the applicability of developed methodologies because of a lack of suit-
able features in overlapping areas. To address these problems, this paper
presents a methodology that uses the topological characteristics of the
terrain itself, which is represented by a contour tree (CT). This approach
provides a robust methodology without the restrictions involved in meth-
ods that employ conjugate features. Our method also makes the overall
process of adjustment generally applicable and automated.

1 Introduction

Since their introduction, airborne laser scanning (ALS) systems have been adapt-
ed to a wide range of application areas such as the creation of digital surface
models (DSMs) and orthophoto generation because of the system’s ability to
quickly acquire 3D terrain coordinates over target areas. Present research re-
lated to ALS systems is focused on ways to improve the collection and anal-
ysis efficiency of ALS data. Despite recent improvements to the system, there
remain noticeable systematic errors in overlapping areas of ALS strips. These
errors result from inaccurate calibration of the entire measurement system and
the limited accuracy of direct geo-referencing via the global positioning system
(GPS) and the inertial measurement unit (IMU), including systematic errors;
these errors are generated while the ALS system is flying over multiple overlap-
ping strips to cover the target area [1]. Such systematic errors usually result in
less meaningful data and a questionable quality of the final product.

With an increased need to adjust for discrepancies, a series of studies have
been undertaken in recent years based on matching methodologies using conju-
gate features, including points to points matching [2], triangular irregular net-
work (TIN) matching [3], points to surface matching [4], surface objects to sur-
face objects matching [1], [5] and line to line matching methods [6], [7]. In these

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1026–1036, 2006.
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studies, the chosen conjugate features are detected and extracted from raw ALS
data to enable adjustment; however, the lack of suitable features in overlapping
areas sometimes limits the applicability of the developed methodologies. When
points, linear features, and flat surfaces are identified from ALS data, they are
usually identified from man-made structures. These features are readily detected
and extracted from raw ALS data from urban areas, but the process is more diffi-
cult for raw ALS data from rural and mountainous areas. Another problem is the
automated detection and extraction of conjugate features from raw ALS data;
these processes are complicated by the difficulty of feature identification and fre-
quently suffer from expensive computation effort. To overcome these limitations,
this paper presents a methodology that uses the topological characteristics of the
terrain itself. When two neighboring strips overlap, the local height variation in
ALS data within the overlapping area increases if discrepancies exist between
the strips; this results in a complex terrain topology. Thus, it should be possible
to adjust for the discrepancy by finding the transformation that minimizes the
topological complexity, i.e., removes the discrepancy.

We use a contour tree (CT) to represent the topology and measure the topo-
logical complexity of the terrain. The CT is a fundamental data structure in
scientific visualization, mainly used to capture the topological characteristics of
a scalar field that represents data in different application areas such as geo-
graphic information systems, medical imaging, or scientific visualization [8]. The
CT consists of a finite set V of objects, termed vertices, and a finite set E of ob-
jects, termed edges. In general, the vertices represent contour lines or spot points
and the edges represent the adjacent relationship of the two vertices. Pairs of
vertices that determine an edge are adjacent vertices [9]. For every vertex Vi in a
contour tree, we can count the total number of neighboring vertices of Vi. When
the number of neighboring vertices is equal to one, the vertex Vi is termed a
leaf. Leaves are usually assumed to be isolated, and have a locally extreme value
of elevation in the CT structure [8], [10]. Therefore, one can easily imagine that
the more leaves within a target area, the more complex the topography. Based
on this scheme, the topological complexity is measured using the number of
leaves of the CT. For example, Figure 1 shows that the number of leaves of the
CT increases with the addition of noise to the MATLAB ’peaks’ function. In
these simulation data, the number of leaves increased from 50 to 1051 by in-
creasing the ratio of noise to the peak function. As mentioned above, when ALS
data strips overlap, discrepancies between the strips act to increase the number
of leaves of the CT in the overlapping area. Therefore, we can adjust for the
discrepancy between ALS data strips by determining the appropriate transfor-
mation function between neighboring strips that minimizes the number of leaves
of the CT within the overlapping area. We use this methodology in the present
paper to perform the adjustment process without the need for the detection and
extraction of conjugate features. This new method makes the overall adjustment
process of ALS data strips more generally applicable and automated.

In Section 2, we present an overview of the CT and the methodology used to
create it in the current paper, while the algorithm used to adjust for measured
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Fig. 1. (a) The original MATLAB ’peaks’ function. The magnitude of the noise com-
ponent added to (b) and (c) is 15% and 30% that of the maximum range of values in
the ’peaks’ function, respectively. Blue data points represent the added noise.

discrepancies is described in Section 3. In Section 4, we demonstrate the feasibil-
ity of this approach via an experiment with real ALS data strips obtained by a
state-of-the-art ALS system. Finally, conclusions and future works are discussed
in Section 5.

2 Contour Tree

The CT was introduced by [11] as a summary of the elevation of contours on a
map (i.e., in 2-D). Since its introduction, the CT has been used in image pro-
cessing and geographic information systems. The CT is a type of tree structure
and a data structure that represents the relationships between connected com-
ponents of the level sets in a scalar field. The display of the CT provides the user
with direct insight into the topology of the field and minimizes the user inter-
action time that is necessary to ”understand” the structure of the data [12]. In
particular, points that are usually assumed to be isolated and that have locally
extreme values of elevation can easily be detected under the CT structure.

To compute the CT, we use the algorithm proposed by [13], which is an ele-
gant and efficient algorithm for the computation of the CT in any dimension. The
algorithm consists of three stages: (i) sorting the vertices in the field, (ii) comput-
ing the join tree (JT) and split tree (ST), and (iii) merging the JT with the ST to
construct the CT. From a given 3-D point cloud, we can create a mesh M using
the Delaunay triangulation, which consists of vertices and edges (see Figure 2).
Using the mesh M, the CT is created as described in the following sections.

Sorting the Vertices. The vertices of M are ordered by increasing height
values using any standard sorting technique.

Computing the JT and ST. The mesh M can be segmented into different
groups that consist of vertices and edges according to the changes in heights
between neighboring edges. Computing the JT is the process that determines
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Fig. 2. Representation of the mesh M. The mesh is a bivariate scalar field (terrain)
represented as a triangulated irregular network (TIN) with elevation values associated
with each vertex. The numbers represent the height value of each vertex, while the
numbers in brackets indicate the height order. Critical points are marked with colored
disks: local maxima in red and minima in blue.

junction points (see the 4th point in Figure 3) that join groups, while computing
the ST is the process that determines junction points (see the 9th point in Figure
3) that split groups from M. When computing the JT, a new group is created if
any vertex has a locally maximum value; if not, the group to which the vertex
belongs is determined by testing whether the vertex is linked by its edge to
other vertices in existing groups. The routine of computing the ST has the same
structure as that used in computing the JT, although in reverse. For example,
Figure 3 shows the JT and ST created from the mesh M.

Merging the JT and ST to Construct the CT. In the last step of the
algorithm, the JT is merged with the ST to construct the CT. The vertices of
the JT and ST can be classified as one of three kinds of vertices: leaf vertices,
vertices that connect other vertices within the group, and vertices that connect
neighboring groups. The upper leaves of the JT and the lower leaves of the ST
and their edges are added to the CT. This leaf vertex and its edge are then
removed from the JT or ST, and the neighboring vertex of this vertex becomes
a new leaf vertex. When all leaf vertices are removed from the JT and ST, the
merging process is finished. Using this algorithm, the CT can be computed from
a point cloud (see Figure 4).

3 Using the CT to Adjust for Discrepancies

The aim of this paper is to adjust for discrepancies between adjacent ALS data
strips. The goal of the adjustment process is to find the appropriate transforma-
tion T between strips such that any discrepancy between the transformed strip
and reference strip is removed. To use the CT for the adjustment process, we
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Fig. 3. The correspondence of the join and split tree with the mesh M shown in Figure
2. (a) Join tree. (b) Split tree.

Fig. 4. The correspondence of the contour tree with the mesh M shown in Figure 2

utilize a scheme that dictates that when the discrepancy is perfectly removed,
the number of leaves of the CT computed for the overlapping area is minimized.
Based on this scheme, the process of determining the appropriate transformation
is as follows.
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Given two ALS data strips S1 (a test strip) and S2 (a reference strip):
1. First Stage

(a) Extract the overlapping area of S1 and S2.
(b) Choose the initial spatial transformation T.
(c) Determine the range and cell size of parameters of T; these values are

dependent on the quality of the approximations of the parameters and
the point density of the ALS data.

2. Second Stage
(a) Apply the T to S1 and compute the CT and the number of leaves of the

CT (N (CT)) of the overlapping area, refining the parameters of T.
(b) Find the parameters of T when N (CT) is minimized.

3. Third Stage
(a) Decrease the range and cell size of parameters.
(b) Repeat Step 2 until the parameters converge to the desired precision.

4 Experimental Results

We applied the developed algorithm to an ALS dataset captured using an OPTE-
CH ALTM 2050 laser scanner at a mean flying altitude of 975 m and a mean
point density of 2.24 points/m2. The first and last returns were recorded as well
as range and intensity data. According to the sensor and flight specifications, 0.5
m horizontal and 0.15 m vertical accuracies were expected for this dataset. For
the target area, the ALS dataset consists of six strips, of which two neighboring
strips were used for the present analysis. A total of 1.7 million points were iden-
tified from the overlapping area between the two selected strips. To minimize
computation time and increase efficiency, the central part of the overlapping
area, which includes 616,745 points, was used for our analysis (see Figure 5). A
3-D conformal transformation was chosen as a spatial transformation for adjust-
ment. A 3-D conformal transformation consists of scale, rotation, and translation
factors, as apparent in Equation (1) below:⎛⎝Xr

Yr

Zr

⎞⎠ =

⎛⎝XT

YT

ZT

⎞⎠+ SR (ω, φ, κ)

⎛⎝X
Y
Z

⎞⎠ (1)

where S is the scale factor, (XT , YT , ZT )T is the translation vector between
the origins of the coordinate systems for each ALS data strip, R is the 3-D
orthogonal rotation matrix, (X, Y, Z)T are the point coordinates in the test
strip, and (Xr, Yr, Zr)T are the point coordinates in the reference strip.

After setting up the spatial transformation, we determined the initial parame-
ters of the transformation. The transformation was applied to the test strip, and
the CT and the number of leaves of the CT were computed for the overlapping
area. Within a predetermined range and cell size of parameters(in this experi-
ment the range and cell size were ±1m and 0.2m respectively), seven parameters
of transformation were refined sequentially until the number of leaves was min-
imized. Then, the range and cell size of parameters were reduced by about half
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Fig. 5. Extracted ALS data points used for the adjustment process. Red and blue points
represent overlapping ALS data strips, while yellow points lie within the overlapping
area and green points are those used for the adjustment process.

and the process was repeated. Figure 6 shows the number of leaves of the CT as
a function of the translation value in the X-direction. The value of translation in
the X-direction is 0.41 when the number of leaves of the CT is minimized. Table
1 lists the parameters of transformation that were determined by the proposed
algorithm. After applying the determined transformation, the total number of
leaves of the CT in the overlapping area decreased from 150,178 to 141,112. Fig-
ure 7 shows the topography of the terrain before and after transformation; the
number of leaves decreased following transformation. In the figure, the change
in the number of leaves is only slight because this area is very small compared
with the area as a whole. The number of leaves shown in Figure 7 decreased
from 641 to 478, while the total number of points in this area is 3,599.

Table 1. Estimated parameters for 3-D conformal transformation

Parameter Adjusted Value
S (scale) 1.00
XT (m) 0.41
YT (m) 0.19
ZT (m) 0.00

ω (degrees) 0.0e-7
φ (degrees) -3.0e-7
κ (degrees) -1.0e-7
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Fig. 6. Number of leaves of the CT as a function of the translation parameter in the
X-direction. (a) First iteration to determine the translation value in the X-direction.
(b) Second iteration to determine the translation value in the X-direction. When x =
0.41, the number of leaves is minimized (red data point)

To test the feasibility of the determined 3-D conformal transformation, a total
of 164 pairs of conjugate linear features were identified and extracted from the
two overlapping strips. These linear features were used to measure discrepancies
before and after applying the transformation. In Figure 8, blue and red lines show
conjugate linear features extracted from the two strips (see [7] for a complete
description of the extraction process). The normal vector between each pair of
linear features was used to measure discrepancies. For each pair of conjugate
features, a normal vector was calculated from the midpoint of one conjugate
linear feature to the other line. Table 2 lists the overall discrepancies between
the two strips before and after applying the transformation. The means and
standard deviations of the normal vectors indicate the existence of discrepancies
between the strips before applying the transformation, especially in the X- and
Y-directions. Following the transformation, it is evident that the discrepancies
had been reduced, especially in the X- and Y-directions.

We next conducted a hypothesis test to determine whether the results are
statistically significant. Using the paired comparison method, the differences
between normal vectors before and after the transformation were examined to
determine if they are significantly large from a statistical viewpoint. The test
statistic was set up as follows:
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Fig. 7. Plot of a sub-area of the overlapping strips showing the change in the number
of leaves of the CT before and after transformation. (a) Before transformation. (b)
After transformation.

Fig. 8. Red and blue lines show five pairs of conjugate linear features extracted from
two different strips

T =
1
n

∑n
i=1 (X1,i − X2,i) − δ0

SD/
√

n
(2)

where S2
D = 1

n−1

∑n
i=1

[
(X1,i − X2,i) − 1

n

∑n
i=1 (X1,i − X2,i)

]2 indicates the poo-
led standard deviation, X1,i and X2,i denote the value of ith the normal vectors
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before and after transformation, respectively, and n indicates the number of
normal vectors.

In this case, σ0 is zero. The corresponding hypothesis is:

H0 : μ1 = μ2, H1 : μ1 > μ2 (3)

where μ1 and μ2 are the population means of the normal vectors before and
after applying the transformation, respectively.

The test results reject the null hypothesis at the 99% significance level. The
t-values are 7.245 in the X-direction and 7.143 in the Y-direction, respectively,
which rejects the null hypothesis at the significance level (99%, at which the
t-value is 2.364). This result indicates that the transformation reduced the dis-
crepancies between the ALS data strips by a statistically significant amount in
both the X- and Y-directions.

Table 2. Measurements of discrepancies before and after applying the transformation

Before Transformation After Transformation
Mean Standard Deviation Mean Standard Deviation

dx(m) -0.182 ±0.286 -0.028 ±0.219
dy(m) -0.082 ±0.315 -0.009 ±0.166
dz(m) 0.003 ±0.111 -0.015 ±0.070

5 Conclusions and Future Work

This paper presents a generally applicable algorithm that adjusts for discrepan-
cies between ALS data strips. The method overcomes the limitations involved
in methods that use conjugate features in the adjustment process. By using a
CT algorithm and the topological characteristics of the terrain, the algorithm
explicitly formulates step-by-step methodologies to determine the most suitable
transformation for adjustment. We applied the method to an ALS dataset and
achieved a statistically significant reduction in discrepancies, especially in the
X- and Y-directions. We are now focusing on the way in which the results are
affected by the point density of ALS data and the number of points used for
adjustment. We are also investigating a method of extracting sub-areas from
overlapping area based on the distribution and terrain type of a sub-area; this
will improve computation efficiency. In addition, for general applications, this
algorithm should be tested for specific types of terrain such as very flat terrain
and vegetated terrain.
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tional University.
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Abstract. Most existing cognitive architectures integrate computer vi-
sion and symbolic reasoning. However, there is still a gap between low-
level scene representations (signals) and abstract symbols. Manually at-
taching, i.e. grounding, the symbols on the physical context makes it
impossible to expand system capabilities by learning new concepts. This
paper presents a visual bootstrapping approach for the unsupervised
symbol grounding. The method is based on a recursive clustering of a
perceptual category domain controlled by goal acquisition from the vi-
sual environment. The novelty of the method consists in division of goals
into the classes of parameter goal, invariant goal and context goal. The
proposed system exhibits incremental learning in such a manner as to
allow effective transferable representation of high-level concepts.

1 Introduction

The field of Artificial Cognitive Systems within Artificial Intelligence developed
over the last decade with the intention of constructing intelligent systems with
abilities to perceive, learn, communicate and understand the external world in
the manner of biological organisms. This approach draws on and integrates meth-
ods of computer vision, neural networks and symbolic AI (Granlund 2005, Sun
and Wermter 2000). Perceptual information, usually obtained by machine vision,
is processed for learning low-level models using, for example, neural network al-
gorithms (Sommer 2005). These models are then transferred to the symbolic
level for further abstract reasoning by means of classical AI techniques such as
Computer Linguistics.

The diversity of existing research is manifested by various methods of rep-
resenting the perceived data, training the networks and generalizing symbols
at the top hierarchical level of the system. Hence, there is significant progress
in developing both connectionist and symbolic approaches; however, the key is-
sue of linking them together has not yet been solved. The problem thus arises of
how low-level models are to be transferred into the abstract representation (and,
equally, how symbols are to be referred down to the neural network states).

In the field of cognitivism this problem is called symbol grounding (sometimes
symbol attachment) and deals with giving the symbols their physical meaning
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(Harnad 2002, Sloman 2005). The existing models of cognitive systems per-
form symbol grounding manually, by user interruption, causing the known prob-
lems of pre-hardwired knowledge, non-expanding competences and absence of
autonomous exploration. The goal of our research is to provide the cognitive
architecture with the mechanism of unsupervised symbol grounding (USSG).

The main approach for USSG is based on automatic clustering of incoming
low-level information. For reasonably complex perception any automatic cluster-
ing is not reliable since it fails to distinguish among categories (Harnad 2003). We
propose a visual bootstrapping approach to symbol grounding when the system
starts from simple low-level models building up primitive symbolic categories and
reusing them on further level of complexity (Granlund 2005). Recursive cluster-
ing of previously obtained categories on each next level of abstraction brings
out incremental developing of hierarchical symbolic structure. The algorithm of
learning behavioural models of detected symbols is based on the Markov Deci-
sion Process and its extension to the Reinforcement Learning (Gullapalli 1992).
The difference from the standard methods is that the system reward is not a
predefined set of scalars but a parameter calculated online using a visual dis-
tance to the goal. The innovation of our approach is that we introduce three
different classes of goal representation: elementary, invariant and context. An
elementary goal takes only low-level visual features of the significant percepts.
It can be transferred into a invariant goal used at the abstract level. A context
goal is a projection of the invariant goal onto the current visual context.

In section 2 we describe what the significant percepts are, a role of the goal in
the bootstrapping and the process of goal detection in our method. Section 3 is
devoted to the problem of unsupervised path-finding in order to attain the goal
by action. It proposes mechanisms of learning essential invariant perception-
action couples and establishing models of system active behaviour. Section 4
presents a learning scenario where the method is applied for the particular kind
of visual environment. Finally, section 5 discusses the results and future work.

2 Goal Detection

Goal-oriented behaviour allows living organisms to address the high complexity
of the perceptual information coming from the real world. The internal world
representation should consist of only significant structures and events of the
system’s surrounding. That fact underlies the mechanism of autonomous goal
acquisition. We define the system goal as a significant perceptual state detected
in the visual environment.

Suppose that the system has a manipulator and a camera. The state of the
manipulator can be described by a set of parameters {mk} and any action as a
vector ΔM = {δmk}. Also, the visual system transforms an input image into
a vector of features S = {fi} (In section 4 we will describe an algorithm for
calculating the feature vector).

Since we imply no prior goal when the system starts, it performs an arbitrary
behaviour by generating a set of random motor changes {ΔM j}. The set of
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states {Sj} = {{fi}j} = {fij} corresponding to the random actions is perceived
by the visual system. The low-level visual features are integrated upon the frames
in order to obtain frequency histograms I(fs) for each value of fij :

I(fs) =
∑
i,j

{
1 fs = fij

0 fs �= fij

i = 1 . . . n(j), j = 1 . . .N. (1)

The values with relatively high frequencies are considered as the elementary
(parameter) goals since the peaks of the histogram do not represent the whole
scene but only one low-level feature. A visual state with the given parameter
goal with other feature vector components taken from the current visual scene
is the context goal. A visual state with the given parameter goal and any other
feature vector components create the invariant goal which does not depend on the
current context. The invariant goal is used for representing the detected visual
structure or event and the context goal implements its invariant components
when the system applies the model to generate action. Several invariant goals
can be combined into a complex invariant goal with the several parameter goals.
It makes possible to take previously obtained models for generating new kinds
of symbolic classes and correspondent novel behaviour.

3 Bootstrapping by Attaining Visual Goals

3.1 Problem Definition

Suppose that the system has detected an invariant goal and it is not equal to
the current visual state Sc

i . Any physical action ΔM i changes the state of the
external world that, in its turn, modifies the current perceptual state Sc

i+1. We
denote this transformation which carries a sense of the physical model of the
external world as L:

L : {M} → {S}, Sc
i+1 = L(ΔM i). (2)

A system internal transformation containing the learning mechanism is repre-
sented as another function mapping a perceptual state onto a system response
(Figure 1):

Q : {S} → {M}, ΔM i+1 = Q(Sc
i+1). (3)

The objective of the algorithm is to find a function Qg which generates an appro-
priate action moving the system towards the invariant goal state Sg. Formally
we can consider the task as following:

1. Prove that a policy Qg(Sc) exists such that the sequence Sc
[i] converges on

the goal Sc
[i] → Sg for a finite number of steps i with given L

2. Find a policy Qg(Sc) such that the sequence Sc
[i] converges on the goal

Sc
[i] → Sg for a minimal number of steps i, any initial state Sc

[0] and given
L
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Fig. 1. Transformations L and Q

The default model for Qg is based on repeating successful actions obtained by
random trials. The first movement is purely random:

Qg(Sc
0) ∈ {M}, ∀Sc

0 ∈ {S}. (4)

If the trial is followed by decreasing of the invariant goal distance then, on the
next step, the system perform the same action; if not, then Qg(Sc

1) will be chosen
randomly again. For any i:

Qg(Sc
i+1) =

{∈ {M}, Di ≥ Di−1

Qg(Sc
i), Di < Di−1

(5)

Di = D(Sc
i , S

g). (6)

The process goes on until the distance D becomes small

DK = D(Sc
K , Sg) ≤ ε. (7)

The sequence of the movements and the corresponding perceptual states con-
verging on the goal provide the system with a set of samples that form a primi-
tive mapping from perception to action. Our objective is to find a function which
transforms any percept into the movement. The transformation must be optimal
and invariant to the starting visual state.

The process of finding such a policy has two stages. Firstly, the most signifi-
cant visual states are detected by calculating their frequencies (or probabilities)
within the sample sequence. The selected key states build up an initial policy
Qg. Secondly, Qg is being refined by setting up other experiments, obtaining new
samples and updating the state probabilities in order to find the states which
do not depend on the starting configuration.

3.2 Acquiring a Primitive Model

Suppose that Pr is a probability to find a perceptual state Sc
r in a sequence

Sc
[i], i = 1 . . .N , such that

Pr =
K∑

i=1

(Sc
r = Sc

i )/N. (8)
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The visual states having high values of Pr are treated as the significant ones and
added to the model keystate list {S0

t }:
Pr > δ : S0

t = Sc
r, Sc

r ∈ {Sc
i} (9)

where δ is the threshold of ”significance”.
The response of policy Qg is defined by the sample Qg(Sc

a) if there exists an
index a which satisfies the following:{

D(S0
a, Sg) < D(Sc, Sg)

mina=1...T {D(Sc, S0
a)} . (10)

If such an index is not found then the response is the action corresponding to
the goal state:

Qg(Sc) =
{

Qg(S0
a), ∃a

Qg(Sg), ��∃a
. (11)

Obviously, the state probabilities for the first run give the same value for any
visual state in the sample sequence. All of them are taken as the keystates
defining the initial model of perception-action transformation. This can already
be considered an improvement since implementation of Qg converges on the
goal. During the following series of runs with different starting configurations
the policy will be refined by updating the model keystate list.

3.3 Improving the Model

Let’s suppose that after the first trial the primitive model Qg
0 has been sampled1.

We also have the current perceptual state Sc
0 which is the starting point of the

next experiment. Since the system already has a model, even if it is a primitive
one, the first movement is not taken randomly – it is the corresponding value of
Qg

0(S
c
0) :

Qg
1(S

c
0) = Qg

0(S
c
0). (12)

The rest of the procedure which takes the sample Qg
1(S

c
i) is the same as for

the first experiment (see eq. 10,11) except that the previously obtained model is
used instead of random trials:

Qg
1(S

c
i+1) =

{
Qg

0(S
c
i ), Di ≥ Di−1

Qg
1(S

c
i ), Di < Di−1

. (13)

The model update is done by recalculating the state probabilities for the current
sample within distribution Pr:

Pr =
Pr,0 + Pr,1

2
(14)

where Pr,0 and Pr,1 are the state probability distributions for the first and second
experiments respectively.
1 New indexing for policy Qg is introduced her to denote the current run.



1042 J. Kittler, M. Shevchenko, and D. Windridge

Without losing generality we can write the algorithm of model update for the
nth run:

Qg
n(Sc

0) = Qg
n−1(S

c
0) (15)

Qg
n(Sc

i+1) =

{
Qg

n−1(S
c
i ), Di ≥ Di−1

Qg
n(Sc

i ), Di < Di−1

(16)

Pr =
Pr,n−1 + Pr,n

2
. (17)

4 Learning Scenarios and Experiments

4.1 The Perception-Action Level

We carried out our experiments on software simulating the physical ”world” as
well as the system itself. The world is a 2D square box which has boundaries
that restrict movements of the manipulator. The system motor domain has four
DOFs defining position of the arm: the length R, the angle φ, the gripper angle
θ, the gripper state γ. The visual system performs attractor detection, visual
attractor description, organizing the visual memory and recognition. The mech-
anism of discovering attractors is based on motion detection and tracking. It
eliminates static, unknown ”background” objects from the processing. For in-
stance, during the random exploration mode this mechanism takes into account
only the manipulator if it is the only object moving on the scene. It also can be
other objects moved by the robot arm or a user. The visual scene is represented
by a graph, each vertex of which is an attractor feature vector with the following
components: the attractor id, the positions in Cartesian coordinates x and y, the
attractor orientation α and the changes of the position and orientation after the
last action dx, dy, dα (figure 2):

Sc = {f j} = {(id, x, y, α, dx, dy, dα)j}. (18)

The visual distance between two scenes is a normalized sum of distances among
the attractors

D(Sc
l , S

c
n) =

L,N∑
i,k=1

d(i, k)/(L · N) (19)

where L, N are the numbers of the attractors for the scenes Sc
l and Sc

n respec-
tively.

The attractor distance is calculated as a weighted sum of the distances be-
tween corresponding components of the feature vectors:

d(i, k) = δid + δC + δA (20)

δid =

{
0 idi = idk

1 idi �= idk

(21)



Visual Bootstrapping for Unsupervised Symbol Grounding 1043

Fig. 2. Motor and visual parameters

δC =

√
(xi − xk)2 + (yi − yk)2 + (dxi − dxk)2 + (dyi − dyk)2√

2X2 + 2Y 2
(22)

δA =

√
(αi − αk)2 + (dαi − dαk)2

2
√

2π
(23)

where
f i = (idi, xi, yi, αi, dxi, dyi, dαi) (24)

fk = (idk, xk, yk, αk, dxk, dyk, dαk), (25)

and where X, Y are the horizontal and vertical sizes of the workspace.
The elementary goal is calculated within a short-term visual memory. It stores

the scene descriptors for up to 30 frames; each frame is taken after a movement
has been detected on the scene. The detected goals are converted into the invari-
ant representation, stored in a permanent memory and linked with the activity
models Qg obtained after the consequent learning.

4.2 Obtaining Local Motor Control

Suppose that the system starts movement in the random mode. Only the manip-
ulator is detected as a visual object on the scene. The random generator produces
small changes of the motor parameters and we consider the resulting movements
as local ones. The precision of measuring the corresponding local changes on the
visual scene is low; therefore we are allowed to quantize visual movements. Let
us define four directions within a local surrounding of the manipulator position
(see figure 3). Any local movement is perceived as one of the four quantum steps
of the closest direction and the unity length. It is obvious that after a series of
small random movements all the quantum steps will be detected as the signifi-
cant events (since the corresponding values of dx or dy are constant) and each
of those movements becomes the goal. Let us consider the quantum movement
qr, r = 1, . . . , 4 as a current parameter goal. According to the method of finding
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Fig. 3. Visual quantization of local movements

the motor solution for the invariant goal fg derived from qr the system obtains a
set of perception-action couples {f j , δmi}k and the transformation Qg defining
the motor response for the given visual input (see eq. 15-16). The example of
learning motor control of moving the manipulator right (the quantum step 1) is
shown in figure 4. The samples are from various starting configurations and the
trajectories demonstrate how well the model describes arm control on each stage,
namely, at the beginning, after 10 movements to the right boundary, after 20
movements to the right boundary. On the global scale even the best trajectories
do not strictly follow the horizontal line sometimes because Qg does not return
an appropriate response. The system switches to the random exploration mode
to find the needed motor changes and update the current model. But most of
the time local movements belong to the chosen quantum and the trajectories are
explained by the errors of the local visual measurements.

Using the simulator the same method has been applied to learn control of
local gripper rotation and grasping movements.

Fig. 4. Local horizontal movements
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4.3 Learning Global Motor Control

Let us add an object to the scene. Visually the system detects another attractor
and the spatial relation between the arm and the object is:

Sc = {f1, f2, f1,2} (26)

f1,2 = d(1, 2). (27)

If the system frequently finds that its manipulator is on the same position as the
object then a new parameter goal is detected. The corresponding behavioural
task is the intention to attain the object position by the manipulator. On this
level of representation, instead of the parameters directly controlling different
motors in the motor domain, the system operates within the set of previously
acquired competences - the local movement models: {δmk} ≡ Qg

k. Applying the
learning mechanism (eq. 15-17) the system obtains the model of approaching
the object from any starting position. The example of the system performance
in the random mode, after 10 and 20 training series, is demonstrated in figure 5.
Other visual goals detected on this level, and the corresponding learned models
of the system response, are grasping the object and moving the object.

Fig. 5. Approaching an object from different starting positions

5 Conclusions

We have presented a method of detecting perceptual categories in un unsu-
pervised manner by visual bootstrapping. The learned categories have features
that are invariant to the scene context, letting us consider them as symbolic
tokens. The principles of autonomous goal acquisition, random trials and iter-
ative repeating of successful actions control the process of detecting symbols.
Using previously obtained models instead of the highly complex low-level per-
ceptual information makes categorization reliable. What the categories detected
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by the system is defined by the significant events in the visual environment,
not pre-hardwired by the user. The experimental section demonstrates how such
a system can be bootstrapped up to the level of manipulator control. Further
research will be carried out in the direction of learning ways of arranging ob-
jects according to particular rules. One possible scenario is a shape-sorter game,
where the task is to insert various blocks into holes of corresponding shapes.
The system operating in such an environment detects visual goals and builds up
the new levels of symbolic hierarchy implementing the game rules. This demon-
stration will prove the system’s ability not only to create primitive competences
such as arm or object movement control but also to understand complex world
events and generate high-level behaviour.
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Abstract. An image-based 3D model acquisition system using projec-
tions of level curves is presented. The basic idea is similar to surface
from parallel planar contours, such as 3D reconstruction from CT or
laser range scanning techniques. However, our approach is implemented
on a low-cost passive camera system. The object is placed in a water
container and the level curves of the object’s surface are generated by
raising the water level. The 3D surface is recovered by multiple 2D pro-
jections of parallel level curves and the camera parameters. Experimental
results are presented for both computer simulated data and real image
sequences.

1 Introduction

3D model acquisition of real world objects is an active research topic in the ar-
eas of computer vision, CAD/CAM, and pattern recognition. The applications
of 3D computer models range from reverse engineering and industrial inspection
to computer graphics and virtual reality. With a widely adopted passive camera
system, commonly used 3D shape recovery techniques include stereo vision or
structure from motion, shape from shading, shape from silhouettes, and photo-
metric stereo, etc [1,2]. These approaches usually require either multiple images
captured from different viewpoints or controlled illumination conditions for im-
age acquisition. There are also some other techniques such as depth recovery
from zooming/focus/defocus, which extract the depth information by compar-
ing several images recorded by a single camera with different camera parameter
settings [3,4]. A motorized zoom lens is required to change the zoom or focus
positions for these methods, and elaborate camera calibration generally has to
be carried out first.

In addition to the conventional image-based methods, 3D model reconstruc-
tion of real objects can also be achieved by means of active sensors. Laser range
scanning, structured lighting, computed tomography (CT scan), and magnetic
resonance imaging (MRI) are several popular approaches. These techniques usu-
ally process the object’s surface one cross-section at a time to obtain the corre-
sponding 3D curve, and then merge the layered information into a complete 3D
surface. Generally speaking, 3D model acquisition using active sensors provides
more accurate results than those derived from passive camera systems. However,
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the expensive equipment, elaborate system calibration and setup have restricted
their applications mostly in the laboratory environments.

Inspired by the shape recovery techniques based on multiple planar scans of
the object, in this work we propose a 3D model acquisition system using the
level curves associated with the object’s cross-sections. The idea is to use a
passive camera system to capture multiple 2D projections of parallel planar 3D
curves, and recover the corresponding level curves of the object surface. The
3D surface of the object can then be obtained by combining the multiple 3D
curves or contours. Our current research is focused on developing an image-based
3D model acquisition system since the cameras are ubiquitous and relatively
inexpensive. In addition to the cost and performance issues, another important
design principle is how to make the system easy to implement and use. More
specifically, the calibration of the vision system should be carried out with least
human interference.

In our prototype 3D model acquisition system, the test object is placed in
a water container mounted on a computer controlled turntable. The image se-
quences are captured by a static camera located in front of the rotation stage.
Different from most active 3D reconstruction techniques using the projection
of known patterns on the object’s surface, the level curves acquired in our sys-
tem are generated by increasing the water level in the container. For a given
viewpoint, the visible surface of the object is recovered using projections of the
parallel level curves and the camera parameters of the vision system. Further-
more, the complete 3D model (full 360◦ view) can be reconstructed by data
registration and integration of multi-view 3D shape acquisition from different
viewpoints.

Although 3D model reconstruction from parallel slices of contours is a well
developed technique [5,6], it usually requires expensive data acquisition equip-
ment (such as CT or MRI systems). The data collection process also has to be
performed under specific environments. As for the structured lighting or laser
range scanning systems, the reflectance property of the visible surface is one
important issue to be solved, especially the active lighting or projection near the
edges or abrupt depth changes of the object surface. The proposed 3D model
acquisition method uses low-cost hardware setup, and it is relatively insensitive
to the environmental illumination change. Experimental results are presented
for both computer simulated data and real image sequences.

2 Shape from Parallel Planar 3D Curves

3D surface recovery of the proposed method is based on the integration of a set
of 3D curves, with each of them lies on one of a series of parallel planes. As
shown in Fig. 1, suppose a cross-section of an object is given by the intersection
with a plane

n�x = d (1)
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n�x = d

Fig. 1. Parallel planar 3D curves and the camera model

where n is the plane normal. Let the normal vector n be represented by (a, b, c),
then the relationship between a point (x, y, z) on the 3D curve from the cross-
section and its image point (x̂, ŷ) is given by the perspective projection

x = λx̂, y = λŷ, z = λf (2)

with the scale factor
λ =

d

ax̂ + bŷ + cf
(3)

where f is the focal length of the camera. Thus, it is clear that the coplanar 3D
curve can be recovered from its projection on the image plane for a given set of
parameters (a, b, c, d) by Eqs. (2) and (3).

Based on the above derivation, the viewable surface of an object from a single
viewpoint can be reconstructed by stacking the 3D curves of the cross-sections
obtained from the intersections with parallel planes. If the recovered 3D curves
are simple, i.e. there are no self-intersections and self-occlusions, each level curve
on cross-section i can be represented by a parameterized curve ci(t), where
t ∈ [0, 1]. For a given set of parallel planar 3D curves, the surface mesh can then
be generated by connecting the vertices (i.e. the recovered 3D points from the
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image pixels) on the parameterized curves of two consecutive cross-sections ci(t)
and ci+1(t). More sophisticated surfaces from contours approaches [7,8] can be
adopted for more general cases. However, it should be noted that there are some
fundamental limitations on range data acquisition from single viewpoint, which
makes the simple curve assumption readily available for the imaging system.

It is not possible to calculate the parameters a, b, c, d of the plane equation (1)
from the corresponding image without any metric information. Thus, a camera
pose estimation method based on the projection of a rectangle (with known size)
on the plane is adopted [9]. In the implementation, this rectangular shape can
be easily obtained from the planar surface patch bounded by the cubic water
container. The detailed derivation is given as follows.

It is shown that the relative depths of four 3D points can be determined by
their 2D projections if they form a parallelogram in the 3D space [10]. Thus,
given the image points of the rectangular surface patch, the corresponding 3D
points can be computed up to a unknown scale factor. Now, suppose the four
corner points in the 3D space are Pi = (xi, yi, zi), and the corresponding image
points are pi = (x̂i, ŷi, f), where i = 0, 1, 2, 3, and f is the focal length of the
camera. Then we have (xi, yi, zi) = (λixi, λiyi, λif), where λi’s are the unknown
scale factors. Since the relative depths of the corner points can be written as
μi = λi/λ0, for i = 1, 2, 3, we have⎛⎝μ1

μ2

μ3

⎞⎠ =

⎛⎝x1 −x2 x3

y1 −y2 y3

1 −1 1

⎞⎠−1⎛⎝x0

y0

1

⎞⎠ (4)

If the dimension of the rectangular surface patch is known, say, the width is W ,
then W 2 = |P0 − P1|2. Consequently, we have

λ0 =
W√

(x0 − μ1x1)2 + (y0 − μ1y1)2 + f2(1 − μ1)2
(5)

That is, λ0 can be calculated using μ1 given by Eq. (4), and then λi’s can
be obtained by the relative depths, μi = λi/λ0, for i = 1, 2, 3. Finally, the
parameters a, b, c, d used in Eq. (3) can be determined by the image of the
corner points associated with a given water level and the dimension of the cubic
container.

3 Simulation with Synthetic Data Sets

To verify the correctness of the proposed 3D model reconstruction method from
parallel planar contours, computer simulation with synthetic data set is carried
out first. Several computer generated 3D models are used as test objects, and
the coplanar level curves are given by the intersections of a 3D computer model
and a sequence of predefined parallel planes. A virtual camera is used to capture
the projections of the visible level curves of the 3D model surface associated with
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the given viewpoint. The computer generated 3D model is then rotated with
respect to an axis inside the object for every 45◦ to capture the images of level
curves from different viewing directions. In the simulation the parallel planes are
created with equally spaced distance, however, it is not a general requirement
for the proposed method.

The simulation results of two computer generated objects, a vase and a cube,
are illustrated in Fig. 2. The Visualization Toolkit (VTK) is used for both image
acquisition of the ideal 3D models and rendering of the reconstructed 3D models
[11]. Figs. 2(a) and 2(b) show the images of visible surface with level curves
captured by the virtual camera. In the simulation the optical axis of the camera
is parallel to the cross-sections of the object. Thus, the camera is placed much
higher than the object to ensure perspective of the level curves. The originally
captured images are shown in the left figures, and the right figures show the
close-up with more detailed information. There are 20 and 30 slices of level
curves generated for the vase and cube object, respectively. Only a few of them
are shown in the figures. The 3D curves are recovered sequentially from the top,
using their corresponding edge segments detected in the image. Fig. 2(c) shows
the reconstruction results from different viewpoints. 20 and 30 slices of cross-
sections are demonstrated for these two cases, and better 3D recovery can be
achieved by increasing the number of level curves.

4 Vision System Design and Implementation

For the 3D model acquisition of real objects, the schematic diagram of the pro-
posed prototype system is illustrated in Fig. 3(a). The cubic container used
to place the object is specifically designed so that the water level can increase
smoothly from the equally spaced holes on the bottom. As depicted in Fig. 3(b),
the second and first layers are used to create a buffer zone for smooth water input
and output transition. The container is placed on a PC controlled turntable for
multi-view 3D shape recovery with a single camera. For a given viewpoint, the
problem of determining the plane equation of the water level for 3D reconstruc-
tion is equivalent to the problem of camera pose estimation. A self-calibration
method using the water level curves is described in Section 2. The focal length
is given by the camera setting. As for the complete 3D model acquisition, it is
also mandatory to find the rotation axis of the turntable for multi-view 3D data
registration and integration. To avoid additional calibration for the rotation axis,
the unit vector and location of the turntable in the camera coordinate system
are obtained as follows.

It is well-known that the perspective projection of a circle in the 3D space
is an ellipse in the image. This projective mapping is a homography and can
be used to determine the relative orientation between the image plane and the
plane consisting of the circle. In the implementation, Canny edge detection is
first applied on the image with only the turntable [12], followed by a least square
fitting algorithm to detect the elliptical shape in the resulting edge image [13].
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(a) Visible surface with level curves of the vase object captured by a virtual camera.
Only five images out of 20 captures for a single view are shown in the figure.

(b) Visible surface with level curves of the cube object captured by a virtual camera.
Only five images out of 30 captures for a single view are shown in the figure.

(c) Reconstructed 3D point clouds of the computer generated objects.

Fig. 2. Simulation results with synthesis data sets
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Fig. 3. 3D acquisition system and experimental setup
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The rotation matrix between the camera and the turntable is then estimated by
an SVD-based pose ellipse algorithm [14]. Since the unit vector of the rotation
axis is in the 3D space, its location can be represented by the turntable center.
Consequently, the scale factor associated with the perspective projection of the
circle is derived from the physical size of the turntable. It is then used to recover
the 3D coordinates of the turntable center.

In the experiments, the parallel planes for obtaining the cross-sections of the
object are acquired by increasing the water level in the container. The coplanar
3D curves are generated and recorded by a static camera. To obtain the cor-
responding 2D curve of an object’s cross-section, a quadrilateral image region
within the water surface (which is bounded by the cubic container) is extracted
and used for edge detection. Since the object might contain some edge features
other than its boundaries, cross-section (or level curve) detection is carried out
by transforming the quadrilateral region to the HSI color space for region seg-
mentation and boundary extraction. The cross-section curve is then identified by
scanning the resulting edge image horizontally from left to right, and searching
for the “smooth” edge segment with a predefined orientation change range for
two neighboring pixels in the curve (typically from −45◦ to 45◦).

As shown in Section 2, for a given water level the corresponding plane equation
can be derived from the image points of the water surface, i.e. the corner points
of the surface patch bounded by the cubic container. First, edge detection and
Hough transform are applied to identify the line features in the image. The
vertical lines which represent the edges of the container are removed from the
image. The intersections of the remaining straight lines are then selected as
candidate corner points for the plane equation and further checked with the
water region segmentation. Only the four points near the boundary of the water
surface region are selected for plane parameters computation. Fig. 4 shows the
results of several recorded images with coplanar corner point detection and the
extracted 2D curves.

5 Experimental Results

We have tested the proposed shape from parallel planar 3D curves algorithm
on several real objects. To mitigate the object’s reflection on the water surface,
white colored liquid is used. In general, different colors can be selected according
to the object’s appearance. For single viewpoint acquisition, the water level is
raised continuously during the image captures. But for the multi-view 3D model
reconstruction, the water level remains static during the rotation of the turntable
(every 90◦ with four image captures). To make sure the 2D curves distinguish-
able between the images, only the images with water level difference greater than
10 pixels are used. In the experimental setup, it corresponds to about 5 mm
in the real scene. The experimental result of an object “chicken” is shown in
Fig. 5.
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Fig. 4. Coplanar corner points and 2D curves

In addition to the correctness of the camera parameters, the accuracy of the
proposed method also depends on the resolution of the images and imprecise
level curve formation due to water viscosity. A rudimentary error analysis is
carried out using a cylindrical object with known dimension. Figures 6(a) and
6(b) show the results when the camera’s viewpoint is perpendicular and with a
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Fig. 5. Experimental Result

tilt angle to the turntable axis, respectively. The left figures show the real surface
points (in black) and the recovered 3D curves (in blue). The average errors in
each slice (in mm) for both cases are illustrated in the right figures. It can be
seen that the error roughly increases with the water level. The reason could be
the inaccurate depth computation due to the foreshortening of the surface patch,
especially for the second case.

6 Conclusion

In this paper we present a 3D model acquisition system based on projections
of the object’s level curves, and demonstrate the results from a prototype im-
plementation. The proposed method is similar to 3D reconstruction from CT or
laser range scanning, but our approach can be implemented on a low-cost pas-
sive camera system. The system parameters can be obtained by self-calibration
without elaborate experimental setup. Since the 3D coordinates are computed
directly from the corresponding image points, dense depth map can only be
achieved by high resolution 2D curves. Currently the average error is less than
3 mm in the working range of about 1 meter from the camera. In the future
work, partial 3D shapes acquired from multiple viewpoints will be integrated to
create a complete 3D model.
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(a) The camera’s viewpoint perpendicular to the turntable axis.
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(b) The camera’s viewpoint is adjusted with a tilt angle.

Fig. 6. Error analysis
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Scale Invariant Robust Registration of 3D-Point
Data and a Triangle Mesh by Global

Optimization
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Abstract. A robust registration of 3D-point data and a triangle mesh
of the corresponding 3D-structure is presented, where the acquired 3D-
point data may be noisy, may include outliers and may have wrong scale.
Furthermore, in this approach it is not required to have a good initial
match so the 3D-point cloud and the according triangle mesh may be
loosely positioned in space. An additional advantage is that no corre-
spondences have to exist between the 3D-points and the triangle mesh.
The problem is solved utilizing a robust cost function in combination
with an evolutionary global optimizer as shown in synthetic and real
data experiments.

Keywords: scale invariant, robust registration, evolutionary optimiza-
tion, 3D-transformation.

1 Introduction

Registration is applied in object recognition, 3D-geometry processing and acqui-
sition. Often two observations of a 3D-scene are provided, where one is called
the model and the other is called the data. Each of them is defined in its own
coordinate system. The process of registration is to find a transformation which
best fits the data to its corresponding model. The generation of 3D-point cloud
data in the process of monocular camera parameter estimation cannot guaran-
tee a correct scale with respect to a 3D-model, unless the scale is previously
determined and applied.

In this paper robust registration of a 3D-point cloud with respect to a pro-
vided 3D-model, e.g. a polygon set is addressed. The most common methods for
this purpose are based on the Iterated Closest Point (ICP) algorithm [1, 2, 3, 4].
Scale invariant versions of ICP-based methods were realized by [5]. However,
the convergence of ICP-based methods to the global optimum requires the data
set to be sufficiently prealigned with respect to the corresponding 3D-model.
To overcome this problem, another approach was proposed [6] utilizing global
optimization in the pose space to find the transformation which best aligns the
provided range images. But this approach does not enable the estimation of the
scale factor.

The approach proposed in this paper enables automatic registration where
no correspondences between the 3D-point cloud and the 3D-model are required.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1059–1070, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Similar to the approach in [6], the 3D-point cloud may include outliers and may
be freely initially positioned relative to the corresponding 3D-model. However,
in contrast to [6], the 3D-point cloud may also have a wrong scale. A modified
version of the robust cost function [7] is utilized in combination with an efficient
global optimization method called Differential Evolution (DE) [8] in order to
estimate the correct transformation of the 3D-point cloud.

The paper is organized as follows. In section 2, the modified robust cost func-
tion is presented. In section 3, the utilized evolutionay global optimization is
described. In the following section 4 experimental results are presented and in
the last section 5 the paper is concluded.

2 Robust Cost Function

The proposed cost function is based on the distances of the 3D-points to the
triangle mesh. In order to determine the distance of a 3D-point to the triangle
mesh it is required to find the closest triangle first. This is accomplished by
calculating the distances to all planes defined by each triangle, respectively.
Figure 1 shows a case where the 3D-point P has a distance d0 to the selected

P

d0

S0

Fig. 1. Distance d0 to plane defined by the triangle

triangle. In this case it is sufficient to calculate the distance to the plane. Only
if the intersection point S0 in the plane is within the triangle the calculated
distance is valid. This is checked by the calculation of the so called Barycentric
coordinates. Figure 2 shows a triangle and a Point S0, where its corresponding
Barycentric coordinates are (α1, α2, α3) and Wi are the vectors pointing to the
vertices of the triangle

S0 = α1W1 + α2W2 + α3W3. (1)



Scale Invariant Robust Registration of 3D-Point Data and a Triangle Mesh 1061

W2

W3

W1

S(α1, α2, α3)

Fig. 2. Barycentric coordinates used to test whether a point S0 is within the triangle

The point S0 is within the triangle if and only if

α1, α2, α3 ∈ [0, 1] ∧ α1 + α2 + α3 = 1. (2)

In contrast, figure 3 shows a case where the intersection point S0 is not within
the triangle. Therefore, in this case all 3 distances d1, d2, d3 to the lines defined

P

d0

S0

Fig. 3. Case where the intersection Point S0 is not within the triangle

by the edges of the triangle have to be determined additionally, as shown in
figure 4.

But even the determination of these distances proves to be insufficient, since
the closest point on a line is not necessarily within the triangle, so three ad-
ditional distances d4, d5, d6 to the vertices have to be calculated, as shown in
figure 5. Finally, the smallest distance d having the corresponding intersection
point Si out of all calculated distances di, i ∈ [0, 6] is chosen.

The distances depend on the orientation and the position of the 3D-point
cloud. The task is to estimate the transformation consisting of the orientation,
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P
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S3
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d1
d2

Fig. 4. Distances d1, d2, d3 to lines defined by the edges of the triangle

d4

d5

P

d6

S6

S5

S4

Fig. 5. Distances d4, d5, d6 to vertices of the triangle

the translation and the overall scale factor of the 3D-point cloud which leads to
a best match with the triangle mesh. The rotation matrix R is parameterized
by the angles φ, θ, ρ ∈ [0, π]

R(φ, θ, ρ). (3)

The translation vector t is denoted

t = (δx, δy, δz). (4)

The overall scale factor is denoted s. The parameter vector x is defined by

x = (φ, θ, ρ, δx, δy, δz, s)� (5)

and contains all 7 parameters to be estimated. A 3D-point P is then transformed
to P ′ by the transformation T

P ′ = T (x)P = s (R(φ, θ, ρ)P + t). (6)
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Therefore, each distance dj of the point Pj depends on the parameter vector
and is determined by

dj = dj(x) = |T (x)Pj − S| . (7)

Since the 3D-point cloud consisting of N points may include outlier points,
a robust cost function Γ (x) is utilized, which is a modified version of the cost
function defined in [7]. Assuming a Gaussian error with zero mean and a variance
of σ for the position of the point P , the utilized cost function is defined by

Γ (x) =
N∑

j=1

− exp
(
−dj(x)2

2κs3

)
, (8)

where the parameter κ depends mainly on σ. As a rule of thumb, good estimates
are obtained for

κ ≈ 10σ2. (9)

This cost function has to be minimized in order to find the best solution vector x.
Generally, this robust cost function results in local minima in the search space

where the global minimum has to be found. The number of local minima increases
with the number of outliers. The scale as an additional degree of freedom leads
to even more complicated search spaces. Furthermore, the initial orientation and
the position of the 3D-point cloud may differ considerably with respect to the
triangle mesh, so it is appropriate to use a global optimization method, which
is described in the next section.

The modification of the robust const function is realized by the multiplicative
term s3 in the denominator of (8) which enforces an additional weighting of the
distance depending on the scale. The reason for this modification is that there is
always an attraction towards smaller scale factors since, in the average, this leads
to smaller distances. This property is (over) compensated by the introduction of
this term in order to enhance the global search in greater scale factor regions.

3 Differential Evolution Optimization

The utilized evolutionary optimizer is the so called Differential Evolution (DE)
method [8, 9, 10]. It is known as an efficient global optimization method for
continuous problem spaces with many applications. The optimization is based
on a population of n = 1, ..., M solution candidates xn,i at iteration i where each
candidate has a position in the 7-dimensional search space. Initially, the solution
candidates are randomly generated whithin the provided intervals of the search
space. The population improves by generating new positions iteratively for each
candidate. New positions for the iteration step i + 1 are determined by

yn,i+1 = xk,i + F · (xl,i − xm,i) (10)
xn,i+1 = C (xn,i, yn,i+1) , (11)
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where k, l, m are random integers from interval [1, M ], F is a weighting scalar,
yn,i+1 a displaced xk,i by a weighted difference vector and C() is a crossover
operator copying coordinates from both xn,i and yn,i+1 in order to create xn,i+1.
The crossover operator C is provided with a value specifying the probability to
copy coordinates either from xn,i or yn,i+1 to xn,i+1. Only if the new candidate
xn,i+1 proves to have a lower cost it replaces xn,i, otherwise it is discarded.

DE includes an adaptive range scaling for the generation of solution candidates
through the difference term in (10). This enables global search in the case where
the solution candidate vectors are spread in the search space and the mean
difference vector is relatively large. In the case of a converging population the
mean difference vector becomes relatively small and this enables efficient fine
tuning at the end phase of the optimization process.

4 Experimental Results

In order to test the proposed approach both synthetic and real data based ex-
periments are performed.

4.1 Synthetic Data

As shown in fig. 6, 4 boxes represented by their wireframes are placed in 3D-
space. The corresponding 3D-point cloud consists of the corner points of the
boxes with no position error. Additionally, the 3D-point cloud includes 4 outlier
points indicated by surrounding squares. For all points Pj , it is

Pj ∈ [−6, 12]u× [0, 21]u× [0, 41]u, (12)

where u is any arbitrary length unit. By transforming and rescaling the coordi-
nates of the 3D-point cloud a second 3D-point cloud is generated and the robust
registration is performed utilizing the second point cloud. The 3D-point cloud is
translated by (0 5 5)�u and rotated by φ = 0.4 within the x-y-plane. 3 different
global scales s = 0.5, 1, 2 are applied. The search interval for the translation
coordinates is set to [−20, 20], whereas the search interval or the scale factor is
set to [0.5, 2]. The population size of the DE-algorithm is set to 60.

Fig. 7 shows the boxes and the corresponding transformed 3D-point cloud
with a scale factor of s = 0.5.

Fig. 8 and 9 show the same configuration with a scale factor of s = 1 and
s = 2, respectively.

In all experiments with synthetic data our algorithm found the global mini-
mum of the cost function, so that the correct transformation and scale parame-
ters could be recovered, as shown in fig. 6.

4.2 Real Data

In order to test the proposed approach in real data based scenarios, two real
world 3D-objects are modelled by hand and with a 3D scanner to create the
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Fig. 6. Result of the robust registration

Fig. 7. Initial configuration of 3d-point cloud and corresponding triangle mesh at s =
0.5

corresponding triangle meshes. Fig.10 shows the 3D-objects named ’block’ and
’dino’, respectively. In the following experiments, the search interval for the co-
ordinates of the translation vector is set to [−300, 300]. The search interval for
the scale factor is set to [0.5, 2]. The corresponding 3D-point cloud is generated
by structure-from-motion utilizing a monocular camera. In both cases, the av-
erage error variance of the 3D-points of the resulting 3D-clouds is σ2 ≈ 2.25u2,
assuming a Gaussian probability density for the position error. Figure 11 shows
the initial configuration of the test object ’block’.
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Fig. 8. Initial configuration of 3d-point cloud and corresponding triangle mesh at s = 1

Fig. 9. Initial configuration of 3d-point cloud and corresponding triangle mesh at s = 2

The corresponding 3D-point cloud consists of N = 1103 points Pj where

Pj ∈ [−125, 120]u× [−132, 105]u× [−25, 80]u. (13)

The corresponding triangle mesh is composed of 56 triangles. Figure 12 shows
the result of the robust registration, achieved after 500 iterations at a population
size of 60. The estimated required scale factor is s = 0.514, the number of outliers
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Fig. 10. 3D-objects used for real data experiments

is 214 at an inlier threshold of σi = 3u. The std. deviation of the inlier-error is
σe = 1.219u.

In the second real data test for the proposed approach, the initial configuration
of the 3D-point cloud with respect to the corresponding triangle mesh is shown
in figure 13. The point cloud consists of N = 904 points Pj where

Pj ∈ [−125, 120]u× [−132, 105]u× [−25, 80]u. (14)

The corresponding triangle mesh is composed of 2000 triangles. The result of
the robust registration is shown in figure 14, achieved after 900 iterations at

Fig. 11. ’block’: Initial configuration of 3D-point cloud and the corresponding triangle
mesh
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Fig. 12. ’block’: Result of the registration of the 3D-point cloud

Fig. 13. ’dino’: Initial configuration of 3D-point cloud and the corresponding triangle
mesh

a population size of 90. The estimated required scale factor is s = 1.874, the
number of outliers is 52 at an inlier threshold of σi = 3u. The std. deviation of
the inlier-error is σe = 0.687u.
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Fig. 14. ’dino’: Result of the registration of the 3D-point cloud

5 Conclusions

The proposed approach enables the robust registration of two observations of a
3D-object, where one is represented as a triangle mesh and the other is a 3D-point
cloud, in different coordinate systems at different scales. With this approach the
automatic and accurate estimation of the transformation parameters from one
system to the other is made possible, even in cases of high outlier amounts and
lack of prealignment of the two coordinate systems. The additional scale parame-
ter proved to further complicate the estimation, so the utilized cost function had
to be adapted accordingly. This approach is applicable in cases where the reg-
istration has to be done automatically without manual prealignment and where
the scale factors of the two coordinate systems may be different.
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Abstract. This paper presents a problem of 3D images decomposition into 
spheres. The presented method is based on a fast Hough transform with an input 
image space division. An essential element of this method is the use of a clus-
tering technique for partial data sets. The method simplifies the application of 
Hough transform to segmentation tasks as well as accelerates calculations con-
siderably. 

1   Introduction to the Hough Transform 

The Hough transform was patented in 1962 as a method for detecting complex pat-
terns of points in binary images [3]. In 1981 Deans noticed [2] that the Hough trans-
form for straight lines was a specific case of the more general Radon transform [8] 
known since 1917, which is defined as (for function )y,x(Ι  in two-dimensional 
Euclidean space): 

dxdy))sin(y)cos(x()y,x(),(H α−α−ρδΙ=αρ
∞

∞−

∞

∞−

 (1) 

where δ  is the delta function. This formula shows that the function )y,x(Ι  is inte-

grated along the straight line determined by the parametric equation 
)sin(y)cos(x α+α=ρ . The Radon transform is equivalent to the Hough transform 

when considering binary images (i.e. when the function )y,x(Ι  takes values 0  or 1 ). 

The Radon transform for shapes other than straight lines can be obtained by replacing 
the delta function argument by a function, which forces integration of the image along 
contours appropriate to the shape. 

Using the Radon transform to calculate the Hough transform is simple (almost in-
tuitive) and is often applied in computer implementations. We call this operation pixel 
counting in the binary image.  

An (alternative) interpretation of the Hough transform is the so-called backprojec-
tion method. The detection of analytical curves defined in a parametrical way, other 
than straight lines is quite obvious. Points )y,x(  of image lying on the curved line 
determined by n  parameters n1 a,...,a  may be presented in the form: 
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}0))y,x(),â,...,â((g:R)y,x{( n1
2

O =∈=λ  (2) 

where 0))y,x(),â,...,â((g n1 =  describes the given curve.  

By exchanging the meaning of parameters and variables in the above equation we 
obtain the backprojection relation (mapping image points into parameter space), 
which may be written down in the following way: 

}0))a,...,a(),ŷ,x̂((g:R)a,...,a{( n1
n

n1T =∈=λ  (3) 

 
Based on (3) the Hough transform )a,...,a(H n1  for image )y,x(I  is defined as  

follows: 

�
I)y,x(

n1iin1
ii

)a,...,a,ŷ,x̂(h)a,...,a(H =  (4) 

where 

=
=

.otherwise0

0))a,...,a(),ŷ,x̂((gif1
)a,...,a,ŷ,x̂(h n1ii

n1ii  (5) 

In order to calculate the Hough transform digitally an appropriate representation of 
the parameter space )a,...,a(H n1  is required. In a standard implementation, any di-

mension in the parameter space is subject to quantisation and narrowing to an appro-
priate range. As a result, an array is obtained where any element is identified by the 
parameters )a,...,a( n1 . An element in the array is increased by 1  when the analytical 

curve, determined by co-ordinates )a,...,a( n1 , passes through point )ŷ,x̂(  of the ob-

ject in image I . This process is called accumulation and the array used is called an 
accumulator (usually marked with symbol A ). 

Thus, we may assume that the Hough transform is based on a representation of the 
image I  into the accumulator array A , which is defined as follows: 

 NP:A → ,   where p21 PPPP ×⋅⋅⋅××= .  (6) 

The symbol NPi ⊂  determines the range of i -parameters of a p -dimensional 

space P . Determining array A  is conducted through the calculation of partial values 
for points of an object in image I  and adding them to the previous ones (see 4) which 
constitutes the process of accumulation. Initially, all elements of array A  are zeros.  

This paper presents an application of the Hough transform to the tasks of 
identifying spheres in 3D images. Although spheres are described by four parame-
ters only one-dimensional accumulator array will be used in the presented method. 
An important element of this method is the use of a clustering technique for partial 
results. The method simplifies the application of Hough transform to segmentation 
tasks as well as accelerates calculations considerably. 

Lots of works [1], [7] have been done in the area of fast Hough transform since [6]. 
The main difference is that in the presented method the space of an input image is 
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divided into fragments what is called “image space division”. The same approach 
was used by the author in the case of straight lines [10] and circles [13]. 

2   The Fast Hough Transform – General Approach [6] 

The main assumption of so-called fast Hough transform is that the input image space 
features “vote” for sets of points, lying on hyper planes in the parameter space. This 
recursively divides the parameter space into hyper cubes from low to high resolution 
and performs the Hough transform only on the hyper cubes with votes exceeding a 
selected threshold. In the case of two and three dimensional parameter space these 
hyper cubes are respectively square sectors or cubic sectors of the parameter space.  

In the case of the “standard” Hough transform a parameter space is treated as the 
“array of accumulators” and points of concentration are found by identifying those 
accumulators receiving the largest number of votes. In that formulation, both the 
computational complexity of the voting process and the memory for the votes grow 
exponentially with the quantisation and the dimensionality of the parameter space. 
Therefore the standard Hough transform is not feasible for tasks with high resolution 
or high dimensionality which is exactly the case of spheres.  

3 The Circle Hough Transform 

As the starting point for spheres identification in 3D images let us look first at a sim-
pler and analogous task i.e. circles identification in 2D images. The problem is de-
scribed in details by the author in his earlier paper [13]. Nevertheless the most impor-
tant thing is to catch the procedure used to solve the problem. 

 

Fig. 1. An example result for the circle Hough transform 
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The method is presented in Fig. 1 and consists of partitioning the image space into 
fragments and using Hough transform for each of them (one accumulator table A is 
identified for each image fragment). Then, global maxima are found in every table A. 
Finally, a clustering technique is used. 

It is necessary mention that the considered method is very similar to the one de-
scribed by the author in [10] which concerns straight lines detection.  

4   Basic Definitions 

This paper considers 3D digital binary images, i.e. three-dimensional images, which 
are formed with sets of points, by convention either black or white. Such an image 
(binary image) may be presented as the following function: 

 }1,0{D:I → ,   where 3N]M,,1[]L,,1[]K,,1[D ⊂××= . (7) 

Hence, we may consider a 3D image as a cubic matrix of which row, column and 
“deep” indices identify a pixel of the image. 

Given an image I , we can generally define an object )I(b  as follows: 

}1)m,l,k(I:D)m,l,k{()I(b =∈= .  (8) 

Let us denote every image that originated from image I  as the result of restricting 
its domain D, as a fragment Q of image I. Thus, a fragment Q of image I is defined 
as follows: 

}1,0{D:Q Q → ,   where 3
Q N]M,...,1[]L,...,1[]K,...,1[DD ⊂××=⊂ .  (9) 

The Hough transform )r,z,y,x(H sss  for spheres detection in 3D images may be 

given by 

∞

∞−

∞

∞−

∞

∞−

−−+−+−δ= dxdydz)r)zz()yy()xx(()z,y,x(I)r,z,y,x(H 22
s

2
s

2
ssss  (10) 

or 

π

π−

π

π−

βαβ+βα+βα+=
2

2

dd))sin(rz),cos()sin(ry),cos()cos(rx(I)r,z,y,x(H ssssss , (11) 

and the parameter space is determined as follows: 

]R,...,R[]M,...,1[]L,...,1[]K,...,1[PPPPP maxmin4321 ×××=×××=  (12) 

5   The Workshop Issue 

In order to conduct some experiment in the case of 3D images it was necessary to 
build an appropriate tool. The tool was written in Delphi and it is a program. Using 
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this tool it is possible to generate a set of spheres in a space of size 250x250x250  
pixels. Every generated sphere is determined independently by its centre coordinates 
and its radius and the whole process is based on parametric equations used in formula 
(11). Additionally the surface of every sphere may be generated according to a spe-
cific filling factor and rough factor. It is possible to generate spheres that criss-cross 
or include one another. An example of 3D input image is shown in Fig. 2. 

 

Fig. 2. The tool and example 3D image 

6   The Fast Hough Transform with Space Division 

This section describes the fast Hough transform as a method of identifying spheres in 
3D images. 

At the beginning let us consider so called standard approach (see 10 or 11) and its 
disadvantages. In order to perform segmentation of the object )I(b  by means of the 

standard Hough transform for spheres, the table A must be calculated for the given 
image I. In practice this becomes computationally difficult for the following reasons: 

• Memory requirements. For example an image of size 250x250x250 pixels 
would require 4D accumulator having more then 109 elements. 

• Computational complexity. Because the number of parameters is propor-
tional to the number of calculations. 

• Problem of spotting of local maxima in the obtained table A. There are many 
spurious maxima not indicative of continuous spheres in a given image. 
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The proposed method consists of partitioning the 3D input image into cubic frag-
ments and computing Hough transform for each of them (a 1D table A is identified  
for each image fragment). Then, global maxima are found in every table A. Finally, a 
clustering technique is used. 

The first step of the suggested method is the partitioning of the image into q frag-
ments. Fig. 3 shows the partitioning results for two examples. 

 

         

Fig. 3. Two examples of image partitioning (number q of fragments: 116 and 14) 

The partitioning radically influences the calculation rate of the Hough transform. 
The smaller the fragments are, the lower the calculation complexity is. On the other 
hand, the reduction of the fragment size may have negative influence on the results of 
segmentation. 

The next step is to determine the 1D accumulator A  (i.e. radial histogram): 

NP:A R
)z,y,x(

i →  ,   where ]R,,R[PP maxmin4R == , (13) 

for each pixel I)z,y,x( ∈  and for each fragment iQ  of the image I (where 

q,,1i = ). That is, for every pixel iQQQ Q)z,y,x( ∈  we compute its distance from 

the potential sphere’s centre I)z,y,x( ∈ : 

−+−+−= 2
Q

2
Q

2
Q )zz()yy()xx(intr  (14) 

Then, if maxmin RrR ≤≤ , we increment the accumulator location ]r[A )z,y,x(
i . The 

maxima of the histograms )z,y,x(
iA  correspond to the radii of possible spheres for iQ . It 

is necessary to remember only the best location I)z,y,x( iii ∈  and radius ir  for 

the maximum value within the array )z,y,x(
iA . This gives us for each fragment iQ  

a quadruplet P)r,z,y,x(t iiiii ∈= . The set of quadruplets }t,...,t{T q1=  obtained 

through calculation accumulators describes the best sphere for each fragment.  
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Fig. 4. The partial result obtained for the second example (see Fig. 3) 

For the sake of clarity only the result obtained for the second example (see Fig. 3) 
is presented in Fig. 4. In the case of the first example each of 116 fragments generates 
a quadruplet which is presented as a circle in the 2D image and the final figure is 
unreadable. 

Because the number of spheres is usually too large, the set of quadruplets T ought 
to undergo the process of clustering. A simple clustering process [9] is used for set 

PT ⊂  of quadruplets obtained for each fragments iQ . Let us denote elements of T in the 

following way: 

)r,z,y,x(t 11111 = , )r,z,y,x(t,),r,z,y,x(t nnnnn22222 == . (15) 

First assume that elements n21 t,,t,t  form the initial cluster. We can calculate the 

co-ordinates of centre )r,z,y,x(c cccc=  for a given cluster and the parameter Θ  denot-

ing the cluster concentration: 

�
n

1i
in

1
c xx

=

= ,  �
n

1i
in

1
c yy

=

= ,  �
n

1i
in

1
c zz

=

= ,  �
n

1i
in

1
c rr

=

= ,  �
n

1i
in

1 t-c
=

= , (16) 

where ° is the assumed norm within parameters space P. 
If the calculated concentration Θ is greater than the assumed threshold value, 

Θthresh, the clustering algorithm is used. Otherwise, the initial cluster is treated as the 
final result of clustering. 

CLUSTERING ALGORITHM – partitioning process of a given clus-
ter }t,...,t{T n1= , where (n >1), is as follows: 
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Step 1: Choose two different initial centres of new clusters for a given cluster, e.g.: 

11 t)1(c =  and 22 t)1(c = . 

Step 2: With the j-th iteration step, divide set T into two subsets: T1(j) and T2(j) (tran-
sitory clusters) according to the following rule: 

∈
−<−∈

otherwise)j(Tt

)j(ct)j(ctofcasethein)j(Tt

2i

2i1i1i ,   n...1i = . (17) 

Step 3: On the basis of step 2, new cluster centres are determined as follows: 

∈
=+

)j(Tt
n
1

1
1

1
t)1j(c ,   

∈
=+

)j(Tt
n
1

2
2

2
t)1j(c , (18) 

where n1, n2 are powers of sets T1, T2, respectively. 

Step 4: If c1(j+1) = c1(j)  and  c2(j+1) = c2(j) then END, else go to step 2. 

If the application of the above algorithm does not cause the required concentration 
Θ determined in formula (16), the cluster undergoes the process of clustering again. 
Otherwise, two obtained clusters are treated as the final result. 

It is necessary to verify every quadruplet )r,z,y,x(t iiiii =  obtained before 
and after the clustering. The verification should be performing within the following 
neighbourhoods: 

Δ±= ixx ,   Δ±= iyy ,   Δ±= izz ,   Δ±= irr ,  where   N∈Δ . (19) 

This means that we must check every position of each sphere corresponding to each 
quadruplet on the real image. Before clustering we must look only for the best position 
of each sphere, as after clustering it is necessary to eliminate those quadruplets that do 
not correspond with spheres in the input image. The final result for the considered exam-
ple is shown in Fig. 5 (compare Fig. 1).  

 

Fig. 5. The final result obtained for the considered example (see Fig. 4) 
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7   Conclusions and Further Research 

The presented method is much faster then ordinary Hough transform and only 1D 
accumulator array is required. Nevertheless 3D images analysis is extremely compu-
tationally complex and takes minutes or even hours using standard PC. For compari-
son, analysis of the input image in Fig. 1 took less than a second. 

It is necessary to observe that in the presented method the number of calculated 
Hough transforms corresponds to the number of fragments the image has been seg-
mented into. As these are computationally independent the Hough transforms may be 
calculated in a parallel way. 

The author is currently working on applying the presented technique in the 
case of straight lines and planes detection in 3D images. In principle, at this stage 
methods dedicated to 3D images have an academic thinking character. 
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Abstract. Scene understanding is an important problem in intelligent robotics. 
Since visual information is uncertain due to several reasons, we need a novel 
method that has robustness to the uncertainty. Bayesian probabilistic approach 
is robust to manage the uncertainty, and powerful to model high-level contexts 
like the relationship between places and objects. In this paper, we propose a 
context-based Bayesian method with SIFT for scene understanding. At first, 
image pre-processing extracts features from vision information and objects-
existence information is extracted by SIFT that is rotation and scale invariant. 
This information is provided to Bayesian networks for robust inference in scene 
understanding. Experiments in complex real environments show that the pro-
posed method is useful. 

1   Introduction 

Scene understanding is the highest-level operation in computer vision, and it is a very 
difficult and largely unsolved problem. For robust understanding, we must extract and 
infer meaningful information from image. Since a scene consists in several visual 
contexts, we have to recognize these contextual cues and understand their relation-
ships. Therefore, it might be a good approach to start with extracting basic contexts 
like “where I am” or “what objects exist” in the scene for robust understanding. If we 
successfully extract these meaningful cues, we can provide them to higher level con-
text understanding. 

High-level context, like the correlations between places and objects or between ac-
tivities and objects, is a key element to solve image understanding problem. For ex-
ample, a beam-projector usually exists in a seminar room and a washing stand exists 
in a toilet. This contextual information helps to disambiguate the identity of the object 
and place despite the lack of sufficient information. Contextual scene recognition is 
based on common knowledge such as how scenes and objects are organized. 

Visual information is powerful and crucial, whereas it is uncertain due to motion 
blur, irregular camera angle, bad lighting condition, etc. To overcome it, we need a 
sophisticated method that is robust to uncertainty. Bayesian network (BN) might be 
suitable for modeling in the domain of image understanding, since probabilistic  
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approach has the characteristic that is robust to inference in various directions and 
operable to uncertain data [1]. 

Probabilistic approach has attracted significant attention in the area of vision-based 
scene understanding. Torralba et al. proposed a method to recognize the place using 
hidden Markov model with global vectors collected from images and use them as 
context information to decide the detection priorities [2]. This approach is useful to 
make detection more efficient but the errors are inherited from the place recognition 
systems. Marengoni et al. tried to add the reasoning system to Ascender I which is the 
system to analyze aerial images for detecting buildings. They use hierarchical Bayes-
ian networks and utility theory to select proper visual operator in the given context, 
and they could reduce computational complexity [3]. J. Luo, et al. proposed that 
Bayesian framework for image understanding [4]. In this approach, they used low-
level features and high-level symbolic information for analyzing photo images.  

In the meantime, there are many studies for solving object recognition problem. T. 
M. Strat and M. A. Fischler assumed that objects were defined by small number of 
shape models and local features [5]. D. G. Lowe proposed Scale-Invariant Feature 
Transform (SIFT) that extracts local feature vectors that are robust to image rotation 
and variation of scale [6]. SIFT shows good performance in extracting objects-
existence but performance deteriorates if object has scanty texture element. Because 
performance of the object recognition algorithms is subject to low-level feature ex-
traction results, we need a method that not only adopts low-level features but also 
uses high-level contexts.  

In this paper, we propose a context based image understanding methodology based 
on Bayesian belief networks. The experiments in real university environment showed 
that our Bayesian approach using visual context based low level feature and high level 
object context which extracted by SIFT is effective. 

SIFT DB for Object 
Recognition 

Image 
Sequence

HMMs for extracting 
Place recognition cue

Feature 
Vector

Extracted 
SIFT Key

Bayesian Network for 
Scene Rocognition

 

Fig. 1. An overview of Bayesian scene recognition 
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2   Context-Based Scene Recognition 

In this section we describe the recognition of places and objects based on context. At 
first, we explain global feature extraction and HMMs learning, and describe object 
recognition with SIFT. Finally, context-based Bayesian network inference will be 
illustrated. The overview of the proposed method is shown in Fig 1. 

2.1   Visual Context-Based Low-Level Feature Extraction 

It would be better to use features that are related to functional constraints, which sug-
gests to examine the textural properties of the image and their spatial layout [2]. To 
compute texture feature, a steerable pyramid is used with 6 orientations and 4 scales 
applied to the gray-scale image. The local representation of an image at time t is as 
follows: 

Nkt
L
t xkvxv ,1)}(,{)( == , where N = 24 (1) 

It is desirable to capture global image properties, while keeping some spatial in-
formation. Therefore, we take the mean value of the magnitude of the local features 
averaged over large spatial regions: 

)'(|)'(|)(
'

xxwxvxm
x

L
tt −= , where )(xw is the averaging window (2) 

The resulting representation is down-sampled to have a spatial resolution of 4x4 

pixels, leading to the size of tm as 384(4 x 4 x 24), whose dimension is reduced by 

PCA (80 PCs).  
Then, we have to compute the most likely location of the visual features acquired 

at time t . Let the place be denoted as },...,1{ pt NQ ∈ where 5=pN . Hidden Markov 

model (HMM) is used to get place probability as follows: 
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(3) 

where ),'( qqA is the topological transition matrix. The transition matrix is simply 

learned from labeled sequence data by counting the number of transitions from loca-
tion i to location j .  

We use a simple layered approach with HMM and Bayesian networks. This  
presents several advantages that are relevant to modeling high dimensional visual 
information: learning each level independently with less computation, and although 
environment changes, only first layer requires new learning with the remaining un-
changed [7]. The HMM is for extracting place recognition and BNs are for high-level 
inference. 



 Context-Based Scene Recognition Using Bayesian Networks 1083 

2.2   High-Level Context Extraction with SIFT  

Scale-Invariant Feature Transform (SIFT) is used to compute high-level object exis-
tence information. Since visual information is uncertain, we need a method that has 
robustness to scale or camera angle change. It was shown that under a variety of rea-
sonable assumptions the only possible scale-space kernel was the Gaussian function 
[6]. Therefore, the scale space of an image is defined as a function, ),,( σyxL  that is 

produced by the convolution of a variable-scale Gaussian, ),,( σyxG , with an input 

image, ),( yxI : 

),,(*),,(),,( yxIyxGyxL σσ =  (4) 

where * is the convolution operation in x and y , and 

222 2/)(
22

1
),,( σ

πσ
σ yxeyxG +−=  (5) 

To efficiently detect stable key-point locations in scale space, scale-space extrema 
in the difference-of-Gaussian function are convolved with the image, ),,( σyxD , 

which can be computed from the difference of two nearby scales separated by a con-
stant multiplicative factor k: 

 ),(*)),,(),,((),,( yxIyxGkyxGyxD σσσ −=  

),,(),,( σσ yxLkyxL −=  
(6) 

Extracted key-points are examined in each scene image, and the algorithm decides 
that the object exists if match score is larger than a threshold. 

In this paper, SIFT features of each object are extracted from a set of reference im-
ages and stored in an XML database. Each reference image is manually extracted 
from the training sequence set. 

2.3   Context-Based Bayesian Network Inference 

A Bayesian network is a graphical structure that allows us to represent and reason in 
an uncertain domain. The nodes in a Bayesian network represent a set of random 
variables from the domain. A set of directed arcs connect pairs of nodes, representing 
the direct dependencies between variables. Assuming discrete variables, the strength 
of the relationship between variables is quantified by conditional probability distribu-
tions associated with each node [8]. 

Consider a BN containing n nodes, 1Y  to nY , taken in that order. The joint probabil-

ity for any desired assignment of values < 1y ,…, ny > to the tuple of network variables 

< 1Y ,…, nY > can be computed by the following equation: 

∏=
i

iin YParentsyPyyyp ))(|(),...,,( 21  (7) 

where )( iYParents  denotes the set of immediate predecessors of iY  in the network.  
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BN used in this paper consists of 4 types of nodes: (1) ‘PCA Node’ for inserting 
global feature information of current place, (2) ‘Object Node’ representing object 
existence and correlation between object and place, and (3) ‘Current Place Node’ 
representing the probability of each place. 

Let the place be denoted },...,1{ pt NQ ∈ where 5=pN , and object existence is de-

noted by 14  where},...,1{, =∈ objectobjectit NNO . Place recognition can be computed by 

the following equation: 

),...,,|( max arg ,,:1 objectNtit
G
tt OOvqQPPlaceCurrent ==  (8) 

The BNs are manually constructed by expert, and nodes that have low dependency 
are not connected to reduce computational complexity. Fig. 2 shows a BN that is 
actually used in experiments. 

 

Fig. 2. A BN manually constructed for place and object recognition  

3   Experimental Results 

To collect input images, a USB mobile camera with notebook PC was used in the 
experiments. The camera was set to capture 4 images per second at a resolution of 
320x240 pixels. The camera was set on a cap at the height of human sight, and the 
images were captured during user visits 5 different locations. The locations were 
visited in a fairly random order. We gathered 5 sequence data sets (one for training, 
others for testing) by the camera in the campus indoor environments. The sequences 
gathered contain many low quality images, due to motion blur, low-contrast and  
non-informative views, etc, but experimental results show that the proposed method 
overcomes these uncertainties. 

Fig. 3 shows an experimental result that is the one of sequences that were used in our 
movements. The x-axis shows the flow of time and a solid line is the true places. Dots 
represent the probability of each inference result. The proposed method successfully 
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recognized the entire image sequences in general. However, during t = 0 to 100, in 
‘Elevator’, the proposed method made several false recognitions, because of low-
contrast and strong day light that passed through the nearby window. Due to scattered 
reflection, toilet and corridor also caused several false recognitions (t = 320 to 500). 

 

Fig. 3. One of the testing sequence result 

Fig. 4 shows overall place recognition performance of the proposed method. The 
square dots show the place recognition results that used extracted low-level features 
only and diamond dots show the results of the method that used the BN with SIFT. It 
can be easily confirmed that the proposed method produces better performance. The 
hit rate of the proposed method increased 7.11% compared to the method that did not 
use BN. Laboratory shows highly increased recognition result since objects recogni-
tion performance by SIFT is good. On the other hand, elevator shows bad perform-
ance and smaller increase than other locations, because there is no particular object in 
elevator except elevator buttons, and bad light condition causes worse performance. 
In toilet, lack of the object existence information caused by diffused reflection made 
low recognition rate.    

 

Fig. 4. Overall performance of each place recognition results 
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Fig. 5 shows the results of the SIFT object recognition. Objects with low texture 
features caused bad recognition results in the cases of tap and urinal. It can be easily 
confirmed that sufficient textual information makes good recognition result for the 
instances of the keyboard and poster. Fig. 6 shows the object recognition results of 
the proposed method. If the inferred objects-existence probability is larger than 75% 
or SIFT detects the object, the proposed method decides that object exists. Overall 
recognition score shows better results and recognition performance of objects that 
were not recognized by SIFT is increased especially (monitor, urinal). In addition, 
occluded objects were detected by Bayesian inference. However, it is a defect that 
false detection rate is increased in some objects.  

 
Fig. 5. Objects recognition results by SIFT 

 

Fig. 6. Objects recognition results by the proposed method  
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4   Conclusions and Future Works  

We have verified that the context-based Bayesian inference for scene recognition 
shows good performance in the complex real domains. Even though the global feature 
information extracted is the same, the proposed method could produce correct result 
using contextual information: relationship between object and place. But SIFT algo-
rithm showed low performance when objects had insufficient textual features, and this 
lack of the information caused to the low performance of scene understanding. To 
overcome it, we need a method that disjoints objects with ontology concept, and  
extracts SIFT key-points in each component. Besides, we could easily adopt more 
robust object recognition algorithm to our method.  

In the future works, we are under going to use the dynamic Bayesian network that 
represents previous state in scene understanding. Also, the application of the proposed 
method to real robot will be conducted.  
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Abstract. In the recent times, many computer vision supported e-learning ap-
plications have been constructed, to provide the participants with the automated 
and real-time camera control capabilities. In this paper, we describe a portable 
and single-PC based instructional video capture system, which incorporates a 
variety of computer vision techniques for its video directing and close-up region 
specification. We describe the technologies used, including the laser-pointer de-
tections, instructor’s lip tracking and individual teaching object recognition. As 
the same time, we also explain how we have achieved both low-cost and port-
ability property in our design. 

1   Introduction 

The recent advancements in computer vision technologies and video-capturing 
devices (both static and computer-controlled motorized Pan-Tilt-Zoom cameras) 
have led to the increase in the number of automated e-learning video capturing 
systems.  

Some examples of the recent works in this area includes [1], which is a three cam-
eras system and its control rules are based on a set of estimations to teacher’s posi-
tion, face direction, hand position and amount of characters on the blackboard. In [2], 
the authors have used hand tracking techniques to automate the camera operations, 
where its  rules are based on how user presents objects picked up from the desktop. 
The system in [3] is comprised of a static and tracking camera to capture the slides 
and the speaker, and direct video-shooting based on changes occurred on the stage, 
the screen, the lectern and the presenter positions. We have also listed a detailed sur-
vey on  the subject [4] for the interested readers.  

1.1   Motivation of Portability and Low Cost 

Most current automatic video capture systems require multiple industrial camera [1-3] 
and they are usually multiple PC-based. These systems clearly do not meet the 
requirements for many low-cost e-learning scenarios. Our aim is to design an 
inexpensive camera system, which requires only single PC processing, and uses 
consumer-type camera. 
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Secondly, the cameras in the existing systems [1-3] are installed to a classroom, 
typically mounted to the ceiling. This design allows the position of the observing 
camera to remain unchanged, which is necessary for the stereo-vision tracking meth-
ods based on pre-calibrated camera parameters. Our second motivation is to design a 
ready-to-use e-learning video capture system, which can be ported easily from one 
instructor room to another.  

Both the low-cost and high portability property are important in many e-learning 
scenarios [4].  To achieve these two purposes, our research, therefore aims to apply a 
set of alternative computer vision techniques, to compensate the lack of stereo-vision, 
multiple PC and industrial camera.  

1.2   Motivation on Versatility 

Most current-day vision-based camera control is driven by the instructor’ actions and 
changes occurred in whiteboard writings. Our research also considers that the interac-
tion should also extend to other modalities, including the teaching equipments; in-
structor’s gestures and laser pointer interaction.  

1.3   Hardware 

In our system, the PTZ and static camera are placed sufficiently close at eye level 
shown in Fig 1.  

 

Fig. 1. PTZ and static camera configurations 

The PTZ camera system consists of an Eagletron PowerPod base used in conjunc-
tion with a household camera, which cost less than USD$599, running on standard PC 
(Pentium M, 1.7 GHZ, 512M RAM). This setup satisfies both our low-cost and port-
ability goal. However the hardware’s mechanical imprecision is a disadvantage, for 
which we have designed a unique mechanical convergence algorithm for its move-
ment control, illustrated in Section 4. 

The rest of this paper is organized as follows, in section 2, we illustrate our meth-
ods to obtain camera close-up region, using both laser pointer guidance and hand-held 
individual object recognition. In section 3, we will present our lip tracking result 
which supports for the audiovisual speech command. In section 4, we will illustrate 
our PTZ camera movement control. 

Logitech 
webcam 

Sony  
HC-42E 

Eagletron 
PowerPod 

PTZ Base
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2   Instructor Specified Close-Up Region  

In an e-learning session, camera needs to zoom into several subjects, so that the re-
mote participants can have a look-up view. The subjects include the instructor, the 
teaching object and a static region (for example, the whiteboard). While person (in-
structor) close-up tracking has been addressed in many literatures, in this Section, we 
will only discuss the teaching object and a static region specification. 

2.1   Hand-Held Teaching Object Region Specification 

For teaching object that is small in size, we have introduced a set of natural camera 
control and region definition, called individual object interaction techniques [5]. The 
correct close-up region is defined after a “recognized’ teaching object is presented by 
the instructor. 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Individual object interaction (a) ROI candidates determined from facial pose. (b) The 
SIFT feature is computed within the ROI (c) The matched object from the image database. 
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Abstractly, the process is achieved by first estimate region of interest (ROI) from 
presenter’s head pose, Shown in Fig 2.a, the rectangle region is determined from the 
instructor’s pose.  

We then compute within the ROI, the Scale Invariant Feature Transform (SIFT) [6] 
matching, shown in Fig 2.b, where the arrows indicate the SIFT features’ position, 
scale and orientation. 

 We finally compare the SIFT feature generated in ROI against the SIFT feature 
stored in the image database, using the Approximated Nearest Neighbor (ANN) 
method and determines the teaching object that instructor is currently holding, Fig 2.c. 
The details of this work is given in [5].  

2.2   Static Region Specification Using Laser Pointer  

Similar to many laser pointer interaction [7, 8], in our system, an instructor can spec-
ify the zoom-in region by drawing virtual ellipse around the ROI, show in Fig 3.  

 
(a)    (b)      (c) 

Fig. 3. Instructor-specified virtual ellipse around a. teaching object, b. whiteboard region and c. 
poster region 

However, robust laser pointer detection is not as trivial as “finding a small red 
patch in the image”. Apart from the background noises, such as reflection of metallic 
surfaces, the most difficult challenge results from a so-called CCD clipping phe-
nomenon [7], where the laser pointer illumination on white surface appears on the 
camera CCD as a bright white patch. 

Most cameras’ CCD sensor is only capable capturing light with an intensity 
threshold, and it treats a white surface (for example, a whiteboard) close enough to 
that threshold. Therefore, the amount of intensity increase between the laser pointer 
illuminated patch and its “white” surroundings is not as significant compared with 
when laser pointer is projected onto a “darker” surface. For these reasons, previous 
laser pointer detection approaches employs manual preconfigured camera settings 
with simple RGB thresholding [7, 9] are extremely sensitive to light changes and 
has very low detection rates, which is replaced by machine-learning approach  
[10, 11]. 

We have used a spatiotemporal training strategy, where a bi-modal Gaussian Mix-
ture Model (GMM) is used for both spatial and temporal features: 
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2.2.1   Temporal Features 
The temporal training strategy is similar to [11], we have recorded the maximum 
absolute pixel differences between two consecutive video frames. Therefore, unlike 
training method used in [12], our method is insensitive to camera changes during real-
time detection. This is inline with our portability goal. 

In order to obtain the features, the instructor is required to project laser pointers 
over a training region or the entire scene. The instructor roughly requires covering 
half of the region with laser pointers, leaving enough examples in the region both with 
and without illumination.  

Instead of recording single pixel difference used in [11], where singly detected 
pixel are grouped together later to form laser pointer region, in our method, we have 
simplified the process by using integral image features, where average intensity of a 
small region (3 x 3) pixels is calculated in constant time. This training process takes 
about 10 to 15 seconds depending on the size of training regions used. We then obtain 
a histogram calculated using both R and B components. This is shown in Fig 4.a. In 
this histogram, we can clearly see high values, which resulted from regions being 
illuminated with laser pointer some time during training. The lower values correspond 
to regions without illumination at all. Due to camera’s CCD noise, these values are 
slightly above 0, generally around 10 depends on how “fluctuate” the CCD camera is.  

From this histogram, a clear two modes are identified. Intuitively, a bi-modal 
Gaussian Mixture Model (GMM), a commonly used pattern recognition method [13], 
can sufficiently model such histogram. The equation for GMM is: 

( , )
1

( ) ( )
K

k
x k

k

GMM w g μ
=

= ⋅x x  (1) 

where g is the Gaussian distribution 

  

(a)     (b) 

Fig. 4. Modeling temporal features: a. is the Histogram; b. is the corresponding bi-modal GMM 
fittings obtained  

Since we can also guess its initial values of the two modes, being close to 10 and 
30 respectively, a GMM model can be fitted accurately using Expectation-
Maximization (EM) algorithm. The result of GMM fitting is shown in Fig 4.b. The 
weight of each Gaussian wk is not in our interest. 
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A threshold value is then drawn from this GMM model which maximally discrimi-
nate the correctly classified samples from noise ones during real-time detection. 

The results achieved from the temporal feature training is promising, during detec-
tion, only one or two outliers are noticed over time from the whiteboard regions, 
mostly due to light reflections on the metallic whiteboard.  

2.2.2   Spatial Features 
The occasional outliers from the temporal classification can be removed easily by 
heuristic methods, such as using location threshold [11]. However, for our applica-
tion, an outlier-less detection is more desirable. To further remove any outliers 
caused by the occasional noises, we combined the result with the spatial features 
training. 

To obtain the spatial features, we have used integral images [10] feature. Integral 
images feature are commonly used, such as in Adaboost training of facial image [14]. 
This method computes much faster than convolution filters, where the image sum of 
any size region can be obtained from three addition/subtraction operation [14]. 

In our work, we have used spatial features from the R component alone. The fea-
ture sum is calculated a from small region I small  subtract from its surrounding I large. 

 I small  is typically chosen to be 3x3, and I large is typically chosen to be 6x6. 
Like the temporal case, in order to collect both examples in regions with and with-

out laser pointer illuminations, we have recorded the maximum feature value in the 
training region over time. The training result is collected at the same time of the tem-
poral features. A strong bi-model histogram can be once again obtained. In regions 
where no laser pointer has been illuminated before, I small – I large is closer to 0 with 
some noise obtained. The other mode represents the regions where laser pointer is 
illuminated some point during training. The GMM fittings were once again used to 
discriminate between the two modes.  

Spatial features generate more outliers than that of the temporal one. However, 
during real-time detection, we have used spatial features as an outlier remover after 
temporal features detection. In other word, spatial features are only used, checking if 
detected location using temporal features is valid. For this reason, spatial features do 
not involve computation over the entire video frame. 

2.2.3   Laser Pointer Detection Result 

2.2.3.1   Robustness. By using our combined spatial and temporal training, we have 
achieved an outlier-free detection in 98% of the testing cases. We have noted that 
there are a few un-detections occur from time to time. This is due to the strict con-
straints we have placed upon our detection algorithm, since false detection is more 
prohibitive than un-detection in our application. However, false detection is very rare.  

2.2.3.2   Efficiencies. Unlike works in [11], where much post-filtering is required. Our 
laser pointer detection is self-sufficient, and most of calculations are achieved using 
integral images features. The efficiency of our laser pointer detection algorithm is 
shown in Fig 5, where the execution time is around 26 ms and is almost constant 
across times. This allows us to achieve real-time detection. 
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Fig. 5. Execution time for laser pointer detection 

3   Lip Tracking to Support Instructor’s Voice Recognition 

For the instructor-directed camera controls, we have formulated a multimodal 
approach. The first one is to use hand-gesture and the second one is to use voice 
command recognition, to issue simple commands, such as, “zoom laser”, “track 
instructor” corresponds to “zoom according to laser pointer”, “follow the instructor” 
respectively.   

In order to achieve more robust voice recognition under noisy environment, we are 
experimenting combined audiovisual voice recognition with additional lip tracking 
information. In our current work, we have used Support Vector Machine (SVM) to 
detect lip region, fine-tuned from Haar-like feature detected mouth region. 

3.1   Mouth Region Detection 

We obtain the close-up facial image from the PTZ camera view, using PTZ camera 
convergence algorithm described in Section 4. We have used a standard Viola and  
 

 

Fig. 6. Mouth region detection using Haar-like feature detection, white rectangle is detected 
frontal face, notice the rectangles fluctuate even when the person is stationery 
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Jones [14] to detect the mouth region. The detection is executed in two steps. A 
frontal face training library is used for detecting the face initially, and then followed 
by mouth detection using the mouth training library, shown in Fig 6.  

We notice that although the detected region contains the mouth, its location is not 
always at the centre of the detected region. In addition, detected mouth area fluctuates 
even when the instructor is stationery. From the detected mouth region, we then try to 
fine-tune the lips area using a Support Vector Machine (SVM) classifier. 

3.2   The Lip Tracking  

The features we use for SVM classification are based on both colour and shape. When 
only three-dimensional colour features (in YCrCb colour space) are used, the results 
often contain high percentage of noises. This is indicated in Fig 7.a, in a Haar-like 
feature detected mouth region, part of a nose and shadows are classified as mouth 
region, even they are labelled y = -1 during training. 

When the additional shape features are introduced in the training set, the classifica-
tion generated much less noises than the ones shown in Fig 7.a. The improved result 
is shown in Fig 7.b: 

 
   (a)            (b)  

Fig. 7. (a) SVM classifier using three dimensional colour feature training, (b) Lip region results 
after repeated SVM classification with refined  

 

Fig. 8. The lip tracking result, http://www-staff.it.uts.edu.au/~richardx/lip_richard.avi 

After classification, the final mouth shape is determined from active contour 
method. The result is shown in Fig 8. We have also experimented with several other 
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SVM kernels tested with eight different persons. The Radial Basis Function (RBF) 
has achieved most robust result.  

4   Camera Movement 

As stated in the Introduction, for the portability reason, we are restricted from using 
3D stereo triangulation for person tracking. Therefore, camera zoom-in operation is 
achieved through our own mechanical convergence algorithm.  

4.1   Estimating PTZ Camera Direction from Static Camera View 

We control the PTZ camera’s pan and tilt movement initially from static camera in-
formation. As a consequence, when the tracking subject becomes more stationary, 
PTZ camera’s mechanical convergence starts from a direction closer to the subject. 
To achieve depth calculation using monocular (static camera), we have used a similar 
method to [15], where we measure the detected face sizes in the static camera across 
different depths. During real-time, detected face sizes serve as depth approximation.  

This method has low precision, but it achieves our purpose, where in most of the 
times, the instructor’s face is included in the PTZ camera view even though the face 
may not be at the centre. It then allows PTZ camera’s mechanical convergence proce-
dure to begin when static camera detects instructor’s movements is slowed. 

In Fig 9, we have shown the tracking result based on this technique: 

 

Fig. 9. PTZ camera’s initial direction control by static camera view 

The first five screen captures shows PTZ camera’s movement controlled by 
detected face sizes in static camera view. During this time, the person has large 
movement and PTZ camera is not exactly pointing into the direction of instructor’s 
face, but contains it within its camera view.  In the last screen capture, instructor 
remains stationary for a five-second period to allow PTZ camera complete its 
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mechanical convergence. More camera results is found http://www-
staff.it.uts.edu.au/~richardx/PTZ_camera.WMV. The tracking after initial face detection is 
based on mean-shift based color tracking [16]. 

4.2   PTZ Camera’s Mechanical Convergence 

Before the zoom-in operation takes place, the PTZ camera needs to pan and tilt until 
the instructor’s face is in its centre. Our contribution lies in our semi-passive, me-
chanical convergence control algorithm. This algorithm allows the low-precision PTZ 
camera base to perform “centering” operation using the face as a reference object. By 
accurately track the selected region while continuously updating the position of PTZ 
camera’s current centre view, its mechanical movements can effectively be con-
verged, such that the selected region and the centre of camera view will overlap  

 

Fig. 10. Result of PTZ camera’s mechanical convergence, prior to optical zoom-in operation 

The algorithm begins with larger movements. When it is getting close to an object 
or has ‘passed’ over the object, its motion becomes slower and in a reverse direction. 
In Fig 10, we have shown the result of the PTZ camera view using the above algo-
rithm. Notice that the initial movement is larger, then it becomes slower and in a re-
verse direction when the object (in blue) “passed over” the centre view (in white). 
More of the tracking results can be found on: 
http://www-staff.it.uts.edu.au/~richardx/PTZCameraZoom.WMV 

5   Conclusion 

In this paper, we have described a set of monocular computer vision methods, to 
which we have use to detect the camera close up region; camera movement control 
and support more robust instructor audiovisual speech recognition. The techniques we 
have applied allow the system to be portable, and all the computer vision processing 
is achieved using single PC, which also compensates for the low-cost, low-accuracy 
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camera system. Our future work is to further extend the interaction methods, such as 
more robust instructor-led body gesture, and also combining cinematography rules 
into instructional video presentation. 
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Abstract. In this paper, we present a method for producing omnidirec-
tional image signatures that are purposed to localize a mobile robot in an
office environment. To solve the problem of perceptual aliasing common
to the image based recognition approaches, we choose to build signatures
that greatly vary between rooms and slowly vary inside a given room. To
do so, an invariant approach has been developed, based on Haar invari-
ant integrals. It takes into account the movements the robot can do in
a room and the omni image transformations thus produced. A compar-
ison with existing methods is presented using the Fisher criterion. Our
method appears to get significantly better results for place recognition
and robot localization, reducing in a positive way the perceptual aliasing.

1 Introduction

The general localization problem is the most crucial perceptual problem in
robotics. In several successful methods (like odometric map matching methods
[3] or landmark based methods [5]) to robots localization, often called position es-
timation, the robot is given a (geometrical and metrical) map of the environment
and its goal is to determine its position relative to this map given perceptions
of the environment and the robot movements. However, it is not always possible
or convenient to provide a geometrical map of the environment. Image-based lo-
calization approaches [12,20,27,7,16,9,15] prevent you from having to use a map
and give a rough estimation of the robot’s location by matching a set of views
taken by the robot to reference views stored in previous experiments. These
approaches, called image-based (or appearance-based) localization, are worth-
while to build topological maps and could be applied in exploration and video
surveillance of a priori unknown environments.

In this paper, we are interested in computing omnidirectional image signatures
that will help a robot to recognize images with the aim of locating itself in
unknown and explored environments. The robot position estimation problem
consists in finding the best match for the current image among the reference
images. This can be a tricky problem if the environment displays symmetrical
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structures like doors and corridors, so the current view will match not only the
referred location image, but also all similar images giving perceptual aliasing.

The approach we propose in this paper deals with this problem, giving an
elegant way to compute image signatures that enhance the discriminating power
of the localization algorithm. The paper is organized as follows: We start with
a review of the related work and, in Section 3, continue with the principles of
building omnidirectional image signatures using Haar integral invariant features.
In Section 4, we describe some results of the experiments in several indoor envi-
ronments and compare them in Section 5 to related approaches we implemented.
Finally, in Section 6 we conclude with a summary and an outline of ongoing work.

1.1 Related Works

Several research groups [12,20,27,7,16,9,15] have presented successful methods
for image matching that differ mostly in the way the models are built to re-
duce the image vector by extracting relevant features. Most of them benefit
from matching techniques (Fourier harmonics, eigenspace or invariant features)
developed in the field of image retrieval. Actually, image retrieval systems aim
to find images that are similar in appearance to an input query, from a large-
size database. However, while a few bad matches are not a problem in image
retrieval, a single bad match could lead the robot localization system to get lost
and must therefore be strictly avoided for the localization task.

Image retrieval systems usually rely on histograms for the matching process.
This is due to their compact representation of the images, their invariance to
rotation (which is very interesting for omnidirectional images) and their very
low sensitivity to small translations. Ulrich et al. [27] use histograms of om-
nidirectional images associated with a nearest-neighbor learning by unanimous
voting, to localize a robot in a topological map with good confidence ratios. Color
histograms have also been applied by [9] to localize a Rover robot in natural en-
vironments using omnidirectional images. But the histograms are not invariant
when important movements are involved.

Other works, as [12,13], have issued image compact representations using sub-
spaces of Fourier harmonics, i.e. they calculate the Fourier coefficients to rep-
resent images in a lower-dimensional subspace. These representations lack ro-
bustness since the Fourier transform is inherently a non-robust transformation.
An occlusion in the image influences the frequency spectra in a non-predictable
way and therefore arbitrarily changes the coefficients. Recently, Menegatti et
al. [21] have applied global Fourier transform to extract the coefficients of the
low frequency components of omnidirectional images grabbed by the robot. To
overcome the lack of robustness in the case of perceptual aliasing, they used in
[22] a Monte-Carlo localization technique and their system was able to track the
position of the robot while it was moving and estimate its position without any
prior knowledge on the real position.

In the case of the eigenspace approaches, you need to build a database model
by computing the eigenvectors or the principal components [15,20,1,16,7]. The
main interest here is to find an invariant representation to the omnidirectional
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image rotations (taken at the same position under different orientations of the
robot). The images are wrapped to cylindrical panoramic representations in that
way a rotation of the original image is equivalent to a shift of the image plane
deployed from the cylindrical image. Aihara et al. [1] use row-autocorrelated
transforms of cylindrical panoramic images for indoors and outdoors localiza-
tions. The approach suffers from less accurate results for images acquired on
novel positions, since by autocorrelating the images some of the information is
lost. Moreover, any occlusion in the image may result in an erroneous localiza-
tion. Pajdla and Hlaváč [23] propose to estimate a reference orientation from
images with the Zero Phase Representation (ZPR). ZPR, in contrast to autocor-
relation, tends to preserve the original image content while at the same time
achieving rotational independence, as it orients images by zeroing the phase of
the first harmonic of the Fourier transform of the image. The experiments in-
dicate that images taken at nearby positions tend to have the same reference
orientation. The method is however sensitive to variations in the scene and occlu-
sions, since it only operates with one single frequency using a global transform.

The idea of invariant methods is to build image features that should ex-
hibit invariance against different transformations on the scenes. SIFT1 features,
developed by Lowe [18,19], are invariant to image translation, scaling and rota-
tion. They are also partially invariant to illumination changes. Variants of SIFT
(Modified SIFT [2], Iterative SIFT [26]) have been proposed to reduce the com-
putational efforts of the feature extraction and matching process, and applied in
almost real time robot localization.

An interesting approach to formally define invariant signatures of images that
undergo group transformations is Haar integrals. Firstly introduced by Schulz-
Mirbach in [24], this invariant has been used, in case of euclidian motions, for
image retrieval by Siggelkow [25], Halawani and Burkhardt [10,11], and for mo-
bile robot localization by Wolf [14] (although the Haar integral was not explicitly
used). The Haar integral invariant features could be extracted directly from raw
images, without need to preprocessing such as segmentation or edge extraction.

In this paper, we apply Haar integral invariants to compute signatures on
omnidirectional images and compare our method to representative works of the
literature: Using Fourier transform [22] and Zero-phase representation [23]. The
different methods are implemented in our localization system and tested in dif-
ferent indoor environments.

2 Omni-Appearance Based Localization Algorithm

The robot localization approach is a twofold procedure: In the setup stage, the
robot takes a set of omnidirectional images at reference locations which form
a good depiction of the environment (by following some training strategy or
under the supervision of a human operator). Then, Haar invariant signatures
to rotations and local translations in the scene are computed, which allows us

1 Scale Invariant Feature Transform.
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to represent every image of the training set with only low-dimensional invariant
distributions.

At the running stage, while it moves in the environment, the robot acquires
new images, computes their Haar signatures and then searches for the nearest
signatures in the model built at the training set.

(a) (b) (c) (d)

Fig. 1. a: The Koala robot and its omnidirectional sensor. b,c and d show images
acquired by the robot’s sensor during a translation.

The localization procedure is repeated for the different models compared of
signature extraction: Fourier transforms [21], Zero phase representation [23] and
our approach of Haar integral invariant distributions, in the same conditions.
Figure 1 sketches an example of an indoor environment seen by the omnidirec-
tional sensor of the robot.

3 Haar Invariant Signatures Extraction

3.1 The General Idea

The approach we develop is inspired by Haar integral invariant features intro-
duced by Schulz-Mirbach in [24] and applied by Siggelkow [25] in image re-
trieval. The main difference lies in the nature of the transformations considered.
Siggelkow deals with euclidian transformations of the images, given cyclic bound-
ary conditions. These hypotheses on image transformations do not hold anymore
when dealing with the geometry of omnidirectional sensors.

Haar integral is expressed as

IHaar(x) =
1
|G|
∫

G

f [g(x)]dg with |G| =
∫

G

dg (1)

where G is the transformation group, and g(x) the action of g, an element
of G, on vector x. It could be viewed as a course through the space of the
transformation group parameters. In case of x = M being an image, equation
1 suggests that the integral invariant feature is computed by first 1) applying
kernel function f to each pixel in transformed image g(M) then 2) summing
up over all transformations of G and 3) normalizing the result to get a single
representation of the invariant feature.
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We generalize Haar integral features to integrate the complex transformations
induced by the geometry of the sensor and transformed under the robot move-
ments (translations and rotations) in the scene. We define distributions based
on a partition of the constructed Haar integral features and build up histograms
using these distributions.

3.2 The Camera Transformation Model

The robot is endowed with an omnidirectional sensor generating complex pro-
jective transformations. Omni-images are often projected back onto a cylinder,
and then mapped back into a plane by an isometry so as to have them looking
more similar to classical perspective images (Fig. 2(b)). This is the case in the
work of Menegatti [21] or Pajdla [23].

Here we use the equivalence sphere model given by Geyer and Daniilidis [8].
They prove that central catadioptric projection can be modeled with the pro-
jection of the sphere to a horizontal plane from a point on the vertical axis of
the sphere. Once the sensor has been calibrated, the raw image is projected
onto this sphere, equivalent to the actual mirror from the point of view of the
image formation process (Fig. 2(a)). Spherical image MS(θ, ϕ) (equation 2) has
a topology which looks more adapted to the sensor properties than the raw
image.

MS is formed by regularly meshing the sphere in (θ, ϕ) and interpolating
at the corresponding points in the original image, M(u, v) using the projective
equation (2): {

u = cot(θ/2) · cos(ϕ)
v = cot(θ/2) · sin(ϕ) (2)

(a) (b)

Fig. 2. a)The equivalent sphere. To 3D point (ρ, θ, ϕ) corresponds a point (u, v) in the
raw image. b) The projection of the raw image onto a cylinder used by Menegatti and
Pajdla.

3.3 The Transformation Group

Without loss of generality, the reference frame of the robot and that of the mirror
can be considered as aligned along the Oz−axis. Let’s consider how the spherical
image, MS(θ, ϕ) can be transformed when the robot moves. The rotation of the
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robot (at the same position) around its vertical axis by angle ϕ induces the
rotation of the sphere around the Oz axis. Using an omnidirectional camera is
an advantage to have a complete view so that the image content information
does not change when changing the orientation. We exploit the symmetry of
revolution of the considered kernel supports to remove the integration over the
rotation group action.

When the robot motion involves a translation (robot changes in position),
the transformation acting onto the spherical image is composed of translations
in θ and ϕ. We assume these transformations still verifying a group action, as
almost scene information remain present in the omni-image. Due to the non
uniform resolution and distorsion of omnidirectional images (see fig. 1 for an
example), the image point transformations are not uniform and are weighted by
the variation of Haar measure dg = sin θdθdϕ. The group parameters acting on
the images are translation parameters in θ ∈ [π/2, π[ and ϕ ∈ [0, 2π[.

3.4 The Kernel Function

The averaging technique to construct invariant features depends on kernel func-
tion f . The definition of kernel f appears to be important for the robust-
ness and stability of the built invariant features. For instance, you can define
f(MS) = MS(0, 0) as a kernel, that just takes the grey level of the pixel.
Evaluating the Haar integral can thus be interpreted as a group averaging of
the image brightness information. However, the descriptive power of the mean
value is poor when compared to a histogram for example. In [25,10], the au-
thors use a large set of monomials and relational kernel functions with lo-
cal support to increase the completeness and non ambiguity of the invariant
sets.

We use a kernel function of local characteristics based on a Difference of
Gaussians (DoG) (eq.3). The DoG is usually applied for keypoint detection, and
is shown [19] to be a good approximation for the σ2−Gaussian Laplacian which
is invariant2 to affine change of luminosity, rotation and locally invariant to
perspective transform.

DoG(θ, ϕ, σ) =
1

2π(kσ)2
e
− θ2+ϕ2

2(kσ)2 − 1
2πσ2

e−
θ2+ϕ2

2σ2 (3)

Kernel function f : MS �→ Cf defines a mapping from spherical image MS to
feature space Cf . f(MS) denotes the image of local features obtained by Haar
integration and is produced by: 1) convoluting the (grey-scaled) spherical im-
age points with the difference of two nearby scale gaussians; 2) averaging on
the pixel neighbors belonging to DoG support ΔDoG (of size 6kσ); and 3) par-
tioning the DoG space into a fixed partition {DoGi}i=1,...,k. Similarly to [25],
we build fuzzy partitions using continuous triangle functions to avoid disconti-
nuities of feature assignments at the edges of DoG supports. We thus produce

2 [17] referenced by Lowe [19].
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f(MS) = {fi(MS)}i=1,...,k that we normalize to make the sum at a given point of
the fi feature space equals one3.

f (MS(θ0, ϕ0)) =

⎧⎨⎩ ∑
(θ,ϕ)∈ΔDoGi

DoGi(θ − θ0, ϕ − ϕ0, σ) ∗ MS(θ, ϕ)

⎫⎬⎭
i∈[1,2,..,k]

(4)

Haar integration consists then in a course (path) between the feature image
points belonging to every fi, weighted by the Haar measure depending on their
position in the image: IHaar = {IHaari}i=1,...,k (eq.5). Written in the discrete
case, we have for i = 1, . . . , k:

IHaari (MS) =
1

Δθ

1
2π

∑
θ∈Δθ;ϕ∈[0,2π[

fi(θ, ϕ) sin θdθdϕ (5)

This distribution looks like a histogram, h (IHaar(MS)) = {IHaari(MS); i = 1..k}
of invariant features and constitutes the image signature (parameterized by σ).

3.5 The Similarity Measure of Distributions

Images taken at close locations are likely to be very similar. Finding the most
similar reference image to the current image taken by the robot needs a dis-
tance measure to compare distributions derived from the images. This issue has
been thoroughly discussed in the literature, from simple bin-by-bin measures
(e.g. quadratic form distance) to more complex measures like Minkowski form
distances, histogram intersection, chi-square statistic, Jeffrey divergence or earth
movers distance (EMD).

In a previous work [6], we have tested different similarity measures and the
EMD distance performs better for our image database. In this paper, and in
order to compare our method to other signature extraction techniques [23,21],
we use the same similarity measure as in the cited works, i.e. L1−norm similarity
measure.

4 Comparative Study and Experimental Setup

In this section, we compare our method of Haar invariant signatures to related
methods of signature extraction: The zero phase representation developed by
Pajdla (ZPR,[23]) and representation using Fourier coefficients of an unwarped
image suggested by Menegatti [21].

4.1 A Brief Description of the Compared Methods

Menegatti’s method starts by unwrapping the raw omnidirectional image into
a cylindrical image. It relies on a Fourier decomposition along the lines of the
3 fi could be seen as the probability for a characteristic to belong to a given feature

bin.
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cylindrical image so as to construct a representation that is invariant to rota-
tions. The descriptive power of the representation is set by adjusting the number
of Fourier coefficients used in the representation. The higher the number of co-
efficients, the more accurate the representation. The last coefficients correspond
to high frequencies whereas first coefficients correspond to low frequencies. This
method tends to allow a greater importance to low frequencies as the number of
coefficient diminishes, the representation thus being less accurate.

The Zero-Phase representation also allows to cope with rotation effects on the
image representation. It relies on a correlation measure between images which
is invariant to rotations of the sensor (along the optical axis). As in Menegatti’s
solution, the raw image is unwrapped onto a cylinder. Then, the 2-D Fourier
transform is calculated. The phase of the Fourier transform is shifted so as to
get the phase of the first component equal to zero. An inverse Fourier transform
is then applied to get back into the original space.

4.2 The Experimental Setup

In this comparative study, we implement the preceding signature extraction
methods and test their robustness in indoor environments, composed of five
rooms in our lab, where the perceptual aliasing is particularly high.

The Koala robot, endowed with a catadioptric camera (RemoteReality), was
moved in the environment and we have built an image database composed of
approximately 250 images evenly distributed in the five rooms. Examples of the
images in the base are shown in Fig. 1. Images taken in a given room were
manually clustered in an associated directory, thus allowing to calculate the
centröıd and the variance of the cluster with respect to the L1−norm. This was
repeated for every room the robot has surveyed.

To assess the classification performance of the compared methods, we use
the Fisher criterion which measures the separation between two classes. It is
defined as J = (η1 − η2)2/(σ1

2 + σ2
2), evaluating the ratio of the squared dis-

tance between centröıds η1 and η2 of the classes over variances σ1
2 and σ2

2 of
the representations belonging to them.

The higher this ratio is, the better the separability between two classes is. We
assess the categories produced by the different methods in the light of this crite-
rion. The best representation will be that with the highest ratio. We also want to
show that our method benefits from interesting properties. Namely, its accuracy
can easily be tuned using one parameter, the scale-variable kσ (fig. 3(b)).

5 Comparative Experimental Results

The experimental results for the robot position estimation, using Zero-Phase
representation and Fourier low-frequency coefficients techniques were compared
with the results obtained applying Haar integral signature extraction, using their
Fisher criteria.
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5.1 The Discrimination Performance

To differentiate between different places in the lab, in spite of the high percep-
tual aliasing, we need good clustering properties of the extracted signatures.
Figure 3 shows the comparative results when the precedent signature extraction
techniques were used.
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Fig. 3. Left: Comparison of the Fisher criterion of the three tested methods for the five
rooms explored by the robot. Black : Haar invariant signatures (σ = 1 and k =

√
2),

grey : ZPR and white: Fourier transform. Right: Evolution of the Fisher criterion for
different scales of the DoG used.

As expected, we obtain significantly better results for places discrimination
than with ZPR or Fourier transform representations, because our method takes
account of the geometrical and projective properties of the sensor. Unlike the
ordinary histograms, Haar integral distributions have the advantage of captur-
ing the local structure held in the image when the images are transformed, by
weighting the distributions by the Haar measure dg. This advantage is preserved
at different scales of the kernel function as shown in fig. 3(b).

The different techniques implemented have equivalent computational com-
plexity: O(n log(n)) for the Fourier transforms and O(n · m) for the kernel con-
volution introduced by our method, where n is the image size and m the kernel
one. On an AMD 1800MHz, the whole process of the signature construction takes
approximatively 0.30s. The comparison process between a signature and all the
signatures (250) of the image database takes around 400μs.

5.2 The Position Estimation Performance

We are now interested to evaluate the signature discrimination for the robot
position estimation inside each room. When the robot moves in an area, small
distortions are produced in the omnidirectional image space and we should ex-
pect small changes in the feature space. This property is characterized [4] by
the continuity of the used transform for signature extraction, with respect to a
certain metric.

In this experiment, the robot was moved in every room of the lab and we
have extracted signatures at different locations using the previous methods. As is
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suggested by the Fisher criterion, the variation among the images of a given room
is small for our method when compared to the distance between the centröıds of
two rooms. Our method produces signatures that are partial integral invariants
which means they are good local invariants, i.e. for reasonable movements they
should not vary a lot. We study this through the evolution of the L1−norm
between signatures of the image database with respect to the physical distance
(in meters) between the positions they are associated to. As the signatures of the
different methods presented here belong to different feature spaces, the produced
L1−norm are not directly comparable (up to five orders of magnitude). Thus,
the L1−norms have been normalized by an affine change of variable to bring
the L1−norm in a given room, in [0, 1]. The results are shown in fig. 4. The
Haar invariant signatures produces smaller variations than the ZPR or Fourier
coefficients. This is not surprising as we were looking to produce an invariant. But
an interesting fact is that the variation of the Haar signatures is still monotonic.
Thus, we can define a bijective relation between the L1−norm and the physical
distance, allowing a localization inside a given room using these signatures.
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Fig. 4. The evolution of the L1−norm according to the distance on the ground (in
meters) for different rooms ((a) → (c)) applying the studied signature extraction tech-
niques. Solid line: Haar invariant distributions, dot-dashed line: Fourier transform,
dashed line: Zero-phase representation.

6 Conclusion and Ongoing Work

We have proposed an efficient methodology to build invariant signatures for om-
nidirectional image based localization applications. The Haar integral formalism
offers a solid theoretic foundation to the invariant signatures of images we have
introduced. Our method benefits from the local invariance properties of the de-
fined kernel function and the global invariance of Haar integration. During the
integration process, we introduce the geometric and projective transformations
of omnidirectional sensors, as produced by the robot movements.

We have compared our method to different techniques of signature extraction,
for omnidirectional image based localization: Zero-phase representation, Fourier
transform signatures and histograms of local characteristics. Our method proved
to get significantly better results for indoor environment recognition and robot
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localization. Using the Fisher criterion, the built signatures have figured out
a wide separation ability of room classes, contributing to reduce the perceptual
aliasing. Moreover, the smooth variation and the continuity property of the built
Haar signatures, inside each category, provides a good approximation to the
robot position for localization.

Additional development is under way to optimize the exploration training
stage and automatic recognition of the robot position by using additional knowl-
edge on the local robot movements in the Haar integral. We are also exploring
different methods to build kernel functions as we believe that this will influence
the stability and the precision of localization in a positive way.
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Abstract. We have developed an efficient algorithm to compute an Euclidean 
reconstruction from only two wide-baseline color images captured with a hand-
held digital camera. The classical reconstruction scheme has been improved to 
boost the number of matches by a hierarchical epipolar constraint during an it-
erative process and an ultimate step of dense matching based on affine trans-
formation. At the output, between three to four thousands points are recon-
structed in 2 minutes on 1024x768 images. The stability of the algorithm has 
been evaluated by some repetitive tests and the quality of the reconstruction is 
assessed according to a metric ground truth provided by an industrial 3D scan-
ner. The averaged error on 3D points is around 3.5% reported to the model 
depth. Such a precision makes this technique suitable for wound volumetric as-
sessment in clinical environments using a hand held digital camera. 

1   Introduction 

Dense two frame stereo matching techniques for 3D reconstruction have been 
widely studied under known camera geometry [1]. A common drawback is the re-
quirement of a calibration step each time the field of view has to be changed, as it 
affects the configuration of the two cameras. Another problem is that small baseline 
degrades the triangulation step and results in low precision data. Self-calibrated 
vision techniques have then been introduced to compute structure from motion with 
images as the only input [2]. Self-calibration allows to update the camera parame-
ters modified by zooming or focus operations without the use of costly calibration 
pattern. Most of the works consider large sequences of images combined by an 
optimization process for object 3D capture, augmented reality [3,4] and robotics 
applications [5]. Because of the overlap between consecutive frames, the matching 
is then easier to realize between wide baseline views which is a key point for self-
calibration stability and triangulation accuracy. 
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Conversely, our approach is based on a very small set of images captured from 
very different points of view with a hand-held digital camera [6]. The great advantage 
of this approach lies in the flexibility of the image capture.to produce a 3D textured 
model. But behind the easy and free image capture, real technical difficulties are dis-
simulated due to wide-baseline, such as strong scale changes in texture or varying 
lighting conditions. Wide-baseline matching has been a tricky problem for a long 
time, but recent works demonstrate the robustness of some local descriptors in this 
case. A comparative study [7] on matching and object recognition clearly confirms 
the robustness and the distinctive character of the SIFT descriptor. This scale and 
affine-invariant region descriptor is presented in [8]. PDE-based approach for dense 
reconstruction from multiple wide-baseline views has also been developed [9] with an 
acceptable computational time (around 15 minutes). 

This paper presents important enhancements to our earlier work [6]. As a result, we 
are now able to reconstruct between three to four thousands 3D points from only a 
pair of color images (1024 x 768 pixels) in less than 2 minutes. This multiplication of 
the robust matches enables a precise 3D reconstruction, validated against a ground 
truth provided by a commercial 3D scanner. Two major improvements have been 
introduced in the reconstruction chain: a decreasing bandwith of the epipolar con-
straint to combine a higher outlier rejection with the fundamental matrix convergence 
during an iterative process and a local mapping of triangles for real dense matching. 
Increasing the number of robust matches results in higher accuracy and 3D recon-
struction stability [12]. 

The accuracy assessment of the Euclidean reconstruction is essential for volumetric 
measurement applications. Inside a reconstruction pipeline, two errors are tradition-
ally observed by the authors: the residual error measuring the average distance be-
tween matched points and the associated epipolar lines, and the reprojection error. 
However, these errors are estimated in the image plane and do not reflect the final 3D 
structure accuracy. The precision of the inferred 3D model is generally not assessed in 
a quantitative manner but only by a visual inspection [2,9]. We propose to evaluate 
the metric reconstruction error according to a ground truth given by an industrial 3D 
scanner.  

On the other hand, very few works consider the instability of the stochastic meth-
ods generally used for the fundamental matrix estimation [10,11,12]. Running the 
algorithm a second time on the same image pair will not give the same 3D structure 
because of the stochastic outliers rejection. The error led by the fundamental matrix 
estimation is particularly large near some singular cases [11,12]. We propose to ad-
dress this issue by some repetitive tests to evaluate an error confidence interval. 

The paper is organized as follows. Section 2 describes the software architecture of 
the reconstruction chain. In section 3 we develop the two steps introduced to boost the 
number of matches. Experimental results are presented in section 4 and section 5 
concludes the paper. 

2   Reconstruction Chain 

The reconstruction pipeline generally adopted is composed of 3 stages: matching, 
self calibration, triangulation and bundle adjustment (Fig.1). Our wide-baseline  
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SIFT descriptors matching

Harris' detection of 2000 points

Fundamental matrix estimation

Image rectification

Matching with epipolar constraint

Application of continuity constraint

Self-calibration

3D triangulation followed by bundle adjustment

Rejection of aberrant 3D points by median filtering

Repeat k times

Input: 2 images

Output: 3D model
 

Fig. 1. Reconstruction pipeline  

stereo reconstruction starts with the matching of some invariant singular points using 
SIFT descriptor [8] on a pair of wide-baseline color images.  

Fig.2 shows an example of twenty initial matches automatically extracted. The col-
ored pins placed in the field of view provide a metric reference and are also included 
as two reliable matches. These robust matches are used to compute the inital estima-
tion of the fundamental matrix thanks to LMedS method [10]. About two thousands 
color interest points are detected by the Harris detector adapted by Gouet [13]. These 
points are then matched by applying an iterative process. During iterations, the im-
ages are rectified [14] to use epipolar constraint for matching. Once the fundamental 
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matrix is estimated and the images are rectified, the search for corresponding points 
between the views may be reduced to a small band centered around the epipolar line. 
Matching is based on the cross “Winner Take All” algorithm with a ZSAD similarity 
score under a continuity constraint. This constraint verifies that the displacement 
vector does not differ too much from the average vector calculated on a circular 
neighbourhood of 50 pixels. The difference between the two vectors must be less than 
25% in magnitude and less than π/10 in argument. Once a set of point matches has 
been created, an improved estimate of fundemental matrix can be calculated between 
the pair of views, and so on. The improved fundamental matrix makes the correspon-
dence more efficient and improves the outliers rejection by the well-established and 
robust LMedS method [2]. The final fundamental matrix is computed using all the 
inliers and matches are triangulated in 3D-space. A bundle adjustement algorithm 
[15] is applied to optimize the location of all 3D points and the camera parameter 
(focal length). Next, a smoothed triangular mesh is constructed from the resulted 
points cloud by applying a median filter. The first image is then mapped as a texture 
on the mesh.  

 

Fig. 2. Initial matches inferred by SIFT descriptor (top). Three textured views of the recon-
struction from two uncalibrated wound images (bottom). 

At this stage, typically less than 300 points are reconstructed after 7 iterations. The 
number of inlier matches is not really sufficient for a high-quality mesh and a good 
metric reconstruction. Furthermore, the relative error on focal length estimation de-
creases with the number of matches [12]. So to refine mesh, it is necessary to increase 
drastically the number of right matches, and not ordinary interpolate data points. 

3   Multiplying the Number of Matches 

To obtain a denser 3D reconstruction, we boost the number of matches by two exten-
sions to the above algorithm, these key improvements are developed in next sections. 
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The first one introduces a hierarchical epipolar constraint during the iterative process. 
The second one presents an additional step of matching refinement.  

3.1   Hierarchical Epipolar Constraint  

The main idea is that an iterative estimation of the epipolar geometry should be more 
efficient if stronger constraints are applied at each step: more outliers will be rejected 
and a small number of matching candidates makes the cross picking of good matches 
easier (maxima of correlation score). A first improvement is obtained by easily re-
placing the constant band width usually used in the epipolar constraint by a decreas-
ing width during iterations. The bandwidth has an important effect on the number of 
matches selected by the “Winner Takes All” algorithm. So, by progressively limiting 
the bandwidth, the number of matches increases without degrading the quality. The 
efficiency of this decreasing step is illustrated on fig. 3.  
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Fig. 3. Number of matches during iterations with a constant bandwidth and with a decreasing 
bandwidth for the epipolar constraint 

The band width (dot line) follows a linear function inversely proportional to the 
loop index, decreasing from 35 to 5 pixels on both sides of the epipolar line. Using a 
constant width (dashed-dot line) leads to a stable number of matches after one itera-
tion; on the contrary, a variable bandwidth (bold line) boosts the number of matches 
around 60% after seven iterations. 

3.2   Affine Transformation of Similar Triangles 

An iterative process to extract consistent matches with fundamental matrix estimation 
provides a limited set of inliers (typically around four hundreds pairs). So, an ultimate 
step is introduced at the output of our algorithm to multiply the number of matches in 
the pair of original images. A classical interpolation would only create additional data 
points without changing the precision of the 3D reconstruction. On the  
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Fig. 4. An example of matches multiplication by applying an affine transformation on homolo-
gous triangles. (a) Triangular region computed in the first image and reported in the second 
one. (b) Affine transformation applied to triangles. (c) Harris corners extraction. (d) Matching 
reported on original triangles. 

other hand, using a similarity score is not efficient since the images are taken from 
very different viewpoints. So, the idea is to apply a triangulation between all the inli-
ers extracted in the two images and then to bring them locally closer by applying an 
affine transform. To do this, the Delaunay triangulation computed on the matched 
points in the first image (P1,P2,P3), is reported in the second one (P’1,P’2,P’3). Then 
the template affine transformation is defined by the three matched vertexes and ap-
plied to triangles to put them in the same frame. The corners extracted by the Harris 
detector inside each transformed triangular region are then matched with the ZSAD 
similarity score controlled by a relaxation algorithm. We use the relaxation method 
proposed by Zhang and reported in [13], which favour matches that have numerous 
symmetric matches in a neighbourhood representing 1/8 of the image size. An exam-
ple of our method is given in fig.4. This dense matching provides 3000 to 4000 
matched pairs and allows a more precise reconstruction. 

4   Results 

We have tested the improved algorithm on several pairs of real images. Results are 
divided in two sections. The first deals with some repetitive tests realized on the same 
image pair to illustrate the stability of the algorithm. In the second one, we compare 
the 3D structures inferred with a very precise 3D model of the object given by an 
industrial 3D scanner. 

4.1   Repetitive Test on Real Images  

To test the stability of the reconstruction algorithm, we run it 10 times on the same 
image pair presented in fig.2. These color images show an artificial heel wound de-
signed by a professional of special effects. These color images present a wide-
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baseline with a strong scale change. They have been captured by a hand-held digital 
camera (Sony DSC-H1) in a macro mode (fixed focal length) with a large image size 
(2048 x 1536 pixels), and a high quality JPEG compression. The images are then 
resized to 1024x768 for current processing. To avoid the singular orbital configura-
tion at the self-calibration stage [12], the two points of view are separated by an angle 
around 30 degrees and a 1.5 ratio on the distances relative to the object. Ten recon-
structions are computed from the same initial matches (fig.2). Because of the stochas-
tic nature of the algorithm, each 3D structure inferred is different to the others. After 
the fundamental matrix estimation and outliers rejection, the average of the residual 
errors is equal to 1.28 pixels, with a standard deviation of 1.05 pixels on the ten tries. 
After the bundle adjustment, the average of the reprojection errors is 0.92 pixel, with 
a standard deviation 0.77 pixel. This error is not high compared to some published 
shape-from-video results obtained from large video sequences (typically 50 to 150 
frames). Computation time depends on the number of reconstructed points with the 
image size, but is generally between 2 and 3 minutes for 3000 to 4000 reconstructed 
points on a Pentium IV 3.4 GHz based computer. A software optimization could re-
duce it by a half.  

4.2   Accuracy Assessment of 3D Structure  

The accuracy of the final 3D structures has been evaluated by comparing them with a 
ground truth provided by an industrial 3D scanner. An ordinary visual inspection with 
a flattering texture mapping does not yield a quantitative evaluation. The ground truth 
data has been provided by KREON Technologies ZEPHYR®

 system, based on active 
triangulation: the object is scanned by a hand-held scanner that projects a red laser 
line seen from a fixed angle by the camera. The measuring head displacements are 
recorded by an articulated robot arm. About 500 points are extracted on the laser line. 
The system resolution is 3 μm with reproducibility of 9/15. For our object, the refer-
ence surface generated by this scanner contains 41651 points in the measured area. 

To compare our reconstruction with this ground truth model, a scaling and a rigid 
registration of the 3D data is necessary. This has been done by using 3DReshaper® 
software distributed by TECHNODIGIT. The global registration is composed of two 
parts. The first step is a manual initialization of the 3D-3D rigid registration. To do 
this, six remarkable points are chosen manually on the cloud and matched with their 
equivalent on the reference surface. The distances between the points are minimized 
to initialize the registration. Then, an optimization is processed using the Iterative 
Closest Point algorithm [16]. Finally, the coordinates of 3D registered points and 
those of their orthogonal projection on the reference surface are recorded in an Excel 
file.  

The comparison between the registered cloud and the ground truth model is then 
evaluated by the residual deviations on each 3D point: DevXi, DevYi and DevZi represent 
the signed distances on each direction between a point and the reference surface along 
the normal estimated on adjacent triangles (orthogonal projection). We observe three 
types of error (Table 1): the signed residual error, the averaged distance and the root 
mean squared error. The first one is directly provided by the 3DReshaper software to 
evaluate the registration convergence and error distribution. The distributions of the 
signed local deviations are presented on Fig.5 by their confidence intervals at 95%  
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(average ± double standard deviation) for the ten repetitive reconstructions obtained on 
the same image pair (fig.2). Despite a relative instability, they are almost zero centered 
for all reconstructions. Fig.6 illustrates two examples of error maps observed on the 3D 
surface with the corresponding distribution color scale to the left. 

The averaged distance on all 3D points is based on the Euclidian distance: 

∑
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where N is the number of 3D points considered. 
The classical root mean squared error formula is: 
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Table 1 gives the global accuracy evaluation according to AVD and RMS defined 
above over the ten repetitive tests. The RMS is around one milimeter with a maximum 
error of 1.83. Considering the averaged distance observed on 3D points, it is less than 
one millimeter for all reconstructions and below half a millimeter for six of them. The 
relative error in percent is reported to the model depth (Ymax=17.23 mm). It also interest-
ing to note that the average relative value 3.5 % is close to the one evaluated on simu-
lated data presented in preliminary results [6,10]. These results are good if we consider 
the difference of clouds density: our reconstruction presents a number of 3D points ten 
times smaller than the reference surface. The manual initialization of the registration 
raises a repeatability problem. The registration has been realized 20 times on the same 
pair of 3D data. From these repetitive tests, the average of the ten values for AVD is 0.47 
mm with a standard deviation of 0.03 mm, e.g. 6% of the average. We conclude that the 
manual pairing used to initialize registration doesn’t really influence the final result. 
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Fig. 5. Confidence intervals at 95% for the local signed errors between 3D points and ground 
truth surface for the ten repetitive reconstructions from the same image pair 
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Table 1. Statistics of the observed errors over the ten repetitive tests on the same image pair. 
Relative error is the AVD reported to the model dimension. 

 Signed Error 
(mm) 

RMS  
(mm) 

AVD  
(mm) 

Relative Error 
(%) 

Average 0,37 1,06 0,63 3,65 
Standard deviation 0,17 0,34 0,18 1,05 
Min value 0,22 0,73 0,44 2,56 
Max value 0,71 1,83 0,94 5,44 

            

Fig. 6. Error distribution on the 3D surface for the best (right) and worst (left) reconstruction 

5   Conclusion  

We have developed an efficient algorithm to compute an Euclidean reconstruction 
with two uncalibrated wide-baseline images including important scale changes as the 
only input. The main contribution of the presented work is the mix of existing algo-
rithms into an integrated framework, through which a fully automated reconstruction 
can be evaluated with respect to a metric ground truth. Two key improvements have 
been introduced to the common reconstruction pipeline to boost the number of 
matches. Firstly a hierarchical epipolar constraint is introduced during the iterative 
process to reject the outliers and to refine the fundamental matrix. And an ultimate 
step of quasi dense matching based on an affine transformation of homologue trian-
gles in the two images is added at the output of the pipeline to refine the resulting 
mesh. These improvements provide a dense reconstruction: 3000 to 4000 points from 
only a pair of images. The stability of the algorithm has been evaluated by some re-
petitive tests and the quality of the reconstruction is assessed according to a metric 
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ground truth given by an industrial 3D scanner. The averaged error on 3D points is 
generally less than millimeter, e.g. a relative error around 3.5% reported to the model 
depth. In the context of wound volumetric measurement [6], this precision is suffi-
cient for therapeutic following. Based on a free hand-held digital camera, this user-
friendly and low cost technique can be widely spread to the medical staff to provide 
high-quality 3D model.  
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Abstract. Today most mobile telephones come equipped with a cam-
era. This gives rise to interesting new possibilities for applications of
computer vision, such as building recognition software running locally
on the mobile phone. Algorithms for building recognition need to be
robust under noise, occlusion, varying lighting conditions and different
points of view. We present such an algorithm using local invariant re-
gions which allows for mobile building recognition despite the limited
processing power and storage capacity of mobile phones. This algorithm
was shown to obtain state of the art performance on the Zürich Building
Database (91% accuracy). An implementation on a mobile phone (Sony
Ericsson K700i) is presented that obtains good performance (80% accu-
racy) on a dataset using real-world query images taken under varying,
suboptimal conditions. Our algorithm runs in the order of several sec-
onds while requiring only around 10 KB of memory to represent a single
building within the local database.

1 Introduction

In today’s society mobile technology plays an important role. With the wide-
spread use of next generation mobile phones a large percentage of the population
carries a potent processing unit, which nowadays is accompanied by a digital
camera. This setting has presented interesting opportunities for the development
of new applications of artificial intelligence, in particular of computer vision.
One interesting idea in this direction is an application for a mobile device for
the recognition of buildings in an urban environment using only a still camera
image as input. Such an application could be used within the tourist industry to
provide people with interesting information on photographed buildings, such as
opening hours and historical background information, without the need for any
additional hardware other than a camera equipped mobile phone.

Although such applications have recently been described within the literature
[2] these systems all rely on a client-server architecture in which a user takes a
photograph with his mobile device, sends the image to the server which carries

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1122–1132, 2006.
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the computational workload and subsequently returns information to the user.
Such an architecture has some serious drawbacks. The communication overhead
is costly in time and is expensive for the user since mobile network providers
usually charge data transfer across their network. Secondly, such an application
requires coverage by a mobile network, limiting the application to use within
urban environments where coverage is high. A more interesting version of such
an application would run locally on the mobile phone without requiring any
communication with an external server, assuming the application is acquired
on beforehand. However, developing a computer vision application that works in
acceptable time on an limited device such as a mobile phone requires a careful se-
lection of techniques, as the mobile platform imposes constraints on both compu-
tational power and storage capacity. The application suggested here tackles these
practical issues and performs fast offline building recognition in a robust manner.

The aforementioned constraints strongly influence the choice of algorithms
and restricts one to a selection of relatively cheap techniques which require as
little storage as possible. This implies that great care should be taken to ensure
that the representation of buildings in the local database (on the mobile phone)
is as compact as possible without affecting the performance of the classification
algorithm used. Ideally, one would train a learning algorithm offline and provide
the mobile phone with a compact representation of the original database which
contains only those image features which are required to correctly classify the
buildings in the database. The mobile device would subsequently perform feature
extraction/construction on the captured image and feed the result to a compactly
represented decision rule, thusly eliminating the need of communication with an
external server. On the other hand the application requires an approach that can
handle the varying circumstances under which query images are taken. A user
might take a picture of a building in which he is interested during any time of
the day, under different weather conditions, from any viewpoint. The approach
chosen will therefore be required to work under different lighting conditions, be
able to handle low resolution images and preferably also be invariant under affine
transformations. A solution that meets both the performance criteria and these
practical constraints will be presented.

An outline of our approach, which uses local invariant regions, will be dis-
cussed, along with a simple baseline classifier providing a reference point for
‘naive expectation’ performance. The performance of these techniques was eval-
uated on a personal computer on a standard industrial dataset; the Zurich Build-
ing Database (ZuBuD) [10], the results of which will be discussed. On the basis
of these results it will be argued that the ZuBuD, although widely used within
the literature, is perhaps too easy to serve as a performance reference for our
envisaged application. A custom database which does not suffer from this draw-
back will therefore be introduced for the evaluation of our method on the mobile
phone. It will be shown that our method can compete with more computationally
elaborate approaches from the literature in terms of classification performance,
whilst still running in acceptable time on the low capacity processor of a mobile
telephone and requiring only a minimal amount of storage.
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2 Local Invariant Regions

In order to identify a building, the intrinsic properties of the object, such as
shape, color and texture, have to be compared with those of known buildings.
The main difficulty is to get rid of the extrinsic properties, such as scale, view-
point and illumination conditions.

There are two classes of approaches to object recognition, based on either
global or local features. The global approach characterizes the object by its image
as a whole. A buildings color distribution is such a global feature. Because many
buildings have similar colors it is very unlikely that only color information is
sufficient for the task at hand. More sophisticated ways of characterizing objects
globally have several problems. In general they are not robust to occlusion, which
is unavoidable with objects the size of buildings, not invariant to the viewpoint
and they might require a prior segmentation of the image, which is a hard task
in the case of buildings.

The other approach characterizes an object by a representations of a number
of local features. Usually the features found in an image are compared with
the features seen in the database of known objects, where some sort of voting
scheme determines which known object fits best. This method is frequently used
successfully in literature [2,3,4,6,8,9,11,13]. The advantages of this approach are
that it is robust to occlusion and clutter. Local features are more easily described
invariantly of scale, viewpoint, and other extrinsic properties.

In the case of building recognition specifically local features prove successful
[11,4,2,3,8,5,6]. Recently a more efficient version of SIFT [4] has been proposed,
called i-SIFT, for the recognition of buildings on a mobile telephone using a
client server architecture [2]. i-SIFT reduces the runtime of the SIFT algorithm
by selecting only informative features and reducing the size of the representa-
tion of them. Both SIFT and i-SIFT are very robust approaches and i-SIFT in
particular has been shown to yield good performance for building recognition[2].
Unfortunately both approaches are less suited for local execution on a mobile
phone, since they require numerous Gaussian convolutions. These proved to be
a serious execution time bottleneck on the low-end processor available in the av-
erage mobile device. Since we explicitly want to avoid the need for client-server
communication during the classification process, a method that is more suitable
for execution on the mobile phone is required.

Here we will present a novel object recognition method, based on local in-
variant features, that is optimized for mobile building identification. Our al-
gorithm follows the basic scheme of finding interest points, representing them
invariantly and using a voting scheme based on a distance measure between fea-
ture representations to determine the best match. The method makes uses of
the characteristics of the problem limit the required resources to a minimum,
while still performing very well compared to computationally more expensive
approaches.

The problem can be described in more detail as follows: Given a low resolution
picture of a building taken with a mobile phone, decide which known building
is most similar regardless of viewpoint, scale and illumination conditions. From
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each known building a set of pictures from various viewpoints is available to
create the application. The classification should be done locally on the mobile
phone itself within acceptable time. The resolution of the query image is 160×
120, since this is the only available resolution Java software was able to capture
on the mobile phone we used. Although this severely reduces the amount of
information available for classification, it also reduces the amount of computation
and memory needed.

There are some assumptions we can make to make that make problem easier.
First of all we can assume that query pictures are always taken upright, which
is fair since buildings newer appear rotated. Secondly, pictures are taken ap-
proximately under the same vertical angle as the training images. Furthermore,
the method exploits the fact that buildings often exhibit many repetitions and
planar surfaces.

2.1 Feature Detection

Recognition of objects based on local features requires a method to select interest
points that are repeated in different images of the same object independently.
The more points that are repeated throughout different images of the object the
better, because only regions that are found in both training and query images
facilitate correct classification. Regions that only occur in either training or
query images can only lead to false associations. Unfortunately it is inevitable
that a method detects false interest points, that are not repeated. Extrema in
the intensity image have proved to work well as interest points [13] and are
very cheap to detect using an optimized non-maximum suppression algorithm.
Intensity extrema that also occur versions of the image that are blurred with
a Gaussian kernel are more reliable, because they are repeated more often [11].
Gaussian blurring is a time consuming operation on the mobile phone we used
(several seconds for a single blur), however when a convolution kernel is used in
which all coefficients are powers of 2, bit shift operations can be used to create
a fast implementation for this specific kernel.

Other types of interest points that can be found in the literature were less
suitable, because they were expensive to detect. Extrema in the difference-
of-Gaussian scale space [4], for instance require many expensive convolution
operations. Corner points are also more expensive, but also have the draw-
back that they tend to appear very frequently at places where the object in
not planar, which makes it more difficult to characterize those local features
invariantly.

2.2 Feature Representation

Given a local intensity extremum, the small image region around this interest
point is used as the basis of the local feature that is used for recognition. The
shape and size of these regions are determined in such a way that they adapt
itself to the viewpoint of the object. The border points of the region correspond
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roughly to sharp intensity changes while radiating from the local intensity ex-
tremum, as described in [13]. Unlike what is done frequently, we do not fit an
ellipse to these points. In small regions where the object is planar, the (perspec-
tive)projection of this region is approximately affine. Because we have assumed
that the images are not rotated and the training images are taken under the
same vertical angle, vertical lines in the region also appear as vertical lines in
the training images. The remaining differences can be compensated with a ver-
tical shear and both vertical and horizontal rescaling. A parallelogram of which
the left and right sides are held vertically that is fitted to the border points of
the region, would therefore capture the transformations that effect the appear-
ance of the region. To make the feature more distinctive we double the size of
the fitted parallelogram. This approach is in particular well suited for man-made
structures.

Fig. 1. Examples of found local invariant regions for a building taken from ZuBuD

Unlike others who use ‘Generalized Color Moments’ introduced by Mindru [7]
we represent the regions in a more direct way by transforming the image contents
in each region to a fixed size square of size 10× 10. The RGB color values of the
pixels in this square characterize the region. To make the representation invariant
to illumination intensity we divide each value by the sum of the intensities of
all pixels in the region. The chosen representation is not rotationally invariant,
because this is not needed for our application, making the representation more
descriptive than Generalized Color Moments.

In order to reduce the amount of information needed to represent each region,
we use Principal Component Analysis to compress the data. Once we have col-
lected all regions from all buildings from the database and represent the pixel
data in a normalized region as a vector, we can use PCA to determine a more
efficient basis for this feature space. By selecting the first n principal components
we can reduce the space required represent a regions significantly and also reduce
the amount of computation required for region comparison. We have used the
first 30 components, leading to a representation with a space reduction to around
9% while retaining 96% of the original variance of the feature space. Theoret-
ically a drop in performance could be expected in case discriminating features
got lost due to this less accurate representation, but this does not appear to be
the case in practice.
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2.3 Reduction of the Number of Regions

Because we have several images of each building, features which are not repeated
throughout these images are likely to be noise or at least not characteristic. Dis-
carding such features therefore not only leads to less storage requirements and
faster classifications it also gives a higher accuracy. Repeated regions are not
only found because there are more views of each building, but also because
many buildings have many repetitions in themselves (i.e. a row of identical win-
dows). It would be a waste of space to store all copies of such repeating regions,
so only one prototype is stored. This is achieved by clustering the features found
for all images of a building. Singleton clusters are removed, because such fea-
tures are not characteristic or noise. Of all other clusters, only the centroids are
kept as prototypes of the cluster members. We used linkage clustering with an
empirically determined threshold based on the maximal distance between the
instances.

This novel addition reduces the storage needed to around 20% of the original
size, and makes our approach especially suitable for implementation on mobile
phones. The clustering step also boosts performance, since it automatically filters
out noise that could otherwise reduce classification accuracy.

2.4 Image Classification

When a new image is captured it will undergo the same process of creating
a list normalized pixel data of fixed size regions. The data is then projected
on the principal component basis. Now the new image can be compared to
the database. Classification of the image is performed using a weighted ma-
jority voting scheme, wherein each region found within the query image votes
for the building belonging to its nearest neighbor in the principal component
space.1. The weight of the vote equals 1/(d + ε), where d is the Euclidean dis-
tance to the nearest neighbor and ε a small constant number to prevent the
vote to have infinite weight. Any monotonically decreasing function would work,
however experiments have shown that this function gave the highest perfor-
mance. The query building will be classified as the building with the highest
total vote.

3 Baseline Comparison

In order to obtain a basic ‘naive expectation’ measure to indicate the relative
performance of our approach, a simple classifier based on normalized RGB (rgb)
histograms was implemented [12].

For this classifier a histogram is built for the r and g channel of every building
in the database with 100 bins for each channel.2 The histogram is then normal-
ized and stored in the database.
1 Determining the nearest neighbor can be done in O(log n)[1].
2 Note that the b channel contains no extra information since r + g + b = 1 and can

therefore be dropped.
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To classify a new image a histogram is constructed of the query image accord-
ing to the same parameters as the histograms in the database. The χ2 distance
between the histogram of the query image and every histogram in the database
is calculated, after which the query image is classified as being the building for
which the χ2 distance is the smallest.

4 Experiments and Results

To test the viability of our local invariant region approach it has first been
implemented in MatLab, where it was tested on the ‘Zürich Building Data-
base’, ZuBuD[10]. The obtained results will be discussed below. The perfor-
mance of our approach will be compared to that of other approaches from the
literature.

4.1 The ZuBuD Database

The ZuBuD consists of pictures of 201 different buildings taken in the city of
Zürich, Switzerland. For every building there are five different views within the
database, each of which are 640 × 480 pixels in size. Differences between the
views include the angle at which the picture is taken, relatively small scaling
effects and occlusions. Examples of images from this dataset can be found in
figure 2. The ZuBuD comes with a standardized query set, consisting of 115
images of buildings occurring in the database. These query images have a res-
olution of 320 × 240 and are taken with a different camera under different
conditions.

Results on ZuBuD. Since on the mobile telephone we only make use of query
images with a low 160×120 resolution, we downscaled the ZuBuD images to this
resolution as well. We used these images to test our method. For a fair compari-
son, we also used these downscaled images for the color histogram approach. The
results obtained can be found in Table 1, along with performance of other meth-
ods found within the literature. Several things can be noted about these results.
First of all the local invariant regions classifier we propose performs well on the
ZuBuD. The performance of 91% is identical to that of the i-SIFT algorithm [2]
and of the same order of magnitude as that of most other algorithms mentioned
in the literature, despite the fact that it uses very little resources, because it
has to run within acceptable time on a mobile phone. Secondly it is interesting
to note that the rgb histogram based classifier shows a surprisingly high perfor-
mance on ZuBuD. So high in fact, that it outperforms most methods found in the
literature, including our own. Note that this is achieved with only information
present in the downscaled images. Intuitively, you suspect that a method based
on global color distributions is very sensitive to illumination conditions, scale,
occlusions and differences between cameras. Using normalized RGB, the method
is invariant to illumination intensity, but the representation is still influenced by
the illumination color, which is determined by, amongst others, the weather and
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Fig. 2. Examples of different views of a single building from the Zürich Building Data-
base

time of the day. Scale influences the building’s representation because the ratio
between background colors and building colors is different for a different scale.
Occlusions add noise to the representation. When there are different buildings
with similar colors, when they are made from the same materials for instance,
the discriminative power of color histograms can be expected to be too small to
cope with these factors, so the method would fail easily. The high performance
of the color distribution approach on ZuBuD can be explained from the fact that
the ZuBuD query images are very similar to the reference images in terms of
weather, viewing direction and scale. It also helps that many of the buildings in
the database are painted in nice pastel colors, which increases the discriminative
power of color.

Our own method incorporates shape and texture in its representation of a
building, but also relies on color. Illumination intensity is compensated by nor-
malizing the total intensity in a region, but the method is not insensitive to other
photometric conditions. In light of the above observations on ZuBuD, we created
a custom building database ourselves, which is more realistic for our application.
This allowed us to evaluate our method under harder conditions and verify our
intuition that global color distributions are not discriminative enough in gen-
eral. The database also allowed us to test our method on the mobile telephone
without traveling to Zürich.

4.2 Custom ‘Roeterseiland’ Database

The ‘Roeterseiland’ database consists of images of 7 buildings of the Roeter-
seiland complex of the University of Amsterdam. From each building between
4 to 11 photos are included, depending on the amount of visible sizes of the
building and the diversity between the sides. The images have a resolution of
160× 120 pixels and are resized from the originals are shot with a 5.0 megapixel
camera. The set of query images consists of 45 images, which are taken inde-
pendently by someone else using the built-in cameras of a Sony Ericsson K700i
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Table 1. Performance of the local invariant regions approach on ZuBud, together with
results found in the literature

method performance (% correct)

HPAT indexing [11] 86 %
SIFT[4] 86 %
I-SIFT[2] 91 %
Local Invariant Regions 91 %
Baseline matching [3] 92 %
Sublinear indexing [8] 93 %
rgb histograms 94 %
Random subwindows [5] 96 %
LAF [6] 100 %

Fig. 3. Examples of images from the ‘Roeterseiland’ database (left) and query set
(right), showing some differences in viewpoints

and a Nokia 6630 mobile telephones. The query images show the same buildings
from different angles, at different scales and with various kinds of weather. In
several images the buildings are partially occluded by people, cars or trees. A
few examples of the images in the ‘Roeterseiland’ database are shown in Fig. 3.

Results on the ‘Roeterseiland’ Database on the Mobile Telephone.
The results obtained on the custom ‘Roeterseiland’ database can be found in
Table 2. We begin to note that on this dataset rgb does not perform very well,
which is more along the lines of expectation than its performance on ZuBuD,
reflecting the more realistic quality of the query sets used on our database. Our
local invariant region approach still performs quite well, showing 80% accuracy
on the database. This indicates that the performance of our method can not just
be ascribed to the lack of difference between training and query images from the
ZuBuD, but proves to be reasonably robust. The representation of buildings in
our method is invariant to illumination intensity, but not to other photometric
properties. The results show that the used features have enough discriminative
power to overcome this shortcoming. It might help to use training images taken
under identical conditions, to avoid a bias for buildings captured with the same
weather for instance.
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Table 2. Performance on the ‘Roeterseiland’ database

method performance (% correct)
Local invariant regions 80 %
rgb histogram 24 %

The algorithm takes less than 5 seconds to classify a building on a Sony Er-
icsson K700i, and requires only 63KB bytes of storage for the database (less
than 10KB for a single building). These statistics show that our approach
can be efficiently implemented on a mobile phone and that an application per-
forming building recognition locally on the mobile device is indeed feasible in
practice.

The number of buildings in the ‘Roeterseiland’ database is small, which influ-
ences the performance measured positively. The ZuBuD shows that the method’s
accuracy is scales to a large number of buildings. The execution time of the
method consists largely of the constant time it takes to extract the image’s fea-
tures. The comparison of each feature with the database is logarithmic in the
number of stored regions, when implemented efficiently [1]. In terms of time
performance the method can be considered scalable too. Furthermore, in many
cases the number of candidate buildings might not be very large. This is the case
when the approximate location of the mobile phone is known, using information
about the mobile phone network cell for instance.

5 Conclusions

A new local invariant region algorithm for building classification was proposed
that could combine robustness with fast performance on a mobile phone while
requiring only limited storage. The algorithm was evaluated on a personal com-
puter on the ZuBuD and was shown to be capable of obtaining state of the art
results on this database (91% accuracy).

In order to obtain a baseline performance score as reference material, a very
simple classifier using only rgb histograms was also implemented. It was shown
that this very simple method can outperform most of the known methods from
the literature on ZuBuD, indicating that the query images of the ZuBud data-
base are too easy to differentiate between simple methods and robust advanced
methods. We therefore created a small database of our own, consisting of seven
buildings and several training and query images for each building. When creating
this database we used a high quality camera for the creation of the database and
two low-quality built-in mobile phone cameras to create the query images from
different viewpoints, at different scales, under different illumination conditions
and with realistic small occlusions.

Our algorithm was implemented on a mobile phone (Sony Ericsson K700i) and
tested on our custom database along with the baseline rgb histogram classifier.
For the naive color distribution approach performance performed very poorly
on this database (24% accuracy), whereas the local invariant region algorithm
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kept performing well (80% accuracy). This indicates that the custom database
is more challenging and more suitable for obtaining an estimate of the level of
performance that can be expected in practice.
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Abstract. This paper presents a novel on-line learning procedure to be used in 
biologically realistic networks of integrate-and-fire neurons. The on-line adap-
tation is based on synaptic plasticity and changes in the network structure. 
Event driven computation optimizes processing speed in order to simulate net-
works with large number of neurons. The learning method is demonstrated on a 
visual recognition task and can be expanded to other data types. Preliminary 
experiments on face image data show the same performance as the optimized 
off-line method and promising generalization properties. 

1   Introduction 

The human brain has been modelled in numerous ways, but these models are far from 
reaching comparable performance. These models are still not as general and accurate 
as the human brain despite that outstanding performances have been reported [1] [2] 
[3]. Of particular interest to this research are the models for visual pattern recognition. 
Visual pattern recognition models can be divided in two groups according to the con-
nectionist technique applied. Most of the works deal with the visual pattern recogni-
tion using neural networks comprised of linear/non-linear processing elements based 
on the neural rate-based code [4] [5]. Here we refer to these methods as traditional 
methods. In another direction, a visual pattern recognition system can be constructed 
through the use of brain-like neural networks.  

Brain-like neural networks are networks that have a closer association with what is 
known about the way brains process information. The definition of brain-like net-
works is intrinsically associated with the computation of neuronal units that use 
pulses. The use of pulses brings together the definitions of time varying postsynaptic 
potential (PSP), firing threshold (ϑ), and spike latencies (Δ), as depicted in Figure 1 
[6]. Brain-like neural networks, despite being more biologically accurate, have been 
considered too complex and cumbersome for modeling the proposed task. Table 1 
shows a general classification of neural models according to the biological accuracy. 
However recent discoveries on the information processing capabilities of the brain 
and technical advances related to massive parallel processing, are bringing back the 
idea of using biologically realistic networks for pattern recognition. A recent pioneer-
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ing work has shown that the primate (including human) visual system can analyze 
complex natural scenes in only about 100-150 ms [7]. This time period for informa-
tion processing is very impressive considering that billions of neurons are involved. 
This theory suggests that probably neurons, exchanging only one or few spikes, are 
able to form assemblies, and process information. As an output of this work, the au-
thors proposed a multi-layer feed-forward network (SpikeNet) of integrate-and-fire 
neurons that can successfully track and recognize faces in real time [7]. 
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Fig. 1. On the left: Representation of biological neuron. On the right: Basic artificial unit (spik-
ing neuron). 

This paper intends to further evaluate the network model SpikeNet proposed in [8] 
and extend its applicability to perform on-line learning and evolving its functions as 
streams of information are received by the input nodes. In the next sections the spik-
ing neural network model will be presented and the new learning procedure will be 
described. The new learning method is applied to the face recognition task and the re-
sults are compared with previous work. Discussions and additional required analysis 
conclude the paper.  

Table 1. Classification of artificial neural network models according to the biological relevance 

 Biologically motivated Moderate biological relevance No biological relevance 
Model Hodgkin-Huxley 

Multi-compartment 
Cable theory 

Spike Response Model 
Integrate-and-Fire neuron 
Izhikevich simple neuron 
SpikeNet 

McCulloch-Pitts 
Adaline 
Perceptron 

Usage Tools for neuroscientists Simulation of large networks 
Temporal properties and syn-
chronicity of spiking neurons 
Pattern recognition 

Pattern recognition 
Engineering problems  

2   Spiking Network Model 

In this section we describe the steps of the biologically realistic model used in this 
work to perform on-line visual pattern recognition. The system has been implemented 
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based on the SpikeNet introduced in [7] [8] [9] [10]. The neural network is composed 
of 3 layers of integrate-and-fire neurons. The neurons have a latency of firing that de-
pends upon the order of spikes received. Each neuron acts as a coincidence detection 
unit, where the postsynaptic potential for neuron i at a time t is calculated as: 

 (1) 

where mod ∈ (0,1) is the modulation factor, j is the index for the incoming connection 
and wj,i is the corresponding synaptic weight. See [7] [9] for more details. 

Each layer is composed of neurons that are grouped in two-dimensional grids 
forming neuronal maps. Connections between layers are purely feed-forward and each 
neuron can spike at most once on spikes arrival in the input synapses. The first layer 
cells represent the ON and OFF cells of retina, basically enhancing the high contrast 
parts of a given image (high pass filter). The output values of the first layer are en-
coded to pulses in the time domain. High output values of the first layer are encoded 
as pulses with short time delays while long delays are given to low output values. 
This technique is called Rank Order Coding [10] and basically prioritizes the pixels 
with high contrast that consequently are processed first and have a higher impact on 
neurons’ PSP. 

Second layer is composed of eight orientation maps, each one selective to a differ-
ent direction (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°). It is important to notice 
that in the first two layers there is no learning, in such a way that the structure can be 
considered simply passive filters and time domain encoders (layers 1 and 2). The the-
ory of contrast cells and direction selective cells was first reported by Hubel and Wie-
sel [11]. In their experiments they were able to distinguish some types of cells that 
have different neurobiological responses according to the pattern of light stimulus.  

The third layer is where the learning takes place and where the main contribution 
of this work is presented. Maps in the third layer are to be trained to represent classes 
of inputs. See Figure 2 for the complete network architecture. In [7], the network has 
a fixed structure and the learning is done off-line using the rule: 

N
w

jaorder
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mod=Δ  (2) 

where wj,i is the weight between neuron j of the 2nd layer and neuron i of the 3rd 
layer,  mod ∈ (0,1) is the modulation factor, order(aj)

 is the order of arrival of 
spike from neuron j to neuron i, and N is the number of samples used for training a 
given class.  

In this rule, there are two points to be highlighted: a) the number of samples to 
be trained needs to be known a priori; and b) after training, a map of a class will 
be selective to the average pattern. 

There are also inhibitory connections among neuronal maps in the third layer, so 
that when a neuron fires in a certain map, other maps receive inhibitory pulses in 
an area centred in the same spatial position. An input pattern belongs to a certain 
class if a neuron in the corresponding neuronal map spikes first. 

=
ij

wtiPSP jorder

,

)(mod),(



1136 S.G. Wysoski, L. Benuskova, and N. Kasabov 

 

Fig. 2. Adaptive spiking neural network (aSNN) architecture for visual pattern recognition 

One of the properties of this system is the low activity of the neurons. It means that 
the system has a large number of neurons, but only few take active part during the re-
trieval process. In this sense, through the event driven approach the computational 
performance can be optimized [8] [12]. Additionally, in most cases the processing can 
be interrupted before the entire simulation is completed. Once a single neuron of the 
output layer reaches the threshold to emit a spike the simulation can be finished. The 
event driven approach and the early simulation interruption make this method suitable 
for implementations in real time. 

3   On-Line Learning and Structural Adaptation 

3.1   General Description 

Our new approach for learning with structural adaptation aims to give more flexibility 
to the system in a scenario where the number of classes and/or class instances is not 
known at the time the training starts. Thus, the output neuronal maps need to be cre-
ated, updated or even deleted on-line, as the learning occurs. In [13] a framework to 
deal with adaptive problems is proposed and several methods and procedures describ-
ing adaptive systems are presented. 

To implement such a system the learning rule needs to be independent of the total 
number of samples since the number of samples is not known when the learning starts. 
Thus, in the next section we propose to use a modified equation to update the weights 
based on the average of the incoming patterns. It is important to notice that, similarly to 
the batch learning implementation of Equation 2, the outcome is the average pattern. 
However, the new equation calculates the average dynamically as the input patterns 
arrive. 
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There is a classical drawback to learning methods when, after training, the system 
responds optimally to the average pattern of the training samples. The average does 
not provide a good representation of a class in cases where patterns have high vari-
ance (see Figure 3). A traditional way to attenuate the problem is the divide-and-
conquer procedure. We implement this procedure through the structural modification 
of the network during the training stage. More specifically, we integrate into the train-
ing algorithm a simple clustering procedure: patterns within a class that comply with a 
similarity criterion are merged into the same neuronal map. If the similarity criterion 
is not fulfilled, a new map is generated. The entire training procedure follows 4 steps 
described in the next section and is summarized in the flowchart of Figure 4. 

 

Fig. 3. Divide and conquer procedure to deal with high intra class variability of patterns in the 
hypothetical space of class K. The use of multiple maps that respond optimally to the average 
of a subset of patterns provides a better representation of the classes. 

3.2   Learning Procedure 

The new learning procedure can be described in 4 sequential steps: 

1. Propagate a sample k of class K for training into the layer 1 (retina) and layer 2 (di-
rection selective cells – DSC); 

2. Create a new map MapC(k) in layer 3 for sample k and train the weights using the 
equation:  

)(
, mod jaorder
ijw =Δ  (3) 

where wj,i is the weight between neuron j of the layer 2 and neuron i of the layer 3, 
mod ∈ (0,1) is the modulation factor, order(aj) is the order of arrival of spike from 
neuron j to neuron i. 

The postsynaptic threshold (PSPthreshold) of the neurons in the map is calculated 
as a proportion c ∈ [0,1] of the maximum postsynaptic potential (PSP) created in a 
neuron of map MapC(k) with the propagation of the training sample into the updated 
weights, such that: 

)max(PSPcPSPthreshold =  (4) 

Local averages 
Global class average 
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The constant of proportionality c express how similar a pattern needs to be to trigger 
an output spike. Thus, c is a parameter to be optimized in order to satisfy the require-
ments in terms of false acceptance rate (FAR) and false rejection rate (FRR). 

3. Calculate the similarity between the newly created map MapC(k) and other maps be-
longing to the same class MapC(K). The similarity is computed as the inverse of the 
Euclidean distance between weight matrices. 

4. If one of the existing maps for class K has similarity greater than a chosen threshold 
ThsimC(K)>0 , merge the maps MapC(k) and MapC(Ksimilar) using arithmetic average as ex-
pressed in equation  

samples

MapsamplesMap

N

WNW
W KsimilarCkC

+

+
=

1
)()(  (5) 

where matrix W represents the weights of the merged map and Nsamples denotes the 
number of samples that have already being used to train the respective map. In similar 
fashion the PSPthreshold is updated: 

samples

MapsamplesMap

threshold N

PSPNPSP
PSP KsimilarCkC

+

+
=

1
)()(  (6) 

 

Propagation to retina and DSC

New training sample

Create a new map MapC(k)

For MapC(k), train the weights WC(k) and
calculate PSPthreshold C(k)

Calculate similarity S between WC(k) and
WC(K) (other maps i of the same class)

If S(i) >Thsim

Merge map MapC(k) and MapC(i)

yes

no

 
 

Fig. 4. On-line learning procedure flowchart 
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4   Experiments and Results 

We have implemented the learning procedure proposed in the previous section in a 
network of spiking neurons as described in section 2. To evaluate the performance 
and compare with previous work, we used the same dataset as in [7], which is avail-
able from [14]. The dataset is composed of 400 faces taken from 40 different people. 
The frontal views of faces are taken with rotation angles varying in the range of [-30°, 
30°]. 

4.1   Image Preparation 

We manually annotated the position of eyes and mouth and used it to centralize the 
face images. The faces were rotated to align the right and left eyes horizontally. The 
boundaries of our region of interest (ROI) were then defined as a function of the inter-
ocular distance and the distance between the eyes and mouth. The ROI is then nor-
malized to the size 20 x 30 pixels in greyscale. The 2 dimensional array obtained has 
been used as input to the SNN. No contrast or illumination manipulation has been per-
formed as previous work demonstrated the good response of the network under the 
presence of noise and illumination changes [7]. 

4.2   Spiking Network Parameters 

The neuronal maps of retina, DSC and output maps have size of 20 x 30. The number 
of time steps used to encode the output of retina cells to the time domain is set to 100. 
The threshold for the direction selective cells is set to 600, chosen in such a way that 
on average only 20% of neurons emits output spikes. The modulation factor mod ∈ 
(0, 1) is set to 0.98. In this way the efficiency of the input of a given neuron is re-
duced to 50% when 50% of the inputs get a spike. The retina filters are implemented 
using a 5 x 5 Gaussian grid and direction selective filters are implemented using Ga-
bor functions in a 7x7 grid. All these parameters were not optimized. Rather, we tried 
to reproduce as close as possible the scenario described in [7] for comparison pur-
poses. 

4.3   Results 

Previous work demonstrated the high accuracy of the network to cope with noise, 
contrast and luminance changes, reaching 100% in the training set (10 samples for 
each class) and 97.5% when testing the generalization properties [7]. For the generali-
zation experiment the dataset was divided in 8 samples for training and the remaining 
2 for test. With the adaptive learning method proposed here, we have obtained similar 
results for the training set (see Table 2). Varying the similarity threshold Thsim differ-
ent number of output neuronal maps can be achieved. In the case of similar results, 
obviously the minimum number of maps is recommended as it saves memory and the 
processing time is reduced. In this first experiment the postsynaptic threshold 
PSPthreshold is set as c=0.4*max(PSP) obtained during the training of a given map. In 
all tables is presented the best results achieved. 
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Table 2. Results for the training set according to different similarity thresholds Thsim used to 
merge maps. All samples (10 images per person, 40 people) were used during training. 

Similarity threshold Thsim (x10-3) 0.5 0.714 0.833 1.0 
Number of output maps 40 63 213 360 
Accuracy (%) 97.00 98.75 99.75 100 
False Acceptance Rate (FAR) (%) 0.17 0.12 0.03 0.00 
False Rejection Rate (FRR) (%) 1.25 0.00 0.00 0.00 

In another experiment, to test the system ability to add on-line output maps for bet-
ter generalization, we used only 3 sample images from each person for training. The 
remaining 7 faces views of each person were used for test. Among the dataset faces, 
we chose manually those samples taken from different angles that appeared to be 
most dissimilar. Thus, the training set was composed mostly of one face view taken 
from the left side (30°), one frontal view and one face view taken from the right side 
(-30°), as depicted in Figure 5. The results are shown in Table 3. In column 2 of Table 
3, Thsim is set in such a way that only one output map for each class is created. In such 
condition, the on-line learning procedure becomes equivalent to the original off-line 
learning procedure described by Equation 2. Tuning of Thsim for performance, it can 
be clearly seen the advantage of using more maps to represent classes that contain 
highly variant samples, as the accuracy of face recognition increases by 6% with a re-
duction on the FAR. 

       

Fig. 5. Example of image samples used for training (30°, frontal and -30°) 

Table 3. Results for the test set according to different similarity thresholds Thsim.Three pictures 
of each class are used for training and the remaining seven for test. 

Similarity threshold Thsim (x10-3) 0.5 0.833 1.0 1.25 2.0 

Number of output maps 40 47 80 109 120 
Accuracy (%) 74.28 77.49 78.57 80.00 80.00 
False Acceptance Rate (FAR) (%) 2.32 2.20 2.18 2.26 1.77 
False Rejection Rate (FRR) (%) 0.00 0.00 0.00 0.00 0.00 

5   Discussion and Conclusion 

We have presented a simple procedure to perform on-line learning in a network of 
spiking neurons. During learning, new output maps are created and merged based on 
clustering of intra-class samples. Preliminary experiments have shown that the learn-
ing procedure reaches similar levels of performance of the previously presented work, 
and better performance can be reached in classes where samples have high variability. 
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As a price, one more parameter needs to be tuned, e.g. Thsim. In addition, more output 
maps require more storage memory. 

With respect to the overall system, the computation with pulses, contrast filters and 
orientation selective cells finds a close correspondence with traditional ways of image 
processing such as wavelets and Gabor filters [15] that already have proven to be very 
robust for feature extraction in visual pattern recognition problems. 

In terms of normalization, the rank order codes are intrinsically invariant to 
changes in contrast and input intensities, basically because the neuronal units compute 
the order of the incoming spikes and not the latencies itself [7]. Invariance to rotation 
can be reached with the use of additional neuronal maps, in which each map need to 
be trained to cover different angles. Here, our learning procedure could be used but, it 
is important to be aware that it would increase the number of neuronal maps required. 

From the biological point of view, while spiking networks can perform all possible 
operations similarly to traditional neural networks, new ways of connectivity and 
temporal coding based on biological systems yet to be discovered, can bring new in-
sights to create artificial systems with performance closer to human brains. 

As future work we intend to optimize the network parameters and test the learning 
procedure on more complex datasets. A careful comparison with traditional classifica-
tion methods and different methods of feature extraction are important to fully under-
stand the potential of the system. In addition, we intend to further extend the network 
to work in different domains with different types of data. 
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Abstract. The vision-based scene understanding technique that infers
scene-interpreting contexts from real-world vision data has to not only
deal with various uncertain environments but also reflect user’s requests.
Especially, learnability is a hot issue for the system. In this paper, we
adopt a probabilistic approach to overcome the uncertainty, and propose
an interactive learning method using combination of Bayesian network
and logic network to reflect user’s requirements in real-time. The logic
network works for supporting logical inference of Bayesian network. In
the result of some learning experiments using interactive data, we have
confirmed that the proposed interactive learning method is useful for
scene context reasoning.

1 Introduction

Bayesian network (BN) is a useful tool for modeling causal judgment and infer-
ence processes [1], and it receives increasing attention in the vision-based scene
understanding area, where it recognizes contexts by reasoning detected objects
and features from vision data to understand scene. Bayesian network is also ro-
bust to real-world situations because the probabilistic approach manages well
uncertain data and supports multiple directional inferences.

Scene understanding is the task of understanding a scene beyond single-object
recognition. A scene understanding is determined by constructing a description
of the scene in terms of concepts provided in a conceptual knowledge base. It still
remains a difficult problem because of complexity and uncertainty of real-world.

In the vision-based scene understanding area, automatic learning is important
because not only expert knowledge but also domain data collected in real-world
are used for modeling inference model. However, it is not easy since the ac-
tual environment of a scene understanding agent has various uncertain data and
causes continuous user’s requests. In this paper, we propose an interactive learn-
ing method to adopt user’s requests to inference model by learning Bayesian
network with logic network (LN). Because Bayesian network training data and
interactive data have different features as follows, we exploit the learning method
of logic network. The characteristics of Bayesian network training data:

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1143–1150, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– Complete data: have values of all nodes.
– Large quantity: require a lot of data for training BN parameters. A node

requires 100 data for each distinct instantiation of the parent set for 1%
error range.

– Case data: each datum is a case of available states (possible values of node),
so the gathered data set reflects probabilistic causalities.

The characteristics of interactive data:

– Incomplete data: have values of a few nodes.
– Small quantity: not easy to collect enough data for training BN parameters
– Logical data: beneficial to design structure.
– Changeable: imply user’s opinion, so it is profitable to manage them specially

without direct modification of BN parameters.

2 Related Works

Some probabilistic approaches are studied recently to solve the vision-based
scene understanding problem as follows;

– T. M. Strat et al. (1991): Assumes that a target object is defined by several
shape models and can be extracted some local features.

– A. Torralba et al. (2003): Recognizes scenes using Hidden Markov model
from the visual feature vectors.

– B. Neumann et al. (2003): Researches for description logics and framework
for high-level scene understanding and interpretation, modeling based on
detected objects.

– M. Marengoni et al. (2003): Selects visual function sets automatically based
on hierarchical BN on aerial picture recognition system - Ascender I.

– J. Luo, A. E. et al. (2005): Detects natural objects in outdoor scenes based
on probabilistic spatial context[2].

However, the proposed probabilistic model demands an enormous amount of
training data or expert’s assistance. For this reason, they are difficult to adapt
several interactive data effectively added by a user-feedback. There were re-
searches for learning the Bayesian model. Adaptive Bayesian network using re-
vised backward propagation method is researched [3], and Bayesian network
refinement method that adapts Bayesian networks using minimum description
length score metric is proposed [4].

– B.P.L. Lo et al. (2003): Adaptive BN: adapts BN using re-training technique
- revised backward propagation[3].

– W. Lam (1998): Bayesian network refinement technique: using MDL score
metric that minimizes distance between network structure and data-set[4].

As these methods require complete and sufficient amount of Bayesian network
data, and it is not suitable to learn interactive data since they have small quantity
and many missing data, and they do not concern the features of interactive data,
so we propose a learning method with due consideration to them.



Interactive Learning of Scene Context Extractor 1145

3 Interactive Learning of Bayesian Network Module
Using Logic Network

In this section, we propose a BN+LN model (combination of Bayesian network
and logic network) to expand or update inference model with collected interactive
data. Figure 1 shows the proposed model. In the proposed method, a logic net-
work plays a role of supporting inference on the posterior stage of Bayesian net-
work. The computational result of logic network covers that of Bayesian network.

Fig. 1. The BN+LN model

3.1 Bayesian Network

A Bayesian network have a shape of DAG (directed acyclic graph) expressing
the relations of nodes and describes a large probabilistic relations with CPTs
(conditional probability tables) constrained by the structure. The belief value
using the given evidence set E on Bayesian network, Bel(h) is calculated by
Bayes’ Rule such as a formula (1).

Bel(h) = P (h|E) =
P (E|h)P (h)

P (E)
=

P (E ∩ h)
P (E)

. (1)

where h is the hypothesis of a node state. The probability set is computed by a
chain Rule such as formula (2).

P (x1, x2, . . . , xn) = P (x1)P (x2|x1) . . . (2)
P (xn|x1, x2, . . . , xn−1)

= P (x1)P (x2|π2) . . . P (xn|πn).

where xi is the i-th node and πi is the parent of the node i.
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3.2 Logic Network

A logic network is a structure for expression of input /outputs or Boolean compu-
tations of digital circuit. It has input/output nodes, internal nodes with a logical
function and a directed acyclic graph structures that indicates data stream [5]. A
node function is composed of multiple inputs and 1 output and a logic function.
The internal functions of logic network are listed in Table 1.

Table 1. The internal node function list of logic network. Where vi means a result
value of logic calculation, which is a Boolean type, possible only true and false. ni

and si indicate node and state. StateEq(·) and IsInStateList(·) work for input value
selection.

Function name Description

NOT (v) If (v = false) then true else false
AND (v1, v2, . . . , vn) If (every vi(1 ≤ i ≤ n) = true) then true else false
OR(v1, v2, , vn) If (any one of vi(1 ≤ i ≤ n) = true) then true else false
StateEq(n1) If (the state of n1 = true OR the state of n1 = yes) then true

else false
StateEq(n1, s) If (the state of n1 = s) then true else false
IsInStateList(n1, n2) If (the state of n1 = true)AND (the name of n1 ∈ the state

list of n2) then true else false

3.3 Interactive Learning Method

We propose a method that adapts logic network and combine it with Bayesian
network to deal with the interactive data collected from the inference module
application process. In the proposed method, a logic network works for support-
ing logical inference of Bayesian network. The detailed operations are given as
follows:

– Interaction with user: Interacting with user, collecting new data/feedback
from user. In this paper we uses only predefined sentences.

– Reasoning: Inferring contexts that user wants for. If the reasoning is not
available the system requires the user to feedback.

– Causality extraction: Defining logical relations of variables. The structure of
sentence decides logics by predefined rules.

– Variable extraction: If the variable that is not defined is detected it declares
a new variable as evidence-variable or result-variables with its role.

– Adapt logic network: Expressing logical relation of variable as a network and
adapt the previous network.

– Update module: Updating the adapted logic network.

4 Experiments

We have applied additional evidences given as interactive data to the proposed
interactive learning method of LN+BN model.
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Fig. 2. The proposed interactive learning process

4.1 A Case Study

The first experiment is a case study to observe learning result of the proposed
method. We defined a scene domain (11 places and 25 objects) and designed the
place-recognition Bayesian network based on detected object (at the left side
on figure 3) [6]. Then, we have added 8 logical interactive data for interactive
learning of BN+LN model. Table 2 denotes a part of the interactive data used
for learning and their extracted logic rules by the proposed interactive learn-
ing process. For the smooth experiments we have used predefined sentences and
extraction rules. Figure 3 shows an experimental result of adapting given in-
teractive data using the proposed interactive learning method. In the figure,
it can be seen that some object nodes and logical inference functions are aug-
mented. In fact, the logic relations of the logic network can be expressed by
Bayesian network, but they do not require complex probability values, and a
Bayesian network represents inefficiently the node that has many parents, for
example ”Indoor” node requires 4,096 (= 212) CPVs (conditional probability
values). The complexity of the number of CPVs is O(kN ) and it is calculated as
follows; ∏

i∈P∩I

Ni, (3)

where P is parents set, I is the self-node, Nk is the number of states of the
node k.

4.2 Performance Test

To evaluate the performance of the proposed method, we experimented with in-
teractive data that contain certain agreement/disagreement-evidences for place
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Table 2. A part of the 8 interactive data used for learning BN+LN

Object Interaction Data Extracted Logic

Elevator If it is narrow place, has door and
no ground objects, and It is linked
corridor, it is elevator.

place shape=narrow AND ground
object=no AND door=yes AND
linked=corridor → elevator. Needs
more information about ground ob-
ject.

Ground
object

Air conditioner, garbage can,
bookshelf, dresser, chair, lectern,
partition, table and castor white-
board are ground objects.

AirConditioner, garbageCan, book-
shelf, dresser, chair, lectern, par-
tition, table, castorWhiteboard →
ground-Object

Hall Hall is linked to corridor and has
a door.

NOT ( linked=corridor AND
door=yes ) → NOT hall

Corridor Corridor is long and linked to an
indoor place.

NOT ( place shape=long AND
linked=indoor ) → NOT corridor

Lecture
room

Lecture room has a lectern and
has a wall whiteboard or a screen.

NOT ( ( wall whiteboard=yes OR
screen=yes) AND lectern=yes) →
NOT lectureRoom

Seat
place

Seat-place includes chair, bench
and sofa.

chair, bench, sofa → seatPlace

Fig. 3. The designed Bayesian network (left) and the learned logic network (right)
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recognition. Where, an agreement-evidence indicates the evidence that is suffi-
cient for an affirmation of fact, and a disagreement-evidence denotes the evidence
that is sufficient for negation of a fact. Especially, a negation-logic is usually
not used in Bayesian network, because it requires a complex Bayesian network
model, while logic network requires a simple model. We experimented each case
when k (=evidence size) evidences of 25 objects are discovered. We used totally
3 agreement-evidences and 79 disagreement-evidences for 11 places. When the
evidence size is 4 we adopted 2,300 random cases since the number of evidence
combination is too large.

Table 3 shows the results, in which the performance of the proposed method
is better than the original Bayesian network at all cases except the case of
1-evidence because the interactively-learned logic rules support more accurate
inference with relatively smaller evidences.

Table 3. The experimental results with agreement/disagreement-evidences. Abbrevi-
ations: Precision = TP/(TP + FP ), Recall = TP/(TP + FN), TP=True positive,
FP=false positive, FN=false negative, TN=true negative error.

Runs 25 (25C1) 300 (25C2)
Evidence size 1 2

Method BN LN+BN BN LN+BN
FP 72% 72% 48% 45%
TN 28% 28% 52% 55%
TP 100% 100% 97% 100%
FN 0% 0% 3% 0%

Precision 58% 58% 67% 69%
Recall 100% 100% 97% 100%

Runs 2,300 (25C3) random 2,300
Evidence size 3 4

Method BN LN+BN BN LN+BN
FP 33% 26% 17% 7%
TN 67% 74% 83% 93%
TP 93% 100% 90% 100%
FN 7% 0% 10% 0%

Precision 74% 80% 84% 94%
Recall 93% 100% 90% 100%

5 Concluding Remarks

We propose an interactive learning method using logic network to apply user’s
requests to Bayesian inference model. The experimental result shows that the
proposed interactive learning method is useful for incremental scene context
extraction by supporting addition of new context nodes and logical inference
rules, so it causes performance improvement. The proposed method might be a
good complement for interactive learnable Bayesian network.
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In the future work, we would like to apply the proposed method to the more
complex and practical applications. We can also compare the method to various
Bayesian network adaptation techniques.
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Abstract. This paper presents a Road Detection and Classification al-
gorithm for Driver Assistance Systems (DAS), which tracks several road
lanes and identifies the type of lane boundaries. The algorithm uses an
edge filter to extract the longitudinal road markings to which a straight
lane model is fitted. Next, the type of right and left lane boundaries
(continuous, broken or merge line) is identified using a Fourier analysis.
Adjacent lanes are searched when broken or merge lines are detected. Al-
though the knowledge of the line type is essential for a robust DAS, it has
been seldom considered in previous works. This knowledge helps to guide
the search for other lanes, and it is the basis to identify the type of road
(one-way, two-way or freeway), as well as to tell the difference between
allowed and forbidden maneuvers, such as crossing a continuous line.

1 Introduction

The goal of Intelligent Transportation Systems is to increase security, efficiency,
and comfort of the transport, by improving the functionality of vehicles and
roads using information and communication technologies.

The development of a DAS able to identify dangerous situations involves deep
analysis of the environment, including elements such as road, vehicles, pedestri-
ans, traffic signs, etc. and the relationships among them. For instance, detecting
a vehicle in the scene represents a risky situation, but the risk is higher when the
vehicle is in an adjacent lane in a two-way road – i.e. it is oncoming – than when
it is in a freeway. Likewise, there are differences between crossing a broken line
in a freeway and crossing a continuous line in a two-way road. However, most
current DAS cannot tell the difference between these situations.

Regarding the perceptual system, a DAS may be based on passive sensors like
cameras or active sensors such as radar or lidar. The cameras give much more
information, but the radars and lidars have better performance in bad weather
conditions. However, according to statistics most accidents occur during daylight
and with good weather conditions. This fact makes computer vision an adequate
perception system in this case.

This paper presents the Road Detection and Classification module of the
IvvI project (Intelligent Vehicle based on Visual Information). Its goal is to
� This work is partially supported by the Spanish government through the CICYT

project ASISTENTUR.
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automatically detect the position, orientation and type of road lanes that the
camera can be see. This is achieved by identifying the type of lane boundaries
(continuous, broken or merge), and looking for adjacent lanes when a broken
or merge line is detected. This perceptual ability pretends to be the basis of a
better evaluation of the potential danger of a situation.

1.1 Previous Work

Road detection algorithms for marked roads can be classified in two groups:

1. Model-based methods follow a top-down approach. Their main advantage is
that the lane can be tracked with a statistical technique, thus, false detections
are almost completely avoided. However, as they follow a top-down approach,
only the features included in the model are found. Therefore, it is difficult to
build a model that is able to adapt to new roads or environment conditions.

2. Feature-based methods follow a bottom-up approach. All the features that
are in the image are subject to be found, but noise can generate false
detections.

Most of the current research effort moves towards adjusting high order models
to the lane shape. The goal is to extract accurate information, overcoming the
instabilities and noise sensibility typical of more complex models such as the
4D [7] and zero-bank [6] [11]. In [14] horizontal curvature is modeled as a cubic,
and the lane is tracked with an enhanced CONDENSATION algorithm [10].
Similarly, in [4] the horizontal curvature of the road shape is also modeled as a
third order polynomial, and the vertical curvature as a second order polynomial.
Other works try to adjust splines [15] or snakes [17] [16], but these are more
difficult to track.

On the other hand, there are few works on longitudinal road markings clas-
sification and road type recognition, although this information is essential. Few
works consider the existence of other lanes, which is directly related to the road
type. The direction of vehicles on other lanes, the possible maneuvers and the
speed limit, are just some examples of facts that depend on the road type.

In [3] a six parameter model that merges shape and structure is used. The
shape is modeled as a second order polynomial, and the structural model con-
siders the road line as a square waveline, with its period, duty cycle and phase.
The parameters can be tracked from frame to frame, but the algorithm requires
an initialization step that is very time consuming. Besides that, only one lane
boundary mark is fitted to each frame. In [13] road lines are roughly classified
in solid or broken, by analyzing the gaps between the measurement points. If
the gap overcomes a threshold the road marking is classified as broken. Thus,
the algorithm can easily be confused with any obstacle or structured noise that
occludes the marking line, such as shadows or other vehicles. This work also
tries to estimate the left and right adjacent lanes assuming that some of their
parameters are identical to those of the central lane. Likewise, in [1] an array
of probabilities which defines the presence of lateral lanes is kept. The lanes
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are numbered, and another array stores the identification number of the lane in
which the vehicle is traveling.

In short, these methods can detect any number of lanes, but there is a need of
an external technique that indicates to the algorithm how many lanes to search
for, and where they can be located (right or left). The difficulty arises from the
use of a top-down approach without considering the lane marking type.

2 Tracking and Adaptative Detection of Road Lanes

Figure 1 shows the flow chart of the algorithm proposed in this paper. In brief,
this algorithm goes through the following steps. First, it generates a bird-eye view
of the road through a perspective transformation. Second, it segments the pixels
which belong to longitudinal road markings. Next, the right and left boundaries
of the ego-lane are extracted by the Hough Transform [9]. And finally, the pitch
angle is corrected, and the lane boundaries are classified in continuous, broken,
and merge. If a lane border is identified as a broken or merge line, the algorithm
keeps searching for other lane boundaries until a continuous line is found or the
image boundary is reached. These steps are explained in depth in the following
sections.

2.1 Perspective Transformation

The image analysis can be done in two different reference systems. Specifically,
the road can be analyzed from the car view image (Fig. 2(a)), as in [12], or from
a bird-eye view after a perspective transformation [2], assuming that the world
is flat (Fig. 2(b)).

The bird-eye view is easier to process because road lines appear parallel, have
constant width, and are mainly vertical. Besides, every pixel of the image appears
in world coordinates. This is very useful for the road lines classification, as will

Fig. 1. Flow chart of the proposed algorithm
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(a) (b)

Fig. 2. (a) On-board camera-view; (b) Bird-eye view

be explained in section 2.5, and this is the main reason why we have chosen
this reference system. Furthermore, the size of the bird-eye (256x128) is much
smaller than the original image (640x480), so that its processing is considerably
faster.

However, the bird-eye view presents calibration problems. If the extrinsic cal-
ibration parameters of the vision system – i.e. its position and orientation in
world coordinates – are not well calculated, the flat road assumption is violated,
and the bird-eye view image will show converging or diverging lines instead of
parallel ones. This leads to a bad calculation of the lane position and the lane
orientation. In order to overcome these problems, an auto-calibration algorithm
based on evolutionary techniques is used [5]. This algorithm gives a first esti-
mation of the extrinsic parameters of the vision system, and is run when the
cameras are installed in the vehicle. Thereafter, the pitch angle is corrected in
every frame by detecting the height of the horizon, as explained in section 2.6.

2.2 Road Model

The road model comprises two parts, the road geometry (linear, parabolic, etc.)
and the road type (one-way, two-way or freeway with a variable number of
lanes). As has been said in Sect. 1.1, many geometric road models have been
extensively researched, but there is little emphasis in road type interpretation.
This algorithm is designed to automatically classify the road lines, detect the
number of lanes, and track them. Thus, the main contribution of this paper is
the automatic road type detection. At present, the algorithm works in freeways
with a variable number of lanes.

With regard to road geometry, in this paper we consider the road to be straight
for three main reasons. First, straight lines are faster to detect an faster to track
than higher order models. They can be robustly and quickly extracted with
the Hough Transform, a technique that can hardly be applied to more complex
models in real time. Second, it eases other processes such as auto-calibration, the
tracking of the pitch angle, and, above all, the road lines classification. Finally,
it is a reasonable approximation in the nearby region of the road.
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Fig. 3. Road model

The geometric road model is shown in Fig. 3. It has three parameters: d is
the distance to the center of the ego-lane, θ is the yaw of the vehicle with regard
to the lane, and W is the lane width. The road type model considers the road
as a freeway with up to three lanes, in which the lane boundaries can be one of
three types: continuous, broken or merge.

2.3 Road Markings Detection

This step extracts from the original image the pixels that are candidates to
belong to a road line. Road lines can be considered as bright bands over a
darker background. As the lane curvature is small in the nearby region of the
road, these lines are mainly vertical in the bird-eye view image of the road.
Therefore, the search for pixels that belong to road markings consists of looking
for dark-bright-dark transitions in the horizontal direction.

The borders of the image are extracted with a spatial filter based on the ideas
of the Canny border extractor, which offers a good signal-noise ratio, compared
to other border extractors. This filter uses the intermediate steps of the Canny
filter to estimate the orientation of the border, and is used to obtain a horizontal
gradient image. Thus, the borders that are not essentially vertical are discarded.

Figure 4 shows how road markings produce two opposite peaks within a cer-
tain range of distances in a row of the gradient image. The algorithm scans the
horizontal gradient image row by row, searching for a pattern composed of a pair
of peaks of opposite sign which are spaced a distance equal to the line width.
The line width is considered to be between ten and fifty centimeters in world
coordinates. When this pattern is found, the middle point is labeled as a road
marking.

2.4 Adaptative Road Lanes Detection

Next, the Hough Transform is used to detect straight lines. Compared to other
model fitting methods, the Hough Transform is very robust as it uses global
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Fig. 4. Detection of pixels belonging to road markings

information. Then, it can easily detect the road lines even though they are broken
or partially occluded. In addition, when the model is simple and the image is
small, it is fast enough to be applied in real time.

The usual ρ-θ parameterisation is used for straight lines. As the lines are
mainly vertical, in the accumulator matrix the parameter θ is constrained to the
range [−15◦, +15◦]. Once the accumulator is calculated, only some regions of
interest (ROIs) are scanned for local maximums. The ROIs are delimited with
the predictions of the Kalman filter. This fact speeds up computation, and avoids
interferences with other features outside of the search region.

Kalman filter is used to track five variables: the lateral position (d) and speed
(ḋ) of the vehicle with regard to the center of the ego-lane, the orientation (θ) of
the vehicle respect to the lane, the angular speed (θ̇), and the lane width (W ).
The width and height of the ROIs – i.e. the interval in ρ and θ – are calculated
from the confidence interval of the lateral position and the orientation of the
vehicle, respectively.

For the first frame, only two ROIs are considered. These ROIs are big enough
to contain the right and left boundaries of the ego-lane. If several lines are found
in the same ROI, the algorithm tries to match each line or one ROI with a
line of the other ROI, i.e., find the opposite lane border, which should have the
same orientation. The best match is used as the initial observation that will be
tracked. If no lines can be matched, the most voted line is used. For subsequent
frames, if several lines are found, Kalman filter will select the observation that
gives the best χ2-test result.

Once the ego-lane has been detected, its lane boundaries are classified in
continuous, broken or merge (as explained in Sect. 2.5). When a line is identified
as broken or merge, an additional ROI is created to look for a new road line that
should be at the same side, and separated a distance equal to the lane width
(Fig. 5).
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Fig. 5. Regions of interest in the accumulator of the Hough Transform

2.5 Road Lines Classification

The extracted lines are classified in the different types of lines that are found on
roads. The main difficulty of this task is the lack of international standardization
of the length and frequency of the white stripes in broken lines. However, most
roads have three basic line types already mentioned, namely: continuous, broken
and merge.

In order to explain this stage of the algorithm, the three lines showed in Fig. 6
will be used as examples. Each of them represent one of the three classes that
are being considered.

The intensity line profile for each detected line (right column of Fig. 7) is
not a good data to feed the frequency analysis, because its appearance changes
substantially with the environment conditions. Besides, the resolution of the
bird-eye view in the distance is poor. This effect represents an inconvenience
in the merge lines, which appear blurred far ahead and could even look like a
continuous one (Fig. 7(a)). Besides, the power spectrum (left column of Fig. 7)
presents a tiny peak at the specific frequency of the merge line.

It is more robust to obtain the line profile from the thresholded image given
by the road markings detection step (Fig. 6(b)), which is showed on the left side

(a) (b) (c)

Fig. 6. (a) Remapped image; (b) Detected Road Markings; (c) Lines detected by Hough
Transform
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Fig. 7. (right) line profile extracted from the intensity image (Fig. 6(a)); (left) Power
spectrum of the Fourier analysis; (a) merge line; (b) broken line; (c) continuous line

of Fig. 8. Again, the right side of the figure shows the power spectrum of Fast
Fourier Transform applied to the line profile vector. The results show that a clear
sharp peak appears in the Fourier Transform power spectrum when the line is
broken, and that the value of the frequency associated to that peak gives the line
type (broken or merge). These peaks are showed on the left side of Fig. 8(a) and
Fig. 8(b) with arrows pointing at them. No significant peaks are present when
the line is continuous (Fig. 8(c)). It can now be seen that the peaks are sharper
and much easier to detect. It has been heuristically found that only the first 21
frequencies are significant in this analysis.

Thus, the classification is performed by scanning the first 21 frequencies. Two
requierements are needed in order to classify a line as broken or merge:

1. In the first place, a peak must be found within a certain range of frequencies.
Two different frequency ranges have been specified. The broken vertical lines
on the left side of Fig. 8(a) and Fig. 8(b) show the limits for merge and broken
lines, respectively.

2. In second place, the peak must overcome a threshold, which depends on
the frequency interval, as the height of the peak decreases as the frequency
increases. On the left side of Fig. 8, a horizontal line shows the threshold for
each frequency interval. Figure 8(c) shows that no peak exceeds the threshold
in neither of the specified frequency ranges when the line is continuous.

2.6 Pitch Angle Correction

The extrinsic parameters of the vision system are calculated during installation,
but these parameters suffer small drifts during driving, specially the pitch angle
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Fig. 8. Fourier analysis for the line profile; (a) merge line; (b) broken line; (c) contin-
uous line

due to the usual swaying of the vehicle, e.g. in sudden braking, dips, etc. This is
the most critical parameter because it notably distorts the bird-eye view obtained
through the perspective transformation.

In order to correct the pitch angle, the image is processed twice. First, two
lane boundaries are detected and its intersection point calculated. This point
should belong to the horizon line. These lines do not need to be classified since
they are only used to estimate the horizon height. Then the pitch angle (φ) is
given by the equation:

φ = arctan
(

yhorizon − ycenter

f

)
(1)

where:
yhorizon is the y coordinate of the horizon line in pixels,
ycenter is the y coordinate of the center of the CCD in pixels, and
f is the focal distance in pixels.

With the updated pitch angle, the bird-eye view is regenerated, now with
correct parameters. The corrected image is processed according to the steps
explained in previous sections.

3 Results

This algorithm has been tested in the IvvI platform. IvvI (Fig. 9) is a research
platform for the implementation of systems based on computer vision, with the
goal of building an Advanced Driver Assistance System (ADAS). It equipped
with a stereo-vision system composed of two B&N progressive scan cameras
used for road, vehicle, and pedestrian detection, a color camera, used for traffic
signs detection, a GPS to measure speed, and a processing system composed of
two Pentium IV computers.
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(a) (b) (c)

Fig. 9. (a) IvvI vehicle; (a) vision system; (c) processing system

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Examples of detected lanes. On each example, the remapped image is at the
top-right corner. The remapped region of the original image is delimited with a white
line.
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Figure 10 shows some examples of the execution of the algorithm. It can be
seen how adjacent lanes are searched when broken or merge lane boundaries are
detected.

The whole algorithm takes about 100 milliseconds in a Pentium IV, including
rectification of the image – the image needs to be rectified because it comes from
the left camera of a stereo-vision system –, perspective transformation (twice,
due to the correction of he tilt angle), Hough Transform and road lines classifica-
tion. Thus, it runs at about 10 fps. Higher rates can be achieved if the correction
of the tilt angle is used to remap the next frame, instead of the current one.

4 Conclusions and Perspectives

In this paper, the Road Detection and Interpretation module of the Advanced
Driver Assistance System for the IvvI project, has been presented. It is able to
track the ego-lane and automatically identify lane boundary types and detect
adjacent lanes if present. It can process a video sequence at nearly real time.

Detection and tracking of the road lanes is robustly performed. Also, the
road line classification works reasonably good. However, this parameter of the
model should be also tracked in the future, in order to filter some spurious
misclassifications.

Likewise, the performance can be enhanced if interaction with other modules
of the IvvI is implemented, especially with the vehicle detection one [8]. Lane
position helps vehicle detection by giving an idea of the regions of the image
susceptible of containing a vehicle, and the estimated size of the vehicle depend-
ing on the image position, which is related to the distance to the camera. It
also helps to know if a vehicle is likely to be oncoming or out-coming depending
on the lane where it is and the road type. Finally, the vehicle detection module
can help the lane detection module to avoid analyzing the areas of the image
occupied by other vehicles.
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Abstract. A fast method for the recognition and classification of informational 
traffic signs is presented in this paper. The aim is to provide an efficient frame-
work which could be easily used in inventory and guidance systems. The proc-
ess consists of several steps which include image segmentation, sign detection 
and reorientation, and finally traffic sign recognition. In a first stage, a static 
HSI colour segmentation is performed so that possible traffic signs can be eas-
ily isolated from the rest of the scene; secondly, shape classification is carried 
out so as to detect square blobs from the segmented image; next, each object is 
reoriented through the use of a homography transformation matrix and its po-
tential axial deformation is corrected. Finally a recursive adaptive segmentation 
and a SVM-based recognition framework allow us to extract each possible pic-
togram, icon or symbol and classify the type of the traffic sign via a voting-
scheme. 

1   Introduction 

In this paper we handle the task of automatically detecting, recognizing, and classify-
ing informational traffic signs. Several works have recently focused on traffic sign 
detection and recognition [1-9]. Some of which keep stages for sign detection and 
classification separated, such as [5] and [6], while some others try to address the 
whole process in a unique framework like [7]. Nevertheless, most of these works have 
only dealt with regulatory and warning traffic signs, and only a few have proposed a 
system to cope with guide and informational traffic signs, such as [2] and [3]. 

There are many challenges we must surpass in order to achieve successful results. 
We need to deal with some of the most common problems which usually arise in this 
kind of tasks, such as rotations, occlusions, variable lighting conditions of the scene, 
or sign deterioration. Some of these issues have been analyzed in [10]. In addition, we 
need to consider a great amount of different combinations of pictograms, symbols, or 
characters which are generally present on a typical informational traffic sign. For this 
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reason, we want to bring to the reader’s attention that since traffic signs can usually 
contain variable-size text strings, and they might be present together with a very dif-
ferent kind of icons or pictograms (Fig. 1-a), it would be important to be able to dy-
namically organize hierarchically these objects in some way so we could easily per-
form a traffic sign classification based on this data. 

Our framework is capable to overcome all these difficulties in several steps. 
Firstly, we detect and reorient every possible rectangular traffic sign which might be 
present on the scene. Subsequently, we carry out an adaptive segmentation to dis-
criminate each character, and symbol of candidate signs from their background. Blobs 
are then recognized by means of a SVM framework. Due to the nature of informa-
tional traffic signs, those which resulted to be rectangular are adaptively segmentated 
again recursively. Pictograms are then arranged vertically and horizontally. Finally 
the traffic sign is classified via a voting-scheme. 

2   System Overview 

Common Spanish informational traffic signs are rectangular and have a blue or white 
background. Foreground sign objects are designed to be clearly distinguishable from 
the surrounding with the help, among other things, of a high contrast to the back-
ground. Pictograms colors change generally only when they are encircled by square 
frames. 

All these facts led us to think of dividing the process into several steps which are 
presented next. Initially, the original image is segmented by means of thresholding in  
HSI color space. This allows us to separate blue and white blobs from the context. 
Shape classification is then responsible for the selection of those which seem to be 
rectangular. Once candidate traffic signs have been extracted, we reorient them using 
a homography transformation matrix [11]. In the second stage we analyze the lumi-
nance and chrominance of the traffic sign in order to cope with random lighting con-
ditions such as broad daylights, or shaded areas. Thus, we compute the colour and 
luminance thresholds needed to separate foreground objects from the background by 
way of an adaptive segmentation. This is one of the most important steps since an 
appropriate statistical characterization in a proper colour space may determine the 
success of a correct identification and recognition of every pictogram, and therefore, 
the right classification of the traffic sign. Afterwards, we perform connected compo-
nents labeling and filter blobs in accordance with their geometrical properties such as 
their size or their aspect ratio. A SVM-based recognition framework classifies each 
blob taking as input a binary n-dimensional vector from each adaptive-segmented 
candidate pictogram. Blobs which are classified as square are adaptively-segmented 
and its pictograms classified again recursively. Objects which are succesfully identi-
fied as real pictograms are then arranged vertically and horizontally by means of sim-
ple clustering, and then sorted through an adapted version of the QuickSort algorithm. 
A majority voting method is finally employed to get the classification from blobs 
position and their recognition. The complete process is outlined in Fig. 1-b. 
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Fig. 1. (a) Some traffic signs with several kinds of pictograms (b) System portrayal 

3   Detection and Reorientation of Informational Traffic Signs 

The main goal in this stage is to detect candidate traffic signs in the original scene 
and to reorient them. As it was mentioned above, Spanish informational traffic 
signs background is usually blue or white, and therefore, the first block of the detec-
tion system consists of a blue and white segmentation stage by thresholding over a 
given color space. We refused direct thresholding over RGB color space because, 
despite it might be faster under certain circunstances, it turns out to be very  
sensitive to lighting changes. A combination of a fixed HSI segmentation and an 
achromatic decomposition was consequently chosen due to its benefits as it is  
explained in [1].  

After segmentation stage, foreground pixels are grouped together as connected 
components. We then classify each blob’s shape employing the method described in 
[12] where a comparison is made between the absolute value of the FFT applied to the 
signature of blobs and reference shapes. Fig. 2 shows how the signature for a refer-
ence rectangular shape and for a traffic sign sample look like. 64 samples were chosen 
starting at 0 radians and ending at 2*  radians, and the signature was always normal-
ized to its energy. Blobs with rectangular shape are then sucesfully identified and 
reoriented.  
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In the following we explain why a traffic sign reorientation is considered and 
why we decided to fulfill it here. First of all, a reorientation would help to make the 
system rotation-invariant since this would allow us to deal with only one tilt and 
direction regardless how they actually appear in the original scene. As long as a 
traffic sign may contain a lot of different kinds of icons, symbols and characters, it 
might result also very efficient to reorient all of them together as they theoretically 
should share the same tilt and distortion. Furthermore, it should be noticed that it is 
also much easier to gather information about objects disposition from the traffic 
sign vertexes rather than from each of them individually. The reorientation process 
is done via the Direct Linear Transformation (DLT) algorithm described in [11]. 
We compute H, a homography transformation matrix which univocally sets the 
linear relation between all the points on the reoriented traffic sign P’ and on the 
original one P. If we consider homogeneous coordinates, given the group of points 

i = (xi,yi,zi)∈P and its corresponding ’i = (x’i,y’i,z’i)∈  P’ we can set the following 
relation:  

ii 'aHa ⋅=  (1) 

In a general transformation case we would have nine degrees of freedom which 
stand for a complete projective transformation (Fig.3-a): 

=

333231
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H  (2) 

But if we consider however,  a similarity transformation, results will remain practi-
cally the same as far as we suppose that traffic signs are spotted from a distance long 
enough when compared to their size [11]. As a result of this approximation, points co-
ordinates from P and P’ would state as i = (xi,yi,1) and ’i = (x’i,y’i,1) respectively and 
we could significantly simplify our problem by reducing to four the number of variables 
to compute, as now, H, the homography transformation matrix, corresponds to: 

−
=

100
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x

t)cos(s)sin(s

t)sin(s)cos(s

H θθ
θθ

 (3) 

Where  denotes the rotation angle, and s, tx and ty represent the traffic sign scale 
and its translation in the X and Y axes respectively. Despite all and each of these 
variables define the transformation between both traffic signs P and P’ in the simi-
larity transformation case, we can not easily compute them directly from segmented 
blobs. 

For that reason, we opted for computing H by considering a set of points corre-
spondences which allow us to determine the four variables as in: 
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Fig. 2.  Shape and traffic sign vertexes detection. (a) Ideal square blob. (b) Energy normalized 
signature of an ideal square blob. (c) Sample Image. (d) Energy normalized signautre of Fig2-c 
image. 
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Theoretically we should be able to determine the four degrees of freedom of the 
homography matrix with two correspondences between  two points each, but since 
this would require points coordinates to be unmistakable measured, we can rather 
use a greater number of correspondences so as to form an over-determined system 
which can be easily solved through the use of standard techniques for linear equa-
tions solving. 

By reason of the former, we can use the four vertexes of the detected traffic sign al-
ready computed when calculating the blob signature to set correspondences between-
these four vertexes named P1, P2, P3 and P4 and those of the reoriented traffic sign we 
are about to get  (Fig. 3-b). Finally, once H is given, we can compute each pixel of the 
reoriented traffic sign as: 

t
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i
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  (a)             (b) 

Fig. 3.  (a) Projective transformation. (b) Similarity transformation and its four traffic sign 
vertexes correspondence. 

3   Adaptive Segmentation 

In order to accomplish a correct classification of a informational traffic sign, we need to 
know which icons and signs are actually displayed on it. These pictograms are in fact 
what make traffic signs different from one another, and we would like to remark that 
some of them may have very complex shapes. Thus, a proper segmentation of the traffic 
sign under test would be very convenient so that even small object details can be consid-
ered for pictograms identification.  

Variable intensity conditions, the presence of noisy artifacts and possible shaded por-
tions on a traffic sign, make very difficult to segment traffic signs in detail with fixed 
thresholds in a given colour space under all possible conditions. It follows that an adap-
tive method which might be able to extract and discriminate dynamically and accurately 
every object on the traffic sign would be very useful for getting fine results. 

In this stage we analyze the luminance and chrominance distribution of the traffic sign 
in the CIE L*a*b color space (CIELAB from now on). CIELAB is based on the CIE 
1931 XYZ colour space and consists of a luminance component and two chrominance 
components. It has been created to serve as a device independent model and it is consid-
ered one of the most complete colour model used to describe all the gamut of colours 
visible to the human eye [13].  Accuracy and efficiency discussions in the transformation 
from RGB to CIELAB can be found in [14]. 

We suppose that the amount of pixels which belong to an object background is always 
greater than the amount of those which pertain to an object. This fact can be noticed 
when computing the histogram of traffic sign chrominance or luminance components. 
Fig. 5 shows an example where it can be observed that there is always a wide range of 
values spread around a maximum peak which actually represents the most common 
background pixel value. Thereby, we can establish a frontier in both chrominance and 
luminance planes and consequently distinguish background from the foreground.  

3.1   Luminance Segmentation 

In the case of luminance there is only one component to work with. Supposing there 
is a high contrast difference between foreground and background, the function which 
may discriminate them is: 
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f(L) =
<
<

L   nd”ifd/foregrou“backgroun

  L if nd“d/backgrou“foregroun

β
β

 (6) 

Where L represents the luminance component of a pixel and  represents the threshold 
we need to find. Depending on where the maximum peak lies, that is, in which half of the 
luminance histogram most common background value is located, we can distinguish 
which side corrsponds to the foreground and which one to the background. 

3.2    Chrominance Segmentation 

CIELAB provide two chrominance components, and generally, the optimal chrominance 
function which could be able to separate the background from the foreground can be very 
complex and slow to evaluate. A convenient estimation can speed up the segmentation 
process whereas still offering good results. Since the most common background color of 
Spanish informational traffic signs and their respective frames and can be blue or white, 
we have chosen two functions f1(L) and f2(L) for evaluation which are described next. 

For white backgrounds, we have f1(L) which defines a polygonal approximation of a 
circle C with radius r centered in the ab chrominance plane. 

f1(L) =
∉
∈

 C )b,a( d”if“foregroun

C  b)(a, if d““backgroun

r

r  (7) 

For blue backgrounds, we have  f2(L) which defines an adequate radial portion R 
with a proper broadness , centered in the ab chrominance plane.  

f2(L)=
∉
∈

 R )b,a( d”if“foregroun

R  b)(a, if d““backgroun

α

α  (8) 

After various experimental tests we chose the parameters ,  and r which better 
results offered. 

4   SVM Based Recognition 

Once the traffic sign has been properly segmented, we group pixels into blobs  
by means of connected components labeling. Each pictogram contained on the  traffic 
sign should then result in a binary blob which will be the input to the recognition 
system. 

The recognition framework is based on a RBF (Radial Basis Function) Kernel Sup-
port Vector Machine (SVM). SVMs are a set of related supervised learning methods 
which can be applied to solve many pattern recognition and regression estimation 
problems. They were originally introduced by Vapnik [15], [16] and they are widely 
used nowadays to solve binary classification problems. In these cases, if both classes 
could be separated by a linear hyperplane (Linear-SVMs), we would have: 

• The training sets {xi,yi}. Where i=1,…,l, l is the number of training vectors, yi ∈{-
1,1} identifies each class and xi  ∈{Rd} are the input feature vectors.  
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     (a)           (b)     (c) 

Fig. 5.  (a) Informational Traffic sign which has been detected from and then reoriented. (b) 
Traffic sign’s chrominance distribution. (c) Traffic sign’s luminance distribution. 

 
• The optimized hyperplane {w,b} computed from the training sets which separates 

the two classes.  
• The decision function given by: 

)bwx(sgn)x(f T +⋅=  (9) 

which determines on which side of the former hyperplane a given test vector x lies. 
Our case differs from the above one in two aspects. Firstly, we need to identify 
more than only two classes, so several one-vs-all SVMs classifiers have been actu-
ally used. Secondly, data to be classified can not usually be separated by a linear 
function, so we resorted to what is commonly known as the “kernel trick”. This 
solution consists in: 

• Map the input data into a different space (x) by means of the kernel function K 
which let us to use non-linear hyperplanes that may fit better to our problem in 
question.  

• Build the new decision function f(x) in which the scalar product of Eq .9, results in  
< (x), (w)>, also labeled as K(x,w).  
 

))b)x,w(K(sgn)x(f +=  (10) 

The Kernel K we chose was the RBF since it was the one which better results offered. 
The RBF kernel can be defined as: 

2

2

2σ

||xx||

ji

ji

e)x,x(K

−−

=  
(11) 

where  is defined as the RBF width, and xi and xj represent sample vectors. The SVM 
input vector consists of a block of 31x31 binary pixels for every candidate blob, so 
the interior of the bounding-box of the blob is normalized to these dimensions.   was 
optimized heuristically and  = 1e-04 was the one which better results offered. Some 
examples of these vectors can be seen in Fig. 6-a. 
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  (a)         (b) 

Fig. 6. (a) Sample blobs used as input vectors in the SVM recognition system. (b) Spanish 
Informational Traffic signs S-261, S-263, S-263a, S-264, S-266, S-266a. 

5   Pictograms Arrangement 

The way symbols and characters are positioned in traffic signs is not random at all, 
and they actually follow some fixed patterns. Pictograms relative position provide 
thus important information about how succesful have been the traffic sign detection 
and pictograms recognition. Furthermore, we can in fact gather very useful informa-
tion about the type of the traffic sign to be classified from pictograms position. Ac-
cording to this, blobs which were succesful recognized by the SVM framework are 
clustered in rows and columns and sorted by means of an adapted version of Quick-
Sort. Under normal circunstances no complex clustering techniques are needed since 
traffic signs reorientation provides enough alignment. Grid spacing is selected based 
on the average size of identified blobs. 

7   Binary Voting 

Spanish informational traffic signs differs from one another in their pictograms, 
characters and color schemes. Moreover, depending on the type of traffic sign, they 
present some specific properties which can be taken into account in a classification 
framework. Pictograms are usually placed following a fixed pattern which can be 
easily noticeable and used for identification purposes. There is also usually some 
redundant information which can be very useful for avoiding false alarms and mak-
ing the identification more robust. Some of these examples can bee seen in Fig. 6-b 
where  Spanish traffic signs named S-261, S-263, S-263a, S-264, S-266 and S-266a 
[17] are showed. They all share some common properties such as an indication 
arrow and they differ from one another in the highway-exit pictogram and the text 
string “vía de servicio”. Our framework makes the most of these facts. Blobs posi-
tion and identification are taken as input to a binary voting system and several con-
ditions are setted so as to determine which traffic sign best suits to the information 
gathered from blobs. 

8   Experimental Results 

Images used for testing were compressed in JPEG. The sample set is composed of an 
average of 60 images for each informational traffic sign of types S-261, S-263, S-
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263a, S-264, S-266 and S-266a under very different ligthining conditions and envi-
ronments. Tests were done in a conventional PC desktop. 

Table 1 represents experimental results obtained from the above mentioned test set. 
A traffic sign is considered to be detected when it was properly segmented, its shape 
correctly classified, its blob succesfully reoriented and the binary voting system rec-
ognized it as a valid informational traffic sign. False alarms occur when an image 
blob is wrongly considered to be a traffic sign and it is classified as one valid type of 
informational traffic sign. An average of 33% of false alarms was obtained from the 
total sample set. 

Table 1. Percentage results 

 S-261 S-263 S-263a S-264 S-266 S-266a 

Detection 78,00% 82,35% 86,67% 75,00% 77,78% 83,19% 

Classification 72.73% 77.53% 80.31% 69.34% 75.36% 75.82% 

9   Conclusions and Future Work 

This paper describes a complete method to detect and recognize informational traffic 
signs. It is able to classify traffic signs according to their color schemes and symbols 
displayed on them.  

The overall performance of the classifier depends mainly on how well foreground 
objects are extracted from the background. Chrominance and luminance analysis 
characterization of traffic signs and their square frames are essential, and the overall 
performance depends in a great extent on setting proper thresholds. 

Future lines of work can include video tracking, and improvements in traffic sign 
detection in difficult enviroments. Video tracking would give more reliability to the 
system since more frames would be given for each traffic sign, and possible misses 
could be compensated with hits in other frames. Improvements in detection with 
shape reconstruction techniques can make the system to be able to cope with big oc-
clusions and camera distortions.  
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Abstract. For high-dimensional classification tasks such as face recog-
nition, the number of samples is smaller than the dimensionality of the
samples. In such cases, a problem encountered in Linear Discriminant
Analysis-based (LDA) methods for dimension reduction is what is known
as the Small Sample Size (SSS) problem. Recently, a number of ap-
proaches that attempt to solve the SSS problem have been proposed in
the literature. In this paper, a different way of solving the SSS problem
compared to these is proposed. It is one that employs a dissimilarity rep-
resentation method where an object is represented based on the dissim-
ilarity measures among representatives extracted from training samples
instead of from the feature vector itself. Thus, by appropriately selecting
representatives and by defining the dissimilarity measure, it is possible
to reduce the dimensionality and achieve a better classification perfor-
mance in terms of both speed and accuracy. Apart from utilizing the
dissimilarity representation, in this paper simultaneously employing a
fusion technique is also proposed in order to increase the classification
accuracy. The rationale for this is explained in the paper. The proposed
scheme is completely different from the conventional ones in terms of
the computation of the transformation matrix, as well as in controlling
the number of dimensions. The present experimental results, which to
the best of the authors’ knowledge, are the first such reported results,
demonstrate that the proposed mechanism achieves nearly identical effi-
ciency results in terms of the classification accuracy compared with the
conventional LDA-extension approaches for well-known face databases
involving AT&T and Yale databases.

1 Introduction

Over the past two decades, numerous families and avenues for Face Recognition
(FR) systems have been developed. This development is motivated by the broad
range of potential applications for such identification and verification techniques.
Recent surveys are found in the literature [1] and [2] related to FR. As facial
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images are very high-dimensional, it is necessary for FR systems to reduce these
dimensions. Linear Discriminant Analysis (LDA) is one of the most popular
linear projection techniques for dimension reduction [3]. The major limitation
when applying LDA is that it may encounter what is known as the Small Sample
Size (SSS) problem. This problem arises whenever the number of samples is
smaller than the dimensionality of the samples. Under these circumstances, the
sample scatter matrix can become singular, and the execution of LDA may
encounter computation difficulties.

In order to address the SSS issue, numerous methods have been proposed in
the literature [4] - [11]. One popular approach that addresses the SSS problem
is to introduce a Principal Component Analysis (PCA) step to remove the null
space of the between- and within-class scatter matrices before invoking the LDA
execution. However, recent research reveals that the discarded null space may
contain the most significant discriminatory information. Moreover, other solu-
tions that use the null space can also have problems. Due to insufficient training
samples, it is very difficult to identify the true null eigenvalues. Since the devel-
opment of the PCA+LDA [3], other methods have been proposed successively,
such as the pseudo-inverse LDA [4], the regularized LDA [9], the direct LDA
[5], the LDA/GSVD [11] and the LDA/QR [12]. In addition to these methods,
the Discriminative Common Vector (DCV) technique [13], has recently been re-
ported to be an extremely effective approach to dimension reduction problems.
The details of these LDA-extension methods are omitted here as they are not
directly related to the premise of the present work.

Recently, Duin1 et al. [14] - [19] proposed a new paradigm to pattern clas-
sification based on the idea that if “similar” objects can be grouped together
to form a class, the “class” is nothing more than a set of these similar objects.
This methodology is a way of defining classifiers between the classes. It is not
based on the feature measurements of the individual patterns, but rather on
a suitable dissimilarity measure between them. The advantage of this is clear:
As it does not operate on the class-conditional distributions, the accuracy can
exceed the Bayes’ error bound2. Another salient advantage of such a paradigm
is that it does not have to confront the problems associated with feature spaces
such as the “curse of dimensionality”, and the issue of estimating large numbers
of parameters. Particularly, by selecting a set of prototypes or support vectors,
the problem of dimension reduction can be drastically simplified.

1 The authors are extremely grateful to Prof. Bob Duin for his friendly and cooperative
e-mails [19], where he gave us so many helpful comments and ideas to guide the
direction of the paper and to improve the quality.

2 The Bayes bound can not be exceeded (by definition) in a given feature space.
However, if we change representation (derived from the raw data); e.g. create better
features or dissimilarities, the Bayes bound will be lower. The idea of the zero-error
bound is based on the idea that dissimilarities may be defined such that there is
no zero distance between objects of different classes. Consequently the classes do
not overlap, and so the lower error bound is zero. We are grateful to Bob Duin for
providing us with insight into this.
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In this paper the utilization of the dissimilarity representation as a method
for solving the SSS problem encountered in high-dimensional tasks such as face
recognition is proposed. All samples are initially represented with the dissimi-
larity measures among the representatives extracted from the samples instead of
the feature vectors themselves. After this transformation, an object is classified
with a classifier designed in the dissimilarity space. The families of strategies
investigated in this endeavor are many [18]. First in order to select such a rep-
resentative set from the training set, the authors of [15] discuss a number of
methods, such as random selections, the k-centers method, and others. Alter-
natively, investigations have centered on determining the appropriate measures
of dissimilarity using measures such as various Lp Norms (including the Euclid-
ean and L0.8), the Hausdorff and Modified Hausdorff norm, and a number of
traditional PR-based measures such as those used in template matching, and
correlation-based analyses.

A problem that is encountered in this paper is one that concerns solving the
SSS problem when the number of available facial images per subject is insuffi-
cient. For this reason, all of the input facial images (vectors) were selected as
representatives. Following this, the dissimilarity was measured with Euclidean-
based metrics with the intent of simplifying the problem for this paper. However,
in facial images there are many kinds of variations, such as pose, illumination,
facial expression, and distance. Thus, from simply averaging the facial images of
each class, it was not possible to obtain a good representation. To overcome this
problem, a combining strategy 3 was employed, in which three kinds of classifiers
are designed. Both of these were designed in the dissimilarity space, while the
third was constructed in the input feature space. The details of these classifiers
are included in the present paper.

Two modest contributions are claimed in this paper by the authors:
1. This paper lists the first reported results that reduce the dimensionality

and solve the SSS problem by resorting to the dissimilarity representation. Al-
though the result presented is only for a case when the task is face recognition,
the proposed approach can also apply to other high-dimensional tasks, such as
information retrieval or text classification.

2. The paper contains a formal algorithm in which two dissimilarity-based
classifiers and a feature-based classifier are combined with a fusion strategy
in order to improve performances for high-dimensional tasks. The paper also

3 Indeed, combination systems which fuse “pieces” of information have received con-
siderable attention because of its potential to improve the performance of individual
systems. Various fusion strategies have been proposed in the literature and work-
shops [20] - excellent studies are found in [21], [22], and [23]. The applications of
these systems are many. For example, consider a design problem involving pattern
classifiers. The basic strategy used in fusion is to solve the classification problem by
designing a set of classifiers, and then combining the individual results obtained from
these classifiers in some way to achieve reduced classification error rates. Therefore,
the choice of an appropriate fusion method can further improve on the performance
of the individual method, and we shall suggest methods by which we can incorporate
the same ideas in our combined estimation and classification schemes.
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provides an experimental comparison between this dissimilarity-based scheme
and the conventional LDA-extension methods for two well-known benchmark
face databases.

To the best of the authors’ knowledge, all of these contributions are novel
to a field of high-dimensional classification such as face recognition. This paper
is organized as follows: An overview is initially presented of the dissimilarity
representation in Section 2. Following this, the algorithm that solves the SSS
problem by incorporating the use of dissimilarity representation and a fusion
strategy is presented. Experimental results for the real-life benchmark data sets
are provided in Section 3, and the paper is concluded in Section 4.

2 Dissimilarity Representation

Let T = {x1, · · · , xn} ∈ Rp be a set of n feature vectors in p dimensions. It
is assumed that T is a labeled data set, so that T can be decomposed into, for
example, c disjoint subsets {T1, · · · , Tc} such that T =

⋃c
k=1 Tk, Ti∩Tj = φ, ∀i �=

j. The goal here is to design a dissimilarity-based classifier in the dissimilarity
space constructed with this training data set and to classify an input sample z
into an appropriate class.

First, for a training set of class ωi,

Ti =
{
x

(i)
1 , · · · , x(i)

ni

}
,

c∑
i=1

ni = n, (1)

and a representative subset extracted from Ti,

Yi =
{
y

(i)
1 , · · · , y(i)

mi

}
,

c∑
i=1

mi = m. (2)

As a result, Y = {y1, · · · , ym} is obtained. After this, a dissimilarity measure, d,
is additionally assumed, which is computed or derived from the samples directly.
To maintain generality, a notation of d(xi, yj) is used when the two samples xi

and yj are quantitatively compared. Here, d is required to be nonnegative and
to obey the reflexivity condition, d(xi, yj) = 0 if xi = yj , but it may be non-
metric [18]. The dissimilarity computed between T and Y leads to a n × m
matrix, D(T, Y ), in which an object xi is represented as a column vector as
follows:

(d(xi, y1), d(xi, y2), · · · , d(xi, ym))T , 1 ≤ i ≤ n. (3)

Here, the dissimilarity matrix D(T, Y ) is defined as a dissimilarity space on
which the p-dimensional object given in the feature space, xi, is represented
as the m-dimensional vector of Eq. (3). This column vector is simply denoted
as d(x), where x is a p-dimensional vector and d(x) is m-dimensional. From
this perspective, it becomes clear that the dissimilarity representation can be
considered as a mapping by which x is translated into d(x); thus, m is selected
as sufficiently small (m << p), what is being worked in is essentially a space
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with much smaller dimensions. The literature reports the use of many traditional
decision classifiers, including the k -NN rule and the linear/quadratic normal-
density-based classifiers to the task of classifying z using d(z) in the dissimilarity
space.

2.1 Dissimilarity-Based Classifiers Without the SSS Problem

In this section, a dissimilarity-based method of classifying the high-dimensional
samples without encountering the SSS problem is proposed. A Dissimilarity-
Based Classifier (DBC) [24] consists of the following steps:

1. Select the representative set, Y , from the training set T by resorting to one
of the prototype selection methods.

2. Compute the dissimilarity matrix, D(T, Y ), with T and Y , in which each
individual dissimilarity is computed using one of the measures. To test a
sample z, compute a dissimilarity column vector, d(z), using the same mea-
sure.

3. Achieve a classification based on invoking a classifier built in the dissimilarity
space and operating on the dissimilarity vector d(z).

However, in facial images there are many kinds of variations based on such
factors as pose, illumination, facial expression, and distance. Thus, by simply
measuring the differences of facial images for each class, it is not possible to
obtain a good representation. To overcome this limitation, a classifier fusion
strategy is employed. The basic strategy used in fusion is to solve the classifica-
tion problem by designing a set of classifiers, and then to combine the individual
results obtained from these classifiers in some way to achieve reduced classifica-
tion error rates. The tangible rationale for this fusion strategy will be presented
in a later section together with the experimental results.

The proposed approach, which is referred to as a Combined Dissimilarity-
Based Classifier (CDBC), is summarized in the following:

1. Select the input training data set T as a representative subset Y 4.
2. Compute a dissimilarity matrix, D(T, Y ), by using a dissimilarity measure

for all x ∈ T and y ∈ Y . In addition, compute a dissimilarity column vector,
d(z), for the input sample z.

3. For every class, i, perform clustering of the prototype set, Yi into a few
subsets Yi,j , j = 1, · · · , qi,

∑c
i=1 qi = q, using any one of the clustering

methods. Following this step, compute the mean vectors, Y i,j , by averaging
each cluster.

4. Perform classification of the input, d(z) or z, with three classifiers designed
as follows:
(a) Classify d(z) by invoking a k-NN classifier designed with n

m-dimensional vectors in the dissimilarity space, where the prototype
subset consists of each column vectors of D(T, Y ). The classification re-
sult is labeled as class1.

4 This is a Wholeset method. Undoubtedly, for “large size” applications, other selection
methods such as the Random C, KCentres, or PRS-based methods [24] can be applied.
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(b) Classify d(z) by invoking a minimum-distance classifier designed with
c m-dimensional vectors in the dissimilarity space, where the prototype
subset is obtained by averaging the column vectors of each class. The
result is marked as class2.

(c) Classify z by invoking a k-NN classifier designed with q p-dimensional
vectors in the input feature space, where the prototype subset is com-
puted by averaging the mean vectors of each cluster. The result is tagged
as class3.

5. Obtain the final result from the class1, class2, and class3 by invoking the
Majority vote rule, where the class which receives the largest number of votes
is the Majority decision.

In the above algorithm, using the n×n dissimilarity matrix, the feature-based
vectors are translated into the dissimilarity-based vectors, where the dimension-
ality is determined with the number of samples n(<< p). It is also interesting to
note that the testing sample is projected onto the dissimilarity space represented
by the dissimilarity matrix. From these considerations, it can be noted that the
proposed method can be used as a scheme to reduce the dimensionality without
encountering the SSS problem.

On the other hand, the above algorithm consists of three k-NN classifiers,
in which the first and the second classifiers were designed in the dissimilarity
space, where Euclidean distances were computed, while the third was designed
in the high-dimensional feature space. Especially, the prototype mean faces for
the classifier were computed in the high-dimensional space. Therefore, the dis-
tances between the prototypes may also have the problems based on the high-
dimensionality, such as “the curse of dimensionality”. However, this problem
could be avoided by employing a classifier design methodology by which classi-
fiers could be designed efficiently in the dissimilarity space as well as the feature
space.

The time complexity of the proposed algorithm can be analyzed as follows:
Step 1 requires O(1) time. Step 2 requires O(n2)+O(n) = O(n2) time to compute
the dissimilarity matrix and the dissimilarity column vector. Step 3 requires
O(c(Γ + q)) = O(Γ ) time to cluster the training set into a small number of
subsets and compute the mean vectors by averaging each cluster. Here Γ is the
time for clustering each class. Step 4 requires O(n)+O(cτ1)+O(qτ2) = O(n) time
to classify the test sample with the three classifiers designed in the dissimilarity
space and in the feature space. Here τ1 and τ2 are the times for averaging the
column vectors and the mean vectors, respectively. Step 5 requires O(1) time for
the voting operation. Thus, the total time complexity of the CDBC is O(n2).
Then the space complexity of CDBC is O(n(n + p)) 5.

5 In [12], it was reported that the time complexities of LDA-extension methods such
as PCA, PCA+LDA, LDA/GSVD, and RLDA, respectively, are O(n2p), O(n2p),
O((n + c)2p), and O(n2p) and their space complexities are all the same as O(np).
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3 Experimental Results

3.1 Experimental Data

The proposed method has been tested and compared with conventional methods.
This was done by performing experiments on two well-known benchmark face
databases, namely, the “AT&T” and “Yale” databases 6.

The face database captioned “AT&T”, formerly the ORL database of faces,
consists of ten different images of 40 distinct subjects, for a total of 400 images.
Each subject is positioned upright in front of a dark homogeneous background.
The size of each image is 112×92 pixels, for a total dimensionality of 10304. The
face database termed as “Yale” contains 165 gray scale images of 15 individuals.
The size of each image is 243 × 320 pixels, for a total dimensionality of 77760.
However, in this experiment, each facial image of 236× 178 pixels was manually
extracted, and then represented by a centered vector of normalized intensity
values.

3.2 Experimental Method

In this paper, all experiments were performed using a “leave-one-out” strategy.
To classify an image of object, that image is removed from the training set and
the dissimilarity matrix is computed with the n − 1 images. Following this, all
of the n images in the training set and the test object were translated into a
dissimilarity space using the dissimilarity matrix, and recognition was performed
based on the proposed algorithm in Section 2.1. We repeated this n times for
every sample and obtained a final result by averaging them.

To construct the dissimilarity matrix, all samples were selected as represen-
tatives and the dissimilarities were measured with Euclidean Distance (ED) and
Regional Distance (RD) 7. Here, RD is defined as the average of the minimum
difference between the gray value of a pixel and the gray value of each pixel
in the 5 × 5 neighborhood of the corresponding pixel. In this case, the regional
distance compensates for a displacement of up to three pixels of the images.
The details of the distance are omitted here, but can be found in the literature
including [25].

Conversely, the faces for some subjects vary by pose, illumination, facial ex-
pression, and whether or not they are wearing glasses. Thus, the mean face
simply obtained by averaging the input images can not work as a representa-
tive. To overcome this problem, a fusion strategy is employed in which three
classifiers are combined. The first two were designed in the dissimilarity space,
while the remaining one was constructed in the feature space. Here, to obtain the

6 A thorough evaluation on AT&T and Yale databases is presented here. There are
more challenging datasets, such as FERET and CMU-PIE.

7 Here, we experimented with these simple measures, such as ED and RD. However,
it should be mentioned that we can have numerous solutions, depending on dissim-
ilarity measures, such as the modified Hausdorff distances. From this perspective,
the question “what is the best measure ?” is an interesting issue for further study.



On Using a Dissimilarity Representation Method to Solve the SSS Problem 1181

prototypes of the third classifier, each class was initially clustered by invoking a
k-means algorithm and then averaged the clusters. To simplify the classification
task for the paper, the nearest neighbor classifiers and the minimum-distance
classifier were constructed. However, other classifiers, including linear/quadratic
classifiers and SVM-based classifiers can also be employed.

3.3 Experimental Results

The run-time characteristics of the proposed algorithm for the two benchmark
data-bases, AT&T and Yale, is reported below, and is shown in Tables 1 and
2. The performances of the dissimilarity-based classifiers (DBC and CDBC) are
investigated first. Following this, a comparison is made between the conventional
LDA-extension methods and the proposed CDBC scheme.

First, the numbers of the clusters in Step 3 of CDBC in Section 2.1 were
probed into. Table 1 shows the classification accuracy rates (%) of CDBC for
the two databases. Here, the abbreviations ED and RD in the second column
indicate the dissimilarity measures employed in this experiment; specifically, the
Eucledian distance and the regional distance, for the abbreviations ED and RD.
Additionally, the numbers initialized with 3, 5, 7, 9, are the number of clusters
for each class.

Table 1. The classification accuracy rates (%) of the Combined Dissimilarity-Based
Classifiers (CDBC). Here, the values of (·) are the processing CPU-times (seconds).
The details of the table are discussed in the text.

Database Dissimilarity Number of Clusters per Class
Names Measures 3 5 7 9

ED 98.75 98.75 98.75 99.00
AT&T (0.79 × 102) (0.12 × 103) (0.17 × 103) (0.18 × 103)

RD 98.75 99.25 99.00 99.25
(0.42 × 104) (0.72 × 104) (0.11 × 105) (0.12 × 105)

ED 83.64 84.24 83.03 93.03
Yale (0.11 × 103) (0.19 × 103) (0.27 × 103) (0.34 × 103)

RD 83.03 83.64 83.64 83.64
(0.63 × 104) (0.12 × 105) (0.18 × 105) (0.22 × 105)

From Table 1, it is clear that the classification accuracies for the benchmark
databases can be improved by increasing the number of clusters. An example
of this is the classification accuracy rates (%) and the processing CPU-times
(seconds) of the classifiers designed for the AT&T database measured with RD.
The classification accuracies for the 3, 5, 7, and 9 clusters are 98.75, 98.75, 98.75,
and 99.00 (%), respectively. Alternatively, the processing CPU-times (seconds)
of the classifiers are 0.79 × 102, 0.12 × 103, 0.17 × 103, and 0.18 × 103, again
respectively. From the table, it should be also noted that it is possible to improve
the performance by effectively measuring the dissimilarity. For instance, the
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classification accuracy rates of the classifiers designed with RD for the AT&T
database are 98.75, 99.25, 99.00, and 99.25 (%), respectively. This also applies
for the same characteristics for the Yale database.

Secondly, to examine the rationality of employing a fusion technique in the
CDBC, the simple Dissimilarity-Based Classifier (DBC) was experimented.
While CDBC involves all of the five steps given in Section 2.1, DBC consists
of only the steps 1, 2, and 4(a). The classification accuracy of DBC was evalu-
ated for the AT&T and Yale databases. In this experiment, the same dissimilar-
ity matrix was constructed for both DBC and CDBC. Also, in both methods,
each class was divided into 3, 5, 7, and 9 clusters. From the experiments, for
the AT&T database, the same classification accuracies of 96.50 and 95.00 (%)
were obtained throughout all the numbers of clusters for the ED and RD mea-
sures, respectively. For the Yale database, the accuracies for ED were found
to be equal at 79.39 (%) for all the numbers of clusters, while the accuracies
were also all 79.39 (%) for RD, regardless of the number of clusters. Thus, a
comparison of Table 1 and the above results shows the fact that the proposed
combined classifier, CDBC, is nearly almost always superior (and sometimes,
much more superior) to the simple classifier, DBC. From this consideration, it
becomes clear that the rationale of the paper for employing a fusion technique
works well.

Finally, the conventional LDA-extension methods were experimented with in
order to make a comparison with the CDBC. Table 2 shows a comparison of the
performances of the conventional method and the proposed scheme for the two
benchmark databases. Here, the PCA [3], the PCA+LDA [3], the Direct-LDA
[5], the R-LDA [9], the DCV [13], and the LDA/GSVD [11] were implemented,
and these methods were compared with the CDBC proposed in Section 2.1. In
this experiment, in order to reduce the computational complexity, each image
from the two databases AT&T and Yale, was down-sampled into 56 × 46 and
61×80, respectively. It is interesting to note also that, in the PCA+LDA method,
PCA was used first to reduce the dimension of the original feature space, p, to an
intermediate dimension, n − c, where n is the total number of training samples
and c is the number of classes. Secondly, LDA followed to reduce the dimension
to c − 1 again. In the PCA method, however, the dimension p was directly
reduced into c − 1. In this comparison, the “leave-one-out” strategy was also
used to experiment with the methods. For CDBC, the dissimilarity matrix was
constructed with the Euclidean distance and the number of clusters of each class
was set to nine.

Initially considered are the classification accuracy rates of the AT&T database
for the conventional LDA-extension methods. The accuracies of the conventional
methods are, 93.25, 95.50, 98.50, 98.00, 97.25, and 93.50 (%), while the accuracy
of CDBC (the Euclidean distance) is 99.00 (%). From these figures, it is apparent
that the classification accuracy rate of the proposed scheme is only marginally
better than those of the conventional methods. A comparison of these figures
shows that the performance of the dissimilarity-based scheme works well. From
Table 3, it is also noted that the processing CPU-time of feature extraction can
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Table 2. A comparison of the performances of the conventional LDA- extension meth-
ods and the proposed dissimilarity-based scheme for two benchmark databases. Here,
the values of (·) are the processing CPU-times. The details of the table are discussed
in the text.

Types Feature Reduction Databases
Schemes AT&T Yale

PCA 93.25 (0.4795 × 105) 72.73 (0.1509 × 106)
Conventional PCA+LDA 95.50 (0.4948 × 105) 74.55 (0.1511 × 106)

LDA-extension Direct-LDA 98.50 (0.2090 × 104) 92.12 (0.2785 × 103)
Methods R-LDA 98.00 (0.1938 × 106) Not available∗

DCV∗ 97.25 (0.5958 × 104) 70.91 (0.1846 × 104)
LDA/GSVD 93.50 (0.1167 × 105) 98.79 (0.2678 × 105)

Proposed Scheme CDBC 99.00 (0.4036 × 102) 80.00 (0.2548 × 102)

be reduced significantly by employing a dissimilarity representation. It should
be noted that the reduction of processing time was greatly enhanced when the
dimensions of the data sets was increased.

In contrast, the classification accuracy rates for the Yale database for the
conventional schemes and the proposed scheme are different from those of the
AT&T database 8. The classification accuracy rate of the dissimilarity-based
scheme is poor. This undesirable result seems to originate from the fact that
each image of the Yale database has a non-uniform background. As such, the
dissimilarity between them was not considered for measurement. From this point
of view, it appears feasible that a dissimilarity-based method can be used as
a scheme for solving the SSS problem for a high-dimensional classification by
developing an appropriate dissimilarity measure.

In review, it is not easy to crown any one method as superior to others for
solving the SSS problem. However, as a matter of comparison, it is clear that with
regard to the processing CPU-times involved, the proposed dissimilarity-based
method has been shown to be computationally better than the conventional
schemes.

4 Conclusions

In this paper a method that seeks to address the SSS problem by employing
a dissimilarity representation method is considered. Rather than use Fisher’s
criterion to reduce the dimensionality, a completely different approach was em-
ployed, in which an object is represented based on the dissimilarity measures
among training samples instead of from the feature vector itself. Thus, by using
a small number of training samples as representatives, it was possible to reduce

8 In Table 2, the “Not available” was due to the out-of-memory problem. In order to
implement the R-LDA method [9], we needed three p× p matrices. To be consistent
with other methods, however, we did not fix the implementation. We also failed to
obtain as good result as in [13] with DCV.
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the dimensionality and achieve a better classification performance in terms of
both speed and accuracy.

The proposed method has been tested on two well-known face databases and
compared with conventional LDA-extensions. The experimental results demon-
strate that the proposed scheme is better than conventional schemes in terms of
the processing CPU-times. Although an investigation was made that focused on
the possibility that the dissimilarity representation could be used to solve the
SSS problem, many problems remain. This classification performance could be
further improved by the development of an appropriate dissimilarity measure
(i.e., the Hausdorff distance) and by the designing of suitable classifiers (i.e.,
linear and possibly quadratic classifiers) in the dissimilarity space. The research
concerning this is a future aim of the authors.
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Abstract. The nearest neighbor (NN) classifier is well suited for generic object
recognition. However, it requires storing the complete training data, and classifi-
cation time is linear in the amount of data. There are several approaches to im-
prove runtime and/or memory requirements of nearest neighbor methods: Thin-
ning methods select and store only part of the training data for the classifier.
Efficient query structures reduce query times. In this paper, we present an exper-
imental comparison and analysis of such methods using the ETH-80 database.
We evaluate the following algorithms. Thinning: condensed nearest neighbor, re-
duced nearest neighbor, Baram’s algorithm, the Baram-RNN hybrid algorithm,
Gabriel and GSASH thinning. Query structures: kd-tree and approximate near-
est neighbor. For the first four thinning algorithms, we also present an extension
to k-NN which allows tuning the trade-off between data reduction and classi-
fier degradation. The experiments show that most of the above methods are well
suited for generic object recognition.

1 Introduction

As shown in [1], the nearest neighbor classifier works well for generic object recogni-
tion. However, a naive implementation requires storing the complete training set, and
classification takes time proportional to the size of the training data times the dimension
of the feature vectors. Both aspects can be improved: efficient query structures greatly
reduce classification time and thinning methods reduce the amount of data which has
to be stored for the classifier. In this paper, we evaluate the performance of several such
methods: for classification, we use kd-trees and approximate nearest neighbor (ANN),
and for thinning, condensed nearest neighbor (CNN), reduced nearest neighbor (RNN),
Baram’s algorithm, Baram-RNN hybrid algorithm, Gabriel and GSASH thinning. For
CNN, RNN, Baram and Baram-RNN, we propose and evaluate an extension to k near-
est neighbors, which allows tuning the extent of thinning and thus the trade-off between
data reduction and degradation of classification rates.
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732/2-1.
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The remainder of the paper is organized as follows: In section 2 we give a short
repetition of the k nearest neighbor classifier. Sections 3 and 4 describe the efficient
query structures and the thinning algorithms respectively. In section 5 we present our
experimental results. Section 6 gives final conclusions.

2 Nearest Neighbor Classifier

The k nearest neighbors (k-NN) classifier requires a labeled training data set {X ,Y} =
{(x1, y1), . . . , (xn, yn)} consisting of d dimensional feature vectors xi and their class
labels yi. For k = 1, in order to classify a new feature vector x, find the closest element
xi in X and assign the label yi to x. The misclassification error of the 1-NN classifier
converges (for n → ∞) to at most twice the Bayes-optimal error [2].

For k > 1, find the k nearest neighbors (xi1 , . . . ,xik
) of x in X . Then perform a

voting amongst the class labels (yi1 , . . . , yik
) of these neighbors. The classic rule is to

choose the class with the most votes within the set of neighbors, breaking ties arbitrarily.
For k > 1, the asymptotic (n → ∞) misclassification error of the k-NN classifier is as
low as the Bayes-optimal error [2]. The voting can be modified to include a rejection
rule. There are several possibilities: reject ties, reject if majority is too small, reject if
not all neighbors are in the same class (unanimous voting). In general, the stricter the
voting rule is, the more rejections there will be, but also the lower the misclassification
rate will be.

3 Efficient Query Structures

There are several approaches to improve the running time of brute force nearest neigh-
bor search [3,4,5]. In higher dimensions, however, these algorithms have an exponen-
tially growing space requirement. Besides the small asymptotic improvement in time
which was achieved by Yao and Yao [6] there exists no exact algorithm which can
improve both time and space requirements in the worst case.

3.1 kd-Tree

The practically most relevant approach known for higher dimensions is the kd-tree in-
troduced by Friedman, Bentley and Finkel [7]. The idea of the kd-tree is to partition
the space using hyperplanes orthogonal to the coordinate axes. Each leaf node contains
a bucket with a number of vectors, the other nodes in the binary kd-tree consist of a
splitting dimension d and a splitting value v.

A query only has to look at one dimension of the query point at each node to decide
into which subtree to descend. After the closest vector x in the bucket is found, one also
has to search all buckets which are closer to the query vector than x. In order to keep
the tree small and to avoid searching in many buckets, one can stop splitting the tree if
the bucket has a reasonably small size and search in the bucket linearly. It is shown in
section 5 that this can reduce query times.

If the data is organized in a balanced binary tree, running time in the expected case is
logarithmic. Unfortunately, the running time depends on the distribution of the training
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data. In the worst case, the running time is linear. To improve the running time, several
splitting rules where defined by [8].

The standard kd-tree splitting rule chooses the dimension as splitting dimension in
which the data X have maximum spread. The splitting threshold is the median of the
coordinates of X along this dimension. The depths of the tree is ensured to be �log2n�.
But theoretically, the bucket cells can have arbitrarily high aspect ratio.

The midpoint splitting rule guarantees cells with bounded aspect ratio. It cuts the
cells through the mean of its longest side breaking ties by choosing the dimension with
maximum spread. Trivial splits, where all vectors of X lie on one side of the splitting
plane, can occur and possibly cause the tree to have a larger depth than n.

The sliding-midpoint splitting rule is defined as the midpoint splitting rule, but omits
trivial splits by replacing such a split with a split which contains at least one vector on
each side. This is achieved by moving the splitting plane from the actual position up to
the first vector of the dataset. This ensures that the maximum possible tree depth is n.

The fair-split rule is a compromise between the standard and midpoint splitting rules.
The splitting plane is chosen from the possible coordinates in which a midpoint split can
be done that does not exceed a certain aspect ratio of longest to shortest side. Among
these, the coordinate with the maximum spread is chosen. The two extreme splitting
planes which fullfill the aspect ratio will be compared with the median of the coordi-
nates. If the median is on the smaller side, the cut will be done. Otherwise, a cut will be
done at the median. Again, trivial splits can cause the tree depth to exceed n.

The sliding fair-split rule works as the fair-split rule but omits empty buckets by
considering the extreme cut which just does not exceed a certain aspect ratio and which
is closer to the median if the median does not fulfill the aspect ratio criterion. If this
extreme cut is a trivial one, it is moved up to the position such that one vector lies on
the other side. Again, this ensures that the maximum depth of the tree is n.

3.2 kd-Tree for Approximate Nearest Neighbor

Applying NN classification to generic object recognition, it is not important to really
find the nearest neighbor. The classification is correct if a datapoint of the same class
is found. So we consider doing generic object recognition with an approximate nearest
neighbor approach developed by Arya and Mount [9]. A (1 + ε) approximate nearest
neighbor is defined as follows:

Definition 1. A vector q is called (1+ ε) approximate nearest neighbor of x ∈ X if for
all y ∈ X : d(x, q) ≤ (1 + ε)d(y, q).

The value ε is also called the error bound. If ε = 0, the query is equivalent to the exact
nearest neighbor classification. Otherwise, the minimum distance to the real nearest
neighbor is at least 1/(1 + ε) of the found distance.

To find a given query vector q, the leaf cell in the tree is found by descending the tree.
Only those neighboring cells which are in the range of d(x, q)/(1+ ε) are searched for
a closer training vector. Arya [9,10] has shown that the algorithm has polylogarithmic
query time and needs nearly linear space which can be made quite independent of the
vector distribution.
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Fig. 1. Both images show the training
data of two class problems. In the left
image, the subset indicated by the boxes
is a 2-consistent subset. The set in the
right image is 2-consistent, but not 3-
consistent, because the vectors indicated
by the circles are 3-inconsistent.
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Fig. 2. The image shows a 3-consistent two class
training set, which can be thinned by a 3-NN con-
densed nearest neighbor thinning to a 3-inconsistent
set. The example uses the manhatten distance. If the
vectors are visited in the order a, b, c, d, e, f, g, h, i,
all vectors except for i will be added to the thinned
set. In this set, h is 3-inconsistent.

4 Thinning

Thinning means reducing the training data set {X ,Y} to a smaller subset {X ′,Y ′}.
The classifier then only uses {X ′,Y ′}. This results in reduced memory requirements
and query times. There is an important property of thinned data sets {X ′,Y ′} [2]:

Definition 2. A set {X ′,Y ′} ⊆ {X ,Y} is called consistent subset of {X ,Y} if the
1-NN classifier for {X ′,Y ′} correctly classifies all members of the original set {X ,Y}.

This property is very desireable, as it guarantees perfect recognition of the 1-NN clas-
sifier for {X ′,Y ′} applied to the whole training set {X ,Y}. We extend the definition
with respect to the k-NN classifier:

Definition 3. A vector x ∈ X is called k-consistent with respect to {X ,Y} if the
unanimous k-NN classifier for {X ,Y} classifies it correctly. Otherwise it is called k-
inconsistent with respect to {X ,Y}. A set {X ,Y} is called k-consistent set if it has no
elements which are k-inconsistent with respect to {X ,Y}. A subset {X ′,Y ′} ⊆ {X ,Y}
is called k-consistent subset of {X ,Y} if all members of {X ,Y} are k-consistent with
respect to {X ′,Y ′}.

Clearly, the terms consistent subset and 1-consistent subset are equivalent. As for the
1-NN case, the property k-consistent subset guarantees perfect recognition of the k-
NN classifier for {X ′,Y ′} applied to the whole training set {X ,Y}. Fig. 1 shows an
example of a 2-consistent subset for a given training set. Next, we proof three theorems:

Theorem 1. A vector which is k-consistent with respect to a set is also k′-consistent
with respect to the same set, for all k′ ≤ k.

Proof: The k nearest neighbors of a labeled vector (x, c), which is k-consistent with
respect to {X ,Y}, are all in class c. Thus, also its k′ nearest neighbors are in class c.
Thus, (x, c) is k′-consistent with respect to {X ,Y}. �
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Input: {X ,Y}
Initialize R with one random element of {X ,Y}

FOR EACH (x, c) ∈ {X ,Y} \ R

IF x is k′-inconsistent with respect to R

THEN Set R = R ∪ (x, c)
UNTIL R has not changed during the previous FOR EACH loop
Result: {X ′,Y ′} = R

Fig. 3. Hart’s thinning algorithm: condensed nearest neighbor

Theorem 2. A k-consistent subset of a set is a k-consistent set.

Proof: Given a k-consistent subset {X ′,Y ′} of {X ,Y}, all elements of {X ,Y} are k-
consistent with respect to {X ′,Y ′}. As {X ′,Y ′} ⊆ {X ,Y}, all elements of {X ′,Y ′}
are k-consistent with respect to {X ′,Y ′}. Thus, {X ′,Y ′} is a k-consistent set. �
Theorem 3. A k-consistent subset of a set is a k′-consistent subset of the same set, for
all k′ ≤ k.

Proof: Let {X ′,Y ′} be a k-consistent subset of {X ,Y}. All labeled vectors in {X ,Y}
are by definition k-consistent with respect to {X ′,Y ′} and thus k′-consistent with re-
spect to {X ′,Y ′} (theorem 1). Thus, {X ′,Y ′} is a k′-consistent subset of {X ,Y}. �

4.1 Condensed Nearest Neighbor

Hart [2,11] proposed a thinning algorithm called condensed nearest neighbor (CNN).
First, one element of the training set is chosen arbitrarily. Then, a scan over all remain-
ing elements is performed. During the scan, all elements which are 1-inconsistent with
respect to the new growing set are added to the new set. Additional scans are performed
until the new set does not change during a complete scan. The thinned subset is guar-
anteed to be a 1-consistent subset of the training set [2].

While Hart’s algorithm reduces the size of the data and thus improves memory re-
quirements and query times, it typically also reduces the recognition rate [2]. Depend-
ing on the structure of the training data and the application, the degradation of the
classifier may be unacceptable. Hence, we propose an extension to the algorithm. The
only change is that we require vectors to be k′-consistent instead of only 1-consistent.
The complete algorithm is given in Fig. 3. The runtime of a naive implementation is
O((d + k′)n3) in the worst case.

While the thinned set is not guaranteed to be a k′-consistent set, as can be seen from
the counter example in Fig. 2, it is obviously guaranteed to be a 1-consistent subset of
the training set. It is quite obvious from theorem 3 in combination with the growing
nature of the algorithm that in general, a greater value of parameter k′ will result in a
greater thinned set. The second part of our proposal is to choose k′ ≥ k. This means
that we use a greater (or equal) parameter k′ for thinning than for the application of the
k-NN classifier. On the one hand, this makes sense, because even for a k′-consistent
training set, the thinned subset is not guaranteed to be k′-consistent, but with increasing
k′, the chances of the thinned subset being at least k-consistent increase. On the other
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Input: training data {X ,Y} and thinned data {X ′,Y ′}
Set R = {X ′,Y ′}
FOR EACH (x, c) ∈ R

IF All (x′, c′) ∈ {X ,Y} are k′-consistent with respect to R \ {(x, c)}
THEN Set R = R \ {(x, c)}

Result: {X ′′,Y ′′} = R

Fig. 4. Postprocessing algorithm for reduced nearest neighbor

hand, while it is desireable to have a k-consistent set (or even better, a k-consistent
subset of the training set), what is more important is the classification rate of the k-
NN classifier for the thinned set on a separate test set. Thus, it makes perfect sense
to choose k′ > 1 for a 1-NN classifier, even though the thinned set is already guar-
anteed to be a 1-consistent subset of the training set for k′ = 1. To summarize, the
parameter k′ can be used to tune the trade-off between data reduction and classifier
degradation.

4.2 Reduced Nearest Neighbor

Gates [2,12] proposed a postprocessing step for the CNN thinning algorithm. As the
initial members of the thinned set are chosen arbitrarily and as additional members
are added, it may be possible to remove some vectors and still retain a 1-NN consis-
tent subset of the training set. The postprocessing algorithm simply checks for each
vector of the thinned set if the thinned set without that vector is still a 1-NN consis-
tent subset of the training set. If it is, the vector is removed. Of course this algorithm
can also be extended to a k′-NN version as described in the previous subsection. The
postprocessing algorithm is given in Fig. 4. The runtime of a naive implementation
is O((d + k′)n3) in the worst case. The complete reduced nearest neighbor (RNN)
thinning algorithm performs CNN thinning followed by the postprocessing algorithm.
As the CNN part may produce a k′-inconsistent set and the postprocessing will not
remove any k′-inconsistent vectors, the RNN thinning algorithm can also produce a
k′-inconsistent set.

4.3 Baram’s Method

Baram [2,13] proposed a thinning algorithm that thins each class individually. For each
class, a new set for the thinned class is initialized with an arbitrary member of that
class. Then, each vector of that class, which is 1-inconsistent with respect to a modified
training set in which the current class is replaced by the growing thinned version of
that class, is added. Naturally, also this algorithm can be extended to a k′-NN version.
Fig. 5 shows the complete algorithm. The k′-NN version of Baram’s algorithm can
also produce a k′-inconsistent set, as the same counter example as for CNN applies
(Fig. 2). The runtime of a naive implementation is O((d + k′)n2) in the worst case. In
an unpublished paper, Olorunleke [14] proposed combining Baram’s algorithms with
the postprocessing step of RNN and calls it Baram-RNN hybrid algorithm.
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Input: {X ,Y}
FOR EACH class c ∈ Y

Remove class c: {X ∗,Y∗} = {X ,Y} \ {Xc,Yc}
Set Rc = ∅
FOR EACH vector x ∈ Xc

IF (x, c) is k′-inconsistent with respect to {X ∗,Y∗} ∪ Rc

THEN Set Rc = Rc ∪ (x, c)
Result: {X ′,Y ′} = c∈Y Rc

Fig. 5. Baram’s thinning algorithm ({Xc,Yc} ⊆ {X ,Y} contains the members of class c)

4.4 Proximity Graph Based Thinning

The thinning algorithms in the previous sections all exhibit the property that different
thinned-sets will result from considering the datapoints in a different order. As this is
undesirable, we also consider order-independent, graph-based thinning algorithms.

The starting place for these order-independent algorithms is the Delaunay graph
[15], which is constructed by connecting nodes in adjacent Voronoi cells. A Voronoi
cell is the region of space around a point that is closer to that point than to any other
point. If we remove a point from our set, all points falling in its Voronoi cell will now
fall in a cell belonging to one of its neighbors in the Delauny graph. This suggests a
thinning algorithm: by removing all points that are surrounded by Delauny neighbors
of the same class, we are left with a thinned set that has exactly the same classification
properties as the original set in a 1-NN classification scheme.

Despite its desirable properties, Delaunay Graph thinning has two critical drawbacks:
the algorithm is exponential in the dimensionality of the data, and empirically removes
very few points for real datasets [15]. It seems that tolerating some shift in the decision
boundary can (greatly) increase the number of points removed in thinning.

Two points x1, x2 ∈ X are Gabriel neighbors if there is no third point x3 ∈ X inside
the hypersphere centered on the midpoint of x1 and x2, and with diameter equal to the
distance between them. Mathematically, we say that x1 and x2 are Gabriel neighbors
iff ∀x3 ∈ X , d(x1, x2)2 ≤ d(x1, x3)2 +d(x2, x3)2. A Gabriel graph is an undirected
graph built by connecting each node to all of its Gabriel neighbors. As with Delaunay
graphs, we will consider a thinning algorithm in which all points that are only neighbors
with points of the same class are removed from the dataset. Since the Gabriel graph
is a subset of the Delaunay graph, Gabriel thinning will remove all of the points that
Delaunay thinning removes, and possibly more. This may change the decision boundary
(and possibly even leads to a 1-inconsistent thinned subset), but in practice, Sánchez et
al. found that Gabriel thinning leads to better classification (at the cost of keeping more
points) than traditional CNN methods [16].

There is a quadratic cost to finding a given point’s Gabriel neighbors. To build an
entire graph so that we can do filtering, we incur this cost for every point in the data set.
This means that building an exact Gabriel graph is cubic in the number of data points,
and so is very costly. Using Mukherjee’s GSASH data structure [17], the cost becomes
O(n log2 n), though with potentially large constants.
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Fig. 6. Sample images of the objects of the ETH-80 database [18]

5 Results

5.1 Dataset

To evaluate the nearest neighbor classification for generic objects, we use the ETH-
80 database [18], which contains 80 objects from 8 categories: apple, car, cow,
cup, dog, horse, pear and tomato (see Fig. 6). Each object is represented by
41 images of views from the upper hemisphere. The experiments are performed us-
ing 128×128 pixel images, with each image cropped close to the object boundaries.
The grayvalues of the image will be transformed to a feature vector by a PCA trans-
formation with the eigenvectors of the 100 largest eigenvalues. The 100 dimensional
feature vectors will be used for classification. The test is performed by cross-validation
with a leave-one-object-out strategy. One of the 80 objects is used for testing and the
79 other objects are used to learn the PCA transformation and build the k-NN query
structure. This “unknown” object must accordingly be classified into the correct object
category.

5.2 Experiments

We examined the presented methods with respect to query time, error / rejection / recog-
nition rate and used data size. In many applications, NN is not applied because it is too
slow. This can be improved with the kd-tree. Arya [10] has shown the dependency on
the splitting rule.

One other important parameter of the kd-tree is the bucket size. If it is too small,
the tree becomes very large and the search for the bucket which has to be taken into
consideration takes long. If the bucket size is too large, it takes too much time to search
the bucket linearly. To get a fast kd-tree query, the optimal bucket size for the generic
ETH-80 dataset should be medium size. In our example, bucket size 32 with the stan-
dard kd-tree splitting rule is the best choice. The splitting rule is not very important
if the bucket size is chosen well. For this bucket size, query times vary by about 8%
from 88.9μs with the standard splitting rule to 96.1μs with the midpoint splitting rule,
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Best query times are achieved with bucket size between 20 and 32.

0.16
0.18
0.2

0.22
0.24
0.26
0.28
0.3

0.32
0.34

1 10 100 1000

er
ro

r
ra

te

bucket size

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 10 100 1000

qu
er

y
tim

e
in

m
s

bucket size

ε=0
ε=1
ε=2
ε=3
ε=5

ε=10
ε=20

ε=100

Fig. 8. Performance on different approximation error bounds ε. The left image shows that the
error rate on smaller bucket sizes increases, but as the right image shows the query time can
become amazingly fast. For ε = 100 the query time is 5μs but causing an error rate of 32.7%
with a 1-NN classifier on the generic ETH-80 dataset.

whereas with bucket size one, query times vary by a factor of about two. Using a larger
parameter k for the k-NN classification, the query time increases, but the best query
time is still attained at the same bucket sizes. So this is independent of k (see Fig. 7).

The query time can further be decreased by using approximate nearest neighbor clas-
sification. In general, the query time decreases with larger error bounds and also with
lower bucket sizes if the error bound is large enough. In our experiments, the best query
time (5μs) is obtained using ε = 100 and bucket size one, but at the cost of a strong rise
of the error rate to 32.7%. Useful values of ε are about 1–3 (see Fig. 8). Using an error
bound ε = 2, the query time can be improved by the factor of 3 to 29.0μs without losing
any recognition rate in our 80 test sets and with ε = 3 to 20.5μs with an increased error
rate of 0.46 percentage points, which is quite acceptable.

Gabriel thinning reduces the data set only to 96.8%. The fastest and least precise
GSASH approximation with one parent and one child reduces the data set to 93.8% and
with 6 children and 6 parents to 94.6%. So the results are similar to those using the
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Fig. 9. In the images, the dependency of different thinning algorithms on the parameter k′ is
presented. The left image shows the proportion of the full dataset which remains after thinning.
In the right image, the error rate using 1-NN on the reduced dataset is shown.

original data set, but can also improve the query time to error rate ratio (see Fig. 12).
A major disadvantage of the approach is the time requirement for thinning. Gabriel
thinning needs about 27 minutes for 3239 vectors and the fastest approximation about
11 minutes, whereas e.g. Baram or CNN need only about 2.5 seconds. The reason for the
small reduction is an indication of the bad distribution of the data in the 100 dimensional
space. A reduction of the dataset can still be done with CNN or Baram but at the cost of
recognition rate. Our extension of the NN thinning algorithms can adjust the reduction
of the dataset. This effect can be observed in Fig. 9 (left).

As expected, the greater the value of k′ is, the more data is retained after thin-
ning. Accordingly, as can be seen in Fig. 9 (right), the error rate decreases with in-
creasing k′. Furthermore, Fig. 10 shows the influence of k′ on the recognition and re-
jection rates for Baram and several values of k (unanimous voting). Independent of
k and in accordance with Fig. 9, the recognition properties of the classifier improve
with growing k′. This shows that the trade-off between data size and error rate can be
tuned.

Considering Fig. 9 again, a comparison between the four thinning algorithms shows
that for k′ > 1, a) there is no difference between CNN and RNN as well as between
Baram and Baram-RNN and b) Baram keeps a bit more data than CNN. While it is not
suprising that hence the error rate of Baram is lower, it is actually lower than the sheer
amount of data would suggest: Baram with k′ = 6 keeps 58.5% of the data while CNN
with k′ = 9 retains 64.6%. The error rate is 16.2% in both cases. On this data set, for
1 < k′ < 9, Baram clearly outperforms CNN.

Varying parameter k for k-NN classification with unanimous voting lets us choose
a specific error rate versus rejection rate ratio (see Fig. 11). If k becomes larger, the
error rate decrease, but the rejection rate increase. Thinning with k′ < k does not make
sense, because the k-NN rejection rate strongly increases, as Fig. 10 shows. Thinning
with k′ = 1 is, with respect to recognition rate, bad in general. The error rate ver-
sus rejection rate ratio is vitally better for k-NN trained with the full data set. Using
Baram thinning with k′ = 6 reaches the best possible ratio – even better than without
thinning.
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ent parameter k for classification with unanimous voting
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Using higher approximation or smaller training data for nearest neighbor classifica-
tion leads to a higher error rate. Which ratio between query time and error should be
chosen highly depends on the application. The best methods at a given query time form
an optimal ratio curve. As shown in Fig. 12, 1-ANN classification trained with data
thinned by Baram with k′ = 1 is in general worse than 1-ANN trained with the origi-
nal data. A smaller error rate with respect to a given query time can be obtained using
Baram thinning with e.g. k′ = 9. Using these Baram thinned data, which are reduced
to 66.2% of the original data, the ANN classification with ε = 5 attains a query time of
12.2μs with an error rate of 18.4%. For thinning parameter k′ > 9, the methods lie on
the ratio curve of the original data (see Fig. 12).

6 Conclusions

We showed that thinning methods and query structures for k-NN are well suited to re-
duce memory requirements and/or classification times for generic object recognition.
The experiments showed that, for optimal speed of exact queries, the bucket size of the
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kd-tree is important and independent of k. For ANN, a small bucket size and a large
error bound ε yield the fastest queries. Furthermore, we developed k′-NN extensions
of CNN, RNN and Baram and showed that they allow to tune the trade-off between
data reduction and classifier degradation. As expected, the classical versions of the al-
gorithms (k′ = 1) yield maximum degradation. The best trade-off between query time
and error rate was reached for a combination of k′-NN Baram and ANN. Gabriel and
GSASH thinning turned out not to work well on the high-dimensional ETH-80 data.
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Abstract. Independent Component Analysis (ICA) has shown success
in blind source separation. Its applications to remotely sensed images
have been investigated recently. In this approach, a Linear Spectral Mix-
ture (LSM) model is used to characterize spectral data. This model and
the associated linear unmixing algorithms are based on the assumption
that the spectrum for a given pixel in an image is a linear combination
of the end-member spectra. The assumption that the abundances are
mutually statistically independent random sources requires the separa-
ting matrix to be unitary. This paper considers a new approach, the
Non Orthogonal Component Analysis (NOCA), which enables to relax
this assumption. The experimental results demonstrate that the pro-
posed NOCA provides a more effective technique for anomaly detection
in hyperspectral imagery than the ICA approach. In particular, we high-
light the fact that the difference between the performances of the two
approaches increases when the number of bands decreases.

1 Introduction

Over the past years, linear spectral mixture analysis has been widely used for hy-
perspectral image analysis such as detection and classification [1, 2, 3]. It assumes
that an image pixel is linearly mixed by materials with relative abundance frac-
tions present in the image. The observations are modeled as convex combinations
of constituent spectra, known as end-members. Two approaches are possible; the
first one consists in looking for the end-members. Several different procedures
have been developed to automatically find them from the hyperspectral data.
Then the abundance estimated are obtained as the solution of a constrained least
squares problem. The second approach considers the abundance as a random si-
gnal source. This one allows to capture their spectral variability more effectively
in a stochastic manner. We are in the framework of blind source separation.

Blind source separation (BSS), which consists in recovering original signals
from their mixtures when the mixing process is unknown, has been a widely
studied problem in signal processing for the last two decades (for a review see
[4]). Independant component analysis (ICA), a statistical method for signal sep-
aration [5, 6, 7] is also a well-known issue in the community. Its aim is to trans-
form the mixed random signals into source signals or components which are as
mutually independent as possible.
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In remotely sensed imagery, the number of target pixels of interest, such as
small man-made targets, anomalies, or rare minerals, is generally small compared
to the image background. The unsupervised methods are known as anomaly
detection. From this point of view, an interesting structure of an image scene is
the one resulting from a small number of target pixels in a large area of unknown
background. As a consequence, these target pixels are main causes of outliers of
distributions which can be detected by higher order statistics such as skewness
or kurtosis. Conversely, the background which is composed of a great number
of pixels can be assumed to be a Gaussian distribution while the target pixels
of interest can be viewed as non-Gaussian signal sources that create ripples in
the Gaussian tails. In this case, target pixels of interest can be separated by the
ICA, as we desire.

The first step of many variants of the ICA algorithms consists in removing
the sample mean and a whitening. Then the ICA problem can be formulated as
the one to find the separating matrix W derived from the ICA that separates
the original signals from the mixture. By assumption W is assumed to be a
unitary matrix in the whitening space. In remotely sensed imagery context,
W is the estimate of the whitening end-members. Because of this constraint,
some targets can hide other ones if the targets are correlated. We propose a
new approach which relaxes this constraint. Called Non Orthogonal Component
Analysis (NOCA), this approach estimates each line of W iteratively after the
removal of the contribution of the targets already detected.

The paper is organized as follows. Section 2 describes the Linear Mixture
Model model. Section 3 develops the ICA approach for hyperspectral image
analysis, interprets the thresholding of the abundance map, and explains the
limits of the ICA approach. Section 4 presents the Non Orthogonal Component
Analysis (NOCA). Section 5 presents experimental results. Finally, section 6
includes some concluding remarks.

2 Linear Mixture Model

Linear mixture models have been extensively used to characterize spectral data,
see [1, 2, 3]. These models and the associated linear unmixing algorithms are
based on the assumption that the spectrum for a given pixel in an image is a
linear combination of the end-member spectra.

Let r be a L×1 column pixel vector in a multispectral or hyperspectral image.
Let M be a L×p end-member signature matrix, denoted by [m1m2...mp] where
mj is a L × 1 column vector represented by the jth end-member signature and
p is the total number of end-members in the image. Let α = (α1, α2, ..., αp)T

be a p × 1 abundance column vector associated with r, where αj denotes the
abundance fraction of the jth end-member signature present in the pixel vector
r. The pixel vector r can be represented by a linear regression model as follows:

r = Mα + n, (1)

where n is a noise that can be interpreted as measurement error, noise, or model
error.
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A spectral linear unmixing method estimates the unknown abundance frac-
tions α1, α2, ..., αp via an inverse of a linear mixture model described in (1).

One requirement is that the target signature matrix M must be known a
priori. Many approaches have been proposed in the past to obtain M directly
from the image data in an unsupervised fashion, such as [8, 9]. Given the end-
members, the abundance estimates are obtained, for example, as the solution of
a constrained least squares problem.

In an other way, we can assume that the p abundance fractions α1, α2, ..., αp

are unknown random quantities specified by random signal sources rather than
unknown deterministic quantities, as assumed in model (1). The set of the pixel
vectors of the image R = [r1, r2, ..., rN ] represents the set of the realizations of
r. In this case, we can consider this model as an inverse problem of blind source
separation. This approach is developed in the following section.

3 Independent Component Analysis

3.1 Model

The independent component analysis has widely proved itself as far as blind
source separation is concerned. To remain in the limits of its application, we need
to make the three following additional assumptions on the random abundance
vector α = (α1, α2, ..., αp)T :

• The p target signatures m1m2...mp in M must be spectrally distinct.
• The p abundance fractions α1, α2, ..., αp are mutually statistically indepen-

dent random sources.
• Each of the p abundance fractions α1, α2, ..., αp must be a zero-mean random

source and at most one source is Gaussian.

Except for these three assumptions, no prior knowledge is assumed about the
model (1).

In order to implement the ICA using model (1), the mixing matrix used in
the blind source separation is replaced with the target signature matrix M and
the unknown signal sources to be separated with the target random abundance
fractions are denoted by α1, α2, ..., αp. With this interpretation, the ICA finds
a p × L separating matrix W and applies it to an image pixel to unmix the
α1, α2, ..., αp. More specifically, the ICA solves an inverse problem of model (1)
for a p × L separating matrix W via the following equation:

α̂(r) = Wr, (2)

where α̂(r) = (α̂1(r), α̂2(r), ..., α̂p(r))T is the estimate of abundance fractional
vector α = (α1, α2, ..., αp)T based on r.

The separation is only unique up to a scaling and ordering of the components
αk. Unless we are interested in quantification, the order and the true abundance
fractions are generally not crucial in target detection and classification. In this
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case, we can normalize each abundance source to unit variance so that the co-
variance matrix of the abundance sources becomes the identity matrix. This can
be simply done by a sphering (whitening) process.

In order to use the ICA, a criterion is required to measure the statistical inde-
pendence among the estimated abundance fractions α̂1(r), α̂2(r), ..., α̂p. Accor-
ding to information theory [10], relative entropy or Kullback-Leibler information
distance function is an appropriated measure. Nevertheless, instead of minimi-
zing the statistical dependence between αi, Comon suggested to maximize the
nongaussianity of the estimated α̂i distribution. He proposed to maximize the
higher order statistics of the data, called contrast function of W, denoted by
ψ(W) which is defined in [5] by

ψ(W) =
p∑

i=1

K2
ii..i, (3)

where Kii...i are marginal standardized cumulants of order r ≥ 2 of the α̂i

distribution.
An ICA algorithm can be summarized by the following procedure:

• Centering: remove mean of r, r̄ = r− E[r]
• Whitening: whitened observed data r through eigenvalue decomposition of

the covariance matrix of measurement,

r̃ = D−1/2UT r̄, (4)

in which U is the orthogonal matrix of eigenvectors of E[r̄r̄T ] and D is the
diagonal matrix of its eigenvalues.

• Estimating independent components M by finding the projection matrix W
solution of the following optimization problem:

maximize ψ (W)
subject to E[α̂(r)α̂(r)T ] = Id (5)

where Id is the p × p identity matrix.

The estimate of the independent component is given by

α̂(r) = Wr̃, (6)

and the p abundance detectors are

α̂k(r) = wkr̃, k = 1...p, (7)

where W = [wT
1 ,wT

2 , ...,wT
p ]T .

3.2 ICA and Detection

In this part, we will try to make the link between the independent component
analysis and the detection theory.



1202 J.-M. Gaucel, M. Guillaume, and S. Bourennane

Let
ST = WD1/2U, (8)

then as U is unitary
W = ST UT D−1/2. (9)

With the equation (4) and the equation (9), the equation (6) becomes

α̂(r) = ST UT D−1/2D−1/2UT r̄ = ST E[rrT ]−1r̄. (10)

Let us note S = [s1, s2...sP ]). In these conditions we can write:

α̂k(r) = sT
k E[rrT ]−1(r − E[r]). (11)

If we notice that:

ST E[rrT ]−1S = WD1/2UE[rrT ]−1UT D1/2WT

= WWT

= Id,
(12)

then sT
k E[rrT ]−1sk = 1 and the equation (11) can be written as

α̂k(r) =
sT
k E[rrT ]−1(r − E[r])

sT
k E[rrT ]−1sk

, (13)

which is the expression of the Adaptive Matched Filter (AMF) for the target
signature sk. The AMF filter [11] is the most popular Constant False Alarm
Rate (CFAR) of the hyperspectral imaging target detection algorithms.

This remark enables us to make two important conclusions for the following.
First of all we can interpret the ICA as the research of the spectral signatures
which give AMF detection maps with the most distant histogram from a gaussian
distribution. Given that the end-members the less present in the scene give the
detection maps whose histogram is the less gaussian, we easily understand the
particular interest of this method in anomaly detection.

The second conclusion is very important too. It comes from the fact that the
AMF filter is a CFAR filter. In [12], Chang gave a method to determine a thresh-
old for each abundance map from a rejection rate. However the value of this rejec-
tion rate is arbitrary. Nothing can justify that each abundance map has the same
rejection rate. The property of the CFAR will enable us to threshold each abun-
dance map independently according to a defined probability of false alarm (PFA).

3.3 Limits of the Model

As seen in the equation (12), the independent component analysis requires that
the spectra of the estimated targets are orthogonal in the whitening space. Ho-
wever if we consider pure spectra, their mutual correlation becomes sometimes
important and it makes the application of a separation method based on the
mutual independence of the sources fruitless. Two correlated targets will thus
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Fig. 1. Illustration of the limits of the ICA model in 2D dimension

be either identified as coming from the same source and detected on the same
abundance map, or, and it would be more annoying, a target will hide an other
and will not enable its detection. The figure 1 illustrates simply the problem.
The direction w1 enables to detect s1 optimally. Moreover it enables to detect
suboptimally s2. But neither w1 nor w2 enable to detect s3.

This limitation is a consequence of the hypothesis of statistical independence
between the p abundance fractions α1, α2, ..., αp . This hypothesis is valid on
the abundances but not any more on their estimates α̂1, α̂2, ..., α̂p because the
end-members spectra are correlated.

We propose to remedy to this problem with an original method.

4 Non Orthogonal Component Analysis (NOCA)

We propose an iterative method, the Non Orthogonal Component Analysis
(NOCA), for blind source separation problem, which enables to relax the or-
thogonality assumption imposed by the ICA. The principle is illustrated in the
figure 2. First, we estimate the most independent direction w1 (2-a) from the
observation. Then, we threshold the abundance map and remove from the ob-
servation the pixel vectors with an estimated abundance superior to a threshold
η (here s1 and s2). After, we calculate w2 in this new set of observations (2-b).
As s1 and s2 have been removed, the second independent component follows the
direction of s3. So it is impossible to detect the three targets.

We note that the two estimated independent components are not orthogonal,
contrary to those in the classic method. Moreover, the NOCA approach can
eventually estimate a number of components greater than the number of observed
sources; while this one is increased with the classic ICA.

We only need to make the following two assumptions on the random abun-
dance vector α = (α1, α2, ..., αp)T :

• The p target signatures m1m2...mp in M must be spectrally distinct.
• Each of the p abundance fractions α1, α2, ..., αp must be a zero-mean random

source and at most one source is Gaussian.
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(a) (b)

Fig. 2. The NOCA approach: (a) First component estimated; (b) Second component
estimated

The assumption ”The p abundance fractions α1, α2, ..., αp are mutually statis-
tically independent random sources” begin obsolete since the estimated sources
are not orthogonal.

Let R̃ = [r̃1, r̃2, ..., r̃N ] be the set of whitened observations of the pixel vector
r, η a threshold, and Q the number of sources to estimate. The NOCA algorithm
can be summarized by the following procedure:

• Centering: remove mean of r, r̄ = r− E[r]
• Whitening: whitened observed data r through eigenvalue decomposition of

the covariance matrix of measurement,

r̃ = D−1/2UT r̄, (14)

where U is the orthogonal matrix of eigenvectors of E[r̄r̄T ] and D is the
diagonal matrix of its eigenvalues.

• Initialisation:
R̃1 = R̃,
k1 = N

(15)

• For i = 1...Q
• Estimating the independent component αi by finding the projection vec-

tor wi solution of the following optimization problem:

maximize ψ (wi) = E[α̃m
i ] = E[(wir̃)m] for m ≥ 2, (16)

for the observations R̃i.
• Let y = [y1y2...yki ] = wiR̃i be the estimated abundance of wi in the

observations Ri. Find ki+1 and f : N ∩ [1; N ] �→ N ∩ [1; N ] bijective, so
that:

yf(j) < η for j = 1..ki+1

yf(j) > η for j = ki+1 + 1..ki
(17)

• Update:
R̃i+1 = [r̃f(1)r̃f(2)...r̃f(ki+1)]. (18)
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• form W = [wT
1 ,wT

2 , ...,wT
p ]T .

The estimate of the independent component is given by

α̂(r) = Wr̃. (19)

5 Experiments: Anomaly Detection

In this section, we will compare the ICA and NOCA approaches within the
framework of anomaly detection in hyperspectral imagery. Several configurations
will be envisaged in order to highlight the performances of each of the two
methods for this application.

There are two ways to calculate the detection probabilities. The first considers
that a target is detected if one of its pixel is detected (Noted Pd1). The second
considers the set of pixel vectors composing a target as so many independent
targets (Noted Pd2)

For the ICA, we have chosen to use the FastICA, a fixed-point algorithm first
proposed by Hyvrinen and Oja [6, 7]. It is one of the most widely used algorithm
for the linear mixing model. In the same way, we use a fixed-point method for
the NOCA to maximize our contrast function.

The contrast function used will be the same for the two methods: the kurtosis.
It is used in many approaches [13, 14].

5.1 Data

A high spatial resolution hyperspectral digital imagery collection experiment
(HYDICE) scene considered in most of research tests was used for experiments.
The HYDICE image shown in figure 3(a) has a size of 243 × 113 with 10
nm spectral resolution and 1.5 m spatial resolution. The low signal / high
noise bands (bands 1-3 and bands 202-210) and water vapor absorption bands
(bands 101-112 and bands 137-153) have been removed. It results in a total
of 169 bands. There are 30 target panels located on the field, and they are
arranged in a 10 × 3 matrix. The figure 3(b) shows the ground truth map of
3(a) and provides the precise spatial locations of these 30 panels. The sizes
of the panels in the first, second and third columns are 3m × 3m, 2m × 2m,
and 1m × 1m, respectively. Spectra of the ten targets are represented in
figure 3(c).

5.2 Influence of the Spectral Domain

We have a 148 bands image. Firstly, we will vary the number of bands. We will
arbitrarily go from the band 1 to the band X , by step of 10. The results are
presented in fig. 4 for a probability of false alarm equal to 5.10−4.

First, we notice that the results are really good with the two methods for the
total number of bands but also for fewer bands (110). Then, their performances
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Fig. 3. (a) A 30-panels HYDICE image scene. (b) Ground truth map of target in fig.
3(a). (c) Spectra of 10 targets.

decrease but NOCA is less affected by the reduction of the number of bands.
The difference of performance between the two approaches increases up to 20%
for 50 bands. Finally, their performances for 40 bands are similar because only
one abundance map is conserved in this configuration, there are no difference
left between the two methods.

Then, we will consider groups of 40 adjacent bands and assess the perfor-
mances of the two algorithms on them. The figure 5 shows the results for a pro-
bability of false alarm equal to 5.10−4. We note again that the NOCA method
performs better than the ICA one. Even if it is not really notable, there is always
an advantage with NOCA rather than with ICA.

We notice that the smaller the number of band is, the more advantageous the
NOCA approach is. It can be explained by the fact that when the dimension re-
duces, the correlation between the targets increases. These first results highlight
the fact that the NOCA approach is adapted to anomaly detection in hyper-
spectral imagery. The relax of the orthogonality constraint allows to enhance
the detection performances.

5.3 From Multispectral to Hyperspectral

Still in order to compare the two methods but also to assess the advantage of
the hyperspectral on the multispectral in this particular context, we have under-
sampled the spectral bands. The figure 6 shows the results for a probability of
false alarm equal to 5.10−4.

For a ratio of under-sampling equal to 1, we observe the same performances
than the previous obtained for 148 bands. Then the NOCA method performs
better than the ICA one, in particular when the number of bands is very reduced.
This results are in keeping with the previous ones.
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Fig. 4. Performances of ICA and NOCA algorithms according to the number of spectral
bands
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Fig. 5. Performances of ICA and NOCA algorithms according to the spectral domain
with 40 spectral bands

Moreover, we notice that 9 bands enable to have performances equivalent to
those of 148 bands. This result is important because it is not easy to detect all
targets with 148 bands. For example the RX detector fails to do that, see [15].
We can here conclude that the advantage of hyperspectral on multispectral is
not obvious on these data for this application.
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Fig. 6. Performances of ICA and NOCA from hyperspectral to multispectral

6 Conclusion

This paper has presented a new approach, the NOCA, for blind source separation
problem, which relaxes the orthogonality assumption imposed by the ICA. Our
presented experimental results demonstrate that the proposed NOCA provides a
more effective technique for anomaly detection in hyperspectral imagery than the
ICA approach. Indeed the relax of the orthogonality constraint has enabled to
enhance the detection performances. We have also shown that the advantage of
hyperspectral on multispectral is not obvious on the test data for this application.
In the aim of completing this work, we plan to do a more theoretical study with
classical blind source separation cases. Then we plan to test our new approach
on unsupervised classification in hyperspectral imagery where the ICA approach
has proved itself efficient.
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Abstract. Video classification provides an efficient way to manage and utilize 
the video data. Existing works on this topic fall into this category: enlarging the 
feature set until the classification is reliable enough. However, some features 
may be redundant or irrelevant. In this paper, we address the problem of choos-
ing efficient feature set in video genre classification to achieve acceptable clas-
sification results but relieve computation burden significantly. A rough set ap-
proach is proposed. In comparison with existing works and the decision tree 
method, experimental results verify the efficiency of the proposed approach.  

1   Introduction 

Automatic video content classification is a necessary way to efficient access, under-
standing and retrieval of videos. The semantic content, i.e. the story line told by the 
video, can be split into genre, events and objects. Correspondingly, video content 
classification can be carried out at above three different levels. Specially, a genre is 
simply a categorization of certain types of art based upon their style, form, or content. 
The genre of a video is the broad class to which it may belong, e.g. news, sports and 
cartoon. In this paper, we address the problem of video classification at the highest 
level: Genre.  

Different methods have been introduced to categorize the video into predefined 
genres automatically or semi-automatically. Fischer et al. made the first attempt and a 
three-step approach was presented [1]. Firstly, basic acoustic and visual statistics were 
collected. Secondly, style attributes were derived from low-level statistics. Finally, 
the distributions of these style attributes are used to discriminate genres. Based on the 
human perception and visual characteristics, Truong et al. [2] analyzed a set of com-
putational features including editing effects, motion and color for genre labeling and 
decision tree was used to verify these features. Liu et al. [3,4] investigated a range of 
statistical time and frequency features extracted from the acoustic signal and they 
used Neural Network and Hidden Markov Models (HMM) to accomplish the classifi-
cation, respectively. Statistics based method, e.g. Gaussian Mixture Models (GMM), 
was introduced into video genre modeling in [5], focusing on direct analysis of the  
relationship between the probabilistic distributions of low-level audio and/or video 
features and the associated genre identity. In [6], motion pattern was represented by 
motion texture and Support Vector Machine (SVM) was used as the classifier to map 
video shots to semantic categories. Fifteen MPEG-7 audio-visual descriptors were fed 
into the decision tree-based classifier to recognize the video genres [7]. Guided by the 
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film grammar, [8] proposes a method to classify movies based on audio-visual cues 
present in the previews.  

We summarize the related works from two viewpoints: classifiers and features. A 
key issue is classifier selection. Rule-based, decision tree-based, HMM, GMM, SVM 
and some other classifiers have been employed. Among them, the decision tree based 
method is the most used one, for it can get reliable and stable results, and the deduced 
rules from it are intelligible. Feature set is the other key issue. As often one single fea-
ture is not sufficient to obtain satisfactory results, most of the existing methods resort 
to combined features, which consist of audio and visual features, low-level and mid-
level features, local and holistic features. For example, a lot of visual features used in 
[2,8], plenty of audio features in [3,4] and even a good few audio-visual features in 
[1,5,7]. In fact, these works fall into this category: enlarging the feature set until the 
classification is reliable enough. However, some features are irrelevant or less rele-
vant to classification and some features are equivalent, which sometimes lead to re-
dundancy. The redundant features will enlarge the complexity of rule generation and 
weaken the quality of the deduced rules. In addition, some automatic video processing 
techniques (e.g. object detection) are still immature nowadays, especially the gap be-
tween low-level features and high-level semantics, which all result in inaccurate fea-
tures and the uncertainty of classification results. Especially, due to the characteristics 
of video data, computational analysis of these features is often time-consuming. 
Therefore, it is necessary to select an appropriate feature set to achieve an acceptable 
classification result but relieve computation burden significantly. Unfortunately, there 
is still no published works tackling this issue. 

Rough set theory is an attempt to dispose a formal framework for the automated 
transformation of data into knowledge. Pawlak[9] points out that one of the most im-
portant and fundamental notions to the rough sets philosophy is the need to discover 
redundancy and dependencies between features. A rough set approach to video fea-
ture selection and genre classification is proposed in this paper. We use the concept 
reduct and core for feature selection, and the rule set derived from the reduct is used 
to label the genres of video clips. When an unlabeled video clip comes into system, 
the classifier can decide its class with fewer features.  

The rest of paper is organized as follows. Section 2 provides the rough set model of 
video classification, the original feature set and the feature selection method, Experi-
mental results are presented in Section 3 and Section 4 concludes the paper. 

2   Rough Set, Feature Set and Feature Selection 

2.1   Fundamentals of Rough Set Theory 

In rough set theory, an information table is defined as a tuple S=(U, A), where U and 
A are two finite, non-empty sets, U the universe of primitive objects and A the set of 
attributes [10]. We may partition the attribute set A into two subsets C and D, called 
condition and decision attributes, respectively. An equivalence relation, indiscernibil-
ity relation, is associated with every subset of attributes P A⊂ . This relation is de-
fined as: 
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( ) {( , ) : , ( ) ( )}IND P x y U U a P a x a y= ∈ × ∀ ∈ =  . (1) 

where  a(x) denotes the value of feature a of object x. If ( , ) ( )x y IND P∈ , x and y 

are said to be indiscernible with respect to P. The family of all equivalence classes 
of IND(P) (Partition of U determined by P) is denoted by U/IND(P). Each element 
in U/IND(P) is a set of indiscernible objects with respect to P. Equivalence classes 
U/IND(C) and U/IND(D) are called condition and decision classes. 

For any concept X U⊆ and attribute subset R U⊆ , X could be approximated by 
the R-lower approximation and R-upper approximation using the knowledge of R. 
The lower approximation of X is the set of objects of U that are surely in X, while 
the upper approximation of X is the set of objects of U that are possibly in X. They 
are defined as: 

( ) { / ( ) : }R X E U IND R E X= ∈ ⊆  . (2) 

( ) { / ( ) : }R X E U IND R E X= ∈ ≠ ∅  . (3) 

The boundary region, BNDR(X), is the difference of ( )R X  and ( )R X . If 

BNDR(X) is not empty, X is a rough set with respect to R. The positive region of 
decision classes U/IND(D) with respect to condition attributes C is denoted 
by ( ) ( )CPOS D R X= . It is a set of objects of U that can be classified with cer-

tainty to classes U/IND(D) employing attributes of C. A subset R C⊆ is said to be 
a D-reduct of C if POSR(D)=POSC(D) and there is no 'R R⊆ such that 
POSR(D)=POSC(D). In other words, a reduct is the minimal set of attributes pre-
serving the positive region. 

In this paper, the video classification system is the decision table S. Evidently, 
IND(P) is a equivalence relation, while P can be regarded as a name of the knowl-
edge represented by IND(P). Hereby, S serves as a knowledge base system. There-
fore, an unlabeled video clip can be classified using the rules corresponding to the 
IND(P) of S. Another direct application of the rough set theory, shown in Section 
2.3, is feature selection based on the method of finding the reduct. Although reduct 
computation is considered the bottleneck in the rough set methodology, many good 
heuristics can accomplish it in a reasonable amount of time. 

2.2   Feature Extraction  

An appropriate feature set is crucial to video classification. It should be not only a 
set of content descriptors, but also a basis for comparison between different gen-
res. Different with earlier works, we do not target at exploring new descriptors, but 
pursuing a powerful feature set to achieve an acceptable classification. Hence, we 
collect a set of audio-visual features, which have shown their discriminabilities in 
the related works but some may in different forms. Here, we just list them with 
brief explanation. Four types of features are used: 
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Editing features. Editing style in a video provides good indication about its genre. 
There are many shots of smaller duration in fast paced videos (action 
movies/MTVs), while shot duration are often large in slow paced videos 
(documentaries/dramas). News, for example, has large number of abrupt transitions, 
while there are more gradual transitions in the commercials. The following four 
features are computed: F1(average shot length); F2, F3, F4(the percent of each type of 
shot transition, three most used transition types, i.e. cut, fade, dissolve, are 
considered). 

Motion Feature. Different genres have different motion intensity and show 
different motion patterns. For instance, sports video has larger motion intensity 
than news. The MPEG-7 motion activity descriptor captures the intuitive notion of 
“intensity of action” or “pace of action” in a video segment. F5 (the average 
intensity of motion activity) is calculated as: 

1
( )pN

j pj
IA IAF N

=
=  . (4) 

Color Features. There are also distinctions in color characters between different 
genres. Due to the special making rules, the brightness and saturation of cartoons are 
much larger than those of other genres. MTVs and commercials often have quick 
change of lighting, so they have much color variance. F6(average brightness), 
F7(average saturation) and F8(percent of color variance) are used as color features. 

Audio features. By audio cues, man can distinguish different genres easily even 
without watching the moving pictures. We collect three mid-level features F9(silence 
ratio), F10(noise ratio) and F11(background noise level). For the following nine frame-
level features: pause rate, number of low energy windows, sum of scalefactors as 
loudness approximation, spectral centroid, short time energy, short time band energy, 
number of low energy windows, short time magnitude and spectral flux, we calculate 
their mean and variance as the holistic features (F12~F29). All the audio features are 
extracted using the Maaate toolkit [11].  

Fig.1 illustrates several distributions of feature values in our experiments (for 
50 video samples randomly selected from each genre) after sorting in ascending 
order. It shows that these features have certain discriminabilities. 

2.3   Feature Selection 

Features selection is a process to find the optimal subset of the original feature set 
that satisfies certain criteria. The original feature set is the set C in model of video 
classification system S. Let R be a set of selected features, P a set of unselected 
features, we get C R P= . 

Feature selection can be viewed as a search problem according to some evaluation 
criterion. The optimal feature subset is the one that maximizes the value of evaluation 
measure. Compared with exhaustive search and random search, the heuristic search 
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(e) 

 
(f) 

Fig. 1. Distribution of several feature values: (a) average shot length; (b) average saturation; (c) 
color variance; (d) intensity of motion activity; (e) noise ratio; (f) variance of num of low en-
ergy windows 

can achieve good tradeoff between computational complexity and search result. 
Therefore, it is the most commonly used method. In the heuristic search, a heuristic 
function is employed to guide the search and the search is performed towards the di-
rection that maximizes the function value. In this paper, the solution based on rough 



1216 W. Cheng, C. Liu, and X. Wang 

set theory also follows this strategy. According to the basic issues of heuristic feature 
selection, we describe our method as follows. 

Starting Point. Rough set theory defines the core of an information system to be the 
set of indispensable features. Removal of any attribute from the core set changes the 
positive region with respect to the label. This fact can be interpreted as a similarity 
between the core set and the notion of strong relevance introduced by John et al. [12]. 
In other words, the core is the set of strong relevant features. We use the core as the 
initial feature subset, i.e., R = CORE(C). The core is computed using the method 
based on discernibility matrix in our experiments. 

Stop criteria. In rough set based methods, the size of the positive region could be 
used as stop criteria. In particular, the algorithm stops when the positive region of 
the selected features reaches the original positive region, i.e., ( ) ( )R CPOS D POS D= , 

which also manifests that feature selection is a process of finding the optimal 
reduct. 

Search Origination. The attributes of the core may be insufficient for defining all 
decision classes. Therefore, other attributes may be added to the core in order to 
maintain the same classification power that the one achieved with all the features. We 
adopt the greedy forward direction method: at each iteration, the best feature a of P is 
chosen and added to the R until the stop criteria is reached, in which the heuristic 
function is to evaluate the feature subsets and select to optimal feature a.   

In Rough set, significance of a feature a, denoted as SIG(a), is the increase of de-
pendency between condition attributes and decision attribute as a result of the addi-
tion of a: 

( { })( ) ( ) ( )R a RSIG a D Dγ γ+= −  . (5) 

where  ( )R Dγ  is the dependency between R and D, it reflects the importance of R in 

classifying the objects into the decision classes: ( ) ( ( )) ( )R RD card POS D card Uγ = . 

[13] adopt the Equation (5) as heuristic function for its simplicity and low complexity. 
However, this function only considers the dependency of the selected features, but ig-
nores the quality of the potential rules. As the ultimate goal of feature selection is to 
reduce the number of features used to generate classification rules, we want get high 
quality rules. The quality of the rules can be evaluated by two parameters: 1) the num-
ber of instances covered by the potential rules, that is, the size of consistent instances; 
and 2) the number of instances covered by each rule, called support of each rule. Sig-
nificance oriented methods, for example [13], only consider the first parameter. It at-
tempts to increase faster the size of consistent instances but ignoring the support of 
individual rules. However, rules with very low support are usually of little use. There-
fore, we adopt the method considering both parameters in [14], and the heuristic func-
tion is defined as: 

( { }) { }( , ) ( ( )) ( ( ) ( { } ))R a R aF R a card POS D MaxSize POS D IND R a D+ += × + +  . (6) 
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where  ( { })( ( ))R acard POS D+ is the size of consistent instances and 

{ }( ( ) ( { } ))R aMaxSize POS D IND R a D+ + +  denotes the maximal size out of indis-

cernibility classes included in the positive region, i.e., the support of the most signifi-
cant rule, when a added. The feature selection in our work are performed as follows 
steps: 

(1)  Initialize: Get the core CORE(C) of video classification system, set R = 
CORE(C), P C R= − ; 

(2)  Remove all consistent instances: ( )RU U POS D= − . If U = ∅ , stop and re-

turn R; 
(3)  For each a P∈ , calculate F(R, a).  Choose the best feature a with largest F(R, 

a), set { }R R a= , { }P P a= − ; 

(4)  If ( ) ( )R CPOS D POS D= , return R and stop; else goto step (2). 

3   Experimental Results 

The block diagram of our classification system is illustrated in Fig. 2. It consists of 
two parts, off-line rule generation and on-line video classification. At off-line stage, 
the original feature set FC is formed after feature extraction for learning video clips, 
which then must be discretized before reduct computation. Once the reduct R has 
been computed, it is used to generate rules. At on-line stage, the features correspond-
ing to the reduct R are firstly extracted when unlabeled video clips comes. And then, 
the feature set FR is discretized using the cuts set CUTS produced at off-line stage. 
Finally, RULES derived from the reduct R works on the discretized feature set and re-
turn the results. 

3.1   Experimental Dataset 

In order to perform video genre identification fast and efficiently, long videos are usu-
ally segmented into short time video clips, and some of these clips are chosen ran-
domly as dataset. We collect video clips of six genres: action movie (AM), football 
(FB), basketball (BB), documentary (DOC), cartoon (CT) and MTV (MTV), 80 video 
clips for each genre. The duration of each video clip is 60s, which is moderate com-
pared with that of existing works. 300 clips (6*50) are randomly chosen as learning 
set, the others for test. 

 

Fig. 2. Diagram of video genre classification based on rough set 
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3.2   Results and Evaluation 

Although there are various methods for discretization, the two-step strategy (the boo-
lean algorithm applied first and then equal frequency binning method used on the re-
maining data) gives best results in our experiments. Based on the methods for finding 
core and reduct, we get core as CORE(C)={F13}, and the selected feature set as 
R={F1, F3, F5, F7, F13, F14, F16, F24, F26, F28}. The discretized features for the test set 
are classified using the standard voting with rule support. Some related algorithms 
provided by the Rosetta platform[15] are used in our experiments.  

The classification results are list in Table 1. Confusion matrix M is used to summa-
rize the results. The entries M(i, j) is the number of objects classified as belonging to 
classes i that actually belong to class j. For each class k, the precision and recall rate 
are calculated as: 

( ) ( , ) ( , )
l

Precision k M k k M l k=  . (7) 

( ) ( , ) ( , )
l

Recall k M k k M k l=  . (8) 

The average accuracy that measures the overall performance of classifier is: 

,

( ( , )) ( , )
k i j

AvgAccuracy M k k M i j=  . (9) 

Table 1. Classication results based on the proposed method 

 AM FB BB DOC CT MTV Recall 
AM 27 0 3 0 0 0 0.90 
FB 0 27 3 0 0 0 0.90 
BB 0 0 30 0 0 0 1.00 

DOC 0 0 9 21 0 0 0.70 
CT 0 0 4 1 25 0 0.83 

MTV 0 0 10 0 0 20 0.67 
Precision 1.00 1.00 0.51 0.95 1.00 1.00 0.83 

The average accuracy of our method is 83.3%. [2] works on five genres: commer-
cials, news, sports, MTV and cartoons. When the clip duration is 40s and 60s, the aver-
age accuracy is 80% and 83.1%, respectively. Liu et al.[4] classify basketball, football 
and weather forecast using HMM with five states, the average accuracy is around 
84.7%. In a word, there is little difference between our results and theirs. However, 
comparison in this way cannot verify the efficiency of our method, for standard dataset 
has not been set up on this problem until now. In fact, it is difficult to compare different 
works directly since the kinds of genres, the source of samples and the length of clips.  

As mentioned in Section 1, the decision tree method is the most used one in genre 
classification. The motivation of this paper is to perform classification using the re-
duced feature set based on rough set. To testify the efficiency of feature selection and  
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Table 2. Classification result based on C4.5 with original feature set 

 AM FB BB DOC CT MTV Recall 
AM 27 0 0 0 1 2 0.90 
FB 0 28 0 2 0 0 0.93 
BB 0 0 29 0 1 0 0.97 

DOC 0 0 4 25 1 0 0.83 
CT 1 0 8 3 16 2 0.53 

MTV 4 0 0 4 2 20 0.67 
Precision 0.84 1.00 0.70 0.74 0.76 0.83 0.81 

classification, we use the C4.5 to do the same work on the same dataset but with the 
original feature set. The classification result of C4.5 is shown in Table 2. 

Compared with the performance generated by C4.5 with original feature set, the 
proposed approach gets comparative (even slightly better) results. However, the less 
features that have to be checked, the less time the algorithm consumes, which is the 
advantage of our methods. 

4   Conclusions 

Different with existing works, we address the problem of feature selection in video 
genre classification and propose a rough set approach to accomplish the task. Heuris-
tic search method using rough set theory provides an efficient feature set. Classifica-
tion using the rule set derived from the reduct gives good results. The experiments 
verify its efficiency.  
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Albouy, Benjamin 1111
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Béréziat, Dominique 185
Bernard, Thierry M. 220
Bertolino, Pascal 384
Bian, Zhengzhong 887
Blanc-Talon, Jacques 127
Boire, Jean-Yves 909
Bourennane, Salah 127, 1198
Bunyak, Filiz 920
Burrus, Nicolas 220
Butko, Nicholas 1186

Canchola, Sandra 956
Candela, Vicente F. 24
Carlin, Mats 855
Chang, Ju Yong 598
Charron, Cyril 1099
Chehdi, Kacem 46
Chen, Zhiqing 776
Cheng, Li-Tien 1014
Cheng, Wengang 1210
Cho, A-Young 933
Cho, Ik-Hwan 344, 933

Cho, Sung-Bae 1080, 1143
Choi, Tae-Young 485
Chung, Tsiung-Iou 654
Clerckx, Tom 418
Collado, Juan M. 1151
Conci, Aura 208
Cornelis, Jan 364, 418, 722
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Pardo, Xosé Manuel 332
Park, Bo Gun 978, 990
Park, Chang-Joon 275
Park, Gwang Hoon 1
Park, Hyun 799
Park, HyunWook 311
Park, Soon-Yong 275
Park, Young Kyung 699
Pesquet-Popescu, Béatrice 375
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