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Abstract. We will give distributed approximation schemes for the max-
imum matching problem and the minimum connected dominating set
problem in unit-disk graphs. The algorithms are deterministic, run in a
poly-logarithmic number of rounds in the message passing model and the
approximation error can be made O(1/ logk |G|) where |G| is the order
of the graph and k is a positive integer.

1 Introduction

In this paper we will give efficient distributed approximation algorithms for two
important graph-theoretic problems, the Maximum Matching (MM) Problem
and the Minimum Connected-Dominating Set (MCDS) Problem. Our algorithms
work in the message passing model and assume that the underlying network has
a unit-disk graph topology. Both problems are classical problems in graph theory
with many important practical applications. For example, efficient solutions for
the MCDS Problem are particularly interesting because of their applications to
routing in mobile ad-hoc networks (see for example [DW04]).

Studying distributed message passing approximation algorithms for unit-disk
graphs was initiated by Kuhn et. al. in [KMNW05b] where efficient approxi-
mation schemes for the Maximum Independent Set (MaxIS) Problem and the
Minimum Dominating Set (MDS) Problem are given. Research described in the
series of papers [KMW05], [KMNW05b], and [KMNW05a] is the main moti-
vation for our work here. We give efficient distributed approximation schemes
for two additional classical graph-theoretic problems. In addition, both of our
procedures are based on a rather general clustering framework that almost im-
mediately gives efficient solutions to MaxIS and MDS Problems with potential
for further applications to unit-disk graphs. Second motivation for our study
comes from a recent work [CH06] and [CHS06] in which distributed approxima-
tions for MaxIS Problem, MM Problem, and MDS Problem in planar graphs
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are given. Unit-disk graphs form another important class of graphs where sim-
ple clustering methods give efficient distributed approximations. Since unit-disk
graphs are commonly used to model mobile ad-hoc networks or static radio net-
works this line of research is also of clear practical importance. As in the case of
[KMNW05b] or [KMW05], we assume that there is a lower level protocol that
resolves transmission conflicts (MAC) and communication is done in the message
passing model.

1.1 Model and Notation

We consider a standard, distributed, synchronous message-passing model de-
scribed for example in Linial [L92] or in [P00]. In this model a network is repre-
sented by an undirected graph where vertices correspond to processors and edges
to communication links between them. We assume that vertices have unique
identifiers and that communication is synchronized. In a single round of an algo-
rithm, each vertex of the graph can send messages to its neighbors, can receive
messages from its neighbors, and can perform local computations. Although the
above model allows unlimited local computations, we will pay attention not only
to the distributed complexity of a problem but will also indicate the sequential
running time at each processor. We will focus entirely on the time complex-
ity analysis leaving message complexity issues for future research. Although the
above model is certainly an oversimplified version of a real-life system, it per-
fectly captures the most fundamental challenge faced by a distributed algorithm;
the problem of finding a global solution in a network based on local information
about the topology of the graph which is available to each node.

In this paper we will consider graphs with the unit-disk graph topology. A
graph G = (V, E) is called a unit-disk graph if there is a function f : V →
R2 such that uv ∈ E if and only if ||f(u) − f(v)||2 ≤ 1. Although the fact
that G is a unit-disk graph is critical to our analysis, we will assume that no
information about geometrical representation of G is available to nodes. In fact,
if such information is available, distributed running time of our algorithms can
be reduced significantly as it is possible to find a maximal independent set in a
much faster way [KMW05].

Finally, we will use standard graph-theoretic notation and terminology. In
particular, following the convention from [D97], we will denote by |G| the number
of vertices in G and by ||G|| the number of edges.

1.2 Results

We will describe efficient distributed algorithms for the MM and MCDS prob-
lems in unit-disk graphs. All algorithms are deterministic and the running time
is poly-logarithmic in the order of the graph. Depending on the desired approx-
imation ratio the time is a polynomial in log |G| of higher or smaller order. In
the same way, the amount of local computations can be made more or less time
consuming based on the desired approximation error. For the MM Problem, we
give a deterministic distributed algorithm which given a positive integer k and
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real number α ≥ 0 finds in a unit-disk graph G = (V, E) a set M ⊂ E such that
M is a matching in G and |M | ≥ (1−α−O(1/ logk |G|))β(G) where β(G) is the
size of the maximum matching in G (Theorem 2). For the MCDS Problem, we
give a deterministic distributed algorithm which given a positive integer k and
real number α ≥ 0, finds in a connected unit-disk graph G finds a set D ⊂ V (G)
such that D induces a connected subgraph of G, D is a dominating set in G,
and |D| ≤ (1 + α + O(1/ logk |G|))γc(G) where γc(G) is the size of the smallest
connected dominating set in G (Theorem 3). Both algorithms run in a poly-
logarithmic (in |G|) number of rounds and the amount of local computations
is at most T M

α (|G|) or T C
α (|G|), where T M

α (|G|) is the sequential complexity of
finding a (1 − α)-approximation of a maximum matching in unit-disk graphs
and T C

α (|G|) is the sequential complexity of finding a (1+α)-approximation of a
minimum connected dominating set in unit-disk graphs. In the case of maximum
matching α = 0 can be accomplished in polynomial time and although finding
a minimum connected dominating set in unit-disk graphs is NP-complete (see
[L82]), there are very fast constant error approximations and in the case a local
geometric representation of the graph is available, (1 + 1/s)-approximation can
be found in O(|G|O((s log s)2)) time (see [CHLWD03]). In addition, our methods
yield a sequential polynomial time approximation scheme (PTAS) for the MCDS
Problem extending the work of Nieberg and Hurink from [NH05] where a PTAS
for the MDS Problem is given.

1.3 Related Work

There has been recently an explosive growth of interest in complexity issues of
algorithms for geometric graphs. This line of research has roots in computational
geometry (see for example [GGHZZ01]) as well as in wireless networks. Distrib-
uted algorithms in the message passing model for unit-disk graphs have been
recently studied by Kuhn et. al. in [KMW05], [KMNW05a], and [KMNW05b].
In particular, [KMNW05a] contains a O(log Δ(G) log∗ |G|)-time distributed algo-
rithm for the maximal independent set problem. In [KMNW05b] in turn, authors
gave distributed approximation schemes for the MaxIS Problem and the MDS
Problem. All of the results, as well methods described in this work, exploit the
bounded growth property of unit-disk graphs (see [KMW05] for an example of
formalization or Section 2 for a different approach). Although methods use the
same properties which are inherent to unit-disk graphs, the approaches differ
significantly. In particular, algorithms from [KMNW05b] work entirely in an un-
derlying network which has the unit-disk graph property. In contrast, the first
phase of our algorithms works in an auxiliary graph which arises from a max-
imal independent set in a graph and it is this auxiliary graph which is further
clustered to obtain partition of the original graph.

1.4 Organization

In the rest of the paper we shall first give our clustering algorithm (Section 2)
and then discuss algorithms for the MM and MCDS problems (Section 3). Finally
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we conclude with brief remarks on how the methods can be used to give a PTAS
for the MCDS Problem in unit-disk graphs.

2 Clustering Algorithm

In this section, we will give a distributed algorithm that finds a clustering of a
unit-disk graph. By clustering we mean a partition of the vertex set of a graph
with the property that each set in the partition induces a connected subgraph.
Of course, additional properties of the clustering will be important to obtain
approximation algorithms. The clustering procedure works in two phases. In the
first phase we use the O(log Δ(G) log∗ |G|)-time algorithm from [KMNW05a] to
find a maximal independent set I in graph G. In the second phase an auxiliary
graph is constructed from I and we invoke a clustering algorithm to find a a par-
tition of it. The clustering of the auxiliary graph gives the final a clustering of
G. The analysis of our algorithms heavily exploits the so-called bounded growth
property of an auxiliary graph arising from a unit-disk graphs. Consequently the
method described here is limited to unit-disk graphs or some natural general-
izations. The following fact about unit-disk graphs will be key to our analysis.

Lemma 1. Let G be a unit-disk graph and let k be a positive integer. For any
independent set I in G and any geometrical representation of G, the number
of vertices from I which are contained in a ball in R2 of radius k is at most
4(k + 0.5)2.

Although the constant 4 is certainly not best possible it is sufficient for out
considerations and is easy to prove. Indeed, any packing of balls with radius 0.5
into a ball of radius (k +0.5) can have at most 4(k +0.5)2 members. The second
phase of clustering works entirely in the auxiliary graph obtained in the first
phase and only after partition of the auxiliary graph is found we return to the
original unit-disk graph G. We will first describe the second phase and then give
the main clustering algorithm.

2.1 Second Phase of Clustering Algorithm

In this section, we give a clustering algorithm of a C-bounded growth graph (see
the definition below). It is important to mention that our notion of a C-bounded
growth graph is different and maybe less standard than a similar concept con-
sidered in [KMNW05a].

Definition 1. A graph H has a C-bounded growth if for every vertex v from H
and every nonnegative integer k the number of vertices within distance (in H) k
of v is at most Ck2 + 1.

Our algorithm for graphs with C-bounded growth will use the ruling set method
described in [AGLP89]. Let G = (V, E) be a graph with identifiers of vertices
from the set {1, . . . , m} where m is globally known and satisfies |G| ≤ m ≤
poly(|G|) for some polynomial poly(|G|). A D-ruling set in G is a subset S of V
with two properties:



Distributed Approximation Algorithms in Unit-Disk Graphs 389

– For any two distinct vertices s, s′ from S, the distance (in G) between s and
s′ is at least D.

– For any vertex v ∈ V \ S there is a vertex s ∈ S such that the distance
between s and v is at most D log |G|.

There is an easy distributed algorithm which finds a D-ruling set in any graph.

Theorem 1 ([AGLP89]). There is a distributed algorithm which in any graph
G finds a D-ruling set in O(D log |G|) rounds.

Our algorithm uses parameters ε, D, and F (used in Clustering) which can be
set to specific values yielding different running times and approximation factors.
For 0 < ε < 1, and fixed C, let l∗ be the smallest positive integer with the
property

(1 + ε)l∗ ≥ Cl2∗ + 1. (1)

It is easy to check that
l∗ = O(1/ε2). (2)

In addition, let D be such that

D > 2l∗. (3)

In the next two procedures we will find a clustering of a graph which has C-
bounded growth. First procedure is essentially one iteration of the main algo-
rithm. We will denote the set of vertices which have a neighbor in U by N(U).

ClusterSet
Input: Constant C. Graph H = (V, E) which has C-bounded growth and such
that identifiers of V are bounded by m. Parameters: 0 < ε < 1 (arbitrary) and
D (must satisfy (3)).
Output: A family of subsets of V .

(1) Find a D-ruling set, {v1, v2, . . . , vs} in H .
(2) For every vi in parallel:

(a) Let Ui := {vi}, Ni := N(Ui) \ Ui.
(b) while |Ni| ≥ ε|Ui|

• Ui := Ui ∪ Ni. Ni := N(Ui) \ Ui.
(3) Return U1, U2, . . . , Us.

The analysis of CluserSet can be divided into a few lemmas.

Lemma 2. The number of vertices in the D-ruling set obtained in step one of
ClusterSet is at least

|H |/(CD2 log2 |H | + 1).
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Proof. For every vertex vi, where i = 1, . . . , s from the ruling set, consider the
set Wi of vertices in H which are within distance D log |H | of vi. From Definition
1, |Wi| ≤ CD2 log2 |H | + 1. On the other hand, since vi’s form a D-ruling set,
|H | ≤ |⋃l

i=s Wi| and so

|H | ≤ s(CD2 log2 |H | + 1).

Next two lemmas show that Ui’s have small diameter and more importantly the
total number of edges that intersect two different Ui’s is small.

Lemma 3. Let l∗ be such that inequality (1) holds and let r(Ui) denote the
radius of H [Ui]. Then

r(Ui) ≤ l∗.

Proof. Let U
(l)
i denote the set Ui in the lth iteration of the while loop from step

2(b). Then |U (0)
i | = 1 and in the lth iteration |U (l)

i | ≥ (1 + ε)l. On the other
hand, by Definition 1, |U (l)

i | ≤ Cl2+1. Consequently, if l∗ is the smallest positive
integer such that (1 + ε)l∗ ≥ Cl2∗ + 1 then l ≤ l∗. Since the radius of G[Ui] is at
most l, we have r(Ui) ≤ l∗.

Lemma 4. Sets Ui returned by ClusterSet are pair-wise disjoint. In addition,
if e(Ui, V \ Ui) denotes the number of edges between Ui and V \ Ui then

s∑

i=1

e(Ui, V \ Ui) ≤ Cε|
l⋃

i=s

Ui|.

Proof of Lemma 4. From Lemma 3 every Ui is such that r(Ui) ≤ l∗. and
so if Ui ∩ Uj is non-empty then the distance between vi and vj is at most 2l∗
which contradicts the fact that vi, vj are in the D-ruling set where D > 2l∗ by
(3). To prove the second part, note that for every Ui returned in step 3, the set
Ni = N(Ui) \ Ui is such that |Ni| < ε|Ui|. Since H has the maximum degree of
at most C, the number of edges between Ui and Ni is at most Cε|Ui|.
Finally, we note that the running time of ClusterSet is O(D log m + 1/ε2).

Lemma 5. The number of rounds of ClusterSet is O(D log m + 1/ε2).

Proof. There are O(D log m) rounds to find the D-ruling set in step 1. This is
followed by l∗ = O(1/ε2) iterations in step 2.

Our main clustering procedure will call ClusterSet a repeated number of
times. In each call, sets U1, . . . , Ul are obtained and vertices from

⋃
Ui are deleted

from the graph H . Finally, after trimming H with repeated application of Clus-
terSet, the remaining vertices will form one-element clusters.

Clustering
Input: Constant C. Graph H = (V, E) which has C-bounded growth and such
that the identifiers of V are less than or equal to m. Parameters: 0 < ε < 1
(arbitrary), D (must satisfy (3)), F (arbitrary).
Output: A partition P of V .
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(1) Repeat F times:
(a) Call ClusterSet in H . Add all sets Ui obtained from ClusterSet to

family P .
(b) Delete from H vertices from

⋃
Ui and edges incident to these vertices.

(2) For every vertex left in H create a set which contains only this vertex and
add it to P . Return P .

We note the following property of the partition obtained by Clustering.

Lemma 6. Let P = (V1, . . . , Vt) be a partition of V returned by Clustering.
The number of edges of H connecting vertices from different Vi’s is

O

(((

1 − 1
CD2 log2 |H | + 1

)F

+ ε

)

|H |
)

.

Proof. First note that since H is a graph with a constant maximum degree,
||H || ≤ C|H |/2. Consider sets added to P in iterations from step 1. Edges which
have exactly one endpoint in these sets are deleted in step 1(b) and by Lemma
4, the number of them is at most Cε|H |. The remaining edges which must be
counted are the edges of H from step two. To estimate these, we note that by

Lemma 2, the number of vertices in this graph is O

((
1 − 1

CD2 log2 |H|+1

)F

|H |
)

.

Consequently, the number of edges of H connecting vertices from different Vi’s

is O

(((
1 − 1

CD2 log2 |H|+1

)F

+ ε

)

|H |
)

.

Lemma 7. Clustering runs in O
(
F

(
D log m + 1/ε2

))
rounds.

Proof. There are F iterations of step 1, in which, by Lemma 5, sets are found
in O

(
D log m + 1/ε2

)
rounds.

Corollary 1. Let C be a fixed constant. For a C-bounded growth graph H with
identifiers that are less than or equal to m, there is a distributed algorithm which
finds in O(1/ε6 · log3 m log 1/ε) rounds a partition of V such that the number of
edges between different partition classes is O(ε|H |).
Proof. Let D := 2l∗ + 1 = O(1/ε2) and let F := 	(ln 1/ε)(CD2 log2 H + 1)
 =
O((log 1/ε)D2 log2 m). Then the number of rounds is O(F log m/ε2) = O(1/ε6 ·
log3 m log 1/ε) (Lemma 7). In addition, the number of edges which connect dif-

ferent clusters is O(ε|H |) by Lemma 6 as
(
1 − 1

CD2 log2 |H|+1

)F

= O(ε).

2.2 Main Clustering Algorithm

We will now give the main clustering algorithm for unit-disk graphs. We first
find a maximal independent set I using an algorithm from [KMNW05a] and then
apply Clustering in the auxiliary graph that arises from I. This gives clusters
in the original graph.
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Definition 2 (Auxiliary graph). Let I = {v1, . . . , vl} be a maximal inde-
pendent set in graph G = (V, E). Let Vi be the set of neighbors of vi such
that if w ∈ Vi then vi is the neighbor of w in I with the least identifier, i.e.
Vi = {w ∈ N(vi)|ID(vi) = min{ID(a)|a ∈ N(w) ∩ I}}, and let V̄i = Vi ∪ {vi}.
Let Aux(G) be the graph (W , E) with W = {V̄1, . . . , V̄l} and {V̄i, V̄j} ∈ E when-
ever i �= j and there is an edge in G between a vertex from V̄i and a vertex
from V̄j .

From Lemma 1, we see that Aux(G) has C-bounded growth with C = 48 as if
there are p vertices within distance k of some vertex v in Aux(G) then there
are is an independent set of size p in a ball of radius 3k. Consequently p ≤
4(3k + 0.5)2 ≤ 48k2 + 1.

Lemma 8. Aux(G) has 48-bounded growth.

In particular the maximum degree of Aux(G) is at most 48.

ClusteringUDG
Input: Unit disk graph G = (V, E), 0 < ε < 1 (arbitrary).
Output: Partition Q of V .

(1) Call Kuhn et. al. algorithm from [KMNW05a] to find a maximal independent
set I. Consider the auxiliary graph Aux(G).

(2) Call Clustering with constants as in Corollary 1 to find a partition P of
Aux(G).

(3) As vertices in Aux(G) correspond to pair-wise disjoint subsets of vertices in
G, for every partition class from P add the union of the subsets of vertices
from G that are contained in this class to Q.

Clusters obtained by ClusteringUDG have additional properties which are
very useful in our analysis. These attributes, however, must be stated in terms
of clusters in Aux(G) rather than clusters in G. In particular, it is not true that
the number of edges connecting different clusters in G is ”small” with respect to
the total number of edges but the property holds in Aux(G). Intuitively, what
we need from clusters in G is that an objective function to be approximated
(for example the size of a connected dominating set) has a small value on the
boundary of each cluster. At this moment let us indicate the running time of
ClusteringUDG and we will use previous lemmas to extract useful properties
when they are needed.

Lemma 9. Let G = (V, E) be a unit-disk graphs with identifiers bounded by
m = poly(|G|). ClusteringUDG runs in O(1/ε6 · log3 |G| log 1/ε) rounds.

Proof. Kuhn et. al. algorithm runs in O(log |G| log∗ |G|) rounds. The complexity
of Clustering is O(1/ε6 · log3 |G| log 1/ε) in Aux(G). Since every vertex in
Aux(G) corresponds to a subgraph of diameter which is less than or equal to
two, the running time in G will be asymptotically the same.
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3 Applications

In this section, we will describe applications to the MM Problem and the MCDS
Problem. Approximations for both problems (as well as to the maximum inde-
pendent set and the minimum dominating set) follow a similar pattern: First find
a clustering using ClusteringUDG and then find an optimal solution locally
in each cluster. Finally, modify local solutions and return the union of them.
Since our main clustering algorithm is executed in the auxiliary graph which
arises from yet another clustering of G obtained from a maximal independent
set, we will have three types of clusters.

– Small clusters: Clusters in graph G which arise from the maximal indepen-
dent set obtained in phase one and correspond to vertices in Aux(G).

– Auxiliary clusters: Clusters in Aux(G) obtained by Clustering.
– Big clusters: Clusters in G obtained by ClusteringUDG. These clusters

correspond in an obvious way to clusters in Aux(G).

∈ MIS in G

small cluster

big cluster
(auxiliary cluster)

Fig. 1. Clusters in UDG

Analysis of algorithms relies on properties of Aux(G) and it will be useful to
develop more terminology related to clusters of Aux(G). Let v be a vertex in
Aux(G). If v is in cluster C of Aux(G) but has a neighbor in a different cluster
of Aux(G) then v will be called a border vertex and the small cluster in G which
corresponds to it will be called a border cluster. We note, that since Aux(G)
has a constant maximum degree, Lemma 6 implies that the number of border
vertices in Aux(G) is much smaller than |Aux(G)|.

3.1 Maximum Matching

In our first application we will approximate a maximum matching. Recall that
if M is a matching in graph G then a vertex is called M -saturated if it is an
endpoint of an edge from M . Otherwise it is called M -free.
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ApproxMaxMatching
Input: Unit-disk graph G = (V, E), 0 < ε < 1, 0 ≤ α < 1.
Output: A matching in G.

(1) Call ClusteringUDG to find a clustering of G with constants as in Corol-
lary 1.

(2) In each cluster C, find a matching MC in the subgraph of G induced by C
which is a (1 − α)-approximation of a maximum matching in G[C].

(3) Return M :=
⋃

C MC .

Note that the second step of the procedure takes polylog(|G|) rounds as the
diameter of each big cluster is polylog(|G|).
Lemma 10. Let G be a unit-disk graph. The matching M returned by Approx-
MaxMatching satisfies

|M | ≥ (1 − α − O(ε))β,

where β is the size of a maximum matching in G.

Proof. With a matching N we can associate the function IN : V (G) → {0, 1}
defined as IN (v) = 1 if v is N -saturated and IN (v) = 0 otherwise. Clearly, we
have 2|N | =

∑
v∈V (G) IN (v).

Let M∗ be a maximum matching in G. We will first obtain a matching M̄
from M∗ as follows. For every border cluster D in a big cluster C, delete all
edges from M∗ which have one endpoint in D and another in V −C. Extend the
obtained matching to a maximal matching M̄ with the property that all edges
from M̄ are contained in G[C] for some big cluster C. We claim that for any big
cluster C ∑

v∈C

IM̄ (v) ≥
∑

v∈C

IM∗(v) − 5sC , (4)

where sC is the number of border clusters in C. Indeed, a subgraph of G induced
by a border cluster D has a maximum independent set with at most 5 vertices
(this is true for a closed neighborhood of any vertex in a unit-disk graph) and so
the number of M̄ -free vertices in D which are possibly M∗-saturated is at most 5.

Since matching MC from step (2) is a (1 − α)-approximation of a maximum
matching in G[C], we have

∑

v∈C

IM (v) ≥ (1 − α)
∑

v∈C

IM̄ (v)

and so
|M | ≥ (1 − α)|M̄ |.

Summing (4) over all C’s yields

|M̄ | ≥ |M∗| − 5s/2
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where s is the total number of border clusters. We have s = O(ε|Aux(G)|) and
|M∗| = Ω(|Aux(G)|) as Aux(G) has a constant maximum degree. Therefore,

|M | ≥ (1 − α − O(ε))|M∗|.
Theorem 2. Let k be a positive integer, let 0 ≤ α < 1, and let Tα(m) be the
running time of a sequential (1 − α)-approximation algorithm for the maximum
matching problem in a unit-disk graph of order m. There is a distributed algo-
rithm which finds in a unit-disk graph G a matching M such that

|M | ≥
(
1 − α − O(1/ logk |G|)

)
β

where β is the size of a maximum matching in G. The number of rounds of
the algorithm is poly-logarithmic in |G| and the sequential running time at each
vertex of G is at most Tα(|G|).
Proof. Set ε = 1/ logk |G| and apply Lemma 10 and Lemma 9.
Since it is possible to find a maximum matching in a polynomial time, we can
obtain α = 0 in Theorem 2 and have sequential running time which is polynomial
in |G|.

3.2 Minimum Connected Dominating Set

Algorithm for the connected dominating set is surprisingly simple. It is the
analysis that requires some additional work.

ApproxMinCDS
Input: A connected unit-disk graph G = (V, E), 0 < ε < 1 and 0 ≤ α.
Output: A dominating set in G.

(1) Call ClusteringUDG to find a clustering of G with constants as in Corol-
lary 1.

(2) In every big cluster C find a connected dominating set DC which is a (1+α)-
approximation of a minimum connected dominating set in G[C].

(3) For every two big clusters C, C′ if there is an edge in Aux(G) connecting a
border cluster from C with a border cluster from C′ then connect a vertex
from DC and a vertex from DC′ by a path of length less than or equal to
three. In other words, let DC,C′ be the set of at most four vertices on the
path connecting C with C′.

(4) Return D :=
⋃

C DC ∪ ⋃
{C,C′}∈E(Aux(G)) DC,C′ .

It is easy to see that step three can be completed and that D is a dominating
set which induces a connected subgraph of G. It is the fact that |D| is close to
the optimal that requires a proof. We will first observe that for any connected
dominating set D there is a connected dominating set D′ such that D′ ∩ C
induces a connected dominating set for any big cluster C and the sizes of D and
D′ do not differ much.
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Lemma 11. Let G be a connected unit-disk graph and let D be a connected
dominating set in G. Then there is a dominating set D′ with the following prop-
erties.

1. D ⊆ D′.
2. For any big cluster C, C ∩ D′ induces a connected dominating set in G[C].
3. |D′| − |D| = O(s) where s is the number of border clusters.

Proof. Let D be a connected dominating set. For every border cluster B there
is a vertex vB which dominates all of the vertices from B. Consider the set
D∗ = D∪⋃

B{vB}. For a big cluster C, let sC be the number of border clusters
contained in C. We first observe that the number of connected components in
graph G[D∗ ∩ C] is O(sC). Indeed, since G[D∗] is connected, every connected
component in G[D∗ ∩ C] contains a vertex from a border cluster in C. Re-
call that for any border cluster B, G[B] cannot have six independent vertices
and so G[D∗ ∩ B] has at most five connected components. Consequently, the
number of connected components in G[D∗ ∩ C] is O(sC). Next, consider graph
Conn(D∗, C) defined as follows. Vertices of Conn(D∗, C) are connected com-
ponents in G[D∗ ∩ C] and we put an edge between w1 and w2 if there is a
path of length at most three in G connecting a vertex from w1 with a vertex
from w2. We claim that Conn(D∗, C) is a connected graph. Indeed, assume that
Conn(D∗, C) is disconnected and let X1, X2 be two connected components in
Conn(D∗, C). Let Y1 and Y2 be the sets of vertices in G[C] such that Yi is the
union of vertices in clusters from Xi. Let P be a shortest path in G[C] connect-
ing a vertex from Y1 with a vertex form Y2. The length of P is at least four.
Let p = u1, u2, u3, u4, . . . , ul with u1 ∈ Y1, ul ∈ Y2 and l ≥ 5. Observe that u3

cannot be contained in a border cluster as if u3 ∈ B then either u3 = vB (the
”center” of B) or u3 is connected with vB. In either case vB ∈ Y1 and there is
a shorter path connecting Y1 with Y2. If u3 /∈ B then u3 must be dominated by
a vertex v from D ∩ C and so there is a path of length at most 3 between u1

and v. Thus v ∈ Y1 and there is a shorter path connecting Y1 with Y2. Contra-
diction shows that Conn(D∗, C) is a connected graph. As a result Conn(D∗, C)
contains a spanning tree in which an edge corresponds to path of length at most
three. Fix one such spanning tree and let D′ be the set of vertices in D∗ in ad-
dition with vertices on each path corresponding to an edge in the spanning tree
of Conn(D∗, C). Clearly D ⊆ D′. In addition G[D ∩ C] is a connected graph.
Finally, the number of vertices in Conn(D∗, C) is O(sC) and so we add O(sC)
vertices to D∗ to obtain D′. Summing over all C’s gives |D′| − |D| = O(s).

Now the next lemma is very easy.

Lemma 12. Let G be a connected unit-disk graph. The set D returned by Ap-
proxMinCDS is a dominating set which induces a connected subgraph of G and
such that

|D| ≤ (1 + α + O(ε))γc,

where γc is the size of a minimum dominating set in G.

Proof. Let D∗ be a connected dominating set of size γc. By Lemma 11, there is
a dominating set D′ such that D∗ ⊆ D′, D′∩C induces a connected dominating
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set in G[C] for each C, and |D̄|−|D∗| = O(s). If D is the dominating set returned
by algorithm ApproxMinCDS then DC = D ∩ C is a (1 + α)-approximation
of a minimum connected dominating set in G[C] and so if D∗

C is a minimum
connected dominating set in G[C] then |DC | ≤ (1 + α)|D∗

C |. Since D′ ∩ C is an
optimal set in G[C], we have |D∗

C | ≤ |D′ ∩ C| and so

|D| =
∑

C

|DC | + O(s) ≤
∑

C

(1 + α)|D∗
C | + O(s) ≤

∑

C

(1 + α)|D′ ∩ C| + O(s)

= (1 + α)|D′| + O(s) = (1 + α)|D∗| + O(s) = (1 + α)γc + O(ε|Aux(G)|).
As before γc = Ω(|Aux(G)|) and so

|D| = (1 + α + O(ε))γc.

Theorem 3. Let k be a positive integer, let 0 ≤ α, and let Tα(m) be the running
time of a sequential (1+α)-approximation for the minimum connected dominat-
ing set problem in a unit-disk graph of order m. There is a distributed algorithm
which finds in a connected unit-disk graph G a dominating set D such that G[D]
is connected and

|D| ≤
(
1 + α + O(1/ logk |G|)

)
γc

where γc is the size of the minimum connected dominating set in G. The number
of rounds of the algorithm is poly-logarithmic in |G| and the sequential running
time at each vertex of G is at most Tα(|G|).

4 Additional Remarks

As pointed out by one of the referees, in addition to Theorem 3, the methods
described in the paper yield a sequential PTAS for the MCDS Problem in unit-
disk graphs when the representation of the graph is unknown. Indeed, for a fixed
ε > 0 from (1), the radius of each cluster obtained by Cluster Set (and so the
Clustering) is O(1/ε2) by Lemma 3. Since in a unit-disk graph of diameter
r any indepdenet set has size of at most O(r2) and each independent set is
also a dominating set in the graph, the size of the minimum dominating set is
O(1/ε4). As a result, the size of the minimum connected dominating set in each
cluster is also O(1/ε4). Consequently, to find an optimal solution in each cluster
it is enough to check O(n1/ε4) subsets in a cluster and select an optimal. This
extends ther result of Nieberg and Hurink from [NH05] where a PTAS for the
MDS Problem is given.
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[CHLWD03] X. Cheng, X. Huang, D. Li, W. Wu, and D.-Z. Du, Polynomial-time
approximation scheme for minimum connected dominating set in ad
hoc wireless networks, Volume 42, Issue 4, Networks, (2003), 202–208.
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