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Abstract. Complex systems theory and Cellular Automata (CA) are widely 
used in geospatial modeling. However, existing models have been limited by 
challenges such as handling of multiple datasets, parameter definition and the 
calibration procedures in the modeling process. Bayesian network (BN) formal-
isms provide an alternative method to address the drawbacks of these existing 
models. This study proposes a hybrid model that integrates BNs, CA and Geo-
graphic Information Systems (GIS) to model land use change. The transition 
rules of the CA model are generated from a graphical formalism where the key 
land use drivers are represented by nodes and the dependencies between them 
are expressed by conditional probabilities extracted from historical spatial data-
sets. The results indicate that the proposed model is able to realistically simulate 
and forecast spatio-temporal process of land use change. Further, it forms the 
basis for new synergies in CA model design that can lead to improved model 
outcomes. 

1   Introduction 

Geographic Information Systems (GIS) are well established as tools for the storage, 
handling, analyzing, and visualizing of spatial data [1, 2]. Despite these advantages, 
GIS is not well developed for handling the temporal component of data [3]. The  
current GIS have a limited capacity to handle short time step iterations needed for 
modeling dynamic spatial phenomena. There is, therefore, an urgent need to under-
stand the spatio-temporal process itself, how to formalize the process and the problem 
as a geographic model, and the method to solve the problem within GIS frameworks.  

The development of GIS based procedures that can handle the dynamics of geo-
graphic phenomena through the integration of complex systems theory is an important 
area of GIScience research. Complexity theory has been used extensively to model 
land use change processes together with cities and their evolution. Land use change 
and urban growth are characterized by a large number of interacting components and 
have several key signatures such as fractal dimensionality, self-similarity, self-
organization and emergence that make them suitable to be modeled as complex sys-
tems [4-6]. For more than two decades, complex systems theory and cellular automata 
(CA) have been used to handle the dynamics, complexity, and self-organizing proper-
ties of land use change processes. The spatial complexity and dynamics of land use 
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change is represented by selecting various configurations of the basic elements of  
the CA model design - cell space, cell size, neighborhood size and type, transition 
rules and temporal increments [7-9]. Transition rules are the most important element 
of the CA as they control the behavior of the cells and their evolution into the future 
states. Recently, there has been a concerted effort to improve the transition rules  
[10, 11] or combine other approaches such as multi-criteria evaluation, principal 
component analysis and neural networks among others [12-14] to advance GIS- 
based CA. 

Bayesian Networks (BNs) provides an alternative approach based on artificial in-
telligence that can overcome some of the challenges of CA models. In the late 1970s 
and 1980s, rule-based approaches were common in artificial intelligence (AI).  
Although neural networks were popularized later, they have failed when sufficient 
data are not available for data learning. In the late 1980s, BNs were seen as an effi-
cient way to deal with data uncertainty [15, 16]. The early applications of BN were in 
medical diagnosis and genetics, but recently their use have expanded to areas such as 
environmental studies [17] and geographic information systems [18].  

The Bayesian Networks are considered as probabilistic network-graphical models 
that use probability and graph theory in their implementation [19]. The advantage  
of probabilistic networks is that they provide explicit representations of dependencies 
or independencies between variables without scientific numeric or functional details 
[20]. As a probabilistic network, the BN representation was originally designed  
to model the uncertain knowledge of an expert to deal with complex systems and  
data uncertainty. In BN models, simple parts (such as land use drivers) of the complex 
system (such as land use change process) are constructed using graph theory.  
The parts are then combined to each other using probability theory [21]. BNs are  
used for probabilistic inference and based on Bayes’ Theorem, which is a mathe-
matical formula to calculate probabilities among several variables that are causally 
related [22]. 

The objective of this study is to improve existing CA models by proposing a hybrid 
GIS-based Bayesian network cellular automata model. The theoretical framework for 
this study is the integration of cellular automata with Bayesian networks since the 
formulation of cellular automata transition rules should depend on how driving factors 
of land use change are perceived. Thus, land use change is seen as the result of the 
interplay between land use drivers that mimics the complexity of a spatial process. 
Sensitivity analysis was used to test the model for changes occurring in the model 
outcomes when the number of nodes and land use classes are changed.  

2   The BN-CA Model   

Cellular automata are discrete spatial models [9]. They consist of an array of cells, 
each of which has cell states. The state of a cell at consecutive time t+1 is a function 
of its state, its neighbourhood, and set of transition rules at an initial time t. Using this 
function, transition rules are applied to each cell to determine what state it should 
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change to during a time transition. This step is repeated over the whole cell array. The 
cell state can be mathematically represented as: 

)),(),(()1( TtStNftS iii =+  (1) 

where Si(t) and Si(t+1) are the states of cell i at the initial and consecutive time t and 
t+1 respectively; Ni(t) is the neighborhood state of cell i at time t; T are the transition 
rules. In general, the transition rules are in the form of <IF, THEN, ELSE> state-
ments. For example, IF an event occurs in the neighborhood of a cell, THEN some-
other-event occurs to the cell [23].  

In land use change modeling, these rules represent how change occurs in the real 
world. Since there is no standard procedure or method for defining transition rules, 
they are reformulated in the spatial modeling literature using probabilistic 
expressions, accessibility algorithms, logistic regression, linguistic variables, multi-
criteria evaluation methods, and neural network structure among others. However, 
when processes and changes in the urban area are difficult to describe (e.g. large 
number of factors affecting land use change), then most of these methods fail to ade-
quately capture the land use change process. Neural Networks (NN) [14] have been 
used to improve the capability of CA models to deal with multiple land uses. With the 
NN-CA models, the parameters required for the simulation are determined by a train-
ing procedure and no transition rules are required. However, they are black-box mod-
els when incorporated in the CA structure. Explicit knowledge about the modeled 
land use change process is not provided. In addition, the optimal structure for the 
numbers of network layers and neurons is still unclear for a specific application [24]. 
Hence, there is a need to make the design and implementation of existing CA models 
more explicit.  

The alternative method of Bayesian Networks is proposed to simulate land use 
change in cellular automata spatial models. A Bayesian network is the pair (G, P) 
where G is a Directed Acyclic Graph (DAG) where nodes represent variables, arcs 
between nodes represent probabilistic dependencies, and P is a multivariate probabil-
ity distribution defined on variables that correspond to the nodes of G. A graph is 
called directed if the graph links have directions. A directed graph is acyclic if the 
graph contains no directed cycles. 

The elements of BN are [19]: 

1. Variables: A set of variables and a set of directed edges between variables, 
2. States: Each set contains a finite set of mutually exclusive states, 
3. Structure: The variables coupled with the directed edges form a DAG, 
4. CPT: Each variable A with parents B1, B2… Bn has a Conditional Probability 

Table (CPT) which includes P (A | B1, B2… Bn).  
 
If directed edges (arcs) in the DAG are assumed to represent causality, then BNs 

are sometimes called causal networks. However, when building BN models, users and 
experts do not need to see the links as causal relationships. Rather they should ensure 
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that links correspond to qualitative relationships. In order to explain the basic BN 
ideas, consider the example in Figure 1. The circles are nodes and they are the vari-
ables. They represent the most important factors about the particular phenomenon. 
They are linked so that a change in one will result in a chain reaction of impacts on all 
the linked variables in the direction of the links, assuming that the links represent 
causality. Each variable is probabilistically independent of its non-parents given its 
parents. Therefore, the absence of a direct link between A and G means that the influ-
ence of A on G results from other variables (e.g. C, D, E). The design of the network 
such as deciding which factors link to each other is based on how the phenomenon 
being modeled is perceived. For simplicity, assume that all the nodes are binary vari-
ables that take a value of either true (T) or false (F). While the states of the variables 
can be discrete, they can also be real valued, integer valued, or multivariate [25]. For 
each node, there is a conditional probability function that relates this node to its par-
ents. For instance, the probabilistic relationship between D and its parent C is the 
conditional probability distribution of D given C. This is expressed in the conditional 
probability table shown in Figure 1. In the table, P00 means probability of D being 
false given C is false, that is )|( falseCfalseDP == .  

The important characteristic of Bayesian Networks is their explicit representation 
of the conditional dependence and independence between variables [26]. The prob-
ability of every possible event as defined by the values of all the variables is called 
the joint probability distribution. It has been shown [19] that the joint probability 
distribution induced by the DAG can be factorized into the conditional distribution of 
each variable with respect to its parents (Equation 3):  

)|()...(
1

1 ∏=
n

iin paXPXXP  (2) 

where ipa  is the set of direct parents for variable iX . Therefore, the probability 

distribution represented by the example network from Figure 1 is: 

),,|(),|()|()|(),|()()(),...,,( EDCGPEDFPCEPCDPBACPBPAPGBAP =  (3) 

2.1   Model Framework 

In the proposed model, the transition rules T in the equation (1) are equal to (G, P) 
and the cell states are defined as: 

)),(),(()1( PGTtSftS ii =+ , (4) 

which implied that the cell state at time t+1 depends on the current cell state and 
transition rules defined by G and P. The proposed model eliminates the use of 
neighborhood type and size in the transition rules since it is proved that CA model 
outcomes are sensitive to the changing neighborhood size and type [27]. In the next 
section, the details of the model building process will be elaborated. 
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Fig. 1. A simple Bayesian network structure containing seven variables 

2.2   Building the BN-CA Model 

Defining Input Raster GIS Layers and Bayesian Network Nodes. Multiple GIS 
layers provide the data input to this model and they represent the key land use drivers 
that affect the land use change. The GIS operations such as reclassification, distance 
calculations, suitability evaluation, buffering, and overlay are used to derive suitable 
areas and constraints as input layers. These input GIS layers are defined as nodes in 
the BN structure. In addition to land use driver nodes, future land use state is defined 
as a node in the BN structure. Consequently, probabilities of each future land use state 
conditional on land use drivers are calculated. The values of the nodes are represented 
as discrete or continuous or both.  

Structuring the Bayesian Network. Once the variables and their values are iden-
tified, the next step is to identify the structure of the BN and how the nodes are 
connected together. The structure should capture the relationships between variables. 
Nodes should be linked such that if one affects or causes the other, there should be an 
arc between them. The direction of the arc represents the causation.  

The experts can construct the structure and quantify probabilities in the network by 
using their knowledge. Nevertheless, some researchers [28] have argued that instead 
of trusting experts, the BN should be constructed from the observed data in a learning 
process. This provides a better way to interpret the existing (observed) data in an 
accurate manner and to better understand the phenomenon that is being modeled. In 
land use change modeling, this gives an indication of what variables are the main 
factors in the land use change process. 
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Learning in BN depends on whether the network structure is known and whether 
the variables are all observable [29, 30]. In this study, the BN structure is extracted 
using the data at two temporal snapshots of the study site to find the factors underly-
ing the land use change process. Figure 2 depicts how the BN sub-model is conceptu-
alized in terms of observed data and predicted data. The data of the site are observed 
but the BN structure is not known. In this case, given the set of variables, the links 
must be found and then parameters as the values in the Conditional Probability Table 
(CPT) must be estimated using the observed data (data at time t and t+∆t of the site).  

 

Fig. 2. GIS based BN-CA model: conceptual framework  

The K2 algorithm [31] which uses Bayesian scoring method was used in this study 
to learn the BN structure from two observed land use datasets. The K2 algorithm 
provides an efficient way to structure learning from complete observable data [32]. 
The algorithm starts with a network with no links; then for each node, it incrementally 
adds parents whose addition increases the score of the resulting structure until the 
addition of parents does not increase the score.  

Estimating Conditional Probability Table (CPT) in the BN Structure. In the 
process of BN structure learning, there are several possible ways to obtain estimates 
for the conditional probabilities in the CPT. It is possible to use subjective probabi-
lities, usually encoded from expert knowledge when the data available for a particular 
variable are limited or non-existent. The alternative to subjective probabilities is 
learning, which is achieved by calculating the conditional probability table values 
using estimation techniques such as Maximum Likelihood Estimation (MLE) and 
Bayesian estimation.   
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In this study, since the network structure was learned from observed data in the 
previous step, the structure is known and complete data are available to derive the 
probabilities. This is the most studied case of learning BN in the research literature. 
MLE estimation was applied to compute the probabilities. 

Inference - Predicting Future Land Use. The last step in building the BN sub-
model of the BN-CA hybrid model is the prediction done by inference. The 
computation of a probability of interest given a model is called probabilistic inference 
[33]. In this step, observed variable states are entered as evidence in the BN to 
calculate the revised probabilities of interest given the evidence. In this study, the 
Junction Tree Algorithm was used to calculate the inference in the BN [34]. As shown 
in Figure 2, the observed data at time t+∆t are entered into the BN as evidences and 
the probabilities of each land use state at time t+n∆t are obtained.  

For each cell, the BN inference is used to obtain the probabilities of each predicted 
land use state. Then, the transition rule of the CA changes each cell’s land use state to 
one with the highest potential. Each cell is subject to inference and transition rule in 
each iteration. 

3   Model Implementation and Simulation Results 

3.1   Study Site 

A hypothetical study site was created at 25m spatial resolution with 900x1363 cells. 
The two hypothetical snapshots of this site with the temporal interval of 10 years 
(∆t=10years, n=2) were used in the simulations of the proposed model. Figure 3 de-
picts the new residential development that was created along the undeveloped land. In 
these land use maps, there are ten common land use classes, namely residential, in-
dustrial, commercial, office, schools, recreation, green areas, agriculture, undeveloped 
land and others (such as water bodies, roads). 

3.2   Data Preparation 

In the hybrid model, the first step is to identify the key variables-land use drivers that 
affect the land use change process since changes in the types of land use are induced 
by these drivers. A total of ten spatial variables were identified as key factors that 
affect future land use change. These variables are: distance to education facilities, 
distance to existing transportation network, distance to commercial centers, distance 
to employment centers, distance to recreational facilities, distance to green areas, 
constraints (water areas, steep sloped, flood areas), land use policies, land ownership 
and current land use (Table 1). These layers as variables were obtained by using raster 
GIS analyses. The Euclidean distances in the ArcGIS software were used to calculate 
the distance variables and to classify them into three main classes: ‘good’, ‘medium’ 
and ‘low’ accessibility to the land use driver being considered.  
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Fig. 3. Hypothetical site with land use classes at time t and t+10 years 
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Table 1. Input variables of the proposed model 

Land use drivers/variables Raster GIS calculations 
Distance to education Euclidean distance from every cell to the nearest schools, 

universities, colleges. 
Distance to existing  transportation 
network 

Euclidean distance from every cell to the nearest street 
network  

Distance to commercial centers Euclidean distance from every cell to the nearest commer-
cial areas, such as shopping malls 

Distance to employment centers Euclidean distance from every cell to the nearest office 
spaces and business areas 

Distance to recreational facilities Euclidean distance from every cell to the nearest recrea-
tional attractions, such as tourist attraction sites, stadiums, 
etc 

Distance to green areas Euclidean distance from every cell to the nearest green 
areas, such as residential parks, hillsides, etc 

Constraints Physical and policy constraints to the development such as 
conservation areas, flood plains, steep slopes, etc 

Land use policies Government policy and plans on future land use 
Land ownership  Public land ownership (land owned by schools, states, forest 

service, etc) and private land ownership 
Current land use Current land use  

3.3   Simulations 

The proposed BN-CA model was applied to the hypothetical study site with a spatial 
resolution of 25m and temporal resolution of 10 years. The study site data at time t 
and t+10 years were input to the model and the land use map at t+20 years was pre-
dicted (∆t=10 years, n=2 iterations that were generated). The algorithm of the pro-
posed model was coded in the Matlab software using some of the functions of the 
Bayes Net Toolbox [35]. The proposed BN-CA model uses a loose coupling architec-
ture with the ArcGIS and Matlab software. 

All the variables, namely land use drivers were incorporated into the BN as nodes. 
In addition to those, as a last node, predicted land use was defined in the BN structure 
to obtain the probabilities of each future land use state conditional on the others. The 
distance variables have three states (good, medium, and low accessibility), constraints 
and ownership have two states (public and private ownerships), and policy and land 
use variables have ten states representing the land use classes. 

Bayesian Network employs two important operations: explanation and prediction. 
The explanation part was accomplished by a BN learning procedure in which the 
structure of the network was constructed and values of the CPT were estimated from 
the observed data at initial time t and consecutive time t+10 years. Although all cells 
could be used for structure and parameter learning, 1000 cells from the raster GIS 
layers at time t were chosen randomly for the learning algorithms. When the number 
of cells required for learning increases, the sample complexity increases and creates 
computational complexity. Also, the performance of the learning improves with in-
creasing the number of observed cells. The result of the structure learning procedure 
is shown in Figure 4, which explains the underlying processes and interactions in the 
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Fig. 4. Learned BN structure 

study site. Distance to existing transportation network affects other distance variables, 
except green areas. In addition, distance to employment centers, land use policies and 
current land use directly affects the future land use change.   

Prediction was employed by the probabilistic inference and cellular automata tran-
sition rules. With the inference algorithm, the probabilities of each future land use 
state were calculated. Then, transition rule decides the change from one land use state 
to another depending on the highest probability. Figure 5 illustrates the land use states 
predicted for 20 years, at t+20 generated by the proposed model. The results imply 
that the predicted land use generated by the model show similar growth to the current 
land use change trend where new residential areas appeared on the undeveloped land.  

4   Model Sensitivity 

Sensitivity Analysis is useful in spatial modeling to identify what parts of the model 
are critical and which ones are less likely to be important to the results [27, 36]. The 
proposed model’s sensitivity was tested by running the model with different configu-
rations. There are two sensitivity areas of the model: node sensitivity and classifica-
tion sensitivity.  
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Fig. 5. Predicted land use generated by the proposed hybrid model at time t+20 years with 
using eleven nodes 

In testing the node sensitivity of the model, different number of nodes was incorpo-
rated into the BN sub-model. As a result, different simulation results were obtained. 
For example, Figure 6 shows the predicted land use map when seven nodes (only six 
distance nodes and future land use node) were employed. It can be seen from the 
figure that the resultant map has only seven land use classes and the model did not 
generate residential growth. In addition, large school areas were generated by  
the model. This shows that model is very sensitive to the number of nodes. During the 
modeling process, nodes should be chosen meaningfully. The key is to determine the 
most important nodes. It should be noted that the number of the nodes ought to be 
pruned due to computational complexity that can arise from large number of nodes. 
This is because as the number of nodes increases, the joint probability distribution 
grows exponentially and creates computational complexity in the calculation of prob-
abilities. 

Apart from the node sensitivity, there is also classification sensitivity on how land 
use categorization and classification affect the land use change models [37]. In this 
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Fig. 6. Predicted land use at time t+20 years when seven nodes are used in the model 

study, simulations were performed with a variety of land use classes; from three to 
fourteen, and the outcomes of the model with different land use classes were ana-
lyzed. Figure 7 depicts two of the outcomes, using three land use classes (Figure 7a) 
and using fourteen classes (Figure 7b). Visual comparison of these maps and the 
simulation obtained for ten classes (Figure 5) illustrates that land use classification 
affects the residential growth since the generated directions and shapes are different.  

In addition to the land use classification sensitivity examination, the model’s sensi-
tivity to the number of distance classes was investigated. Initial simulation was em-
ployed with three and five class distance layers (Figure 5 and 8 respectively). The 
simulation outcomes were compared and it can be seen that the generated pattern is 
different. Figure 8 depicts that large residential areas are created at the expense of 
green areas in the inner core of the urban area. 

The results of sensitivity analysis emphasize the importance of the node selection 
and the land use classification in the modeling process. The GIS based BN-CA model 
is sensitive to the changes in the number of nodes, the number of distance classes, and 
the number of land use classes. 
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Fig. 7. Predicted land use at time t+20 years with: a) three and b) fourteen land use classes 
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Fig. 8. Predicted land use at time t+20 years when five class distance layers were used 

5   Conclusion 

This study developed a novel hybrid model that incorporated Bayesian Networks, 
Cellular Automata and GIS to predict dynamic land use changes in an urban environ-
ment. The developed model addressed some drawbacks of existing GIS-based CA 
models. First, the developed model is a dynamic GIS model that uses spatial complex-
ity theory. Second, it makes explicit the information about the process of land use 
change. Third, the transition rule definition is relatively simple. Fourth, the model is 
explanatory and predictive which makes it useful for land use change modeling. Fifth, 
the model handles datasets with a large number of variables and relationships. In most 
probabilistic models, each variable in the model directly affects the outcome of the 
model. However, in the real world it is possible that one variable can affect another 
directly or indirectly through several variables such as in a Bayesian Networks. This 
characteristic is important in land use change modeling as it is difficult to define 
model parameters and transition rules when many variables affect the change. Finally, 
the model allows ease in calibration due to the learning procedure. Causal relation-
ships are learned from available data by using Bayesian Networks. 

In the developed model, the CA transition rules are represented by a specific 
Bayesian Network. Land use drivers are represented by nodes and dependencies  
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between them are represented by conditional probabilities. After the probabilities of 
the future land use state given the other variables states are calculated, the decision 
whether the current cell state will be converted or not to the other state is made. The 
developed model was applied to a hypothetical study site. The results showed that 
Bayesian networks are suitable for deriving the complex relationships between land 
use drivers that cause land use change. Moreover, the developed model is capable of 
producing various scenarios of land use change. With different scenarios through the 
inclusion of planning policies in the BN structure, it can be used to make predictions 
in response to policy changes. Further, when some of the variables change (e.g. new 
roads, new commercial centers), the model can be updated by recalculating the prob-
abilities instead of re-running the model. This emphasizes the ability of the GIS-based 
BN-CA model to represent and respond to changing configurations.  

Sensitivity analysis allowed model testing and the evaluation of the changes occur-
ring in the model outcomes when the number of nodes and land use classes were 
changed.  The results of the sensitivity analysis indicate that the model is sensitive to 
the changes in the number of nodes and land use classes. Due to the use of hypotheti-
cal datasets, validation of the proposed model is not accomplished. This implies that 
detailed calibration and validation procedures have to be established in GIS-based 
BN-CA model applications, and this forms the basis of ongoing research in the devel-
opment of hybrid GIS BN-CA models.  

Acknowledgements 

This study was fully supported through the Natural Sciences and Engineering Re-
search Council (NSERC) of Canada Discovery Grant Program. The Matlab software 
was provided by the Network Support Group, Faculty of Applied Sciences and Centre 
for Systems Science, Simon Fraser University.  

References 

1. Goodchild, M.E.: Geographic information science and systems for environmental man-
agement. Annu Rev Env Resour 28 (2003) 493-519 

2. Longley, P.: Geographical information systems and science. Wiley, Chichester (2005) 
3. Dragicevic, S., Marceau, D.J.: A fuzzy set approach for modeling time in GIS. Interna-

tional Journal of Geographical Information Science 14 (2000) 225-245 
4. Allen, P.M.: Cities and regions as evolutionary complex systems. Geographical Systems 4 

(1997) 103-130 
5. Batty, M., Longley, P.: Fractal cities : a geometry of form and function. Academic Press, 

London ; San Diego (1994) 
6. Portugali, J.: Self-organization and the city. Springer, Berlin ; New York (2000) 
7. Yeh, A.G., Li, X.: A constrained CA model for the simulation and planning of sustainable 

urban forms by using GIS. Environment and Planning B-Planning & Design 28 (2001) 
733-753 

8. Torrens, P.M., O'Sullivan, D.: Cities, cells, and complexity: developing a research agenda 
for urban geocomputation. In: B.H.Carlisle, R.J.A.a. (ed.): 5th International Conference on 
GeoComputation. "GeoComputation CD-ROM". University of Greenwich, UK (2000) 



232 V. Kocabas and S. Dragicevic 

9. White, R., Engelen, G.: High-resolution integrated modelling of the spatial dynamics of 
urban and regional systems. Computers, Environment and Urban Systems 24 (2000) 383-
400 

10. Batty, M.: Urban evolution on the desktop: simulation with the use of extended cellular 
automata. Environment and Planning A 30 (1998) 1943-1967 

11. O'Sullivan, D., Torrens, P.M.: Cellular models of urban systems. University College Lon-
don, The Centre for Advanced Spatial Analysis, London, UK (2000) 

12. Wu, F., Webster, C.J.: Simulation of land development through the integration of cellular 
automata and multicriteria evaluation. Environment and Planning B-Planning & Design 25 
(1998) 103-126 

13. Li, X., Yeh, A.G.O.: Urban simulation using principal components analysis and cellular 
automata for land-use planning. Photogrammetric Engineering and Remote Sensing 68 
(2002) 341-351 

14. Yeh, A.G.O., Li, X.: Simulation of development alternatives using neural networks, cellu-
lar automata, and GIS for urban planning. Photogrammetric Engineering and Remote 
Sensing 69 (2003) 1043-1052 

15. Charniak, E.: Bayesian Networks without Tears. Ai Mag 12 (1991) 50-63 
16. Heckerman, D., Mamdani, A., Wellman, M.P.: Real-World Applications of Bayesian Net-

works - Introduction. Commun Acm 38 (1995) 24-26 
17. Little, L.R., Kuikka, S., Punt, A.E., Pantus, F., Davies, C.R., Mapstone, B.D.: Information 

flow among fishing vessels modelled using a Bayesian network. Environmental Modelling 
& Software 19 (2004) 27-34 

18. Stassopoulou, A., Petrou, M., Kittler, J.: Application of a Bayesian network in a GIS based 
decision making system. International Journal of Geographical Information Science 12 
(1998) 23-45 

19. Pearl, J.: Probabilistic reasoning in intelligent systems : networks of plausible inference. 
Morgan Kaufmann Publishers, San Mateo, Calif. (1988) 

20. Buntine, W.L.: A guide to the literature on learning probabilistic networks from data. Ieee 
T Knowl Data En 8 (1996) 195-210 

21. Jordan, M.I., Sejnowski, T.J.: Graphical models : foundations of neural computation. MIT 
Press, Cambridge, Mass. (2001) 

22. Bayes, T., Price, R., Canton, J., Deming, W.E., Molina, E.C.: Facsimiles of two papers by 
Bayes I. An essay toward solving a problem in the doctrine of chances, with Richard 
Price's forward and discussion; Phil. Trans. Royal Soc., pp.370-418, 1763. With a com-
mentary by Edward C. Molina. II. A letter on asymptotic series from Bayes to John Can-
ton; pp.269-271 of the same volume. With a commentary by W. Edwards Deming. Hafner 
Pub. Co., New York (1963) 

23. Batty, M.: Cellular automata and urban form: a primer. Journal of American Planning As-
sociation 63 (1997) 266-274 

24. Zhou, J., Civco, D.L.: Using genetic learning neural networks for spatial decision making 
in GIS. Photogrammetric Engineering and Remote Sensing 62 (1996) 1287-1295 

25. Neapolitan, R.E.: Learning Bayesian networks. Prentice Hall, Harlow (2003) 
26. Varis, O.: A belief network approach to optimization and parameter estimation: applica-

tion to resource and environmental management. Artif Intell 101 (1998) 135-163 
27. Kocabas, V., Dragicevic, S.: Assessing cellular automata model behaviour using sensitiv-

ity analysis approach. Computers, Environment and Urban Systems (In Press)  
28. Sanguesa, R., Burrell, P.: Application of Bayesian Network learning methods to Waste 

Water Treatment Plants. Appl Intell 13 (2000) 19-40 
29. Buntine, W.L.: Operations for learning with graphical models. Journal of artificial intelli-

gence research 2 (1994) 159-225 
30. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian Networks - the Combi-

nation of Knowledge and Statistical-Data. Mach Learn 20 (1995) 197-243 



 Coupling Bayesian Networks with GIS-Based Cellular Automata 233 

31. Cooper, G.F., Herskovits, E.: A Bayesian Method for the Induction of Probabilistic Net-
works from Data. Mach Learn 9 (1992) 309-347 

32. Cheng, J., Greiner, R., Kelly, J., Bell, D., Liu, W.R.: Learning Bayesian networks from 
data: An information-theory based approach. Artif Intell 137 (2002) 43-90 

33. Heckerman, D.: A tutorial on learning with Bayesian networks. In: Jordan, M.I. (ed.): 
Learning in graphical models. MIT Press, Cambridge, Mass. (1999) 301-354 

34. Jensen, F.V., Lauritzen, S., Olesen, K.G.: Bayesian updating in causal probabilistic net-
works by local computations. Computational Statistics Quarterly 4 (1990) 269-282 

35. Murphy, K.: The Bayes Net Toolbox for Matlab. Computing Science and Statistics 33 
(2001)  

36. Menard, A., Marceau, D.J.: Exploration of spatial scale sensitivity in geographic cellular 
automata. Environment and Planning B-Planning & Design 32 (2005) 693-714 

37. Dietzel, C., Clarke, K.: The effect of disaggregating land use categories in cellular auto-
mata during model calibration and forecasting. Computers, Environment and Urban Sys-
tems 30 (2006) 78-101 

 


	Introduction
	The BN-CA Model
	Model Framework
	Building the BN-CA Model

	Model Implementation and Simulation Results
	Study Site
	Data Preparation
	Simulations

	Model Sensitivity
	Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




