
A Formal Model of Access Control for
Mobile Interactive Devices

Frédéric Besson, Guillaume Dufay, and Thomas Jensen�

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract. This paper presents an access control model for program-
ming applications in which the access control to resources can employ
user interaction to obtain the necessary permissions. This model is in-
spired by and improves on the Java security architecture used in Java-
enabled mobile telephones. We consider access control permissions with
multiplicities in order to allow to use a permission a certain number of
times. An operational semantics of the model and a formal definition of
what it means for an application to respect the security model is given.
A static analysis which enforces the security model is defined and proved
correct. A constraint solving algorithm implementing the analysis is pre-
sented.

1 Introduction

Access control to resources is classically described by a model in which an access
control matrix specifies the actions that a subject (program, user, applet, . . .)
is allowed to perform on a particular object. Recent access control mechanisms
have added a dynamic aspect to this model: applets can be granted permissions
temporarily and the outcome of an access control depends on both the set of
currently held permissions and the state of the machine. The most studied ex-
ample of this phenomenon is the stack inspection of Java (and the stack walks
of C�) together with the privileged method calls by which an applet grants all
its permissions to its callers for the duration of the execution of a particular
method call, see e.g. [1, 3, 5, 8]. Another example is the security architecture for
embedded Java on mobile telephones, defined in the Mobile Information Device
Profile (MIDP) [13] for Java, which uses interactive querying of the user to grant
permissions on-the-fly to the applet executing on a mobile phone so that it can
make internet connections, access files, send SMSs etc. An important feature
of the MIDP model are the “one-shot” permissions that can be used once for
accessing a resource. This quantitative aspect of permissions raises several ques-
tions of how such permissions should be modeled (e.g., “do they accumulate?” or
“which one to choose if several permissions apply?”) and how to program with
such permissions in a way that respects both usability and security principles

� This work was partly funded by the IST-FET programme of the European Commis-
sion, under the IST-2005-015905 MOBIUS project.

D. Gollmann, J. Meier, and A. Sabelfeld (Eds.): ESORICS 2006, LNCS 4189, pp. 110–126, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Formal Model of Access Control for Mobile Interactive Devices 111

such as Least Privilege [12] and the security property stated below. We review
the MIDP model in Section 2.

In this paper, we present a formal model for studying such programming
mechanisms with the purpose of developing a semantically well-founded and
more general replacement for the Java MIDP model. We propose a semantics of
the model’s programming constructs and a logic for reasoning about the flow of
permissions in programs using these constructs. This logic will notably allow to
prove the basic security property that a program will never attempt to access a
resource for which it does not have permission. Notice that this is stronger than
just ensuring that the program will never actually access the resource. Indeed,
the latter property can be trivially achieved in systems with run-time checks—at
the expense of accepting a security exception when an illegal access is detected.
The basic security property is pertinent to systems with or without such dynamic
controls. For systems without any run-time checks, it guarantees the absence of
illegal accesses. For dynamically monitored systems, it guarantees that access
control exceptions will never be raised.

The notion of permission is central to our model. Permissions have an internal
structure (formalised in Section 3) that describes the actions that it enables and
the set of objects to which it applies. The “one-shot” permissions alluded to
above have motivated a generalisation in which permissions now have multiplic-
ities, stating how many times the given permission can be used. Multiplicities
are important for controlling resource access that has a cost, such as sending of
SMSs and establishing network connections on mobile telephones. For example,
in our model it is possible for a user to grant an applet the permission to send
3 SMSs during a transaction. Furthermore, with the accompanying analyses we
propose, it is possible to verify formally that such a number of permissions are
sufficient for completing the transaction.

The security model we propose has two basic constructs for manipulating
permissions:

– grant models the interactive querying of the user, asking whether he grants
a particular permission with a certain multiplicity to the applet, and

– consumemodels the access to a method which requires (and hence consumes)
permissions.

In this model, we choose not to let permissions accumulate i.e., the number of
permissions available of a given type of permissions are those granted by the
most recently executed grant. To avoid the potential confusion that may arise
when several permissions can be used by a consume we introduce a typing of
permissions that renders this situation impossible.

An important feature of this model is that an application can request one
or more permissions in advance instead of having to ask permission just before
consuming it, as with the “one-shot” permissions. The choice of where to insert
requests for user-granted permissions now becomes important for the usability
of an applet and has a clear impact on its security. We provide a static analysis
that will verify automatically that a given choice of placement will ensure that
an applet always has the permissions necessary for its further execution.

112 F. Besson, G. Dufay, and T. Jensen

The analysis is developed by integrating the grant and consume constructs into
a program model based on control-flow graphs. The model and its operational
semantics is presented in Section 4. In this section, we also formally define what
it means for an execution trace (and hence for a program) to respect the basic
security property. Section 5 defines a constraint-based static analysis for safely
approximating the flow of permissions in a program with the aim of computing
what permissions are available at each program point. Section 7 describes how to
solve the constraints produced by the analysis. Section 8 describes related formal
models and verification techniques for language-based access control and Section 9
concludes.

2 The Java MIDP Security Model

The Java MIDP programming model for mobile telephones [13] proposes a thor-
oughly developed security architecture which is the starting point of our work.
In the MIDP security model, applications (called midlets in the MIDP jargon)
are downloaded and executed by a Java virtual machine. Midlets are made of a
single archive (a jar file) containing complete programs. At load time, the midlet
is assigned a protection domain which determines how the midlet can access re-
sources. It can be seen as a labelling function which classifies a resource access
as either allowed or user.

– allowedmeans that the midlet is granted unrestricted access to the resource;
– user means that, prior to an access, an interaction with the user is initiated

in order to ask for permission to perform the access and to determine how
often this permission can be exercised. Within this protection domain, the
MIDP model operates with three possibilities:

• blanket: the permission is granted for as long as the midlet remains
installed;

• session: the permission is granted for as long as the midlet is running;
• oneshot: the permission is granted for a single use.

The oneshot permissions correspond to dynamic security checks in which each
access is protected by a user interaction. This clearly provides a secure access
to resources but the potentially numerous user interactions are at the detriment
of the usability and makes social engineering attacks easier. At the other end of
the spectrum, the allowed mode which gets granted through signing provides a
maximum of usability but leaves the user with absolutely no assurance on how
resources are used, as a signature is only a certificate of integrity and origin.

In the following we will propose a security model which extends the MIDP
model by introducing permissions with multiplicities and by adding flexibility to
the way in which permissions are granted by the user and used by applications.
In this model, we can express:

– the allowed mode and blanket permissions as initial permissions with mul-
tiplicity ∞;

A Formal Model of Access Control for Mobile Interactive Devices 113

– the session permissions by prompting the user at application start-up
whether he grants the permission for the session and by assigning an in-
finite number of the given permission;

– the oneshot permissions by prompting the user for a permission with a
grant just before consuming it with a consume.

The added flexibility is obtained by allowing the programmer to insert user
interactions for obtaining permissions at any point in the program (rather than
only at the beginning and just before an access) and to ask for a batch of
permissions in one interaction. The added flexibility can be used to improve
the usability of access control in a midlet but will require formal methods to
ensure that the midlet will not abuse permissions (security concern) and will
be granted by the programmer sufficient permissions for a correct execution
(usability concern). The analysis presented in section 5 is addressing these two
concerns.

3 The Structure of Permissions

In classical access control models, permissions held by a subject (user, program,
. . .) authorise certain actions to be performed on certain resources. Such per-
missions can be represented as a relation between actions and resources. To
obtain a better fit with access control architectures such as that of Java MIDP
we enrich this permission model with multiplicities and resource types. Con-
crete MIDP permissions are strings whose prefixes encode package names and
whose suffixes encode a specific permission. For instance, one finds permissions
javax.microedition.io.Connector.http and javax.microedition.io.Con-
nector.sms.sendwhich enable applets to make connections using the http pro-
tocol or to send a SMS, respectively. Thus, permissions are structured entities
that for a given resource type define which actions can be applied to which
resources of that type and how many times.

To model this formally, we assume given a set ResType of resource types.
For each resource type rt there is a set of resources Resrt of that type and a
set of actions Actrt applicable to resources of that type. We incorporate the
notion of multiplicities by attaching to a set of actions a and a set of resources
r a multiplicity m indicating how many times actions a can be performed on
resources from r. Multiplicities are taken from the ordered set:

Mul
�
= (N ∪ {⊥Mul , ∞}, ≤).

The 0 multiplicity represents absence of a given permission and the ∞ multi-
plicity means that the permission is permanently granted. The ⊥Mul multiplicity
represents an error arising from trying to decrement the 0 multiplicity. We define
the operation of decrementing a multiplicity as follows:

m − 1 =

⎧
⎨

⎩

∞ if m = ∞
m − 1 if m ∈ N, m �= 0
⊥Mul if m = 0 or m = ⊥Mul

javax.microedition.io.Connector.http
file:javax.microedition.io.Connector.sms.send
file:javax.microedition.io.Connector.sms.send

114 F. Besson, G. Dufay, and T. Jensen

Several implementations of permissions include an implication ordering on
permissions. One permission implies another if the former allows to apply a
particular action to more resources than the latter. However, the underlying
object-oriented nature of permissions imposes that only permissions of the same
resource type can be compared. We capture this in our model by organising
permissions as a dependent product of permission sets for a given resource
type.

Definition 1 (Permissions). Given a set ResType of resource types and Res
Type-indexed families of resources Resrt and actions Actrt, the set of atomic
permissions Permrt is defined as:

Permrt
�
= (P(Resrt) × P(Actrt)) ∪ {⊥}

relating a type of resources with the actions that can be performed on it. The
element ⊥ represents an invalid permission. By extension, we define the set of
permissions Perm as the dependent product:

Perm
�
=

∏

rt∈ResType

Permrt × Mul

relating for all resource types an atomic permission and a multiplicity stating
how many times it can be used.

For ρ ∈ Perm and rt ∈ ResType, we use the notations ρ(rt) to denote the
pair of atomic permissions and multiplicities associated with rt in ρ. Similarly,
�→ is used to update the permission associated to a ressource type, i.e., (ρ[rt �→
(p, m)])(rt) = (p, m).

Example 1. Given a ressource type SMS ∈ ResType, the permission ρ ∈ Perm
satisfying ρ(SMS) = ((+1800∗, {send}), 2) grants two accesses to a send ac-
tion of the resource +1800∗ (phone number starting with +1800) with the type
SMS.

Definition 2. The ordering �p ⊆ Perm × Perm on permissions is given by

ρ1 �p ρ2
�
= ∀rt ∈ ResType ρ1(rt) � ρ2(rt)

where � is the product of the subset ordering �rt on Permrt and the ≤ ordering
on multiplicities.

Intuitively, being higher up in the ordering means having more permissions to
access a larger set of resources. The ordering induces a greatest lower bound
operator � : Perm × Perm → Perm on permissions. For example, for ρ ∈
Perm

ρ[File �→ ((/tmp/∗, {read ,write}), 1)] � ρ[File �→ ((∗/dupont/∗, {read}), ∞)]=
ρ[File �→ ((/tmp/ ∗ /dupont/∗, {read}), 1)]

A Formal Model of Access Control for Mobile Interactive Devices 115

Operations on Permissions

There are two operations on permissions that will be of essential use:

– consumption (removal) of a specific permission from a collection of permis-
sions;

– update of a collection of permissions with a newly granted permission.

Definition 3. Let ρ ∈ Perm, rt ∈ ResType, p, p′ ∈ Permrt , m ∈ Mul and
assume that ρ(rt) = (p, m). The operation consume : Permrt → Perm → Perm
is defined by

consume(p′)(ρ) =
{

ρ[rt �→ (p, m − 1)] if p′ �rt p
ρ[rt �→ (⊥, m − 1)] otherwise

There are two possible error situations when trying to consume a permission.
Attempting to consume a resource for which there is no permission (p′ ��rt p) is
an error. Similarly, consuming a resource for which the multiplicity is zero will
result in setting the multiplicity to ⊥Mul .

Definition 4. A permission ρ ∈ Perm is an error, written Error(ρ), if:

∃rt ∈ ResType, ∃(p, m) ∈ Permrt × Mul , ρ(rt) = (p, m) ∧ (p = ⊥ ∨ m = ⊥Mul).

Granting a number of accesses to a resource of a particular resource type is
modeled by updating the component corresponding to that resource type.

Definition 5. Let ρ ∈ Perm, rt ∈ ResType, the operation grant : Permrt ×
Mul → Perm → Perm for granting a number of permissions to access a resource
of a given type is defined by

grant(p, m)(ρ) = ρ[rt �→ (p, m)]

Notice that granting such a permission erases all previously held permissions for
that resource type, i.e., permissions do not accumulate. This is a design choice:
the model forbids that permissions be granted for performing one task and then
used later on to accomplish another. The grant operation could also add the
granted permission to the existing ones rather than replace the corresponding
one. Besides cumulating the number of permissions for permissions sharing the
same type and resource, this would allow different resources for the same resource
type. However, the consume operation becomes much more complex, as a choice
between the overlapping permissions may occur. Analysis would require handling
multisets of permissions or backtracking.

Another consequence of the fact that permissions do not accumulate is that
our model can impose scopes to permissions. This common programming pattern
is naturally captured by inserting a grant instruction with null multiplicity at
the end of the permission scope.

116 F. Besson, G. Dufay, and T. Jensen

4 Program Model

We model a program by a control-flow graph (CFG) that captures the ma-
nipulations of permissions (grant and consume), the handling of method calls
and returns, as well as exceptions. These operations are respectively represented
by the instructions grant(p, m), consume(p), call, return, throw(ex), with
ex ∈ EX , rt ∈ ResType, p ∈ Permrt and m ∈ Mul . Exceptions aside, this model
has been used in previous work on modelling access control for Java—see [1, 3, 8].

Definition 6. A control-flow graph is a 7-tuple

G = (NO ,EX ,KD ,TG ,CG,EG , n0)

where:

– NO is the set of nodes of the graph;
– EX is the set of exceptions;
– KD : NO → {grant(p, m), consume(p), call, return, throw(ex)}, ass-

ociates a kind to each node, indicating which instruction the node represents;
– TG ⊆ NO × NO is the set of intra-procedural edges;
– CG ⊆ NO × NO is the set of inter-procedural edges, which can capture

dynamic method calls;
– EG ⊆ EX ×NO ×NO is the set of intra-procedural exception edges that will

be followed if an exception is raised at that node;
– n0 is the entry point of the graph.

In the following, given n, n′ ∈ NO and ex ∈ EX , we will use the notations n
TG→

n′ for (n, n′) ∈ TG , n
CG→ n′ for (n, n′) ∈ CG and n

ex→ n′ for (ex, n, n′) ∈ EG .

Example 2. Figure 1 contains the control-flow graph of grant and consume
operations during a flight-booking transaction (for simplicity, actions related to
permissions, such as {connect} or {read}, are omitted). In this transaction, the
user first transmits his request to a travel agency, site. He can then modify his
request or get additional information. Finally he can either book or pay the de-
sired flight. Corresponding permissions are summarised in the initial permission
pinit, but they could also be granted using the grant operation. In the example,
the developer has chosen to delay asking for the permission of accessing credit
card information until it is certain that this permission is indeed needed. Another
design choice would be to grant this permission from the outset. This would min-
imise user interaction because it allows to remove the querying grant operation.
However, the initial permission pinit would then contain file �→ (/wallet/∗, 2)
instead of file �→ (/wallet/id, 1) which violates the Principle of Least Privilege.

Operational Semantics

We define the small-step operational semantics of CFGs in Figure 2. The se-
mantics is stack-based and follows the behaviour of a standard programming

A Formal Model of Access Control for Mobile Interactive Devices 117

pinit[http �→ (∗,∞); https �→ (site, 1); file �→ (/wallet/id, 1)]

consume(http(site))

consume(http(∗))

consume(file(/wallet/id))

consume(http(site)) grant(file(/wallet/visa#), 1)

consume(file(/wallet/visa#))

consume(https(site))

2.

3.
3.

4. 5.

1. 1.

1. Modify request
2. Get info
3. Choose flight
4. Book only
5. Book and pay

Fig. 1. Example of grant/consume permissions patterns

language with exceptions, e.g., as Java or C�. Instantiating this model to such
languages consists of identifying in the code the desired grant and consume op-
erations, building the control-flow graph and describing the action of the other
instructions on the stack.

The operational semantics operates on a state consisting of a standard control-
flow stack of nodes, enriched with the permissions held at that point in the
execution. Thus, the small-step semantics is given by a relation � between
elements of (NO∗ × (EX ∪ {ε}) × Perm), where NO∗ is a sequence of nodes.
For example, for the instruction call of Figure 2, if the current node n leads
through an inter-procedural step to a node m, then the node m is added to the
top of the stack n:s, with s ∈ NO∗.

Instructions may change the value of the permission along with the current
state. E.g., for the instruction grant of Figure 2, the current permission ρ of the
state will be updated with the new granted permissions. The current node of the
stack n will also be updated, at least to change the program counter, depending
on the desired implementation of grant. Note that the instrumentation is non-
intrusive, i.e. a transition will not be blocked due to the absence of a permission.
Thus, for s in NO∗, e in (EX ∪ {ε}), ρ′ in Perm , if there exists s′ in NO∗, e′

in (EX ∪ {ε}), ρ′ in Perm such that s, e, ρ � s′, e′, ρ′, then for all ρ and ρ′, the
same transition holds.

This operational semantics will be the basis for the notion of program ex-
ecution traces, on which global results on the execution of a program will be
expressed.

Definition 7 (Trace of a CFG). A partial trace tr ∈ (NO , (EX ∪ {ε}))∗ of
a CFG is a sequence of nodes (n0, ε) :: (n1, e1) :: . . . :: (nk, ek) such that for

118 F. Besson, G. Dufay, and T. Jensen

KD(n) = grant(p, m) n
TG→ n′

n:s, ε, ρ � n′:s, ε, grant(p, m)(ρ)
KD(n) = consume(p) n

TG→ n′

n:s, ε, ρ � n′:s, ε, consume(p)(ρ)

KD(n) = call n
CG→ m

n:s, ε, ρ � m:n:s, ε, ρ
KD(r) = return n

TG→ n′

r:n:s, ε, ρ � n′:s, ε, ρ

KD(n) = throw(ex) n
ex→ h

n:s, ε, ρ � h:s, ε, ρ
KD(n) = throw(ex) ∀h, n

ex
� h

n:s, ε, ρ � n:s, ex, ρ

∀h, n
ex
� h

t:n:s, ex, ρ � n:s, ex, ρ

n
ex→ h

t:n:s, ex, ρ � h:s, ε, ρ

Fig. 2. Small-step operational semantics

all 0 ≤ i < k there exists ρ, ρ′ ∈ Perm, s, s′ ∈ NO∗ such that ni:s, ei, ρ �
ni+1:s′, ei+1, ρ

′.
For a program P represented by its control-flow graph G, we will denote by

�P � the set of all partial traces of G.

To state and verify the safety of a program that acquires and consumes permis-
sions, we first define what it means for an execution trace to be safe. We define
the permission set available at the end of a trace by induction over its length.

PermsOf (nil)
�
= pinit

PermsOf (tr :: (consume(p), e))
�
= consume(p,PermsOf (tr))

PermsOf (tr :: (grant(p, m), e))
�
= grant((p, m),PermsOf (tr))

PermsOf (tr :: (n, e))
�
= PermsOf (tr) otherwise

pinit is the initial permission of the program, for the state n0. By default, if no
permission is granted at the beginning of the execution, it will contain ((∅, ∅), 0)
for each resource type. The allowed mode and blanket permissions for a re-
source r of a given resource type can be modeled by associating the permission
(({r},Act), ∞) with that resource type.

A trace is safe if none of its prefixes end in an error situation due to the access
of resources for which the necessary permissions have not been obtained.

Definition 8 (Safe trace). A partial trace tr ∈ (NO , (EX ∪ {ε}))∗ is safe,
written Safe(tr), if for all prefixes tr′ ∈ prefix(tr), ¬Error (PermsOf (tr′)).

5 Static Analysis of Permission Usage

We now define a constraint-based static flow analysis for computing a safe ap-
proximation, denoted Pn, of the permissions that are guaranteed to be available
at each program point n in a CFG when execution reaches that point. Thus, safe

A Formal Model of Access Control for Mobile Interactive Devices 119

Pn0 �p pinit

KD(n) = grant(p, m) n
TG→ n′

Pn′ �p grant(p, m)(Pn)

KD(n) = consume(p) n
TG→ n′

Pn′ �p consume(p)(Pn)
KD(n) = call n

CG→ m n
TG→ n′

Pn′ �p Rm(Pn)

KD(n) = call n
CG→ m

Pm �p Pn

KD(n) = call n
CG→ m n

ex→ h

Ph �p Rex
m (Pn)

KD(n) = call n
CG→ m ∀h, n

ex
� h

Pn �p Rex
m (Pn)

KD(n) = throw(ex) n
ex→ m

Pm �p Pn

Fig. 3. Constraints on minimal permissions

means that Pn underestimates the set of permissions that will be held at n dur-
ing the execution. The approximation will be defined as a solution to a system of
constraints over Pn, derived from the CFG following the rules in Figure 3. The
rules for Pn are straightforward data flow rules: e.g., for grant and consume
we use the corresponding semantic operations grant and consume applied to
the start state Pn to get an upper bound on the permissions that can be held
at end state Pn′ . Notice that the set Pn′ can be further constrained if there is
another flow into n′. The effect of a method call on the set of permissions will be
modeled by a transfer function R that will be defined below. Finally, throwing
an exception at node n that will be caught at node m means that the set of
permissions at n will be transferred to m and hence form an upper bound on
the set of available permissions at this point.

Our CFG program model includes procedure calls which means that the anal-
ysis must be inter-procedural. We deal with procedures by computing summary
functions for each procedure. These functions summarise how a given procedure
consumes resources from the entry of the procedure to the exit, which can hap-
pen either normally by reaching a return node, or by raising an exception which
is not handled in the procedure. More precisely, for a given CFG we compute the
quantity R : (EX ∪{ε}) → NO → (Perm → Perm) with the following meaning:

– the partial application of R to ε is the effect on a given initial permission of
the execution from a node until return;

– the partial application of R to ex ∈ EX is the effect on a given initial
permission of the execution from a node until reaching a node which throws
an exception ex that is not caught in the same method.

Given nodes n, n′ ∈ NO , we will use the notation Rn and Rex
n for the partial

applications of R ε n and R ex n. The rules are written using diagrammatic
function composition ; such that F ; F ′(ρ) = F ′(F (ρ)). We define an order �
on functions F, F ′ : Perm → Perm by extensionality such that F � F ′ if ∀ρ ∈
Perm , F (ρ) �p F ′(ρ).

120 F. Besson, G. Dufay, and T. Jensen

KD(n) = grant(p, m) n
TG→ n′

Re
n � grant(p, m); Re

n′

KD(n) = consume(p) n
TG→ n′

Re
n � consume(p); Re

n′

KD(n) = return

Rn � λρ.ρ

KD(n) = call n
CG→ m n

TG→ n′

Re
n � Rm; Re

n′

KD(n) = call n
CG→ m ∀n′, n ex

� n′

Rex
n � Rex

m

KD(n) = call n
CG→ m n

ex→ h

Rn � Rex
m ; Rh

KD(n) = throw(ex) n
ex→ h

Re
n � Re

h

KD(n) = throw(ex) ∀n′, n ex
� n′

Rex
n � λρ.ρ

Fig. 4. Summary functions of the effect of the execution on initial permission

As for the entities Pn, the function R is defined as solutions to a system
of constraints. The rules for generating these constraints are given in Figure 4
(with e ∈ EX ∪ {ε}). The rules all have the same structure: compose the effect
of the current node n on the permission set with the function describing the
effect of the computation starting at n’s successors in the control flow. This
provides an upper bound on the effect on permissions when starting from n. As
with the constraints for P , we use the functions grant and consume to model
the effect of grant and consume nodes, respectively. A method call at node n is
modeled by the R function itself applied to the start node of the called method
m. The combined effect is the composition Rm; Re

n′ of the effect of the method
call followed by the effect of the computation starting at the successor node n′

of call node n.

6 Correctness

The correctness of our analysis is stated on execution traces. For a given program,
if a solution of the constraints computed during the analysis does not contain
errors in permissions, then the program will behave safely. Formally,

Theorem 1 (Basic Security Property). Given a program P :

(∀n ∈ NO , ¬Error (Pn)) ⇒ ∀tr ∈ �P �,Safe(tr)

The proof of this theorem relies on a big-step operational semantics which is
shown equivalent to the small-step semantics of Figure 2. This big-step semantics
is easier to reason with (in particular for method invocation) and yields an
accessibility relation Acc that also captures non-terminating methods. The first
part of the proof of Theorem 1 amounts to showing that if the analysis declares
that if no abstract state indicates an access without the proper permission then
this is indeed the case for all the accessible states in program.

A Formal Model of Access Control for Mobile Interactive Devices 121

Lemma 1.

(∀n ∈ NO , ¬Error(Pn)) ⇒ ∀(n, ρ) ∈ Acc,¬Error(ρ)

To do this, we first show (by induction over the definition of the big-step se-
mantics) that summary functions R correctly model the effect of method calls
on permissions. Then, we show a similar result for the permissions computed for
each program point by the analysis:

Lemma 2.

∀n ∈ NO , ∀ρ ∈ Perm , (n, ρ) ∈ Acc ⇒ Pn �p ρ

Lemma 1 is a direct consequence of Lemma 2. Using proof by contradiction, we
suppose (n, ρ) ∈ Acc with Error(ρ), then we get Pn �p ρ, which contradicts
¬Error (Pn) given Error (ρ).

The second part links the trace semantics with the big-step instrumented
semantics by proving that if no accessible state in the instrumented semantics
has a tag indicating an access control error then the program is safe with respect
to the definition of safety of execution traces. This part amounts to showing that
the instrumented semantics is a monitor for the Safe predicate.

A more detailed proof is given in the online version of this paper at http://
hal.inria.fr/inria-00083453.

7 Constraint Solving

Computing a solution to the constraints generated by the analysis in Section 5
is complicated by the fact that solutions to the R-constraints (see Figure 4)
are functions from Perm to Perm that have infinite domains and hence cannot
be represented by a naive tabulation [14]. To solve this problem, we identify
a class of functions that are sufficient to encode solutions to the constraints
while restricted enough to allow effective computations. Given a solution to the
R-constraints, the P -constraints (see Figure 3) are solved by standard fixpoint
iteration.

The rest of this section is devoted to the resolution of the R-constraints. The
resolution technique consists in applying solution-preserving transformations to
the constraints until they can be solved either symbolically or iteratively.

7.1 On Simplifying R-Constraints

In our model, resources are partitioned depending on their resource type. At
the semantic level, grant and consume operations ensure that permissions of
different types do not interfere i.e., that it is impossible to use a resource of a
given type with a permission of a different type. We exploit this property to
derive from the original system of constraints a family of independent ResType-
indexed constraint systems. A system modelling a given resource type, say rt, is

http://hal.inria.fr/inria-00083453
http://hal.inria.fr/inria-00083453

122 F. Besson, G. Dufay, and T. Jensen

a copy of the original system except that grant and consume are indexed by rt
and are specialized accordingly:

grantrt(p′rt′ , m
′) =

{
λ(p, m).(p′, m′) si rt = rt′

λ(p, m).(p, m) sinon

consumert(p′rt′) =
{

λ(p, m).(if p′ �rt′ p then p else ⊥, m − 1) si rt = rt′

λ(p, m).(p, m) sinon

Further inspection of these operators shows that multiplicities and atomic per-
missions also behave in an independent manner. As a result, each ResType in-
dexed system can be split into a pair of systems: one modelling the evolution of
atomic permissions; the other modelling the evolution of multiplicities. Hence,
solving the R-constraints amounts to computing for each exception e, node n
and resource type rt a pair of mappings:

– an atomic permission transformer (Permrt → Permrt) and
– a multiplicity transformer (Mul → Mul).

In the next sections, we define syntactic representations of these multiplicity
transformers that are amenable to symbolic computations.

7.2 Constraints on Multiplicity Transformers

Before presenting our encoding of multiplicity transformers, we identify the
structure of the constraints we have to solve. Multiplicity constraints are terms
of the form x≤̇e where x : Mul → Mul is a variable over multiplicity transform-
ers, ≤̇ is the point-wise ordering of multiplicity transformers induced by ≤ and
e is an expression built over the terms

e ::= v|grantMul(m)|consumeMul(m)|id |e; e

where

– v is a variable;
– grantMul(m) is the constant function λx.m;
– consumeMul(m) is the decrementing function λx.x − m;
– id is the identity function λx.x;
– and f ; g is function composition (f ; g = g ◦ f).

We define MulF = {λx.min(c, x−d)|(c, d) ∈ Mul×Mul} as a restricted class of
multiplicity transformers that is sufficiently expressive to represent the solution
to the constraints. Elements of MulF encode constant functions, decrementing
functions and are closed under function composition as shown by the following
equalities:

grantMul(m) = λx.min(m, x − ⊥Mul)
consumeMul(m) = λx.min(∞, x − m)
λx.min(c, x − d′); λx.min(c′, x − d′) = λx.min(min(c − d′, c′), x − (d′ + d))

A Formal Model of Access Control for Mobile Interactive Devices 123

We represent a function λx.min(c, x − d) ∈ MulF by the pair (c, d) of multi-
plicities. Constraint solving over MulF can therefore be recast into constraint
solving over the domain MulF � = Mul × Mul equipped with the interpretation
�(c, d)�

�
= λx.min(c, x− d) and the ordering �� defined as (c, d) �� (c′, d′)

�
= c ≤

c′ ∧ d′ ≤ d.

7.3 Solving Multiplicity Constraints

The domain MulF � does not satisfy the descending chain condition. This means
that iterative solving of the constraints might not terminate. Instead, we use an
elimination-based algorithm. First, we split our constraint system over MulF � =
Mul × Mul into two constraint systems over Mul . Example 3 shows this trans-
formation for a representative set of constraints.

Example 3. C = {Y �� (c, d), Y ′ �� X, X �� Y ;� Y ′} is transformed into
C′ = C1 ∪ C2 with C1 = {Y1 ≤ c, Y ′

1 ≤ X1, X1 ≤ min(Y1 − Y ′
2 , Y ′

1)} and
C2 = {Y2 ≥ d, Y ′

2 ≥ X2, X2 ≥ Y ′
2 + Y2}.

Notice that C1 depends on C2 but C2 is independent from C1. This result holds
generally and, as a consequence, these sets of constraints can be solved in se-
quence: C2 first, then C1.

To be solved, C2 is converted into an equivalent system of fixpoint equations
defined over the complete lattice (Mul , ≤, max, ⊥Mul). The equations have the
general form x = e where e ::= var | max(e, e) | e + e. The elimination-based
algorithm unfolds equations until a direct recursion is found. After a normalisa-
tion step, recursions are eliminated using a generalisation of Proposition 1 for
an arbitrary number of occurences of the x variable.

Proposition 1. x = max(x+ e1, e2) is equivalent to x = max(e2 +∞× e1, e2).

Given a solution for C2, the solution of C1 can be computed by standard fix-
point iteration as the domain (Mul , ≤, min, ∞) does not have infinite descending
chains. This provides multiplicity transformer solutions of the R-constraints.

8 Related Work

To the best of our knowledge, there is no formal model of the Java MIDP access
control mechanism. A number of articles deal with access control in Java and
C� but they have focused on the stack inspection mechanism and the notion of
granting permissions to code through privileged method calls. Earlier work by
some of the present authors [3, 8] proposed a semantic model for stack inspec-
tion but was otherwise mostly concerned with proving behavioural properties
of programs using these mechanisms. Closer in aim with the present work is
that of Pottier et al. [11] on verifying that stack inspecting programs do not
raise security exceptions because of missing permissions. Bartoletti et al. [1] also
aim at proving that stack inspecting applets will not cause security exceptions
and propose the first proper modelling of exception handling. Both these works

124 F. Besson, G. Dufay, and T. Jensen

prove properties that allow to execute the program without dynamic permis-
sion checks. In this respect, they establish the same kind of property as we do
in this paper. However, the works cited above do not deal with multiplicities
of permissions and do not deal with the aspect of permissions granted on the
fly through user interaction. The analysis of multiplicities leads to systems of
numerical constraints which do not appear in the stack inspecting analyses.

Language-based access control has been studied for various idealised program
models. Igarashi and Kobayashi [7] propose a static analysis for verifying that
resources are accessed according to access control policies specified e.g. by finite-
state automata, but do not study specific language primitives for implementing
such an access control. Closer to the work presented in this article is that of
Bartoletti et al. [2] who propose with λ[] a less general resource access con-
trol framework than Igarashi and Kobayashi, and without explicit notions of
resources, but are able to ensure through a static analysis that no security vio-
lations will occur at run-time. They rely for that purpose on a type and effect
system on λ[] from which they extract history expressions further model-checked.
In the context of mobile agent, Hennessy and Riely [6] have developed a type
system for the π-calculus with the aim of ensuring that a resource is accessed
only if the program has been granted the appropriate permission (capability)
previously. In this model, resources are represented by locations in a π-calculus
term and are accessed via channels. Permissions are now capabilities of execut-
ing operations (e.g. read, transmit) on a channel. Types are used to restrict the
access of a term to a resource and there is a notion of sub-typing akin to our
order relation on permissions. The notion of multiplicities is not dealt with but
could probably be accommodated by switching to types that are multi-sets of
capabilities.

Our permission model adds a quantitative aspect to permissions which means
that our analysis is closely related to the work by Chander et al. [4] on dynamic
checks for verifying resource consumption. Their safety property is similar to ours
and ensure that a program always acquires resources before consuming them.
However, their model of resources is simpler as resources are just identified by
name. Because their approach requires user-provided invariants, their analysis of
numeric quantities (multiplicities) is very precise. In contrast to this, our analysis
is fully automatic.

9 Conclusions

We have proposed an access control model for programs which dynamically ac-
quire permissions to access resources. The model extends the current access
control model of the Java MIDP profile for mobile telephones by introducing
multiplicities of permissions together with explicit instructions for granting and
consuming permissions. These instructions allow to improve the usability of an
application by fine-tuning the number and placement of user interactions that
ask for permissions. In addition, programs written in our access control model
can be formally and statically verified to satisfy the fundamental property that

A Formal Model of Access Control for Mobile Interactive Devices 125

a program does not attempt to access a resource for which it does not have the
appropriate permission. The formalisation is based on a model of permissions
which extends the standard object × action model with multiplicities. We have
given a formal semantics for the access control model, defined a constraint-based
analysis for computing the permissions available at each point of a program, and
shown how the resulting constraint systems can be solved. To the best of our
knowledge, it is the first time that a formal treatment of the Java MIDP model
has been proposed.

The present model and analysis has been developed in terms of control-flow
graphs and has ignored the treatment of data such as integers etc. By combining
our analysis with standard data flow analysis we can obtain a better approxi-
mation of integer variables and hence, e.g., the number of times a permission-
consuming loop is executed. In the present model, we either have to require
that there is a grant executed for each consume inside the loop or that the
relevant permission has been granted with multiplicity ∞ before entering the
loop. Allowing a grant to take a variable as multiplicity parameter combined
with a relational analysis (the octagon analysis by Miné [9]) is a straightforward
extension that would allow to program and verify a larger class of programs.

This work is intended for serving as the basis for a Proof Carrying Code
(PCC) [10] architecture aiming at ensuring that a program will not use more
resources than what have been declared. In the context of mobile devices where
such resources could have an economic (via premium-rated SMS for instance)
or privacy (via address-book access) impact, this would provide improved con-
fidence in programs without resorting to third-party signature. The PCC cer-
tificate would consist of the precomputed Pn and Re

n. The host device would
then check that the transmitted certificate is indeed a solution. Note that no
information is needed for intra-procedural instructions other than grant and
consume—this drastically reduces the size of the certificate.

References

[1] Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. Static analysis for
stack inspection. Electronic Notes in Computer Science, 54, 2001.

[2] Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. History-based
access control with local policies. In Proceedings of FOSSACS 2005, volume 3441
of Lecture Notes in Computer Science, pages 316–332. Springer-Verlag, 2005.

[3] Frédéric Besson, Thomas Jensen, Daniel Le Métayer, and Tommy Thorn. Model
ckecking security properties of control flow graphs. Journal of Computer Security,
9:217–250, 2001.

[4] Ajay Chander, David Espinosa, Nayeem Islam, Peter Lee, and George C. Necula.
Enforcing resource bounds via static verification of dynamic checks. In Proceedings
of the 14th European Symposium on Programming, ESOP 2005, volume 3444 of
Lecture Notes in Computer Science, pages 311–325. Springer-Verlag, 2005.

[5] Cedric Fournet and Andy Gordon. Stack inspection: theory and variants. In
Proceedings of the 29th ACM Symp. on Principles of Programming Languages
(POPL’02). ACM Press, 2002.

126 F. Besson, G. Dufay, and T. Jensen

[6] Matthew Hennessy and James Riely. Resource access control in systems of mobile
agents. Information and Computation, 173(1):82–120, 2002.

[7] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. In Proceedings of
the 29th ACM Symp. on Principles of Programming Languages (POPL’02), pages
331–342, 2002.

[8] Thomas Jensen, Daniel Le Métayer, and Tommy Thorn. Verification of control
flow based security properties. In Proceedings of the 20th IEEE Symp. on Security
and Privacy, pages 89–103. New York: IEEE Computer Society, 1999.

[9] Antoine Miné. The octogon abstract domain. In Proceedings of the 8th Working
Conference On Reverse Engineering (WCRE 01), pages 310–320. IEEE, 2001.

[10] George C. Necula. Proof-carrying code. In Neil D. Jones, editor, Proceedings of
the 24th ACM Symp. on Principles of Programming Languages (POPL’97), pages
106–119, Paris, France, January 1997. ACM Press.

[11] François Pottier, Christian Skalka, and Scott F. Smith. A systematic approach
to static access control. In Proceedings of the 10th European Symposium on Pro-
gramming, ESOP 2001, volume 2028 of Lecture Notes in Computer Science, pages
30–45. Springer-Verlag, 2001.

[12] Jerry H. Saltzer and Mike D. Schroeder. The protection of information in com-
puter systems. Proceedings of the IEEE, 63:1278–1308, 1975.

[13] Sun Microsystems, Inc., Palo Alto/CA, USA. Mobile Information Device Profile
(MIDP) Specification for Java 2 Micro Edition, Version 2.0, 2002.

[14] Hisao Tamaki and Taisuke Sato. OLD resolution with tabulation. In Proceedings
on Third International Conference on Logic Programming, volume 225 of Lecture
Notes in Computer Science, pages 84–98. Springer-Verlag, 1986.

	Introduction
	The Java MIDP Security Model
	The Structure of Permissions
	Program Model
	Static Analysis of Permission Usage
	Correctness
	Constraint Solving
	On Simplifying R-Constraints
	Constraints on Multiplicity Transformers
	Solving Multiplicity Constraints

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

