
Limits of the BRSIM/UC Soundness
of Dolev-Yao Models with Hashes

Michael Backes1, Birgit Pfitzmann2, and Michael Waidner2

1 Saarland University, Saarbrücken, Germany
backes@cs.uni-sb.de

2 IBM Zurich Research Lab, Switzerland
{bpf, wmi}@zurich.ibm.com

Abstract. Automated tools such as model checkers and theorem provers for the
analysis of security protocols typically abstract from cryptography by Dolev-Yao
models, i.e., abstract term algebras replace the real cryptographic operations. Re-
cently it was shown that in essence this approach is cryptographically sound for
certain operations like signing and encryption. The strongest results show this
in the sense of blackbox reactive simulatability (BRSIM)/UC with only small
changes to both Dolev-Yao models and natural implementations. This notion es-
sentially means the preservation of arbitrary security properties under active at-
tacks in arbitrary protocol environments.

We show that it is impossible to extend the strong BRSIM/UC results to usual
Dolev-Yao models of hash functions in the general case. These models treat hash
functions as free operators of the term algebra. This result does not depend on any
restriction of the real hash function; even probabilistic hashing is covered. In con-
trast, we show that these models are sound in the same strict sense in the random
oracle model of cryptography. For the standard model of cryptography, we also
discuss several conceivable restrictions and extensions to the Dolev-Yao models
and classify them into possible and impossible cases in the strong BRSIM/UC
sense.

1 Introduction

Tools for proving security protocols typically abstract from cryptography by determin-
istic operations on abstract terms and simple cancellation rules. An example term is
Epkew (hash(signsksu

(m, N1), N2)), where m denotes a payload message and N1, N2
two nonces, i.e., representations of fresh random numbers. We wrote the keys as in-
dices only for readability; formally they are normal operands in the term. A typical
cancellation rule is Dske(Epke(m)) = m for corresponding keys. The proof tools han-
dle these terms symbolically, i.e., they never evaluate them to bitstrings. In other words,
the tools perform abstract algebraic manipulations on trees consisting of operators and
base messages, using only the cancellation rules, the message-construction rules of a
particular protocol, and abstract models of networks and adversaries. Such abstractions,
although different in details, are collectively called Dolev-Yao models after their first
authors [23].

It is not obvious that a proof in a Dolev-Yao model implies security with respect to
real cryptographic definitions. Recently, this long-standing gap was essentially closed
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by proving that an almost normal Dolev-Yao model of several important cryptographic
system types can be implemented with real cryptographic systems secure according
to standard cryptographic definitions in a way that offers blackbox reactive simulata-
bility [8]. We abbreviate blackbox reactive simulatability by BRSIM in the following.
This security (in other words soundness) notion essentially means that one system, here
the cryptographic realization, can be plugged into arbitrary protocols instead of another
system, here the Dolev-Yao model, without any noticeable difference [35,36]. Essen-
tially the same notion is also called UC for its universal composition properties [16].1

In other words, this result shows that the Dolev-Yao model as such can serve as an
ideal functionality that is correctly implemented by a real functionality given by ac-
tual cryptographic systems. Extensions of this BRSIM/UC result to more cryptographic
primitives were presented in [9,6], uses in protocol proofs in [5,3,4], stronger links to
conventional Dolev-Yao-style type systems in [29], and an integration into the Isabelle
theorem prover in [37]. Earlier results on relating Dolev-Yao models and real cryp-
tography considered passive attacks only [2,1,27]. Later papers [31,28,18] consider to
what extent restrictions to weaker security properties, such as integrity only, and/or less
general protocol classes, e.g., a specific class of key exchange protocols, allow simpli-
fications compared with [8]. 2

No prior paper relating Dolev-Yao models and cryptography considers hashing or
one-way functions although they are important operators in automated proof tools based
on Dolev-Yao models, e.g., [30,34,13,11]. (A very recent report does, but only under
passive attacks [24].) The standard model is that hash is a free operator in the term
algebra, i.e., there is no inverse operator, nor any other cancellation rule with operators
like E and D. Only a party who knows or guesses a potentially hashed term t can test
whether hashing t equals a given hash term h. The goal of our paper is to close this gap,
and to study how the soundness results in the sense of BRSIM/UC can be extended
when hash or one-way functions are added to a Dolev-Yao model and its cryptographic
implementation. In the following, we only speak of hash functions since the standard
Dolev-Yao model for the two classes is the same.

1.1 Our Contributions

It turns out that proving BRSIM/UC soundness for Dolev-Yao models with hash func-
tions is impossible in a general way. Note that the question is not whether a hash func-
tion is a good and generally usable cryptographic primitive by itself, but only whether
its idealization as a free operator in a term algebra, or a similar plausible idealization,
is sound in this strong and pluggable sense. Prior work showed that certain (classes

1 Recent revisions of the long version of [16] also contain an explicit blackbox version of UC,
which is proven to be equivalent to UC. A similar equivalence was first shown in the long
version of [35] for universal and blackbox synchronous reactive simulatability.

2 There is also work on formulating syntactic calculi for dealing with probabilism
and polynomial-time considerations and encoding them into proof tools, in particu-
lar [32,33,26,22,14]. This is orthogonal to the work of justifying Dolev-Yao models, which
offer a higher level of abstraction and thus much simpler proofs where applicable, so that
proofs of larger systems can be automated.
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of) ideal functionalities are not BRSIM/UC-securely realizable, e.g., for bit commit-
ments [17], coin tossing, zero knowledge, and oblivious transfer [16], classes of secure
multi-party computation [19] and certain game-based definitions [21]. However, none
of these works investigated a Dolev-Yao model. Impossibility of BRSIM/UC soundness
of a Dolev-Yao model with XOR was shown in [7]. For our case of hashes, the reasons
for impossibility and thus the proofs are quite different. Furthermore, the proofs in [7]
are reduction proofs, essentially saying that if an idealization of XOR and other cryp-
tographic operations is soundly implementable in the sense of BRSIM/UC, it can be
used to compute cryptographic algorithms and is therefore not intuitively Dolev-Yao. In
contrast, we obtain absolute impossibility results. We achieve this by making stronger
definitions on what makes an ideal functionality of hashing and other cryptographic
operations a Dolev-Yao model.

It is important to note that there is so far no rigorous definition of “any Dolev-Yao
model” in the literature that is independent of specific underlying system models such
as CSP, π-calculus, IO automata, or strand spaces. For positive results, this is not a
problem. However, an impossibility result that only holds for one such model would
not be very convincing. (In particular, the closest model to build on would be that from
[8], and due to syntax idiosyncrasies many people find it hard to transfer basic ideas
from that model to others.) Hence, instead of proving impossibility for one specific
Dolev-Yao model, we will only make certain assumptions on the Dolev-Yao model;
we believe they are fulfilled by all such models existing so far. Essentially we only
assume that the hash functions are abstracted as free operators as informally explained
above, that they are applicable to arbitrary terms, and that the model contains some
other typical operators and base types.

One reason (but not the only one) for the impossibility in the general case is that
hash functions, at least those with a one-way property, are by nature committing, i.e., if
one first gets h = hash(m) and later m one can validate whether indeed h = hash(m).
It is well known that such a commitment property often causes problems in proofs of
BRSIM/UC: If the simulator has to simulate a bitstring for h before knowing m, then
whatever it picks will most likely not match m. Thus the simulation fails if m is later
revealed. In some cases, the commitment problem can be circumvented by using non-
standard models of cryptography, e.g., the random oracle model [12] or the common
random string model, cf. [17]. Indeed we can show BRSIM/UC for the standard Dolev-
Yao model of hashes if the cryptographic realization of the hash function is treated as a
random oracle.

We can also consider probabilistic hashing [15,20]. First, it is not an alternative for
justifying the Dolev-Yao abstraction of hashing by a free operator in the sense of BR-
SIM/UC: Instead one needs hash and verify operators that cancel, similar to authen-
tication. (Even for the purely passive case this extension is made in [24].) Moreover,
hashing the same message must produce a fresh term each time, similar to standard
models of nonces, or the Dolev-Yao style model of probabilistic encryption in [8]. This
freshness is needed because it is distinguishable in the real system whether a message
was hashed twice, or whether an existing hash value was forwarded. Hence the imple-
mentation would be incorrect in the sense of BRSIM/UC if this were not possible in the
ideal, Dolev-Yao style system. Even then, however, our impossibility results hold; we
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sketch this extension below. Roughly, this is so because probabilistic hashing mainly
improves the secrecy of the hashed message; however, the imperfect secrecy offered by
deterministic hash functions is not an argument in our counterexamples.

For the standard model of cryptography, the next question is whether certain
restrictions on the use of hash functions enable a BRSIM/UC soundness result. One
option is to restrict the types of terms that can be hashed, in particular to forbid the
hashing of payloads. By “payload” we mean an application message, e.g., an email
text or the amount and currency of a payment in a payment protocol that uses the
cryptographic functionality. Technically, payloads play a special role (as m in the
example of the commitment problem shows) because they are known outside the
cryptographic system and thus can typically not be modified by the simulator, in
contrast to nonces, keys, etc. As to practical usage, this restriction is serious but not
unreasonable; e.g., key exchange protocols typically do not use general payloads, and
indeed [18] relies on their absence. However, we still obtain an impossibility result if
excluding payloads is the only restriction on hashable terms. The basic idea in that case
is that by constructing large enough terms, the users of the cryptographic system can
simulate payloads. Another conceivable restriction is therefore on the size of hashable
terms. Again this restriction is serious (e.g., general hash chains and trees are now
excluded) but not unreasonable because many protocols only use rather small terms.
In fact, for the restriction to hashing single nonces, we obtain a positive result, but so
far not for any other type of restriction to small terms. This result may seem surprising:
A typical counterargument is “how can this be true if we allow real hash functions
that leak parts of the message?” The point is that nonces are system-internal, and
thus leaking bits about them is not harmful by itself as long as the application-level
properties of the Dolev-Yao model remain fulfilled, i.e., essentially that the adversary
cannot guess nonces of which it has only seen hash values. Clearly this argument does
not hold for payloads, and it also does not hold for keys, because leaking key bits
would harm later key usage. An example of protocols that use hashing only for single
nonces are protocols that use hashing only for one-time signatures.

Another restriction is to give up the ideal secrecy property of the hash functions, i.e.,
to give at least the ideal adversary an operator that inverts hash. The technical motiva-
tion is that this clearly prevents the commitment problem. On the application side, this
restriction excludes all protocols where one-wayness is the core property for which a
hash function is used. However, there are protocols where shortening of messages with
collision resistance is the core property desired; here such a model could be used. Note
that in a Dolev-Yao model we can have collision freeness, i.e., no equality between
hashes of different terms, without secrecy. The realization of such an operator by a real
cryptographic function would of course still have to be collision-resistant and thus one-
way if it is sufficiently shortening. Anyway, we still obtain an impossibility result in this
case: No shortening hash function exists that enables a secure realization of a Dolev-
Yao model with hashes even without secrecy. If we combine giving up secrecy with not
hashing payloads and only terms of constant size, then we obtain a positive result.

Of course the restrictions that we considered are not the only conceivable ones; in
particular it may be interesting to find other positive cases in the standard model of
cryptography than the two that we prove. Furthermore, we do not exclude that even the
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standard Dolev-Yao model of hashes may be sound with respect to weaker soundness
definitions.

2 Summary of Reactive Simulatability/UC, Also with Random
Oracle

As our results are for the security definitions of BRSIM/UC, we first briefly review
this notion. BRSIM/UC is used for comparing an ideal and a real system with respect
to security [35,36,16]. We believe that our following results are independent of the
small differences between the definition styles and therefore write “BRSIM/UC” and
similar term pairs like “ideal system/functionality”. For the actual results, we have to
use a specific formalism, and we use that from [36]. Here one speaks of ideal and real
systems (the functionalities and protocols of UC). The ideal system is often called TH
for “trusted host”, see Figure 1, and the protocol machines of the real system are often
called Mu, where u is a user index. The ideal or real system interacts with arbitrary
so-called honest users, often collectively denoted by a machine H; this corresponds to
potential protocols or human users to whom the functionality is offered. Furthermore,
the ideal or real system interacts with an adversary, often denoted by A, who is often
given more power than the honest users; in particular in real systems A typically controls
the network. A and H can interact; this corresponds to known- and chosen-message
attacks etc.

A

H

M1 Mn

H

TH
A

Sim
&
RO

RO

...

Fig. 1. Overview of blackbox reactive simulatability with a real system on the left and an ideal
system on the right, and a potential random oracle. The views of H must be indistinguishable.

Reactive simulatability between the real and ideal system essentially means that for
every attack on the real system there exists an equivalent attack on the ideal system.
More specifically, blackbox reactive simulatability (BRSIM) states that there exists a
simulator Sim that can use an arbitrary real adversary as a blackbox, such that arbitrary
honest users cannot distinguish whether they interact with the real system and the real
adversary, or with the ideal system and the simulator with its blackbox. Indistinguisha-
bility, here applied to the two families of views of the honest users, is the well-known
notion from [38]. We always assume that all parties are polynomial-time. The original
formulation of BRSIM as sketched above would allow the simulator to also modify the
interaction between A and H; however, all known positive BRSIM proofs work as in
Figure 1. The reason is similar to why all known positive RSIM proofs are BRSIM
proofs: It is hard to make concrete use of the communication of two unknown machines
A and H just as of the program text of the unknown machine A. We therefore show
impossibility for this usual, stronger notion of BRSIM. Moreover, the blackbox version
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of UC also does not allow the simulator access to the corresponding interaction (called
adversary and environment there), i.e., it corresponds to Figure 1 immediately.

A formal representation of random oracles in the UC notation was given in [25].
This can be used one-to-one in the BRSIM terminology. In a real system, each machine
has distinguished connections for querying the random oracle RO, which is the usual
stateful machine from [12] that generates a random string as “hash value” for each
message m when it is first queried about m. In the ideal system with a simulator, these
distinguished connections connect to the simulator, i.e., the simulator learns every query
to the random oracle and can give arbitrary answers. This is also shown in Figure 1.3

3 Informal Overview of the Impossibility Proofs

In this section, we present our results as proof sketches with a minimum amount of
notation. Later we define more notation and precise assumptions, and then extend the
proof sketches to full proofs. A reader with a specific Dolev-Yao model in mind and not
interested in the generalization to “arbitrary Dolev-Yao-like models” should be able to
see already in this section that the results could be instantiated for that model.

In the following, messages may occur in several representations, which we distin-
guish by superscripts. We write terms in the Dolev-Yao sense without superscript, e.g.,
h := hash(m) for a hash term. The real cryptographic versions get a superscript r, e.g.,
hr := hashr(mr) for the corresponding real bitstring, computed by applying a real hash
function hashr to the real representation mr of m. The users and adversaries may con-
cretely address the terms/bitstrings in yet another way when interacting with the real or
ideal functionality (hopefully indistinguishably, hence we need only one notation); we
write these representations with superscripts u for honest user u and a for the adversary.
(Using the actual terms as these representations is a special case.) In the figures we
write Hu for the actual user u, which is a part of the global H in Figure 1.

3.1 Scenarios with Payloads

Our first scenario in Figure 2 demonstrates that the real hash function hashr must at least
be collision-resistant in order to offer a sound implementation of a Dolev-Yao model
with hashes and payloads. This is not surprising, but we need the collision resistance
in the next proofs. The proof idea is that otherwise the adversary can find two colliding
payloads mr and m∗r and send their hash hr to an honest party u. It also exchanges mr

and m∗r secretly with the user u outside the system. Recall that such outside exchanges
are allowed for chosen-message attacks etc. and that the notion of BRSIM/UC consid-
ered here does not allow the simulator to learn or change them, i.e., it must produce
an overall indistinguishable view for H and A; we denote these outside exchanges by
dashed arrows in the interaction figures.

3 Alternatively, one could use a correct random oracle also in the ideal system and only allow
the simulator to eavesdrop the queries of some or all parties. However, this weakens the power
of the simulator considerably, and most of our impossibility proofs for the standard model of
cryptography would hold for this model with only minor changes. Thus the strength of the
simulator means a certain weakness in our positive results, but the need for this is another
indicator that the impossibility problems are strong.
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TH AHu Sim

huhr := hashr(mr)
= hashr(m*r)

hu

is_hash_of(mr, hu)

ha

mr, m*r

true

is_hash_of(m*r, hu)

true

mr, m*r

is_hash_of(mr, hu)

y
is_hash_of(m*r, hu)

y*

hr := hashr(mr)
= hashr(m*r)

Fig. 2. Counterexample with payload hashing for not collision-resistant hash function

Then user u uses the ideal or real functionality to check whether the message received
through the system is the hash of both payloads. In the real system (on the left in all
our interaction figures), the answer is true both times by the choice of hr. However, the
ideal collision freeness of the ideal system (on the right in all our interaction figures)
does not allow this; hence the ideal and the real system are distinguishable.

The major challenge in formalizing this proof sketch is in the treatment of payloads,
because most Dolev-Yao models do not put the actual payloads into the terms. Below
we make precise assumptions on this treatment and define the ideal collision freeness,
and then turn this sketch into a proof.

Our second scenario in Figure 3 demonstrates that even with a collision-resistant
function hashr, a sound implementation of a Dolev-Yao model with hashes and pay-
loads is impossible if the ideal Dolev-Yao functionality offers ideal secrecy. By ideal
secrecy we mean that an adversary who obtains the hash of an otherwise unknown term
cannot do better than comparing this hash with self-made hashes of guessed terms. The
scenario is that an honest party u selects a random payload mr of length 2k (where k
is the security parameter), sends it to the adversary outside the system, and sends the
hash of this payload to the adversary through the ideal or real system. From the real
system, the adversary gets the real hash hr := hashr(mr), tests whether this is indeed
the correct hash value of the payload, and tells the result to u outside the system. By the
ideal secrecy, the simulator Sim for the ideal system cannot find out more about mr than
excluding polynomially many guesses. Using the collision resistance of the real hash
function, we show that Sim can consequently only guess hr with negligible probability,
and thus cannot simulate this scenario correctly.

The technical difficulties with the full proof for this scenario lie in an appropriate
formulation of the ideal secrecy, independent of one specific Dolev-Yao model.

Our third scenario in Figure 4 demonstrates that omitting the ideal secrecy require-
ment does not help as long as the real hash function is shortening as well as collision-
resistant, and thus one-way. Here the real adversary agrees on a random payload mr

with an honest user u outside the system, and sends its hash hr to u through the system.
The user tests, using the ideal or real functionality, whether the obtained message is
indeed a hash of mr. In the real system, the output is clearly true. The best way for the
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hr

Mu AHu

hr

THHu Sim

hasend(v, hash(m)u)

A

mr

send(v, hash(m)u)
hr = hashr(mr)?

mr

hr = hashr(mr)?
true y

mr randommr random

Fig. 3. Counterexample with payload hashing and ideal secrecy for collision-resistant hash func-
tion

simulator to cause the same output from the ideal functionality would be to send the
term h = hash(m) via TH in the first step. However, this would require guessing mr

and thus breaking the one-way property of hashr.
The difficulty with the full proof for this scenario, besides the question of payload

representations as in the first scenario, is that hash(m) is not the only term that causes
the output true. For instance, D(E(hash(m))) or hash(D(E(m))) for en- and decryption
operators E and D are other such terms. We therefore have to be careful in how we
can argue that every successful strategy for the simulator really leads to a successful
algorithm that extracts mr and thus breaks the one-way property.

3.2 Scenarios Without Payloads

After showing that payloads and hashes in Dolev-Yao models lead to comprehensive
impossibility results for secure realizations in the sense of BRSIM/UC, we consider
restricted Dolev-Yao models without payloads. However, as long as this is the only
restriction, we still prove impossibility. The basic proof idea is to let the users and
the adversary simulate payloads by encoding them into the structure of long terms.
Concretely, we use a list of 2k nonces and encode a payload as a bit vector b that
selects a sublist of these nonces. Instead of nonces, any other type can be used of which
one can generate 2k instances that are ideally different, e.g., keys.

With a scenario similar to Figure 2, only adding the random choice of the nonces
for the encoding, we show that a hash function must be collision-resistant on these bit
vectors in order to offer a BRSIM/UC-sound implementation of a Dolev-Yao model
with hashes and lists of nonces. Then with a scenario similar to Figure 3, we show that
if ideal secrecy is offered no sound implementation exists at all. With a scenario similar
to Figure 4, we show that even without ideal secrecy, no sufficiently shortening hash
function, in particular one whose output length depends only on the security parameter,
yields a sound implementation.

3.3 Probabilistic Hash Functions

Finally, we sketch why the scenarios show impossibility also for probabilistic hash-
ing: The real hash function hashr can simply be probabilistic now. On the user side,
checking whether a received term or message is the hash of a known message is already
written is hash of; this is suitable also to express the new verification procedure. On
the adversary side in Figure 3, the test “hr = hashr(mr)?” must be replaced by a call
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hr

Mu AHu

hr

TH AHu Sim

huhr := hashr(mr)hu

is_hash_of(mr, hu)

ha hr := hashr(mr)

mrmr

is_hash_of(mr, hu)

ytrue

Fig. 4. Counterexample with payload hashing for shortening hash function

to the real verification algorithm. Everything else remains the same. For readability, we
do not make these extensions in the following formal part, but stick to the standard free
hash operator.

4 Assumptions on Dolev-Yao Models for Our Impossibility Results

As explained in the introduction, we would like to work out the impossibility proofs
sketched in Section 3 not only for one specific Dolev-Yao model (then we could simply
use an arbitrary definition from the literature and would not need our own definitions),
but for all of them. However, “all Dolev-Yao models” is not a notion that anyone tried to
formalize before. Hence we now characterize Dolev-Yao models and their realizations
by weak rigorous requirements. In other words, we define common properties that are
fulfilled by all standard Dolev-Yao models, and hopefully also by all other conceivable
variants that might count as Dolev-Yao models. This makes our impossibility results as
strong as possible.

4.1 Minimum Assumptions on a Dolev-Yao Model with Hashes

In this section we describe the functionality that we assume every Dolev-Yao system
with hashes offers. We start with the basic notions of terms, including a hash operator.
Recall that hash is essentially a free operator in the term algebra of typical Dolev-Yao
models. However, we do not define this strong freeness, but only a weaker property,
ideal collision freeness (both because this makes our results stronger, and because not
all Dolev-Yao models are actually defined as initial models of an equational specifica-
tion).

Definition 1 (Terms of a Dolev-Yao Model with Hashes). We require that we can
derive definitions of the following concepts from a Dolev-Yao model with hashes:

a. A set Terms denoting the overall set of valid terms. We speak of atoms and op-
erators denoting the potential leaves and inner nodes, respectively, of the terms
considered as trees. The terms, atoms and operators may be typed. There is an
equivalence relation “≡” on Terms . We call (Terms , ≡) the term algebra.4

4 Clearly syntactic term equality “=” implies equivalence. Typically “≡” is constructed from
cancellation rules.
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b. A unary operator hash, which fulfils ideal collision freeness, i.e., hash(t) ≡
hash(t′) ⇒ t ≡ t′ for all t, t′ ∈ Terms .

c. A set Hashable Terms ⊆ Terms of the terms that are valid operands of the op-
erator hash. We speak of a model with unrestricted hashing if Hashable Terms =
Terms .

d. A list operator (possibly implemented by repeated pairing in the original syntax).
Two lists are equivalent iff all their corresponding elements are. �

Next we define some minimum actions that the users and the adversary can carry out on
the terms, and the results of these actions. In our context, this is the basis for showing
that our impossibility scenarios are at least executable in every Dolev-Yao model (which
probably nobody doubted).

While our notion of term representations tu for individual users is certainly more
general than notions that may be familiar to some readers, and thus can only strengthen
our impossibility results, let us briefly motivate how it relates to such notions: An im-
portant concept in Dolev-Yao models is that of terms t constructible for some user u or
the adversary (by applying operators and cancellation rules to previously known mes-
sages); however, the syntax for this concept varies considerably. Some high-level repre-
sentations simply use t itself in the protocol representations (e.g., “hash(m)” even when
someone who does not know m forwards this term). More detailed representations, e.g.,
in CSP or π-calculus, typically use the concepts of variables inherent to these calculi,
usually by matching received messages with a pattern describing the expected message
format, and then using the pattern variables in subsequent message constructions. The
syntax explicitly made for BRSIM/UC of the Dolev-Yao-style model in [8] uses local
variables called handles and explicit parsing of received messages. The syntax from all
these models can easily be mapped to that in our following definition.

We do not need a full definition of how a user acquires term representations. How-
ever, we define that terms can be sent and that the ideal adversary controls the network
as usual in Dolev-Yao models. Furthermore we define that users can hash terms and
compare whether one term is the hash of another term. In some, but not all, Dolev-Yao
models this comparison can be made by using a general equality operator corresponding
to the term equivalence ≡.

Definition 2 (Actions on a Dolev-Yao Model with Hashes). Users and the ideal ad-
versary can make at least the following inputs into the ideal functionality of a Dolev-Yao
model with hashes, with the described results.

a. If an honest user u inputs send(v, tu) for a term representation tu, this leads to an
output receive(u, v, ta) for the adversary.

b. If the adversary inputs send(u, v, ta) for a term representation ta, this leads to an
output receive(u, tv) for user v (i.e., the adversary impersonates u).

c. If a user u (honest or the adversary represented by u = a) has a term represen-
tation tu, then it also has a representation for the term hash(t). (Typically this is
something like the string “hash(tu)”.)

d. An input is hash of(tu, hu) by a user u (honest or a) leads to a Boolean output y
for user u with y = true iff h ≡ hash(t). �
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4.2 Payload Assumptions

All Dolev-Yao models in real proof tools have at least payload messages, nonces, and
keys as atoms. However, as payloads are particularly problematic in simulations and
some protocol classes do not need general payloads, we define Dolev-Yao models with
and without them. A payload m models an application message, i.e., its cryptographic
realization mr can be an arbitrary bitstring; examples are emails, payment messages,
and digital pictures. In this sense, our scenarios in Section 3 are perfectly natural: The
users and the adversary select payloads as arbitrary bitstrings. However, the internal
representation of payloads in the terms in Dolev-Yao proof tools is usually a constant
supply of payload names or a nonce-like construction of fresh names. We therefore
assume that the full ideal functionality maintains a translation table between the real
payloads that occur in a system execution and their internal representations.5

Definition 3 (Payloads in Dolev-Yao Models in the BRSIM/UC Setting). A Dolev-
Yao model with payloads allows us to derive a type (subset) payload in the set Terms .
In every execution, every occurring payload term has a fixed realization mr, and mr =
m′r implies m ≡ m′. The range of payload realizations mr is at least {0, 1}2k. A real
payload mr can always be used as an input representation mu by every user. �

We now consider how secret a hashed term is in a Dolev-Yao model when the adversary
learns its hash. We only need this in our second scenario, where we want to show that
an adversary receiving a (representation of) a term t = hash(m) containing a payload
m cannot get significant information about the real payload mr and thus its real hash.
In normal Dolev-Yao models, the hash operator is free, and thus there is no inverse
operator that the adversary can use to extract m, nor a sequence of such operators. In
addition, in many Dolev-Yao models one would represent the initial situation where the
adversary does not know m by not giving the adversary any representation of m, thus
excluding any possibility that the adversary guesses m. With such a strong assumption
the impossibility proof would be easy. However, we allow the more realistic case that
the adversary might guess payloads (as, e.g., in [8]). Furthermore, we only make the
minimum assumption that payloads are secret in hash terms except for this guessing.

Definition 4 (Ideal Secrecy of New Payloads). A Dolev-Yao model with hashes of-
fers ideal secrecy of new payloads iff the following holds: If user u inputs send(v, hu)
where h = hash(m) for a newly chosen payload mr (i.e., one that was not input to
the Dolev-Yao model before), then the ideal adversary, from its output receive(u, v, ha)
and without further involvement of the user H, cannot obtain more information about
mr than by learning for x bitstrings m′r whether m′r = mr (in addition to its a-priori

5 As an additional motivation for this assumption, recall that we want to compare the Dolev-
Yao model and its cryptographic realization in the sense of BRSIM/UC. Thus they must offer
the same syntactic user interfaces, i.e., in- and output formats. This holds for all definition
variants of BRSIM/UC. In particular, in Figure 1 this is the interface between TH or M1, . . . ,
Mn, respectively, and the entirety of honest users H. In [16], it is the input and output formats
of the ideal and real functionality. Syntactically different user interfaces would either simply
prevent the same users from using alternatively the real or the ideal system, or lead to trivial
distinguishability.
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information), if it interacts at most x times with the ideal system and thus in particular
if it runs in time x. �

Finally, we define the weak freeness property of Dolev-Yao hashes that we need for the
third scenario. Essentially this is that without knowing a payload m or its real represen-
tation mr one cannot construct a term equivalent to hash(m). Like other definitions of
“knowledge” in cryptography, this is done by defining that the capability to construct
such a term implies the capability to find out mr. This reduction is done constructively
by an extractor algorithm.

Definition 5 (Minimum Non-Constructibility of Unknown Payload Hashes). A
Dolev-Yao model with hashes offers minimum non-constructibility of unknown pay-
load hashes if there exists a polynomial-time algorithm Ext, called extractor, such that
the following holds: If the ideal adversary (for simplicity at the system start) makes a
sequence of inputs and then sends a term t to an honest user such that t ≡ hash(m) for
a payload m, then the extractor, given the transcript of the ideal adversary’s in- and
outputs, outputs mr. �

For Dolev-Yao models with well-defined and constructible normalizations of terms, the
extractor is essentially this normalization: It constructs t and the relation of payload
terms and their representations from the transcript (typically the transcript is simply of
the form “send(v, ta)” where payloads in ta are in their real representation) and normal-
izes t; the result is hash(m), from which mr can be looked up. This clearly holds for
typical Dolev-Yao models that only have constructors and destructors like encryption
and decryption. It gets more complex in Dolev-Yao models with algebraic operations
like XOR; however, specifically XOR is known not to be realizable in BRSIM/UC [7].

4.3 Nonce List Assumptions

For the case without payloads, our scenarios use lists of nonces. We therefore define
what we assume about nonces (lists are already in Definition 1). The first assumption
is extremely simple and normal, except that some basic Dolev-Yao models only allow
a fixed number of nonces, while we need at least 2k (as does every Dolev-Yao model
suitable for arguing about an unbounded number of sessions).

Definition 6 (Nonces in Dolev-Yao Models). A Dolev-Yao model with nonce lists al-
lows us to derive a type (subset) nonce in the set Terms . Every participant can use,
or explicitly generate, at least 2k new nonces (we do not need a fixed syntax for this
generation); such nonces are pairwise not equivalent. �

The next definition extends the ideal secrecy of hashed terms, which we earlier defined
only for new payloads, to new lists of nonces. More precisely, we define that an ideal
hash term does not divulge which of the many potential sublists of a list of nonces
was hashed. (We make these weak special assumptions to strengthen the impossibility
results, and to avoid complex considerations about prior knowledge in the general case.)

Definition 7 (Ideal Secrecy of New Nonce Lists). A Dolev-Yao model with hashes
offers ideal secrecy of new nonce lists iff the following holds: Let user u generate 2k
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new nonces n = (n1, . . . , n2k) and potentially send them to the adversary, select a
random bit vector b = (b1, . . . , b2k) R← {0, 1}2k, and input send(v, (hash(b � n))u)
where b � n denotes the sublist consisting of the nonces ni with bi = 1. Then the ideal
adversary, from its output receive(u, v, ha) and without further interaction with the user
u, cannot obtain more information about b than by learning for x bit vectors b′ whether
b′ = b, if it interacts at most x times with the ideal system and thus in particular if it
runs in time x. �

Finally, we define that the ideal adversary cannot construct a hash over a sublist of
nonces without knowing which sublist of the nonces it is using.

Definition 8 (Minimum Non-Constructibility of Unknown Nonce-list Hashes). A
Dolev-Yao model with hashes offers minimum non-constructibility of unknown nonce-
list hashes if there exists a polynomial-time algorithm Ext, called extractor, such that
the following holds: If the ideal adversary (for simplicity at the system start) makes a
sequence of inputs and then sends a list n of 2k pairwise different nonces and a term h
to an honest user such that h ≡ hash(b � n), then the extractor, given the transcript of
the ideal adversary’s in- and outputs, outputs b. �

Again, the existence of such an extractor is clear for Dolev-Yao models with a normal-
ization algorithm because the term hash(b � n) cannot be further reduced and is thus
the normal form of every equivalent term. Given the overall list of nonces n, which the
ideal adversary sent separately, the selection of nonces in this term and thus b can be
read off.

4.4 Minimum Assumptions on a Cryptographic Realization

A general characteristics of real systems is that they are distributed. This means that
each participant u has its own machine, here called Mu, and the machines are only
connected by channels that offer well-defined possibilities for observations and manip-
ulations by a real adversary. Specifically for the realization of Dolev-Yao models with
hashes, we make the following (natural) minimum assumptions in the standard model
of cryptography: Real channels are insecure; the input to send a term t leads to actual
sending of a bitstring tr; and hash terms are realized by applying a fixed (hash) function
to the realization of the contained terms.

Definition 9 (Realization of a Dolev-Yao Model with Hashes). In a realization of
a Dolev-Yao model with hashes in the standard model of cryptography, an input
send(v, tu) to a machine Mu releases a bitstring tr to the real adversary, such that
within one execution of the system t ≡ t′ ⇒ tr = t′r for all terms t, t′. There must be a
deterministic, polynomial-time function hashr such that (hash(t))r = hashr(tr) for all
t ∈ Hashable Terms . An input is hash of(tu, hu) to a machine Mu leads to the output
true iff hashr(tr) = hr.

For nonces, there must be a probabilistic polynomial-time algorithm Gn that is used
to generate nr when it is needed for a new nonce n, and 2k executions of Gn must yield
pairwise different results nr

1, . . . , nr
2k with overwhelming probability. �
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In realizations with type tagging we can consider an original cryptographic hash func-
tion together with the type tag as hashr. Note that we made no assumptions on the
cryptographic properties of hashr and only a weak one on Gn; we will show that neither
“good” nor “bad” realizations lead to soundness in the sense of BRSIM/UC. 6

5 Details of the Impossibility Proofs

We now present the missing details for the impossibility proof sketches in Section 3,
using the definitions from Section 4.

5.1 Unsoundness of Dolev-Yao Models with Payloads

The first scenario from Section 3.1 becomes the following lemma. Its proof is contained
in the long version [10].

Lemma 1. (Collision Resistance of the Real Hash Function) If a Dolev-Yao model with
hashes and payloads (Definitions 1 to 3) has a realization in the standard model of
cryptography (Definition 9) that is secure in the sense of BRSIM/UC, then the hash
function hashr in this realization is collision-resistant. For simplicity we define here
that a collision for security parameter k consists of two messages of length 2k. �

The second scenario from Section 3.1 together with this lemma gives us the following
theorem.

Theorem 1. (Unsoundness of Dolev-Yao Models with Hashes and Ideal Secrecy of New
Payloads) No Dolev-Yao model with hashes and ideal secrecy of new payloads (Defini-
tions 1 to 4) has a realization in the standard model of cryptography (Definition 9) that
is secure in the sense of BRSIM/UC. �

Proof. Assume that a Dolev-Yao model and a realization as specified in the theorem
exist. By Lemma 1, the hash function hashr in the realization must be collision-resistant.
Then δ(k) := maxhr∈{0,1}∗(Pr[hashr(mr) = hr :: mr R← {0, 1}2k]) is negligible (as
a function of k), because otherwise two random messages of length 2k are a collision
with not negligible probability. We elaborate our second scenario in Figure 3: The user
Hu chooses the payload as mr R← {0, 1}2k. By Definitions 2 and 3, the adversary and
the user can indeed act as described in Section 3.1, and by Definition 9, the output
for A in the real system is hashr(mr). In the ideal system, the simulator Sim gets an
output receive(u, v, ha) from the Dolev-Yao model TH and has to produce a string hr

for the adversary. For indistinguishability, this string must fulfill hr = hashr(mr) with
overwhelming probability.

Definition 4 is applicable and implies that Sim (which acts as the ideal adversary
here), with x calls to TH, cannot obtain more information about mr than by learning

6 In computational considerations about hashr we allow hashr to depend on the security param-
eter k, which is fixed in each system execution. To allow collision resistance in the sense of the
typical cryptographic definition, it should even depend on a key pk chosen at the beginning of
each system execution; our proofs could easily be adapted to this case.
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for x bitstrings m′r whether m′r = mr. As mr is uniformly random, the probability
that Sim hits m′r = mr in this process is x/22k, where x is polynomial because Sim
is polynomial-time. Thus this probability is negligible. In the other case, the optimal
choice of hr for Sim is the most likely hash value over the remaining 22k − x possible
payloads. The probability that this value is correct is at most δ(k)22k/(22k − x). This
is negligible because x is polynomial. �
Next we consider the case without secrecy of hashed terms, but with the additional
assumption that the output length of the real hash function depends only on the secu-
rity parameter, not on the input length. (Weaker definitions of significantly shortening
hash functions would also suffice.) The third scenario from Section 3.1 together with
Lemma 1 gives us the following theorem.

Theorem 2. (Unsoundness of Dolev-Yao Models with Hashes and Payloads without
Secrecy) No Dolev-Yao model with hashes and payloads, even without ideal secrecy,
but with minimum non-constructibility of unknown payload hashes, (Definitions 1 to 3
and 5) has a realization in the standard model of cryptography (Definition 9) that is
secure in the sense of BRSIM/UC and where the real hash function is shortening. For
simplicity, we require that the range of a shortening hash function is {0, 1}k. �

Proof. Assume that a Dolev-Yao model and a realization as specified in the theorem
exist. By Lemma 1, the hash function hashr in the realization must be collision-resistant.
As hashr is also shortening, it is one-way. (Otherwise the following algorithm finds a
collision with not negligible probability: Select a random payload mr R← {0, 1}2k, use
the assumed inversion algorithm Aowf to find a preimage m′r of hashr(mr), and output
mr and m′r if they are unequal. This holds because all payloads, except less than 2k

and thus negligibly many, collide with another one. If Aowf succeeds for such a payload
mr, then with probability at least 1/2 we have m′r �= mr.)

We now elaborate our third scenario in Figure 4. By Definitions 2 and 3, the adver-
sary and the user can indeed act as described in Section 3.1, and by Definition 9 the
output for Hu in the real system is indeed true. By the assumption of the proof, the
simulator can achieve the same result in the ideal system with overwhelming probabil-
ity. Hence it makes an input send(v, u, ha) where, by Definition 2, h ≡ hash(m) for
the term m that is realized as mr. Definition 5 is applicable to our scenario and essen-
tially states that Sim, which acts as the ideal adversary, must know mr for this. More
precisely, we use the postulated extractor Ext to extract mr from the transcript of Sim
whenever Sim is successful. This gives us an inversion algorithm Aowf for the function
hashr that succeeds with not negligible probability, in contradiction to the one-wayness
of hashr. Concretely, Aowf is the combination of TH, Sim and Ext. This is indeed a non-
interactive algorithm as required in the definition of one-wayness: Sim initially gets
one input hr and TH has no input so far. Then Sim and TH interact with each other, but
interaction with H or A would be distinguishable from the real system. �

5.2 Unsoundness Without Payloads

Now we work out the scenarios for restricted Dolev-Yao models without payloads. As
sketched in Section 3.2, we proceed similar to the scenarios with payloads, letting the
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users and the adversary replace payloads by bit vectors that select sublists of nonces.
For this, we first define collision resistance and one-wayness with respect to the bit
vectors.

Definition 10 (Bit-vector Collision Resistance and One-Wayness). Let a Dolev-Yao
model with hashes and a realization in the standard model of cryptography with the
hash function hashr be given (Definitions 1, 2, and 9). We say that hashr is bit-
vector collision-resistant if every polynomial-time adversary can only find a list nr =
(nr

1, . . . , n
r
2k) of 2k pairwise different real nonces and bit vectors b �= b∗ ∈ {0, 1}2k

with hashr(b � nr) = hashr(b∗ � nr) with negligible probability, where b � nr for a
bit vector b = b1, . . . , b2k denotes the sublist consisting of the nonces nr

i with bi = 1.
We say that hashr is bit-vector one-way if every polynomial-time algorithm Aowf , on

input hr := hashr(b � nr) for random b R← {0, 1}2k and real nonces generated with
Gn, can only output a bit vector b∗ ∈ {0, 1}2k with hr = hashr(b∗ �nr) with negligible
probability.

Lemma 2. (Bit-vector Collision Resistance of the Real Hash Function) If a Dolev-
Yao model with hashes and nonces (Definitions 1, 2, and 6) where Hashable Terms
contains at least all lists of up to 2k nonces has a realization in the standard model
of cryptography (Definition 9) that is secure in the sense of BRSIM/UC, then the hash
function hashr in this realization is bit-vector collision-resistant. �

The proofs of this lemma and the two following theorems are postponed to the long
version [10].

Theorem 3. (Unsoundness of Dolev-Yao Models with Hashes and Ideal Secrecy of New
Nonce Lists) No Dolev-Yao model with hashes and ideal secrecy of new nonce lists
(Definitions 1, 2, 6, and 7) has a realization in the standard model of cryptography
(Definition 9) that is secure in the sense of BRSIM/UC. �

Theorem 4. (Unsoundness of Dolev-Yao Models with Hashes and Nonce Lists without
Secrecy) Let a Dolev-Yao model with hashes be given whose set Hashable Terms con-
tains at least all lists of up to 2k nonces, and where minimum non-constructibility of
unknown nonce-list hashes holds (Definitions 1, 2, 6, and 8). Then no cryptographic
implementation in the standard model of cryptography (Definition 9) with a shortening
real hash function is sound in the sense of BRSIM/UC. �

6 Soundness Results

In this section we show that Dolev-Yao-style hashes can be proven sound in the random
oracle model, and under specific restrictions on the usage of hash functions or their
properties in the ideal system even in the standard model of cryptography.

6.1 Soundness of Dolev-Yao Models with Hashes in the Random Oracle Setting

The first soundness result states that normal Dolev-Yao models without specific re-
strictions can be proven sound in the random oracle model. As an overall result for
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an operator-rich Dolev-Yao model with hashes, this requires an underlying Dolev-Yao
model with the other usual cryptographic operators and a realization secure in the sense
of BRSIM/UC. Hence we have to use that of [8]. However, what happens specifically
with the hashes can be explained well without specific notation from [8]. We sketch this
in this section, leaving more details to the long version of this paper [10].

The Dolev-Yao functionality is that of a free hash operator with unrestricted hashing
and with ideal secrecy in the typical sense that the adversary, upon learning a hash value,
has no deconstruction operator or other ways to obtain information about the contained
term except by the input is hash of for comparing a message and a potential hash.
The only additional power that the ideal adversary gets compared with honest users
is to make hashes with unknown preimages, i.e., terms that could be written hash(?).
The preimages will remain unknown forever; that this works in the realization is a
consequence of the random oracle model.

In the cryptographic realization, the operator hash is essentially realized by the
random oracle. The only addition is that the bitstrings are typed, i.e., the realization
hash(t)r of a hash term is the pair (‘hash’, RO(tr)) where ‘hash’ is a fixed string and
RO abbreviates the result of a (stateful) random oracle call.

Our security claim is that this realization is as secure as this ideal Dolev-Yao-style
system in the sense of BRSIM/UC in the random oracle model; see Section 2. The proof
of the theorem can be found in the long version [10].

Theorem 5. (Soundness of a Dolev-Yao Model with Hashes in the Random Oracle
Model) A Dolev-Yao model with unrestricted hashing and secrecy of hashed terms can
be securely implemented by a canonical cryptographic realization in the sense of BR-
SIM/UC in the random oracle model. Both the Dolev-Yao model and cryptographic
realization are defined in detail in the long version [10]. �

6.2 Soundness Results in the Standard Model

Finally, we briefly present two restricted but still practically useful types of Dolev-Yao
models with hashes that have secure realizations even in the standard model of cryp-
tography. Both models allow the ideal adversary to construct hash terms with unknown
preimages, i.e., terms hash(?). In contrast to the model in Section 6.1, the adversary can
later provide a preimage for such a term. Both realizations require a collision-resistant
hash function; in the first case the hash function must also be one-way.

The first type of Dolev-Yao model gives up the ideal secrecy, and can then work with
a significant class of hashable terms. By the size of a term t we mean the number of
nodes in the tree representation of t.

Theorem 6. (Soundness Without Payloads or Secrecy for Constant-Sized Terms) A
Dolev-Yao model without secrecy of hashed terms where terms in Hashable Terms
do not contain payloads and are at most of a constant size l can be securely realized
in the sense of BRSIM/UC with arbitrary collision-resistant, one-way hash functions in
the standard model of cryptography. �

We believe that this theorem can be extended to terms that contain payloads, but only
together with fresh nonces that remain secret, but the overhead of such a condition that
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must be defined over an overall system execution does not seem justified because the
case is of limited usefulness: Such a nonce cannot be sent over an insecure channel, and
thus unless a secret channel is available no other party can do anything with such a hash
term, such as test if for correctness.

The second theorem offers the ideal secrecy of typical Dolev-Yao models of hashing,
but only individual nonces can be hashed, as for instance in one-time signatures. Recall
from the introduction that while this may seem surprising given that real hash functions
(even probabilistic ones) do not offer perfect secrecy, it is correct because nonces are
system-internal objects whose Dolev-Yao abstraction essentially only requires fresh-
ness and unguessability of the nonces as a whole.

Theorem 7. (Soundness With Secrecy for Nonce Hashing) A Dolev-Yao model with
secrecy of hashed terms and where the set Hashable Terms contains only individual
nonces can be securely realized in the sense of BRSIM/UC with arbitrary collision-
resistant hash functions in the standard model of cryptography. �

Similar to the random oracle case, for the precise model we rely on the existing Dolev-
Yao model of [8] and extend it with hashes. The detailed models and sketches of both
proofs are given in the long version [10].

7 Conclusion

We have investigated whether Dolev-Yao models with hashes or one-way functions can
be realized in the sense of BRSIM/UC, i.e., such that the Dolev-Yao model is regarded
as an ideal functionality that is securely implemented by its realization. We have shown
that this is not possible for the standard type of such Dolev-Yao models where hashing
is a free operator. This impossibility result holds for all polynomial-time computable
functions in the role of the real hash function.

We then considered restrictions and extensions of the Dolev-Yao model or its ideal
properties that have a potential to simplify simulations. For these, we obtained addi-
tional BRSIM/UC impossibility results: First, modeling probabilistic hashing makes no
difference. Secondly, it does not help if no payloads can be hashed, but only crypto-
graphic terms (in fact, lists of nonces are sufficient). Thirdly, even if we give up the
ideal secrecy property of hashes (retaining the ideal collision freeness so that the model
is still reasonable), we obtain BRSIM/UC impossibility for all realizations of the hash
operator by polynomial-time computable functions whose output length is independent
of the input length, and thus for all typical real hash functions. This is the first impossi-
bility proof for a Dolev-Yao model that does not assume any ideal secrecy property.

On the positive side, we showed that a BRSIM/UC-sound realization of standard
Dolev-Yao hashes is possible in the random oracle model. we also obtain BRSIM/UC
soundness in the standard model of cryptography for two cases: One includes ideal se-
crecy, but only allows hashing of single nonces, e.g., for the use in one-time signatures.
The other gives up ideal secrecy, but allows hashing of arbitrary cryptographic terms,
i.e., terms without payloads, up to an arbitrary but constant size.
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